code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
import io
import json
import unittest
from parameterized import parameterized
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device
from utils import calculate_bleu
snake_case_ : List[Any] = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json"
with io.open(filename, "r", encoding="utf-8") as f:
snake_case_ : Tuple = json.load(f)
@require_torch
class __snake_case ( unittest.TestCase ):
def lowerCamelCase ( self : List[Any] , _snake_case : Tuple):
"""simple docstring"""
return FSMTTokenizer.from_pretrained(UpperCamelCase__)
def lowerCamelCase ( self : Tuple , _snake_case : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = FSMTForConditionalGeneration.from_pretrained(UpperCamelCase__).to(UpperCamelCase__)
if torch_device == "cuda":
model.half()
return model
@parameterized.expand(
[
['''en-ru''', 2_6.0],
['''ru-en''', 2_2.0],
['''en-de''', 2_2.0],
['''de-en''', 2_9.0],
])
@slow
def lowerCamelCase ( self : Union[str, Any] , _snake_case : int , _snake_case : str):
"""simple docstring"""
UpperCAmelCase_ = F"""facebook/wmt19-{pair}"""
UpperCAmelCase_ = self.get_tokenizer(UpperCamelCase__)
UpperCAmelCase_ = self.get_model(UpperCamelCase__)
UpperCAmelCase_ = bleu_data[pair]['''src''']
UpperCAmelCase_ = bleu_data[pair]['''tgt''']
UpperCAmelCase_ = tokenizer(UpperCamelCase__ , return_tensors='''pt''' , truncation=UpperCamelCase__ , padding='''longest''').to(UpperCamelCase__)
UpperCAmelCase_ = model.generate(
input_ids=batch.input_ids , num_beams=8 , )
UpperCAmelCase_ = tokenizer.batch_decode(
UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__)
UpperCAmelCase_ = calculate_bleu(UpperCamelCase__ , UpperCamelCase__)
print(UpperCamelCase__)
self.assertGreaterEqual(scores['''bleu'''] , UpperCamelCase__)
| 362 |
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
snake_case_ : List[Any] = (3, 9, -11, 0, 7, 5, 1, -1)
snake_case_ : str = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class __snake_case :
UpperCAmelCase__ : int
UpperCAmelCase__ : Node | None
class __snake_case :
def __init__( self : Optional[int] , _snake_case : Iterable[int]):
"""simple docstring"""
UpperCAmelCase_ = None
for i in sorted(_snake_case , reverse=_snake_case):
UpperCAmelCase_ = Node(_snake_case , self.head)
def __iter__( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = self.head
while node:
yield node.data
UpperCAmelCase_ = node.next_node
def __len__( self : int):
"""simple docstring"""
return sum(1 for _ in self)
def __str__( self : Optional[Any]):
"""simple docstring"""
return " -> ".join([str(_snake_case) for node in self])
def A (__A : SortedLinkedList , __A : SortedLinkedList ) -> SortedLinkedList:
"""simple docstring"""
return SortedLinkedList(list(__A ) + list(__A ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
snake_case_ : Union[str, Any] = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
| 7 | 0 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
snake_case_ : Dict = logging.get_logger(__name__)
snake_case_ : int = {
"hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json",
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class __snake_case ( snake_case__ ):
UpperCAmelCase__ : Dict = """yolos"""
def __init__( self : List[str] , _snake_case : str=768 , _snake_case : Tuple=12 , _snake_case : List[Any]=12 , _snake_case : Any=3072 , _snake_case : Dict="gelu" , _snake_case : Optional[Any]=0.0 , _snake_case : Any=0.0 , _snake_case : int=0.0_2 , _snake_case : Union[str, Any]=1e-12 , _snake_case : Optional[int]=[512, 864] , _snake_case : Optional[int]=16 , _snake_case : List[Any]=3 , _snake_case : Union[str, Any]=True , _snake_case : List[Any]=100 , _snake_case : str=True , _snake_case : int=False , _snake_case : Any=1 , _snake_case : Union[str, Any]=5 , _snake_case : Any=2 , _snake_case : Union[str, Any]=5 , _snake_case : Optional[Any]=2 , _snake_case : Tuple=0.1 , **_snake_case : int , ):
"""simple docstring"""
super().__init__(**_A)
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = hidden_dropout_prob
UpperCAmelCase_ = attention_probs_dropout_prob
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = image_size
UpperCAmelCase_ = patch_size
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = qkv_bias
UpperCAmelCase_ = num_detection_tokens
UpperCAmelCase_ = use_mid_position_embeddings
UpperCAmelCase_ = auxiliary_loss
# Hungarian matcher
UpperCAmelCase_ = class_cost
UpperCAmelCase_ = bbox_cost
UpperCAmelCase_ = giou_cost
# Loss coefficients
UpperCAmelCase_ = bbox_loss_coefficient
UpperCAmelCase_ = giou_loss_coefficient
UpperCAmelCase_ = eos_coefficient
class __snake_case ( snake_case__ ):
UpperCAmelCase__ : Tuple = version.parse('''1.11''' )
@property
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
])
@property
def lowerCamelCase ( self : Dict):
"""simple docstring"""
return 1e-4
@property
def lowerCamelCase ( self : str):
"""simple docstring"""
return 12
| 363 |
import os
import warnings
from typing import List, Optional
from ...tokenization_utils_base import BatchEncoding
from ...utils import logging
from .configuration_rag import RagConfig
snake_case_ : Union[str, Any] = logging.get_logger(__name__)
class __snake_case :
def __init__( self : int , _snake_case : List[Any] , _snake_case : Tuple):
"""simple docstring"""
UpperCAmelCase_ = question_encoder
UpperCAmelCase_ = generator
UpperCAmelCase_ = self.question_encoder
def lowerCamelCase ( self : Union[str, Any] , _snake_case : Optional[int]):
"""simple docstring"""
if os.path.isfile(_snake_case):
raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""")
os.makedirs(_snake_case , exist_ok=_snake_case)
UpperCAmelCase_ = os.path.join(_snake_case , '''question_encoder_tokenizer''')
UpperCAmelCase_ = os.path.join(_snake_case , '''generator_tokenizer''')
self.question_encoder.save_pretrained(_snake_case)
self.generator.save_pretrained(_snake_case)
@classmethod
def lowerCamelCase ( cls : Optional[Any] , _snake_case : Optional[Any] , **_snake_case : Optional[int]):
"""simple docstring"""
from ..auto.tokenization_auto import AutoTokenizer
UpperCAmelCase_ = kwargs.pop('''config''' , _snake_case)
if config is None:
UpperCAmelCase_ = RagConfig.from_pretrained(_snake_case)
UpperCAmelCase_ = AutoTokenizer.from_pretrained(
_snake_case , config=config.question_encoder , subfolder='''question_encoder_tokenizer''')
UpperCAmelCase_ = AutoTokenizer.from_pretrained(
_snake_case , config=config.generator , subfolder='''generator_tokenizer''')
return cls(question_encoder=_snake_case , generator=_snake_case)
def __call__( self : List[Any] , *_snake_case : List[str] , **_snake_case : List[Any]):
"""simple docstring"""
return self.current_tokenizer(*_snake_case , **_snake_case)
def lowerCamelCase ( self : List[Any] , *_snake_case : str , **_snake_case : Union[str, Any]):
"""simple docstring"""
return self.generator.batch_decode(*_snake_case , **_snake_case)
def lowerCamelCase ( self : str , *_snake_case : Optional[int] , **_snake_case : Any):
"""simple docstring"""
return self.generator.decode(*_snake_case , **_snake_case)
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = self.question_encoder
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = self.generator
def lowerCamelCase ( self : Optional[Any] , _snake_case : List[str] , _snake_case : Optional[List[str]] = None , _snake_case : Optional[int] = None , _snake_case : Optional[int] = None , _snake_case : str = "longest" , _snake_case : str = None , _snake_case : bool = True , **_snake_case : Optional[int] , ):
"""simple docstring"""
warnings.warn(
'''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the '''
'''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` '''
'''context manager to prepare your targets. See the documentation of your specific tokenizer for more '''
'''details''' , _snake_case , )
if max_length is None:
UpperCAmelCase_ = self.current_tokenizer.model_max_length
UpperCAmelCase_ = self(
_snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , max_length=_snake_case , padding=_snake_case , truncation=_snake_case , **_snake_case , )
if tgt_texts is None:
return model_inputs
# Process tgt_texts
if max_target_length is None:
UpperCAmelCase_ = self.current_tokenizer.model_max_length
UpperCAmelCase_ = self(
text_target=_snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case , **_snake_case , )
UpperCAmelCase_ = labels['''input_ids''']
return model_inputs
| 7 | 0 |
import re
from pathlib import Path
from unittest import TestCase
import pytest
@pytest.mark.integration
class __snake_case ( a__ ):
def lowerCamelCase ( self : Optional[Any] , _snake_case : List[Any]):
"""simple docstring"""
with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''') as input_file:
UpperCAmelCase_ = re.compile(r'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''')
UpperCAmelCase_ = input_file.read()
UpperCAmelCase_ = regexp.search(SCREAMING_SNAKE_CASE_)
return match
def lowerCamelCase ( self : Dict , _snake_case : Union[str, Any]):
"""simple docstring"""
with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''') as input_file:
UpperCAmelCase_ = re.compile(r'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''' , re.DOTALL)
UpperCAmelCase_ = input_file.read()
# use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search`
UpperCAmelCase_ = regexp.finditer(SCREAMING_SNAKE_CASE_)
UpperCAmelCase_ = [match for match in matches if match is not None and match.group(1) is not None]
return matches[0] if matches else None
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = Path('''./datasets''')
UpperCAmelCase_ = list(dataset_paths.absolute().glob('''**/*.py'''))
for dataset in dataset_files:
if self._no_encoding_on_file_open(str(SCREAMING_SNAKE_CASE_)):
raise AssertionError(F"""open(...) must use utf-8 encoding in {dataset}""")
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = Path('''./datasets''')
UpperCAmelCase_ = list(dataset_paths.absolute().glob('''**/*.py'''))
for dataset in dataset_files:
if self._no_print_statements(str(SCREAMING_SNAKE_CASE_)):
raise AssertionError(F"""print statement found in {dataset}. Use datasets.logger/logging instead.""")
| 364 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class __snake_case ( unittest.TestCase ):
@slow
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-base''')
UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]])
# The dog is cute and lives in the garden house
UpperCAmelCase_ = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim
UpperCAmelCase_ = torch.tensor(
[[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]])
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
UpperCAmelCase_ = model(_snake_case)['''last_hidden_state'''].detach()
self.assertEqual(output.shape , _snake_case)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3))
@slow
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-large''')
UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]])
# The dog is cute and lives in the garden house
UpperCAmelCase_ = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim
UpperCAmelCase_ = torch.tensor(
[[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]])
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
UpperCAmelCase_ = model(_snake_case)['''last_hidden_state'''].detach()
self.assertEqual(output.shape , _snake_case)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3))
| 7 | 0 |
"""simple docstring"""
import pytest
import requests
from datasets.utils.file_utils import http_head
from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline
@pytest.mark.integration
def A () -> Optional[Any]:
"""simple docstring"""
with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ):
with pytest.raises(lowerCAmelCase__ ):
requests.request('''GET''' , '''https://huggingface.co''' )
with pytest.raises(requests.exceptions.ConnectTimeout ):
requests.request('''GET''' , '''https://huggingface.co''' , timeout=1.0 )
@pytest.mark.integration
def A () -> Any:
"""simple docstring"""
with offline(OfflineSimulationMode.CONNECTION_FAILS ):
with pytest.raises(requests.exceptions.ConnectionError ):
requests.request('''GET''' , '''https://huggingface.co''' )
def A () -> Dict:
"""simple docstring"""
with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ):
with pytest.raises(lowerCAmelCase__ ):
http_head('''https://huggingface.co''' )
| 365 |
from maths.prime_factors import prime_factors
def A (__A : int ) -> int:
"""simple docstring"""
if not isinstance(__A , __A ):
UpperCAmelCase_ = F"""Input value of [number={number}] must be an integer"""
raise TypeError(__A )
if number < 1:
raise ValueError('''Input must be a positive integer''' )
return -1 if len(prime_factors(__A ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
snake_case_ : List[Any] = {
"configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"],
"tokenization_roc_bert": ["RoCBertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
pass
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Dict = [
"ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"RoCBertForCausalLM",
"RoCBertForMaskedLM",
"RoCBertForMultipleChoice",
"RoCBertForPreTraining",
"RoCBertForQuestionAnswering",
"RoCBertForSequenceClassification",
"RoCBertForTokenClassification",
"RoCBertLayer",
"RoCBertModel",
"RoCBertPreTrainedModel",
"load_tf_weights_in_roc_bert",
]
if TYPE_CHECKING:
from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig
from .tokenization_roc_bert import RoCBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
raise OptionalDependencyNotAvailable()
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roc_bert import (
ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RoCBertForCausalLM,
RoCBertForMaskedLM,
RoCBertForMultipleChoice,
RoCBertForPreTraining,
RoCBertForQuestionAnswering,
RoCBertForSequenceClassification,
RoCBertForTokenClassification,
RoCBertLayer,
RoCBertModel,
RoCBertPreTrainedModel,
load_tf_weights_in_roc_bert,
)
else:
import sys
snake_case_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 366 |
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class __snake_case ( unittest.TestCase ):
def lowerCamelCase ( self : Optional[int] , _snake_case : Union[str, Any]):
"""simple docstring"""
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss''']):
UpperCAmelCase_ = model_result['''result'''][batch_size][sequence_length]
self.assertIsNotNone(_snake_case)
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = '''sgugger/tiny-distilbert-classification'''
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , only_pretrain_model=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , torchscript=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''')
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , fpaa=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
# set architectures equal to `None`
UpperCAmelCase_ = None
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config])
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
@unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''')
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_snake_case , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config])
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tinier_bart'''
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config])
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config])
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tinier_bart'''
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config])
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , save_to_csv=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_snake_case , '''inf_time.csv''') , train_memory_csv_file=os.path.join(_snake_case , '''train_mem.csv''') , inference_memory_csv_file=os.path.join(_snake_case , '''inf_mem.csv''') , train_time_csv_file=os.path.join(_snake_case , '''train_time.csv''') , env_info_csv_file=os.path.join(_snake_case , '''env.csv''') , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
benchmark.run()
self.assertTrue(Path(os.path.join(_snake_case , '''inf_time.csv''')).exists())
self.assertTrue(Path(os.path.join(_snake_case , '''train_time.csv''')).exists())
self.assertTrue(Path(os.path.join(_snake_case , '''inf_mem.csv''')).exists())
self.assertTrue(Path(os.path.join(_snake_case , '''train_mem.csv''')).exists())
self.assertTrue(Path(os.path.join(_snake_case , '''env.csv''')).exists())
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
def _check_summary_is_not_empty(_snake_case : Tuple):
self.assertTrue(hasattr(_snake_case , '''sequential'''))
self.assertTrue(hasattr(_snake_case , '''cumulative'''))
self.assertTrue(hasattr(_snake_case , '''current'''))
self.assertTrue(hasattr(_snake_case , '''total'''))
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_snake_case , '''log.txt''') , log_print=_snake_case , trace_memory_line_by_line=_snake_case , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
_check_summary_is_not_empty(result.inference_summary)
_check_summary_is_not_empty(result.train_summary)
self.assertTrue(Path(os.path.join(_snake_case , '''log.txt''')).exists())
| 7 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
snake_case_ : Optional[int] = logging.get_logger(__name__)
snake_case_ : Tuple = {
'microsoft/trocr-base-handwritten': (
'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json'
),
# See all TrOCR models at https://huggingface.co/models?filter=trocr
}
class __snake_case ( UpperCamelCase__ ):
UpperCAmelCase__ : Optional[Any] = """trocr"""
UpperCAmelCase__ : Any = ["""past_key_values"""]
UpperCAmelCase__ : Tuple = {
"""num_attention_heads""": """decoder_attention_heads""",
"""hidden_size""": """d_model""",
"""num_hidden_layers""": """decoder_layers""",
}
def __init__( self : int , _snake_case : Dict=50265 , _snake_case : Tuple=1024 , _snake_case : int=12 , _snake_case : Dict=16 , _snake_case : Tuple=4096 , _snake_case : str="gelu" , _snake_case : Dict=512 , _snake_case : Optional[Any]=0.1 , _snake_case : List[str]=0.0 , _snake_case : Tuple=0.0 , _snake_case : Dict=2 , _snake_case : Optional[int]=0.0_2 , _snake_case : Union[str, Any]=0.0 , _snake_case : List[Any]=True , _snake_case : List[str]=False , _snake_case : Dict=True , _snake_case : List[str]=True , _snake_case : Optional[Any]=1 , _snake_case : Any=0 , _snake_case : str=2 , **_snake_case : Union[str, Any] , ):
"""simple docstring"""
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = d_model
UpperCAmelCase_ = decoder_layers
UpperCAmelCase_ = decoder_attention_heads
UpperCAmelCase_ = decoder_ffn_dim
UpperCAmelCase_ = activation_function
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = dropout
UpperCAmelCase_ = attention_dropout
UpperCAmelCase_ = activation_dropout
UpperCAmelCase_ = init_std
UpperCAmelCase_ = decoder_layerdrop
UpperCAmelCase_ = use_cache
UpperCAmelCase_ = scale_embedding
UpperCAmelCase_ = use_learned_position_embeddings
UpperCAmelCase_ = layernorm_embedding
super().__init__(
pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , decoder_start_token_id=__a , **__a , )
| 367 |
import argparse
import os
import numpy as np
import tensorflow as tf
import torch
from transformers import BertModel
def A (__A : BertModel , __A : str , __A : str ) -> int:
"""simple docstring"""
UpperCAmelCase_ = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''')
UpperCAmelCase_ = (
('''layer.''', '''layer_'''),
('''word_embeddings.weight''', '''word_embeddings'''),
('''position_embeddings.weight''', '''position_embeddings'''),
('''token_type_embeddings.weight''', '''token_type_embeddings'''),
('''.''', '''/'''),
('''LayerNorm/weight''', '''LayerNorm/gamma'''),
('''LayerNorm/bias''', '''LayerNorm/beta'''),
('''weight''', '''kernel'''),
)
if not os.path.isdir(__A ):
os.makedirs(__A )
UpperCAmelCase_ = model.state_dict()
def to_tf_var_name(__A : str ):
for patt, repl in iter(__A ):
UpperCAmelCase_ = name.replace(__A , __A )
return F"""bert/{name}"""
def create_tf_var(__A : np.ndarray , __A : str , __A : tf.Session ):
UpperCAmelCase_ = tf.dtypes.as_dtype(tensor.dtype )
UpperCAmelCase_ = tf.get_variable(dtype=__A , shape=tensor.shape , name=__A , initializer=tf.zeros_initializer() )
session.run(tf.variables_initializer([tf_var] ) )
session.run(__A )
return tf_var
tf.reset_default_graph()
with tf.Session() as session:
for var_name in state_dict:
UpperCAmelCase_ = to_tf_var_name(__A )
UpperCAmelCase_ = state_dict[var_name].numpy()
if any(x in var_name for x in tensors_to_transpose ):
UpperCAmelCase_ = torch_tensor.T
UpperCAmelCase_ = create_tf_var(tensor=__A , name=__A , session=__A )
tf.keras.backend.set_value(__A , __A )
UpperCAmelCase_ = session.run(__A )
print(F"""Successfully created {tf_name}: {np.allclose(__A , __A )}""" )
UpperCAmelCase_ = tf.train.Saver(tf.trainable_variables() )
saver.save(__A , os.path.join(__A , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) )
def A (__A : Any=None ) -> str:
"""simple docstring"""
UpperCAmelCase_ = argparse.ArgumentParser()
parser.add_argument('''--model_name''' , type=__A , required=__A , help='''model name e.g. bert-base-uncased''' )
parser.add_argument(
'''--cache_dir''' , type=__A , default=__A , required=__A , help='''Directory containing pytorch model''' )
parser.add_argument('''--pytorch_model_path''' , type=__A , required=__A , help='''/path/to/<pytorch-model-name>.bin''' )
parser.add_argument('''--tf_cache_dir''' , type=__A , required=__A , help='''Directory in which to save tensorflow model''' )
UpperCAmelCase_ = parser.parse_args(__A )
UpperCAmelCase_ = BertModel.from_pretrained(
pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , )
convert_pytorch_checkpoint_to_tf(model=__A , ckpt_dir=args.tf_cache_dir , model_name=args.model_name )
if __name__ == "__main__":
main()
| 7 | 0 |
from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_torch_available
from ...utils import OptionalDependencyNotAvailable
snake_case_ : Optional[int] = {
"configuration_gpt_neox_japanese": ["GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXJapaneseConfig"],
"tokenization_gpt_neox_japanese": ["GPTNeoXJapaneseTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : str = [
"GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST",
"GPTNeoXJapaneseForCausalLM",
"GPTNeoXJapaneseLayer",
"GPTNeoXJapaneseModel",
"GPTNeoXJapanesePreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig
from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neox_japanese import (
GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoXJapaneseForCausalLM,
GPTNeoXJapaneseLayer,
GPTNeoXJapaneseModel,
GPTNeoXJapanesePreTrainedModel,
)
else:
import sys
snake_case_ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 368 |
import inspect
import unittest
from transformers import RegNetConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from transformers.utils import cached_property, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __snake_case ( unittest.TestCase ):
def __init__( self : Tuple , _snake_case : List[Any] , _snake_case : Dict=3 , _snake_case : Dict=32 , _snake_case : List[str]=3 , _snake_case : Union[str, Any]=10 , _snake_case : Tuple=[10, 20, 30, 40] , _snake_case : Dict=[1, 1, 2, 1] , _snake_case : List[Any]=True , _snake_case : Dict=True , _snake_case : Union[str, Any]="relu" , _snake_case : Tuple=3 , _snake_case : Union[str, Any]=None , ):
"""simple docstring"""
UpperCAmelCase_ = parent
UpperCAmelCase_ = batch_size
UpperCAmelCase_ = image_size
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = embeddings_size
UpperCAmelCase_ = hidden_sizes
UpperCAmelCase_ = depths
UpperCAmelCase_ = is_training
UpperCAmelCase_ = use_labels
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = num_labels
UpperCAmelCase_ = scope
UpperCAmelCase_ = len(_snake_case)
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
UpperCAmelCase_ = self.get_config()
return config, pixel_values
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def lowerCamelCase ( self : Optional[int] , _snake_case : List[Any] , _snake_case : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = FlaxRegNetModel(config=_snake_case)
UpperCAmelCase_ = model(_snake_case)
# Output shape (b, c, h, w)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowerCamelCase ( self : Optional[Any] , _snake_case : List[Any] , _snake_case : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = self.num_labels
UpperCAmelCase_ = FlaxRegNetForImageClassification(config=_snake_case)
UpperCAmelCase_ = model(_snake_case)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ = self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs
UpperCAmelCase_ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_flax
class __snake_case ( a , unittest.TestCase ):
UpperCAmelCase__ : Union[str, Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else ()
UpperCAmelCase__ : Tuple = False
UpperCAmelCase__ : List[str] = False
UpperCAmelCase__ : int = False
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = FlaxRegNetModelTester(self)
UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case)
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
return
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_snake_case)
@unittest.skip(reason='''RegNet does not use inputs_embeds''')
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
pass
@unittest.skip(reason='''RegNet does not support input and output embeddings''')
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
pass
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = model_class(_snake_case)
UpperCAmelCase_ = inspect.signature(model.__call__)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ = [*signature.parameters.keys()]
UpperCAmelCase_ = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _snake_case)
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
def check_hidden_states_output(_snake_case : List[str] , _snake_case : Dict , _snake_case : List[str]):
UpperCAmelCase_ = model_class(_snake_case)
UpperCAmelCase_ = model(**self._prepare_for_class(_snake_case , _snake_case))
UpperCAmelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCAmelCase_ = self.model_tester.num_stages
self.assertEqual(len(_snake_case) , expected_num_stages + 1)
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = True
check_hidden_states_output(_snake_case , _snake_case , _snake_case)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase_ = True
check_hidden_states_output(_snake_case , _snake_case , _snake_case)
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
UpperCAmelCase_ = self._prepare_for_class(_snake_case , _snake_case)
UpperCAmelCase_ = model_class(_snake_case)
@jax.jit
def model_jitted(_snake_case : str , **_snake_case : Union[str, Any]):
return model(pixel_values=_snake_case , **_snake_case)
with self.subTest('''JIT Enabled'''):
UpperCAmelCase_ = model_jitted(**_snake_case).to_tuple()
with self.subTest('''JIT Disabled'''):
with jax.disable_jit():
UpperCAmelCase_ = model_jitted(**_snake_case).to_tuple()
self.assertEqual(len(_snake_case) , len(_snake_case))
for jitted_output, output in zip(_snake_case , _snake_case):
self.assertEqual(jitted_output.shape , output.shape)
def A () -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_flax
class __snake_case ( unittest.TestCase ):
@cached_property
def lowerCamelCase ( self : Dict):
"""simple docstring"""
return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''') if is_vision_available() else None
@slow
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''')
UpperCAmelCase_ = self.default_image_processor
UpperCAmelCase_ = prepare_img()
UpperCAmelCase_ = image_processor(images=_snake_case , return_tensors='''np''')
UpperCAmelCase_ = model(**_snake_case)
# verify the logits
UpperCAmelCase_ = (1, 1000)
self.assertEqual(outputs.logits.shape , _snake_case)
UpperCAmelCase_ = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6])
self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _snake_case , atol=1e-4))
| 7 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
snake_case_ : List[Any] = logging.get_logger(__name__)
snake_case_ : Union[str, Any] = {
"facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json",
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class __snake_case ( __snake_case ):
UpperCAmelCase__ : List[str] = """vit_mae"""
def __init__( self : Dict , _snake_case : str=768 , _snake_case : Any=12 , _snake_case : Optional[int]=12 , _snake_case : str=3072 , _snake_case : Tuple="gelu" , _snake_case : Optional[int]=0.0 , _snake_case : Tuple=0.0 , _snake_case : Optional[Any]=0.0_2 , _snake_case : Union[str, Any]=1e-12 , _snake_case : Dict=224 , _snake_case : Optional[Any]=16 , _snake_case : List[Any]=3 , _snake_case : List[Any]=True , _snake_case : Optional[int]=16 , _snake_case : List[Any]=512 , _snake_case : str=8 , _snake_case : str=2048 , _snake_case : int=0.7_5 , _snake_case : Tuple=False , **_snake_case : List[str] , ):
"""simple docstring"""
super().__init__(**UpperCamelCase__)
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = hidden_dropout_prob
UpperCAmelCase_ = attention_probs_dropout_prob
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = image_size
UpperCAmelCase_ = patch_size
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = qkv_bias
UpperCAmelCase_ = decoder_num_attention_heads
UpperCAmelCase_ = decoder_hidden_size
UpperCAmelCase_ = decoder_num_hidden_layers
UpperCAmelCase_ = decoder_intermediate_size
UpperCAmelCase_ = mask_ratio
UpperCAmelCase_ = norm_pix_loss
| 369 |
import comet # From: unbabel-comet
import torch
import datasets
snake_case_ : Tuple = datasets.logging.get_logger(__name__)
snake_case_ : str = "\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel's Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = \"{COMET}: A Neural Framework for {MT} Evaluation\",\n author = \"Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\",\n pages = \"2685--2702\",\n}\n"
snake_case_ : Tuple = "\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n"
snake_case_ : Optional[int] = "\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric('comet')\n >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use\n >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"]\n >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"]\n >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [0.19, 0.92]\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __snake_case ( datasets.Metric ):
def lowerCamelCase ( self : Any):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''sources''': datasets.Value('''string''' , id='''sequence'''),
'''predictions''': datasets.Value('''string''' , id='''sequence'''),
'''references''': datasets.Value('''string''' , id='''sequence'''),
}) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[
'''https://github.com/Unbabel/COMET''',
'''https://www.aclweb.org/anthology/2020.emnlp-main.213/''',
'''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''',
] , )
def lowerCamelCase ( self : List[Any] , _snake_case : Optional[int]):
"""simple docstring"""
if self.config_name == "default":
UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da'''))
else:
UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model(self.config_name))
def lowerCamelCase ( self : List[Any] , _snake_case : str , _snake_case : List[str] , _snake_case : Tuple , _snake_case : int=None , _snake_case : Optional[Any]=False):
"""simple docstring"""
if gpus is None:
UpperCAmelCase_ = 1 if torch.cuda.is_available() else 0
UpperCAmelCase_ = {'''src''': sources, '''mt''': predictions, '''ref''': references}
UpperCAmelCase_ = [dict(zip(_snake_case , _snake_case)) for t in zip(*data.values())]
UpperCAmelCase_ , UpperCAmelCase_ = self.scorer.predict(_snake_case , gpus=_snake_case , progress_bar=_snake_case)
return {"mean_score": mean_score, "scores": scores}
| 7 | 0 |
import collections
import inspect
import unittest
from transformers import SwinvaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel
from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __snake_case :
def __init__( self : int , _snake_case : int , _snake_case : str=13 , _snake_case : int=32 , _snake_case : Union[str, Any]=2 , _snake_case : int=3 , _snake_case : List[str]=16 , _snake_case : List[str]=[1, 2, 1] , _snake_case : List[Any]=[2, 2, 4] , _snake_case : List[str]=2 , _snake_case : Union[str, Any]=2.0 , _snake_case : List[Any]=True , _snake_case : List[str]=0.0 , _snake_case : str=0.0 , _snake_case : Optional[Any]=0.1 , _snake_case : str="gelu" , _snake_case : List[str]=False , _snake_case : Tuple=True , _snake_case : Tuple=0.0_2 , _snake_case : Optional[int]=1e-5 , _snake_case : Any=True , _snake_case : Union[str, Any]=None , _snake_case : Optional[int]=True , _snake_case : Any=10 , _snake_case : Any=8 , ):
"""simple docstring"""
UpperCAmelCase_ = parent
UpperCAmelCase_ = batch_size
UpperCAmelCase_ = image_size
UpperCAmelCase_ = patch_size
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = embed_dim
UpperCAmelCase_ = depths
UpperCAmelCase_ = num_heads
UpperCAmelCase_ = window_size
UpperCAmelCase_ = mlp_ratio
UpperCAmelCase_ = qkv_bias
UpperCAmelCase_ = hidden_dropout_prob
UpperCAmelCase_ = attention_probs_dropout_prob
UpperCAmelCase_ = drop_path_rate
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = use_absolute_embeddings
UpperCAmelCase_ = patch_norm
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = is_training
UpperCAmelCase_ = scope
UpperCAmelCase_ = use_labels
UpperCAmelCase_ = type_sequence_label_size
UpperCAmelCase_ = encoder_stride
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
UpperCAmelCase_ = None
if self.use_labels:
UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
UpperCAmelCase_ = self.get_config()
return config, pixel_values, labels
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
return SwinvaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def lowerCamelCase ( self : str , _snake_case : Optional[Any] , _snake_case : Optional[Any] , _snake_case : List[str]):
"""simple docstring"""
UpperCAmelCase_ = SwinvaModel(config=__snake_case)
model.to(__snake_case)
model.eval()
UpperCAmelCase_ = model(__snake_case)
UpperCAmelCase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1))
UpperCAmelCase_ = int(config.embed_dim * 2 ** (len(config.depths) - 1))
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim))
def lowerCamelCase ( self : List[str] , _snake_case : Optional[Any] , _snake_case : List[Any] , _snake_case : int):
"""simple docstring"""
UpperCAmelCase_ = SwinvaForMaskedImageModeling(config=__snake_case)
model.to(__snake_case)
model.eval()
UpperCAmelCase_ = model(__snake_case)
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size))
# test greyscale images
UpperCAmelCase_ = 1
UpperCAmelCase_ = SwinvaForMaskedImageModeling(__snake_case)
model.to(__snake_case)
model.eval()
UpperCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
UpperCAmelCase_ = model(__snake_case)
self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size))
def lowerCamelCase ( self : Union[str, Any] , _snake_case : List[str] , _snake_case : Optional[int] , _snake_case : Tuple):
"""simple docstring"""
UpperCAmelCase_ = self.type_sequence_label_size
UpperCAmelCase_ = SwinvaForImageClassification(__snake_case)
model.to(__snake_case)
model.eval()
UpperCAmelCase_ = model(__snake_case , labels=__snake_case)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs
UpperCAmelCase_ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __snake_case ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
UpperCAmelCase__ : Any = (
(SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else ()
)
UpperCAmelCase__ : List[str] = (
{'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification}
if is_torch_available()
else {}
)
UpperCAmelCase__ : Tuple = False
UpperCAmelCase__ : str = False
UpperCAmelCase__ : Dict = False
UpperCAmelCase__ : Union[str, Any] = False
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ = SwinvaModelTester(self)
UpperCAmelCase_ = ConfigTester(self , config_class=__snake_case , embed_dim=37)
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__snake_case)
@unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''')
def lowerCamelCase ( self : str):
"""simple docstring"""
pass
@unittest.skip(reason='''Swinv2 does not use inputs_embeds''')
def lowerCamelCase ( self : int):
"""simple docstring"""
pass
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = model_class(__snake_case)
self.assertIsInstance(model.get_input_embeddings() , (nn.Module))
UpperCAmelCase_ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__snake_case , nn.Linear))
def lowerCamelCase ( self : Any):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = model_class(__snake_case)
UpperCAmelCase_ = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ = [*signature.parameters.keys()]
UpperCAmelCase_ = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __snake_case)
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ = True
for model_class in self.all_model_classes:
UpperCAmelCase_ = True
UpperCAmelCase_ = False
UpperCAmelCase_ = True
UpperCAmelCase_ = model_class(__snake_case)
model.to(__snake_case)
model.eval()
with torch.no_grad():
UpperCAmelCase_ = model(**self._prepare_for_class(__snake_case , __snake_case))
UpperCAmelCase_ = outputs.attentions
UpperCAmelCase_ = len(self.model_tester.depths)
self.assertEqual(len(__snake_case) , __snake_case)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
UpperCAmelCase_ = True
UpperCAmelCase_ = config.window_size**2
UpperCAmelCase_ = model_class(__snake_case)
model.to(__snake_case)
model.eval()
with torch.no_grad():
UpperCAmelCase_ = model(**self._prepare_for_class(__snake_case , __snake_case))
UpperCAmelCase_ = outputs.attentions
self.assertEqual(len(__snake_case) , __snake_case)
self.assertListEqual(
list(attentions[0].shape[-3:]) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
UpperCAmelCase_ = len(__snake_case)
# Check attention is always last and order is fine
UpperCAmelCase_ = True
UpperCAmelCase_ = True
UpperCAmelCase_ = model_class(__snake_case)
model.to(__snake_case)
model.eval()
with torch.no_grad():
UpperCAmelCase_ = model(**self._prepare_for_class(__snake_case , __snake_case))
if hasattr(self.model_tester , '''num_hidden_states_types'''):
UpperCAmelCase_ = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
UpperCAmelCase_ = 2
self.assertEqual(out_len + added_hidden_states , len(__snake_case))
UpperCAmelCase_ = outputs.attentions
self.assertEqual(len(__snake_case) , __snake_case)
self.assertListEqual(
list(self_attentions[0].shape[-3:]) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
def lowerCamelCase ( self : Any , _snake_case : Any , _snake_case : List[str] , _snake_case : List[Any] , _snake_case : Any):
"""simple docstring"""
UpperCAmelCase_ = model_class(__snake_case)
model.to(__snake_case)
model.eval()
with torch.no_grad():
UpperCAmelCase_ = model(**self._prepare_for_class(__snake_case , __snake_case))
UpperCAmelCase_ = outputs.hidden_states
UpperCAmelCase_ = getattr(
self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths) + 1)
self.assertEqual(len(__snake_case) , __snake_case)
# Swinv2 has a different seq_length
UpperCAmelCase_ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable)
else (config.patch_size, config.patch_size)
)
UpperCAmelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , )
UpperCAmelCase_ = outputs.reshaped_hidden_states
self.assertEqual(len(__snake_case) , __snake_case)
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = reshaped_hidden_states[0].shape
UpperCAmelCase_ = (
reshaped_hidden_states[0].view(__snake_case , __snake_case , height * width).permute(0 , 2 , 1)
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:]) , [num_patches, self.model_tester.embed_dim] , )
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable)
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
UpperCAmelCase_ = True
self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , __snake_case)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase_ = True
self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , __snake_case)
def lowerCamelCase ( self : Any):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ = 3
UpperCAmelCase_ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable)
else (self.model_tester.image_size, self.model_tester.image_size)
)
UpperCAmelCase_ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable)
else (config.patch_size, config.patch_size)
)
UpperCAmelCase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
UpperCAmelCase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
UpperCAmelCase_ = True
self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , (padded_height, padded_width))
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase_ = True
self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , (padded_height, padded_width))
def lowerCamelCase ( self : Any):
"""simple docstring"""
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__snake_case)
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__snake_case)
@slow
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ = SwinvaModel.from_pretrained(__snake_case)
self.assertIsNotNone(__snake_case)
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ = _config_zero_init(__snake_case)
for model_class in self.all_model_classes:
UpperCAmelCase_ = model_class(config=__snake_case)
for name, param in model.named_parameters():
if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@require_vision
@require_torch
class __snake_case ( unittest.TestCase ):
@cached_property
def lowerCamelCase ( self : Any):
"""simple docstring"""
return (
AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''')
if is_vision_available()
else None
)
@slow
