code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
def UpperCamelCase ( __lowerCamelCase : str ): snake_case : Union[str, Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" snake_case : Tuple = "" snake_case : Optional[int] = "" # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__lowerCamelCase ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring snake_case : Tuple = 0, 0 # length[i] shows the length of palindromic substring with center i snake_case : Any = [1 for i in range(len(__lowerCamelCase ) )] # for each character in new_string find corresponding palindromic string snake_case : int = 0 for j in range(len(__lowerCamelCase ) ): snake_case : Optional[Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__lowerCamelCase ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 snake_case : str = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: snake_case : List[str] = j - k + 1 # noqa: E741 snake_case : Dict = j + k - 1 # update max_length and start position if max_length < length[j]: snake_case : Optional[Any] = length[j] snake_case : int = j # create that string snake_case : Any = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
354
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image __lowerCamelCase = ["""text""", """image""", """audio"""] def UpperCamelCase ( __lowerCamelCase : List[str] ): snake_case : str = [] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): inputs.append(create_inputs(__lowerCamelCase ) ) else: raise ValueError(f"""Invalid type requested: {input_type}""" ) return inputs def UpperCamelCase ( __lowerCamelCase : List ): snake_case : List[str] = [] for output in outputs: if isinstance(__lowerCamelCase , (str, AgentText) ): output_types.append("text" ) elif isinstance(__lowerCamelCase , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(__lowerCamelCase , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(f"""Invalid output: {output}""" ) return output_types @is_tool_test class UpperCAmelCase : def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[str]: '''simple docstring''' self.assertTrue(hasattr(self.tool , "inputs" ) ) self.assertTrue(hasattr(self.tool , "outputs" ) ) snake_case : List[Any] = self.tool.inputs for _input in inputs: if isinstance(_input , snake_case__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) snake_case : str = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' snake_case : List[str] = create_inputs(self.tool.inputs ) snake_case : Dict = self.tool(*snake_case__ ) # There is a single output if len(self.tool.outputs ) == 1: snake_case : List[Any] = [outputs] self.assertListEqual(output_types(snake_case__ ) , self.tool.outputs ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[Any]: '''simple docstring''' self.assertTrue(hasattr(self.tool , "description" ) ) self.assertTrue(hasattr(self.tool , "default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def _SCREAMING_SNAKE_CASE (self : int ) -> Union[str, Any]: '''simple docstring''' snake_case : str = create_inputs(self.tool.inputs ) snake_case : int = self.tool(*snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): snake_case : Optional[Any] = [outputs] self.assertEqual(len(snake_case__ ) , len(self.tool.outputs ) ) for output, output_type in zip(snake_case__ , self.tool.outputs ): snake_case : Any = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : List[Any] = create_inputs(self.tool.inputs ) snake_case : str = [] for _input, input_type in zip(snake_case__ , self.tool.inputs ): if isinstance(snake_case__ , snake_case__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error snake_case : Optional[int] = self.tool(*snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): snake_case : List[str] = [outputs] self.assertEqual(len(snake_case__ ) , len(self.tool.outputs ) )
10
0
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] ): snake_case : Any = os.path.abspath(__lowerCamelCase ) logger.info(f"""Converting TensorFlow checkpoint from {tf_path}""" ) # Load weights from TF model snake_case : Optional[Any] = tf.train.list_variables(__lowerCamelCase ) snake_case : List[str] = [] snake_case : Optional[Any] = [] snake_case : str = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") snake_case : Tuple = full_name.split("/" ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f"""Skipping non-model layer {full_name}""" ) continue if "optimizer" in full_name: logger.info(f"""Skipping optimization layer {full_name}""" ) continue if name[0] == "model": # ignore initial 'model' snake_case : Dict = name[1:] # figure out how many levels deep the name is snake_case : str = 0 for _name in name: if _name.startswith("layer_with_weights" ): depth += 1 else: break layer_depth.append(__lowerCamelCase ) # read data snake_case : Optional[int] = tf.train.load_variable(__lowerCamelCase , __lowerCamelCase ) names.append("/".join(__lowerCamelCase ) ) arrays.append(__lowerCamelCase ) logger.info(f"""Read a total of {len(__lowerCamelCase ):,} layers""" ) # Sanity check if len(set(__lowerCamelCase ) ) != 1: raise ValueError(f"""Found layer names with different depths (layer depth {list(set(__lowerCamelCase ) )})""" ) snake_case : List[Any] = list(set(__lowerCamelCase ) )[0] if layer_depth != 1: raise ValueError( "The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP" " heads." ) # convert layers logger.info("Converting weights..." ) for full_name, array in zip(__lowerCamelCase , __lowerCamelCase ): snake_case : Dict = full_name.split("/" ) snake_case : str = model snake_case : Optional[int] = [] for i, m_name in enumerate(__lowerCamelCase ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith("layer_with_weights" ): snake_case : Optional[Any] = int(m_name.split("-" )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(["embeddings", "LayerNorm"] ) snake_case : Tuple = getattr(__lowerCamelCase , "embeddings" ) snake_case : Union[str, Any] = getattr(__lowerCamelCase , "LayerNorm" ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(["encoder", "layer", str(layer_num - 4 )] ) snake_case : Optional[int] = getattr(__lowerCamelCase , "encoder" ) snake_case : int = getattr(__lowerCamelCase , "layer" ) snake_case : int = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(["pooler", "dense"] ) snake_case : Tuple = getattr(__lowerCamelCase , "pooler" ) snake_case : List[Any] = getattr(__lowerCamelCase , "dense" ) elif m_name == "embeddings": trace.append("embeddings" ) snake_case : int = getattr(__lowerCamelCase , "embeddings" ) if layer_num == 0: trace.append("word_embeddings" ) snake_case : str = getattr(__lowerCamelCase , "word_embeddings" ) elif layer_num == 1: trace.append("position_embeddings" ) snake_case : List[str] = getattr(__lowerCamelCase , "position_embeddings" ) elif layer_num == 2: trace.append("token_type_embeddings" ) snake_case : Optional[Any] = getattr(__lowerCamelCase , "token_type_embeddings" ) else: raise ValueError(f"""Unknown embedding layer with name {full_name}""" ) trace.append("weight" ) snake_case : List[str] = getattr(__lowerCamelCase , "weight" ) elif m_name == "_attention_layer": # self-attention layer trace.extend(["attention", "self"] ) snake_case : Union[str, Any] = getattr(__lowerCamelCase , "attention" ) snake_case : List[str] = getattr(__lowerCamelCase , "self" ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(["attention", "output", "LayerNorm"] ) snake_case : Tuple = getattr(__lowerCamelCase , "attention" ) snake_case : Dict = getattr(__lowerCamelCase , "output" ) snake_case : Optional[Any] = getattr(__lowerCamelCase , "LayerNorm" ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(["attention", "output", "dense"] ) snake_case : Optional[int] = getattr(__lowerCamelCase , "attention" ) snake_case : List[str] = getattr(__lowerCamelCase , "output" ) snake_case : List[Any] = getattr(__lowerCamelCase , "dense" ) elif m_name == "_output_dense": # output dense trace.extend(["output", "dense"] ) snake_case : List[Any] = getattr(__lowerCamelCase , "output" ) snake_case : List[str] = getattr(__lowerCamelCase , "dense" ) elif m_name == "_output_layer_norm": # output dense trace.extend(["output", "LayerNorm"] ) snake_case : List[str] = getattr(__lowerCamelCase , "output" ) snake_case : Optional[int] = getattr(__lowerCamelCase , "LayerNorm" ) elif m_name == "_key_dense": # attention key trace.append("key" ) snake_case : List[str] = getattr(__lowerCamelCase , "key" ) elif m_name == "_query_dense": # attention query trace.append("query" ) snake_case : List[Any] = getattr(__lowerCamelCase , "query" ) elif m_name == "_value_dense": # attention value trace.append("value" ) snake_case : List[Any] = getattr(__lowerCamelCase , "value" ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(["intermediate", "dense"] ) snake_case : Dict = getattr(__lowerCamelCase , "intermediate" ) snake_case : Optional[Any] = getattr(__lowerCamelCase , "dense" ) elif m_name == "_output_layer_norm": # output layer norm trace.append("output" ) snake_case : Optional[int] = getattr(__lowerCamelCase , "output" ) # weights & biases elif m_name in ["bias", "beta"]: trace.append("bias" ) snake_case : Optional[int] = getattr(__lowerCamelCase , "bias" ) elif m_name in ["kernel", "gamma"]: trace.append("weight" ) snake_case : str = getattr(__lowerCamelCase , "weight" ) else: logger.warning(f"""Ignored {m_name}""" ) # for certain layers reshape is necessary snake_case : Dict = ".".join(__lowerCamelCase ) if re.match(r"(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)" , __lowerCamelCase ) or re.match( r"(\S+)\.attention\.output\.dense\.weight" , __lowerCamelCase ): snake_case : Dict = array.reshape(pointer.data.shape ) if "kernel" in full_name: snake_case : Optional[Any] = array.transpose() if pointer.shape == array.shape: snake_case : Dict = torch.from_numpy(__lowerCamelCase ) else: raise ValueError( f"""Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:""" f""" {array.shape}""" ) logger.info(f"""Successfully set variable {full_name} to PyTorch layer {trace}""" ) return model def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str ): # Instantiate model logger.info(f"""Loading model based on config from {config_path}...""" ) snake_case : Dict = BertConfig.from_json_file(__lowerCamelCase ) snake_case : Any = BertModel(__lowerCamelCase ) # Load weights from checkpoint logger.info(f"""Loading weights from checkpoint {tf_checkpoint_path}...""" ) load_tfa_weights_in_bert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model logger.info(f"""Saving PyTorch model to {pytorch_dump_path}...""" ) torch.save(model.state_dict() , __lowerCamelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow 2.x checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model (must include filename).""", ) __lowerCamelCase = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
355
def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str ): if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError("String lengths must match!" ) snake_case : Optional[Any] = 0 for chara, chara in zip(__lowerCamelCase , __lowerCamelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
10
0
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""") class UpperCAmelCase ( A_ ,unittest.TestCase ): A__ : Tuple = BartphoTokenizer A__ : str = False A__ : Any = True def _SCREAMING_SNAKE_CASE (self : Dict ) -> int: '''simple docstring''' super().setUp() snake_case : Optional[int] = ["▁This", "▁is", "▁a", "▁t", "est"] snake_case : Optional[int] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) snake_case : List[Any] = {"unk_token": "<unk>"} snake_case : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] ) with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""" ) snake_case : Optional[int] = BartphoTokenizer(snake_case__ , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE (self : int , **snake_case__ : Union[str, Any] ) -> List[str]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Dict ) -> Any: '''simple docstring''' snake_case : Optional[Any] = "This is a là test" snake_case : List[Any] = "This is a<unk><unk> test" return input_text, output_text def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Dict: '''simple docstring''' snake_case : List[Any] = BartphoTokenizer(snake_case__ , self.monolingual_vocab_file , **self.special_tokens_map ) snake_case : int = "This is a là test" snake_case : Tuple = "▁This ▁is ▁a ▁l à ▁t est".split() snake_case : Union[str, Any] = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) snake_case : Optional[int] = tokens + [tokenizer.unk_token] snake_case : List[Any] = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ )
356
def UpperCamelCase ( __lowerCamelCase : int ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("only integers accepted as input" ) else: snake_case : Dict = str(abs(__lowerCamelCase ) ) snake_case : Dict = [list(__lowerCamelCase ) for char in range(len(__lowerCamelCase ) )] for index in range(len(__lowerCamelCase ) ): num_transpositions[index].pop(__lowerCamelCase ) return max( int("".join(list(__lowerCamelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
10
0
from __future__ import annotations def UpperCamelCase ( __lowerCamelCase : list[int] ): return len(set(__lowerCamelCase ) ) == len(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
357
import requests from bsa import BeautifulSoup def UpperCamelCase ( __lowerCamelCase : str = "AAPL" ): snake_case : List[Any] = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" snake_case : Tuple = BeautifulSoup(requests.get(__lowerCamelCase ).text , "html.parser" ) snake_case : Dict = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div" , class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
10
0
from queue import PriorityQueue from typing import Any import numpy as np def UpperCamelCase ( __lowerCamelCase : dict , __lowerCamelCase : str , __lowerCamelCase : set , __lowerCamelCase : set , __lowerCamelCase : dict , __lowerCamelCase : dict , __lowerCamelCase : PriorityQueue , __lowerCamelCase : dict , __lowerCamelCase : float | int , ): for nxt, d in graph[v]: if nxt in visited_forward: continue snake_case : str = cst_fwd.get(__lowerCamelCase , np.inf ) snake_case : List[Any] = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) snake_case : str = new_cost_f snake_case : Any = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: snake_case : str = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : dict , __lowerCamelCase : dict ): snake_case : Union[str, Any] = -1 snake_case : List[Any] = set() snake_case : Tuple = set() snake_case : List[str] = {source: 0} snake_case : Any = {destination: 0} snake_case : Optional[Any] = {source: None} snake_case : Optional[Any] = {destination: None} snake_case : PriorityQueue[Any] = PriorityQueue() snake_case : PriorityQueue[Any] = PriorityQueue() snake_case : List[str] = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): snake_case : List[Any] = queue_forward.get() visited_forward.add(__lowerCamelCase ) snake_case : str = queue_backward.get() visited_backward.add(__lowerCamelCase ) snake_case : List[str] = pass_and_relaxation( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) snake_case : Dict = pass_and_relaxation( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: snake_case : List[Any] = shortest_distance return shortest_path_distance __lowerCamelCase = { """B""": [["""C""", 1]], """C""": [["""D""", 1]], """D""": [["""F""", 1]], """E""": [["""B""", 1], ["""G""", 2]], """F""": [], """G""": [["""F""", 1]], } __lowerCamelCase = { """B""": [["""E""", 1]], """C""": [["""B""", 1]], """D""": [["""C""", 1]], """F""": [["""D""", 1], ["""G""", 1]], """E""": [[None, np.inf]], """G""": [["""E""", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
358
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __lowerCamelCase = get_tests_dir() + """/test_data/fsmt/fsmt_val_data.json""" with io.open(filename, """r""", encoding="""utf-8""") as f: __lowerCamelCase = json.load(f) @require_torch class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' return FSMTTokenizer.from_pretrained(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : str ) -> List[str]: '''simple docstring''' snake_case : List[Any] = FSMTForConditionalGeneration.from_pretrained(snake_case__ ).to(snake_case__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["en-ru", 26.0], ["ru-en", 22.0], ["en-de", 22.0], ["de-en", 29.0], ] ) @slow def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Tuple , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' snake_case : Optional[int] = f"""facebook/wmt19-{pair}""" snake_case : Optional[Any] = self.get_tokenizer(snake_case__ ) snake_case : Dict = self.get_model(snake_case__ ) snake_case : List[Any] = bleu_data[pair]["src"] snake_case : int = bleu_data[pair]["tgt"] snake_case : Union[str, Any] = tokenizer(snake_case__ , return_tensors="pt" , truncation=snake_case__ , padding="longest" ).to(snake_case__ ) snake_case : str = model.generate( input_ids=batch.input_ids , num_beams=8 , ) snake_case : Optional[int] = tokenizer.batch_decode( snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) snake_case : Optional[int] = calculate_bleu(snake_case__ , snake_case__ ) print(snake_case__ ) self.assertGreaterEqual(scores["bleu"] , snake_case__ )
10
0
def UpperCamelCase ( ): snake_case : Tuple = [] snake_case : Tuple = 1 while len(__lowerCamelCase ) < 1E6: constant.append(str(__lowerCamelCase ) ) i += 1 snake_case : List[Any] = "".join(__lowerCamelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
359
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCamelCase = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 1_28, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 50, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 10, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 10, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class UpperCAmelCase ( unittest.TestCase ): @classmethod def _SCREAMING_SNAKE_CASE (cls : Dict ) -> Optional[int]: '''simple docstring''' snake_case : Any = TOKEN HfFolder.save_token(snake_case__ ) @classmethod def _SCREAMING_SNAKE_CASE (cls : Dict ) -> Union[str, Any]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def _SCREAMING_SNAKE_CASE (self : str ) -> List[str]: '''simple docstring''' snake_case : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) snake_case : Union[str, Any] = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case__ , repo_id="test-config" , push_to_hub=snake_case__ , use_auth_token=self._token ) snake_case : Any = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Dict: '''simple docstring''' snake_case : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) snake_case : Optional[int] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( snake_case__ , repo_id="valid_org/test-config-org" , push_to_hub=snake_case__ , use_auth_token=self._token ) snake_case : str = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Dict: '''simple docstring''' CustomConfig.register_for_auto_class() snake_case : Union[str, Any] = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) snake_case : int = AutoConfig.from_pretrained(f"""{USER}/test-dynamic-config""" , trust_remote_code=snake_case__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Dict: '''simple docstring''' snake_case : Any = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated snake_case : Tuple = c.n_embd + 1 # int snake_case : str = c.resid_pdrop + 1.0 # float snake_case : Optional[Any] = not c.scale_attn_weights # bool snake_case : Optional[int] = c.summary_type + "foo" # str c.update_from_string( f"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(snake_case__ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(snake_case__ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(snake_case__ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(snake_case__ , c.summary_type , "mismatch for key: summary_type" ) def _SCREAMING_SNAKE_CASE (self : int ) -> List[str]: '''simple docstring''' snake_case : Tuple = PretrainedConfig() snake_case : List[str] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( snake_case__ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) snake_case : Dict = [key for key, value in config_common_kwargs.items() if value == getattr(snake_case__ , snake_case__ )] if len(snake_case__ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" f""" {', '.join(snake_case__ )}.""" ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Optional[int]: '''simple docstring''' with self.assertRaises(snake_case__ ): # config is in subfolder, the following should not work without specifying the subfolder snake_case : Optional[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) snake_case : Optional[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case : Tuple = mock.Mock() snake_case : Optional[int] = 5_00 snake_case : Any = {} snake_case : str = HTTPError snake_case : Tuple = {} # Download this model to make sure it's in the cache. snake_case : List[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=snake_case__ ) as mock_head: snake_case : List[str] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def _SCREAMING_SNAKE_CASE (self : Any ) -> List[Any]: '''simple docstring''' snake_case : Dict = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def _SCREAMING_SNAKE_CASE (self : int ) -> str: '''simple docstring''' snake_case : Optional[Any] = AutoConfig.from_pretrained("bert-base-cased" ) snake_case : int = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(snake_case__ ) snake_case : str = 2 json.dump(configuration.to_dict() , open(os.path.join(snake_case__ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 snake_case : str = AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 snake_case : List[str] = ["config.42.0.0.json"] snake_case : Optional[int] = 7_68 configuration.save_pretrained(snake_case__ ) shutil.move(os.path.join(snake_case__ , "config.4.0.0.json" ) , os.path.join(snake_case__ , "config.42.0.0.json" ) ) snake_case : Union[str, Any] = AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Tuple: '''simple docstring''' snake_case : List[Any] = "hf-internal-testing/test-two-configs" import transformers as new_transformers snake_case : Optional[int] = "v4.0.0" snake_case , snake_case : List[str] = new_transformers.models.auto.AutoConfig.from_pretrained( snake_case__ , return_unused_kwargs=snake_case__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(snake_case__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers snake_case : int = "v3.0.0" snake_case : int = old_transformers.models.auto.AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(old_configuration.hidden_size , 7_68 )
10
0
import os from distutils.util import strtobool def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : Optional[int] ): for e in env_keys: snake_case : Optional[Any] = int(os.environ.get(__lowerCamelCase , -1 ) ) if val >= 0: return val return default def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : List[str]=False ): snake_case : Optional[int] = os.environ.get(__lowerCamelCase , str(__lowerCamelCase ) ) return strtobool(__lowerCamelCase ) == 1 # As its name indicates `strtobool` actually returns an int... def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple="no" ): snake_case : Optional[int] = os.environ.get(__lowerCamelCase , str(__lowerCamelCase ) ) return value
360
import os import string import sys __lowerCamelCase = 1 << 8 __lowerCamelCase = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } __lowerCamelCase = KEYMAP["""up"""] __lowerCamelCase = KEYMAP["""left"""] if sys.platform == "win32": __lowerCamelCase = [] __lowerCamelCase = { B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): __lowerCamelCase = ord(str(i)) def UpperCamelCase ( ): if os.name == "nt": import msvcrt snake_case : str = "mbcs" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__lowerCamelCase ) == 0: # Read the keystroke snake_case : Optional[int] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): snake_case : Any = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: snake_case : int = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"] ) ) WIN_CH_BUFFER.append(__lowerCamelCase ) if ord(__lowerCamelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) snake_case : List[str] = chr(KEYMAP["esc"] ) except KeyError: snake_case : Optional[Any] = cha[1] else: snake_case : Any = ch.decode(__lowerCamelCase ) else: snake_case : Optional[Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty snake_case : Union[str, Any] = sys.stdin.fileno() snake_case : Optional[Any] = termios.tcgetattr(__lowerCamelCase ) try: tty.setraw(__lowerCamelCase ) snake_case : Union[str, Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(__lowerCamelCase , termios.TCSADRAIN , __lowerCamelCase ) return ch def UpperCamelCase ( ): snake_case : int = get_raw_chars() if ord(__lowerCamelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__lowerCamelCase ) == KEYMAP["esc"]: snake_case : Dict = get_raw_chars() if ord(__lowerCamelCase ) == KEYMAP["mod_int"]: snake_case : Any = get_raw_chars() if ord(__lowerCamelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__lowerCamelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__lowerCamelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
10
0
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: snake_case : Tuple = ksize + 1 snake_case : int = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__lowerCamelCase ): for x in range(__lowerCamelCase ): # distance from center snake_case : int = x - ksize // 2 snake_case : Union[str, Any] = y - ksize // 2 # degree to radiant snake_case : List[str] = theta / 180 * np.pi snake_case : List[Any] = np.cos(_theta ) snake_case : Dict = np.sin(_theta ) # get kernel x snake_case : Optional[int] = cos_theta * px + sin_theta * py # get kernel y snake_case : str = -sin_theta * px + cos_theta * py # fill kernel snake_case : Any = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __lowerCamelCase = imread("""../image_data/lena.jpg""") # turn image in gray scale value __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __lowerCamelCase = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 1_20, 1_50]: __lowerCamelCase = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __lowerCamelCase = out / out.max() * 2_55 __lowerCamelCase = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
361
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable __lowerCamelCase = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""DPTFeatureExtractor"""] __lowerCamelCase = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
10
0
import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class UpperCAmelCase ( A_ ,unittest.TestCase ): A__ : List[str] = XLNetTokenizer A__ : Optional[Any] = XLNetTokenizerFast A__ : Any = True A__ : Dict = True def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing snake_case : Any = XLNetTokenizer(snake_case__ , keep_accents=snake_case__ ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Union[str, Any]: '''simple docstring''' snake_case : List[Any] = "<s>" snake_case : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Tuple: '''simple docstring''' snake_case : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<eod>" ) self.assertEqual(len(snake_case__ ) , 10_06 ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Any: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[int]: '''simple docstring''' snake_case : List[str] = XLNetTokenizer(snake_case__ , keep_accents=snake_case__ ) snake_case : Optional[Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(snake_case__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [2_85, 46, 10, 1_70, 3_82] ) snake_case : Any = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) snake_case : str = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual(snake_case__ , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) snake_case : List[str] = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def _SCREAMING_SNAKE_CASE (self : int ) -> Union[str, Any]: '''simple docstring''' snake_case : Any = XLNetTokenizer(snake_case__ , do_lower_case=snake_case__ ) snake_case : List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "", "i", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "se", ".", ] , ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["▁he", "ll", "o"] ) def _SCREAMING_SNAKE_CASE (self : str ) -> int: '''simple docstring''' snake_case : List[str] = XLNetTokenizer(snake_case__ , do_lower_case=snake_case__ ) snake_case : str = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "se", ".", ] , ) @slow def _SCREAMING_SNAKE_CASE (self : str ) -> List[str]: '''simple docstring''' snake_case : int = XLNetTokenizer.from_pretrained("xlnet-base-cased" ) snake_case : Dict = tokenizer.encode("sequence builders" , add_special_tokens=snake_case__ ) snake_case : Dict = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case__ ) snake_case : List[str] = tokenizer.build_inputs_with_special_tokens(snake_case__ ) snake_case : Optional[int] = tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def _SCREAMING_SNAKE_CASE (self : Dict ) -> Optional[int]: '''simple docstring''' snake_case : int = {"input_ids": [[17, 2_14_42, 2_70, 17, 10, 1_46_45, 3_18, 34, 17, 45_46, 31_45, 7_87, 13, 77_52, 2_20_18, 23, 21, 17, 45_46, 31_45, 7_87, 13, 33_52, 1_44_31, 13, 55_00, 11, 11_76, 5_80, 13, 1_68_19, 47_97, 23, 17, 10, 1_71_35, 6_58, 19, 4_57, 79_32, 13, 1_84, 19, 31_54, 1_71_35, 64_68, 19, 14_04, 1_22_69, 19, 42_29, 53_56, 1_62_64, 46, 19, 17, 2_05_45, 1_03_95, 9, 9, 9, 11, 28, 64_21, 95_31, 2_07_29, 17, 10, 3_53, 1_70_22, 11, 21, 64_21, 95_31, 1_69_49, 17, 10, 1_15_09, 7_53, 11, 33, 95, 24_21, 73_85, 9_56, 1_44_31, 26_26, 25, 8_42, 73_85, 48_36, 21, 14_29, 22_72, 98_55, 31_20, 1_61, 2_47_38, 19, 1_32_03, 6_58, 2_18, 7_87, 21, 4_30, 1_84_82, 8_47, 26_37, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_22, 2_21_78, 27, 10_64, 22, 9_56, 13, 1_11_01, 14_29, 58_54, 2_43_13, 1_89_53, 40, 4_22, 2_43_66, 68, 17_58, 37, 1_04_83, 1_42_57, 31, 2_07, 2_63, 21, 2_03, 37_73, 25, 71, 97_35, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 20_49, 34_42, 17, 1_38_94, 33_80, 23, 95, 18, 1_76_34, 22_88, 9, 4, 3]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name="xlnet-base-cased" , revision="c841166438c31ec7ca9a106dee7bb312b73ae511" , )
362
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor __lowerCamelCase = logging.get_logger(__name__) class UpperCAmelCase ( A_ ): def __init__(self : List[Any] , *snake_case__ : List[str] , **snake_case__ : Dict ) -> None: '''simple docstring''' warnings.warn( "The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PerceiverImageProcessor instead." , snake_case__ , ) super().__init__(*snake_case__ , **snake_case__ )
10
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class UpperCAmelCase ( unittest.TestCase ): def __init__(self : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Dict=7 , snake_case__ : int=3 , snake_case__ : str=30 , snake_case__ : Dict=4_00 , snake_case__ : Any=True , snake_case__ : Tuple=None , snake_case__ : Dict=True , snake_case__ : Dict=[0.5, 0.5, 0.5] , snake_case__ : Union[str, Any]=[0.5, 0.5, 0.5] , snake_case__ : int=True , snake_case__ : Optional[Any]=1 / 2_55 , snake_case__ : Optional[Any]=True , ) -> str: '''simple docstring''' snake_case : Dict = size if size is not None else {"shortest_edge": 18, "longest_edge": 13_33} snake_case : List[Any] = parent snake_case : Dict = batch_size snake_case : Optional[Any] = num_channels snake_case : Union[str, Any] = min_resolution snake_case : Dict = max_resolution snake_case : Dict = do_resize snake_case : List[str] = size snake_case : Dict = do_normalize snake_case : Any = image_mean snake_case : Tuple = image_std snake_case : int = do_rescale snake_case : List[Any] = rescale_factor snake_case : Any = do_pad def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[str]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : Tuple , snake_case__ : Any=False ) -> Tuple: '''simple docstring''' if not batched: snake_case : Tuple = image_inputs[0] if isinstance(snake_case__ , Image.Image ): snake_case : List[Any] = image.size else: snake_case : Any = image.shape[1], image.shape[2] if w < h: snake_case : Optional[Any] = int(self.size["shortest_edge"] * h / w ) snake_case : Optional[Any] = self.size["shortest_edge"] elif w > h: snake_case : List[str] = self.size["shortest_edge"] snake_case : Dict = int(self.size["shortest_edge"] * w / h ) else: snake_case : List[Any] = self.size["shortest_edge"] snake_case : List[str] = self.size["shortest_edge"] else: snake_case : List[str] = [] for image in image_inputs: snake_case : List[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case : Tuple = max(snake_case__ , key=lambda snake_case__ : item[0] )[0] snake_case : Tuple = max(snake_case__ , key=lambda snake_case__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase ( A_ ,unittest.TestCase ): A__ : str = DetaImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE (self : Any ) -> List[str]: '''simple docstring''' snake_case : Optional[Any] = DetaImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE (self : List[str] ) -> int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Any: '''simple docstring''' snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "image_mean" ) ) self.assertTrue(hasattr(snake_case__ , "image_std" ) ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "do_resize" ) ) self.assertTrue(hasattr(snake_case__ , "do_rescale" ) ) self.assertTrue(hasattr(snake_case__ , "do_pad" ) ) self.assertTrue(hasattr(snake_case__ , "size" ) ) def _SCREAMING_SNAKE_CASE (self : str ) -> Any: '''simple docstring''' snake_case : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 13_33} ) self.assertEqual(image_processor.do_pad , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int ) -> Optional[int]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[Any]: '''simple docstring''' snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input snake_case : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case : str = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case : Dict = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) snake_case : int = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Tuple: '''simple docstring''' snake_case : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) # Test not batched input snake_case : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case : Optional[Any] = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case : Tuple = image_processing(snake_case__ , return_tensors="pt" ).pixel_values snake_case : Optional[int] = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _SCREAMING_SNAKE_CASE (self : str ) -> int: '''simple docstring''' snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input snake_case : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case : List[str] = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case : List[Any] = image_processing(snake_case__ , return_tensors="pt" ).pixel_values snake_case : str = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Any: '''simple docstring''' snake_case : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case : Tuple = json.loads(f.read() ) snake_case : int = {"image_id": 3_97_69, "annotations": target} # encode them snake_case : Union[str, Any] = DetaImageProcessor() snake_case : Optional[int] = image_processing(images=snake_case__ , annotations=snake_case__ , return_tensors="pt" ) # verify pixel values snake_case : Union[str, Any] = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , snake_case__ ) snake_case : Optional[Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , snake_case__ , atol=1e-4 ) ) # verify area snake_case : List[str] = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , snake_case__ ) ) # verify boxes snake_case : Any = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , snake_case__ ) snake_case : Tuple = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , snake_case__ , atol=1e-3 ) ) # verify image_id snake_case : Union[str, Any] = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , snake_case__ ) ) # verify is_crowd snake_case : Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , snake_case__ ) ) # verify class_labels snake_case : int = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , snake_case__ ) ) # verify orig_size snake_case : Dict = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , snake_case__ ) ) # verify size snake_case : Dict = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , snake_case__ ) ) @slow def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> List[Any]: '''simple docstring''' snake_case : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case : List[Any] = json.loads(f.read() ) snake_case : Any = {"file_name": "000000039769.png", "image_id": 3_97_69, "segments_info": target} snake_case : Any = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case : Tuple = DetaImageProcessor(format="coco_panoptic" ) snake_case : int = image_processing(images=snake_case__ , annotations=snake_case__ , masks_path=snake_case__ , return_tensors="pt" ) # verify pixel values snake_case : int = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , snake_case__ ) snake_case : Tuple = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , snake_case__ , atol=1e-4 ) ) # verify area snake_case : str = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , snake_case__ ) ) # verify boxes snake_case : Any = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , snake_case__ ) snake_case : List[Any] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , snake_case__ , atol=1e-3 ) ) # verify image_id snake_case : List[Any] = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , snake_case__ ) ) # verify is_crowd snake_case : int = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , snake_case__ ) ) # verify class_labels snake_case : List[Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , snake_case__ ) ) # verify masks snake_case : List[str] = 82_28_73 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , snake_case__ ) # verify orig_size snake_case : Optional[int] = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , snake_case__ ) ) # verify size snake_case : int = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , snake_case__ ) )
363
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase = { """configuration_pix2struct""": [ """PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Pix2StructConfig""", """Pix2StructTextConfig""", """Pix2StructVisionConfig""", ], """processing_pix2struct""": ["""Pix2StructProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""Pix2StructImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Pix2StructPreTrainedModel""", """Pix2StructForConditionalGeneration""", """Pix2StructVisionModel""", """Pix2StructTextModel""", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
10
0
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def UpperCamelCase ( __lowerCamelCase : List[str] ): return 1 / (1 + np.exp(-z )) def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] ): return (-y * np.log(__lowerCamelCase ) - (1 - y) * np.log(1 - h )).mean() def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : List[str] , __lowerCamelCase : str ): snake_case : List[str] = np.dot(__lowerCamelCase , __lowerCamelCase ) return np.sum(y * scores - np.log(1 + np.exp(__lowerCamelCase ) ) ) def UpperCamelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[Any]=70000 ): snake_case : Optional[Any] = np.zeros(x.shape[1] ) for iterations in range(__lowerCamelCase ): snake_case : int = np.dot(__lowerCamelCase , __lowerCamelCase ) snake_case : List[str] = sigmoid_function(__lowerCamelCase ) snake_case : Tuple = np.dot(x.T , h - y ) / y.size snake_case : Union[str, Any] = theta - alpha * gradient # updating the weights snake_case : Optional[int] = np.dot(__lowerCamelCase , __lowerCamelCase ) snake_case : List[Any] = sigmoid_function(__lowerCamelCase ) snake_case : Optional[int] = cost_function(__lowerCamelCase , __lowerCamelCase ) if iterations % 100 == 0: print(f"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": __lowerCamelCase = datasets.load_iris() __lowerCamelCase = iris.data[:, :2] __lowerCamelCase = (iris.target != 0) * 1 __lowerCamelCase = 0.1 __lowerCamelCase = logistic_reg(alpha, x, y, max_iterations=7_00_00) print("""theta: """, theta) # printing the theta i.e our weights vector def UpperCamelCase ( __lowerCamelCase : int ): return sigmoid_function( np.dot(__lowerCamelCase , __lowerCamelCase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="""b""", label="""0""") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="""r""", label="""1""") ((__lowerCamelCase), (__lowerCamelCase)) = (x[:, 0].min(), x[:, 0].max()) ((__lowerCamelCase), (__lowerCamelCase)) = (x[:, 1].min(), x[:, 1].max()) ((__lowerCamelCase), (__lowerCamelCase)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) __lowerCamelCase = np.c_[xxa.ravel(), xxa.ravel()] __lowerCamelCase = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="""black""") plt.legend() plt.show()
364
def UpperCamelCase ( __lowerCamelCase : str ): snake_case : Union[str, Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" snake_case : Tuple = "" snake_case : Optional[int] = "" # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__lowerCamelCase ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring snake_case , snake_case : Tuple = 0, 0 # length[i] shows the length of palindromic substring with center i snake_case : Any = [1 for i in range(len(__lowerCamelCase ) )] # for each character in new_string find corresponding palindromic string snake_case : int = 0 for j in range(len(__lowerCamelCase ) ): snake_case : Optional[Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__lowerCamelCase ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 snake_case : str = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: snake_case : List[str] = j - k + 1 # noqa: E741 snake_case : Dict = j + k - 1 # update max_length and start position if max_length < length[j]: snake_case : Optional[Any] = length[j] snake_case : int = j # create that string snake_case : Any = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
10
0
def UpperCamelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : int ): snake_case : Optional[Any] = [0 for i in range(r + 1 )] # nc0 = 1 snake_case : Optional[int] = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. snake_case : Optional[int] = min(__lowerCamelCase , __lowerCamelCase ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
365
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants __lowerCamelCase = Mapping[str, np.ndarray] __lowerCamelCase = Mapping[str, Any] # Is a nested dict. __lowerCamelCase = 0.01 @dataclasses.dataclass(frozen=A_ ) class UpperCAmelCase : A__ : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. A__ : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. A__ : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. A__ : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. A__ : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions A__ : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files A__ : Optional[str] = None # Templates used to generate this protein (prediction-only) A__ : Optional[Sequence[str]] = None # Chain corresponding to each parent A__ : Optional[Sequence[int]] = None def UpperCamelCase ( __lowerCamelCase : str ): snake_case : Dict = r"(\[[A-Z]+\]\n)" snake_case : List[str] = [tag.strip() for tag in re.split(__lowerCamelCase , __lowerCamelCase ) if len(__lowerCamelCase ) > 0] snake_case : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split("\n" ) for l in tags[1::2]] ) snake_case : List[str] = ["N", "CA", "C"] snake_case : str = None snake_case : str = None snake_case : Tuple = None for g in groups: if "[PRIMARY]" == g[0]: snake_case : Tuple = g[1][0].strip() for i in range(len(__lowerCamelCase ) ): if seq[i] not in residue_constants.restypes: snake_case : Optional[Any] = "X" # FIXME: strings are immutable snake_case : Optional[int] = np.array( [residue_constants.restype_order.get(__lowerCamelCase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: snake_case : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(__lowerCamelCase , g[1][axis].split() ) ) ) snake_case : Union[str, Any] = np.array(__lowerCamelCase ) snake_case : str = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__lowerCamelCase ): snake_case : Dict = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: snake_case : int = np.array(list(map({"-": 0, "+": 1}.get , g[1][0].strip() ) ) ) snake_case : List[str] = np.zeros( ( len(__lowerCamelCase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__lowerCamelCase ): snake_case : Any = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__lowerCamelCase , atom_mask=__lowerCamelCase , aatype=__lowerCamelCase , residue_index=np.arange(len(__lowerCamelCase ) ) , b_factors=__lowerCamelCase , ) def UpperCamelCase ( __lowerCamelCase : Protein , __lowerCamelCase : int = 0 ): snake_case : List[str] = [] snake_case : str = prot.remark if remark is not None: pdb_headers.append(f"""REMARK {remark}""" ) snake_case : Union[str, Any] = prot.parents snake_case : Dict = prot.parents_chain_index if parents is not None and parents_chain_index is not None: snake_case : Tuple = [p for i, p in zip(__lowerCamelCase , __lowerCamelCase ) if i == chain_id] if parents is None or len(__lowerCamelCase ) == 0: snake_case : int = ["N/A"] pdb_headers.append(f"""PARENT {' '.join(__lowerCamelCase )}""" ) return pdb_headers def UpperCamelCase ( __lowerCamelCase : Protein , __lowerCamelCase : str ): snake_case : List[str] = [] snake_case : Any = pdb_str.split("\n" ) snake_case : int = prot.remark if remark is not None: out_pdb_lines.append(f"""REMARK {remark}""" ) snake_case : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: snake_case : Optional[Any] = [] if prot.parents_chain_index is not None: snake_case : Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(__lowerCamelCase ) , [] ) parent_dict[str(__lowerCamelCase )].append(__lowerCamelCase ) snake_case : List[str] = max([int(__lowerCamelCase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): snake_case : Optional[Any] = parent_dict.get(str(__lowerCamelCase ) , ["N/A"] ) parents_per_chain.append(__lowerCamelCase ) else: parents_per_chain.append(list(prot.parents ) ) else: snake_case : Optional[Any] = [["N/A"]] def make_parent_line(__lowerCamelCase : Sequence[str] ) -> str: return f"""PARENT {' '.join(__lowerCamelCase )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) snake_case : List[Any] = 0 for i, l in enumerate(__lowerCamelCase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__lowerCamelCase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__lowerCamelCase ): snake_case : int = parents_per_chain[chain_counter] else: snake_case : Any = ["N/A"] out_pdb_lines.append(make_parent_line(__lowerCamelCase ) ) return "\n".join(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Protein ): snake_case : str = residue_constants.restypes + ["X"] def res_atoa(__lowerCamelCase : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , "UNK" ) snake_case : List[Any] = residue_constants.atom_types snake_case : List[str] = [] snake_case : Any = prot.atom_mask snake_case : Any = prot.aatype snake_case : Dict = prot.atom_positions snake_case : List[str] = prot.residue_index.astype(np.intaa ) snake_case : Dict = prot.b_factors snake_case : Tuple = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("Invalid aatypes." ) snake_case : Any = get_pdb_headers(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: pdb_lines.extend(__lowerCamelCase ) snake_case : Dict = aatype.shape[0] snake_case : Tuple = 1 snake_case : Any = 0 snake_case : Union[str, Any] = string.ascii_uppercase snake_case : int = None # Add all atom sites. for i in range(__lowerCamelCase ): snake_case : List[Any] = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__lowerCamelCase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue snake_case : Any = "ATOM" snake_case : str = atom_name if len(__lowerCamelCase ) == 4 else f""" {atom_name}""" snake_case : Optional[Any] = "" snake_case : Dict = "" snake_case : Optional[Any] = 1.00 snake_case : str = atom_name[0] # Protein supports only C, N, O, S, this works. snake_case : Dict = "" snake_case : Any = "A" if chain_index is not None: snake_case : str = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! snake_case : List[str] = ( f"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" f"""{res_name_a:>3} {chain_tag:>1}""" f"""{residue_index[i]:>4}{insertion_code:>1} """ f"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" f"""{occupancy:>6.2f}{b_factor:>6.2f} """ f"""{element:>2}{charge:>2}""" ) pdb_lines.append(__lowerCamelCase ) atom_index += 1 snake_case : Optional[int] = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: snake_case : Any = True snake_case : Tuple = chain_index[i + 1] if should_terminate: # Close the chain. snake_case : Optional[Any] = "TER" snake_case : Optional[int] = ( f"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(__lowerCamelCase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__lowerCamelCase , __lowerCamelCase ) ) pdb_lines.append("END" ) pdb_lines.append("" ) return "\n".join(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Protein ): return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def UpperCamelCase ( __lowerCamelCase : FeatureDict , __lowerCamelCase : ModelOutput , __lowerCamelCase : Optional[np.ndarray] = None , __lowerCamelCase : Optional[np.ndarray] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[Sequence[str]] = None , __lowerCamelCase : Optional[Sequence[int]] = None , ): return Protein( aatype=features["aatype"] , atom_positions=result["final_atom_positions"] , atom_mask=result["final_atom_mask"] , residue_index=features["residue_index"] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"] ) , chain_index=__lowerCamelCase , remark=__lowerCamelCase , parents=__lowerCamelCase , parents_chain_index=__lowerCamelCase , )
10
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase = {"""configuration_ibert""": ["""IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """IBertConfig""", """IBertOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """IBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """IBertForMaskedLM""", """IBertForMultipleChoice""", """IBertForQuestionAnswering""", """IBertForSequenceClassification""", """IBertForTokenClassification""", """IBertModel""", """IBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
366
from __future__ import annotations __lowerCamelCase = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class UpperCAmelCase : def __init__(self : Tuple , snake_case__ : dict[str, list[str]] , snake_case__ : str ) -> None: '''simple docstring''' snake_case : str = graph # mapping node to its parent in resulting breadth first tree snake_case : dict[str, str | None] = {} snake_case : Union[str, Any] = source_vertex def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> None: '''simple docstring''' snake_case : Any = {self.source_vertex} snake_case : str = None snake_case : List[str] = [self.source_vertex] # first in first out queue while queue: snake_case : List[Any] = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(snake_case__ ) snake_case : Any = vertex queue.append(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : str ) -> str: '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex snake_case : str = self.parent.get(snake_case__ ) if target_vertex_parent is None: snake_case : Optional[Any] = ( f"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(snake_case__ ) return self.shortest_path(snake_case__ ) + f"""->{target_vertex}""" if __name__ == "__main__": __lowerCamelCase = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
10
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCAmelCase ( A_ ): A__ : int = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) A__ : Any = "CIDAS/clipseg-rd64-refined" A__ : List[Any] = "image_segmenter" A__ : List[Any] = CLIPSegForImageSegmentation A__ : List[str] = ["image", "text"] A__ : Optional[int] = ["image"] def __init__(self : Dict , *snake_case__ : List[Any] , **snake_case__ : List[Any] ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["vision"] ) super().__init__(*snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : "Image" , snake_case__ : str ) -> str: '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=snake_case__ , return_tensors="pt" ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : List[str] ) -> Optional[int]: '''simple docstring''' with torch.no_grad(): snake_case : str = self.model(**snake_case__ ).logits return logits def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Any ) -> List[str]: '''simple docstring''' snake_case : List[Any] = outputs.cpu().detach().numpy() snake_case : List[str] = 0 snake_case : Dict = 1 return Image.fromarray((array * 2_55).astype(np.uinta ) )
367
from __future__ import annotations def UpperCamelCase ( __lowerCamelCase : list[int] ): snake_case : Optional[int] = len(__lowerCamelCase ) // 2 # choose the middle 3 elements snake_case : str = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
10
0
import numpy as np from PIL import Image def UpperCamelCase ( __lowerCamelCase : np.ndarray , __lowerCamelCase : int , __lowerCamelCase : int ): snake_case : str = np.array(__lowerCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError("The input array is not a square matrix" ) snake_case : Optional[int] = 0 snake_case : Tuple = 0 snake_case : Union[str, Any] = 0 snake_case : List[Any] = 0 # compute the shape of the output matrix snake_case : Optional[int] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape snake_case : Union[str, Any] = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix snake_case : List[Any] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 snake_case : List[str] = 0 snake_case : List[Any] = 0 return updated_arr def UpperCamelCase ( __lowerCamelCase : np.ndarray , __lowerCamelCase : int , __lowerCamelCase : int ): snake_case : Union[str, Any] = np.array(__lowerCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError("The input array is not a square matrix" ) snake_case : Union[str, Any] = 0 snake_case : Optional[int] = 0 snake_case : Optional[int] = 0 snake_case : List[str] = 0 # compute the shape of the output matrix snake_case : List[Any] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape snake_case : str = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix snake_case : Dict = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 snake_case : Dict = 0 snake_case : Any = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="""avgpooling""", verbose=True) # Loading the image __lowerCamelCase = Image.open("""path_to_image""") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
368
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __lowerCamelCase = """.""" if __name__ == "__main__": __lowerCamelCase = os.path.join(REPO_PATH, """utils/documentation_tests.txt""") __lowerCamelCase = [] __lowerCamelCase = [] with open(doctest_file_path) as fp: for line in fp: __lowerCamelCase = line.strip() __lowerCamelCase = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __lowerCamelCase = """\n""".join(non_existent_paths) raise ValueError(F'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError("""Files in `utils/documentation_tests.txt` are not in alphabetical order.""")
