code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' def __magic_name__( lowerCamelCase = 1_0_0_0_0_0_0): __lowerCAmelCase = set(range(3, lowerCamelCase, 2)) primes.add(2) for p in range(3, lowerCamelCase, 2): if p not in primes: continue primes.difference_update(set(range(p * p, lowerCamelCase, lowerCamelCase))) __lowerCAmelCase = [float(lowerCamelCase) for n in range(limit + 1)] for p in primes: for n in range(lowerCamelCase, limit + 1, lowerCamelCase): phi[n] *= 1 - 1 / p return int(sum(phi[2:])) if __name__ == "__main__": print(f"""{solution() = }""")
9
'''simple docstring''' # Imports import numpy as np class a__ : """simple docstring""" def __init__(self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase ) def _snake_case (self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): if red is not None: __lowerCAmelCase = red if green is not None: __lowerCAmelCase = green if blue is not None: __lowerCAmelCase = blue if red_edge is not None: __lowerCAmelCase = red_edge if nir is not None: __lowerCAmelCase = nir return True def _snake_case (self , __lowercase="" , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase ) __lowerCAmelCase = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''' ) return False def _snake_case (self ): return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case (self ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case (self ): return self.nir * (self.red / (self.green**2)) def _snake_case (self ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case (self ): return (self.nir - self.red) / (self.nir + self.red) def _snake_case (self ): return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case (self ): return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case (self ): return (self.nir - self.green) / (self.nir + self.green) def _snake_case (self ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case (self ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case (self ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case (self ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case (self , __lowercase=0.0_8 , __lowercase=1.2_2 , __lowercase=0.0_3 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case (self ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case (self ): return (self.nir / self.green) - 1 def _snake_case (self ): return (self.nir / self.redEdge) - 1 def _snake_case (self ): return (self.red - self.blue) / self.red def _snake_case (self ): __lowerCAmelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case (self ): return self.nir - self.green def _snake_case (self ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case (self ): __lowerCAmelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case (self , __lowercase=0.1_6 ): return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case (self , __lowercase=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case (self ): return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _snake_case (self , __lowercase=None , __lowercase=None ): return (self.nir - b) / (a * self.red) def _snake_case (self ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case (self ): return (self.red + self.green + self.blue) / 3_0.5 def _snake_case (self ): return self.nir / self.red def _snake_case (self ): return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case (self ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case (self ): return self.green / (self.nir + self.red + self.green) def _snake_case (self ): return self.nir / (self.nir + self.red + self.green) def _snake_case (self ): return self.red / (self.nir + self.red + self.green) def _snake_case (self ): return (self.green - self.red) / (self.green + self.red) def _snake_case (self ): return (self.red - self.green) / (self.red + self.green) def _snake_case (self ): __lowerCAmelCase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) __lowerCAmelCase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case (self ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case (self ): return self.nir / self.red def _snake_case (self ): return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case (self ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
9
1
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller _UpperCAmelCase : List[Any] = 3 def __magic_name__( lowerCamelCase): print('''Generating primitive root of p''') while True: __lowerCAmelCase = random.randrange(3, lowerCamelCase) if pow(lowerCamelCase, 2, lowerCamelCase) == 1: continue if pow(lowerCamelCase, lowerCamelCase, lowerCamelCase) == 1: continue return g def __magic_name__( lowerCamelCase): print('''Generating prime p...''') __lowerCAmelCase = rabin_miller.generate_large_prime(lowerCamelCase) # select large prime number. __lowerCAmelCase = primitive_root(lowerCamelCase) # one primitive root on modulo p. __lowerCAmelCase = random.randrange(3, lowerCamelCase) # private_key -> have to be greater than 2 for safety. __lowerCAmelCase = cryptomath.find_mod_inverse(pow(lowerCamelCase, lowerCamelCase, lowerCamelCase), lowerCamelCase) __lowerCAmelCase = (key_size, e_a, e_a, p) __lowerCAmelCase = (key_size, d) return public_key, private_key def __magic_name__( lowerCamelCase, lowerCamelCase): if os.path.exists(F"""{name}_pubkey.txt""") or os.path.exists(F"""{name}_privkey.txt"""): print('''\nWARNING:''') print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" '''Use a different name or delete these files and re-run this program.''') sys.exit() __lowerCAmelCase , __lowerCAmelCase = generate_key(lowerCamelCase) print(F"""\nWriting public key to file {name}_pubkey.txt...""") with open(F"""{name}_pubkey.txt""", '''w''') as fo: fo.write(F"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""") print(F"""Writing private key to file {name}_privkey.txt...""") with open(F"""{name}_privkey.txt""", '''w''') as fo: fo.write(F"""{private_key[0]},{private_key[1]}""") def __magic_name__( ): print('''Making key files...''') make_key_files('''elgamal''', 2_0_4_8) print('''Key files generation successful''') if __name__ == "__main__": main()
9
'''simple docstring''' from math import sqrt def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' must been an int and positive" __lowerCAmelCase = True # 0 and 1 are none primes. if number <= 1: __lowerCAmelCase = False for divisor in range(2, int(round(sqrt(lowerCamelCase))) + 1): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __lowerCAmelCase = False break # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'status' must been from type bool" return status def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __lowerCAmelCase = list(range(2, n + 1)) __lowerCAmelCase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase)): for j in range(i + 1, len(lowerCamelCase)): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __lowerCAmelCase = 0 # filters actual prime numbers. __lowerCAmelCase = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" __lowerCAmelCase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2, n + 1): if is_prime(lowerCamelCase): ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and number >= 0, "'number' must been an int and >= 0" __lowerCAmelCase = [] # this list will be returns of the function. # potential prime number factors. __lowerCAmelCase = 2 __lowerCAmelCase = number if number == 0 or number == 1: ans.append(lowerCamelCase) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase): while quotient != 1: if is_prime(lowerCamelCase) and (quotient % factor == 0): ans.append(lowerCamelCase) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = max(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = min(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 == 0, lowerCamelCase), "compare bust been from type bool" return number % 2 == 0 def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 != 0, lowerCamelCase), "compare bust been from type bool" return number % 2 != 0 def __magic_name__( lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and (number > 2) and is_even(lowerCamelCase) ), "'number' must been an int, even and > 2" __lowerCAmelCase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __lowerCAmelCase = get_prime_numbers(lowerCamelCase) __lowerCAmelCase = len(lowerCamelCase) # run variable for while-loops. __lowerCAmelCase = 0 __lowerCAmelCase = None # exit variable. for break up the loops __lowerCAmelCase = True while i < len_pn and loop: __lowerCAmelCase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __lowerCAmelCase = False ans.append(prime_numbers[i]) ans.append(prime_numbers[j]) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (len(lowerCamelCase) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0]) and is_prime(ans[1]) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 0 while numbera != 0: __lowerCAmelCase = numbera % numbera __lowerCAmelCase = numbera __lowerCAmelCase = rest # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = prime_factorization(lowerCamelCase) elif numbera == 1 or numbera == 1: __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = max(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(max(lowerCamelCase, lowerCamelCase)): ans *= n else: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'number' must been a positive int" __lowerCAmelCase = 0 __lowerCAmelCase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase): ans += 1 # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and is_prime( lowerCamelCase), "'ans' must been a prime number and from type int" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( is_prime(lowerCamelCase) and is_prime(lowerCamelCase) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __lowerCAmelCase = p_number_a + 1 # jump to the next number __lowerCAmelCase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 while number < p_number_a: ans.append(lowerCamelCase) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and ans[0] != p_number_a and ans[len(lowerCamelCase) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 1), "'n' must been int and >= 1" __lowerCAmelCase = [] # will be returned. for divisor in range(1, n + 1): if n % divisor == 0: ans.append(lowerCamelCase) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase) - 1] == n, "Error in function getDivisiors(...)" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number > 1 ), "'number' must been an int and >= 1" __lowerCAmelCase = get_divisors(lowerCamelCase) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (divisors[0] == 1) and (divisors[len(lowerCamelCase) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1]) == number def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __lowerCAmelCase = gcd(abs(lowerCamelCase), abs(lowerCamelCase)) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been a int and >= 0" __lowerCAmelCase = 1 # this will be return. for factor in range(1, n + 1): ans *= factor return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been an int and >= 0" __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = 1 # this will be return for _ in range(n - 1): __lowerCAmelCase = ans ans += fiba __lowerCAmelCase = tmp return ans
9
1
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def __magic_name__( ): __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''', type=lowerCamelCase, default='''microsoft/unixcoder-base-nine''') parser.add_argument('''--num_epochs''', type=lowerCamelCase, default=5) parser.add_argument('''--batch_size''', type=lowerCamelCase, default=6) parser.add_argument('''--gradient_accumulation_steps''', type=lowerCamelCase, default=1) parser.add_argument('''--freeze''', type=lowerCamelCase, default=lowerCamelCase) parser.add_argument('''--learning_rate''', type=lowerCamelCase, default=5E-4) parser.add_argument('''--seed''', type=lowerCamelCase, default=0) parser.add_argument('''--lr_scheduler_type''', type=lowerCamelCase, default='''cosine''') parser.add_argument('''--num_warmup_steps''', type=lowerCamelCase, default=1_0) parser.add_argument('''--weight_decay''', type=lowerCamelCase, default=0.01) parser.add_argument('''--output_dir''', type=lowerCamelCase, default='''./results''') return parser.parse_args() _UpperCAmelCase : List[Any] = load("""accuracy""") def __magic_name__( lowerCamelCase): __lowerCAmelCase , __lowerCAmelCase = eval_pred __lowerCAmelCase = np.argmax(lowerCamelCase, axis=1) return metric.compute(predictions=lowerCamelCase, references=lowerCamelCase) class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase ): super().__init__() __lowerCAmelCase = trainer def _snake_case (self , __lowercase , __lowercase , __lowercase , **__lowercase ): if control.should_evaluate: __lowerCAmelCase = deepcopy(__lowercase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' ) return control_copy def __magic_name__( ): __lowerCAmelCase = get_args() set_seed(args.seed) __lowerCAmelCase = load_dataset('''codeparrot/codecomplex''', split='''train''') __lowerCAmelCase = dataset.train_test_split(test_size=0.2) __lowerCAmelCase = train_test['''test'''].train_test_split(test_size=0.5) __lowerCAmelCase = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], }) print('''Loading tokenizer and model''') __lowerCAmelCase = AutoTokenizer.from_pretrained(args.model_ckpt) __lowerCAmelCase = tokenizer.eos_token __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt, num_labels=7) __lowerCAmelCase = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): __lowerCAmelCase = False __lowerCAmelCase = ClassLabel(num_classes=7, names=list(set(train_test_validation['''train''']['''complexity''']))) def tokenize(lowerCamelCase): __lowerCAmelCase = tokenizer(example['''src'''], truncation=lowerCamelCase, max_length=1_0_2_4) __lowerCAmelCase = labels.straint(example['''complexity''']) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } __lowerCAmelCase = train_test_validation.map( lowerCamelCase, batched=lowerCamelCase, remove_columns=train_test_validation['''train'''].column_names, ) __lowerCAmelCase = DataCollatorWithPadding(tokenizer=lowerCamelCase) __lowerCAmelCase = TrainingArguments( output_dir=args.output_dir, learning_rate=args.learning_rate, lr_scheduler_type=args.lr_scheduler_type, evaluation_strategy='''epoch''', save_strategy='''epoch''', logging_strategy='''epoch''', per_device_train_batch_size=args.batch_size, per_device_eval_batch_size=args.batch_size, num_train_epochs=args.num_epochs, gradient_accumulation_steps=args.gradient_accumulation_steps, weight_decay=0.01, metric_for_best_model='''accuracy''', run_name='''complexity-java''', report_to='''wandb''', ) __lowerCAmelCase = Trainer( model=lowerCamelCase, args=lowerCamelCase, train_dataset=tokenized_datasets['''train'''], eval_dataset=tokenized_datasets['''valid'''], tokenizer=lowerCamelCase, data_collator=lowerCamelCase, compute_metrics=lowerCamelCase, ) print('''Training...''') trainer.add_callback(CustomCallback(lowerCamelCase)) trainer.train() if __name__ == "__main__": main()
9
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed _UpperCAmelCase : Dict = """true""" def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=1_6): set_seed(4_2) __lowerCAmelCase = RegressionModel() __lowerCAmelCase = deepcopy(lowerCamelCase) __lowerCAmelCase = RegressionDataset(length=lowerCamelCase) __lowerCAmelCase = DataLoader(lowerCamelCase, batch_size=lowerCamelCase) model.to(accelerator.device) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase) return model, ddp_model, dataloader def __magic_name__( lowerCamelCase, lowerCamelCase=False): __lowerCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''') __lowerCAmelCase = load_dataset('''glue''', '''mrpc''', split='''validation''') def tokenize_function(lowerCamelCase): __lowerCAmelCase = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=lowerCamelCase, max_length=lowerCamelCase) return outputs with accelerator.main_process_first(): __lowerCAmelCase = dataset.map( lowerCamelCase, batched=lowerCamelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) __lowerCAmelCase = tokenized_datasets.rename_column('''label''', '''labels''') def collate_fn(lowerCamelCase): if use_longest: return tokenizer.pad(lowerCamelCase, padding='''longest''', return_tensors='''pt''') return tokenizer.pad(lowerCamelCase, padding='''max_length''', max_length=1_2_8, return_tensors='''pt''') return DataLoader(lowerCamelCase, shuffle=lowerCamelCase, collate_fn=lowerCamelCase, batch_size=1_6) def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = Accelerator(dispatch_batches=lowerCamelCase, split_batches=lowerCamelCase) __lowerCAmelCase = get_dataloader(lowerCamelCase, not dispatch_batches) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''', return_dict=lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [] for batch in dataloader: __lowerCAmelCase , __lowerCAmelCase = batch.values() with torch.no_grad(): __lowerCAmelCase = model(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((logit, target)) logits_and_targets.append((logit, target)) __lowerCAmelCase , __lowerCAmelCase = [], [] for logit, targ in logits_and_targets: logits.append(lowerCamelCase) targs.append(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = torch.cat(lowerCamelCase), torch.cat(lowerCamelCase) return logits, targs def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=1_6): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = get_basic_setup(lowerCamelCase, lowerCamelCase, lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = generate_predictions(lowerCamelCase, lowerCamelCase, lowerCamelCase) assert ( len(lowerCamelCase) == num_samples ), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowerCamelCase)}""" def __magic_name__( lowerCamelCase = False, lowerCamelCase = False): __lowerCAmelCase = evaluate.load('''glue''', '''mrpc''') __lowerCAmelCase , __lowerCAmelCase = get_mrpc_setup(lowerCamelCase, lowerCamelCase) # First do baseline __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''no'''] model.to(lowerCamelCase) model.eval() for batch in dataloader: batch.to(lowerCamelCase) with torch.inference_mode(): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(dim=-1) metric.add_batch(predictions=lowerCamelCase, references=batch['''labels''']) __lowerCAmelCase = metric.compute() # Then do distributed __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(dim=-1) __lowerCAmelCase = batch['''labels'''] __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((preds, references)) metric.add_batch(predictions=lowerCamelCase, references=lowerCamelCase) __lowerCAmelCase = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key], distributed[key]), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def __magic_name__( ): __lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''') for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""") test_mrpc(lowerCamelCase, lowerCamelCase) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''') for split_batches in [True, False]: for dispatch_batches in [True, False]: __lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase) if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""") test_torch_metrics(lowerCamelCase, 9_9) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''') __lowerCAmelCase = Accelerator() test_torch_metrics(lowerCamelCase, 5_1_2) accelerator.state._reset_state() def __magic_name__( lowerCamelCase): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
9
1
'''simple docstring''' from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class a__ : """simple docstring""" def __init__(self , __lowercase , __lowercase=2 , __lowercase=3 , __lowercase=4 , __lowercase=2 , __lowercase=7 , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=99 , __lowercase=36 , __lowercase=2 , __lowercase=4 , __lowercase=37 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=16 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=6 , __lowercase=6 , __lowercase=3 , __lowercase=4 , __lowercase=None , __lowercase=10_00 , ): __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = coordinate_size __lowerCAmelCase = shape_size __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope __lowerCAmelCase = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __lowerCAmelCase = text_seq_length __lowerCAmelCase = (image_size // patch_size) ** 2 + 1 __lowerCAmelCase = self.text_seq_length + self.image_seq_length def _snake_case (self ): __lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __lowerCAmelCase = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __lowerCAmelCase = bbox[i, j, 3] __lowerCAmelCase = bbox[i, j, 1] __lowerCAmelCase = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __lowerCAmelCase = bbox[i, j, 2] __lowerCAmelCase = bbox[i, j, 0] __lowerCAmelCase = tmp_coordinate __lowerCAmelCase = tf.constant(__lowercase ) __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.text_seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __lowerCAmelCase = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = TFLayoutLMvaModel(config=__lowercase ) # text + image __lowerCAmelCase = model(__lowercase , pixel_values=__lowercase , training=__lowercase ) __lowerCAmelCase = model( __lowercase , bbox=__lowercase , pixel_values=__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , training=__lowercase , ) __lowerCAmelCase = model(__lowercase , bbox=__lowercase , pixel_values=__lowercase , training=__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __lowerCAmelCase = model(__lowercase , training=__lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __lowerCAmelCase = model({'''pixel_values''': pixel_values} , training=__lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = self.num_labels __lowerCAmelCase = TFLayoutLMvaForSequenceClassification(config=__lowercase ) __lowerCAmelCase = model( __lowercase , bbox=__lowercase , pixel_values=__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase , training=__lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = self.num_labels __lowerCAmelCase = TFLayoutLMvaForTokenClassification(config=__lowercase ) __lowerCAmelCase = model( __lowercase , bbox=__lowercase , pixel_values=__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase , training=__lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = 2 __lowerCAmelCase = TFLayoutLMvaForQuestionAnswering(config=__lowercase ) __lowerCAmelCase = model( __lowercase , bbox=__lowercase , pixel_values=__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , start_positions=__lowercase , end_positions=__lowercase , training=__lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case (self ): __lowerCAmelCase = self.prepare_config_and_inputs() ((__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase)) = config_and_inputs __lowerCAmelCase = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_tf class a__ ( __A , __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[Any] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) __UpperCamelCase : Optional[Any] = ( {'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel} if is_tf_available() else {} ) __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : List[Any] = False __UpperCamelCase : Union[str, Any] = False def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): return True def _snake_case (self , __lowercase , __lowercase , __lowercase=False ): __lowerCAmelCase = copy.deepcopy(__lowercase ) if model_class in get_values(__lowercase ): __lowerCAmelCase = { k: tf.tile(tf.expand_dims(__lowercase , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(__lowercase , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__lowercase ): __lowerCAmelCase = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__lowercase ): __lowerCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __lowerCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__lowercase ): __lowerCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__lowercase ): __lowerCAmelCase = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def _snake_case (self ): __lowerCAmelCase = TFLayoutLMvaModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=__lowercase , hidden_size=37 ) def _snake_case (self ): self.config_tester.run_common_tests() def _snake_case (self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__lowercase ) if getattr(__lowercase , '''hf_compute_loss''' , __lowercase ): # The number of elements in the loss should be the same as the number of elements in the label __lowerCAmelCase = self._prepare_for_class(inputs_dict.copy() , __lowercase , return_labels=__lowercase ) __lowerCAmelCase = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__lowercase )[0] ] __lowerCAmelCase = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __lowerCAmelCase = self._prepare_for_class(inputs_dict.copy() , __lowercase , return_labels=__lowercase ) __lowerCAmelCase = prepared_for_class.pop('''input_ids''' ) __lowerCAmelCase = model(__lowercase , **__lowercase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __lowerCAmelCase = self._prepare_for_class(inputs_dict.copy() , __lowercase , return_labels=__lowercase ) __lowerCAmelCase = prepared_for_class.pop('''input_ids''' ) if "labels" in prepared_for_class: __lowerCAmelCase = prepared_for_class['''labels'''].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __lowerCAmelCase = -1_00 __lowerCAmelCase = tf.convert_to_tensor(__lowercase ) __lowerCAmelCase = model(__lowercase , **__lowercase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __lowerCAmelCase = self._prepare_for_class(inputs_dict.copy() , __lowercase , return_labels=__lowercase ) __lowerCAmelCase = model(__lowercase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __lowerCAmelCase = self._prepare_for_class(inputs_dict.copy() , __lowercase , return_labels=__lowercase ) # Get keys that were added with the _prepare_for_class function __lowerCAmelCase = prepared_for_class.keys() - inputs_dict.keys() __lowerCAmelCase = inspect.signature(model.call ).parameters __lowerCAmelCase = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __lowerCAmelCase = {0: '''input_ids'''} for label_key in label_keys: __lowerCAmelCase = signature_names.index(__lowercase ) __lowerCAmelCase = label_key __lowerCAmelCase = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __lowerCAmelCase = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __lowerCAmelCase = prepared_for_class[value] __lowerCAmelCase = tuple(__lowercase ) # Send to model __lowerCAmelCase = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def _snake_case (self ): ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) def _snake_case (self ): ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase = type self.model_tester.create_and_check_model(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) def _snake_case (self ): ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) def _snake_case (self ): ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) def _snake_case (self ): ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) @slow def _snake_case (self ): for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = TFLayoutLMvaModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def __magic_name__( ): __lowerCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_tf class a__ ( unittest.TestCase ): """simple docstring""" @cached_property def _snake_case (self ): return LayoutLMvaImageProcessor(apply_ocr=__lowercase ) if is_vision_available() else None @slow def _snake_case (self ): __lowerCAmelCase = TFLayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=__lowercase , return_tensors='''tf''' ).pixel_values __lowerCAmelCase = tf.constant([[1, 2]] ) __lowerCAmelCase = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __lowerCAmelCase = model(input_ids=__lowercase , bbox=__lowercase , pixel_values=__lowercase , training=__lowercase ) # verify the logits __lowerCAmelCase = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , __lowercase ) __lowerCAmelCase = tf.constant( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __lowercase , atol=1e-4 ) )
9
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : str = logging.get_logger(__name__) _UpperCAmelCase : str = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class a__ ( __A ): """simple docstring""" __UpperCamelCase : str = 'roberta' def __init__(self , __lowercase=5_02_65 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=1 , __lowercase=0 , __lowercase=2 , __lowercase="absolute" , __lowercase=True , __lowercase=None , **__lowercase , ): super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = use_cache __lowerCAmelCase = classifier_dropout class a__ ( __A ): """simple docstring""" @property def _snake_case (self ): if self.task == "multiple-choice": __lowerCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
9
1
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): if isinstance(lowerCamelCase, lowerCamelCase): __lowerCAmelCase = np.full((len(lowerCamelCase), sequence_length, 2), lowerCamelCase) else: __lowerCAmelCase = np.full((len(lowerCamelCase), sequence_length), lowerCamelCase) for i, tensor in enumerate(lowerCamelCase): if padding_side == "right": if isinstance(lowerCamelCase, lowerCamelCase): __lowerCAmelCase = tensor[:sequence_length] else: __lowerCAmelCase = tensor[:sequence_length] else: if isinstance(lowerCamelCase, lowerCamelCase): __lowerCAmelCase = tensor[:sequence_length] else: __lowerCAmelCase = tensor[:sequence_length] return out_tensor.tolist() def __magic_name__( lowerCamelCase): __lowerCAmelCase = ord(lowerCamelCase) if (cp >= 3_3 and cp <= 4_7) or (cp >= 5_8 and cp <= 6_4) or (cp >= 9_1 and cp <= 9_6) or (cp >= 1_2_3 and cp <= 1_2_6): return True __lowerCAmelCase = unicodedata.category(lowerCamelCase) if cat.startswith('''P'''): return True return False @dataclass class a__ ( __A ): """simple docstring""" __UpperCamelCase : PreTrainedTokenizerBase __UpperCamelCase : Union[bool, str, PaddingStrategy] = True __UpperCamelCase : Optional[int] = None __UpperCamelCase : Optional[int] = None __UpperCamelCase : int = -100 __UpperCamelCase : str = "pt" def _snake_case (self , __lowercase ): import torch __lowerCAmelCase = '''label''' if '''label''' in features[0].keys() else '''labels''' __lowerCAmelCase = [feature[label_name] for feature in features] if label_name in features[0].keys() else None __lowerCAmelCase = self.tokenizer.pad( __lowercase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch __lowerCAmelCase = torch.tensor(batch['''entity_ids'''] ).shape[1] __lowerCAmelCase = self.tokenizer.padding_side if padding_side == "right": __lowerCAmelCase = [ list(__lowercase ) + [self.label_pad_token_id] * (sequence_length - len(__lowercase )) for label in labels ] else: __lowerCAmelCase = [ [self.label_pad_token_id] * (sequence_length - len(__lowercase )) + list(__lowercase ) for label in labels ] __lowerCAmelCase = [feature['''ner_tags'''] for feature in features] __lowerCAmelCase = padding_tensor(__lowercase , -1 , __lowercase , __lowercase ) __lowerCAmelCase = [feature['''original_entity_spans'''] for feature in features] __lowerCAmelCase = padding_tensor(__lowercase , (-1, -1) , __lowercase , __lowercase ) __lowerCAmelCase = {k: torch.tensor(__lowercase , dtype=torch.intaa ) for k, v in batch.items()} return batch
9
'''simple docstring''' import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = old_name if "patch_embed" in old_name: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = old_name.split('''.''') if layer == "0": __lowerCAmelCase = old_name.replace('''0''', '''convolution1''') elif layer == "1": __lowerCAmelCase = old_name.replace('''1''', '''batchnorm_before''') elif layer == "3": __lowerCAmelCase = old_name.replace('''3''', '''convolution2''') else: __lowerCAmelCase = old_name.replace('''4''', '''batchnorm_after''') if "network" in old_name and re.search(r'''\d\.\d''', lowerCamelCase): __lowerCAmelCase = r'''\b\d{2}\b''' if bool(re.search(lowerCamelCase, lowerCamelCase)): __lowerCAmelCase = re.search(r'''\d\.\d\d.''', lowerCamelCase).group() else: __lowerCAmelCase = re.search(r'''\d\.\d.''', lowerCamelCase).group() if int(match[0]) < 6: __lowerCAmelCase = old_name.replace(lowerCamelCase, '''''') __lowerCAmelCase = trimmed_name.replace('''network''', match[0] + '''.meta4D_layers.blocks.''' + match[2:-1]) __lowerCAmelCase = '''intermediate_stages.''' + trimmed_name else: __lowerCAmelCase = old_name.replace(lowerCamelCase, '''''') if int(match[2]) < num_meta4D_last_stage: __lowerCAmelCase = trimmed_name.replace('''network''', '''meta4D_layers.blocks.''' + match[2]) else: __lowerCAmelCase = str(int(match[2]) - num_meta4D_last_stage) __lowerCAmelCase = trimmed_name.replace('''network''', '''meta3D_layers.blocks.''' + layer_index) if "norm1" in old_name: __lowerCAmelCase = trimmed_name.replace('''norm1''', '''layernorm1''') elif "norm2" in old_name: __lowerCAmelCase = trimmed_name.replace('''norm2''', '''layernorm2''') elif "fc1" in old_name: __lowerCAmelCase = trimmed_name.replace('''fc1''', '''linear_in''') elif "fc2" in old_name: __lowerCAmelCase = trimmed_name.replace('''fc2''', '''linear_out''') __lowerCAmelCase = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(r'''.\d.''', lowerCamelCase): __lowerCAmelCase = old_name.replace('''network''', '''intermediate_stages''') if "fc" in new_name: __lowerCAmelCase = new_name.replace('''fc''', '''convolution''') elif ("norm1" in new_name) and ("layernorm1" not in new_name): __lowerCAmelCase = new_name.replace('''norm1''', '''batchnorm_before''') elif ("norm2" in new_name) and ("layernorm2" not in new_name): __lowerCAmelCase = new_name.replace('''norm2''', '''batchnorm_after''') if "proj" in new_name: __lowerCAmelCase = new_name.replace('''proj''', '''projection''') if "dist_head" in new_name: __lowerCAmelCase = new_name.replace('''dist_head''', '''distillation_classifier''') elif "head" in new_name: __lowerCAmelCase = new_name.replace('''head''', '''classifier''') elif "patch_embed" in new_name: __lowerCAmelCase = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": __lowerCAmelCase = new_name.replace('''norm''', '''layernorm''') __lowerCAmelCase = '''efficientformer.''' + new_name else: __lowerCAmelCase = '''efficientformer.encoder.''' + new_name return new_name def __magic_name__( lowerCamelCase, lowerCamelCase): for key in checkpoint.copy().keys(): __lowerCAmelCase = checkpoint.pop(lowerCamelCase) __lowerCAmelCase = val return checkpoint def __magic_name__( ): __lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowerCAmelCase = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase).raw) return image def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = torch.load(lowerCamelCase, map_location='''cpu''')['''model'''] __lowerCAmelCase = EfficientFormerConfig.from_json_file(lowerCamelCase) __lowerCAmelCase = EfficientFormerForImageClassificationWithTeacher(lowerCamelCase) __lowerCAmelCase = '''_'''.join(checkpoint_path.split('''/''')[-1].split('''.''')[0].split('''_''')[:-1]) __lowerCAmelCase = config.depths[-1] - config.num_metaad_blocks + 1 __lowerCAmelCase = convert_torch_checkpoint(lowerCamelCase, lowerCamelCase) model.load_state_dict(lowerCamelCase) model.eval() __lowerCAmelCase = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image __lowerCAmelCase = prepare_img() __lowerCAmelCase = 2_5_6 __lowerCAmelCase = 2_2_4 __lowerCAmelCase = EfficientFormerImageProcessor( size={'''shortest_edge''': image_size}, crop_size={'''height''': crop_size, '''width''': crop_size}, resample=pillow_resamplings['''bicubic'''], ) __lowerCAmelCase = processor(images=lowerCamelCase, return_tensors='''pt''').pixel_values # original processing pipeline __lowerCAmelCase = Compose( [ Resize(lowerCamelCase, interpolation=pillow_resamplings['''bicubic''']), CenterCrop(lowerCamelCase), ToTensor(), Normalize(lowerCamelCase, lowerCamelCase), ]) __lowerCAmelCase = image_transforms(lowerCamelCase).unsqueeze(0) assert torch.allclose(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = model(lowerCamelCase) __lowerCAmelCase = outputs.logits __lowerCAmelCase = (1, 1_0_0_0) if "l1" in model_name: __lowerCAmelCase = torch.Tensor( [-0.13_12, 0.43_53, -1.04_99, -0.51_24, 0.41_83, -0.67_93, -1.37_77, -0.08_93, -0.73_58, -2.43_28]) assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3) assert logits.shape == expected_shape elif "l3" in model_name: __lowerCAmelCase = torch.Tensor( [-1.31_50, -1.54_56, -1.25_56, -0.84_96, -0.71_27, -0.78_97, -0.97_28, -0.30_52, 0.37_51, -0.31_27]) assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3) assert logits.shape == expected_shape elif "l7" in model_name: __lowerCAmelCase = torch.Tensor( [-1.02_83, -1.41_31, -0.56_44, -1.31_15, -0.57_85, -1.20_49, -0.75_28, 0.19_92, -0.38_22, -0.08_78]) assert logits.shape == expected_shape else: raise ValueError( F"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""") # Save Checkpoints Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase) model.save_pretrained(lowerCamelCase) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""") processor.save_pretrained(lowerCamelCase) print(F"""Processor successfuly saved at {pytorch_dump_path}""") if push_to_hub: print('''Pushing model to the hub...''') model.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add model''', use_temp_dir=lowerCamelCase, ) processor.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add image processor''', use_temp_dir=lowerCamelCase, ) if __name__ == "__main__": _UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--pytorch_model_path""", default=None, type=str, required=True, help="""Path to EfficientFormer pytorch checkpoint.""", ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The json file for EfficientFormer model config.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") parser.add_argument( """--no-push_to_hub""", dest="""push_to_hub""", action="""store_false""", help="""Do not push model and image processor to the hub""", ) parser.set_defaults(push_to_hub=True) _UpperCAmelCase : List[str] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
9
1
'''simple docstring''' from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase=1E-12): __lowerCAmelCase = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(lowerCamelCase, axis=1), a_min=lowerCamelCase)).T __lowerCAmelCase = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(lowerCamelCase, axis=1), a_min=lowerCamelCase)).T return jnp.matmul(lowerCamelCase, norm_emb_a.T) class a__ ( nn.Module ): """simple docstring""" __UpperCamelCase : CLIPConfig __UpperCamelCase : jnp.dtype = jnp.floataa def _snake_case (self ): __lowerCAmelCase = FlaxCLIPVisionModule(self.config.vision_config ) __lowerCAmelCase = nn.Dense(self.config.projection_dim , use_bias=__lowercase , dtype=self.dtype ) __lowerCAmelCase = self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim) ) __lowerCAmelCase = self.param( '''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) __lowerCAmelCase = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,) ) __lowerCAmelCase = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,) ) def __call__(self , __lowercase ): __lowerCAmelCase = self.vision_model(__lowercase )[1] __lowerCAmelCase = self.visual_projection(__lowercase ) __lowerCAmelCase = jax_cosine_distance(__lowercase , self.special_care_embeds ) __lowerCAmelCase = jax_cosine_distance(__lowercase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs __lowerCAmelCase = 0.0 __lowerCAmelCase = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment __lowerCAmelCase = jnp.round(__lowercase , 3 ) __lowerCAmelCase = jnp.any(special_scores > 0 , axis=1 , keepdims=__lowercase ) # Use a lower threshold if an image has any special care concept __lowerCAmelCase = is_special_care * 0.0_1 __lowerCAmelCase = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment __lowerCAmelCase = jnp.round(__lowercase , 3 ) __lowerCAmelCase = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict = CLIPConfig __UpperCamelCase : Dict = 'clip_input' __UpperCamelCase : str = FlaxStableDiffusionSafetyCheckerModule def __init__(self , __lowercase , __lowercase = None , __lowercase = 0 , __lowercase = jnp.floataa , __lowercase = True , **__lowercase , ): if input_shape is None: __lowerCAmelCase = (1, 2_24, 2_24, 3) __lowerCAmelCase = self.module_class(config=__lowercase , dtype=__lowercase , **__lowercase ) super().__init__(__lowercase , __lowercase , input_shape=__lowercase , seed=__lowercase , dtype=__lowercase , _do_init=_do_init ) def _snake_case (self , __lowercase , __lowercase , __lowercase = None ): # init input tensor __lowerCAmelCase = jax.random.normal(__lowercase , __lowercase ) __lowerCAmelCase , __lowerCAmelCase = jax.random.split(__lowercase ) __lowerCAmelCase = {'''params''': params_rng, '''dropout''': dropout_rng} __lowerCAmelCase = self.module.init(__lowercase , __lowercase )['''params'''] return random_params def __call__(self , __lowercase , __lowercase = None , ): __lowerCAmelCase = jnp.transpose(__lowercase , (0, 2, 3, 1) ) return self.module.apply( {'''params''': params or self.params} , jnp.array(__lowercase , dtype=jnp.floataa ) , rngs={} , )
9
'''simple docstring''' from __future__ import annotations import math def __magic_name__( lowerCamelCase, lowerCamelCase): if len(lowerCamelCase) != 2 or len(a[0]) != 2 or len(lowerCamelCase) != 2 or len(b[0]) != 2: raise Exception('''Matrices are not 2x2''') __lowerCAmelCase = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def __magic_name__( lowerCamelCase, lowerCamelCase): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(lowerCamelCase)) ] def __magic_name__( lowerCamelCase, lowerCamelCase): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(lowerCamelCase)) ] def __magic_name__( lowerCamelCase): if len(lowerCamelCase) % 2 != 0 or len(a[0]) % 2 != 0: raise Exception('''Odd matrices are not supported!''') __lowerCAmelCase = len(lowerCamelCase) __lowerCAmelCase = matrix_length // 2 __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase)] __lowerCAmelCase = [ [a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase) ] __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase)] __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase)] return top_left, top_right, bot_left, bot_right def __magic_name__( lowerCamelCase): return len(lowerCamelCase), len(matrix[0]) def __magic_name__( lowerCamelCase): print('''\n'''.join(str(lowerCamelCase) for line in matrix)) def __magic_name__( lowerCamelCase, lowerCamelCase): if matrix_dimensions(lowerCamelCase) == (2, 2): return default_matrix_multiplication(lowerCamelCase, lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase) __lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase) __lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = matrix_addition(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase) __lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = matrix_subtraction(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase) # construct the new matrix from our 4 quadrants __lowerCAmelCase = [] for i in range(len(lowerCamelCase)): new_matrix.append(top_left[i] + top_right[i]) for i in range(len(lowerCamelCase)): new_matrix.append(bot_left[i] + bot_right[i]) return new_matrix def __magic_name__( lowerCamelCase, lowerCamelCase): if matrix_dimensions(lowerCamelCase)[1] != matrix_dimensions(lowerCamelCase)[0]: __lowerCAmelCase = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(lowerCamelCase) __lowerCAmelCase = matrix_dimensions(lowerCamelCase) __lowerCAmelCase = matrix_dimensions(lowerCamelCase) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] __lowerCAmelCase = max(*lowerCamelCase, *lowerCamelCase) __lowerCAmelCase = int(math.pow(2, math.ceil(math.loga(lowerCamelCase)))) __lowerCAmelCase = matrixa __lowerCAmelCase = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0, lowerCamelCase): if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): new_matrixa[i].append(0) else: new_matrixa.append([0] * maxim) if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): new_matrixa[i].append(0) else: new_matrixa.append([0] * maxim) __lowerCAmelCase = actual_strassen(lowerCamelCase, lowerCamelCase) # Removing the additional zeros for i in range(0, lowerCamelCase): if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": _UpperCAmelCase : List[str] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] _UpperCAmelCase : Optional[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
9
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class a__ ( metaclass=__A ): """simple docstring""" __UpperCamelCase : Dict = ['keras_nlp'] def __init__(self , *__lowercase , **__lowercase ): requires_backends(self , ['''keras_nlp'''] )
9
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 ) __lowerCAmelCase = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = tokenizer(__lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
9
1
'''simple docstring''' class a__ : """simple docstring""" def __init__(self , __lowercase ): __lowerCAmelCase = len(__lowercase ) __lowerCAmelCase = [0] * len_array if len_array > 0: __lowerCAmelCase = array[0] for i in range(1 , __lowercase ): __lowerCAmelCase = self.prefix_sum[i - 1] + array[i] def _snake_case (self , __lowercase , __lowercase ): if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def _snake_case (self , __lowercase ): __lowerCAmelCase = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__lowercase ) return False if __name__ == "__main__": import doctest doctest.testmod()
9
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase , __lowercase=None , __lowercase=None , __lowercase=0 ): __lowerCAmelCase = 1.0 if scale is None else scale __lowerCAmelCase = 0.0 if loc is None else loc super().__init__(__lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__lowercase )] ) @property def _snake_case (self ): return self.base_dist.mean * self.scale + self.loc @property def _snake_case (self ): return self.base_dist.variance * self.scale**2 @property def _snake_case (self ): return self.variance.sqrt() class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase , **__lowercase ): super().__init__(**__lowercase ) __lowerCAmelCase = args_dim __lowerCAmelCase = nn.ModuleList([nn.Linear(__lowercase , __lowercase ) for dim in args_dim.values()] ) __lowerCAmelCase = domain_map def _snake_case (self , __lowercase ): __lowerCAmelCase = [proj(__lowercase ) for proj in self.proj] return self.domain_map(*__lowercase ) class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase ): super().__init__() __lowerCAmelCase = function def _snake_case (self , __lowercase , *__lowercase ): return self.function(__lowercase , *__lowercase ) class a__ : """simple docstring""" __UpperCamelCase : type __UpperCamelCase : int __UpperCamelCase : Dict[str, int] def __init__(self , __lowercase = 1 ): __lowerCAmelCase = dim __lowerCAmelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def _snake_case (self , __lowercase ): if self.dim == 1: return self.distribution_class(*__lowercase ) else: return Independent(self.distribution_class(*__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , ): __lowerCAmelCase = self._base_distribution(__lowercase ) if loc is None and scale is None: return distr else: return AffineTransformed(__lowercase , loc=__lowercase , scale=__lowercase , event_dim=self.event_dim ) @property def _snake_case (self ): return () if self.dim == 1 else (self.dim,) @property def _snake_case (self ): return len(self.event_shape ) @property def _snake_case (self ): return 0.0 def _snake_case (self , __lowercase ): return ParameterProjection( in_features=__lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def _snake_case (self , *__lowercase ): raise NotImplementedError() @staticmethod def _snake_case (__lowercase ): return (x + torch.sqrt(torch.square(__lowercase ) + 4.0 )) / 2.0 class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} __UpperCamelCase : type = StudentT @classmethod def _snake_case (cls , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) __lowerCAmelCase = 2.0 + cls.squareplus(__lowercase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1} __UpperCamelCase : type = Normal @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1} __UpperCamelCase : type = NegativeBinomial @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def _snake_case (self , __lowercase ): __lowerCAmelCase , __lowerCAmelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=__lowercase , logits=__lowercase ) else: return Independent(self.distribution_class(total_count=__lowercase , logits=__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None ): __lowerCAmelCase , __lowerCAmelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
9
1
'''simple docstring''' import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class a__ ( unittest.TestCase ): """simple docstring""" def __init__(self , __lowercase , __lowercase=2 , __lowercase=56 , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=99 , __lowercase=32 , __lowercase=2 , __lowercase=2 , __lowercase=7 , __lowercase="gelu_new" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=16 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=4 , __lowercase="block_sparse" , __lowercase=True , __lowercase=False , __lowercase=2 , __lowercase=3 , ): __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_attention_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_choices __lowerCAmelCase = rescale_embeddings __lowerCAmelCase = attention_type __lowerCAmelCase = use_bias __lowerCAmelCase = block_size __lowerCAmelCase = num_random_blocks def _snake_case (self ): __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_attention_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowercase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def _snake_case (self ): __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask, } return config, inputs_dict @require_flax class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Dict = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) __UpperCamelCase : Optional[int] = False __UpperCamelCase : List[str] = False def _snake_case (self ): __lowerCAmelCase = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _snake_case (self ): super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _snake_case (self ): super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _snake_case (self ): super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _snake_case (self ): super().test_hidden_states_output() @slow def _snake_case (self ): for model_class_name in self.all_model_classes: __lowerCAmelCase = model_class_name.from_pretrained('''google/bigbird-roberta-base''' ) self.assertIsNotNone(__lowercase ) def _snake_case (self ): if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _snake_case (self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCAmelCase = self._prepare_for_class(__lowercase , __lowercase ) __lowerCAmelCase = model_class(__lowercase ) @jax.jit def model_jitted(__lowercase , __lowercase=None , **__lowercase ): return model(input_ids=__lowercase , attention_mask=__lowercase , **__lowercase ) with self.subTest('''JIT Enabled''' ): __lowerCAmelCase = model_jitted(**__lowercase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __lowerCAmelCase = model_jitted(**__lowercase ).to_tuple() self.assertEqual(len(__lowercase ) , len(__lowercase ) ) for jitted_output, output in zip(__lowercase , __lowercase ): self.assertEqual(jitted_output.shape , output.shape ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase=1e-5 , __lowercase="outputs" , __lowercase=None ): # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith('''outputs.attentions''' ): return else: super().check_pt_flax_outputs(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase )
9
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class a__ ( __A ): """simple docstring""" __UpperCamelCase : Tuple = 'naver-clova-ix/donut-base-finetuned-docvqa' __UpperCamelCase : List[str] = ( 'This is a tool that answers a question about an document (pdf). It takes an input named `document` which ' 'should be the document containing the information, as well as a `question` that is the question about the ' 'document. It returns a text that contains the answer to the question.' ) __UpperCamelCase : Optional[int] = 'document_qa' __UpperCamelCase : Optional[int] = AutoProcessor __UpperCamelCase : Tuple = VisionEncoderDecoderModel __UpperCamelCase : Any = ['image', 'text'] __UpperCamelCase : Optional[Any] = ['text'] def __init__(self , *__lowercase , **__lowercase ): if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' __lowerCAmelCase = task_prompt.replace('''{user_input}''' , __lowercase ) __lowerCAmelCase = self.pre_processor.tokenizer( __lowercase , add_special_tokens=__lowercase , return_tensors='''pt''' ).input_ids __lowerCAmelCase = self.pre_processor(__lowercase , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _snake_case (self , __lowercase ): return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__lowercase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__lowercase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__lowercase , ).sequences def _snake_case (self , __lowercase ): __lowerCAmelCase = self.pre_processor.batch_decode(__lowercase )[0] __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) __lowerCAmelCase = re.sub(R'''<.*?>''' , '''''' , __lowercase , count=1 ).strip() # remove first task start token __lowerCAmelCase = self.pre_processor.tokenajson(__lowercase ) return sequence["answer"]
9
1
'''simple docstring''' def __magic_name__( lowerCamelCase): if num < 0: return False __lowerCAmelCase = num __lowerCAmelCase = 0 while num > 0: __lowerCAmelCase = rev_num * 1_0 + (num % 1_0) num //= 1_0 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
9
'''simple docstring''' def __magic_name__( lowerCamelCase): __lowerCAmelCase = 1 __lowerCAmelCase = 2 while i * i <= n: __lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def __magic_name__( ): __lowerCAmelCase = 1 __lowerCAmelCase = 1 while True: i += 1 t_num += i if count_divisors(lowerCamelCase) > 5_0_0: break return t_num if __name__ == "__main__": print(solution())
9
1
'''simple docstring''' from __future__ import annotations def __magic_name__( lowerCamelCase): __lowerCAmelCase = 0.00 __lowerCAmelCase = 0 for resistor in resistors: if resistor <= 0: __lowerCAmelCase = F"""Resistor at index {index} has a negative or zero value!""" raise ValueError(lowerCamelCase) first_sum += 1 / float(lowerCamelCase) index += 1 return 1 / first_sum def __magic_name__( lowerCamelCase): __lowerCAmelCase = 0.00 __lowerCAmelCase = 0 for resistor in resistors: sum_r += resistor if resistor < 0: __lowerCAmelCase = F"""Resistor at index {index} has a negative value!""" raise ValueError(lowerCamelCase) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
9
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __lowerCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) self.assertTrue(isinstance(dc.token_ids , __lowercase ) ) with self.assertRaises(__lowercase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__lowercase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _snake_case (self ): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __lowerCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__lowercase ): DisjunctiveConstraint(__lowercase ) # fails here def _snake_case (self ): __lowerCAmelCase = [[1, 2, 3], [1, 2, 4]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) __lowerCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(__lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) __lowerCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(__lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(3 ) __lowerCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(__lowercase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _snake_case (self ): __lowerCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
9
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : List[str] = logging.get_logger(__name__) _UpperCAmelCase : Optional[int] = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class a__ ( __A ): """simple docstring""" __UpperCamelCase : List[str] = 'convbert' def __init__(self , __lowercase=3_05_22 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=1 , __lowercase=0 , __lowercase=2 , __lowercase=7_68 , __lowercase=2 , __lowercase=9 , __lowercase=1 , __lowercase=None , **__lowercase , ): super().__init__( pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase , ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = embedding_size __lowerCAmelCase = head_ratio __lowerCAmelCase = conv_kernel_size __lowerCAmelCase = num_groups __lowerCAmelCase = classifier_dropout class a__ ( __A ): """simple docstring""" @property def _snake_case (self ): if self.task == "multiple-choice": __lowerCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
9
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets _UpperCAmelCase : List[str] = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ _UpperCAmelCase : str = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ _UpperCAmelCase : Tuple = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ): if label_map is not None: for old_id, new_id in label_map.items(): __lowerCAmelCase = new_id # turn into Numpy arrays __lowerCAmelCase = np.array(lowerCamelCase) __lowerCAmelCase = np.array(lowerCamelCase) if reduce_labels: __lowerCAmelCase = 2_5_5 __lowerCAmelCase = label - 1 __lowerCAmelCase = 2_5_5 __lowerCAmelCase = label != ignore_index __lowerCAmelCase = np.not_equal(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = pred_label[mask] __lowerCAmelCase = np.array(lowerCamelCase)[mask] __lowerCAmelCase = pred_label[pred_label == label] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ): __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) for result, gt_seg_map in zip(lowerCamelCase, lowerCamelCase): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = intersect_and_union( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = False, ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = total_intersect_and_union( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) # compute metrics __lowerCAmelCase = {} __lowerCAmelCase = total_area_intersect.sum() / total_area_label.sum() __lowerCAmelCase = total_area_intersect / total_area_union __lowerCAmelCase = total_area_intersect / total_area_label __lowerCAmelCase = np.nanmean(lowerCamelCase) __lowerCAmelCase = np.nanmean(lowerCamelCase) __lowerCAmelCase = all_acc __lowerCAmelCase = iou __lowerCAmelCase = acc if nan_to_num is not None: __lowerCAmelCase = {metric: np.nan_to_num(lowerCamelCase, nan=lowerCamelCase) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): """simple docstring""" def _snake_case (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), } ) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = None , __lowercase = None , __lowercase = False , ): __lowerCAmelCase = mean_iou( results=__lowercase , gt_seg_maps=__lowercase , num_labels=__lowercase , ignore_index=__lowercase , nan_to_num=__lowercase , label_map=__lowercase , reduce_labels=__lowercase , ) return iou_result
9
1
'''simple docstring''' from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run _UpperCAmelCase : Union[str, Any] = True except (ImportError, AttributeError): _UpperCAmelCase : Union[str, Any] = object def __magic_name__( *lowerCamelCase, **lowerCamelCase): pass _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Dict = logging.get_logger("""transformers-cli/serving""") def __magic_name__( lowerCamelCase): __lowerCAmelCase = pipeline( task=args.task, model=args.model if args.model else None, config=args.config, tokenizer=args.tokenizer, device=args.device, ) return ServeCommand(lowerCamelCase, args.host, args.port, args.workers) class a__ ( __A ): """simple docstring""" __UpperCamelCase : dict class a__ ( __A ): """simple docstring""" __UpperCamelCase : List[str] __UpperCamelCase : Optional[List[int]] class a__ ( __A ): """simple docstring""" __UpperCamelCase : str class a__ ( __A ): """simple docstring""" __UpperCamelCase : Any class a__ ( __A ): """simple docstring""" @staticmethod def _snake_case (__lowercase ): __lowerCAmelCase = parser.add_parser( '''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''' ) serve_parser.add_argument( '''--task''' , type=__lowercase , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , ) serve_parser.add_argument('''--host''' , type=__lowercase , default='''localhost''' , help='''Interface the server will listen on.''' ) serve_parser.add_argument('''--port''' , type=__lowercase , default=88_88 , help='''Port the serving will listen to.''' ) serve_parser.add_argument('''--workers''' , type=__lowercase , default=1 , help='''Number of http workers''' ) serve_parser.add_argument('''--model''' , type=__lowercase , help='''Model\'s name or path to stored model.''' ) serve_parser.add_argument('''--config''' , type=__lowercase , help='''Model\'s config name or path to stored model.''' ) serve_parser.add_argument('''--tokenizer''' , type=__lowercase , help='''Tokenizer name to use.''' ) serve_parser.add_argument( '''--device''' , type=__lowercase , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) serve_parser.set_defaults(func=__lowercase ) def __init__(self , __lowercase , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = pipeline __lowerCAmelCase = host __lowerCAmelCase = port __lowerCAmelCase = workers if not _serve_dependencies_installed: raise RuntimeError( '''Using serve command requires FastAPI and uvicorn. ''' '''Please install transformers with [serving]: pip install "transformers[serving]".''' '''Or install FastAPI and uvicorn separately.''' ) else: logger.info(F"""Serving model over {host}:{port}""" ) __lowerCAmelCase = FastAPI( routes=[ APIRoute( '''/''' , self.model_info , response_model=__lowercase , response_class=__lowercase , methods=['''GET'''] , ), APIRoute( '''/tokenize''' , self.tokenize , response_model=__lowercase , response_class=__lowercase , methods=['''POST'''] , ), APIRoute( '''/detokenize''' , self.detokenize , response_model=__lowercase , response_class=__lowercase , methods=['''POST'''] , ), APIRoute( '''/forward''' , self.forward , response_model=__lowercase , response_class=__lowercase , methods=['''POST'''] , ), ] , timeout=6_00 , ) def _snake_case (self ): run(self._app , host=self.host , port=self.port , workers=self.workers ) def _snake_case (self ): return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def _snake_case (self , __lowercase = Body(__lowercase , embed=__lowercase ) , __lowercase = Body(__lowercase , embed=__lowercase ) ): try: __lowerCAmelCase = self._pipeline.tokenizer.tokenize(__lowercase ) if return_ids: __lowerCAmelCase = self._pipeline.tokenizer.convert_tokens_to_ids(__lowercase ) return ServeTokenizeResult(tokens=__lowercase , tokens_ids=__lowercase ) else: return ServeTokenizeResult(tokens=__lowercase ) except Exception as e: raise HTTPException(status_code=5_00 , detail={'''model''': '''''', '''error''': str(__lowercase )} ) def _snake_case (self , __lowercase = Body(__lowercase , embed=__lowercase ) , __lowercase = Body(__lowercase , embed=__lowercase ) , __lowercase = Body(__lowercase , embed=__lowercase ) , ): try: __lowerCAmelCase = self._pipeline.tokenizer.decode(__lowercase , __lowercase , __lowercase ) return ServeDeTokenizeResult(model='''''' , text=__lowercase ) except Exception as e: raise HTTPException(status_code=5_00 , detail={'''model''': '''''', '''error''': str(__lowercase )} ) async def _snake_case (self , __lowercase=Body(__lowercase , embed=__lowercase ) ): # Check we don't have empty string if len(__lowercase ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model __lowerCAmelCase = self._pipeline(__lowercase ) return ServeForwardResult(output=__lowercase ) except Exception as e: raise HTTPException(5_00 , {'''error''': str(__lowercase )} )