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''').to(
__snake_case)
UpperCAmelCase_ = self.default_image_processor
UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''')
UpperCAmelCase_ = image_processor(images=__snake_case , return_tensors='''pt''').to(__snake_case)
# forward pass
with torch.no_grad():
UpperCAmelCase_ = model(**__snake_case)
# verify the logits
UpperCAmelCase_ = torch.Size((1, 1000))
self.assertEqual(outputs.logits.shape , __snake_case)
UpperCAmelCase_ = torch.tensor([-0.3_9_4_7, -0.4_3_0_6, 0.0_0_2_6]).to(__snake_case)
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4))
| 370 |
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class __snake_case ( a ):
UpperCAmelCase__ : Optional[int] = (DPMSolverSinglestepScheduler,)
UpperCAmelCase__ : str = (('''num_inference_steps''', 2_5),)
def lowerCamelCase ( self : Dict , **_snake_case : Dict):
"""simple docstring"""
UpperCAmelCase_ = {
'''num_train_timesteps''': 1000,
'''beta_start''': 0.0_0_0_1,
'''beta_end''': 0.0_2,
'''beta_schedule''': '''linear''',
'''solver_order''': 2,
'''prediction_type''': '''epsilon''',
'''thresholding''': False,
'''sample_max_value''': 1.0,
'''algorithm_type''': '''dpmsolver++''',
'''solver_type''': '''midpoint''',
'''lambda_min_clipped''': -float('''inf'''),
'''variance_type''': None,
}
config.update(**_snake_case)
return config
def lowerCamelCase ( self : Dict , _snake_case : int=0 , **_snake_case : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = dict(self.forward_default_kwargs)
UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _snake_case)
UpperCAmelCase_ = self.dummy_sample
UpperCAmelCase_ = 0.1 * sample
UpperCAmelCase_ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase_ = self.get_scheduler_config(**_snake_case)
UpperCAmelCase_ = scheduler_class(**_snake_case)
scheduler.set_timesteps(_snake_case)
# copy over dummy past residuals
UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_snake_case)
UpperCAmelCase_ = scheduler_class.from_pretrained(_snake_case)
new_scheduler.set_timesteps(_snake_case)
# copy over dummy past residuals
UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order]
UpperCAmelCase_ , UpperCAmelCase_ = sample, sample
for t in range(_snake_case , time_step + scheduler.config.solver_order + 1):
UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample
UpperCAmelCase_ = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
pass
def lowerCamelCase ( self : Tuple , _snake_case : Optional[Any]=0 , **_snake_case : int):
"""simple docstring"""
UpperCAmelCase_ = dict(self.forward_default_kwargs)
UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _snake_case)
UpperCAmelCase_ = self.dummy_sample
UpperCAmelCase_ = 0.1 * sample
UpperCAmelCase_ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase_ = self.get_scheduler_config()
UpperCAmelCase_ = scheduler_class(**_snake_case)
scheduler.set_timesteps(_snake_case)
# copy over dummy past residuals (must be after setting timesteps)
UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_snake_case)
UpperCAmelCase_ = scheduler_class.from_pretrained(_snake_case)
# copy over dummy past residuals
new_scheduler.set_timesteps(_snake_case)
# copy over dummy past residual (must be after setting timesteps)
UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order]
UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample
UpperCAmelCase_ = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def lowerCamelCase ( self : Dict , _snake_case : int=None , **_snake_case : Optional[Any]):
"""simple docstring"""
if scheduler is None:
UpperCAmelCase_ = self.scheduler_classes[0]
UpperCAmelCase_ = self.get_scheduler_config(**_snake_case)
UpperCAmelCase_ = scheduler_class(**_snake_case)
UpperCAmelCase_ = self.scheduler_classes[0]
UpperCAmelCase_ = self.get_scheduler_config(**_snake_case)
UpperCAmelCase_ = scheduler_class(**_snake_case)
UpperCAmelCase_ = 10
UpperCAmelCase_ = self.dummy_model()
UpperCAmelCase_ = self.dummy_sample_deter
scheduler.set_timesteps(_snake_case)
for i, t in enumerate(scheduler.timesteps):
UpperCAmelCase_ = model(_snake_case , _snake_case)
UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample
return sample
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config())
UpperCAmelCase_ = 50
UpperCAmelCase_ = self.dummy_model()
UpperCAmelCase_ = self.dummy_sample_deter
scheduler.set_timesteps(_snake_case)
# make sure that the first t is uneven
for i, t in enumerate(scheduler.timesteps[3:]):
UpperCAmelCase_ = model(_snake_case , _snake_case)
UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.2_5_7_4) < 1e-3
def lowerCamelCase ( self : int):
"""simple docstring"""
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=_snake_case)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config())
UpperCAmelCase_ = self.full_loop(scheduler=_snake_case)
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3
UpperCAmelCase_ = DEISMultistepScheduler.from_config(scheduler.config)
UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(scheduler.config)
UpperCAmelCase_ = UniPCMultistepScheduler.from_config(scheduler.config)
UpperCAmelCase_ = DPMSolverSinglestepScheduler.from_config(scheduler.config)
UpperCAmelCase_ = self.full_loop(scheduler=_snake_case)
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
self.check_over_configs(thresholding=_snake_case)
for order in [1, 2, 3]:
for solver_type in ["midpoint", "heun"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=_snake_case , prediction_type=_snake_case , sample_max_value=_snake_case , algorithm_type='''dpmsolver++''' , solver_order=_snake_case , solver_type=_snake_case , )
def lowerCamelCase ( self : Dict):
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_snake_case)
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
for algorithm_type in ["dpmsolver", "dpmsolver++"]:
for solver_type in ["midpoint", "heun"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , )
UpperCAmelCase_ = self.full_loop(
solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , )
assert not torch.isnan(_snake_case).any(), "Samples have nan numbers"
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
self.check_over_configs(lower_order_final=_snake_case)
self.check_over_configs(lower_order_final=_snake_case)
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
self.check_over_configs(lambda_min_clipped=-float('''inf'''))
self.check_over_configs(lambda_min_clipped=-5.1)
def lowerCamelCase ( self : int):
"""simple docstring"""
self.check_over_configs(variance_type=_snake_case)
self.check_over_configs(variance_type='''learned_range''')
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=_snake_case , time_step=0)
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = self.full_loop()
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = self.full_loop(use_karras_sigmas=_snake_case)
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.2_2_4_8) < 1e-3
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''')
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.1_4_5_3) < 1e-3
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=_snake_case)
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.0_6_4_9) < 1e-3
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = self.scheduler_classes[0]
UpperCAmelCase_ = self.get_scheduler_config(thresholding=_snake_case , dynamic_thresholding_ratio=0)
UpperCAmelCase_ = scheduler_class(**_snake_case)
UpperCAmelCase_ = 10
UpperCAmelCase_ = self.dummy_model()
UpperCAmelCase_ = self.dummy_sample_deter.half()
scheduler.set_timesteps(_snake_case)
for i, t in enumerate(scheduler.timesteps):
UpperCAmelCase_ = model(_snake_case , _snake_case)
UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample
assert sample.dtype == torch.floataa
| 7 | 0 |
import json
import os
import unittest
from transformers import DebertaTokenizer, DebertaTokenizerFast
from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class __snake_case ( _SCREAMING_SNAKE_CASE , unittest.TestCase ):
UpperCAmelCase__ : Dict = DebertaTokenizer
UpperCAmelCase__ : List[Any] = True
UpperCAmelCase__ : Tuple = DebertaTokenizerFast
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCAmelCase_ = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''[UNK]''',
]
UpperCAmelCase_ = dict(zip(A_ , range(len(A_))))
UpperCAmelCase_ = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
UpperCAmelCase_ = {'''unk_token''': '''[UNK]'''}
UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''])
UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''])
with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp:
fp.write(json.dumps(A_) + '''\n''')
with open(self.merges_file , '''w''' , encoding='''utf-8''') as fp:
fp.write('''\n'''.join(A_))
def lowerCamelCase ( self : int , **_snake_case : Any):
"""simple docstring"""
kwargs.update(self.special_tokens_map)
return self.tokenizer_class.from_pretrained(self.tmpdirname , **A_)
def lowerCamelCase ( self : Optional[int] , _snake_case : str):
"""simple docstring"""
UpperCAmelCase_ = '''lower newer'''
UpperCAmelCase_ = '''lower newer'''
return input_text, output_text
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ = self.get_tokenizer()
UpperCAmelCase_ = '''lower newer'''
UpperCAmelCase_ = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er''']
UpperCAmelCase_ = tokenizer.tokenize(A_)
self.assertListEqual(A_ , A_)
UpperCAmelCase_ = tokens + [tokenizer.unk_token]
UpperCAmelCase_ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(A_) , A_)
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = self.get_tokenizer()
UpperCAmelCase_ = tokenizer('''Hello''' , '''World''')
UpperCAmelCase_ = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
self.assertListEqual(tokd['''token_type_ids'''] , A_)
@slow
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''')
UpperCAmelCase_ = tokenizer.encode('''sequence builders''' , add_special_tokens=A_)
UpperCAmelCase_ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=A_)
UpperCAmelCase_ = tokenizer.encode(
'''sequence builders''' , add_special_tokens=A_ , add_prefix_space=A_)
UpperCAmelCase_ = tokenizer.encode(
'''sequence builders''' , '''multi-sequence build''' , add_special_tokens=A_ , add_prefix_space=A_)
UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(A_)
UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(A_ , A_)
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
@slow
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = [self.tokenizer_class]
if self.test_rust_tokenizer:
tokenizer_classes.append(self.rust_tokenizer_class)
for tokenizer_class in tokenizer_classes:
UpperCAmelCase_ = tokenizer_class.from_pretrained('''microsoft/deberta-base''')
UpperCAmelCase_ = [
'''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''',
'''ALBERT incorporates two parameter reduction techniques''',
'''The first one is a factorized embedding parameterization. By decomposing the large vocabulary'''
''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'''
''' vocabulary embedding.''',
]
UpperCAmelCase_ = tokenizer(A_ , padding=A_)
UpperCAmelCase_ = [tokenizer.decode(A_ , skip_special_tokens=A_) for seq in encoding['''input_ids''']]
# fmt: off
UpperCAmelCase_ = {
'''input_ids''': [
[1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2]
],
'''token_type_ids''': [
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
],
'''attention_mask''': [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
]
}
# fmt: on
UpperCAmelCase_ = [
'''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''',
'''ALBERT incorporates two parameter reduction techniques''',
'''The first one is a factorized embedding parameterization. By decomposing the large vocabulary'''
''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'''
''' vocabulary embedding.''',
]
self.assertDictEqual(encoding.data , A_)
for expected, decoded in zip(A_ , A_):
self.assertEqual(A_ , A_)
| 371 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
snake_case_ : List[Any] = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Tuple = ["DeiTFeatureExtractor"]
snake_case_ : List[str] = ["DeiTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : List[Any] = [
"DEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"DeiTForImageClassification",
"DeiTForImageClassificationWithTeacher",
"DeiTForMaskedImageModeling",
"DeiTModel",
"DeiTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Dict = [
"TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFDeiTForImageClassification",
"TFDeiTForImageClassificationWithTeacher",
"TFDeiTForMaskedImageModeling",
"TFDeiTModel",
"TFDeiTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_deit import DeiTFeatureExtractor
from .image_processing_deit import DeiTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_deit import (
DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
DeiTModel,
DeiTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_deit import (
TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
TFDeiTPreTrainedModel,
)
else:
import sys
snake_case_ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 7 | 0 |
import copy
import tempfile
import unittest
from transformers import MaMaaaConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from transformers.utils import cached_property
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer
from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder
def A (__A : List[Any] , __A : Optional[Any] , __A : Optional[Any] , __A : Dict=None , __A : Optional[Any]=None , __A : Optional[int]=None , __A : Optional[Any]=None , __A : Any=None , ) -> Dict:
"""simple docstring"""
if attention_mask is None:
UpperCAmelCase_ = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
UpperCAmelCase_ = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
UpperCAmelCase_ = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=__A )
if decoder_head_mask is None:
UpperCAmelCase_ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=__A )
if cross_attn_head_mask is None:
UpperCAmelCase_ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=__A )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
class __snake_case :
def __init__( self : List[str] , _snake_case : Union[str, Any] , _snake_case : int=13 , _snake_case : Dict=7 , _snake_case : Tuple=True , _snake_case : List[Any]=False , _snake_case : Tuple=99 , _snake_case : Optional[Any]=16 , _snake_case : Optional[int]=2 , _snake_case : List[Any]=4 , _snake_case : Any=4 , _snake_case : Dict="relu" , _snake_case : Optional[Any]=0.1 , _snake_case : int=0.1 , _snake_case : Tuple=0.0 , _snake_case : int=0.0 , _snake_case : Any=20 , _snake_case : Union[str, Any]=2 , _snake_case : str=1 , _snake_case : Union[str, Any]=0 , ):
"""simple docstring"""
UpperCAmelCase_ = parent
UpperCAmelCase_ = batch_size
UpperCAmelCase_ = seq_length
UpperCAmelCase_ = is_training
UpperCAmelCase_ = use_labels
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = hidden_dropout_prob
UpperCAmelCase_ = attention_probs_dropout_prob
UpperCAmelCase_ = encoder_layerdrop
UpperCAmelCase_ = decoder_layerdrop
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = eos_token_id
UpperCAmelCase_ = pad_token_id
UpperCAmelCase_ = bos_token_id
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
UpperCAmelCase_ = self.eos_token_id # Eos Token
UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
# we need to clamp the input ids here to avoid having pad token in between
# this is because for M2M100 the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
UpperCAmelCase_ = input_ids.clamp(self.pad_token_id + 1)
UpperCAmelCase_ = decoder_input_ids.clamp(self.pad_token_id + 1)
UpperCAmelCase_ = self.get_config()
UpperCAmelCase_ = prepare_mam_aaa_inputs_dict(_snake_case , _snake_case , _snake_case)
return config, inputs_dict
def lowerCamelCase ( self : int):
"""simple docstring"""
return MaMaaaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , )
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ = self.prepare_config_and_inputs()
return config, inputs_dict
def lowerCamelCase ( self : str , _snake_case : List[Any] , _snake_case : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = MaMaaaModel(config=_snake_case).get_decoder().to(_snake_case).eval()
UpperCAmelCase_ = inputs_dict['''input_ids''']
UpperCAmelCase_ = inputs_dict['''attention_mask''']
UpperCAmelCase_ = inputs_dict['''head_mask''']
# first forward pass
UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , head_mask=_snake_case , use_cache=_snake_case)
UpperCAmelCase_ , UpperCAmelCase_ = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
UpperCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size)
UpperCAmelCase_ = ids_tensor((self.batch_size, 3) , 2)
# append to next input_ids and
UpperCAmelCase_ = torch.cat([input_ids, next_tokens] , dim=-1)
UpperCAmelCase_ = torch.cat([attention_mask, next_attn_mask] , dim=-1)
UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case)['''last_hidden_state''']
UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , past_key_values=_snake_case)[
'''last_hidden_state'''
]
# select random slice
UpperCAmelCase_ = ids_tensor((1,) , output_from_past.shape[-1]).item()
UpperCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCAmelCase_ = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1e-2))
def lowerCamelCase ( self : Optional[int] , _snake_case : str , _snake_case : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = MaMaaaModel(config=_snake_case).to(_snake_case).eval()
UpperCAmelCase_ = model(**_snake_case)
UpperCAmelCase_ = outputs.encoder_last_hidden_state
UpperCAmelCase_ = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCAmelCase_ = model.get_encoder()
encoder.save_pretrained(_snake_case)
UpperCAmelCase_ = MaMaaaEncoder.from_pretrained(_snake_case).to(_snake_case)
UpperCAmelCase_ = encoder(inputs_dict['''input_ids'''] , attention_mask=inputs_dict['''attention_mask'''])[
0
]
self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3)
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCAmelCase_ = model.get_decoder()
decoder.save_pretrained(_snake_case)
UpperCAmelCase_ = MaMaaaDecoder.from_pretrained(_snake_case).to(_snake_case)
UpperCAmelCase_ = decoder(
input_ids=inputs_dict['''decoder_input_ids'''] , attention_mask=inputs_dict['''decoder_attention_mask'''] , encoder_hidden_states=_snake_case , encoder_attention_mask=inputs_dict['''attention_mask'''] , )[0]
self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3)
@require_torch
class __snake_case ( a , a , a , unittest.TestCase ):
UpperCAmelCase__ : List[str] = (
(
MaMaaaModel,
MaMaaaForConditionalGeneration,
)
if is_torch_available()
else ()
)
UpperCAmelCase__ : List[str] = (MaMaaaForConditionalGeneration,) if is_torch_available() else ()
UpperCAmelCase__ : Union[str, Any] = (
{
'''conversational''': MaMaaaForConditionalGeneration,
'''feature-extraction''': MaMaaaModel,
'''summarization''': MaMaaaForConditionalGeneration,
'''text2text-generation''': MaMaaaForConditionalGeneration,
'''translation''': MaMaaaForConditionalGeneration,
}
if is_torch_available()
else {}
)
UpperCAmelCase__ : Optional[int] = True
UpperCAmelCase__ : Any = True
UpperCAmelCase__ : List[str] = False
UpperCAmelCase__ : Optional[int] = False
def lowerCamelCase ( self : Union[str, Any] , _snake_case : List[Any] , _snake_case : Dict , _snake_case : Any , _snake_case : List[Any] , _snake_case : Tuple):
"""simple docstring"""
if pipeline_test_casse_name == "TranslationPipelineTests":
# Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`.
# `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer.
return True
return False
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = MaMaaaModelTester(self)
UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case)
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCamelCase ( self : Any):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
UpperCAmelCase_ = model_class(_snake_case)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_snake_case)
UpperCAmelCase_ , UpperCAmelCase_ = model_class.from_pretrained(_snake_case , output_loading_info=_snake_case)
self.assertEqual(info['''missing_keys'''] , [])
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*_snake_case)
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*_snake_case)
def lowerCamelCase ( self : Any):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration):
UpperCAmelCase_ = model_class(_snake_case)
model.to(_snake_case)
model.eval()
UpperCAmelCase_ = copy.deepcopy(self._prepare_for_class(_snake_case , _snake_case))
if not self.is_encoder_decoder:
UpperCAmelCase_ = inputs['''input_ids''']
del inputs["input_ids"]
else:
UpperCAmelCase_ = inputs['''input_ids''']
UpperCAmelCase_ = inputs.get('''decoder_input_ids''' , _snake_case)
del inputs["input_ids"]
inputs.pop('''decoder_input_ids''' , _snake_case)
UpperCAmelCase_ = model.get_input_embeddings()
if not self.is_encoder_decoder:
UpperCAmelCase_ = wte(_snake_case)
else:
UpperCAmelCase_ = wte(_snake_case)
UpperCAmelCase_ = wte(_snake_case)
with torch.no_grad():
model(**_snake_case)[0]
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
UpperCAmelCase_ = input_dict['''input_ids''']
UpperCAmelCase_ = input_ids.ne(1).to(_snake_case)
UpperCAmelCase_ = MaMaaaForConditionalGeneration(_snake_case).eval().to(_snake_case)
if torch_device == "cuda":
model.half()
model.generate(_snake_case , attention_mask=_snake_case)
model.generate(num_beams=4 , do_sample=_snake_case , early_stopping=_snake_case , num_return_sequences=3)
def A (__A : List[str] ) -> Any:
"""simple docstring"""
return torch.tensor(__A , dtype=torch.long , device=__A )
snake_case_ : Tuple = 1e-4
@require_torch
@require_sentencepiece
@require_tokenizers
@slow
class __snake_case ( unittest.TestCase ):
@cached_property
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
return MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''')
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = MaMaaaModel.from_pretrained('''facebook/m2m100_418M''').to(_snake_case)
UpperCAmelCase_ = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]])
UpperCAmelCase_ = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]])
UpperCAmelCase_ = prepare_mam_aaa_inputs_dict(model.config , _snake_case , _snake_case)
with torch.no_grad():
UpperCAmelCase_ = model(**_snake_case)[0]
UpperCAmelCase_ = torch.Size((1, 11, 1024))
self.assertEqual(output.shape , _snake_case)
# change to expected output here
UpperCAmelCase_ = torch.tensor(
[[-0.7_7_8_0, -0.1_6_7_6, 0.1_0_3_8], [-6.7_5_5_6, -1.3_9_9_2, 0.0_5_6_7], [-7.5_3_8_3, -0.5_9_2_0, -0.2_7_7_9]] , device=_snake_case)
self.assertTrue(torch.allclose(output[:, :3, :3] , _snake_case , atol=_snake_case))
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''').to(_snake_case)
# change to intended input
UpperCAmelCase_ = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]])
UpperCAmelCase_ = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]])
UpperCAmelCase_ = prepare_mam_aaa_inputs_dict(model.config , _snake_case , _snake_case)
with torch.no_grad():
UpperCAmelCase_ = model(**_snake_case)[0]
UpperCAmelCase_ = torch.Size((1, 11, model.config.vocab_size))
self.assertEqual(output.shape , _snake_case)
# change to expected output here
UpperCAmelCase_ = torch.tensor(
[[-1.0_4_4_8, -1.0_4_1_1, 3.7_9_9_2], [-3.2_1_9_1, -3.2_3_8_6, -1.3_4_5_1], [-3.6_2_1_0, -3.5_9_9_3, 0.4_9_2_5]] , device=_snake_case)
self.assertTrue(torch.allclose(output[:, :3, :3] , _snake_case , atol=_snake_case))
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''').to(_snake_case)
UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''' , src_lang='''fr''' , tgt_lang='''en''')
UpperCAmelCase_ = [
'''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''',
'''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''',
'''Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent'''
''' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de'''
''' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.''',
]
# The below article tests that we don't add any hypotheses outside of the top n_beams
UpperCAmelCase_ = tokenizer(_snake_case , padding=_snake_case , return_tensors='''pt''')
UpperCAmelCase_ = model.generate(
input_ids=dct['''input_ids'''].to(_snake_case) , attention_mask=dct['''attention_mask'''].to(_snake_case) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('''en''') , )
UpperCAmelCase_ = [
'''The NSA case highlights the total absence of intelligence debate''',
'''I think there are two levels of response from the French government.''',
'''When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.'''
''' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all'''
''' communications in France.''',
]
UpperCAmelCase_ = tokenizer.batch_decode(
hypotheses_batch.tolist() , clean_up_tokenization_spaces=_snake_case , skip_special_tokens=_snake_case)
assert generated == expected_en
| 350 |
import sacrebleu as scb
from packaging import version
from sacrebleu import TER
import datasets
snake_case_ : Dict = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n"
snake_case_ : List[str] = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n"
snake_case_ : List[Any] = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __snake_case ( datasets.Metric ):
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
if version.parse(scb.__version__) < version.parse('''1.4.12'''):
raise ImportWarning(
'''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n'''
'''You can install it with `pip install "sacrebleu>=1.4.12"`.''')
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence'''),
'''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''') , id='''references'''),
}) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[
'''https://github.com/jhclark/tercom''',
] , )
def lowerCamelCase ( self : Union[str, Any] , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , ):
"""simple docstring"""
UpperCAmelCase_ = len(references[0])
if any(len(_snake_case) != references_per_prediction for refs in references):
raise ValueError('''Sacrebleu requires the same number of references for each prediction''')
UpperCAmelCase_ = [[refs[i] for refs in references] for i in range(_snake_case)]
UpperCAmelCase_ = TER(
normalized=_snake_case , no_punct=_snake_case , asian_support=_snake_case , case_sensitive=_snake_case , )
UpperCAmelCase_ = sb_ter.corpus_score(_snake_case , _snake_case)
return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
| 7 | 0 |
import argparse
from collections import defaultdict
def A (__A : List[str] , __A : Dict , __A : Optional[int] , __A : Tuple , __A : List[Any] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ = F"""{file}_{class_name}_{test_name}"""
done_test[_id] += 1
with open(__A , '''r''' ) as f:
UpperCAmelCase_ = f.readlines()
UpperCAmelCase_ = F"""class {class_name}("""
UpperCAmelCase_ = F"""{4 * " "}def {test_name}("""
UpperCAmelCase_ = F"""{8 * " "}{correct_line.split()[0]}"""
UpperCAmelCase_ = F"""{16 * " "}{correct_line.split()[0]}"""
UpperCAmelCase_ = False
UpperCAmelCase_ = False
UpperCAmelCase_ = False
UpperCAmelCase_ = False
UpperCAmelCase_ = 0
UpperCAmelCase_ = 0
UpperCAmelCase_ = []
for line in lines:
if line.startswith(__A ):
UpperCAmelCase_ = True
elif in_class and line.startswith(__A ):
UpperCAmelCase_ = True
elif in_class and in_func and (line.startswith(__A ) or line.startswith(__A )):
UpperCAmelCase_ = len(line.split(correct_line.split()[0] )[0] )
count += 1
if count == done_test[_id]:
UpperCAmelCase_ = True
if in_class and in_func and in_line:
if ")" not in line:
continue
else:
UpperCAmelCase_ = True
if in_class and in_func and in_line and insert_line:
new_lines.append(F"""{spaces * " "}{correct_line}""" )
UpperCAmelCase_ = UpperCAmelCase_ = UpperCAmelCase_ = UpperCAmelCase_ = False
else:
new_lines.append(__A )
with open(__A , '''w''' ) as f:
for line in new_lines:
f.write(__A )
def A (__A : Dict , __A : Dict=None ) -> Optional[int]:
"""simple docstring"""
if fail is not None:
with open(__A , '''r''' ) as f:
UpperCAmelCase_ = {l.strip() for l in f.readlines()}
else:
UpperCAmelCase_ = None
with open(__A , '''r''' ) as f:
UpperCAmelCase_ = f.readlines()
UpperCAmelCase_ = defaultdict(__A )
for line in correct_lines:
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = line.split(''';''' )
if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures:
overwrite_file(__A , __A , __A , __A , __A )
if __name__ == "__main__":
snake_case_ : Tuple = argparse.ArgumentParser()
parser.add_argument("--correct_filename", help="filename of tests with expected result")
parser.add_argument("--fail_filename", help="filename of test failures", type=str, default=None)
snake_case_ : Union[str, Any] = parser.parse_args()
main(args.correct_filename, args.fail_filename)
| 351 |
import unittest
from transformers import load_tool
from transformers.utils import is_torch_available
if is_torch_available():
import torch
from transformers.testing_utils import require_torch
from .test_tools_common import ToolTesterMixin
@require_torch
class __snake_case ( unittest.TestCase , a ):
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = load_tool('''text-to-speech''')
self.tool.setup()
def lowerCamelCase ( self : int):
"""simple docstring"""
torch.manual_seed(0)
UpperCAmelCase_ = self.tool('''hey''')
UpperCAmelCase_ = result.to_raw()
self.assertTrue(
torch.allclose(
resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5]) , ))
def lowerCamelCase ( self : Any):
"""simple docstring"""
torch.manual_seed(0)
UpperCAmelCase_ = self.tool('''hey''')
UpperCAmelCase_ = result.to_raw()
self.assertTrue(
torch.allclose(
resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5]) , ))
| 7 | 0 |
import argparse
import pytorch_lightning as pl
import torch
from torch import nn
from transformers import LongformerForQuestionAnswering, LongformerModel
class __snake_case ( pl.LightningModule ):
def __init__( self : str , _snake_case : List[str]):
"""simple docstring"""
super().__init__()
UpperCAmelCase_ = model
UpperCAmelCase_ = 2
UpperCAmelCase_ = nn.Linear(self.model.config.hidden_size , self.num_labels)
def lowerCamelCase ( self : int):
"""simple docstring"""
pass
def A (__A : str , __A : str , __A : str ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ = LongformerModel.from_pretrained(__A )
UpperCAmelCase_ = LightningModel(__A )
UpperCAmelCase_ = torch.load(__A , map_location=torch.device('''cpu''' ) )
lightning_model.load_state_dict(ckpt['''state_dict'''] )
# init longformer question answering model
UpperCAmelCase_ = LongformerForQuestionAnswering.from_pretrained(__A )
# transfer weights
longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() )
longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() )
longformer_for_qa.eval()
# save model
longformer_for_qa.save_pretrained(__A )
print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" )
if __name__ == "__main__":
snake_case_ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--longformer_model",
default=None,
type=str,
required=True,
help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.",
)
parser.add_argument(
"--longformer_question_answering_ckpt_path",
default=None,
type=str,
required=True,
help="Path the official PyTorch Lightning Checkpoint.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
snake_case_ : List[str] = parser.parse_args()
convert_longformer_qa_checkpoint_to_pytorch(
args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path
)
| 352 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
ImageTextPipelineOutput,
UniDiffuserPipeline,
)
else:
from .modeling_text_decoder import UniDiffuserTextDecoder
from .modeling_uvit import UniDiffuserModel, UTransformeraDModel
from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
| 7 | 0 |
"""simple docstring"""
import dataclasses
import re
import string
from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple
import numpy as np
from . import residue_constants
snake_case_ : List[Any] = Mapping[str, np.ndarray]
snake_case_ : Any = Mapping[str, Any] # Is a nested dict.
snake_case_ : Dict = 0.01
@dataclasses.dataclass(frozen=a )
class __snake_case :
UpperCAmelCase__ : np.ndarray # [num_res, num_atom_type, 3]
# Amino-acid type for each residue represented as an integer between 0 and
# 20, where 20 is 'X'.
UpperCAmelCase__ : np.ndarray # [num_res]
# Binary float mask to indicate presence of a particular atom. 1.0 if an atom
# is present and 0.0 if not. This should be used for loss masking.
UpperCAmelCase__ : np.ndarray # [num_res, num_atom_type]
# Residue index as used in PDB. It is not necessarily continuous or 0-indexed.
UpperCAmelCase__ : np.ndarray # [num_res]
# B-factors, or temperature factors, of each residue (in sq. angstroms units),
# representing the displacement of the residue from its ground truth mean
# value.
UpperCAmelCase__ : np.ndarray # [num_res, num_atom_type]
# Chain indices for multi-chain predictions
UpperCAmelCase__ : Optional[np.ndarray] = None
# Optional remark about the protein. Included as a comment in output PDB
# files
UpperCAmelCase__ : Optional[str] = None
# Templates used to generate this protein (prediction-only)
UpperCAmelCase__ : Optional[Sequence[str]] = None
# Chain corresponding to each parent
UpperCAmelCase__ : Optional[Sequence[int]] = None
def A (__A : str ) -> Protein:
"""simple docstring"""
UpperCAmelCase_ = R'''(\[[A-Z]+\]\n)'''
UpperCAmelCase_ = [tag.strip() for tag in re.split(__A , __A ) if len(__A ) > 0]
UpperCAmelCase_ = zip(tags[0::2] , [l.split('''\n''' ) for l in tags[1::2]] )
UpperCAmelCase_ = ['''N''', '''CA''', '''C''']
UpperCAmelCase_ = None
UpperCAmelCase_ = None
UpperCAmelCase_ = None
for g in groups:
if "[PRIMARY]" == g[0]:
UpperCAmelCase_ = g[1][0].strip()
for i in range(len(__A ) ):
if seq[i] not in residue_constants.restypes:
UpperCAmelCase_ = '''X''' # FIXME: strings are immutable
UpperCAmelCase_ = np.array(
[residue_constants.restype_order.get(__A , residue_constants.restype_num ) for res_symbol in seq] )
elif "[TERTIARY]" == g[0]:
UpperCAmelCase_ = []
for axis in range(3 ):
tertiary.append(list(map(__A , g[1][axis].split() ) ) )
UpperCAmelCase_ = np.array(__A )
UpperCAmelCase_ = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa )
for i, atom in enumerate(__A ):
UpperCAmelCase_ = np.transpose(tertiary_np[:, i::3] )
atom_positions *= PICO_TO_ANGSTROM
elif "[MASK]" == g[0]:
UpperCAmelCase_ = np.array(list(map({'''-''': 0, '''+''': 1}.get , g[1][0].strip() ) ) )
UpperCAmelCase_ = np.zeros(
(
len(__A ),
residue_constants.atom_type_num,
) ).astype(np.floataa )
for i, atom in enumerate(__A ):
UpperCAmelCase_ = 1
atom_mask *= mask[..., None]
assert aatype is not None
return Protein(
atom_positions=__A , atom_mask=__A , aatype=__A , residue_index=np.arange(len(__A ) ) , b_factors=__A , )
def A (__A : Protein , __A : int = 0 ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ = []
UpperCAmelCase_ = prot.remark
if remark is not None:
pdb_headers.append(F"""REMARK {remark}""" )
UpperCAmelCase_ = prot.parents
UpperCAmelCase_ = prot.parents_chain_index
if parents is not None and parents_chain_index is not None:
UpperCAmelCase_ = [p for i, p in zip(__A , __A ) if i == chain_id]
if parents is None or len(__A ) == 0:
UpperCAmelCase_ = ['''N/A''']
pdb_headers.append(F"""PARENT {" ".join(__A )}""" )
return pdb_headers
def A (__A : Protein , __A : str ) -> str:
"""simple docstring"""
UpperCAmelCase_ = []
UpperCAmelCase_ = pdb_str.split('''\n''' )
UpperCAmelCase_ = prot.remark
if remark is not None:
out_pdb_lines.append(F"""REMARK {remark}""" )
UpperCAmelCase_ = 42
if prot.parents is not None and len(prot.parents ) > 0:
UpperCAmelCase_ = []
if prot.parents_chain_index is not None:
UpperCAmelCase_ = {}
for p, i in zip(prot.parents , prot.parents_chain_index ):
parent_dict.setdefault(str(__A ) , [] )
parent_dict[str(__A )].append(__A )
UpperCAmelCase_ = max([int(__A ) for chain_idx in parent_dict] )
for i in range(max_idx + 1 ):
UpperCAmelCase_ = parent_dict.get(str(__A ) , ['''N/A'''] )
parents_per_chain.append(__A )
else:
parents_per_chain.append(list(prot.parents ) )
else:
UpperCAmelCase_ = [['''N/A''']]
def make_parent_line(__A : Sequence[str] ) -> str:
return F"""PARENT {" ".join(__A )}"""
out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) )
UpperCAmelCase_ = 0
for i, l in enumerate(__A ):
if "PARENT" not in l and "REMARK" not in l:
out_pdb_lines.append(__A )
if "TER" in l and "END" not in lines[i + 1]:
chain_counter += 1
if not chain_counter >= len(__A ):
UpperCAmelCase_ = parents_per_chain[chain_counter]
else:
UpperCAmelCase_ = ['''N/A''']
out_pdb_lines.append(make_parent_line(__A ) )
return "\n".join(__A )
def A (__A : Protein ) -> str:
"""simple docstring"""
UpperCAmelCase_ = residue_constants.restypes + ['''X''']
def res_atoa(__A : int ) -> str:
return residue_constants.restype_atoa.get(restypes[r] , '''UNK''' )
UpperCAmelCase_ = residue_constants.atom_types
UpperCAmelCase_ = []
UpperCAmelCase_ = prot.atom_mask
UpperCAmelCase_ = prot.aatype
UpperCAmelCase_ = prot.atom_positions
UpperCAmelCase_ = prot.residue_index.astype(np.intaa )
UpperCAmelCase_ = prot.b_factors
UpperCAmelCase_ = prot.chain_index
if np.any(aatype > residue_constants.restype_num ):
raise ValueError('''Invalid aatypes.''' )
UpperCAmelCase_ = get_pdb_headers(__A )
if len(__A ) > 0:
pdb_lines.extend(__A )
UpperCAmelCase_ = aatype.shape[0]
UpperCAmelCase_ = 1
UpperCAmelCase_ = 0
UpperCAmelCase_ = string.ascii_uppercase
UpperCAmelCase_ = None
# Add all atom sites.
for i in range(__A ):
UpperCAmelCase_ = res_atoa(aatype[i] )
for atom_name, pos, mask, b_factor in zip(__A , atom_positions[i] , atom_mask[i] , b_factors[i] ):
if mask < 0.5:
continue
UpperCAmelCase_ = '''ATOM'''
UpperCAmelCase_ = atom_name if len(__A ) == 4 else F""" {atom_name}"""
UpperCAmelCase_ = ''''''
UpperCAmelCase_ = ''''''
UpperCAmelCase_ = 1.00
UpperCAmelCase_ = atom_name[0] # Protein supports only C, N, O, S, this works.
UpperCAmelCase_ = ''''''
UpperCAmelCase_ = '''A'''
if chain_index is not None:
UpperCAmelCase_ = chain_tags[chain_index[i]]
# PDB is a columnar format, every space matters here!
UpperCAmelCase_ = (
F"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}"""
F"""{res_name_a:>3} {chain_tag:>1}"""
F"""{residue_index[i]:>4}{insertion_code:>1} """
F"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}"""
F"""{occupancy:>6.2f}{b_factor:>6.2f} """
F"""{element:>2}{charge:>2}"""
)
pdb_lines.append(__A )
atom_index += 1
UpperCAmelCase_ = i == n - 1
if chain_index is not None:
if i != n - 1 and chain_index[i + 1] != prev_chain_index:
UpperCAmelCase_ = True
UpperCAmelCase_ = chain_index[i + 1]
if should_terminate:
# Close the chain.
UpperCAmelCase_ = '''TER'''
UpperCAmelCase_ = (
F"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}"""
)
pdb_lines.append(__A )
atom_index += 1
if i != n - 1:
# "prev" is a misnomer here. This happens at the beginning of
# each new chain.
pdb_lines.extend(get_pdb_headers(__A , __A ) )
pdb_lines.append('''END''' )
pdb_lines.append('''''' )
return "\n".join(__A )
def A (__A : Protein ) -> np.ndarray:
"""simple docstring"""
return residue_constants.STANDARD_ATOM_MASK[prot.aatype]
def A (__A : FeatureDict , __A : ModelOutput , __A : Optional[np.ndarray] = None , __A : Optional[np.ndarray] = None , __A : Optional[str] = None , __A : Optional[Sequence[str]] = None , __A : Optional[Sequence[int]] = None , ) -> Protein:
"""simple docstring"""
return Protein(
aatype=features['''aatype'''] , atom_positions=result['''final_atom_positions'''] , atom_mask=result['''final_atom_mask'''] , residue_index=features['''residue_index'''] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ) , chain_index=__A , remark=__A , parents=__A , parents_chain_index=__A , )
| 353 |
import unittest
from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class __snake_case :
@staticmethod
def lowerCamelCase ( *_snake_case : List[str] , **_snake_case : str):
"""simple docstring"""
pass
@is_pipeline_test
@require_torch
@require_vision
class __snake_case ( unittest.TestCase ):
UpperCAmelCase__ : List[Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
def lowerCamelCase ( self : Any , _snake_case : Optional[Any] , _snake_case : int , _snake_case : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''')
UpperCAmelCase_ = [
{
'''image''': Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png'''),
'''question''': '''How many cats are there?''',
},
{
'''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''',
'''question''': '''How many cats are there?''',
},
]
return vqa_pipeline, examples
def lowerCamelCase ( self : Optional[int] , _snake_case : List[str] , _snake_case : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = vqa_pipeline(_snake_case , top_k=1)
self.assertEqual(
_snake_case , [
[{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}],
[{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}],
] , )
@require_torch
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''')
UpperCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png'''
UpperCAmelCase_ = '''How many cats are there?'''
UpperCAmelCase_ = vqa_pipeline(image=_snake_case , question='''How many cats are there?''' , top_k=2)
self.assertEqual(
_snake_case , [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}, {'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}])
UpperCAmelCase_ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2)
self.assertEqual(
_snake_case , [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}, {'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}])
@slow
@require_torch
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''dandelin/vilt-b32-finetuned-vqa''')
UpperCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png'''
UpperCAmelCase_ = '''How many cats are there?'''