10
0
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } __lowerCamelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): for attribute in key.split("." ): snake_case : Tuple = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: snake_case : int = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: snake_case : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case : Dict = value elif weight_type == "weight_g": snake_case : Optional[int] = value elif weight_type == "weight_v": snake_case : Optional[int] = value elif weight_type == "bias": snake_case : Tuple = value else: snake_case : Optional[int] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : List[str] ): snake_case : int = [] snake_case : List[Any] = fairseq_model.state_dict() snake_case : int = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case : List[str] = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) snake_case : str = True else: for key, mapped_key in MAPPING.items(): snake_case : Tuple = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue snake_case : Tuple = True if "*" in mapped_key: snake_case : Union[str, Any] = name.split(__lowerCamelCase )[0].split("." )[-2] snake_case : Any = mapped_key.replace("*" , __lowerCamelCase ) if "weight_g" in name: snake_case : Optional[int] = "weight_g" elif "weight_v" in name: snake_case : Tuple = "weight_v" elif "bias" in name: snake_case : Dict = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case : str = "weight" else: snake_case : str = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Any ): snake_case : str = full_name.split("conv_layers." )[-1] snake_case : int = name.split("." ) snake_case : Optional[int] = int(items[0] ) snake_case : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case : List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) snake_case : Dict = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case : Optional[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def UpperCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Dict=True ): if config_path is not None: snake_case : str = UniSpeechSatConfig.from_pretrained(__lowerCamelCase ) else: snake_case : str = UniSpeechSatConfig() snake_case : Tuple = "" if is_finetuned: snake_case : Tuple = UniSpeechSatForCTC(__lowerCamelCase ) else: snake_case : List[Any] = UniSpeechSatForPreTraining(__lowerCamelCase ) snake_case : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) snake_case : Dict = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __lowerCamelCase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
369
import fire from utils import calculate_rouge, save_json def UpperCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None , **__lowerCamelCase : Tuple ): snake_case : Optional[Any] = [x.strip() for x in open(__lowerCamelCase ).readlines()] snake_case : Union[str, Any] = [x.strip() for x in open(__lowerCamelCase ).readlines()][: len(__lowerCamelCase )] snake_case : List[Any] = calculate_rouge(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) if save_path is not None: save_json(__lowerCamelCase , __lowerCamelCase , indent=__lowerCamelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
10
0
from __future__ import annotations def UpperCamelCase ( __lowerCamelCase : list[int] ): snake_case : Optional[int] = len(__lowerCamelCase ) // 2 # choose the middle 3 elements snake_case : str = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
370
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } __lowerCamelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): for attribute in key.split("." ): snake_case : Tuple = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: snake_case : int = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: snake_case : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case : Dict = value elif weight_type == "weight_g": snake_case : Optional[int] = value elif weight_type == "weight_v": snake_case : Optional[int] = value elif weight_type == "bias": snake_case : Tuple = value else: snake_case : Optional[int] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : List[str] ): snake_case : int = [] snake_case : List[Any] = fairseq_model.state_dict() snake_case : int = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case : List[str] = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) snake_case : str = True else: for key, mapped_key in MAPPING.items(): snake_case : Tuple = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue snake_case : Tuple = True if "*" in mapped_key: snake_case : Union[str, Any] = name.split(__lowerCamelCase )[0].split("." )[-2] snake_case : Any = mapped_key.replace("*" , __lowerCamelCase ) if "weight_g" in name: snake_case : Optional[int] = "weight_g" elif "weight_v" in name: snake_case : Tuple = "weight_v" elif "bias" in name: snake_case : Dict = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case : str = "weight" else: snake_case : str = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Any ): snake_case : str = full_name.split("conv_layers." )[-1] snake_case : int = name.split("." ) snake_case : Optional[int] = int(items[0] ) snake_case : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case : List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) snake_case : Dict = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case : Optional[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def UpperCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Dict=True ): if config_path is not None: snake_case : str = UniSpeechSatConfig.from_pretrained(__lowerCamelCase ) else: snake_case : str = UniSpeechSatConfig() snake_case : Tuple = "" if is_finetuned: snake_case : Tuple = UniSpeechSatForCTC(__lowerCamelCase ) else: snake_case : List[Any] = UniSpeechSatForPreTraining(__lowerCamelCase ) snake_case , snake_case , snake_case : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) snake_case : Dict = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __lowerCamelCase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
10
0
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __lowerCamelCase = """platform""" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def UpperCamelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any=None , __lowerCamelCase : Dict=None , __lowerCamelCase : Any=None , __lowerCamelCase : str=None , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Union[str, Any]=None , ): if attention_mask is None: snake_case : Any = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: snake_case : Optional[Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: snake_case : List[str] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case : int = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case : List[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class UpperCAmelCase : def __init__(self : int , snake_case__ : Any , snake_case__ : Optional[int]=13 , snake_case__ : Any=7 , snake_case__ : Dict=True , snake_case__ : Dict=False , snake_case__ : Tuple=99 , snake_case__ : List[str]=16 , snake_case__ : str=2 , snake_case__ : List[str]=4 , snake_case__ : List[str]=4 , snake_case__ : Union[str, Any]="gelu" , snake_case__ : Dict=0.1 , snake_case__ : List[str]=0.1 , snake_case__ : Optional[int]=32 , snake_case__ : int=2 , snake_case__ : Union[str, Any]=1 , snake_case__ : Dict=0 , snake_case__ : List[str]=0.02 , ) -> Optional[Any]: '''simple docstring''' snake_case : Union[str, Any] = parent snake_case : Dict = batch_size snake_case : Any = seq_length snake_case : List[Any] = is_training snake_case : Optional[int] = use_labels snake_case : str = vocab_size snake_case : Tuple = hidden_size snake_case : Any = num_hidden_layers snake_case : str = num_attention_heads snake_case : int = intermediate_size snake_case : Optional[int] = hidden_act snake_case : Tuple = hidden_dropout_prob snake_case : Optional[Any] = attention_probs_dropout_prob snake_case : Tuple = max_position_embeddings snake_case : List[str] = eos_token_id snake_case : List[Any] = pad_token_id snake_case : Union[str, Any] = bos_token_id snake_case : List[str] = initializer_range def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) snake_case : List[str] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) snake_case : int = shift_tokens_right(snake_case__ , 1 , 2 ) snake_case : Union[str, Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=snake_case__ , ) snake_case : int = prepare_blenderbot_inputs_dict(snake_case__ , snake_case__ , snake_case__ ) return config, inputs_dict def _SCREAMING_SNAKE_CASE (self : str ) -> Optional[int]: '''simple docstring''' snake_case : Dict = self.prepare_config_and_inputs() return config, inputs_dict def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : int , snake_case__ : Optional[int] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = 20 snake_case : int = model_class_name(snake_case__ ) snake_case : Dict = model.encode(inputs_dict["input_ids"] ) snake_case : List[str] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) snake_case : Optional[int] = model.init_cache(decoder_input_ids.shape[0] , snake_case__ , snake_case__ ) snake_case : List[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) snake_case : List[str] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) snake_case : List[str] = model.decode( decoder_input_ids[:, :-1] , snake_case__ , decoder_attention_mask=snake_case__ , past_key_values=snake_case__ , decoder_position_ids=snake_case__ , ) snake_case : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) snake_case : int = model.decode( decoder_input_ids[:, -1:] , snake_case__ , decoder_attention_mask=snake_case__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=snake_case__ , ) snake_case : Union[str, Any] = model.decode(snake_case__ , snake_case__ ) snake_case : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : int ) -> Optional[Any]: '''simple docstring''' snake_case : Tuple = 20 snake_case : List[Any] = model_class_name(snake_case__ ) snake_case : Optional[Any] = model.encode(inputs_dict["input_ids"] ) snake_case : Tuple = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) snake_case : List[str] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) snake_case : List[str] = model.init_cache(decoder_input_ids.shape[0] , snake_case__ , snake_case__ ) snake_case : Optional[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) snake_case : Optional[int] = model.decode( decoder_input_ids[:, :-1] , snake_case__ , decoder_attention_mask=snake_case__ , past_key_values=snake_case__ , decoder_position_ids=snake_case__ , ) snake_case : Tuple = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) snake_case : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , snake_case__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=snake_case__ , decoder_position_ids=snake_case__ , ) snake_case : Any = model.decode(snake_case__ , snake_case__ , decoder_attention_mask=snake_case__ ) snake_case : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class UpperCAmelCase ( unittest.TestCase ): A__ : List[str] = 99 def _SCREAMING_SNAKE_CASE (self : Any ) -> int: '''simple docstring''' snake_case : Tuple = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) snake_case : Union[str, Any] = input_ids.shape[0] snake_case : Union[str, Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _SCREAMING_SNAKE_CASE (self : int ) -> Any: '''simple docstring''' snake_case : Optional[Any] = self._get_config_and_data() snake_case : int = FlaxBlenderbotForConditionalGeneration(snake_case__ ) snake_case : Tuple = lm_model(input_ids=snake_case__ ) snake_case : List[str] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Dict: '''simple docstring''' snake_case : Union[str, Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) snake_case : Any = FlaxBlenderbotForConditionalGeneration(snake_case__ ) snake_case : List[str] = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) snake_case : Optional[Any] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) snake_case : List[str] = lm_model(input_ids=snake_case__ , decoder_input_ids=snake_case__ ) snake_case : Any = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Optional[Any]: '''simple docstring''' snake_case : Union[str, Any] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) snake_case : int = shift_tokens_right(snake_case__ , 1 , 2 ) snake_case : Tuple = np.equal(snake_case__ , 1 ).astype(np.floataa ).sum() snake_case : Tuple = np.equal(snake_case__ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(snake_case__ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class UpperCAmelCase ( A_ ,unittest.TestCase ,A_ ): A__ : Optional[Any] = True A__ : Union[str, Any] = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) A__ : List[str] = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[Any]: '''simple docstring''' snake_case : List[str] = FlaxBlenderbotModelTester(self ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> str: '''simple docstring''' snake_case : str = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(snake_case__ , snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Any ) -> Tuple: '''simple docstring''' snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(snake_case__ , snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int ) -> Tuple: '''simple docstring''' snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): snake_case : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ ) snake_case : Tuple = model_class(snake_case__ ) @jax.jit def encode_jitted(snake_case__ : Tuple , snake_case__ : Optional[Any]=None , **snake_case__ : int ): return model.encode(input_ids=snake_case__ , attention_mask=snake_case__ ) with self.subTest("JIT Enabled" ): snake_case : Union[str, Any] = encode_jitted(**snake_case__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): snake_case : str = encode_jitted(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) , len(snake_case__ ) ) for jitted_output, output in zip(snake_case__ , snake_case__ ): self.assertEqual(jitted_output.shape , output.shape ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Dict: '''simple docstring''' snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): snake_case : List[Any] = model_class(snake_case__ ) snake_case : Union[str, Any] = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) snake_case : Union[str, Any] = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(snake_case__ : Any , snake_case__ : Dict , snake_case__ : Dict ): return model.decode( decoder_input_ids=snake_case__ , decoder_attention_mask=snake_case__ , encoder_outputs=snake_case__ , ) with self.subTest("JIT Enabled" ): snake_case : Optional[int] = decode_jitted(**snake_case__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): snake_case : List[Any] = decode_jitted(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) , len(snake_case__ ) ) for jitted_output, output in zip(snake_case__ , snake_case__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Any: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case : int = model_class_name.from_pretrained("facebook/blenderbot-400M-distill" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids snake_case : Optional[int] = np.ones((1, 1) ) * model.config.eos_token_id snake_case : Optional[Any] = model(snake_case__ ) self.assertIsNotNone(snake_case__ ) @unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU." ) @slow def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> str: '''simple docstring''' snake_case : Dict = {"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25} snake_case : int = {"skip_special_tokens": True, "clean_up_tokenization_spaces": True} snake_case : Tuple = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=snake_case__ ) snake_case : Union[str, Any] = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B" ) snake_case : Tuple = ["Sam"] snake_case : Dict = tokenizer(snake_case__ , return_tensors="jax" ) snake_case : Optional[Any] = model.generate(**snake_case__ , **snake_case__ ) snake_case : Any = "Sam is a great name. It means \"sun\" in Gaelic." snake_case : Union[str, Any] = tokenizer.batch_decode(snake_case__ , **snake_case__ ) assert generated_txt[0].strip() == tgt_text
371
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = """▁""" __lowerCamelCase = {"""vocab_file""": """prophetnet.tokenizer"""} __lowerCamelCase = { """vocab_file""": { """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer""" ), } } __lowerCamelCase = { """microsoft/xprophetnet-large-wiki100-cased""": {"""do_lower_case""": False}, } __lowerCamelCase = { """microsoft/xprophetnet-large-wiki100-cased""": 5_12, } def UpperCamelCase ( __lowerCamelCase : Dict ): snake_case : Dict = collections.OrderedDict() with open(__lowerCamelCase , "r" , encoding="utf-8" ) as reader: snake_case : Any = reader.readlines() for index, token in enumerate(__lowerCamelCase ): snake_case : List[Any] = token.rstrip("\n" ) snake_case : int = index return vocab class UpperCAmelCase ( A_ ): A__ : Tuple = VOCAB_FILES_NAMES A__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : int = ["input_ids", "attention_mask"] def __init__(self : Any , snake_case__ : Dict , snake_case__ : List[Any]="[SEP]" , snake_case__ : Optional[int]="[SEP]" , snake_case__ : Union[str, Any]="[SEP]" , snake_case__ : List[Any]="[UNK]" , snake_case__ : List[str]="[PAD]" , snake_case__ : List[str]="[CLS]" , snake_case__ : List[Any]="[MASK]" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : List[str] , ) -> None: '''simple docstring''' snake_case : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) snake_case : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab snake_case : List[Any] = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10 ): snake_case : Dict = f"""[unused{i}]""" snake_case : List[str] = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab snake_case : Dict = 12 snake_case : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(snake_case__ ) def __getstate__(self : str ) -> Union[str, Any]: '''simple docstring''' snake_case : str = self.__dict__.copy() snake_case : Tuple = None return state def __setstate__(self : str , snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : Dict = {} snake_case : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return ([0] * len(snake_case__ )) + [1] return ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : List[str] = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _SCREAMING_SNAKE_CASE (self : Any ) -> int: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset def _SCREAMING_SNAKE_CASE (self : int ) -> Any: '''simple docstring''' snake_case : List[str] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : str ) -> str: '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case : Optional[Any] = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Optional[int] ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Dict ) -> List[Any]: '''simple docstring''' snake_case : Dict = "".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Dict = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: snake_case : Tuple = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] snake_case : str = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
10
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( A_ ,A_ ,unittest.TestCase ): A__ : Union[str, Any] = StableDiffusionXLImgaImgPipeline A__ : Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} A__ : List[Any] = PipelineTesterMixin.required_optional_params - {"latents"} A__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A__ : int = IMAGE_TO_IMAGE_IMAGE_PARAMS A__ : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS def _SCREAMING_SNAKE_CASE (self : Any ) -> str: '''simple docstring''' torch.manual_seed(0 ) snake_case : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , attention_head_dim=(2, 4) , use_linear_projection=snake_case__ , addition_embed_type="text_time" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) snake_case : Dict = EulerDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , steps_offset=1 , beta_schedule="scaled_linear" , timestep_spacing="leading" , ) torch.manual_seed(0 ) snake_case : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) snake_case : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="gelu" , projection_dim=32 , ) snake_case : Tuple = CLIPTextModel(snake_case__ ) snake_case : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=snake_case__ ) snake_case : int = CLIPTextModelWithProjection(snake_case__ ) snake_case : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=snake_case__ ) snake_case : List[str] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_encoder_2": text_encoder_a, "tokenizer_2": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Optional[int] , snake_case__ : List[str]=0 ) -> Dict: '''simple docstring''' snake_case : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) snake_case : Union[str, Any] = image / 2 + 0.5 if str(snake_case__ ).startswith("mps" ): snake_case : List[Any] = torch.manual_seed(snake_case__ ) else: snake_case : Dict = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) snake_case : Optional[int] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 5.0, "output_type": "numpy", "strength": 0.75, } return inputs def _SCREAMING_SNAKE_CASE (self : Tuple ) -> List[Any]: '''simple docstring''' snake_case : int = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case : str = self.get_dummy_components() snake_case : Tuple = StableDiffusionXLImgaImgPipeline(**snake_case__ ) snake_case : List[str] = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) snake_case : Dict = self.get_dummy_inputs(snake_case__ ) snake_case : List[str] = sd_pipe(**snake_case__ ).images snake_case : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case : int = np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> List[str]: '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Dict: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Tuple: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[Any]: '''simple docstring''' snake_case : Tuple = self.get_dummy_components() snake_case : List[Any] = StableDiffusionXLImgaImgPipeline(**snake_case__ ) snake_case : int = sd_pipe.to(snake_case__ ) snake_case : Tuple = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) # forward without prompt embeds snake_case : List[str] = self.get_dummy_inputs(snake_case__ ) snake_case : Optional[int] = 3 * ["this is a negative prompt"] snake_case : int = negative_prompt snake_case : str = 3 * [inputs["prompt"]] snake_case : Any = sd_pipe(**snake_case__ ) snake_case : List[str] = output.images[0, -3:, -3:, -1] # forward with prompt embeds snake_case : int = self.get_dummy_inputs(snake_case__ ) snake_case : List[str] = 3 * ["this is a negative prompt"] snake_case : Any = 3 * [inputs.pop("prompt" )] ( snake_case ) : Dict = sd_pipe.encode_prompt(snake_case__ , negative_prompt=snake_case__ ) snake_case : List[str] = sd_pipe( **snake_case__ , prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , pooled_prompt_embeds=snake_case__ , negative_pooled_prompt_embeds=snake_case__ , ) snake_case : Optional[int] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : str , snake_case__ : Optional[int]="cpu" , snake_case__ : Tuple=torch.floataa , snake_case__ : Tuple=0 ) -> List[Any]: '''simple docstring''' snake_case : Optional[Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) snake_case : Optional[int] = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 64, 64) ) snake_case : Dict = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) snake_case : Tuple = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Tuple: '''simple docstring''' snake_case : Tuple = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base" ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) snake_case : int = self.get_inputs(snake_case__ ) snake_case : Optional[int] = pipe(**snake_case__ ).images snake_case : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) snake_case : Any = np.array([0.49493, 0.47896, 0.40798, 0.54214, 0.53212, 0.48202, 0.47656, 0.46329, 0.48506] ) assert np.abs(image_slice - expected_slice ).max() < 7e-3
350
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = """▁""" __lowerCamelCase = {"""vocab_file""": """sentencepiece.bpe.model"""} __lowerCamelCase = { """vocab_file""": { """facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model""", } } __lowerCamelCase = { """facebook/xglm-564M""": 20_48, } class UpperCAmelCase ( A_ ): A__ : Any = VOCAB_FILES_NAMES A__ : Tuple = PRETRAINED_VOCAB_FILES_MAP A__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[Any] = ["input_ids", "attention_mask"] def __init__(self : str , snake_case__ : Optional[Any] , snake_case__ : List[str]="<s>" , snake_case__ : Tuple="</s>" , snake_case__ : Dict="</s>" , snake_case__ : Any="<s>" , snake_case__ : str="<unk>" , snake_case__ : str="<pad>" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : Any , ) -> None: '''simple docstring''' snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case : Optional[int] = 7 snake_case : List[str] = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] snake_case : Union[str, Any] = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) snake_case : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case : int = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case : Any = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} snake_case : Tuple = len(self.sp_model ) snake_case : Any = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(snake_case__ ) snake_case : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = self.__dict__.copy() snake_case : str = None snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__(self : Dict , snake_case__ : Optional[Any] ) -> List[str]: '''simple docstring''' snake_case : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : List[str] = {} snake_case : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case : Tuple = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : List[str] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _SCREAMING_SNAKE_CASE (self : int ) -> Tuple: '''simple docstring''' snake_case : List[str] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case : List[Any] = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : str ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : Tuple ) -> int: '''simple docstring''' snake_case : List[Any] = "".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: snake_case : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,)
10
0
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __lowerCamelCase = """<<<<<<< This should probably be modified because it mentions: """ __lowerCamelCase = """======= >>>>>>> """ __lowerCamelCase = [ """TextEncoderConfig""", """ByteTextEncoder""", """SubwordTextEncoder""", """encoder_config""", """maybe_build_from_corpus""", """manual_dir""", ] __lowerCamelCase = [ # (pattern, replacement) # Order is important here for some replacements (R"""tfds\.core""", R"""datasets"""), (R"""tf\.io\.gfile\.GFile""", R"""open"""), (R"""tf\.([\w\d]+)""", R"""datasets.Value('\1')"""), (R"""tfds\.features\.Text\(\)""", R"""datasets.Value('string')"""), (R"""tfds\.features\.Text\(""", R"""datasets.Value('string'),"""), (R"""features\s*=\s*tfds.features.FeaturesDict\(""", R"""features=datasets.Features("""), (R"""tfds\.features\.FeaturesDict\(""", R"""dict("""), (R"""The TensorFlow Datasets Authors""", R"""The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"""), (R"""tfds\.""", R"""datasets."""), (R"""dl_manager\.manual_dir""", R"""self.config.data_dir"""), (R"""self\.builder_config""", R"""self.config"""), ] def UpperCamelCase ( __lowerCamelCase : Namespace ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class UpperCAmelCase ( A_ ): @staticmethod def _SCREAMING_SNAKE_CASE (snake_case__ : ArgumentParser ) -> Union[str, Any]: '''simple docstring''' snake_case : int = parser.add_parser( "convert" , help="Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset." , ) train_parser.add_argument( "--tfds_path" , type=snake_case__ , required=snake_case__ , help="Path to a TensorFlow Datasets folder to convert or a single tfds file to convert." , ) train_parser.add_argument( "--datasets_directory" , type=snake_case__ , required=snake_case__ , help="Path to the HuggingFace Datasets folder." ) train_parser.set_defaults(func=snake_case__ ) def __init__(self : str , snake_case__ : str , snake_case__ : str , *snake_case__ : Any ) -> Tuple: '''simple docstring''' snake_case : Union[str, Any] = get_logger("datasets-cli/converting" ) snake_case : int = tfds_path snake_case : Optional[Any] = datasets_directory def _SCREAMING_SNAKE_CASE (self : str ) -> Tuple: '''simple docstring''' if os.path.isdir(self._tfds_path ): snake_case : Union[str, Any] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): snake_case : str = os.path.dirname(self._tfds_path ) else: raise ValueError("--tfds_path is neither a directory nor a file. Please check path." ) snake_case : int = os.path.abspath(self._datasets_directory ) self._logger.info(f"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) snake_case : Optional[int] = [] snake_case : Any = [] snake_case : Optional[int] = {} if os.path.isdir(self._tfds_path ): snake_case : Tuple = os.listdir(snake_case__ ) else: snake_case : int = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f"""Looking at file {f_name}""" ) snake_case : List[str] = os.path.join(snake_case__ , snake_case__ ) snake_case : List[str] = os.path.join(snake_case__ , snake_case__ ) if not os.path.isfile(snake_case__ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("Skipping file" ) continue with open(snake_case__ , encoding="utf-8" ) as f: snake_case : List[str] = f.readlines() snake_case : List[Any] = [] snake_case : Optional[int] = False snake_case : Tuple = False snake_case : Union[str, Any] = [] for line in lines: snake_case : List[str] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: snake_case : Union[str, Any] = "import datasets\n" elif "import tensorflow" in out_line: # order is important here snake_case : Optional[Any] = "" continue elif "from absl import logging" in out_line: snake_case : Optional[int] = "from datasets import logging\n" elif "getLogger" in out_line: snake_case : Optional[Any] = out_line.replace("getLogger" , "get_logger" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): snake_case : List[str] = True snake_case : Dict = list(filter(lambda snake_case__ : e in out_line , snake_case__ ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(snake_case__ ) + "\n" ) out_lines.append(snake_case__ ) out_lines.append(snake_case__ ) continue else: for pattern, replacement in TO_CONVERT: snake_case : List[Any] = re.sub(snake_case__ , snake_case__ , snake_case__ ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: snake_case : List[Any] = re.match(R"from\stensorflow_datasets.*import\s([^\.\r\n]+)" , snake_case__ ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split("," ) ) snake_case : Any = "from . import " + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: snake_case : List[str] = True out_lines.append(snake_case__ ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset snake_case : Dict = f_name.replace(".py" , "" ) snake_case : str = os.path.join(snake_case__ , snake_case__ ) snake_case : Union[str, Any] = os.path.join(snake_case__ , snake_case__ ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) self._logger.info(f"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(snake_case__ ) if needs_manual_update: with_manual_update.append(snake_case__ ) with open(snake_case__ , "w" , encoding="utf-8" ) as f: f.writelines(snake_case__ ) self._logger.info(f"""Converted in {output_file}""" ) for utils_file in utils_files: try: snake_case : List[str] = os.path.basename(snake_case__ ) snake_case : Any = imports_to_builder_map[f_name.replace(".py" , "" )] self._logger.info(f"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(snake_case__ , snake_case__ ) except KeyError: self._logger.error(f"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
351
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging __lowerCamelCase = logging.get_logger(__name__) class UpperCAmelCase ( A_ ): A__ : int = ["pixel_values"] def __init__(self : Tuple , snake_case__ : bool = True , snake_case__ : Union[int, float] = 1 / 2_55 , snake_case__ : bool = True , snake_case__ : int = 8 , **snake_case__ : Dict , ) -> None: '''simple docstring''' super().__init__(**snake_case__ ) snake_case : int = do_rescale snake_case : List[str] = rescale_factor snake_case : Optional[Any] = do_pad snake_case : Dict = pad_size def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : np.ndarray , snake_case__ : float , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : List[str] ) -> np.ndarray: '''simple docstring''' return rescale(snake_case__ , scale=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : np.ndarray , snake_case__ : int , snake_case__ : Optional[Union[str, ChannelDimension]] = None ) -> Dict: '''simple docstring''' snake_case , snake_case : Union[str, Any] = get_image_size(snake_case__ ) snake_case : str = (old_height // size + 1) * size - old_height snake_case : List[str] = (old_width // size + 1) * size - old_width return pad(snake_case__ , ((0, pad_height), (0, pad_width)) , mode="symmetric" , data_format=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : ImageInput , snake_case__ : Optional[bool] = None , snake_case__ : Optional[float] = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[int] = None , snake_case__ : Optional[Union[str, TensorType]] = None , snake_case__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **snake_case__ : List[Any] , ) -> Tuple: '''simple docstring''' snake_case : str = do_rescale if do_rescale is not None else self.do_rescale snake_case : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : Optional[Any] = do_pad if do_pad is not None else self.do_pad snake_case : Dict = pad_size if pad_size is not None else self.pad_size snake_case : Union[str, Any] = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. snake_case : str = [to_numpy_array(snake_case__ ) for image in images] if do_rescale: snake_case : str = [self.rescale(image=snake_case__ , scale=snake_case__ ) for image in images] if do_pad: snake_case : List[Any] = [self.pad(snake_case__ , size=snake_case__ ) for image in images] snake_case : Union[str, Any] = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] snake_case : Optional[Any] = {"pixel_values": images} return BatchFeature(data=snake_case__ , tensor_type=snake_case__ )
10
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase = { """configuration_xlm_roberta_xl""": [ """XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMRobertaXLConfig""", """XLMRobertaXLOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMRobertaXLForCausalLM""", """XLMRobertaXLForMaskedLM""", """XLMRobertaXLForMultipleChoice""", """XLMRobertaXLForQuestionAnswering""", """XLMRobertaXLForSequenceClassification""", """XLMRobertaXLForTokenClassification""", """XLMRobertaXLModel""", """XLMRobertaXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
352
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: snake_case : Tuple = ksize + 1 snake_case : int = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__lowerCamelCase ): for x in range(__lowerCamelCase ): # distance from center snake_case : int = x - ksize // 2 snake_case : Union[str, Any] = y - ksize // 2 # degree to radiant snake_case : List[str] = theta / 180 * np.pi snake_case : List[Any] = np.cos(_theta ) snake_case : Dict = np.sin(_theta ) # get kernel x snake_case : Optional[int] = cos_theta * px + sin_theta * py # get kernel y snake_case : str = -sin_theta * px + cos_theta * py # fill kernel snake_case : Any = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __lowerCamelCase = imread("""../image_data/lena.jpg""") # turn image in gray scale value __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __lowerCamelCase = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 1_20, 1_50]: __lowerCamelCase = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __lowerCamelCase = out / out.max() * 2_55 __lowerCamelCase = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
10
0
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class UpperCAmelCase ( A_ ): A__ : Tuple = "M-CLIP" def __init__(self : Tuple , snake_case__ : str=10_24 , snake_case__ : int=7_68 , **snake_case__ : Tuple ) -> Optional[int]: '''simple docstring''' snake_case : List[str] = transformerDimSize snake_case : int = imageDimSize super().__init__(**snake_case__ ) class UpperCAmelCase ( A_ ): A__ : List[str] = MCLIPConfig def __init__(self : Optional[Any] , snake_case__ : Dict , *snake_case__ : Optional[int] , **snake_case__ : Any ) -> Union[str, Any]: '''simple docstring''' super().__init__(snake_case__ , *snake_case__ , **snake_case__ ) snake_case : List[Any] = XLMRobertaModel(snake_case__ ) snake_case : Optional[Any] = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : List[str] , snake_case__ : Tuple ) -> str: '''simple docstring''' snake_case : List[str] = self.transformer(input_ids=snake_case__ , attention_mask=snake_case__ )[0] snake_case : str = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(snake_case__ ), embs
353
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class UpperCAmelCase : def __init__(self : Dict , snake_case__ : Any , snake_case__ : Tuple=99 , snake_case__ : Tuple=13 , snake_case__ : int=16 , snake_case__ : Tuple=7 , snake_case__ : Union[str, Any]=True , snake_case__ : int=True , snake_case__ : List[Any]=True , snake_case__ : Optional[Any]=False , snake_case__ : Optional[int]=True , snake_case__ : Any=2 , snake_case__ : List[Any]=32 , snake_case__ : List[str]=4 , snake_case__ : List[str]=4 , snake_case__ : int=30 , snake_case__ : int=0 , snake_case__ : Tuple=1 , snake_case__ : Optional[Any]=2 , snake_case__ : int=None , ) -> List[Any]: '''simple docstring''' snake_case : Optional[Any] = parent snake_case : Any = batch_size snake_case : Any = decoder_seq_length # For common tests snake_case : Any = self.decoder_seq_length snake_case : Optional[int] = is_training snake_case : List[str] = use_attention_mask snake_case : Tuple = use_labels snake_case : int = vocab_size snake_case : Any = d_model snake_case : Dict = d_model snake_case : List[str] = decoder_layers snake_case : Union[str, Any] = decoder_layers snake_case : int = decoder_ffn_dim snake_case : List[Any] = decoder_attention_heads snake_case : Dict = decoder_attention_heads snake_case : Optional[int] = eos_token_id snake_case : Dict = bos_token_id snake_case : List[str] = pad_token_id snake_case : int = decoder_start_token_id snake_case : List[Any] = use_cache snake_case : List[str] = max_position_embeddings snake_case : Dict = None snake_case : Union[str, Any] = decoder_seq_length snake_case : Union[str, Any] = 2 snake_case : Union[str, Any] = 1 def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case : List[str] = None if self.use_attention_mask: snake_case : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) snake_case : Union[str, Any] = None if self.use_labels: snake_case : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case : Union[str, Any] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : str , snake_case__ : Union[str, Any] , ) -> str: '''simple docstring''' snake_case : Optional[int] = True snake_case : List[Any] = TrOCRDecoder(config=snake_case__ ).to(snake_case__ ).eval() snake_case : Dict = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass snake_case : List[str] = model(snake_case__ , use_cache=snake_case__ ) snake_case : Any = model(snake_case__ ) snake_case : Any = model(snake_case__ , use_cache=snake_case__ ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) + 1 ) snake_case : List[Any] = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids snake_case : Optional[Any] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and snake_case : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case : str = model(snake_case__ )["last_hidden_state"] snake_case : str = model(snake_case__ , past_key_values=snake_case__ )["last_hidden_state"] # select random slice snake_case : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case : str = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() snake_case : Optional[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Tuple: '''simple docstring''' snake_case : List[Any] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case : Dict = config_and_inputs snake_case : List[Any] = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( A_ ,A_ ,A_ ,unittest.TestCase ): A__ : int = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () A__ : Union[str, Any] = (TrOCRForCausalLM,) if is_torch_available() else () A__ : int = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} A__ : int = True A__ : Optional[Any] = False def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[Any]: '''simple docstring''' snake_case : Optional[Any] = TrOCRStandaloneDecoderModelTester(self , is_training=snake_case__ ) snake_case : int = ConfigTester(self , config_class=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int ) -> Union[str, Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE (self : Dict ) -> List[str]: '''simple docstring''' snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Any: '''simple docstring''' return @unittest.skip("The model doesn't support left padding" ) # and it's not used enough to be worth fixing :) def _SCREAMING_SNAKE_CASE (self : Any ) -> Any: '''simple docstring''' pass
10
0
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def UpperCamelCase ( __lowerCamelCase : int ): # A local function to see if a dot lands in the circle. def is_in_circle(__lowerCamelCase : float , __lowerCamelCase : float ) -> bool: snake_case : int = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle snake_case : Tuple = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__lowerCamelCase ) ) # The ratio of the area for circle to square is pi/4. snake_case : Optional[int] = proportion * 4 print(f"""The estimated value of pi is {pi_estimate}""" ) print(f"""The numpy value of pi is {pi}""" ) print(f"""The total error is {abs(pi - pi_estimate )}""" ) def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : Callable[[float], float] , __lowerCamelCase : float = 0.0 , __lowerCamelCase : float = 1.0 , ): return mean( function_to_integrate(uniform(__lowerCamelCase , __lowerCamelCase ) ) for _ in range(__lowerCamelCase ) ) * (max_value - min_value) def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : float = 0.0 , __lowerCamelCase : float = 1.0 ): def identity_function(__lowerCamelCase : float ) -> float: return x snake_case : List[str] = area_under_curve_estimator( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) snake_case : Dict = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {expected_value}""" ) print(f"""Total error is {abs(estimated_value - expected_value )}""" ) print("******************" ) def UpperCamelCase ( __lowerCamelCase : int ): def function_to_integrate(__lowerCamelCase : float ) -> float: return sqrt(4.0 - x * x ) snake_case : Dict = area_under_curve_estimator( __lowerCamelCase , __lowerCamelCase , 0.0 , 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {pi}""" ) print(f"""Total error is {abs(estimated_value - pi )}""" ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
354
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image __lowerCamelCase = ["""text""", """image""", """audio"""] def UpperCamelCase ( __lowerCamelCase : List[str] ): snake_case : str = [] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): inputs.append(create_inputs(__lowerCamelCase ) ) else: raise ValueError(f"""Invalid type requested: {input_type}""" ) return inputs def UpperCamelCase ( __lowerCamelCase : List ): snake_case : List[str] = [] for output in outputs: if isinstance(__lowerCamelCase , (str, AgentText) ): output_types.append("text" ) elif isinstance(__lowerCamelCase , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(__lowerCamelCase , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(f"""Invalid output: {output}""" ) return output_types @is_tool_test class UpperCAmelCase : def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[str]: '''simple docstring''' self.assertTrue(hasattr(self.tool , "inputs" ) ) self.assertTrue(hasattr(self.tool , "outputs" ) ) snake_case : List[Any] = self.tool.inputs for _input in inputs: if isinstance(_input , snake_case__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) snake_case : str = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' snake_case : List[str] = create_inputs(self.tool.inputs ) snake_case : Dict = self.tool(*snake_case__ ) # There is a single output if len(self.tool.outputs ) == 1: snake_case : List[Any] = [outputs] self.assertListEqual(output_types(snake_case__ ) , self.tool.outputs ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[Any]: '''simple docstring''' self.assertTrue(hasattr(self.tool , "description" ) ) self.assertTrue(hasattr(self.tool , "default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def _SCREAMING_SNAKE_CASE (self : int ) -> Union[str, Any]: '''simple docstring''' snake_case : str = create_inputs(self.tool.inputs ) snake_case : int = self.tool(*snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): snake_case : Optional[Any] = [outputs] self.assertEqual(len(snake_case__ ) , len(self.tool.outputs ) ) for output, output_type in zip(snake_case__ , self.tool.outputs ): snake_case : Any = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : List[Any] = create_inputs(self.tool.inputs ) snake_case : str = [] for _input, input_type in zip(snake_case__ , self.tool.inputs ): if isinstance(snake_case__ , snake_case__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error snake_case : Optional[int] = self.tool(*snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): snake_case : List[str] = [outputs] self.assertEqual(len(snake_case__ ) , len(self.tool.outputs ) )
10
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Any ) -> Union[str, Any]: '''simple docstring''' snake_case : Optional[Any] = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] ) snake_case : Union[str, Any] = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(snake_case__ ) , torch_builtin(snake_case__ ) ) ) self.assertFalse(torch.allclose(gelu_python(snake_case__ ) , gelu_new(snake_case__ ) ) ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> int: '''simple docstring''' snake_case : str = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] ) snake_case : str = get_activation("gelu" ) snake_case : Union[str, Any] = get_activation("gelu_10" ) snake_case : str = torch_builtin(snake_case__ ) snake_case : Optional[int] = geluaa(snake_case__ ) snake_case : Optional[int] = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(snake_case__ ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Dict: '''simple docstring''' get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(snake_case__ ): get_activation("bogus" ) with self.assertRaises(snake_case__ ): get_activation(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Any ) -> str: '''simple docstring''' snake_case : int = get_activation("gelu" ) snake_case : str = 1 snake_case : Tuple = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(snake_case__ ): snake_case : Tuple = acta.a