9
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : str = DebertaTokenizer __UpperCamelCase : str = True __UpperCamelCase : Any = DebertaTokenizerFast def _snake_case (self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __lowerCAmelCase = {'''unk_token''': '''[UNK]'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) def _snake_case (self , **__lowercase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , __lowercase ): __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = '''lower newer''' return input_text, output_text def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __lowerCAmelCase = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __lowerCAmelCase = tokens + [tokenizer.unk_token] __lowerCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = tokenizer('''Hello''' , '''World''' ) __lowerCAmelCase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __lowercase ) @slow def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _snake_case (self ): __lowerCAmelCase = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: __lowerCAmelCase = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] __lowerCAmelCase = tokenizer(__lowercase , padding=__lowercase ) __lowerCAmelCase = [tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) for seq in encoding['''input_ids''']] # fmt: off __lowerCAmelCase = { '''input_ids''': [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on __lowerCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __lowercase ) for expected, decoded in zip(__lowercase , __lowercase ): self.assertEqual(__lowercase , __lowercase )
9
1
'''simple docstring''' import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def __magic_name__( lowerCamelCase, lowerCamelCase=False): try: __lowerCAmelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __lowerCAmelCase = default else: # KEY is set, convert it to True or False. try: __lowerCAmelCase = strtobool(lowerCamelCase) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""") return _value _UpperCAmelCase : Union[str, Any] = parse_flag_from_env("""RUN_SLOW""", default=False) def __magic_name__( lowerCamelCase): return unittest.skip('''Test was skipped''')(lowerCamelCase) def __magic_name__( lowerCamelCase): return unittest.skipUnless(_run_slow_tests, '''test is slow''')(lowerCamelCase) def __magic_name__( lowerCamelCase): return unittest.skipUnless(not torch.cuda.is_available(), '''test requires only a CPU''')(lowerCamelCase) def __magic_name__( lowerCamelCase): return unittest.skipUnless(torch.cuda.is_available(), '''test requires a GPU''')(lowerCamelCase) def __magic_name__( lowerCamelCase): return unittest.skipUnless(is_xpu_available(), '''test requires a XPU''')(lowerCamelCase) def __magic_name__( lowerCamelCase): return unittest.skipUnless(is_mps_available(), '''test requires a `mps` backend support in `torch`''')(lowerCamelCase) def __magic_name__( lowerCamelCase): return unittest.skipUnless( is_transformers_available() and is_datasets_available(), '''test requires the Hugging Face suite''')(lowerCamelCase) def __magic_name__( lowerCamelCase): return unittest.skipUnless(is_bnb_available(), '''test requires the bitsandbytes library''')(lowerCamelCase) def __magic_name__( lowerCamelCase): return unittest.skipUnless(is_tpu_available(), '''test requires TPU''')(lowerCamelCase) def __magic_name__( lowerCamelCase): return unittest.skipUnless(torch.cuda.device_count() == 1, '''test requires a GPU''')(lowerCamelCase) def __magic_name__( lowerCamelCase): return unittest.skipUnless(torch.xpu.device_count() == 1, '''test requires a XPU''')(lowerCamelCase) def __magic_name__( lowerCamelCase): return unittest.skipUnless(torch.cuda.device_count() > 1, '''test requires multiple GPUs''')(lowerCamelCase) def __magic_name__( lowerCamelCase): return unittest.skipUnless(torch.xpu.device_count() > 1, '''test requires multiple XPUs''')(lowerCamelCase) def __magic_name__( lowerCamelCase): return unittest.skipUnless(is_safetensors_available(), '''test requires safetensors''')(lowerCamelCase) def __magic_name__( lowerCamelCase): return unittest.skipUnless(is_deepspeed_available(), '''test requires DeepSpeed''')(lowerCamelCase) def __magic_name__( lowerCamelCase): return unittest.skipUnless(is_torch_version('''>=''', '''1.12.0'''), '''test requires torch version >= 1.12.0''')(lowerCamelCase) def __magic_name__( lowerCamelCase=None, lowerCamelCase=None): if test_case is None: return partial(lowerCamelCase, version=lowerCamelCase) return unittest.skipUnless(is_torch_version('''>=''', lowerCamelCase), F"""test requires torch version >= {version}""")(lowerCamelCase) def __magic_name__( lowerCamelCase): return unittest.skipUnless(is_tensorboard_available(), '''test requires Tensorboard''')(lowerCamelCase) def __magic_name__( lowerCamelCase): return unittest.skipUnless(is_wandb_available(), '''test requires wandb''')(lowerCamelCase) def __magic_name__( lowerCamelCase): return unittest.skipUnless(is_comet_ml_available(), '''test requires comet_ml''')(lowerCamelCase) _UpperCAmelCase : Union[str, Any] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def __magic_name__( lowerCamelCase): return unittest.skipUnless( _atleast_one_tracker_available, '''test requires at least one tracker to be available and for `comet_ml` to not be installed''', )(lowerCamelCase) class a__ ( unittest.TestCase ): """simple docstring""" __UpperCamelCase : int = True @classmethod def _snake_case (cls ): __lowerCAmelCase = tempfile.mkdtemp() @classmethod def _snake_case (cls ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def _snake_case (self ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(__lowercase ) class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self , __lowercase ): __lowerCAmelCase = mocks if isinstance(__lowercase , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def __magic_name__( lowerCamelCase): __lowerCAmelCase = AcceleratorState() __lowerCAmelCase = tensor[None].clone().to(state.device) __lowerCAmelCase = gather(lowerCamelCase).cpu() __lowerCAmelCase = tensor[0].cpu() for i in range(tensors.shape[0]): if not torch.equal(tensors[i], lowerCamelCase): return False return True class a__ : """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = returncode __lowerCAmelCase = stdout __lowerCAmelCase = stderr async def __magic_name__( lowerCamelCase, lowerCamelCase): while True: __lowerCAmelCase = await stream.readline() if line: callback(lowerCamelCase) else: break async def __magic_name__( lowerCamelCase, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=False, lowerCamelCase=False): if echo: print('''\nRunning: ''', ''' '''.join(lowerCamelCase)) __lowerCAmelCase = await asyncio.create_subprocess_exec( cmd[0], *cmd[1:], stdin=lowerCamelCase, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, env=lowerCamelCase, ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __lowerCAmelCase = [] __lowerCAmelCase = [] def tee(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=""): __lowerCAmelCase = line.decode('''utf-8''').rstrip() sink.append(lowerCamelCase) if not quiet: print(lowerCamelCase, lowerCamelCase, file=lowerCamelCase) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout, lambda lowerCamelCase: tee(lowerCamelCase, lowerCamelCase, sys.stdout, label='''stdout:'''))), asyncio.create_task(_read_stream(p.stderr, lambda lowerCamelCase: tee(lowerCamelCase, lowerCamelCase, sys.stderr, label='''stderr:'''))), ], timeout=lowerCamelCase, ) return _RunOutput(await p.wait(), lowerCamelCase, lowerCamelCase) def __magic_name__( lowerCamelCase, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=1_8_0, lowerCamelCase=False, lowerCamelCase=True): __lowerCAmelCase = asyncio.get_event_loop() __lowerCAmelCase = loop.run_until_complete( _stream_subprocess(lowerCamelCase, env=lowerCamelCase, stdin=lowerCamelCase, timeout=lowerCamelCase, quiet=lowerCamelCase, echo=lowerCamelCase)) __lowerCAmelCase = ''' '''.join(lowerCamelCase) if result.returncode > 0: __lowerCAmelCase = '''\n'''.join(result.stderr) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""") return result class a__ ( __A ): """simple docstring""" pass def __magic_name__( lowerCamelCase, lowerCamelCase=False): try: __lowerCAmelCase = subprocess.check_output(lowerCamelCase, stderr=subprocess.STDOUT) if return_stdout: if hasattr(lowerCamelCase, '''decode'''): __lowerCAmelCase = output.decode('''utf-8''') return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"""Command `{" ".join(lowerCamelCase)}` failed with the following error:\n\n{e.output.decode()}""") from e
9
'''simple docstring''' import argparse import datetime def __magic_name__( lowerCamelCase): __lowerCAmelCase = { '''0''': '''Sunday''', '''1''': '''Monday''', '''2''': '''Tuesday''', '''3''': '''Wednesday''', '''4''': '''Thursday''', '''5''': '''Friday''', '''6''': '''Saturday''', } __lowerCAmelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowerCamelCase) < 1_1: raise ValueError('''Must be 10 characters long''') # Get month __lowerCAmelCase = int(date_input[0] + date_input[1]) # Validate if not 0 < m < 1_3: raise ValueError('''Month must be between 1 - 12''') __lowerCAmelCase = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''') # Get day __lowerCAmelCase = int(date_input[3] + date_input[4]) # Validate if not 0 < d < 3_2: raise ValueError('''Date must be between 1 - 31''') # Get second separator __lowerCAmelCase = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''') # Get year __lowerCAmelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) # Arbitrary year range if not 4_5 < y < 8_5_0_0: raise ValueError( '''Year out of range. There has to be some sort of limit...right?''') # Get datetime obj for validation __lowerCAmelCase = datetime.date(int(lowerCamelCase), int(lowerCamelCase), int(lowerCamelCase)) # Start math if m <= 2: __lowerCAmelCase = y - 1 __lowerCAmelCase = m + 1_2 # maths var __lowerCAmelCase = int(str(lowerCamelCase)[:2]) __lowerCAmelCase = int(str(lowerCamelCase)[2:]) __lowerCAmelCase = int(2.6 * m - 5.39) __lowerCAmelCase = int(c / 4) __lowerCAmelCase = int(k / 4) __lowerCAmelCase = int(d + k) __lowerCAmelCase = int(t + u + v + x) __lowerCAmelCase = int(z - (2 * c)) __lowerCAmelCase = round(w % 7) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('''The date was evaluated incorrectly. Contact developer.''') # Response __lowerCAmelCase = F"""Your date {date_input}, is a {days[str(lowerCamelCase)]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase : List[str] = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) _UpperCAmelCase : Dict = parser.parse_args() zeller(args.date_input)
9
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) class a__ ( __A ): """simple docstring""" def __init__(self , *__lowercase , **__lowercase ): warnings.warn( '''The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DonutImageProcessor instead.''' , __lowercase , ) super().__init__(*__lowercase , **__lowercase )
9
'''simple docstring''' import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[Any] = ConsistencyModelPipeline __UpperCamelCase : Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __UpperCamelCase : int = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt __UpperCamelCase : List[Any] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) @property def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet''' , ) return unet @property def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , ) return unet def _snake_case (self , __lowercase=False ): if class_cond: __lowerCAmelCase = self.dummy_cond_unet else: __lowerCAmelCase = self.dummy_uncond_unet # Default to CM multistep sampler __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, } return components def _snake_case (self , __lowercase , __lowercase=0 ): if str(__lowercase ).startswith('''mps''' ): __lowerCAmelCase = torch.manual_seed(__lowercase ) else: __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = { '''batch_size''': 1, '''num_inference_steps''': None, '''timesteps''': [22, 0], '''generator''': generator, '''output_type''': '''np''', } return inputs def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase ) __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 0 __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase ) __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = 0 __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case (self , __lowercase=0 , __lowercase=False , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ): __lowerCAmelCase = torch.manual_seed(__lowercase ) __lowerCAmelCase = { '''num_inference_steps''': None, '''timesteps''': [22, 0], '''class_labels''': 0, '''generator''': generator, '''output_type''': '''np''', } if get_fixed_latents: __lowerCAmelCase = self.get_fixed_latents(seed=__lowercase , device=__lowercase , dtype=__lowercase , shape=__lowercase ) __lowerCAmelCase = latents return inputs def _snake_case (self , __lowercase=0 , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ): if type(__lowercase ) == str: __lowerCAmelCase = torch.device(__lowercase ) __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = randn_tensor(__lowercase , generator=__lowercase , device=__lowercase , dtype=__lowercase ) return latents def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ): __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ): __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
9
1
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed _UpperCAmelCase : List[Any] = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f"""{bindir}/../../examples/pytorch/translation"""): from run_translation import main # noqa set_seed(4_2) _UpperCAmelCase : Tuple = """sshleifer/student_marian_en_ro_6_1""" _UpperCAmelCase : Dict = """sshleifer/tiny-mbart""" @require_torch class a__ ( __A ): """simple docstring""" def _snake_case (self , __lowercase=False , __lowercase=None , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=True , ): __lowerCAmelCase = self.run_trainer( eval_steps=1 , max_len=12 , model_name=__lowercase , num_train_epochs=1 , distributed=__lowercase , extra_args_str=__lowercase , predict_with_generate=__lowercase , do_train=__lowercase , do_eval=__lowercase , do_predict=__lowercase , ) __lowerCAmelCase = TrainerState.load_from_json(os.path.join(__lowercase , '''trainer_state.json''' ) ).log_history if not do_eval: return __lowerCAmelCase = [log for log in logs if '''eval_loss''' in log.keys()] __lowerCAmelCase = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats __lowerCAmelCase = eval_metrics[-1] assert isinstance(last_step_stats['''eval_bleu'''] , __lowercase ) assert not math.isnan(float(last_step_stats['''eval_loss'''] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def _snake_case (self ): self.run_seqaseq_quick() @require_torch_multi_gpu def _snake_case (self ): self.run_seqaseq_quick(distributed=__lowercase ) @require_torch_multi_gpu def _snake_case (self ): self.run_seqaseq_quick(distributed=__lowercase ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def _snake_case (self ): self.run_seqaseq_quick(distributed=__lowercase , extra_args_str='''--sharded_ddp simple''' ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def _snake_case (self ): self.run_seqaseq_quick(distributed=__lowercase , extra_args_str='''--sharded_ddp simple --fp16''' ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def _snake_case (self ): self.run_seqaseq_quick(distributed=__lowercase , extra_args_str='''--sharded_ddp zero_dp_2''' , predict_with_generate=__lowercase ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def _snake_case (self ): self.run_seqaseq_quick( distributed=__lowercase , extra_args_str='''--sharded_ddp zero_dp_2 --fp16''' , predict_with_generate=__lowercase ) @require_apex @require_torch_gpu def _snake_case (self ): # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=__lowercase , extra_args_str='''--fp16 --fp16_backend=apex''' ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=__lowercase , extra_args_str='''--fp16 --fp16_backend=apex''' ) @parameterized.expand(['''base''', '''low''', '''high''', '''mixed'''] ) @require_torch_multi_gpu def _snake_case (self , __lowercase ): # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout __lowerCAmelCase = { # test with the default log_level - should be info and thus log info once '''base''': {'''extra_args_str''': '''''', '''n_matches''': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes '''low''': {'''extra_args_str''': '''--log_level debug --log_level_replica debug''', '''n_matches''': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica '''high''': {'''extra_args_str''': '''--log_level error --log_level_replica debug''', '''n_matches''': 1}, # test with high log_level and log_level_replica - should be quiet on all processes '''mixed''': {'''extra_args_str''': '''--log_level error --log_level_replica error''', '''n_matches''': 0}, } __lowerCAmelCase = experiments[experiment_id] __lowerCAmelCase = {'''distributed''': True, '''predict_with_generate''': False, '''do_eval''': False, '''do_predict''': False} __lowerCAmelCase = '''Running training''' with CaptureStderr() as cl: self.run_seqaseq_quick(**__lowercase , extra_args_str=data['''extra_args_str'''] ) __lowerCAmelCase = len(re.findall(__lowercase , cl.err ) ) self.assertEqual(__lowercase , data['''n_matches'''] ) @slow def _snake_case (self ): __lowerCAmelCase = self.run_trainer( eval_steps=2 , max_len=1_28 , model_name=__lowercase , learning_rate=3e-4 , num_train_epochs=10 , distributed=__lowercase , ) # Check metrics __lowerCAmelCase = TrainerState.load_from_json(os.path.join(__lowercase , '''trainer_state.json''' ) ).log_history __lowerCAmelCase = [log for log in logs if '''eval_loss''' in log.keys()] __lowerCAmelCase = eval_metrics[0] __lowerCAmelCase = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['''eval_bleu'''] , __lowercase ) # test if do_predict saves generations and metrics __lowerCAmelCase = os.listdir(__lowercase ) __lowerCAmelCase = {os.path.basename(__lowercase ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def _snake_case (self ): from transformers.training_args import OptimizerNames def train_and_return_metrics(__lowercase ) -> Tuple[int, float]: __lowerCAmelCase = '''--skip_memory_metrics 0''' __lowerCAmelCase = self.run_trainer( max_len=1_28 , model_name=__lowercase , learning_rate=3e-4 , num_train_epochs=1 , optim=__lowercase , distributed=__lowercase , extra_args_str=__lowercase , do_eval=__lowercase , do_predict=__lowercase , n_gpus_to_use=1 , ) # Check metrics __lowerCAmelCase = TrainerState.load_from_json(Path(__lowercase , '''trainer_state.json''' ) ).log_history __lowerCAmelCase = int(logs[0]['''train_mem_gpu_peaked_delta'''] / 2**20 ) __lowerCAmelCase = int(logs[0]['''train_mem_gpu_alloc_delta'''] / 2**20 ) __lowerCAmelCase = logs[0]['''train_loss'''] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) __lowerCAmelCase = gpu_alloc_mem_orig - gpu_alloc_mem_bnb __lowerCAmelCase = gpu_peak_mem_orig + gpu_alloc_mem_orig __lowerCAmelCase = gpu_peak_mem_bnb + gpu_alloc_mem_bnb __lowerCAmelCase = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings __lowerCAmelCase = 1_20 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( __lowercase , __lowercase , '''should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got''' F""" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and""" F""" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB""" , ) self.assertGreater( __lowercase , __lowercase , '''should use ~150MB less total gpu memory with BNB, compared to without it for this model but got''' F""" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and""" F""" gpu_total_mem_bnb={gpu_total_mem_bnb}MB""" , ) self.assertEqual( __lowercase , __lowercase , F"""loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}""" ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase = 3e-3 , __lowercase = "adafactor" , __lowercase = False , __lowercase = None , __lowercase = 0 , __lowercase = True , __lowercase = True , __lowercase = True , __lowercase = True , __lowercase = None , ): __lowerCAmelCase = self.test_file_dir / '''../fixtures/tests_samples/wmt_en_ro''' __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = F""" --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(__lowercase )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(__lowercase )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX """.split() __lowerCAmelCase = F""" --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(__lowercase )} """.split() __lowerCAmelCase = ''' --do_predict '''.split() __lowerCAmelCase = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F"""--optim {optim}""".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: __lowerCAmelCase = get_gpu_count() __lowerCAmelCase = get_torch_dist_unique_port() __lowerCAmelCase = F""" -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py """.split() __lowerCAmelCase = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(__lowercase , env=self.get_env() ) else: __lowerCAmelCase = ['''run_translation.py'''] + args with patch.object(__lowercase , '''argv''' , __lowercase ): main() return output_dir
9
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _UpperCAmelCase : List[Any] = datasets.load_iris() _UpperCAmelCase : Dict = np.array(data["""data"""]) _UpperCAmelCase : int = np.array(data["""target"""]) _UpperCAmelCase : str = data["""target_names"""] _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = train_test_split(X, y) def __magic_name__( lowerCamelCase, lowerCamelCase): return np.linalg.norm(np.array(lowerCamelCase) - np.array(lowerCamelCase)) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=5): __lowerCAmelCase = zip(lowerCamelCase, lowerCamelCase) # List of distances of all points from the point to be classified __lowerCAmelCase = [] for data_point in data: __lowerCAmelCase = euclidean_distance(data_point[0], lowerCamelCase) distances.append((distance, data_point[1])) # Choosing 'k' points with the least distances. __lowerCAmelCase = [i[1] for i in sorted(lowerCamelCase)[:k]] # Most commonly occurring class among them # is the class into which the point is classified __lowerCAmelCase = Counter(lowerCamelCase).most_common(1)[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
9
1
'''simple docstring''' import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[Any] = ConsistencyModelPipeline __UpperCamelCase : Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __UpperCamelCase : int = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt __UpperCamelCase : List[Any] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) @property def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet''' , ) return unet @property def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , ) return unet def _snake_case (self , __lowercase=False ): if class_cond: __lowerCAmelCase = self.dummy_cond_unet else: __lowerCAmelCase = self.dummy_uncond_unet # Default to CM multistep sampler __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, } return components def _snake_case (self , __lowercase , __lowercase=0 ): if str(__lowercase ).startswith('''mps''' ): __lowerCAmelCase = torch.manual_seed(__lowercase ) else: __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = { '''batch_size''': 1, '''num_inference_steps''': None, '''timesteps''': [22, 0], '''generator''': generator, '''output_type''': '''np''', } return inputs def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase ) __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 0 __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase ) __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = 0 __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case (self , __lowercase=0 , __lowercase=False , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ): __lowerCAmelCase = torch.manual_seed(__lowercase ) __lowerCAmelCase = { '''num_inference_steps''': None, '''timesteps''': [22, 0], '''class_labels''': 0, '''generator''': generator, '''output_type''': '''np''', } if get_fixed_latents: __lowerCAmelCase = self.get_fixed_latents(seed=__lowercase , device=__lowercase , dtype=__lowercase , shape=__lowercase ) __lowerCAmelCase = latents return inputs def _snake_case (self , __lowercase=0 , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ): if type(__lowercase ) == str: __lowerCAmelCase = torch.device(__lowercase ) __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = randn_tensor(__lowercase , generator=__lowercase , device=__lowercase , dtype=__lowercase ) return latents def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ): __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ): __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
9
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase ) def _snake_case (self , **__lowercase ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase ) __lowerCAmelCase = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase , return_tensors='''np''' ) __lowerCAmelCase = tokenizer(__lowercase , return_tensors='''np''' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = ['''cat''', '''nasa badge'''] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = [['''cat''', '''nasa badge'''], ['''person''']] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 __lowerCAmelCase = len(__lowercase ) __lowerCAmelCase = max([len(__lowercase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = ['''cat''', '''nasa badge'''] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 __lowerCAmelCase = inputs['''input_ids'''] __lowerCAmelCase = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(images=__lowercase , query_images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase )
9
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : int = logging.get_logger(__name__) _UpperCAmelCase : Union[str, Any] = """▁""" _UpperCAmelCase : str = {"""vocab_file""": """spiece.model"""} _UpperCAmelCase : List[str] = { """vocab_file""": { """google/reformer-crime-and-punishment""": ( """https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model""" ) } } _UpperCAmelCase : Any = { """google/reformer-crime-and-punishment""": 5_2_4_2_8_8, } class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict = VOCAB_FILES_NAMES __UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Tuple = ['input_ids', 'attention_mask'] def __init__(self , __lowercase , __lowercase="</s>" , __lowercase="<unk>" , __lowercase=[] , __lowercase = None , **__lowercase , ): __lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__lowercase , unk_token=__lowercase , additional_special_tokens=__lowercase , sp_model_kwargs=self.sp_model_kwargs , **__lowercase , ) __lowerCAmelCase = vocab_file __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowercase ) @property def _snake_case (self ): return self.sp_model.get_piece_size() def _snake_case (self ): __lowerCAmelCase = {self.convert_ids_to_tokens(__lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ): __lowerCAmelCase = self.__dict__.copy() __lowerCAmelCase = None return state def __setstate__(self , __lowercase ): __lowerCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __lowerCAmelCase = {} __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case (self , __lowercase ): return self.sp_model.encode(__lowercase , out_type=__lowercase ) def _snake_case (self , __lowercase ): return self.sp_model.piece_to_id(__lowercase ) def _snake_case (self , __lowercase ): if index < self.sp_model.get_piece_size(): __lowerCAmelCase = self.sp_model.IdToPiece(__lowercase ) return token def _snake_case (self , __lowercase ): __lowerCAmelCase = [] __lowerCAmelCase = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__lowercase ) + token __lowerCAmelCase = [] else: current_sub_tokens.append(__lowercase ) out_string += self.sp_model.decode(__lowercase ) return out_string.strip() def _snake_case (self , __lowercase , __lowercase = None ): if not os.path.isdir(__lowercase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase = os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowercase ) elif not os.path.isfile(self.vocab_file ): with open(__lowercase , '''wb''' ) as fi: __lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(__lowercase ) return (out_vocab_file,)
9
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __magic_name__( ): __lowerCAmelCase = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0)] __lowerCAmelCase = randint(-5_0_0_0, 5_0_0_0) return (arr, r) _UpperCAmelCase : Dict = make_dataset() def __magic_name__( lowerCamelCase, lowerCamelCase): for triplet in permutations(lowerCamelCase, 3): if sum(lowerCamelCase) == target: return tuple(sorted(lowerCamelCase)) return (0, 0, 0) def __magic_name__( lowerCamelCase, lowerCamelCase): arr.sort() __lowerCAmelCase = len(lowerCamelCase) for i in range(n - 1): __lowerCAmelCase , __lowerCAmelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __magic_name__( ): __lowerCAmelCase = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' __lowerCAmelCase = ''' triplet_sum1(*dataset) ''' __lowerCAmelCase = ''' triplet_sum2(*dataset) ''' __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) return (min(lowerCamelCase), min(lowerCamelCase)) if __name__ == "__main__": from doctest import testmod testmod() _UpperCAmelCase : Union[str, Any] = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
9
1
'''simple docstring''' class a__ : """simple docstring""" def __init__(self , __lowercase ): # we need a list not a string, so do something to change the type __lowerCAmelCase = arr.split(''',''' ) def _snake_case (self ): __lowerCAmelCase = [int(self.array[0] )] * len(self.array ) __lowerCAmelCase = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): __lowerCAmelCase = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) __lowerCAmelCase = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": _UpperCAmelCase : List[str] = input("""please input some numbers:""") _UpperCAmelCase : Tuple = SubArray(whole_array) _UpperCAmelCase : List[Any] = array.solve_sub_array() print(("""the results is:""", re))
9
'''simple docstring''' import numpy as np def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = 1E-12, lowerCamelCase = 1_0_0, ): assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[1] # Ensure proper dimensionality. assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(lowerCamelCase) == np.iscomplexobj(lowerCamelCase) __lowerCAmelCase = np.iscomplexobj(lowerCamelCase) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(lowerCamelCase, input_matrix.conj().T) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __lowerCAmelCase = False __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 1E12 while not convergence: # Multiple matrix by the vector. __lowerCAmelCase = np.dot(lowerCamelCase, lowerCamelCase) # Normalize the resulting output vector. __lowerCAmelCase = w / np.linalg.norm(lowerCamelCase) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __lowerCAmelCase = vector.conj().T if is_complex else vector.T __lowerCAmelCase = np.dot(lowerCamelCase, np.dot(lowerCamelCase, lowerCamelCase)) # Check convergence. __lowerCAmelCase = np.abs(lambda_ - lambda_previous) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __lowerCAmelCase = True __lowerCAmelCase = lambda_ if is_complex: __lowerCAmelCase = np.real(lambda_) return lambda_, vector def __magic_name__( ): __lowerCAmelCase = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]]) __lowerCAmelCase = np.array([4_1, 4, 2_0]) __lowerCAmelCase = real_input_matrix.astype(np.complexaaa) __lowerCAmelCase = np.triu(1J * complex_input_matrix, 1) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __lowerCAmelCase = np.array([4_1, 4, 2_0]).astype(np.complexaaa) for problem_type in ["real", "complex"]: if problem_type == "real": __lowerCAmelCase = real_input_matrix __lowerCAmelCase = real_vector elif problem_type == "complex": __lowerCAmelCase = complex_input_matrix __lowerCAmelCase = complex_vector # Our implementation. __lowerCAmelCase , __lowerCAmelCase = power_iteration(lowerCamelCase, lowerCamelCase) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __lowerCAmelCase , __lowerCAmelCase = np.linalg.eigh(lowerCamelCase) # Last eigenvalue is the maximum one. __lowerCAmelCase = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __lowerCAmelCase = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(lowerCamelCase) - np.abs(lowerCamelCase)) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
9
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : List[str] = logging.get_logger(__name__) _UpperCAmelCase : Union[str, Any] = { """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class a__ ( __A ): """simple docstring""" __UpperCamelCase : Tuple = 'data2vec-vision' def __init__(self , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.0 , __lowercase=0.0 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=2_24 , __lowercase=16 , __lowercase=3 , __lowercase=False , __lowercase=False , __lowercase=False , __lowercase=False , __lowercase=0.1 , __lowercase=0.1 , __lowercase=True , __lowercase=[3, 5, 7, 11] , __lowercase=[1, 2, 3, 6] , __lowercase=True , __lowercase=0.4 , __lowercase=2_56 , __lowercase=1 , __lowercase=False , __lowercase=2_55 , **__lowercase , ): super().__init__(**__lowercase ) __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = use_mask_token __lowerCAmelCase = use_absolute_position_embeddings __lowerCAmelCase = use_relative_position_bias __lowerCAmelCase = use_shared_relative_position_bias __lowerCAmelCase = layer_scale_init_value __lowerCAmelCase = drop_path_rate __lowerCAmelCase = use_mean_pooling # decode head attributes (semantic segmentation) __lowerCAmelCase = out_indices __lowerCAmelCase = pool_scales # auxiliary head attributes (semantic segmentation) __lowerCAmelCase = use_auxiliary_head __lowerCAmelCase = auxiliary_loss_weight __lowerCAmelCase = auxiliary_channels __lowerCAmelCase = auxiliary_num_convs __lowerCAmelCase = auxiliary_concat_input __lowerCAmelCase = semantic_loss_ignore_index class a__ ( __A ): """simple docstring""" __UpperCamelCase : Any = version.parse('1.11' ) @property def _snake_case (self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _snake_case (self ): return 1e-4
9
'''simple docstring''' from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _UpperCAmelCase : str = logging.get_logger(__name__) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): return [ int(1_0_0_0 * (box[0] / width)), int(1_0_0_0 * (box[1] / height)), int(1_0_0_0 * (box[2] / width)), int(1_0_0_0 * (box[3] / height)), ] def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = None): __lowerCAmelCase = tesseract_config if tesseract_config is not None else '''''' # apply OCR __lowerCAmelCase = to_pil_image(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = pil_image.size __lowerCAmelCase = pytesseract.image_to_data(lowerCamelCase, lang=lowerCamelCase, output_type='''dict''', config=lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates __lowerCAmelCase = [idx for idx, word in enumerate(lowerCamelCase) if not word.strip()] __lowerCAmelCase = [word for idx, word in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __lowerCAmelCase = [] for x, y, w, h in zip(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [x, y, x + w, y + h] actual_boxes.append(lowerCamelCase) # finally, normalize the bounding boxes __lowerCAmelCase = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowerCamelCase, lowerCamelCase, lowerCamelCase)) assert len(lowerCamelCase) == len(lowerCamelCase), "Not as many words as there are bounding boxes" return words, normalized_boxes class a__ ( __A ): """simple docstring""" __UpperCamelCase : str = ['pixel_values'] def __init__(self , __lowercase = True , __lowercase = None , __lowercase = PILImageResampling.BILINEAR , __lowercase = True , __lowercase = None , __lowercase = "" , **__lowercase , ): super().__init__(**__lowercase ) __lowerCAmelCase = size if size is not None else {'''height''': 2_24, '''width''': 2_24} __lowerCAmelCase = get_size_dict(__lowercase ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = apply_ocr __lowerCAmelCase = ocr_lang __lowerCAmelCase = tesseract_config def _snake_case (self , __lowercase , __lowercase , __lowercase = PILImageResampling.BILINEAR , __lowercase = None , **__lowercase , ): __lowerCAmelCase = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) __lowerCAmelCase = (size['''height'''], size['''width''']) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ): __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(__lowercase ) __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = apply_ocr if apply_ocr is not None else self.apply_ocr __lowerCAmelCase = ocr_lang if ocr_lang is not None else self.ocr_lang __lowerCAmelCase = tesseract_config if tesseract_config is not None else self.tesseract_config __lowerCAmelCase = make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(__lowercase ) for image in images] if apply_ocr: requires_backends(self , '''pytesseract''' ) __lowerCAmelCase = [] __lowerCAmelCase = [] for image in images: __lowerCAmelCase , __lowerCAmelCase = apply_tesseract(__lowercase , __lowercase , __lowercase ) words_batch.append(__lowercase ) boxes_batch.append(__lowercase ) if do_resize: __lowerCAmelCase = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) __lowerCAmelCase = [flip_channel_order(__lowercase ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] __lowerCAmelCase = BatchFeature(data={'''pixel_values''': images} , tensor_type=__lowercase ) if apply_ocr: __lowerCAmelCase = words_batch __lowerCAmelCase = boxes_batch return data
9
1
'''simple docstring''' from itertools import product def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = sides_number __lowerCAmelCase = max_face_number * dice_number __lowerCAmelCase = [0] * (max_total + 1) __lowerCAmelCase = 1 __lowerCAmelCase = range(lowerCamelCase, max_face_number + 1) for dice_numbers in product(lowerCamelCase, repeat=lowerCamelCase): __lowerCAmelCase = sum(lowerCamelCase) totals_frequencies[total] += 1 return totals_frequencies def __magic_name__( ): __lowerCAmelCase = total_frequency_distribution( sides_number=4, dice_number=9) __lowerCAmelCase = total_frequency_distribution( sides_number=6, dice_number=6) __lowerCAmelCase = 0 __lowerCAmelCase = 9 __lowerCAmelCase = 4 * 9 __lowerCAmelCase = 6 for peter_total in range(lowerCamelCase, max_peter_total + 1): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total]) __lowerCAmelCase = (4**9) * (6**6) __lowerCAmelCase = peter_wins_count / total_games_number __lowerCAmelCase = round(lowerCamelCase, ndigits=7) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
9
'''simple docstring''' from ..utils import DummyObject, requires_backends class a__ ( metaclass=__A ): """simple docstring""" __UpperCamelCase : int = ['torch', 'scipy'] def __init__(self , *__lowercase , **__lowercase ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] )
9
1
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _UpperCAmelCase : Union[str, Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _UpperCAmelCase : List[Any] = 2_5_0_0_0_4 _UpperCAmelCase : Union[str, Any] = 2_5_0_0_2_0 @require_sentencepiece @require_tokenizers class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : str = MBartTokenizer __UpperCamelCase : Union[str, Any] = MBartTokenizerFast __UpperCamelCase : int = True __UpperCamelCase : Tuple = True def _snake_case (self ): super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase = MBartTokenizer(__lowercase , keep_accents=__lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = MBartTokenizer(__lowercase , keep_accents=__lowercase ) __lowerCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowercase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __lowerCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __lowerCAmelCase = tokenizer.convert_tokens_to_ids(__lowercase ) self.assertListEqual( __lowercase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(__lowercase ) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def _snake_case (self ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __lowerCAmelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__lowercase , **__lowercase ) __lowerCAmelCase = self.tokenizer_class.from_pretrained(__lowercase , **__lowercase ) __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = tokenizer_r.save_pretrained(__lowercase ) __lowerCAmelCase = tokenizer_p.save_pretrained(__lowercase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __lowerCAmelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(__lowercase , __lowercase ) # Checks everything loads correctly in the same way __lowerCAmelCase = tokenizer_r.from_pretrained(__lowercase ) __lowerCAmelCase = tokenizer_p.from_pretrained(__lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowercase , __lowercase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__lowercase ) # Save tokenizer rust, legacy_format=True __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = tokenizer_r.save_pretrained(__lowercase , legacy_format=__lowercase ) __lowerCAmelCase = tokenizer_p.save_pretrained(__lowercase ) # Checks it save with the same files self.assertSequenceEqual(__lowercase , __lowercase ) # Checks everything loads correctly in the same way __lowerCAmelCase = tokenizer_r.from_pretrained(__lowercase ) __lowerCAmelCase = tokenizer_p.from_pretrained(__lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowercase , __lowercase ) ) shutil.rmtree(__lowercase ) # Save tokenizer rust, legacy_format=False __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = tokenizer_r.save_pretrained(__lowercase , legacy_format=__lowercase ) __lowerCAmelCase = tokenizer_p.save_pretrained(__lowercase ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __lowerCAmelCase = tokenizer_r.from_pretrained(__lowercase ) __lowerCAmelCase = tokenizer_p.from_pretrained(__lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowercase , __lowercase ) ) shutil.rmtree(__lowercase ) @require_torch @require_sentencepiece @require_tokenizers class a__ ( unittest.TestCase ): """simple docstring""" __UpperCamelCase : Any = 'facebook/mbart-large-en-ro' __UpperCamelCase : Tuple = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] __UpperCamelCase : List[Any] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] __UpperCamelCase : str = [8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2, EN_CODE] @classmethod def _snake_case (cls ): __lowerCAmelCase = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) __lowerCAmelCase = 1 return cls def _snake_case (self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 ) def _snake_case (self ): __lowerCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __lowercase ) def _snake_case (self ): self.assertIn(__lowercase , self.tokenizer.all_special_ids ) __lowerCAmelCase = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] __lowerCAmelCase = self.tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) __lowerCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__lowercase ) self.assertEqual(__lowercase , __lowercase ) self.assertNotIn(self.tokenizer.eos_token , __lowercase ) def _snake_case (self ): __lowerCAmelCase = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , __lowercase ) __lowerCAmelCase = 10 __lowerCAmelCase = self.tokenizer(__lowercase , max_length=__lowercase , truncation=__lowercase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , __lowercase ) self.assertEqual(len(__lowercase ) , __lowercase ) def _snake_case (self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_26, 25_00_01] ) def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__lowercase ) __lowerCAmelCase = MBartTokenizer.from_pretrained(__lowercase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __lowercase ) @require_torch def _snake_case (self ): __lowerCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__lowercase , return_tensors='''pt''' ) __lowerCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def _snake_case (self ): __lowerCAmelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__lowercase , truncation=__lowercase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) __lowerCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __lowerCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __lowercase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def _snake_case (self ): __lowerCAmelCase = self.tokenizer(self.src_text , padding=__lowercase , truncation=__lowercase , max_length=3 , return_tensors='''pt''' ) __lowerCAmelCase = self.tokenizer( text_target=self.tgt_text , padding=__lowercase , truncation=__lowercase , max_length=10 , return_tensors='''pt''' ) __lowerCAmelCase = targets['''input_ids'''] __lowerCAmelCase = shift_tokens_right(__lowercase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _snake_case (self ): __lowerCAmelCase = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(__lowercase ) , { # A, test, EOS, en_XX '''input_ids''': [[62, 30_34, 2, 25_00_04]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_00_01, } , )
9
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class a__ ( unittest.TestCase ): """simple docstring""" def __init__(self , __lowercase , __lowercase = True , __lowercase = None , __lowercase = 32 , __lowercase = True , __lowercase = 1 / 2_55 , __lowercase = True , __lowercase = True , __lowercase = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , __lowercase = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , __lowercase = True , __lowercase=7 , __lowercase=30 , __lowercase=4_00 , __lowercase=3 , ): __lowerCAmelCase = parent __lowerCAmelCase = do_resize __lowerCAmelCase = size if size is not None else {'''shortest_edge''': 2_88} __lowerCAmelCase = size_divisor __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = do_center_crop __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = do_pad __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution def _snake_case (self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def _snake_case (self , __lowercase , __lowercase=False ): if not batched: __lowerCAmelCase = self.size['''shortest_edge'''] __lowerCAmelCase = image_inputs[0] if isinstance(__lowercase , Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image.size else: __lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2] __lowerCAmelCase = size / min(__lowercase , __lowercase ) if h < w: __lowerCAmelCase , __lowerCAmelCase = size, scale * w else: __lowerCAmelCase , __lowerCAmelCase = scale * h, size __lowerCAmelCase = int((13_33 / 8_00) * size ) if max(__lowercase , __lowercase ) > max_size: __lowerCAmelCase = max_size / max(__lowercase , __lowercase ) __lowerCAmelCase = newh * scale __lowerCAmelCase = neww * scale __lowerCAmelCase , __lowerCAmelCase = int(newh + 0.5 ), int(neww + 0.5 ) __lowerCAmelCase , __lowerCAmelCase = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __lowerCAmelCase = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[0] )[0] __lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Any = BridgeTowerImageProcessor if is_vision_available() else None def _snake_case (self ): __lowerCAmelCase = BridgeTowerImageProcessingTester(self ) @property def _snake_case (self ): return self.image_processor_tester.prepare_image_processor_dict() def _snake_case (self ): __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowercase , '''image_std''' ) ) self.assertTrue(hasattr(__lowercase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowercase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowercase , '''size''' ) ) self.assertTrue(hasattr(__lowercase , '''size_divisor''' ) ) def _snake_case (self ): pass def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , Image.Image ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
9
1
'''simple docstring''' import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = XCLIPTextConfig() # derive patch size from model name __lowerCAmelCase = model_name.find('''patch''') __lowerCAmelCase = int(model_name[start_idx + len('''patch''') : start_idx + len('''patch''') + 2]) __lowerCAmelCase = XCLIPVisionConfig(patch_size=lowerCamelCase, num_frames=lowerCamelCase) if "large" in model_name: __lowerCAmelCase = 7_6_8 __lowerCAmelCase = 3_0_7_2 __lowerCAmelCase = 1_2 __lowerCAmelCase = 1_0_2_4 __lowerCAmelCase = 4_0_9_6 __lowerCAmelCase = 1_6 __lowerCAmelCase = 2_4 __lowerCAmelCase = 7_6_8 __lowerCAmelCase = 3_0_7_2 if model_name == "xclip-large-patch14-16-frames": __lowerCAmelCase = 3_3_6 __lowerCAmelCase = XCLIPConfig.from_text_vision_configs(lowerCamelCase, lowerCamelCase) if "large" in model_name: __lowerCAmelCase = 7_6_8 return config def __magic_name__( lowerCamelCase): # text encoder if name == "token_embedding.weight": __lowerCAmelCase = name.replace('''token_embedding.weight''', '''text_model.embeddings.token_embedding.weight''') if name == "positional_embedding": __lowerCAmelCase = name.replace('''positional_embedding''', '''text_model.embeddings.position_embedding.weight''') if "ln_1" in name: __lowerCAmelCase = name.replace('''ln_1''', '''layer_norm1''') if "ln_2" in name: __lowerCAmelCase = name.replace('''ln_2''', '''layer_norm2''') if "c_fc" in name: __lowerCAmelCase = name.replace('''c_fc''', '''fc1''') if "c_proj" in name: __lowerCAmelCase = name.replace('''c_proj''', '''fc2''') if name.startswith('''transformer.resblocks'''): __lowerCAmelCase = name.replace('''transformer.resblocks''', '''text_model.encoder.layers''') if "attn.out_proj" in name and "message" not in name: __lowerCAmelCase = name.replace('''attn.out_proj''', '''self_attn.out_proj''') if "ln_final" in name: __lowerCAmelCase = name.replace('''ln_final''', '''text_model.final_layer_norm''') # visual encoder if name == "visual.class_embedding": __lowerCAmelCase = name.replace('''visual.class_embedding''', '''vision_model.embeddings.class_embedding''') if name == "visual.positional_embedding": __lowerCAmelCase = name.replace('''visual.positional_embedding''', '''vision_model.embeddings.position_embedding.weight''') if name.startswith('''visual.transformer.resblocks'''): __lowerCAmelCase = name.replace('''visual.transformer.resblocks''', '''vision_model.encoder.layers''') if "visual.conv1" in name: __lowerCAmelCase = name.replace('''visual.conv1''', '''vision_model.embeddings.patch_embedding''') if "visual.ln_pre" in name: __lowerCAmelCase = name.replace('''visual.ln_pre''', '''vision_model.pre_layernorm''') if "visual.ln_post" in name: __lowerCAmelCase = name.replace('''visual.ln_post''', '''vision_model.post_layernorm''') if "visual.proj" in name: __lowerCAmelCase = name.replace('''visual.proj''', '''visual_projection.weight''') if "text_projection" in name: __lowerCAmelCase = name.replace('''text_projection''', '''text_projection.weight''') # things on top if "prompts_visual_proj" in name: __lowerCAmelCase = name.replace('''prompts_visual_proj''', '''prompts_visual_projection''') if "prompts_visual_ln" in name: __lowerCAmelCase = name.replace('''prompts_visual_ln''', '''prompts_visual_layernorm''') # mit if name == "mit.positional_embedding": __lowerCAmelCase = name.replace('''positional''', '''position''') if name.startswith('''mit.resblocks'''): __lowerCAmelCase = name.replace('''mit.resblocks''', '''mit.encoder.layers''') # prompts generator if name.startswith('''prompts_generator.norm'''): __lowerCAmelCase = name.replace('''prompts_generator.norm''', '''prompts_generator.layernorm''') return name def __magic_name__( lowerCamelCase, lowerCamelCase): for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowerCamelCase) if "attn.in_proj" in key: __lowerCAmelCase = key.split('''.''') if key.startswith('''visual'''): __lowerCAmelCase = key_split[3] __lowerCAmelCase = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: __lowerCAmelCase = val[ :dim, : ] __lowerCAmelCase = val[ dim : dim * 2, : ] __lowerCAmelCase = val[ -dim:, : ] else: __lowerCAmelCase = val[ :dim ] __lowerCAmelCase = val[ dim : dim * 2 ] __lowerCAmelCase = val[ -dim: ] else: if "weight" in key: __lowerCAmelCase = val[ :dim, : ] __lowerCAmelCase = val[ dim : dim * 2, : ] __lowerCAmelCase = val[ -dim:, : ] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[ dim : dim * 2 ] __lowerCAmelCase = val[-dim:] elif key.startswith('''mit'''): __lowerCAmelCase = key_split[2] __lowerCAmelCase = config.vision_config.mit_hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] else: __lowerCAmelCase = key_split[2] __lowerCAmelCase = config.text_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[ dim : dim * 2, : ] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[ dim : dim * 2 ] __lowerCAmelCase = val[-dim:] else: __lowerCAmelCase = rename_key(lowerCamelCase) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: __lowerCAmelCase = val.T __lowerCAmelCase = val return orig_state_dict def __magic_name__( lowerCamelCase): if num_frames == 8: __lowerCAmelCase = '''eating_spaghetti_8_frames.npy''' elif num_frames == 1_6: __lowerCAmelCase = '''eating_spaghetti.npy''' elif num_frames == 3_2: __lowerCAmelCase = '''eating_spaghetti_32_frames.npy''' __lowerCAmelCase = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''', filename=lowerCamelCase, repo_type='''dataset''', ) __lowerCAmelCase = np.load(lowerCamelCase) return list(lowerCamelCase) def __magic_name__( lowerCamelCase, lowerCamelCase=None, lowerCamelCase=False): __lowerCAmelCase = { # fully supervised kinetics-400 checkpoints '''xclip-base-patch32''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth''', '''xclip-base-patch32-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth''' ), '''xclip-base-patch16''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth''', '''xclip-base-patch16-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth''' ), '''xclip-large-patch14''': '''https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb''', '''xclip-large-patch14-16-frames''': '''https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f''', # fully supervised kinetics-600 checkpoints '''xclip-base-patch16-kinetics-600''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth''' ), '''xclip-base-patch16-kinetics-600-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth''' ), '''xclip-large-patch14-kinetics-600''': '''https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be''', # few shot '''xclip-base-patch16-hmdb-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth''' ), '''xclip-base-patch16-hmdb-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth''' ), '''xclip-base-patch16-hmdb-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth''' ), '''xclip-base-patch16-hmdb-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth''' ), '''xclip-base-patch16-ucf-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth''' ), '''xclip-base-patch16-ucf-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth''' ), '''xclip-base-patch16-ucf-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth''' ), '''xclip-base-patch16-ucf-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth''' ), # zero shot '''xclip-base-patch16-zero-shot''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth''', } __lowerCAmelCase = model_to_url[model_name] __lowerCAmelCase = 8 if "16-frames" in model_name: __lowerCAmelCase = 1_6 elif "shot" in model_name: __lowerCAmelCase = 3_2 __lowerCAmelCase = get_xclip_config(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = XCLIPModel(lowerCamelCase) model.eval() if "drive" in checkpoint_url: __lowerCAmelCase = '''pytorch_model.bin''' gdown.cached_download(lowerCamelCase, lowerCamelCase, quiet=lowerCamelCase) __lowerCAmelCase = torch.load(lowerCamelCase, map_location='''cpu''')['''model'''] else: __lowerCAmelCase = torch.hub.load_state_dict_from_url(lowerCamelCase)['''model'''] __lowerCAmelCase = convert_state_dict(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = XCLIPModel(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowerCamelCase, strict=lowerCamelCase) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() __lowerCAmelCase = 3_3_6 if model_name == '''xclip-large-patch14-16-frames''' else 2_2_4 __lowerCAmelCase = VideoMAEImageProcessor(size=lowerCamelCase) __lowerCAmelCase = CLIPTokenizer.from_pretrained('''openai/clip-vit-base-patch32''') __lowerCAmelCase = CLIPTokenizerFast.from_pretrained('''openai/clip-vit-base-patch32''') __lowerCAmelCase = XCLIPProcessor(image_processor=lowerCamelCase, tokenizer=lowerCamelCase) __lowerCAmelCase = prepare_video(lowerCamelCase) __lowerCAmelCase = processor( text=['''playing sports''', '''eating spaghetti''', '''go shopping'''], videos=lowerCamelCase, return_tensors='''pt''', padding=lowerCamelCase) print('''Shape of pixel values:''', inputs.pixel_values.shape) with torch.no_grad(): __lowerCAmelCase = model(**lowerCamelCase) # Verify outputs __lowerCAmelCase = outputs.logits_per_video __lowerCAmelCase = logits_per_video.softmax(dim=1) print('''Probs:''', lowerCamelCase) # kinetics-400 if model_name == "xclip-base-patch32": __lowerCAmelCase = torch.tensor([[0.00_19, 0.99_51, 0.00_30]]) elif model_name == "xclip-base-patch32-16-frames": __lowerCAmelCase = torch.tensor([[7.09_99E-04, 9.98_83E-01, 4.55_80E-04]]) elif model_name == "xclip-base-patch16": __lowerCAmelCase = torch.tensor([[0.00_83, 0.96_81, 0.02_36]]) elif model_name == "xclip-base-patch16-16-frames": __lowerCAmelCase = torch.tensor([[7.69_37E-04, 9.97_28E-01, 1.94_73E-03]]) elif model_name == "xclip-large-patch14": __lowerCAmelCase = torch.tensor([[0.00_62, 0.98_64, 0.00_75]]) elif model_name == "xclip-large-patch14-16-frames": __lowerCAmelCase = torch.tensor([[3.38_77E-04, 9.99_37E-01, 2.88_88E-04]]) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": __lowerCAmelCase = torch.tensor([[0.05_55, 0.89_14, 0.05_31]]) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": __lowerCAmelCase = torch.tensor([[3.85_54E-04, 9.99_29E-01, 3.27_54E-04]]) elif model_name == "xclip-large-patch14-kinetics-600": __lowerCAmelCase = torch.tensor([[0.00_36, 0.99_20, 0.00_45]]) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": __lowerCAmelCase = torch.tensor([[7.18_90E-06, 9.99_94E-01, 5.65_59E-05]]) elif model_name == "xclip-base-patch16-hmdb-4-shot": __lowerCAmelCase = torch.tensor([[1.03_20E-05, 9.99_93E-01, 6.24_35E-05]]) elif model_name == "xclip-base-patch16-hmdb-8-shot": __lowerCAmelCase = torch.tensor([[4.13_77E-06, 9.99_90E-01, 9.83_86E-05]]) elif model_name == "xclip-base-patch16-hmdb-16-shot": __lowerCAmelCase = torch.tensor([[4.13_47E-05, 9.99_62E-01, 3.34_11E-04]]) elif model_name == "xclip-base-patch16-ucf-2-shot": __lowerCAmelCase = torch.tensor([[8.58_57E-05, 9.99_28E-01, 6.32_91E-04]]) elif model_name == "xclip-base-patch16-ucf-4-shot": __lowerCAmelCase = torch.tensor([[8.58_57E-05, 9.99_28E-01, 6.32_91E-04]]) elif model_name == "xclip-base-patch16-ucf-8-shot": __lowerCAmelCase = torch.tensor([[0.00_27, 0.99_04, 0.00_70]]) elif model_name == "xclip-base-patch16-ucf-16-shot": __lowerCAmelCase = torch.tensor([[9.82_19E-04, 9.95_93E-01, 3.08_63E-03]]) # zero shot elif model_name == "xclip-base-patch16-zero-shot": __lowerCAmelCase = torch.tensor([[3.50_82E-04, 9.97_85E-01, 1.79_66E-03]]) else: raise ValueError(F"""Model name {model_name} not supported""") assert torch.allclose(lowerCamelCase, lowerCamelCase, atol=1E-3) print('''Looks ok!''') if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""") model.save_pretrained(lowerCamelCase) if push_to_hub: print('''Pushing model, processor and slow tokenizer files to the hub...''') model.push_to_hub(lowerCamelCase, organization='''nielsr''') processor.push_to_hub(lowerCamelCase, organization='''nielsr''') slow_tokenizer.push_to_hub(lowerCamelCase, organization='''nielsr''') if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""xclip-base-patch32""", type=str, help="""Name of the model.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _UpperCAmelCase : Optional[Any] = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