UpperCAmelCase_ = vqa_pipeline(image=_snake_case , question=_snake_case , top_k=2)
self.assertEqual(
nested_simplify(_snake_case , decimals=4) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}])
UpperCAmelCase_ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2)
self.assertEqual(
nested_simplify(_snake_case , decimals=4) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}])
UpperCAmelCase_ = vqa_pipeline(
[{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2)
self.assertEqual(
nested_simplify(_snake_case , decimals=4) , [[{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]] * 2 , )
@require_tf
@unittest.skip('''Visual question answering not implemented in TF''')
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
pass
| 7 | 0 |
import json
import os
import unittest
from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast
from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES
from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __snake_case ( a , unittest.TestCase ):
UpperCAmelCase__ : Tuple = OpenAIGPTTokenizer
UpperCAmelCase__ : Any = OpenAIGPTTokenizerFast
UpperCAmelCase__ : Union[str, Any] = True
UpperCAmelCase__ : Optional[Any] = False
def lowerCamelCase ( self : str):
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCAmelCase_ = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''w</w>''',
'''r</w>''',
'''t</w>''',
'''lo''',
'''low''',
'''er</w>''',
'''low</w>''',
'''lowest</w>''',
'''newer</w>''',
'''wider</w>''',
'''<unk>''',
]
UpperCAmelCase_ = dict(zip(_snake_case , range(len(_snake_case))))
UpperCAmelCase_ = ['''#version: 0.2''', '''l o''', '''lo w''', '''e r</w>''', '''''']
UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''])
UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''])
with open(self.vocab_file , '''w''') as fp:
fp.write(json.dumps(_snake_case))
with open(self.merges_file , '''w''') as fp:
fp.write('''\n'''.join(_snake_case))
def lowerCamelCase ( self : Optional[int] , _snake_case : List[Any]):
"""simple docstring"""
return "lower newer", "lower newer"
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ = OpenAIGPTTokenizer(self.vocab_file , self.merges_file)
UpperCAmelCase_ = '''lower'''
UpperCAmelCase_ = ['''low''', '''er</w>''']
UpperCAmelCase_ = tokenizer.tokenize(_snake_case)
self.assertListEqual(_snake_case , _snake_case)
UpperCAmelCase_ = tokens + ['''<unk>''']
UpperCAmelCase_ = [14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case) , _snake_case)
def lowerCamelCase ( self : int , _snake_case : List[Any]=15):
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})"""):
UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_snake_case , **_snake_case)
# Simple input
UpperCAmelCase_ = '''This is a simple input'''
UpperCAmelCase_ = ['''This is a simple input 1''', '''This is a simple input 2''']
UpperCAmelCase_ = ('''This is a simple input''', '''This is a pair''')
UpperCAmelCase_ = [
('''This is a simple input 1''', '''This is a simple input 2'''),
('''This is a simple pair 1''', '''This is a simple pair 2'''),
]
# Simple input tests
self.assertRaises(_snake_case , tokenizer_r.encode , _snake_case , max_length=_snake_case , padding='''max_length''')
# Simple input
self.assertRaises(_snake_case , tokenizer_r.encode_plus , _snake_case , max_length=_snake_case , padding='''max_length''')
# Simple input
self.assertRaises(
_snake_case , tokenizer_r.batch_encode_plus , _snake_case , max_length=_snake_case , padding='''max_length''' , )
# Pair input
self.assertRaises(_snake_case , tokenizer_r.encode , _snake_case , max_length=_snake_case , padding='''max_length''')
# Pair input
self.assertRaises(_snake_case , tokenizer_r.encode_plus , _snake_case , max_length=_snake_case , padding='''max_length''')
# Pair input
self.assertRaises(
_snake_case , tokenizer_r.batch_encode_plus , _snake_case , max_length=_snake_case , padding='''max_length''' , )
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
pass
@require_ftfy
@require_spacy
@require_tokenizers
class __snake_case ( a ):
pass
| 354 |
from timeit import timeit
def A (__A : int ) -> int:
"""simple docstring"""
if number < 0:
raise ValueError('''the value of input must not be negative''' )
UpperCAmelCase_ = 0
while number:
number &= number - 1
result += 1
return result
def A (__A : int ) -> int:
"""simple docstring"""
if number < 0:
raise ValueError('''the value of input must not be negative''' )
UpperCAmelCase_ = 0
while number:
if number % 2 == 1:
result += 1
number >>= 1
return result
def A () -> None:
"""simple docstring"""
def do_benchmark(__A : int ) -> None:
UpperCAmelCase_ = '''import __main__ as z'''
print(F"""Benchmark when {number = }:""" )
print(F"""{get_set_bits_count_using_modulo_operator(__A ) = }""" )
UpperCAmelCase_ = timeit('''z.get_set_bits_count_using_modulo_operator(25)''' , setup=__A )
print(F"""timeit() runs in {timing} seconds""" )
print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(__A ) = }""" )
UpperCAmelCase_ = timeit(
'''z.get_set_bits_count_using_brian_kernighans_algorithm(25)''' , setup=__A , )
print(F"""timeit() runs in {timing} seconds""" )
for number in (25, 37, 58, 0):
do_benchmark(__A )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 7 | 0 |
from argparse import ArgumentParser, Namespace
from ..utils import logging
from . import BaseTransformersCLICommand
def A (__A : Namespace ) -> Dict:
"""simple docstring"""
return ConvertCommand(
args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name )
snake_case_ : int = "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n"
class __snake_case ( a ):
@staticmethod
def lowerCamelCase ( _snake_case : ArgumentParser):
"""simple docstring"""
UpperCAmelCase_ = parser.add_parser(
'''convert''' , help='''CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.''' , )
train_parser.add_argument('''--model_type''' , type=_snake_case , required=_snake_case , help='''Model\'s type.''')
train_parser.add_argument(
'''--tf_checkpoint''' , type=_snake_case , required=_snake_case , help='''TensorFlow checkpoint path or folder.''')
train_parser.add_argument(
'''--pytorch_dump_output''' , type=_snake_case , required=_snake_case , help='''Path to the PyTorch saved model output.''')
train_parser.add_argument('''--config''' , type=_snake_case , default='''''' , help='''Configuration file path or folder.''')
train_parser.add_argument(
'''--finetuning_task_name''' , type=_snake_case , default=_snake_case , help='''Optional fine-tuning task name if the TF model was a finetuned model.''' , )
train_parser.set_defaults(func=_snake_case)
def __init__( self : Optional[int] , _snake_case : str , _snake_case : str , _snake_case : str , _snake_case : str , _snake_case : str , *_snake_case : List[Any] , ):
"""simple docstring"""
UpperCAmelCase_ = logging.get_logger('''transformers-cli/converting''')
self._logger.info(F"""Loading model {model_type}""")
UpperCAmelCase_ = model_type
UpperCAmelCase_ = tf_checkpoint
UpperCAmelCase_ = pytorch_dump_output
UpperCAmelCase_ = config
UpperCAmelCase_ = finetuning_task_name
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
if self._model_type == "albert":
try:
from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(_snake_case)
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output)
elif self._model_type == "bert":
try:
from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(_snake_case)
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output)
elif self._model_type == "funnel":
try:
from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(_snake_case)
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output)
elif self._model_type == "t5":
try:
from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch
except ImportError:
raise ImportError(_snake_case)
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output)
elif self._model_type == "gpt":
from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import (
convert_openai_checkpoint_to_pytorch,
)
convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output)
elif self._model_type == "transfo_xl":
try:
from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import (
convert_transfo_xl_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(_snake_case)
if "ckpt" in self._tf_checkpoint.lower():
UpperCAmelCase_ = self._tf_checkpoint
UpperCAmelCase_ = ''''''
else:
UpperCAmelCase_ = self._tf_checkpoint
UpperCAmelCase_ = ''''''
convert_transfo_xl_checkpoint_to_pytorch(
_snake_case , self._config , self._pytorch_dump_output , _snake_case)
elif self._model_type == "gpt2":
try:
from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import (
convert_gpta_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(_snake_case)
convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output)
elif self._model_type == "xlnet":
try:
from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import (
convert_xlnet_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(_snake_case)
convert_xlnet_checkpoint_to_pytorch(
self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name)
elif self._model_type == "xlm":
from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import (
convert_xlm_checkpoint_to_pytorch,
)
convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output)
elif self._model_type == "lxmert":
from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import (
convert_lxmert_checkpoint_to_pytorch,
)
convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output)
elif self._model_type == "rembert":
from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import (
convert_rembert_tf_checkpoint_to_pytorch,
)
convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output)
else:
raise ValueError(
'''--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]''')
| 355 |
import unittest
import numpy as np
import torch
from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad
class __snake_case ( unittest.TestCase ):
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = 10
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = [1, 2, 3, 4]
UpperCAmelCase_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0]
self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case)
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case)
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case)
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = '''It was the year of Our Lord one thousand seven hundred and
seventy-five.\n\nSpiritual revelations were conceded to England at that
favoured period, as at this.'''
UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case)
self.assertEqual(_snake_case , [])
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = ''''''
UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case)
self.assertEqual(_snake_case , [])
self.assertEqual(_snake_case , [])
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = (
'''It was the year of Our Lord one thousand seven hundred and '''
'''seventy-five\n\nSpiritual revelations were conceded to England '''
'''at that favoured period, as at this.\n@highlight\n\nIt was the best of times'''
)
UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case)
UpperCAmelCase_ = [
'''It was the year of Our Lord one thousand seven hundred and seventy-five.''',
'''Spiritual revelations were conceded to England at that favoured period, as at this.''',
]
self.assertEqual(_snake_case , _snake_case)
UpperCAmelCase_ = ['''It was the best of times.''']
self.assertEqual(_snake_case , _snake_case)
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = torch.tensor([1, 2, 3, 4])
UpperCAmelCase_ = torch.tensor([1, 1, 1, 1])
np.testing.assert_array_equal(build_mask(_snake_case , 0).numpy() , expected.numpy())
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = torch.tensor([1, 2, 3, 4, 23, 23, 23])
UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0])
np.testing.assert_array_equal(build_mask(_snake_case , 23).numpy() , expected.numpy())
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ = torch.tensor([8, 2, 3, 4, 1, 1, 1])
UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0])
np.testing.assert_array_equal(build_mask(_snake_case , 1).numpy() , expected.numpy())
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = 101
UpperCAmelCase_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]])
UpperCAmelCase_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]])
UpperCAmelCase_ = compute_token_type_ids(_snake_case , _snake_case)
np.testing.assert_array_equal(_snake_case , _snake_case)
| 7 | 0 |
import tempfile
import unittest
import numpy as np
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import BertConfig, is_flax_available
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax
if is_flax_available():
import os
from flax.core.frozen_dict import unfreeze
from flax.traverse_util import flatten_dict
from transformers import FlaxBertModel
snake_case_ : Union[str, Any] = "0.12" # assumed parallelism: 8
@require_flax
@is_staging_test
class __snake_case ( unittest.TestCase ):
@classmethod
def lowerCamelCase ( cls : Tuple):
"""simple docstring"""
UpperCAmelCase_ = TOKEN
HfFolder.save_token(_snake_case)
@classmethod
def lowerCamelCase ( cls : List[Any]):
"""simple docstring"""
try:
delete_repo(token=cls._token , repo_id='''test-model-flax''')
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''')
except HTTPError:
pass
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37)
UpperCAmelCase_ = FlaxBertModel(_snake_case)
model.push_to_hub('''test-model-flax''' , use_auth_token=self._token)
UpperCAmelCase_ = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""")
UpperCAmelCase_ = flatten_dict(unfreeze(model.params))
UpperCAmelCase_ = flatten_dict(unfreeze(new_model.params))
for key in base_params.keys():
UpperCAmelCase_ = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_snake_case , 1e-3 , msg=F"""{key} not identical""")
# Reset repo
delete_repo(token=self._token , repo_id='''test-model-flax''')
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(_snake_case , repo_id='''test-model-flax''' , push_to_hub=_snake_case , use_auth_token=self._token)
UpperCAmelCase_ = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""")
UpperCAmelCase_ = flatten_dict(unfreeze(model.params))
UpperCAmelCase_ = flatten_dict(unfreeze(new_model.params))
for key in base_params.keys():
UpperCAmelCase_ = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_snake_case , 1e-3 , msg=F"""{key} not identical""")
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37)
UpperCAmelCase_ = FlaxBertModel(_snake_case)
model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token)
UpperCAmelCase_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''')
UpperCAmelCase_ = flatten_dict(unfreeze(model.params))
UpperCAmelCase_ = flatten_dict(unfreeze(new_model.params))
for key in base_params.keys():
UpperCAmelCase_ = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_snake_case , 1e-3 , msg=F"""{key} not identical""")
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''')
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(
_snake_case , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_snake_case , use_auth_token=self._token)
UpperCAmelCase_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''')
UpperCAmelCase_ = flatten_dict(unfreeze(model.params))
UpperCAmelCase_ = flatten_dict(unfreeze(new_model.params))
for key in base_params.keys():
UpperCAmelCase_ = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_snake_case , 1e-3 , msg=F"""{key} not identical""")
def A (__A : Optional[int] , __A : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ = True
UpperCAmelCase_ = flatten_dict(modela.params )
UpperCAmelCase_ = flatten_dict(modela.params )
for key in flat_params_a.keys():
if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4:
UpperCAmelCase_ = False
return models_are_equal
@require_flax
class __snake_case ( unittest.TestCase ):
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''')
UpperCAmelCase_ = FlaxBertModel(_snake_case)
UpperCAmelCase_ = '''bert'''
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(_snake_case , _snake_case))
with self.assertRaises(_snake_case):
UpperCAmelCase_ = FlaxBertModel.from_pretrained(_snake_case)
UpperCAmelCase_ = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case)
self.assertTrue(check_models_equal(_snake_case , _snake_case))
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''')
UpperCAmelCase_ = FlaxBertModel(_snake_case)
UpperCAmelCase_ = '''bert'''
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(_snake_case , _snake_case) , max_shard_size='''10KB''')
with self.assertRaises(_snake_case):
UpperCAmelCase_ = FlaxBertModel.from_pretrained(_snake_case)
UpperCAmelCase_ = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case)
self.assertTrue(check_models_equal(_snake_case , _snake_case))
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''bert'''
UpperCAmelCase_ = '''hf-internal-testing/tiny-random-bert-subfolder'''
with self.assertRaises(_snake_case):
UpperCAmelCase_ = FlaxBertModel.from_pretrained(_snake_case)
UpperCAmelCase_ = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case)
self.assertIsNotNone(_snake_case)
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''bert'''
UpperCAmelCase_ = '''hf-internal-testing/tiny-random-bert-sharded-subfolder'''
with self.assertRaises(_snake_case):
UpperCAmelCase_ = FlaxBertModel.from_pretrained(_snake_case)
UpperCAmelCase_ = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case)
self.assertIsNotNone(_snake_case)
| 356 |
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import MaMaaaTokenizer, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from transformers.utils import is_sentencepiece_available
if is_sentencepiece_available():
from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json
from ...test_tokenization_common import TokenizerTesterMixin
if is_sentencepiece_available():
snake_case_ : Any = get_tests_dir("fixtures/test_sentencepiece.model")
if is_torch_available():
from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right
snake_case_ : Optional[Any] = 128022
snake_case_ : Optional[int] = 128028
@require_sentencepiece
class __snake_case ( a , unittest.TestCase ):
UpperCAmelCase__ : List[str] = MaMaaaTokenizer
UpperCAmelCase__ : int = False
UpperCAmelCase__ : Dict = False
UpperCAmelCase__ : List[str] = True
def lowerCamelCase ( self : str):
"""simple docstring"""
super().setUp()
UpperCAmelCase_ = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>''']
UpperCAmelCase_ = dict(zip(_snake_case , range(len(_snake_case))))
UpperCAmelCase_ = Path(self.tmpdirname)
save_json(_snake_case , save_dir / VOCAB_FILES_NAMES['''vocab_file'''])
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(_snake_case , save_dir / VOCAB_FILES_NAMES['''spm_file'''])
UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(self.tmpdirname)
tokenizer.save_pretrained(self.tmpdirname)
def lowerCamelCase ( self : str , **_snake_case : Union[str, Any]):
"""simple docstring"""
return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **_snake_case)
def lowerCamelCase ( self : Optional[int] , _snake_case : List[str]):
"""simple docstring"""
return (
"This is a test",
"This is a test",
)
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = '''</s>'''
UpperCAmelCase_ = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case) , _snake_case)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case) , _snake_case)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = self.get_tokenizer()
UpperCAmelCase_ = list(tokenizer.get_vocab().keys())
self.assertEqual(vocab_keys[0] , '''</s>''')
self.assertEqual(vocab_keys[1] , '''<unk>''')
self.assertEqual(vocab_keys[-1] , '''<s>''')
self.assertEqual(len(_snake_case) , tokenizer.vocab_size + len(tokenizer.get_added_vocab()))
@unittest.skip('''Skip this test while all models are still to be uploaded.''')
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
pass
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = self.get_tokenizer()
UpperCAmelCase_ = tokenizer.tokenize('''This is a test''')
self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_snake_case) , [2, 3, 4, 5, 6] , )
UpperCAmelCase_ = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6])
self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''])
UpperCAmelCase_ = tokenizer.convert_tokens_to_string(_snake_case)
self.assertEqual(_snake_case , '''This is a test''')
@slow
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = {'''input_ids''': [[128022, 110108, 397, 11, 38272, 2247, 124811, 285, 18105, 1586, 207, 7, 39534, 4428, 397, 1019, 18105, 1586, 207, 7, 41337, 16786, 241, 7, 20214, 17, 125690, 10398, 7, 44378, 58069, 68342, 7798, 7343, 11, 299, 33310, 4, 158, 37350, 94077, 4569, 299, 33310, 90, 4, 52840, 290, 4, 31270, 112, 299, 682, 4, 52840, 39953, 14079, 193, 52519, 90894, 17894, 120697, 11, 40445, 551, 17, 1019, 52519, 90894, 17756, 963, 11, 40445, 480, 17, 9792, 1120, 5173, 1393, 6240, 16786, 241, 120996, 28, 1245, 1393, 118240, 11123, 1019, 93612, 2691, 10618, 98058, 120409, 1928, 279, 4, 40683, 367, 178, 207, 1019, 103, 103121, 506, 65296, 5, 2], [128022, 21217, 367, 117, 125450, 128, 719, 7, 7308, 40, 93612, 12669, 1116, 16704, 71, 17785, 3699, 15592, 35, 144, 9584, 241, 11943, 713, 950, 799, 2247, 88427, 150, 149, 118813, 120706, 1019, 106906, 81518, 28, 1224, 22799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128022, 1658, 123311, 5155, 5578, 4722, 279, 14947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_snake_case , model_name='''facebook/m2m100_418M''' , revision='''c168bae485c864188cf9aa0e4108b0b6934dc91e''' , )
@require_torch
@require_sentencepiece
@require_tokenizers
class __snake_case ( unittest.TestCase ):
UpperCAmelCase__ : Dict = '''facebook/m2m100_418M'''
UpperCAmelCase__ : Dict = [
'''In my opinion, there are two levels of response from the French government.''',
'''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''',
]
UpperCAmelCase__ : Dict = [
'''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''',
'''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''',
]
# fmt: off
UpperCAmelCase__ : Any = [EN_CODE, 5_9_3, 1_9_4_9, 1_1_5_7_8_1, 4, 7_1_5_8_6, 4_2_3_4, 6_0_6_3_3, 1_2_6_2_3_3, 4_3_2, 1_2_3_8_0_8, 1_5_5_9_2, 1_1_9_7, 1_1_7_1_3_2, 1_2_0_6_1_8, 5, 2]
@classmethod
def lowerCamelCase ( cls : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='''en''' , tgt_lang='''fr''')
UpperCAmelCase_ = 1
return cls
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
self.assertEqual(self.tokenizer.get_lang_id('''ar''') , 128006)
self.assertEqual(self.tokenizer.get_lang_id('''en''') , 128022)
self.assertEqual(self.tokenizer.get_lang_id('''ro''') , 128076)
self.assertEqual(self.tokenizer.get_lang_id('''mr''') , 128063)
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = self.tokenizer.get_vocab()
self.assertEqual(len(_snake_case) , self.tokenizer.vocab_size)
self.assertEqual(vocab['''<unk>'''] , 3)
self.assertIn(self.tokenizer.get_lang_token('''en''') , _snake_case)
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = '''en'''
UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0]
self.assertListEqual(self.expected_src_tokens , _snake_case)
def lowerCamelCase ( self : Any):
"""simple docstring"""
self.assertIn(_snake_case , self.tokenizer.all_special_ids)
# fmt: off
UpperCAmelCase_ = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2]
# fmt: on
UpperCAmelCase_ = self.tokenizer.decode(_snake_case , skip_special_tokens=_snake_case)
UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_snake_case)
self.assertEqual(_snake_case , _snake_case)
self.assertNotIn(self.tokenizer.eos_token , _snake_case)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = tempfile.mkdtemp()
UpperCAmelCase_ = self.tokenizer.lang_token_to_id
self.tokenizer.save_pretrained(_snake_case)
UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(_snake_case)
self.assertDictEqual(new_tok.lang_token_to_id , _snake_case)
@require_torch
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = '''en'''
UpperCAmelCase_ = '''fr'''
UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_snake_case , return_tensors='''pt''')
UpperCAmelCase_ = shift_tokens_right(
batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id)
for k in batch:
UpperCAmelCase_ = batch[k].tolist()
# batch = {k: v.tolist() for k,v in batch.items()}
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
# batch.decoder_inputs_ids[0][0] ==
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == FR_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2] == [2, FR_CODE]
@require_torch
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = '''mr'''
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')])
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id])
UpperCAmelCase_ = '''zh'''
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')])
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id])
@require_torch
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = '''mr'''
self.tokenizer._switch_to_target_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')])
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id])
self.tokenizer._switch_to_input_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)])
UpperCAmelCase_ = '''zh'''
self.tokenizer._switch_to_target_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')])
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id])
self.tokenizer._switch_to_input_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)])
@require_torch
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = self.tokenizer._build_translation_inputs('''A test''' , return_tensors='''pt''' , src_lang='''en''' , tgt_lang='''ar''')
self.assertEqual(
nested_simplify(_snake_case) , {
# en_XX, A, test, EOS
'''input_ids''': [[128022, 58, 4183, 2]],
'''attention_mask''': [[1, 1, 1, 1]],
# ar_AR
'''forced_bos_token_id''': 128006,
} , )
| 7 | 0 |
def A (__A : str ) -> str:
"""simple docstring"""
UpperCAmelCase_ = 0
# if input_string is "aba" than new_input_string become "a|b|a"
UpperCAmelCase_ = ''''''
UpperCAmelCase_ = ''''''
# append each character + "|" in new_string for range(0, length-1)
for i in input_string[: len(__A ) - 1]:
new_input_string += i + "|"
# append last character
new_input_string += input_string[-1]
# we will store the starting and ending of previous furthest ending palindromic
# substring
UpperCAmelCase_ , UpperCAmelCase_ = 0, 0
# length[i] shows the length of palindromic substring with center i
UpperCAmelCase_ = [1 for i in range(len(__A ) )]
# for each character in new_string find corresponding palindromic string
UpperCAmelCase_ = 0
for j in range(len(__A ) ):
UpperCAmelCase_ = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 )
while (
j - k >= 0
and j + k < len(__A )
and new_input_string[k + j] == new_input_string[j - k]
):
k += 1
UpperCAmelCase_ = 2 * k - 1
# does this string is ending after the previously explored end (that is r) ?
# if yes the update the new r to the last index of this
if j + k - 1 > r:
UpperCAmelCase_ = j - k + 1 # noqa: E741
UpperCAmelCase_ = j + k - 1
# update max_length and start position
if max_length < length[j]:
UpperCAmelCase_ = length[j]
UpperCAmelCase_ = j
# create that string
UpperCAmelCase_ = new_input_string[start - max_length // 2 : start + max_length // 2 + 1]
for i in s:
if i != "|":
output_string += i
return output_string
if __name__ == "__main__":
import doctest
doctest.testmod()
| 357 |
from typing import Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
snake_case_ : List[str] = logging.get_logger(__name__)
@add_end_docstrings(a )
class __snake_case ( a ):
def __init__( self : Tuple , *_snake_case : List[Any] , **_snake_case : Optional[Any]):
"""simple docstring"""
super().__init__(*_snake_case , **_snake_case)
self.check_model_type(_snake_case)
def lowerCamelCase ( self : List[str] , _snake_case : Optional[int]=None , _snake_case : Optional[Any]=None , _snake_case : str=None , **_snake_case : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ = {}, {}
if padding is not None:
UpperCAmelCase_ = padding
if truncation is not None:
UpperCAmelCase_ = truncation
if top_k is not None:
UpperCAmelCase_ = top_k
return preprocess_params, {}, postprocess_params
def __call__( self : List[Any] , _snake_case : Union["Image.Image", str] , _snake_case : str = None , **_snake_case : str):
"""simple docstring"""
if isinstance(_snake_case , (Image.Image, str)) and isinstance(_snake_case , _snake_case):
UpperCAmelCase_ = {'''image''': image, '''question''': question}
else:
UpperCAmelCase_ = image
UpperCAmelCase_ = super().__call__(_snake_case , **_snake_case)
return results
def lowerCamelCase ( self : Union[str, Any] , _snake_case : int , _snake_case : Optional[int]=False , _snake_case : int=False):
"""simple docstring"""
UpperCAmelCase_ = load_image(inputs['''image'''])
UpperCAmelCase_ = self.tokenizer(
inputs['''question'''] , return_tensors=self.framework , padding=_snake_case , truncation=_snake_case)
UpperCAmelCase_ = self.image_processor(images=_snake_case , return_tensors=self.framework)
model_inputs.update(_snake_case)
return model_inputs
def lowerCamelCase ( self : List[Any] , _snake_case : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = self.model(**_snake_case)
return model_outputs
def lowerCamelCase ( self : str , _snake_case : Optional[Any] , _snake_case : List[str]=5):
"""simple docstring"""
if top_k > self.model.config.num_labels:
UpperCAmelCase_ = self.model.config.num_labels
if self.framework == "pt":
UpperCAmelCase_ = model_outputs.logits.sigmoid()[0]
UpperCAmelCase_ , UpperCAmelCase_ = probs.topk(_snake_case)
else:
raise ValueError(F"""Unsupported framework: {self.framework}""")
UpperCAmelCase_ = scores.tolist()
UpperCAmelCase_ = ids.tolist()
return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_snake_case , _snake_case)]
| 7 | 0 |
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class __snake_case :
def __init__( self : List[Any] , _snake_case : List[Any] , _snake_case : Optional[int]=2 , _snake_case : str=8 , _snake_case : int=True , _snake_case : List[Any]=True , _snake_case : Dict=True , _snake_case : int=True , _snake_case : Any=99 , _snake_case : Union[str, Any]=16 , _snake_case : Any=5 , _snake_case : Union[str, Any]=2 , _snake_case : List[Any]=36 , _snake_case : Union[str, Any]="gelu" , _snake_case : List[Any]=0.0 , _snake_case : Union[str, Any]=0.0 , _snake_case : Union[str, Any]=512 , _snake_case : Optional[Any]=16 , _snake_case : int=2 , _snake_case : List[Any]=0.0_2 , _snake_case : List[str]=3 , _snake_case : Any=4 , _snake_case : Optional[Any]=None , ):
"""simple docstring"""
UpperCAmelCase_ = parent
UpperCAmelCase_ = batch_size
UpperCAmelCase_ = seq_length
UpperCAmelCase_ = is_training
UpperCAmelCase_ = use_input_mask
UpperCAmelCase_ = use_token_type_ids
UpperCAmelCase_ = use_labels
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = hidden_dropout_prob
UpperCAmelCase_ = attention_probs_dropout_prob
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = type_vocab_size
UpperCAmelCase_ = type_sequence_label_size
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = num_labels
UpperCAmelCase_ = num_choices
UpperCAmelCase_ = scope
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
UpperCAmelCase_ = None
if self.use_input_mask:
UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length])
UpperCAmelCase_ = None
if self.use_token_type_ids:
UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
UpperCAmelCase_ = None
UpperCAmelCase_ = None
UpperCAmelCase_ = None
if self.use_labels:
UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices)
UpperCAmelCase_ = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , )
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = self.get_config()
UpperCAmelCase_ = 300
return config
def lowerCamelCase ( self : Dict):
"""simple docstring"""
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) = self.prepare_config_and_inputs()
UpperCAmelCase_ = True
UpperCAmelCase_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2)
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def lowerCamelCase ( self : List[Any] , _snake_case : Union[str, Any] , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : List[str] , _snake_case : List[str] , _snake_case : Tuple , _snake_case : int):
"""simple docstring"""
UpperCAmelCase_ = MraModel(config=_snake_case)
model.to(_snake_case)
model.eval()
UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case)
UpperCAmelCase_ = model(_snake_case , token_type_ids=_snake_case)
UpperCAmelCase_ = model(_snake_case)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def lowerCamelCase ( self : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : int , _snake_case : List[str] , _snake_case : str , _snake_case : Optional[Any] , _snake_case : Any , _snake_case : Tuple , _snake_case : Dict , ):
"""simple docstring"""
UpperCAmelCase_ = True
UpperCAmelCase_ = MraModel(_snake_case)
model.to(_snake_case)
model.eval()
UpperCAmelCase_ = model(
_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , )
UpperCAmelCase_ = model(
_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , encoder_hidden_states=_snake_case , )
UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def lowerCamelCase ( self : List[Any] , _snake_case : Optional[int] , _snake_case : int , _snake_case : str , _snake_case : int , _snake_case : List[str] , _snake_case : Union[str, Any] , _snake_case : int):
"""simple docstring"""
UpperCAmelCase_ = MraForMaskedLM(config=_snake_case)
model.to(_snake_case)
model.eval()
UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def lowerCamelCase ( self : List[Any] , _snake_case : Tuple , _snake_case : Tuple , _snake_case : Tuple , _snake_case : str , _snake_case : List[str] , _snake_case : int , _snake_case : Any):
"""simple docstring"""
UpperCAmelCase_ = MraForQuestionAnswering(config=_snake_case)
model.to(_snake_case)
model.eval()
UpperCAmelCase_ = model(
_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , start_positions=_snake_case , end_positions=_snake_case , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def lowerCamelCase ( self : List[str] , _snake_case : str , _snake_case : List[Any] , _snake_case : Optional[Any] , _snake_case : List[Any] , _snake_case : int , _snake_case : List[Any] , _snake_case : int):
"""simple docstring"""
UpperCAmelCase_ = self.num_labels
UpperCAmelCase_ = MraForSequenceClassification(_snake_case)
model.to(_snake_case)
model.eval()
UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def lowerCamelCase ( self : Dict , _snake_case : Dict , _snake_case : int , _snake_case : List[Any] , _snake_case : int , _snake_case : List[Any] , _snake_case : Any , _snake_case : int):
"""simple docstring"""
UpperCAmelCase_ = self.num_labels
UpperCAmelCase_ = MraForTokenClassification(config=_snake_case)
model.to(_snake_case)
model.eval()
UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def lowerCamelCase ( self : str , _snake_case : Tuple , _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : str , _snake_case : Any , _snake_case : Any , _snake_case : Tuple):
"""simple docstring"""
UpperCAmelCase_ = self.num_choices
UpperCAmelCase_ = MraForMultipleChoice(config=_snake_case)
model.to(_snake_case)
model.eval()
UpperCAmelCase_ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
UpperCAmelCase_ = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
UpperCAmelCase_ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
UpperCAmelCase_ = model(
_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices))
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) = config_and_inputs
UpperCAmelCase_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class __snake_case ( a , unittest.TestCase ):
UpperCAmelCase__ : List[Any] = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
UpperCAmelCase__ : int = False
UpperCAmelCase__ : str = False
UpperCAmelCase__ : Optional[Any] = False
UpperCAmelCase__ : Dict = False
UpperCAmelCase__ : Any = ()
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = MraModelTester(self)
UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case , hidden_size=37)
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case)
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase_ = type
self.model_tester.create_and_check_model(*_snake_case)
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_snake_case)
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_snake_case)
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_snake_case)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_snake_case)
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_snake_case)
@slow
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ = MraModel.from_pretrained(_snake_case)
self.assertIsNotNone(_snake_case)
@unittest.skip(reason='''MRA does not output attentions''')
def lowerCamelCase ( self : int):
"""simple docstring"""
return
@require_torch
class __snake_case ( unittest.TestCase ):
@slow
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = MraModel.from_pretrained('''uw-madison/mra-base-512-4''')
UpperCAmelCase_ = torch.arange(256).unsqueeze(0)
with torch.no_grad():
UpperCAmelCase_ = model(_snake_case)[0]
UpperCAmelCase_ = torch.Size((1, 256, 768))
self.assertEqual(output.shape , _snake_case)
UpperCAmelCase_ = torch.tensor(
[[[-0.0_1_4_0, 0.0_8_3_0, -0.0_3_8_1], [0.1_5_4_6, 0.1_4_0_2, 0.0_2_2_0], [0.1_1_6_2, 0.0_8_5_1, 0.0_1_6_5]]])
self.assertTrue(torch.allclose(output[:, :3, :3] , _snake_case , atol=1e-4))
@slow
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''')
UpperCAmelCase_ = torch.arange(256).unsqueeze(0)
with torch.no_grad():
UpperCAmelCase_ = model(_snake_case)[0]
UpperCAmelCase_ = 50265
UpperCAmelCase_ = torch.Size((1, 256, vocab_size))
self.assertEqual(output.shape , _snake_case)
UpperCAmelCase_ = torch.tensor(
[[[9.2_5_9_5, -3.6_0_3_8, 11.8819], [9.3_8_6_9, -3.2_6_9_3, 11.0956], [11.8524, -3.4_9_3_8, 13.1210]]])
self.assertTrue(torch.allclose(output[:, :3, :3] , _snake_case , atol=1e-4))
@slow
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''')
UpperCAmelCase_ = torch.arange(4096).unsqueeze(0)
with torch.no_grad():
UpperCAmelCase_ = model(_snake_case)[0]
UpperCAmelCase_ = 50265
UpperCAmelCase_ = torch.Size((1, 4096, vocab_size))
self.assertEqual(output.shape , _snake_case)
UpperCAmelCase_ = torch.tensor(
[[[5.4_7_8_9, -2.3_5_6_4, 7.5_0_6_4], [7.9_0_6_7, -1.3_3_6_9, 9.9_6_6_8], [9.0_7_1_2, -1.8_1_0_6, 7.0_3_8_0]]])
self.assertTrue(torch.allclose(output[:, :3, :3] , _snake_case , atol=1e-4))
| 358 |
import sys
def A (__A : int ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ = len(__A )
UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )]
UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )]
for chain_length in range(2 , __A ):
for a in range(1 , n - chain_length + 1 ):
UpperCAmelCase_ = a + chain_length - 1
UpperCAmelCase_ = sys.maxsize
for c in range(__A , __A ):
UpperCAmelCase_ = (
matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b]
)
if cost < matrix[a][b]:
UpperCAmelCase_ = cost
UpperCAmelCase_ = c
return matrix, sol
def A (__A : Any , __A : Dict , __A : Optional[int] ) -> Optional[int]:
"""simple docstring"""
if i == j:
print('''A''' + str(__A ) , end=''' ''' )
else:
print('''(''' , end=''' ''' )
print_optiomal_solution(__A , __A , optimal_solution[i][j] )
print_optiomal_solution(__A , optimal_solution[i][j] + 1 , __A )
print(''')''' , end=''' ''' )
def A () -> List[str]:
"""simple docstring"""
UpperCAmelCase_ = [30, 35, 15, 5, 10, 20, 25]
UpperCAmelCase_ = len(__A )
# Size of matrix created from above array will be
# 30*35 35*15 15*5 5*10 10*20 20*25
UpperCAmelCase_ , UpperCAmelCase_ = matrix_chain_order(__A )
print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) )
print_optiomal_solution(__A , 1 , n - 1 )
if __name__ == "__main__":
main()
| 7 | 0 |
"""simple docstring"""
import unittest
from transformers import load_tool
from transformers.utils import is_torch_available
if is_torch_available():
import torch
from transformers.testing_utils import require_torch
from .test_tools_common import ToolTesterMixin
@require_torch
class __snake_case ( unittest.TestCase , a ):
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = load_tool('''text-to-speech''')
self.tool.setup()
def lowerCamelCase ( self : int):
"""simple docstring"""
torch.manual_seed(0)
UpperCAmelCase_ = self.tool('''hey''')
UpperCAmelCase_ = result.to_raw()
self.assertTrue(
torch.allclose(
resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5]) , ))
def lowerCamelCase ( self : Any):
"""simple docstring"""
torch.manual_seed(0)
UpperCAmelCase_ = self.tool('''hey''')
UpperCAmelCase_ = result.to_raw()
self.assertTrue(
torch.allclose(
resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5]) , ))
| 359 |
import inspect
import os
import re
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
snake_case_ : int = "src/transformers"
# This is to make sure the transformers module imported is the one in the repo.
snake_case_ : Union[str, Any] = direct_transformers_import(PATH_TO_TRANSFORMERS)
snake_case_ : Union[str, Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING
snake_case_ : Union[str, Any] = {
# used to compute the property `self.chunk_length`
"EncodecConfig": ["overlap"],
# used as `self.bert_model = BertModel(config, ...)`
"DPRConfig": True,
# not used in modeling files, but it's an important information
"FSMTConfig": ["langs"],
# used internally in the configuration class file
"GPTNeoConfig": ["attention_types"],
# used internally in the configuration class file
"EsmConfig": ["is_folding_model"],
# used during training (despite we don't have training script for these models yet)
"Mask2FormerConfig": ["ignore_value"],
# `ignore_value` used during training (despite we don't have training script for these models yet)
# `norm` used in conversion script (despite not using in the modeling file)
"OneFormerConfig": ["ignore_value", "norm"],
# used during preprocessing and collation, see `collating_graphormer.py`
"GraphormerConfig": ["spatial_pos_max"],
# used internally in the configuration class file
"T5Config": ["feed_forward_proj"],
# used internally in the configuration class file
# `tokenizer_class` get default value `T5Tokenizer` intentionally
"MT5Config": ["feed_forward_proj", "tokenizer_class"],
"UMT5Config": ["feed_forward_proj", "tokenizer_class"],
# used internally in the configuration class file
"LongT5Config": ["feed_forward_proj"],
# used internally in the configuration class file
"SwitchTransformersConfig": ["feed_forward_proj"],
# having default values other than `1e-5` - we can't fix them without breaking
"BioGptConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"GLPNConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"SegformerConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"CvtConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"PerceiverConfig": ["layer_norm_eps"],
# used internally to calculate the feature size
"InformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate the feature size
"TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate the feature size
"AutoformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate `mlp_dim`
"SamVisionConfig": ["mlp_ratio"],
# For (head) training, but so far not implemented
"ClapAudioConfig": ["num_classes"],
# Not used, but providing useful information to users
"SpeechT5HifiGanConfig": ["sampling_rate"],
}
# TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure
SPECIAL_CASES_TO_ALLOW.update(
{
"CLIPSegConfig": True,
"DeformableDetrConfig": True,
"DetaConfig": True,
"DinatConfig": True,
"DonutSwinConfig": True,
"EfficientFormerConfig": True,
"FSMTConfig": True,
"JukeboxConfig": True,
"LayoutLMv2Config": True,
"MaskFormerSwinConfig": True,
"MT5Config": True,
"NatConfig": True,
"OneFormerConfig": True,
"PerceiverConfig": True,
"RagConfig": True,
"SpeechT5Config": True,
"SwinConfig": True,
"Swin2SRConfig": True,
"Swinv2Config": True,
"SwitchTransformersConfig": True,
"TableTransformerConfig": True,
"TapasConfig": True,
"TransfoXLConfig": True,
"UniSpeechConfig": True,
"UniSpeechSatConfig": True,
"WavLMConfig": True,
"WhisperConfig": True,
# TODO: @Arthur (for `alignment_head` and `alignment_layer`)
"JukeboxPriorConfig": True,
# TODO: @Younes (for `is_decoder`)
"Pix2StructTextConfig": True,
}
)
def A (__A : List[Any] , __A : Optional[int] , __A : str , __A : Dict ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ = False
for attribute in attributes:
for modeling_source in source_strings:
# check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)`
if (
F"""config.{attribute}""" in modeling_source
or F"""getattr(config, \"{attribute}\"""" in modeling_source
or F"""getattr(self.config, \"{attribute}\"""" in modeling_source
):
UpperCAmelCase_ = True
# Deal with multi-line cases
elif (
re.search(
RF"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , __A , )
is not None
):
UpperCAmelCase_ = True
# `SequenceSummary` is called with `SequenceSummary(config)`
elif attribute in [
"summary_type",
"summary_use_proj",
"summary_activation",
"summary_last_dropout",
"summary_proj_to_labels",
"summary_first_dropout",
]:
if "SequenceSummary" in modeling_source:
UpperCAmelCase_ = True
if attribute_used:
break
if attribute_used:
break
# common and important attributes, even if they do not always appear in the modeling files
UpperCAmelCase_ = [
'''bos_index''',
'''eos_index''',
'''pad_index''',
'''unk_index''',
'''mask_index''',
'''image_size''',
'''use_cache''',
'''out_features''',
'''out_indices''',
]
UpperCAmelCase_ = ['''encoder_no_repeat_ngram_size''']
# Special cases to be allowed
UpperCAmelCase_ = True
if not attribute_used:
UpperCAmelCase_ = False
for attribute in attributes:
# Allow if the default value in the configuration class is different from the one in `PretrainedConfig`
if attribute in ["is_encoder_decoder"] and default_value is True:
UpperCAmelCase_ = True
elif attribute in ["tie_word_embeddings"] and default_value is False:
UpperCAmelCase_ = True
# Allow cases without checking the default value in the configuration class
elif attribute in attributes_to_allow + attributes_used_in_generation:
UpperCAmelCase_ = True
elif attribute.endswith('''_token_id''' ):
UpperCAmelCase_ = True
# configuration class specific cases
if not case_allowed:
UpperCAmelCase_ = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] )
UpperCAmelCase_ = allowed_cases is True or attribute in allowed_cases
return attribute_used or case_allowed
def A (__A : Tuple ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ = dict(inspect.signature(config_class.__init__ ).parameters )
UpperCAmelCase_ = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']]
UpperCAmelCase_ = [signature[param].default for param in parameter_names]
# If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long
# as one variant is used, the test should pass
UpperCAmelCase_ = {}
if len(config_class.attribute_map ) > 0:
UpperCAmelCase_ = {v: k for k, v in config_class.attribute_map.items()}
# Get the path to modeling source files
UpperCAmelCase_ = inspect.getsourcefile(__A )
UpperCAmelCase_ = os.path.dirname(__A )
# Let's check against all frameworks: as long as one framework uses an attribute, we are good.
UpperCAmelCase_ = [os.path.join(__A , __A ) for fn in os.listdir(__A ) if fn.startswith('''modeling_''' )]
# Get the source code strings
UpperCAmelCase_ = []
for path in modeling_paths:
if os.path.isfile(__A ):
with open(__A ) as fp:
modeling_sources.append(fp.read() )
UpperCAmelCase_ = []
for config_param, default_value in zip(__A , __A ):
# `attributes` here is all the variant names for `config_param`
UpperCAmelCase_ = [config_param]
# some configuration classes have non-empty `attribute_map`, and both names could be used in the
# corresponding modeling files. As long as one of them appears, it is fine.
if config_param in reversed_attribute_map:
attributes.append(reversed_attribute_map[config_param] )
if not check_attribute_being_used(__A , __A , __A , __A ):
unused_attributes.append(attributes[0] )
return sorted(__A )
def A () -> Any:
"""simple docstring"""
UpperCAmelCase_ = {}
for _config_class in list(CONFIG_MAPPING.values() ):
# Skip deprecated models
if "models.deprecated" in _config_class.__module__:
continue
# Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.)