355
def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str ): if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError("String lengths must match!" ) snake_case : Optional[Any] = 0 for chara, chara in zip(__lowerCamelCase , __lowerCamelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
10
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """google/canine-s""": """https://huggingface.co/google/canine-s/resolve/main/config.json""", # See all CANINE models at https://huggingface.co/models?filter=canine } class UpperCAmelCase ( A_ ): A__ : Optional[int] = "canine" def __init__(self : str , snake_case__ : int=7_68 , snake_case__ : Union[str, Any]=12 , snake_case__ : Union[str, Any]=12 , snake_case__ : Union[str, Any]=30_72 , snake_case__ : Dict="gelu" , snake_case__ : Union[str, Any]=0.1 , snake_case__ : List[str]=0.1 , snake_case__ : Optional[Any]=1_63_84 , snake_case__ : Optional[Any]=16 , snake_case__ : Optional[Any]=0.02 , snake_case__ : Tuple=1e-12 , snake_case__ : Tuple=0 , snake_case__ : Tuple=0XE_0_0_0 , snake_case__ : List[str]=0XE_0_0_1 , snake_case__ : Union[str, Any]=4 , snake_case__ : Tuple=4 , snake_case__ : Optional[int]=8 , snake_case__ : List[Any]=1_63_84 , snake_case__ : Dict=1_28 , **snake_case__ : str , ) -> str: '''simple docstring''' super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) snake_case : int = max_position_embeddings snake_case : List[str] = hidden_size snake_case : List[str] = num_hidden_layers snake_case : Dict = num_attention_heads snake_case : List[str] = intermediate_size snake_case : Optional[int] = hidden_act snake_case : Any = hidden_dropout_prob snake_case : Optional[Any] = attention_probs_dropout_prob snake_case : Dict = initializer_range snake_case : Any = type_vocab_size snake_case : Any = layer_norm_eps # Character config: snake_case : int = downsampling_rate snake_case : str = upsampling_kernel_size snake_case : str = num_hash_functions snake_case : Tuple = num_hash_buckets snake_case : str = local_transformer_stride
356
def UpperCamelCase ( __lowerCamelCase : int ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("only integers accepted as input" ) else: snake_case : Dict = str(abs(__lowerCamelCase ) ) snake_case : Dict = [list(__lowerCamelCase ) for char in range(len(__lowerCamelCase ) )] for index in range(len(__lowerCamelCase ) ): num_transpositions[index].pop(__lowerCamelCase ) return max( int("".join(list(__lowerCamelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
10
0
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase : def __init__(self : str , snake_case__ : Union[str, Any] , snake_case__ : str=3 , snake_case__ : Any=32 , snake_case__ : List[Any]=3 , snake_case__ : Optional[Any]=10 , snake_case__ : Optional[Any]=[10, 20, 30, 40] , snake_case__ : Tuple=[1, 1, 2, 1] , snake_case__ : List[str]=True , snake_case__ : int=True , snake_case__ : Union[str, Any]="relu" , snake_case__ : int=3 , snake_case__ : str=None , ) -> str: '''simple docstring''' snake_case : str = parent snake_case : str = batch_size snake_case : Tuple = image_size snake_case : Union[str, Any] = num_channels snake_case : List[Any] = embeddings_size snake_case : Optional[Any] = hidden_sizes snake_case : Optional[int] = depths snake_case : Any = is_training snake_case : Any = use_labels snake_case : Optional[int] = hidden_act snake_case : Union[str, Any] = num_labels snake_case : Tuple = scope snake_case : List[str] = len(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Union[str, Any]: '''simple docstring''' snake_case : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case : Optional[int] = None if self.use_labels: snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) snake_case : Tuple = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE (self : str ) -> List[Any]: '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : Dict ) -> int: '''simple docstring''' snake_case : Dict = TFRegNetModel(config=snake_case__ ) snake_case : Dict = model(snake_case__ , training=snake_case__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : Dict , snake_case__ : Union[str, Any] , snake_case__ : Any ) -> Dict: '''simple docstring''' snake_case : str = self.num_labels snake_case : List[str] = TFRegNetForImageClassification(snake_case__ ) snake_case : Tuple = model(snake_case__ , labels=snake_case__ , training=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE (self : int ) -> Dict: '''simple docstring''' snake_case : int = self.prepare_config_and_inputs() snake_case : int = config_and_inputs snake_case : Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase ( A_ ,A_ ,unittest.TestCase ): A__ : str = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () A__ : str = ( {"feature-extraction": TFRegNetModel, "image-classification": TFRegNetForImageClassification} if is_tf_available() else {} ) A__ : Union[str, Any] = False A__ : str = False A__ : int = False A__ : int = False A__ : Optional[int] = False def _SCREAMING_SNAKE_CASE (self : Any ) -> Dict: '''simple docstring''' snake_case : Union[str, Any] = TFRegNetModelTester(self ) snake_case : str = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' return @unittest.skip(reason="RegNet does not use inputs_embeds" ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Optional[int]: '''simple docstring''' pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def _SCREAMING_SNAKE_CASE (self : str ) -> List[Any]: '''simple docstring''' super().test_keras_fit() @unittest.skip(reason="RegNet does not support input and output embeddings" ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Tuple: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Optional[int]: '''simple docstring''' snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : Tuple = model_class(snake_case__ ) snake_case : Dict = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case : Any = [*signature.parameters.keys()] snake_case : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> List[str]: '''simple docstring''' snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> str: '''simple docstring''' def check_hidden_states_output(snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Optional[int] ): snake_case : List[Any] = model_class(snake_case__ ) snake_case : Any = model(**self._prepare_for_class(snake_case__ , snake_case__ ) , training=snake_case__ ) snake_case : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(snake_case__ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() snake_case : str = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case : str = layer_type snake_case : List[Any] = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case : Dict = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> List[str]: '''simple docstring''' snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : Optional[Any]={} ): snake_case : Optional[int] = model(snake_case__ , return_dict=snake_case__ , **snake_case__ ) snake_case : Dict = model(snake_case__ , return_dict=snake_case__ , **snake_case__ ).to_tuple() def recursive_check(snake_case__ : Union[str, Any] , snake_case__ : List[Any] ): if isinstance(snake_case__ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(snake_case__ , snake_case__ ): recursive_check(snake_case__ , snake_case__ ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(snake_case__ , snake_case__ ) ) , msg=( "Tuple and dict output are not equal. Difference:" f""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}""" ) , ) recursive_check(snake_case__ , snake_case__ ) for model_class in self.all_model_classes: snake_case : Optional[Any] = model_class(snake_case__ ) snake_case : Union[str, Any] = self._prepare_for_class(snake_case__ , snake_case__ ) snake_case : Dict = self._prepare_for_class(snake_case__ , snake_case__ ) check_equivalence(snake_case__ , snake_case__ , snake_case__ ) snake_case : Tuple = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) snake_case : int = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) check_equivalence(snake_case__ , snake_case__ , snake_case__ ) snake_case : Tuple = self._prepare_for_class(snake_case__ , snake_case__ ) snake_case : str = self._prepare_for_class(snake_case__ , snake_case__ ) check_equivalence(snake_case__ , snake_case__ , snake_case__ , {"output_hidden_states": True} ) snake_case : Optional[Any] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) snake_case : Tuple = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) check_equivalence(snake_case__ , snake_case__ , snake_case__ , {"output_hidden_states": True} ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> str: '''simple docstring''' snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> str: '''simple docstring''' for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : Optional[int] = TFRegNetModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def UpperCamelCase ( ): snake_case : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class UpperCAmelCase ( unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Tuple: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> List[str]: '''simple docstring''' snake_case : Dict = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) snake_case : int = self.default_image_processor snake_case : Optional[int] = prepare_img() snake_case : Tuple = image_processor(images=snake_case__ , return_tensors="tf" ) # forward pass snake_case : List[Any] = model(**snake_case__ , training=snake_case__ ) # verify the logits snake_case : List[str] = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , snake_case__ ) snake_case : Any = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , snake_case__ , atol=1e-4 )
357
import requests from bsa import BeautifulSoup def UpperCamelCase ( __lowerCamelCase : str = "AAPL" ): snake_case : List[Any] = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" snake_case : Tuple = BeautifulSoup(requests.get(__lowerCamelCase ).text , "html.parser" ) snake_case : Dict = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div" , class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
10
0
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def UpperCamelCase ( __lowerCamelCase : str ): if "model" in orig_key: snake_case : List[Any] = orig_key.replace("model." , "" ) if "norm1" in orig_key: snake_case : Union[str, Any] = orig_key.replace("norm1" , "attention.output.LayerNorm" ) if "norm2" in orig_key: snake_case : str = orig_key.replace("norm2" , "output.LayerNorm" ) if "norm" in orig_key: snake_case : Union[str, Any] = orig_key.replace("norm" , "LayerNorm" ) if "transformer" in orig_key: snake_case : Dict = orig_key.split("." )[0].split("_" )[-1] snake_case : List[Any] = orig_key.replace(f"""transformer_{layer_num}""" , f"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: snake_case : Optional[int] = orig_key.replace("mha.attn" , "attention.self" ) if "mha" in orig_key: snake_case : int = orig_key.replace("mha" , "attention" ) if "W_q" in orig_key: snake_case : Dict = orig_key.replace("W_q" , "self.query" ) if "W_k" in orig_key: snake_case : Union[str, Any] = orig_key.replace("W_k" , "self.key" ) if "W_v" in orig_key: snake_case : Dict = orig_key.replace("W_v" , "self.value" ) if "ff1" in orig_key: snake_case : List[Any] = orig_key.replace("ff1" , "intermediate.dense" ) if "ff2" in orig_key: snake_case : List[str] = orig_key.replace("ff2" , "output.dense" ) if "ff" in orig_key: snake_case : Optional[int] = orig_key.replace("ff" , "output.dense" ) if "mlm_class" in orig_key: snake_case : List[str] = orig_key.replace("mlm.mlm_class" , "cls.predictions.decoder" ) if "mlm" in orig_key: snake_case : Optional[int] = orig_key.replace("mlm" , "cls.predictions.transform" ) if "cls" not in orig_key: snake_case : Optional[int] = "yoso." + orig_key return orig_key def UpperCamelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple ): for key in orig_state_dict.copy().keys(): snake_case : Union[str, Any] = orig_state_dict.pop(__lowerCamelCase ) if ("pooler" in key) or ("sen_class" in key): continue else: snake_case : str = val snake_case : Optional[Any] = orig_state_dict["cls.predictions.decoder.bias"] snake_case : List[str] = torch.arange(__lowerCamelCase ).expand((1, -1) ) + 2 return orig_state_dict def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] ): snake_case : Dict = torch.load(__lowerCamelCase , map_location="cpu" )["model_state_dict"] snake_case : Optional[int] = YosoConfig.from_json_file(__lowerCamelCase ) snake_case : str = YosoForMaskedLM(__lowerCamelCase ) snake_case : Dict = convert_checkpoint_helper(config.max_position_embeddings , __lowerCamelCase ) print(model.load_state_dict(__lowerCamelCase ) ) model.eval() model.save_pretrained(__lowerCamelCase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--pytorch_model_path""", default=None, type=str, required=True, help="""Path to YOSO pytorch checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The json file for YOSO model config.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __lowerCamelCase = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
358
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __lowerCamelCase = get_tests_dir() + """/test_data/fsmt/fsmt_val_data.json""" with io.open(filename, """r""", encoding="""utf-8""") as f: __lowerCamelCase = json.load(f) @require_torch class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' return FSMTTokenizer.from_pretrained(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : str ) -> List[str]: '''simple docstring''' snake_case : List[Any] = FSMTForConditionalGeneration.from_pretrained(snake_case__ ).to(snake_case__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["en-ru", 26.0], ["ru-en", 22.0], ["en-de", 22.0], ["de-en", 29.0], ] ) @slow def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Tuple , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' snake_case : Optional[int] = f"""facebook/wmt19-{pair}""" snake_case : Optional[Any] = self.get_tokenizer(snake_case__ ) snake_case : Dict = self.get_model(snake_case__ ) snake_case : List[Any] = bleu_data[pair]["src"] snake_case : int = bleu_data[pair]["tgt"] snake_case : Union[str, Any] = tokenizer(snake_case__ , return_tensors="pt" , truncation=snake_case__ , padding="longest" ).to(snake_case__ ) snake_case : str = model.generate( input_ids=batch.input_ids , num_beams=8 , ) snake_case : Optional[int] = tokenizer.batch_decode( snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) snake_case : Optional[int] = calculate_bleu(snake_case__ , snake_case__ ) print(snake_case__ ) self.assertGreaterEqual(scores["bleu"] , snake_case__ )
10
0
from __future__ import annotations __lowerCamelCase = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class UpperCAmelCase : def __init__(self : Tuple , snake_case__ : dict[str, list[str]] , snake_case__ : str ) -> None: '''simple docstring''' snake_case : str = graph # mapping node to its parent in resulting breadth first tree snake_case : dict[str, str | None] = {} snake_case : Union[str, Any] = source_vertex def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> None: '''simple docstring''' snake_case : Any = {self.source_vertex} snake_case : str = None snake_case : List[str] = [self.source_vertex] # first in first out queue while queue: snake_case : List[Any] = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(snake_case__ ) snake_case : Any = vertex queue.append(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : str ) -> str: '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex snake_case : str = self.parent.get(snake_case__ ) if target_vertex_parent is None: snake_case : Optional[Any] = ( f"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(snake_case__ ) return self.shortest_path(snake_case__ ) + f"""->{target_vertex}""" if __name__ == "__main__": __lowerCamelCase = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
359
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCamelCase = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 1_28, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 50, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 10, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 10, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class UpperCAmelCase ( unittest.TestCase ): @classmethod def _SCREAMING_SNAKE_CASE (cls : Dict ) -> Optional[int]: '''simple docstring''' snake_case : Any = TOKEN HfFolder.save_token(snake_case__ ) @classmethod def _SCREAMING_SNAKE_CASE (cls : Dict ) -> Union[str, Any]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def _SCREAMING_SNAKE_CASE (self : str ) -> List[str]: '''simple docstring''' snake_case : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) snake_case : Union[str, Any] = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case__ , repo_id="test-config" , push_to_hub=snake_case__ , use_auth_token=self._token ) snake_case : Any = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Dict: '''simple docstring''' snake_case : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) snake_case : Optional[int] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( snake_case__ , repo_id="valid_org/test-config-org" , push_to_hub=snake_case__ , use_auth_token=self._token ) snake_case : str = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Dict: '''simple docstring''' CustomConfig.register_for_auto_class() snake_case : Union[str, Any] = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) snake_case : int = AutoConfig.from_pretrained(f"""{USER}/test-dynamic-config""" , trust_remote_code=snake_case__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Dict: '''simple docstring''' snake_case : Any = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated snake_case : Tuple = c.n_embd + 1 # int snake_case : str = c.resid_pdrop + 1.0 # float snake_case : Optional[Any] = not c.scale_attn_weights # bool snake_case : Optional[int] = c.summary_type + "foo" # str c.update_from_string( f"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(snake_case__ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(snake_case__ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(snake_case__ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(snake_case__ , c.summary_type , "mismatch for key: summary_type" ) def _SCREAMING_SNAKE_CASE (self : int ) -> List[str]: '''simple docstring''' snake_case : Tuple = PretrainedConfig() snake_case : List[str] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( snake_case__ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) snake_case : Dict = [key for key, value in config_common_kwargs.items() if value == getattr(snake_case__ , snake_case__ )] if len(snake_case__ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" f""" {', '.join(snake_case__ )}.""" ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Optional[int]: '''simple docstring''' with self.assertRaises(snake_case__ ): # config is in subfolder, the following should not work without specifying the subfolder snake_case : Optional[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) snake_case : Optional[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case : Tuple = mock.Mock() snake_case : Optional[int] = 5_00 snake_case : Any = {} snake_case : str = HTTPError snake_case : Tuple = {} # Download this model to make sure it's in the cache. snake_case : List[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=snake_case__ ) as mock_head: snake_case : List[str] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def _SCREAMING_SNAKE_CASE (self : Any ) -> List[Any]: '''simple docstring''' snake_case : Dict = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def _SCREAMING_SNAKE_CASE (self : int ) -> str: '''simple docstring''' snake_case : Optional[Any] = AutoConfig.from_pretrained("bert-base-cased" ) snake_case : int = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(snake_case__ ) snake_case : str = 2 json.dump(configuration.to_dict() , open(os.path.join(snake_case__ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 snake_case : str = AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 snake_case : List[str] = ["config.42.0.0.json"] snake_case : Optional[int] = 7_68 configuration.save_pretrained(snake_case__ ) shutil.move(os.path.join(snake_case__ , "config.4.0.0.json" ) , os.path.join(snake_case__ , "config.42.0.0.json" ) ) snake_case : Union[str, Any] = AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Tuple: '''simple docstring''' snake_case : List[Any] = "hf-internal-testing/test-two-configs" import transformers as new_transformers snake_case : Optional[int] = "v4.0.0" snake_case , snake_case : List[str] = new_transformers.models.auto.AutoConfig.from_pretrained( snake_case__ , return_unused_kwargs=snake_case__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(snake_case__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers snake_case : int = "v3.0.0" snake_case : int = old_transformers.models.auto.AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(old_configuration.hidden_size , 7_68 )
10
0
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys __lowerCamelCase = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
360
import os import string import sys __lowerCamelCase = 1 << 8 __lowerCamelCase = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } __lowerCamelCase = KEYMAP["""up"""] __lowerCamelCase = KEYMAP["""left"""] if sys.platform == "win32": __lowerCamelCase = [] __lowerCamelCase = { B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): __lowerCamelCase = ord(str(i)) def UpperCamelCase ( ): if os.name == "nt": import msvcrt snake_case : str = "mbcs" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__lowerCamelCase ) == 0: # Read the keystroke snake_case : Optional[int] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): snake_case : Any = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: snake_case : int = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"] ) ) WIN_CH_BUFFER.append(__lowerCamelCase ) if ord(__lowerCamelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) snake_case : List[str] = chr(KEYMAP["esc"] ) except KeyError: snake_case : Optional[Any] = cha[1] else: snake_case : Any = ch.decode(__lowerCamelCase ) else: snake_case : Optional[Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty snake_case : Union[str, Any] = sys.stdin.fileno() snake_case : Optional[Any] = termios.tcgetattr(__lowerCamelCase ) try: tty.setraw(__lowerCamelCase ) snake_case : Union[str, Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(__lowerCamelCase , termios.TCSADRAIN , __lowerCamelCase ) return ch def UpperCamelCase ( ): snake_case : int = get_raw_chars() if ord(__lowerCamelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__lowerCamelCase ) == KEYMAP["esc"]: snake_case : Dict = get_raw_chars() if ord(__lowerCamelCase ) == KEYMAP["mod_int"]: snake_case : Any = get_raw_chars() if ord(__lowerCamelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__lowerCamelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__lowerCamelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
10
0
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging __lowerCamelCase = logging.get_logger(__name__) class UpperCAmelCase ( A_ ): A__ : int = ["pixel_values"] def __init__(self : Tuple , snake_case__ : bool = True , snake_case__ : Union[int, float] = 1 / 2_55 , snake_case__ : bool = True , snake_case__ : int = 8 , **snake_case__ : Dict , ) -> None: '''simple docstring''' super().__init__(**snake_case__ ) snake_case : int = do_rescale snake_case : List[str] = rescale_factor snake_case : Optional[Any] = do_pad snake_case : Dict = pad_size def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : np.ndarray , snake_case__ : float , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : List[str] ) -> np.ndarray: '''simple docstring''' return rescale(snake_case__ , scale=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : np.ndarray , snake_case__ : int , snake_case__ : Optional[Union[str, ChannelDimension]] = None ) -> Dict: '''simple docstring''' snake_case : Union[str, Any] = get_image_size(snake_case__ ) snake_case : str = (old_height // size + 1) * size - old_height snake_case : List[str] = (old_width // size + 1) * size - old_width return pad(snake_case__ , ((0, pad_height), (0, pad_width)) , mode="symmetric" , data_format=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : ImageInput , snake_case__ : Optional[bool] = None , snake_case__ : Optional[float] = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[int] = None , snake_case__ : Optional[Union[str, TensorType]] = None , snake_case__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **snake_case__ : List[Any] , ) -> Tuple: '''simple docstring''' snake_case : str = do_rescale if do_rescale is not None else self.do_rescale snake_case : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : Optional[Any] = do_pad if do_pad is not None else self.do_pad snake_case : Dict = pad_size if pad_size is not None else self.pad_size snake_case : Union[str, Any] = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. snake_case : str = [to_numpy_array(snake_case__ ) for image in images] if do_rescale: snake_case : str = [self.rescale(image=snake_case__ , scale=snake_case__ ) for image in images] if do_pad: snake_case : List[Any] = [self.pad(snake_case__ , size=snake_case__ ) for image in images] snake_case : Union[str, Any] = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] snake_case : Optional[Any] = {"pixel_values": images} return BatchFeature(data=snake_case__ , tensor_type=snake_case__ )
361
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable __lowerCamelCase = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""DPTFeatureExtractor"""] __lowerCamelCase = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
10
0
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class UpperCAmelCase : A__ : int A__ : int class UpperCAmelCase : def __init__(self : Optional[Any] , snake_case__ : int ) -> Any: '''simple docstring''' snake_case : list[list[Edge]] = [[] for _ in range(snake_case__ )] snake_case : Optional[int] = size def __getitem__(self : Union[str, Any] , snake_case__ : int ) -> Iterator[Edge]: '''simple docstring''' return iter(self._graph[vertex] ) @property def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return self._size def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : int , snake_case__ : int , snake_case__ : int ) -> Dict: '''simple docstring''' if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1." ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size)." ) self._graph[from_vertex].append(Edge(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : int , snake_case__ : int ) -> int | None: '''simple docstring''' snake_case : Union[str, Any] = deque([start_vertex] ) snake_case : list[int | None] = [None] * self.size snake_case : str = 0 while queue: snake_case : int = queue.popleft() snake_case : str = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: snake_case : List[str] = current_distance + edge.weight snake_case : List[str] = distances[edge.destination_vertex] if ( isinstance(snake_case__ , snake_case__ ) and new_distance >= dest_vertex_distance ): continue snake_case : Any = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex." ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
362
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor __lowerCamelCase = logging.get_logger(__name__) class UpperCAmelCase ( A_ ): def __init__(self : List[Any] , *snake_case__ : List[str] , **snake_case__ : Dict ) -> None: '''simple docstring''' warnings.warn( "The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PerceiverImageProcessor instead." , snake_case__ , ) super().__init__(*snake_case__ , **snake_case__ )
10
0
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) def UpperCamelCase ( __lowerCamelCase : int ): snake_case : int = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) snake_case : List[Any] = re.match(r"^mobilenet_v1_([^_]*)_([^_]*)$" , __lowerCamelCase ) if matches: snake_case : List[Any] = float(matches[1] ) snake_case : Any = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". snake_case : Dict = 1001 snake_case : Any = "imagenet-1k-id2label.json" snake_case : Optional[Any] = "huggingface/label-files" snake_case : Any = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="dataset" ) , "r" ) ) snake_case : int = {int(__lowerCamelCase ) + 1: v for k, v in idalabel.items()} snake_case : Tuple = "background" snake_case : Optional[int] = idalabel snake_case : Dict = {v: k for k, v in idalabel.items()} return config def UpperCamelCase ( ): snake_case : Dict = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case : Union[str, Any] = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def UpperCamelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : int=False ): snake_case : Optional[Any] = get_mobilenet_va_config(__lowerCamelCase ) # Load 🤗 model snake_case : Optional[Any] = MobileNetVaForImageClassification(__lowerCamelCase ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor snake_case : Any = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 32} , ) snake_case : Dict = image_processor(images=prepare_img() , return_tensors="pt" ) snake_case : str = model(**__lowerCamelCase ) snake_case : Dict = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": snake_case : Union[str, Any] = torch.tensor([-4.1739, -1.1233, 3.1205] ) elif model_name == "mobilenet_v1_0.75_192": snake_case : Optional[int] = torch.tensor([-3.9440, -2.3141, -0.3333] ) else: snake_case : Optional[Any] = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , __lowerCamelCase , atol=1E-4 ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print("Pushing to the hub..." ) snake_case : str = "google/" + model_name image_processor.push_to_hub(__lowerCamelCase ) model.push_to_hub(__lowerCamelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __lowerCamelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
363
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase = { """configuration_pix2struct""": [ """PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Pix2StructConfig""", """Pix2StructTextConfig""", """Pix2StructVisionConfig""", ], """processing_pix2struct""": ["""Pix2StructProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""Pix2StructImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Pix2StructPreTrainedModel""", """Pix2StructForConditionalGeneration""", """Pix2StructVisionModel""", """Pix2StructTextModel""", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
10
0
def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): snake_case : Dict = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def UpperCamelCase ( ): print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
364
def UpperCamelCase ( __lowerCamelCase : str ): snake_case : Union[str, Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" snake_case : Tuple = "" snake_case : Optional[int] = "" # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__lowerCamelCase ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring snake_case , snake_case : Tuple = 0, 0 # length[i] shows the length of palindromic substring with center i snake_case : Any = [1 for i in range(len(__lowerCamelCase ) )] # for each character in new_string find corresponding palindromic string snake_case : int = 0 for j in range(len(__lowerCamelCase ) ): snake_case : Optional[Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__lowerCamelCase ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 snake_case : str = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: snake_case : List[str] = j - k + 1 # noqa: E741 snake_case : Dict = j + k - 1 # update max_length and start position if max_length < length[j]: snake_case : Optional[Any] = length[j] snake_case : int = j # create that string snake_case : Any = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
10
0
def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : int ): snake_case : int = word.split() def justify(__lowerCamelCase : list , __lowerCamelCase : int , __lowerCamelCase : int ) -> str: snake_case : int = max_width - width snake_case : Optional[Any] = len(__lowerCamelCase ) if len(__lowerCamelCase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: snake_case : List[str] = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] snake_case : str = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] snake_case : Tuple = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(__lowerCamelCase ): num_spaces_between_words_list[i] += 1 snake_case : Optional[int] = [] for i in range(__lowerCamelCase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * " " ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(__lowerCamelCase ) snake_case : Tuple = [] snake_case : list[str] = [] snake_case : str = 0 for word in words: if width + len(__lowerCamelCase ) + len(__lowerCamelCase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(__lowerCamelCase ) width += len(__lowerCamelCase ) else: # justify the line and add it to result answer.append(justify(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) ) # reset new line and new width snake_case : Tuple = [word], len(__lowerCamelCase ) snake_case : Optional[Any] = max_width - width - len(__lowerCamelCase ) answer.append(" ".join(__lowerCamelCase ) + (remaining_spaces + 1) * " " ) return answer if __name__ == "__main__": from doctest import testmod testmod()
365
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants __lowerCamelCase = Mapping[str, np.ndarray] __lowerCamelCase = Mapping[str, Any] # Is a nested dict. __lowerCamelCase = 0.01 @dataclasses.dataclass(frozen=A_ ) class UpperCAmelCase : A__ : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. A__ : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. A__ : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. A__ : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. A__ : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions A__ : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files A__ : Optional[str] = None # Templates used to generate this protein (prediction-only) A__ : Optional[Sequence[str]] = None # Chain corresponding to each parent A__ : Optional[Sequence[int]] = None def UpperCamelCase ( __lowerCamelCase : str ): snake_case : Dict = r"(\[[A-Z]+\]\n)" snake_case : List[str] = [tag.strip() for tag in re.split(__lowerCamelCase , __lowerCamelCase ) if len(__lowerCamelCase ) > 0] snake_case : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split("\n" ) for l in tags[1::2]] ) snake_case : List[str] = ["N", "CA", "C"] snake_case : str = None snake_case : str = None snake_case : Tuple = None for g in groups: if "[PRIMARY]" == g[0]: snake_case : Tuple = g[1][0].strip() for i in range(len(__lowerCamelCase ) ): if seq[i] not in residue_constants.restypes: snake_case : Optional[Any] = "X" # FIXME: strings are immutable snake_case : Optional[int] = np.array( [residue_constants.restype_order.get(__lowerCamelCase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: snake_case : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(__lowerCamelCase , g[1][axis].split() ) ) ) snake_case : Union[str, Any] = np.array(__lowerCamelCase ) snake_case : str = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__lowerCamelCase ): snake_case : Dict = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: snake_case : int = np.array(list(map({"-": 0, "+": 1}.get , g[1][0].strip() ) ) ) snake_case : List[str] = np.zeros( ( len(__lowerCamelCase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__lowerCamelCase ): snake_case : Any = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__lowerCamelCase , atom_mask=__lowerCamelCase , aatype=__lowerCamelCase , residue_index=np.arange(len(__lowerCamelCase ) ) , b_factors=__lowerCamelCase , ) def UpperCamelCase ( __lowerCamelCase : Protein , __lowerCamelCase : int = 0 ): snake_case : List[str] = [] snake_case : str = prot.remark if remark is not None: pdb_headers.append(f"""REMARK {remark}""" ) snake_case : Union[str, Any] = prot.parents snake_case : Dict = prot.parents_chain_index if parents is not None and parents_chain_index is not None: snake_case : Tuple = [p for i, p in zip(__lowerCamelCase , __lowerCamelCase ) if i == chain_id] if parents is None or len(__lowerCamelCase ) == 0: snake_case : int = ["N/A"] pdb_headers.append(f"""PARENT {' '.join(__lowerCamelCase )}""" ) return pdb_headers def UpperCamelCase ( __lowerCamelCase : Protein , __lowerCamelCase : str ): snake_case : List[str] = [] snake_case : Any = pdb_str.split("\n" ) snake_case : int = prot.remark if remark is not None: out_pdb_lines.append(f"""REMARK {remark}""" ) snake_case : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: snake_case : Optional[Any] = [] if prot.parents_chain_index is not None: snake_case : Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(__lowerCamelCase ) , [] ) parent_dict[str(__lowerCamelCase )].append(__lowerCamelCase ) snake_case : List[str] = max([int(__lowerCamelCase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): snake_case : Optional[Any] = parent_dict.get(str(__lowerCamelCase ) , ["N/A"] ) parents_per_chain.append(__lowerCamelCase ) else: parents_per_chain.append(list(prot.parents ) ) else: snake_case : Optional[Any] = [["N/A"]] def make_parent_line(__lowerCamelCase : Sequence[str] ) -> str: return f"""PARENT {' '.join(__lowerCamelCase )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) snake_case : List[Any] = 0 for i, l in enumerate(__lowerCamelCase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__lowerCamelCase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__lowerCamelCase ): snake_case : int = parents_per_chain[chain_counter] else: snake_case : Any = ["N/A"] out_pdb_lines.append(make_parent_line(__lowerCamelCase ) ) return "\n".join(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Protein ): snake_case : str = residue_constants.restypes + ["X"] def res_atoa(__lowerCamelCase : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , "UNK" ) snake_case : List[Any] = residue_constants.atom_types snake_case : List[str] = [] snake_case : Any = prot.atom_mask snake_case : Any = prot.aatype snake_case : Dict = prot.atom_positions snake_case : List[str] = prot.residue_index.astype(np.intaa ) snake_case : Dict = prot.b_factors snake_case : Tuple = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("Invalid aatypes." ) snake_case : Any = get_pdb_headers(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: pdb_lines.extend(__lowerCamelCase ) snake_case : Dict = aatype.shape[0] snake_case : Tuple = 1 snake_case : Any = 0 snake_case : Union[str, Any] = string.ascii_uppercase snake_case : int = None # Add all atom sites. for i in range(__lowerCamelCase ): snake_case : List[Any] = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__lowerCamelCase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue snake_case : Any = "ATOM" snake_case : str = atom_name if len(__lowerCamelCase ) == 4 else f""" {atom_name}""" snake_case : Optional[Any] = "" snake_case : Dict = "" snake_case : Optional[Any] = 1.00 snake_case : str = atom_name[0] # Protein supports only C, N, O, S, this works. snake_case : Dict = "" snake_case : Any = "A" if chain_index is not None: snake_case : str = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! snake_case : List[str] = ( f"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" f"""{res_name_a:>3} {chain_tag:>1}""" f"""{residue_index[i]:>4}{insertion_code:>1} """ f"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" f"""{occupancy:>6.2f}{b_factor:>6.2f} """ f"""{element:>2}{charge:>2}""" ) pdb_lines.append(__lowerCamelCase ) atom_index += 1 snake_case : Optional[int] = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: snake_case : Any = True snake_case : Tuple = chain_index[i + 1] if should_terminate: # Close the chain. snake_case : Optional[Any] = "TER" snake_case : Optional[int] = ( f"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(__lowerCamelCase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__lowerCamelCase , __lowerCamelCase ) ) pdb_lines.append("END" ) pdb_lines.append("" ) return "\n".join(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Protein ): return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def UpperCamelCase ( __lowerCamelCase : FeatureDict , __lowerCamelCase : ModelOutput , __lowerCamelCase : Optional[np.ndarray] = None , __lowerCamelCase : Optional[np.ndarray] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[Sequence[str]] = None , __lowerCamelCase : Optional[Sequence[int]] = None , ): return Protein( aatype=features["aatype"] , atom_positions=result["final_atom_positions"] , atom_mask=result["final_atom_mask"] , residue_index=features["residue_index"] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"] ) , chain_index=__lowerCamelCase , remark=__lowerCamelCase , parents=__lowerCamelCase , parents_chain_index=__lowerCamelCase , )
10
0
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCAmelCase ( A_ ,A_ ,A_ ): A__ : Any = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"] @register_to_config def __init__(self : Any , snake_case__ : int , snake_case__ : int , snake_case__ : Optional[int] = None , snake_case__ : int = 5_02_57 , snake_case__ : int = 10_24 , snake_case__ : int = 7_68 , snake_case__ : int = 12 , snake_case__ : int = 12 , snake_case__ : Optional[int] = None , snake_case__ : str = "gelu_new" , snake_case__ : float = 0.1 , snake_case__ : float = 0.1 , snake_case__ : float = 0.1 , snake_case__ : float = 1e-5 , snake_case__ : float = 0.02 , snake_case__ : bool = True , snake_case__ : bool = True , snake_case__ : bool = False , snake_case__ : bool = False , ) -> Tuple: '''simple docstring''' super().__init__() snake_case : Optional[Any] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f"""`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and""" f""" `n_embd`: {n_embd} are not equal.""" ) snake_case : int = prefix_inner_dim snake_case : Any = prefix_hidden_dim snake_case : str = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) snake_case : Optional[Any] = ( nn.Linear(self.prefix_hidden_dim , snake_case__ ) if self.prefix_hidden_dim is not None else nn.Identity() ) snake_case : Dict = GPTaConfig( vocab_size=snake_case__ , n_positions=snake_case__ , n_embd=snake_case__ , n_layer=snake_case__ , n_head=snake_case__ , n_inner=snake_case__ , activation_function=snake_case__ , resid_pdrop=snake_case__ , embd_pdrop=snake_case__ , attn_pdrop=snake_case__ , layer_norm_epsilon=snake_case__ , initializer_range=snake_case__ , scale_attn_weights=snake_case__ , use_cache=snake_case__ , scale_attn_by_inverse_layer_idx=snake_case__ , reorder_and_upcast_attn=snake_case__ , ) snake_case : Union[str, Any] = GPTaLMHeadModel(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : torch.Tensor , snake_case__ : torch.Tensor , snake_case__ : Optional[torch.Tensor] = None , snake_case__ : Optional[torch.Tensor] = None , ) -> Optional[int]: '''simple docstring''' snake_case : Optional[Any] = self.transformer.transformer.wte(snake_case__ ) snake_case : Dict = self.encode_prefix(snake_case__ ) snake_case : str = self.decode_prefix(snake_case__ ) snake_case : int = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: snake_case : Any = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) snake_case : Dict = torch.cat((dummy_token, input_ids) , dim=1 ) snake_case : List[Any] = self.transformer(inputs_embeds=snake_case__ , labels=snake_case__ , attention_mask=snake_case__ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : int , snake_case__ : torch.device ) -> torch.Tensor: '''simple docstring''' return torch.zeros(snake_case__ , self.prefix_length , dtype=torch.intaa , device=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Dict ) -> List[str]: '''simple docstring''' return self.encode_prefix(snake_case__ ) @torch.no_grad() def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : Optional[Any] ) -> str: '''simple docstring''' snake_case : Tuple = torch.split(snake_case__ , 1 , dim=0 ) snake_case : Any = [] snake_case : Tuple = [] for feature in features: snake_case : Tuple = self.decode_prefix(feature.to(snake_case__ ) ) # back to the clip feature # Only support beam search for now snake_case : Union[str, Any] = self.generate_beam( input_embeds=snake_case__ , device=snake_case__ , eos_token_id=snake_case__ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) snake_case : Optional[int] = torch.stack(snake_case__ ) snake_case : Union[str, Any] = torch.stack(snake_case__ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : Tuple=None , snake_case__ : Dict=None , snake_case__ : Union[str, Any]=None , snake_case__ : int = 5 , snake_case__ : int = 67 , snake_case__ : float = 1.0 , snake_case__ : Optional[int] = None , ) -> Any: '''simple docstring''' snake_case : int = eos_token_id snake_case : int = None snake_case : Optional[Any] = None snake_case : Union[str, Any] = torch.ones(snake_case__ , device=snake_case__ , dtype=torch.int ) snake_case : List[str] = torch.zeros(snake_case__ , device=snake_case__ , dtype=torch.bool ) if input_embeds is not None: snake_case : Union[str, Any] = input_embeds else: snake_case : List[str] = self.transformer.transformer.wte(snake_case__ ) for i in range(snake_case__ ): snake_case : Dict = self.transformer(inputs_embeds=snake_case__ ) snake_case : List[Any] = outputs.logits snake_case : Optional[int] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) snake_case : Optional[int] = logits.softmax(-1 ).log() if scores is None: snake_case : str = logits.topk(snake_case__ , -1 ) snake_case : int = generated.expand(snake_case__ , *generated.shape[1:] ) snake_case : Union[str, Any] = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: snake_case : Union[str, Any] = next_tokens else: snake_case : Dict = tokens.expand(snake_case__ , *tokens.shape[1:] ) snake_case : Union[str, Any] = torch.cat((tokens, next_tokens) , dim=1 ) else: snake_case : int = -float(np.inf ) snake_case : int = 0 snake_case : Dict = scores[:, None] + logits seq_lengths[~is_stopped] += 1 snake_case : str = scores_sum / seq_lengths[:, None] snake_case : List[str] = scores_sum_average.view(-1 ).topk(snake_case__ , -1 ) snake_case : List[str] = next_tokens // scores_sum.shape[1] snake_case : List[str] = seq_lengths[next_tokens_source] snake_case : int = next_tokens % scores_sum.shape[1] snake_case : Tuple = next_tokens.unsqueeze(1 ) snake_case : Union[str, Any] = tokens[next_tokens_source] snake_case : int = torch.cat((tokens, next_tokens) , dim=1 ) snake_case : int = generated[next_tokens_source] snake_case : Optional[Any] = scores_sum_average * seq_lengths snake_case : Optional[Any] = is_stopped[next_tokens_source] snake_case : Any = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) snake_case : Any = torch.cat((generated, next_token_embed) , dim=1 ) snake_case : str = is_stopped + next_tokens.eq(snake_case__ ).squeeze() if is_stopped.all(): break snake_case : List[str] = scores / seq_lengths snake_case : str = scores.argsort(descending=snake_case__ ) # tokens tensors are already padded to max_seq_length snake_case : Dict = [tokens[i] for i in order] snake_case : int = torch.stack(snake_case__ , dim=0 ) snake_case : List[str] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