9
'''simple docstring''' # Imports import numpy as np class a__ : """simple docstring""" def __init__(self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase ) def _snake_case (self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): if red is not None: __lowerCAmelCase = red if green is not None: __lowerCAmelCase = green if blue is not None: __lowerCAmelCase = blue if red_edge is not None: __lowerCAmelCase = red_edge if nir is not None: __lowerCAmelCase = nir return True def _snake_case (self , __lowercase="" , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase ) __lowerCAmelCase = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''' ) return False def _snake_case (self ): return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case (self ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case (self ): return self.nir * (self.red / (self.green**2)) def _snake_case (self ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case (self ): return (self.nir - self.red) / (self.nir + self.red) def _snake_case (self ): return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case (self ): return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case (self ): return (self.nir - self.green) / (self.nir + self.green) def _snake_case (self ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case (self ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case (self ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case (self ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case (self , __lowercase=0.0_8 , __lowercase=1.2_2 , __lowercase=0.0_3 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case (self ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case (self ): return (self.nir / self.green) - 1 def _snake_case (self ): return (self.nir / self.redEdge) - 1 def _snake_case (self ): return (self.red - self.blue) / self.red def _snake_case (self ): __lowerCAmelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case (self ): return self.nir - self.green def _snake_case (self ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case (self ): __lowerCAmelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case (self , __lowercase=0.1_6 ): return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case (self , __lowercase=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case (self ): return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _snake_case (self , __lowercase=None , __lowercase=None ): return (self.nir - b) / (a * self.red) def _snake_case (self ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case (self ): return (self.red + self.green + self.blue) / 3_0.5 def _snake_case (self ): return self.nir / self.red def _snake_case (self ): return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case (self ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case (self ): return self.green / (self.nir + self.red + self.green) def _snake_case (self ): return self.nir / (self.nir + self.red + self.green) def _snake_case (self ): return self.red / (self.nir + self.red + self.green) def _snake_case (self ): return (self.green - self.red) / (self.green + self.red) def _snake_case (self ): return (self.red - self.green) / (self.red + self.green) def _snake_case (self ): __lowerCAmelCase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) __lowerCAmelCase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case (self ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case (self ): return self.nir / self.red def _snake_case (self ): return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case (self ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
9
1
'''simple docstring''' from PIL import Image def __magic_name__( lowerCamelCase): __lowerCAmelCase , __lowerCAmelCase = image.size __lowerCAmelCase = 0 __lowerCAmelCase = image.load() for i in range(lowerCamelCase): for j in range(lowerCamelCase): __lowerCAmelCase = pixels[j, i] mean += pixel mean //= width * height for j in range(lowerCamelCase): for i in range(lowerCamelCase): __lowerCAmelCase = 2_5_5 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": _UpperCAmelCase : List[str] = mean_threshold(Image.open("""path_to_image""").convert("""L""")) image.save("""output_image_path""")
9
'''simple docstring''' from math import sqrt def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' must been an int and positive" __lowerCAmelCase = True # 0 and 1 are none primes. if number <= 1: __lowerCAmelCase = False for divisor in range(2, int(round(sqrt(lowerCamelCase))) + 1): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __lowerCAmelCase = False break # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'status' must been from type bool" return status def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __lowerCAmelCase = list(range(2, n + 1)) __lowerCAmelCase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase)): for j in range(i + 1, len(lowerCamelCase)): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __lowerCAmelCase = 0 # filters actual prime numbers. __lowerCAmelCase = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" __lowerCAmelCase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2, n + 1): if is_prime(lowerCamelCase): ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and number >= 0, "'number' must been an int and >= 0" __lowerCAmelCase = [] # this list will be returns of the function. # potential prime number factors. __lowerCAmelCase = 2 __lowerCAmelCase = number if number == 0 or number == 1: ans.append(lowerCamelCase) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase): while quotient != 1: if is_prime(lowerCamelCase) and (quotient % factor == 0): ans.append(lowerCamelCase) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = max(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = min(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 == 0, lowerCamelCase), "compare bust been from type bool" return number % 2 == 0 def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 != 0, lowerCamelCase), "compare bust been from type bool" return number % 2 != 0 def __magic_name__( lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and (number > 2) and is_even(lowerCamelCase) ), "'number' must been an int, even and > 2" __lowerCAmelCase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __lowerCAmelCase = get_prime_numbers(lowerCamelCase) __lowerCAmelCase = len(lowerCamelCase) # run variable for while-loops. __lowerCAmelCase = 0 __lowerCAmelCase = None # exit variable. for break up the loops __lowerCAmelCase = True while i < len_pn and loop: __lowerCAmelCase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __lowerCAmelCase = False ans.append(prime_numbers[i]) ans.append(prime_numbers[j]) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (len(lowerCamelCase) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0]) and is_prime(ans[1]) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 0 while numbera != 0: __lowerCAmelCase = numbera % numbera __lowerCAmelCase = numbera __lowerCAmelCase = rest # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = prime_factorization(lowerCamelCase) elif numbera == 1 or numbera == 1: __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = max(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(max(lowerCamelCase, lowerCamelCase)): ans *= n else: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'number' must been a positive int" __lowerCAmelCase = 0 __lowerCAmelCase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase): ans += 1 # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and is_prime( lowerCamelCase), "'ans' must been a prime number and from type int" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( is_prime(lowerCamelCase) and is_prime(lowerCamelCase) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __lowerCAmelCase = p_number_a + 1 # jump to the next number __lowerCAmelCase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 while number < p_number_a: ans.append(lowerCamelCase) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and ans[0] != p_number_a and ans[len(lowerCamelCase) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 1), "'n' must been int and >= 1" __lowerCAmelCase = [] # will be returned. for divisor in range(1, n + 1): if n % divisor == 0: ans.append(lowerCamelCase) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase) - 1] == n, "Error in function getDivisiors(...)" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number > 1 ), "'number' must been an int and >= 1" __lowerCAmelCase = get_divisors(lowerCamelCase) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (divisors[0] == 1) and (divisors[len(lowerCamelCase) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1]) == number def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __lowerCAmelCase = gcd(abs(lowerCamelCase), abs(lowerCamelCase)) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been a int and >= 0" __lowerCAmelCase = 1 # this will be return. for factor in range(1, n + 1): ans *= factor return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been an int and >= 0" __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = 1 # this will be return for _ in range(n - 1): __lowerCAmelCase = ans ans += fiba __lowerCAmelCase = tmp return ans
9
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class a__ : """simple docstring""" __UpperCamelCase : int = PegasusConfig __UpperCamelCase : List[str] = {} __UpperCamelCase : List[str] = 'gelu' def __init__(self , __lowercase , __lowercase=13 , __lowercase=7 , __lowercase=True , __lowercase=False , __lowercase=99 , __lowercase=32 , __lowercase=2 , __lowercase=4 , __lowercase=37 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=40 , __lowercase=2 , __lowercase=1 , __lowercase=0 , ): __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = eos_token_id __lowerCAmelCase = pad_token_id __lowerCAmelCase = bos_token_id def _snake_case (self ): __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowerCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowerCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __lowerCAmelCase = prepare_pegasus_inputs_dict(__lowercase , __lowercase , __lowercase ) return config, inputs_dict def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = TFPegasusModel(config=__lowercase ).get_decoder() __lowerCAmelCase = inputs_dict['''input_ids'''] __lowerCAmelCase = input_ids[:1, :] __lowerCAmelCase = inputs_dict['''attention_mask'''][:1, :] __lowerCAmelCase = inputs_dict['''head_mask'''] __lowerCAmelCase = 1 # first forward pass __lowerCAmelCase = model(__lowercase , attention_mask=__lowercase , head_mask=__lowercase , use_cache=__lowercase ) __lowerCAmelCase , __lowerCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowerCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __lowerCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) __lowerCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __lowerCAmelCase = model(__lowercase , attention_mask=__lowercase )[0] __lowerCAmelCase = model(__lowercase , attention_mask=__lowercase , past_key_values=__lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __lowerCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx] __lowerCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowercase , __lowercase , rtol=1e-3 ) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=None, ): if attention_mask is None: __lowerCAmelCase = tf.cast(tf.math.not_equal(lowerCamelCase, config.pad_token_id), tf.inta) if decoder_attention_mask is None: __lowerCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id), tf.inta), ], axis=-1, ) if head_mask is None: __lowerCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: __lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: __lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class a__ ( __A , __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Union[str, Any] = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () __UpperCamelCase : Optional[int] = (TFPegasusForConditionalGeneration,) if is_tf_available() else () __UpperCamelCase : int = ( { 'conversational': TFPegasusForConditionalGeneration, 'feature-extraction': TFPegasusModel, 'summarization': TFPegasusForConditionalGeneration, 'text2text-generation': TFPegasusForConditionalGeneration, 'translation': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) __UpperCamelCase : Any = True __UpperCamelCase : str = False __UpperCamelCase : Optional[Any] = False def _snake_case (self ): __lowerCAmelCase = TFPegasusModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=__lowercase ) def _snake_case (self ): self.config_tester.run_common_tests() def _snake_case (self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowercase ) @require_sentencepiece @require_tokenizers @require_tf class a__ ( unittest.TestCase ): """simple docstring""" __UpperCamelCase : List[str] = [ ' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.', ' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ', ] __UpperCamelCase : int = [ 'California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to' ' reduce the risk of wildfires.', 'N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.', ] # differs slightly from pytorch, likely due to numerical differences in linear layers __UpperCamelCase : List[Any] = 'google/pegasus-xsum' @cached_property def _snake_case (self ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _snake_case (self ): __lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _snake_case (self , **__lowercase ): __lowerCAmelCase = self.translate_src_text(**__lowercase ) assert self.expected_text == generated_words def _snake_case (self , **__lowercase ): __lowerCAmelCase = self.tokenizer(self.src_text , **__lowercase , padding=__lowercase , return_tensors='''tf''' ) __lowerCAmelCase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__lowercase , ) __lowerCAmelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__lowercase ) return generated_words @slow def _snake_case (self ): self._assert_generated_batch_equal_expected()
9
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed _UpperCAmelCase : Dict = """true""" def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=1_6): set_seed(4_2) __lowerCAmelCase = RegressionModel() __lowerCAmelCase = deepcopy(lowerCamelCase) __lowerCAmelCase = RegressionDataset(length=lowerCamelCase) __lowerCAmelCase = DataLoader(lowerCamelCase, batch_size=lowerCamelCase) model.to(accelerator.device) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase) return model, ddp_model, dataloader def __magic_name__( lowerCamelCase, lowerCamelCase=False): __lowerCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''') __lowerCAmelCase = load_dataset('''glue''', '''mrpc''', split='''validation''') def tokenize_function(lowerCamelCase): __lowerCAmelCase = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=lowerCamelCase, max_length=lowerCamelCase) return outputs with accelerator.main_process_first(): __lowerCAmelCase = dataset.map( lowerCamelCase, batched=lowerCamelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) __lowerCAmelCase = tokenized_datasets.rename_column('''label''', '''labels''') def collate_fn(lowerCamelCase): if use_longest: return tokenizer.pad(lowerCamelCase, padding='''longest''', return_tensors='''pt''') return tokenizer.pad(lowerCamelCase, padding='''max_length''', max_length=1_2_8, return_tensors='''pt''') return DataLoader(lowerCamelCase, shuffle=lowerCamelCase, collate_fn=lowerCamelCase, batch_size=1_6) def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = Accelerator(dispatch_batches=lowerCamelCase, split_batches=lowerCamelCase) __lowerCAmelCase = get_dataloader(lowerCamelCase, not dispatch_batches) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''', return_dict=lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [] for batch in dataloader: __lowerCAmelCase , __lowerCAmelCase = batch.values() with torch.no_grad(): __lowerCAmelCase = model(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((logit, target)) logits_and_targets.append((logit, target)) __lowerCAmelCase , __lowerCAmelCase = [], [] for logit, targ in logits_and_targets: logits.append(lowerCamelCase) targs.append(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = torch.cat(lowerCamelCase), torch.cat(lowerCamelCase) return logits, targs def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=1_6): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = get_basic_setup(lowerCamelCase, lowerCamelCase, lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = generate_predictions(lowerCamelCase, lowerCamelCase, lowerCamelCase) assert ( len(lowerCamelCase) == num_samples ), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowerCamelCase)}""" def __magic_name__( lowerCamelCase = False, lowerCamelCase = False): __lowerCAmelCase = evaluate.load('''glue''', '''mrpc''') __lowerCAmelCase , __lowerCAmelCase = get_mrpc_setup(lowerCamelCase, lowerCamelCase) # First do baseline __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''no'''] model.to(lowerCamelCase) model.eval() for batch in dataloader: batch.to(lowerCamelCase) with torch.inference_mode(): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(dim=-1) metric.add_batch(predictions=lowerCamelCase, references=batch['''labels''']) __lowerCAmelCase = metric.compute() # Then do distributed __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(dim=-1) __lowerCAmelCase = batch['''labels'''] __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((preds, references)) metric.add_batch(predictions=lowerCamelCase, references=lowerCamelCase) __lowerCAmelCase = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key], distributed[key]), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def __magic_name__( ): __lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''') for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""") test_mrpc(lowerCamelCase, lowerCamelCase) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''') for split_batches in [True, False]: for dispatch_batches in [True, False]: __lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase) if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""") test_torch_metrics(lowerCamelCase, 9_9) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''') __lowerCAmelCase = Accelerator() test_torch_metrics(lowerCamelCase, 5_1_2) accelerator.state._reset_state() def __magic_name__( lowerCamelCase): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
9
1
'''simple docstring''' def __magic_name__( lowerCamelCase = 1_0, lowerCamelCase = 1_0_0_0, lowerCamelCase = True): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('''Invalid value for min_val or max_val (min_value < max_value)''') return min_val if option else max_val def __magic_name__( lowerCamelCase, lowerCamelCase): return int((number_a + number_a) / 2) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('''argument value for lower and higher must be(lower > higher)''') if not lower < to_guess < higher: raise ValueError( '''guess value must be within the range of lower and higher value''') def answer(lowerCamelCase) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('''started...''') __lowerCAmelCase = lower __lowerCAmelCase = higher __lowerCAmelCase = [] while True: __lowerCAmelCase = get_avg(lowerCamelCase, lowerCamelCase) last_numbers.append(lowerCamelCase) if answer(lowerCamelCase) == "low": __lowerCAmelCase = number elif answer(lowerCamelCase) == "high": __lowerCAmelCase = number else: break print(F"""guess the number : {last_numbers[-1]}""") print(F"""details : {last_numbers!s}""") def __magic_name__( ): __lowerCAmelCase = int(input('''Enter lower value : ''').strip()) __lowerCAmelCase = int(input('''Enter high value : ''').strip()) __lowerCAmelCase = int(input('''Enter value to guess : ''').strip()) guess_the_number(lowerCamelCase, lowerCamelCase, lowerCamelCase) if __name__ == "__main__": main()
9
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : str = logging.get_logger(__name__) _UpperCAmelCase : str = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class a__ ( __A ): """simple docstring""" __UpperCamelCase : str = 'roberta' def __init__(self , __lowercase=5_02_65 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=1 , __lowercase=0 , __lowercase=2 , __lowercase="absolute" , __lowercase=True , __lowercase=None , **__lowercase , ): super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = use_cache __lowerCAmelCase = classifier_dropout class a__ ( __A ): """simple docstring""" @property def _snake_case (self ): if self.task == "multiple-choice": __lowerCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
9
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) class a__ ( __A ): """simple docstring""" __UpperCamelCase : List[str] = ['input_features', 'attention_mask'] def __init__(self , __lowercase=80 , __lowercase=1_60_00 , __lowercase=80 , __lowercase=0.0 , __lowercase=True , __lowercase=True , __lowercase=True , **__lowercase , ): super().__init__(feature_size=__lowercase , sampling_rate=__lowercase , padding_value=__lowercase , **__lowercase ) __lowerCAmelCase = num_mel_bins __lowerCAmelCase = do_ceptral_normalize __lowerCAmelCase = normalize_means __lowerCAmelCase = normalize_vars __lowerCAmelCase = True def _snake_case (self , __lowercase , ): __lowerCAmelCase = waveform * (2**15) # Kaldi compliance: 16-bit signed integers __lowerCAmelCase = torch.from_numpy(__lowercase ).unsqueeze(0 ) __lowerCAmelCase = ta_kaldi.fbank(__lowercase , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def _snake_case (__lowercase , __lowercase , __lowercase = True , __lowercase = True , __lowercase = 0.0 , ): # make sure we normalize float32 arrays if normalize_means: __lowerCAmelCase = x[:input_length].mean(axis=0 ) __lowerCAmelCase = np.subtract(__lowercase , __lowercase ) if normalize_vars: __lowerCAmelCase = x[:input_length].std(axis=0 ) __lowerCAmelCase = np.divide(__lowercase , __lowercase ) if input_length < x.shape[0]: __lowerCAmelCase = padding_value # make sure array is in float32 __lowerCAmelCase = x.astype(np.floataa ) return x def _snake_case (self , __lowercase , __lowercase = None ): __lowerCAmelCase = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(__lowercase , __lowercase , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(__lowercase , __lowercase ) ] def __call__(self , __lowercase , __lowercase = False , __lowercase = None , __lowercase = False , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , **__lowercase , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" F""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" F""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) __lowerCAmelCase = isinstance(__lowercase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) __lowerCAmelCase = is_batched_numpy or ( isinstance(__lowercase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowerCAmelCase = [np.asarray(__lowercase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__lowercase , np.ndarray ): __lowerCAmelCase = np.asarray(__lowercase , dtype=np.floataa ) elif isinstance(__lowercase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __lowerCAmelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __lowerCAmelCase = [raw_speech] # extract fbank features __lowerCAmelCase = [self._extract_fbank_features(__lowercase ) for waveform in raw_speech] # convert into correct format for padding __lowerCAmelCase = BatchFeature({'''input_features''': features} ) __lowerCAmelCase = self.pad( __lowercase , padding=__lowercase , max_length=__lowercase , truncation=__lowercase , pad_to_multiple_of=__lowercase , return_attention_mask=__lowercase , **__lowercase , ) # make sure list is in array format __lowerCAmelCase = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , __lowercase ): __lowerCAmelCase = [np.asarray(__lowercase , dtype=np.floataa ) for feature in input_features] __lowerCAmelCase = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: __lowerCAmelCase = [np.asarray(__lowercase , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: __lowerCAmelCase = ( np.array(__lowercase , dtype=np.intaa ) if self._get_padding_strategies(__lowercase , max_length=__lowercase ) is not PaddingStrategy.DO_NOT_PAD else None ) __lowerCAmelCase = self.normalize( padded_inputs['''input_features'''] , attention_mask=__lowercase ) if return_tensors is not None: __lowerCAmelCase = padded_inputs.convert_to_tensors(__lowercase ) return padded_inputs
9
'''simple docstring''' import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = old_name if "patch_embed" in old_name: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = old_name.split('''.''') if layer == "0": __lowerCAmelCase = old_name.replace('''0''', '''convolution1''') elif layer == "1": __lowerCAmelCase = old_name.replace('''1''', '''batchnorm_before''') elif layer == "3": __lowerCAmelCase = old_name.replace('''3''', '''convolution2''') else: __lowerCAmelCase = old_name.replace('''4''', '''batchnorm_after''') if "network" in old_name and re.search(r'''\d\.\d''', lowerCamelCase): __lowerCAmelCase = r'''\b\d{2}\b''' if bool(re.search(lowerCamelCase, lowerCamelCase)): __lowerCAmelCase = re.search(r'''\d\.\d\d.''', lowerCamelCase).group() else: __lowerCAmelCase = re.search(r'''\d\.\d.''', lowerCamelCase).group() if int(match[0]) < 6: __lowerCAmelCase = old_name.replace(lowerCamelCase, '''''') __lowerCAmelCase = trimmed_name.replace('''network''', match[0] + '''.meta4D_layers.blocks.''' + match[2:-1]) __lowerCAmelCase = '''intermediate_stages.''' + trimmed_name else: __lowerCAmelCase = old_name.replace(lowerCamelCase, '''''') if int(match[2]) < num_meta4D_last_stage: __lowerCAmelCase = trimmed_name.replace('''network''', '''meta4D_layers.blocks.''' + match[2]) else: __lowerCAmelCase = str(int(match[2]) - num_meta4D_last_stage) __lowerCAmelCase = trimmed_name.replace('''network''', '''meta3D_layers.blocks.''' + layer_index) if "norm1" in old_name: __lowerCAmelCase = trimmed_name.replace('''norm1''', '''layernorm1''') elif "norm2" in old_name: __lowerCAmelCase = trimmed_name.replace('''norm2''', '''layernorm2''') elif "fc1" in old_name: __lowerCAmelCase = trimmed_name.replace('''fc1''', '''linear_in''') elif "fc2" in old_name: __lowerCAmelCase = trimmed_name.replace('''fc2''', '''linear_out''') __lowerCAmelCase = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(r'''.\d.''', lowerCamelCase): __lowerCAmelCase = old_name.replace('''network''', '''intermediate_stages''') if "fc" in new_name: __lowerCAmelCase = new_name.replace('''fc''', '''convolution''') elif ("norm1" in new_name) and ("layernorm1" not in new_name): __lowerCAmelCase = new_name.replace('''norm1''', '''batchnorm_before''') elif ("norm2" in new_name) and ("layernorm2" not in new_name): __lowerCAmelCase = new_name.replace('''norm2''', '''batchnorm_after''') if "proj" in new_name: __lowerCAmelCase = new_name.replace('''proj''', '''projection''') if "dist_head" in new_name: __lowerCAmelCase = new_name.replace('''dist_head''', '''distillation_classifier''') elif "head" in new_name: __lowerCAmelCase = new_name.replace('''head''', '''classifier''') elif "patch_embed" in new_name: __lowerCAmelCase = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": __lowerCAmelCase = new_name.replace('''norm''', '''layernorm''') __lowerCAmelCase = '''efficientformer.''' + new_name else: __lowerCAmelCase = '''efficientformer.encoder.''' + new_name return new_name def __magic_name__( lowerCamelCase, lowerCamelCase): for key in checkpoint.copy().keys(): __lowerCAmelCase = checkpoint.pop(lowerCamelCase) __lowerCAmelCase = val return checkpoint def __magic_name__( ): __lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowerCAmelCase = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase).raw) return image def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = torch.load(lowerCamelCase, map_location='''cpu''')['''model'''] __lowerCAmelCase = EfficientFormerConfig.from_json_file(lowerCamelCase) __lowerCAmelCase = EfficientFormerForImageClassificationWithTeacher(lowerCamelCase) __lowerCAmelCase = '''_'''.join(checkpoint_path.split('''/''')[-1].split('''.''')[0].split('''_''')[:-1]) __lowerCAmelCase = config.depths[-1] - config.num_metaad_blocks + 1 __lowerCAmelCase = convert_torch_checkpoint(lowerCamelCase, lowerCamelCase) model.load_state_dict(lowerCamelCase) model.eval() __lowerCAmelCase = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image __lowerCAmelCase = prepare_img() __lowerCAmelCase = 2_5_6 __lowerCAmelCase = 2_2_4 __lowerCAmelCase = EfficientFormerImageProcessor( size={'''shortest_edge''': image_size}, crop_size={'''height''': crop_size, '''width''': crop_size}, resample=pillow_resamplings['''bicubic'''], ) __lowerCAmelCase = processor(images=lowerCamelCase, return_tensors='''pt''').pixel_values # original processing pipeline __lowerCAmelCase = Compose( [ Resize(lowerCamelCase, interpolation=pillow_resamplings['''bicubic''']), CenterCrop(lowerCamelCase), ToTensor(), Normalize(lowerCamelCase, lowerCamelCase), ]) __lowerCAmelCase = image_transforms(lowerCamelCase).unsqueeze(0) assert torch.allclose(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = model(lowerCamelCase) __lowerCAmelCase = outputs.logits __lowerCAmelCase = (1, 1_0_0_0) if "l1" in model_name: __lowerCAmelCase = torch.Tensor( [-0.13_12, 0.43_53, -1.04_99, -0.51_24, 0.41_83, -0.67_93, -1.37_77, -0.08_93, -0.73_58, -2.43_28]) assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3) assert logits.shape == expected_shape elif "l3" in model_name: __lowerCAmelCase = torch.Tensor( [-1.31_50, -1.54_56, -1.25_56, -0.84_96, -0.71_27, -0.78_97, -0.97_28, -0.30_52, 0.37_51, -0.31_27]) assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3) assert logits.shape == expected_shape elif "l7" in model_name: __lowerCAmelCase = torch.Tensor( [-1.02_83, -1.41_31, -0.56_44, -1.31_15, -0.57_85, -1.20_49, -0.75_28, 0.19_92, -0.38_22, -0.08_78]) assert logits.shape == expected_shape else: raise ValueError( F"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""") # Save Checkpoints Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase) model.save_pretrained(lowerCamelCase) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""") processor.save_pretrained(lowerCamelCase) print(F"""Processor successfuly saved at {pytorch_dump_path}""") if push_to_hub: print('''Pushing model to the hub...''') model.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add model''', use_temp_dir=lowerCamelCase, ) processor.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add image processor''', use_temp_dir=lowerCamelCase, ) if __name__ == "__main__": _UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--pytorch_model_path""", default=None, type=str, required=True, help="""Path to EfficientFormer pytorch checkpoint.""", ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The json file for EfficientFormer model config.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") parser.add_argument( """--no-push_to_hub""", dest="""push_to_hub""", action="""store_false""", help="""Do not push model and image processor to the hub""", ) parser.set_defaults(push_to_hub=True) _UpperCAmelCase : List[str] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
9
1
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser( description=( """Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""bert""", choices=["""bert"""]) parser.add_argument("""--model_name""", default="""bert-base-uncased""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_bert-base-uncased_0247911.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") _UpperCAmelCase : Any = parser.parse_args() if args.model_type == "bert": _UpperCAmelCase : List[Any] = BertForMaskedLM.from_pretrained(args.model_name) _UpperCAmelCase : Any = """bert""" else: raise ValueError("""args.model_type should be \"bert\".""") _UpperCAmelCase : List[Any] = model.state_dict() _UpperCAmelCase : str = {} for w in ["word_embeddings", "position_embeddings"]: _UpperCAmelCase : Dict = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: _UpperCAmelCase : Tuple = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] _UpperCAmelCase : Union[str, Any] = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: _UpperCAmelCase : Union[str, Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] _UpperCAmelCase : Tuple = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] _UpperCAmelCase : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] _UpperCAmelCase : Optional[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] _UpperCAmelCase : List[str] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] _UpperCAmelCase : List[str] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] _UpperCAmelCase : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] _UpperCAmelCase : str = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 _UpperCAmelCase : List[Any] = state_dict["""cls.predictions.decoder.weight"""] _UpperCAmelCase : List[Any] = state_dict["""cls.predictions.bias"""] if args.vocab_transform: for w in ["weight", "bias"]: _UpperCAmelCase : List[Any] = state_dict[f"""cls.predictions.transform.dense.{w}"""] _UpperCAmelCase : Union[str, Any] = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
9
'''simple docstring''' from __future__ import annotations import math def __magic_name__( lowerCamelCase, lowerCamelCase): if len(lowerCamelCase) != 2 or len(a[0]) != 2 or len(lowerCamelCase) != 2 or len(b[0]) != 2: raise Exception('''Matrices are not 2x2''') __lowerCAmelCase = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def __magic_name__( lowerCamelCase, lowerCamelCase): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(lowerCamelCase)) ] def __magic_name__( lowerCamelCase, lowerCamelCase): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(lowerCamelCase)) ] def __magic_name__( lowerCamelCase): if len(lowerCamelCase) % 2 != 0 or len(a[0]) % 2 != 0: raise Exception('''Odd matrices are not supported!''') __lowerCAmelCase = len(lowerCamelCase) __lowerCAmelCase = matrix_length // 2 __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase)] __lowerCAmelCase = [ [a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase) ] __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase)] __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase)] return top_left, top_right, bot_left, bot_right def __magic_name__( lowerCamelCase): return len(lowerCamelCase), len(matrix[0]) def __magic_name__( lowerCamelCase): print('''\n'''.join(str(lowerCamelCase) for line in matrix)) def __magic_name__( lowerCamelCase, lowerCamelCase): if matrix_dimensions(lowerCamelCase) == (2, 2): return default_matrix_multiplication(lowerCamelCase, lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase) __lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase) __lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = matrix_addition(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase) __lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = matrix_subtraction(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase) # construct the new matrix from our 4 quadrants __lowerCAmelCase = [] for i in range(len(lowerCamelCase)): new_matrix.append(top_left[i] + top_right[i]) for i in range(len(lowerCamelCase)): new_matrix.append(bot_left[i] + bot_right[i]) return new_matrix def __magic_name__( lowerCamelCase, lowerCamelCase): if matrix_dimensions(lowerCamelCase)[1] != matrix_dimensions(lowerCamelCase)[0]: __lowerCAmelCase = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(lowerCamelCase) __lowerCAmelCase = matrix_dimensions(lowerCamelCase) __lowerCAmelCase = matrix_dimensions(lowerCamelCase) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] __lowerCAmelCase = max(*lowerCamelCase, *lowerCamelCase) __lowerCAmelCase = int(math.pow(2, math.ceil(math.loga(lowerCamelCase)))) __lowerCAmelCase = matrixa __lowerCAmelCase = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0, lowerCamelCase): if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): new_matrixa[i].append(0) else: new_matrixa.append([0] * maxim) if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): new_matrixa[i].append(0) else: new_matrixa.append([0] * maxim) __lowerCAmelCase = actual_strassen(lowerCamelCase, lowerCamelCase) # Removing the additional zeros for i in range(0, lowerCamelCase): if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": _UpperCAmelCase : List[str] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] _UpperCAmelCase : Optional[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
9
1
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json _UpperCAmelCase : str = """sshleifer/mar_enro_6_3_student""" class a__ ( __A ): """simple docstring""" def _snake_case (self ): super().setUp() __lowerCAmelCase = cached_path( '''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' , extract_compressed_file=__lowercase , ) __lowerCAmelCase = F"""{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k""" @slow @require_torch_gpu def _snake_case (self ): MarianMTModel.from_pretrained(__lowercase ) @slow @require_torch_gpu def _snake_case (self ): __lowerCAmelCase = { '''$MAX_LEN''': 64, '''$BS''': 64, '''$GAS''': 1, '''$ENRO_DIR''': self.data_dir, '''facebook/mbart-large-cc25''': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '''--learning_rate=3e-5''': '''--learning_rate 3e-4''', '''--num_train_epochs 6''': '''--num_train_epochs 1''', } # Clean up bash script __lowerCAmelCase = (self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip() __lowerCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) for k, v in env_vars_to_replace.items(): __lowerCAmelCase = bash_script.replace(__lowercase , str(__lowercase ) ) __lowerCAmelCase = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") __lowerCAmelCase = F""" --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 """.split() # XXX: args.gpus > 1 : handle multi_gpu in the future __lowerCAmelCase = ['''finetune.py'''] + bash_script.split() + args with patch.object(__lowercase , '''argv''' , __lowercase ): __lowerCAmelCase = argparse.ArgumentParser() __lowerCAmelCase = pl.Trainer.add_argparse_args(__lowercase ) __lowerCAmelCase = SummarizationModule.add_model_specific_args(__lowercase , os.getcwd() ) __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = main(__lowercase ) # Check metrics __lowerCAmelCase = load_json(model.metrics_save_path ) __lowerCAmelCase = metrics['''val'''][0] __lowerCAmelCase = metrics['''val'''][-1] self.assertEqual(len(metrics['''val'''] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F"""val_avg_{model.val_metric}"""] , __lowercase ) self.assertGreater(last_step_stats['''val_avg_gen_time'''] , 0.0_1 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['''val_avg_bleu'''] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict __lowerCAmelCase = os.listdir(__lowercase ) __lowerCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0] __lowerCAmelCase = os.path.join(args.output_dir , __lowercase ) __lowerCAmelCase = torch.load(__lowercase , map_location='''cpu''' ) __lowerCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: __lowerCAmelCase = {os.path.basename(__lowercase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1 class a__ ( __A ): """simple docstring""" @timeout_decorator.timeout(6_00 ) @slow @require_torch_gpu def _snake_case (self ): __lowerCAmelCase = F"""{self.test_file_dir_str}/test_data/wmt_en_ro""" __lowerCAmelCase = { '''--fp16_opt_level=O1''': '''''', '''$MAX_LEN''': 1_28, '''$BS''': 16, '''$GAS''': 1, '''$ENRO_DIR''': data_dir, '''$m''': '''sshleifer/student_marian_en_ro_6_1''', '''val_check_interval=0.25''': '''val_check_interval=1.0''', } # Clean up bash script __lowerCAmelCase = ( (self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip() ) __lowerCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) __lowerCAmelCase = bash_script.replace('''--fp16 ''' , ''' ''' ) for k, v in env_vars_to_replace.items(): __lowerCAmelCase = bash_script.replace(__lowercase , str(__lowercase ) ) __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = bash_script.replace('''--fp16''' , '''''' ) __lowerCAmelCase = 6 __lowerCAmelCase = ( ['''distillation.py'''] + bash_script.split() + [ F"""--output_dir={output_dir}""", '''--gpus=1''', '''--learning_rate=1e-3''', F"""--num_train_epochs={epochs}""", '''--warmup_steps=10''', '''--val_check_interval=1.0''', '''--do_predict''', ] ) with patch.object(__lowercase , '''argv''' , __lowercase ): __lowerCAmelCase = argparse.ArgumentParser() __lowerCAmelCase = pl.Trainer.add_argparse_args(__lowercase ) __lowerCAmelCase = SummarizationDistiller.add_model_specific_args(__lowercase , os.getcwd() ) __lowerCAmelCase = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu __lowerCAmelCase = distill_main(__lowercase ) # Check metrics __lowerCAmelCase = load_json(model.metrics_save_path ) __lowerCAmelCase = metrics['''val'''][0] __lowerCAmelCase = metrics['''val'''][-1] assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.0_1 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F"""val_avg_{model.val_metric}"""] , __lowercase ) # check lightning ckpt can be loaded and has a reasonable statedict __lowerCAmelCase = os.listdir(__lowercase ) __lowerCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0] __lowerCAmelCase = os.path.join(args.output_dir , __lowercase ) __lowerCAmelCase = torch.load(__lowercase , map_location='''cpu''' ) __lowerCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: __lowerCAmelCase = {os.path.basename(__lowercase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1
9
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 ) __lowerCAmelCase = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = tokenizer(__lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
9
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase : Any = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[int] = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[Any] = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : str = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys _UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
9
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase , __lowercase=None , __lowercase=None , __lowercase=0 ): __lowerCAmelCase = 1.0 if scale is None else scale __lowerCAmelCase = 0.0 if loc is None else loc super().__init__(__lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__lowercase )] ) @property def _snake_case (self ): return self.base_dist.mean * self.scale + self.loc @property def _snake_case (self ): return self.base_dist.variance * self.scale**2 @property def _snake_case (self ): return self.variance.sqrt() class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase , **__lowercase ): super().__init__(**__lowercase ) __lowerCAmelCase = args_dim __lowerCAmelCase = nn.ModuleList([nn.Linear(__lowercase , __lowercase ) for dim in args_dim.values()] ) __lowerCAmelCase = domain_map def _snake_case (self , __lowercase ): __lowerCAmelCase = [proj(__lowercase ) for proj in self.proj] return self.domain_map(*__lowercase ) class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase ): super().__init__() __lowerCAmelCase = function def _snake_case (self , __lowercase , *__lowercase ): return self.function(__lowercase , *__lowercase ) class a__ : """simple docstring""" __UpperCamelCase : type __UpperCamelCase : int __UpperCamelCase : Dict[str, int] def __init__(self , __lowercase = 1 ): __lowerCAmelCase = dim __lowerCAmelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def _snake_case (self , __lowercase ): if self.dim == 1: return self.distribution_class(*__lowercase ) else: return Independent(self.distribution_class(*__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , ): __lowerCAmelCase = self._base_distribution(__lowercase ) if loc is None and scale is None: return distr else: return AffineTransformed(__lowercase , loc=__lowercase , scale=__lowercase , event_dim=self.event_dim ) @property def _snake_case (self ): return () if self.dim == 1 else (self.dim,) @property def _snake_case (self ): return len(self.event_shape ) @property def _snake_case (self ): return 0.0 def _snake_case (self , __lowercase ): return ParameterProjection( in_features=__lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def _snake_case (self , *__lowercase ): raise NotImplementedError() @staticmethod def _snake_case (__lowercase ): return (x + torch.sqrt(torch.square(__lowercase ) + 4.0 )) / 2.0 class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} __UpperCamelCase : type = StudentT @classmethod def _snake_case (cls , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) __lowerCAmelCase = 2.0 + cls.squareplus(__lowercase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1} __UpperCamelCase : type = Normal @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1} __UpperCamelCase : type = NegativeBinomial @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def _snake_case (self , __lowercase ): __lowerCAmelCase , __lowerCAmelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=__lowercase , logits=__lowercase ) else: return Independent(self.distribution_class(total_count=__lowercase , logits=__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None ): __lowerCAmelCase , __lowerCAmelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
9
1
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
9
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class a__ ( __A ): """simple docstring""" __UpperCamelCase : Tuple = 'naver-clova-ix/donut-base-finetuned-docvqa' __UpperCamelCase : List[str] = ( 'This is a tool that answers a question about an document (pdf). It takes an input named `document` which ' 'should be the document containing the information, as well as a `question` that is the question about the ' 'document. It returns a text that contains the answer to the question.' ) __UpperCamelCase : Optional[int] = 'document_qa' __UpperCamelCase : Optional[int] = AutoProcessor __UpperCamelCase : Tuple = VisionEncoderDecoderModel __UpperCamelCase : Any = ['image', 'text'] __UpperCamelCase : Optional[Any] = ['text'] def __init__(self , *__lowercase , **__lowercase ): if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' __lowerCAmelCase = task_prompt.replace('''{user_input}''' , __lowercase ) __lowerCAmelCase = self.pre_processor.tokenizer( __lowercase , add_special_tokens=__lowercase , return_tensors='''pt''' ).input_ids __lowerCAmelCase = self.pre_processor(__lowercase , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _snake_case (self , __lowercase ): return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__lowercase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__lowercase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__lowercase , ).sequences def _snake_case (self , __lowercase ): __lowerCAmelCase = self.pre_processor.batch_decode(__lowercase )[0] __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) __lowerCAmelCase = re.sub(R'''<.*?>''' , '''''' , __lowercase , count=1 ).strip() # remove first task start token __lowerCAmelCase = self.pre_processor.tokenajson(__lowercase ) return sequence["answer"]
9
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool _UpperCAmelCase : Union[str, Any] = { """Acehnese Arabic""": """ace_Arab""", """Acehnese Latin""": """ace_Latn""", """Mesopotamian Arabic""": """acm_Arab""", """Ta'izzi-Adeni Arabic""": """acq_Arab""", """Tunisian Arabic""": """aeb_Arab""", """Afrikaans""": """afr_Latn""", """South Levantine Arabic""": """ajp_Arab""", """Akan""": """aka_Latn""", """Amharic""": """amh_Ethi""", """North Levantine Arabic""": """apc_Arab""", """Modern Standard Arabic""": """arb_Arab""", """Modern Standard Arabic Romanized""": """arb_Latn""", """Najdi Arabic""": """ars_Arab""", """Moroccan Arabic""": """ary_Arab""", """Egyptian Arabic""": """arz_Arab""", """Assamese""": """asm_Beng""", """Asturian""": """ast_Latn""", """Awadhi""": """awa_Deva""", """Central Aymara""": """ayr_Latn""", """South Azerbaijani""": """azb_Arab""", """North Azerbaijani""": """azj_Latn""", """Bashkir""": """bak_Cyrl""", """Bambara""": """bam_Latn""", """Balinese""": """ban_Latn""", """Belarusian""": """bel_Cyrl""", """Bemba""": """bem_Latn""", """Bengali""": """ben_Beng""", """Bhojpuri""": """bho_Deva""", """Banjar Arabic""": """bjn_Arab""", """Banjar Latin""": """bjn_Latn""", """Standard Tibetan""": """bod_Tibt""", """Bosnian""": """bos_Latn""", """Buginese""": """bug_Latn""", """Bulgarian""": """bul_Cyrl""", """Catalan""": """cat_Latn""", """Cebuano""": """ceb_Latn""", """Czech""": """ces_Latn""", """Chokwe""": """cjk_Latn""", """Central Kurdish""": """ckb_Arab""", """Crimean Tatar""": """crh_Latn""", """Welsh""": """cym_Latn""", """Danish""": """dan_Latn""", """German""": """deu_Latn""", """Southwestern Dinka""": """dik_Latn""", """Dyula""": """dyu_Latn""", """Dzongkha""": """dzo_Tibt""", """Greek""": """ell_Grek""", """English""": """eng_Latn""", """Esperanto""": """epo_Latn""", """Estonian""": """est_Latn""", """Basque""": """eus_Latn""", """Ewe""": """ewe_Latn""", """Faroese""": """fao_Latn""", """Fijian""": """fij_Latn""", """Finnish""": """fin_Latn""", """Fon""": """fon_Latn""", """French""": """fra_Latn""", """Friulian""": """fur_Latn""", """Nigerian Fulfulde""": """fuv_Latn""", """Scottish Gaelic""": """gla_Latn""", """Irish""": """gle_Latn""", """Galician""": """glg_Latn""", """Guarani""": """grn_Latn""", """Gujarati""": """guj_Gujr""", """Haitian Creole""": """hat_Latn""", """Hausa""": """hau_Latn""", """Hebrew""": """heb_Hebr""", """Hindi""": """hin_Deva""", """Chhattisgarhi""": """hne_Deva""", """Croatian""": """hrv_Latn""", """Hungarian""": """hun_Latn""", """Armenian""": """hye_Armn""", """Igbo""": """ibo_Latn""", """Ilocano""": """ilo_Latn""", """Indonesian""": """ind_Latn""", """Icelandic""": """isl_Latn""", """Italian""": """ita_Latn""", """Javanese""": """jav_Latn""", """Japanese""": """jpn_Jpan""", """Kabyle""": """kab_Latn""", """Jingpho""": """kac_Latn""", """Kamba""": """kam_Latn""", """Kannada""": """kan_Knda""", """Kashmiri Arabic""": """kas_Arab""", """Kashmiri Devanagari""": """kas_Deva""", """Georgian""": """kat_Geor""", """Central Kanuri Arabic""": """knc_Arab""", """Central Kanuri Latin""": """knc_Latn""", """Kazakh""": """kaz_Cyrl""", """Kabiyè""": """kbp_Latn""", """Kabuverdianu""": """kea_Latn""", """Khmer""": """khm_Khmr""", """Kikuyu""": """kik_Latn""", """Kinyarwanda""": """kin_Latn""", """Kyrgyz""": """kir_Cyrl""", """Kimbundu""": """kmb_Latn""", """Northern Kurdish""": """kmr_Latn""", """Kikongo""": """kon_Latn""", """Korean""": """kor_Hang""", """Lao""": """lao_Laoo""", """Ligurian""": """lij_Latn""", """Limburgish""": """lim_Latn""", """Lingala""": """lin_Latn""", """Lithuanian""": """lit_Latn""", """Lombard""": """lmo_Latn""", """Latgalian""": """ltg_Latn""", """Luxembourgish""": """ltz_Latn""", """Luba-Kasai""": """lua_Latn""", """Ganda""": """lug_Latn""", """Luo""": """luo_Latn""", """Mizo""": """lus_Latn""", """Standard Latvian""": """lvs_Latn""", """Magahi""": """mag_Deva""", """Maithili""": """mai_Deva""", """Malayalam""": """mal_Mlym""", """Marathi""": """mar_Deva""", """Minangkabau Arabic """: """min_Arab""", """Minangkabau Latin""": """min_Latn""", """Macedonian""": """mkd_Cyrl""", """Plateau Malagasy""": """plt_Latn""", """Maltese""": """mlt_Latn""", """Meitei Bengali""": """mni_Beng""", """Halh Mongolian""": """khk_Cyrl""", """Mossi""": """mos_Latn""", """Maori""": """mri_Latn""", """Burmese""": """mya_Mymr""", """Dutch""": """nld_Latn""", """Norwegian Nynorsk""": """nno_Latn""", """Norwegian Bokmål""": """nob_Latn""", """Nepali""": """npi_Deva""", """Northern Sotho""": """nso_Latn""", """Nuer""": """nus_Latn""", """Nyanja""": """nya_Latn""", """Occitan""": """oci_Latn""", """West Central Oromo""": """gaz_Latn""", """Odia""": """ory_Orya""", """Pangasinan""": """pag_Latn""", """Eastern Panjabi""": """pan_Guru""", """Papiamento""": """pap_Latn""", """Western Persian""": """pes_Arab""", """Polish""": """pol_Latn""", """Portuguese""": """por_Latn""", """Dari""": """prs_Arab""", """Southern Pashto""": """pbt_Arab""", """Ayacucho Quechua""": """quy_Latn""", """Romanian""": """ron_Latn""", """Rundi""": """run_Latn""", """Russian""": """rus_Cyrl""", """Sango""": """sag_Latn""", """Sanskrit""": """san_Deva""", """Santali""": """sat_Olck""", """Sicilian""": """scn_Latn""", """Shan""": """shn_Mymr""", """Sinhala""": """sin_Sinh""", """Slovak""": """slk_Latn""", """Slovenian""": """slv_Latn""", """Samoan""": """smo_Latn""", """Shona""": """sna_Latn""", """Sindhi""": """snd_Arab""", """Somali""": """som_Latn""", """Southern Sotho""": """sot_Latn""", """Spanish""": """spa_Latn""", """Tosk Albanian""": """als_Latn""", """Sardinian""": """srd_Latn""", """Serbian""": """srp_Cyrl""", """Swati""": """ssw_Latn""", """Sundanese""": """sun_Latn""", """Swedish""": """swe_Latn""", """Swahili""": """swh_Latn""", """Silesian""": """szl_Latn""", """Tamil""": """tam_Taml""", """Tatar""": """tat_Cyrl""", """Telugu""": """tel_Telu""", """Tajik""": """tgk_Cyrl""", """Tagalog""": """tgl_Latn""", """Thai""": """tha_Thai""", """Tigrinya""": """tir_Ethi""", """Tamasheq Latin""": """taq_Latn""", """Tamasheq Tifinagh""": """taq_Tfng""", """Tok Pisin""": """tpi_Latn""", """Tswana""": """tsn_Latn""", """Tsonga""": """tso_Latn""", """Turkmen""": """tuk_Latn""", """Tumbuka""": """tum_Latn""", """Turkish""": """tur_Latn""", """Twi""": """twi_Latn""", """Central Atlas Tamazight""": """tzm_Tfng""", """Uyghur""": """uig_Arab""", """Ukrainian""": """ukr_Cyrl""", """Umbundu""": """umb_Latn""", """Urdu""": """urd_Arab""", """Northern Uzbek""": """uzn_Latn""", """Venetian""": """vec_Latn""", """Vietnamese""": """vie_Latn""", """Waray""": """war_Latn""", """Wolof""": """wol_Latn""", """Xhosa""": """xho_Latn""", """Eastern Yiddish""": """ydd_Hebr""", """Yoruba""": """yor_Latn""", """Yue Chinese""": """yue_Hant""", """Chinese Simplified""": """zho_Hans""", """Chinese Traditional""": """zho_Hant""", """Standard Malay""": """zsm_Latn""", """Zulu""": """zul_Latn""", } class a__ ( __A ): """simple docstring""" __UpperCamelCase : List[str] = 'facebook/nllb-200-distilled-600M' __UpperCamelCase : Dict = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) __UpperCamelCase : Optional[int] = 'translator' __UpperCamelCase : Any = AutoTokenizer __UpperCamelCase : Any = AutoModelForSeqaSeqLM __UpperCamelCase : Optional[Any] = LANGUAGE_CODES __UpperCamelCase : Optional[int] = ['text', 'text', 'text'] __UpperCamelCase : Union[str, Any] = ['text'] def _snake_case (self , __lowercase , __lowercase , __lowercase ): if src_lang not in self.lang_to_code: raise ValueError(F"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(F"""{tgt_lang} is not a supported language.""" ) __lowerCAmelCase = self.lang_to_code[src_lang] __lowerCAmelCase = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( __lowercase , return_tensors='''pt''' , src_lang=__lowercase , tgt_lang=__lowercase ) def _snake_case (self , __lowercase ): return self.model.generate(**__lowercase ) def _snake_case (self , __lowercase ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=__lowercase )
9
'''simple docstring''' def __magic_name__( lowerCamelCase): __lowerCAmelCase = 1 __lowerCAmelCase = 2 while i * i <= n: __lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def __magic_name__( ): __lowerCAmelCase = 1 __lowerCAmelCase = 1 while True: i += 1 t_num += i if count_divisors(lowerCamelCase) > 5_0_0: break return t_num if __name__ == "__main__": print(solution())
9
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) __UpperCamelCase : Optional[Any] = 'CIDAS/clipseg-rd64-refined' __UpperCamelCase : Tuple = 'image_segmenter' __UpperCamelCase : Tuple = CLIPSegForImageSegmentation __UpperCamelCase : Optional[int] = ['image', 'text'] __UpperCamelCase : str = ['image'] def __init__(self , *__lowercase , **__lowercase ): requires_backends(self , ['''vision'''] ) super().__init__(*__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase ): return self.pre_processor(text=[label] , images=[image] , padding=__lowercase , return_tensors='''pt''' ) def _snake_case (self , __lowercase ): with torch.no_grad(): __lowerCAmelCase = self.model(**__lowercase ).logits return logits def _snake_case (self , __lowercase ): __lowerCAmelCase = outputs.cpu().detach().numpy() __lowerCAmelCase = 0 __lowerCAmelCase = 1 return Image.fromarray((array * 2_55).astype(np.uinta ) )
9
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __lowerCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) self.assertTrue(isinstance(dc.token_ids , __lowercase ) ) with self.assertRaises(__lowercase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__lowercase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _snake_case (self ): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __lowerCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__lowercase ): DisjunctiveConstraint(__lowercase ) # fails here def _snake_case (self ): __lowerCAmelCase = [[1, 2, 3], [1, 2, 4]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) __lowerCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(__lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) __lowerCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(__lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(3 ) __lowerCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(__lowercase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _snake_case (self ): __lowerCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
9
1
'''simple docstring''' from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class a__ ( __A ): """simple docstring""" __UpperCamelCase : "DiagonalGaussianDistribution" class a__ ( __A , __A ): """simple docstring""" __UpperCamelCase : List[str] = True @register_to_config def __init__(self , __lowercase = 3 , __lowercase = 3 , __lowercase = ("DownEncoderBlock2D",) , __lowercase = ("UpDecoderBlock2D",) , __lowercase = (64,) , __lowercase = 1 , __lowercase = "silu" , __lowercase = 4 , __lowercase = 32 , __lowercase = 32 , __lowercase = 0.1_8_2_1_5 , ): super().__init__() # pass init params to Encoder __lowerCAmelCase = Encoder( in_channels=__lowercase , out_channels=__lowercase , down_block_types=__lowercase , block_out_channels=__lowercase , layers_per_block=__lowercase , act_fn=__lowercase , norm_num_groups=__lowercase , double_z=__lowercase , ) # pass init params to Decoder __lowerCAmelCase = Decoder( in_channels=__lowercase , out_channels=__lowercase , up_block_types=__lowercase , block_out_channels=__lowercase , layers_per_block=__lowercase , norm_num_groups=__lowercase , act_fn=__lowercase , ) __lowerCAmelCase = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) __lowerCAmelCase = nn.Convad(__lowercase , __lowercase , 1 ) __lowerCAmelCase = False __lowerCAmelCase = False # only relevant if vae tiling is enabled __lowerCAmelCase = self.config.sample_size __lowerCAmelCase = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) __lowerCAmelCase = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) __lowerCAmelCase = 0.2_5 def _snake_case (self , __lowercase , __lowercase=False ): if isinstance(__lowercase , (Encoder, Decoder) ): __lowerCAmelCase = value def _snake_case (self , __lowercase = True ): __lowerCAmelCase = use_tiling def _snake_case (self ): self.enable_tiling(__lowercase ) def _snake_case (self ): __lowerCAmelCase = True def _snake_case (self ): __lowerCAmelCase = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def _snake_case (self ): __lowerCAmelCase = {} def fn_recursive_add_processors(__lowercase , __lowercase , __lowercase ): if hasattr(__lowercase , '''set_processor''' ): __lowerCAmelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" , __lowercase , __lowercase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__lowercase , __lowercase , __lowercase ) return processors def _snake_case (self , __lowercase ): __lowerCAmelCase = len(self.attn_processors.keys() ) if isinstance(__lowercase , __lowercase ) and len(__lowercase ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(__lowercase )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(__lowercase , __lowercase , __lowercase ): if hasattr(__lowercase , '''set_processor''' ): if not isinstance(__lowercase , __lowercase ): module.set_processor(__lowercase ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" , __lowercase , __lowercase ) for name, module in self.named_children(): fn_recursive_attn_processor(__lowercase , __lowercase , __lowercase ) def _snake_case (self ): self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def _snake_case (self , __lowercase , __lowercase = True ): if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(__lowercase , return_dict=__lowercase ) if self.use_slicing and x.shape[0] > 1: __lowerCAmelCase = [self.encoder(__lowercase ) for x_slice in x.split(1 )] __lowerCAmelCase = torch.cat(__lowercase ) else: __lowerCAmelCase = self.encoder(__lowercase ) __lowerCAmelCase = self.quant_conv(__lowercase ) __lowerCAmelCase = DiagonalGaussianDistribution(__lowercase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__lowercase ) def _snake_case (self , __lowercase , __lowercase = True ): if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(__lowercase , return_dict=__lowercase ) __lowerCAmelCase = self.post_quant_conv(__lowercase ) __lowerCAmelCase = self.decoder(__lowercase ) if not return_dict: return (dec,) return DecoderOutput(sample=__lowercase ) @apply_forward_hook def _snake_case (self , __lowercase , __lowercase = True ): if self.use_slicing and z.shape[0] > 1: __lowerCAmelCase = [self._decode(__lowercase ).sample for z_slice in z.split(1 )] __lowerCAmelCase = torch.cat(__lowercase ) else: __lowerCAmelCase = self._decode(__lowercase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=__lowercase ) def _snake_case (self , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = min(a.shape[2] , b.shape[2] , __lowercase ) for y in range(__lowercase ): __lowerCAmelCase = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def _snake_case (self , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = min(a.shape[3] , b.shape[3] , __lowercase ) for x in range(__lowercase ): __lowerCAmelCase = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def _snake_case (self , __lowercase , __lowercase = True ): __lowerCAmelCase = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) __lowerCAmelCase = int(self.tile_latent_min_size * self.tile_overlap_factor ) __lowerCAmelCase = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. __lowerCAmelCase = [] for i in range(0 , x.shape[2] , __lowercase ): __lowerCAmelCase = [] for j in range(0 , x.shape[3] , __lowercase ): __lowerCAmelCase = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] __lowerCAmelCase = self.encoder(__lowercase ) __lowerCAmelCase = self.quant_conv(__lowercase ) row.append(__lowercase ) rows.append(__lowercase ) __lowerCAmelCase = [] for i, row in enumerate(__lowercase ): __lowerCAmelCase = [] for j, tile in enumerate(__lowercase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowerCAmelCase = self.blend_v(rows[i - 1][j] , __lowercase , __lowercase ) if j > 0: __lowerCAmelCase = self.blend_h(row[j - 1] , __lowercase , __lowercase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__lowercase , dim=3 ) ) __lowerCAmelCase = torch.cat(__lowercase , dim=2 ) __lowerCAmelCase = DiagonalGaussianDistribution(__lowercase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__lowercase ) def _snake_case (self , __lowercase , __lowercase = True ): __lowerCAmelCase = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) __lowerCAmelCase = int(self.tile_sample_min_size * self.tile_overlap_factor ) __lowerCAmelCase = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. __lowerCAmelCase = [] for i in range(0 , z.shape[2] , __lowercase ): __lowerCAmelCase = [] for j in range(0 , z.shape[3] , __lowercase ): __lowerCAmelCase = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] __lowerCAmelCase = self.post_quant_conv(__lowercase ) __lowerCAmelCase = self.decoder(__lowercase ) row.append(__lowercase ) rows.append(__lowercase ) __lowerCAmelCase = [] for i, row in enumerate(__lowercase ): __lowerCAmelCase = [] for j, tile in enumerate(__lowercase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowerCAmelCase = self.blend_v(rows[i - 1][j] , __lowercase , __lowercase ) if j > 0: __lowerCAmelCase = self.blend_h(row[j - 1] , __lowercase , __lowercase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__lowercase , dim=3 ) ) __lowerCAmelCase = torch.cat(__lowercase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=__lowercase ) def _snake_case (self , __lowercase , __lowercase = False , __lowercase = True , __lowercase = None , ): __lowerCAmelCase = sample __lowerCAmelCase = self.encode(__lowercase ).latent_dist if sample_posterior: __lowerCAmelCase = posterior.sample(generator=__lowercase ) else: __lowerCAmelCase = posterior.mode() __lowerCAmelCase = self.decode(__lowercase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__lowercase )