UpperCAmelCase_ = [
cls
for name, cls in inspect.getmembers(
inspect.getmodule(_config_class ) , lambda __A : inspect.isclass(__A )
and issubclass(__A , __A )
and inspect.getmodule(__A ) == inspect.getmodule(_config_class ) , )
]
for config_class in config_classes_in_module:
UpperCAmelCase_ = check_config_attributes_being_used(__A )
if len(__A ) > 0:
UpperCAmelCase_ = unused_attributes
if len(__A ) > 0:
UpperCAmelCase_ = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n'''
for name, attributes in configs_with_unused_attributes.items():
error += F"""{name}: {attributes}\n"""
raise ValueError(__A )
if __name__ == "__main__":
check_config_attributes()
| 7 | 0 |
import argparse
import os
import torch
from transformers import (
XLNetConfig,
XLNetForQuestionAnswering,
XLNetForSequenceClassification,
XLNetLMHeadModel,
load_tf_weights_in_xlnet,
)
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
snake_case_ : Optional[int] = {
"cola": 2,
"mnli": 3,
"mrpc": 2,
"sst-2": 2,
"sts-b": 1,
"qqp": 2,
"qnli": 2,
"rte": 2,
"wnli": 2,
}
logging.set_verbosity_info()
def A (__A : Tuple , __A : List[str] , __A : Optional[Any] , __A : Optional[int]=None ) -> int:
"""simple docstring"""
UpperCAmelCase_ = XLNetConfig.from_json_file(__A )
UpperCAmelCase_ = finetuning_task.lower() if finetuning_task is not None else ''''''
if finetuning_task in GLUE_TASKS_NUM_LABELS:
print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" )
UpperCAmelCase_ = finetuning_task
UpperCAmelCase_ = GLUE_TASKS_NUM_LABELS[finetuning_task]
UpperCAmelCase_ = XLNetForSequenceClassification(__A )
elif "squad" in finetuning_task:
UpperCAmelCase_ = finetuning_task
UpperCAmelCase_ = XLNetForQuestionAnswering(__A )
else:
UpperCAmelCase_ = XLNetLMHeadModel(__A )
# Load weights from tf checkpoint
load_tf_weights_in_xlnet(__A , __A , __A )
# Save pytorch-model
UpperCAmelCase_ = os.path.join(__A , __A )
UpperCAmelCase_ = os.path.join(__A , __A )
print(F"""Save PyTorch model to {os.path.abspath(__A )}""" )
torch.save(model.state_dict() , __A )
print(F"""Save configuration file to {os.path.abspath(__A )}""" )
with open(__A , '''w''' , encoding='''utf-8''' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
snake_case_ : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--xlnet_config_file',
default=None,
type=str,
required=True,
help=(
'The config json file corresponding to the pre-trained XLNet model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the folder to store the PyTorch model or dataset/vocab.',
)
parser.add_argument(
'--finetuning_task',
default=None,
type=str,
help='Name of a task on which the XLNet TensorFlow model was fine-tuned',
)
snake_case_ : int = parser.parse_args()
print(args)
convert_xlnet_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task
)
| 360 |
import unittest
from diffusers import FlaxAutoencoderKL
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax
from .test_modeling_common_flax import FlaxModelTesterMixin
if is_flax_available():
import jax
@require_flax
class __snake_case ( a , unittest.TestCase ):
UpperCAmelCase__ : Optional[Any] = FlaxAutoencoderKL
@property
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = 4
UpperCAmelCase_ = 3
UpperCAmelCase_ = (32, 32)
UpperCAmelCase_ = jax.random.PRNGKey(0)
UpperCAmelCase_ = jax.random.uniform(_snake_case , ((batch_size, num_channels) + sizes))
return {"sample": image, "prng_key": prng_key}
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = {
'''block_out_channels''': [32, 64],
'''in_channels''': 3,
'''out_channels''': 3,
'''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''],
'''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''],
'''latent_channels''': 4,
}
UpperCAmelCase_ = self.dummy_input
return init_dict, inputs_dict
| 7 | 0 |
from math import factorial, pi
def A (__A : float , __A : int = 30 ) -> float:
"""simple docstring"""
if not isinstance(__A , (int, float) ):
raise ValueError('''maclaurin_sin() requires either an int or float for theta''' )
if not isinstance(__A , __A ) or accuracy <= 0:
raise ValueError('''maclaurin_sin() requires a positive int for accuracy''' )
UpperCAmelCase_ = float(__A )
UpperCAmelCase_ = theta // (2 * pi)
theta -= 2 * div * pi
return sum(
(-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(__A ) )
def A (__A : float , __A : int = 30 ) -> float:
"""simple docstring"""
if not isinstance(__A , (int, float) ):
raise ValueError('''maclaurin_cos() requires either an int or float for theta''' )
if not isinstance(__A , __A ) or accuracy <= 0:
raise ValueError('''maclaurin_cos() requires a positive int for accuracy''' )
UpperCAmelCase_ = float(__A )
UpperCAmelCase_ = theta // (2 * pi)
theta -= 2 * div * pi
return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(__A ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(maclaurin_sin(10))
print(maclaurin_sin(-10))
print(maclaurin_sin(10, 15))
print(maclaurin_sin(-10, 15))
print(maclaurin_cos(5))
print(maclaurin_cos(-5))
print(maclaurin_cos(10, 15))
print(maclaurin_cos(-10, 15))
| 361 |
import json
import os
import shutil
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoConfig, BertConfig, GPTaConfig
from transformers.configuration_utils import PretrainedConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
snake_case_ : List[str] = {
"return_dict": False,
"output_hidden_states": True,
"output_attentions": True,
"torchscript": True,
"torch_dtype": "float16",
"use_bfloat16": True,
"tf_legacy_loss": True,
"pruned_heads": {"a": 1},
"tie_word_embeddings": False,
"is_decoder": True,
"cross_attention_hidden_size": 128,
"add_cross_attention": True,
"tie_encoder_decoder": True,
"max_length": 50,
"min_length": 3,
"do_sample": True,
"early_stopping": True,
"num_beams": 3,
"num_beam_groups": 3,
"diversity_penalty": 0.5,
"temperature": 2.0,
"top_k": 10,
"top_p": 0.7,
"typical_p": 0.2,
"repetition_penalty": 0.8,
"length_penalty": 0.8,
"no_repeat_ngram_size": 5,
"encoder_no_repeat_ngram_size": 5,
"bad_words_ids": [1, 2, 3],
"num_return_sequences": 3,
"chunk_size_feed_forward": 5,
"output_scores": True,
"return_dict_in_generate": True,
"forced_bos_token_id": 2,
"forced_eos_token_id": 3,
"remove_invalid_values": True,
"architectures": ["BertModel"],
"finetuning_task": "translation",
"id2label": {0: "label"},
"label2id": {"label": "0"},
"tokenizer_class": "BertTokenizerFast",
"prefix": "prefix",
"bos_token_id": 6,
"pad_token_id": 7,
"eos_token_id": 8,
"sep_token_id": 9,
"decoder_start_token_id": 10,
"exponential_decay_length_penalty": (5, 1.01),
"suppress_tokens": [0, 1],
"begin_suppress_tokens": 2,
"task_specific_params": {"translation": "some_params"},
"problem_type": "regression",
}
@is_staging_test
class __snake_case ( unittest.TestCase ):
@classmethod
def lowerCamelCase ( cls : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = TOKEN
HfFolder.save_token(_snake_case)
@classmethod
def lowerCamelCase ( cls : List[str]):
"""simple docstring"""
try:
delete_repo(token=cls._token , repo_id='''test-config''')
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''')
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''test-dynamic-config''')
except HTTPError:
pass
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37)
config.push_to_hub('''test-config''' , use_auth_token=self._token)
UpperCAmelCase_ = BertConfig.from_pretrained(F"""{USER}/test-config""")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_snake_case , getattr(_snake_case , _snake_case))
# Reset repo
delete_repo(token=self._token , repo_id='''test-config''')
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(_snake_case , repo_id='''test-config''' , push_to_hub=_snake_case , use_auth_token=self._token)
UpperCAmelCase_ = BertConfig.from_pretrained(F"""{USER}/test-config""")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_snake_case , getattr(_snake_case , _snake_case))
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37)
config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token)
UpperCAmelCase_ = BertConfig.from_pretrained('''valid_org/test-config-org''')
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_snake_case , getattr(_snake_case , _snake_case))
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-config-org''')
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
_snake_case , repo_id='''valid_org/test-config-org''' , push_to_hub=_snake_case , use_auth_token=self._token)
UpperCAmelCase_ = BertConfig.from_pretrained('''valid_org/test-config-org''')
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_snake_case , getattr(_snake_case , _snake_case))
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
CustomConfig.register_for_auto_class()
UpperCAmelCase_ = CustomConfig(attribute=42)
config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token)
# This has added the proper auto_map field to the config
self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''})
UpperCAmelCase_ = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=_snake_case)
# Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module
self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''')
self.assertEqual(new_config.attribute , 42)
class __snake_case ( unittest.TestCase ):
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = GPTaConfig()
# attempt to modify each of int/float/bool/str config records and verify they were updated
UpperCAmelCase_ = c.n_embd + 1 # int
UpperCAmelCase_ = c.resid_pdrop + 1.0 # float
UpperCAmelCase_ = not c.scale_attn_weights # bool
UpperCAmelCase_ = c.summary_type + '''foo''' # str
c.update_from_string(
F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""")
self.assertEqual(_snake_case , c.n_embd , '''mismatch for key: n_embd''')
self.assertEqual(_snake_case , c.resid_pdrop , '''mismatch for key: resid_pdrop''')
self.assertEqual(_snake_case , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''')
self.assertEqual(_snake_case , c.summary_type , '''mismatch for key: summary_type''')
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = PretrainedConfig()
UpperCAmelCase_ = [key for key in base_config.__dict__ if key not in config_common_kwargs]
# If this part of the test fails, you have arguments to addin config_common_kwargs above.
self.assertListEqual(
_snake_case , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version'''])
UpperCAmelCase_ = [key for key, value in config_common_kwargs.items() if value == getattr(_snake_case , _snake_case)]
if len(_snake_case) > 0:
raise ValueError(
'''The following keys are set with the default values in'''
''' `test_configuration_common.config_common_kwargs` pick another value for them:'''
F""" {", ".join(_snake_case)}.""")
def lowerCamelCase ( self : str):
"""simple docstring"""
with self.assertRaises(_snake_case):
# config is in subfolder, the following should not work without specifying the subfolder
UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''')
UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''')
self.assertIsNotNone(_snake_case)
def lowerCamelCase ( self : Any):
"""simple docstring"""
UpperCAmelCase_ = mock.Mock()
UpperCAmelCase_ = 500
UpperCAmelCase_ = {}
UpperCAmelCase_ = HTTPError
UpperCAmelCase_ = {}
# Download this model to make sure it's in the cache.
UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''')
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('''requests.Session.request''' , return_value=_snake_case) as mock_head:
UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''')
# This check we did call the fake head request
mock_head.assert_called()
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = BertConfig.from_pretrained(
'''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''')
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = AutoConfig.from_pretrained('''bert-base-cased''')
UpperCAmelCase_ = ['''config.4.0.0.json''']
with tempfile.TemporaryDirectory() as tmp_dir:
configuration.save_pretrained(_snake_case)
UpperCAmelCase_ = 2
json.dump(configuration.to_dict() , open(os.path.join(_snake_case , '''config.4.0.0.json''') , '''w'''))
# This should pick the new configuration file as the version of Transformers is > 4.0.0
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
self.assertEqual(new_configuration.hidden_size , 2)
# Will need to be adjusted if we reach v42 and this test is still here.
# Should pick the old configuration file as the version of Transformers is < 4.42.0
UpperCAmelCase_ = ['''config.42.0.0.json''']
UpperCAmelCase_ = 768
configuration.save_pretrained(_snake_case)
shutil.move(os.path.join(_snake_case , '''config.4.0.0.json''') , os.path.join(_snake_case , '''config.42.0.0.json'''))
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
self.assertEqual(new_configuration.hidden_size , 768)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = '''hf-internal-testing/test-two-configs'''
import transformers as new_transformers
UpperCAmelCase_ = '''v4.0.0'''
UpperCAmelCase_ , UpperCAmelCase_ = new_transformers.models.auto.AutoConfig.from_pretrained(
_snake_case , return_unused_kwargs=_snake_case)
self.assertEqual(new_configuration.hidden_size , 2)
# This checks `_configuration_file` ia not kept in the kwargs by mistake.
self.assertDictEqual(_snake_case , {})
# Testing an older version by monkey-patching the version in the module it's used.
import transformers as old_transformers
UpperCAmelCase_ = '''v3.0.0'''
UpperCAmelCase_ = old_transformers.models.auto.AutoConfig.from_pretrained(_snake_case)
self.assertEqual(old_configuration.hidden_size , 768)
| 7 | 0 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation
def A (__A : List[str] ) -> Any:
"""simple docstring"""
UpperCAmelCase_ = 384
UpperCAmelCase_ = 7
if "tiny" in model_name:
UpperCAmelCase_ = 96
UpperCAmelCase_ = (2, 2, 6, 2)
UpperCAmelCase_ = (3, 6, 12, 24)
elif "small" in model_name:
UpperCAmelCase_ = 96
UpperCAmelCase_ = (2, 2, 18, 2)
UpperCAmelCase_ = (3, 6, 12, 24)
elif "base" in model_name:
UpperCAmelCase_ = 128
UpperCAmelCase_ = (2, 2, 18, 2)
UpperCAmelCase_ = (4, 8, 16, 32)
UpperCAmelCase_ = 12
UpperCAmelCase_ = 512
elif "large" in model_name:
UpperCAmelCase_ = 192
UpperCAmelCase_ = (2, 2, 18, 2)
UpperCAmelCase_ = (6, 12, 24, 48)
UpperCAmelCase_ = 12
UpperCAmelCase_ = 768
# set label information
UpperCAmelCase_ = 150
UpperCAmelCase_ = '''huggingface/label-files'''
UpperCAmelCase_ = '''ade20k-id2label.json'''
UpperCAmelCase_ = json.load(open(hf_hub_download(__A , __A , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase_ = {int(__A ): v for k, v in idalabel.items()}
UpperCAmelCase_ = {v: k for k, v in idalabel.items()}
UpperCAmelCase_ = SwinConfig(
embed_dim=__A , depths=__A , num_heads=__A , window_size=__A , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , )
UpperCAmelCase_ = UperNetConfig(
backbone_config=__A , auxiliary_in_channels=__A , num_labels=__A , idalabel=__A , labelaid=__A , )
return config
def A (__A : List[str] ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ = []
# fmt: off
# stem
rename_keys.append(('''backbone.patch_embed.projection.weight''', '''backbone.embeddings.patch_embeddings.projection.weight''') )
rename_keys.append(('''backbone.patch_embed.projection.bias''', '''backbone.embeddings.patch_embeddings.projection.bias''') )
rename_keys.append(('''backbone.patch_embed.norm.weight''', '''backbone.embeddings.norm.weight''') )
rename_keys.append(('''backbone.patch_embed.norm.bias''', '''backbone.embeddings.norm.bias''') )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm1.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm1.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm2.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm2.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias""") )
if i < 3:
rename_keys.append((F"""backbone.stages.{i}.downsample.reduction.weight""", F"""backbone.encoder.layers.{i}.downsample.reduction.weight""") )
rename_keys.append((F"""backbone.stages.{i}.downsample.norm.weight""", F"""backbone.encoder.layers.{i}.downsample.norm.weight""") )
rename_keys.append((F"""backbone.stages.{i}.downsample.norm.bias""", F"""backbone.encoder.layers.{i}.downsample.norm.bias""") )
rename_keys.append((F"""backbone.norm{i}.weight""", F"""backbone.hidden_states_norms.stage{i+1}.weight""") )
rename_keys.append((F"""backbone.norm{i}.bias""", F"""backbone.hidden_states_norms.stage{i+1}.bias""") )
# decode head
rename_keys.extend(
[
('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''),
('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''),
('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''),
('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''),
] )
# fmt: on
return rename_keys
def A (__A : Optional[int] , __A : Any , __A : Tuple ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ = dct.pop(__A )
UpperCAmelCase_ = val
def A (__A : str , __A : Tuple ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
UpperCAmelCase_ = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
UpperCAmelCase_ = state_dict.pop(F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight""" )
UpperCAmelCase_ = state_dict.pop(F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ = in_proj_weight[:dim, :]
UpperCAmelCase_ = in_proj_bias[: dim]
UpperCAmelCase_ = in_proj_weight[
dim : dim * 2, :
]
UpperCAmelCase_ = in_proj_bias[
dim : dim * 2
]
UpperCAmelCase_ = in_proj_weight[
-dim :, :
]
UpperCAmelCase_ = in_proj_bias[-dim :]
# fmt: on
def A (__A : int ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ = x.shape
UpperCAmelCase_ = x.reshape(__A , 4 , in_channel // 4 )
UpperCAmelCase_ = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(__A , __A )
return x
def A (__A : str ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ = x.shape
UpperCAmelCase_ = x.reshape(__A , in_channel // 4 , 4 )
UpperCAmelCase_ = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(__A , __A )
return x
def A (__A : Union[str, Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ = x.shape[0]
UpperCAmelCase_ = x.reshape(4 , in_channel // 4 )
UpperCAmelCase_ = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(__A )
return x
def A (__A : Optional[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ = x.shape[0]
UpperCAmelCase_ = x.reshape(in_channel // 4 , 4 )
UpperCAmelCase_ = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(__A )
return x
def A (__A : Any , __A : Dict , __A : Optional[int] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ = {
'''upernet-swin-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth''',
'''upernet-swin-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth''',
'''upernet-swin-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth''',
'''upernet-swin-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth''',
}
UpperCAmelCase_ = model_name_to_url[model_name]
UpperCAmelCase_ = torch.hub.load_state_dict_from_url(__A , map_location='''cpu''' , file_name=__A )[
'''state_dict'''
]
for name, param in state_dict.items():
print(__A , param.shape )
UpperCAmelCase_ = get_upernet_config(__A )
UpperCAmelCase_ = UperNetForSemanticSegmentation(__A )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
UpperCAmelCase_ = state_dict.pop(__A )
if "bn" in key:
UpperCAmelCase_ = key.replace('''bn''' , '''batch_norm''' )
UpperCAmelCase_ = val
# rename keys
UpperCAmelCase_ = create_rename_keys(__A )
for src, dest in rename_keys:
rename_key(__A , __A , __A )
read_in_q_k_v(__A , config.backbone_config )
# fix downsample parameters
for key, value in state_dict.items():
if "downsample" in key:
if "reduction" in key:
UpperCAmelCase_ = reverse_correct_unfold_reduction_order(__A )
if "norm" in key:
UpperCAmelCase_ = reverse_correct_unfold_norm_order(__A )
model.load_state_dict(__A )
# verify on image
UpperCAmelCase_ = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg'''
UpperCAmelCase_ = Image.open(requests.get(__A , stream=__A ).raw ).convert('''RGB''' )
UpperCAmelCase_ = SegformerImageProcessor()
UpperCAmelCase_ = processor(__A , return_tensors='''pt''' ).pixel_values
with torch.no_grad():
UpperCAmelCase_ = model(__A )
UpperCAmelCase_ = outputs.logits
print(logits.shape )
print('''First values of logits:''' , logits[0, 0, :3, :3] )
# assert values
if model_name == "upernet-swin-tiny":
UpperCAmelCase_ = torch.tensor(
[[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] )
elif model_name == "upernet-swin-small":
UpperCAmelCase_ = torch.tensor(
[[-7.1_921, -7.1_921, -6.9_532], [-7.1_921, -7.1_921, -6.9_532], [-7.0_908, -7.0_908, -6.8_534]] )
elif model_name == "upernet-swin-base":
UpperCAmelCase_ = torch.tensor(
[[-6.5_851, -6.5_851, -6.4_330], [-6.5_851, -6.5_851, -6.4_330], [-6.4_763, -6.4_763, -6.3_254]] )
elif model_name == "upernet-swin-large":
UpperCAmelCase_ = torch.tensor(
[[-7.5_297, -7.5_297, -7.3_802], [-7.5_297, -7.5_297, -7.3_802], [-7.4_044, -7.4_044, -7.2_586]] )
print('''Logits:''' , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , __A , atol=1E-4 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__A )
print(F"""Saving processor to {pytorch_dump_folder_path}""" )
processor.save_pretrained(__A )
if push_to_hub:
print(F"""Pushing model and processor for {model_name} to hub""" )
model.push_to_hub(F"""openmmlab/{model_name}""" )
processor.push_to_hub(F"""openmmlab/{model_name}""" )
if __name__ == "__main__":
snake_case_ : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="upernet-swin-tiny",
type=str,
choices=[f"upernet-swin-{size}" for size in ["tiny", "small", "base", "large"]],
help="Name of the Swin + UperNet model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
snake_case_ : List[str] = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 362 |
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
snake_case_ : List[Any] = (3, 9, -11, 0, 7, 5, 1, -1)
snake_case_ : str = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class __snake_case :
UpperCAmelCase__ : int
UpperCAmelCase__ : Node | None
class __snake_case :
def __init__( self : Optional[int] , _snake_case : Iterable[int]):
"""simple docstring"""
UpperCAmelCase_ = None
for i in sorted(_snake_case , reverse=_snake_case):
UpperCAmelCase_ = Node(_snake_case , self.head)
def __iter__( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = self.head
while node:
yield node.data
UpperCAmelCase_ = node.next_node
def __len__( self : int):
"""simple docstring"""
return sum(1 for _ in self)
def __str__( self : Optional[Any]):
"""simple docstring"""
return " -> ".join([str(_snake_case) for node in self])
def A (__A : SortedLinkedList , __A : SortedLinkedList ) -> SortedLinkedList:
"""simple docstring"""
return SortedLinkedList(list(__A ) + list(__A ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
snake_case_ : Union[str, Any] = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
| 7 | 0 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
snake_case_ : Union[str, Any] = logging.get_logger(__name__)
snake_case_ : Dict = "▁"
snake_case_ : str = {"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"}
snake_case_ : List[Any] = {
"vocab_file": {
"vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model",
},
"monolingual_vocab_file": {
"vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt",
},
}
snake_case_ : Dict = {"vinai/bartpho-syllable": 1024}
class __snake_case ( a ):
UpperCAmelCase__ : Union[str, Any] = VOCAB_FILES_NAMES
UpperCAmelCase__ : Any = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ : Any = ['''input_ids''', '''attention_mask''']
def __init__( self : Optional[Any] , _snake_case : Optional[Any] , _snake_case : Dict , _snake_case : List[Any]="<s>" , _snake_case : Tuple="</s>" , _snake_case : Dict="</s>" , _snake_case : List[str]="<s>" , _snake_case : Dict="<unk>" , _snake_case : Any="<pad>" , _snake_case : Union[str, Any]="<mask>" , _snake_case : Optional[Dict[str, Any]] = None , **_snake_case : Optional[int] , ):
"""simple docstring"""
UpperCAmelCase_ = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case) if isinstance(_snake_case , _snake_case) else mask_token
UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , pad_token=_snake_case , mask_token=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , )
UpperCAmelCase_ = vocab_file
UpperCAmelCase_ = monolingual_vocab_file
UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(str(_snake_case))
# Load the reduced vocab
# Keep order of special tokens for backward compatibility
UpperCAmelCase_ = {}
UpperCAmelCase_ = 0
for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]:
if str(_snake_case) not in self.fairseq_tokens_to_ids:
UpperCAmelCase_ = cnt
cnt += 1
with open(_snake_case , '''r''' , encoding='''utf-8''') as f:
for line in f.readlines():
UpperCAmelCase_ = line.strip().split()[0]
UpperCAmelCase_ = len(self.fairseq_tokens_to_ids)
if str(_snake_case) not in self.fairseq_tokens_to_ids:
UpperCAmelCase_ = len(self.fairseq_tokens_to_ids)
UpperCAmelCase_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = self.__dict__.copy()
UpperCAmelCase_ = None
UpperCAmelCase_ = self.sp_model.serialized_model_proto()
return state
def __setstate__( self : Optional[Any] , _snake_case : List[str]):
"""simple docstring"""
UpperCAmelCase_ = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs'''):
UpperCAmelCase_ = {}
UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
def lowerCamelCase ( self : Any , _snake_case : List[int] , _snake_case : Optional[List[int]] = None):
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase_ = [self.cls_token_id]
UpperCAmelCase_ = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowerCamelCase ( self : Any , _snake_case : List[int] , _snake_case : Optional[List[int]] = None , _snake_case : bool = False):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case)
if token_ids_a is None:
return [1] + ([0] * len(_snake_case)) + [1]
return [1] + ([0] * len(_snake_case)) + [1, 1] + ([0] * len(_snake_case)) + [1]
def lowerCamelCase ( self : Dict , _snake_case : List[int] , _snake_case : Optional[List[int]] = None):
"""simple docstring"""
UpperCAmelCase_ = [self.sep_token_id]
UpperCAmelCase_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
@property
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
return len(self.fairseq_ids_to_tokens)
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = {self.convert_ids_to_tokens(_snake_case): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def lowerCamelCase ( self : str , _snake_case : str):
"""simple docstring"""
return self.sp_model.encode(_snake_case , out_type=_snake_case)
def lowerCamelCase ( self : str , _snake_case : Tuple):
"""simple docstring"""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
else:
return self.unk_token_id
def lowerCamelCase ( self : Dict , _snake_case : Union[str, Any]):
"""simple docstring"""
return self.fairseq_ids_to_tokens[index]
def lowerCamelCase ( self : str , _snake_case : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = ''''''.join(_snake_case).replace(_snake_case , ''' ''').strip()
return out_string
def lowerCamelCase ( self : Any , _snake_case : str , _snake_case : Optional[str] = None):
"""simple docstring"""
if not os.path.isdir(_snake_case):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""")
return
UpperCAmelCase_ = os.path.join(
_snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''])
UpperCAmelCase_ = os.path.join(
_snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , )
if os.path.abspath(self.vocab_file) != os.path.abspath(_snake_case) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file , _snake_case)
elif not os.path.isfile(self.vocab_file):
with open(_snake_case , '''wb''') as fi:
UpperCAmelCase_ = self.sp_model.serialized_model_proto()
fi.write(_snake_case)
if os.path.abspath(self.monolingual_vocab_file) != os.path.abspath(
_snake_case) and os.path.isfile(self.monolingual_vocab_file):
copyfile(self.monolingual_vocab_file , _snake_case)
elif not os.path.isfile(self.monolingual_vocab_file):
with open(_snake_case , '''w''' , encoding='''utf-8''') as fp:
for token in self.fairseq_tokens_to_ids:
if token not in self.all_special_tokens:
fp.write(F"""{str(_snake_case)} \n""")
return out_vocab_file, out_monolingual_vocab_file
| 363 |
import os
import warnings
from typing import List, Optional
from ...tokenization_utils_base import BatchEncoding
from ...utils import logging
from .configuration_rag import RagConfig
snake_case_ : Union[str, Any] = logging.get_logger(__name__)
class __snake_case :
def __init__( self : int , _snake_case : List[Any] , _snake_case : Tuple):
"""simple docstring"""
UpperCAmelCase_ = question_encoder
UpperCAmelCase_ = generator
UpperCAmelCase_ = self.question_encoder
def lowerCamelCase ( self : Union[str, Any] , _snake_case : Optional[int]):
"""simple docstring"""
if os.path.isfile(_snake_case):
raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""")
os.makedirs(_snake_case , exist_ok=_snake_case)
UpperCAmelCase_ = os.path.join(_snake_case , '''question_encoder_tokenizer''')
UpperCAmelCase_ = os.path.join(_snake_case , '''generator_tokenizer''')
self.question_encoder.save_pretrained(_snake_case)
self.generator.save_pretrained(_snake_case)
@classmethod
def lowerCamelCase ( cls : Optional[Any] , _snake_case : Optional[Any] , **_snake_case : Optional[int]):
"""simple docstring"""
from ..auto.tokenization_auto import AutoTokenizer
UpperCAmelCase_ = kwargs.pop('''config''' , _snake_case)
if config is None:
UpperCAmelCase_ = RagConfig.from_pretrained(_snake_case)
UpperCAmelCase_ = AutoTokenizer.from_pretrained(
_snake_case , config=config.question_encoder , subfolder='''question_encoder_tokenizer''')
UpperCAmelCase_ = AutoTokenizer.from_pretrained(
_snake_case , config=config.generator , subfolder='''generator_tokenizer''')
return cls(question_encoder=_snake_case , generator=_snake_case)
def __call__( self : List[Any] , *_snake_case : List[str] , **_snake_case : List[Any]):
"""simple docstring"""
return self.current_tokenizer(*_snake_case , **_snake_case)
def lowerCamelCase ( self : List[Any] , *_snake_case : str , **_snake_case : Union[str, Any]):
"""simple docstring"""
return self.generator.batch_decode(*_snake_case , **_snake_case)
def lowerCamelCase ( self : str , *_snake_case : Optional[int] , **_snake_case : Any):
"""simple docstring"""
return self.generator.decode(*_snake_case , **_snake_case)
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = self.question_encoder
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = self.generator
def lowerCamelCase ( self : Optional[Any] , _snake_case : List[str] , _snake_case : Optional[List[str]] = None , _snake_case : Optional[int] = None , _snake_case : Optional[int] = None , _snake_case : str = "longest" , _snake_case : str = None , _snake_case : bool = True , **_snake_case : Optional[int] , ):
"""simple docstring"""
warnings.warn(
'''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the '''
'''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` '''
'''context manager to prepare your targets. See the documentation of your specific tokenizer for more '''
'''details''' , _snake_case , )
if max_length is None:
UpperCAmelCase_ = self.current_tokenizer.model_max_length
UpperCAmelCase_ = self(
_snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , max_length=_snake_case , padding=_snake_case , truncation=_snake_case , **_snake_case , )
if tgt_texts is None:
return model_inputs
# Process tgt_texts
if max_target_length is None:
UpperCAmelCase_ = self.current_tokenizer.model_max_length
UpperCAmelCase_ = self(
text_target=_snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case , **_snake_case , )
UpperCAmelCase_ = labels['''input_ids''']
return model_inputs
| 7 | 0 |
import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel
from transformers.models.esm.modeling_esm import (
ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
EsmEmbeddings,
create_position_ids_from_input_ids,
)
class __snake_case :
def __init__( self : Optional[Any] , _snake_case : int , _snake_case : Dict=13 , _snake_case : int=7 , _snake_case : Dict=False , _snake_case : List[str]=True , _snake_case : int=False , _snake_case : int=True , _snake_case : Union[str, Any]=33 , _snake_case : int=32 , _snake_case : Dict=5 , _snake_case : Union[str, Any]=4 , _snake_case : Tuple=37 , _snake_case : List[str]="gelu" , _snake_case : Tuple=0.1 , _snake_case : Union[str, Any]=0.1 , _snake_case : Union[str, Any]=512 , _snake_case : Union[str, Any]=16 , _snake_case : str=2 , _snake_case : Dict=0.0_2 , _snake_case : str=3 , _snake_case : Optional[Any]=4 , _snake_case : Any=None , ):
"""simple docstring"""
UpperCAmelCase_ = parent
UpperCAmelCase_ = batch_size
UpperCAmelCase_ = seq_length
UpperCAmelCase_ = is_training
UpperCAmelCase_ = use_input_mask
UpperCAmelCase_ = use_token_type_ids
UpperCAmelCase_ = use_labels
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = hidden_dropout_prob
UpperCAmelCase_ = attention_probs_dropout_prob
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = type_vocab_size
UpperCAmelCase_ = type_sequence_label_size
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = num_labels
UpperCAmelCase_ = num_choices
UpperCAmelCase_ = scope
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
UpperCAmelCase_ = None
if self.use_input_mask:
UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length])
UpperCAmelCase_ = None
UpperCAmelCase_ = None
UpperCAmelCase_ = None
if self.use_labels:
UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices)
UpperCAmelCase_ = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCamelCase ( self : Any):
"""simple docstring"""
return EsmConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def lowerCamelCase ( self : int , _snake_case : Tuple , _snake_case : Union[str, Any] , _snake_case : List[Any] , _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = EsmModel(config=_snake_case)
model.to(_snake_case)
model.eval()
UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case)
UpperCAmelCase_ = model(_snake_case)
UpperCAmelCase_ = model(_snake_case)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size))
def lowerCamelCase ( self : List[Any] , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : str , _snake_case : Any , _snake_case : Optional[Any] , _snake_case : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = EsmForMaskedLM(config=_snake_case)
model.to(_snake_case)
model.eval()
UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , labels=_snake_case)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def lowerCamelCase ( self : Union[str, Any] , _snake_case : str , _snake_case : Any , _snake_case : List[Any] , _snake_case : str , _snake_case : List[Any] , _snake_case : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = self.num_labels
UpperCAmelCase_ = EsmForTokenClassification(config=_snake_case)
model.to(_snake_case)
model.eval()
UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , labels=_snake_case)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) = config_and_inputs
UpperCAmelCase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class __snake_case ( a , a , unittest.TestCase ):
UpperCAmelCase__ : List[str] = False
UpperCAmelCase__ : Optional[int] = (
(
EsmForMaskedLM,
EsmModel,
EsmForSequenceClassification,
EsmForTokenClassification,
)
if is_torch_available()
else ()
)
UpperCAmelCase__ : Tuple = ()
UpperCAmelCase__ : Any = (
{
'''feature-extraction''': EsmModel,
'''fill-mask''': EsmForMaskedLM,
'''text-classification''': EsmForSequenceClassification,
'''token-classification''': EsmForTokenClassification,
'''zero-shot''': EsmForSequenceClassification,
}
if is_torch_available()
else {}
)
UpperCAmelCase__ : Dict = True
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = EsmModelTester(self)
UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case , hidden_size=37)
def lowerCamelCase ( self : int):
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCamelCase ( self : Any):
"""simple docstring"""
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case)
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase_ = type
self.model_tester.create_and_check_model(*_snake_case)
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_snake_case)
def lowerCamelCase ( self : Any):
"""simple docstring"""
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_snake_case)
@slow
def lowerCamelCase ( self : str):
"""simple docstring"""
for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ = EsmModel.from_pretrained(_snake_case)
self.assertIsNotNone(_snake_case)
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()[0]
UpperCAmelCase_ = EsmEmbeddings(config=_snake_case)
UpperCAmelCase_ = torch.as_tensor([[12, 31, 13, model.padding_idx]])
UpperCAmelCase_ = torch.as_tensor(
[
[
0 + model.padding_idx + 1,
1 + model.padding_idx + 1,
2 + model.padding_idx + 1,
model.padding_idx,
]
])
UpperCAmelCase_ = create_position_ids_from_input_ids(_snake_case , model.padding_idx)
self.assertEqual(position_ids.shape , expected_positions.shape)
self.assertTrue(torch.all(torch.eq(_snake_case , _snake_case)))
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()[0]
UpperCAmelCase_ = EsmEmbeddings(config=_snake_case)
UpperCAmelCase_ = torch.empty(2 , 4 , 30)
UpperCAmelCase_ = [
0 + embeddings.padding_idx + 1,
1 + embeddings.padding_idx + 1,
2 + embeddings.padding_idx + 1,
3 + embeddings.padding_idx + 1,
]
UpperCAmelCase_ = torch.as_tensor([expected_single_positions, expected_single_positions])
UpperCAmelCase_ = embeddings.create_position_ids_from_inputs_embeds(_snake_case)
self.assertEqual(position_ids.shape , expected_positions.shape)
self.assertTrue(torch.all(torch.eq(_snake_case , _snake_case)))
@unittest.skip('''Esm does not support embedding resizing''')
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
pass
@unittest.skip('''Esm does not support embedding resizing''')
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''')
def lowerCamelCase ( self : Any):
"""simple docstring"""
pass
@require_torch
class __snake_case ( a ):
@slow
def lowerCamelCase ( self : Dict):
"""simple docstring"""
with torch.no_grad():
UpperCAmelCase_ = EsmForMaskedLM.from_pretrained('''facebook/esm2_t6_8M_UR50D''')
model.eval()
UpperCAmelCase_ = torch.tensor([[0, 1, 2, 3, 4, 5]])
UpperCAmelCase_ = model(_snake_case)[0]
UpperCAmelCase_ = 33
UpperCAmelCase_ = torch.Size((1, 6, vocab_size))
self.assertEqual(output.shape , _snake_case)
UpperCAmelCase_ = torch.tensor(
[[[8.9_2_1_5, -10.5898, -6.4_6_7_1], [-6.3_9_6_7, -13.9114, -1.1_2_1_2], [-7.7_8_1_2, -13.9516, -3.7_4_0_6]]])
self.assertTrue(torch.allclose(output[:, :3, :3] , _snake_case , atol=1e-4))
@slow
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
with torch.no_grad():
UpperCAmelCase_ = EsmModel.from_pretrained('''facebook/esm2_t6_8M_UR50D''')
model.eval()
UpperCAmelCase_ = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]])
UpperCAmelCase_ = model(_snake_case)[0]