366
from __future__ import annotations __lowerCamelCase = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class UpperCAmelCase : def __init__(self : Tuple , snake_case__ : dict[str, list[str]] , snake_case__ : str ) -> None: '''simple docstring''' snake_case : str = graph # mapping node to its parent in resulting breadth first tree snake_case : dict[str, str | None] = {} snake_case : Union[str, Any] = source_vertex def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> None: '''simple docstring''' snake_case : Any = {self.source_vertex} snake_case : str = None snake_case : List[str] = [self.source_vertex] # first in first out queue while queue: snake_case : List[Any] = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(snake_case__ ) snake_case : Any = vertex queue.append(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : str ) -> str: '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex snake_case : str = self.parent.get(snake_case__ ) if target_vertex_parent is None: snake_case : Optional[Any] = ( f"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(snake_case__ ) return self.shortest_path(snake_case__ ) + f"""->{target_vertex}""" if __name__ == "__main__": __lowerCamelCase = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
10
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Dict: '''simple docstring''' snake_case : Optional[int] = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) snake_case : List[str] = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" snake_case : Dict = model(snake_case__ )["last_hidden_state"] snake_case : int = tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape , snake_case__ ) # compare the actual values for a slice. snake_case : Dict = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
367
from __future__ import annotations def UpperCamelCase ( __lowerCamelCase : list[int] ): snake_case : Optional[int] = len(__lowerCamelCase ) // 2 # choose the middle 3 elements snake_case : str = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
10
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = {"""vocab_file""": """spiece.model"""} __lowerCamelCase = { """vocab_file""": { """TsinghuaAI/CPM-Generate""": """https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model""", } } class UpperCAmelCase ( A_ ): def __init__(self : Optional[Any] , snake_case__ : str , snake_case__ : List[str]=False , snake_case__ : Dict=True , snake_case__ : Tuple=False , snake_case__ : Optional[Any]="<s>" , snake_case__ : Optional[int]="</s>" , snake_case__ : int="<unk>" , snake_case__ : int="<sep>" , snake_case__ : Tuple="<pad>" , snake_case__ : Tuple="<cls>" , snake_case__ : str="<mask>" , snake_case__ : int=["<eop>", "<eod>"] , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : Optional[Any] , ) -> None: '''simple docstring''' snake_case : Optional[int] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token snake_case : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=snake_case__ , remove_space=snake_case__ , keep_accents=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , additional_special_tokens=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) snake_case : Dict = 3 snake_case : List[str] = do_lower_case snake_case : int = remove_space snake_case : Optional[int] = keep_accents snake_case : Tuple = vocab_file snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case__ ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) snake_case : Optional[Any] = jieba snake_case : Any = str.maketrans(" \n" , "\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Tuple: '''simple docstring''' return len(self.sp_model ) def _SCREAMING_SNAKE_CASE (self : str ) -> int: '''simple docstring''' snake_case : List[str] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self : str ) -> Union[str, Any]: '''simple docstring''' snake_case : Optional[int] = self.__dict__.copy() snake_case : List[Any] = None return state def __setstate__(self : Tuple , snake_case__ : List[str] ) -> List[Any]: '''simple docstring''' snake_case : Any = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : List[str] = {} snake_case : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : int ) -> Optional[int]: '''simple docstring''' if self.remove_space: snake_case : Optional[Any] = " ".join(inputs.strip().split() ) else: snake_case : List[str] = inputs snake_case : Any = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: snake_case : Optional[Any] = unicodedata.normalize("NFKD" , snake_case__ ) snake_case : List[Any] = "".join([c for c in outputs if not unicodedata.combining(snake_case__ )] ) if self.do_lower_case: snake_case : str = outputs.lower() return outputs def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : str ) -> List[str]: '''simple docstring''' snake_case : Tuple = self.preprocess_text(snake_case__ ) snake_case : int = self.sp_model.encode(snake_case__ , out_type=snake_case__ ) snake_case : Dict = [] for piece in pieces: if len(snake_case__ ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): snake_case : Optional[int] = self.sp_model.EncodeAsPieces(piece[:-1].replace(snake_case__ , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: snake_case : int = cur_pieces[1:] else: snake_case : Union[str, Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(snake_case__ ) else: new_pieces.append(snake_case__ ) return new_pieces def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : List[Any] ) -> List[Any]: '''simple docstring''' return self.sp_model.PieceToId(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : str ) -> List[Any]: '''simple docstring''' return self.sp_model.IdToPiece(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : List[str] ) -> str: '''simple docstring''' snake_case : Dict = "".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : Dict = [self.sep_token_id] snake_case : int = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is not None: return ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1, 1] return ([0] * len(snake_case__ )) + [1, 1] def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : Any = [self.sep_token_id] snake_case : Union[str, Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Tuple = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: snake_case : List[Any] = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , *snake_case__ : Dict , **snake_case__ : Dict ) -> Optional[Any]: '''simple docstring''' snake_case : int = super()._decode(*snake_case__ , **snake_case__ ) snake_case : Tuple = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" ) return text
368
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __lowerCamelCase = """.""" if __name__ == "__main__": __lowerCamelCase = os.path.join(REPO_PATH, """utils/documentation_tests.txt""") __lowerCamelCase = [] __lowerCamelCase = [] with open(doctest_file_path) as fp: for line in fp: __lowerCamelCase = line.strip() __lowerCamelCase = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __lowerCamelCase = """\n""".join(non_existent_paths) raise ValueError(F'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError("""Files in `utils/documentation_tests.txt` are not in alphabetical order.""")
10
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class UpperCAmelCase ( A_ ): A__ : Union[List[PIL.Image.Image], np.ndarray] A__ : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.26.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version(""">=""", """0.0.12""") ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class UpperCAmelCase ( A_ ): A__ : np.ndarray A__ : List[bool] from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
369
import fire from utils import calculate_rouge, save_json def UpperCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None , **__lowerCamelCase : Tuple ): snake_case : Optional[Any] = [x.strip() for x in open(__lowerCamelCase ).readlines()] snake_case : Union[str, Any] = [x.strip() for x in open(__lowerCamelCase ).readlines()][: len(__lowerCamelCase )] snake_case : List[Any] = calculate_rouge(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) if save_path is not None: save_json(__lowerCamelCase , __lowerCamelCase , indent=__lowerCamelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
10
0
def UpperCamelCase ( __lowerCamelCase : int = 10**12 ): snake_case : Tuple = 1 snake_case : Any = 0 snake_case : Any = 1 snake_case : str = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(F'{solution() = }')
370
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } __lowerCamelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): for attribute in key.split("." ): snake_case : Tuple = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: snake_case : int = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: snake_case : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case : Dict = value elif weight_type == "weight_g": snake_case : Optional[int] = value elif weight_type == "weight_v": snake_case : Optional[int] = value elif weight_type == "bias": snake_case : Tuple = value else: snake_case : Optional[int] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : List[str] ): snake_case : int = [] snake_case : List[Any] = fairseq_model.state_dict() snake_case : int = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case : List[str] = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) snake_case : str = True else: for key, mapped_key in MAPPING.items(): snake_case : Tuple = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue snake_case : Tuple = True if "*" in mapped_key: snake_case : Union[str, Any] = name.split(__lowerCamelCase )[0].split("." )[-2] snake_case : Any = mapped_key.replace("*" , __lowerCamelCase ) if "weight_g" in name: snake_case : Optional[int] = "weight_g" elif "weight_v" in name: snake_case : Tuple = "weight_v" elif "bias" in name: snake_case : Dict = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case : str = "weight" else: snake_case : str = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Any ): snake_case : str = full_name.split("conv_layers." )[-1] snake_case : int = name.split("." ) snake_case : Optional[int] = int(items[0] ) snake_case : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case : List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) snake_case : Dict = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case : Optional[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def UpperCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Dict=True ): if config_path is not None: snake_case : str = UniSpeechSatConfig.from_pretrained(__lowerCamelCase ) else: snake_case : str = UniSpeechSatConfig() snake_case : Tuple = "" if is_finetuned: snake_case : Tuple = UniSpeechSatForCTC(__lowerCamelCase ) else: snake_case : List[Any] = UniSpeechSatForPreTraining(__lowerCamelCase ) snake_case , snake_case , snake_case : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) snake_case : Dict = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __lowerCamelCase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
10
0
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class UpperCAmelCase : def __init__(self : List[str] , snake_case__ : Any , snake_case__ : List[Any]=13 , snake_case__ : str=7 , snake_case__ : List[str]=False , snake_case__ : Union[str, Any]=True , snake_case__ : int=False , snake_case__ : List[Any]=False , snake_case__ : Optional[Any]=19 , snake_case__ : int=32 , snake_case__ : Union[str, Any]=5 , snake_case__ : List[str]=4 , snake_case__ : Optional[Any]=37 , snake_case__ : List[Any]="gelu" , snake_case__ : Any=0.1 , snake_case__ : Any=0.1 , snake_case__ : List[Any]=5_12 , snake_case__ : Dict=16 , snake_case__ : Union[str, Any]=2 , snake_case__ : Tuple=0.02 , snake_case__ : List[str]=3 , snake_case__ : int=4 , snake_case__ : Dict=None , ) -> int: '''simple docstring''' snake_case : Any = parent snake_case : List[Any] = batch_size snake_case : Tuple = seq_length snake_case : Optional[int] = is_training snake_case : Tuple = use_input_mask snake_case : Any = use_token_type_ids snake_case : Union[str, Any] = use_labels snake_case : Optional[Any] = vocab_size snake_case : List[str] = hidden_size snake_case : int = num_hidden_layers snake_case : int = num_attention_heads snake_case : int = intermediate_size snake_case : Dict = hidden_act snake_case : Dict = hidden_dropout_prob snake_case : int = attention_probs_dropout_prob snake_case : List[Any] = max_position_embeddings snake_case : str = type_vocab_size snake_case : Dict = type_sequence_label_size snake_case : Optional[Any] = initializer_range snake_case : List[str] = num_labels snake_case : Any = num_choices snake_case : List[str] = scope def _SCREAMING_SNAKE_CASE (self : str ) -> Optional[int]: '''simple docstring''' snake_case : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : List[Any] = None if self.use_input_mask: snake_case : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : str = None snake_case : List[Any] = None snake_case : Any = None if self.use_labels: snake_case : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case : Dict = ids_tensor([self.batch_size] , self.num_choices ) snake_case : Dict = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> str: '''simple docstring''' snake_case : int = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=snake_case__ , esmfold_config={"trunk": {"num_blocks": 2}, "fp16_esm": False} , ) return config def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : Tuple , snake_case__ : Any , snake_case__ : Optional[int] , snake_case__ : List[str] ) -> Union[str, Any]: '''simple docstring''' snake_case : Dict = EsmForProteinFolding(config=snake_case__ ).float() model.to(snake_case__ ) model.eval() snake_case : Optional[Any] = model(snake_case__ , attention_mask=snake_case__ ) snake_case : Optional[Any] = model(snake_case__ ) snake_case : Dict = model(snake_case__ ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> int: '''simple docstring''' snake_case : Any = self.prepare_config_and_inputs() ( snake_case ) : Optional[int] = config_and_inputs snake_case : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( A_ ,A_ ,unittest.TestCase ): A__ : int = False A__ : Dict = (EsmForProteinFolding,) if is_torch_available() else () A__ : Optional[int] = () A__ : List[str] = {} if is_torch_available() else {} A__ : int = False def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> int: '''simple docstring''' snake_case : str = EsmFoldModelTester(self ) snake_case : Any = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> int: '''simple docstring''' snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) @unittest.skip("Does not support attention outputs" ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> str: '''simple docstring''' pass @unittest.skip def _SCREAMING_SNAKE_CASE (self : str ) -> List[str]: '''simple docstring''' pass @unittest.skip("Esm does not support embedding resizing" ) def _SCREAMING_SNAKE_CASE (self : str ) -> str: '''simple docstring''' pass @unittest.skip("Esm does not support embedding resizing" ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Dict: '''simple docstring''' pass @unittest.skip("ESMFold does not support passing input embeds!" ) def _SCREAMING_SNAKE_CASE (self : Any ) -> Tuple: '''simple docstring''' pass @unittest.skip("ESMFold does not support head pruning." ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> int: '''simple docstring''' pass @unittest.skip("ESMFold does not support head pruning." ) def _SCREAMING_SNAKE_CASE (self : int ) -> Tuple: '''simple docstring''' pass @unittest.skip("ESMFold does not support head pruning." ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> List[str]: '''simple docstring''' pass @unittest.skip("ESMFold does not support head pruning." ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip("ESMFold does not support head pruning." ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Optional[int]: '''simple docstring''' pass @unittest.skip("ESMFold does not output hidden states in the normal way." ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[int]: '''simple docstring''' pass @unittest.skip("ESMfold does not output hidden states in the normal way." ) def _SCREAMING_SNAKE_CASE (self : Any ) -> str: '''simple docstring''' pass @unittest.skip("ESMFold only has one output format." ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> List[str]: '''simple docstring''' pass @unittest.skip("This test doesn't work for ESMFold and doesn't test core functionality" ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Any: '''simple docstring''' pass @unittest.skip("ESMFold does not support input chunking." ) def _SCREAMING_SNAKE_CASE (self : Any ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip("ESMFold doesn't respect you and it certainly doesn't respect your initialization arguments." ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> List[Any]: '''simple docstring''' pass @unittest.skip("ESMFold doesn't support torchscript compilation." ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip("ESMFold doesn't support torchscript compilation." ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Any: '''simple docstring''' pass @unittest.skip("ESMFold doesn't support torchscript compilation." ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip("ESMFold doesn't support data parallel." ) def _SCREAMING_SNAKE_CASE (self : str ) -> List[Any]: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> int: '''simple docstring''' pass @require_torch class UpperCAmelCase ( A_ ): @slow def _SCREAMING_SNAKE_CASE (self : Any ) -> int: '''simple docstring''' snake_case : List[Any] = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1" ).float() model.eval() snake_case : List[Any] = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) snake_case : Optional[Any] = model(snake_case__ )["positions"] snake_case : List[str] = torch.tensor([2.5828, 0.7993, -10.9334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , snake_case__ , atol=1e-4 ) )
371
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = """▁""" __lowerCamelCase = {"""vocab_file""": """prophetnet.tokenizer"""} __lowerCamelCase = { """vocab_file""": { """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer""" ), } } __lowerCamelCase = { """microsoft/xprophetnet-large-wiki100-cased""": {"""do_lower_case""": False}, } __lowerCamelCase = { """microsoft/xprophetnet-large-wiki100-cased""": 5_12, } def UpperCamelCase ( __lowerCamelCase : Dict ): snake_case : Dict = collections.OrderedDict() with open(__lowerCamelCase , "r" , encoding="utf-8" ) as reader: snake_case : Any = reader.readlines() for index, token in enumerate(__lowerCamelCase ): snake_case : List[Any] = token.rstrip("\n" ) snake_case : int = index return vocab class UpperCAmelCase ( A_ ): A__ : Tuple = VOCAB_FILES_NAMES A__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : int = ["input_ids", "attention_mask"] def __init__(self : Any , snake_case__ : Dict , snake_case__ : List[Any]="[SEP]" , snake_case__ : Optional[int]="[SEP]" , snake_case__ : Union[str, Any]="[SEP]" , snake_case__ : List[Any]="[UNK]" , snake_case__ : List[str]="[PAD]" , snake_case__ : List[str]="[CLS]" , snake_case__ : List[Any]="[MASK]" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : List[str] , ) -> None: '''simple docstring''' snake_case : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) snake_case : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab snake_case : List[Any] = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10 ): snake_case : Dict = f"""[unused{i}]""" snake_case : List[str] = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab snake_case : Dict = 12 snake_case : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(snake_case__ ) def __getstate__(self : str ) -> Union[str, Any]: '''simple docstring''' snake_case : str = self.__dict__.copy() snake_case : Tuple = None return state def __setstate__(self : str , snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : Dict = {} snake_case : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return ([0] * len(snake_case__ )) + [1] return ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : List[str] = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _SCREAMING_SNAKE_CASE (self : Any ) -> int: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset def _SCREAMING_SNAKE_CASE (self : int ) -> Any: '''simple docstring''' snake_case : List[str] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : str ) -> str: '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case : Optional[Any] = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Optional[int] ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Dict ) -> List[Any]: '''simple docstring''' snake_case : Dict = "".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Dict = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: snake_case : Tuple = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] snake_case : str = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
10
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) lowercase_ = { "configuration_speecht5": [ "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP", "SpeechT5Config", "SpeechT5HifiGanConfig", ], "feature_extraction_speecht5": ["SpeechT5FeatureExtractor"], "processing_speecht5": ["SpeechT5Processor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["SpeechT5Tokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST", "SpeechT5ForSpeechToText", "SpeechT5ForSpeechToSpeech", "SpeechT5ForTextToSpeech", "SpeechT5Model", "SpeechT5PreTrainedModel", "SpeechT5HifiGan", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
1
"""simple docstring""" import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process lowercase_ = logging.getLogger(__name__) lowercase_ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) lowercase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) __UpperCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(__SCREAMING_SNAKE_CASE )} , ) __UpperCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) __UpperCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __UpperCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __UpperCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __UpperCAmelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) __UpperCAmelCase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __UpperCAmelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def __UpperCAmelCase ( self ): if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '''--config_overrides can\'t be used in combination with --config_name or --model_name_or_path''' ) @dataclass class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) __UpperCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __UpperCAmelCase : Optional[str] = field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'The input training data file (a text file).'} ) __UpperCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) __UpperCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'An optional input train ref data file for whole word masking in Chinese.'} , ) __UpperCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'An optional input validation ref data file for whole word masking in Chinese.'} , ) __UpperCAmelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) __UpperCAmelCase : Optional[int] = field( default=5 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) __UpperCAmelCase : Optional[int] = field( default=__SCREAMING_SNAKE_CASE , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated. Default to the max input length of the model.' ) } , ) __UpperCAmelCase : Optional[int] = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) __UpperCAmelCase : float = field( default=0.15 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) __UpperCAmelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) def __UpperCAmelCase ( self ): if self.train_file is not None: __a = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: __a = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def lowercase ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[Any] ) -> List[str]: with open(lowerCAmelCase__ , '''r''' , encoding='''utf-8''' ) as f: __a = [json.loads(lowerCAmelCase__ ) for line in f.read().splitlines() if (len(lowerCAmelCase__ ) > 0 and not line.isspace())] assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) __a = {c: dataset[c] for c in dataset.column_names} __a = refs return Dataset.from_dict(lowerCAmelCase__ ) def lowercase ( ) -> List[str]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __a = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __a , __a , __a = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __a , __a , __a = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __a = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __a = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , lowerCAmelCase__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __a = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): __a = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''train[:{data_args.validation_split_percentage}%]''' , ) __a = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''train[{data_args.validation_split_percentage}%:]''' , ) else: __a = {} if data_args.train_file is not None: __a = data_args.train_file if data_args.validation_file is not None: __a = data_args.validation_file __a = data_args.train_file.split('''.''' )[-1] if extension == "txt": __a = '''text''' __a = load_dataset(lowerCAmelCase__ , data_files=lowerCAmelCase__ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: __a = AutoConfig.from_pretrained(model_args.config_name , **lowerCAmelCase__ ) elif model_args.model_name_or_path: __a = AutoConfig.from_pretrained(model_args.model_name_or_path , **lowerCAmelCase__ ) else: __a = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(f'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(f'''New config: {config}''' ) __a = { '''cache_dir''': model_args.cache_dir, '''use_fast''': model_args.use_fast_tokenizer, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: __a = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **lowerCAmelCase__ ) elif model_args.model_name_or_path: __a = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **lowerCAmelCase__ ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) if model_args.model_name_or_path: __a = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) __a = AutoModelForMaskedLM.from_config(lowerCAmelCase__ ) model.resize_token_embeddings(len(lowerCAmelCase__ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: __a = datasets['''train'''].column_names else: __a = datasets['''validation'''].column_names __a = '''text''' if '''text''' in column_names else column_names[0] __a = '''max_length''' if data_args.pad_to_max_length else False def tokenize_function(lowerCAmelCase__ : Tuple ): # Remove empty lines __a = [line for line in examples['''text'''] if len(lowerCAmelCase__ ) > 0 and not line.isspace()] return tokenizer(examples['''text'''] , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=data_args.max_seq_length ) __a = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: __a = add_chinese_references(tokenized_datasets['''train'''] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: __a = add_chinese_references( tokenized_datasets['''validation'''] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer __a = data_args.train_ref_file or data_args.validation_ref_file if has_ref: __a = False # Data collator # This one will take care of randomly masking the tokens. __a = DataCollatorForWholeWordMask(tokenizer=lowerCAmelCase__ , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __a = Trainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , train_dataset=tokenized_datasets['''train'''] if training_args.do_train else None , eval_dataset=tokenized_datasets['''validation'''] if training_args.do_eval else None , tokenizer=lowerCAmelCase__ , data_collator=lowerCAmelCase__ , ) # Training if training_args.do_train: if last_checkpoint is not None: __a = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): __a = model_args.model_name_or_path else: __a = None __a = trainer.train(resume_from_checkpoint=lowerCAmelCase__ ) trainer.save_model() # Saves the tokenizer too for easy upload __a = os.path.join(training_args.output_dir , '''train_results.txt''' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase__ , '''w''' ) as writer: logger.info('''***** Train results *****''' ) for key, value in sorted(train_result.metrics.items() ): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # Evaluation __a = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __a = trainer.evaluate() __a = math.exp(eval_output['''eval_loss'''] ) __a = perplexity __a = os.path.join(training_args.output_dir , '''eval_results_mlm_wwm.txt''' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in sorted(results.items() ): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) return results def lowercase ( lowerCAmelCase__ : Optional[int] ) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
11
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json", "funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json", "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json", "funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = 'funnel' __UpperCAmelCase : Union[str, Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', } def __init__( self , _a=30_522 , _a=[4, 4, 4] , _a=None , _a=2 , _a=768 , _a=12 , _a=64 , _a=3_072 , _a="gelu_new" , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.1 , _a=None , _a=1E-9 , _a="mean" , _a="relative_shift" , _a=True , _a=True , _a=True , **_a , ): __a = vocab_size __a = block_sizes __a = [1] * len(_a ) if block_repeats is None else block_repeats assert len(_a ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." __a = num_decoder_layers __a = d_model __a = n_head __a = d_head __a = d_inner __a = hidden_act __a = hidden_dropout __a = attention_dropout __a = activation_dropout __a = initializer_range __a = initializer_std __a = layer_norm_eps assert pooling_type in [ "mean", "max", ], f'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.''' __a = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.''' __a = attention_type __a = separate_cls __a = truncate_seq __a = pool_q_only super().__init__(**_a ) @property def __UpperCAmelCase ( self ): return sum(self.block_sizes ) @num_hidden_layers.setter def __UpperCAmelCase ( self , _a ): raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' ) @property def __UpperCAmelCase ( self ): return len(self.block_sizes ) @num_blocks.setter def __UpperCAmelCase ( self , _a ): raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
11
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowercase_ = None lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} lowercase_ = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } lowercase_ = { "facebook/mbart-large-en-ro": 1_0_2_4, "facebook/mbart-large-cc25": 1_0_2_4, } # fmt: off lowercase_ = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = VOCAB_FILES_NAMES __UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Tuple = ['input_ids', 'attention_mask'] __UpperCAmelCase : Optional[Any] = MBartTokenizer __UpperCAmelCase : List[int] = [] __UpperCAmelCase : List[int] = [] def __init__( self , _a=None , _a=None , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=None , _a=None , _a=None , **_a , ): # Mask token behave like a normal word, i.e. include the space before it __a = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token super().__init__( vocab_file=_a , tokenizer_file=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , src_lang=_a , tgt_lang=_a , additional_special_tokens=_a , **_a , ) __a = vocab_file __a = False if not self.vocab_file else True __a = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) __a = { lang_code: self.convert_tokens_to_ids(_a ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __a = src_lang if src_lang is not None else '''en_XX''' __a = self.convert_tokens_to_ids(self._src_lang ) __a = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCAmelCase ( self ): return self._src_lang @src_lang.setter def __UpperCAmelCase ( self , _a ): __a = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCAmelCase ( self , _a , _a = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCAmelCase ( self , _a , _a = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self , _a , _a , _a , _a , **_a ): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __a = src_lang __a = self(_a , add_special_tokens=_a , return_tensors=_a , **_a ) __a = self.convert_tokens_to_ids(_a ) __a = tgt_lang_id return inputs def __UpperCAmelCase ( self , _a , _a = "en_XX" , _a = None , _a = "ro_RO" , **_a , ): __a = src_lang __a = tgt_lang return super().prepare_seqaseq_batch(_a , _a , **_a ) def __UpperCAmelCase ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCAmelCase ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCAmelCase ( self , _a ): __a = self.convert_tokens_to_ids(_a ) __a = [] __a = [self.eos_token_id, self.cur_lang_code] __a = self.convert_ids_to_tokens(self.prefix_tokens ) __a = self.convert_ids_to_tokens(self.suffix_tokens ) __a = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCAmelCase ( self , _a ): __a = self.convert_tokens_to_ids(_a ) __a = [] __a = [self.eos_token_id, self.cur_lang_code] __a = self.convert_ids_to_tokens(self.prefix_tokens ) __a = self.convert_ids_to_tokens(self.suffix_tokens ) __a = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCAmelCase ( self , _a , _a = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return __a = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
11
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_a , '''width_multiplier''' ) ) class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a=13 , _a=64 , _a=2 , _a=3 , _a="swish" , _a=3 , _a=32 , _a=0.1 , _a=0.02 , _a=True , _a=True , _a=10 , _a=None , _a=0.25 , _a=0.0 , _a=0.0 , ): __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = make_divisible(512 * width_multiplier , divisor=8 ) __a = hidden_act __a = conv_kernel_size __a = output_stride __a = classifier_dropout_prob __a = use_labels __a = is_training __a = num_labels __a = initializer_range __a = scope __a = width_multiplier __a = ffn_dropout __a = attn_dropout def __UpperCAmelCase ( self ): __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.num_labels ) __a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __a = self.get_config() return config, pixel_values, labels, pixel_labels def __UpperCAmelCase ( self ): return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def __UpperCAmelCase ( self , _a , _a , _a , _a ): __a = MobileViTVaModel(config=_a ) model.to(_a ) model.eval() __a = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCAmelCase ( self , _a , _a , _a , _a ): __a = self.num_labels __a = MobileViTVaForImageClassification(_a ) model.to(_a ) model.eval() __a = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self , _a , _a , _a , _a ): __a = self.num_labels __a = MobileViTVaForSemanticSegmentation(_a ) model.to(_a ) model.eval() __a = model(_a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __a = model(_a , labels=_a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCAmelCase ( self ): __a = self.prepare_config_and_inputs() __a , __a , __a , __a = config_and_inputs __a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase : Union[str, Any] = ( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase : Tuple = False __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Tuple = False __UpperCAmelCase : List[str] = False def __UpperCAmelCase ( self ): __a = MobileViTVaModelTester(self ) __a = MobileViTVaConfigTester(self , config_class=_a , has_text_modality=_a ) def __UpperCAmelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def __UpperCAmelCase ( self ): pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def __UpperCAmelCase ( self ): pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def __UpperCAmelCase ( self ): pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def __UpperCAmelCase ( self ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(_a ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __UpperCAmelCase ( self ): def check_hidden_states_output(_a , _a , _a ): __a = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(_a , _a ) ) __a = outputs.hidden_states __a = 5 self.assertEqual(len(_a ) , _a ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __a = 2 for i in range(len(_a ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True check_hidden_states_output(_a , _a , _a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_a ) @slow def __UpperCAmelCase ( self ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = MobileViTVaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowercase ( ) -> str: __a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCAmelCase ( self ): return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self ): __a = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( _a ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): __a = model(**_a ) # verify the logits __a = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _a ) __a = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1E-4 ) ) @slow def __UpperCAmelCase ( self ): __a = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = model.to(_a ) __a = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = prepare_img() __a = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): __a = model(**_a ) __a = outputs.logits # verify the logits __a = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _a ) __a = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=_a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _a , atol=1E-4 ) ) @slow def __UpperCAmelCase ( self ): __a = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = model.to(_a ) __a = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = prepare_img() __a = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): __a = model(**_a ) __a = outputs.logits.detach().cpu() __a = image_processor.post_process_semantic_segmentation(outputs=_a , target_sizes=[(50, 60)] ) __a = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _a ) __a = image_processor.post_process_semantic_segmentation(outputs=_a ) __a = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _a )
11
1
"""simple docstring""" from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : bool = False ) -> list[float]: if radian_mode: return [magnitude * cos(lowerCAmelCase__ ), magnitude * sin(lowerCAmelCase__ )] return [magnitude * cos(radians(lowerCAmelCase__ ) ), magnitude * sin(radians(lowerCAmelCase__ ) )] def lowercase ( lowerCAmelCase__ : NDArray[floataa] , lowerCAmelCase__ : NDArray[floataa] , lowerCAmelCase__ : float = 10**-1 ) -> bool: __a = cross(lowerCAmelCase__ , lowerCAmelCase__ ) __a = sum(lowerCAmelCase__ ) return abs(lowerCAmelCase__ ) < eps if __name__ == "__main__": # Test to check if it works lowercase_ = array( [ polar_force(718.4, 1_8_0 - 3_0), polar_force(879.54, 4_5), polar_force(1_0_0, -9_0), ] ) lowercase_ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg lowercase_ = array( [ polar_force(3_0 * 9.81, 1_5), polar_force(2_1_5, 1_8_0 - 4_5), polar_force(2_6_4, 9_0 - 3_0), ] ) lowercase_ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg lowercase_ = array([[0, -2_0_0_0], [0, -1_2_0_0], [0, 1_5_6_0_0], [0, -1_2_4_0_0]]) lowercase_ = array([[0, 0], [6, 0], [1_0, 0], [1_2, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
11
"""simple docstring""" from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ): super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: __a = ( f'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`''' f''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ''' '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate('''steps_offset!=1''' , '''1.0.0''' , _a , standard_warn=_a ) __a = dict(scheduler.config ) __a = 1 __a = FrozenDict(_a ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: __a = ( f'''The configuration file of this scheduler: {scheduler} has not set the configuration''' ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , _a , standard_warn=_a ) __a = dict(scheduler.config ) __a = True __a = FrozenDict(_a ) if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=_a , segmentation_processor=_a , vae=_a , text_encoder=_a , tokenizer=_a , unet=_a , scheduler=_a , safety_checker=_a , feature_extractor=_a , ) def __UpperCAmelCase ( self , _a = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_a ) def __UpperCAmelCase ( self ): self.enable_attention_slicing(_a ) def __UpperCAmelCase ( self ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) __a = torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(_a , _a ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __UpperCAmelCase ( self ): if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_a , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , _a , _a , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ): __a = self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) __a = self.segmentation_model(**_a ) __a = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() __a = self.numpy_to_pil(_a )[0].resize(image.size ) # Run inpainting pipeline with the generated mask __a = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=_a , image=_a , mask_image=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , )
11
1
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : int ) -> int: if len(lowerCAmelCase__ ) < k or k < 0: raise ValueError('''Invalid Input''' ) __a = __a = sum(array[:k] ) for i in range(len(lowerCAmelCase__ ) - k ): __a = current_sum - array[i] + array[i + k] __a = max(lowerCAmelCase__ , lowerCAmelCase__ ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() lowercase_ = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0_0)] lowercase_ = randint(0, 1_1_0) print(F'''The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}''')
11
"""simple docstring""" from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowercase_ = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , **_a ): super().__init__(**_a ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self , _a , **_a ): return super().__call__(_a , **_a ) def __UpperCAmelCase ( self , **_a ): __a = {} if "candidate_labels" in kwargs: __a = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: __a = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def __UpperCAmelCase ( self , _a , _a=None , _a="This is a sound of {}." ): if isinstance(_a , _a ): if audio.startswith('''http://''' ) or audio.startswith('''https://''' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png __a = requests.get(_a ).content else: with open(_a , '''rb''' ) as f: __a = f.read() if isinstance(_a , _a ): __a = ffmpeg_read(_a , self.feature_extractor.sampling_rate ) if not isinstance(_a , np.ndarray ): raise ValueError('''We expect a numpy ndarray as input''' ) if len(audio.shape ) != 1: raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' ) __a = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='''pt''' ) __a = candidate_labels __a = [hypothesis_template.format(_a ) for x in candidate_labels] __a = self.tokenizer(_a , return_tensors=self.framework , padding=_a ) __a = [text_inputs] return inputs def __UpperCAmelCase ( self , _a ): __a = model_inputs.pop('''candidate_labels''' ) __a = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , _a ): __a = text_inputs[0] else: # Batching case. __a = text_inputs[0][0] __a = self.model(**_a , **_a ) __a = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def __UpperCAmelCase ( self , _a ): __a = model_outputs.pop('''candidate_labels''' ) __a = model_outputs['''logits'''][0] if self.framework == "pt": __a = logits.softmax(dim=0 ) __a = probs.tolist() else: raise ValueError('''`tf` framework not supported.''' ) __a = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(_a , _a ) , key=lambda _a : -x[0] ) ] return result
11
1
"""simple docstring""" def lowercase ( lowerCAmelCase__ : int ) -> bool: if num < 0: return False __a = num __a = 0 while num > 0: __a = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
11
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self , _a ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): __a = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_a ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sgugger/tiny-distilbert-classification''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , only_pretrain_model=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , torchscript=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , fpaa=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = AutoConfig.from_pretrained(_a ) # set architectures equal to `None` __a = None __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_a , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = AutoConfig.from_pretrained(_a ) __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tinier_bart''' __a = AutoConfig.from_pretrained(_a ) __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = AutoConfig.from_pretrained(_a ) __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tinier_bart''' __a = AutoConfig.from_pretrained(_a ) __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , save_to_csv=_a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_a , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_a , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_a , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_a , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_a , '''env.csv''' ) , multi_process=_a , ) __a = PyTorchBenchmark(_a ) benchmark.run() self.assertTrue(Path(os.path.join(_a , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''env.csv''' ) ).exists() ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_a ): self.assertTrue(hasattr(_a , '''sequential''' ) ) self.assertTrue(hasattr(_a , '''cumulative''' ) ) self.assertTrue(hasattr(_a , '''current''' ) ) self.assertTrue(hasattr(_a , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_a , '''log.txt''' ) , log_print=_a , trace_memory_line_by_line=_a , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_a , '''log.txt''' ) ).exists() )