9
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets _UpperCAmelCase : List[str] = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ _UpperCAmelCase : str = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ _UpperCAmelCase : Tuple = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ): if label_map is not None: for old_id, new_id in label_map.items(): __lowerCAmelCase = new_id # turn into Numpy arrays __lowerCAmelCase = np.array(lowerCamelCase) __lowerCAmelCase = np.array(lowerCamelCase) if reduce_labels: __lowerCAmelCase = 2_5_5 __lowerCAmelCase = label - 1 __lowerCAmelCase = 2_5_5 __lowerCAmelCase = label != ignore_index __lowerCAmelCase = np.not_equal(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = pred_label[mask] __lowerCAmelCase = np.array(lowerCamelCase)[mask] __lowerCAmelCase = pred_label[pred_label == label] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ): __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) for result, gt_seg_map in zip(lowerCamelCase, lowerCamelCase): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = intersect_and_union( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = False, ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = total_intersect_and_union( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) # compute metrics __lowerCAmelCase = {} __lowerCAmelCase = total_area_intersect.sum() / total_area_label.sum() __lowerCAmelCase = total_area_intersect / total_area_union __lowerCAmelCase = total_area_intersect / total_area_label __lowerCAmelCase = np.nanmean(lowerCamelCase) __lowerCAmelCase = np.nanmean(lowerCamelCase) __lowerCAmelCase = all_acc __lowerCAmelCase = iou __lowerCAmelCase = acc if nan_to_num is not None: __lowerCAmelCase = {metric: np.nan_to_num(lowerCamelCase, nan=lowerCamelCase) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): """simple docstring""" def _snake_case (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), } ) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = None , __lowercase = None , __lowercase = False , ): __lowerCAmelCase = mean_iou( results=__lowercase , gt_seg_maps=__lowercase , num_labels=__lowercase , ignore_index=__lowercase , nan_to_num=__lowercase , label_map=__lowercase , reduce_labels=__lowercase , ) return iou_result
9
1
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = 0 def _snake_case (self ): __lowerCAmelCase = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(__lowercase , __lowercase ) def _snake_case (self ): with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = Path(__lowercase ) / '''preprocessor_config.json''' __lowerCAmelCase = Path(__lowercase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__lowercase , '''w''' ) ) __lowerCAmelCase = AutoImageProcessor.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) def _snake_case (self ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = Path(__lowercase ) / '''preprocessor_config.json''' __lowerCAmelCase = Path(__lowercase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__lowercase , '''w''' ) ) __lowerCAmelCase = AutoImageProcessor.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) def _snake_case (self ): with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = CLIPConfig() # Create a dummy config file with image_proceesor_type __lowerCAmelCase = Path(__lowercase ) / '''preprocessor_config.json''' __lowerCAmelCase = Path(__lowercase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__lowercase , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __lowerCAmelCase = AutoImageProcessor.from_pretrained(__lowercase ).to_dict() config_dict.pop('''image_processor_type''' ) __lowerCAmelCase = CLIPImageProcessor(**__lowercase ) # save in new folder model_config.save_pretrained(__lowercase ) config.save_pretrained(__lowercase ) __lowerCAmelCase = AutoImageProcessor.from_pretrained(__lowercase ) # make sure private variable is not incorrectly saved __lowerCAmelCase = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(__lowercase , __lowercase ) def _snake_case (self ): with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = Path(__lowercase ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''' ) , ) __lowerCAmelCase = AutoImageProcessor.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) def _snake_case (self ): with self.assertRaisesRegex( __lowercase , '''clip-base is not a local folder and is not a valid model identifier''' ): __lowerCAmelCase = AutoImageProcessor.from_pretrained('''clip-base''' ) def _snake_case (self ): with self.assertRaisesRegex( __lowercase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __lowerCAmelCase = AutoImageProcessor.from_pretrained(__lowercase , revision='''aaaaaa''' ) def _snake_case (self ): with self.assertRaisesRegex( __lowercase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): __lowerCAmelCase = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def _snake_case (self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__lowercase ): __lowerCAmelCase = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowercase ): __lowerCAmelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__lowercase ) __lowerCAmelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__lowercase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__lowercase ) __lowerCAmelCase = AutoImageProcessor.from_pretrained(__lowercase , trust_remote_code=__lowercase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def _snake_case (self ): try: AutoConfig.register('''custom''' , __lowercase ) AutoImageProcessor.register(__lowercase , __lowercase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowercase ): AutoImageProcessor.register(__lowercase , __lowercase ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = Path(__lowercase ) / '''preprocessor_config.json''' __lowerCAmelCase = Path(__lowercase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__lowercase , '''w''' ) ) __lowerCAmelCase = CustomImageProcessor.from_pretrained(__lowercase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__lowercase ) __lowerCAmelCase = AutoImageProcessor.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _snake_case (self ): class a__ ( __A ): """simple docstring""" __UpperCamelCase : Any = True try: AutoConfig.register('''custom''' , __lowercase ) AutoImageProcessor.register(__lowercase , __lowercase ) # If remote code is not set, the default is to use local __lowerCAmelCase = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. __lowerCAmelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__lowercase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub __lowerCAmelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__lowercase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(__lowercase , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
9
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : str = DebertaTokenizer __UpperCamelCase : str = True __UpperCamelCase : Any = DebertaTokenizerFast def _snake_case (self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __lowerCAmelCase = {'''unk_token''': '''[UNK]'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) def _snake_case (self , **__lowercase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , __lowercase ): __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = '''lower newer''' return input_text, output_text def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __lowerCAmelCase = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __lowerCAmelCase = tokens + [tokenizer.unk_token] __lowerCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = tokenizer('''Hello''' , '''World''' ) __lowerCAmelCase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __lowercase ) @slow def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _snake_case (self ): __lowerCAmelCase = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: __lowerCAmelCase = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] __lowerCAmelCase = tokenizer(__lowercase , padding=__lowercase ) __lowerCAmelCase = [tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) for seq in encoding['''input_ids''']] # fmt: off __lowerCAmelCase = { '''input_ids''': [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on __lowerCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __lowercase ) for expected, decoded in zip(__lowercase , __lowercase ): self.assertEqual(__lowercase , __lowercase )
9
1
'''simple docstring''' _UpperCAmelCase : Dict = 8.31_44_62 # Unit - J mol-1 K-1 def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('''Invalid inputs. Enter positive value.''') return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('''Invalid inputs. Enter positive value.''') return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
9
'''simple docstring''' import argparse import datetime def __magic_name__( lowerCamelCase): __lowerCAmelCase = { '''0''': '''Sunday''', '''1''': '''Monday''', '''2''': '''Tuesday''', '''3''': '''Wednesday''', '''4''': '''Thursday''', '''5''': '''Friday''', '''6''': '''Saturday''', } __lowerCAmelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowerCamelCase) < 1_1: raise ValueError('''Must be 10 characters long''') # Get month __lowerCAmelCase = int(date_input[0] + date_input[1]) # Validate if not 0 < m < 1_3: raise ValueError('''Month must be between 1 - 12''') __lowerCAmelCase = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''') # Get day __lowerCAmelCase = int(date_input[3] + date_input[4]) # Validate if not 0 < d < 3_2: raise ValueError('''Date must be between 1 - 31''') # Get second separator __lowerCAmelCase = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''') # Get year __lowerCAmelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) # Arbitrary year range if not 4_5 < y < 8_5_0_0: raise ValueError( '''Year out of range. There has to be some sort of limit...right?''') # Get datetime obj for validation __lowerCAmelCase = datetime.date(int(lowerCamelCase), int(lowerCamelCase), int(lowerCamelCase)) # Start math if m <= 2: __lowerCAmelCase = y - 1 __lowerCAmelCase = m + 1_2 # maths var __lowerCAmelCase = int(str(lowerCamelCase)[:2]) __lowerCAmelCase = int(str(lowerCamelCase)[2:]) __lowerCAmelCase = int(2.6 * m - 5.39) __lowerCAmelCase = int(c / 4) __lowerCAmelCase = int(k / 4) __lowerCAmelCase = int(d + k) __lowerCAmelCase = int(t + u + v + x) __lowerCAmelCase = int(z - (2 * c)) __lowerCAmelCase = round(w % 7) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('''The date was evaluated incorrectly. Contact developer.''') # Response __lowerCAmelCase = F"""Your date {date_input}, is a {days[str(lowerCamelCase)]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase : List[str] = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) _UpperCAmelCase : Dict = parser.parse_args() zeller(args.date_input)
9
1
'''simple docstring''' from __future__ import annotations class a__ : """simple docstring""" def __init__(self , __lowercase ): __lowerCAmelCase = TypeError( '''Matrices must be formed from a list of zero or more lists containing at ''' '''least one and the same number of values, each of which must be of type ''' '''int or float.''' ) if len(__lowercase ) != 0: __lowerCAmelCase = len(rows[0] ) if cols == 0: raise error for row in rows: if len(__lowercase ) != cols: raise error for value in row: if not isinstance(__lowercase , (int, float) ): raise error __lowerCAmelCase = rows else: __lowerCAmelCase = [] def _snake_case (self ): return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def _snake_case (self ): return len(self.rows ) @property def _snake_case (self ): return len(self.rows[0] ) @property def _snake_case (self ): return (self.num_rows, self.num_columns) @property def _snake_case (self ): return self.order[0] == self.order[1] def _snake_case (self ): __lowerCAmelCase = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(__lowercase ) def _snake_case (self ): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def _snake_case (self ): return bool(self.determinant() ) def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(__lowercase ).determinant() def _snake_case (self , __lowercase , __lowercase ): if (row + column) % 2 == 0: return self.get_minor(__lowercase , __lowercase ) return -1 * self.get_minor(__lowercase , __lowercase ) def _snake_case (self ): return Matrix( [ [self.get_minor(__lowercase , __lowercase ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def _snake_case (self ): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def _snake_case (self ): __lowerCAmelCase = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(__lowercase ) def _snake_case (self ): __lowerCAmelCase = self.determinant() if not determinant: raise TypeError('''Only matrices with a non-zero determinant have an inverse''' ) return self.adjugate() * (1 / determinant) def __repr__(self ): return str(self.rows ) def __str__(self ): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '''[''' + '''. '''.join([str(__lowercase ) for value in row] ) + '''.]''' for row in self.rows ] ) + "]" ) def _snake_case (self , __lowercase , __lowercase = None ): __lowerCAmelCase = TypeError('''Row must be a list containing all ints and/or floats''' ) if not isinstance(__lowercase , __lowercase ): raise type_error for value in row: if not isinstance(__lowercase , (int, float) ): raise type_error if len(__lowercase ) != self.num_columns: raise ValueError( '''Row must be equal in length to the other rows in the matrix''' ) if position is None: self.rows.append(__lowercase ) else: __lowerCAmelCase = self.rows[0:position] + [row] + self.rows[position:] def _snake_case (self , __lowercase , __lowercase = None ): __lowerCAmelCase = TypeError( '''Column must be a list containing all ints and/or floats''' ) if not isinstance(__lowercase , __lowercase ): raise type_error for value in column: if not isinstance(__lowercase , (int, float) ): raise type_error if len(__lowercase ) != self.num_rows: raise ValueError( '''Column must be equal in length to the other columns in the matrix''' ) if position is None: __lowerCAmelCase = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: __lowerCAmelCase = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__(self , __lowercase ): if not isinstance(__lowercase , __lowercase ): return NotImplemented return self.rows == other.rows def __ne__(self , __lowercase ): return not self == other def __neg__(self ): return self * -1 def __add__(self , __lowercase ): if self.order != other.order: raise ValueError('''Addition requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__(self , __lowercase ): if self.order != other.order: raise ValueError('''Subtraction requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__(self , __lowercase ): if isinstance(__lowercase , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(__lowercase , __lowercase ): if self.num_columns != other.num_rows: raise ValueError( '''The number of columns in the first matrix must ''' '''be equal to the number of rows in the second''' ) return Matrix( [ [Matrix.dot_product(__lowercase , __lowercase ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( '''A Matrix can only be multiplied by an int, float, or another matrix''' ) def __pow__(self , __lowercase ): if not isinstance(__lowercase , __lowercase ): raise TypeError('''A Matrix can only be raised to the power of an int''' ) if not self.is_square: raise ValueError('''Only square matrices can be raised to a power''' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( '''Only invertable matrices can be raised to a negative power''' ) __lowerCAmelCase = self for _ in range(other - 1 ): result *= self return result @classmethod def _snake_case (cls , __lowercase , __lowercase ): return sum(row[i] * column[i] for i in range(len(__lowercase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
9
'''simple docstring''' import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[Any] = ConsistencyModelPipeline __UpperCamelCase : Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __UpperCamelCase : int = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt __UpperCamelCase : List[Any] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) @property def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet''' , ) return unet @property def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , ) return unet def _snake_case (self , __lowercase=False ): if class_cond: __lowerCAmelCase = self.dummy_cond_unet else: __lowerCAmelCase = self.dummy_uncond_unet # Default to CM multistep sampler __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, } return components def _snake_case (self , __lowercase , __lowercase=0 ): if str(__lowercase ).startswith('''mps''' ): __lowerCAmelCase = torch.manual_seed(__lowercase ) else: __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = { '''batch_size''': 1, '''num_inference_steps''': None, '''timesteps''': [22, 0], '''generator''': generator, '''output_type''': '''np''', } return inputs def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase ) __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 0 __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase ) __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = 0 __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case (self , __lowercase=0 , __lowercase=False , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ): __lowerCAmelCase = torch.manual_seed(__lowercase ) __lowerCAmelCase = { '''num_inference_steps''': None, '''timesteps''': [22, 0], '''class_labels''': 0, '''generator''': generator, '''output_type''': '''np''', } if get_fixed_latents: __lowerCAmelCase = self.get_fixed_latents(seed=__lowercase , device=__lowercase , dtype=__lowercase , shape=__lowercase ) __lowerCAmelCase = latents return inputs def _snake_case (self , __lowercase=0 , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ): if type(__lowercase ) == str: __lowerCAmelCase = torch.device(__lowercase ) __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = randn_tensor(__lowercase , generator=__lowercase , device=__lowercase , dtype=__lowercase ) return latents def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ): __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ): __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
9
1
'''simple docstring''' def __magic_name__( lowerCamelCase): if num <= 0: raise ValueError('''Input must be a positive integer''') __lowerCAmelCase = [True] * (num + 1) __lowerCAmelCase = 2 while p * p <= num: if primes[p]: for i in range(p * p, num + 1, lowerCamelCase): __lowerCAmelCase = False p += 1 return [prime for prime in range(2, num + 1) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase : Tuple = int(input("""Enter a positive integer: """).strip()) print(prime_sieve_eratosthenes(user_num))
9
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _UpperCAmelCase : List[Any] = datasets.load_iris() _UpperCAmelCase : Dict = np.array(data["""data"""]) _UpperCAmelCase : int = np.array(data["""target"""]) _UpperCAmelCase : str = data["""target_names"""] _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = train_test_split(X, y) def __magic_name__( lowerCamelCase, lowerCamelCase): return np.linalg.norm(np.array(lowerCamelCase) - np.array(lowerCamelCase)) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=5): __lowerCAmelCase = zip(lowerCamelCase, lowerCamelCase) # List of distances of all points from the point to be classified __lowerCAmelCase = [] for data_point in data: __lowerCAmelCase = euclidean_distance(data_point[0], lowerCamelCase) distances.append((distance, data_point[1])) # Choosing 'k' points with the least distances. __lowerCAmelCase = [i[1] for i in sorted(lowerCamelCase)[:k]] # Most commonly occurring class among them # is the class into which the point is classified __lowerCAmelCase = Counter(lowerCamelCase).most_common(1)[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
9
1
'''simple docstring''' from __future__ import annotations import os from collections.abc import Mapping _UpperCAmelCase : Dict = tuple[int, int] class a__ : """simple docstring""" def __init__(self , __lowercase , __lowercase ): __lowerCAmelCase = vertices __lowerCAmelCase = { (min(__lowercase ), max(__lowercase )): weight for edge, weight in edges.items() } def _snake_case (self , __lowercase , __lowercase ): self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) __lowerCAmelCase = weight def _snake_case (self ): __lowerCAmelCase = Graph({min(self.vertices )} , {} ) __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = 42 while len(subgraph.vertices ) < len(self.vertices ): __lowerCAmelCase = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: __lowerCAmelCase = edge __lowerCAmelCase = weight subgraph.add_edge(__lowercase , __lowercase ) return subgraph def __magic_name__( lowerCamelCase = "p107_network.txt"): __lowerCAmelCase = os.path.abspath(os.path.dirname(lowerCamelCase)) __lowerCAmelCase = os.path.join(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = {} __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = 42 with open(lowerCamelCase) as f: __lowerCAmelCase = f.read().strip().split('''\n''') __lowerCAmelCase = [line.split(''',''') for line in data] for edgea in range(1, len(lowerCamelCase)): for edgea in range(lowerCamelCase): if adjaceny_matrix[edgea][edgea] != "-": __lowerCAmelCase = int(adjaceny_matrix[edgea][edgea]) __lowerCAmelCase = Graph(set(range(len(lowerCamelCase))), lowerCamelCase) __lowerCAmelCase = graph.prims_algorithm() __lowerCAmelCase = sum(graph.edges.values()) __lowerCAmelCase = sum(subgraph.edges.values()) return initial_total - optimal_total if __name__ == "__main__": print(f"""{solution() = }""")
9
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase ) def _snake_case (self , **__lowercase ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase ) __lowerCAmelCase = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase , return_tensors='''np''' ) __lowerCAmelCase = tokenizer(__lowercase , return_tensors='''np''' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = ['''cat''', '''nasa badge'''] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = [['''cat''', '''nasa badge'''], ['''person''']] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 __lowerCAmelCase = len(__lowercase ) __lowerCAmelCase = max([len(__lowercase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = ['''cat''', '''nasa badge'''] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 __lowerCAmelCase = inputs['''input_ids'''] __lowerCAmelCase = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(images=__lowercase , query_images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase )
9
1
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets _UpperCAmelCase : List[str] = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ _UpperCAmelCase : str = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ _UpperCAmelCase : Tuple = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ): if label_map is not None: for old_id, new_id in label_map.items(): __lowerCAmelCase = new_id # turn into Numpy arrays __lowerCAmelCase = np.array(lowerCamelCase) __lowerCAmelCase = np.array(lowerCamelCase) if reduce_labels: __lowerCAmelCase = 2_5_5 __lowerCAmelCase = label - 1 __lowerCAmelCase = 2_5_5 __lowerCAmelCase = label != ignore_index __lowerCAmelCase = np.not_equal(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = pred_label[mask] __lowerCAmelCase = np.array(lowerCamelCase)[mask] __lowerCAmelCase = pred_label[pred_label == label] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ): __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) for result, gt_seg_map in zip(lowerCamelCase, lowerCamelCase): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = intersect_and_union( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = False, ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = total_intersect_and_union( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) # compute metrics __lowerCAmelCase = {} __lowerCAmelCase = total_area_intersect.sum() / total_area_label.sum() __lowerCAmelCase = total_area_intersect / total_area_union __lowerCAmelCase = total_area_intersect / total_area_label __lowerCAmelCase = np.nanmean(lowerCamelCase) __lowerCAmelCase = np.nanmean(lowerCamelCase) __lowerCAmelCase = all_acc __lowerCAmelCase = iou __lowerCAmelCase = acc if nan_to_num is not None: __lowerCAmelCase = {metric: np.nan_to_num(lowerCamelCase, nan=lowerCamelCase) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): """simple docstring""" def _snake_case (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), } ) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = None , __lowercase = None , __lowercase = False , ): __lowerCAmelCase = mean_iou( results=__lowercase , gt_seg_maps=__lowercase , num_labels=__lowercase , ignore_index=__lowercase , nan_to_num=__lowercase , label_map=__lowercase , reduce_labels=__lowercase , ) return iou_result
9
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __magic_name__( ): __lowerCAmelCase = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0)] __lowerCAmelCase = randint(-5_0_0_0, 5_0_0_0) return (arr, r) _UpperCAmelCase : Dict = make_dataset() def __magic_name__( lowerCamelCase, lowerCamelCase): for triplet in permutations(lowerCamelCase, 3): if sum(lowerCamelCase) == target: return tuple(sorted(lowerCamelCase)) return (0, 0, 0) def __magic_name__( lowerCamelCase, lowerCamelCase): arr.sort() __lowerCAmelCase = len(lowerCamelCase) for i in range(n - 1): __lowerCAmelCase , __lowerCAmelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __magic_name__( ): __lowerCAmelCase = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' __lowerCAmelCase = ''' triplet_sum1(*dataset) ''' __lowerCAmelCase = ''' triplet_sum2(*dataset) ''' __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) return (min(lowerCamelCase), min(lowerCamelCase)) if __name__ == "__main__": from doctest import testmod testmod() _UpperCAmelCase : Union[str, Any] = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
9
1
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase , __lowercase=None , __lowercase=None , __lowercase=0 ): __lowerCAmelCase = 1.0 if scale is None else scale __lowerCAmelCase = 0.0 if loc is None else loc super().__init__(__lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__lowercase )] ) @property def _snake_case (self ): return self.base_dist.mean * self.scale + self.loc @property def _snake_case (self ): return self.base_dist.variance * self.scale**2 @property def _snake_case (self ): return self.variance.sqrt() class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase , **__lowercase ): super().__init__(**__lowercase ) __lowerCAmelCase = args_dim __lowerCAmelCase = nn.ModuleList([nn.Linear(__lowercase , __lowercase ) for dim in args_dim.values()] ) __lowerCAmelCase = domain_map def _snake_case (self , __lowercase ): __lowerCAmelCase = [proj(__lowercase ) for proj in self.proj] return self.domain_map(*__lowercase ) class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase ): super().__init__() __lowerCAmelCase = function def _snake_case (self , __lowercase , *__lowercase ): return self.function(__lowercase , *__lowercase ) class a__ : """simple docstring""" __UpperCamelCase : type __UpperCamelCase : int __UpperCamelCase : Dict[str, int] def __init__(self , __lowercase = 1 ): __lowerCAmelCase = dim __lowerCAmelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def _snake_case (self , __lowercase ): if self.dim == 1: return self.distribution_class(*__lowercase ) else: return Independent(self.distribution_class(*__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , ): __lowerCAmelCase = self._base_distribution(__lowercase ) if loc is None and scale is None: return distr else: return AffineTransformed(__lowercase , loc=__lowercase , scale=__lowercase , event_dim=self.event_dim ) @property def _snake_case (self ): return () if self.dim == 1 else (self.dim,) @property def _snake_case (self ): return len(self.event_shape ) @property def _snake_case (self ): return 0.0 def _snake_case (self , __lowercase ): return ParameterProjection( in_features=__lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def _snake_case (self , *__lowercase ): raise NotImplementedError() @staticmethod def _snake_case (__lowercase ): return (x + torch.sqrt(torch.square(__lowercase ) + 4.0 )) / 2.0 class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} __UpperCamelCase : type = StudentT @classmethod def _snake_case (cls , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) __lowerCAmelCase = 2.0 + cls.squareplus(__lowercase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1} __UpperCamelCase : type = Normal @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1} __UpperCamelCase : type = NegativeBinomial @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def _snake_case (self , __lowercase ): __lowerCAmelCase , __lowerCAmelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=__lowercase , logits=__lowercase ) else: return Independent(self.distribution_class(total_count=__lowercase , logits=__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None ): __lowerCAmelCase , __lowerCAmelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
9
'''simple docstring''' import numpy as np def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = 1E-12, lowerCamelCase = 1_0_0, ): assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[1] # Ensure proper dimensionality. assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(lowerCamelCase) == np.iscomplexobj(lowerCamelCase) __lowerCAmelCase = np.iscomplexobj(lowerCamelCase) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(lowerCamelCase, input_matrix.conj().T) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __lowerCAmelCase = False __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 1E12 while not convergence: # Multiple matrix by the vector. __lowerCAmelCase = np.dot(lowerCamelCase, lowerCamelCase) # Normalize the resulting output vector. __lowerCAmelCase = w / np.linalg.norm(lowerCamelCase) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __lowerCAmelCase = vector.conj().T if is_complex else vector.T __lowerCAmelCase = np.dot(lowerCamelCase, np.dot(lowerCamelCase, lowerCamelCase)) # Check convergence. __lowerCAmelCase = np.abs(lambda_ - lambda_previous) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __lowerCAmelCase = True __lowerCAmelCase = lambda_ if is_complex: __lowerCAmelCase = np.real(lambda_) return lambda_, vector def __magic_name__( ): __lowerCAmelCase = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]]) __lowerCAmelCase = np.array([4_1, 4, 2_0]) __lowerCAmelCase = real_input_matrix.astype(np.complexaaa) __lowerCAmelCase = np.triu(1J * complex_input_matrix, 1) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __lowerCAmelCase = np.array([4_1, 4, 2_0]).astype(np.complexaaa) for problem_type in ["real", "complex"]: if problem_type == "real": __lowerCAmelCase = real_input_matrix __lowerCAmelCase = real_vector elif problem_type == "complex": __lowerCAmelCase = complex_input_matrix __lowerCAmelCase = complex_vector # Our implementation. __lowerCAmelCase , __lowerCAmelCase = power_iteration(lowerCamelCase, lowerCamelCase) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __lowerCAmelCase , __lowerCAmelCase = np.linalg.eigh(lowerCamelCase) # Last eigenvalue is the maximum one. __lowerCAmelCase = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __lowerCAmelCase = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(lowerCamelCase) - np.abs(lowerCamelCase)) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
9
1
'''simple docstring''' import torch from diffusers import StableDiffusionPipeline _UpperCAmelCase : Any = """path-to-your-trained-model""" _UpperCAmelCase : Optional[int] = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("""cuda""") _UpperCAmelCase : Optional[int] = """A photo of sks dog in a bucket""" _UpperCAmelCase : Dict = pipe(prompt, num_inference_steps=5_0, guidance_scale=7.5).images[0] image.save("""dog-bucket.png""")
9
'''simple docstring''' from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _UpperCAmelCase : str = logging.get_logger(__name__) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): return [ int(1_0_0_0 * (box[0] / width)), int(1_0_0_0 * (box[1] / height)), int(1_0_0_0 * (box[2] / width)), int(1_0_0_0 * (box[3] / height)), ] def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = None): __lowerCAmelCase = tesseract_config if tesseract_config is not None else '''''' # apply OCR __lowerCAmelCase = to_pil_image(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = pil_image.size __lowerCAmelCase = pytesseract.image_to_data(lowerCamelCase, lang=lowerCamelCase, output_type='''dict''', config=lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates __lowerCAmelCase = [idx for idx, word in enumerate(lowerCamelCase) if not word.strip()] __lowerCAmelCase = [word for idx, word in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __lowerCAmelCase = [] for x, y, w, h in zip(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [x, y, x + w, y + h] actual_boxes.append(lowerCamelCase) # finally, normalize the bounding boxes __lowerCAmelCase = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowerCamelCase, lowerCamelCase, lowerCamelCase)) assert len(lowerCamelCase) == len(lowerCamelCase), "Not as many words as there are bounding boxes" return words, normalized_boxes class a__ ( __A ): """simple docstring""" __UpperCamelCase : str = ['pixel_values'] def __init__(self , __lowercase = True , __lowercase = None , __lowercase = PILImageResampling.BILINEAR , __lowercase = True , __lowercase = None , __lowercase = "" , **__lowercase , ): super().__init__(**__lowercase ) __lowerCAmelCase = size if size is not None else {'''height''': 2_24, '''width''': 2_24} __lowerCAmelCase = get_size_dict(__lowercase ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = apply_ocr __lowerCAmelCase = ocr_lang __lowerCAmelCase = tesseract_config def _snake_case (self , __lowercase , __lowercase , __lowercase = PILImageResampling.BILINEAR , __lowercase = None , **__lowercase , ): __lowerCAmelCase = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) __lowerCAmelCase = (size['''height'''], size['''width''']) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ): __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(__lowercase ) __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = apply_ocr if apply_ocr is not None else self.apply_ocr __lowerCAmelCase = ocr_lang if ocr_lang is not None else self.ocr_lang __lowerCAmelCase = tesseract_config if tesseract_config is not None else self.tesseract_config __lowerCAmelCase = make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(__lowercase ) for image in images] if apply_ocr: requires_backends(self , '''pytesseract''' ) __lowerCAmelCase = [] __lowerCAmelCase = [] for image in images: __lowerCAmelCase , __lowerCAmelCase = apply_tesseract(__lowercase , __lowercase , __lowercase ) words_batch.append(__lowercase ) boxes_batch.append(__lowercase ) if do_resize: __lowerCAmelCase = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) __lowerCAmelCase = [flip_channel_order(__lowercase ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] __lowerCAmelCase = BatchFeature(data={'''pixel_values''': images} , tensor_type=__lowercase ) if apply_ocr: __lowerCAmelCase = words_batch __lowerCAmelCase = boxes_batch return data
9
1
'''simple docstring''' from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase = 16 , __lowercase = 88 , __lowercase = None , __lowercase = 1 , __lowercase = 0.0 , __lowercase = 32 , __lowercase = None , __lowercase = False , __lowercase = None , __lowercase = None , __lowercase = "geglu" , __lowercase = None , ): super().__init__() __lowerCAmelCase = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__lowercase , attention_head_dim=__lowercase , in_channels=__lowercase , num_layers=__lowercase , dropout=__lowercase , norm_num_groups=__lowercase , cross_attention_dim=__lowercase , attention_bias=__lowercase , sample_size=__lowercase , num_vector_embeds=__lowercase , activation_fn=__lowercase , num_embeds_ada_norm=__lowercase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference __lowerCAmelCase = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` __lowerCAmelCase = [77, 2_57] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` __lowerCAmelCase = [1, 0] def _snake_case (self , __lowercase , __lowercase , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase = True , ): __lowerCAmelCase = hidden_states __lowerCAmelCase = [] __lowerCAmelCase = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens __lowerCAmelCase = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] __lowerCAmelCase = self.transformer_index_for_condition[i] __lowerCAmelCase = self.transformers[transformer_index]( __lowercase , encoder_hidden_states=__lowercase , timestep=__lowercase , cross_attention_kwargs=__lowercase , return_dict=__lowercase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] __lowerCAmelCase = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) __lowerCAmelCase = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__lowercase )
9
'''simple docstring''' from ..utils import DummyObject, requires_backends class a__ ( metaclass=__A ): """simple docstring""" __UpperCamelCase : int = ['torch', 'scipy'] def __init__(self , *__lowercase , **__lowercase ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] )
9
1
'''simple docstring''' from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch _UpperCAmelCase : int = logging.get_logger(__name__) @add_end_docstrings( __A , r'\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ' , ) class a__ ( __A ): """simple docstring""" def _snake_case (self , __lowercase ): if self.framework == "tf": __lowerCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": __lowerCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__lowercase ) else: raise ValueError('''Unsupported framework''' ) return masked_index def _snake_case (self , __lowercase ): __lowerCAmelCase = self.get_masked_index(__lowercase ) __lowerCAmelCase = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , F"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def _snake_case (self , __lowercase ): if isinstance(__lowercase , __lowercase ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(__lowercase ) def _snake_case (self , __lowercase , __lowercase=None , **__lowercase ): if return_tensors is None: __lowerCAmelCase = self.framework __lowerCAmelCase = self.tokenizer(__lowercase , return_tensors=__lowercase ) self.ensure_exactly_one_mask_token(__lowercase ) return model_inputs def _snake_case (self , __lowercase ): __lowerCAmelCase = self.model(**__lowercase ) __lowerCAmelCase = model_inputs['''input_ids'''] return model_outputs def _snake_case (self , __lowercase , __lowercase=5 , __lowercase=None ): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: __lowerCAmelCase = target_ids.shape[0] __lowerCAmelCase = model_outputs['''input_ids'''][0] __lowerCAmelCase = model_outputs['''logits'''] if self.framework == "tf": __lowerCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] __lowerCAmelCase = outputs.numpy() __lowerCAmelCase = outputs[0, masked_index, :] __lowerCAmelCase = stable_softmax(__lowercase , axis=-1 ) if target_ids is not None: __lowerCAmelCase = tf.gather_nd(tf.squeeze(__lowercase , 0 ) , target_ids.reshape(-1 , 1 ) ) __lowerCAmelCase = tf.expand_dims(__lowercase , 0 ) __lowerCAmelCase = tf.math.top_k(__lowercase , k=__lowercase ) __lowerCAmelCase , __lowerCAmelCase = topk.values.numpy(), topk.indices.numpy() else: __lowerCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__lowercase ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample __lowerCAmelCase = outputs[0, masked_index, :] __lowerCAmelCase = logits.softmax(dim=-1 ) if target_ids is not None: __lowerCAmelCase = probs[..., target_ids] __lowerCAmelCase , __lowerCAmelCase = probs.topk(__lowercase ) __lowerCAmelCase = [] __lowerCAmelCase = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): __lowerCAmelCase = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place __lowerCAmelCase = input_ids.numpy().copy() if target_ids is not None: __lowerCAmelCase = target_ids[p].tolist() __lowerCAmelCase = p # Filter padding out: __lowerCAmelCase = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back __lowerCAmelCase = self.tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) __lowerCAmelCase = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(__lowercase ) result.append(__lowercase ) if single_mask: return result[0] return result def _snake_case (self , __lowercase , __lowercase=None ): if isinstance(__lowercase , __lowercase ): __lowerCAmelCase = [targets] try: __lowerCAmelCase = self.tokenizer.get_vocab() except Exception: __lowerCAmelCase = {} __lowerCAmelCase = [] for target in targets: __lowerCAmelCase = vocab.get(__lowercase , __lowercase ) if id_ is None: __lowerCAmelCase = self.tokenizer( __lowercase , add_special_tokens=__lowercase , return_attention_mask=__lowercase , return_token_type_ids=__lowercase , max_length=1 , truncation=__lowercase , )['''input_ids'''] if len(__lowercase ) == 0: logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ '''We cannot replace it with anything meaningful, ignoring it''' ) continue __lowerCAmelCase = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ F"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) __lowerCAmelCase = list(set(__lowercase ) ) if len(__lowercase ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) __lowerCAmelCase = np.array(__lowercase ) return target_ids def _snake_case (self , __lowercase=None , __lowercase=None ): __lowerCAmelCase = {} if targets is not None: __lowerCAmelCase = self.get_target_ids(__lowercase , __lowercase ) __lowerCAmelCase = target_ids if top_k is not None: __lowerCAmelCase = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__(self , __lowercase , *__lowercase , **__lowercase ): __lowerCAmelCase = super().__call__(__lowercase , **__lowercase ) if isinstance(__lowercase , __lowercase ) and len(__lowercase ) == 1: return outputs[0] return outputs
9
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class a__ ( unittest.TestCase ): """simple docstring""" def __init__(self , __lowercase , __lowercase = True , __lowercase = None , __lowercase = 32 , __lowercase = True , __lowercase = 1 / 2_55 , __lowercase = True , __lowercase = True , __lowercase = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , __lowercase = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , __lowercase = True , __lowercase=7 , __lowercase=30 , __lowercase=4_00 , __lowercase=3 , ): __lowerCAmelCase = parent __lowerCAmelCase = do_resize __lowerCAmelCase = size if size is not None else {'''shortest_edge''': 2_88} __lowerCAmelCase = size_divisor __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = do_center_crop __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = do_pad __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution def _snake_case (self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def _snake_case (self , __lowercase , __lowercase=False ): if not batched: __lowerCAmelCase = self.size['''shortest_edge'''] __lowerCAmelCase = image_inputs[0] if isinstance(__lowercase , Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image.size else: __lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2] __lowerCAmelCase = size / min(__lowercase , __lowercase ) if h < w: __lowerCAmelCase , __lowerCAmelCase = size, scale * w else: __lowerCAmelCase , __lowerCAmelCase = scale * h, size __lowerCAmelCase = int((13_33 / 8_00) * size ) if max(__lowercase , __lowercase ) > max_size: __lowerCAmelCase = max_size / max(__lowercase , __lowercase ) __lowerCAmelCase = newh * scale __lowerCAmelCase = neww * scale __lowerCAmelCase , __lowerCAmelCase = int(newh + 0.5 ), int(neww + 0.5 ) __lowerCAmelCase , __lowerCAmelCase = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __lowerCAmelCase = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[0] )[0] __lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Any = BridgeTowerImageProcessor if is_vision_available() else None def _snake_case (self ): __lowerCAmelCase = BridgeTowerImageProcessingTester(self ) @property def _snake_case (self ): return self.image_processor_tester.prepare_image_processor_dict() def _snake_case (self ): __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowercase , '''image_std''' ) ) self.assertTrue(hasattr(__lowercase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowercase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowercase , '''size''' ) ) self.assertTrue(hasattr(__lowercase , '''size_divisor''' ) ) def _snake_case (self ): pass def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , Image.Image ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
9
1
'''simple docstring''' from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = "x", lowerCamelCase = 1_0**-1_0, lowerCamelCase = 1, ): __lowerCAmelCase = symbols(lowerCamelCase) __lowerCAmelCase = lambdify(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = lambdify(lowerCamelCase, diff(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = starting_point while True: if diff_function(lowerCamelCase) != 0: __lowerCAmelCase = prev_guess - multiplicity * func(lowerCamelCase) / diff_function( lowerCamelCase) else: raise ZeroDivisionError('''Could not find root''') from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess) < precision: return next_guess __lowerCAmelCase = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}""") # Find value of e print( """The root of log(y) - 1 = 0 is """, f"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( """The root of exp(x) - 1 = 0 is""", f"""{newton_raphson('exp(x) - 1', 1_0, precision=0.0_05)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
9
'''simple docstring''' # Imports import numpy as np class a__ : """simple docstring""" def __init__(self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase ) def _snake_case (self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): if red is not None: __lowerCAmelCase = red if green is not None: __lowerCAmelCase = green if blue is not None: __lowerCAmelCase = blue if red_edge is not None: __lowerCAmelCase = red_edge if nir is not None: __lowerCAmelCase = nir return True def _snake_case (self , __lowercase="" , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase ) __lowerCAmelCase = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''' ) return False def _snake_case (self ): return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case (self ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case (self ): return self.nir * (self.red / (self.green**2)) def _snake_case (self ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case (self ): return (self.nir - self.red) / (self.nir + self.red) def _snake_case (self ): return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case (self ): return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case (self ): return (self.nir - self.green) / (self.nir + self.green) def _snake_case (self ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case (self ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case (self ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case (self ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case (self , __lowercase=0.0_8 , __lowercase=1.2_2 , __lowercase=0.0_3 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case (self ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case (self ): return (self.nir / self.green) - 1 def _snake_case (self ): return (self.nir / self.redEdge) - 1 def _snake_case (self ): return (self.red - self.blue) / self.red def _snake_case (self ): __lowerCAmelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case (self ): return self.nir - self.green def _snake_case (self ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case (self ): __lowerCAmelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case (self , __lowercase=0.1_6 ): return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case (self , __lowercase=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case (self ): return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _snake_case (self , __lowercase=None , __lowercase=None ): return (self.nir - b) / (a * self.red) def _snake_case (self ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case (self ): return (self.red + self.green + self.blue) / 3_0.5 def _snake_case (self ): return self.nir / self.red def _snake_case (self ): return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case (self ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case (self ): return self.green / (self.nir + self.red + self.green) def _snake_case (self ): return self.nir / (self.nir + self.red + self.green) def _snake_case (self ): return self.red / (self.nir + self.red + self.green) def _snake_case (self ): return (self.green - self.red) / (self.green + self.red) def _snake_case (self ): return (self.red - self.green) / (self.red + self.green) def _snake_case (self ): __lowerCAmelCase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) __lowerCAmelCase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case (self ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case (self ): return self.nir / self.red def _snake_case (self ): return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case (self ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
9
1
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class a__ : """simple docstring""" def __init__(self , __lowercase , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase="resnet50" , __lowercase=3 , __lowercase=32 , __lowercase=3 , __lowercase=True , __lowercase=True , ): __lowerCAmelCase = parent __lowerCAmelCase = out_indices if out_indices is not None else [4] __lowerCAmelCase = stage_names __lowerCAmelCase = out_features __lowerCAmelCase = backbone __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = use_pretrained_backbone __lowerCAmelCase = is_training def _snake_case (self ): __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def _snake_case (self ): return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = TimmBackbone(config=__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(__lowercase ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def _snake_case (self ): __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class a__ ( __A , __A , __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Union[str, Any] = (TimmBackbone,) if is_torch_available() else () __UpperCamelCase : Optional[int] = {'feature-extraction': TimmBackbone} if is_torch_available() else {} __UpperCamelCase : str = False __UpperCamelCase : int = False __UpperCamelCase : Optional[int] = False __UpperCamelCase : Optional[int] = False def _snake_case (self ): __lowerCAmelCase = TimmBackboneModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase ) def _snake_case (self ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case (self ): __lowerCAmelCase = '''resnet18''' __lowerCAmelCase = '''microsoft/resnet-18''' __lowerCAmelCase = AutoBackbone.from_pretrained(__lowercase , use_timm_backbone=__lowercase ) __lowerCAmelCase = AutoBackbone.from_pretrained(__lowercase ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowerCAmelCase = AutoBackbone.from_pretrained(__lowercase , use_timm_backbone=__lowercase , out_indices=[1, 2, 3] ) __lowerCAmelCase = AutoBackbone.from_pretrained(__lowercase , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def _snake_case (self ): pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def _snake_case (self ): pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def _snake_case (self ): pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def _snake_case (self ): pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def _snake_case (self ): pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def _snake_case (self ): pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def _snake_case (self ): pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def _snake_case (self ): pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def _snake_case (self ): pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def _snake_case (self ): pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def _snake_case (self ): pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def _snake_case (self ): pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def _snake_case (self ): pass @unittest.skip('''Safetensors is not supported by timm.''' ) def _snake_case (self ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _snake_case (self ): pass def _snake_case (self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__lowercase ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowercase ) def _snake_case (self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = self.has_attentions # no need to test all models as different heads yield the same functionality __lowerCAmelCase = self.all_model_classes[0] __lowerCAmelCase = model_class(__lowercase ) model.to(__lowercase ) __lowerCAmelCase = self._prepare_for_class(__lowercase , __lowercase ) __lowerCAmelCase = model(**__lowercase ) __lowerCAmelCase = outputs[0][-1] # Encoder-/Decoder-only models __lowerCAmelCase = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowerCAmelCase = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__lowercase ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def _snake_case (self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__lowercase ) model.to(__lowercase ) model.eval() __lowerCAmelCase = model(**__lowercase ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowerCAmelCase = copy.deepcopy(__lowercase ) __lowerCAmelCase = None __lowerCAmelCase = model_class(__lowercase ) model.to(__lowercase ) model.eval() __lowerCAmelCase = model(**__lowercase ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowerCAmelCase = copy.deepcopy(__lowercase ) __lowerCAmelCase = False __lowerCAmelCase = model_class(__lowercase ) model.to(__lowercase ) model.eval() __lowerCAmelCase = model(**__lowercase )
9
'''simple docstring''' from math import sqrt def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' must been an int and positive" __lowerCAmelCase = True # 0 and 1 are none primes. if number <= 1: __lowerCAmelCase = False for divisor in range(2, int(round(sqrt(lowerCamelCase))) + 1): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __lowerCAmelCase = False break # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'status' must been from type bool" return status def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __lowerCAmelCase = list(range(2, n + 1)) __lowerCAmelCase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase)): for j in range(i + 1, len(lowerCamelCase)): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __lowerCAmelCase = 0 # filters actual prime numbers. __lowerCAmelCase = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" __lowerCAmelCase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2, n + 1): if is_prime(lowerCamelCase): ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and number >= 0, "'number' must been an int and >= 0" __lowerCAmelCase = [] # this list will be returns of the function. # potential prime number factors. __lowerCAmelCase = 2 __lowerCAmelCase = number if number == 0 or number == 1: ans.append(lowerCamelCase) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase): while quotient != 1: if is_prime(lowerCamelCase) and (quotient % factor == 0): ans.append(lowerCamelCase) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = max(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = min(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 == 0, lowerCamelCase), "compare bust been from type bool" return number % 2 == 0 def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 != 0, lowerCamelCase), "compare bust been from type bool" return number % 2 != 0 def __magic_name__( lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and (number > 2) and is_even(lowerCamelCase) ), "'number' must been an int, even and > 2" __lowerCAmelCase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __lowerCAmelCase = get_prime_numbers(lowerCamelCase) __lowerCAmelCase = len(lowerCamelCase) # run variable for while-loops. __lowerCAmelCase = 0 __lowerCAmelCase = None # exit variable. for break up the loops __lowerCAmelCase = True while i < len_pn and loop: __lowerCAmelCase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __lowerCAmelCase = False ans.append(prime_numbers[i]) ans.append(prime_numbers[j]) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (len(lowerCamelCase) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0]) and is_prime(ans[1]) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 0 while numbera != 0: __lowerCAmelCase = numbera % numbera __lowerCAmelCase = numbera __lowerCAmelCase = rest # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = prime_factorization(lowerCamelCase) elif numbera == 1 or numbera == 1: __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = max(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(max(lowerCamelCase, lowerCamelCase)): ans *= n else: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'number' must been a positive int" __lowerCAmelCase = 0 __lowerCAmelCase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase): ans += 1 # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and is_prime( lowerCamelCase), "'ans' must been a prime number and from type int" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( is_prime(lowerCamelCase) and is_prime(lowerCamelCase) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __lowerCAmelCase = p_number_a + 1 # jump to the next number __lowerCAmelCase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 while number < p_number_a: ans.append(lowerCamelCase) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and ans[0] != p_number_a and ans[len(lowerCamelCase) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 1), "'n' must been int and >= 1" __lowerCAmelCase = [] # will be returned. for divisor in range(1, n + 1): if n % divisor == 0: ans.append(lowerCamelCase) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase) - 1] == n, "Error in function getDivisiors(...)" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number > 1 ), "'number' must been an int and >= 1" __lowerCAmelCase = get_divisors(lowerCamelCase) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (divisors[0] == 1) and (divisors[len(lowerCamelCase) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1]) == number def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __lowerCAmelCase = gcd(abs(lowerCamelCase), abs(lowerCamelCase)) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been a int and >= 0" __lowerCAmelCase = 1 # this will be return. for factor in range(1, n + 1): ans *= factor return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been an int and >= 0" __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = 1 # this will be return for _ in range(n - 1): __lowerCAmelCase = ans ans += fiba __lowerCAmelCase = tmp return ans