# compare the actual values for a slice.
UpperCAmelCase_ = torch.tensor(
[[[0.1_4_4_4, 0.5_4_1_3, 0.3_2_4_8], [0.3_0_3_4, 0.0_0_5_3, 0.3_1_0_8], [0.3_2_2_8, -0.2_4_9_9, 0.3_4_1_5]]])
self.assertTrue(torch.allclose(output[:, :3, :3] , _snake_case , atol=1e-4))
| 364 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class __snake_case ( unittest.TestCase ):
@slow
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-base''')
UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]])
# The dog is cute and lives in the garden house
UpperCAmelCase_ = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim
UpperCAmelCase_ = torch.tensor(
[[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]])
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
UpperCAmelCase_ = model(_snake_case)['''last_hidden_state'''].detach()
self.assertEqual(output.shape , _snake_case)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3))
@slow
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-large''')
UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]])
# The dog is cute and lives in the garden house
UpperCAmelCase_ = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim
UpperCAmelCase_ = torch.tensor(
[[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]])
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
UpperCAmelCase_ = model(_snake_case)['''last_hidden_state'''].detach()
self.assertEqual(output.shape , _snake_case)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3))
| 7 | 0 |
"""simple docstring"""
import math
import os
from copy import deepcopy
import datasets
import evaluate
import torch
import transformers
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from accelerate import Accelerator
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import is_tpu_available, set_seed
snake_case_ : int = "true"
def A (__A : Tuple , __A : Optional[Any]=82 , __A : Optional[Any]=16 ) -> int:
"""simple docstring"""
set_seed(42 )
UpperCAmelCase_ = RegressionModel()
UpperCAmelCase_ = deepcopy(__A )
UpperCAmelCase_ = RegressionDataset(length=__A )
UpperCAmelCase_ = DataLoader(__A , batch_size=__A )
model.to(accelerator.device )
UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare(__A , __A )
return model, ddp_model, dataloader
def A (__A : Accelerator , __A : Dict=False ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' )
UpperCAmelCase_ = load_dataset('''glue''' , '''mrpc''' , split='''validation''' )
def tokenize_function(__A : List[Any] ):
UpperCAmelCase_ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__A , max_length=__A )
return outputs
with accelerator.main_process_first():
UpperCAmelCase_ = dataset.map(
__A , batched=__A , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
UpperCAmelCase_ = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(__A : int ):
if use_longest:
return tokenizer.pad(__A , padding='''longest''' , return_tensors='''pt''' )
return tokenizer.pad(__A , padding='''max_length''' , max_length=128 , return_tensors='''pt''' )
return DataLoader(__A , shuffle=__A , collate_fn=__A , batch_size=16 )
def A (__A : List[str] , __A : Tuple ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ = Accelerator(dispatch_batches=__A , split_batches=__A )
UpperCAmelCase_ = get_dataloader(__A , not dispatch_batches )
UpperCAmelCase_ = AutoModelForSequenceClassification.from_pretrained(
'''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=__A )
UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare(__A , __A )
return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator
def A (__A : Any , __A : Optional[Any] , __A : str ) -> int:
"""simple docstring"""
UpperCAmelCase_ = []
for batch in dataloader:
UpperCAmelCase_ , UpperCAmelCase_ = batch.values()
with torch.no_grad():
UpperCAmelCase_ = model(__A )
UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather_for_metrics((logit, target) )
logits_and_targets.append((logit, target) )
UpperCAmelCase_ , UpperCAmelCase_ = [], []
for logit, targ in logits_and_targets:
logits.append(__A )
targs.append(__A )
UpperCAmelCase_ , UpperCAmelCase_ = torch.cat(__A ), torch.cat(__A )
return logits, targs
def A (__A : Accelerator , __A : Tuple=82 , __A : Tuple=False , __A : Tuple=False , __A : Optional[Any]=16 ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = get_basic_setup(__A , __A , __A )
UpperCAmelCase_ , UpperCAmelCase_ = generate_predictions(__A , __A , __A )
assert (
len(__A ) == num_samples
), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__A )}"""
def A (__A : bool = False , __A : bool = False ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ = evaluate.load('''glue''' , '''mrpc''' )
UpperCAmelCase_ , UpperCAmelCase_ = get_mrpc_setup(__A , __A )
# First do baseline
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = setup['''no''']
model.to(__A )
model.eval()
for batch in dataloader:
batch.to(__A )
with torch.inference_mode():
UpperCAmelCase_ = model(**__A )
UpperCAmelCase_ = outputs.logits.argmax(dim=-1 )
metric.add_batch(predictions=__A , references=batch['''labels'''] )
UpperCAmelCase_ = metric.compute()
# Then do distributed
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = setup['''ddp''']
model.eval()
for batch in dataloader:
with torch.inference_mode():
UpperCAmelCase_ = model(**__A )
UpperCAmelCase_ = outputs.logits.argmax(dim=-1 )
UpperCAmelCase_ = batch['''labels''']
UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather_for_metrics((preds, references) )
metric.add_batch(predictions=__A , references=__A )
UpperCAmelCase_ = metric.compute()
for key in "accuracy f1".split():
assert math.isclose(
baseline[key] , distributed[key] ), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n"""
def A () -> Any:
"""simple docstring"""
UpperCAmelCase_ = Accelerator(split_batches=__A , dispatch_batches=__A )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# These are a bit slower so they should only be ran on the GPU or TPU
if torch.cuda.is_available() or is_tpu_available():
if accelerator.is_local_main_process:
print('''**Testing gather_for_metrics**''' )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
if accelerator.is_local_main_process:
print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" )
test_mrpc(__A , __A )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print('''**Test torch metrics**''' )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
UpperCAmelCase_ = Accelerator(split_batches=__A , dispatch_batches=__A )
if accelerator.is_local_main_process:
print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" )
test_torch_metrics(__A , 99 )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print('''**Test last batch is not dropped when perfectly divisible**''' )
UpperCAmelCase_ = Accelerator()
test_torch_metrics(__A , 512 )
accelerator.state._reset_state()
def A (__A : str ) -> List[Any]:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 365 |
from maths.prime_factors import prime_factors
def A (__A : int ) -> int:
"""simple docstring"""
if not isinstance(__A , __A ):
UpperCAmelCase_ = F"""Input value of [number={number}] must be an integer"""
raise TypeError(__A )
if number < 1:
raise ValueError('''Input must be a positive integer''' )
return -1 if len(prime_factors(__A ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 | 0 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTConfig,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
snake_case_ : int = logging.get_logger(__name__)
def A (__A : List[Any] ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ = MobileViTConfig()
# size of the architecture
if "mobilevit_s" in mobilevit_name:
UpperCAmelCase_ = [144, 192, 240]
UpperCAmelCase_ = [16, 32, 64, 96, 128, 160, 640]
elif "mobilevit_xs" in mobilevit_name:
UpperCAmelCase_ = [96, 120, 144]
UpperCAmelCase_ = [16, 32, 48, 64, 80, 96, 384]
elif "mobilevit_xxs" in mobilevit_name:
UpperCAmelCase_ = [64, 80, 96]
UpperCAmelCase_ = [16, 16, 24, 48, 64, 80, 320]
UpperCAmelCase_ = 0.05
UpperCAmelCase_ = 2.0
if mobilevit_name.startswith('''deeplabv3_''' ):
UpperCAmelCase_ = 512
UpperCAmelCase_ = 16
UpperCAmelCase_ = 21
UpperCAmelCase_ = '''pascal-voc-id2label.json'''
else:
UpperCAmelCase_ = 1000
UpperCAmelCase_ = '''imagenet-1k-id2label.json'''
UpperCAmelCase_ = '''huggingface/label-files'''
UpperCAmelCase_ = json.load(open(hf_hub_download(__A , __A , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase_ = {int(__A ): v for k, v in idalabel.items()}
UpperCAmelCase_ = idalabel
UpperCAmelCase_ = {v: k for k, v in idalabel.items()}
return config
def A (__A : Any , __A : List[Any]=False ) -> Union[str, Any]:
"""simple docstring"""
for i in range(1 , 6 ):
if F"""layer_{i}.""" in name:
UpperCAmelCase_ = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" )
if "conv_1." in name:
UpperCAmelCase_ = name.replace('''conv_1.''' , '''conv_stem.''' )
if ".block." in name:
UpperCAmelCase_ = name.replace('''.block.''' , '''.''' )
if "exp_1x1" in name:
UpperCAmelCase_ = name.replace('''exp_1x1''' , '''expand_1x1''' )
if "red_1x1" in name:
UpperCAmelCase_ = name.replace('''red_1x1''' , '''reduce_1x1''' )
if ".local_rep.conv_3x3." in name:
UpperCAmelCase_ = name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' )
if ".local_rep.conv_1x1." in name:
UpperCAmelCase_ = name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' )
if ".norm." in name:
UpperCAmelCase_ = name.replace('''.norm.''' , '''.normalization.''' )
if ".conv." in name:
UpperCAmelCase_ = name.replace('''.conv.''' , '''.convolution.''' )
if ".conv_proj." in name:
UpperCAmelCase_ = name.replace('''.conv_proj.''' , '''.conv_projection.''' )
for i in range(0 , 2 ):
for j in range(0 , 4 ):
if F""".{i}.{j}.""" in name:
UpperCAmelCase_ = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" )
for i in range(2 , 6 ):
for j in range(0 , 4 ):
if F""".{i}.{j}.""" in name:
UpperCAmelCase_ = name.replace(F""".{i}.{j}.""" , F""".{i}.""" )
if "expand_1x1" in name:
UpperCAmelCase_ = name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' )
if "conv_3x3" in name:
UpperCAmelCase_ = name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' )
if "reduce_1x1" in name:
UpperCAmelCase_ = name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' )
for i in range(2 , 5 ):
if F""".global_rep.{i}.weight""" in name:
UpperCAmelCase_ = name.replace(F""".global_rep.{i}.weight""" , '''.layernorm.weight''' )
if F""".global_rep.{i}.bias""" in name:
UpperCAmelCase_ = name.replace(F""".global_rep.{i}.bias""" , '''.layernorm.bias''' )
if ".global_rep." in name:
UpperCAmelCase_ = name.replace('''.global_rep.''' , '''.transformer.''' )
if ".pre_norm_mha.0." in name:
UpperCAmelCase_ = name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' )
if ".pre_norm_mha.1.out_proj." in name:
UpperCAmelCase_ = name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' )
if ".pre_norm_ffn.0." in name:
UpperCAmelCase_ = name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' )
if ".pre_norm_ffn.1." in name:
UpperCAmelCase_ = name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' )
if ".pre_norm_ffn.4." in name:
UpperCAmelCase_ = name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' )
if ".transformer." in name:
UpperCAmelCase_ = name.replace('''.transformer.''' , '''.transformer.layer.''' )
if ".aspp_layer." in name:
UpperCAmelCase_ = name.replace('''.aspp_layer.''' , '''.''' )
if ".aspp_pool." in name:
UpperCAmelCase_ = name.replace('''.aspp_pool.''' , '''.''' )
if "seg_head." in name:
UpperCAmelCase_ = name.replace('''seg_head.''' , '''segmentation_head.''' )
if "segmentation_head.classifier.classifier." in name:
UpperCAmelCase_ = name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' )
if "classifier.fc." in name:
UpperCAmelCase_ = name.replace('''classifier.fc.''' , '''classifier.''' )
elif (not base_model) and ("segmentation_head." not in name):
UpperCAmelCase_ = '''mobilevit.''' + name
return name
def A (__A : Optional[int] , __A : Optional[int] , __A : Optional[Any]=False ) -> Optional[Any]:
"""simple docstring"""
if base_model:
UpperCAmelCase_ = ''''''
else:
UpperCAmelCase_ = '''mobilevit.'''
for key in orig_state_dict.copy().keys():
UpperCAmelCase_ = orig_state_dict.pop(__A )
if key[:8] == "encoder.":
UpperCAmelCase_ = key[8:]
if "qkv" in key:
UpperCAmelCase_ = key.split('''.''' )
UpperCAmelCase_ = int(key_split[0][6:] ) - 1
UpperCAmelCase_ = int(key_split[3] )
UpperCAmelCase_ = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" )
UpperCAmelCase_ = layer.transformer.layer[transformer_num].attention.attention.all_head_size
UpperCAmelCase_ = (
F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention."""
)
if "weight" in key:
UpperCAmelCase_ = val[:dim, :]
UpperCAmelCase_ = val[dim : dim * 2, :]
UpperCAmelCase_ = val[-dim:, :]
else:
UpperCAmelCase_ = val[:dim]
UpperCAmelCase_ = val[dim : dim * 2]
UpperCAmelCase_ = val[-dim:]
else:
UpperCAmelCase_ = val
return orig_state_dict
def A () -> int:
"""simple docstring"""
UpperCAmelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase_ = Image.open(requests.get(__A , stream=__A ).raw )
return im
@torch.no_grad()
def A (__A : Any , __A : List[str] , __A : Optional[Any] , __A : int=False ) -> str:
"""simple docstring"""
UpperCAmelCase_ = get_mobilevit_config(__A )
# load original state_dict
UpperCAmelCase_ = torch.load(__A , map_location='''cpu''' )
# load 🤗 model
if mobilevit_name.startswith('''deeplabv3_''' ):
UpperCAmelCase_ = MobileViTForSemanticSegmentation(__A ).eval()
else:
UpperCAmelCase_ = MobileViTForImageClassification(__A ).eval()
UpperCAmelCase_ = convert_state_dict(__A , __A )
model.load_state_dict(__A )
# Check outputs on an image, prepared by MobileViTImageProcessor
UpperCAmelCase_ = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
UpperCAmelCase_ = image_processor(images=prepare_img() , return_tensors='''pt''' )
UpperCAmelCase_ = model(**__A )
UpperCAmelCase_ = outputs.logits
if mobilevit_name.startswith('''deeplabv3_''' ):
assert logits.shape == (1, 21, 32, 32)
if mobilevit_name == "deeplabv3_mobilevit_s":
UpperCAmelCase_ = torch.tensor(
[
[[6.2_065, 6.1_292, 6.2_070], [6.1_079, 6.1_254, 6.1_747], [6.0_042, 6.1_071, 6.1_034]],
[[-6.9_253, -6.8_653, -7.0_398], [-7.3_218, -7.3_983, -7.3_670], [-7.1_961, -7.2_482, -7.1_569]],
[[-4.4_723, -4.4_348, -4.3_769], [-5.3_629, -5.4_632, -5.4_598], [-5.1_587, -5.3_402, -5.5_059]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xs":
UpperCAmelCase_ = torch.tensor(
[
[[5.4_449, 5.5_733, 5.6_314], [5.1_815, 5.3_930, 5.5_963], [5.1_656, 5.4_333, 5.4_853]],
[[-9.4_423, -9.7_766, -9.6_714], [-9.1_581, -9.5_720, -9.5_519], [-9.1_006, -9.6_458, -9.5_703]],
[[-7.7_721, -7.3_716, -7.1_583], [-8.4_599, -8.0_624, -7.7_944], [-8.4_172, -7.8_366, -7.5_025]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xxs":
UpperCAmelCase_ = torch.tensor(
[
[[6.9_811, 6.9_743, 7.3_123], [7.1_777, 7.1_931, 7.3_938], [7.5_633, 7.8_050, 7.8_901]],
[[-10.5_536, -10.2_332, -10.2_924], [-10.2_336, -9.8_624, -9.5_964], [-10.8_840, -10.8_158, -10.6_659]],
[[-3.4_938, -3.0_631, -2.8_620], [-3.4_205, -2.8_135, -2.6_875], [-3.4_179, -2.7_945, -2.8_750]],
] )
else:
raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" )
assert torch.allclose(logits[0, :3, :3, :3] , __A , atol=1E-4 )
else:
assert logits.shape == (1, 1000)
if mobilevit_name == "mobilevit_s":
UpperCAmelCase_ = torch.tensor([-0.9_866, 0.2_392, -1.1_241] )
elif mobilevit_name == "mobilevit_xs":
UpperCAmelCase_ = torch.tensor([-2.4_761, -0.9_399, -1.9_587] )
elif mobilevit_name == "mobilevit_xxs":
UpperCAmelCase_ = torch.tensor([-1.9_364, -1.2_327, -0.4_653] )
else:
raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" )
assert torch.allclose(logits[0, :3] , __A , atol=1E-4 )
Path(__A ).mkdir(exist_ok=__A )
print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__A )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(__A )
if push_to_hub:
UpperCAmelCase_ = {
'''mobilevit_s''': '''mobilevit-small''',
'''mobilevit_xs''': '''mobilevit-x-small''',
'''mobilevit_xxs''': '''mobilevit-xx-small''',
'''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''',
'''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''',
'''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''',
}
print('''Pushing to the hub...''' )
UpperCAmelCase_ = model_mapping[mobilevit_name]
image_processor.push_to_hub(__A , organization='''apple''' )
model.push_to_hub(__A , organization='''apple''' )
if __name__ == "__main__":
snake_case_ : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--mobilevit_name",
default="mobilevit_s",
type=str,
help=(
"Name of the MobileViT model you'd like to convert. Should be one of 'mobilevit_s', 'mobilevit_xs',"
" 'mobilevit_xxs', 'deeplabv3_mobilevit_s', 'deeplabv3_mobilevit_xs', 'deeplabv3_mobilevit_xxs'."
),
)
parser.add_argument(
"--checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
snake_case_ : Union[str, Any] = parser.parse_args()
convert_movilevit_checkpoint(
args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 366 |
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class __snake_case ( unittest.TestCase ):
def lowerCamelCase ( self : Optional[int] , _snake_case : Union[str, Any]):
"""simple docstring"""
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss''']):
UpperCAmelCase_ = model_result['''result'''][batch_size][sequence_length]
self.assertIsNotNone(_snake_case)
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = '''sgugger/tiny-distilbert-classification'''
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , only_pretrain_model=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , torchscript=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''')
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , fpaa=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
# set architectures equal to `None`
UpperCAmelCase_ = None
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config])
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
@unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''')
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_snake_case , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config])
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tinier_bart'''
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config])
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config])
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tinier_bart'''
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config])
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , save_to_csv=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_snake_case , '''inf_time.csv''') , train_memory_csv_file=os.path.join(_snake_case , '''train_mem.csv''') , inference_memory_csv_file=os.path.join(_snake_case , '''inf_mem.csv''') , train_time_csv_file=os.path.join(_snake_case , '''train_time.csv''') , env_info_csv_file=os.path.join(_snake_case , '''env.csv''') , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
benchmark.run()
self.assertTrue(Path(os.path.join(_snake_case , '''inf_time.csv''')).exists())
self.assertTrue(Path(os.path.join(_snake_case , '''train_time.csv''')).exists())
self.assertTrue(Path(os.path.join(_snake_case , '''inf_mem.csv''')).exists())
self.assertTrue(Path(os.path.join(_snake_case , '''train_mem.csv''')).exists())
self.assertTrue(Path(os.path.join(_snake_case , '''env.csv''')).exists())
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
def _check_summary_is_not_empty(_snake_case : Tuple):
self.assertTrue(hasattr(_snake_case , '''sequential'''))
self.assertTrue(hasattr(_snake_case , '''cumulative'''))
self.assertTrue(hasattr(_snake_case , '''current'''))
self.assertTrue(hasattr(_snake_case , '''total'''))
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_snake_case , '''log.txt''') , log_print=_snake_case , trace_memory_line_by_line=_snake_case , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
_check_summary_is_not_empty(result.inference_summary)
_check_summary_is_not_empty(result.train_summary)
self.assertTrue(Path(os.path.join(_snake_case , '''log.txt''')).exists())
| 7 | 0 |
from io import BytesIO
from typing import List, Union
import requests
from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_decord_available():
import numpy as np
from decord import VideoReader
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
snake_case_ : int = logging.get_logger(__name__)
@add_end_docstrings(a )
class __snake_case ( a ):
def __init__( self : int , *_snake_case : Optional[int] , **_snake_case : Any):
"""simple docstring"""
super().__init__(*_snake_case , **_snake_case)
requires_backends(self , '''decord''')
self.check_model_type(_snake_case)
def lowerCamelCase ( self : Dict , _snake_case : Optional[int]=None , _snake_case : Optional[int]=None , _snake_case : Any=None):
"""simple docstring"""
UpperCAmelCase_ = {}
if frame_sampling_rate is not None:
UpperCAmelCase_ = frame_sampling_rate
if num_frames is not None:
UpperCAmelCase_ = num_frames
UpperCAmelCase_ = {}
if top_k is not None:
UpperCAmelCase_ = top_k
return preprocess_params, {}, postprocess_params
def __call__( self : List[Any] , _snake_case : Union[str, List[str]] , **_snake_case : Any):
"""simple docstring"""
return super().__call__(_snake_case , **_snake_case)
def lowerCamelCase ( self : int , _snake_case : List[str] , _snake_case : Dict=None , _snake_case : Tuple=1):
"""simple docstring"""
if num_frames is None:
UpperCAmelCase_ = self.model.config.num_frames
if video.startswith('''http://''') or video.startswith('''https://'''):
UpperCAmelCase_ = BytesIO(requests.get(_snake_case).content)
UpperCAmelCase_ = VideoReader(_snake_case)
videoreader.seek(0)
UpperCAmelCase_ = 0
UpperCAmelCase_ = num_frames * frame_sampling_rate - 1
UpperCAmelCase_ = np.linspace(_snake_case , _snake_case , num=_snake_case , dtype=np.intaa)
UpperCAmelCase_ = videoreader.get_batch(_snake_case).asnumpy()
UpperCAmelCase_ = list(_snake_case)
UpperCAmelCase_ = self.image_processor(_snake_case , return_tensors=self.framework)
return model_inputs
def lowerCamelCase ( self : List[Any] , _snake_case : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = self.model(**_snake_case)
return model_outputs
def lowerCamelCase ( self : Any , _snake_case : Union[str, Any] , _snake_case : int=5):
"""simple docstring"""
if top_k > self.model.config.num_labels:
UpperCAmelCase_ = self.model.config.num_labels
if self.framework == "pt":
UpperCAmelCase_ = model_outputs.logits.softmax(-1)[0]
UpperCAmelCase_ , UpperCAmelCase_ = probs.topk(_snake_case)
else:
raise ValueError(F"""Unsupported framework: {self.framework}""")
UpperCAmelCase_ = scores.tolist()
UpperCAmelCase_ = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_snake_case , _snake_case)]
| 367 |
import argparse
import os
import numpy as np
import tensorflow as tf
import torch
from transformers import BertModel
def A (__A : BertModel , __A : str , __A : str ) -> int:
"""simple docstring"""
UpperCAmelCase_ = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''')
UpperCAmelCase_ = (
('''layer.''', '''layer_'''),
('''word_embeddings.weight''', '''word_embeddings'''),
('''position_embeddings.weight''', '''position_embeddings'''),
('''token_type_embeddings.weight''', '''token_type_embeddings'''),
('''.''', '''/'''),
('''LayerNorm/weight''', '''LayerNorm/gamma'''),
('''LayerNorm/bias''', '''LayerNorm/beta'''),
('''weight''', '''kernel'''),
)
if not os.path.isdir(__A ):
os.makedirs(__A )
UpperCAmelCase_ = model.state_dict()
def to_tf_var_name(__A : str ):
for patt, repl in iter(__A ):
UpperCAmelCase_ = name.replace(__A , __A )
return F"""bert/{name}"""
def create_tf_var(__A : np.ndarray , __A : str , __A : tf.Session ):
UpperCAmelCase_ = tf.dtypes.as_dtype(tensor.dtype )
UpperCAmelCase_ = tf.get_variable(dtype=__A , shape=tensor.shape , name=__A , initializer=tf.zeros_initializer() )
session.run(tf.variables_initializer([tf_var] ) )
session.run(__A )
return tf_var
tf.reset_default_graph()
with tf.Session() as session:
for var_name in state_dict:
UpperCAmelCase_ = to_tf_var_name(__A )
UpperCAmelCase_ = state_dict[var_name].numpy()
if any(x in var_name for x in tensors_to_transpose ):
UpperCAmelCase_ = torch_tensor.T
UpperCAmelCase_ = create_tf_var(tensor=__A , name=__A , session=__A )
tf.keras.backend.set_value(__A , __A )
UpperCAmelCase_ = session.run(__A )
print(F"""Successfully created {tf_name}: {np.allclose(__A , __A )}""" )
UpperCAmelCase_ = tf.train.Saver(tf.trainable_variables() )
saver.save(__A , os.path.join(__A , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) )
def A (__A : Any=None ) -> str:
"""simple docstring"""
UpperCAmelCase_ = argparse.ArgumentParser()
parser.add_argument('''--model_name''' , type=__A , required=__A , help='''model name e.g. bert-base-uncased''' )
parser.add_argument(
'''--cache_dir''' , type=__A , default=__A , required=__A , help='''Directory containing pytorch model''' )
parser.add_argument('''--pytorch_model_path''' , type=__A , required=__A , help='''/path/to/<pytorch-model-name>.bin''' )
parser.add_argument('''--tf_cache_dir''' , type=__A , required=__A , help='''Directory in which to save tensorflow model''' )
UpperCAmelCase_ = parser.parse_args(__A )
UpperCAmelCase_ = BertModel.from_pretrained(
pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , )
convert_pytorch_checkpoint_to_tf(model=__A , ckpt_dir=args.tf_cache_dir , model_name=args.model_name )
if __name__ == "__main__":
main()
| 7 | 0 |
from ...configuration_utils import PretrainedConfig
snake_case_ : Optional[Any] = {
"google/tapas-base-finetuned-sqa": (
"https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json"
),
"google/tapas-base-finetuned-wtq": (
"https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json"
),
"google/tapas-base-finetuned-wikisql-supervised": (
"https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json"
),
"google/tapas-base-finetuned-tabfact": (
"https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json"
),
}
class __snake_case ( a ):
UpperCAmelCase__ : List[str] = '''tapas'''
def __init__( self : Any , _snake_case : Union[str, Any]=30522 , _snake_case : Dict=768 , _snake_case : List[Any]=12 , _snake_case : Union[str, Any]=12 , _snake_case : List[str]=3072 , _snake_case : Dict="gelu" , _snake_case : List[Any]=0.1 , _snake_case : int=0.1 , _snake_case : Optional[int]=1024 , _snake_case : Dict=[3, 256, 256, 2, 256, 256, 10] , _snake_case : Tuple=0.0_2 , _snake_case : List[str]=1e-12 , _snake_case : int=0 , _snake_case : Any=10.0 , _snake_case : Tuple=0 , _snake_case : Tuple=1.0 , _snake_case : List[Any]=None , _snake_case : List[str]=1.0 , _snake_case : List[str]=False , _snake_case : Optional[Any]=None , _snake_case : Optional[int]=1.0 , _snake_case : List[Any]=1.0 , _snake_case : List[str]=False , _snake_case : List[Any]=False , _snake_case : str="ratio" , _snake_case : Optional[Any]=None , _snake_case : List[str]=None , _snake_case : Union[str, Any]=64 , _snake_case : str=32 , _snake_case : str=False , _snake_case : Dict=True , _snake_case : int=False , _snake_case : Any=False , _snake_case : List[Any]=True , _snake_case : str=False , _snake_case : str=None , _snake_case : Tuple=None , **_snake_case : str , ):
"""simple docstring"""
super().__init__(pad_token_id=_snake_case , **_snake_case)
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = hidden_dropout_prob
UpperCAmelCase_ = attention_probs_dropout_prob
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = type_vocab_sizes
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = layer_norm_eps
# Fine-tuning task hyperparameters
UpperCAmelCase_ = positive_label_weight
UpperCAmelCase_ = num_aggregation_labels
UpperCAmelCase_ = aggregation_loss_weight
UpperCAmelCase_ = use_answer_as_supervision
UpperCAmelCase_ = answer_loss_importance
UpperCAmelCase_ = use_normalized_answer_loss
UpperCAmelCase_ = huber_loss_delta
UpperCAmelCase_ = temperature
UpperCAmelCase_ = aggregation_temperature
UpperCAmelCase_ = use_gumbel_for_cells
UpperCAmelCase_ = use_gumbel_for_aggregation
UpperCAmelCase_ = average_approximation_function
UpperCAmelCase_ = cell_selection_preference
UpperCAmelCase_ = answer_loss_cutoff
UpperCAmelCase_ = max_num_rows
UpperCAmelCase_ = max_num_columns
UpperCAmelCase_ = average_logits_per_cell
UpperCAmelCase_ = select_one_column
UpperCAmelCase_ = allow_empty_column_selection
UpperCAmelCase_ = init_cell_selection_weights_to_zero
UpperCAmelCase_ = reset_position_index_per_cell
UpperCAmelCase_ = disable_per_token_loss
# Aggregation hyperparameters
UpperCAmelCase_ = aggregation_labels
UpperCAmelCase_ = no_aggregation_label_index
if isinstance(self.aggregation_labels , _snake_case):
UpperCAmelCase_ = {int(_snake_case): v for k, v in aggregation_labels.items()}
| 368 |
import inspect
import unittest
from transformers import RegNetConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from transformers.utils import cached_property, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __snake_case ( unittest.TestCase ):
def __init__( self : Tuple , _snake_case : List[Any] , _snake_case : Dict=3 , _snake_case : Dict=32 , _snake_case : List[str]=3 , _snake_case : Union[str, Any]=10 , _snake_case : Tuple=[10, 20, 30, 40] , _snake_case : Dict=[1, 1, 2, 1] , _snake_case : List[Any]=True , _snake_case : Dict=True , _snake_case : Union[str, Any]="relu" , _snake_case : Tuple=3 , _snake_case : Union[str, Any]=None , ):
"""simple docstring"""
UpperCAmelCase_ = parent
UpperCAmelCase_ = batch_size
UpperCAmelCase_ = image_size
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = embeddings_size
UpperCAmelCase_ = hidden_sizes
UpperCAmelCase_ = depths
UpperCAmelCase_ = is_training
UpperCAmelCase_ = use_labels
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = num_labels
UpperCAmelCase_ = scope
UpperCAmelCase_ = len(_snake_case)
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
UpperCAmelCase_ = self.get_config()
return config, pixel_values
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def lowerCamelCase ( self : Optional[int] , _snake_case : List[Any] , _snake_case : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = FlaxRegNetModel(config=_snake_case)
UpperCAmelCase_ = model(_snake_case)
# Output shape (b, c, h, w)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowerCamelCase ( self : Optional[Any] , _snake_case : List[Any] , _snake_case : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = self.num_labels
UpperCAmelCase_ = FlaxRegNetForImageClassification(config=_snake_case)
UpperCAmelCase_ = model(_snake_case)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ = self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs
UpperCAmelCase_ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_flax
class __snake_case ( a , unittest.TestCase ):
UpperCAmelCase__ : Union[str, Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else ()
UpperCAmelCase__ : Tuple = False
UpperCAmelCase__ : List[str] = False
UpperCAmelCase__ : int = False
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = FlaxRegNetModelTester(self)
UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case)
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
return
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_snake_case)
@unittest.skip(reason='''RegNet does not use inputs_embeds''')
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
pass
@unittest.skip(reason='''RegNet does not support input and output embeddings''')
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
pass
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = model_class(_snake_case)
UpperCAmelCase_ = inspect.signature(model.__call__)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ = [*signature.parameters.keys()]
UpperCAmelCase_ = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _snake_case)
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
def check_hidden_states_output(_snake_case : List[str] , _snake_case : Dict , _snake_case : List[str]):
UpperCAmelCase_ = model_class(_snake_case)
UpperCAmelCase_ = model(**self._prepare_for_class(_snake_case , _snake_case))
UpperCAmelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCAmelCase_ = self.model_tester.num_stages
self.assertEqual(len(_snake_case) , expected_num_stages + 1)
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = True
check_hidden_states_output(_snake_case , _snake_case , _snake_case)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase_ = True
check_hidden_states_output(_snake_case , _snake_case , _snake_case)
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
UpperCAmelCase_ = self._prepare_for_class(_snake_case , _snake_case)
UpperCAmelCase_ = model_class(_snake_case)
@jax.jit
def model_jitted(_snake_case : str , **_snake_case : Union[str, Any]):
return model(pixel_values=_snake_case , **_snake_case)
with self.subTest('''JIT Enabled'''):
UpperCAmelCase_ = model_jitted(**_snake_case).to_tuple()
with self.subTest('''JIT Disabled'''):
with jax.disable_jit():
UpperCAmelCase_ = model_jitted(**_snake_case).to_tuple()
self.assertEqual(len(_snake_case) , len(_snake_case))
for jitted_output, output in zip(_snake_case , _snake_case):
self.assertEqual(jitted_output.shape , output.shape)
def A () -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_flax
class __snake_case ( unittest.TestCase ):
@cached_property
def lowerCamelCase ( self : Dict):
"""simple docstring"""
return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''') if is_vision_available() else None
@slow
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''')
UpperCAmelCase_ = self.default_image_processor
UpperCAmelCase_ = prepare_img()
UpperCAmelCase_ = image_processor(images=_snake_case , return_tensors='''np''')
UpperCAmelCase_ = model(**_snake_case)
# verify the logits
UpperCAmelCase_ = (1, 1000)
self.assertEqual(outputs.logits.shape , _snake_case)
UpperCAmelCase_ = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6])
self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _snake_case , atol=1e-4))
| 7 | 0 |
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class __snake_case ( a ):
UpperCAmelCase__ : Optional[int] = (DPMSolverSinglestepScheduler,)
UpperCAmelCase__ : str = (('''num_inference_steps''', 2_5),)
def lowerCamelCase ( self : Dict , **_snake_case : Dict):
"""simple docstring"""
UpperCAmelCase_ = {
'''num_train_timesteps''': 1000,
'''beta_start''': 0.0_0_0_1,
'''beta_end''': 0.0_2,
'''beta_schedule''': '''linear''',
'''solver_order''': 2,
'''prediction_type''': '''epsilon''',
'''thresholding''': False,
'''sample_max_value''': 1.0,
'''algorithm_type''': '''dpmsolver++''',
'''solver_type''': '''midpoint''',
'''lambda_min_clipped''': -float('''inf'''),
'''variance_type''': None,
}
config.update(**_snake_case)
return config
def lowerCamelCase ( self : Dict , _snake_case : int=0 , **_snake_case : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = dict(self.forward_default_kwargs)
UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _snake_case)
UpperCAmelCase_ = self.dummy_sample
UpperCAmelCase_ = 0.1 * sample
UpperCAmelCase_ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase_ = self.get_scheduler_config(**_snake_case)
UpperCAmelCase_ = scheduler_class(**_snake_case)
scheduler.set_timesteps(_snake_case)
# copy over dummy past residuals
UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_snake_case)
UpperCAmelCase_ = scheduler_class.from_pretrained(_snake_case)
new_scheduler.set_timesteps(_snake_case)
# copy over dummy past residuals
UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order]
UpperCAmelCase_ , UpperCAmelCase_ = sample, sample
for t in range(_snake_case , time_step + scheduler.config.solver_order + 1):
UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample
UpperCAmelCase_ = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
pass
def lowerCamelCase ( self : Tuple , _snake_case : Optional[Any]=0 , **_snake_case : int):
"""simple docstring"""
UpperCAmelCase_ = dict(self.forward_default_kwargs)
UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _snake_case)
UpperCAmelCase_ = self.dummy_sample
UpperCAmelCase_ = 0.1 * sample
UpperCAmelCase_ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase_ = self.get_scheduler_config()
UpperCAmelCase_ = scheduler_class(**_snake_case)
scheduler.set_timesteps(_snake_case)
# copy over dummy past residuals (must be after setting timesteps)
UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_snake_case)
UpperCAmelCase_ = scheduler_class.from_pretrained(_snake_case)
# copy over dummy past residuals
new_scheduler.set_timesteps(_snake_case)
# copy over dummy past residual (must be after setting timesteps)
UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order]
UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample
UpperCAmelCase_ = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def lowerCamelCase ( self : Dict , _snake_case : int=None , **_snake_case : Optional[Any]):
"""simple docstring"""
if scheduler is None:
UpperCAmelCase_ = self.scheduler_classes[0]
UpperCAmelCase_ = self.get_scheduler_config(**_snake_case)
UpperCAmelCase_ = scheduler_class(**_snake_case)
UpperCAmelCase_ = self.scheduler_classes[0]
UpperCAmelCase_ = self.get_scheduler_config(**_snake_case)
UpperCAmelCase_ = scheduler_class(**_snake_case)
UpperCAmelCase_ = 10
UpperCAmelCase_ = self.dummy_model()
UpperCAmelCase_ = self.dummy_sample_deter
scheduler.set_timesteps(_snake_case)
for i, t in enumerate(scheduler.timesteps):
UpperCAmelCase_ = model(_snake_case , _snake_case)
UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample
return sample
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config())
UpperCAmelCase_ = 50
UpperCAmelCase_ = self.dummy_model()
UpperCAmelCase_ = self.dummy_sample_deter
scheduler.set_timesteps(_snake_case)
# make sure that the first t is uneven
for i, t in enumerate(scheduler.timesteps[3:]):
UpperCAmelCase_ = model(_snake_case , _snake_case)
UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.2_5_7_4) < 1e-3
def lowerCamelCase ( self : int):
"""simple docstring"""
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=_snake_case)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config())
UpperCAmelCase_ = self.full_loop(scheduler=_snake_case)
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3
UpperCAmelCase_ = DEISMultistepScheduler.from_config(scheduler.config)
UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(scheduler.config)
UpperCAmelCase_ = UniPCMultistepScheduler.from_config(scheduler.config)
UpperCAmelCase_ = DPMSolverSinglestepScheduler.from_config(scheduler.config)
UpperCAmelCase_ = self.full_loop(scheduler=_snake_case)
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
self.check_over_configs(thresholding=_snake_case)
for order in [1, 2, 3]:
for solver_type in ["midpoint", "heun"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=_snake_case , prediction_type=_snake_case , sample_max_value=_snake_case , algorithm_type='''dpmsolver++''' , solver_order=_snake_case , solver_type=_snake_case , )
def lowerCamelCase ( self : Dict):
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_snake_case)
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
for algorithm_type in ["dpmsolver", "dpmsolver++"]:
for solver_type in ["midpoint", "heun"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , )
UpperCAmelCase_ = self.full_loop(
solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , )
assert not torch.isnan(_snake_case).any(), "Samples have nan numbers"
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
self.check_over_configs(lower_order_final=_snake_case)
self.check_over_configs(lower_order_final=_snake_case)
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
self.check_over_configs(lambda_min_clipped=-float('''inf'''))
self.check_over_configs(lambda_min_clipped=-5.1)
def lowerCamelCase ( self : int):
"""simple docstring"""
self.check_over_configs(variance_type=_snake_case)
self.check_over_configs(variance_type='''learned_range''')
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=_snake_case , time_step=0)
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = self.full_loop()
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = self.full_loop(use_karras_sigmas=_snake_case)
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.2_2_4_8) < 1e-3
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''')
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.1_4_5_3) < 1e-3
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=_snake_case)
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.0_6_4_9) < 1e-3
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = self.scheduler_classes[0]
UpperCAmelCase_ = self.get_scheduler_config(thresholding=_snake_case , dynamic_thresholding_ratio=0)
UpperCAmelCase_ = scheduler_class(**_snake_case)
UpperCAmelCase_ = 10
UpperCAmelCase_ = self.dummy_model()
UpperCAmelCase_ = self.dummy_sample_deter.half()
scheduler.set_timesteps(_snake_case)
for i, t in enumerate(scheduler.timesteps):
UpperCAmelCase_ = model(_snake_case , _snake_case)
UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample
assert sample.dtype == torch.floataa
| 369 |
import comet # From: unbabel-comet
import torch
import datasets
snake_case_ : Tuple = datasets.logging.get_logger(__name__)
snake_case_ : str = "\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel's Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = \"{COMET}: A Neural Framework for {MT} Evaluation\",\n author = \"Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\",\n pages = \"2685--2702\",\n}\n"
snake_case_ : Tuple = "\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n"
snake_case_ : Optional[int] = "\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric('comet')\n >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use\n >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"]\n >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"]\n >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [0.19, 0.92]\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __snake_case ( datasets.Metric ):
def lowerCamelCase ( self : Any):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''sources''': datasets.Value('''string''' , id='''sequence'''),
'''predictions''': datasets.Value('''string''' , id='''sequence'''),
'''references''': datasets.Value('''string''' , id='''sequence'''),
}) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[
'''https://github.com/Unbabel/COMET''',
'''https://www.aclweb.org/anthology/2020.emnlp-main.213/''',
'''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''',
] , )
def lowerCamelCase ( self : List[Any] , _snake_case : Optional[int]):
"""simple docstring"""
if self.config_name == "default":
UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da'''))
else:
UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model(self.config_name))
def lowerCamelCase ( self : List[Any] , _snake_case : str , _snake_case : List[str] , _snake_case : Tuple , _snake_case : int=None , _snake_case : Optional[Any]=False):
"""simple docstring"""
if gpus is None:
UpperCAmelCase_ = 1 if torch.cuda.is_available() else 0
UpperCAmelCase_ = {'''src''': sources, '''mt''': predictions, '''ref''': references}
UpperCAmelCase_ = [dict(zip(_snake_case , _snake_case)) for t in zip(*data.values())]
UpperCAmelCase_ , UpperCAmelCase_ = self.scorer.predict(_snake_case , gpus=_snake_case , progress_bar=_snake_case)
return {"mean_score": mean_score, "scores": scores}
| 7 | 0 |
import multiprocessing
import os
from typing import BinaryIO, Optional, Union
import fsspec
from .. import Dataset, Features, NamedSplit, config
from ..formatting import query_table
from ..packaged_modules.json.json import Json
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class __snake_case ( a ):
def __init__( self : List[Any] , _snake_case : NestedDataStructureLike[PathLike] , _snake_case : Optional[NamedSplit] = None , _snake_case : Optional[Features] = None , _snake_case : str = None , _snake_case : bool = False , _snake_case : bool = False , _snake_case : Optional[str] = None , _snake_case : Optional[int] = None , **_snake_case : Union[str, Any] , ):
"""simple docstring"""
super().__init__(
_snake_case , split=_snake_case , features=_snake_case , cache_dir=_snake_case , keep_in_memory=_snake_case , streaming=_snake_case , num_proc=_snake_case , **_snake_case , )
UpperCAmelCase_ = field
UpperCAmelCase_ = path_or_paths if isinstance(_snake_case , _snake_case) else {self.split: path_or_paths}
UpperCAmelCase_ = Json(
cache_dir=_snake_case , data_files=_snake_case , features=_snake_case , field=_snake_case , **_snake_case , )
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
if self.streaming:
UpperCAmelCase_ = self.builder.as_streaming_dataset(split=self.split)
# Build regular (map-style) dataset
else:
UpperCAmelCase_ = None
UpperCAmelCase_ = None
UpperCAmelCase_ = None
UpperCAmelCase_ = None
self.builder.download_and_prepare(
download_config=_snake_case , download_mode=_snake_case , verification_mode=_snake_case , base_path=_snake_case , num_proc=self.num_proc , )
UpperCAmelCase_ = self.builder.as_dataset(
split=self.split , verification_mode=_snake_case , in_memory=self.keep_in_memory)
return dataset
class __snake_case :
def __init__( self : Dict , _snake_case : Dataset , _snake_case : Union[PathLike, BinaryIO] , _snake_case : Optional[int] = None , _snake_case : Optional[int] = None , **_snake_case : List[Any] , ):
"""simple docstring"""
if num_proc is not None and num_proc <= 0:
raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""")
UpperCAmelCase_ = dataset
UpperCAmelCase_ = path_or_buf
UpperCAmelCase_ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
UpperCAmelCase_ = num_proc
UpperCAmelCase_ = '''utf-8'''
UpperCAmelCase_ = to_json_kwargs
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = self.to_json_kwargs.pop('''path_or_buf''' , _snake_case)
UpperCAmelCase_ = self.to_json_kwargs.pop('''orient''' , '''records''')
UpperCAmelCase_ = self.to_json_kwargs.pop('''lines''' , True if orient == '''records''' else False)
UpperCAmelCase_ = self.to_json_kwargs.pop('''index''' , False if orient in ['''split''', '''table'''] else True)
UpperCAmelCase_ = self.to_json_kwargs.pop('''compression''' , _snake_case)
if compression not in [None, "infer", "gzip", "bz2", "xz"]:
raise NotImplementedError(F"""`datasets` currently does not support {compression} compression""")
if isinstance(self.path_or_buf , (str, bytes, os.PathLike)):
with fsspec.open(self.path_or_buf , '''wb''' , compression=_snake_case) as buffer:
UpperCAmelCase_ = self._write(file_obj=_snake_case , orient=_snake_case , lines=_snake_case , index=_snake_case , **self.to_json_kwargs)
else:
if compression:
raise NotImplementedError(
F"""The compression parameter is not supported when writing to a buffer, but compression={compression}"""
''' was passed. Please provide a local path instead.''')