11
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: lowercase_ = None lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} lowercase_ = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", }, "tokenizer_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json", }, } lowercase_ = { "albert-base-v1": 5_1_2, "albert-large-v1": 5_1_2, "albert-xlarge-v1": 5_1_2, "albert-xxlarge-v1": 5_1_2, "albert-base-v2": 5_1_2, "albert-large-v2": 5_1_2, "albert-xlarge-v2": 5_1_2, "albert-xxlarge-v2": 5_1_2, } lowercase_ = "▁" class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[int] = VOCAB_FILES_NAMES __UpperCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : int = AlbertTokenizer def __init__( self , _a=None , _a=None , _a=True , _a=True , _a=False , _a="[CLS]" , _a="[SEP]" , _a="<unk>" , _a="[SEP]" , _a="<pad>" , _a="[CLS]" , _a="[MASK]" , **_a , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __a = ( AddedToken(_a , lstrip=_a , rstrip=_a , normalized=_a ) if isinstance(_a , _a ) else mask_token ) super().__init__( _a , tokenizer_file=_a , do_lower_case=_a , remove_space=_a , keep_accents=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , **_a , ) __a = do_lower_case __a = remove_space __a = keep_accents __a = vocab_file __a = False if not self.vocab_file else True def __UpperCAmelCase ( self , _a , _a = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __UpperCAmelCase ( self , _a , _a = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCAmelCase ( self , _a , _a = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __a = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
11
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = 'dandelin/vilt-b32-finetuned-vqa' __UpperCAmelCase : int = ( 'This is a tool that answers a question about an image. It takes an input named `image` which should be the ' 'image containing the information, as well as a `question` which should be the question in English. It ' 'returns a text that is the answer to the question.' ) __UpperCAmelCase : Any = 'image_qa' __UpperCAmelCase : Union[str, Any] = AutoProcessor __UpperCAmelCase : str = AutoModelForVisualQuestionAnswering __UpperCAmelCase : List[str] = ['image', 'text'] __UpperCAmelCase : List[str] = ['text'] def __init__( self , *_a , **_a ): requires_backends(self , ['''vision'''] ) super().__init__(*_a , **_a ) def __UpperCAmelCase ( self , _a , _a ): return self.pre_processor(_a , _a , return_tensors='''pt''' ) def __UpperCAmelCase ( self , _a ): with torch.no_grad(): return self.model(**_a ).logits def __UpperCAmelCase ( self , _a ): __a = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
11
"""simple docstring""" import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self , _a , _a , _a ): self.assertEqual(len(_a ) , len(_a ) ) for a, b in zip(_a , _a ): self.assertAlmostEqual(_a , _a , delta=_a ) def __UpperCAmelCase ( self ): __a = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(_a ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def __UpperCAmelCase ( self ): __a = None ops.enable_eager_execution_internal() __a = tf.config.list_physical_devices('''CPU''' ) if len(_a ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) __a = tf.config.list_logical_devices(device_type='''CPU''' ) __a = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): __a = GradientAccumulator() __a = tf.Variable([4.0, 3.0] ) __a , __a = create_optimizer(5E-5 , 10 , 5 ) __a = tf.Variable([0.0, 0.0] , trainable=_a ) def accumulate_on_replica(_a ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(_a , _a ): with strategy.scope(): __a = strategy.experimental_local_results(_a ) local_variables[0].assign(_a ) local_variables[1].assign(_a ) strategy.run(_a , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(_a ) def _check_local_values(_a , _a ): __a = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , _a , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , _a , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
11
1
"""simple docstring""" import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder lowercase_ = "base_with_context" def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : Dict ) -> Tuple: __a = nn.Parameter(torch.FloatTensor(weights['''token_embedder''']['''embedding'''] ) ) __a = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=lowerCAmelCase__ ) for lyr_num, lyr in enumerate(model.encoders ): __a = weights[f'''layers_{lyr_num}'''] __a = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) __a = ly_weight['''attention'''] __a = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) __a = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) __a = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) __a = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) __a = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) __a = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) __a = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) __a = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) __a = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple ) -> str: __a = nn.Parameter(torch.FloatTensor(weights['''input_proj''']['''kernel'''].T ) ) __a = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=lowerCAmelCase__ ) for lyr_num, lyr in enumerate(model.encoders ): __a = weights[f'''layers_{lyr_num}'''] __a = ly_weight['''attention'''] __a = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) __a = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) __a = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) __a = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) __a = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) __a = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) __a = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) __a = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) __a = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) __a = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ) -> Tuple: __a = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense0''']['''kernel'''].T ) ) __a = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense1''']['''kernel'''].T ) ) __a = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=lowerCAmelCase__ ) __a = nn.Parameter( torch.FloatTensor(weights['''continuous_inputs_projection''']['''kernel'''].T ) ) for lyr_num, lyr in enumerate(model.decoders ): __a = weights[f'''layers_{lyr_num}'''] __a = nn.Parameter( torch.FloatTensor(ly_weight['''pre_self_attention_layer_norm''']['''scale'''] ) ) __a = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_0''']['''DenseGeneral_0''']['''kernel'''].T ) ) __a = ly_weight['''self_attention'''] __a = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) __a = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) __a = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) __a = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) __a = ly_weight['''MultiHeadDotProductAttention_0'''] __a = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) __a = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) __a = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) __a = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) __a = nn.Parameter( torch.FloatTensor(ly_weight['''pre_cross_attention_layer_norm''']['''scale'''] ) ) __a = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) __a = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_1''']['''DenseGeneral_0''']['''kernel'''].T ) ) __a = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) __a = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) __a = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) __a = nn.Parameter(torch.FloatTensor(weights['''decoder_norm''']['''scale'''] ) ) __a = nn.Parameter(torch.FloatTensor(weights['''spec_out_dense''']['''kernel'''].T ) ) return model def lowercase ( lowerCAmelCase__ : Dict ) -> int: __a = checkpoints.load_tax_checkpoint(args.checkpoint_path ) __a = jnp.tree_util.tree_map(onp.array , lowerCAmelCase__ ) __a = [ '''from __gin__ import dynamic_registration''', '''from music_spectrogram_diffusion.models.diffusion import diffusion_utils''', '''diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0''', '''diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()''', ] __a = os.path.join(args.checkpoint_path , '''..''' , '''config.gin''' ) __a = inference.parse_training_gin_file(lowerCAmelCase__ , lowerCAmelCase__ ) __a = inference.InferenceModel(args.checkpoint_path , lowerCAmelCase__ ) __a = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' , variance_type='''fixed_large''' ) __a = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['''inputs'''] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='''gated-gelu''' , ) __a = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['''targets_context'''] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='''gated-gelu''' , ) __a = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['''targets_context'''] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) __a = load_notes_encoder(ta_checkpoint['''target''']['''token_encoder'''] , lowerCAmelCase__ ) __a = load_continuous_encoder(ta_checkpoint['''target''']['''continuous_encoder'''] , lowerCAmelCase__ ) __a = load_decoder(ta_checkpoint['''target''']['''decoder'''] , lowerCAmelCase__ ) __a = OnnxRuntimeModel.from_pretrained('''kashif/soundstream_mel_decoder''' ) __a = SpectrogramDiffusionPipeline( notes_encoder=lowerCAmelCase__ , continuous_encoder=lowerCAmelCase__ , decoder=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , melgan=lowerCAmelCase__ , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("--output_path", default=None, type=str, required=True, help="Path to the converted model.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument( "--checkpoint_path", default=F'''{MODEL}/checkpoint_500000''', type=str, required=False, help="Path to the original jax model checkpoint.", ) lowercase_ = parser.parse_args() main(args)
11
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowercase_ = None lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} lowercase_ = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } lowercase_ = { "facebook/mbart-large-en-ro": 1_0_2_4, "facebook/mbart-large-cc25": 1_0_2_4, } # fmt: off lowercase_ = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = VOCAB_FILES_NAMES __UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Tuple = ['input_ids', 'attention_mask'] __UpperCAmelCase : Optional[Any] = MBartTokenizer __UpperCAmelCase : List[int] = [] __UpperCAmelCase : List[int] = [] def __init__( self , _a=None , _a=None , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=None , _a=None , _a=None , **_a , ): # Mask token behave like a normal word, i.e. include the space before it __a = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token super().__init__( vocab_file=_a , tokenizer_file=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , src_lang=_a , tgt_lang=_a , additional_special_tokens=_a , **_a , ) __a = vocab_file __a = False if not self.vocab_file else True __a = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) __a = { lang_code: self.convert_tokens_to_ids(_a ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __a = src_lang if src_lang is not None else '''en_XX''' __a = self.convert_tokens_to_ids(self._src_lang ) __a = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCAmelCase ( self ): return self._src_lang @src_lang.setter def __UpperCAmelCase ( self , _a ): __a = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCAmelCase ( self , _a , _a = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCAmelCase ( self , _a , _a = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self , _a , _a , _a , _a , **_a ): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __a = src_lang __a = self(_a , add_special_tokens=_a , return_tensors=_a , **_a ) __a = self.convert_tokens_to_ids(_a ) __a = tgt_lang_id return inputs def __UpperCAmelCase ( self , _a , _a = "en_XX" , _a = None , _a = "ro_RO" , **_a , ): __a = src_lang __a = tgt_lang return super().prepare_seqaseq_batch(_a , _a , **_a ) def __UpperCAmelCase ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCAmelCase ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCAmelCase ( self , _a ): __a = self.convert_tokens_to_ids(_a ) __a = [] __a = [self.eos_token_id, self.cur_lang_code] __a = self.convert_ids_to_tokens(self.prefix_tokens ) __a = self.convert_ids_to_tokens(self.suffix_tokens ) __a = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCAmelCase ( self , _a ): __a = self.convert_tokens_to_ids(_a ) __a = [] __a = [self.eos_token_id, self.cur_lang_code] __a = self.convert_ids_to_tokens(self.prefix_tokens ) __a = self.convert_ids_to_tokens(self.suffix_tokens ) __a = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCAmelCase ( self , _a , _a = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return __a = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
11
1
"""simple docstring""" import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = 10 def __UpperCAmelCase ( self ): __a = [1, 2, 3, 4] __a = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_a , self.block_size , 0 ) , _a ) def __UpperCAmelCase ( self ): __a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] __a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_a , self.block_size , 0 ) , _a ) def __UpperCAmelCase ( self ): __a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] __a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_a , self.block_size , 0 ) , _a ) def __UpperCAmelCase ( self ): __a = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' __a , __a = process_story(_a ) self.assertEqual(_a , [] ) def __UpperCAmelCase ( self ): __a = '''''' __a , __a = process_story(_a ) self.assertEqual(_a , [] ) self.assertEqual(_a , [] ) def __UpperCAmelCase ( self ): __a = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) __a , __a = process_story(_a ) __a = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(_a , _a ) __a = ['''It was the best of times.'''] self.assertEqual(_a , _a ) def __UpperCAmelCase ( self ): __a = torch.tensor([1, 2, 3, 4] ) __a = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_a , 0 ).numpy() , expected.numpy() ) def __UpperCAmelCase ( self ): __a = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) __a = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_a , 23 ).numpy() , expected.numpy() ) def __UpperCAmelCase ( self ): __a = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) __a = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_a , 1 ).numpy() , expected.numpy() ) def __UpperCAmelCase ( self ): __a = 101 __a = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) __a = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) __a = compute_token_type_ids(_a , _a ) np.testing.assert_array_equal(_a , _a )
11
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin lowercase_ = "\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class __lowerCAmelCase ( unittest.TestCase , __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = load_tool('''text-question-answering''' ) self.tool.setup() __a = load_tool('''text-question-answering''' , remote=_a ) def __UpperCAmelCase ( self ): __a = self.tool(_a , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(_a , '''launched the BigScience Research Workshop''' ) def __UpperCAmelCase ( self ): __a = self.remote_tool(_a , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(_a , '''launched the BigScience Research Workshop''' ) def __UpperCAmelCase ( self ): __a = self.tool(text=_a , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(_a , '''launched the BigScience Research Workshop''' ) def __UpperCAmelCase ( self ): __a = self.remote_tool(text=_a , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(_a , '''launched the BigScience Research Workshop''' )
11
1
"""simple docstring""" lowercase_ = 2_5_6 # Modulus to hash a string lowercase_ = 1_0_0_0_0_0_3 def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> bool: __a = len(lowerCAmelCase__ ) __a = len(lowerCAmelCase__ ) if p_len > t_len: return False __a = 0 __a = 0 __a = 1 # Calculating the hash of pattern and substring of text for i in range(lowerCAmelCase__ ): __a = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __a = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __a = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __a = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def lowercase ( ) -> None: __a = '''abc1abc12''' __a = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' __a = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(lowerCAmelCase__ , lowerCAmelCase__ ) and not rabin_karp(lowerCAmelCase__ , lowerCAmelCase__ ) # Test 2) __a = '''ABABX''' __a = '''ABABZABABYABABX''' assert rabin_karp(lowerCAmelCase__ , lowerCAmelCase__ ) # Test 3) __a = '''AAAB''' __a = '''ABAAAAAB''' assert rabin_karp(lowerCAmelCase__ , lowerCAmelCase__ ) # Test 4) __a = '''abcdabcy''' __a = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(lowerCAmelCase__ , lowerCAmelCase__ ) # Test 5) __a = '''Lü''' __a = '''Lüsai''' assert rabin_karp(lowerCAmelCase__ , lowerCAmelCase__ ) __a = '''Lue''' assert not rabin_karp(lowerCAmelCase__ , lowerCAmelCase__ ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
11
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_blip_2": [ "BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Blip2Config", "Blip2QFormerConfig", "Blip2VisionConfig", ], "processing_blip_2": ["Blip2Processor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Blip2Model", "Blip2QFormerModel", "Blip2PreTrainedModel", "Blip2ForConditionalGeneration", "Blip2VisionModel", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
1
"""simple docstring""" # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter lowercase_ = logging.get_logger(__name__) lowercase_ = {} lowercase_ = {} lowercase_ = {} def lowercase ( lowerCAmelCase__ : type , lowerCAmelCase__ : Optional[str] , lowerCAmelCase__ : Optional[List[str]] = None , ) -> List[Any]: __a = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'''Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})''' ) __a = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'''Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})''' ) __a = format_type def lowercase ( lowerCAmelCase__ : Exception , lowerCAmelCase__ : Optional[str] , lowerCAmelCase__ : Optional[List[str]] = None ) -> Any: __a = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): __a = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=["python"]) _register_formatter(ArrowFormatter, "arrow", aliases=["pa", "pyarrow"]) _register_formatter(NumpyFormatter, "numpy", aliases=["np"]) _register_formatter(PandasFormatter, "pandas", aliases=["pd"]) _register_formatter(CustomFormatter, "custom") if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, "torch", aliases=["pt", "pytorch"]) else: lowercase_ = ValueError("PyTorch needs to be installed to be able to return PyTorch tensors.") _register_unavailable_formatter(_torch_error, "torch", aliases=["pt", "pytorch"]) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, "tensorflow", aliases=["tf"]) else: lowercase_ = ValueError("Tensorflow needs to be installed to be able to return Tensorflow tensors.") _register_unavailable_formatter(_tf_error, "tensorflow", aliases=["tf"]) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, "jax", aliases=[]) else: lowercase_ = ValueError("JAX needs to be installed to be able to return JAX arrays.") _register_unavailable_formatter(_jax_error, "jax", aliases=[]) def lowercase ( lowerCAmelCase__ : Optional[str] ) -> Optional[str]: if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def lowercase ( lowerCAmelCase__ : Optional[str] , **lowerCAmelCase__ : Tuple ) -> Formatter: __a = get_format_type_from_alias(lowerCAmelCase__ ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**lowerCAmelCase__ ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'''Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'''' )
11
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[list[str]] , lowerCAmelCase__ : int , ) -> None: __a = len(lowerCAmelCase__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['''. ''' * i + '''Q ''' + '''. ''' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(lowerCAmelCase__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , lowerCAmelCase__ , lowerCAmelCase__ , ) def lowercase ( lowerCAmelCase__ : int ) -> None: __a = [] depth_first_search([] , [] , [] , lowerCAmelCase__ , lowerCAmelCase__ ) # Print all the boards for board in boards: for column in board: print(lowerCAmelCase__ ) print('''''' ) print(len(lowerCAmelCase__ ) , '''solutions were found.''' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
11
1
"""simple docstring""" import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"} lowercase_ = { "vocab_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt", }, "emoji_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json", }, } lowercase_ = { "abeja/gpt-neox-japanese-2.7b": 2_0_4_8, } def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Optional[Any]: with open(lowerCAmelCase__ , '''r''' , encoding='''utf-8''' ) as f: __a = json.loads(f.read() ) __a = collections.OrderedDict() __a = collections.OrderedDict() __a = collections.OrderedDict() with open(lowerCAmelCase__ , '''r''' , encoding='''utf-8''' ) as f: __a = f.readlines() __a = [[t.rstrip('''\n''' )] if (t == ''',''' or ''',''' not in t) else t.rstrip('''\n''' ).split(''',''' ) for t in token] for idx, b in enumerate(lowerCAmelCase__ ): __a = b __a = idx for wd in b: __a = idx return vocab, raw_vocab, ids_to_tokens, emoji class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES __UpperCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Dict = ['input_ids', 'attention_mask'] def __init__( self , _a , _a , _a="<|endoftext|>" , _a="<|endoftext|>" , _a="<|startoftext|>" , _a="<|endoftext|>" , _a=False , **_a , ): super().__init__( unk_token=_a , pad_token=_a , bos_token=_a , eos_token=_a , do_clean_text=_a , **_a , ) if not os.path.isfile(_a ): raise ValueError( f'''Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained''' ''' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) if not os.path.isfile(_a ): raise ValueError( f'''Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google''' ''' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) __a = do_clean_text __a , __a , __a , __a = load_vocab_and_emoji(_a , _a ) __a = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def __UpperCAmelCase ( self ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def __UpperCAmelCase ( self ): return dict(self.raw_vocab , **self.added_tokens_encoder ) def __UpperCAmelCase ( self , _a ): return self.subword_tokenizer.tokenize(_a , clean=self.do_clean_text ) def __UpperCAmelCase ( self , _a ): return self.vocab.get(_a , self.vocab.get(self.unk_token ) ) def __UpperCAmelCase ( self , _a ): return self.subword_tokenizer.convert_id_to_token(_a ) def __UpperCAmelCase ( self , _a ): __a = ''''''.join(_a ).strip() return out_string def __UpperCAmelCase ( self , _a ): __a = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_a , add_special_tokens=_a ) + [self.eos_token_id] ) if len(_a ) > self.model_max_length: __a = input_ids[-self.model_max_length :] return input_ids def __UpperCAmelCase ( self , _a , _a = None ): __a = 0 if os.path.isdir(_a ): __a = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __a = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''emoji_file'''] ) else: __a = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''vocab_file'''] ) __a = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''emoji_file'''] ) with open(_a , '''w''' , encoding='''utf-8''' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' ''' Please check that the vocabulary is not corrupted!''' ) __a = token_index writer.write(''','''.join(_a ) + '''\n''' ) index += 1 with open(_a , '''w''' , encoding='''utf-8''' ) as writer: json.dump(self.emoji , _a ) return vocab_file, emoji_file class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a , _a , _a ): __a = vocab # same as swe __a = ids_to_tokens # same as bpe __a = emoji __a = np.max([len(_a ) for w in self.vocab.keys()] ) __a = re.compile(R'''(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)''' ) __a = re.compile(R'''[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*''' ) __a = re.compile(R'''[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}''' ) __a = re.compile( R'''([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) __a = re.compile( R'''(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) __a = re.compile( R'''((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*''' ) __a = '''─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿''' __a = '''▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟''' __a = str.maketrans({k: '''<BLOCK>''' for k in keisen + blocks} ) def __len__( self ): return len(self.ids_to_tokens ) def __UpperCAmelCase ( self , _a ): __a = self.content_repattera.sub('''<URL>''' , _a ) __a = self.content_repattera.sub('''<EMAIL>''' , _a ) __a = self.content_repattera.sub('''<TEL>''' , _a ) __a = self.content_repattera.sub('''<DATE>''' , _a ) __a = self.content_repattera.sub('''<DATE>''' , _a ) __a = self.content_repattera.sub('''<PRICE>''' , _a ) __a = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: __a = content.replace('''<BLOCK><BLOCK>''' , '''<BLOCK>''' ) return content def __UpperCAmelCase ( self , _a , _a=False ): __a = text.replace(''' ''' , '''<SP>''' ) __a = text.replace(''' ''' , '''<SP>''' ) __a = text.replace('''\r\n''' , '''<BR>''' ) __a = text.replace('''\n''' , '''<BR>''' ) __a = text.replace('''\r''' , '''<BR>''' ) __a = text.replace('''\t''' , '''<TAB>''' ) __a = text.replace('''—''' , '''ー''' ) __a = text.replace('''−''' , '''ー''' ) for k, v in self.emoji["emoji"].items(): if k in text: __a = text.replace(_a , _a ) if clean: __a = self.clean_text(_a ) def check_simbol(_a ): __a = x.encode() if len(_a ) == 1 and len(_a ) == 2: __a = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC2A1 and c <= 0XC2BF) or (c >= 0XC780 and c <= 0XC783) or (c >= 0XCAB9 and c <= 0XCBBF) or (c >= 0XCC80 and c <= 0XCDA2) ): return True return False def checkuae(_a ): __a = x.encode() if len(_a ) == 1 and len(_a ) == 3: __a = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE2_8080 and c <= 0XE2_B07F: return True return False __a = 0 __a = [] while pos < len(_a ): __a = min(len(_a ) , pos + self.maxlen + 1 ) if text[pos] == '''<''' else pos + 3 __a = [] # (token_id, token, pos) for e in range(_a , _a , -1 ): __a = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(_a ) > 2: __a = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(_a ) > 0: # the smallest token_id is adopted __a , __a , __a = sorted(_a , key=lambda _a : x[0] )[0] result.append(_a ) __a = e else: __a = pos + 1 __a = text[pos:end] if check_simbol(_a ): result.append('''<KIGOU>''' ) elif checkuae(_a ): result.append('''<U2000U2BFF>''' ) else: for i in wd.encode('''utf-8''' ): result.append('''<|byte%d|>''' % i ) __a = end return result def __UpperCAmelCase ( self , _a , _a="\n" ): __a = [] __a = [] __a = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(_a ) > 0: words.append(bytearray(_a ).decode('''utf-8''' , errors='''replace''' ) ) __a = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['''emoji_inv'''][word] ) elif word == "<SP>": words.append(''' ''' ) elif word == "<BR>": words.append(_a ) elif word == "<TAB>": words.append('''\t''' ) elif word == "<BLOCK>": words.append('''▀''' ) elif word == "<KIGOU>": words.append('''ǀ''' ) elif word == "<U2000U2BFF>": words.append('''‖''' ) else: words.append(_a ) if len(_a ) > 0: words.append(bytearray(_a ).decode('''utf-8''' , errors='''replace''' ) ) __a = ''''''.join(_a ) return text
11
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
11
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCAmelCase ( self ): __a = 1 __a = 3 __a = (32, 32) __a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a ) return image @property def __UpperCAmelCase ( self ): torch.manual_seed(0 ) __a = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=_a , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def __UpperCAmelCase ( self ): torch.manual_seed(0 ) __a = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def __UpperCAmelCase ( self ): torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) return CLIPTextModel(_a ) def __UpperCAmelCase ( self ): __a = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a = self.dummy_cond_unet_upscale __a = DDPMScheduler() __a = DDIMScheduler(prediction_type='''v_prediction''' ) __a = self.dummy_vae __a = self.dummy_text_encoder __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __a = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __a = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk __a = StableDiffusionUpscalePipeline( unet=_a , low_res_scheduler=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , max_noise_level=350 , ) __a = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) __a = '''A painting of a squirrel eating a burger''' __a = torch.Generator(device=_a ).manual_seed(0 ) __a = sd_pipe( [prompt] , image=_a , generator=_a , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) __a = output.images __a = torch.Generator(device=_a ).manual_seed(0 ) __a = sd_pipe( [prompt] , image=_a , generator=_a , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , return_dict=_a , )[0] __a = image[0, -3:, -3:, -1] __a = image_from_tuple[0, -3:, -3:, -1] __a = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) __a = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self ): __a = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a = self.dummy_cond_unet_upscale __a = DDPMScheduler() __a = DDIMScheduler(prediction_type='''v_prediction''' ) __a = self.dummy_vae __a = self.dummy_text_encoder __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __a = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __a = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk __a = StableDiffusionUpscalePipeline( unet=_a , low_res_scheduler=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , max_noise_level=350 , ) __a = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) __a = '''A painting of a squirrel eating a burger''' __a = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) __a = output.images assert image.shape[0] == 2 __a = torch.Generator(device=_a ).manual_seed(0 ) __a = sd_pipe( [prompt] , image=_a , generator=_a , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) __a = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def __UpperCAmelCase ( self ): __a = self.dummy_cond_unet_upscale __a = DDPMScheduler() __a = DDIMScheduler(prediction_type='''v_prediction''' ) __a = self.dummy_vae __a = self.dummy_text_encoder __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __a = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __a = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 __a = unet.half() __a = text_encoder.half() # make sure here that pndm scheduler skips prk __a = StableDiffusionUpscalePipeline( unet=_a , low_res_scheduler=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , max_noise_level=350 , ) __a = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) __a = '''A painting of a squirrel eating a burger''' __a = torch.manual_seed(0 ) __a = sd_pipe( [prompt] , image=_a , generator=_a , num_inference_steps=2 , output_type='''np''' , ).images __a = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat.npy''' ) __a = '''stabilityai/stable-diffusion-x4-upscaler''' __a = StableDiffusionUpscalePipeline.from_pretrained(_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() __a = '''a cat sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , generator=_a , output_type='''np''' , ) __a = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-3 def __UpperCAmelCase ( self ): __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat_fp16.npy''' ) __a = '''stabilityai/stable-diffusion-x4-upscaler''' __a = StableDiffusionUpscalePipeline.from_pretrained( _a , torch_dtype=torch.floataa , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() __a = '''a cat sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , generator=_a , output_type='''np''' , ) __a = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def __UpperCAmelCase ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) __a = '''stabilityai/stable-diffusion-x4-upscaler''' __a = StableDiffusionUpscalePipeline.from_pretrained( _a , torch_dtype=torch.floataa , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __a = '''a cat sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , generator=_a , num_inference_steps=5 , output_type='''np''' , ) __a = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
11
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = 'vit_mae' def __init__( self , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1E-12 , _a=224 , _a=16 , _a=3 , _a=True , _a=16 , _a=512 , _a=8 , _a=2_048 , _a=0.75 , _a=False , **_a , ): super().__init__(**_a ) __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = initializer_range __a = layer_norm_eps __a = image_size __a = patch_size __a = num_channels __a = qkv_bias __a = decoder_num_attention_heads __a = decoder_hidden_size __a = decoder_num_hidden_layers __a = decoder_intermediate_size __a = mask_ratio __a = norm_pix_loss
11
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowercase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["GPTSw3Tokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = ['image_processor', 'tokenizer'] __UpperCAmelCase : str = 'LayoutLMv3ImageProcessor' __UpperCAmelCase : Optional[int] = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self , _a=None , _a=None , **_a ): __a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) __a = kwargs.pop('''feature_extractor''' ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) def __call__( self , _a , _a = None , _a = None , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) # first, apply the image processor __a = self.image_processor(images=_a , return_tensors=_a ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_a , _a ): __a = [text] # add batch dimension (as the image processor always adds a batch dimension) __a = features['''words'''] __a = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel values __a = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: __a = self.get_overflowing_images(_a , encoded_inputs['''overflow_to_sample_mapping'''] ) __a = images return encoded_inputs def __UpperCAmelCase ( self , _a , _a ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __a = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_a ) != len(_a ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(_a )} and {len(_a )}''' ) return images_with_overflow def __UpperCAmelCase ( self , *_a , **_a ): return self.tokenizer.batch_decode(*_a , **_a ) def __UpperCAmelCase ( self , *_a , **_a ): return self.tokenizer.decode(*_a , **_a ) @property def __UpperCAmelCase ( self ): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def __UpperCAmelCase ( self ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def __UpperCAmelCase ( self ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
11
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["ConvNextFeatureExtractor"] lowercase_ = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
11
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any]=0.9_99 , lowerCAmelCase__ : List[str]="cosine" , ) -> Optional[int]: if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCAmelCase__ : int ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCAmelCase__ : Optional[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __a = [] for i in range(lowerCAmelCase__ ): __a = i / num_diffusion_timesteps __a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCAmelCase__ ) / alpha_bar_fn(lowerCAmelCase__ ) , lowerCAmelCase__ ) ) return torch.tensor(lowerCAmelCase__ , dtype=torch.floataa ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase : str = 2 @register_to_config def __init__( self , _a = 1_000 , _a = 0.0_0085 , _a = 0.012 , _a = "linear" , _a = None , _a = "epsilon" , _a = "linspace" , _a = 0 , ): if trained_betas is not None: __a = torch.tensor(_a , dtype=torch.floataa ) elif beta_schedule == "linear": __a = torch.linspace(_a , _a , _a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __a = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __a = betas_for_alpha_bar(_a ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) __a = 1.0 - self.betas __a = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(_a , _a , _a ) def __UpperCAmelCase ( self , _a , _a=None ): if schedule_timesteps is None: __a = self.timesteps __a = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __a = 1 if len(_a ) > 1 else 0 else: __a = timestep.cpu().item() if torch.is_tensor(_a ) else timestep __a = self._index_counter[timestep_int] return indices[pos].item() @property def __UpperCAmelCase ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __UpperCAmelCase ( self , _a , _a , ): __a = self.index_for_timestep(_a ) if self.state_in_first_order: __a = self.sigmas[step_index] else: __a = self.sigmas_interpol[step_index] __a = sample / ((sigma**2 + 1) ** 0.5) return sample def __UpperCAmelCase ( self , _a , _a = None , _a = None , ): __a = num_inference_steps __a = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __a = np.linspace(0 , num_train_timesteps - 1 , _a , dtype=_a )[::-1].copy() elif self.config.timestep_spacing == "leading": __a = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __a = (np.arange(0 , _a ) * step_ratio).round()[::-1].copy().astype(_a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __a = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __a = (np.arange(_a , 0 , -step_ratio )).round().copy().astype(_a ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) __a = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __a = torch.from_numpy(np.log(_a ) ).to(_a ) __a = np.interp(_a , np.arange(0 , len(_a ) ) , _a ) __a = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __a = torch.from_numpy(_a ).to(device=_a ) # interpolate sigmas __a = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __a = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __a = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(_a ).startswith('''mps''' ): # mps does not support float64 __a = torch.from_numpy(_a ).to(_a , dtype=torch.floataa ) else: __a = torch.from_numpy(_a ).to(_a ) # interpolate timesteps __a = self.sigma_to_t(_a ).to(_a , dtype=timesteps.dtype ) __a = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __a = torch.cat([timesteps[:1], interleaved_timesteps] ) __a = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __a = defaultdict(_a ) def __UpperCAmelCase ( self , _a ): # get log sigma __a = sigma.log() # get distribution __a = log_sigma - self.log_sigmas[:, None] # get sigmas range __a = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __a = low_idx + 1 __a = self.log_sigmas[low_idx] __a = self.log_sigmas[high_idx] # interpolate sigmas __a = (low - log_sigma) / (low - high) __a = w.clamp(0 , 1 ) # transform interpolation to time range __a = (1 - w) * low_idx + w * high_idx __a = t.view(sigma.shape ) return t @property def __UpperCAmelCase ( self ): return self.sample is None def __UpperCAmelCase ( self , _a , _a , _a , _a = True , ): __a = self.index_for_timestep(_a ) # advance index counter by 1 __a = timestep.cpu().item() if torch.is_tensor(_a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __a = self.sigmas[step_index] __a = self.sigmas_interpol[step_index + 1] __a = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __a = self.sigmas[step_index - 1] __a = self.sigmas_interpol[step_index] __a = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __a = 0 __a = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __a = sigma_hat if self.state_in_first_order else sigma_interpol __a = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __a = sigma_hat if self.state_in_first_order else sigma_interpol __a = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('''prediction_type not implemented yet: sample''' ) else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __a = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __a = sigma_interpol - sigma_hat # store for 2nd order step __a = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __a = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __a = sigma_next - sigma_hat __a = self.sample __a = None __a = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_a ) def __UpperCAmelCase ( self , _a , _a , _a , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __a = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_a ): # mps does not support float64 __a = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __a = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __a = self.timesteps.to(original_samples.device ) __a = timesteps.to(original_samples.device ) __a = [self.index_for_timestep(_a , _a ) for t in timesteps] __a = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __a = sigma.unsqueeze(-1 ) __a = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
11
1
"""simple docstring""" import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def lowercase ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str] ) -> List[str]: __a = UniSpeechSatForSequenceClassification.from_pretrained(lowerCAmelCase__ , config=lowerCAmelCase__ ) __a = downstream_dict['''projector.weight'''] __a = downstream_dict['''projector.bias'''] __a = downstream_dict['''model.post_net.linear.weight'''] __a = downstream_dict['''model.post_net.linear.bias'''] return model def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any ) -> Tuple: __a = UniSpeechSatForAudioFrameClassification.from_pretrained(lowerCAmelCase__ , config=lowerCAmelCase__ ) __a = downstream_dict['''model.linear.weight'''] __a = downstream_dict['''model.linear.bias'''] return model def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Any ) -> Tuple: __a = UniSpeechSatForXVector.from_pretrained(lowerCAmelCase__ , config=lowerCAmelCase__ ) __a = downstream_dict['''connector.weight'''] __a = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __a = downstream_dict[ f'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] __a = downstream_dict[f'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] __a = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] __a = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] __a = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] __a = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] __a = downstream_dict['''objective.W'''] return model @torch.no_grad() def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : Union[str, Any] ) -> Tuple: __a = torch.load(lowerCAmelCase__ , map_location='''cpu''' ) __a = checkpoint['''Downstream'''] __a = UniSpeechSatConfig.from_pretrained(lowerCAmelCase__ ) __a = WavaVecaFeatureExtractor.from_pretrained( lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , do_normalize=lowerCAmelCase__ ) __a = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): __a = convert_classification(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) elif arch.endswith('''ForAudioFrameClassification''' ): __a = convert_diarization(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) elif arch.endswith('''ForXVector''' ): __a = convert_xvector(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: raise NotImplementedError(f'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: __a = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(lowerCAmelCase__ ) hf_model.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") lowercase_ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
11
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = 'rwkv' __UpperCAmelCase : Optional[Any] = {'max_position_embeddings': 'context_length'} def __init__( self , _a=50_277 , _a=1_024 , _a=4_096 , _a=32 , _a=None , _a=None , _a=1E-5 , _a=0 , _a=0 , _a=6 , _a=False , _a=True , **_a , ): __a = vocab_size __a = context_length __a = hidden_size __a = num_hidden_layers __a = attention_hidden_size if attention_hidden_size is not None else hidden_size __a = intermediate_size if intermediate_size is not None else 4 * hidden_size __a = layer_norm_epsilon __a = rescale_every __a = use_cache __a = bos_token_id __a = eos_token_id super().__init__( tie_word_embeddings=_a , bos_token_id=_a , eos_token_id=_a , **_a )
11
1
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[list[str]] , lowerCAmelCase__ : int , ) -> None: __a = len(lowerCAmelCase__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['''. ''' * i + '''Q ''' + '''. ''' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(lowerCAmelCase__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , lowerCAmelCase__ , lowerCAmelCase__ , ) def lowercase ( lowerCAmelCase__ : int ) -> None: __a = [] depth_first_search([] , [] , [] , lowerCAmelCase__ , lowerCAmelCase__ ) # Print all the boards for board in boards: for column in board: print(lowerCAmelCase__ ) print('''''' ) print(len(lowerCAmelCase__ ) , '''solutions were found.''' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
11