9
1
'''simple docstring''' def __magic_name__( lowerCamelCase, lowerCamelCase): if density <= 0: raise ValueError('''Impossible fluid density''') if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''') return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
9
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed _UpperCAmelCase : Dict = """true""" def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=1_6): set_seed(4_2) __lowerCAmelCase = RegressionModel() __lowerCAmelCase = deepcopy(lowerCamelCase) __lowerCAmelCase = RegressionDataset(length=lowerCamelCase) __lowerCAmelCase = DataLoader(lowerCamelCase, batch_size=lowerCamelCase) model.to(accelerator.device) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase) return model, ddp_model, dataloader def __magic_name__( lowerCamelCase, lowerCamelCase=False): __lowerCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''') __lowerCAmelCase = load_dataset('''glue''', '''mrpc''', split='''validation''') def tokenize_function(lowerCamelCase): __lowerCAmelCase = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=lowerCamelCase, max_length=lowerCamelCase) return outputs with accelerator.main_process_first(): __lowerCAmelCase = dataset.map( lowerCamelCase, batched=lowerCamelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) __lowerCAmelCase = tokenized_datasets.rename_column('''label''', '''labels''') def collate_fn(lowerCamelCase): if use_longest: return tokenizer.pad(lowerCamelCase, padding='''longest''', return_tensors='''pt''') return tokenizer.pad(lowerCamelCase, padding='''max_length''', max_length=1_2_8, return_tensors='''pt''') return DataLoader(lowerCamelCase, shuffle=lowerCamelCase, collate_fn=lowerCamelCase, batch_size=1_6) def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = Accelerator(dispatch_batches=lowerCamelCase, split_batches=lowerCamelCase) __lowerCAmelCase = get_dataloader(lowerCamelCase, not dispatch_batches) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''', return_dict=lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [] for batch in dataloader: __lowerCAmelCase , __lowerCAmelCase = batch.values() with torch.no_grad(): __lowerCAmelCase = model(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((logit, target)) logits_and_targets.append((logit, target)) __lowerCAmelCase , __lowerCAmelCase = [], [] for logit, targ in logits_and_targets: logits.append(lowerCamelCase) targs.append(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = torch.cat(lowerCamelCase), torch.cat(lowerCamelCase) return logits, targs def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=1_6): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = get_basic_setup(lowerCamelCase, lowerCamelCase, lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = generate_predictions(lowerCamelCase, lowerCamelCase, lowerCamelCase) assert ( len(lowerCamelCase) == num_samples ), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowerCamelCase)}""" def __magic_name__( lowerCamelCase = False, lowerCamelCase = False): __lowerCAmelCase = evaluate.load('''glue''', '''mrpc''') __lowerCAmelCase , __lowerCAmelCase = get_mrpc_setup(lowerCamelCase, lowerCamelCase) # First do baseline __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''no'''] model.to(lowerCamelCase) model.eval() for batch in dataloader: batch.to(lowerCamelCase) with torch.inference_mode(): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(dim=-1) metric.add_batch(predictions=lowerCamelCase, references=batch['''labels''']) __lowerCAmelCase = metric.compute() # Then do distributed __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(dim=-1) __lowerCAmelCase = batch['''labels'''] __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((preds, references)) metric.add_batch(predictions=lowerCamelCase, references=lowerCamelCase) __lowerCAmelCase = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key], distributed[key]), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def __magic_name__( ): __lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''') for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""") test_mrpc(lowerCamelCase, lowerCamelCase) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''') for split_batches in [True, False]: for dispatch_batches in [True, False]: __lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase) if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""") test_torch_metrics(lowerCamelCase, 9_9) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''') __lowerCAmelCase = Accelerator() test_torch_metrics(lowerCamelCase, 5_1_2) accelerator.state._reset_state() def __magic_name__( lowerCamelCase): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
9
1
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCAmelCase : List[str] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Any = XLMRobertaTokenizer __UpperCamelCase : Tuple = XLMRobertaTokenizerFast __UpperCamelCase : List[Any] = True __UpperCamelCase : Any = True def _snake_case (self ): super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase = XLMRobertaTokenizer(__lowercase , keep_accents=__lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = '''<pad>''' __lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowercase ) , __lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowercase ) , __lowercase ) def _snake_case (self ): __lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__lowercase ) , 10_02 ) def _snake_case (self ): self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def _snake_case (self ): __lowerCAmelCase = XLMRobertaTokenizer(__lowercase , keep_accents=__lowercase ) __lowerCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowercase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __lowerCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __lowerCAmelCase = tokenizer.convert_tokens_to_ids(__lowercase ) self.assertListEqual( __lowercase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(__lowercase ) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def _snake_case (self ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __lowerCAmelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__lowercase , **__lowercase ) __lowerCAmelCase = self.tokenizer_class.from_pretrained(__lowercase , **__lowercase ) __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = tokenizer_r.save_pretrained(__lowercase ) __lowerCAmelCase = tokenizer_p.save_pretrained(__lowercase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __lowerCAmelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(__lowercase , __lowercase ) # Checks everything loads correctly in the same way __lowerCAmelCase = tokenizer_r.from_pretrained(__lowercase ) __lowerCAmelCase = tokenizer_p.from_pretrained(__lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowercase , __lowercase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__lowercase ) # Save tokenizer rust, legacy_format=True __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = tokenizer_r.save_pretrained(__lowercase , legacy_format=__lowercase ) __lowerCAmelCase = tokenizer_p.save_pretrained(__lowercase ) # Checks it save with the same files self.assertSequenceEqual(__lowercase , __lowercase ) # Checks everything loads correctly in the same way __lowerCAmelCase = tokenizer_r.from_pretrained(__lowercase ) __lowerCAmelCase = tokenizer_p.from_pretrained(__lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowercase , __lowercase ) ) shutil.rmtree(__lowercase ) # Save tokenizer rust, legacy_format=False __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = tokenizer_r.save_pretrained(__lowercase , legacy_format=__lowercase ) __lowerCAmelCase = tokenizer_p.save_pretrained(__lowercase ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __lowerCAmelCase = tokenizer_r.from_pretrained(__lowercase ) __lowerCAmelCase = tokenizer_p.from_pretrained(__lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowercase , __lowercase ) ) shutil.rmtree(__lowercase ) @cached_property def _snake_case (self ): return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def _snake_case (self ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__lowercase , f.name ) __lowerCAmelCase = XLMRobertaTokenizer(f.name , keep_accents=__lowercase ) __lowerCAmelCase = pickle.dumps(__lowercase ) pickle.loads(__lowercase ) def _snake_case (self ): if not self.test_rust_tokenizer: return __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = '''I was born in 92000, and this is falsé.''' __lowerCAmelCase = tokenizer.tokenize(__lowercase ) __lowerCAmelCase = rust_tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __lowerCAmelCase = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) __lowerCAmelCase = rust_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = tokenizer.encode(__lowercase ) __lowerCAmelCase = rust_tokenizer.encode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) @slow def _snake_case (self ): __lowerCAmelCase = '''Hello World!''' __lowerCAmelCase = [0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__lowercase , self.big_tokenizer.encode(__lowercase ) ) @slow def _snake_case (self ): __lowerCAmelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) __lowerCAmelCase = [ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__lowercase , self.big_tokenizer.encode(__lowercase ) ) @slow def _snake_case (self ): # fmt: off __lowerCAmelCase = {'''input_ids''': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowercase , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
9
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : str = logging.get_logger(__name__) _UpperCAmelCase : str = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class a__ ( __A ): """simple docstring""" __UpperCamelCase : str = 'roberta' def __init__(self , __lowercase=5_02_65 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=1 , __lowercase=0 , __lowercase=2 , __lowercase="absolute" , __lowercase=True , __lowercase=None , **__lowercase , ): super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = use_cache __lowerCAmelCase = classifier_dropout class a__ ( __A ): """simple docstring""" @property def _snake_case (self ): if self.task == "multiple-choice": __lowerCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
9
1
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
9
'''simple docstring''' import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = old_name if "patch_embed" in old_name: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = old_name.split('''.''') if layer == "0": __lowerCAmelCase = old_name.replace('''0''', '''convolution1''') elif layer == "1": __lowerCAmelCase = old_name.replace('''1''', '''batchnorm_before''') elif layer == "3": __lowerCAmelCase = old_name.replace('''3''', '''convolution2''') else: __lowerCAmelCase = old_name.replace('''4''', '''batchnorm_after''') if "network" in old_name and re.search(r'''\d\.\d''', lowerCamelCase): __lowerCAmelCase = r'''\b\d{2}\b''' if bool(re.search(lowerCamelCase, lowerCamelCase)): __lowerCAmelCase = re.search(r'''\d\.\d\d.''', lowerCamelCase).group() else: __lowerCAmelCase = re.search(r'''\d\.\d.''', lowerCamelCase).group() if int(match[0]) < 6: __lowerCAmelCase = old_name.replace(lowerCamelCase, '''''') __lowerCAmelCase = trimmed_name.replace('''network''', match[0] + '''.meta4D_layers.blocks.''' + match[2:-1]) __lowerCAmelCase = '''intermediate_stages.''' + trimmed_name else: __lowerCAmelCase = old_name.replace(lowerCamelCase, '''''') if int(match[2]) < num_meta4D_last_stage: __lowerCAmelCase = trimmed_name.replace('''network''', '''meta4D_layers.blocks.''' + match[2]) else: __lowerCAmelCase = str(int(match[2]) - num_meta4D_last_stage) __lowerCAmelCase = trimmed_name.replace('''network''', '''meta3D_layers.blocks.''' + layer_index) if "norm1" in old_name: __lowerCAmelCase = trimmed_name.replace('''norm1''', '''layernorm1''') elif "norm2" in old_name: __lowerCAmelCase = trimmed_name.replace('''norm2''', '''layernorm2''') elif "fc1" in old_name: __lowerCAmelCase = trimmed_name.replace('''fc1''', '''linear_in''') elif "fc2" in old_name: __lowerCAmelCase = trimmed_name.replace('''fc2''', '''linear_out''') __lowerCAmelCase = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(r'''.\d.''', lowerCamelCase): __lowerCAmelCase = old_name.replace('''network''', '''intermediate_stages''') if "fc" in new_name: __lowerCAmelCase = new_name.replace('''fc''', '''convolution''') elif ("norm1" in new_name) and ("layernorm1" not in new_name): __lowerCAmelCase = new_name.replace('''norm1''', '''batchnorm_before''') elif ("norm2" in new_name) and ("layernorm2" not in new_name): __lowerCAmelCase = new_name.replace('''norm2''', '''batchnorm_after''') if "proj" in new_name: __lowerCAmelCase = new_name.replace('''proj''', '''projection''') if "dist_head" in new_name: __lowerCAmelCase = new_name.replace('''dist_head''', '''distillation_classifier''') elif "head" in new_name: __lowerCAmelCase = new_name.replace('''head''', '''classifier''') elif "patch_embed" in new_name: __lowerCAmelCase = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": __lowerCAmelCase = new_name.replace('''norm''', '''layernorm''') __lowerCAmelCase = '''efficientformer.''' + new_name else: __lowerCAmelCase = '''efficientformer.encoder.''' + new_name return new_name def __magic_name__( lowerCamelCase, lowerCamelCase): for key in checkpoint.copy().keys(): __lowerCAmelCase = checkpoint.pop(lowerCamelCase) __lowerCAmelCase = val return checkpoint def __magic_name__( ): __lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowerCAmelCase = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase).raw) return image def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = torch.load(lowerCamelCase, map_location='''cpu''')['''model'''] __lowerCAmelCase = EfficientFormerConfig.from_json_file(lowerCamelCase) __lowerCAmelCase = EfficientFormerForImageClassificationWithTeacher(lowerCamelCase) __lowerCAmelCase = '''_'''.join(checkpoint_path.split('''/''')[-1].split('''.''')[0].split('''_''')[:-1]) __lowerCAmelCase = config.depths[-1] - config.num_metaad_blocks + 1 __lowerCAmelCase = convert_torch_checkpoint(lowerCamelCase, lowerCamelCase) model.load_state_dict(lowerCamelCase) model.eval() __lowerCAmelCase = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image __lowerCAmelCase = prepare_img() __lowerCAmelCase = 2_5_6 __lowerCAmelCase = 2_2_4 __lowerCAmelCase = EfficientFormerImageProcessor( size={'''shortest_edge''': image_size}, crop_size={'''height''': crop_size, '''width''': crop_size}, resample=pillow_resamplings['''bicubic'''], ) __lowerCAmelCase = processor(images=lowerCamelCase, return_tensors='''pt''').pixel_values # original processing pipeline __lowerCAmelCase = Compose( [ Resize(lowerCamelCase, interpolation=pillow_resamplings['''bicubic''']), CenterCrop(lowerCamelCase), ToTensor(), Normalize(lowerCamelCase, lowerCamelCase), ]) __lowerCAmelCase = image_transforms(lowerCamelCase).unsqueeze(0) assert torch.allclose(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = model(lowerCamelCase) __lowerCAmelCase = outputs.logits __lowerCAmelCase = (1, 1_0_0_0) if "l1" in model_name: __lowerCAmelCase = torch.Tensor( [-0.13_12, 0.43_53, -1.04_99, -0.51_24, 0.41_83, -0.67_93, -1.37_77, -0.08_93, -0.73_58, -2.43_28]) assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3) assert logits.shape == expected_shape elif "l3" in model_name: __lowerCAmelCase = torch.Tensor( [-1.31_50, -1.54_56, -1.25_56, -0.84_96, -0.71_27, -0.78_97, -0.97_28, -0.30_52, 0.37_51, -0.31_27]) assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3) assert logits.shape == expected_shape elif "l7" in model_name: __lowerCAmelCase = torch.Tensor( [-1.02_83, -1.41_31, -0.56_44, -1.31_15, -0.57_85, -1.20_49, -0.75_28, 0.19_92, -0.38_22, -0.08_78]) assert logits.shape == expected_shape else: raise ValueError( F"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""") # Save Checkpoints Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase) model.save_pretrained(lowerCamelCase) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""") processor.save_pretrained(lowerCamelCase) print(F"""Processor successfuly saved at {pytorch_dump_path}""") if push_to_hub: print('''Pushing model to the hub...''') model.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add model''', use_temp_dir=lowerCamelCase, ) processor.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add image processor''', use_temp_dir=lowerCamelCase, ) if __name__ == "__main__": _UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--pytorch_model_path""", default=None, type=str, required=True, help="""Path to EfficientFormer pytorch checkpoint.""", ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The json file for EfficientFormer model config.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") parser.add_argument( """--no-push_to_hub""", dest="""push_to_hub""", action="""store_false""", help="""Do not push model and image processor to the hub""", ) parser.set_defaults(push_to_hub=True) _UpperCAmelCase : List[str] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
9
1
'''simple docstring''' from __future__ import annotations def __magic_name__( lowerCamelCase, lowerCamelCase): # Checks if the entire collection has been sorted if len(lowerCamelCase) <= 1 or n <= 1: return insert_next(lowerCamelCase, n - 1) rec_insertion_sort(lowerCamelCase, n - 1) def __magic_name__( lowerCamelCase, lowerCamelCase): # Checks order between adjacent elements if index >= len(lowerCamelCase) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order __lowerCAmelCase , __lowerCAmelCase = ( collection[index], collection[index - 1], ) insert_next(lowerCamelCase, index + 1) if __name__ == "__main__": _UpperCAmelCase : Optional[int] = input("""Enter integers separated by spaces: """) _UpperCAmelCase : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
9
'''simple docstring''' from __future__ import annotations import math def __magic_name__( lowerCamelCase, lowerCamelCase): if len(lowerCamelCase) != 2 or len(a[0]) != 2 or len(lowerCamelCase) != 2 or len(b[0]) != 2: raise Exception('''Matrices are not 2x2''') __lowerCAmelCase = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def __magic_name__( lowerCamelCase, lowerCamelCase): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(lowerCamelCase)) ] def __magic_name__( lowerCamelCase, lowerCamelCase): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(lowerCamelCase)) ] def __magic_name__( lowerCamelCase): if len(lowerCamelCase) % 2 != 0 or len(a[0]) % 2 != 0: raise Exception('''Odd matrices are not supported!''') __lowerCAmelCase = len(lowerCamelCase) __lowerCAmelCase = matrix_length // 2 __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase)] __lowerCAmelCase = [ [a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase) ] __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase)] __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase)] return top_left, top_right, bot_left, bot_right def __magic_name__( lowerCamelCase): return len(lowerCamelCase), len(matrix[0]) def __magic_name__( lowerCamelCase): print('''\n'''.join(str(lowerCamelCase) for line in matrix)) def __magic_name__( lowerCamelCase, lowerCamelCase): if matrix_dimensions(lowerCamelCase) == (2, 2): return default_matrix_multiplication(lowerCamelCase, lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase) __lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase) __lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = matrix_addition(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase) __lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = matrix_subtraction(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase) # construct the new matrix from our 4 quadrants __lowerCAmelCase = [] for i in range(len(lowerCamelCase)): new_matrix.append(top_left[i] + top_right[i]) for i in range(len(lowerCamelCase)): new_matrix.append(bot_left[i] + bot_right[i]) return new_matrix def __magic_name__( lowerCamelCase, lowerCamelCase): if matrix_dimensions(lowerCamelCase)[1] != matrix_dimensions(lowerCamelCase)[0]: __lowerCAmelCase = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(lowerCamelCase) __lowerCAmelCase = matrix_dimensions(lowerCamelCase) __lowerCAmelCase = matrix_dimensions(lowerCamelCase) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] __lowerCAmelCase = max(*lowerCamelCase, *lowerCamelCase) __lowerCAmelCase = int(math.pow(2, math.ceil(math.loga(lowerCamelCase)))) __lowerCAmelCase = matrixa __lowerCAmelCase = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0, lowerCamelCase): if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): new_matrixa[i].append(0) else: new_matrixa.append([0] * maxim) if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): new_matrixa[i].append(0) else: new_matrixa.append([0] * maxim) __lowerCAmelCase = actual_strassen(lowerCamelCase, lowerCamelCase) # Removing the additional zeros for i in range(0, lowerCamelCase): if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": _UpperCAmelCase : List[str] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] _UpperCAmelCase : Optional[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
9
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class a__ : """simple docstring""" def __init__(self , __lowercase , __lowercase=13 , __lowercase=7 , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=99 , __lowercase=32 , __lowercase=5 , __lowercase=4 , __lowercase=37 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=16 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=3 , __lowercase=4 , __lowercase=None , ): __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope __lowerCAmelCase = self.vocab_size - 1 def _snake_case (self ): __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) __lowerCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , *__lowercase ): __lowerCAmelCase = OpenAIGPTModel(config=__lowercase ) model.to(__lowercase ) model.eval() __lowerCAmelCase = model(__lowercase , token_type_ids=__lowercase , head_mask=__lowercase ) __lowerCAmelCase = model(__lowercase , token_type_ids=__lowercase ) __lowerCAmelCase = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , *__lowercase ): __lowerCAmelCase = OpenAIGPTLMHeadModel(__lowercase ) model.to(__lowercase ) model.eval() __lowerCAmelCase = model(__lowercase , token_type_ids=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , *__lowercase ): __lowerCAmelCase = OpenAIGPTDoubleHeadsModel(__lowercase ) model.to(__lowercase ) model.eval() __lowerCAmelCase = model(__lowercase , token_type_ids=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , *__lowercase ): __lowerCAmelCase = self.num_labels __lowerCAmelCase = OpenAIGPTForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = model(__lowercase , token_type_ids=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case (self ): __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class a__ ( __A , __A , __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : List[str] = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) __UpperCamelCase : List[Any] = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly __UpperCamelCase : Union[str, Any] = ( { 'feature-extraction': OpenAIGPTModel, 'text-classification': OpenAIGPTForSequenceClassification, 'text-generation': OpenAIGPTLMHeadModel, 'zero-shot': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _snake_case (self , __lowercase , __lowercase , __lowercase=False ): __lowerCAmelCase = super()._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": __lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=__lowercase , ) __lowerCAmelCase = inputs_dict['''labels'''] __lowerCAmelCase = inputs_dict['''labels'''] __lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=__lowercase , ) __lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowercase ) return inputs_dict def _snake_case (self ): __lowerCAmelCase = OpenAIGPTModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=__lowercase , n_embd=37 ) def _snake_case (self ): self.config_tester.run_common_tests() def _snake_case (self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*__lowercase ) def _snake_case (self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__lowercase ) def _snake_case (self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*__lowercase ) def _snake_case (self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__lowercase ) @slow def _snake_case (self ): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = OpenAIGPTModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) @require_torch class a__ ( unittest.TestCase ): """simple docstring""" @slow def _snake_case (self ): __lowerCAmelCase = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(__lowercase ) __lowerCAmelCase = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=__lowercase ) # the president is __lowerCAmelCase = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the __lowerCAmelCase = model.generate(__lowercase , do_sample=__lowercase ) self.assertListEqual(output_ids[0].tolist() , __lowercase )
9
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 ) __lowerCAmelCase = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = tokenizer(__lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
9
1
'''simple docstring''' import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def __magic_name__( lowerCamelCase): __lowerCAmelCase = checkpoints.load_tax_checkpoint(lowerCamelCase) __lowerCAmelCase = flatten_dict(lowerCamelCase) return flax_params def __magic_name__( lowerCamelCase): __lowerCAmelCase = {} __lowerCAmelCase = { '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } __lowerCAmelCase = { '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key __lowerCAmelCase = '''.'''.join(key[1:]) # rename the key for old, new in CONVERSION_MAPPING.items(): __lowerCAmelCase = new_key.replace(lowerCamelCase, lowerCamelCase) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): __lowerCAmelCase = new_key.replace(lowerCamelCase, lowerCamelCase) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number __lowerCAmelCase = re.sub(r'''layers_(\d+)''', r'''layer.\1''', lowerCamelCase) __lowerCAmelCase = new_key.replace('''encoder''', '''encoder.encoder''') elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number __lowerCAmelCase = re.sub(r'''layers_(\d+)''', r'''layer.\1''', lowerCamelCase) __lowerCAmelCase = flax_dict[key] __lowerCAmelCase = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): __lowerCAmelCase = torch.from_numpy(converted_dict[key].T) else: __lowerCAmelCase = torch.from_numpy(converted_dict[key]) return converted_torch_dict def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase=False, lowerCamelCase=False): __lowerCAmelCase = get_flax_param(lowerCamelCase) if not use_large: __lowerCAmelCase = PixaStructVisionConfig() __lowerCAmelCase = PixaStructTextConfig() else: __lowerCAmelCase = PixaStructVisionConfig( hidden_size=1_5_3_6, d_ff=3_9_6_8, num_attention_heads=2_4, num_hidden_layers=1_8) __lowerCAmelCase = PixaStructTextConfig(hidden_size=1_5_3_6, d_ff=3_9_6_8, num_heads=2_4, num_layers=1_8) __lowerCAmelCase = PixaStructConfig( vision_config=encoder_config.to_dict(), text_config=decoder_config.to_dict(), is_vqa=lowerCamelCase) __lowerCAmelCase = PixaStructForConditionalGeneration(lowerCamelCase) __lowerCAmelCase = rename_and_convert_flax_params(lowerCamelCase) model.load_state_dict(lowerCamelCase) __lowerCAmelCase = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''') __lowerCAmelCase = PixaStructImageProcessor() __lowerCAmelCase = PixaStructProcessor(image_processor=lowerCamelCase, tokenizer=lowerCamelCase) if use_large: __lowerCAmelCase = 4_0_9_6 __lowerCAmelCase = True # mkdir if needed os.makedirs(lowerCamelCase, exist_ok=lowerCamelCase) model.save_pretrained(lowerCamelCase) processor.save_pretrained(lowerCamelCase) print('''Model saved in {}'''.format(lowerCamelCase)) if __name__ == "__main__": _UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--t5x_checkpoint_path""", default=None, type=str, help="""Path to the original T5x checkpoint.""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--use_large""", action="""store_true""", help="""Use large model.""") parser.add_argument("""--is_vqa""", action="""store_true""", help="""Use large model.""") _UpperCAmelCase : Tuple = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
9
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase , __lowercase=None , __lowercase=None , __lowercase=0 ): __lowerCAmelCase = 1.0 if scale is None else scale __lowerCAmelCase = 0.0 if loc is None else loc super().__init__(__lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__lowercase )] ) @property def _snake_case (self ): return self.base_dist.mean * self.scale + self.loc @property def _snake_case (self ): return self.base_dist.variance * self.scale**2 @property def _snake_case (self ): return self.variance.sqrt() class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase , **__lowercase ): super().__init__(**__lowercase ) __lowerCAmelCase = args_dim __lowerCAmelCase = nn.ModuleList([nn.Linear(__lowercase , __lowercase ) for dim in args_dim.values()] ) __lowerCAmelCase = domain_map def _snake_case (self , __lowercase ): __lowerCAmelCase = [proj(__lowercase ) for proj in self.proj] return self.domain_map(*__lowercase ) class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase ): super().__init__() __lowerCAmelCase = function def _snake_case (self , __lowercase , *__lowercase ): return self.function(__lowercase , *__lowercase ) class a__ : """simple docstring""" __UpperCamelCase : type __UpperCamelCase : int __UpperCamelCase : Dict[str, int] def __init__(self , __lowercase = 1 ): __lowerCAmelCase = dim __lowerCAmelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def _snake_case (self , __lowercase ): if self.dim == 1: return self.distribution_class(*__lowercase ) else: return Independent(self.distribution_class(*__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , ): __lowerCAmelCase = self._base_distribution(__lowercase ) if loc is None and scale is None: return distr else: return AffineTransformed(__lowercase , loc=__lowercase , scale=__lowercase , event_dim=self.event_dim ) @property def _snake_case (self ): return () if self.dim == 1 else (self.dim,) @property def _snake_case (self ): return len(self.event_shape ) @property def _snake_case (self ): return 0.0 def _snake_case (self , __lowercase ): return ParameterProjection( in_features=__lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def _snake_case (self , *__lowercase ): raise NotImplementedError() @staticmethod def _snake_case (__lowercase ): return (x + torch.sqrt(torch.square(__lowercase ) + 4.0 )) / 2.0 class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} __UpperCamelCase : type = StudentT @classmethod def _snake_case (cls , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) __lowerCAmelCase = 2.0 + cls.squareplus(__lowercase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1} __UpperCamelCase : type = Normal @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1} __UpperCamelCase : type = NegativeBinomial @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def _snake_case (self , __lowercase ): __lowerCAmelCase , __lowerCAmelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=__lowercase , logits=__lowercase ) else: return Independent(self.distribution_class(total_count=__lowercase , logits=__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None ): __lowerCAmelCase , __lowerCAmelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
9
1
'''simple docstring''' import copy import re class a__ : """simple docstring""" __UpperCamelCase : Union[str, Any] = 'hp' __UpperCamelCase : Any = {} __UpperCamelCase : List[str] = None @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = prefix __lowerCAmelCase = defaults cls.build_naming_info() @staticmethod def _snake_case (__lowercase , __lowercase ): if len(__lowercase ) == 0: return "" __lowerCAmelCase = None if any(char.isdigit() for char in word ): raise Exception(F"""Parameters should not contain numbers: '{word}' contains a number""" ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(__lowercase ) + 1 ): __lowerCAmelCase = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: __lowerCAmelCase = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(__lowercase ): __lowerCAmelCase = '''''' while integer != 0: __lowerCAmelCase = chr(ord('''A''' ) + integer % 10 ) + s integer //= 10 return s __lowerCAmelCase = 0 while True: __lowerCAmelCase = word + '''#''' + int_to_alphabetic(__lowercase ) if sword in info["reverse_short_word"]: continue else: __lowerCAmelCase = sword break __lowerCAmelCase = short_word __lowerCAmelCase = word return short_word @staticmethod def _snake_case (__lowercase , __lowercase ): __lowerCAmelCase = param_name.split('''_''' ) __lowerCAmelCase = [TrialShortNamer.shortname_for_word(__lowercase , __lowercase ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name __lowerCAmelCase = ['''''', '''_'''] for separator in separators: __lowerCAmelCase = separator.join(__lowercase ) if shortname not in info["reverse_short_param"]: __lowerCAmelCase = shortname __lowerCAmelCase = param_name return shortname return param_name @staticmethod def _snake_case (__lowercase , __lowercase ): __lowerCAmelCase = TrialShortNamer.shortname_for_key(__lowercase , __lowercase ) __lowerCAmelCase = short_name __lowerCAmelCase = param_name @classmethod def _snake_case (cls ): if cls.NAMING_INFO is not None: return __lowerCAmelCase = { '''short_word''': {}, '''reverse_short_word''': {}, '''short_param''': {}, '''reverse_short_param''': {}, } __lowerCAmelCase = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(__lowercase , __lowercase ) __lowerCAmelCase = info @classmethod def _snake_case (cls , __lowercase ): cls.build_naming_info() assert cls.PREFIX is not None __lowerCAmelCase = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(F"""You should provide a default value for the param name {k} with value {v}""" ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue __lowerCAmelCase = cls.NAMING_INFO['''short_param'''][k] if isinstance(__lowercase , __lowercase ): __lowerCAmelCase = 1 if v else 0 __lowerCAmelCase = '''''' if isinstance(__lowercase , (int, float) ) else '''-''' __lowerCAmelCase = F"""{key}{sep}{v}""" name.append(__lowercase ) return "_".join(__lowercase ) @classmethod def _snake_case (cls , __lowercase ): __lowerCAmelCase = repr[len(cls.PREFIX ) + 1 :] if repr == "": __lowerCAmelCase = [] else: __lowerCAmelCase = repr.split('''_''' ) __lowerCAmelCase = {} for value in values: if "-" in value: __lowerCAmelCase , __lowerCAmelCase = value.split('''-''' ) else: __lowerCAmelCase = re.sub('''[0-9.]''' , '''''' , __lowercase ) __lowerCAmelCase = float(re.sub('''[^0-9.]''' , '''''' , __lowercase ) ) __lowerCAmelCase = cls.NAMING_INFO['''reverse_short_param'''][p_k] __lowerCAmelCase = p_v for k in cls.DEFAULTS: if k not in parameters: __lowerCAmelCase = cls.DEFAULTS[k] return parameters
9
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class a__ ( __A ): """simple docstring""" __UpperCamelCase : Tuple = 'naver-clova-ix/donut-base-finetuned-docvqa' __UpperCamelCase : List[str] = ( 'This is a tool that answers a question about an document (pdf). It takes an input named `document` which ' 'should be the document containing the information, as well as a `question` that is the question about the ' 'document. It returns a text that contains the answer to the question.' ) __UpperCamelCase : Optional[int] = 'document_qa' __UpperCamelCase : Optional[int] = AutoProcessor __UpperCamelCase : Tuple = VisionEncoderDecoderModel __UpperCamelCase : Any = ['image', 'text'] __UpperCamelCase : Optional[Any] = ['text'] def __init__(self , *__lowercase , **__lowercase ): if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' __lowerCAmelCase = task_prompt.replace('''{user_input}''' , __lowercase ) __lowerCAmelCase = self.pre_processor.tokenizer( __lowercase , add_special_tokens=__lowercase , return_tensors='''pt''' ).input_ids __lowerCAmelCase = self.pre_processor(__lowercase , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _snake_case (self , __lowercase ): return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__lowercase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__lowercase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__lowercase , ).sequences def _snake_case (self , __lowercase ): __lowerCAmelCase = self.pre_processor.batch_decode(__lowercase )[0] __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) __lowerCAmelCase = re.sub(R'''<.*?>''' , '''''' , __lowercase , count=1 ).strip() # remove first task start token __lowerCAmelCase = self.pre_processor.tokenajson(__lowercase ) return sequence["answer"]
9
1
'''simple docstring''' _UpperCAmelCase : List[str] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ _UpperCAmelCase : str = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _UpperCAmelCase : str = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
9
'''simple docstring''' def __magic_name__( lowerCamelCase): __lowerCAmelCase = 1 __lowerCAmelCase = 2 while i * i <= n: __lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def __magic_name__( ): __lowerCAmelCase = 1 __lowerCAmelCase = 1 while True: i += 1 t_num += i if count_divisors(lowerCamelCase) > 5_0_0: break return t_num if __name__ == "__main__": print(solution())
9
1
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class a__ ( __A ): """simple docstring""" def __init__(self ): # test for the above condition self.test() def _snake_case (self ): __lowerCAmelCase = 0 __lowerCAmelCase = False while not completed: if counter == 1: self.reset() __lowerCAmelCase = self.advance() if not self.does_advance(__lowercase ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.update(__lowercase ) counter += 1 if counter > 1_00_00: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def _snake_case (self ): raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def _snake_case (self , __lowercase ): raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def _snake_case (self , __lowercase ): raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def _snake_case (self ): raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def _snake_case (self ): raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def _snake_case (self , __lowercase=False ): raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase ): super(__lowercase , self ).__init__() if not isinstance(__lowercase , __lowercase ) or len(__lowercase ) == 0: raise ValueError(F"""`token_ids` has to be a non-empty list, but is {token_ids}.""" ) if any((not isinstance(__lowercase , __lowercase ) or token_id < 0) for token_id in token_ids ): raise ValueError(F"""Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.""" ) __lowerCAmelCase = token_ids __lowerCAmelCase = len(self.token_ids ) __lowerCAmelCase = -1 # the index of the currently fulfilled step __lowerCAmelCase = False def _snake_case (self ): if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def _snake_case (self , __lowercase ): if not isinstance(__lowercase , __lowercase ): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(__lowercase )}""" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def _snake_case (self , __lowercase ): if not isinstance(__lowercase , __lowercase ): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(__lowercase )}""" ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False if self.does_advance(__lowercase ): self.fulfilled_idx += 1 __lowerCAmelCase = True if self.fulfilled_idx == (self.seqlen - 1): __lowerCAmelCase = True __lowerCAmelCase = completed else: # failed to make progress. __lowerCAmelCase = True self.reset() return stepped, completed, reset def _snake_case (self ): __lowerCAmelCase = False __lowerCAmelCase = 0 def _snake_case (self ): return self.seqlen - (self.fulfilled_idx + 1) def _snake_case (self , __lowercase=False ): __lowerCAmelCase = PhrasalConstraint(self.token_ids ) if stateful: __lowerCAmelCase = self.seqlen __lowerCAmelCase = self.fulfilled_idx __lowerCAmelCase = self.completed return new_constraint class a__ : """simple docstring""" def __init__(self , __lowercase , __lowercase=True ): __lowerCAmelCase = max([len(__lowercase ) for one in nested_token_ids] ) __lowerCAmelCase = {} for token_ids in nested_token_ids: __lowerCAmelCase = root for tidx, token_id in enumerate(__lowercase ): if token_id not in level: __lowerCAmelCase = {} __lowerCAmelCase = level[token_id] if no_subsets and self.has_subsets(__lowercase , __lowercase ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' F""" {nested_token_ids}.""" ) __lowerCAmelCase = root def _snake_case (self , __lowercase ): __lowerCAmelCase = self.trie for current_token in current_seq: __lowerCAmelCase = start[current_token] __lowerCAmelCase = list(start.keys() ) return next_tokens def _snake_case (self , __lowercase ): __lowerCAmelCase = self.next_tokens(__lowercase ) return len(__lowercase ) == 0 def _snake_case (self , __lowercase ): __lowerCAmelCase = list(root.values() ) if len(__lowercase ) == 0: return 1 else: return sum([self.count_leaves(__lowercase ) for nn in next_nodes] ) def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = self.count_leaves(__lowercase ) return len(__lowercase ) != leaf_count class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase ): super(__lowercase , self ).__init__() if not isinstance(__lowercase , __lowercase ) or len(__lowercase ) == 0: raise ValueError(F"""`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.""" ) if any(not isinstance(__lowercase , __lowercase ) for token_ids in nested_token_ids ): raise ValueError(F"""`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.""" ) if any( any((not isinstance(__lowercase , __lowercase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F"""Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.""" ) __lowerCAmelCase = DisjunctiveTrie(__lowercase ) __lowerCAmelCase = nested_token_ids __lowerCAmelCase = self.trie.max_height __lowerCAmelCase = [] __lowerCAmelCase = False def _snake_case (self ): __lowerCAmelCase = self.trie.next_tokens(self.current_seq ) if len(__lowercase ) == 0: return None else: return token_list def _snake_case (self , __lowercase ): if not isinstance(__lowercase , __lowercase ): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(__lowercase )}""" ) __lowerCAmelCase = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def _snake_case (self , __lowercase ): if not isinstance(__lowercase , __lowercase ): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(__lowercase )}""" ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False if self.does_advance(__lowercase ): self.current_seq.append(__lowercase ) __lowerCAmelCase = True else: __lowerCAmelCase = True self.reset() __lowerCAmelCase = self.trie.reached_leaf(self.current_seq ) __lowerCAmelCase = completed return stepped, completed, reset def _snake_case (self ): __lowerCAmelCase = False __lowerCAmelCase = [] def _snake_case (self ): if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def _snake_case (self , __lowercase=False ): __lowerCAmelCase = DisjunctiveConstraint(self.token_ids ) if stateful: __lowerCAmelCase = self.seqlen __lowerCAmelCase = self.current_seq __lowerCAmelCase = self.completed return new_constraint class a__ : """simple docstring""" def __init__(self , __lowercase ): __lowerCAmelCase = constraints # max # of steps required to fulfill a given constraint __lowerCAmelCase = max([c.seqlen for c in constraints] ) __lowerCAmelCase = len(__lowercase ) __lowerCAmelCase = False self.init_state() def _snake_case (self ): __lowerCAmelCase = [] __lowerCAmelCase = None __lowerCAmelCase = [constraint.copy(stateful=__lowercase ) for constraint in self.constraints] def _snake_case (self ): __lowerCAmelCase = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def _snake_case (self ): __lowerCAmelCase = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" __lowerCAmelCase = constraint.advance() if isinstance(__lowercase , __lowercase ): token_list.append(__lowercase ) elif isinstance(__lowercase , __lowercase ): token_list.extend(__lowercase ) else: __lowerCAmelCase = self.inprogress_constraint.advance() if isinstance(__lowercase , __lowercase ): token_list.append(__lowercase ) elif isinstance(__lowercase , __lowercase ): token_list.extend(__lowercase ) if len(__lowercase ) == 0: return None else: return token_list def _snake_case (self , __lowercase ): self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint __lowerCAmelCase , __lowerCAmelCase = self.add(__lowercase ) # the entire list of constraints are fulfilled if self.completed: break def _snake_case (self , __lowercase ): if not isinstance(__lowercase , __lowercase ): raise ValueError(F"""`token_id` should be an `int`, but is `{token_id}`.""" ) __lowerCAmelCase , __lowerCAmelCase = False, False if self.completed: __lowerCAmelCase = True __lowerCAmelCase = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.inprogress_constraint.update(__lowercase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=__lowercase ) ) __lowerCAmelCase = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) __lowerCAmelCase = None if len(self.pending_constraints ) == 0: # we're done! __lowerCAmelCase = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(__lowercase ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = pending_constraint.update(__lowercase ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(__lowercase ) __lowerCAmelCase = None if not complete and stepped: __lowerCAmelCase = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". __lowerCAmelCase = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. __lowerCAmelCase = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def _snake_case (self , __lowercase=True ): __lowerCAmelCase = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: __lowerCAmelCase = [ constraint.copy(stateful=__lowercase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: __lowerCAmelCase = self.inprogress_constraint.copy(stateful=__lowercase ) __lowerCAmelCase = [constraint.copy() for constraint in self.pending_constraints] return new_state
9
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __lowerCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) self.assertTrue(isinstance(dc.token_ids , __lowercase ) ) with self.assertRaises(__lowercase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__lowercase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _snake_case (self ): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __lowerCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__lowercase ): DisjunctiveConstraint(__lowercase ) # fails here def _snake_case (self ): __lowerCAmelCase = [[1, 2, 3], [1, 2, 4]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) __lowerCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(__lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) __lowerCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(__lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(3 ) __lowerCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(__lowercase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _snake_case (self ): __lowerCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
9
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) _UpperCAmelCase : Optional[int] = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class a__ ( __A ): """simple docstring""" __UpperCamelCase : List[str] = 'decision_transformer' __UpperCamelCase : List[Any] = ['past_key_values'] __UpperCamelCase : str = { 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__(self , __lowercase=17 , __lowercase=4 , __lowercase=1_28 , __lowercase=40_96 , __lowercase=True , __lowercase=1 , __lowercase=10_24 , __lowercase=3 , __lowercase=1 , __lowercase=None , __lowercase="relu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=1e-5 , __lowercase=0.0_2 , __lowercase=True , __lowercase=True , __lowercase=5_02_56 , __lowercase=5_02_56 , __lowercase=False , __lowercase=False , **__lowercase , ): __lowerCAmelCase = state_dim __lowerCAmelCase = act_dim __lowerCAmelCase = hidden_size __lowerCAmelCase = max_ep_len __lowerCAmelCase = action_tanh __lowerCAmelCase = vocab_size __lowerCAmelCase = n_positions __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = n_inner __lowerCAmelCase = activation_function __lowerCAmelCase = resid_pdrop __lowerCAmelCase = embd_pdrop __lowerCAmelCase = attn_pdrop __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = scale_attn_weights __lowerCAmelCase = use_cache __lowerCAmelCase = scale_attn_by_inverse_layer_idx __lowerCAmelCase = reorder_and_upcast_attn __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id super().__init__(bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase )
9
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets _UpperCAmelCase : List[str] = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ _UpperCAmelCase : str = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ _UpperCAmelCase : Tuple = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ): if label_map is not None: for old_id, new_id in label_map.items(): __lowerCAmelCase = new_id # turn into Numpy arrays __lowerCAmelCase = np.array(lowerCamelCase) __lowerCAmelCase = np.array(lowerCamelCase) if reduce_labels: __lowerCAmelCase = 2_5_5 __lowerCAmelCase = label - 1 __lowerCAmelCase = 2_5_5 __lowerCAmelCase = label != ignore_index __lowerCAmelCase = np.not_equal(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = pred_label[mask] __lowerCAmelCase = np.array(lowerCamelCase)[mask] __lowerCAmelCase = pred_label[pred_label == label] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ): __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) for result, gt_seg_map in zip(lowerCamelCase, lowerCamelCase): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = intersect_and_union( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = False, ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = total_intersect_and_union( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) # compute metrics __lowerCAmelCase = {} __lowerCAmelCase = total_area_intersect.sum() / total_area_label.sum() __lowerCAmelCase = total_area_intersect / total_area_union __lowerCAmelCase = total_area_intersect / total_area_label __lowerCAmelCase = np.nanmean(lowerCamelCase) __lowerCAmelCase = np.nanmean(lowerCamelCase) __lowerCAmelCase = all_acc __lowerCAmelCase = iou __lowerCAmelCase = acc if nan_to_num is not None: __lowerCAmelCase = {metric: np.nan_to_num(lowerCamelCase, nan=lowerCamelCase) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): """simple docstring""" def _snake_case (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), } ) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = None , __lowercase = None , __lowercase = False , ): __lowerCAmelCase = mean_iou( results=__lowercase , gt_seg_maps=__lowercase , num_labels=__lowercase , ignore_index=__lowercase , nan_to_num=__lowercase , label_map=__lowercase , reduce_labels=__lowercase , ) return iou_result
9
1
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = inspect.getfile(accelerate.test_utils ) __lowerCAmelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) __lowerCAmelCase = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_distributed_data_loop.py'''] ) __lowerCAmelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_ops.py'''] ) @require_multi_gpu def _snake_case (self ): print(F"""Found {torch.cuda.device_count()} devices.""" ) __lowerCAmelCase = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowercase , env=os.environ.copy() ) @require_multi_gpu def _snake_case (self ): print(F"""Found {torch.cuda.device_count()} devices.""" ) __lowerCAmelCase = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(F"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowercase , env=os.environ.copy() ) @require_multi_gpu def _snake_case (self ): __lowerCAmelCase = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowercase , env=os.environ.copy() ) @require_multi_gpu def _snake_case (self ): print(F"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) __lowerCAmelCase = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='''0,1''' ): execute_subprocess_async(__lowercase , env=os.environ.copy() ) if __name__ == "__main__": _UpperCAmelCase : Any = Accelerator() _UpperCAmelCase : Tuple = (accelerator.state.process_index + 2, 1_0) _UpperCAmelCase : Optional[int] = torch.randint(0, 1_0, shape).to(accelerator.device) _UpperCAmelCase : Tuple = """""" _UpperCAmelCase : Any = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." _UpperCAmelCase : Union[str, Any] = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." _UpperCAmelCase : Any = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
9
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : str = DebertaTokenizer __UpperCamelCase : str = True __UpperCamelCase : Any = DebertaTokenizerFast def _snake_case (self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __lowerCAmelCase = {'''unk_token''': '''[UNK]'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) def _snake_case (self , **__lowercase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , __lowercase ): __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = '''lower newer''' return input_text, output_text def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __lowerCAmelCase = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __lowerCAmelCase = tokens + [tokenizer.unk_token] __lowerCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = tokenizer('''Hello''' , '''World''' ) __lowerCAmelCase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __lowercase ) @slow def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _snake_case (self ): __lowerCAmelCase = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: __lowerCAmelCase = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] __lowerCAmelCase = tokenizer(__lowercase , padding=__lowercase ) __lowerCAmelCase = [tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) for seq in encoding['''input_ids''']] # fmt: off __lowerCAmelCase = { '''input_ids''': [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on __lowerCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __lowercase ) for expected, decoded in zip(__lowercase , __lowercase ): self.assertEqual(__lowercase , __lowercase )
9
1
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): _UpperCAmelCase : List[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _UpperCAmelCase : Tuple = 1_2_8_0_2_2 _UpperCAmelCase : Optional[int] = 1_2_8_0_2_8 @require_sentencepiece class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : List[Any] = MaMaaaTokenizer __UpperCamelCase : Dict = False __UpperCamelCase : Optional[Any] = False __UpperCamelCase : str = True def _snake_case (self ): super().setUp() __lowerCAmelCase = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = Path(self.tmpdirname ) save_json(__lowercase , save_dir / VOCAB_FILES_NAMES['''vocab_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__lowercase , save_dir / VOCAB_FILES_NAMES['''spm_file'''] ) __lowerCAmelCase = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case (self , **__lowercase ): return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , __lowercase ): return ( "This is a test", "This is a test", ) def _snake_case (self ): __lowerCAmelCase = '''</s>''' __lowerCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowercase ) , __lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowercase ) , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''</s>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''<s>''' ) self.assertEqual(len(__lowercase ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip('''Skip this test while all models are still to be uploaded.''' ) def _snake_case (self ): pass def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowercase ) , [2, 3, 4, 5, 6] , ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(__lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) __lowerCAmelCase = tokenizer.convert_tokens_to_string(__lowercase ) self.assertEqual(__lowercase , '''This is a test''' ) @slow def _snake_case (self ): # fmt: off __lowerCAmelCase = {'''input_ids''': [[12_80_22, 11_01_08, 3_97, 11, 3_82_72, 22_47, 12_48_11, 2_85, 1_81_05, 15_86, 2_07, 7, 3_95_34, 44_28, 3_97, 10_19, 1_81_05, 15_86, 2_07, 7, 4_13_37, 1_67_86, 2_41, 7, 2_02_14, 17, 12_56_90, 1_03_98, 7, 4_43_78, 5_80_69, 6_83_42, 77_98, 73_43, 11, 2_99, 3_33_10, 4, 1_58, 3_73_50, 9_40_77, 45_69, 2_99, 3_33_10, 90, 4, 5_28_40, 2_90, 4, 3_12_70, 1_12, 2_99, 6_82, 4, 5_28_40, 3_99_53, 1_40_79, 1_93, 5_25_19, 9_08_94, 1_78_94, 12_06_97, 11, 4_04_45, 5_51, 17, 10_19, 5_25_19, 9_08_94, 1_77_56, 9_63, 11, 4_04_45, 4_80, 17, 97_92, 11_20, 51_73, 13_93, 62_40, 1_67_86, 2_41, 12_09_96, 28, 12_45, 13_93, 11_82_40, 1_11_23, 10_19, 9_36_12, 26_91, 1_06_18, 9_80_58, 12_04_09, 19_28, 2_79, 4, 4_06_83, 3_67, 1_78, 2_07, 10_19, 1_03, 10_31_21, 5_06, 6_52_96, 5, 2], [12_80_22, 2_12_17, 3_67, 1_17, 12_54_50, 1_28, 7_19, 7, 73_08, 40, 9_36_12, 1_26_69, 11_16, 1_67_04, 71, 1_77_85, 36_99, 1_55_92, 35, 1_44, 95_84, 2_41, 1_19_43, 7_13, 9_50, 7_99, 22_47, 8_84_27, 1_50, 1_49, 11_88_13, 12_07_06, 10_19, 10_69_06, 8_15_18, 28, 12_24, 2_27_99, 3_97, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [12_80_22, 16_58, 12_33_11, 51_55, 55_78, 47_22, 2_79, 1_49_47, 23_66, 11_20, 11_97, 14, 13_48, 92_32, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowercase , model_name='''facebook/m2m100_418M''' , revision='''c168bae485c864188cf9aa0e4108b0b6934dc91e''' , ) @require_torch @require_sentencepiece @require_tokenizers class a__ ( unittest.TestCase ): """simple docstring""" __UpperCamelCase : List[str] = 'facebook/m2m100_418M' __UpperCamelCase : Any = [ 'In my opinion, there are two levels of response from the French government.', 'NSA Affair Emphasizes Complete Lack of Debate on Intelligence', ] __UpperCamelCase : Tuple = [ 'Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.', 'L\'affaire NSA souligne l\'absence totale de débat sur le renseignement', ] # fmt: off __UpperCamelCase : Any = [EN_CODE, 593, 1_949, 115_781, 4, 71_586, 4_234, 60_633, 126_233, 432, 123_808, 15_592, 1_197, 117_132, 120_618, 5, 2] @classmethod def _snake_case (cls ): __lowerCAmelCase = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en''' , tgt_lang='''fr''' ) __lowerCAmelCase = 1 return cls def _snake_case (self ): self.assertEqual(self.tokenizer.get_lang_id('''ar''' ) , 12_80_06 ) self.assertEqual(self.tokenizer.get_lang_id('''en''' ) , 12_80_22 ) self.assertEqual(self.tokenizer.get_lang_id('''ro''' ) , 12_80_76 ) self.assertEqual(self.tokenizer.get_lang_id('''mr''' ) , 12_80_63 ) def _snake_case (self ): __lowerCAmelCase = self.tokenizer.get_vocab() self.assertEqual(len(__lowercase ) , self.tokenizer.vocab_size ) self.assertEqual(vocab['''<unk>'''] , 3 ) self.assertIn(self.tokenizer.get_lang_token('''en''' ) , __lowercase ) def _snake_case (self ): __lowerCAmelCase = '''en''' __lowerCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __lowercase ) def _snake_case (self ): self.assertIn(__lowercase , self.tokenizer.all_special_ids ) # fmt: off __lowerCAmelCase = [FR_CODE, 53_64, 82, 86_42, 4, 2_94, 47, 8, 1_40_28, 1_36, 32_86, 97_06, 6, 9_07_97, 6, 14_40_12, 1_62, 8_81_28, 3_00_61, 5, 2] # fmt: on __lowerCAmelCase = self.tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) __lowerCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__lowercase ) self.assertEqual(__lowercase , __lowercase ) self.assertNotIn(self.tokenizer.eos_token , __lowercase ) def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(__lowercase ) __lowerCAmelCase = MaMaaaTokenizer.from_pretrained(__lowercase ) self.assertDictEqual(new_tok.lang_token_to_id , __lowercase ) @require_torch def _snake_case (self ): __lowerCAmelCase = '''en''' __lowerCAmelCase = '''fr''' __lowerCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__lowercase , return_tensors='''pt''' ) __lowerCAmelCase = shift_tokens_right( batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: __lowerCAmelCase = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def _snake_case (self ): __lowerCAmelCase = '''mr''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) __lowerCAmelCase = '''zh''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def _snake_case (self ): __lowerCAmelCase = '''mr''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) __lowerCAmelCase = '''zh''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def _snake_case (self ): __lowerCAmelCase = self.tokenizer._build_translation_inputs('''A test''' , return_tensors='''pt''' , src_lang='''en''' , tgt_lang='''ar''' ) self.assertEqual( nested_simplify(__lowercase ) , { # en_XX, A, test, EOS '''input_ids''': [[12_80_22, 58, 41_83, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 12_80_06, } , )