UpperCAmelCase_ = self._write(
file_obj=self.path_or_buf , orient=_snake_case , lines=_snake_case , index=_snake_case , **self.to_json_kwargs)
return written
def lowerCamelCase ( self : Any , _snake_case : List[str]):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = args
UpperCAmelCase_ = query_table(
table=self.dataset.data , key=slice(_snake_case , offset + self.batch_size) , indices=self.dataset._indices , )
UpperCAmelCase_ = batch.to_pandas().to_json(
path_or_buf=_snake_case , orient=_snake_case , lines=_snake_case , index=_snake_case , **_snake_case)
if not json_str.endswith('''\n'''):
json_str += "\n"
return json_str.encode(self.encoding)
def lowerCamelCase ( self : Union[str, Any] , _snake_case : BinaryIO , _snake_case : Any , _snake_case : str , _snake_case : Any , **_snake_case : str , ):
"""simple docstring"""
UpperCAmelCase_ = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset) , self.batch_size) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ):
UpperCAmelCase_ = self._batch_json((offset, orient, lines, index, to_json_kwargs))
written += file_obj.write(_snake_case)
else:
UpperCAmelCase_ , UpperCAmelCase_ = len(self.dataset), self.batch_size
with multiprocessing.Pool(self.num_proc) as pool:
for json_str in logging.tqdm(
pool.imap(
self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , _snake_case , _snake_case)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ):
written += file_obj.write(_snake_case)
return written
| 370 |
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class __snake_case ( a ):
UpperCAmelCase__ : Optional[int] = (DPMSolverSinglestepScheduler,)
UpperCAmelCase__ : str = (('''num_inference_steps''', 2_5),)
def lowerCamelCase ( self : Dict , **_snake_case : Dict):
"""simple docstring"""
UpperCAmelCase_ = {
'''num_train_timesteps''': 1000,
'''beta_start''': 0.0_0_0_1,
'''beta_end''': 0.0_2,
'''beta_schedule''': '''linear''',
'''solver_order''': 2,
'''prediction_type''': '''epsilon''',
'''thresholding''': False,
'''sample_max_value''': 1.0,
'''algorithm_type''': '''dpmsolver++''',
'''solver_type''': '''midpoint''',
'''lambda_min_clipped''': -float('''inf'''),
'''variance_type''': None,
}
config.update(**_snake_case)
return config
def lowerCamelCase ( self : Dict , _snake_case : int=0 , **_snake_case : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = dict(self.forward_default_kwargs)
UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _snake_case)
UpperCAmelCase_ = self.dummy_sample
UpperCAmelCase_ = 0.1 * sample
UpperCAmelCase_ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase_ = self.get_scheduler_config(**_snake_case)
UpperCAmelCase_ = scheduler_class(**_snake_case)
scheduler.set_timesteps(_snake_case)
# copy over dummy past residuals
UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_snake_case)
UpperCAmelCase_ = scheduler_class.from_pretrained(_snake_case)
new_scheduler.set_timesteps(_snake_case)
# copy over dummy past residuals
UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order]
UpperCAmelCase_ , UpperCAmelCase_ = sample, sample
for t in range(_snake_case , time_step + scheduler.config.solver_order + 1):
UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample
UpperCAmelCase_ = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
pass
def lowerCamelCase ( self : Tuple , _snake_case : Optional[Any]=0 , **_snake_case : int):
"""simple docstring"""
UpperCAmelCase_ = dict(self.forward_default_kwargs)
UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _snake_case)
UpperCAmelCase_ = self.dummy_sample
UpperCAmelCase_ = 0.1 * sample
UpperCAmelCase_ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase_ = self.get_scheduler_config()
UpperCAmelCase_ = scheduler_class(**_snake_case)
scheduler.set_timesteps(_snake_case)
# copy over dummy past residuals (must be after setting timesteps)
UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_snake_case)
UpperCAmelCase_ = scheduler_class.from_pretrained(_snake_case)
# copy over dummy past residuals
new_scheduler.set_timesteps(_snake_case)
# copy over dummy past residual (must be after setting timesteps)
UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order]
UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample
UpperCAmelCase_ = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def lowerCamelCase ( self : Dict , _snake_case : int=None , **_snake_case : Optional[Any]):
"""simple docstring"""
if scheduler is None:
UpperCAmelCase_ = self.scheduler_classes[0]
UpperCAmelCase_ = self.get_scheduler_config(**_snake_case)
UpperCAmelCase_ = scheduler_class(**_snake_case)
UpperCAmelCase_ = self.scheduler_classes[0]
UpperCAmelCase_ = self.get_scheduler_config(**_snake_case)
UpperCAmelCase_ = scheduler_class(**_snake_case)
UpperCAmelCase_ = 10
UpperCAmelCase_ = self.dummy_model()
UpperCAmelCase_ = self.dummy_sample_deter
scheduler.set_timesteps(_snake_case)
for i, t in enumerate(scheduler.timesteps):
UpperCAmelCase_ = model(_snake_case , _snake_case)
UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample
return sample
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config())
UpperCAmelCase_ = 50
UpperCAmelCase_ = self.dummy_model()
UpperCAmelCase_ = self.dummy_sample_deter
scheduler.set_timesteps(_snake_case)
# make sure that the first t is uneven
for i, t in enumerate(scheduler.timesteps[3:]):
UpperCAmelCase_ = model(_snake_case , _snake_case)
UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.2_5_7_4) < 1e-3
def lowerCamelCase ( self : int):
"""simple docstring"""
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=_snake_case)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config())
UpperCAmelCase_ = self.full_loop(scheduler=_snake_case)
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3
UpperCAmelCase_ = DEISMultistepScheduler.from_config(scheduler.config)
UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(scheduler.config)
UpperCAmelCase_ = UniPCMultistepScheduler.from_config(scheduler.config)
UpperCAmelCase_ = DPMSolverSinglestepScheduler.from_config(scheduler.config)
UpperCAmelCase_ = self.full_loop(scheduler=_snake_case)
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
self.check_over_configs(thresholding=_snake_case)
for order in [1, 2, 3]:
for solver_type in ["midpoint", "heun"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=_snake_case , prediction_type=_snake_case , sample_max_value=_snake_case , algorithm_type='''dpmsolver++''' , solver_order=_snake_case , solver_type=_snake_case , )
def lowerCamelCase ( self : Dict):
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_snake_case)
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
for algorithm_type in ["dpmsolver", "dpmsolver++"]:
for solver_type in ["midpoint", "heun"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , )
UpperCAmelCase_ = self.full_loop(
solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , )
assert not torch.isnan(_snake_case).any(), "Samples have nan numbers"
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
self.check_over_configs(lower_order_final=_snake_case)
self.check_over_configs(lower_order_final=_snake_case)
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
self.check_over_configs(lambda_min_clipped=-float('''inf'''))
self.check_over_configs(lambda_min_clipped=-5.1)
def lowerCamelCase ( self : int):
"""simple docstring"""
self.check_over_configs(variance_type=_snake_case)
self.check_over_configs(variance_type='''learned_range''')
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=_snake_case , time_step=0)
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = self.full_loop()
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = self.full_loop(use_karras_sigmas=_snake_case)
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.2_2_4_8) < 1e-3
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''')
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.1_4_5_3) < 1e-3
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=_snake_case)
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.0_6_4_9) < 1e-3
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = self.scheduler_classes[0]
UpperCAmelCase_ = self.get_scheduler_config(thresholding=_snake_case , dynamic_thresholding_ratio=0)
UpperCAmelCase_ = scheduler_class(**_snake_case)
UpperCAmelCase_ = 10
UpperCAmelCase_ = self.dummy_model()
UpperCAmelCase_ = self.dummy_sample_deter.half()
scheduler.set_timesteps(_snake_case)
for i, t in enumerate(scheduler.timesteps):
UpperCAmelCase_ = model(_snake_case , _snake_case)
UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample
assert sample.dtype == torch.floataa
| 7 | 0 |
import warnings
warnings.warn(
"memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: "
"`from accelerate import find_executable_batch_size` to avoid this warning.",
FutureWarning,
)
| 371 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
snake_case_ : List[Any] = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Tuple = ["DeiTFeatureExtractor"]
snake_case_ : List[str] = ["DeiTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : List[Any] = [
"DEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"DeiTForImageClassification",
"DeiTForImageClassificationWithTeacher",
"DeiTForMaskedImageModeling",
"DeiTModel",
"DeiTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Dict = [
"TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFDeiTForImageClassification",
"TFDeiTForImageClassificationWithTeacher",
"TFDeiTForMaskedImageModeling",
"TFDeiTModel",
"TFDeiTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_deit import DeiTFeatureExtractor
from .image_processing_deit import DeiTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_deit import (
DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
DeiTModel,
DeiTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_deit import (
TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
TFDeiTPreTrainedModel,
)
else:
import sys
snake_case_ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 7 | 0 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
snake_case_ : str = logging.get_logger(__name__)
snake_case_ : List[str] = {
"google/pix2struct-textcaps-base": (
"https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json"
),
}
class __snake_case ( a ):
UpperCAmelCase__ : str = '''pix2struct_text_model'''
UpperCAmelCase__ : Optional[Any] = ['''past_key_values''']
UpperCAmelCase__ : List[str] = {
'''hidden_size''': '''hidden_size''',
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self : List[Any] , _snake_case : Optional[Any]=50244 , _snake_case : List[str]=768 , _snake_case : Tuple=64 , _snake_case : Tuple=2048 , _snake_case : Any=12 , _snake_case : int=12 , _snake_case : Dict=32 , _snake_case : Union[str, Any]=128 , _snake_case : Optional[int]=0.1 , _snake_case : str=1e-6 , _snake_case : int=1.0 , _snake_case : List[Any]="gelu_new" , _snake_case : Optional[int]=0 , _snake_case : Union[str, Any]=False , _snake_case : int=0 , _snake_case : Optional[int]=1 , _snake_case : int=False , _snake_case : Any=True , **_snake_case : str , ):
"""simple docstring"""
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = d_kv
UpperCAmelCase_ = d_ff
UpperCAmelCase_ = num_layers
UpperCAmelCase_ = num_heads
UpperCAmelCase_ = relative_attention_num_buckets
UpperCAmelCase_ = relative_attention_max_distance
UpperCAmelCase_ = dropout_rate
UpperCAmelCase_ = layer_norm_epsilon
UpperCAmelCase_ = initializer_factor
UpperCAmelCase_ = use_cache
UpperCAmelCase_ = eos_token_id
UpperCAmelCase_ = decoder_start_token_id
# for backwards compatibility
UpperCAmelCase_ = dense_act_fn
super().__init__(
pad_token_id=_snake_case , eos_token_id=_snake_case , decoder_start_token_id=_snake_case , tie_word_embeddings=_snake_case , is_decoder=_snake_case , **_snake_case , )
@classmethod
def lowerCamelCase ( cls : Optional[Any] , _snake_case : Union[str, os.PathLike] , **_snake_case : Union[str, Any]):
"""simple docstring"""
cls._set_token_in_kwargs(_snake_case)
UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_snake_case , **_snake_case)
# get the text config dict if we are loading from Pix2StructConfig
if config_dict.get('''model_type''') == "pix2struct":
UpperCAmelCase_ = config_dict['''text_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""")
return cls.from_dict(_snake_case , **_snake_case)
class __snake_case ( a ):
UpperCAmelCase__ : str = '''pix2struct_vision_model'''
def __init__( self : Any , _snake_case : List[str]=768 , _snake_case : str=768 , _snake_case : List[Any]=2048 , _snake_case : Optional[Any]=64 , _snake_case : Union[str, Any]=12 , _snake_case : Optional[int]=12 , _snake_case : List[str]="gelu_new" , _snake_case : Any=1e-6 , _snake_case : Dict=0.0 , _snake_case : Dict=0.0 , _snake_case : Optional[Any]=1e-10 , _snake_case : List[Any]=1.0 , _snake_case : int=4096 , _snake_case : List[str]=32 , _snake_case : List[str]=128 , **_snake_case : List[str] , ):
"""simple docstring"""
super().__init__(**_snake_case)
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = patch_embed_hidden_size
UpperCAmelCase_ = d_ff
UpperCAmelCase_ = dropout_rate
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = initializer_factor
UpperCAmelCase_ = attention_dropout
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = dense_act_fn
UpperCAmelCase_ = seq_len
UpperCAmelCase_ = relative_attention_num_buckets
UpperCAmelCase_ = relative_attention_max_distance
UpperCAmelCase_ = d_kv
@classmethod
def lowerCamelCase ( cls : Tuple , _snake_case : Union[str, os.PathLike] , **_snake_case : str):
"""simple docstring"""
cls._set_token_in_kwargs(_snake_case)
UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_snake_case , **_snake_case)
# get the vision config dict if we are loading from Pix2StructConfig
if config_dict.get('''model_type''') == "pix2struct":
UpperCAmelCase_ = config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""")
return cls.from_dict(_snake_case , **_snake_case)
class __snake_case ( a ):
UpperCAmelCase__ : Optional[Any] = '''pix2struct'''
UpperCAmelCase__ : int = True
def __init__( self : Any , _snake_case : Any=None , _snake_case : Union[str, Any]=None , _snake_case : Union[str, Any]=1.0 , _snake_case : List[str]=0.0_2 , _snake_case : str=False , _snake_case : str=False , _snake_case : str=True , **_snake_case : str , ):
"""simple docstring"""
super().__init__(tie_word_embeddings=_snake_case , is_encoder_decoder=_snake_case , **_snake_case)
if text_config is None:
UpperCAmelCase_ = {}
logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''')
if vision_config is None:
UpperCAmelCase_ = {}
logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''')
UpperCAmelCase_ = PixaStructTextConfig(**_snake_case)
UpperCAmelCase_ = PixaStructVisionConfig(**_snake_case)
UpperCAmelCase_ = self.text_config.decoder_start_token_id
UpperCAmelCase_ = self.text_config.pad_token_id
UpperCAmelCase_ = self.text_config.eos_token_id
UpperCAmelCase_ = initializer_factor
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = self.initializer_range
UpperCAmelCase_ = self.initializer_range
UpperCAmelCase_ = is_vqa
@classmethod
def lowerCamelCase ( cls : List[Any] , _snake_case : PixaStructTextConfig , _snake_case : PixaStructVisionConfig , **_snake_case : Optional[int]):
"""simple docstring"""
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_snake_case)
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = copy.deepcopy(self.__dict__)
UpperCAmelCase_ = self.text_config.to_dict()
UpperCAmelCase_ = self.vision_config.to_dict()
UpperCAmelCase_ = self.__class__.model_type
return output
| 350 |
import sacrebleu as scb
from packaging import version
from sacrebleu import TER
import datasets
snake_case_ : Dict = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n"
snake_case_ : List[str] = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n"
snake_case_ : List[Any] = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __snake_case ( datasets.Metric ):
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
if version.parse(scb.__version__) < version.parse('''1.4.12'''):
raise ImportWarning(
'''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n'''
'''You can install it with `pip install "sacrebleu>=1.4.12"`.''')
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence'''),
'''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''') , id='''references'''),
}) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[
'''https://github.com/jhclark/tercom''',
] , )
def lowerCamelCase ( self : Union[str, Any] , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , ):
"""simple docstring"""
UpperCAmelCase_ = len(references[0])
if any(len(_snake_case) != references_per_prediction for refs in references):
raise ValueError('''Sacrebleu requires the same number of references for each prediction''')
UpperCAmelCase_ = [[refs[i] for refs in references] for i in range(_snake_case)]
UpperCAmelCase_ = TER(
normalized=_snake_case , no_punct=_snake_case , asian_support=_snake_case , case_sensitive=_snake_case , )
UpperCAmelCase_ = sb_ter.corpus_score(_snake_case , _snake_case)
return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
| 7 | 0 |
import unittest
from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class __snake_case :
@staticmethod
def lowerCamelCase ( *_snake_case : List[str] , **_snake_case : str):
"""simple docstring"""
pass
@is_pipeline_test
@require_torch
@require_vision
class __snake_case ( unittest.TestCase ):
UpperCAmelCase__ : List[Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
def lowerCamelCase ( self : Any , _snake_case : Optional[Any] , _snake_case : int , _snake_case : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''')
UpperCAmelCase_ = [
{
'''image''': Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png'''),
'''question''': '''How many cats are there?''',
},
{
'''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''',
'''question''': '''How many cats are there?''',
},
]
return vqa_pipeline, examples
def lowerCamelCase ( self : Optional[int] , _snake_case : List[str] , _snake_case : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = vqa_pipeline(_snake_case , top_k=1)
self.assertEqual(
_snake_case , [
[{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}],
[{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}],
] , )
@require_torch
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''')
UpperCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png'''
UpperCAmelCase_ = '''How many cats are there?'''
UpperCAmelCase_ = vqa_pipeline(image=_snake_case , question='''How many cats are there?''' , top_k=2)
self.assertEqual(
_snake_case , [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}, {'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}])
UpperCAmelCase_ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2)
self.assertEqual(
_snake_case , [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}, {'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}])
@slow
@require_torch
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''dandelin/vilt-b32-finetuned-vqa''')
UpperCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png'''
UpperCAmelCase_ = '''How many cats are there?'''
UpperCAmelCase_ = vqa_pipeline(image=_snake_case , question=_snake_case , top_k=2)
self.assertEqual(
nested_simplify(_snake_case , decimals=4) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}])
UpperCAmelCase_ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2)
self.assertEqual(
nested_simplify(_snake_case , decimals=4) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}])
UpperCAmelCase_ = vqa_pipeline(
[{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2)
self.assertEqual(
nested_simplify(_snake_case , decimals=4) , [[{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]] * 2 , )
@require_tf
@unittest.skip('''Visual question answering not implemented in TF''')
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
pass
| 351 |
import unittest
from transformers import load_tool
from transformers.utils import is_torch_available
if is_torch_available():
import torch
from transformers.testing_utils import require_torch
from .test_tools_common import ToolTesterMixin
@require_torch
class __snake_case ( unittest.TestCase , a ):
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = load_tool('''text-to-speech''')
self.tool.setup()
def lowerCamelCase ( self : int):
"""simple docstring"""
torch.manual_seed(0)
UpperCAmelCase_ = self.tool('''hey''')
UpperCAmelCase_ = result.to_raw()
self.assertTrue(
torch.allclose(
resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5]) , ))
def lowerCamelCase ( self : Any):
"""simple docstring"""
torch.manual_seed(0)
UpperCAmelCase_ = self.tool('''hey''')
UpperCAmelCase_ = result.to_raw()
self.assertTrue(
torch.allclose(
resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5]) , ))
| 7 | 0 |
import torch
from diffusers import KDPMaDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class __snake_case ( a ):
UpperCAmelCase__ : int = (KDPMaDiscreteScheduler,)
UpperCAmelCase__ : List[str] = 1_0
def lowerCamelCase ( self : str , **_snake_case : Dict):
"""simple docstring"""
UpperCAmelCase_ = {
'''num_train_timesteps''': 1100,
'''beta_start''': 0.0_0_0_1,
'''beta_end''': 0.0_2,
'''beta_schedule''': '''linear''',
}
config.update(**_snake_case)
return config
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=_snake_case)
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2]):
self.check_over_configs(beta_start=_snake_case , beta_end=_snake_case)
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=_snake_case)
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_snake_case)
def lowerCamelCase ( self : Any):
"""simple docstring"""
UpperCAmelCase_ = self.scheduler_classes[0]
UpperCAmelCase_ = self.get_scheduler_config(prediction_type='''v_prediction''')
UpperCAmelCase_ = scheduler_class(**_snake_case)
scheduler.set_timesteps(self.num_inference_steps)
UpperCAmelCase_ = self.dummy_model()
UpperCAmelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase_ = sample.to(_snake_case)
for i, t in enumerate(scheduler.timesteps):
UpperCAmelCase_ = scheduler.scale_model_input(_snake_case , _snake_case)
UpperCAmelCase_ = model(_snake_case , _snake_case)
UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case)
UpperCAmelCase_ = output.prev_sample
UpperCAmelCase_ = torch.sum(torch.abs(_snake_case))
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 4.69_34e-07) < 1e-2
assert abs(result_mean.item() - 6.11_12e-10) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 4.6_93_42_86_50_17_09_72e-07) < 1e-2
assert abs(result_mean.item() - 0.0_0_0_2) < 1e-3
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
if torch_device == "mps":
return
UpperCAmelCase_ = self.scheduler_classes[0]
UpperCAmelCase_ = self.get_scheduler_config()
UpperCAmelCase_ = scheduler_class(**_snake_case)
scheduler.set_timesteps(self.num_inference_steps)
UpperCAmelCase_ = self.dummy_model()
UpperCAmelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase_ = sample.to(_snake_case)
for i, t in enumerate(scheduler.timesteps):
UpperCAmelCase_ = scheduler.scale_model_input(_snake_case , _snake_case)
UpperCAmelCase_ = model(_snake_case , _snake_case)
UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case)
UpperCAmelCase_ = output.prev_sample
UpperCAmelCase_ = torch.sum(torch.abs(_snake_case))
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 20.4125) < 1e-2
assert abs(result_mean.item() - 0.0_2_6_6) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125) < 1e-2
assert abs(result_mean.item() - 0.0_2_6_6) < 1e-3
def lowerCamelCase ( self : Any):
"""simple docstring"""
if torch_device == "mps":
return
UpperCAmelCase_ = self.scheduler_classes[0]
UpperCAmelCase_ = self.get_scheduler_config()
UpperCAmelCase_ = scheduler_class(**_snake_case)
scheduler.set_timesteps(self.num_inference_steps , device=_snake_case)
UpperCAmelCase_ = self.dummy_model()
UpperCAmelCase_ = self.dummy_sample_deter.to(_snake_case) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
UpperCAmelCase_ = scheduler.scale_model_input(_snake_case , _snake_case)
UpperCAmelCase_ = model(_snake_case , _snake_case)
UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case)
UpperCAmelCase_ = output.prev_sample
UpperCAmelCase_ = torch.sum(torch.abs(_snake_case))
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
if str(_snake_case).startswith('''cpu'''):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 20.4125) < 1e-2
assert abs(result_mean.item() - 0.0_2_6_6) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125) < 1e-2
assert abs(result_mean.item() - 0.0_2_6_6) < 1e-3
| 352 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
ImageTextPipelineOutput,
UniDiffuserPipeline,
)
else:
from .modeling_text_decoder import UniDiffuserTextDecoder
from .modeling_uvit import UniDiffuserModel, UTransformeraDModel
from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
| 7 | 0 |
"""simple docstring"""
import argparse
import pathlib
import fairseq
import torch
from fairseq.models.roberta import RobertaModel as FairseqRobertaModel
from fairseq.modules import TransformerSentenceEncoderLayer
from packaging import version
from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.models.roberta.modeling_roberta import RobertaAttention
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse("1.0.0a"):
raise Exception("requires fairseq >= 1.0.0a")
logging.set_verbosity_info()
snake_case_ : Dict = logging.get_logger(__name__)
snake_case_ : List[str] = "Hello world! cécé herlolip"
def A (__A : str , __A : str , __A : bool ) -> str:
"""simple docstring"""
UpperCAmelCase_ = FairseqRobertaModel.from_pretrained(__A )
roberta.eval() # disable dropout
UpperCAmelCase_ = roberta.model.encoder.sentence_encoder
UpperCAmelCase_ = XLMRobertaConfig(
vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , )
if classification_head:
UpperCAmelCase_ = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0]
print('''Our RoBERTa config:''' , __A )
UpperCAmelCase_ = XLMRobertaXLForSequenceClassification(__A ) if classification_head else XLMRobertaXLForMaskedLM(__A )
model.eval()
# Now let's copy all the weights.
# Embeddings
UpperCAmelCase_ = roberta_sent_encoder.embed_tokens.weight
UpperCAmelCase_ = roberta_sent_encoder.embed_positions.weight
UpperCAmelCase_ = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them.
UpperCAmelCase_ = roberta_sent_encoder.layer_norm.weight
UpperCAmelCase_ = roberta_sent_encoder.layer_norm.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
UpperCAmelCase_ = model.roberta.encoder.layer[i]
UpperCAmelCase_ = roberta_sent_encoder.layers[i]
UpperCAmelCase_ = layer.attention
UpperCAmelCase_ = roberta_layer.self_attn_layer_norm.weight
UpperCAmelCase_ = roberta_layer.self_attn_layer_norm.bias
# self attention
UpperCAmelCase_ = layer.attention.self
assert (
roberta_layer.self_attn.k_proj.weight.data.shape
== roberta_layer.self_attn.q_proj.weight.data.shape
== roberta_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
)
UpperCAmelCase_ = roberta_layer.self_attn.q_proj.weight
UpperCAmelCase_ = roberta_layer.self_attn.q_proj.bias
UpperCAmelCase_ = roberta_layer.self_attn.k_proj.weight
UpperCAmelCase_ = roberta_layer.self_attn.k_proj.bias
UpperCAmelCase_ = roberta_layer.self_attn.v_proj.weight
UpperCAmelCase_ = roberta_layer.self_attn.v_proj.bias
# self-attention output
UpperCAmelCase_ = layer.attention.output
assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape
UpperCAmelCase_ = roberta_layer.self_attn.out_proj.weight
UpperCAmelCase_ = roberta_layer.self_attn.out_proj.bias
# this one is final layer norm
UpperCAmelCase_ = roberta_layer.final_layer_norm.weight
UpperCAmelCase_ = roberta_layer.final_layer_norm.bias
# intermediate
UpperCAmelCase_ = layer.intermediate
assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape
UpperCAmelCase_ = roberta_layer.fca.weight
UpperCAmelCase_ = roberta_layer.fca.bias
# output
UpperCAmelCase_ = layer.output
assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape
UpperCAmelCase_ = roberta_layer.fca.weight
UpperCAmelCase_ = roberta_layer.fca.bias
# end of layer
if classification_head:
UpperCAmelCase_ = roberta.model.classification_heads['''mnli'''].dense.weight
UpperCAmelCase_ = roberta.model.classification_heads['''mnli'''].dense.bias
UpperCAmelCase_ = roberta.model.classification_heads['''mnli'''].out_proj.weight
UpperCAmelCase_ = roberta.model.classification_heads['''mnli'''].out_proj.bias
else:
# LM Head
UpperCAmelCase_ = roberta.model.encoder.lm_head.dense.weight
UpperCAmelCase_ = roberta.model.encoder.lm_head.dense.bias
UpperCAmelCase_ = roberta.model.encoder.lm_head.layer_norm.weight
UpperCAmelCase_ = roberta.model.encoder.lm_head.layer_norm.bias
UpperCAmelCase_ = roberta.model.encoder.lm_head.weight
UpperCAmelCase_ = roberta.model.encoder.lm_head.bias
# Let's check that we get the same results.
UpperCAmelCase_ = roberta.encode(__A ).unsqueeze(0 ) # batch of size 1
UpperCAmelCase_ = model(__A )[0]
if classification_head:
UpperCAmelCase_ = roberta.model.classification_heads['''mnli'''](roberta.extract_features(__A ) )
else:
UpperCAmelCase_ = roberta.model(__A )[0]
print(our_output.shape , their_output.shape )
UpperCAmelCase_ = torch.max(torch.abs(our_output - their_output ) ).item()
print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7
UpperCAmelCase_ = torch.allclose(__A , __A , atol=1E-3 )
print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' )
if not success:
raise Exception('''Something went wRoNg''' )
pathlib.Path(__A ).mkdir(parents=__A , exist_ok=__A )
print(F"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(__A )
if __name__ == "__main__":
snake_case_ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--classification_head", action="store_true", help="Whether to convert a final classification head."
)
snake_case_ : str = parser.parse_args()
convert_xlm_roberta_xl_checkpoint_to_pytorch(
args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 353 |
import unittest
from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class __snake_case :
@staticmethod
def lowerCamelCase ( *_snake_case : List[str] , **_snake_case : str):
"""simple docstring"""
pass
@is_pipeline_test
@require_torch
@require_vision
class __snake_case ( unittest.TestCase ):
UpperCAmelCase__ : List[Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
def lowerCamelCase ( self : Any , _snake_case : Optional[Any] , _snake_case : int , _snake_case : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''')
UpperCAmelCase_ = [
{
'''image''': Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png'''),
'''question''': '''How many cats are there?''',
},
{
'''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''',
'''question''': '''How many cats are there?''',
},
]
return vqa_pipeline, examples
def lowerCamelCase ( self : Optional[int] , _snake_case : List[str] , _snake_case : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = vqa_pipeline(_snake_case , top_k=1)
self.assertEqual(
_snake_case , [
[{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}],
[{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}],
] , )
@require_torch
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''')
UpperCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png'''
UpperCAmelCase_ = '''How many cats are there?'''
UpperCAmelCase_ = vqa_pipeline(image=_snake_case , question='''How many cats are there?''' , top_k=2)
self.assertEqual(
_snake_case , [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}, {'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}])
UpperCAmelCase_ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2)
self.assertEqual(
_snake_case , [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}, {'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}])
@slow
@require_torch
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''dandelin/vilt-b32-finetuned-vqa''')
UpperCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png'''
UpperCAmelCase_ = '''How many cats are there?'''
UpperCAmelCase_ = vqa_pipeline(image=_snake_case , question=_snake_case , top_k=2)
self.assertEqual(
nested_simplify(_snake_case , decimals=4) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}])
UpperCAmelCase_ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2)
self.assertEqual(
nested_simplify(_snake_case , decimals=4) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}])
UpperCAmelCase_ = vqa_pipeline(
[{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2)
self.assertEqual(
nested_simplify(_snake_case , decimals=4) , [[{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]] * 2 , )
@require_tf
@unittest.skip('''Visual question answering not implemented in TF''')
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
pass
| 7 | 0 |
def __A (__A : int = 600851475143 ) -> int:
"""simple docstring"""
try:
UpperCAmelCase_ = int(__A )
except (TypeError, ValueError):
raise TypeError('''Parameter n must be int or castable to int.''' )
if n <= 0:
raise ValueError('''Parameter n must be greater than or equal to one.''' )
UpperCAmelCase_ = 2
UpperCAmelCase_ = 0
if n == 2:
return 2
while n > 2:
while n % i != 0:
i += 1
UpperCAmelCase_ = i
while n % i == 0:
UpperCAmelCase_ = n // i
i += 1
return int(__A )
if __name__ == "__main__":
print(f"{solution() = }")
| 354 |
from timeit import timeit
def A (__A : int ) -> int:
"""simple docstring"""
if number < 0:
raise ValueError('''the value of input must not be negative''' )
UpperCAmelCase_ = 0
while number:
number &= number - 1
result += 1
return result
def A (__A : int ) -> int:
"""simple docstring"""
if number < 0:
raise ValueError('''the value of input must not be negative''' )
UpperCAmelCase_ = 0
while number:
if number % 2 == 1:
result += 1
number >>= 1
return result
def A () -> None:
"""simple docstring"""
def do_benchmark(__A : int ) -> None:
UpperCAmelCase_ = '''import __main__ as z'''
print(F"""Benchmark when {number = }:""" )
print(F"""{get_set_bits_count_using_modulo_operator(__A ) = }""" )
UpperCAmelCase_ = timeit('''z.get_set_bits_count_using_modulo_operator(25)''' , setup=__A )
print(F"""timeit() runs in {timing} seconds""" )
print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(__A ) = }""" )
UpperCAmelCase_ = timeit(
'''z.get_set_bits_count_using_brian_kernighans_algorithm(25)''' , setup=__A , )
print(F"""timeit() runs in {timing} seconds""" )
for number in (25, 37, 58, 0):
do_benchmark(__A )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 7 | 0 |
import unittest
from transformers import (
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TextaTextGenerationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, require_tf, require_torch
from transformers.utils import is_torch_available
from .test_pipelines_common import ANY
if is_torch_available():
import torch
@is_pipeline_test
class __snake_case ( unittest.TestCase ):
UpperCAmelCase__ : List[str] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
UpperCAmelCase__ : List[str] = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
def lowerCamelCase ( self : Dict , _snake_case : Any , _snake_case : Any , _snake_case : Tuple):
"""simple docstring"""
UpperCAmelCase_ = TextaTextGenerationPipeline(model=_snake_case , tokenizer=_snake_case)
return generator, ["Something to write", "Something else"]
def lowerCamelCase ( self : Dict , _snake_case : List[Any] , _snake_case : int):
"""simple docstring"""
UpperCAmelCase_ = generator('''Something there''')
self.assertEqual(_snake_case , [{'''generated_text''': ANY(_snake_case)}])
# These are encoder decoder, they don't just append to incoming string
self.assertFalse(outputs[0]['''generated_text'''].startswith('''Something there'''))
UpperCAmelCase_ = generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_snake_case)
self.assertEqual(
_snake_case , [
[{'''generated_text''': ANY(_snake_case)}, {'''generated_text''': ANY(_snake_case)}],
[{'''generated_text''': ANY(_snake_case)}, {'''generated_text''': ANY(_snake_case)}],
] , )
UpperCAmelCase_ = generator(
['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_snake_case)
self.assertEqual(
_snake_case , [
[{'''generated_text''': ANY(_snake_case)}, {'''generated_text''': ANY(_snake_case)}],
[{'''generated_text''': ANY(_snake_case)}, {'''generated_text''': ANY(_snake_case)}],
] , )
with self.assertRaises(_snake_case):
generator(4)
@require_torch
def lowerCamelCase ( self : Any):
"""simple docstring"""
UpperCAmelCase_ = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''pt''')
# do_sample=False necessary for reproducibility
UpperCAmelCase_ = generator('''Something there''' , do_sample=_snake_case)
self.assertEqual(_snake_case , [{'''generated_text''': ''''''}])
UpperCAmelCase_ = 3
UpperCAmelCase_ = generator(
'''Something there''' , num_return_sequences=_snake_case , num_beams=_snake_case , )
UpperCAmelCase_ = [
{'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide Beide'''},
{'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide'''},
{'''generated_text''': ''''''},
]
self.assertEqual(_snake_case , _snake_case)
UpperCAmelCase_ = generator('''This is a test''' , do_sample=_snake_case , num_return_sequences=2 , return_tensors=_snake_case)
self.assertEqual(
_snake_case , [
{'''generated_token_ids''': ANY(torch.Tensor)},
{'''generated_token_ids''': ANY(torch.Tensor)},
] , )
UpperCAmelCase_ = generator.model.config.eos_token_id
UpperCAmelCase_ = '''<pad>'''
UpperCAmelCase_ = generator(
['''This is a test''', '''This is a second test'''] , do_sample=_snake_case , num_return_sequences=2 , batch_size=2 , return_tensors=_snake_case , )
self.assertEqual(
_snake_case , [
[
{'''generated_token_ids''': ANY(torch.Tensor)},
{'''generated_token_ids''': ANY(torch.Tensor)},
],
[
{'''generated_token_ids''': ANY(torch.Tensor)},
{'''generated_token_ids''': ANY(torch.Tensor)},
],
] , )
@require_tf
def lowerCamelCase ( self : Any):
"""simple docstring"""
UpperCAmelCase_ = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''tf''')
# do_sample=False necessary for reproducibility
UpperCAmelCase_ = generator('''Something there''' , do_sample=_snake_case)
self.assertEqual(_snake_case , [{'''generated_text''': ''''''}])
| 355 |
import unittest
import numpy as np
import torch
from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad
class __snake_case ( unittest.TestCase ):
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = 10
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = [1, 2, 3, 4]
UpperCAmelCase_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0]
self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case)
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case)
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case)
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = '''It was the year of Our Lord one thousand seven hundred and
seventy-five.\n\nSpiritual revelations were conceded to England at that
favoured period, as at this.'''
UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case)
self.assertEqual(_snake_case , [])
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = ''''''
UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case)
self.assertEqual(_snake_case , [])
self.assertEqual(_snake_case , [])
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = (
'''It was the year of Our Lord one thousand seven hundred and '''
'''seventy-five\n\nSpiritual revelations were conceded to England '''
'''at that favoured period, as at this.\n@highlight\n\nIt was the best of times'''
)
UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case)
UpperCAmelCase_ = [
'''It was the year of Our Lord one thousand seven hundred and seventy-five.''',
'''Spiritual revelations were conceded to England at that favoured period, as at this.''',
]
self.assertEqual(_snake_case , _snake_case)
UpperCAmelCase_ = ['''It was the best of times.''']
self.assertEqual(_snake_case , _snake_case)
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = torch.tensor([1, 2, 3, 4])
UpperCAmelCase_ = torch.tensor([1, 1, 1, 1])
np.testing.assert_array_equal(build_mask(_snake_case , 0).numpy() , expected.numpy())
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = torch.tensor([1, 2, 3, 4, 23, 23, 23])
UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0])
np.testing.assert_array_equal(build_mask(_snake_case , 23).numpy() , expected.numpy())
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ = torch.tensor([8, 2, 3, 4, 1, 1, 1])
UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0])
np.testing.assert_array_equal(build_mask(_snake_case , 1).numpy() , expected.numpy())
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = 101
UpperCAmelCase_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]])
UpperCAmelCase_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]])
UpperCAmelCase_ = compute_token_type_ids(_snake_case , _snake_case)
np.testing.assert_array_equal(_snake_case , _snake_case)
| 7 | 0 |
from __future__ import annotations
from scipy.special import comb # type: ignore
class __snake_case :
def __init__( self : Union[str, Any] , _snake_case : list[tuple[float, float]]):
"""simple docstring"""
UpperCAmelCase_ = list_of_points
# Degree determines the flexibility of the curve.
# Degree = 1 will produce a straight line.
UpperCAmelCase_ = len(_snake_case) - 1
def lowerCamelCase ( self : Optional[Any] , _snake_case : float):
"""simple docstring"""
assert 0 <= t <= 1, "Time t must be between 0 and 1."
UpperCAmelCase_ = []
for i in range(len(self.list_of_points)):
# basis function for each i
output_values.append(
comb(self.degree , _snake_case) * ((1 - t) ** (self.degree - i)) * (t**i))
# the basis must sum up to 1 for it to produce a valid Bezier curve.
assert round(sum(_snake_case) , 5) == 1
return output_values
def lowerCamelCase ( self : str , _snake_case : float):
"""simple docstring"""
assert 0 <= t <= 1, "Time t must be between 0 and 1."