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = (UnCLIPScheduler,) def __UpperCAmelCase ( self , **_a ): __a = { '''num_train_timesteps''': 1_000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**_a ) return config def __UpperCAmelCase ( self ): for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_a ) def __UpperCAmelCase ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_a ) def __UpperCAmelCase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_a ) def __UpperCAmelCase ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_a ) def __UpperCAmelCase ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_a ) def __UpperCAmelCase ( self ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_a , prev_timestep=_a ) def __UpperCAmelCase ( self ): __a = self.scheduler_classes[0] __a = self.get_scheduler_config(variance_type='''fixed_small_log''' ) __a = scheduler_class(**_a ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1E-5 def __UpperCAmelCase ( self ): __a = self.scheduler_classes[0] __a = self.get_scheduler_config(variance_type='''learned_range''' ) __a = scheduler_class(**_a ) __a = 0.5 assert scheduler._get_variance(1 , predicted_variance=_a ) - -10.171_2790 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=_a ) - -5.799_8052 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=_a ) - -0.001_0011 < 1E-5 def __UpperCAmelCase ( self ): __a = self.scheduler_classes[0] __a = self.get_scheduler_config() __a = scheduler_class(**_a ) __a = scheduler.timesteps __a = self.dummy_model() __a = self.dummy_sample_deter __a = torch.manual_seed(0 ) for i, t in enumerate(_a ): # 1. predict noise residual __a = model(_a , _a ) # 2. predict previous mean of sample x_t-1 __a = scheduler.step(_a , _a , _a , generator=_a ).prev_sample __a = pred_prev_sample __a = torch.sum(torch.abs(_a ) ) __a = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1E-2 assert abs(result_mean.item() - 0.328_4743 ) < 1E-3 def __UpperCAmelCase ( self ): __a = self.scheduler_classes[0] __a = self.get_scheduler_config() __a = scheduler_class(**_a ) scheduler.set_timesteps(25 ) __a = scheduler.timesteps __a = self.dummy_model() __a = self.dummy_sample_deter __a = torch.manual_seed(0 ) for i, t in enumerate(_a ): # 1. predict noise residual __a = model(_a , _a ) if i + 1 == timesteps.shape[0]: __a = None else: __a = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __a = scheduler.step( _a , _a , _a , prev_timestep=_a , generator=_a ).prev_sample __a = pred_prev_sample __a = torch.sum(torch.abs(_a ) ) __a = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1E-2 assert abs(result_mean.item() - 0.336_2038 ) < 1E-3 def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): pass
11
1
"""simple docstring""" def lowercase ( lowerCAmelCase__ : int ) -> int: if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(lowerCAmelCase__ ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
11
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def lowercase ( lowerCAmelCase__ : Dict ) -> Optional[int]: __a , __a = image.size __a , __a = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 __a = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) __a = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 2_55.0 __a = image[None].transpose(0 , 3 , 1 , 2 ) __a = torch.from_numpy(lowerCAmelCase__ ) return 2.0 * image - 1.0 class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a , _a , _a , ): super().__init__() self.register_modules(vqvae=_a , unet=_a , scheduler=_a ) @torch.no_grad() def __call__( self , _a = None , _a = 1 , _a = 100 , _a = 0.0 , _a = None , _a = "pil" , _a = True , ): if isinstance(_a , PIL.Image.Image ): __a = 1 elif isinstance(_a , torch.Tensor ): __a = image.shape[0] else: raise ValueError(f'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_a )}''' ) if isinstance(_a , PIL.Image.Image ): __a = preprocess(_a ) __a , __a = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image __a = (batch_size, self.unet.config.in_channels // 2, height, width) __a = next(self.unet.parameters() ).dtype __a = randn_tensor(_a , generator=_a , device=self.device , dtype=_a ) __a = image.to(device=self.device , dtype=_a ) # set timesteps and move to the correct device self.scheduler.set_timesteps(_a , device=self.device ) __a = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler __a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __a = {} if accepts_eta: __a = eta for t in self.progress_bar(_a ): # concat latents and low resolution image in the channel dimension. __a = torch.cat([latents, image] , dim=1 ) __a = self.scheduler.scale_model_input(_a , _a ) # predict the noise residual __a = self.unet(_a , _a ).sample # compute the previous noisy sample x_t -> x_t-1 __a = self.scheduler.step(_a , _a , _a , **_a ).prev_sample # decode the image latents with the VQVAE __a = self.vqvae.decode(_a ).sample __a = torch.clamp(_a , -1.0 , 1.0 ) __a = image / 2 + 0.5 __a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __a = self.numpy_to_pil(_a ) if not return_dict: return (image,) return ImagePipelineOutput(images=_a )
11
1
"""simple docstring""" import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def lowercase ( lowerCAmelCase__ : List[Any] ) -> Union[str, Any]: __a = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : str ) -> Optional[int]: __a , __a = emb.weight.shape __a = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ , bias=lowerCAmelCase__ ) __a = emb.weight.data return lin_layer def lowercase ( lowerCAmelCase__ : Any ) -> int: __a = torch.load(lowerCAmelCase__ , map_location='''cpu''' ) __a = mam_aaa['''args'''] or mam_aaa['''cfg''']['''model'''] __a = mam_aaa['''model'''] remove_ignore_keys_(lowerCAmelCase__ ) __a = state_dict['''encoder.embed_tokens.weight'''].shape[0] __a = MaMaaaConfig( vocab_size=lowerCAmelCase__ , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , ) __a = state_dict['''decoder.embed_tokens.weight'''] __a = MaMaaaForConditionalGeneration(lowerCAmelCase__ ) model.model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) __a = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") lowercase_ = parser.parse_args() lowercase_ = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
11
"""simple docstring""" from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = DistilBertTokenizer __UpperCAmelCase : Any = DistilBertTokenizerFast __UpperCAmelCase : int = True @slow def __UpperCAmelCase ( self ): __a = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) __a = tokenizer.encode('''sequence builders''' , add_special_tokens=_a ) __a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a ) __a = tokenizer.build_inputs_with_special_tokens(_a ) __a = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
11
1
"""simple docstring""" def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> int: while a != 0: __a , __a = b % a, a return b def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> int: if gcd(lowerCAmelCase__ , lowerCAmelCase__ ) != 1: __a = f'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(lowerCAmelCase__ ) __a , __a , __a = 1, 0, a __a , __a , __a = 0, 1, m while va != 0: __a = ua // va __a , __a , __a , __a , __a , __a = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
11
"""simple docstring""" from math import factorial, radians def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : int = 18 , lowerCAmelCase__ : int = 10 ) -> float: __a = angle_in_degrees - ((angle_in_degrees // 3_60.0) * 3_60.0) # Converting from degrees to radians __a = radians(lowerCAmelCase__ ) __a = angle_in_radians __a = 3 __a = -1 for _ in range(lowerCAmelCase__ ): result += (b * (angle_in_radians**a)) / factorial(lowerCAmelCase__ ) __a = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": __import__("doctest").testmod()
11
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self ): __a = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) __a = torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]] ) # The dog is cute and lives in the garden house __a = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim __a = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __a = model(_a )['''last_hidden_state'''].detach() self.assertEqual(output.shape , _a ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _a , atol=1E-3 ) ) @slow def __UpperCAmelCase ( self ): __a = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' ) __a = torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]] ) # The dog is cute and lives in the garden house __a = torch.Size((1, 12, 1_024) ) # batch_size, sequence_length, embedding_vector_dim __a = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __a = model(_a )['''last_hidden_state'''].detach() self.assertEqual(output.shape , _a ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _a , atol=1E-3 ) )
11
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def lowercase ( lowerCAmelCase__ : dict ) -> tuple: return (data["data"], data["target"]) def lowercase ( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray ) -> np.ndarray: __a = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(lowerCAmelCase__ , lowerCAmelCase__ ) # Predict target for test data __a = xgb.predict(lowerCAmelCase__ ) __a = predictions.reshape(len(lowerCAmelCase__ ) , 1 ) return predictions def lowercase ( ) -> None: __a = fetch_california_housing() __a , __a = data_handling(lowerCAmelCase__ ) __a , __a , __a , __a = train_test_split( lowerCAmelCase__ , lowerCAmelCase__ , test_size=0.25 , random_state=1 ) __a = xgboost(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Error printing print(f'''Mean Absolute Error : {mean_absolute_error(lowerCAmelCase__ , lowerCAmelCase__ )}''' ) print(f'''Mean Square Error : {mean_squared_error(lowerCAmelCase__ , lowerCAmelCase__ )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
11
1
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : tuple[int, int] , lowerCAmelCase__ : int ) -> list[tuple[int, int]]: __a , __a = position __a = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] __a = [] for position in positions: __a , __a = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(lowerCAmelCase__ ) return permissible_positions def lowercase ( lowerCAmelCase__ : list[list[int]] ) -> bool: return not any(elem == 0 for row in board for elem in row ) def lowercase ( lowerCAmelCase__ : list[list[int]] , lowerCAmelCase__ : tuple[int, int] , lowerCAmelCase__ : int ) -> bool: if is_complete(lowerCAmelCase__ ): return True for position in get_valid_pos(lowerCAmelCase__ , len(lowerCAmelCase__ ) ): __a , __a = position if board[y][x] == 0: __a = curr + 1 if open_knight_tour_helper(lowerCAmelCase__ , lowerCAmelCase__ , curr + 1 ): return True __a = 0 return False def lowercase ( lowerCAmelCase__ : int ) -> list[list[int]]: __a = [[0 for i in range(lowerCAmelCase__ )] for j in range(lowerCAmelCase__ )] for i in range(lowerCAmelCase__ ): for j in range(lowerCAmelCase__ ): __a = 1 if open_knight_tour_helper(lowerCAmelCase__ , (i, j) , 1 ): return board __a = 0 __a = f'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
11
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
1
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "vocab.json"} lowercase_ = { "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } lowercase_ = {"mgp-str": 2_7} class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = VOCAB_FILES_NAMES __UpperCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _a , _a="[GO]" , _a="[GO]" , _a="[s]" , _a="[GO]" , **_a ): super().__init__( unk_token=_a , bos_token=_a , eos_token=_a , pad_token=_a , **_a , ) with open(_a , encoding='''utf-8''' ) as vocab_handle: __a = json.load(_a ) __a = {v: k for k, v in self.vocab.items()} @property def __UpperCAmelCase ( self ): return len(self.vocab ) def __UpperCAmelCase ( self ): return dict(self.vocab , **self.added_tokens_encoder ) def __UpperCAmelCase ( self , _a ): __a = [] for s in text: char_tokens.extend(_a ) return char_tokens def __UpperCAmelCase ( self , _a ): return self.vocab.get(_a , self.vocab.get(self.unk_token ) ) def __UpperCAmelCase ( self , _a ): return self.decoder.get(_a ) def __UpperCAmelCase ( self , _a , _a = None ): if not os.path.isdir(_a ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_a ) ) return __a = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(_a , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_a , ensure_ascii=_a ) + '''\n''' ) return (vocab_file,)
11
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json", "funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json", "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json", "funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = 'funnel' __UpperCAmelCase : Union[str, Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', } def __init__( self , _a=30_522 , _a=[4, 4, 4] , _a=None , _a=2 , _a=768 , _a=12 , _a=64 , _a=3_072 , _a="gelu_new" , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.1 , _a=None , _a=1E-9 , _a="mean" , _a="relative_shift" , _a=True , _a=True , _a=True , **_a , ): __a = vocab_size __a = block_sizes __a = [1] * len(_a ) if block_repeats is None else block_repeats assert len(_a ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." __a = num_decoder_layers __a = d_model __a = n_head __a = d_head __a = d_inner __a = hidden_act __a = hidden_dropout __a = attention_dropout __a = activation_dropout __a = initializer_range __a = initializer_std __a = layer_norm_eps assert pooling_type in [ "mean", "max", ], f'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.''' __a = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.''' __a = attention_type __a = separate_cls __a = truncate_seq __a = pool_q_only super().__init__(**_a ) @property def __UpperCAmelCase ( self ): return sum(self.block_sizes ) @num_hidden_layers.setter def __UpperCAmelCase ( self , _a ): raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' ) @property def __UpperCAmelCase ( self ): return len(self.block_sizes ) @num_blocks.setter def __UpperCAmelCase ( self , _a ): raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
11
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , *_a , **_a ): warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
11
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_a , '''width_multiplier''' ) ) class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a=13 , _a=64 , _a=2 , _a=3 , _a="swish" , _a=3 , _a=32 , _a=0.1 , _a=0.02 , _a=True , _a=True , _a=10 , _a=None , _a=0.25 , _a=0.0 , _a=0.0 , ): __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = make_divisible(512 * width_multiplier , divisor=8 ) __a = hidden_act __a = conv_kernel_size __a = output_stride __a = classifier_dropout_prob __a = use_labels __a = is_training __a = num_labels __a = initializer_range __a = scope __a = width_multiplier __a = ffn_dropout __a = attn_dropout def __UpperCAmelCase ( self ): __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.num_labels ) __a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __a = self.get_config() return config, pixel_values, labels, pixel_labels def __UpperCAmelCase ( self ): return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def __UpperCAmelCase ( self , _a , _a , _a , _a ): __a = MobileViTVaModel(config=_a ) model.to(_a ) model.eval() __a = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCAmelCase ( self , _a , _a , _a , _a ): __a = self.num_labels __a = MobileViTVaForImageClassification(_a ) model.to(_a ) model.eval() __a = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self , _a , _a , _a , _a ): __a = self.num_labels __a = MobileViTVaForSemanticSegmentation(_a ) model.to(_a ) model.eval() __a = model(_a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __a = model(_a , labels=_a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCAmelCase ( self ): __a = self.prepare_config_and_inputs() __a , __a , __a , __a = config_and_inputs __a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase : Union[str, Any] = ( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase : Tuple = False __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Tuple = False __UpperCAmelCase : List[str] = False def __UpperCAmelCase ( self ): __a = MobileViTVaModelTester(self ) __a = MobileViTVaConfigTester(self , config_class=_a , has_text_modality=_a ) def __UpperCAmelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def __UpperCAmelCase ( self ): pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def __UpperCAmelCase ( self ): pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def __UpperCAmelCase ( self ): pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def __UpperCAmelCase ( self ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(_a ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __UpperCAmelCase ( self ): def check_hidden_states_output(_a , _a , _a ): __a = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(_a , _a ) ) __a = outputs.hidden_states __a = 5 self.assertEqual(len(_a ) , _a ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __a = 2 for i in range(len(_a ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True check_hidden_states_output(_a , _a , _a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_a ) @slow def __UpperCAmelCase ( self ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = MobileViTVaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowercase ( ) -> str: __a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCAmelCase ( self ): return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self ): __a = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( _a ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): __a = model(**_a ) # verify the logits __a = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _a ) __a = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1E-4 ) ) @slow def __UpperCAmelCase ( self ): __a = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = model.to(_a ) __a = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = prepare_img() __a = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): __a = model(**_a ) __a = outputs.logits # verify the logits __a = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _a ) __a = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=_a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _a , atol=1E-4 ) ) @slow def __UpperCAmelCase ( self ): __a = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = model.to(_a ) __a = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = prepare_img() __a = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): __a = model(**_a ) __a = outputs.logits.detach().cpu() __a = image_processor.post_process_semantic_segmentation(outputs=_a , target_sizes=[(50, 60)] ) __a = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _a ) __a = image_processor.post_process_semantic_segmentation(outputs=_a ) __a = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _a )
11
1
"""simple docstring""" import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) lowercase_ = logging.getLogger(__name__) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : List[str] ) -> Any: __a = np.argmax(lowerCAmelCase__ , axis=1 ) return np.sum(outputs == labels ) def lowercase ( lowerCAmelCase__ : Any ) -> List[Any]: with open(lowerCAmelCase__ , encoding='''utf_8''' ) as f: __a = csv.reader(lowerCAmelCase__ ) __a = [] next(lowerCAmelCase__ ) # skip the first line for line in tqdm(lowerCAmelCase__ ): output.append((''' '''.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def lowercase ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str ) -> Tuple: __a = [] for dataset in encoded_datasets: __a = len(lowerCAmelCase__ ) __a = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) __a = np.zeros((n_batch, 2) , dtype=np.intaa ) __a = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) __a = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(lowerCAmelCase__ ): __a = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __a = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __a = with_conta __a = with_conta __a = len(lowerCAmelCase__ ) - 1 __a = len(lowerCAmelCase__ ) - 1 __a = with_conta __a = with_conta __a = mc_label __a = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(lowerCAmelCase__ ) for t in all_inputs ) ) return tensor_datasets def lowercase ( ) -> Any: __a = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=lowerCAmelCase__ , default='''openai-gpt''' , help='''pretrained model name''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_eval''' , action='''store_true''' , help='''Whether to run eval on the dev set.''' ) parser.add_argument( '''--output_dir''' , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument('''--train_dataset''' , type=lowerCAmelCase__ , default='''''' ) parser.add_argument('''--eval_dataset''' , type=lowerCAmelCase__ , default='''''' ) parser.add_argument('''--seed''' , type=lowerCAmelCase__ , default=42 ) parser.add_argument('''--num_train_epochs''' , type=lowerCAmelCase__ , default=3 ) parser.add_argument('''--train_batch_size''' , type=lowerCAmelCase__ , default=8 ) parser.add_argument('''--eval_batch_size''' , type=lowerCAmelCase__ , default=16 ) parser.add_argument('''--adam_epsilon''' , default=1e-8 , type=lowerCAmelCase__ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , type=lowerCAmelCase__ , default=1 ) parser.add_argument( '''--max_steps''' , default=-1 , type=lowerCAmelCase__ , help=( '''If > 0: set total number of training steps to perform. Override num_train_epochs.''' ) , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=lowerCAmelCase__ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--learning_rate''' , type=lowerCAmelCase__ , default=6.2_5e-5 ) parser.add_argument('''--warmup_steps''' , default=0 , type=lowerCAmelCase__ , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--lr_schedule''' , type=lowerCAmelCase__ , default='''warmup_linear''' ) parser.add_argument('''--weight_decay''' , type=lowerCAmelCase__ , default=0.01 ) parser.add_argument('''--lm_coef''' , type=lowerCAmelCase__ , default=0.9 ) parser.add_argument('''--n_valid''' , type=lowerCAmelCase__ , default=374 ) parser.add_argument('''--server_ip''' , type=lowerCAmelCase__ , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=lowerCAmelCase__ , default='''''' , help='''Can be used for distant debugging.''' ) __a = parser.parse_args() print(lowerCAmelCase__ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCAmelCase__ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) __a = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) __a = torch.cuda.device_count() logger.info('''device: {}, n_gpu {}'''.format(lowerCAmelCase__ , lowerCAmelCase__ ) ) if not args.do_train and not args.do_eval: raise ValueError('''At least one of `do_train` or `do_eval` must be True.''' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset __a = ['''_start_''', '''_delimiter_''', '''_classify_'''] __a = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(lowerCAmelCase__ ) __a = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) __a = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(lowerCAmelCase__ ) ) model.to(lowerCAmelCase__ ) # Load and encode the datasets def tokenize_and_encode(lowerCAmelCase__ : List[Any] ): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(lowerCAmelCase__ ) ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return obj return [tokenize_and_encode(lowerCAmelCase__ ) for o in obj] logger.info('''Encoding dataset...''' ) __a = load_rocstories_dataset(args.train_dataset ) __a = load_rocstories_dataset(args.eval_dataset ) __a = (train_dataset, eval_dataset) __a = tokenize_and_encode(lowerCAmelCase__ ) # Compute the max input length for the Transformer __a = model.config.n_positions // 2 - 2 __a = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) __a = min(lowerCAmelCase__ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders __a = pre_process_datasets(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ ) __a , __a = tensor_datasets[0], tensor_datasets[1] __a = TensorDataset(*lowerCAmelCase__ ) __a = RandomSampler(lowerCAmelCase__ ) __a = DataLoader(lowerCAmelCase__ , sampler=lowerCAmelCase__ , batch_size=args.train_batch_size ) __a = TensorDataset(*lowerCAmelCase__ ) __a = SequentialSampler(lowerCAmelCase__ ) __a = DataLoader(lowerCAmelCase__ , sampler=lowerCAmelCase__ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: __a = args.max_steps __a = args.max_steps // (len(lowerCAmelCase__ ) // args.gradient_accumulation_steps) + 1 else: __a = len(lowerCAmelCase__ ) // args.gradient_accumulation_steps * args.num_train_epochs __a = list(model.named_parameters() ) __a = ['''bias''', '''LayerNorm.bias''', '''LayerNorm.weight'''] __a = [ { '''params''': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], '''weight_decay''': args.weight_decay, }, {'''params''': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0}, ] __a = AdamW(lowerCAmelCase__ , lr=args.learning_rate , eps=args.adam_epsilon ) __a = get_linear_schedule_with_warmup( lowerCAmelCase__ , num_warmup_steps=args.warmup_steps , num_training_steps=lowerCAmelCase__ ) if args.do_train: __a , __a , __a = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='''Epoch''' ): __a = 0 __a = 0 __a = tqdm(lowerCAmelCase__ , desc='''Training''' ) for step, batch in enumerate(lowerCAmelCase__ ): __a = tuple(t.to(lowerCAmelCase__ ) for t in batch ) __a , __a , __a , __a = batch __a = model(lowerCAmelCase__ , mc_token_ids=lowerCAmelCase__ , lm_labels=lowerCAmelCase__ , mc_labels=lowerCAmelCase__ ) __a = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() __a = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 __a = '''Training loss: {:.2e} lr: {:.2e}'''.format(lowerCAmelCase__ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer __a = model.module if hasattr(lowerCAmelCase__ , '''module''' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` __a = os.path.join(args.output_dir , lowerCAmelCase__ ) __a = os.path.join(args.output_dir , lowerCAmelCase__ ) torch.save(model_to_save.state_dict() , lowerCAmelCase__ ) model_to_save.config.to_json_file(lowerCAmelCase__ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned __a = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) __a = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(lowerCAmelCase__ ) if args.do_eval: model.eval() __a , __a = 0, 0 __a , __a = 0, 0 for batch in tqdm(lowerCAmelCase__ , desc='''Evaluating''' ): __a = tuple(t.to(lowerCAmelCase__ ) for t in batch ) __a , __a , __a , __a = batch with torch.no_grad(): __a , __a , __a , __a = model( lowerCAmelCase__ , mc_token_ids=lowerCAmelCase__ , lm_labels=lowerCAmelCase__ , mc_labels=lowerCAmelCase__ ) __a = mc_logits.detach().cpu().numpy() __a = mc_labels.to('''cpu''' ).numpy() __a = accuracy(lowerCAmelCase__ , lowerCAmelCase__ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 __a = eval_loss / nb_eval_steps __a = eval_accuracy / nb_eval_examples __a = tr_loss / nb_tr_steps if args.do_train else None __a = {'''eval_loss''': eval_loss, '''eval_accuracy''': eval_accuracy, '''train_loss''': train_loss} __a = os.path.join(args.output_dir , '''eval_results.txt''' ) with open(lowerCAmelCase__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , lowerCAmelCase__ , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) if __name__ == "__main__": main()
11
"""simple docstring""" from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ): super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: __a = ( f'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`''' f''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ''' '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate('''steps_offset!=1''' , '''1.0.0''' , _a , standard_warn=_a ) __a = dict(scheduler.config ) __a = 1 __a = FrozenDict(_a ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: __a = ( f'''The configuration file of this scheduler: {scheduler} has not set the configuration''' ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , _a , standard_warn=_a ) __a = dict(scheduler.config ) __a = True __a = FrozenDict(_a ) if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=_a , segmentation_processor=_a , vae=_a , text_encoder=_a , tokenizer=_a , unet=_a , scheduler=_a , safety_checker=_a , feature_extractor=_a , ) def __UpperCAmelCase ( self , _a = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_a ) def __UpperCAmelCase ( self ): self.enable_attention_slicing(_a ) def __UpperCAmelCase ( self ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) __a = torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(_a , _a ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __UpperCAmelCase ( self ): if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_a , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , _a , _a , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ): __a = self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) __a = self.segmentation_model(**_a ) __a = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() __a = self.numpy_to_pil(_a )[0].resize(image.size ) # Run inpainting pipeline with the generated mask __a = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=_a , image=_a , mask_image=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , )
11
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = 'yolos' def __init__( self , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1E-12 , _a=[512, 864] , _a=16 , _a=3 , _a=True , _a=100 , _a=True , _a=False , _a=1 , _a=5 , _a=2 , _a=5 , _a=2 , _a=0.1 , **_a , ): super().__init__(**_a ) __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = initializer_range __a = layer_norm_eps __a = image_size __a = patch_size __a = num_channels __a = qkv_bias __a = num_detection_tokens __a = use_mid_position_embeddings __a = auxiliary_loss # Hungarian matcher __a = class_cost __a = bbox_cost __a = giou_cost # Loss coefficients __a = bbox_loss_coefficient __a = giou_loss_coefficient __a = eos_coefficient class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = version.parse('1.11' ) @property def __UpperCAmelCase ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __UpperCAmelCase ( self ): return 1E-4 @property def __UpperCAmelCase ( self ): return 12
11
"""simple docstring""" from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowercase_ = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , **_a ): super().__init__(**_a ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self , _a , **_a ): return super().__call__(_a , **_a ) def __UpperCAmelCase ( self , **_a ): __a = {} if "candidate_labels" in kwargs: __a = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: __a = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def __UpperCAmelCase ( self , _a , _a=None , _a="This is a sound of {}." ): if isinstance(_a , _a ): if audio.startswith('''http://''' ) or audio.startswith('''https://''' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png __a = requests.get(_a ).content else: with open(_a , '''rb''' ) as f: __a = f.read() if isinstance(_a , _a ): __a = ffmpeg_read(_a , self.feature_extractor.sampling_rate ) if not isinstance(_a , np.ndarray ): raise ValueError('''We expect a numpy ndarray as input''' ) if len(audio.shape ) != 1: raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' ) __a = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='''pt''' ) __a = candidate_labels __a = [hypothesis_template.format(_a ) for x in candidate_labels] __a = self.tokenizer(_a , return_tensors=self.framework , padding=_a ) __a = [text_inputs] return inputs def __UpperCAmelCase ( self , _a ): __a = model_inputs.pop('''candidate_labels''' ) __a = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , _a ): __a = text_inputs[0] else: # Batching case. __a = text_inputs[0][0] __a = self.model(**_a , **_a ) __a = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def __UpperCAmelCase ( self , _a ): __a = model_outputs.pop('''candidate_labels''' ) __a = model_outputs['''logits'''][0] if self.framework == "pt": __a = logits.softmax(dim=0 ) __a = probs.tolist() else: raise ValueError('''`tf` framework not supported.''' ) __a = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(_a , _a ) , key=lambda _a : -x[0] ) ] return result
11
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = 'upernet' def __init__( self , _a=None , _a=512 , _a=0.02 , _a=[1, 2, 3, 6] , _a=True , _a=0.4 , _a=384 , _a=256 , _a=1 , _a=False , _a=255 , **_a , ): super().__init__(**_a ) if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __a = CONFIG_MAPPING['''resnet'''](out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) elif isinstance(_a , _a ): __a = backbone_config.get('''model_type''' ) __a = CONFIG_MAPPING[backbone_model_type] __a = config_class.from_dict(_a ) __a = backbone_config __a = hidden_size __a = initializer_range __a = pool_scales __a = use_auxiliary_head __a = auxiliary_loss_weight __a = auxiliary_in_channels __a = auxiliary_channels __a = auxiliary_num_convs __a = auxiliary_concat_input __a = loss_ignore_index def __UpperCAmelCase ( self ): __a = copy.deepcopy(self.__dict__ ) __a = self.backbone_config.to_dict() __a = self.__class__.model_type return output
11
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self , _a ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): __a = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_a ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sgugger/tiny-distilbert-classification''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , only_pretrain_model=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , torchscript=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , fpaa=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = AutoConfig.from_pretrained(_a ) # set architectures equal to `None` __a = None __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_a , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = AutoConfig.from_pretrained(_a ) __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tinier_bart''' __a = AutoConfig.from_pretrained(_a ) __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = AutoConfig.from_pretrained(_a ) __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tinier_bart''' __a = AutoConfig.from_pretrained(_a ) __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , save_to_csv=_a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_a , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_a , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_a , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_a , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_a , '''env.csv''' ) , multi_process=_a , ) __a = PyTorchBenchmark(_a ) benchmark.run() self.assertTrue(Path(os.path.join(_a , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''env.csv''' ) ).exists() ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_a ): self.assertTrue(hasattr(_a , '''sequential''' ) ) self.assertTrue(hasattr(_a , '''cumulative''' ) ) self.assertTrue(hasattr(_a , '''current''' ) ) self.assertTrue(hasattr(_a , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_a , '''log.txt''' ) , log_print=_a , trace_memory_line_by_line=_a , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_a , '''log.txt''' ) ).exists() )
11
1
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any]=0.9_99 , lowerCAmelCase__ : List[str]="cosine" , ) -> Optional[int]: if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCAmelCase__ : int ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCAmelCase__ : Optional[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __a = [] for i in range(lowerCAmelCase__ ): __a = i / num_diffusion_timesteps __a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCAmelCase__ ) / alpha_bar_fn(lowerCAmelCase__ ) , lowerCAmelCase__ ) ) return torch.tensor(lowerCAmelCase__ , dtype=torch.floataa ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase : str = 2 @register_to_config def __init__( self , _a = 1_000 , _a = 0.0_0085 , _a = 0.012 , _a = "linear" , _a = None , _a = "epsilon" , _a = "linspace" , _a = 0 , ): if trained_betas is not None: __a = torch.tensor(_a , dtype=torch.floataa ) elif beta_schedule == "linear": __a = torch.linspace(_a , _a , _a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __a = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __a = betas_for_alpha_bar(_a ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) __a = 1.0 - self.betas __a = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(_a , _a , _a ) def __UpperCAmelCase ( self , _a , _a=None ): if schedule_timesteps is None: __a = self.timesteps __a = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __a = 1 if len(_a ) > 1 else 0 else: __a = timestep.cpu().item() if torch.is_tensor(_a ) else timestep __a = self._index_counter[timestep_int] return indices[pos].item() @property def __UpperCAmelCase ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __UpperCAmelCase ( self , _a , _a , ): __a = self.index_for_timestep(_a ) if self.state_in_first_order: __a = self.sigmas[step_index] else: __a = self.sigmas_interpol[step_index] __a = sample / ((sigma**2 + 1) ** 0.5) return sample def __UpperCAmelCase ( self , _a , _a = None , _a = None , ): __a = num_inference_steps __a = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __a = np.linspace(0 , num_train_timesteps - 1 , _a , dtype=_a )[::-1].copy() elif self.config.timestep_spacing == "leading": __a = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __a = (np.arange(0 , _a ) * step_ratio).round()[::-1].copy().astype(_a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __a = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __a = (np.arange(_a , 0 , -step_ratio )).round().copy().astype(_a ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) __a = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __a = torch.from_numpy(np.log(_a ) ).to(_a ) __a = np.interp(_a , np.arange(0 , len(_a ) ) , _a ) __a = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __a = torch.from_numpy(_a ).to(device=_a ) # interpolate sigmas __a = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __a = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __a = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(_a ).startswith('''mps''' ): # mps does not support float64 __a = torch.from_numpy(_a ).to(_a , dtype=torch.floataa ) else: __a = torch.from_numpy(_a ).to(_a ) # interpolate timesteps __a = self.sigma_to_t(_a ).to(_a , dtype=timesteps.dtype ) __a = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __a = torch.cat([timesteps[:1], interleaved_timesteps] ) __a = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __a = defaultdict(_a ) def __UpperCAmelCase ( self , _a ): # get log sigma __a = sigma.log() # get distribution __a = log_sigma - self.log_sigmas[:, None] # get sigmas range __a = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __a = low_idx + 1 __a = self.log_sigmas[low_idx] __a = self.log_sigmas[high_idx] # interpolate sigmas __a = (low - log_sigma) / (low - high) __a = w.clamp(0 , 1 ) # transform interpolation to time range __a = (1 - w) * low_idx + w * high_idx __a = t.view(sigma.shape ) return t @property def __UpperCAmelCase ( self ): return self.sample is None def __UpperCAmelCase ( self , _a , _a , _a , _a = True , ): __a = self.index_for_timestep(_a ) # advance index counter by 1 __a = timestep.cpu().item() if torch.is_tensor(_a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __a = self.sigmas[step_index] __a = self.sigmas_interpol[step_index + 1] __a = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __a = self.sigmas[step_index - 1] __a = self.sigmas_interpol[step_index] __a = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __a = 0 __a = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __a = sigma_hat if self.state_in_first_order else sigma_interpol __a = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __a = sigma_hat if self.state_in_first_order else sigma_interpol __a = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('''prediction_type not implemented yet: sample''' ) else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __a = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __a = sigma_interpol - sigma_hat # store for 2nd order step __a = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __a = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __a = sigma_next - sigma_hat __a = self.sample __a = None __a = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_a ) def __UpperCAmelCase ( self , _a , _a , _a , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __a = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_a ): # mps does not support float64 __a = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __a = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __a = self.timesteps.to(original_samples.device ) __a = timesteps.to(original_samples.device ) __a = [self.index_for_timestep(_a , _a ) for t in timesteps] __a = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __a = sigma.unsqueeze(-1 ) __a = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
11
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
1
"""simple docstring""" def lowercase ( lowerCAmelCase__ : str ) -> str: return "".join(chr(ord(lowerCAmelCase__ ) - 32 ) if '''a''' <= char <= '''z''' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
11
"""simple docstring""" import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self , _a , _a , _a ): self.assertEqual(len(_a ) , len(_a ) ) for a, b in zip(_a , _a ): self.assertAlmostEqual(_a , _a , delta=_a ) def __UpperCAmelCase ( self ): __a = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(_a ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def __UpperCAmelCase ( self ): __a = None ops.enable_eager_execution_internal() __a = tf.config.list_physical_devices('''CPU''' ) if len(_a ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) __a = tf.config.list_logical_devices(device_type='''CPU''' ) __a = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): __a = GradientAccumulator() __a = tf.Variable([4.0, 3.0] ) __a , __a = create_optimizer(5E-5 , 10 , 5 ) __a = tf.Variable([0.0, 0.0] , trainable=_a ) def accumulate_on_replica(_a ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(_a , _a ): with strategy.scope(): __a = strategy.experimental_local_results(_a ) local_variables[0].assign(_a ) local_variables[1].assign(_a ) strategy.run(_a , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(_a ) def _check_local_values(_a , _a ): __a = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , _a , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , _a , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
11
1
"""simple docstring""" import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowercase_ = "." # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) lowercase_ = [ "Assert", "AssignVariableOp", "EmptyTensorList", "MergeV2Checkpoints", "ReadVariableOp", "ResourceGather", "RestoreV2", "SaveV2", "ShardedFilename", "StatefulPartitionedCall", "StaticRegexFullMatch", "VarHandleOp", ] def lowercase ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[Any] ) -> Optional[int]: __a = SavedModel() __a = [] with open(os.path.join(lowerCAmelCase__ , '''utils''' , '''tf_ops''' , '''onnx.json''' ) ) as f: __a = json.load(lowerCAmelCase__ )['''opsets'''] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(lowerCAmelCase__ )] ) with open(lowerCAmelCase__ , '''rb''' ) as f: saved_model.ParseFromString(f.read() ) __a = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want __a = sorted(lowerCAmelCase__ ) __a = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(lowerCAmelCase__ ) if strict and len(lowerCAmelCase__ ) > 0: raise Exception(f'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(lowerCAmelCase__ ) > 0: print(f'''Found the following incompatible ops for the opset {opset}:''' ) print(*lowerCAmelCase__ , sep='''\n''' ) else: print(f'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).") parser.add_argument( "--opset", default=1_2, type=int, help="The ONNX opset against which the model has to be tested." ) parser.add_argument( "--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model." ) parser.add_argument( "--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)" ) lowercase_ = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
11
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowercase_ = None lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} lowercase_ = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } lowercase_ = { "facebook/mbart-large-en-ro": 1_0_2_4, "facebook/mbart-large-cc25": 1_0_2_4, } # fmt: off lowercase_ = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = VOCAB_FILES_NAMES __UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Tuple = ['input_ids', 'attention_mask'] __UpperCAmelCase : Optional[Any] = MBartTokenizer __UpperCAmelCase : List[int] = [] __UpperCAmelCase : List[int] = [] def __init__( self , _a=None , _a=None , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=None , _a=None , _a=None , **_a , ): # Mask token behave like a normal word, i.e. include the space before it __a = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token super().__init__( vocab_file=_a , tokenizer_file=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , src_lang=_a , tgt_lang=_a , additional_special_tokens=_a , **_a , ) __a = vocab_file __a = False if not self.vocab_file else True __a = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) __a = { lang_code: self.convert_tokens_to_ids(_a ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __a = src_lang if src_lang is not None else '''en_XX''' __a = self.convert_tokens_to_ids(self._src_lang ) __a = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCAmelCase ( self ): return self._src_lang @src_lang.setter def __UpperCAmelCase ( self , _a ): __a = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCAmelCase ( self , _a , _a = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCAmelCase ( self , _a , _a = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self , _a , _a , _a , _a , **_a ): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __a = src_lang __a = self(_a , add_special_tokens=_a , return_tensors=_a , **_a ) __a = self.convert_tokens_to_ids(_a ) __a = tgt_lang_id return inputs def __UpperCAmelCase ( self , _a , _a = "en_XX" , _a = None , _a = "ro_RO" , **_a , ): __a = src_lang __a = tgt_lang return super().prepare_seqaseq_batch(_a , _a , **_a ) def __UpperCAmelCase ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCAmelCase ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCAmelCase ( self , _a ): __a = self.convert_tokens_to_ids(_a ) __a = [] __a = [self.eos_token_id, self.cur_lang_code] __a = self.convert_ids_to_tokens(self.prefix_tokens ) __a = self.convert_ids_to_tokens(self.suffix_tokens ) __a = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCAmelCase ( self , _a ): __a = self.convert_tokens_to_ids(_a ) __a = [] __a = [self.eos_token_id, self.cur_lang_code] __a = self.convert_ids_to_tokens(self.prefix_tokens ) __a = self.convert_ids_to_tokens(self.suffix_tokens ) __a = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCAmelCase ( self , _a , _a = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return __a = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
11
1
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_5_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding='''utf-8''' , check=_a , ) assert hasattr(self , '''env''' ) def __UpperCAmelCase ( self , _a ): __a = f'''{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}''' # distributed data settings __a = {'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=_a , instance_count=_a , instance_type=self.instance_type , debugger_hook_config=_a , hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=_a , py_version='''py36''' , ) def __UpperCAmelCase ( self , _a ): TrainingJobAnalytics(_a ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(2,)] ) def __UpperCAmelCase ( self , _a ): # create estimator __a = self.create_estimator(_a ) # run training estimator.fit() # result dataframe __a = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __a = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) __a = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __a = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , _a )