9
'''simple docstring''' import argparse import datetime def __magic_name__( lowerCamelCase): __lowerCAmelCase = { '''0''': '''Sunday''', '''1''': '''Monday''', '''2''': '''Tuesday''', '''3''': '''Wednesday''', '''4''': '''Thursday''', '''5''': '''Friday''', '''6''': '''Saturday''', } __lowerCAmelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowerCamelCase) < 1_1: raise ValueError('''Must be 10 characters long''') # Get month __lowerCAmelCase = int(date_input[0] + date_input[1]) # Validate if not 0 < m < 1_3: raise ValueError('''Month must be between 1 - 12''') __lowerCAmelCase = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''') # Get day __lowerCAmelCase = int(date_input[3] + date_input[4]) # Validate if not 0 < d < 3_2: raise ValueError('''Date must be between 1 - 31''') # Get second separator __lowerCAmelCase = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''') # Get year __lowerCAmelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) # Arbitrary year range if not 4_5 < y < 8_5_0_0: raise ValueError( '''Year out of range. There has to be some sort of limit...right?''') # Get datetime obj for validation __lowerCAmelCase = datetime.date(int(lowerCamelCase), int(lowerCamelCase), int(lowerCamelCase)) # Start math if m <= 2: __lowerCAmelCase = y - 1 __lowerCAmelCase = m + 1_2 # maths var __lowerCAmelCase = int(str(lowerCamelCase)[:2]) __lowerCAmelCase = int(str(lowerCamelCase)[2:]) __lowerCAmelCase = int(2.6 * m - 5.39) __lowerCAmelCase = int(c / 4) __lowerCAmelCase = int(k / 4) __lowerCAmelCase = int(d + k) __lowerCAmelCase = int(t + u + v + x) __lowerCAmelCase = int(z - (2 * c)) __lowerCAmelCase = round(w % 7) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('''The date was evaluated incorrectly. Contact developer.''') # Response __lowerCAmelCase = F"""Your date {date_input}, is a {days[str(lowerCamelCase)]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase : List[str] = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) _UpperCAmelCase : Dict = parser.parse_args() zeller(args.date_input)
9
1
'''simple docstring''' from typing import Any def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ): _validation( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) # Creates data structures and fill initial step __lowerCAmelCase = {} __lowerCAmelCase = {} for state in states_space: __lowerCAmelCase = observations_space[0] __lowerCAmelCase = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __lowerCAmelCase = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1, len(lowerCamelCase)): __lowerCAmelCase = observations_space[o] __lowerCAmelCase = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __lowerCAmelCase = '''''' __lowerCAmelCase = -1 for k_state in states_space: __lowerCAmelCase = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __lowerCAmelCase = probability __lowerCAmelCase = k_state # Update probabilities and pointers dicts __lowerCAmelCase = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __lowerCAmelCase = arg_max # The final observation __lowerCAmelCase = observations_space[len(lowerCamelCase) - 1] # argmax for given final observation __lowerCAmelCase = '''''' __lowerCAmelCase = -1 for k_state in states_space: __lowerCAmelCase = probabilities[(k_state, final_observation)] if probability > max_probability: __lowerCAmelCase = probability __lowerCAmelCase = k_state __lowerCAmelCase = arg_max # Process pointers backwards __lowerCAmelCase = last_state __lowerCAmelCase = [] for o in range(len(lowerCamelCase) - 1, -1, -1): result.append(lowerCamelCase) __lowerCAmelCase = pointers[previous, observations_space[o]] result.reverse() return result def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ): _validate_not_empty( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) _validate_lists(lowerCamelCase, lowerCamelCase) _validate_dicts( lowerCamelCase, lowerCamelCase, lowerCamelCase) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ]): raise ValueError('''There\'s an empty parameter''') def __magic_name__( lowerCamelCase, lowerCamelCase): _validate_list(lowerCamelCase, '''observations_space''') _validate_list(lowerCamelCase, '''states_space''') def __magic_name__( lowerCamelCase, lowerCamelCase): if not isinstance(_object, lowerCamelCase): __lowerCAmelCase = F"""{var_name} must be a list""" raise ValueError(lowerCamelCase) else: for x in _object: if not isinstance(lowerCamelCase, lowerCamelCase): __lowerCAmelCase = F"""{var_name} must be a list of strings""" raise ValueError(lowerCamelCase) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, ): _validate_dict(lowerCamelCase, '''initial_probabilities''', lowerCamelCase) _validate_nested_dict(lowerCamelCase, '''transition_probabilities''') _validate_nested_dict(lowerCamelCase, '''emission_probabilities''') def __magic_name__( lowerCamelCase, lowerCamelCase): _validate_dict(_object, lowerCamelCase, lowerCamelCase) for x in _object.values(): _validate_dict(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = False): if not isinstance(_object, lowerCamelCase): __lowerCAmelCase = F"""{var_name} must be a dict""" raise ValueError(lowerCamelCase) if not all(isinstance(lowerCamelCase, lowerCamelCase) for x in _object): __lowerCAmelCase = F"""{var_name} all keys must be strings""" raise ValueError(lowerCamelCase) if not all(isinstance(lowerCamelCase, lowerCamelCase) for x in _object.values()): __lowerCAmelCase = '''nested dictionary ''' if nested else '''''' __lowerCAmelCase = F"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(lowerCamelCase) if __name__ == "__main__": from doctest import testmod testmod()
9
'''simple docstring''' import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[Any] = ConsistencyModelPipeline __UpperCamelCase : Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __UpperCamelCase : int = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt __UpperCamelCase : List[Any] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) @property def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet''' , ) return unet @property def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , ) return unet def _snake_case (self , __lowercase=False ): if class_cond: __lowerCAmelCase = self.dummy_cond_unet else: __lowerCAmelCase = self.dummy_uncond_unet # Default to CM multistep sampler __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, } return components def _snake_case (self , __lowercase , __lowercase=0 ): if str(__lowercase ).startswith('''mps''' ): __lowerCAmelCase = torch.manual_seed(__lowercase ) else: __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = { '''batch_size''': 1, '''num_inference_steps''': None, '''timesteps''': [22, 0], '''generator''': generator, '''output_type''': '''np''', } return inputs def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase ) __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 0 __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase ) __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = 0 __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case (self , __lowercase=0 , __lowercase=False , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ): __lowerCAmelCase = torch.manual_seed(__lowercase ) __lowerCAmelCase = { '''num_inference_steps''': None, '''timesteps''': [22, 0], '''class_labels''': 0, '''generator''': generator, '''output_type''': '''np''', } if get_fixed_latents: __lowerCAmelCase = self.get_fixed_latents(seed=__lowercase , device=__lowercase , dtype=__lowercase , shape=__lowercase ) __lowerCAmelCase = latents return inputs def _snake_case (self , __lowercase=0 , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ): if type(__lowercase ) == str: __lowerCAmelCase = torch.device(__lowercase ) __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = randn_tensor(__lowercase , generator=__lowercase , device=__lowercase , dtype=__lowercase ) return latents def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ): __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ): __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
9
1
'''simple docstring''' import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : Any = logging.get_logger(__name__) _UpperCAmelCase : Dict = {"""vocab_file""": """vocab.txt"""} _UpperCAmelCase : str = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } _UpperCAmelCase : Optional[Any] = { """openbmb/cpm-ant-10b""": 1_0_2_4, } def __magic_name__( lowerCamelCase): __lowerCAmelCase = collections.OrderedDict() with open(lowerCamelCase, '''r''', encoding='''utf-8''') as reader: __lowerCAmelCase = reader.readlines() for index, token in enumerate(lowerCamelCase): __lowerCAmelCase = token.rstrip('''\n''') __lowerCAmelCase = index return vocab class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase , __lowercase="<unk>" , __lowercase=2_00 ): __lowerCAmelCase = vocab __lowerCAmelCase = unk_token __lowerCAmelCase = max_input_chars_per_word def _snake_case (self , __lowercase ): __lowerCAmelCase = list(__lowercase ) if len(__lowercase ) > self.max_input_chars_per_word: return [self.unk_token] __lowerCAmelCase = 0 __lowerCAmelCase = [] while start < len(__lowercase ): __lowerCAmelCase = len(__lowercase ) __lowerCAmelCase = None while start < end: __lowerCAmelCase = ''''''.join(chars[start:end] ) if substr in self.vocab: __lowerCAmelCase = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(__lowercase ) __lowerCAmelCase = end return sub_tokens class a__ ( __A ): """simple docstring""" __UpperCamelCase : Tuple = VOCAB_FILES_NAMES __UpperCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Optional[Any] = ['input_ids', 'attention_mask'] __UpperCamelCase : Optional[Any] = False def __init__(self , __lowercase , __lowercase="<d>" , __lowercase="</d>" , __lowercase="<s>" , __lowercase="</s>" , __lowercase="<pad>" , __lowercase="<unk>" , __lowercase="</n>" , __lowercase="</_>" , __lowercase="left" , **__lowercase , ): requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=__lowercase , eod_token=__lowercase , bos_token=__lowercase , eos_token=__lowercase , pad_token=__lowercase , unk_token=__lowercase , line_token=__lowercase , space_token=__lowercase , padding_side=__lowercase , **__lowercase , ) __lowerCAmelCase = bod_token __lowerCAmelCase = eod_token __lowerCAmelCase = load_vocab(__lowercase ) __lowerCAmelCase = self.encoder[space_token] __lowerCAmelCase = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] __lowerCAmelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __lowercase : x[1] ) ) __lowerCAmelCase = {v: k for k, v in self.encoder.items()} __lowerCAmelCase = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def _snake_case (self ): return self.encoder[self.bod_token] @property def _snake_case (self ): return self.encoder[self.eod_token] @property def _snake_case (self ): return self.encoder["\n"] @property def _snake_case (self ): return len(self.encoder ) def _snake_case (self ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case (self , __lowercase ): __lowerCAmelCase = [] for x in jieba.cut(__lowercase , cut_all=__lowercase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(__lowercase ) ) return output_tokens def _snake_case (self , __lowercase , **__lowercase ): __lowerCAmelCase = [i for i in token_ids if i >= 0] __lowerCAmelCase = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(__lowercase , **__lowercase ) def _snake_case (self , __lowercase ): return token in self.encoder def _snake_case (self , __lowercase ): return "".join(__lowercase ) def _snake_case (self , __lowercase ): return self.encoder.get(__lowercase , self.encoder.get(self.unk_token ) ) def _snake_case (self , __lowercase ): return self.decoder.get(__lowercase , self.unk_token ) def _snake_case (self , __lowercase , __lowercase = None ): if os.path.isdir(__lowercase ): __lowerCAmelCase = os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: __lowerCAmelCase = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory __lowerCAmelCase = 0 if " " in self.encoder: __lowerCAmelCase = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: __lowerCAmelCase = self.encoder['''\n'''] del self.encoder["\n"] __lowerCAmelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __lowercase : x[1] ) ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) __lowerCAmelCase = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def _snake_case (self , __lowercase , __lowercase = None ): if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def _snake_case (self , __lowercase , __lowercase = None , __lowercase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase ) if token_ids_a is not None: return [1] + ([0] * len(__lowercase )) + [1] + ([0] * len(__lowercase )) return [1] + ([0] * len(__lowercase ))
9
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _UpperCAmelCase : List[Any] = datasets.load_iris() _UpperCAmelCase : Dict = np.array(data["""data"""]) _UpperCAmelCase : int = np.array(data["""target"""]) _UpperCAmelCase : str = data["""target_names"""] _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = train_test_split(X, y) def __magic_name__( lowerCamelCase, lowerCamelCase): return np.linalg.norm(np.array(lowerCamelCase) - np.array(lowerCamelCase)) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=5): __lowerCAmelCase = zip(lowerCamelCase, lowerCamelCase) # List of distances of all points from the point to be classified __lowerCAmelCase = [] for data_point in data: __lowerCAmelCase = euclidean_distance(data_point[0], lowerCamelCase) distances.append((distance, data_point[1])) # Choosing 'k' points with the least distances. __lowerCAmelCase = [i[1] for i in sorted(lowerCamelCase)[:k]] # Most commonly occurring class among them # is the class into which the point is classified __lowerCAmelCase = Counter(lowerCamelCase).most_common(1)[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
9
1
'''simple docstring''' import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class a__ ( unittest.TestCase ): """simple docstring""" def __init__(self , __lowercase ): __lowerCAmelCase = parent def _snake_case (self ): return {} def __magic_name__( ): __lowerCAmelCase = '''<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR="FFFFFF"> <HR> <a href="http://google.com">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style="color:#0000FF"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>''' __lowerCAmelCase = ''' <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> ''' return [html_string_a, html_string_a] @require_bsa class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : List[str] = MarkupLMFeatureExtractor if is_bsa_available() else None def _snake_case (self ): __lowerCAmelCase = MarkupLMFeatureExtractionTester(self ) @property def _snake_case (self ): return self.feature_extract_tester.prepare_feat_extract_dict() def _snake_case (self ): # Initialize feature_extractor __lowerCAmelCase = self.feature_extraction_class() # Test not batched input __lowerCAmelCase = get_html_strings()[0] __lowerCAmelCase = feature_extractor(__lowercase ) # fmt: off __lowerCAmelCase = [['''sample document''', '''Goog''', '''This is one header''', '''This is a another Header''', '''Travel from''', '''SFO to JFK''', '''on May 2, 2015 at 2:00 pm. For details go to confirm.com''', '''Traveler''', '''name''', '''is''', '''John Doe''']] __lowerCAmelCase = [['''/html/head/title''', '''/html/body/a''', '''/html/body/h1''', '''/html/body/h2''', '''/html/body/p''', '''/html/body/p/p/b[1]''', '''/html/body/p/p/b[2]/i''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/b''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/p''']] # fmt: on self.assertEqual(encoding.nodes , __lowercase ) self.assertEqual(encoding.xpaths , __lowercase ) # Test batched __lowerCAmelCase = get_html_strings() __lowerCAmelCase = feature_extractor(__lowercase ) # fmt: off __lowerCAmelCase = expected_nodes + [['''My First Heading''', '''My first paragraph.''']] __lowerCAmelCase = expected_xpaths + [['''/html/body/h1''', '''/html/body/p''']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , __lowercase ) self.assertEqual(encoding.xpaths , __lowercase )
9
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase ) def _snake_case (self , **__lowercase ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase ) __lowerCAmelCase = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase , return_tensors='''np''' ) __lowerCAmelCase = tokenizer(__lowercase , return_tensors='''np''' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = ['''cat''', '''nasa badge'''] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = [['''cat''', '''nasa badge'''], ['''person''']] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 __lowerCAmelCase = len(__lowercase ) __lowerCAmelCase = max([len(__lowercase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = ['''cat''', '''nasa badge'''] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 __lowerCAmelCase = inputs['''input_ids'''] __lowerCAmelCase = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(images=__lowercase , query_images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase )
9
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class a__ ( __A ): """simple docstring""" __UpperCamelCase : Tuple = 'naver-clova-ix/donut-base-finetuned-docvqa' __UpperCamelCase : List[str] = ( 'This is a tool that answers a question about an document (pdf). It takes an input named `document` which ' 'should be the document containing the information, as well as a `question` that is the question about the ' 'document. It returns a text that contains the answer to the question.' ) __UpperCamelCase : Optional[int] = 'document_qa' __UpperCamelCase : Optional[int] = AutoProcessor __UpperCamelCase : Tuple = VisionEncoderDecoderModel __UpperCamelCase : Any = ['image', 'text'] __UpperCamelCase : Optional[Any] = ['text'] def __init__(self , *__lowercase , **__lowercase ): if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' __lowerCAmelCase = task_prompt.replace('''{user_input}''' , __lowercase ) __lowerCAmelCase = self.pre_processor.tokenizer( __lowercase , add_special_tokens=__lowercase , return_tensors='''pt''' ).input_ids __lowerCAmelCase = self.pre_processor(__lowercase , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _snake_case (self , __lowercase ): return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__lowercase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__lowercase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__lowercase , ).sequences def _snake_case (self , __lowercase ): __lowerCAmelCase = self.pre_processor.batch_decode(__lowercase )[0] __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) __lowerCAmelCase = re.sub(R'''<.*?>''' , '''''' , __lowercase , count=1 ).strip() # remove first task start token __lowerCAmelCase = self.pre_processor.tokenajson(__lowercase ) return sequence["answer"]
9
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __magic_name__( ): __lowerCAmelCase = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0)] __lowerCAmelCase = randint(-5_0_0_0, 5_0_0_0) return (arr, r) _UpperCAmelCase : Dict = make_dataset() def __magic_name__( lowerCamelCase, lowerCamelCase): for triplet in permutations(lowerCamelCase, 3): if sum(lowerCamelCase) == target: return tuple(sorted(lowerCamelCase)) return (0, 0, 0) def __magic_name__( lowerCamelCase, lowerCamelCase): arr.sort() __lowerCAmelCase = len(lowerCamelCase) for i in range(n - 1): __lowerCAmelCase , __lowerCAmelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __magic_name__( ): __lowerCAmelCase = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' __lowerCAmelCase = ''' triplet_sum1(*dataset) ''' __lowerCAmelCase = ''' triplet_sum2(*dataset) ''' __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) return (min(lowerCamelCase), min(lowerCamelCase)) if __name__ == "__main__": from doctest import testmod testmod() _UpperCAmelCase : Union[str, Any] = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
9
1
'''simple docstring''' from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def __magic_name__( lowerCamelCase): return ConvertCommand( args.model_type, args.tf_checkpoint, args.pytorch_dump_output, args.config, args.finetuning_task_name) _UpperCAmelCase : int = """ transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. """ class a__ ( __A ): """simple docstring""" @staticmethod def _snake_case (__lowercase ): __lowerCAmelCase = parser.add_parser( '''convert''' , help='''CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.''' , ) train_parser.add_argument('''--model_type''' , type=__lowercase , required=__lowercase , help='''Model\'s type.''' ) train_parser.add_argument( '''--tf_checkpoint''' , type=__lowercase , required=__lowercase , help='''TensorFlow checkpoint path or folder.''' ) train_parser.add_argument( '''--pytorch_dump_output''' , type=__lowercase , required=__lowercase , help='''Path to the PyTorch saved model output.''' ) train_parser.add_argument('''--config''' , type=__lowercase , default='''''' , help='''Configuration file path or folder.''' ) train_parser.add_argument( '''--finetuning_task_name''' , type=__lowercase , default=__lowercase , help='''Optional fine-tuning task name if the TF model was a finetuned model.''' , ) train_parser.set_defaults(func=__lowercase ) def __init__(self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , *__lowercase , ): __lowerCAmelCase = logging.get_logger('''transformers-cli/converting''' ) self._logger.info(F"""Loading model {model_type}""" ) __lowerCAmelCase = model_type __lowerCAmelCase = tf_checkpoint __lowerCAmelCase = pytorch_dump_output __lowerCAmelCase = config __lowerCAmelCase = finetuning_task_name def _snake_case (self ): if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(__lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowercase ) if "ckpt" in self._tf_checkpoint.lower(): __lowerCAmelCase = self._tf_checkpoint __lowerCAmelCase = '''''' else: __lowerCAmelCase = self._tf_checkpoint __lowerCAmelCase = '''''' convert_transfo_xl_checkpoint_to_pytorch( __lowercase , self._config , self._pytorch_dump_output , __lowercase ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowercase ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowercase ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '''--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]''' )
9
'''simple docstring''' import numpy as np def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = 1E-12, lowerCamelCase = 1_0_0, ): assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[1] # Ensure proper dimensionality. assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(lowerCamelCase) == np.iscomplexobj(lowerCamelCase) __lowerCAmelCase = np.iscomplexobj(lowerCamelCase) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(lowerCamelCase, input_matrix.conj().T) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __lowerCAmelCase = False __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 1E12 while not convergence: # Multiple matrix by the vector. __lowerCAmelCase = np.dot(lowerCamelCase, lowerCamelCase) # Normalize the resulting output vector. __lowerCAmelCase = w / np.linalg.norm(lowerCamelCase) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __lowerCAmelCase = vector.conj().T if is_complex else vector.T __lowerCAmelCase = np.dot(lowerCamelCase, np.dot(lowerCamelCase, lowerCamelCase)) # Check convergence. __lowerCAmelCase = np.abs(lambda_ - lambda_previous) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __lowerCAmelCase = True __lowerCAmelCase = lambda_ if is_complex: __lowerCAmelCase = np.real(lambda_) return lambda_, vector def __magic_name__( ): __lowerCAmelCase = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]]) __lowerCAmelCase = np.array([4_1, 4, 2_0]) __lowerCAmelCase = real_input_matrix.astype(np.complexaaa) __lowerCAmelCase = np.triu(1J * complex_input_matrix, 1) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __lowerCAmelCase = np.array([4_1, 4, 2_0]).astype(np.complexaaa) for problem_type in ["real", "complex"]: if problem_type == "real": __lowerCAmelCase = real_input_matrix __lowerCAmelCase = real_vector elif problem_type == "complex": __lowerCAmelCase = complex_input_matrix __lowerCAmelCase = complex_vector # Our implementation. __lowerCAmelCase , __lowerCAmelCase = power_iteration(lowerCamelCase, lowerCamelCase) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __lowerCAmelCase , __lowerCAmelCase = np.linalg.eigh(lowerCamelCase) # Last eigenvalue is the maximum one. __lowerCAmelCase = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __lowerCAmelCase = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(lowerCamelCase) - np.abs(lowerCamelCase)) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
9
1
'''simple docstring''' _UpperCAmelCase : List[Any] = tuple[float, float, float] _UpperCAmelCase : List[Any] = tuple[float, float, float] def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = end_pointa[0] - end_pointa[0] __lowerCAmelCase = end_pointa[1] - end_pointa[1] __lowerCAmelCase = end_pointa[2] - end_pointa[2] return (x, y, z) def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = ab[1] * ac[2] - ab[2] * ac[1] # *i __lowerCAmelCase = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j __lowerCAmelCase = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def __magic_name__( lowerCamelCase, lowerCamelCase): return tuple(round(lowerCamelCase, lowerCamelCase) for x in vector) == (0, 0, 0) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = 1_0): __lowerCAmelCase = create_vector(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = create_vector(lowerCamelCase, lowerCamelCase) return is_zero_vector(get_ad_vectors_cross(lowerCamelCase, lowerCamelCase), lowerCamelCase)
9
'''simple docstring''' from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _UpperCAmelCase : str = logging.get_logger(__name__) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): return [ int(1_0_0_0 * (box[0] / width)), int(1_0_0_0 * (box[1] / height)), int(1_0_0_0 * (box[2] / width)), int(1_0_0_0 * (box[3] / height)), ] def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = None): __lowerCAmelCase = tesseract_config if tesseract_config is not None else '''''' # apply OCR __lowerCAmelCase = to_pil_image(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = pil_image.size __lowerCAmelCase = pytesseract.image_to_data(lowerCamelCase, lang=lowerCamelCase, output_type='''dict''', config=lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates __lowerCAmelCase = [idx for idx, word in enumerate(lowerCamelCase) if not word.strip()] __lowerCAmelCase = [word for idx, word in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __lowerCAmelCase = [] for x, y, w, h in zip(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [x, y, x + w, y + h] actual_boxes.append(lowerCamelCase) # finally, normalize the bounding boxes __lowerCAmelCase = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowerCamelCase, lowerCamelCase, lowerCamelCase)) assert len(lowerCamelCase) == len(lowerCamelCase), "Not as many words as there are bounding boxes" return words, normalized_boxes class a__ ( __A ): """simple docstring""" __UpperCamelCase : str = ['pixel_values'] def __init__(self , __lowercase = True , __lowercase = None , __lowercase = PILImageResampling.BILINEAR , __lowercase = True , __lowercase = None , __lowercase = "" , **__lowercase , ): super().__init__(**__lowercase ) __lowerCAmelCase = size if size is not None else {'''height''': 2_24, '''width''': 2_24} __lowerCAmelCase = get_size_dict(__lowercase ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = apply_ocr __lowerCAmelCase = ocr_lang __lowerCAmelCase = tesseract_config def _snake_case (self , __lowercase , __lowercase , __lowercase = PILImageResampling.BILINEAR , __lowercase = None , **__lowercase , ): __lowerCAmelCase = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) __lowerCAmelCase = (size['''height'''], size['''width''']) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ): __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(__lowercase ) __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = apply_ocr if apply_ocr is not None else self.apply_ocr __lowerCAmelCase = ocr_lang if ocr_lang is not None else self.ocr_lang __lowerCAmelCase = tesseract_config if tesseract_config is not None else self.tesseract_config __lowerCAmelCase = make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(__lowercase ) for image in images] if apply_ocr: requires_backends(self , '''pytesseract''' ) __lowerCAmelCase = [] __lowerCAmelCase = [] for image in images: __lowerCAmelCase , __lowerCAmelCase = apply_tesseract(__lowercase , __lowercase , __lowercase ) words_batch.append(__lowercase ) boxes_batch.append(__lowercase ) if do_resize: __lowerCAmelCase = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) __lowerCAmelCase = [flip_channel_order(__lowercase ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] __lowerCAmelCase = BatchFeature(data={'''pixel_values''': images} , tensor_type=__lowercase ) if apply_ocr: __lowerCAmelCase = words_batch __lowerCAmelCase = boxes_batch return data
9
1
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase = None , __lowercase = None , __lowercase = False , **__lowercase , ): super().__init__(features=__lowercase , cache_dir=__lowercase , keep_in_memory=__lowercase , **__lowercase ) __lowerCAmelCase = Sql( cache_dir=__lowercase , features=__lowercase , sql=__lowercase , con=__lowercase , **__lowercase , ) def _snake_case (self ): __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None self.builder.download_and_prepare( download_config=__lowercase , download_mode=__lowercase , verification_mode=__lowercase , base_path=__lowercase , ) # Build dataset for splits __lowerCAmelCase = self.builder.as_dataset( split='''train''' , verification_mode=__lowercase , in_memory=self.keep_in_memory ) return dataset class a__ : """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase , __lowercase = None , __lowercase = None , **__lowercase , ): if num_proc is not None and num_proc <= 0: raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""" ) __lowerCAmelCase = dataset __lowerCAmelCase = name __lowerCAmelCase = con __lowerCAmelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __lowerCAmelCase = num_proc __lowerCAmelCase = to_sql_kwargs def _snake_case (self ): __lowerCAmelCase = self.to_sql_kwargs.pop('''sql''' , __lowercase ) __lowerCAmelCase = self.to_sql_kwargs.pop('''con''' , __lowercase ) __lowerCAmelCase = self.to_sql_kwargs.pop('''index''' , __lowercase ) __lowerCAmelCase = self._write(index=__lowercase , **self.to_sql_kwargs ) return written def _snake_case (self , __lowercase ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = args __lowerCAmelCase = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs __lowerCAmelCase = query_table( table=self.dataset.data , key=slice(__lowercase , offset + self.batch_size ) , indices=self.dataset._indices , ) __lowerCAmelCase = batch.to_pandas() __lowerCAmelCase = df.to_sql(self.name , self.con , index=__lowercase , **__lowercase ) return num_rows or len(__lowercase ) def _snake_case (self , __lowercase , **__lowercase ): __lowerCAmelCase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __lowerCAmelCase , __lowerCAmelCase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , __lowercase , __lowercase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
9
'''simple docstring''' from ..utils import DummyObject, requires_backends class a__ ( metaclass=__A ): """simple docstring""" __UpperCamelCase : int = ['torch', 'scipy'] def __init__(self , *__lowercase , **__lowercase ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] )
9
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class a__ ( __A ): """simple docstring""" __UpperCamelCase : List[Any] = 'Salesforce/blip-image-captioning-base' __UpperCamelCase : Union[str, Any] = ( 'This is a tool that generates a description of an image. It takes an input named `image` which should be the ' 'image to caption, and returns a text that contains the description in English.' ) __UpperCamelCase : Union[str, Any] = 'image_captioner' __UpperCamelCase : Optional[int] = AutoModelForVisionaSeq __UpperCamelCase : Any = ['image'] __UpperCamelCase : str = ['text'] def __init__(self , *__lowercase , **__lowercase ): requires_backends(self , ['''vision'''] ) super().__init__(*__lowercase , **__lowercase ) def _snake_case (self , __lowercase ): return self.pre_processor(images=__lowercase , return_tensors='''pt''' ) def _snake_case (self , __lowercase ): return self.model.generate(**__lowercase ) def _snake_case (self , __lowercase ): return self.pre_processor.batch_decode(__lowercase , skip_special_tokens=__lowercase )[0].strip()
9
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class a__ ( unittest.TestCase ): """simple docstring""" def __init__(self , __lowercase , __lowercase = True , __lowercase = None , __lowercase = 32 , __lowercase = True , __lowercase = 1 / 2_55 , __lowercase = True , __lowercase = True , __lowercase = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , __lowercase = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , __lowercase = True , __lowercase=7 , __lowercase=30 , __lowercase=4_00 , __lowercase=3 , ): __lowerCAmelCase = parent __lowerCAmelCase = do_resize __lowerCAmelCase = size if size is not None else {'''shortest_edge''': 2_88} __lowerCAmelCase = size_divisor __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = do_center_crop __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = do_pad __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution def _snake_case (self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def _snake_case (self , __lowercase , __lowercase=False ): if not batched: __lowerCAmelCase = self.size['''shortest_edge'''] __lowerCAmelCase = image_inputs[0] if isinstance(__lowercase , Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image.size else: __lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2] __lowerCAmelCase = size / min(__lowercase , __lowercase ) if h < w: __lowerCAmelCase , __lowerCAmelCase = size, scale * w else: __lowerCAmelCase , __lowerCAmelCase = scale * h, size __lowerCAmelCase = int((13_33 / 8_00) * size ) if max(__lowercase , __lowercase ) > max_size: __lowerCAmelCase = max_size / max(__lowercase , __lowercase ) __lowerCAmelCase = newh * scale __lowerCAmelCase = neww * scale __lowerCAmelCase , __lowerCAmelCase = int(newh + 0.5 ), int(neww + 0.5 ) __lowerCAmelCase , __lowerCAmelCase = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __lowerCAmelCase = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[0] )[0] __lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Any = BridgeTowerImageProcessor if is_vision_available() else None def _snake_case (self ): __lowerCAmelCase = BridgeTowerImageProcessingTester(self ) @property def _snake_case (self ): return self.image_processor_tester.prepare_image_processor_dict() def _snake_case (self ): __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowercase , '''image_std''' ) ) self.assertTrue(hasattr(__lowercase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowercase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowercase , '''size''' ) ) self.assertTrue(hasattr(__lowercase , '''size_divisor''' ) ) def _snake_case (self ): pass def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , Image.Image ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
9
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : Any = { """configuration_timesformer""": ["""TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimesformerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = [ """TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimesformerModel""", """TimesformerForVideoClassification""", """TimesformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys _UpperCAmelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
9
'''simple docstring''' # Imports import numpy as np class a__ : """simple docstring""" def __init__(self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase ) def _snake_case (self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): if red is not None: __lowerCAmelCase = red if green is not None: __lowerCAmelCase = green if blue is not None: __lowerCAmelCase = blue if red_edge is not None: __lowerCAmelCase = red_edge if nir is not None: __lowerCAmelCase = nir return True def _snake_case (self , __lowercase="" , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase ) __lowerCAmelCase = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''' ) return False def _snake_case (self ): return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case (self ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case (self ): return self.nir * (self.red / (self.green**2)) def _snake_case (self ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case (self ): return (self.nir - self.red) / (self.nir + self.red) def _snake_case (self ): return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case (self ): return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case (self ): return (self.nir - self.green) / (self.nir + self.green) def _snake_case (self ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case (self ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case (self ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case (self ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case (self , __lowercase=0.0_8 , __lowercase=1.2_2 , __lowercase=0.0_3 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case (self ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case (self ): return (self.nir / self.green) - 1 def _snake_case (self ): return (self.nir / self.redEdge) - 1 def _snake_case (self ): return (self.red - self.blue) / self.red def _snake_case (self ): __lowerCAmelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case (self ): return self.nir - self.green def _snake_case (self ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case (self ): __lowerCAmelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case (self , __lowercase=0.1_6 ): return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case (self , __lowercase=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case (self ): return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _snake_case (self , __lowercase=None , __lowercase=None ): return (self.nir - b) / (a * self.red) def _snake_case (self ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case (self ): return (self.red + self.green + self.blue) / 3_0.5 def _snake_case (self ): return self.nir / self.red def _snake_case (self ): return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case (self ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case (self ): return self.green / (self.nir + self.red + self.green) def _snake_case (self ): return self.nir / (self.nir + self.red + self.green) def _snake_case (self ): return self.red / (self.nir + self.red + self.green) def _snake_case (self ): return (self.green - self.red) / (self.green + self.red) def _snake_case (self ): return (self.red - self.green) / (self.red + self.green) def _snake_case (self ): __lowerCAmelCase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) __lowerCAmelCase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case (self ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case (self ): return self.nir / self.red def _snake_case (self ): return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case (self ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
9
1
'''simple docstring''' import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig _UpperCAmelCase : int = logging.get_logger(__name__) # General docstring _UpperCAmelCase : List[Any] = """PoolFormerConfig""" # Base docstring _UpperCAmelCase : Optional[int] = """sail/poolformer_s12""" _UpperCAmelCase : Union[str, Any] = [1, 5_1_2, 7, 7] # Image classification docstring _UpperCAmelCase : Tuple = """sail/poolformer_s12""" _UpperCAmelCase : Tuple = """tabby, tabby cat""" _UpperCAmelCase : str = [ """sail/poolformer_s12""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def __magic_name__( lowerCamelCase, lowerCamelCase = 0.0, lowerCamelCase = False): if drop_prob == 0.0 or not training: return input __lowerCAmelCase = 1 - drop_prob __lowerCAmelCase = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets __lowerCAmelCase = keep_prob + torch.rand(lowerCamelCase, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize __lowerCAmelCase = input.div(lowerCamelCase) * random_tensor return output class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase = None ): super().__init__() __lowerCAmelCase = drop_prob def _snake_case (self , __lowercase ): return drop_path(__lowercase , self.drop_prob , self.training ) def _snake_case (self ): return "p={}".format(self.drop_prob ) class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase=None ): super().__init__() __lowerCAmelCase = patch_size if isinstance(__lowercase , collections.abc.Iterable ) else (patch_size, patch_size) __lowerCAmelCase = stride if isinstance(__lowercase , collections.abc.Iterable ) else (stride, stride) __lowerCAmelCase = padding if isinstance(__lowercase , collections.abc.Iterable ) else (padding, padding) __lowerCAmelCase = nn.Convad(__lowercase , __lowercase , kernel_size=__lowercase , stride=__lowercase , padding=__lowercase ) __lowerCAmelCase = norm_layer(__lowercase ) if norm_layer else nn.Identity() def _snake_case (self , __lowercase ): __lowerCAmelCase = self.projection(__lowercase ) __lowerCAmelCase = self.norm(__lowercase ) return embeddings class a__ ( nn.GroupNorm ): """simple docstring""" def __init__(self , __lowercase , **__lowercase ): super().__init__(1 , __lowercase , **__lowercase ) class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase ): super().__init__() __lowerCAmelCase = nn.AvgPoolad(__lowercase , stride=1 , padding=pool_size // 2 , count_include_pad=__lowercase ) def _snake_case (self , __lowercase ): return self.pool(__lowercase ) - hidden_states class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase , __lowercase ): super().__init__() __lowerCAmelCase = nn.Convad(__lowercase , __lowercase , 1 ) __lowerCAmelCase = nn.Convad(__lowercase , __lowercase , 1 ) __lowerCAmelCase = PoolFormerDropPath(__lowercase ) if isinstance(config.hidden_act , __lowercase ): __lowerCAmelCase = ACTaFN[config.hidden_act] else: __lowerCAmelCase = config.hidden_act def _snake_case (self , __lowercase ): __lowerCAmelCase = self.conva(__lowercase ) __lowerCAmelCase = self.act_fn(__lowercase ) __lowerCAmelCase = self.drop(__lowercase ) __lowerCAmelCase = self.conva(__lowercase ) __lowerCAmelCase = self.drop(__lowercase ) return hidden_states class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): super().__init__() __lowerCAmelCase = PoolFormerPooling(__lowercase ) __lowerCAmelCase = PoolFormerOutput(__lowercase , __lowercase , __lowercase , __lowercase ) __lowerCAmelCase = PoolFormerGroupNorm(__lowercase ) __lowerCAmelCase = PoolFormerGroupNorm(__lowercase ) # Useful for training neural nets __lowerCAmelCase = PoolFormerDropPath(__lowercase ) if drop_path > 0.0 else nn.Identity() __lowerCAmelCase = config.use_layer_scale if config.use_layer_scale: __lowerCAmelCase = nn.Parameter( config.layer_scale_init_value * torch.ones((__lowercase) ) , requires_grad=__lowercase ) __lowerCAmelCase = nn.Parameter( config.layer_scale_init_value * torch.ones((__lowercase) ) , requires_grad=__lowercase ) def _snake_case (self , __lowercase ): if self.use_layer_scale: __lowerCAmelCase = self.pooling(self.before_norm(__lowercase ) ) __lowerCAmelCase = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection __lowerCAmelCase = hidden_states + self.drop_path(__lowercase ) __lowerCAmelCase = () __lowerCAmelCase = self.output(self.after_norm(__lowercase ) ) __lowerCAmelCase = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection __lowerCAmelCase = hidden_states + self.drop_path(__lowercase ) __lowerCAmelCase = (output,) + outputs return outputs else: __lowerCAmelCase = self.drop_path(self.pooling(self.before_norm(__lowercase ) ) ) # First residual connection __lowerCAmelCase = pooling_output + hidden_states __lowerCAmelCase = () # Second residual connection inside the PoolFormerOutput block __lowerCAmelCase = self.drop_path(self.output(self.after_norm(__lowercase ) ) ) __lowerCAmelCase = hidden_states + layer_output __lowerCAmelCase = (output,) + outputs return outputs class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase ): super().__init__() __lowerCAmelCase = config # stochastic depth decay rule __lowerCAmelCase = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings __lowerCAmelCase = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) __lowerCAmelCase = nn.ModuleList(__lowercase ) # Transformer blocks __lowerCAmelCase = [] __lowerCAmelCase = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers __lowerCAmelCase = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( __lowercase , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(__lowercase ) ) __lowerCAmelCase = nn.ModuleList(__lowercase ) def _snake_case (self , __lowercase , __lowercase=False , __lowercase=True ): __lowerCAmelCase = () if output_hidden_states else None __lowerCAmelCase = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): __lowerCAmelCase , __lowerCAmelCase = layers # Get patch embeddings from hidden_states __lowerCAmelCase = embedding_layer(__lowercase ) # Send the embeddings through the blocks for _, blk in enumerate(__lowercase ): __lowerCAmelCase = blk(__lowercase ) __lowerCAmelCase = layer_outputs[0] if output_hidden_states: __lowerCAmelCase = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__lowercase , hidden_states=__lowercase ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : int = PoolFormerConfig __UpperCamelCase : Union[str, Any] = 'poolformer' __UpperCamelCase : Tuple = 'pixel_values' __UpperCamelCase : Tuple = True def _snake_case (self , __lowercase ): if isinstance(__lowercase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__lowercase , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def _snake_case (self , __lowercase , __lowercase=False ): if isinstance(__lowercase , __lowercase ): __lowerCAmelCase = value _UpperCAmelCase : Any = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ _UpperCAmelCase : List[Any] = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`PoolFormerImageProcessor.__call__`] for details. """ @add_start_docstrings( 'The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.' , __A , ) class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase ): super().__init__(__lowercase ) __lowerCAmelCase = config __lowerCAmelCase = PoolFormerEncoder(__lowercase ) # Initialize weights and apply final processing self.post_init() def _snake_case (self ): return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(__lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__lowercase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _snake_case (self , __lowercase = None , __lowercase = None , __lowercase = None , ): __lowerCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) __lowerCAmelCase = self.encoder( __lowercase , output_hidden_states=__lowercase , return_dict=__lowercase , ) __lowerCAmelCase = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=__lowercase , hidden_states=encoder_outputs.hidden_states , ) class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase ): super().__init__() __lowerCAmelCase = nn.Linear(config.hidden_size , config.hidden_size ) def _snake_case (self , __lowercase ): __lowerCAmelCase = self.dense(__lowercase ) return output @add_start_docstrings( '\n PoolFormer Model transformer with an image classification head on top\n ' , __A , ) class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase ): super().__init__(__lowercase ) __lowerCAmelCase = config.num_labels __lowerCAmelCase = PoolFormerModel(__lowercase ) # Final norm __lowerCAmelCase = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head __lowerCAmelCase = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _snake_case (self , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , ): __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = self.poolformer( __lowercase , output_hidden_states=__lowercase , return_dict=__lowercase , ) __lowerCAmelCase = outputs[0] __lowerCAmelCase = self.classifier(self.norm(__lowercase ).mean([-2, -1] ) ) __lowerCAmelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __lowerCAmelCase = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __lowerCAmelCase = '''single_label_classification''' else: __lowerCAmelCase = '''multi_label_classification''' if self.config.problem_type == "regression": __lowerCAmelCase = MSELoss() if self.num_labels == 1: __lowerCAmelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: __lowerCAmelCase = loss_fct(__lowercase , __lowercase ) elif self.config.problem_type == "single_label_classification": __lowerCAmelCase = CrossEntropyLoss() __lowerCAmelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __lowerCAmelCase = BCEWithLogitsLoss() __lowerCAmelCase = loss_fct(__lowercase , __lowercase ) if not return_dict: __lowerCAmelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__lowercase , logits=__lowercase , hidden_states=outputs.hidden_states )
9
'''simple docstring''' from math import sqrt def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' must been an int and positive" __lowerCAmelCase = True # 0 and 1 are none primes. if number <= 1: __lowerCAmelCase = False for divisor in range(2, int(round(sqrt(lowerCamelCase))) + 1): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __lowerCAmelCase = False break # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'status' must been from type bool" return status def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __lowerCAmelCase = list(range(2, n + 1)) __lowerCAmelCase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase)): for j in range(i + 1, len(lowerCamelCase)): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __lowerCAmelCase = 0 # filters actual prime numbers. __lowerCAmelCase = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" __lowerCAmelCase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2, n + 1): if is_prime(lowerCamelCase): ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and number >= 0, "'number' must been an int and >= 0" __lowerCAmelCase = [] # this list will be returns of the function. # potential prime number factors. __lowerCAmelCase = 2 __lowerCAmelCase = number if number == 0 or number == 1: ans.append(lowerCamelCase) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase): while quotient != 1: if is_prime(lowerCamelCase) and (quotient % factor == 0): ans.append(lowerCamelCase) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = max(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = min(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 == 0, lowerCamelCase), "compare bust been from type bool" return number % 2 == 0 def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 != 0, lowerCamelCase), "compare bust been from type bool" return number % 2 != 0 def __magic_name__( lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and (number > 2) and is_even(lowerCamelCase) ), "'number' must been an int, even and > 2" __lowerCAmelCase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __lowerCAmelCase = get_prime_numbers(lowerCamelCase) __lowerCAmelCase = len(lowerCamelCase) # run variable for while-loops. __lowerCAmelCase = 0 __lowerCAmelCase = None # exit variable. for break up the loops __lowerCAmelCase = True while i < len_pn and loop: __lowerCAmelCase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __lowerCAmelCase = False ans.append(prime_numbers[i]) ans.append(prime_numbers[j]) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (len(lowerCamelCase) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0]) and is_prime(ans[1]) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 0 while numbera != 0: __lowerCAmelCase = numbera % numbera __lowerCAmelCase = numbera __lowerCAmelCase = rest # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = prime_factorization(lowerCamelCase) elif numbera == 1 or numbera == 1: __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = max(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(max(lowerCamelCase, lowerCamelCase)): ans *= n else: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'number' must been a positive int" __lowerCAmelCase = 0 __lowerCAmelCase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase): ans += 1 # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and is_prime( lowerCamelCase), "'ans' must been a prime number and from type int" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( is_prime(lowerCamelCase) and is_prime(lowerCamelCase) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __lowerCAmelCase = p_number_a + 1 # jump to the next number __lowerCAmelCase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 while number < p_number_a: ans.append(lowerCamelCase) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and ans[0] != p_number_a and ans[len(lowerCamelCase) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 1), "'n' must been int and >= 1" __lowerCAmelCase = [] # will be returned. for divisor in range(1, n + 1): if n % divisor == 0: ans.append(lowerCamelCase) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase) - 1] == n, "Error in function getDivisiors(...)" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number > 1 ), "'number' must been an int and >= 1" __lowerCAmelCase = get_divisors(lowerCamelCase) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (divisors[0] == 1) and (divisors[len(lowerCamelCase) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1]) == number def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __lowerCAmelCase = gcd(abs(lowerCamelCase), abs(lowerCamelCase)) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been a int and >= 0" __lowerCAmelCase = 1 # this will be return. for factor in range(1, n + 1): ans *= factor return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been an int and >= 0" __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = 1 # this will be return for _ in range(n - 1): __lowerCAmelCase = ans ans += fiba __lowerCAmelCase = tmp return ans
9
1
'''simple docstring''' def __magic_name__( lowerCamelCase = 1_0_0_0): __lowerCAmelCase , __lowerCAmelCase = 1, 1 __lowerCAmelCase = [] for i in range(1, n + 1): __lowerCAmelCase = prev_numerator + 2 * prev_denominator __lowerCAmelCase = prev_numerator + prev_denominator if len(str(lowerCamelCase)) > len(str(lowerCamelCase)): result.append(lowerCamelCase) __lowerCAmelCase = numerator __lowerCAmelCase = denominator return len(lowerCamelCase) if __name__ == "__main__": print(f"""{solution() = }""")
9
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed _UpperCAmelCase : Dict = """true""" def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=1_6): set_seed(4_2) __lowerCAmelCase = RegressionModel() __lowerCAmelCase = deepcopy(lowerCamelCase) __lowerCAmelCase = RegressionDataset(length=lowerCamelCase) __lowerCAmelCase = DataLoader(lowerCamelCase, batch_size=lowerCamelCase) model.to(accelerator.device) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase) return model, ddp_model, dataloader def __magic_name__( lowerCamelCase, lowerCamelCase=False): __lowerCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''') __lowerCAmelCase = load_dataset('''glue''', '''mrpc''', split='''validation''') def tokenize_function(lowerCamelCase): __lowerCAmelCase = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=lowerCamelCase, max_length=lowerCamelCase) return outputs with accelerator.main_process_first(): __lowerCAmelCase = dataset.map( lowerCamelCase, batched=lowerCamelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) __lowerCAmelCase = tokenized_datasets.rename_column('''label''', '''labels''') def collate_fn(lowerCamelCase): if use_longest: return tokenizer.pad(lowerCamelCase, padding='''longest''', return_tensors='''pt''') return tokenizer.pad(lowerCamelCase, padding='''max_length''', max_length=1_2_8, return_tensors='''pt''') return DataLoader(lowerCamelCase, shuffle=lowerCamelCase, collate_fn=lowerCamelCase, batch_size=1_6) def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = Accelerator(dispatch_batches=lowerCamelCase, split_batches=lowerCamelCase) __lowerCAmelCase = get_dataloader(lowerCamelCase, not dispatch_batches) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''', return_dict=lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [] for batch in dataloader: __lowerCAmelCase , __lowerCAmelCase = batch.values() with torch.no_grad(): __lowerCAmelCase = model(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((logit, target)) logits_and_targets.append((logit, target)) __lowerCAmelCase , __lowerCAmelCase = [], [] for logit, targ in logits_and_targets: logits.append(lowerCamelCase) targs.append(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = torch.cat(lowerCamelCase), torch.cat(lowerCamelCase) return logits, targs def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=1_6): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = get_basic_setup(lowerCamelCase, lowerCamelCase, lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = generate_predictions(lowerCamelCase, lowerCamelCase, lowerCamelCase) assert ( len(lowerCamelCase) == num_samples ), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowerCamelCase)}""" def __magic_name__( lowerCamelCase = False, lowerCamelCase = False): __lowerCAmelCase = evaluate.load('''glue''', '''mrpc''') __lowerCAmelCase , __lowerCAmelCase = get_mrpc_setup(lowerCamelCase, lowerCamelCase) # First do baseline __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''no'''] model.to(lowerCamelCase) model.eval() for batch in dataloader: batch.to(lowerCamelCase) with torch.inference_mode(): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(dim=-1) metric.add_batch(predictions=lowerCamelCase, references=batch['''labels''']) __lowerCAmelCase = metric.compute() # Then do distributed __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(dim=-1) __lowerCAmelCase = batch['''labels'''] __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((preds, references)) metric.add_batch(predictions=lowerCamelCase, references=lowerCamelCase) __lowerCAmelCase = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key], distributed[key]), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def __magic_name__( ): __lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''') for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""") test_mrpc(lowerCamelCase, lowerCamelCase) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''') for split_batches in [True, False]: for dispatch_batches in [True, False]: __lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase) if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""") test_torch_metrics(lowerCamelCase, 9_9) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''') __lowerCAmelCase = Accelerator() test_torch_metrics(lowerCamelCase, 5_1_2) accelerator.state._reset_state() def __magic_name__( lowerCamelCase): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
9
1
'''simple docstring''' from __future__ import annotations import bisect def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = 0, lowerCamelCase = -1): if hi < 0: __lowerCAmelCase = len(lowerCamelCase) while lo < hi: __lowerCAmelCase = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __lowerCAmelCase = mid + 1 else: __lowerCAmelCase = mid return lo def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = 0, lowerCamelCase = -1): if hi < 0: __lowerCAmelCase = len(lowerCamelCase) while lo < hi: __lowerCAmelCase = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __lowerCAmelCase = mid + 1 else: __lowerCAmelCase = mid return lo def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = 0, lowerCamelCase = -1): sorted_collection.insert(bisect_left(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase), lowerCamelCase) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = 0, lowerCamelCase = -1): sorted_collection.insert(bisect_right(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase), lowerCamelCase) def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = 0 __lowerCAmelCase = len(lowerCamelCase) - 1 while left <= right: __lowerCAmelCase = left + (right - left) // 2 __lowerCAmelCase = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __lowerCAmelCase = midpoint - 1 else: __lowerCAmelCase = midpoint + 1 return None def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = bisect.bisect_left(lowerCamelCase, lowerCamelCase) if index != len(lowerCamelCase) and sorted_collection[index] == item: return index return None def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): if right < left: return None __lowerCAmelCase = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(lowerCamelCase, lowerCamelCase, lowerCamelCase, midpoint - 1) else: return binary_search_by_recursion(lowerCamelCase, lowerCamelCase, midpoint + 1, lowerCamelCase) if __name__ == "__main__": _UpperCAmelCase : List[Any] = input("""Enter numbers separated by comma:\n""").strip() _UpperCAmelCase : Any = sorted(int(item) for item in user_input.split(""",""")) _UpperCAmelCase : str = int(input("""Enter a single number to be found in the list:\n""")) _UpperCAmelCase : Dict = binary_search(collection, target) if result is None: print(f"""{target} was not found in {collection}.""") else: print(f"""{target} was found at position {result} in {collection}.""")