UpperCAmelCase_ = self.basis_function(_snake_case)
UpperCAmelCase_ = 0.0
UpperCAmelCase_ = 0.0
for i in range(len(self.list_of_points)):
# For all points, sum up the product of i-th basis function and i-th point.
x += basis_function[i] * self.list_of_points[i][0]
y += basis_function[i] * self.list_of_points[i][1]
return (x, y)
def lowerCamelCase ( self : Dict , _snake_case : float = 0.0_1):
"""simple docstring"""
from matplotlib import pyplot as plt # type: ignore
UpperCAmelCase_ = [] # x coordinates of points to plot
UpperCAmelCase_ = [] # y coordinates of points to plot
UpperCAmelCase_ = 0.0
while t <= 1:
UpperCAmelCase_ = self.bezier_curve_function(_snake_case)
to_plot_x.append(value[0])
to_plot_y.append(value[1])
t += step_size
UpperCAmelCase_ = [i[0] for i in self.list_of_points]
UpperCAmelCase_ = [i[1] for i in self.list_of_points]
plt.plot(
_snake_case , _snake_case , color='''blue''' , label='''Curve of Degree ''' + str(self.degree) , )
plt.scatter(_snake_case , _snake_case , color='''red''' , label='''Control Points''')
plt.legend()
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1
BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2
BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
| 356 |
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import MaMaaaTokenizer, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from transformers.utils import is_sentencepiece_available
if is_sentencepiece_available():
from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json
from ...test_tokenization_common import TokenizerTesterMixin
if is_sentencepiece_available():
snake_case_ : Any = get_tests_dir("fixtures/test_sentencepiece.model")
if is_torch_available():
from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right
snake_case_ : Optional[Any] = 128022
snake_case_ : Optional[int] = 128028
@require_sentencepiece
class __snake_case ( a , unittest.TestCase ):
UpperCAmelCase__ : List[str] = MaMaaaTokenizer
UpperCAmelCase__ : int = False
UpperCAmelCase__ : Dict = False
UpperCAmelCase__ : List[str] = True
def lowerCamelCase ( self : str):
"""simple docstring"""
super().setUp()
UpperCAmelCase_ = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>''']
UpperCAmelCase_ = dict(zip(_snake_case , range(len(_snake_case))))
UpperCAmelCase_ = Path(self.tmpdirname)
save_json(_snake_case , save_dir / VOCAB_FILES_NAMES['''vocab_file'''])
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(_snake_case , save_dir / VOCAB_FILES_NAMES['''spm_file'''])
UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(self.tmpdirname)
tokenizer.save_pretrained(self.tmpdirname)
def lowerCamelCase ( self : str , **_snake_case : Union[str, Any]):
"""simple docstring"""
return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **_snake_case)
def lowerCamelCase ( self : Optional[int] , _snake_case : List[str]):
"""simple docstring"""
return (
"This is a test",
"This is a test",
)
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = '''</s>'''
UpperCAmelCase_ = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case) , _snake_case)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case) , _snake_case)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = self.get_tokenizer()
UpperCAmelCase_ = list(tokenizer.get_vocab().keys())
self.assertEqual(vocab_keys[0] , '''</s>''')
self.assertEqual(vocab_keys[1] , '''<unk>''')
self.assertEqual(vocab_keys[-1] , '''<s>''')
self.assertEqual(len(_snake_case) , tokenizer.vocab_size + len(tokenizer.get_added_vocab()))
@unittest.skip('''Skip this test while all models are still to be uploaded.''')
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
pass
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = self.get_tokenizer()
UpperCAmelCase_ = tokenizer.tokenize('''This is a test''')
self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_snake_case) , [2, 3, 4, 5, 6] , )
UpperCAmelCase_ = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6])
self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''])
UpperCAmelCase_ = tokenizer.convert_tokens_to_string(_snake_case)
self.assertEqual(_snake_case , '''This is a test''')
@slow
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = {'''input_ids''': [[128022, 110108, 397, 11, 38272, 2247, 124811, 285, 18105, 1586, 207, 7, 39534, 4428, 397, 1019, 18105, 1586, 207, 7, 41337, 16786, 241, 7, 20214, 17, 125690, 10398, 7, 44378, 58069, 68342, 7798, 7343, 11, 299, 33310, 4, 158, 37350, 94077, 4569, 299, 33310, 90, 4, 52840, 290, 4, 31270, 112, 299, 682, 4, 52840, 39953, 14079, 193, 52519, 90894, 17894, 120697, 11, 40445, 551, 17, 1019, 52519, 90894, 17756, 963, 11, 40445, 480, 17, 9792, 1120, 5173, 1393, 6240, 16786, 241, 120996, 28, 1245, 1393, 118240, 11123, 1019, 93612, 2691, 10618, 98058, 120409, 1928, 279, 4, 40683, 367, 178, 207, 1019, 103, 103121, 506, 65296, 5, 2], [128022, 21217, 367, 117, 125450, 128, 719, 7, 7308, 40, 93612, 12669, 1116, 16704, 71, 17785, 3699, 15592, 35, 144, 9584, 241, 11943, 713, 950, 799, 2247, 88427, 150, 149, 118813, 120706, 1019, 106906, 81518, 28, 1224, 22799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128022, 1658, 123311, 5155, 5578, 4722, 279, 14947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_snake_case , model_name='''facebook/m2m100_418M''' , revision='''c168bae485c864188cf9aa0e4108b0b6934dc91e''' , )
@require_torch
@require_sentencepiece
@require_tokenizers
class __snake_case ( unittest.TestCase ):
UpperCAmelCase__ : Dict = '''facebook/m2m100_418M'''
UpperCAmelCase__ : Dict = [
'''In my opinion, there are two levels of response from the French government.''',
'''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''',
]
UpperCAmelCase__ : Dict = [
'''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''',
'''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''',
]
# fmt: off
UpperCAmelCase__ : Any = [EN_CODE, 5_9_3, 1_9_4_9, 1_1_5_7_8_1, 4, 7_1_5_8_6, 4_2_3_4, 6_0_6_3_3, 1_2_6_2_3_3, 4_3_2, 1_2_3_8_0_8, 1_5_5_9_2, 1_1_9_7, 1_1_7_1_3_2, 1_2_0_6_1_8, 5, 2]
@classmethod
def lowerCamelCase ( cls : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='''en''' , tgt_lang='''fr''')
UpperCAmelCase_ = 1
return cls
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
self.assertEqual(self.tokenizer.get_lang_id('''ar''') , 128006)
self.assertEqual(self.tokenizer.get_lang_id('''en''') , 128022)
self.assertEqual(self.tokenizer.get_lang_id('''ro''') , 128076)
self.assertEqual(self.tokenizer.get_lang_id('''mr''') , 128063)
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = self.tokenizer.get_vocab()
self.assertEqual(len(_snake_case) , self.tokenizer.vocab_size)
self.assertEqual(vocab['''<unk>'''] , 3)
self.assertIn(self.tokenizer.get_lang_token('''en''') , _snake_case)
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = '''en'''
UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0]
self.assertListEqual(self.expected_src_tokens , _snake_case)
def lowerCamelCase ( self : Any):
"""simple docstring"""
self.assertIn(_snake_case , self.tokenizer.all_special_ids)
# fmt: off
UpperCAmelCase_ = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2]
# fmt: on
UpperCAmelCase_ = self.tokenizer.decode(_snake_case , skip_special_tokens=_snake_case)
UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_snake_case)
self.assertEqual(_snake_case , _snake_case)
self.assertNotIn(self.tokenizer.eos_token , _snake_case)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = tempfile.mkdtemp()
UpperCAmelCase_ = self.tokenizer.lang_token_to_id
self.tokenizer.save_pretrained(_snake_case)
UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(_snake_case)
self.assertDictEqual(new_tok.lang_token_to_id , _snake_case)
@require_torch
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = '''en'''
UpperCAmelCase_ = '''fr'''
UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_snake_case , return_tensors='''pt''')
UpperCAmelCase_ = shift_tokens_right(
batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id)
for k in batch:
UpperCAmelCase_ = batch[k].tolist()
# batch = {k: v.tolist() for k,v in batch.items()}
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
# batch.decoder_inputs_ids[0][0] ==
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == FR_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2] == [2, FR_CODE]
@require_torch
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = '''mr'''
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')])
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id])
UpperCAmelCase_ = '''zh'''
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')])
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id])
@require_torch
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = '''mr'''
self.tokenizer._switch_to_target_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')])
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id])
self.tokenizer._switch_to_input_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)])
UpperCAmelCase_ = '''zh'''
self.tokenizer._switch_to_target_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')])
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id])
self.tokenizer._switch_to_input_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)])
@require_torch
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = self.tokenizer._build_translation_inputs('''A test''' , return_tensors='''pt''' , src_lang='''en''' , tgt_lang='''ar''')
self.assertEqual(
nested_simplify(_snake_case) , {
# en_XX, A, test, EOS
'''input_ids''': [[128022, 58, 4183, 2]],
'''attention_mask''': [[1, 1, 1, 1]],
# ar_AR
'''forced_bos_token_id''': 128006,
} , )
| 7 | 0 |
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
snake_case_ : Any = logging.get_logger(__name__)
snake_case_ : List[Any] = {
"t5-small": "https://huggingface.co/t5-small/resolve/main/config.json",
"t5-base": "https://huggingface.co/t5-base/resolve/main/config.json",
"t5-large": "https://huggingface.co/t5-large/resolve/main/config.json",
"t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json",
"t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json",
}
class __snake_case ( a ):
UpperCAmelCase__ : Optional[Any] = '''t5'''
UpperCAmelCase__ : Optional[int] = ['''past_key_values''']
UpperCAmelCase__ : List[str] = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''}
def __init__( self : Tuple , _snake_case : Optional[Any]=32128 , _snake_case : int=512 , _snake_case : Union[str, Any]=64 , _snake_case : List[str]=2048 , _snake_case : Tuple=6 , _snake_case : List[str]=None , _snake_case : List[Any]=8 , _snake_case : List[Any]=32 , _snake_case : Dict=128 , _snake_case : Tuple=0.1 , _snake_case : str=1e-6 , _snake_case : List[str]=1.0 , _snake_case : List[Any]="relu" , _snake_case : str=True , _snake_case : Optional[Any]=True , _snake_case : str=0 , _snake_case : int=1 , **_snake_case : int , ):
"""simple docstring"""
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = d_model
UpperCAmelCase_ = d_kv
UpperCAmelCase_ = d_ff
UpperCAmelCase_ = num_layers
UpperCAmelCase_ = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
UpperCAmelCase_ = num_heads
UpperCAmelCase_ = relative_attention_num_buckets
UpperCAmelCase_ = relative_attention_max_distance
UpperCAmelCase_ = dropout_rate
UpperCAmelCase_ = layer_norm_epsilon
UpperCAmelCase_ = initializer_factor
UpperCAmelCase_ = feed_forward_proj
UpperCAmelCase_ = use_cache
UpperCAmelCase_ = self.feed_forward_proj.split('''-''')
UpperCAmelCase_ = act_info[-1]
UpperCAmelCase_ = act_info[0] == '''gated'''
if len(_snake_case) > 1 and act_info[0] != "gated" or len(_snake_case) > 2:
raise ValueError(
F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."""
'''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '''
'''\'gated-gelu\' or \'relu\'''')
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
UpperCAmelCase_ = '''gelu_new'''
super().__init__(
pad_token_id=_snake_case , eos_token_id=_snake_case , is_encoder_decoder=_snake_case , **_snake_case , )
class __snake_case ( a ):
@property
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = {
'''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''},
'''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''},
}
if self.use_past:
UpperCAmelCase_ = '''past_encoder_sequence + sequence'''
UpperCAmelCase_ = {0: '''batch'''}
UpperCAmelCase_ = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
UpperCAmelCase_ = {0: '''batch''', 1: '''decoder_sequence'''}
UpperCAmelCase_ = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(_snake_case , direction='''inputs''')
return common_inputs
@property
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
return 13
| 357 |
from typing import Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
snake_case_ : List[str] = logging.get_logger(__name__)
@add_end_docstrings(a )
class __snake_case ( a ):
def __init__( self : Tuple , *_snake_case : List[Any] , **_snake_case : Optional[Any]):
"""simple docstring"""
super().__init__(*_snake_case , **_snake_case)
self.check_model_type(_snake_case)
def lowerCamelCase ( self : List[str] , _snake_case : Optional[int]=None , _snake_case : Optional[Any]=None , _snake_case : str=None , **_snake_case : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ = {}, {}
if padding is not None:
UpperCAmelCase_ = padding
if truncation is not None:
UpperCAmelCase_ = truncation
if top_k is not None:
UpperCAmelCase_ = top_k
return preprocess_params, {}, postprocess_params
def __call__( self : List[Any] , _snake_case : Union["Image.Image", str] , _snake_case : str = None , **_snake_case : str):
"""simple docstring"""
if isinstance(_snake_case , (Image.Image, str)) and isinstance(_snake_case , _snake_case):
UpperCAmelCase_ = {'''image''': image, '''question''': question}
else:
UpperCAmelCase_ = image
UpperCAmelCase_ = super().__call__(_snake_case , **_snake_case)
return results
def lowerCamelCase ( self : Union[str, Any] , _snake_case : int , _snake_case : Optional[int]=False , _snake_case : int=False):
"""simple docstring"""
UpperCAmelCase_ = load_image(inputs['''image'''])
UpperCAmelCase_ = self.tokenizer(
inputs['''question'''] , return_tensors=self.framework , padding=_snake_case , truncation=_snake_case)
UpperCAmelCase_ = self.image_processor(images=_snake_case , return_tensors=self.framework)
model_inputs.update(_snake_case)
return model_inputs
def lowerCamelCase ( self : List[Any] , _snake_case : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = self.model(**_snake_case)
return model_outputs
def lowerCamelCase ( self : str , _snake_case : Optional[Any] , _snake_case : List[str]=5):
"""simple docstring"""
if top_k > self.model.config.num_labels:
UpperCAmelCase_ = self.model.config.num_labels
if self.framework == "pt":
UpperCAmelCase_ = model_outputs.logits.sigmoid()[0]
UpperCAmelCase_ , UpperCAmelCase_ = probs.topk(_snake_case)
else:
raise ValueError(F"""Unsupported framework: {self.framework}""")
UpperCAmelCase_ = scores.tolist()
UpperCAmelCase_ = ids.tolist()
return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_snake_case , _snake_case)]
| 7 | 0 |
def A (__A : int ) -> str:
"""simple docstring"""
if isinstance(__A , __A ):
raise TypeError('''\'float\' object cannot be interpreted as an integer''' )
if isinstance(__A , __A ):
raise TypeError('''\'str\' object cannot be interpreted as an integer''' )
if num == 0:
return "0b0"
UpperCAmelCase_ = False
if num < 0:
UpperCAmelCase_ = True
UpperCAmelCase_ = -num
UpperCAmelCase_ = []
while num > 0:
binary.insert(0 , num % 2 )
num >>= 1
if negative:
return "-0b" + "".join(str(__A ) for e in binary )
return "0b" + "".join(str(__A ) for e in binary )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 358 |
import sys
def A (__A : int ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ = len(__A )
UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )]
UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )]
for chain_length in range(2 , __A ):
for a in range(1 , n - chain_length + 1 ):
UpperCAmelCase_ = a + chain_length - 1
UpperCAmelCase_ = sys.maxsize
for c in range(__A , __A ):
UpperCAmelCase_ = (
matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b]
)
if cost < matrix[a][b]:
UpperCAmelCase_ = cost
UpperCAmelCase_ = c
return matrix, sol
def A (__A : Any , __A : Dict , __A : Optional[int] ) -> Optional[int]:
"""simple docstring"""
if i == j:
print('''A''' + str(__A ) , end=''' ''' )
else:
print('''(''' , end=''' ''' )
print_optiomal_solution(__A , __A , optimal_solution[i][j] )
print_optiomal_solution(__A , optimal_solution[i][j] + 1 , __A )
print(''')''' , end=''' ''' )
def A () -> List[str]:
"""simple docstring"""
UpperCAmelCase_ = [30, 35, 15, 5, 10, 20, 25]
UpperCAmelCase_ = len(__A )
# Size of matrix created from above array will be
# 30*35 35*15 15*5 5*10 10*20 20*25
UpperCAmelCase_ , UpperCAmelCase_ = matrix_chain_order(__A )
print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) )
print_optiomal_solution(__A , 1 , n - 1 )
if __name__ == "__main__":
main()
| 7 | 0 |
"""simple docstring"""
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ConvNextConfig, UperNetConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UperNetForSemanticSegmentation
from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __snake_case :
def __init__( self : Any , _snake_case : Dict , _snake_case : Union[str, Any]=13 , _snake_case : Optional[int]=32 , _snake_case : str=3 , _snake_case : Any=4 , _snake_case : Optional[int]=[10, 20, 30, 40] , _snake_case : List[str]=[2, 2, 3, 2] , _snake_case : List[Any]=True , _snake_case : str=True , _snake_case : Any=37 , _snake_case : Any="gelu" , _snake_case : Optional[Any]=10 , _snake_case : int=0.0_2 , _snake_case : int=["stage2", "stage3", "stage4"] , _snake_case : Union[str, Any]=3 , _snake_case : Dict=None , ):
"""simple docstring"""
UpperCAmelCase_ = parent
UpperCAmelCase_ = batch_size
UpperCAmelCase_ = image_size
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = num_stages
UpperCAmelCase_ = hidden_sizes
UpperCAmelCase_ = depths
UpperCAmelCase_ = is_training
UpperCAmelCase_ = use_labels
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = type_sequence_label_size
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = out_features
UpperCAmelCase_ = num_labels
UpperCAmelCase_ = scope
UpperCAmelCase_ = num_stages
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
UpperCAmelCase_ = None
if self.use_labels:
UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
UpperCAmelCase_ = self.get_config()
return config, pixel_values, labels
def lowerCamelCase ( self : int):
"""simple docstring"""
return ConvNextConfig(
num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , )
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
return UperNetConfig(
backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_snake_case , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_snake_case , loss_ignore_index=255 , num_labels=self.num_labels , )
def lowerCamelCase ( self : List[Any] , _snake_case : Tuple , _snake_case : List[Any] , _snake_case : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = UperNetForSemanticSegmentation(config=_snake_case)
model.to(_snake_case)
model.eval()
UpperCAmelCase_ = model(_snake_case)
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size))
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) = config_and_inputs
UpperCAmelCase_ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __snake_case ( a , a , unittest.TestCase ):
UpperCAmelCase__ : List[str] = (UperNetForSemanticSegmentation,) if is_torch_available() else ()
UpperCAmelCase__ : Any = {'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {}
UpperCAmelCase__ : str = False
UpperCAmelCase__ : Optional[int] = False
UpperCAmelCase__ : Optional[Any] = False
UpperCAmelCase__ : Union[str, Any] = False
UpperCAmelCase__ : Dict = False
UpperCAmelCase__ : Tuple = False
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = UperNetModelTester(self)
UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case , hidden_size=37)
def lowerCamelCase ( self : str):
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
return
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = model_class(_snake_case)
UpperCAmelCase_ = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ = [*signature.parameters.keys()]
UpperCAmelCase_ = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _snake_case)
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_snake_case)
@unittest.skip(reason='''UperNet does not use inputs_embeds''')
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
pass
@unittest.skip(reason='''UperNet does not support input and output embeddings''')
def lowerCamelCase ( self : Any):
"""simple docstring"""
pass
@unittest.skip(reason='''UperNet does not have a base model''')
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
pass
@unittest.skip(reason='''UperNet does not have a base model''')
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
pass
@require_torch_multi_gpu
@unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''')
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''')
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
pass
def lowerCamelCase ( self : int):
"""simple docstring"""
def check_hidden_states_output(_snake_case : Union[str, Any] , _snake_case : Dict , _snake_case : int):
UpperCAmelCase_ = model_class(_snake_case)
model.to(_snake_case)
model.eval()
with torch.no_grad():
UpperCAmelCase_ = model(**self._prepare_for_class(_snake_case , _snake_case))
UpperCAmelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCAmelCase_ = self.model_tester.num_stages
self.assertEqual(len(_snake_case) , expected_num_stages + 1)
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = True
check_hidden_states_output(_snake_case , _snake_case , _snake_case)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase_ = True
check_hidden_states_output(_snake_case , _snake_case , _snake_case)
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ = _config_zero_init(_snake_case)
UpperCAmelCase_ = _config_zero_init(configs_no_init.backbone_config)
for model_class in self.all_model_classes:
UpperCAmelCase_ = model_class(config=_snake_case)
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@unittest.skip(reason='''UperNet does not have tied weights''')
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
pass
@slow
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ = UperNetForSemanticSegmentation.from_pretrained(_snake_case)
self.assertIsNotNone(_snake_case)
def A () -> str:
"""simple docstring"""
UpperCAmelCase_ = hf_hub_download(
repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' )
UpperCAmelCase_ = Image.open(__A ).convert('''RGB''' )
return image
@require_torch
@require_vision
@slow
class __snake_case ( unittest.TestCase ):
def lowerCamelCase ( self : Any):
"""simple docstring"""
UpperCAmelCase_ = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''')
UpperCAmelCase_ = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''').to(_snake_case)
UpperCAmelCase_ = prepare_img()
UpperCAmelCase_ = processor(images=_snake_case , return_tensors='''pt''').to(_snake_case)
with torch.no_grad():
UpperCAmelCase_ = model(**_snake_case)
UpperCAmelCase_ = torch.Size((1, model.config.num_labels, 512, 512))
self.assertEqual(outputs.logits.shape , _snake_case)
UpperCAmelCase_ = torch.tensor(
[[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]]).to(_snake_case)
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _snake_case , atol=1e-4))
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''')
UpperCAmelCase_ = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''').to(_snake_case)
UpperCAmelCase_ = prepare_img()
UpperCAmelCase_ = processor(images=_snake_case , return_tensors='''pt''').to(_snake_case)
with torch.no_grad():
UpperCAmelCase_ = model(**_snake_case)
UpperCAmelCase_ = torch.Size((1, model.config.num_labels, 512, 512))
self.assertEqual(outputs.logits.shape , _snake_case)
UpperCAmelCase_ = torch.tensor(
[[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]]).to(_snake_case)
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _snake_case , atol=1e-4))
| 359 |
import inspect
import os
import re
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
snake_case_ : int = "src/transformers"
# This is to make sure the transformers module imported is the one in the repo.
snake_case_ : Union[str, Any] = direct_transformers_import(PATH_TO_TRANSFORMERS)
snake_case_ : Union[str, Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING
snake_case_ : Union[str, Any] = {
# used to compute the property `self.chunk_length`
"EncodecConfig": ["overlap"],
# used as `self.bert_model = BertModel(config, ...)`
"DPRConfig": True,
# not used in modeling files, but it's an important information
"FSMTConfig": ["langs"],
# used internally in the configuration class file
"GPTNeoConfig": ["attention_types"],
# used internally in the configuration class file
"EsmConfig": ["is_folding_model"],
# used during training (despite we don't have training script for these models yet)
"Mask2FormerConfig": ["ignore_value"],
# `ignore_value` used during training (despite we don't have training script for these models yet)
# `norm` used in conversion script (despite not using in the modeling file)
"OneFormerConfig": ["ignore_value", "norm"],
# used during preprocessing and collation, see `collating_graphormer.py`
"GraphormerConfig": ["spatial_pos_max"],
# used internally in the configuration class file
"T5Config": ["feed_forward_proj"],
# used internally in the configuration class file
# `tokenizer_class` get default value `T5Tokenizer` intentionally
"MT5Config": ["feed_forward_proj", "tokenizer_class"],
"UMT5Config": ["feed_forward_proj", "tokenizer_class"],
# used internally in the configuration class file
"LongT5Config": ["feed_forward_proj"],
# used internally in the configuration class file
"SwitchTransformersConfig": ["feed_forward_proj"],
# having default values other than `1e-5` - we can't fix them without breaking
"BioGptConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"GLPNConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"SegformerConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"CvtConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"PerceiverConfig": ["layer_norm_eps"],
# used internally to calculate the feature size
"InformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate the feature size
"TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate the feature size
"AutoformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate `mlp_dim`
"SamVisionConfig": ["mlp_ratio"],
# For (head) training, but so far not implemented
"ClapAudioConfig": ["num_classes"],
# Not used, but providing useful information to users
"SpeechT5HifiGanConfig": ["sampling_rate"],
}
# TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure
SPECIAL_CASES_TO_ALLOW.update(
{
"CLIPSegConfig": True,
"DeformableDetrConfig": True,
"DetaConfig": True,
"DinatConfig": True,
"DonutSwinConfig": True,
"EfficientFormerConfig": True,
"FSMTConfig": True,
"JukeboxConfig": True,
"LayoutLMv2Config": True,
"MaskFormerSwinConfig": True,
"MT5Config": True,
"NatConfig": True,
"OneFormerConfig": True,
"PerceiverConfig": True,
"RagConfig": True,
"SpeechT5Config": True,
"SwinConfig": True,
"Swin2SRConfig": True,
"Swinv2Config": True,
"SwitchTransformersConfig": True,
"TableTransformerConfig": True,
"TapasConfig": True,
"TransfoXLConfig": True,
"UniSpeechConfig": True,
"UniSpeechSatConfig": True,
"WavLMConfig": True,
"WhisperConfig": True,
# TODO: @Arthur (for `alignment_head` and `alignment_layer`)
"JukeboxPriorConfig": True,
# TODO: @Younes (for `is_decoder`)
"Pix2StructTextConfig": True,
}
)
def A (__A : List[Any] , __A : Optional[int] , __A : str , __A : Dict ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ = False
for attribute in attributes:
for modeling_source in source_strings:
# check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)`
if (
F"""config.{attribute}""" in modeling_source
or F"""getattr(config, \"{attribute}\"""" in modeling_source
or F"""getattr(self.config, \"{attribute}\"""" in modeling_source
):
UpperCAmelCase_ = True
# Deal with multi-line cases
elif (
re.search(
RF"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , __A , )
is not None
):
UpperCAmelCase_ = True
# `SequenceSummary` is called with `SequenceSummary(config)`
elif attribute in [
"summary_type",
"summary_use_proj",
"summary_activation",
"summary_last_dropout",
"summary_proj_to_labels",
"summary_first_dropout",
]:
if "SequenceSummary" in modeling_source:
UpperCAmelCase_ = True
if attribute_used:
break
if attribute_used:
break
# common and important attributes, even if they do not always appear in the modeling files
UpperCAmelCase_ = [
'''bos_index''',
'''eos_index''',
'''pad_index''',
'''unk_index''',
'''mask_index''',
'''image_size''',
'''use_cache''',
'''out_features''',
'''out_indices''',
]
UpperCAmelCase_ = ['''encoder_no_repeat_ngram_size''']
# Special cases to be allowed
UpperCAmelCase_ = True
if not attribute_used:
UpperCAmelCase_ = False
for attribute in attributes:
# Allow if the default value in the configuration class is different from the one in `PretrainedConfig`
if attribute in ["is_encoder_decoder"] and default_value is True:
UpperCAmelCase_ = True
elif attribute in ["tie_word_embeddings"] and default_value is False:
UpperCAmelCase_ = True
# Allow cases without checking the default value in the configuration class
elif attribute in attributes_to_allow + attributes_used_in_generation:
UpperCAmelCase_ = True
elif attribute.endswith('''_token_id''' ):
UpperCAmelCase_ = True
# configuration class specific cases
if not case_allowed:
UpperCAmelCase_ = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] )
UpperCAmelCase_ = allowed_cases is True or attribute in allowed_cases
return attribute_used or case_allowed
def A (__A : Tuple ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ = dict(inspect.signature(config_class.__init__ ).parameters )
UpperCAmelCase_ = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']]
UpperCAmelCase_ = [signature[param].default for param in parameter_names]
# If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long
# as one variant is used, the test should pass
UpperCAmelCase_ = {}
if len(config_class.attribute_map ) > 0:
UpperCAmelCase_ = {v: k for k, v in config_class.attribute_map.items()}
# Get the path to modeling source files
UpperCAmelCase_ = inspect.getsourcefile(__A )
UpperCAmelCase_ = os.path.dirname(__A )
# Let's check against all frameworks: as long as one framework uses an attribute, we are good.
UpperCAmelCase_ = [os.path.join(__A , __A ) for fn in os.listdir(__A ) if fn.startswith('''modeling_''' )]
# Get the source code strings
UpperCAmelCase_ = []
for path in modeling_paths:
if os.path.isfile(__A ):
with open(__A ) as fp:
modeling_sources.append(fp.read() )
UpperCAmelCase_ = []
for config_param, default_value in zip(__A , __A ):
# `attributes` here is all the variant names for `config_param`
UpperCAmelCase_ = [config_param]
# some configuration classes have non-empty `attribute_map`, and both names could be used in the
# corresponding modeling files. As long as one of them appears, it is fine.
if config_param in reversed_attribute_map:
attributes.append(reversed_attribute_map[config_param] )
if not check_attribute_being_used(__A , __A , __A , __A ):
unused_attributes.append(attributes[0] )
return sorted(__A )
def A () -> Any:
"""simple docstring"""
UpperCAmelCase_ = {}
for _config_class in list(CONFIG_MAPPING.values() ):
# Skip deprecated models
if "models.deprecated" in _config_class.__module__:
continue
# Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.)
UpperCAmelCase_ = [
cls
for name, cls in inspect.getmembers(
inspect.getmodule(_config_class ) , lambda __A : inspect.isclass(__A )
and issubclass(__A , __A )
and inspect.getmodule(__A ) == inspect.getmodule(_config_class ) , )
]
for config_class in config_classes_in_module:
UpperCAmelCase_ = check_config_attributes_being_used(__A )
if len(__A ) > 0:
UpperCAmelCase_ = unused_attributes
if len(__A ) > 0:
UpperCAmelCase_ = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n'''
for name, attributes in configs_with_unused_attributes.items():
error += F"""{name}: {attributes}\n"""
raise ValueError(__A )
if __name__ == "__main__":
check_config_attributes()
| 7 | 0 |
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class __snake_case ( unittest.TestCase ):
@slow
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''')
UpperCAmelCase_ = AutoTokenizer.from_pretrained('''google/mt5-small''')
UpperCAmelCase_ = tokenizer('''Hello there''' , return_tensors='''np''').input_ids
UpperCAmelCase_ = tokenizer('''Hi I am''' , return_tensors='''np''').input_ids
UpperCAmelCase_ = shift_tokens_right(_snake_case , model.config.pad_token_id , model.config.decoder_start_token_id)
UpperCAmelCase_ = model(_snake_case , decoder_input_ids=_snake_case).logits
UpperCAmelCase_ = optax.softmax_cross_entropy(_snake_case , onehot(_snake_case , logits.shape[-1])).mean()
UpperCAmelCase_ = -(labels.shape[-1] * loss.item())
UpperCAmelCase_ = -84.9127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
| 360 |
import unittest
from diffusers import FlaxAutoencoderKL
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax
from .test_modeling_common_flax import FlaxModelTesterMixin
if is_flax_available():
import jax
@require_flax
class __snake_case ( a , unittest.TestCase ):
UpperCAmelCase__ : Optional[Any] = FlaxAutoencoderKL
@property
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = 4
UpperCAmelCase_ = 3
UpperCAmelCase_ = (32, 32)
UpperCAmelCase_ = jax.random.PRNGKey(0)
UpperCAmelCase_ = jax.random.uniform(_snake_case , ((batch_size, num_channels) + sizes))
return {"sample": image, "prng_key": prng_key}
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = {
'''block_out_channels''': [32, 64],
'''in_channels''': 3,
'''out_channels''': 3,
'''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''],
'''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''],
'''latent_channels''': 4,
}
UpperCAmelCase_ = self.dummy_input
return init_dict, inputs_dict
| 7 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
snake_case_ : List[Any] = {
"configuration_resnet": ["RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ResNetConfig", "ResNetOnnxConfig"]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Optional[int] = [
"RESNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"ResNetForImageClassification",
"ResNetModel",
"ResNetPreTrainedModel",
"ResNetBackbone",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : List[str] = [
"TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFResNetForImageClassification",
"TFResNetModel",
"TFResNetPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : List[str] = [
"FlaxResNetForImageClassification",
"FlaxResNetModel",
"FlaxResNetPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_resnet import (
RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
ResNetBackbone,
ResNetForImageClassification,
ResNetModel,
ResNetPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_resnet import (
TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFResNetForImageClassification,
TFResNetModel,
TFResNetPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel
else:
import sys
snake_case_ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 361 |
import json
import os
import shutil
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoConfig, BertConfig, GPTaConfig
from transformers.configuration_utils import PretrainedConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
snake_case_ : List[str] = {
"return_dict": False,
"output_hidden_states": True,
"output_attentions": True,
"torchscript": True,
"torch_dtype": "float16",
"use_bfloat16": True,
"tf_legacy_loss": True,
"pruned_heads": {"a": 1},
"tie_word_embeddings": False,
"is_decoder": True,
"cross_attention_hidden_size": 128,
"add_cross_attention": True,
"tie_encoder_decoder": True,
"max_length": 50,
"min_length": 3,
"do_sample": True,
"early_stopping": True,
"num_beams": 3,
"num_beam_groups": 3,
"diversity_penalty": 0.5,
"temperature": 2.0,
"top_k": 10,
"top_p": 0.7,
"typical_p": 0.2,
"repetition_penalty": 0.8,
"length_penalty": 0.8,
"no_repeat_ngram_size": 5,
"encoder_no_repeat_ngram_size": 5,
"bad_words_ids": [1, 2, 3],
"num_return_sequences": 3,
"chunk_size_feed_forward": 5,
"output_scores": True,
"return_dict_in_generate": True,
"forced_bos_token_id": 2,
"forced_eos_token_id": 3,
"remove_invalid_values": True,
"architectures": ["BertModel"],
"finetuning_task": "translation",
"id2label": {0: "label"},
"label2id": {"label": "0"},
"tokenizer_class": "BertTokenizerFast",
"prefix": "prefix",
"bos_token_id": 6,
"pad_token_id": 7,
"eos_token_id": 8,
"sep_token_id": 9,
"decoder_start_token_id": 10,
"exponential_decay_length_penalty": (5, 1.01),
"suppress_tokens": [0, 1],
"begin_suppress_tokens": 2,
"task_specific_params": {"translation": "some_params"},
"problem_type": "regression",
}
@is_staging_test
class __snake_case ( unittest.TestCase ):
@classmethod
def lowerCamelCase ( cls : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = TOKEN
HfFolder.save_token(_snake_case)
@classmethod
def lowerCamelCase ( cls : List[str]):
"""simple docstring"""
try:
delete_repo(token=cls._token , repo_id='''test-config''')
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''')
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''test-dynamic-config''')
except HTTPError:
pass
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37)
config.push_to_hub('''test-config''' , use_auth_token=self._token)
UpperCAmelCase_ = BertConfig.from_pretrained(F"""{USER}/test-config""")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_snake_case , getattr(_snake_case , _snake_case))
# Reset repo
delete_repo(token=self._token , repo_id='''test-config''')
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(_snake_case , repo_id='''test-config''' , push_to_hub=_snake_case , use_auth_token=self._token)
UpperCAmelCase_ = BertConfig.from_pretrained(F"""{USER}/test-config""")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_snake_case , getattr(_snake_case , _snake_case))
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37)
config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token)
UpperCAmelCase_ = BertConfig.from_pretrained('''valid_org/test-config-org''')
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_snake_case , getattr(_snake_case , _snake_case))
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-config-org''')
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
_snake_case , repo_id='''valid_org/test-config-org''' , push_to_hub=_snake_case , use_auth_token=self._token)
UpperCAmelCase_ = BertConfig.from_pretrained('''valid_org/test-config-org''')
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_snake_case , getattr(_snake_case , _snake_case))
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
CustomConfig.register_for_auto_class()
UpperCAmelCase_ = CustomConfig(attribute=42)
config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token)
# This has added the proper auto_map field to the config
self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''})
UpperCAmelCase_ = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=_snake_case)
# Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module
self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''')
self.assertEqual(new_config.attribute , 42)
class __snake_case ( unittest.TestCase ):
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = GPTaConfig()
# attempt to modify each of int/float/bool/str config records and verify they were updated
UpperCAmelCase_ = c.n_embd + 1 # int
UpperCAmelCase_ = c.resid_pdrop + 1.0 # float
UpperCAmelCase_ = not c.scale_attn_weights # bool
UpperCAmelCase_ = c.summary_type + '''foo''' # str
c.update_from_string(
F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""")
self.assertEqual(_snake_case , c.n_embd , '''mismatch for key: n_embd''')
self.assertEqual(_snake_case , c.resid_pdrop , '''mismatch for key: resid_pdrop''')
self.assertEqual(_snake_case , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''')
self.assertEqual(_snake_case , c.summary_type , '''mismatch for key: summary_type''')
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = PretrainedConfig()
UpperCAmelCase_ = [key for key in base_config.__dict__ if key not in config_common_kwargs]
# If this part of the test fails, you have arguments to addin config_common_kwargs above.
self.assertListEqual(
_snake_case , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version'''])
UpperCAmelCase_ = [key for key, value in config_common_kwargs.items() if value == getattr(_snake_case , _snake_case)]
if len(_snake_case) > 0:
raise ValueError(
'''The following keys are set with the default values in'''
''' `test_configuration_common.config_common_kwargs` pick another value for them:'''
F""" {", ".join(_snake_case)}.""")
def lowerCamelCase ( self : str):
"""simple docstring"""
with self.assertRaises(_snake_case):
# config is in subfolder, the following should not work without specifying the subfolder
UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''')
UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''')
self.assertIsNotNone(_snake_case)
def lowerCamelCase ( self : Any):
"""simple docstring"""
UpperCAmelCase_ = mock.Mock()
UpperCAmelCase_ = 500
UpperCAmelCase_ = {}
UpperCAmelCase_ = HTTPError
UpperCAmelCase_ = {}
# Download this model to make sure it's in the cache.
UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''')
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('''requests.Session.request''' , return_value=_snake_case) as mock_head:
UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''')
# This check we did call the fake head request
mock_head.assert_called()
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = BertConfig.from_pretrained(
'''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''')
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = AutoConfig.from_pretrained('''bert-base-cased''')
UpperCAmelCase_ = ['''config.4.0.0.json''']
with tempfile.TemporaryDirectory() as tmp_dir:
configuration.save_pretrained(_snake_case)
UpperCAmelCase_ = 2
json.dump(configuration.to_dict() , open(os.path.join(_snake_case , '''config.4.0.0.json''') , '''w'''))
# This should pick the new configuration file as the version of Transformers is > 4.0.0
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
self.assertEqual(new_configuration.hidden_size , 2)
# Will need to be adjusted if we reach v42 and this test is still here.
# Should pick the old configuration file as the version of Transformers is < 4.42.0
UpperCAmelCase_ = ['''config.42.0.0.json''']
UpperCAmelCase_ = 768
configuration.save_pretrained(_snake_case)
shutil.move(os.path.join(_snake_case , '''config.4.0.0.json''') , os.path.join(_snake_case , '''config.42.0.0.json'''))
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
self.assertEqual(new_configuration.hidden_size , 768)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = '''hf-internal-testing/test-two-configs'''
import transformers as new_transformers
UpperCAmelCase_ = '''v4.0.0'''
UpperCAmelCase_ , UpperCAmelCase_ = new_transformers.models.auto.AutoConfig.from_pretrained(
_snake_case , return_unused_kwargs=_snake_case)
self.assertEqual(new_configuration.hidden_size , 2)
# This checks `_configuration_file` ia not kept in the kwargs by mistake.
self.assertDictEqual(_snake_case , {})
# Testing an older version by monkey-patching the version in the module it's used.
import transformers as old_transformers
UpperCAmelCase_ = '''v3.0.0'''
UpperCAmelCase_ = old_transformers.models.auto.AutoConfig.from_pretrained(_snake_case)
self.assertEqual(old_configuration.hidden_size , 768)
| 7 | 0 |
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import MaMaaaTokenizer, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from transformers.utils import is_sentencepiece_available
if is_sentencepiece_available():
from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json
from ...test_tokenization_common import TokenizerTesterMixin
if is_sentencepiece_available():
snake_case_ : Any = get_tests_dir("fixtures/test_sentencepiece.model")
if is_torch_available():
from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right
snake_case_ : Optional[Any] = 128022
snake_case_ : Optional[int] = 128028
@require_sentencepiece
class __snake_case ( a , unittest.TestCase ):
UpperCAmelCase__ : List[str] = MaMaaaTokenizer
UpperCAmelCase__ : int = False
UpperCAmelCase__ : Dict = False
UpperCAmelCase__ : List[str] = True
def lowerCamelCase ( self : str):
"""simple docstring"""
super().setUp()
UpperCAmelCase_ = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>''']
UpperCAmelCase_ = dict(zip(_snake_case , range(len(_snake_case))))
UpperCAmelCase_ = Path(self.tmpdirname)
save_json(_snake_case , save_dir / VOCAB_FILES_NAMES['''vocab_file'''])
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(_snake_case , save_dir / VOCAB_FILES_NAMES['''spm_file'''])
UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(self.tmpdirname)
tokenizer.save_pretrained(self.tmpdirname)
def lowerCamelCase ( self : str , **_snake_case : Union[str, Any]):
"""simple docstring"""
return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **_snake_case)
def lowerCamelCase ( self : Optional[int] , _snake_case : List[str]):
"""simple docstring"""
return (
"This is a test",
"This is a test",
)
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = '''</s>'''
UpperCAmelCase_ = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case) , _snake_case)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case) , _snake_case)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = self.get_tokenizer()
UpperCAmelCase_ = list(tokenizer.get_vocab().keys())
self.assertEqual(vocab_keys[0] , '''</s>''')
self.assertEqual(vocab_keys[1] , '''<unk>''')
self.assertEqual(vocab_keys[-1] , '''<s>''')
self.assertEqual(len(_snake_case) , tokenizer.vocab_size + len(tokenizer.get_added_vocab()))
@unittest.skip('''Skip this test while all models are still to be uploaded.''')