11
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin lowercase_ = "\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class __lowerCAmelCase ( unittest.TestCase , __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = load_tool('''text-question-answering''' ) self.tool.setup() __a = load_tool('''text-question-answering''' , remote=_a ) def __UpperCAmelCase ( self ): __a = self.tool(_a , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(_a , '''launched the BigScience Research Workshop''' ) def __UpperCAmelCase ( self ): __a = self.remote_tool(_a , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(_a , '''launched the BigScience Research Workshop''' ) def __UpperCAmelCase ( self ): __a = self.tool(text=_a , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(_a , '''launched the BigScience Research Workshop''' ) def __UpperCAmelCase ( self ): __a = self.remote_tool(text=_a , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(_a , '''launched the BigScience Research Workshop''' )
11
1
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = ['image_processor', 'tokenizer'] __UpperCAmelCase : Any = 'OwlViTImageProcessor' __UpperCAmelCase : str = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , _a=None , _a=None , **_a ): __a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) __a = kwargs.pop('''feature_extractor''' ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) def __call__( self , _a=None , _a=None , _a=None , _a="max_length" , _a="np" , **_a ): if text is None and query_images is None and images is None: raise ValueError( '''You have to specify at least one text or query image or image. All three cannot be none.''' ) if text is not None: if isinstance(_a , _a ) or (isinstance(_a , _a ) and not isinstance(text[0] , _a )): __a = [self.tokenizer(_a , padding=_a , return_tensors=_a , **_a )] elif isinstance(_a , _a ) and isinstance(text[0] , _a ): __a = [] # Maximum number of queries across batch __a = max([len(_a ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(_a ) != max_num_queries: __a = t + [''' '''] * (max_num_queries - len(_a )) __a = self.tokenizer(_a , padding=_a , return_tensors=_a , **_a ) encodings.append(_a ) else: raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''' ) if return_tensors == "np": __a = np.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) __a = np.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __a = jnp.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) __a = jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __a = torch.cat([encoding['''input_ids'''] for encoding in encodings] , dim=0 ) __a = torch.cat([encoding['''attention_mask'''] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __a = tf.stack([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) __a = tf.stack([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) else: raise ValueError('''Target return tensor type could not be returned''' ) __a = BatchEncoding() __a = input_ids __a = attention_mask if query_images is not None: __a = BatchEncoding() __a = self.image_processor( _a , return_tensors=_a , **_a ).pixel_values __a = query_pixel_values if images is not None: __a = self.image_processor(_a , return_tensors=_a , **_a ) if text is not None and images is not None: __a = image_features.pixel_values return encoding elif query_images is not None and images is not None: __a = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**_a ) , tensor_type=_a ) def __UpperCAmelCase ( self , *_a , **_a ): return self.image_processor.post_process(*_a , **_a ) def __UpperCAmelCase ( self , *_a , **_a ): return self.image_processor.post_process_object_detection(*_a , **_a ) def __UpperCAmelCase ( self , *_a , **_a ): return self.image_processor.post_process_image_guided_detection(*_a , **_a ) def __UpperCAmelCase ( self , *_a , **_a ): return self.tokenizer.batch_decode(*_a , **_a ) def __UpperCAmelCase ( self , *_a , **_a ): return self.tokenizer.decode(*_a , **_a ) @property def __UpperCAmelCase ( self ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def __UpperCAmelCase ( self ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
11
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_blip_2": [ "BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Blip2Config", "Blip2QFormerConfig", "Blip2VisionConfig", ], "processing_blip_2": ["Blip2Processor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Blip2Model", "Blip2QFormerModel", "Blip2PreTrainedModel", "Blip2ForConditionalGeneration", "Blip2VisionModel", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def lowercase ( lowerCAmelCase__ : Union[str, Any]=None ) -> Tuple: __a = argparse.ArgumentParser(add_help=lowerCAmelCase__ , allow_abbrev=lowerCAmelCase__ ) # The main config parser __a = config_command_parser(lowerCAmelCase__ ) # The subparser to add commands to __a = config_parser.add_subparsers(title='''subcommands''' , dest='''subcommand''' ) # Then add other parsers with the parent parser default_command_parser(lowerCAmelCase__ , parents=[parent_parser] ) update_command_parser(lowerCAmelCase__ , parents=[parent_parser] ) return config_parser def lowercase ( ) -> List[str]: __a = get_config_parser() __a = config_parser.parse_args() if not hasattr(lowerCAmelCase__ , '''func''' ): config_parser.print_help() exit(1 ) # Run args.func(lowerCAmelCase__ ) if __name__ == "__main__": main()
11
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[list[str]] , lowerCAmelCase__ : int , ) -> None: __a = len(lowerCAmelCase__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['''. ''' * i + '''Q ''' + '''. ''' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(lowerCAmelCase__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , lowerCAmelCase__ , lowerCAmelCase__ , ) def lowercase ( lowerCAmelCase__ : int ) -> None: __a = [] depth_first_search([] , [] , [] , lowerCAmelCase__ , lowerCAmelCase__ ) # Print all the boards for board in boards: for column in board: print(lowerCAmelCase__ ) print('''''' ) print(len(lowerCAmelCase__ ) , '''solutions were found.''' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
11
1
"""simple docstring""" import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = VQModel __UpperCAmelCase : List[Any] = 'sample' @property def __UpperCAmelCase ( self , _a=(32, 32) ): __a = 4 __a = 3 __a = floats_tensor((batch_size, num_channels) + sizes ).to(_a ) return {"sample": image} @property def __UpperCAmelCase ( self ): return (3, 32, 32) @property def __UpperCAmelCase ( self ): return (3, 32, 32) def __UpperCAmelCase ( self ): __a = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 3, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): __a , __a = VQModel.from_pretrained('''fusing/vqgan-dummy''' , output_loading_info=_a ) self.assertIsNotNone(_a ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_a ) __a = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def __UpperCAmelCase ( self ): __a = VQModel.from_pretrained('''fusing/vqgan-dummy''' ) model.to(_a ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) __a = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) __a = image.to(_a ) with torch.no_grad(): __a = model(_a ).sample __a = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off __a = torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143] ) # fmt: on self.assertTrue(torch.allclose(_a , _a , atol=1E-3 ) )
11
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
11
1
"""simple docstring""" import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 lowercase_ = get_tests_dir("fixtures/dummy_feature_extractor_config.json") lowercase_ = get_tests_dir("fixtures/vocab.json") lowercase_ = get_tests_dir("fixtures") class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] def __UpperCAmelCase ( self ): __a = 0 def __UpperCAmelCase ( self ): __a = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(_a , _a ) def __UpperCAmelCase ( self ): with tempfile.TemporaryDirectory() as tmpdirname: __a = WavaVecaConfig() __a = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) # save in new folder model_config.save_pretrained(_a ) processor.save_pretrained(_a ) __a = AutoProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __UpperCAmelCase ( self ): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(_a , os.path.join(_a , _a ) ) copyfile(_a , os.path.join(_a , '''vocab.json''' ) ) __a = AutoProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __UpperCAmelCase ( self ): with tempfile.TemporaryDirectory() as tmpdirname: __a = WavaVecaFeatureExtractor() __a = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) __a = WavaVecaProcessor(_a , _a ) # save in new folder processor.save_pretrained(_a ) # drop `processor_class` in tokenizer with open(os.path.join(_a , _a ) , '''r''' ) as f: __a = json.load(_a ) config_dict.pop('''processor_class''' ) with open(os.path.join(_a , _a ) , '''w''' ) as f: f.write(json.dumps(_a ) ) __a = AutoProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __UpperCAmelCase ( self ): with tempfile.TemporaryDirectory() as tmpdirname: __a = WavaVecaFeatureExtractor() __a = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) __a = WavaVecaProcessor(_a , _a ) # save in new folder processor.save_pretrained(_a ) # drop `processor_class` in feature extractor with open(os.path.join(_a , _a ) , '''r''' ) as f: __a = json.load(_a ) config_dict.pop('''processor_class''' ) with open(os.path.join(_a , _a ) , '''w''' ) as f: f.write(json.dumps(_a ) ) __a = AutoProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __UpperCAmelCase ( self ): with tempfile.TemporaryDirectory() as tmpdirname: __a = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' ) model_config.save_pretrained(_a ) # copy relevant files copyfile(_a , os.path.join(_a , '''vocab.json''' ) ) # create emtpy sample processor with open(os.path.join(_a , _a ) , '''w''' ) as f: f.write('''{}''' ) __a = AutoProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __UpperCAmelCase ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): __a = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): __a = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=_a ) __a = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=_a ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) __a = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) __a = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version __a = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=_a , use_fast=_a ) __a = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def __UpperCAmelCase ( self ): try: AutoConfig.register('''custom''' , _a ) AutoFeatureExtractor.register(_a , _a ) AutoTokenizer.register(_a , slow_tokenizer_class=_a ) AutoProcessor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoProcessor.register(_a , _a ) # Now that the config is registered, it can be used as any other config with the auto-API __a = CustomFeatureExtractor.from_pretrained(_a ) with tempfile.TemporaryDirectory() as tmp_dir: __a = os.path.join(_a , '''vocab.txt''' ) with open(_a , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) __a = CustomTokenizer(_a ) __a = CustomProcessor(_a , _a ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(_a ) __a = AutoProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __UpperCAmelCase ( self ): class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[Any] = False class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = False class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : int = 'AutoFeatureExtractor' __UpperCAmelCase : Any = 'AutoTokenizer' __UpperCAmelCase : List[Any] = False try: AutoConfig.register('''custom''' , _a ) AutoFeatureExtractor.register(_a , _a ) AutoTokenizer.register(_a , slow_tokenizer_class=_a ) AutoProcessor.register(_a , _a ) # If remote code is not set, the default is to use local classes. __a = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. __a = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=_a ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. __a = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=_a ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __UpperCAmelCase ( self ): __a = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' ) def __UpperCAmelCase ( self ): __a = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' ) self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' ) @is_staging_test class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def __UpperCAmelCase ( cls ): __a = TOKEN HfFolder.save_token(_a ) @classmethod def __UpperCAmelCase ( cls ): try: delete_repo(token=cls._token , repo_id='''test-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' ) except HTTPError: pass def __UpperCAmelCase ( self ): __a = WavaVecaProcessor.from_pretrained(_a ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(_a , '''test-processor''' ) , push_to_hub=_a , use_auth_token=self._token ) __a = WavaVecaProcessor.from_pretrained(f'''{USER}/test-processor''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(_a , getattr(new_processor.feature_extractor , _a ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __UpperCAmelCase ( self ): __a = WavaVecaProcessor.from_pretrained(_a ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(_a , '''test-processor-org''' ) , push_to_hub=_a , use_auth_token=self._token , organization='''valid_org''' , ) __a = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(_a , getattr(new_processor.feature_extractor , _a ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __UpperCAmelCase ( self ): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() __a = CustomFeatureExtractor.from_pretrained(_a ) with tempfile.TemporaryDirectory() as tmp_dir: __a = os.path.join(_a , '''vocab.txt''' ) with open(_a , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) __a = CustomTokenizer(_a ) __a = CustomProcessor(_a , _a ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f'''{USER}/test-dynamic-processor''' , token=self._token ) __a = Repository(_a , clone_from=f'''{USER}/test-dynamic-processor''' , token=self._token ) processor.save_pretrained(_a ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(_a , '''tokenizer_config.json''' ) ) as f: __a = json.load(_a ) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(_a , '''custom_feature_extraction.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(_a , '''custom_tokenization.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(_a , '''custom_processing.py''' ) ) ) repo.push_to_hub() __a = AutoProcessor.from_pretrained(f'''{USER}/test-dynamic-processor''' , trust_remote_code=_a ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
11
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = 'vit_mae' def __init__( self , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1E-12 , _a=224 , _a=16 , _a=3 , _a=True , _a=16 , _a=512 , _a=8 , _a=2_048 , _a=0.75 , _a=False , **_a , ): super().__init__(**_a ) __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = initializer_range __a = layer_norm_eps __a = image_size __a = patch_size __a = num_channels __a = qkv_bias __a = decoder_num_attention_heads __a = decoder_hidden_size __a = decoder_num_hidden_layers __a = decoder_intermediate_size __a = mask_ratio __a = norm_pix_loss
11
1
"""simple docstring""" import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging lowercase_ = logging.get_logger(__name__) def lowercase ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict ) -> Dict: __a = set() __a = [] def parse_line(lowerCAmelCase__ : Any ): for line in fp: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = line.decode('''UTF-8''' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(''' ''' ): # process a single warning and move it to `selected_warnings`. if len(lowerCAmelCase__ ) > 0: __a = '''\n'''.join(lowerCAmelCase__ ) # Only keep the warnings specified in `targets` if any(f''': {x}: ''' in warning for x in targets ): selected_warnings.add(lowerCAmelCase__ ) buffer.clear() continue else: __a = line.strip() buffer.append(lowerCAmelCase__ ) if from_gh: for filename in os.listdir(lowerCAmelCase__ ): __a = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) if not os.path.isdir(lowerCAmelCase__ ): # read the file if filename != "warnings.txt": continue with open(lowerCAmelCase__ ) as fp: parse_line(lowerCAmelCase__ ) else: try: with zipfile.ZipFile(lowerCAmelCase__ ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCAmelCase__ ): # read the file if filename != "warnings.txt": continue with z.open(lowerCAmelCase__ ) as fp: parse_line(lowerCAmelCase__ ) except Exception: logger.warning( f'''{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.''' ) return selected_warnings def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int] ) -> Optional[int]: __a = set() __a = [os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) for p in os.listdir(lowerCAmelCase__ ) if (p.endswith('''.zip''' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowerCAmelCase__ , lowerCAmelCase__ ) ) return selected_warnings if __name__ == "__main__": def lowercase ( lowerCAmelCase__ : Union[str, Any] ) -> int: return values.split(''',''' ) lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") # optional parameters parser.add_argument( "--targets", default="DeprecationWarning,UserWarning,FutureWarning", type=list_str, help="Comma-separated list of target warning(s) which we want to extract.", ) parser.add_argument( "--from_gh", action="store_true", help="If running from a GitHub action workflow and collecting warnings from its artifacts.", ) lowercase_ = parser.parse_args() lowercase_ = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links lowercase_ = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("=" * 8_0) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts lowercase_ = extract_warnings(args.output_dir, args.targets) lowercase_ = sorted(selected_warnings) with open(os.path.join(args.output_dir, "selected_warnings.json"), "w", encoding="UTF-8") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
11
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = ['image_processor', 'tokenizer'] __UpperCAmelCase : str = 'LayoutLMv3ImageProcessor' __UpperCAmelCase : Optional[int] = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self , _a=None , _a=None , **_a ): __a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) __a = kwargs.pop('''feature_extractor''' ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) def __call__( self , _a , _a = None , _a = None , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) # first, apply the image processor __a = self.image_processor(images=_a , return_tensors=_a ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_a , _a ): __a = [text] # add batch dimension (as the image processor always adds a batch dimension) __a = features['''words'''] __a = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel values __a = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: __a = self.get_overflowing_images(_a , encoded_inputs['''overflow_to_sample_mapping'''] ) __a = images return encoded_inputs def __UpperCAmelCase ( self , _a , _a ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __a = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_a ) != len(_a ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(_a )} and {len(_a )}''' ) return images_with_overflow def __UpperCAmelCase ( self , *_a , **_a ): return self.tokenizer.batch_decode(*_a , **_a ) def __UpperCAmelCase ( self , *_a , **_a ): return self.tokenizer.decode(*_a , **_a ) @property def __UpperCAmelCase ( self ): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def __UpperCAmelCase ( self ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def __UpperCAmelCase ( self ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
11
1
"""simple docstring""" def lowercase ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple ) -> int: __a = 0 __a = len(lowerCAmelCase__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None __a = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowerCAmelCase__ ): return None __a = sorted_collection[point] if current_item == item: return point else: if point < left: __a = left __a = point elif point > right: __a = right __a = point else: if item < current_item: __a = point - 1 else: __a = point + 1 return None def lowercase ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] ) -> Optional[int]: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None __a = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowerCAmelCase__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) elif point > right: return interpolation_search_by_recursion(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , point - 1 ) else: return interpolation_search_by_recursion( lowerCAmelCase__ , lowerCAmelCase__ , point + 1 , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Union[str, Any] ) -> str: if collection != sorted(lowerCAmelCase__ ): raise ValueError('''Collection must be ascending sorted''' ) return True if __name__ == "__main__": import sys lowercase_ = 0 if debug == 1: lowercase_ = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3] try: __assert_sorted(collection) except ValueError: sys.exit("Sequence must be ascending sorted to apply interpolation search") lowercase_ = 6_7 lowercase_ = interpolation_search(collection, target) if result is not None: print(F'''{target} found at positions: {result}''') else: print("Not found")
11
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any]=0.9_99 , lowerCAmelCase__ : List[str]="cosine" , ) -> Optional[int]: if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCAmelCase__ : int ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCAmelCase__ : Optional[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __a = [] for i in range(lowerCAmelCase__ ): __a = i / num_diffusion_timesteps __a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCAmelCase__ ) / alpha_bar_fn(lowerCAmelCase__ ) , lowerCAmelCase__ ) ) return torch.tensor(lowerCAmelCase__ , dtype=torch.floataa ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase : str = 2 @register_to_config def __init__( self , _a = 1_000 , _a = 0.0_0085 , _a = 0.012 , _a = "linear" , _a = None , _a = "epsilon" , _a = "linspace" , _a = 0 , ): if trained_betas is not None: __a = torch.tensor(_a , dtype=torch.floataa ) elif beta_schedule == "linear": __a = torch.linspace(_a , _a , _a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __a = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __a = betas_for_alpha_bar(_a ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) __a = 1.0 - self.betas __a = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(_a , _a , _a ) def __UpperCAmelCase ( self , _a , _a=None ): if schedule_timesteps is None: __a = self.timesteps __a = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __a = 1 if len(_a ) > 1 else 0 else: __a = timestep.cpu().item() if torch.is_tensor(_a ) else timestep __a = self._index_counter[timestep_int] return indices[pos].item() @property def __UpperCAmelCase ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __UpperCAmelCase ( self , _a , _a , ): __a = self.index_for_timestep(_a ) if self.state_in_first_order: __a = self.sigmas[step_index] else: __a = self.sigmas_interpol[step_index] __a = sample / ((sigma**2 + 1) ** 0.5) return sample def __UpperCAmelCase ( self , _a , _a = None , _a = None , ): __a = num_inference_steps __a = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __a = np.linspace(0 , num_train_timesteps - 1 , _a , dtype=_a )[::-1].copy() elif self.config.timestep_spacing == "leading": __a = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __a = (np.arange(0 , _a ) * step_ratio).round()[::-1].copy().astype(_a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __a = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __a = (np.arange(_a , 0 , -step_ratio )).round().copy().astype(_a ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) __a = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __a = torch.from_numpy(np.log(_a ) ).to(_a ) __a = np.interp(_a , np.arange(0 , len(_a ) ) , _a ) __a = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __a = torch.from_numpy(_a ).to(device=_a ) # interpolate sigmas __a = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __a = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __a = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(_a ).startswith('''mps''' ): # mps does not support float64 __a = torch.from_numpy(_a ).to(_a , dtype=torch.floataa ) else: __a = torch.from_numpy(_a ).to(_a ) # interpolate timesteps __a = self.sigma_to_t(_a ).to(_a , dtype=timesteps.dtype ) __a = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __a = torch.cat([timesteps[:1], interleaved_timesteps] ) __a = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __a = defaultdict(_a ) def __UpperCAmelCase ( self , _a ): # get log sigma __a = sigma.log() # get distribution __a = log_sigma - self.log_sigmas[:, None] # get sigmas range __a = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __a = low_idx + 1 __a = self.log_sigmas[low_idx] __a = self.log_sigmas[high_idx] # interpolate sigmas __a = (low - log_sigma) / (low - high) __a = w.clamp(0 , 1 ) # transform interpolation to time range __a = (1 - w) * low_idx + w * high_idx __a = t.view(sigma.shape ) return t @property def __UpperCAmelCase ( self ): return self.sample is None def __UpperCAmelCase ( self , _a , _a , _a , _a = True , ): __a = self.index_for_timestep(_a ) # advance index counter by 1 __a = timestep.cpu().item() if torch.is_tensor(_a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __a = self.sigmas[step_index] __a = self.sigmas_interpol[step_index + 1] __a = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __a = self.sigmas[step_index - 1] __a = self.sigmas_interpol[step_index] __a = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __a = 0 __a = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __a = sigma_hat if self.state_in_first_order else sigma_interpol __a = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __a = sigma_hat if self.state_in_first_order else sigma_interpol __a = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('''prediction_type not implemented yet: sample''' ) else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __a = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __a = sigma_interpol - sigma_hat # store for 2nd order step __a = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __a = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __a = sigma_next - sigma_hat __a = self.sample __a = None __a = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_a ) def __UpperCAmelCase ( self , _a , _a , _a , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __a = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_a ): # mps does not support float64 __a = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __a = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __a = self.timesteps.to(original_samples.device ) __a = timesteps.to(original_samples.device ) __a = [self.index_for_timestep(_a , _a ) for t in timesteps] __a = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __a = sigma.unsqueeze(-1 ) __a = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
11
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : '''simple docstring''' @staticmethod def __UpperCAmelCase ( *_a , **_a ): pass @is_pipeline_test @require_vision @require_timm @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = MODEL_FOR_OBJECT_DETECTION_MAPPING def __UpperCAmelCase ( self , _a , _a , _a ): __a = ObjectDetectionPipeline(model=_a , image_processor=_a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __UpperCAmelCase ( self , _a , _a ): __a = object_detector('''./tests/fixtures/tests_samples/COCO/000000039769.png''' , threshold=0.0 ) self.assertGreater(len(_a ) , 0 ) for detected_object in outputs: self.assertEqual( _a , { '''score''': ANY(_a ), '''label''': ANY(_a ), '''box''': {'''xmin''': ANY(_a ), '''ymin''': ANY(_a ), '''xmax''': ANY(_a ), '''ymax''': ANY(_a )}, } , ) import datasets __a = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) __a = [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] __a = object_detector(_a , threshold=0.0 ) self.assertEqual(len(_a ) , len(_a ) ) for outputs in batch_outputs: self.assertGreater(len(_a ) , 0 ) for detected_object in outputs: self.assertEqual( _a , { '''score''': ANY(_a ), '''label''': ANY(_a ), '''box''': {'''xmin''': ANY(_a ), '''ymin''': ANY(_a ), '''xmax''': ANY(_a ), '''ymax''': ANY(_a )}, } , ) @require_tf @unittest.skip('''Object detection not implemented in TF''' ) def __UpperCAmelCase ( self ): pass @require_torch def __UpperCAmelCase ( self ): __a = '''hf-internal-testing/tiny-detr-mobilenetsv3''' __a = AutoModelForObjectDetection.from_pretrained(_a ) __a = AutoFeatureExtractor.from_pretrained(_a ) __a = ObjectDetectionPipeline(model=_a , feature_extractor=_a ) __a = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' , threshold=0.0 ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, ] , ) __a = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] , threshold=0.0 , ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ [ {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, ], [ {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, ], ] , ) @require_torch @slow def __UpperCAmelCase ( self ): __a = '''facebook/detr-resnet-50''' __a = AutoModelForObjectDetection.from_pretrained(_a ) __a = AutoFeatureExtractor.from_pretrained(_a ) __a = ObjectDetectionPipeline(model=_a , feature_extractor=_a ) __a = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ] , ) __a = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], ] , ) @require_torch @slow def __UpperCAmelCase ( self ): __a = '''facebook/detr-resnet-50''' __a = pipeline('''object-detection''' , model=_a ) __a = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ] , ) __a = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], ] , ) @require_torch @slow def __UpperCAmelCase ( self ): __a = 0.9985 __a = '''facebook/detr-resnet-50''' __a = pipeline('''object-detection''' , model=_a ) __a = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' , threshold=_a ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ] , ) @require_torch @require_pytesseract @slow def __UpperCAmelCase ( self ): __a = '''Narsil/layoutlmv3-finetuned-funsd''' __a = 0.9993 __a = pipeline('''object-detection''' , model=_a , threshold=_a ) __a = object_detector( '''https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png''' ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {'''score''': 0.9993, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 294, '''ymin''': 254, '''xmax''': 343, '''ymax''': 264}}, {'''score''': 0.9993, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 294, '''ymin''': 254, '''xmax''': 343, '''ymax''': 264}}, ] , )
11
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = 'rwkv' __UpperCAmelCase : Optional[Any] = {'max_position_embeddings': 'context_length'} def __init__( self , _a=50_277 , _a=1_024 , _a=4_096 , _a=32 , _a=None , _a=None , _a=1E-5 , _a=0 , _a=0 , _a=6 , _a=False , _a=True , **_a , ): __a = vocab_size __a = context_length __a = hidden_size __a = num_hidden_layers __a = attention_hidden_size if attention_hidden_size is not None else hidden_size __a = intermediate_size if intermediate_size is not None else 4 * hidden_size __a = layer_norm_epsilon __a = rescale_every __a = use_cache __a = bos_token_id __a = eos_token_id super().__init__( tie_word_embeddings=_a , bos_token_id=_a , eos_token_id=_a , **_a )
11
1
"""simple docstring""" import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=4 , ): __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_attention_mask __a = use_token_type_ids __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = type_sequence_label_size __a = initializer_range __a = num_choices def __UpperCAmelCase ( self ): __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = None if self.use_attention_mask: __a = random_attention_mask([self.batch_size, self.seq_length] ) __a = None if self.use_token_type_ids: __a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __UpperCAmelCase ( self ): __a = self.prepare_config_and_inputs() __a , __a , __a , __a = config_and_inputs __a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def __UpperCAmelCase ( self ): __a = self.prepare_config_and_inputs() __a , __a , __a , __a = config_and_inputs __a = True __a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = True __UpperCAmelCase : List[Any] = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCAmelCase ( self ): __a = FlaxRobertaPreLayerNormModelTester(self ) @slow def __UpperCAmelCase ( self ): for model_class_name in self.all_model_classes: __a = model_class_name.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=_a ) __a = model(np.ones((1, 1) ) ) self.assertIsNotNone(_a ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self ): __a = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=_a ) __a = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __a = model(_a )[0] __a = [1, 11, 50_265] self.assertEqual(list(output.shape ) , _a ) # compare the actual values for a slice. __a = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _a , atol=1E-4 ) ) @slow def __UpperCAmelCase ( self ): __a = FlaxRobertaPreLayerNormModel.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=_a ) __a = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __a = model(_a )[0] # compare the actual values for a slice. __a = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _a , atol=1E-4 ) )
11
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = (UnCLIPScheduler,) def __UpperCAmelCase ( self , **_a ): __a = { '''num_train_timesteps''': 1_000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**_a ) return config def __UpperCAmelCase ( self ): for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_a ) def __UpperCAmelCase ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_a ) def __UpperCAmelCase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_a ) def __UpperCAmelCase ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_a ) def __UpperCAmelCase ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_a ) def __UpperCAmelCase ( self ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_a , prev_timestep=_a ) def __UpperCAmelCase ( self ): __a = self.scheduler_classes[0] __a = self.get_scheduler_config(variance_type='''fixed_small_log''' ) __a = scheduler_class(**_a ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1E-5 def __UpperCAmelCase ( self ): __a = self.scheduler_classes[0] __a = self.get_scheduler_config(variance_type='''learned_range''' ) __a = scheduler_class(**_a ) __a = 0.5 assert scheduler._get_variance(1 , predicted_variance=_a ) - -10.171_2790 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=_a ) - -5.799_8052 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=_a ) - -0.001_0011 < 1E-5 def __UpperCAmelCase ( self ): __a = self.scheduler_classes[0] __a = self.get_scheduler_config() __a = scheduler_class(**_a ) __a = scheduler.timesteps __a = self.dummy_model() __a = self.dummy_sample_deter __a = torch.manual_seed(0 ) for i, t in enumerate(_a ): # 1. predict noise residual __a = model(_a , _a ) # 2. predict previous mean of sample x_t-1 __a = scheduler.step(_a , _a , _a , generator=_a ).prev_sample __a = pred_prev_sample __a = torch.sum(torch.abs(_a ) ) __a = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1E-2 assert abs(result_mean.item() - 0.328_4743 ) < 1E-3 def __UpperCAmelCase ( self ): __a = self.scheduler_classes[0] __a = self.get_scheduler_config() __a = scheduler_class(**_a ) scheduler.set_timesteps(25 ) __a = scheduler.timesteps __a = self.dummy_model() __a = self.dummy_sample_deter __a = torch.manual_seed(0 ) for i, t in enumerate(_a ): # 1. predict noise residual __a = model(_a , _a ) if i + 1 == timesteps.shape[0]: __a = None else: __a = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __a = scheduler.step( _a , _a , _a , prev_timestep=_a , generator=_a ).prev_sample __a = pred_prev_sample __a = torch.sum(torch.abs(_a ) ) __a = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1E-2 assert abs(result_mean.item() - 0.336_2038 ) < 1E-3 def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): pass
11
1
"""simple docstring""" import math import unittest def lowercase ( lowerCAmelCase__ : int ) -> bool: assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def __UpperCAmelCase ( self ): with self.assertRaises(_a ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , '''Zero doesn\'t have any positive factors, primes must have exactly two.''' , ) self.assertFalse( is_prime(1 ) , '''One only has 1 positive factor, primes must have exactly two.''' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
11
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def lowercase ( lowerCAmelCase__ : Dict ) -> Optional[int]: __a , __a = image.size __a , __a = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 __a = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) __a = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 2_55.0 __a = image[None].transpose(0 , 3 , 1 , 2 ) __a = torch.from_numpy(lowerCAmelCase__ ) return 2.0 * image - 1.0 class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a , _a , _a , ): super().__init__() self.register_modules(vqvae=_a , unet=_a , scheduler=_a ) @torch.no_grad() def __call__( self , _a = None , _a = 1 , _a = 100 , _a = 0.0 , _a = None , _a = "pil" , _a = True , ): if isinstance(_a , PIL.Image.Image ): __a = 1 elif isinstance(_a , torch.Tensor ): __a = image.shape[0] else: raise ValueError(f'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_a )}''' ) if isinstance(_a , PIL.Image.Image ): __a = preprocess(_a ) __a , __a = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image __a = (batch_size, self.unet.config.in_channels // 2, height, width) __a = next(self.unet.parameters() ).dtype __a = randn_tensor(_a , generator=_a , device=self.device , dtype=_a ) __a = image.to(device=self.device , dtype=_a ) # set timesteps and move to the correct device self.scheduler.set_timesteps(_a , device=self.device ) __a = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler __a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __a = {} if accepts_eta: __a = eta for t in self.progress_bar(_a ): # concat latents and low resolution image in the channel dimension. __a = torch.cat([latents, image] , dim=1 ) __a = self.scheduler.scale_model_input(_a , _a ) # predict the noise residual __a = self.unet(_a , _a ).sample # compute the previous noisy sample x_t -> x_t-1 __a = self.scheduler.step(_a , _a , _a , **_a ).prev_sample # decode the image latents with the VQVAE __a = self.vqvae.decode(_a ).sample __a = torch.clamp(_a , -1.0 , 1.0 ) __a = image / 2 + 0.5 __a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __a = self.numpy_to_pil(_a ) if not return_dict: return (image,) return ImagePipelineOutput(images=_a )
11
1
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[int] = 'gptj' __UpperCAmelCase : Dict = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _a=50_400 , _a=2_048 , _a=4_096 , _a=28 , _a=16 , _a=64 , _a=None , _a="gelu_new" , _a=0.0 , _a=0.0 , _a=0.0 , _a=1E-5 , _a=0.02 , _a=True , _a=50_256 , _a=50_256 , _a=False , **_a , ): __a = vocab_size __a = n_positions __a = n_embd __a = n_layer __a = n_head __a = n_inner __a = rotary_dim __a = activation_function __a = resid_pdrop __a = embd_pdrop __a = attn_pdrop __a = layer_norm_epsilon __a = initializer_range __a = use_cache __a = bos_token_id __a = eos_token_id super().__init__( bos_token_id=_a , eos_token_id=_a , tie_word_embeddings=_a , **_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a , _a = "default" , _a = None , _a = False , ): super().__init__(_a , task=_a , patching_specs=_a , use_past=_a ) if not getattr(self._config , '''pad_token_id''' , _a ): # TODO: how to do that better? __a = 0 @property def __UpperCAmelCase ( self ): __a = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(_a , direction='''inputs''' ) __a = {0: '''batch''', 1: '''past_sequence + sequence'''} else: __a = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def __UpperCAmelCase ( self ): return self._config.n_layer @property def __UpperCAmelCase ( self ): return self._config.n_head def __UpperCAmelCase ( self , _a , _a = -1 , _a = -1 , _a = False , _a = None , ): __a = super(_a , self ).generate_dummy_inputs( _a , batch_size=_a , seq_length=_a , is_pair=_a , framework=_a ) # We need to order the input in the way they appears in the forward() __a = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __a , __a = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __a = seqlen + 2 __a = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __a = [ (torch.zeros(_a ), torch.zeros(_a )) for _ in range(self.num_layers ) ] __a = common_inputs['''attention_mask'''] if self.use_past: __a = ordered_inputs['''attention_mask'''].dtype __a = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_a , _a , dtype=_a )] , dim=1 ) return ordered_inputs @property def __UpperCAmelCase ( self ): return 13
11
"""simple docstring""" from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = DistilBertTokenizer __UpperCAmelCase : Any = DistilBertTokenizerFast __UpperCAmelCase : int = True @slow def __UpperCAmelCase ( self ): __a = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) __a = tokenizer.encode('''sequence builders''' , add_special_tokens=_a ) __a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a ) __a = tokenizer.build_inputs_with_special_tokens(_a ) __a = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
11
1
"""simple docstring""" import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever lowercase_ = logging.getLogger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a , _a , _a , _a=None ): super().__init__( _a , question_encoder_tokenizer=_a , generator_tokenizer=_a , index=_a , init_retrieval=_a , ) __a = None def __UpperCAmelCase ( self , _a ): logger.info('''initializing retrieval''' ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info('''dist initialized''' ) # needs to be set manually __a = self._infer_socket_ifname() # avoid clash with the NCCL port __a = str(distributed_port + 1 ) __a = dist.new_group(ranks=_a , backend='''gloo''' ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info('''dist not initialized / main''' ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def __UpperCAmelCase ( self ): return dist.get_rank(group=self.process_group ) == 0 def __UpperCAmelCase ( self , _a , _a , _a=torch.floataa ): __a = torch.empty(_a , dtype=_a ) dist.scatter(_a , src=0 , scatter_list=_a , group=self.process_group ) return target_tensor def __UpperCAmelCase ( self ): __a = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __a = next((addr for addr in addrs if addr.startswith('''e''' )) , _a ) return ifname def __UpperCAmelCase ( self , _a , _a ): # single GPU training if not dist.is_initialized(): __a , __a = self._main_retrieve(_a , _a ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_a ) # distributed training __a = dist.get_world_size(group=self.process_group ) # gather logic __a = None if self._is_main(): __a = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(_a )] dist.gather(torch.tensor(_a ) , dst=0 , gather_list=_a , group=self.process_group ) # scatter logic __a = question_hidden_states.shape[0] __a = [] __a = [] if self._is_main(): assert len(_a ) == world_size __a , __a = self._main_retrieve(torch.cat(_a ).numpy() , _a ) __a , __a = torch.tensor(_a ), torch.tensor(_a ) __a = self._chunk_tensor(_a , _a ) __a = self._chunk_tensor(_a , _a ) __a = self._scattered(_a , [n_queries, n_docs] , target_type=torch.intaa ) __a = self._scattered(_a , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(_a )
11
"""simple docstring""" from math import factorial, radians def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : int = 18 , lowerCAmelCase__ : int = 10 ) -> float: __a = angle_in_degrees - ((angle_in_degrees // 3_60.0) * 3_60.0) # Converting from degrees to radians __a = radians(lowerCAmelCase__ ) __a = angle_in_radians __a = 3 __a = -1 for _ in range(lowerCAmelCase__ ): result += (b * (angle_in_radians**a)) / factorial(lowerCAmelCase__ ) __a = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": __import__("doctest").testmod()
11
1
"""simple docstring""" from collections.abc import Sequence from queue import Queue class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a , _a , _a=None , _a=None ): __a = start __a = end __a = val __a = (start + end) // 2 __a = left __a = right def __repr__( self ): return f'''SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})''' class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a ): __a = collection __a = function if self.collection: __a = self._build_tree(0 , len(_a ) - 1 ) def __UpperCAmelCase ( self , _a , _a ): self._update_tree(self.root , _a , _a ) def __UpperCAmelCase ( self , _a , _a ): return self._query_range(self.root , _a , _a ) def __UpperCAmelCase ( self , _a , _a ): if start == end: return SegmentTreeNode(_a , _a , self.collection[start] ) __a = (start + end) // 2 __a = self._build_tree(_a , _a ) __a = self._build_tree(mid + 1 , _a ) return SegmentTreeNode(_a , _a , self.fn(left.val , right.val ) , _a , _a ) def __UpperCAmelCase ( self , _a , _a , _a ): if node.start == i and node.end == i: __a = val return if i <= node.mid: self._update_tree(node.left , _a , _a ) else: self._update_tree(node.right , _a , _a ) __a = self.fn(node.left.val , node.right.val ) def __UpperCAmelCase ( self , _a , _a , _a ): if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , _a , _a ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , _a , node.mid ) , self._query_range(node.right , node.mid + 1 , _a ) , ) else: # range in right child tree return self._query_range(node.right , _a , _a ) def __UpperCAmelCase ( self ): if self.root is not None: __a = Queue() queue.put(self.root ) while not queue.empty(): __a = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("*" * 5_0) lowercase_ = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
11