9
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : str = logging.get_logger(__name__) _UpperCAmelCase : str = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class a__ ( __A ): """simple docstring""" __UpperCamelCase : str = 'roberta' def __init__(self , __lowercase=5_02_65 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=1 , __lowercase=0 , __lowercase=2 , __lowercase="absolute" , __lowercase=True , __lowercase=None , **__lowercase , ): super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = use_cache __lowerCAmelCase = classifier_dropout class a__ ( __A ): """simple docstring""" @property def _snake_case (self ): if self.task == "multiple-choice": __lowerCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
9
1
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed _UpperCAmelCase : Dict = """true""" def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=1_6): set_seed(4_2) __lowerCAmelCase = RegressionModel() __lowerCAmelCase = deepcopy(lowerCamelCase) __lowerCAmelCase = RegressionDataset(length=lowerCamelCase) __lowerCAmelCase = DataLoader(lowerCamelCase, batch_size=lowerCamelCase) model.to(accelerator.device) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase) return model, ddp_model, dataloader def __magic_name__( lowerCamelCase, lowerCamelCase=False): __lowerCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''') __lowerCAmelCase = load_dataset('''glue''', '''mrpc''', split='''validation''') def tokenize_function(lowerCamelCase): __lowerCAmelCase = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=lowerCamelCase, max_length=lowerCamelCase) return outputs with accelerator.main_process_first(): __lowerCAmelCase = dataset.map( lowerCamelCase, batched=lowerCamelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) __lowerCAmelCase = tokenized_datasets.rename_column('''label''', '''labels''') def collate_fn(lowerCamelCase): if use_longest: return tokenizer.pad(lowerCamelCase, padding='''longest''', return_tensors='''pt''') return tokenizer.pad(lowerCamelCase, padding='''max_length''', max_length=1_2_8, return_tensors='''pt''') return DataLoader(lowerCamelCase, shuffle=lowerCamelCase, collate_fn=lowerCamelCase, batch_size=1_6) def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = Accelerator(dispatch_batches=lowerCamelCase, split_batches=lowerCamelCase) __lowerCAmelCase = get_dataloader(lowerCamelCase, not dispatch_batches) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''', return_dict=lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [] for batch in dataloader: __lowerCAmelCase , __lowerCAmelCase = batch.values() with torch.no_grad(): __lowerCAmelCase = model(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((logit, target)) logits_and_targets.append((logit, target)) __lowerCAmelCase , __lowerCAmelCase = [], [] for logit, targ in logits_and_targets: logits.append(lowerCamelCase) targs.append(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = torch.cat(lowerCamelCase), torch.cat(lowerCamelCase) return logits, targs def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=1_6): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = get_basic_setup(lowerCamelCase, lowerCamelCase, lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = generate_predictions(lowerCamelCase, lowerCamelCase, lowerCamelCase) assert ( len(lowerCamelCase) == num_samples ), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowerCamelCase)}""" def __magic_name__( lowerCamelCase = False, lowerCamelCase = False): __lowerCAmelCase = evaluate.load('''glue''', '''mrpc''') __lowerCAmelCase , __lowerCAmelCase = get_mrpc_setup(lowerCamelCase, lowerCamelCase) # First do baseline __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''no'''] model.to(lowerCamelCase) model.eval() for batch in dataloader: batch.to(lowerCamelCase) with torch.inference_mode(): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(dim=-1) metric.add_batch(predictions=lowerCamelCase, references=batch['''labels''']) __lowerCAmelCase = metric.compute() # Then do distributed __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(dim=-1) __lowerCAmelCase = batch['''labels'''] __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((preds, references)) metric.add_batch(predictions=lowerCamelCase, references=lowerCamelCase) __lowerCAmelCase = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key], distributed[key]), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def __magic_name__( ): __lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''') for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""") test_mrpc(lowerCamelCase, lowerCamelCase) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''') for split_batches in [True, False]: for dispatch_batches in [True, False]: __lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase) if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""") test_torch_metrics(lowerCamelCase, 9_9) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''') __lowerCAmelCase = Accelerator() test_torch_metrics(lowerCamelCase, 5_1_2) accelerator.state._reset_state() def __magic_name__( lowerCamelCase): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
9
'''simple docstring''' import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = old_name if "patch_embed" in old_name: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = old_name.split('''.''') if layer == "0": __lowerCAmelCase = old_name.replace('''0''', '''convolution1''') elif layer == "1": __lowerCAmelCase = old_name.replace('''1''', '''batchnorm_before''') elif layer == "3": __lowerCAmelCase = old_name.replace('''3''', '''convolution2''') else: __lowerCAmelCase = old_name.replace('''4''', '''batchnorm_after''') if "network" in old_name and re.search(r'''\d\.\d''', lowerCamelCase): __lowerCAmelCase = r'''\b\d{2}\b''' if bool(re.search(lowerCamelCase, lowerCamelCase)): __lowerCAmelCase = re.search(r'''\d\.\d\d.''', lowerCamelCase).group() else: __lowerCAmelCase = re.search(r'''\d\.\d.''', lowerCamelCase).group() if int(match[0]) < 6: __lowerCAmelCase = old_name.replace(lowerCamelCase, '''''') __lowerCAmelCase = trimmed_name.replace('''network''', match[0] + '''.meta4D_layers.blocks.''' + match[2:-1]) __lowerCAmelCase = '''intermediate_stages.''' + trimmed_name else: __lowerCAmelCase = old_name.replace(lowerCamelCase, '''''') if int(match[2]) < num_meta4D_last_stage: __lowerCAmelCase = trimmed_name.replace('''network''', '''meta4D_layers.blocks.''' + match[2]) else: __lowerCAmelCase = str(int(match[2]) - num_meta4D_last_stage) __lowerCAmelCase = trimmed_name.replace('''network''', '''meta3D_layers.blocks.''' + layer_index) if "norm1" in old_name: __lowerCAmelCase = trimmed_name.replace('''norm1''', '''layernorm1''') elif "norm2" in old_name: __lowerCAmelCase = trimmed_name.replace('''norm2''', '''layernorm2''') elif "fc1" in old_name: __lowerCAmelCase = trimmed_name.replace('''fc1''', '''linear_in''') elif "fc2" in old_name: __lowerCAmelCase = trimmed_name.replace('''fc2''', '''linear_out''') __lowerCAmelCase = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(r'''.\d.''', lowerCamelCase): __lowerCAmelCase = old_name.replace('''network''', '''intermediate_stages''') if "fc" in new_name: __lowerCAmelCase = new_name.replace('''fc''', '''convolution''') elif ("norm1" in new_name) and ("layernorm1" not in new_name): __lowerCAmelCase = new_name.replace('''norm1''', '''batchnorm_before''') elif ("norm2" in new_name) and ("layernorm2" not in new_name): __lowerCAmelCase = new_name.replace('''norm2''', '''batchnorm_after''') if "proj" in new_name: __lowerCAmelCase = new_name.replace('''proj''', '''projection''') if "dist_head" in new_name: __lowerCAmelCase = new_name.replace('''dist_head''', '''distillation_classifier''') elif "head" in new_name: __lowerCAmelCase = new_name.replace('''head''', '''classifier''') elif "patch_embed" in new_name: __lowerCAmelCase = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": __lowerCAmelCase = new_name.replace('''norm''', '''layernorm''') __lowerCAmelCase = '''efficientformer.''' + new_name else: __lowerCAmelCase = '''efficientformer.encoder.''' + new_name return new_name def __magic_name__( lowerCamelCase, lowerCamelCase): for key in checkpoint.copy().keys(): __lowerCAmelCase = checkpoint.pop(lowerCamelCase) __lowerCAmelCase = val return checkpoint def __magic_name__( ): __lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowerCAmelCase = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase).raw) return image def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = torch.load(lowerCamelCase, map_location='''cpu''')['''model'''] __lowerCAmelCase = EfficientFormerConfig.from_json_file(lowerCamelCase) __lowerCAmelCase = EfficientFormerForImageClassificationWithTeacher(lowerCamelCase) __lowerCAmelCase = '''_'''.join(checkpoint_path.split('''/''')[-1].split('''.''')[0].split('''_''')[:-1]) __lowerCAmelCase = config.depths[-1] - config.num_metaad_blocks + 1 __lowerCAmelCase = convert_torch_checkpoint(lowerCamelCase, lowerCamelCase) model.load_state_dict(lowerCamelCase) model.eval() __lowerCAmelCase = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image __lowerCAmelCase = prepare_img() __lowerCAmelCase = 2_5_6 __lowerCAmelCase = 2_2_4 __lowerCAmelCase = EfficientFormerImageProcessor( size={'''shortest_edge''': image_size}, crop_size={'''height''': crop_size, '''width''': crop_size}, resample=pillow_resamplings['''bicubic'''], ) __lowerCAmelCase = processor(images=lowerCamelCase, return_tensors='''pt''').pixel_values # original processing pipeline __lowerCAmelCase = Compose( [ Resize(lowerCamelCase, interpolation=pillow_resamplings['''bicubic''']), CenterCrop(lowerCamelCase), ToTensor(), Normalize(lowerCamelCase, lowerCamelCase), ]) __lowerCAmelCase = image_transforms(lowerCamelCase).unsqueeze(0) assert torch.allclose(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = model(lowerCamelCase) __lowerCAmelCase = outputs.logits __lowerCAmelCase = (1, 1_0_0_0) if "l1" in model_name: __lowerCAmelCase = torch.Tensor( [-0.13_12, 0.43_53, -1.04_99, -0.51_24, 0.41_83, -0.67_93, -1.37_77, -0.08_93, -0.73_58, -2.43_28]) assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3) assert logits.shape == expected_shape elif "l3" in model_name: __lowerCAmelCase = torch.Tensor( [-1.31_50, -1.54_56, -1.25_56, -0.84_96, -0.71_27, -0.78_97, -0.97_28, -0.30_52, 0.37_51, -0.31_27]) assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3) assert logits.shape == expected_shape elif "l7" in model_name: __lowerCAmelCase = torch.Tensor( [-1.02_83, -1.41_31, -0.56_44, -1.31_15, -0.57_85, -1.20_49, -0.75_28, 0.19_92, -0.38_22, -0.08_78]) assert logits.shape == expected_shape else: raise ValueError( F"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""") # Save Checkpoints Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase) model.save_pretrained(lowerCamelCase) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""") processor.save_pretrained(lowerCamelCase) print(F"""Processor successfuly saved at {pytorch_dump_path}""") if push_to_hub: print('''Pushing model to the hub...''') model.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add model''', use_temp_dir=lowerCamelCase, ) processor.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add image processor''', use_temp_dir=lowerCamelCase, ) if __name__ == "__main__": _UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--pytorch_model_path""", default=None, type=str, required=True, help="""Path to EfficientFormer pytorch checkpoint.""", ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The json file for EfficientFormer model config.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") parser.add_argument( """--no-push_to_hub""", dest="""push_to_hub""", action="""store_false""", help="""Do not push model and image processor to the hub""", ) parser.set_defaults(push_to_hub=True) _UpperCAmelCase : List[str] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
9
1
'''simple docstring''' from __future__ import annotations from statistics import mean def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [0] * no_of_processes __lowerCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(lowerCamelCase): __lowerCAmelCase = burst_time[i] __lowerCAmelCase = [] __lowerCAmelCase = 0 __lowerCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __lowerCAmelCase = [] __lowerCAmelCase = -1 for i in range(lowerCamelCase): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(lowerCamelCase) if len(lowerCamelCase) > 0: __lowerCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __lowerCAmelCase = i total_time += burst_time[target_process] completed += 1 __lowerCAmelCase = 0 __lowerCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [0] * no_of_processes for i in range(lowerCamelCase): __lowerCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") _UpperCAmelCase : Tuple = 4 _UpperCAmelCase : Optional[Any] = [2, 5, 3, 7] _UpperCAmelCase : Optional[Any] = [0, 0, 0, 0] _UpperCAmelCase : List[Any] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) _UpperCAmelCase : Union[str, Any] = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( f"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" f"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(f"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(f"""Average turnaround time = {mean(turn_around_time):.5f}""")
9
'''simple docstring''' from __future__ import annotations import math def __magic_name__( lowerCamelCase, lowerCamelCase): if len(lowerCamelCase) != 2 or len(a[0]) != 2 or len(lowerCamelCase) != 2 or len(b[0]) != 2: raise Exception('''Matrices are not 2x2''') __lowerCAmelCase = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def __magic_name__( lowerCamelCase, lowerCamelCase): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(lowerCamelCase)) ] def __magic_name__( lowerCamelCase, lowerCamelCase): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(lowerCamelCase)) ] def __magic_name__( lowerCamelCase): if len(lowerCamelCase) % 2 != 0 or len(a[0]) % 2 != 0: raise Exception('''Odd matrices are not supported!''') __lowerCAmelCase = len(lowerCamelCase) __lowerCAmelCase = matrix_length // 2 __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase)] __lowerCAmelCase = [ [a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase) ] __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase)] __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase)] return top_left, top_right, bot_left, bot_right def __magic_name__( lowerCamelCase): return len(lowerCamelCase), len(matrix[0]) def __magic_name__( lowerCamelCase): print('''\n'''.join(str(lowerCamelCase) for line in matrix)) def __magic_name__( lowerCamelCase, lowerCamelCase): if matrix_dimensions(lowerCamelCase) == (2, 2): return default_matrix_multiplication(lowerCamelCase, lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase) __lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase) __lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = matrix_addition(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase) __lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = matrix_subtraction(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase) # construct the new matrix from our 4 quadrants __lowerCAmelCase = [] for i in range(len(lowerCamelCase)): new_matrix.append(top_left[i] + top_right[i]) for i in range(len(lowerCamelCase)): new_matrix.append(bot_left[i] + bot_right[i]) return new_matrix def __magic_name__( lowerCamelCase, lowerCamelCase): if matrix_dimensions(lowerCamelCase)[1] != matrix_dimensions(lowerCamelCase)[0]: __lowerCAmelCase = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(lowerCamelCase) __lowerCAmelCase = matrix_dimensions(lowerCamelCase) __lowerCAmelCase = matrix_dimensions(lowerCamelCase) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] __lowerCAmelCase = max(*lowerCamelCase, *lowerCamelCase) __lowerCAmelCase = int(math.pow(2, math.ceil(math.loga(lowerCamelCase)))) __lowerCAmelCase = matrixa __lowerCAmelCase = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0, lowerCamelCase): if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): new_matrixa[i].append(0) else: new_matrixa.append([0] * maxim) if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): new_matrixa[i].append(0) else: new_matrixa.append([0] * maxim) __lowerCAmelCase = actual_strassen(lowerCamelCase, lowerCamelCase) # Removing the additional zeros for i in range(0, lowerCamelCase): if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": _UpperCAmelCase : List[str] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] _UpperCAmelCase : Optional[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
9
1
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _UpperCAmelCase : List[str] = logging.get_logger(__name__) _UpperCAmelCase : Tuple = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : Optional[int] = { """vocab_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json""", }, """merges_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt""", }, """tokenizer_file""": { """Salesforce/codegen-350M-mono""": ( """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase : List[str] = { """Salesforce/codegen-350M-mono""": 2_0_4_8, } class a__ ( __A ): """simple docstring""" __UpperCamelCase : Union[str, Any] = VOCAB_FILES_NAMES __UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Union[str, Any] = ['input_ids', 'attention_mask'] __UpperCamelCase : Optional[int] = CodeGenTokenizer def __init__(self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase="<|endoftext|>" , __lowercase="<|endoftext|>" , __lowercase="<|endoftext|>" , __lowercase=False , **__lowercase , ): super().__init__( __lowercase , __lowercase , tokenizer_file=__lowercase , unk_token=__lowercase , bos_token=__lowercase , eos_token=__lowercase , add_prefix_space=__lowercase , **__lowercase , ) if kwargs.pop('''add_bos_token''' , __lowercase ): __lowerCAmelCase = kwargs.pop('''name_or_path''' , '''''' ) raise ValueError( '''Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.''' '''Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n''' F"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" F"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" '''This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.''' ''' so that the fast tokenizer works correctly.''' ) __lowerCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __lowercase ) != add_prefix_space: __lowerCAmelCase = getattr(__lowercase , pre_tok_state.pop('''type''' ) ) __lowerCAmelCase = add_prefix_space __lowerCAmelCase = pre_tok_class(**__lowercase ) __lowerCAmelCase = add_prefix_space def _snake_case (self , *__lowercase , **__lowercase ): __lowerCAmelCase = kwargs.get('''is_split_into_words''' , __lowercase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__lowercase , **__lowercase ) def _snake_case (self , *__lowercase , **__lowercase ): __lowerCAmelCase = kwargs.get('''is_split_into_words''' , __lowercase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase = None ): __lowerCAmelCase = self._tokenizer.model.save(__lowercase , name=__lowercase ) return tuple(__lowercase ) def _snake_case (self , __lowercase , __lowercase = False , __lowercase = None , __lowercase = None , **__lowercase , ): __lowerCAmelCase = super().decode( token_ids=__lowercase , skip_special_tokens=__lowercase , clean_up_tokenization_spaces=__lowercase , **__lowercase , ) if truncate_before_pattern is not None and len(__lowercase ) > 0: __lowerCAmelCase = self.truncate(__lowercase , __lowercase ) return decoded_text def _snake_case (self , __lowercase , __lowercase ): def find_re(__lowercase , __lowercase , __lowercase ): __lowerCAmelCase = pattern.search(__lowercase , __lowercase ) return m.start() if m else -1 __lowerCAmelCase = [re.compile(__lowercase , re.MULTILINE ) for pattern in truncate_before_pattern] __lowerCAmelCase = list(re.finditer('''^print''' , __lowercase , re.MULTILINE ) ) if len(__lowercase ) > 1: __lowerCAmelCase = completion[: prints[1].start()] __lowerCAmelCase = list(re.finditer('''^def''' , __lowercase , re.MULTILINE ) ) if len(__lowercase ) > 1: __lowerCAmelCase = completion[: defs[1].start()] __lowerCAmelCase = 0 __lowerCAmelCase = [ pos for pos in [find_re(__lowercase , __lowercase , __lowercase ) for terminal in terminals] if pos != -1 ] if len(__lowercase ) > 0: return completion[: min(__lowercase )] else: return completion
9
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 ) __lowerCAmelCase = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = tokenizer(__lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
9
1
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = [10, 20, 30, 40, 50, 60] __lowerCAmelCase = [2, 4, 6, 8, 10, 12] __lowerCAmelCase = 1_00 self.assertEqual(kp.calc_profit(__lowercase , __lowercase , __lowercase ) , 2_10 ) def _snake_case (self ): self.assertRaisesRegex(__lowercase , '''max_weight must greater than zero.''' ) def _snake_case (self ): self.assertRaisesRegex(__lowercase , '''Weight can not be negative.''' ) def _snake_case (self ): self.assertRaisesRegex(__lowercase , '''Profit can not be negative.''' ) def _snake_case (self ): self.assertRaisesRegex(__lowercase , '''max_weight must greater than zero.''' ) def _snake_case (self ): self.assertRaisesRegex( __lowercase , '''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
9
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase , __lowercase=None , __lowercase=None , __lowercase=0 ): __lowerCAmelCase = 1.0 if scale is None else scale __lowerCAmelCase = 0.0 if loc is None else loc super().__init__(__lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__lowercase )] ) @property def _snake_case (self ): return self.base_dist.mean * self.scale + self.loc @property def _snake_case (self ): return self.base_dist.variance * self.scale**2 @property def _snake_case (self ): return self.variance.sqrt() class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase , **__lowercase ): super().__init__(**__lowercase ) __lowerCAmelCase = args_dim __lowerCAmelCase = nn.ModuleList([nn.Linear(__lowercase , __lowercase ) for dim in args_dim.values()] ) __lowerCAmelCase = domain_map def _snake_case (self , __lowercase ): __lowerCAmelCase = [proj(__lowercase ) for proj in self.proj] return self.domain_map(*__lowercase ) class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase ): super().__init__() __lowerCAmelCase = function def _snake_case (self , __lowercase , *__lowercase ): return self.function(__lowercase , *__lowercase ) class a__ : """simple docstring""" __UpperCamelCase : type __UpperCamelCase : int __UpperCamelCase : Dict[str, int] def __init__(self , __lowercase = 1 ): __lowerCAmelCase = dim __lowerCAmelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def _snake_case (self , __lowercase ): if self.dim == 1: return self.distribution_class(*__lowercase ) else: return Independent(self.distribution_class(*__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , ): __lowerCAmelCase = self._base_distribution(__lowercase ) if loc is None and scale is None: return distr else: return AffineTransformed(__lowercase , loc=__lowercase , scale=__lowercase , event_dim=self.event_dim ) @property def _snake_case (self ): return () if self.dim == 1 else (self.dim,) @property def _snake_case (self ): return len(self.event_shape ) @property def _snake_case (self ): return 0.0 def _snake_case (self , __lowercase ): return ParameterProjection( in_features=__lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def _snake_case (self , *__lowercase ): raise NotImplementedError() @staticmethod def _snake_case (__lowercase ): return (x + torch.sqrt(torch.square(__lowercase ) + 4.0 )) / 2.0 class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} __UpperCamelCase : type = StudentT @classmethod def _snake_case (cls , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) __lowerCAmelCase = 2.0 + cls.squareplus(__lowercase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1} __UpperCamelCase : type = Normal @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1} __UpperCamelCase : type = NegativeBinomial @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def _snake_case (self , __lowercase ): __lowerCAmelCase , __lowerCAmelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=__lowercase , logits=__lowercase ) else: return Independent(self.distribution_class(total_count=__lowercase , logits=__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None ): __lowerCAmelCase , __lowerCAmelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
9
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : List[str] = logging.get_logger(__name__) _UpperCAmelCase : str = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class a__ ( __A ): """simple docstring""" __UpperCamelCase : Union[str, Any] = 'bert' def __init__(self , __lowercase=3_05_22 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=0 , __lowercase="absolute" , __lowercase=True , __lowercase=None , **__lowercase , ): super().__init__(pad_token_id=__lowercase , **__lowercase ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = use_cache __lowerCAmelCase = classifier_dropout class a__ ( __A ): """simple docstring""" @property def _snake_case (self ): if self.task == "multiple-choice": __lowerCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
9
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class a__ ( __A ): """simple docstring""" __UpperCamelCase : Tuple = 'naver-clova-ix/donut-base-finetuned-docvqa' __UpperCamelCase : List[str] = ( 'This is a tool that answers a question about an document (pdf). It takes an input named `document` which ' 'should be the document containing the information, as well as a `question` that is the question about the ' 'document. It returns a text that contains the answer to the question.' ) __UpperCamelCase : Optional[int] = 'document_qa' __UpperCamelCase : Optional[int] = AutoProcessor __UpperCamelCase : Tuple = VisionEncoderDecoderModel __UpperCamelCase : Any = ['image', 'text'] __UpperCamelCase : Optional[Any] = ['text'] def __init__(self , *__lowercase , **__lowercase ): if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' __lowerCAmelCase = task_prompt.replace('''{user_input}''' , __lowercase ) __lowerCAmelCase = self.pre_processor.tokenizer( __lowercase , add_special_tokens=__lowercase , return_tensors='''pt''' ).input_ids __lowerCAmelCase = self.pre_processor(__lowercase , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _snake_case (self , __lowercase ): return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__lowercase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__lowercase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__lowercase , ).sequences def _snake_case (self , __lowercase ): __lowerCAmelCase = self.pre_processor.batch_decode(__lowercase )[0] __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) __lowerCAmelCase = re.sub(R'''<.*?>''' , '''''' , __lowercase , count=1 ).strip() # remove first task start token __lowerCAmelCase = self.pre_processor.tokenajson(__lowercase ) return sequence["answer"]
9
1
'''simple docstring''' import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets _UpperCAmelCase : Optional[Any] = """\ @article{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={arXiv preprint arXiv:2103.03874}, year={2021} } """ _UpperCAmelCase : Tuple = """\ This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset. It first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy. """ _UpperCAmelCase : Optional[Any] = r""" Calculates accuracy after canonicalizing inputs. Args: predictions: list of predictions to score. Each prediction is a string that contains natural language and LaTex. references: list of reference for each prediction. Each reference is a string that contains natural language and LaTex. Returns: accuracy: accuracy after canonicalizing inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") Examples: >>> metric = datasets.load_metric(\"competition_math\") >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"]) >>> print(results) {'accuracy': 1.0} """ @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): """simple docstring""" def _snake_case (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/hendrycks/math''' , codebase_urls=['''https://github.com/hendrycks/math'''] , ) def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = 0.0 for i, j in zip(__lowercase , __lowercase ): n_correct += 1.0 if math_equivalence.is_equiv(__lowercase , __lowercase ) else 0.0 __lowerCAmelCase = n_correct / len(__lowercase ) return { "accuracy": accuracy, }
9
'''simple docstring''' def __magic_name__( lowerCamelCase): __lowerCAmelCase = 1 __lowerCAmelCase = 2 while i * i <= n: __lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def __magic_name__( ): __lowerCAmelCase = 1 __lowerCAmelCase = 1 while True: i += 1 t_num += i if count_divisors(lowerCamelCase) > 5_0_0: break return t_num if __name__ == "__main__": print(solution())
9
1
'''simple docstring''' from __future__ import annotations from dataclasses import dataclass @dataclass class a__ : """simple docstring""" __UpperCamelCase : float __UpperCamelCase : TreeNode | None = None __UpperCamelCase : TreeNode | None = None def __magic_name__( lowerCamelCase): # Validation def is_valid_tree(lowerCamelCase) -> bool: if node is None: return True if not isinstance(lowerCamelCase, lowerCamelCase): return False try: float(node.data) except (TypeError, ValueError): return False return is_valid_tree(node.left) and is_valid_tree(node.right) if not is_valid_tree(lowerCamelCase): raise ValueError( '''Each node should be type of TreeNode and data should be float.''') def is_binary_search_tree_recursive_check( lowerCamelCase, lowerCamelCase, lowerCamelCase) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left, lowerCamelCase, node.data) and is_binary_search_tree_recursive_check( node.right, node.data, lowerCamelCase) ) return is_binary_search_tree_recursive_check(lowerCamelCase, -float('''inf'''), float('''inf''')) if __name__ == "__main__": import doctest doctest.testmod()
9
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __lowerCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) self.assertTrue(isinstance(dc.token_ids , __lowercase ) ) with self.assertRaises(__lowercase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__lowercase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _snake_case (self ): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __lowerCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__lowercase ): DisjunctiveConstraint(__lowercase ) # fails here def _snake_case (self ): __lowerCAmelCase = [[1, 2, 3], [1, 2, 4]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) __lowerCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(__lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) __lowerCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(__lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(3 ) __lowerCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(__lowercase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _snake_case (self ): __lowerCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
9
1
'''simple docstring''' import os from datetime import datetime as dt from github import Github _UpperCAmelCase : List[str] = [ """good first issue""", """feature request""", """wip""", ] def __magic_name__( ): __lowerCAmelCase = Github(os.environ['''GITHUB_TOKEN''']) __lowerCAmelCase = g.get_repo('''huggingface/accelerate''') __lowerCAmelCase = repo.get_issues(state='''open''') for issue in open_issues: __lowerCAmelCase = sorted([comment for comment in issue.get_comments()], key=lambda lowerCamelCase: i.created_at, reverse=lowerCamelCase) __lowerCAmelCase = comments[0] if len(lowerCamelCase) > 0 else None __lowerCAmelCase = dt.utcnow() __lowerCAmelCase = (current_time - issue.updated_at).days __lowerCAmelCase = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='''closed''') elif ( days_since_updated > 2_3 and days_since_creation >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # Add stale comment issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''') if __name__ == "__main__": main()
9
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets _UpperCAmelCase : List[str] = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ _UpperCAmelCase : str = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ _UpperCAmelCase : Tuple = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ): if label_map is not None: for old_id, new_id in label_map.items(): __lowerCAmelCase = new_id # turn into Numpy arrays __lowerCAmelCase = np.array(lowerCamelCase) __lowerCAmelCase = np.array(lowerCamelCase) if reduce_labels: __lowerCAmelCase = 2_5_5 __lowerCAmelCase = label - 1 __lowerCAmelCase = 2_5_5 __lowerCAmelCase = label != ignore_index __lowerCAmelCase = np.not_equal(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = pred_label[mask] __lowerCAmelCase = np.array(lowerCamelCase)[mask] __lowerCAmelCase = pred_label[pred_label == label] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ): __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) for result, gt_seg_map in zip(lowerCamelCase, lowerCamelCase): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = intersect_and_union( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = False, ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = total_intersect_and_union( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) # compute metrics __lowerCAmelCase = {} __lowerCAmelCase = total_area_intersect.sum() / total_area_label.sum() __lowerCAmelCase = total_area_intersect / total_area_union __lowerCAmelCase = total_area_intersect / total_area_label __lowerCAmelCase = np.nanmean(lowerCamelCase) __lowerCAmelCase = np.nanmean(lowerCamelCase) __lowerCAmelCase = all_acc __lowerCAmelCase = iou __lowerCAmelCase = acc if nan_to_num is not None: __lowerCAmelCase = {metric: np.nan_to_num(lowerCamelCase, nan=lowerCamelCase) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): """simple docstring""" def _snake_case (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), } ) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = None , __lowercase = None , __lowercase = False , ): __lowerCAmelCase = mean_iou( results=__lowercase , gt_seg_maps=__lowercase , num_labels=__lowercase , ignore_index=__lowercase , nan_to_num=__lowercase , label_map=__lowercase , reduce_labels=__lowercase , ) return iou_result
9
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCAmelCase : Dict = {"""configuration_swin""": ["""SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwinConfig""", """SwinOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Union[str, Any] = [ """SWIN_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwinForImageClassification""", """SwinForMaskedImageModeling""", """SwinModel""", """SwinPreTrainedModel""", """SwinBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = [ """TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSwinForImageClassification""", """TFSwinForMaskedImageModeling""", """TFSwinModel""", """TFSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys _UpperCAmelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
9
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : str = DebertaTokenizer __UpperCamelCase : str = True __UpperCamelCase : Any = DebertaTokenizerFast def _snake_case (self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __lowerCAmelCase = {'''unk_token''': '''[UNK]'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) def _snake_case (self , **__lowercase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , __lowercase ): __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = '''lower newer''' return input_text, output_text def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __lowerCAmelCase = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __lowerCAmelCase = tokens + [tokenizer.unk_token] __lowerCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = tokenizer('''Hello''' , '''World''' ) __lowerCAmelCase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __lowercase ) @slow def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _snake_case (self ): __lowerCAmelCase = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: __lowerCAmelCase = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] __lowerCAmelCase = tokenizer(__lowercase , padding=__lowercase ) __lowerCAmelCase = [tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) for seq in encoding['''input_ids''']] # fmt: off __lowerCAmelCase = { '''input_ids''': [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on __lowerCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __lowercase ) for expected, decoded in zip(__lowercase , __lowercase ): self.assertEqual(__lowercase , __lowercase )
9
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : Tuple = logging.get_logger(__name__) _UpperCAmelCase : Optional[Any] = { """tiiuae/falcon-40b""": """https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json""", """tiiuae/falcon-7b""": """https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json""", } class a__ ( __A ): """simple docstring""" __UpperCamelCase : List[str] = 'falcon' __UpperCamelCase : Optional[int] = ['past_key_values'] def __init__(self , __lowercase=6_50_24 , __lowercase=45_44 , __lowercase=32 , __lowercase=71 , __lowercase=1e-5 , __lowercase=0.0_2 , __lowercase=True , __lowercase=0.0 , __lowercase=0.0 , __lowercase=None , __lowercase=False , __lowercase=False , __lowercase=True , __lowercase=True , __lowercase=False , __lowercase=11 , __lowercase=11 , **__lowercase , ): __lowerCAmelCase = vocab_size # Backward compatibility with n_embed kwarg __lowerCAmelCase = kwargs.pop('''n_embed''' , __lowercase ) __lowerCAmelCase = hidden_size if n_embed is None else n_embed __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = use_cache __lowerCAmelCase = hidden_dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id __lowerCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads __lowerCAmelCase = alibi __lowerCAmelCase = new_decoder_architecture __lowerCAmelCase = multi_query # Ignored when new_decoder_architecture is True __lowerCAmelCase = parallel_attn __lowerCAmelCase = bias super().__init__(bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) @property def _snake_case (self ): return self.hidden_size // self.num_attention_heads @property def _snake_case (self ): return not self.alibi
9
'''simple docstring''' import argparse import datetime def __magic_name__( lowerCamelCase): __lowerCAmelCase = { '''0''': '''Sunday''', '''1''': '''Monday''', '''2''': '''Tuesday''', '''3''': '''Wednesday''', '''4''': '''Thursday''', '''5''': '''Friday''', '''6''': '''Saturday''', } __lowerCAmelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowerCamelCase) < 1_1: raise ValueError('''Must be 10 characters long''') # Get month __lowerCAmelCase = int(date_input[0] + date_input[1]) # Validate if not 0 < m < 1_3: raise ValueError('''Month must be between 1 - 12''') __lowerCAmelCase = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''') # Get day __lowerCAmelCase = int(date_input[3] + date_input[4]) # Validate if not 0 < d < 3_2: raise ValueError('''Date must be between 1 - 31''') # Get second separator __lowerCAmelCase = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''') # Get year __lowerCAmelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) # Arbitrary year range if not 4_5 < y < 8_5_0_0: raise ValueError( '''Year out of range. There has to be some sort of limit...right?''') # Get datetime obj for validation __lowerCAmelCase = datetime.date(int(lowerCamelCase), int(lowerCamelCase), int(lowerCamelCase)) # Start math if m <= 2: __lowerCAmelCase = y - 1 __lowerCAmelCase = m + 1_2 # maths var __lowerCAmelCase = int(str(lowerCamelCase)[:2]) __lowerCAmelCase = int(str(lowerCamelCase)[2:]) __lowerCAmelCase = int(2.6 * m - 5.39) __lowerCAmelCase = int(c / 4) __lowerCAmelCase = int(k / 4) __lowerCAmelCase = int(d + k) __lowerCAmelCase = int(t + u + v + x) __lowerCAmelCase = int(z - (2 * c)) __lowerCAmelCase = round(w % 7) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('''The date was evaluated incorrectly. Contact developer.''') # Response __lowerCAmelCase = F"""Your date {date_input}, is a {days[str(lowerCamelCase)]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase : List[str] = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) _UpperCAmelCase : Dict = parser.parse_args() zeller(args.date_input)
9
1
'''simple docstring''' class a__ : """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = name __lowerCAmelCase = value __lowerCAmelCase = weight def __repr__(self ): return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def _snake_case (self ): return self.value def _snake_case (self ): return self.name def _snake_case (self ): return self.weight def _snake_case (self ): return self.value / self.weight def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [] for i in range(len(lowerCamelCase)): menu.append(Things(name[i], value[i], weight[i])) return menu def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = sorted(lowerCamelCase, key=lowerCamelCase, reverse=lowerCamelCase) __lowerCAmelCase = [] __lowerCAmelCase , __lowerCAmelCase = 0.0, 0.0 for i in range(len(lowerCamelCase)): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i]) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __magic_name__( ): pass if __name__ == "__main__": import doctest doctest.testmod()
9
'''simple docstring''' import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[Any] = ConsistencyModelPipeline __UpperCamelCase : Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __UpperCamelCase : int = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt __UpperCamelCase : List[Any] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) @property def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet''' , ) return unet @property def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , ) return unet def _snake_case (self , __lowercase=False ): if class_cond: __lowerCAmelCase = self.dummy_cond_unet else: __lowerCAmelCase = self.dummy_uncond_unet # Default to CM multistep sampler __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, } return components def _snake_case (self , __lowercase , __lowercase=0 ): if str(__lowercase ).startswith('''mps''' ): __lowerCAmelCase = torch.manual_seed(__lowercase ) else: __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = { '''batch_size''': 1, '''num_inference_steps''': None, '''timesteps''': [22, 0], '''generator''': generator, '''output_type''': '''np''', } return inputs def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase ) __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 0 __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase ) __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = 0 __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case (self , __lowercase=0 , __lowercase=False , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ): __lowerCAmelCase = torch.manual_seed(__lowercase ) __lowerCAmelCase = { '''num_inference_steps''': None, '''timesteps''': [22, 0], '''class_labels''': 0, '''generator''': generator, '''output_type''': '''np''', } if get_fixed_latents: __lowerCAmelCase = self.get_fixed_latents(seed=__lowercase , device=__lowercase , dtype=__lowercase , shape=__lowercase ) __lowerCAmelCase = latents return inputs def _snake_case (self , __lowercase=0 , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ): if type(__lowercase ) == str: __lowerCAmelCase = torch.device(__lowercase ) __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = randn_tensor(__lowercase , generator=__lowercase , device=__lowercase , dtype=__lowercase ) return latents def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ): __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ): __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
9
1
'''simple docstring''' from math import factorial def __magic_name__( lowerCamelCase = 2_0): __lowerCAmelCase = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... __lowerCAmelCase = n // 2 return int(factorial(lowerCamelCase) / (factorial(lowerCamelCase) * factorial(n - k))) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(2_0)) else: try: _UpperCAmelCase : Dict = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number.""")
9
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _UpperCAmelCase : List[Any] = datasets.load_iris() _UpperCAmelCase : Dict = np.array(data["""data"""]) _UpperCAmelCase : int = np.array(data["""target"""]) _UpperCAmelCase : str = data["""target_names"""] _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = train_test_split(X, y) def __magic_name__( lowerCamelCase, lowerCamelCase): return np.linalg.norm(np.array(lowerCamelCase) - np.array(lowerCamelCase)) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=5): __lowerCAmelCase = zip(lowerCamelCase, lowerCamelCase) # List of distances of all points from the point to be classified __lowerCAmelCase = [] for data_point in data: __lowerCAmelCase = euclidean_distance(data_point[0], lowerCamelCase) distances.append((distance, data_point[1])) # Choosing 'k' points with the least distances. __lowerCAmelCase = [i[1] for i in sorted(lowerCamelCase)[:k]] # Most commonly occurring class among them # is the class into which the point is classified __lowerCAmelCase = Counter(lowerCamelCase).most_common(1)[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
9
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _UpperCAmelCase : Tuple = { """configuration_owlvit""": [ """OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OwlViTConfig""", """OwlViTOnnxConfig""", """OwlViTTextConfig""", """OwlViTVisionConfig""", ], """processing_owlvit""": ["""OwlViTProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : str = ["""OwlViTFeatureExtractor"""] _UpperCAmelCase : List[Any] = ["""OwlViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = [ """OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OwlViTModel""", """OwlViTPreTrainedModel""", """OwlViTTextModel""", """OwlViTVisionModel""", """OwlViTForObjectDetection""", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys _UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
9
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase ) def _snake_case (self , **__lowercase ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase ) __lowerCAmelCase = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase , return_tensors='''np''' ) __lowerCAmelCase = tokenizer(__lowercase , return_tensors='''np''' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = ['''cat''', '''nasa badge'''] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = [['''cat''', '''nasa badge'''], ['''person''']] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 __lowerCAmelCase = len(__lowercase ) __lowerCAmelCase = max([len(__lowercase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = ['''cat''', '''nasa badge'''] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 __lowerCAmelCase = inputs['''input_ids'''] __lowerCAmelCase = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(images=__lowercase , query_images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase )
9
1
'''simple docstring''' import random def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = False): __lowerCAmelCase = {i: [] for i in range(lowerCamelCase)} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(lowerCamelCase) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(lowerCamelCase): for j in range(i + 1, lowerCamelCase): if random.random() < probability: graph[i].append(lowerCamelCase) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(lowerCamelCase) return graph def __magic_name__( lowerCamelCase): return { i: [j for j in range(lowerCamelCase) if i != j] for i in range(lowerCamelCase) } if __name__ == "__main__": import doctest doctest.testmod()
9
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __magic_name__( ): __lowerCAmelCase = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0)] __lowerCAmelCase = randint(-5_0_0_0, 5_0_0_0) return (arr, r) _UpperCAmelCase : Dict = make_dataset() def __magic_name__( lowerCamelCase, lowerCamelCase): for triplet in permutations(lowerCamelCase, 3): if sum(lowerCamelCase) == target: return tuple(sorted(lowerCamelCase)) return (0, 0, 0) def __magic_name__( lowerCamelCase, lowerCamelCase): arr.sort() __lowerCAmelCase = len(lowerCamelCase) for i in range(n - 1): __lowerCAmelCase , __lowerCAmelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __magic_name__( ): __lowerCAmelCase = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' __lowerCAmelCase = ''' triplet_sum1(*dataset) ''' __lowerCAmelCase = ''' triplet_sum2(*dataset) ''' __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) return (min(lowerCamelCase), min(lowerCamelCase)) if __name__ == "__main__": from doctest import testmod testmod() _UpperCAmelCase : Union[str, Any] = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
9
1
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : List[Any] = CTRLTokenizer __UpperCamelCase : Dict = False __UpperCamelCase : List[str] = False def _snake_case (self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) def _snake_case (self , **__lowercase ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , __lowercase ): __lowerCAmelCase = '''adapt react readapt apt''' __lowerCAmelCase = '''adapt react readapt apt''' return input_text, output_text def _snake_case (self ): __lowerCAmelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowerCAmelCase = '''adapt react readapt apt''' __lowerCAmelCase = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() __lowerCAmelCase = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __lowerCAmelCase = tokens + [tokenizer.unk_token] __lowerCAmelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase )
9
'''simple docstring''' import numpy as np def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = 1E-12, lowerCamelCase = 1_0_0, ): assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[1] # Ensure proper dimensionality. assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(lowerCamelCase) == np.iscomplexobj(lowerCamelCase) __lowerCAmelCase = np.iscomplexobj(lowerCamelCase) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(lowerCamelCase, input_matrix.conj().T) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __lowerCAmelCase = False __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 1E12 while not convergence: # Multiple matrix by the vector. __lowerCAmelCase = np.dot(lowerCamelCase, lowerCamelCase) # Normalize the resulting output vector. __lowerCAmelCase = w / np.linalg.norm(lowerCamelCase) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __lowerCAmelCase = vector.conj().T if is_complex else vector.T __lowerCAmelCase = np.dot(lowerCamelCase, np.dot(lowerCamelCase, lowerCamelCase)) # Check convergence. __lowerCAmelCase = np.abs(lambda_ - lambda_previous) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __lowerCAmelCase = True __lowerCAmelCase = lambda_ if is_complex: __lowerCAmelCase = np.real(lambda_) return lambda_, vector def __magic_name__( ): __lowerCAmelCase = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]]) __lowerCAmelCase = np.array([4_1, 4, 2_0]) __lowerCAmelCase = real_input_matrix.astype(np.complexaaa) __lowerCAmelCase = np.triu(1J * complex_input_matrix, 1) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __lowerCAmelCase = np.array([4_1, 4, 2_0]).astype(np.complexaaa) for problem_type in ["real", "complex"]: if problem_type == "real": __lowerCAmelCase = real_input_matrix __lowerCAmelCase = real_vector elif problem_type == "complex": __lowerCAmelCase = complex_input_matrix __lowerCAmelCase = complex_vector # Our implementation. __lowerCAmelCase , __lowerCAmelCase = power_iteration(lowerCamelCase, lowerCamelCase) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __lowerCAmelCase , __lowerCAmelCase = np.linalg.eigh(lowerCamelCase) # Last eigenvalue is the maximum one. __lowerCAmelCase = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __lowerCAmelCase = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(lowerCamelCase) - np.abs(lowerCamelCase)) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
9
1
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _UpperCAmelCase : List[Any] = logging.get_logger(__name__) class a__ ( __A ): """simple docstring""" __UpperCamelCase : List[str] = ['input_features', 'is_longer'] def __init__(self , __lowercase=64 , __lowercase=4_80_00 , __lowercase=4_80 , __lowercase=10 , __lowercase=10_24 , __lowercase=0.0 , __lowercase=False , __lowercase = 0 , __lowercase = 1_40_00 , __lowercase = None , __lowercase = "fusion" , __lowercase = "repeatpad" , **__lowercase , ): super().__init__( feature_size=__lowercase , sampling_rate=__lowercase , padding_value=__lowercase , return_attention_mask=__lowercase , **__lowercase , ) __lowerCAmelCase = top_db __lowerCAmelCase = truncation __lowerCAmelCase = padding __lowerCAmelCase = fft_window_size __lowerCAmelCase = (fft_window_size >> 1) + 1 __lowerCAmelCase = hop_length __lowerCAmelCase = max_length_s __lowerCAmelCase = max_length_s * sampling_rate __lowerCAmelCase = sampling_rate __lowerCAmelCase = frequency_min __lowerCAmelCase = frequency_max __lowerCAmelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=__lowercase , min_frequency=__lowercase , max_frequency=__lowercase , sampling_rate=__lowercase , norm=__lowercase , mel_scale='''htk''' , ) __lowerCAmelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=__lowercase , min_frequency=__lowercase , max_frequency=__lowercase , sampling_rate=__lowercase , norm='''slaney''' , mel_scale='''slaney''' , ) def _snake_case (self ): __lowerCAmelCase = copy.deepcopy(self.__dict__ ) __lowerCAmelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _snake_case (self , __lowercase , __lowercase = None ): __lowerCAmelCase = spectrogram( __lowercase , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=__lowercase , log_mel='''dB''' , ) return log_mel_spectrogram.T def _snake_case (self , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk __lowerCAmelCase = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk __lowerCAmelCase = [0] # randomly choose index for each part __lowerCAmelCase = np.random.choice(ranges[0] ) __lowerCAmelCase = np.random.choice(ranges[1] ) __lowerCAmelCase = np.random.choice(ranges[2] ) __lowerCAmelCase = mel[idx_front : idx_front + chunk_frames, :] __lowerCAmelCase = mel[idx_middle : idx_middle + chunk_frames, :] __lowerCAmelCase = mel[idx_back : idx_back + chunk_frames, :] __lowerCAmelCase = torch.tensor(mel[None, None, :] ) __lowerCAmelCase = torch.nn.functional.interpolate( __lowercase , size=[chunk_frames, 64] , mode='''bilinear''' , align_corners=__lowercase ) __lowerCAmelCase = mel_shrink[0][0].numpy() __lowerCAmelCase = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": __lowerCAmelCase = True # random crop to max_length (for compatibility) -> this should be handled by self.pad __lowerCAmelCase = len(__lowercase ) - max_length __lowerCAmelCase = np.random.randint(0 , overflow + 1 ) __lowerCAmelCase = waveform[idx : idx + max_length] __lowerCAmelCase = self._np_extract_fbank_features(__lowercase , self.mel_filters_slaney )[None, :] elif truncation == "fusion": __lowerCAmelCase = self._np_extract_fbank_features(__lowercase , self.mel_filters ) __lowerCAmelCase = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed __lowerCAmelCase = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. __lowerCAmelCase = np.stack([mel, mel, mel, mel] , axis=0 ) __lowerCAmelCase = False else: __lowerCAmelCase = self._random_mel_fusion(__lowercase , __lowercase , __lowercase ) __lowerCAmelCase = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: __lowerCAmelCase = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": __lowerCAmelCase = int(max_length / len(__lowercase ) ) __lowerCAmelCase = np.stack(np.tile(__lowercase , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": __lowerCAmelCase = int(max_length / len(__lowercase ) ) __lowerCAmelCase = np.stack(np.tile(__lowercase , __lowercase ) ) __lowerCAmelCase = np.pad(__lowercase , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": __lowerCAmelCase = self._np_extract_fbank_features(__lowercase , self.mel_filters ) __lowerCAmelCase = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: __lowerCAmelCase = self._np_extract_fbank_features(__lowercase , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__(self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , **__lowercase , ): __lowerCAmelCase = truncation if truncation is not None else self.truncation __lowerCAmelCase = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) __lowerCAmelCase = isinstance(__lowercase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) __lowerCAmelCase = is_batched_numpy or ( isinstance(__lowercase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowerCAmelCase = [np.asarray(__lowercase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__lowercase , np.ndarray ): __lowerCAmelCase = np.asarray(__lowercase , dtype=np.floataa ) elif isinstance(__lowercase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __lowerCAmelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __lowerCAmelCase = [np.asarray(__lowercase )] # convert to mel spectrogram, truncate and pad if needed. __lowerCAmelCase = [ self._get_input_mel(__lowercase , max_length if max_length else self.nb_max_samples , __lowercase , __lowercase ) for waveform in raw_speech ] __lowerCAmelCase = [] __lowerCAmelCase = [] for mel, longer in padded_inputs: input_mel.append(__lowercase ) is_longer.append(__lowercase ) if truncation == "fusion" and sum(__lowercase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer __lowerCAmelCase = np.random.randint(0 , len(__lowercase ) ) __lowerCAmelCase = True if isinstance(input_mel[0] , __lowercase ): __lowerCAmelCase = [np.asarray(__lowercase , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool __lowerCAmelCase = [[longer] for longer in is_longer] __lowerCAmelCase = {'''input_features''': input_mel, '''is_longer''': is_longer} __lowerCAmelCase = BatchFeature(__lowercase ) if return_tensors is not None: __lowerCAmelCase = input_features.convert_to_tensors(__lowercase ) return input_features
9
'''simple docstring''' from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _UpperCAmelCase : str = logging.get_logger(__name__) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): return [ int(1_0_0_0 * (box[0] / width)), int(1_0_0_0 * (box[1] / height)), int(1_0_0_0 * (box[2] / width)), int(1_0_0_0 * (box[3] / height)), ] def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = None): __lowerCAmelCase = tesseract_config if tesseract_config is not None else '''''' # apply OCR __lowerCAmelCase = to_pil_image(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = pil_image.size __lowerCAmelCase = pytesseract.image_to_data(lowerCamelCase, lang=lowerCamelCase, output_type='''dict''', config=lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates __lowerCAmelCase = [idx for idx, word in enumerate(lowerCamelCase) if not word.strip()] __lowerCAmelCase = [word for idx, word in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __lowerCAmelCase = [] for x, y, w, h in zip(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [x, y, x + w, y + h] actual_boxes.append(lowerCamelCase) # finally, normalize the bounding boxes __lowerCAmelCase = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowerCamelCase, lowerCamelCase, lowerCamelCase)) assert len(lowerCamelCase) == len(lowerCamelCase), "Not as many words as there are bounding boxes" return words, normalized_boxes class a__ ( __A ): """simple docstring""" __UpperCamelCase : str = ['pixel_values'] def __init__(self , __lowercase = True , __lowercase = None , __lowercase = PILImageResampling.BILINEAR , __lowercase = True , __lowercase = None , __lowercase = "" , **__lowercase , ): super().__init__(**__lowercase ) __lowerCAmelCase = size if size is not None else {'''height''': 2_24, '''width''': 2_24} __lowerCAmelCase = get_size_dict(__lowercase ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = apply_ocr __lowerCAmelCase = ocr_lang __lowerCAmelCase = tesseract_config def _snake_case (self , __lowercase , __lowercase , __lowercase = PILImageResampling.BILINEAR , __lowercase = None , **__lowercase , ): __lowerCAmelCase = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) __lowerCAmelCase = (size['''height'''], size['''width''']) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ): __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(__lowercase ) __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = apply_ocr if apply_ocr is not None else self.apply_ocr __lowerCAmelCase = ocr_lang if ocr_lang is not None else self.ocr_lang __lowerCAmelCase = tesseract_config if tesseract_config is not None else self.tesseract_config __lowerCAmelCase = make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(__lowercase ) for image in images] if apply_ocr: requires_backends(self , '''pytesseract''' ) __lowerCAmelCase = [] __lowerCAmelCase = [] for image in images: __lowerCAmelCase , __lowerCAmelCase = apply_tesseract(__lowercase , __lowercase , __lowercase ) words_batch.append(__lowercase ) boxes_batch.append(__lowercase ) if do_resize: __lowerCAmelCase = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) __lowerCAmelCase = [flip_channel_order(__lowercase ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] __lowerCAmelCase = BatchFeature(data={'''pixel_values''': images} , tensor_type=__lowercase ) if apply_ocr: __lowerCAmelCase = words_batch __lowerCAmelCase = boxes_batch return data
9
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class a__ ( unittest.TestCase ): """simple docstring""" def __init__(self , __lowercase , __lowercase=7 , __lowercase=3 , __lowercase=10 , __lowercase=18 , __lowercase=30 , __lowercase=4_00 , __lowercase=True , __lowercase=None , __lowercase=True , __lowercase=[0.5, 0.5, 0.5] , __lowercase=[0.5, 0.5, 0.5] , __lowercase=None , ): __lowerCAmelCase = size if size is not None else {'''shortest_edge''': 18} __lowerCAmelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = num_frames __lowerCAmelCase = image_size __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = crop_size def _snake_case (self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : List[Any] = VivitImageProcessor if is_vision_available() else None def _snake_case (self ): __lowerCAmelCase = VivitImageProcessingTester(self ) @property def _snake_case (self ): return self.image_processor_tester.prepare_image_processor_dict() def _snake_case (self ): __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowercase , '''image_std''' ) ) self.assertTrue(hasattr(__lowercase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowercase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowercase , '''do_center_crop''' ) ) self.assertTrue(hasattr(__lowercase , '''size''' ) ) def _snake_case (self ): __lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) __lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def _snake_case (self ): # Initialize image_processing __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos __lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=__lowercase ) for video in video_inputs: self.assertIsInstance(__lowercase , __lowercase ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input __lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _snake_case (self ): # Initialize image_processing __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=__lowercase , numpify=__lowercase ) for video in video_inputs: self.assertIsInstance(__lowercase , __lowercase ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _snake_case (self ): # Initialize image_processing __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=__lowercase , torchify=__lowercase ) for video in video_inputs: self.assertIsInstance(__lowercase , __lowercase ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
9
'''simple docstring''' from ..utils import DummyObject, requires_backends class a__ ( metaclass=__A ): """simple docstring""" __UpperCamelCase : int = ['torch', 'scipy'] def __init__(self , *__lowercase , **__lowercase ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] )
9
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) _UpperCAmelCase : Dict = { """google/bit-50""": """https://huggingface.co/google/bit-50/resolve/main/config.json""", } class a__ ( __A , __A ): """simple docstring""" __UpperCamelCase : Union[str, Any] = 'bit' __UpperCamelCase : Tuple = ['preactivation', 'bottleneck'] __UpperCamelCase : Union[str, Any] = ['SAME', 'VALID'] def __init__(self , __lowercase=3 , __lowercase=64 , __lowercase=[2_56, 5_12, 10_24, 20_48] , __lowercase=[3, 4, 6, 3] , __lowercase="preactivation" , __lowercase="relu" , __lowercase=None , __lowercase=32 , __lowercase=0.0 , __lowercase=False , __lowercase=32 , __lowercase=1 , __lowercase=None , __lowercase=None , **__lowercase , ): super().__init__(**__lowercase ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {",".join(self.layer_types )}""" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: __lowerCAmelCase = global_padding.upper() else: raise ValueError(F"""Padding strategy {global_padding} not supported""" ) __lowerCAmelCase = num_channels __lowerCAmelCase = embedding_size __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = layer_type __lowerCAmelCase = hidden_act __lowerCAmelCase = global_padding __lowerCAmelCase = num_groups __lowerCAmelCase = drop_path_rate __lowerCAmelCase = embedding_dynamic_padding __lowerCAmelCase = output_stride __lowerCAmelCase = width_factor __lowerCAmelCase = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(__lowercase ) + 1 )] __lowerCAmelCase , __lowerCAmelCase = get_aligned_output_features_output_indices( out_features=__lowercase , out_indices=__lowercase , stage_names=self.stage_names )
9
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class a__ ( unittest.TestCase ): """simple docstring""" def __init__(self , __lowercase , __lowercase = True , __lowercase = None , __lowercase = 32 , __lowercase = True , __lowercase = 1 / 2_55 , __lowercase = True , __lowercase = True , __lowercase = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , __lowercase = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , __lowercase = True , __lowercase=7 , __lowercase=30 , __lowercase=4_00 , __lowercase=3 , ): __lowerCAmelCase = parent __lowerCAmelCase = do_resize __lowerCAmelCase = size if size is not None else {'''shortest_edge''': 2_88} __lowerCAmelCase = size_divisor __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = do_center_crop __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = do_pad __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution def _snake_case (self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def _snake_case (self , __lowercase , __lowercase=False ): if not batched: __lowerCAmelCase = self.size['''shortest_edge'''] __lowerCAmelCase = image_inputs[0] if isinstance(__lowercase , Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image.size else: __lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2] __lowerCAmelCase = size / min(__lowercase , __lowercase ) if h < w: __lowerCAmelCase , __lowerCAmelCase = size, scale * w else: __lowerCAmelCase , __lowerCAmelCase = scale * h, size __lowerCAmelCase = int((13_33 / 8_00) * size ) if max(__lowercase , __lowercase ) > max_size: __lowerCAmelCase = max_size / max(__lowercase , __lowercase ) __lowerCAmelCase = newh * scale __lowerCAmelCase = neww * scale __lowerCAmelCase , __lowerCAmelCase = int(newh + 0.5 ), int(neww + 0.5 ) __lowerCAmelCase , __lowerCAmelCase = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __lowerCAmelCase = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[0] )[0] __lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Any = BridgeTowerImageProcessor if is_vision_available() else None def _snake_case (self ): __lowerCAmelCase = BridgeTowerImageProcessingTester(self ) @property def _snake_case (self ): return self.image_processor_tester.prepare_image_processor_dict() def _snake_case (self ): __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowercase , '''image_std''' ) ) self.assertTrue(hasattr(__lowercase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowercase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowercase , '''size''' ) ) self.assertTrue(hasattr(__lowercase , '''size_divisor''' ) ) def _snake_case (self ): pass def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , Image.Image ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
9
1
'''simple docstring''' from cva import destroyAllWindows, imread, imshow, waitKey def __magic_name__( lowerCamelCase): # getting number of pixels in the image __lowerCAmelCase , __lowerCAmelCase = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(lowerCamelCase): for j in range(lowerCamelCase): __lowerCAmelCase = [2_5_5, 2_5_5, 2_5_5] - img[i][j] return img if __name__ == "__main__": # read original image _UpperCAmelCase : Union[str, Any] = imread("""image_data/lena.jpg""", 1) # convert to its negative _UpperCAmelCase : Optional[Any] = convert_to_negative(img) # show result image imshow("""negative of original image""", img) waitKey(0) destroyAllWindows()
9
'''simple docstring''' # Imports import numpy as np class a__ : """simple docstring""" def __init__(self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase ) def _snake_case (self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): if red is not None: __lowerCAmelCase = red if green is not None: __lowerCAmelCase = green if blue is not None: __lowerCAmelCase = blue if red_edge is not None: __lowerCAmelCase = red_edge if nir is not None: __lowerCAmelCase = nir return True def _snake_case (self , __lowercase="" , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase ) __lowerCAmelCase = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''' ) return False def _snake_case (self ): return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case (self ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case (self ): return self.nir * (self.red / (self.green**2)) def _snake_case (self ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case (self ): return (self.nir - self.red) / (self.nir + self.red) def _snake_case (self ): return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case (self ): return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case (self ): return (self.nir - self.green) / (self.nir + self.green) def _snake_case (self ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case (self ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case (self ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case (self ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case (self , __lowercase=0.0_8 , __lowercase=1.2_2 , __lowercase=0.0_3 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case (self ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case (self ): return (self.nir / self.green) - 1 def _snake_case (self ): return (self.nir / self.redEdge) - 1 def _snake_case (self ): return (self.red - self.blue) / self.red def _snake_case (self ): __lowerCAmelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case (self ): return self.nir - self.green def _snake_case (self ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case (self ): __lowerCAmelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case (self , __lowercase=0.1_6 ): return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case (self , __lowercase=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case (self ): return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _snake_case (self , __lowercase=None , __lowercase=None ): return (self.nir - b) / (a * self.red) def _snake_case (self ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case (self ): return (self.red + self.green + self.blue) / 3_0.5 def _snake_case (self ): return self.nir / self.red def _snake_case (self ): return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case (self ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case (self ): return self.green / (self.nir + self.red + self.green) def _snake_case (self ): return self.nir / (self.nir + self.red + self.green) def _snake_case (self ): return self.red / (self.nir + self.red + self.green) def _snake_case (self ): return (self.green - self.red) / (self.green + self.red) def _snake_case (self ): return (self.red - self.green) / (self.red + self.green) def _snake_case (self ): __lowerCAmelCase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) __lowerCAmelCase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case (self ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case (self ): return self.nir / self.red def _snake_case (self ): return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case (self ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
9
1
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _UpperCAmelCase : List[str] = """\ Text data. Second line of data.""" _UpperCAmelCase : Any = """file""" @pytest.fixture(scope='''session''') def __magic_name__( lowerCamelCase): __lowerCAmelCase = tmp_path_factory.mktemp('''data''') / (FILE_PATH + '''.zstd''') __lowerCAmelCase = bytes(lowerCamelCase, '''utf-8''') with zstd.open(lowerCamelCase, '''wb''') as f: f.write(lowerCamelCase) return path @pytest.fixture def __magic_name__( lowerCamelCase): with open(os.path.join(tmpfs.local_root_dir, lowerCamelCase), '''w''') as f: f.write(lowerCamelCase) return FILE_PATH @pytest.mark.parametrize('''compression_format''', ['''gzip''', '''xz''', '''zstd''']) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path} __lowerCAmelCase = input_paths[compression_format] __lowerCAmelCase = tmp_path / '''cache''' __lowerCAmelCase = DownloadConfig(cache_dir=lowerCamelCase, extract_compressed_file=lowerCamelCase) __lowerCAmelCase = cached_path(lowerCamelCase, download_config=lowerCamelCase) with open(lowerCamelCase) as f: __lowerCAmelCase = f.read() with open(lowerCamelCase) as f: __lowerCAmelCase = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('''default_extracted''', [True, False]) @pytest.mark.parametrize('''default_cache_dir''', [True, False]) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = '''custom_cache''' __lowerCAmelCase = '''custom_extracted_dir''' __lowerCAmelCase = tmp_path / '''custom_extracted_path''' if default_extracted: __lowerCAmelCase = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''') else: monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''', lowerCamelCase) monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''', str(lowerCamelCase)) __lowerCAmelCase = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) __lowerCAmelCase = xz_file __lowerCAmelCase = ( DownloadConfig(extract_compressed_file=lowerCamelCase) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir, extract_compressed_file=lowerCamelCase) ) __lowerCAmelCase = cached_path(lowerCamelCase, download_config=lowerCamelCase) assert Path(lowerCamelCase).parent.parts[-2:] == expected def __magic_name__( lowerCamelCase): # absolute path __lowerCAmelCase = str(Path(lowerCamelCase).resolve()) assert cached_path(lowerCamelCase) == text_file # relative path __lowerCAmelCase = str(Path(lowerCamelCase).resolve().relative_to(Path(os.getcwd()))) assert cached_path(lowerCamelCase) == text_file def __magic_name__( lowerCamelCase): # absolute path __lowerCAmelCase = str(tmp_path.resolve() / '''__missing_file__.txt''') with pytest.raises(lowerCamelCase): cached_path(lowerCamelCase) # relative path __lowerCAmelCase = '''./__missing_file__.txt''' with pytest.raises(lowerCamelCase): cached_path(lowerCamelCase) def __magic_name__( lowerCamelCase): __lowerCAmelCase = get_from_cache(F"""tmp://{tmpfs_file}""") with open(lowerCamelCase) as f: __lowerCAmelCase = f.read() assert output_file_content == FILE_CONTENT @patch('''datasets.config.HF_DATASETS_OFFLINE''', lowerCamelCase) def __magic_name__( ): with pytest.raises(lowerCamelCase): cached_path('''https://huggingface.co''') @patch('''datasets.config.HF_DATASETS_OFFLINE''', lowerCamelCase) def __magic_name__( lowerCamelCase): __lowerCAmelCase = tmp_path_factory.mktemp('''data''') / '''file.html''' with pytest.raises(lowerCamelCase): http_get('''https://huggingface.co''', temp_file=lowerCamelCase) with pytest.raises(lowerCamelCase): http_head('''https://huggingface.co''') @patch('''datasets.config.HF_DATASETS_OFFLINE''', lowerCamelCase) def __magic_name__( lowerCamelCase): __lowerCAmelCase = tmp_path_factory.mktemp('''data''') / '''file.html''' with pytest.raises(lowerCamelCase): ftp_get('''ftp://huggingface.co''', temp_file=lowerCamelCase) with pytest.raises(lowerCamelCase): ftp_head('''ftp://huggingface.co''') @patch('''datasets.config.HF_DATASETS_OFFLINE''', lowerCamelCase) def __magic_name__( lowerCamelCase): __lowerCAmelCase = tmp_path_factory.mktemp('''data''') / '''file.html''' with pytest.raises(lowerCamelCase): fsspec_get('''s3://huggingface.co''', temp_file=lowerCamelCase) with pytest.raises(lowerCamelCase): fsspec_head('''s3://huggingface.co''')
9
'''simple docstring''' from math import sqrt def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' must been an int and positive" __lowerCAmelCase = True # 0 and 1 are none primes. if number <= 1: __lowerCAmelCase = False for divisor in range(2, int(round(sqrt(lowerCamelCase))) + 1): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __lowerCAmelCase = False break # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'status' must been from type bool" return status def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __lowerCAmelCase = list(range(2, n + 1)) __lowerCAmelCase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase)): for j in range(i + 1, len(lowerCamelCase)): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __lowerCAmelCase = 0 # filters actual prime numbers. __lowerCAmelCase = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" __lowerCAmelCase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2, n + 1): if is_prime(lowerCamelCase): ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and number >= 0, "'number' must been an int and >= 0" __lowerCAmelCase = [] # this list will be returns of the function. # potential prime number factors. __lowerCAmelCase = 2 __lowerCAmelCase = number if number == 0 or number == 1: ans.append(lowerCamelCase) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase): while quotient != 1: if is_prime(lowerCamelCase) and (quotient % factor == 0): ans.append(lowerCamelCase) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = max(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = min(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 == 0, lowerCamelCase), "compare bust been from type bool" return number % 2 == 0 def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 != 0, lowerCamelCase), "compare bust been from type bool" return number % 2 != 0 def __magic_name__( lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and (number > 2) and is_even(lowerCamelCase) ), "'number' must been an int, even and > 2" __lowerCAmelCase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __lowerCAmelCase = get_prime_numbers(lowerCamelCase) __lowerCAmelCase = len(lowerCamelCase) # run variable for while-loops. __lowerCAmelCase = 0 __lowerCAmelCase = None # exit variable. for break up the loops __lowerCAmelCase = True while i < len_pn and loop: __lowerCAmelCase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __lowerCAmelCase = False ans.append(prime_numbers[i]) ans.append(prime_numbers[j]) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (len(lowerCamelCase) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0]) and is_prime(ans[1]) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 0 while numbera != 0: __lowerCAmelCase = numbera % numbera __lowerCAmelCase = numbera __lowerCAmelCase = rest # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = prime_factorization(lowerCamelCase) elif numbera == 1 or numbera == 1: __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = max(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(max(lowerCamelCase, lowerCamelCase)): ans *= n else: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'number' must been a positive int" __lowerCAmelCase = 0 __lowerCAmelCase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase): ans += 1 # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and is_prime( lowerCamelCase), "'ans' must been a prime number and from type int" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( is_prime(lowerCamelCase) and is_prime(lowerCamelCase) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __lowerCAmelCase = p_number_a + 1 # jump to the next number __lowerCAmelCase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 while number < p_number_a: ans.append(lowerCamelCase) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and ans[0] != p_number_a and ans[len(lowerCamelCase) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 1), "'n' must been int and >= 1" __lowerCAmelCase = [] # will be returned. for divisor in range(1, n + 1): if n % divisor == 0: ans.append(lowerCamelCase) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase) - 1] == n, "Error in function getDivisiors(...)" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number > 1 ), "'number' must been an int and >= 1" __lowerCAmelCase = get_divisors(lowerCamelCase) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (divisors[0] == 1) and (divisors[len(lowerCamelCase) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1]) == number def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __lowerCAmelCase = gcd(abs(lowerCamelCase), abs(lowerCamelCase)) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been a int and >= 0" __lowerCAmelCase = 1 # this will be return. for factor in range(1, n + 1): ans *= factor return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been an int and >= 0" __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = 1 # this will be return for _ in range(n - 1): __lowerCAmelCase = ans ans += fiba __lowerCAmelCase = tmp return ans
9
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCAmelCase : str = { """configuration_data2vec_audio""": ["""DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecAudioConfig"""], """configuration_data2vec_text""": [ """DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecTextConfig""", """Data2VecTextOnnxConfig""", ], """configuration_data2vec_vision""": [ """DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecVisionConfig""", """Data2VecVisionOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Any = [ """DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecAudioForAudioFrameClassification""", """Data2VecAudioForCTC""", """Data2VecAudioForSequenceClassification""", """Data2VecAudioForXVector""", """Data2VecAudioModel""", """Data2VecAudioPreTrainedModel""", ] _UpperCAmelCase : List[Any] = [ """DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecTextForCausalLM""", """Data2VecTextForMaskedLM""", """Data2VecTextForMultipleChoice""", """Data2VecTextForQuestionAnswering""", """Data2VecTextForSequenceClassification""", """Data2VecTextForTokenClassification""", """Data2VecTextModel""", """Data2VecTextPreTrainedModel""", ] _UpperCAmelCase : Optional[int] = [ """DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecVisionForImageClassification""", """Data2VecVisionForMaskedImageModeling""", """Data2VecVisionForSemanticSegmentation""", """Data2VecVisionModel""", """Data2VecVisionPreTrainedModel""", ] if is_tf_available(): _UpperCAmelCase : str = [ """TFData2VecVisionForImageClassification""", """TFData2VecVisionForSemanticSegmentation""", """TFData2VecVisionModel""", """TFData2VecVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys _UpperCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
9
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed _UpperCAmelCase : Dict = """true""" def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=1_6): set_seed(4_2) __lowerCAmelCase = RegressionModel() __lowerCAmelCase = deepcopy(lowerCamelCase) __lowerCAmelCase = RegressionDataset(length=lowerCamelCase) __lowerCAmelCase = DataLoader(lowerCamelCase, batch_size=lowerCamelCase) model.to(accelerator.device) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase) return model, ddp_model, dataloader def __magic_name__( lowerCamelCase, lowerCamelCase=False): __lowerCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''') __lowerCAmelCase = load_dataset('''glue''', '''mrpc''', split='''validation''') def tokenize_function(lowerCamelCase): __lowerCAmelCase = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=lowerCamelCase, max_length=lowerCamelCase) return outputs with accelerator.main_process_first(): __lowerCAmelCase = dataset.map( lowerCamelCase, batched=lowerCamelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) __lowerCAmelCase = tokenized_datasets.rename_column('''label''', '''labels''') def collate_fn(lowerCamelCase): if use_longest: return tokenizer.pad(lowerCamelCase, padding='''longest''', return_tensors='''pt''') return tokenizer.pad(lowerCamelCase, padding='''max_length''', max_length=1_2_8, return_tensors='''pt''') return DataLoader(lowerCamelCase, shuffle=lowerCamelCase, collate_fn=lowerCamelCase, batch_size=1_6) def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = Accelerator(dispatch_batches=lowerCamelCase, split_batches=lowerCamelCase) __lowerCAmelCase = get_dataloader(lowerCamelCase, not dispatch_batches) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''', return_dict=lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [] for batch in dataloader: __lowerCAmelCase , __lowerCAmelCase = batch.values() with torch.no_grad(): __lowerCAmelCase = model(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((logit, target)) logits_and_targets.append((logit, target)) __lowerCAmelCase , __lowerCAmelCase = [], [] for logit, targ in logits_and_targets: logits.append(lowerCamelCase) targs.append(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = torch.cat(lowerCamelCase), torch.cat(lowerCamelCase) return logits, targs def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=1_6): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = get_basic_setup(lowerCamelCase, lowerCamelCase, lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = generate_predictions(lowerCamelCase, lowerCamelCase, lowerCamelCase) assert ( len(lowerCamelCase) == num_samples ), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowerCamelCase)}""" def __magic_name__( lowerCamelCase = False, lowerCamelCase = False): __lowerCAmelCase = evaluate.load('''glue''', '''mrpc''') __lowerCAmelCase , __lowerCAmelCase = get_mrpc_setup(lowerCamelCase, lowerCamelCase) # First do baseline __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''no'''] model.to(lowerCamelCase) model.eval() for batch in dataloader: batch.to(lowerCamelCase) with torch.inference_mode(): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(dim=-1) metric.add_batch(predictions=lowerCamelCase, references=batch['''labels''']) __lowerCAmelCase = metric.compute() # Then do distributed __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(dim=-1) __lowerCAmelCase = batch['''labels'''] __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((preds, references)) metric.add_batch(predictions=lowerCamelCase, references=lowerCamelCase) __lowerCAmelCase = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key], distributed[key]), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def __magic_name__( ): __lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''') for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""") test_mrpc(lowerCamelCase, lowerCamelCase) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''') for split_batches in [True, False]: for dispatch_batches in [True, False]: __lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase) if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""") test_torch_metrics(lowerCamelCase, 9_9) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''') __lowerCAmelCase = Accelerator() test_torch_metrics(lowerCamelCase, 5_1_2) accelerator.state._reset_state() def __magic_name__( lowerCamelCase): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
9
1
'''simple docstring''' import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def __magic_name__( *lowerCamelCase, lowerCamelCase = None, lowerCamelCase=True, lowerCamelCase=2): from .. import __version__ __lowerCAmelCase = take_from __lowerCAmelCase = () if not isinstance(args[0], lowerCamelCase): __lowerCAmelCase = (args,) for attribute, version_name, message in args: if version.parse(version.parse(lowerCamelCase).base_version) >= version.parse(lowerCamelCase): raise ValueError( F"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" F""" version {__version__} is >= {version_name}""") __lowerCAmelCase = None if isinstance(lowerCamelCase, lowerCamelCase) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(lowerCamelCase),) __lowerCAmelCase = F"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(lowerCamelCase, lowerCamelCase): values += (getattr(lowerCamelCase, lowerCamelCase),) __lowerCAmelCase = F"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: __lowerCAmelCase = F"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: __lowerCAmelCase = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message, lowerCamelCase, stacklevel=lowerCamelCase) if isinstance(lowerCamelCase, lowerCamelCase) and len(lowerCamelCase) > 0: __lowerCAmelCase = inspect.getouterframes(inspect.currentframe())[1] __lowerCAmelCase = call_frame.filename __lowerCAmelCase = call_frame.lineno __lowerCAmelCase = call_frame.function __lowerCAmelCase , __lowerCAmelCase = next(iter(deprecated_kwargs.items())) raise TypeError(F"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""") if len(lowerCamelCase) == 0: return elif len(lowerCamelCase) == 1: return values[0] return values
9
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : str = logging.get_logger(__name__) _UpperCAmelCase : str = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class a__ ( __A ): """simple docstring""" __UpperCamelCase : str = 'roberta' def __init__(self , __lowercase=5_02_65 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=1 , __lowercase=0 , __lowercase=2 , __lowercase="absolute" , __lowercase=True , __lowercase=None , **__lowercase , ): super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = use_cache __lowerCAmelCase = classifier_dropout class a__ ( __A ): """simple docstring""" @property def _snake_case (self ): if self.task == "multiple-choice": __lowerCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
9
1
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=True, lowerCamelCase="pt"): __lowerCAmelCase = {'''add_prefix_space''': True} if isinstance(lowerCamelCase, lowerCamelCase) and not line.startswith(''' ''') else {} __lowerCAmelCase = padding_side return tokenizer( [line], max_length=lowerCamelCase, padding='''max_length''' if pad_to_max_length else None, truncation=lowerCamelCase, return_tensors=lowerCamelCase, add_special_tokens=lowerCamelCase, **lowerCamelCase, ) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase=None, ): __lowerCAmelCase = input_ids.ne(lowerCamelCase).any(dim=0) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase="train" , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase="" , ): super().__init__() __lowerCAmelCase = Path(__lowercase ).joinpath(type_path + '''.source''' ) __lowerCAmelCase = Path(__lowercase ).joinpath(type_path + '''.target''' ) __lowerCAmelCase = self.get_char_lens(self.src_file ) __lowerCAmelCase = max_source_length __lowerCAmelCase = max_target_length assert min(self.src_lens ) > 0, F"""found empty line in {self.src_file}""" __lowerCAmelCase = tokenizer __lowerCAmelCase = prefix if n_obs is not None: __lowerCAmelCase = self.src_lens[:n_obs] __lowerCAmelCase = src_lang __lowerCAmelCase = tgt_lang def __len__(self ): return len(self.src_lens ) def __getitem__(self , __lowercase ): __lowerCAmelCase = index + 1 # linecache starts at 1 __lowerCAmelCase = self.prefix + linecache.getline(str(self.src_file ) , __lowercase ).rstrip('''\n''' ) __lowerCAmelCase = linecache.getline(str(self.tgt_file ) , __lowercase ).rstrip('''\n''' ) assert source_line, F"""empty source line for index {index}""" assert tgt_line, F"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , __lowercase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __lowerCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , __lowercase ) else self.tokenizer ) __lowerCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , __lowercase ) else self.tokenizer __lowerCAmelCase = encode_line(__lowercase , __lowercase , self.max_source_length , '''right''' ) __lowerCAmelCase = encode_line(__lowercase , __lowercase , self.max_target_length , '''right''' ) __lowerCAmelCase = source_inputs['''input_ids'''].squeeze() __lowerCAmelCase = target_inputs['''input_ids'''].squeeze() __lowerCAmelCase = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _snake_case (__lowercase ): return [len(__lowercase ) for x in Path(__lowercase ).open().readlines()] def _snake_case (self , __lowercase ): __lowerCAmelCase = torch.stack([x['''input_ids'''] for x in batch] ) __lowerCAmelCase = torch.stack([x['''attention_mask'''] for x in batch] ) __lowerCAmelCase = torch.stack([x['''decoder_input_ids'''] for x in batch] ) __lowerCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , __lowercase ) else self.tokenizer.pad_token_id ) __lowerCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , __lowercase ) else self.tokenizer.pad_token_id ) __lowerCAmelCase = trim_batch(__lowercase , __lowercase ) __lowerCAmelCase , __lowerCAmelCase = trim_batch(__lowercase , __lowercase , attention_mask=__lowercase ) __lowerCAmelCase = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch _UpperCAmelCase : List[Any] = getLogger(__name__) def __magic_name__( lowerCamelCase): return list(itertools.chain.from_iterable(lowerCamelCase)) def __magic_name__( lowerCamelCase): __lowerCAmelCase = get_git_info() save_json(lowerCamelCase, os.path.join(lowerCamelCase, '''git_log.json''')) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase=4, **lowerCamelCase): with open(lowerCamelCase, '''w''') as f: json.dump(lowerCamelCase, lowerCamelCase, indent=lowerCamelCase, **lowerCamelCase) def __magic_name__( lowerCamelCase): with open(lowerCamelCase) as f: return json.load(lowerCamelCase) def __magic_name__( ): __lowerCAmelCase = git.Repo(search_parent_directories=lowerCamelCase) __lowerCAmelCase = { '''repo_id''': str(lowerCamelCase), '''repo_sha''': str(repo.head.object.hexsha), '''repo_branch''': str(repo.active_branch), '''hostname''': str(socket.gethostname()), } return repo_infos def __magic_name__( lowerCamelCase, lowerCamelCase): return list(map(lowerCamelCase, lowerCamelCase)) def __magic_name__( lowerCamelCase, lowerCamelCase): with open(lowerCamelCase, '''wb''') as f: return pickle.dump(lowerCamelCase, lowerCamelCase) def __magic_name__( lowerCamelCase): def remove_articles(lowerCamelCase): return re.sub(r'''\b(a|an|the)\b''', ''' ''', lowerCamelCase) def white_space_fix(lowerCamelCase): return " ".join(text.split()) def remove_punc(lowerCamelCase): __lowerCAmelCase = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(lowerCamelCase): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase)))) def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = normalize_answer(lowerCamelCase).split() __lowerCAmelCase = normalize_answer(lowerCamelCase).split() __lowerCAmelCase = Counter(lowerCamelCase) & Counter(lowerCamelCase) __lowerCAmelCase = sum(common.values()) if num_same == 0: return 0 __lowerCAmelCase = 1.0 * num_same / len(lowerCamelCase) __lowerCAmelCase = 1.0 * num_same / len(lowerCamelCase) __lowerCAmelCase = (2 * precision * recall) / (precision + recall) return fa def __magic_name__( lowerCamelCase, lowerCamelCase): return normalize_answer(lowerCamelCase) == normalize_answer(lowerCamelCase) def __magic_name__( lowerCamelCase, lowerCamelCase): assert len(lowerCamelCase) == len(lowerCamelCase) __lowerCAmelCase = 0 for hypo, pred in zip(lowerCamelCase, lowerCamelCase): em += exact_match_score(lowerCamelCase, lowerCamelCase) if len(lowerCamelCase) > 0: em /= len(lowerCamelCase) return {"em": em} def __magic_name__( lowerCamelCase): return model_prefix.startswith('''rag''') def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __lowerCAmelCase = '''dropout_rate''' for p in extra_params: if getattr(lowerCamelCase, lowerCamelCase, lowerCamelCase): if not hasattr(lowerCamelCase, lowerCamelCase) and not hasattr(lowerCamelCase, equivalent_param[p]): logger.info('''config doesn\'t have a `{}` attribute'''.format(lowerCamelCase)) delattr(lowerCamelCase, lowerCamelCase) continue __lowerCAmelCase = p if hasattr(lowerCamelCase, lowerCamelCase) else equivalent_param[p] setattr(lowerCamelCase, lowerCamelCase, getattr(lowerCamelCase, lowerCamelCase)) delattr(lowerCamelCase, lowerCamelCase) return hparams, config
9
'''simple docstring''' import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = old_name if "patch_embed" in old_name: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = old_name.split('''.''') if layer == "0": __lowerCAmelCase = old_name.replace('''0''', '''convolution1''') elif layer == "1": __lowerCAmelCase = old_name.replace('''1''', '''batchnorm_before''') elif layer == "3": __lowerCAmelCase = old_name.replace('''3''', '''convolution2''') else: __lowerCAmelCase = old_name.replace('''4''', '''batchnorm_after''') if "network" in old_name and re.search(r'''\d\.\d''', lowerCamelCase): __lowerCAmelCase = r'''\b\d{2}\b''' if bool(re.search(lowerCamelCase, lowerCamelCase)): __lowerCAmelCase = re.search(r'''\d\.\d\d.''', lowerCamelCase).group() else: __lowerCAmelCase = re.search(r'''\d\.\d.''', lowerCamelCase).group() if int(match[0]) < 6: __lowerCAmelCase = old_name.replace(lowerCamelCase, '''''') __lowerCAmelCase = trimmed_name.replace('''network''', match[0] + '''.meta4D_layers.blocks.''' + match[2:-1]) __lowerCAmelCase = '''intermediate_stages.''' + trimmed_name else: __lowerCAmelCase = old_name.replace(lowerCamelCase, '''''') if int(match[2]) < num_meta4D_last_stage: __lowerCAmelCase = trimmed_name.replace('''network''', '''meta4D_layers.blocks.''' + match[2]) else: __lowerCAmelCase = str(int(match[2]) - num_meta4D_last_stage) __lowerCAmelCase = trimmed_name.replace('''network''', '''meta3D_layers.blocks.''' + layer_index) if "norm1" in old_name: __lowerCAmelCase = trimmed_name.replace('''norm1''', '''layernorm1''') elif "norm2" in old_name: __lowerCAmelCase = trimmed_name.replace('''norm2''', '''layernorm2''') elif "fc1" in old_name: __lowerCAmelCase = trimmed_name.replace('''fc1''', '''linear_in''') elif "fc2" in old_name: __lowerCAmelCase = trimmed_name.replace('''fc2''', '''linear_out''') __lowerCAmelCase = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(r'''.\d.''', lowerCamelCase): __lowerCAmelCase = old_name.replace('''network''', '''intermediate_stages''') if "fc" in new_name: __lowerCAmelCase = new_name.replace('''fc''', '''convolution''') elif ("norm1" in new_name) and ("layernorm1" not in new_name): __lowerCAmelCase = new_name.replace('''norm1''', '''batchnorm_before''') elif ("norm2" in new_name) and ("layernorm2" not in new_name): __lowerCAmelCase = new_name.replace('''norm2''', '''batchnorm_after''') if "proj" in new_name: __lowerCAmelCase = new_name.replace('''proj''', '''projection''') if "dist_head" in new_name: __lowerCAmelCase = new_name.replace('''dist_head''', '''distillation_classifier''') elif "head" in new_name: __lowerCAmelCase = new_name.replace('''head''', '''classifier''') elif "patch_embed" in new_name: __lowerCAmelCase = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": __lowerCAmelCase = new_name.replace('''norm''', '''layernorm''') __lowerCAmelCase = '''efficientformer.''' + new_name else: __lowerCAmelCase = '''efficientformer.encoder.''' + new_name return new_name def __magic_name__( lowerCamelCase, lowerCamelCase): for key in checkpoint.copy().keys(): __lowerCAmelCase = checkpoint.pop(lowerCamelCase) __lowerCAmelCase = val return checkpoint def __magic_name__( ): __lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowerCAmelCase = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase).raw) return image def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = torch.load(lowerCamelCase, map_location='''cpu''')['''model'''] __lowerCAmelCase = EfficientFormerConfig.from_json_file(lowerCamelCase) __lowerCAmelCase = EfficientFormerForImageClassificationWithTeacher(lowerCamelCase) __lowerCAmelCase = '''_'''.join(checkpoint_path.split('''/''')[-1].split('''.''')[0].split('''_''')[:-1]) __lowerCAmelCase = config.depths[-1] - config.num_metaad_blocks + 1 __lowerCAmelCase = convert_torch_checkpoint(lowerCamelCase, lowerCamelCase) model.load_state_dict(lowerCamelCase) model.eval() __lowerCAmelCase = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image __lowerCAmelCase = prepare_img() __lowerCAmelCase = 2_5_6 __lowerCAmelCase = 2_2_4 __lowerCAmelCase = EfficientFormerImageProcessor( size={'''shortest_edge''': image_size}, crop_size={'''height''': crop_size, '''width''': crop_size}, resample=pillow_resamplings['''bicubic'''], ) __lowerCAmelCase = processor(images=lowerCamelCase, return_tensors='''pt''').pixel_values # original processing pipeline __lowerCAmelCase = Compose( [ Resize(lowerCamelCase, interpolation=pillow_resamplings['''bicubic''']), CenterCrop(lowerCamelCase), ToTensor(), Normalize(lowerCamelCase, lowerCamelCase), ]) __lowerCAmelCase = image_transforms(lowerCamelCase).unsqueeze(0) assert torch.allclose(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = model(lowerCamelCase) __lowerCAmelCase = outputs.logits __lowerCAmelCase = (1, 1_0_0_0) if "l1" in model_name: __lowerCAmelCase = torch.Tensor( [-0.13_12, 0.43_53, -1.04_99, -0.51_24, 0.41_83, -0.67_93, -1.37_77, -0.08_93, -0.73_58, -2.43_28]) assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3) assert logits.shape == expected_shape elif "l3" in model_name: __lowerCAmelCase = torch.Tensor( [-1.31_50, -1.54_56, -1.25_56, -0.84_96, -0.71_27, -0.78_97, -0.97_28, -0.30_52, 0.37_51, -0.31_27]) assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3) assert logits.shape == expected_shape elif "l7" in model_name: __lowerCAmelCase = torch.Tensor( [-1.02_83, -1.41_31, -0.56_44, -1.31_15, -0.57_85, -1.20_49, -0.75_28, 0.19_92, -0.38_22, -0.08_78]) assert logits.shape == expected_shape else: raise ValueError( F"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""") # Save Checkpoints Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase) model.save_pretrained(lowerCamelCase) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""") processor.save_pretrained(lowerCamelCase) print(F"""Processor successfuly saved at {pytorch_dump_path}""") if push_to_hub: print('''Pushing model to the hub...''') model.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add model''', use_temp_dir=lowerCamelCase, ) processor.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add image processor''', use_temp_dir=lowerCamelCase, ) if __name__ == "__main__": _UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--pytorch_model_path""", default=None, type=str, required=True, help="""Path to EfficientFormer pytorch checkpoint.""", ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The json file for EfficientFormer model config.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") parser.add_argument( """--no-push_to_hub""", dest="""push_to_hub""", action="""store_false""", help="""Do not push model and image processor to the hub""", ) parser.set_defaults(push_to_hub=True) _UpperCAmelCase : List[str] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
9
1
'''simple docstring''' import logging import os import threading import time try: import warnings except ImportError: _UpperCAmelCase : Any = None try: import msvcrt except ImportError: _UpperCAmelCase : Any = None try: import fcntl except ImportError: _UpperCAmelCase : Optional[Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: _UpperCAmelCase : str = OSError # Data # ------------------------------------------------ _UpperCAmelCase : Any = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] _UpperCAmelCase : int = """3.0.12""" _UpperCAmelCase : Optional[int] = None def __magic_name__( ): global _logger __lowerCAmelCase = _logger or logging.getLogger(__name__) return _logger class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase ): __lowerCAmelCase = lock_file return None def __str__(self ): __lowerCAmelCase = F"""The file lock '{self.lock_file}' could not be acquired.""" return temp class a__ : """simple docstring""" def __init__(self , __lowercase ): __lowerCAmelCase = lock return None def __enter__(self ): return self.lock def __exit__(self , __lowercase , __lowercase , __lowercase ): self.lock.release() return None class a__ : """simple docstring""" def __init__(self , __lowercase , __lowercase=-1 , __lowercase=None ): __lowerCAmelCase = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long __lowerCAmelCase = self.hash_filename_if_too_long(__lowercase , __lowercase ) # The path to the lock file. __lowerCAmelCase = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowerCAmelCase = None # The default timeout value. __lowerCAmelCase = timeout # We use this lock primarily for the lock counter. __lowerCAmelCase = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowerCAmelCase = 0 return None @property def _snake_case (self ): return self._lock_file @property def _snake_case (self ): return self._timeout @timeout.setter def _snake_case (self , __lowercase ): __lowerCAmelCase = float(__lowercase ) return None def _snake_case (self ): raise NotImplementedError() def _snake_case (self ): raise NotImplementedError() @property def _snake_case (self ): return self._lock_file_fd is not None def _snake_case (self , __lowercase=None , __lowercase=0.0_5 ): # Use the default timeout, if no timeout is provided. if timeout is None: __lowerCAmelCase = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowerCAmelCase = id(self ) __lowerCAmelCase = self._lock_file __lowerCAmelCase = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(F"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( F"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(__lowercase ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowerCAmelCase = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def _snake_case (self , __lowercase=False ): with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowerCAmelCase = id(self ) __lowerCAmelCase = self._lock_file logger().debug(F"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() __lowerCAmelCase = 0 logger().debug(F"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__(self ): self.acquire() return self def __exit__(self , __lowercase , __lowercase , __lowercase ): self.release() return None def __del__(self ): self.release(force=__lowercase ) return None def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = os.path.basename(__lowercase ) if len(__lowercase ) > max_length and max_length > 0: __lowerCAmelCase = os.path.dirname(__lowercase ) __lowerCAmelCase = str(hash(__lowercase ) ) __lowerCAmelCase = filename[: max_length - len(__lowercase ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(__lowercase , __lowercase ) else: return path class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase , __lowercase=-1 , __lowercase=None ): from .file_utils import relative_to_absolute_path super().__init__(__lowercase , timeout=__lowercase , max_filename_length=__lowercase ) __lowerCAmelCase = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def _snake_case (self ): __lowerCAmelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowerCAmelCase = os.open(self._lock_file , __lowercase ) except OSError: pass else: try: msvcrt.locking(__lowercase , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__lowercase ) else: __lowerCAmelCase = fd return None def _snake_case (self ): __lowerCAmelCase = self._lock_file_fd __lowerCAmelCase = None msvcrt.locking(__lowercase , msvcrt.LK_UNLCK , 1 ) os.close(__lowercase ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase , __lowercase=-1 , __lowercase=None ): __lowerCAmelCase = os.statvfs(os.path.dirname(__lowercase ) ).f_namemax super().__init__(__lowercase , timeout=__lowercase , max_filename_length=__lowercase ) def _snake_case (self ): __lowerCAmelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowerCAmelCase = os.open(self._lock_file , __lowercase ) try: fcntl.flock(__lowercase , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__lowercase ) else: __lowerCAmelCase = fd return None def _snake_case (self ): # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition __lowerCAmelCase = self._lock_file_fd __lowerCAmelCase = None fcntl.flock(__lowercase , fcntl.LOCK_UN ) os.close(__lowercase ) return None class a__ ( __A ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowerCAmelCase = os.open(self._lock_file , __lowercase ) except OSError: pass else: __lowerCAmelCase = fd return None def _snake_case (self ): os.close(self._lock_file_fd ) __lowerCAmelCase = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None _UpperCAmelCase : Any = None if msvcrt: _UpperCAmelCase : Any = WindowsFileLock elif fcntl: _UpperCAmelCase : List[Any] = UnixFileLock else: _UpperCAmelCase : List[Any] = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
9
'''simple docstring''' from __future__ import annotations import math def __magic_name__( lowerCamelCase, lowerCamelCase): if len(lowerCamelCase) != 2 or len(a[0]) != 2 or len(lowerCamelCase) != 2 or len(b[0]) != 2: raise Exception('''Matrices are not 2x2''') __lowerCAmelCase = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def __magic_name__( lowerCamelCase, lowerCamelCase): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(lowerCamelCase)) ] def __magic_name__( lowerCamelCase, lowerCamelCase): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(lowerCamelCase)) ] def __magic_name__( lowerCamelCase): if len(lowerCamelCase) % 2 != 0 or len(a[0]) % 2 != 0: raise Exception('''Odd matrices are not supported!''') __lowerCAmelCase = len(lowerCamelCase) __lowerCAmelCase = matrix_length // 2 __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase)] __lowerCAmelCase = [ [a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase) ] __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase)] __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase)] return top_left, top_right, bot_left, bot_right def __magic_name__( lowerCamelCase): return len(lowerCamelCase), len(matrix[0]) def __magic_name__( lowerCamelCase): print('''\n'''.join(str(lowerCamelCase) for line in matrix)) def __magic_name__( lowerCamelCase, lowerCamelCase): if matrix_dimensions(lowerCamelCase) == (2, 2): return default_matrix_multiplication(lowerCamelCase, lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase) __lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase) __lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = matrix_addition(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase) __lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = matrix_subtraction(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase) # construct the new matrix from our 4 quadrants __lowerCAmelCase = [] for i in range(len(lowerCamelCase)): new_matrix.append(top_left[i] + top_right[i]) for i in range(len(lowerCamelCase)): new_matrix.append(bot_left[i] + bot_right[i]) return new_matrix def __magic_name__( lowerCamelCase, lowerCamelCase): if matrix_dimensions(lowerCamelCase)[1] != matrix_dimensions(lowerCamelCase)[0]: __lowerCAmelCase = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(lowerCamelCase) __lowerCAmelCase = matrix_dimensions(lowerCamelCase) __lowerCAmelCase = matrix_dimensions(lowerCamelCase) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] __lowerCAmelCase = max(*lowerCamelCase, *lowerCamelCase) __lowerCAmelCase = int(math.pow(2, math.ceil(math.loga(lowerCamelCase)))) __lowerCAmelCase = matrixa __lowerCAmelCase = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0, lowerCamelCase): if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): new_matrixa[i].append(0) else: new_matrixa.append([0] * maxim) if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): new_matrixa[i].append(0) else: new_matrixa.append([0] * maxim) __lowerCAmelCase = actual_strassen(lowerCamelCase, lowerCamelCase) # Removing the additional zeros for i in range(0, lowerCamelCase): if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": _UpperCAmelCase : List[str] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] _UpperCAmelCase : Optional[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
9
1
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : Tuple = logging.get_logger(__name__) _UpperCAmelCase : Union[str, Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} _UpperCAmelCase : Tuple = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } _UpperCAmelCase : Tuple = { """allenai/longformer-base-4096""": 4_0_9_6, """allenai/longformer-large-4096""": 4_0_9_6, """allenai/longformer-large-4096-finetuned-triviaqa""": 4_0_9_6, """allenai/longformer-base-4096-extra.pos.embd.only""": 4_0_9_6, """allenai/longformer-large-4096-extra.pos.embd.only""": 4_0_9_6, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __magic_name__( ): __lowerCAmelCase = ( list(range(ord('''!'''), ord('''~''') + 1)) + list(range(ord('''¡'''), ord('''¬''') + 1)) + list(range(ord('''®'''), ord('''ÿ''') + 1)) ) __lowerCAmelCase = bs[:] __lowerCAmelCase = 0 for b in range(2**8): if b not in bs: bs.append(lowerCamelCase) cs.append(2**8 + n) n += 1 __lowerCAmelCase = [chr(lowerCamelCase) for n in cs] return dict(zip(lowerCamelCase, lowerCamelCase)) def __magic_name__( lowerCamelCase): __lowerCAmelCase = set() __lowerCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char)) __lowerCAmelCase = char return pairs class a__ ( __A ): """simple docstring""" __UpperCamelCase : Any = VOCAB_FILES_NAMES __UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : int = ['input_ids', 'attention_mask'] def __init__(self , __lowercase , __lowercase , __lowercase="replace" , __lowercase="<s>" , __lowercase="</s>" , __lowercase="</s>" , __lowercase="<s>" , __lowercase="<unk>" , __lowercase="<pad>" , __lowercase="<mask>" , __lowercase=False , **__lowercase , ): __lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else bos_token __lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else eos_token __lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else sep_token __lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else cls_token __lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else unk_token __lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token super().__init__( errors=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , add_prefix_space=__lowercase , **__lowercase , ) with open(__lowercase , encoding='''utf-8''' ) as vocab_handle: __lowerCAmelCase = json.load(__lowercase ) __lowerCAmelCase = {v: k for k, v in self.encoder.items()} __lowerCAmelCase = errors # how to handle errors in decoding __lowerCAmelCase = bytes_to_unicode() __lowerCAmelCase = {v: k for k, v in self.byte_encoder.items()} with open(__lowercase , encoding='''utf-8''' ) as merges_handle: __lowerCAmelCase = merges_handle.read().split('''\n''' )[1:-1] __lowerCAmelCase = [tuple(merge.split() ) for merge in bpe_merges] __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = {} __lowerCAmelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowerCAmelCase = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def _snake_case (self ): return len(self.encoder ) def _snake_case (self ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case (self , __lowercase ): if token in self.cache: return self.cache[token] __lowerCAmelCase = tuple(__lowercase ) __lowerCAmelCase = get_pairs(__lowercase ) if not pairs: return token while True: __lowerCAmelCase = min(__lowercase , key=lambda __lowercase : self.bpe_ranks.get(__lowercase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __lowerCAmelCase , __lowerCAmelCase = bigram __lowerCAmelCase = [] __lowerCAmelCase = 0 while i < len(__lowercase ): try: __lowerCAmelCase = word.index(__lowercase , __lowercase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowerCAmelCase = j if word[i] == first and i < len(__lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCAmelCase = tuple(__lowercase ) __lowerCAmelCase = new_word if len(__lowercase ) == 1: break else: __lowerCAmelCase = get_pairs(__lowercase ) __lowerCAmelCase = ''' '''.join(__lowercase ) __lowerCAmelCase = word return word def _snake_case (self , __lowercase ): __lowerCAmelCase = [] for token in re.findall(self.pat , __lowercase ): __lowerCAmelCase = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowercase ).split(''' ''' ) ) return bpe_tokens def _snake_case (self , __lowercase ): return self.encoder.get(__lowercase , self.encoder.get(self.unk_token ) ) def _snake_case (self , __lowercase ): return self.decoder.get(__lowercase ) def _snake_case (self , __lowercase ): __lowerCAmelCase = ''''''.join(__lowercase ) __lowerCAmelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def _snake_case (self , __lowercase , __lowercase = None ): if not os.path.isdir(__lowercase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase = os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowercase , ensure_ascii=__lowercase ) + '''\n''' ) __lowerCAmelCase = 0 with open(__lowercase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowercase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) __lowerCAmelCase = token_index writer.write(''' '''.join(__lowercase ) + '''\n''' ) index += 1 return vocab_file, merge_file def _snake_case (self , __lowercase , __lowercase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] __lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case (self , __lowercase , __lowercase = None , __lowercase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase ) if token_ids_a is None: return [1] + ([0] * len(__lowercase )) + [1] return [1] + ([0] * len(__lowercase )) + [1, 1] + ([0] * len(__lowercase )) + [1] def _snake_case (self , __lowercase , __lowercase = None ): __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case (self , __lowercase , __lowercase=False , **__lowercase ): __lowerCAmelCase = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowercase ) > 0 and not text[0].isspace()): __lowerCAmelCase = ''' ''' + text return (text, kwargs)
9
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 ) __lowerCAmelCase = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = tokenizer(__lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
9
1
'''simple docstring''' from math import factorial def __magic_name__( lowerCamelCase = 1_0_0): return sum(int(lowerCamelCase) for x in str(factorial(lowerCamelCase))) if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
9
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase , __lowercase=None , __lowercase=None , __lowercase=0 ): __lowerCAmelCase = 1.0 if scale is None else scale __lowerCAmelCase = 0.0 if loc is None else loc super().__init__(__lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__lowercase )] ) @property def _snake_case (self ): return self.base_dist.mean * self.scale + self.loc @property def _snake_case (self ): return self.base_dist.variance * self.scale**2 @property def _snake_case (self ): return self.variance.sqrt() class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase , **__lowercase ): super().__init__(**__lowercase ) __lowerCAmelCase = args_dim __lowerCAmelCase = nn.ModuleList([nn.Linear(__lowercase , __lowercase ) for dim in args_dim.values()] ) __lowerCAmelCase = domain_map def _snake_case (self , __lowercase ): __lowerCAmelCase = [proj(__lowercase ) for proj in self.proj] return self.domain_map(*__lowercase ) class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase ): super().__init__() __lowerCAmelCase = function def _snake_case (self , __lowercase , *__lowercase ): return self.function(__lowercase , *__lowercase ) class a__ : """simple docstring""" __UpperCamelCase : type __UpperCamelCase : int __UpperCamelCase : Dict[str, int] def __init__(self , __lowercase = 1 ): __lowerCAmelCase = dim __lowerCAmelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def _snake_case (self , __lowercase ): if self.dim == 1: return self.distribution_class(*__lowercase ) else: return Independent(self.distribution_class(*__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , ): __lowerCAmelCase = self._base_distribution(__lowercase ) if loc is None and scale is None: return distr else: return AffineTransformed(__lowercase , loc=__lowercase , scale=__lowercase , event_dim=self.event_dim ) @property def _snake_case (self ): return () if self.dim == 1 else (self.dim,) @property def _snake_case (self ): return len(self.event_shape ) @property def _snake_case (self ): return 0.0 def _snake_case (self , __lowercase ): return ParameterProjection( in_features=__lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def _snake_case (self , *__lowercase ): raise NotImplementedError() @staticmethod def _snake_case (__lowercase ): return (x + torch.sqrt(torch.square(__lowercase ) + 4.0 )) / 2.0 class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} __UpperCamelCase : type = StudentT @classmethod def _snake_case (cls , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) __lowerCAmelCase = 2.0 + cls.squareplus(__lowercase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1} __UpperCamelCase : type = Normal @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1} __UpperCamelCase : type = NegativeBinomial @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def _snake_case (self , __lowercase ): __lowerCAmelCase , __lowerCAmelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=__lowercase , logits=__lowercase ) else: return Independent(self.distribution_class(total_count=__lowercase , logits=__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None ): __lowerCAmelCase , __lowerCAmelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
9
1
'''simple docstring''' from __future__ import annotations from typing import Any def __magic_name__( lowerCamelCase): if not postfix_notation: return 0 __lowerCAmelCase = {'''+''', '''-''', '''*''', '''/'''} __lowerCAmelCase = [] for token in postfix_notation: if token in operations: __lowerCAmelCase , __lowerCAmelCase = stack.pop(), stack.pop() if token == "+": stack.append(a + b) elif token == "-": stack.append(a - b) elif token == "*": stack.append(a * b) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1) else: stack.append(a // b) else: stack.append(int(lowerCamelCase)) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
9
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class a__ ( __A ): """simple docstring""" __UpperCamelCase : Tuple = 'naver-clova-ix/donut-base-finetuned-docvqa' __UpperCamelCase : List[str] = ( 'This is a tool that answers a question about an document (pdf). It takes an input named `document` which ' 'should be the document containing the information, as well as a `question` that is the question about the ' 'document. It returns a text that contains the answer to the question.' ) __UpperCamelCase : Optional[int] = 'document_qa' __UpperCamelCase : Optional[int] = AutoProcessor __UpperCamelCase : Tuple = VisionEncoderDecoderModel __UpperCamelCase : Any = ['image', 'text'] __UpperCamelCase : Optional[Any] = ['text'] def __init__(self , *__lowercase , **__lowercase ): if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' __lowerCAmelCase = task_prompt.replace('''{user_input}''' , __lowercase ) __lowerCAmelCase = self.pre_processor.tokenizer( __lowercase , add_special_tokens=__lowercase , return_tensors='''pt''' ).input_ids __lowerCAmelCase = self.pre_processor(__lowercase , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _snake_case (self , __lowercase ): return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__lowercase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__lowercase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__lowercase , ).sequences def _snake_case (self , __lowercase ): __lowerCAmelCase = self.pre_processor.batch_decode(__lowercase )[0] __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) __lowerCAmelCase = re.sub(R'''<.*?>''' , '''''' , __lowercase , count=1 ).strip() # remove first task start token __lowerCAmelCase = self.pre_processor.tokenajson(__lowercase ) return sequence["answer"]
9
1
'''simple docstring''' import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __magic_name__( *lowerCamelCase): if not isinstance(lowerCamelCase, lowerCamelCase): __lowerCAmelCase = list(lowerCamelCase) for i in range(len(lowerCamelCase)): __lowerCAmelCase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __magic_name__( lowerCamelCase): __lowerCAmelCase = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(lowerCamelCase, lowerCamelCase) and len(exception.args) == 1: return any(err in exception.args[0] for err in _statements) return False def __magic_name__( lowerCamelCase = None, lowerCamelCase = 1_2_8): if function is None: return functools.partial(lowerCamelCase, starting_batch_size=lowerCamelCase) __lowerCAmelCase = starting_batch_size def decorator(*lowerCamelCase, **lowerCamelCase): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() __lowerCAmelCase = list(inspect.signature(lowerCamelCase).parameters.keys()) # Guard against user error if len(lowerCamelCase) < (len(lowerCamelCase) + 1): __lowerCAmelCase = ''', '''.join([F"""{arg}={value}""" for arg, value in zip(params[1:], args[1:])]) raise TypeError( F"""Batch size was passed into `{function.__name__}` as the first argument when called.""" F"""Remove this as the decorator already does so: `{function.__name__}({arg_str})`""") while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''') try: return function(lowerCamelCase, *lowerCamelCase, **lowerCamelCase) except Exception as e: if should_reduce_batch_size(lowerCamelCase): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
9
'''simple docstring''' def __magic_name__( lowerCamelCase): __lowerCAmelCase = 1 __lowerCAmelCase = 2 while i * i <= n: __lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def __magic_name__( ): __lowerCAmelCase = 1 __lowerCAmelCase = 1 while True: i += 1 t_num += i if count_divisors(lowerCamelCase) > 5_0_0: break return t_num if __name__ == "__main__": print(solution())
9
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _UpperCAmelCase : List[str] = { """configuration_vision_encoder_decoder""": ["""VisionEncoderDecoderConfig""", """VisionEncoderDecoderOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = ["""VisionEncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Tuple = ["""TFVisionEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[str] = ["""FlaxVisionEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys _UpperCAmelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
9
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __lowerCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) self.assertTrue(isinstance(dc.token_ids , __lowercase ) ) with self.assertRaises(__lowercase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__lowercase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _snake_case (self ): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __lowerCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__lowercase ): DisjunctiveConstraint(__lowercase ) # fails here def _snake_case (self ): __lowerCAmelCase = [[1, 2, 3], [1, 2, 4]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) __lowerCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(__lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) __lowerCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(__lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(3 ) __lowerCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(__lowercase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _snake_case (self ): __lowerCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
9
1
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _UpperCAmelCase : List[Any] = datasets.load_iris() _UpperCAmelCase : Dict = np.array(data["""data"""]) _UpperCAmelCase : int = np.array(data["""target"""]) _UpperCAmelCase : str = data["""target_names"""] _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = train_test_split(X, y) def __magic_name__( lowerCamelCase, lowerCamelCase): return np.linalg.norm(np.array(lowerCamelCase) - np.array(lowerCamelCase)) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=5): __lowerCAmelCase = zip(lowerCamelCase, lowerCamelCase) # List of distances of all points from the point to be classified __lowerCAmelCase = [] for data_point in data: __lowerCAmelCase = euclidean_distance(data_point[0], lowerCamelCase) distances.append((distance, data_point[1])) # Choosing 'k' points with the least distances. __lowerCAmelCase = [i[1] for i in sorted(lowerCamelCase)[:k]] # Most commonly occurring class among them # is the class into which the point is classified __lowerCAmelCase = Counter(lowerCamelCase).most_common(1)[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
9
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets _UpperCAmelCase : List[str] = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ _UpperCAmelCase : str = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ _UpperCAmelCase : Tuple = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ): if label_map is not None: for old_id, new_id in label_map.items(): __lowerCAmelCase = new_id # turn into Numpy arrays __lowerCAmelCase = np.array(lowerCamelCase) __lowerCAmelCase = np.array(lowerCamelCase) if reduce_labels: __lowerCAmelCase = 2_5_5 __lowerCAmelCase = label - 1 __lowerCAmelCase = 2_5_5 __lowerCAmelCase = label != ignore_index __lowerCAmelCase = np.not_equal(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = pred_label[mask] __lowerCAmelCase = np.array(lowerCamelCase)[mask] __lowerCAmelCase = pred_label[pred_label == label] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ): __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) for result, gt_seg_map in zip(lowerCamelCase, lowerCamelCase): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = intersect_and_union( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = False, ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = total_intersect_and_union( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) # compute metrics __lowerCAmelCase = {} __lowerCAmelCase = total_area_intersect.sum() / total_area_label.sum() __lowerCAmelCase = total_area_intersect / total_area_union __lowerCAmelCase = total_area_intersect / total_area_label __lowerCAmelCase = np.nanmean(lowerCamelCase) __lowerCAmelCase = np.nanmean(lowerCamelCase) __lowerCAmelCase = all_acc __lowerCAmelCase = iou __lowerCAmelCase = acc if nan_to_num is not None: __lowerCAmelCase = {metric: np.nan_to_num(lowerCamelCase, nan=lowerCamelCase) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): """simple docstring""" def _snake_case (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), } ) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = None , __lowercase = None , __lowercase = False , ): __lowerCAmelCase = mean_iou( results=__lowercase , gt_seg_maps=__lowercase , num_labels=__lowercase , ignore_index=__lowercase , nan_to_num=__lowercase , label_map=__lowercase , reduce_labels=__lowercase , ) return iou_result
9
1