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def lowercase ( lowerCAmelCase__ : dict ) -> tuple: return (data["data"], data["target"]) def lowercase ( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray ) -> np.ndarray: __a = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(lowerCAmelCase__ , lowerCAmelCase__ ) # Predict target for test data __a = xgb.predict(lowerCAmelCase__ ) __a = predictions.reshape(len(lowerCAmelCase__ ) , 1 ) return predictions def lowercase ( ) -> None: __a = fetch_california_housing() __a , __a = data_handling(lowerCAmelCase__ ) __a , __a , __a , __a = train_test_split( lowerCAmelCase__ , lowerCAmelCase__ , test_size=0.25 , random_state=1 ) __a = xgboost(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Error printing print(f'''Mean Absolute Error : {mean_absolute_error(lowerCAmelCase__ , lowerCAmelCase__ )}''' ) print(f'''Mean Square Error : {mean_squared_error(lowerCAmelCase__ , lowerCAmelCase__ )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
11
1
"""simple docstring""" # We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler") class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a , _a = True , _a = False ): __a = scheduler __a = optimizers if isinstance(_a , (list, tuple) ) else [optimizers] __a = split_batches __a = step_with_optimizer __a = GradientState() def __UpperCAmelCase ( self , *_a , **_a ): if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_a , **_a ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_a , **_a ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step __a = AcceleratorState().num_processes for _ in range(_a ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , '''total_steps''' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_a , **_a ) else: self.scheduler.step(*_a , **_a ) def __UpperCAmelCase ( self ): return self.scheduler.get_last_lr() def __UpperCAmelCase ( self ): return self.scheduler.state_dict() def __UpperCAmelCase ( self , _a ): self.scheduler.load_state_dict(_a ) def __UpperCAmelCase ( self ): return self.scheduler.get_lr() def __UpperCAmelCase ( self , *_a , **_a ): return self.scheduler.print_lr(*_a , **_a )
11
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
1
"""simple docstring""" import os def lowercase ( ) -> Optional[Any]: __a = os.path.join(os.path.dirname(lowerCAmelCase__ ) , '''num.txt''' ) with open(lowerCAmelCase__ ) as file_hand: return str(sum(int(lowerCAmelCase__ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
11
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json", "funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json", "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json", "funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = 'funnel' __UpperCAmelCase : Union[str, Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', } def __init__( self , _a=30_522 , _a=[4, 4, 4] , _a=None , _a=2 , _a=768 , _a=12 , _a=64 , _a=3_072 , _a="gelu_new" , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.1 , _a=None , _a=1E-9 , _a="mean" , _a="relative_shift" , _a=True , _a=True , _a=True , **_a , ): __a = vocab_size __a = block_sizes __a = [1] * len(_a ) if block_repeats is None else block_repeats assert len(_a ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." __a = num_decoder_layers __a = d_model __a = n_head __a = d_head __a = d_inner __a = hidden_act __a = hidden_dropout __a = attention_dropout __a = activation_dropout __a = initializer_range __a = initializer_std __a = layer_norm_eps assert pooling_type in [ "mean", "max", ], f'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.''' __a = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.''' __a = attention_type __a = separate_cls __a = truncate_seq __a = pool_q_only super().__init__(**_a ) @property def __UpperCAmelCase ( self ): return sum(self.block_sizes ) @num_hidden_layers.setter def __UpperCAmelCase ( self , _a ): raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' ) @property def __UpperCAmelCase ( self ): return len(self.block_sizes ) @num_blocks.setter def __UpperCAmelCase ( self , _a ): raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
11
1
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) lowercase_ = parser.parse_args() lowercase_ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowercase_ = CLIPImageProcessor() lowercase_ = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") lowercase_ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
11
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_a , '''width_multiplier''' ) ) class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a=13 , _a=64 , _a=2 , _a=3 , _a="swish" , _a=3 , _a=32 , _a=0.1 , _a=0.02 , _a=True , _a=True , _a=10 , _a=None , _a=0.25 , _a=0.0 , _a=0.0 , ): __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = make_divisible(512 * width_multiplier , divisor=8 ) __a = hidden_act __a = conv_kernel_size __a = output_stride __a = classifier_dropout_prob __a = use_labels __a = is_training __a = num_labels __a = initializer_range __a = scope __a = width_multiplier __a = ffn_dropout __a = attn_dropout def __UpperCAmelCase ( self ): __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.num_labels ) __a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __a = self.get_config() return config, pixel_values, labels, pixel_labels def __UpperCAmelCase ( self ): return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def __UpperCAmelCase ( self , _a , _a , _a , _a ): __a = MobileViTVaModel(config=_a ) model.to(_a ) model.eval() __a = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCAmelCase ( self , _a , _a , _a , _a ): __a = self.num_labels __a = MobileViTVaForImageClassification(_a ) model.to(_a ) model.eval() __a = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self , _a , _a , _a , _a ): __a = self.num_labels __a = MobileViTVaForSemanticSegmentation(_a ) model.to(_a ) model.eval() __a = model(_a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __a = model(_a , labels=_a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCAmelCase ( self ): __a = self.prepare_config_and_inputs() __a , __a , __a , __a = config_and_inputs __a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase : Union[str, Any] = ( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase : Tuple = False __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Tuple = False __UpperCAmelCase : List[str] = False def __UpperCAmelCase ( self ): __a = MobileViTVaModelTester(self ) __a = MobileViTVaConfigTester(self , config_class=_a , has_text_modality=_a ) def __UpperCAmelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def __UpperCAmelCase ( self ): pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def __UpperCAmelCase ( self ): pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def __UpperCAmelCase ( self ): pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def __UpperCAmelCase ( self ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(_a ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __UpperCAmelCase ( self ): def check_hidden_states_output(_a , _a , _a ): __a = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(_a , _a ) ) __a = outputs.hidden_states __a = 5 self.assertEqual(len(_a ) , _a ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __a = 2 for i in range(len(_a ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True check_hidden_states_output(_a , _a , _a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_a ) @slow def __UpperCAmelCase ( self ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = MobileViTVaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowercase ( ) -> str: __a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCAmelCase ( self ): return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self ): __a = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( _a ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): __a = model(**_a ) # verify the logits __a = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _a ) __a = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1E-4 ) ) @slow def __UpperCAmelCase ( self ): __a = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = model.to(_a ) __a = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = prepare_img() __a = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): __a = model(**_a ) __a = outputs.logits # verify the logits __a = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _a ) __a = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=_a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _a , atol=1E-4 ) ) @slow def __UpperCAmelCase ( self ): __a = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = model.to(_a ) __a = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = prepare_img() __a = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): __a = model(**_a ) __a = outputs.logits.detach().cpu() __a = image_processor.post_process_semantic_segmentation(outputs=_a , target_sizes=[(50, 60)] ) __a = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _a ) __a = image_processor.post_process_semantic_segmentation(outputs=_a ) __a = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _a )
11
1
"""simple docstring""" lowercase_ = { "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } lowercase_ = {value: key for key, value in encode_dict.items()} def lowercase ( lowerCAmelCase__ : str ) -> str: __a = '''''' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''' ) return encoded def lowercase ( lowerCAmelCase__ : str ) -> str: if set(lowerCAmelCase__ ) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' ) __a = '''''' for word in coded.split(): while len(lowerCAmelCase__ ) != 0: decoded += decode_dict[word[:5]] __a = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
11
"""simple docstring""" from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ): super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: __a = ( f'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`''' f''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ''' '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate('''steps_offset!=1''' , '''1.0.0''' , _a , standard_warn=_a ) __a = dict(scheduler.config ) __a = 1 __a = FrozenDict(_a ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: __a = ( f'''The configuration file of this scheduler: {scheduler} has not set the configuration''' ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , _a , standard_warn=_a ) __a = dict(scheduler.config ) __a = True __a = FrozenDict(_a ) if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=_a , segmentation_processor=_a , vae=_a , text_encoder=_a , tokenizer=_a , unet=_a , scheduler=_a , safety_checker=_a , feature_extractor=_a , ) def __UpperCAmelCase ( self , _a = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_a ) def __UpperCAmelCase ( self ): self.enable_attention_slicing(_a ) def __UpperCAmelCase ( self ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) __a = torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(_a , _a ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __UpperCAmelCase ( self ): if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_a , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , _a , _a , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ): __a = self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) __a = self.segmentation_model(**_a ) __a = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() __a = self.numpy_to_pil(_a )[0].resize(image.size ) # Run inpainting pipeline with the generated mask __a = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=_a , image=_a , mask_image=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , )
11
1
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() lowercase_ = logging.get_logger("transformers.models.speecht5") lowercase_ = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } lowercase_ = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } lowercase_ = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } lowercase_ = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } lowercase_ = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } lowercase_ = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } lowercase_ = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } lowercase_ = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } lowercase_ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } lowercase_ = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } lowercase_ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } lowercase_ = [] lowercase_ = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] lowercase_ = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] lowercase_ = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] lowercase_ = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def lowercase ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict ) -> Union[str, Any]: for attribute in key.split('''.''' ): __a = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: __a = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: __a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": __a = value elif weight_type == "weight_g": __a = value elif weight_type == "weight_v": __a = value elif weight_type == "bias": __a = value elif weight_type == "running_mean": __a = value elif weight_type == "running_var": __a = value elif weight_type == "num_batches_tracked": __a = value else: __a = value logger.info(f'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def lowercase ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] ) -> Optional[Any]: for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: __a , __a = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowercase ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] ) -> Optional[Any]: __a = [] if task == "s2t": __a = hf_model.speechta.encoder.prenet.feature_encoder __a = MAPPING_S2T __a = IGNORE_KEYS_S2T elif task == "t2s": __a = None __a = MAPPING_T2S __a = IGNORE_KEYS_T2S elif task == "s2s": __a = hf_model.speechta.encoder.prenet.feature_encoder __a = MAPPING_S2S __a = IGNORE_KEYS_S2S else: raise ValueError(f'''Unsupported task: {task}''' ) for name, value in fairseq_dict.items(): if should_ignore(lowerCAmelCase__ , lowerCAmelCase__ ): logger.info(f'''{name} was ignored''' ) continue __a = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == '''group''' , ) __a = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: __a , __a = key.split('''.*.''' ) if prefix in name and suffix in name: __a = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: __a = True if "*" in mapped_key: __a = name.split(lowerCAmelCase__ )[0].split('''.''' )[-2] __a = mapped_key.replace('''*''' , lowerCAmelCase__ ) if "weight_g" in name: __a = '''weight_g''' elif "weight_v" in name: __a = '''weight_v''' elif "bias" in name: __a = '''bias''' elif "weight" in name: __a = '''weight''' elif "running_mean" in name: __a = '''running_mean''' elif "running_var" in name: __a = '''running_var''' elif "num_batches_tracked" in name: __a = '''num_batches_tracked''' else: __a = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(f'''Unused weights: {unused_weights}''' ) def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] ) -> List[Any]: __a = full_name.split('''conv_layers.''' )[-1] __a = name.split('''.''' ) __a = int(items[0] ) __a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __a = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __a = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) __a = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) __a = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def lowercase ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Dict=None , ) -> Any: if config_path is not None: __a = SpeechTaConfig.from_pretrained(lowerCAmelCase__ ) else: __a = SpeechTaConfig() if task == "s2t": __a = config.max_text_positions __a = SpeechTaForSpeechToText(lowerCAmelCase__ ) elif task == "t2s": __a = 1876 __a = 600 __a = config.max_speech_positions __a = SpeechTaForTextToSpeech(lowerCAmelCase__ ) elif task == "s2s": __a = 1876 __a = config.max_speech_positions __a = SpeechTaForSpeechToSpeech(lowerCAmelCase__ ) else: raise ValueError(f'''Unknown task name: {task}''' ) if vocab_path: __a = SpeechTaTokenizer(lowerCAmelCase__ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it __a = AddedToken('''<mask>''' , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) __a = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) __a = SpeechTaFeatureExtractor() __a = SpeechTaProcessor(tokenizer=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) __a = torch.load(lowerCAmelCase__ ) recursively_load_weights(fairseq_checkpoint['''model'''] , lowerCAmelCase__ , lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(lowerCAmelCase__ ) model.push_to_hub(lowerCAmelCase__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) lowercase_ = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
11
"""simple docstring""" from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowercase_ = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , **_a ): super().__init__(**_a ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self , _a , **_a ): return super().__call__(_a , **_a ) def __UpperCAmelCase ( self , **_a ): __a = {} if "candidate_labels" in kwargs: __a = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: __a = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def __UpperCAmelCase ( self , _a , _a=None , _a="This is a sound of {}." ): if isinstance(_a , _a ): if audio.startswith('''http://''' ) or audio.startswith('''https://''' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png __a = requests.get(_a ).content else: with open(_a , '''rb''' ) as f: __a = f.read() if isinstance(_a , _a ): __a = ffmpeg_read(_a , self.feature_extractor.sampling_rate ) if not isinstance(_a , np.ndarray ): raise ValueError('''We expect a numpy ndarray as input''' ) if len(audio.shape ) != 1: raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' ) __a = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='''pt''' ) __a = candidate_labels __a = [hypothesis_template.format(_a ) for x in candidate_labels] __a = self.tokenizer(_a , return_tensors=self.framework , padding=_a ) __a = [text_inputs] return inputs def __UpperCAmelCase ( self , _a ): __a = model_inputs.pop('''candidate_labels''' ) __a = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , _a ): __a = text_inputs[0] else: # Batching case. __a = text_inputs[0][0] __a = self.model(**_a , **_a ) __a = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def __UpperCAmelCase ( self , _a ): __a = model_outputs.pop('''candidate_labels''' ) __a = model_outputs['''logits'''][0] if self.framework == "pt": __a = logits.softmax(dim=0 ) __a = probs.tolist() else: raise ValueError('''`tf` framework not supported.''' ) __a = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(_a , _a ) , key=lambda _a : -x[0] ) ] return result
11
1
"""simple docstring""" import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(4_2) lowercase_ = "bert-base-cased" lowercase_ = "fp16" lowercase_ = "bf16" lowercase_ = [FPaa, BFaa] @require_fsdp @require_cuda class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCAmelCase ( self ): super().setUp() __a = dict( ACCELERATE_USE_FSDP='''true''' , MASTER_ADDR='''localhost''' , MASTER_PORT='''10999''' , RANK='''0''' , LOCAL_RANK='''0''' , WORLD_SIZE='''1''' , ) def __UpperCAmelCase ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(_a ): __a = self.dist_env.copy() __a = f'''{i + 1}''' __a = strategy with mockenv_context(**_a ): __a = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def __UpperCAmelCase ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(_a ): __a = self.dist_env.copy() __a = prefetch_policy with mockenv_context(**_a ): __a = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def __UpperCAmelCase ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(_a ): __a = self.dist_env.copy() __a = state_dict_type with mockenv_context(**_a ): __a = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def __UpperCAmelCase ( self ): __a = AutoModel.from_pretrained(_a ) for policy in FSDP_AUTO_WRAP_POLICY: __a = self.dist_env.copy() __a = policy if policy == "TRANSFORMER_BASED_WRAP": __a = '''BertLayer''' elif policy == "SIZE_BASED_WRAP": __a = '''2000''' with mockenv_context(**_a ): __a = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(_a ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) __a = self.dist_env.copy() __a = '''TRANSFORMER_BASED_WRAP''' __a = '''T5Layer''' with mockenv_context(**_a ): __a = FullyShardedDataParallelPlugin() with self.assertRaises(_a ) as cm: fsdp_plugin.set_auto_wrap_policy(_a ) self.assertTrue('''Could not find the transformer layer class to wrap in the model.''' in str(cm.exception ) ) __a = self.dist_env.copy() __a = '''SIZE_BASED_WRAP''' __a = '''0''' with mockenv_context(**_a ): __a = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(_a ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def __UpperCAmelCase ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: __a = self.dist_env.copy() __a = mp_dtype with mockenv_context(**_a ): __a = Accelerator() if mp_dtype == "fp16": __a = torch.floataa elif mp_dtype == "bf16": __a = torch.bfloataa __a = MixedPrecision(param_dtype=_a , reduce_dtype=_a , buffer_dtype=_a ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , _a ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , _a ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(_a ) def __UpperCAmelCase ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: __a = self.dist_env.copy() __a = str(_a ).lower() with mockenv_context(**_a ): __a = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=_a ) ) @require_fsdp @require_multi_gpu @slow class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCAmelCase ( self ): super().setUp() __a = 0.82 __a = [ '''fsdp_shard_grad_op_transformer_based_wrap''', '''fsdp_full_shard_transformer_based_wrap''', ] __a = { '''multi_gpu_fp16''': 3_200, '''fsdp_shard_grad_op_transformer_based_wrap_fp16''': 2_000, '''fsdp_full_shard_transformer_based_wrap_fp16''': 1_900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } __a = 160 __a = 160 __a = inspect.getfile(accelerate.test_utils ) __a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps'''] ) def __UpperCAmelCase ( self ): __a = os.path.join(self.test_scripts_folder , '''test_performance.py''' ) __a = ['''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp'''] for config in self.performance_configs: __a = cmd.copy() for i, strategy in enumerate(_a ): if strategy.lower() in config: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "fp32" in config: cmd_config.append('''--mixed_precision=no''' ) else: cmd_config.append('''--mixed_precision=fp16''' ) if "cpu_offload" in config: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--performance_lower_bound={self.performance_lower_bound}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_a , env=os.environ.copy() ) def __UpperCAmelCase ( self ): __a = os.path.join(self.test_scripts_folder , '''test_checkpointing.py''' ) __a = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp''', '''--mixed_precision=fp16''', '''--fsdp_transformer_layer_cls_to_wrap=BertLayer''', ] for i, strategy in enumerate(_a ): __a = cmd.copy() cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) if strategy != "FULL_SHARD": continue __a = len(_a ) for state_dict_type in FSDP_STATE_DICT_TYPE: __a = cmd_config[:state_dict_config_index] cmd_config.append(f'''--fsdp_state_dict_type={state_dict_type}''' ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', '''--partial_train_epoch=1''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_a , env=os.environ.copy() ) __a = cmd_config[:-1] __a = os.path.join(self.tmpdir , '''epoch_0''' ) cmd_config.extend( [ f'''--resume_from_checkpoint={resume_from_checkpoint}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_a , env=os.environ.copy() ) def __UpperCAmelCase ( self ): __a = os.path.join(self.test_scripts_folder , '''test_peak_memory_usage.py''' ) __a = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): __a = cmd.copy() if "fp16" in spec: cmd_config.extend(['''--mixed_precision=fp16'''] ) else: cmd_config.extend(['''--mixed_precision=no'''] ) if "multi_gpu" in spec: continue else: cmd_config.extend(['''--use_fsdp'''] ) for i, strategy in enumerate(_a ): if strategy.lower() in spec: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "cpu_offload" in spec: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--peak_memory_upper_bound={peak_mem_upper_bound}''', f'''--n_train={self.n_train}''', f'''--n_val={self.n_val}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_a , env=os.environ.copy() )
11
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self , _a ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): __a = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_a ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sgugger/tiny-distilbert-classification''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , only_pretrain_model=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , torchscript=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , fpaa=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = AutoConfig.from_pretrained(_a ) # set architectures equal to `None` __a = None __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_a , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = AutoConfig.from_pretrained(_a ) __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tinier_bart''' __a = AutoConfig.from_pretrained(_a ) __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = AutoConfig.from_pretrained(_a ) __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tinier_bart''' __a = AutoConfig.from_pretrained(_a ) __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , save_to_csv=_a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_a , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_a , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_a , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_a , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_a , '''env.csv''' ) , multi_process=_a , ) __a = PyTorchBenchmark(_a ) benchmark.run() self.assertTrue(Path(os.path.join(_a , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''env.csv''' ) ).exists() ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_a ): self.assertTrue(hasattr(_a , '''sequential''' ) ) self.assertTrue(hasattr(_a , '''cumulative''' ) ) self.assertTrue(hasattr(_a , '''current''' ) ) self.assertTrue(hasattr(_a , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_a , '''log.txt''' ) , log_print=_a , trace_memory_line_by_line=_a , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_a , '''log.txt''' ) ).exists() )
11
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
11
"""simple docstring""" import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self , _a , _a , _a ): self.assertEqual(len(_a ) , len(_a ) ) for a, b in zip(_a , _a ): self.assertAlmostEqual(_a , _a , delta=_a ) def __UpperCAmelCase ( self ): __a = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(_a ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def __UpperCAmelCase ( self ): __a = None ops.enable_eager_execution_internal() __a = tf.config.list_physical_devices('''CPU''' ) if len(_a ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) __a = tf.config.list_logical_devices(device_type='''CPU''' ) __a = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): __a = GradientAccumulator() __a = tf.Variable([4.0, 3.0] ) __a , __a = create_optimizer(5E-5 , 10 , 5 ) __a = tf.Variable([0.0, 0.0] , trainable=_a ) def accumulate_on_replica(_a ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(_a , _a ): with strategy.scope(): __a = strategy.experimental_local_results(_a ) local_variables[0].assign(_a ) local_variables[1].assign(_a ) strategy.run(_a , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(_a ) def _check_local_values(_a , _a ): __a = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , _a , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , _a , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
11
1
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_ = { "configuration_vivit": ["VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "VivitConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["VivitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "VivitModel", "VivitPreTrainedModel", "VivitForVideoClassification", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowercase_ = None lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} lowercase_ = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } lowercase_ = { "facebook/mbart-large-en-ro": 1_0_2_4, "facebook/mbart-large-cc25": 1_0_2_4, } # fmt: off lowercase_ = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = VOCAB_FILES_NAMES __UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Tuple = ['input_ids', 'attention_mask'] __UpperCAmelCase : Optional[Any] = MBartTokenizer __UpperCAmelCase : List[int] = [] __UpperCAmelCase : List[int] = [] def __init__( self , _a=None , _a=None , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=None , _a=None , _a=None , **_a , ): # Mask token behave like a normal word, i.e. include the space before it __a = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token super().__init__( vocab_file=_a , tokenizer_file=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , src_lang=_a , tgt_lang=_a , additional_special_tokens=_a , **_a , ) __a = vocab_file __a = False if not self.vocab_file else True __a = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) __a = { lang_code: self.convert_tokens_to_ids(_a ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __a = src_lang if src_lang is not None else '''en_XX''' __a = self.convert_tokens_to_ids(self._src_lang ) __a = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCAmelCase ( self ): return self._src_lang @src_lang.setter def __UpperCAmelCase ( self , _a ): __a = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCAmelCase ( self , _a , _a = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCAmelCase ( self , _a , _a = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self , _a , _a , _a , _a , **_a ): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __a = src_lang __a = self(_a , add_special_tokens=_a , return_tensors=_a , **_a ) __a = self.convert_tokens_to_ids(_a ) __a = tgt_lang_id return inputs def __UpperCAmelCase ( self , _a , _a = "en_XX" , _a = None , _a = "ro_RO" , **_a , ): __a = src_lang __a = tgt_lang return super().prepare_seqaseq_batch(_a , _a , **_a ) def __UpperCAmelCase ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCAmelCase ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCAmelCase ( self , _a ): __a = self.convert_tokens_to_ids(_a ) __a = [] __a = [self.eos_token_id, self.cur_lang_code] __a = self.convert_ids_to_tokens(self.prefix_tokens ) __a = self.convert_ids_to_tokens(self.suffix_tokens ) __a = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCAmelCase ( self , _a ): __a = self.convert_tokens_to_ids(_a ) __a = [] __a = [self.eos_token_id, self.cur_lang_code] __a = self.convert_ids_to_tokens(self.prefix_tokens ) __a = self.convert_ids_to_tokens(self.suffix_tokens ) __a = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCAmelCase ( self , _a , _a = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return __a = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
11
1
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
11
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin lowercase_ = "\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class __lowerCAmelCase ( unittest.TestCase , __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = load_tool('''text-question-answering''' ) self.tool.setup() __a = load_tool('''text-question-answering''' , remote=_a ) def __UpperCAmelCase ( self ): __a = self.tool(_a , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(_a , '''launched the BigScience Research Workshop''' ) def __UpperCAmelCase ( self ): __a = self.remote_tool(_a , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(_a , '''launched the BigScience Research Workshop''' ) def __UpperCAmelCase ( self ): __a = self.tool(text=_a , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(_a , '''launched the BigScience Research Workshop''' ) def __UpperCAmelCase ( self ): __a = self.remote_tool(text=_a , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(_a , '''launched the BigScience Research Workshop''' )
11
1
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : int ) -> tuple[float, list[float]]: __a = list(range(len(lowerCAmelCase__ ) ) ) __a = [v / w for v, w in zip(lowerCAmelCase__ , lowerCAmelCase__ )] index.sort(key=lambda lowerCAmelCase__ : ratio[i] , reverse=lowerCAmelCase__ ) __a = 0 __a = [0] * len(lowerCAmelCase__ ) for i in index: if weight[i] <= capacity: __a = 1 max_value += value[i] capacity -= weight[i] else: __a = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
11
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_blip_2": [ "BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Blip2Config", "Blip2QFormerConfig", "Blip2VisionConfig", ], "processing_blip_2": ["Blip2Processor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Blip2Model", "Blip2QFormerModel", "Blip2PreTrainedModel", "Blip2ForConditionalGeneration", "Blip2VisionModel", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
1
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
11
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[list[str]] , lowerCAmelCase__ : int , ) -> None: __a = len(lowerCAmelCase__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['''. ''' * i + '''Q ''' + '''. ''' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(lowerCAmelCase__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , lowerCAmelCase__ , lowerCAmelCase__ , ) def lowercase ( lowerCAmelCase__ : int ) -> None: __a = [] depth_first_search([] , [] , [] , lowerCAmelCase__ , lowerCAmelCase__ ) # Print all the boards for board in boards: for column in board: print(lowerCAmelCase__ ) print('''''' ) print(len(lowerCAmelCase__ ) , '''solutions were found.''' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
11
1
"""simple docstring""" from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar lowercase_ = TypeVar("T") class __lowerCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self , _a , _a ): __a = None __a = len(_a ) __a = [any_type for _ in range(self.N )] + arr __a = fnc self.build() def __UpperCAmelCase ( self ): for p in range(self.N - 1 , 0 , -1 ): __a = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __UpperCAmelCase ( self , _a , _a ): p += self.N __a = v while p > 1: __a = p // 2 __a = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __UpperCAmelCase ( self , _a , _a ): # noqa: E741 __a , __a = l + self.N, r + self.N __a = None while l <= r: if l % 2 == 1: __a = self.st[l] if res is None else self.fn(_a , self.st[l] ) if r % 2 == 0: __a = self.st[r] if res is None else self.fn(_a , self.st[r] ) __a , __a = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce lowercase_ = [1, 1_0, -2, 9, -3, 8, 4, -7, 5, 6, 1_1, -1_2] lowercase_ = { 0: 7, 1: 2, 2: 6, 3: -1_4, 4: 5, 5: 4, 6: 7, 7: -1_0, 8: 9, 9: 1_0, 1_0: 1_2, 1_1: 1, } lowercase_ = SegmentTree(test_array, min) lowercase_ = SegmentTree(test_array, max) lowercase_ = SegmentTree(test_array, lambda a, b: a + b) def lowercase ( ) -> None: for i in range(len(lowerCAmelCase__ ) ): for j in range(lowerCAmelCase__ , len(lowerCAmelCase__ ) ): __a = reduce(lowerCAmelCase__ , test_array[i : j + 1] ) __a = reduce(lowerCAmelCase__ , test_array[i : j + 1] ) __a = reduce(lambda lowerCAmelCase__ , lowerCAmelCase__ : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(lowerCAmelCase__ , lowerCAmelCase__ ) assert max_range == max_segment_tree.query(lowerCAmelCase__ , lowerCAmelCase__ ) assert sum_range == sum_segment_tree.query(lowerCAmelCase__ , lowerCAmelCase__ ) test_all_segments() for index, value in test_updates.items(): lowercase_ = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
11
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
11
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "microsoft/beit-base-patch16-224-pt22k": ( "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = 'beit' def __init__( self , _a=8_192 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1E-12 , _a=224 , _a=16 , _a=3 , _a=False , _a=False , _a=False , _a=False , _a=0.1 , _a=0.1 , _a=True , _a=[3, 5, 7, 11] , _a=[1, 2, 3, 6] , _a=True , _a=0.4 , _a=256 , _a=1 , _a=False , _a=255 , **_a , ): super().__init__(**_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = initializer_range __a = layer_norm_eps __a = image_size __a = patch_size __a = num_channels __a = use_mask_token __a = use_absolute_position_embeddings __a = use_relative_position_bias __a = use_shared_relative_position_bias __a = layer_scale_init_value __a = drop_path_rate __a = use_mean_pooling # decode head attributes (semantic segmentation) __a = out_indices __a = pool_scales # auxiliary head attributes (semantic segmentation) __a = use_auxiliary_head __a = auxiliary_loss_weight __a = auxiliary_channels __a = auxiliary_num_convs __a = auxiliary_concat_input __a = semantic_loss_ignore_index class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[int] = version.parse('1.11' ) @property def __UpperCAmelCase ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __UpperCAmelCase ( self ): return 1E-4
11
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = 'vit_mae' def __init__( self , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1E-12 , _a=224 , _a=16 , _a=3 , _a=True , _a=16 , _a=512 , _a=8 , _a=2_048 , _a=0.75 , _a=False , **_a , ): super().__init__(**_a ) __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = initializer_range __a = layer_norm_eps __a = image_size __a = patch_size __a = num_channels __a = qkv_bias __a = decoder_num_attention_heads __a = decoder_hidden_size __a = decoder_num_hidden_layers __a = decoder_intermediate_size __a = mask_ratio __a = norm_pix_loss
11
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[Any] = 'timesformer' def __init__( self , _a=224 , _a=16 , _a=3 , _a=8 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1E-6 , _a=True , _a="divided_space_time" , _a=0 , **_a , ): super().__init__(**_a ) __a = image_size __a = patch_size __a = num_channels __a = num_frames __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = initializer_range __a = layer_norm_eps __a = qkv_bias __a = attention_type __a = drop_path_rate
11
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = ['image_processor', 'tokenizer'] __UpperCAmelCase : str = 'LayoutLMv3ImageProcessor' __UpperCAmelCase : Optional[int] = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self , _a=None , _a=None , **_a ): __a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) __a = kwargs.pop('''feature_extractor''' ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) def __call__( self , _a , _a = None , _a = None , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) # first, apply the image processor __a = self.image_processor(images=_a , return_tensors=_a ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_a , _a ): __a = [text] # add batch dimension (as the image processor always adds a batch dimension) __a = features['''words'''] __a = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel values __a = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: __a = self.get_overflowing_images(_a , encoded_inputs['''overflow_to_sample_mapping'''] ) __a = images return encoded_inputs def __UpperCAmelCase ( self , _a , _a ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __a = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_a ) != len(_a ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(_a )} and {len(_a )}''' ) return images_with_overflow def __UpperCAmelCase ( self , *_a , **_a ): return self.tokenizer.batch_decode(*_a , **_a ) def __UpperCAmelCase ( self , *_a , **_a ): return self.tokenizer.decode(*_a , **_a ) @property def __UpperCAmelCase ( self ): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def __UpperCAmelCase ( self ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def __UpperCAmelCase ( self ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
11
1
"""simple docstring""" from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowercase_ = TypeVar("T") class __lowerCAmelCase ( Generic[T] ): '''simple docstring''' __UpperCAmelCase : deque[T] # Cache store of keys __UpperCAmelCase : set[T] # References of the keys in cache __UpperCAmelCase : int = 1_0 # Maximum capacity of cache def __init__( self , _a ): __a = deque() __a = set() if not n: __a = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: __a = n def __UpperCAmelCase ( self , _a ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: __a = self.dq_store.pop() self.key_reference.remove(_a ) else: self.dq_store.remove(_a ) self.dq_store.appendleft(_a ) self.key_reference.add(_a ) def __UpperCAmelCase ( self ): for k in self.dq_store: print(_a ) def __repr__( self ): return f'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
11
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any]=0.9_99 , lowerCAmelCase__ : List[str]="cosine" , ) -> Optional[int]: if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCAmelCase__ : int ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCAmelCase__ : Optional[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __a = [] for i in range(lowerCAmelCase__ ): __a = i / num_diffusion_timesteps __a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCAmelCase__ ) / alpha_bar_fn(lowerCAmelCase__ ) , lowerCAmelCase__ ) ) return torch.tensor(lowerCAmelCase__ , dtype=torch.floataa ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase : str = 2 @register_to_config def __init__( self , _a = 1_000 , _a = 0.0_0085 , _a = 0.012 , _a = "linear" , _a = None , _a = "epsilon" , _a = "linspace" , _a = 0 , ): if trained_betas is not None: __a = torch.tensor(_a , dtype=torch.floataa ) elif beta_schedule == "linear": __a = torch.linspace(_a , _a , _a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __a = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __a = betas_for_alpha_bar(_a ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) __a = 1.0 - self.betas __a = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(_a , _a , _a ) def __UpperCAmelCase ( self , _a , _a=None ): if schedule_timesteps is None: __a = self.timesteps __a = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __a = 1 if len(_a ) > 1 else 0 else: __a = timestep.cpu().item() if torch.is_tensor(_a ) else timestep __a = self._index_counter[timestep_int] return indices[pos].item() @property def __UpperCAmelCase ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __UpperCAmelCase ( self , _a , _a , ): __a = self.index_for_timestep(_a ) if self.state_in_first_order: __a = self.sigmas[step_index] else: __a = self.sigmas_interpol[step_index] __a = sample / ((sigma**2 + 1) ** 0.5) return sample def __UpperCAmelCase ( self , _a , _a = None , _a = None , ): __a = num_inference_steps __a = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __a = np.linspace(0 , num_train_timesteps - 1 , _a , dtype=_a )[::-1].copy() elif self.config.timestep_spacing == "leading": __a = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __a = (np.arange(0 , _a ) * step_ratio).round()[::-1].copy().astype(_a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __a = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __a = (np.arange(_a , 0 , -step_ratio )).round().copy().astype(_a ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) __a = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __a = torch.from_numpy(np.log(_a ) ).to(_a ) __a = np.interp(_a , np.arange(0 , len(_a ) ) , _a ) __a = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __a = torch.from_numpy(_a ).to(device=_a ) # interpolate sigmas __a = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __a = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __a = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(_a ).startswith('''mps''' ): # mps does not support float64 __a = torch.from_numpy(_a ).to(_a , dtype=torch.floataa ) else: __a = torch.from_numpy(_a ).to(_a ) # interpolate timesteps __a = self.sigma_to_t(_a ).to(_a , dtype=timesteps.dtype ) __a = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __a = torch.cat([timesteps[:1], interleaved_timesteps] ) __a = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __a = defaultdict(_a ) def __UpperCAmelCase ( self , _a ): # get log sigma __a = sigma.log() # get distribution __a = log_sigma - self.log_sigmas[:, None] # get sigmas range __a = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __a = low_idx + 1 __a = self.log_sigmas[low_idx] __a = self.log_sigmas[high_idx] # interpolate sigmas __a = (low - log_sigma) / (low - high) __a = w.clamp(0 , 1 ) # transform interpolation to time range __a = (1 - w) * low_idx + w * high_idx __a = t.view(sigma.shape ) return t @property def __UpperCAmelCase ( self ): return self.sample is None def __UpperCAmelCase ( self , _a , _a , _a , _a = True , ): __a = self.index_for_timestep(_a ) # advance index counter by 1 __a = timestep.cpu().item() if torch.is_tensor(_a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __a = self.sigmas[step_index] __a = self.sigmas_interpol[step_index + 1] __a = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __a = self.sigmas[step_index - 1] __a = self.sigmas_interpol[step_index] __a = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __a = 0 __a = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __a = sigma_hat if self.state_in_first_order else sigma_interpol __a = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __a = sigma_hat if self.state_in_first_order else sigma_interpol __a = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('''prediction_type not implemented yet: sample''' ) else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __a = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __a = sigma_interpol - sigma_hat # store for 2nd order step __a = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __a = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __a = sigma_next - sigma_hat __a = self.sample __a = None __a = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_a ) def __UpperCAmelCase ( self , _a , _a , _a , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __a = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_a ): # mps does not support float64 __a = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __a = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __a = self.timesteps.to(original_samples.device ) __a = timesteps.to(original_samples.device ) __a = [self.index_for_timestep(_a , _a ) for t in timesteps] __a = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __a = sigma.unsqueeze(-1 ) __a = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
11
1