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
pass
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = self.get_tokenizer()
UpperCAmelCase_ = tokenizer.tokenize('''This is a test''')
self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_snake_case) , [2, 3, 4, 5, 6] , )
UpperCAmelCase_ = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6])
self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''])
UpperCAmelCase_ = tokenizer.convert_tokens_to_string(_snake_case)
self.assertEqual(_snake_case , '''This is a test''')
@slow
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = {'''input_ids''': [[128022, 110108, 397, 11, 38272, 2247, 124811, 285, 18105, 1586, 207, 7, 39534, 4428, 397, 1019, 18105, 1586, 207, 7, 41337, 16786, 241, 7, 20214, 17, 125690, 10398, 7, 44378, 58069, 68342, 7798, 7343, 11, 299, 33310, 4, 158, 37350, 94077, 4569, 299, 33310, 90, 4, 52840, 290, 4, 31270, 112, 299, 682, 4, 52840, 39953, 14079, 193, 52519, 90894, 17894, 120697, 11, 40445, 551, 17, 1019, 52519, 90894, 17756, 963, 11, 40445, 480, 17, 9792, 1120, 5173, 1393, 6240, 16786, 241, 120996, 28, 1245, 1393, 118240, 11123, 1019, 93612, 2691, 10618, 98058, 120409, 1928, 279, 4, 40683, 367, 178, 207, 1019, 103, 103121, 506, 65296, 5, 2], [128022, 21217, 367, 117, 125450, 128, 719, 7, 7308, 40, 93612, 12669, 1116, 16704, 71, 17785, 3699, 15592, 35, 144, 9584, 241, 11943, 713, 950, 799, 2247, 88427, 150, 149, 118813, 120706, 1019, 106906, 81518, 28, 1224, 22799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128022, 1658, 123311, 5155, 5578, 4722, 279, 14947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_snake_case , model_name='''facebook/m2m100_418M''' , revision='''c168bae485c864188cf9aa0e4108b0b6934dc91e''' , )
@require_torch
@require_sentencepiece
@require_tokenizers
class __snake_case ( unittest.TestCase ):
UpperCAmelCase__ : Dict = '''facebook/m2m100_418M'''
UpperCAmelCase__ : Dict = [
'''In my opinion, there are two levels of response from the French government.''',
'''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''',
]
UpperCAmelCase__ : Dict = [
'''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''',
'''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''',
]
# fmt: off
UpperCAmelCase__ : Any = [EN_CODE, 5_9_3, 1_9_4_9, 1_1_5_7_8_1, 4, 7_1_5_8_6, 4_2_3_4, 6_0_6_3_3, 1_2_6_2_3_3, 4_3_2, 1_2_3_8_0_8, 1_5_5_9_2, 1_1_9_7, 1_1_7_1_3_2, 1_2_0_6_1_8, 5, 2]
@classmethod
def lowerCamelCase ( cls : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='''en''' , tgt_lang='''fr''')
UpperCAmelCase_ = 1
return cls
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
self.assertEqual(self.tokenizer.get_lang_id('''ar''') , 128006)
self.assertEqual(self.tokenizer.get_lang_id('''en''') , 128022)
self.assertEqual(self.tokenizer.get_lang_id('''ro''') , 128076)
self.assertEqual(self.tokenizer.get_lang_id('''mr''') , 128063)
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = self.tokenizer.get_vocab()
self.assertEqual(len(_snake_case) , self.tokenizer.vocab_size)
self.assertEqual(vocab['''<unk>'''] , 3)
self.assertIn(self.tokenizer.get_lang_token('''en''') , _snake_case)
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = '''en'''
UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0]
self.assertListEqual(self.expected_src_tokens , _snake_case)
def lowerCamelCase ( self : Any):
"""simple docstring"""
self.assertIn(_snake_case , self.tokenizer.all_special_ids)
# fmt: off
UpperCAmelCase_ = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2]
# fmt: on
UpperCAmelCase_ = self.tokenizer.decode(_snake_case , skip_special_tokens=_snake_case)
UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_snake_case)
self.assertEqual(_snake_case , _snake_case)
self.assertNotIn(self.tokenizer.eos_token , _snake_case)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = tempfile.mkdtemp()
UpperCAmelCase_ = self.tokenizer.lang_token_to_id
self.tokenizer.save_pretrained(_snake_case)
UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(_snake_case)
self.assertDictEqual(new_tok.lang_token_to_id , _snake_case)
@require_torch
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = '''en'''
UpperCAmelCase_ = '''fr'''
UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_snake_case , return_tensors='''pt''')
UpperCAmelCase_ = shift_tokens_right(
batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id)
for k in batch:
UpperCAmelCase_ = batch[k].tolist()
# batch = {k: v.tolist() for k,v in batch.items()}
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
# batch.decoder_inputs_ids[0][0] ==
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == FR_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2] == [2, FR_CODE]
@require_torch
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = '''mr'''
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')])
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id])
UpperCAmelCase_ = '''zh'''
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')])
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id])
@require_torch
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = '''mr'''
self.tokenizer._switch_to_target_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')])
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id])
self.tokenizer._switch_to_input_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)])
UpperCAmelCase_ = '''zh'''
self.tokenizer._switch_to_target_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')])
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id])
self.tokenizer._switch_to_input_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)])
@require_torch
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = self.tokenizer._build_translation_inputs('''A test''' , return_tensors='''pt''' , src_lang='''en''' , tgt_lang='''ar''')
self.assertEqual(
nested_simplify(_snake_case) , {
# en_XX, A, test, EOS
'''input_ids''': [[128022, 58, 4183, 2]],
'''attention_mask''': [[1, 1, 1, 1]],
# ar_AR
'''forced_bos_token_id''': 128006,
} , )
| 362 |
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
snake_case_ : List[Any] = (3, 9, -11, 0, 7, 5, 1, -1)
snake_case_ : str = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class __snake_case :
UpperCAmelCase__ : int
UpperCAmelCase__ : Node | None
class __snake_case :
def __init__( self : Optional[int] , _snake_case : Iterable[int]):
"""simple docstring"""
UpperCAmelCase_ = None
for i in sorted(_snake_case , reverse=_snake_case):
UpperCAmelCase_ = Node(_snake_case , self.head)
def __iter__( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = self.head
while node:
yield node.data
UpperCAmelCase_ = node.next_node
def __len__( self : int):
"""simple docstring"""
return sum(1 for _ in self)
def __str__( self : Optional[Any]):
"""simple docstring"""
return " -> ".join([str(_snake_case) for node in self])
def A (__A : SortedLinkedList , __A : SortedLinkedList ) -> SortedLinkedList:
"""simple docstring"""
return SortedLinkedList(list(__A ) + list(__A ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
snake_case_ : Union[str, Any] = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
| 7 | 0 |
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class __snake_case :
def __init__( self : Union[str, Any] , _snake_case : int , _snake_case : List[str]=13 , _snake_case : Any=7 , _snake_case : List[Any]=True , _snake_case : Any=True , _snake_case : Tuple=True , _snake_case : Any=True , _snake_case : int=99 , _snake_case : Dict=32 , _snake_case : Optional[int]=2 , _snake_case : Optional[Any]=4 , _snake_case : str=37 , _snake_case : Dict="gelu" , _snake_case : List[str]=0.1 , _snake_case : Any=0.1 , _snake_case : Optional[int]=512 , _snake_case : str=16 , _snake_case : Union[str, Any]=2 , _snake_case : Optional[Any]=0.0_2 , _snake_case : int=3 , _snake_case : List[str]=4 , _snake_case : Any=None , ):
"""simple docstring"""
UpperCAmelCase_ = parent
UpperCAmelCase_ = 13
UpperCAmelCase_ = 7
UpperCAmelCase_ = True
UpperCAmelCase_ = True
UpperCAmelCase_ = True
UpperCAmelCase_ = True
UpperCAmelCase_ = 99
UpperCAmelCase_ = 384
UpperCAmelCase_ = 2
UpperCAmelCase_ = 4
UpperCAmelCase_ = 37
UpperCAmelCase_ = '''gelu'''
UpperCAmelCase_ = 0.1
UpperCAmelCase_ = 0.1
UpperCAmelCase_ = 512
UpperCAmelCase_ = 16
UpperCAmelCase_ = 2
UpperCAmelCase_ = 0.0_2
UpperCAmelCase_ = 3
UpperCAmelCase_ = 4
UpperCAmelCase_ = 128
UpperCAmelCase_ = 2
UpperCAmelCase_ = 9
UpperCAmelCase_ = 1
UpperCAmelCase_ = None
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
UpperCAmelCase_ = None
if self.use_input_mask:
UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length])
UpperCAmelCase_ = None
if self.use_token_type_ids:
UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
UpperCAmelCase_ = None
UpperCAmelCase_ = None
UpperCAmelCase_ = None
if self.use_labels:
UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices)
UpperCAmelCase_ = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_snake_case , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCamelCase ( self : str , _snake_case : Any , _snake_case : Dict , _snake_case : str , _snake_case : Tuple , _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : Tuple):
"""simple docstring"""
UpperCAmelCase_ = TFConvBertModel(config=_snake_case)
UpperCAmelCase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
UpperCAmelCase_ = [input_ids, input_mask]
UpperCAmelCase_ = model(_snake_case)
UpperCAmelCase_ = model(_snake_case)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def lowerCamelCase ( self : Dict , _snake_case : Optional[int] , _snake_case : Tuple , _snake_case : Dict , _snake_case : Dict , _snake_case : str , _snake_case : Optional[int] , _snake_case : str):
"""simple docstring"""
UpperCAmelCase_ = TFConvBertForMaskedLM(config=_snake_case)
UpperCAmelCase_ = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
UpperCAmelCase_ = model(_snake_case)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def lowerCamelCase ( self : Any , _snake_case : int , _snake_case : List[str] , _snake_case : Union[str, Any] , _snake_case : int , _snake_case : List[str] , _snake_case : str , _snake_case : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = self.num_labels
UpperCAmelCase_ = TFConvBertForSequenceClassification(config=_snake_case)
UpperCAmelCase_ = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
UpperCAmelCase_ = model(_snake_case)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def lowerCamelCase ( self : Union[str, Any] , _snake_case : List[str] , _snake_case : Optional[int] , _snake_case : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : List[Any] , _snake_case : List[str] , _snake_case : Tuple):
"""simple docstring"""
UpperCAmelCase_ = self.num_choices
UpperCAmelCase_ = TFConvBertForMultipleChoice(config=_snake_case)
UpperCAmelCase_ = tf.tile(tf.expand_dims(_snake_case , 1) , (1, self.num_choices, 1))
UpperCAmelCase_ = tf.tile(tf.expand_dims(_snake_case , 1) , (1, self.num_choices, 1))
UpperCAmelCase_ = tf.tile(tf.expand_dims(_snake_case , 1) , (1, self.num_choices, 1))
UpperCAmelCase_ = {
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
'''token_type_ids''': multiple_choice_token_type_ids,
}
UpperCAmelCase_ = model(_snake_case)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices))
def lowerCamelCase ( self : Tuple , _snake_case : Any , _snake_case : str , _snake_case : List[str] , _snake_case : int , _snake_case : List[str] , _snake_case : Optional[int] , _snake_case : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = self.num_labels
UpperCAmelCase_ = TFConvBertForTokenClassification(config=_snake_case)
UpperCAmelCase_ = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
UpperCAmelCase_ = model(_snake_case)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def lowerCamelCase ( self : Tuple , _snake_case : Optional[int] , _snake_case : Optional[Any] , _snake_case : str , _snake_case : Dict , _snake_case : List[Any] , _snake_case : str , _snake_case : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = TFConvBertForQuestionAnswering(config=_snake_case)
UpperCAmelCase_ = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
UpperCAmelCase_ = model(_snake_case)
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) = config_and_inputs
UpperCAmelCase_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class __snake_case ( a , a , unittest.TestCase ):
UpperCAmelCase__ : List[Any] = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
UpperCAmelCase__ : List[Any] = (
{
'''feature-extraction''': TFConvBertModel,
'''fill-mask''': TFConvBertForMaskedLM,
'''question-answering''': TFConvBertForQuestionAnswering,
'''text-classification''': TFConvBertForSequenceClassification,
'''token-classification''': TFConvBertForTokenClassification,
'''zero-shot''': TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
UpperCAmelCase__ : Tuple = False
UpperCAmelCase__ : List[str] = False
UpperCAmelCase__ : List[str] = False
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = TFConvBertModelTester(self)
UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case , hidden_size=37)
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case)
def lowerCamelCase ( self : Any):
"""simple docstring"""
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_snake_case)
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_snake_case)
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_snake_case)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_snake_case)
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_snake_case)
@slow
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ = True
UpperCAmelCase_ = True
if hasattr(_snake_case , '''use_cache'''):
UpperCAmelCase_ = True
UpperCAmelCase_ = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length)
UpperCAmelCase_ = getattr(self.model_tester , '''key_length''' , _snake_case)
for model_class in self.all_model_classes:
UpperCAmelCase_ = self._prepare_for_class(_snake_case , _snake_case)
UpperCAmelCase_ = model_class(_snake_case)
UpperCAmelCase_ = len(model(_snake_case))
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_snake_case , saved_model=_snake_case)
UpperCAmelCase_ = os.path.join(_snake_case , '''saved_model''' , '''1''')
UpperCAmelCase_ = tf.keras.models.load_model(_snake_case)
UpperCAmelCase_ = model(_snake_case)
if self.is_encoder_decoder:
UpperCAmelCase_ = outputs['''encoder_hidden_states''']
UpperCAmelCase_ = outputs['''encoder_attentions''']
else:
UpperCAmelCase_ = outputs['''hidden_states''']
UpperCAmelCase_ = outputs['''attentions''']
self.assertEqual(len(_snake_case) , _snake_case)
UpperCAmelCase_ = getattr(
self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1)
self.assertEqual(len(_snake_case) , _snake_case)
self.assertListEqual(
list(output_hidden_states[0].shape[-2:]) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(_snake_case) , self.model_tester.num_hidden_layers)
self.assertListEqual(
list(output_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''')
self.assertIsNotNone(_snake_case)
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ = True
UpperCAmelCase_ = getattr(self.model_tester , '''decoder_seq_length''' , self.model_tester.seq_length)
UpperCAmelCase_ = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length)
UpperCAmelCase_ = getattr(self.model_tester , '''key_length''' , _snake_case)
UpperCAmelCase_ = getattr(self.model_tester , '''key_length''' , _snake_case)
def check_decoder_attentions_output(_snake_case : List[str]):
UpperCAmelCase_ = len(_snake_case)
self.assertEqual(out_len % 2 , 0)
UpperCAmelCase_ = outputs.decoder_attentions
self.assertEqual(len(_snake_case) , self.model_tester.num_hidden_layers)
self.assertListEqual(
list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(_snake_case : Optional[Any]):
UpperCAmelCase_ = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(_snake_case) , self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
UpperCAmelCase_ = True
UpperCAmelCase_ = False
UpperCAmelCase_ = model_class(_snake_case)
UpperCAmelCase_ = model(self._prepare_for_class(_snake_case , _snake_case))
UpperCAmelCase_ = len(_snake_case)
self.assertEqual(config.output_hidden_states , _snake_case)
check_encoder_attentions_output(_snake_case)
if self.is_encoder_decoder:
UpperCAmelCase_ = model_class(_snake_case)
UpperCAmelCase_ = model(self._prepare_for_class(_snake_case , _snake_case))
self.assertEqual(config.output_hidden_states , _snake_case)
check_decoder_attentions_output(_snake_case)
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
UpperCAmelCase_ = True
UpperCAmelCase_ = model_class(_snake_case)
UpperCAmelCase_ = model(self._prepare_for_class(_snake_case , _snake_case))
self.assertEqual(config.output_hidden_states , _snake_case)
check_encoder_attentions_output(_snake_case)
# Check attention is always last and order is fine
UpperCAmelCase_ = True
UpperCAmelCase_ = True
UpperCAmelCase_ = model_class(_snake_case)
UpperCAmelCase_ = model(self._prepare_for_class(_snake_case , _snake_case))
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_snake_case))
self.assertEqual(model.config.output_hidden_states , _snake_case)
check_encoder_attentions_output(_snake_case)
@require_tf
class __snake_case ( unittest.TestCase ):
@slow
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''')
UpperCAmelCase_ = tf.constant([[0, 1, 2, 3, 4, 5]])
UpperCAmelCase_ = model(_snake_case)[0]
UpperCAmelCase_ = [1, 6, 768]
self.assertEqual(output.shape , _snake_case)
UpperCAmelCase_ = tf.constant(
[
[
[-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2],
[0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4],
[0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4],
]
])
tf.debugging.assert_near(output[:, :3, :3] , _snake_case , atol=1e-4)
| 363 |
import os
import warnings
from typing import List, Optional
from ...tokenization_utils_base import BatchEncoding
from ...utils import logging
from .configuration_rag import RagConfig
snake_case_ : Union[str, Any] = logging.get_logger(__name__)
class __snake_case :
def __init__( self : int , _snake_case : List[Any] , _snake_case : Tuple):
"""simple docstring"""
UpperCAmelCase_ = question_encoder
UpperCAmelCase_ = generator
UpperCAmelCase_ = self.question_encoder
def lowerCamelCase ( self : Union[str, Any] , _snake_case : Optional[int]):
"""simple docstring"""
if os.path.isfile(_snake_case):
raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""")
os.makedirs(_snake_case , exist_ok=_snake_case)
UpperCAmelCase_ = os.path.join(_snake_case , '''question_encoder_tokenizer''')
UpperCAmelCase_ = os.path.join(_snake_case , '''generator_tokenizer''')
self.question_encoder.save_pretrained(_snake_case)
self.generator.save_pretrained(_snake_case)
@classmethod
def lowerCamelCase ( cls : Optional[Any] , _snake_case : Optional[Any] , **_snake_case : Optional[int]):
"""simple docstring"""
from ..auto.tokenization_auto import AutoTokenizer
UpperCAmelCase_ = kwargs.pop('''config''' , _snake_case)
if config is None:
UpperCAmelCase_ = RagConfig.from_pretrained(_snake_case)
UpperCAmelCase_ = AutoTokenizer.from_pretrained(
_snake_case , config=config.question_encoder , subfolder='''question_encoder_tokenizer''')
UpperCAmelCase_ = AutoTokenizer.from_pretrained(
_snake_case , config=config.generator , subfolder='''generator_tokenizer''')
return cls(question_encoder=_snake_case , generator=_snake_case)
def __call__( self : List[Any] , *_snake_case : List[str] , **_snake_case : List[Any]):
"""simple docstring"""
return self.current_tokenizer(*_snake_case , **_snake_case)
def lowerCamelCase ( self : List[Any] , *_snake_case : str , **_snake_case : Union[str, Any]):
"""simple docstring"""
return self.generator.batch_decode(*_snake_case , **_snake_case)
def lowerCamelCase ( self : str , *_snake_case : Optional[int] , **_snake_case : Any):
"""simple docstring"""
return self.generator.decode(*_snake_case , **_snake_case)
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = self.question_encoder
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = self.generator
def lowerCamelCase ( self : Optional[Any] , _snake_case : List[str] , _snake_case : Optional[List[str]] = None , _snake_case : Optional[int] = None , _snake_case : Optional[int] = None , _snake_case : str = "longest" , _snake_case : str = None , _snake_case : bool = True , **_snake_case : Optional[int] , ):
"""simple docstring"""
warnings.warn(
'''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the '''
'''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` '''
'''context manager to prepare your targets. See the documentation of your specific tokenizer for more '''
'''details''' , _snake_case , )
if max_length is None:
UpperCAmelCase_ = self.current_tokenizer.model_max_length
UpperCAmelCase_ = self(
_snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , max_length=_snake_case , padding=_snake_case , truncation=_snake_case , **_snake_case , )
if tgt_texts is None:
return model_inputs
# Process tgt_texts
if max_target_length is None:
UpperCAmelCase_ = self.current_tokenizer.model_max_length
UpperCAmelCase_ = self(
text_target=_snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case , **_snake_case , )
UpperCAmelCase_ = labels['''input_ids''']
return model_inputs
| 7 | 0 |
import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def A () -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ = ArgumentParser(
description=(
'''PyTorch TPU distributed training launch '''
'''helper utility that will spawn up '''
'''multiple distributed processes'''
) )
# Optional arguments for the launch helper
parser.add_argument('''--num_cores''' , type=__A , default=1 , help='''Number of TPU cores to use (1 or 8).''' )
# positional
parser.add_argument(
'''training_script''' , type=__A , help=(
'''The full path to the single TPU training '''
'''program/script to be launched in parallel, '''
'''followed by all the arguments for the '''
'''training script'''
) , )
# rest from the training program
parser.add_argument('''training_script_args''' , nargs=__A )
return parser.parse_args()
def A () -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ = parse_args()
# Import training_script as a module.
UpperCAmelCase_ = Path(args.training_script )
sys.path.append(str(script_fpath.parent.resolve() ) )
UpperCAmelCase_ = script_fpath.stem
UpperCAmelCase_ = importlib.import_module(__A )
# Patch sys.argv
UpperCAmelCase_ = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )]
xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores )
if __name__ == "__main__":
main()
| 364 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class __snake_case ( unittest.TestCase ):
@slow
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-base''')
UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]])
# The dog is cute and lives in the garden house
UpperCAmelCase_ = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim
UpperCAmelCase_ = torch.tensor(
[[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]])
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
UpperCAmelCase_ = model(_snake_case)['''last_hidden_state'''].detach()
self.assertEqual(output.shape , _snake_case)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3))
@slow
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-large''')
UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]])
# The dog is cute and lives in the garden house
UpperCAmelCase_ = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim
UpperCAmelCase_ = torch.tensor(
[[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]])
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
UpperCAmelCase_ = model(_snake_case)['''last_hidden_state'''].detach()
self.assertEqual(output.shape , _snake_case)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3))
| 7 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
snake_case_ : Any = {
"configuration_xlm_roberta": [
"XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP",
"XLMRobertaConfig",
"XLMRobertaOnnxConfig",
],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : List[str] = ["XLMRobertaTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Dict = ["XLMRobertaTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Optional[int] = [
"XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
"XLMRobertaForCausalLM",
"XLMRobertaForMaskedLM",
"XLMRobertaForMultipleChoice",
"XLMRobertaForQuestionAnswering",
"XLMRobertaForSequenceClassification",
"XLMRobertaForTokenClassification",
"XLMRobertaModel",
"XLMRobertaPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Tuple = [
"TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFXLMRobertaForCausalLM",
"TFXLMRobertaForMaskedLM",
"TFXLMRobertaForMultipleChoice",
"TFXLMRobertaForQuestionAnswering",
"TFXLMRobertaForSequenceClassification",
"TFXLMRobertaForTokenClassification",
"TFXLMRobertaModel",
"TFXLMRobertaPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Dict = [
"FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
"FlaxXLMRobertaForMaskedLM",
"FlaxXLMRobertaForCausalLM",
"FlaxXLMRobertaForMultipleChoice",
"FlaxXLMRobertaForQuestionAnswering",
"FlaxXLMRobertaForSequenceClassification",
"FlaxXLMRobertaForTokenClassification",
"FlaxXLMRobertaModel",
"FlaxXLMRobertaPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_xlm_roberta import (
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLMRobertaConfig,
XLMRobertaOnnxConfig,
)
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlm_roberta import XLMRobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm_roberta import (
XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMRobertaForCausalLM,
XLMRobertaForMaskedLM,
XLMRobertaForMultipleChoice,
XLMRobertaForQuestionAnswering,
XLMRobertaForSequenceClassification,
XLMRobertaForTokenClassification,
XLMRobertaModel,
XLMRobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlm_roberta import (
TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMRobertaForCausalLM,
TFXLMRobertaForMaskedLM,
TFXLMRobertaForMultipleChoice,
TFXLMRobertaForQuestionAnswering,
TFXLMRobertaForSequenceClassification,
TFXLMRobertaForTokenClassification,
TFXLMRobertaModel,
TFXLMRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xlm_roberta import (
FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxXLMRobertaForCausalLM,
FlaxXLMRobertaForMaskedLM,
FlaxXLMRobertaForMultipleChoice,
FlaxXLMRobertaForQuestionAnswering,
FlaxXLMRobertaForSequenceClassification,
FlaxXLMRobertaForTokenClassification,
FlaxXLMRobertaModel,
FlaxXLMRobertaPreTrainedModel,
)
else:
import sys
snake_case_ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 365 |
from maths.prime_factors import prime_factors
def A (__A : int ) -> int:
"""simple docstring"""
if not isinstance(__A , __A ):
UpperCAmelCase_ = F"""Input value of [number={number}] must be an integer"""
raise TypeError(__A )
if number < 1:
raise ValueError('''Input must be a positive integer''' )
return -1 if len(prime_factors(__A ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 | 0 |
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class __snake_case ( unittest.TestCase ):
@slow
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-base''')
UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]])
# The dog is cute and lives in the garden house
UpperCAmelCase_ = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim
UpperCAmelCase_ = torch.tensor(
[[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]])
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
UpperCAmelCase_ = model(_snake_case)['''last_hidden_state'''].detach()
self.assertEqual(output.shape , _snake_case)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3))
@slow
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-large''')
UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]])
# The dog is cute and lives in the garden house
UpperCAmelCase_ = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim
UpperCAmelCase_ = torch.tensor(
[[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]])
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
UpperCAmelCase_ = model(_snake_case)['''last_hidden_state'''].detach()
self.assertEqual(output.shape , _snake_case)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3))
| 366 |
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class __snake_case ( unittest.TestCase ):
def lowerCamelCase ( self : Optional[int] , _snake_case : Union[str, Any]):
"""simple docstring"""
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss''']):
UpperCAmelCase_ = model_result['''result'''][batch_size][sequence_length]
self.assertIsNotNone(_snake_case)
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = '''sgugger/tiny-distilbert-classification'''
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , only_pretrain_model=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , torchscript=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''')
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , fpaa=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
# set architectures equal to `None`
UpperCAmelCase_ = None
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config])
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
@unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''')
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_snake_case , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config])
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tinier_bart'''
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config])
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config])
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tinier_bart'''
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config])
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , save_to_csv=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_snake_case , '''inf_time.csv''') , train_memory_csv_file=os.path.join(_snake_case , '''train_mem.csv''') , inference_memory_csv_file=os.path.join(_snake_case , '''inf_mem.csv''') , train_time_csv_file=os.path.join(_snake_case , '''train_time.csv''') , env_info_csv_file=os.path.join(_snake_case , '''env.csv''') , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
benchmark.run()
self.assertTrue(Path(os.path.join(_snake_case , '''inf_time.csv''')).exists())
self.assertTrue(Path(os.path.join(_snake_case , '''train_time.csv''')).exists())
self.assertTrue(Path(os.path.join(_snake_case , '''inf_mem.csv''')).exists())
self.assertTrue(Path(os.path.join(_snake_case , '''train_mem.csv''')).exists())
self.assertTrue(Path(os.path.join(_snake_case , '''env.csv''')).exists())
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
def _check_summary_is_not_empty(_snake_case : Tuple):
self.assertTrue(hasattr(_snake_case , '''sequential'''))
self.assertTrue(hasattr(_snake_case , '''cumulative'''))
self.assertTrue(hasattr(_snake_case , '''current'''))
self.assertTrue(hasattr(_snake_case , '''total'''))
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_snake_case , '''log.txt''') , log_print=_snake_case , trace_memory_line_by_line=_snake_case , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
_check_summary_is_not_empty(result.inference_summary)
_check_summary_is_not_empty(result.train_summary)
self.assertTrue(Path(os.path.join(_snake_case , '''log.txt''')).exists())
| 7 | 0 |
import pickle
import unittest
import torch
from accelerate import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils import require_cpu
@require_cpu
class __snake_case ( unittest.TestCase ):
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ = torch.nn.Linear(10 , 10)
UpperCAmelCase_ = torch.optim.SGD(model.parameters() , 0.1)
UpperCAmelCase_ = Accelerator()
UpperCAmelCase_ = accelerator.prepare(_snake_case)
try:
pickle.loads(pickle.dumps(_snake_case))
except Exception as e:
self.fail(F"""Accelerated optimizer pickling failed with {e}""")
AcceleratorState._reset_state()
| 367 |
import argparse
import os
import numpy as np
import tensorflow as tf
import torch
from transformers import BertModel
def A (__A : BertModel , __A : str , __A : str ) -> int:
"""simple docstring"""
UpperCAmelCase_ = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''')
UpperCAmelCase_ = (
('''layer.''', '''layer_'''),
('''word_embeddings.weight''', '''word_embeddings'''),
('''position_embeddings.weight''', '''position_embeddings'''),
('''token_type_embeddings.weight''', '''token_type_embeddings'''),
('''.''', '''/'''),
('''LayerNorm/weight''', '''LayerNorm/gamma'''),
('''LayerNorm/bias''', '''LayerNorm/beta'''),
('''weight''', '''kernel'''),
)
if not os.path.isdir(__A ):
os.makedirs(__A )
UpperCAmelCase_ = model.state_dict()
def to_tf_var_name(__A : str ):
for patt, repl in iter(__A ):
UpperCAmelCase_ = name.replace(__A , __A )
return F"""bert/{name}"""
def create_tf_var(__A : np.ndarray , __A : str , __A : tf.Session ):
UpperCAmelCase_ = tf.dtypes.as_dtype(tensor.dtype )
UpperCAmelCase_ = tf.get_variable(dtype=__A , shape=tensor.shape , name=__A , initializer=tf.zeros_initializer() )
session.run(tf.variables_initializer([tf_var] ) )
session.run(__A )
return tf_var
tf.reset_default_graph()
with tf.Session() as session:
for var_name in state_dict:
UpperCAmelCase_ = to_tf_var_name(__A )
UpperCAmelCase_ = state_dict[var_name].numpy()
if any(x in var_name for x in tensors_to_transpose ):
UpperCAmelCase_ = torch_tensor.T
UpperCAmelCase_ = create_tf_var(tensor=__A , name=__A , session=__A )
tf.keras.backend.set_value(__A , __A )
UpperCAmelCase_ = session.run(__A )
print(F"""Successfully created {tf_name}: {np.allclose(__A , __A )}""" )
UpperCAmelCase_ = tf.train.Saver(tf.trainable_variables() )
saver.save(__A , os.path.join(__A , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) )
def A (__A : Any=None ) -> str:
"""simple docstring"""
UpperCAmelCase_ = argparse.ArgumentParser()
parser.add_argument('''--model_name''' , type=__A , required=__A , help='''model name e.g. bert-base-uncased''' )
parser.add_argument(
'''--cache_dir''' , type=__A , default=__A , required=__A , help='''Directory containing pytorch model''' )
parser.add_argument('''--pytorch_model_path''' , type=__A , required=__A , help='''/path/to/<pytorch-model-name>.bin''' )
parser.add_argument('''--tf_cache_dir''' , type=__A , required=__A , help='''Directory in which to save tensorflow model''' )
UpperCAmelCase_ = parser.parse_args(__A )
UpperCAmelCase_ = BertModel.from_pretrained(
pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , )
convert_pytorch_checkpoint_to_tf(model=__A , ckpt_dir=args.tf_cache_dir , model_name=args.model_name )
if __name__ == "__main__":
main()
| 7 | 0 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionAttendAndExcitePipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_numpy, skip_mps, slow
from diffusers.utils.testing_utils import require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
snake_case_ : int = False
@skip_mps
class __snake_case ( a , a , a , unittest.TestCase ):
UpperCAmelCase__ : Any = StableDiffusionAttendAndExcitePipeline
UpperCAmelCase__ : int = False
UpperCAmelCase__ : Tuple = TEXT_TO_IMAGE_PARAMS
UpperCAmelCase__ : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS.union({'''token_indices'''} )
UpperCAmelCase__ : str = TEXT_TO_IMAGE_IMAGE_PARAMS
UpperCAmelCase__ : Any = TEXT_TO_IMAGE_IMAGE_PARAMS
@classmethod
def lowerCamelCase ( cls : Optional[int]):
"""simple docstring"""
super().setUpClass()
torch.use_deterministic_algorithms(_snake_case)
@classmethod
def lowerCamelCase ( cls : Optional[Any]):
"""simple docstring"""
super().tearDownClass()
torch.use_deterministic_algorithms(_snake_case)
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
torch.manual_seed(0)
UpperCAmelCase_ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_snake_case , )
UpperCAmelCase_ = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_snake_case , set_alpha_to_one=_snake_case , )
torch.manual_seed(0)
UpperCAmelCase_ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0)
UpperCAmelCase_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , )
UpperCAmelCase_ = CLIPTextModel(_snake_case)
UpperCAmelCase_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''')
UpperCAmelCase_ = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def lowerCamelCase ( self : Dict , _snake_case : Optional[int] , _snake_case : List[Any]=0):
"""simple docstring"""
if str(_snake_case).startswith('''mps'''):
UpperCAmelCase_ = torch.manual_seed(_snake_case)
else:
UpperCAmelCase_ = torch.Generator(device=_snake_case).manual_seed(_snake_case)
UpperCAmelCase_ = UpperCAmelCase_ = {
'''prompt''': '''a cat and a frog''',
'''token_indices''': [2, 5],
'''generator''': generator,
'''num_inference_steps''': 1,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
'''max_iter_to_alter''': 2,
'''thresholds''': {0: 0.7},
}
return inputs
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = '''cpu'''
UpperCAmelCase_ = self.get_dummy_components()
UpperCAmelCase_ = self.pipeline_class(**_snake_case)
pipe.to(_snake_case)
pipe.set_progress_bar_config(disable=_snake_case)
UpperCAmelCase_ = self.get_dummy_inputs(_snake_case)
UpperCAmelCase_ = pipe(**_snake_case).images
UpperCAmelCase_ = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 64, 64, 3))
UpperCAmelCase_ = np.array(
[0.6_3_9_0_5_3_6_4, 0.6_2_8_9_7_3_0_7, 0.4_8_5_9_9_0_1_7, 0.5_1_3_3_6_2_4, 0.5_5_5_0_0_4_8, 0.4_5_7_6_9_5_1_6, 0.5_0_3_2_6_9_7_3, 0.5_0_2_3_1_3_9, 0.4_5_3_8_4_4_9_6])
UpperCAmelCase_ = np.abs(image_slice.flatten() - expected_slice).max()
self.assertLessEqual(_snake_case , 1e-3)
def lowerCamelCase ( self : str):
"""simple docstring"""
super().test_cpu_offload_forward_pass(expected_max_diff=5e-4)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
self._test_inference_batch_consistent(batch_sizes=[1, 2])
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4)
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3)
def lowerCamelCase ( self : int):
"""simple docstring"""
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4)
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
super().test_save_load_local(expected_max_difference=5e-4)
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
super().test_save_load_optional_components(expected_max_difference=4e-4)
@require_torch_gpu
@slow
class __snake_case ( unittest.TestCase ):
@classmethod
def lowerCamelCase ( cls : Any):
"""simple docstring"""
super().setUpClass()
torch.use_deterministic_algorithms(_snake_case)
@classmethod
def lowerCamelCase ( cls : Tuple):
"""simple docstring"""
super().tearDownClass()
torch.use_deterministic_algorithms(_snake_case)
def lowerCamelCase ( self : str):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = torch.manual_seed(51)
UpperCAmelCase_ = StableDiffusionAttendAndExcitePipeline.from_pretrained(
'''CompVis/stable-diffusion-v1-4''' , safety_checker=_snake_case , torch_dtype=torch.floataa)
pipe.to('''cuda''')
UpperCAmelCase_ = '''a painting of an elephant with glasses'''
UpperCAmelCase_ = [5, 7]
UpperCAmelCase_ = pipe(
prompt=_snake_case , token_indices=_snake_case , guidance_scale=7.5 , generator=_snake_case , num_inference_steps=5 , max_iter_to_alter=5 , output_type='''numpy''' , ).images[0]
UpperCAmelCase_ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy''')
assert np.abs((expected_image - image).max()) < 5e-1
| 368 |
import inspect
import unittest
from transformers import RegNetConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from transformers.utils import cached_property, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __snake_case ( unittest.TestCase ):
def __init__( self : Tuple , _snake_case : List[Any] , _snake_case : Dict=3 , _snake_case : Dict=32 , _snake_case : List[str]=3 , _snake_case : Union[str, Any]=10 , _snake_case : Tuple=[10, 20, 30, 40] , _snake_case : Dict=[1, 1, 2, 1] , _snake_case : List[Any]=True , _snake_case : Dict=True , _snake_case : Union[str, Any]="relu" , _snake_case : Tuple=3 , _snake_case : Union[str, Any]=None , ):
"""simple docstring"""
UpperCAmelCase_ = parent
UpperCAmelCase_ = batch_size
UpperCAmelCase_ = image_size
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = embeddings_size
UpperCAmelCase_ = hidden_sizes
UpperCAmelCase_ = depths
UpperCAmelCase_ = is_training
UpperCAmelCase_ = use_labels
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = num_labels
UpperCAmelCase_ = scope
UpperCAmelCase_ = len(_snake_case)
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
UpperCAmelCase_ = self.get_config()
return config, pixel_values
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def lowerCamelCase ( self : Optional[int] , _snake_case : List[Any] , _snake_case : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = FlaxRegNetModel(config=_snake_case)
UpperCAmelCase_ = model(_snake_case)
# Output shape (b, c, h, w)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowerCamelCase ( self : Optional[Any] , _snake_case : List[Any] , _snake_case : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = self.num_labels
UpperCAmelCase_ = FlaxRegNetForImageClassification(config=_snake_case)
UpperCAmelCase_ = model(_snake_case)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ = self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs
UpperCAmelCase_ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_flax
class __snake_case ( a , unittest.TestCase ):
UpperCAmelCase__ : Union[str, Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else ()
UpperCAmelCase__ : Tuple = False
UpperCAmelCase__ : List[str] = False
UpperCAmelCase__ : int = False
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = FlaxRegNetModelTester(self)
UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case)
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
return
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_snake_case)
@unittest.skip(reason='''RegNet does not use inputs_embeds''')
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
pass
@unittest.skip(reason='''RegNet does not support input and output embeddings''')
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
pass
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = model_class(_snake_case)
UpperCAmelCase_ = inspect.signature(model.__call__)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ = [*signature.parameters.keys()]
UpperCAmelCase_ = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _snake_case)
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
def check_hidden_states_output(_snake_case : List[str] , _snake_case : Dict , _snake_case : List[str]):
UpperCAmelCase_ = model_class(_snake_case)
UpperCAmelCase_ = model(**self._prepare_for_class(_snake_case , _snake_case))
UpperCAmelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCAmelCase_ = self.model_tester.num_stages
self.assertEqual(len(_snake_case) , expected_num_stages + 1)
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = True
check_hidden_states_output(_snake_case , _snake_case , _snake_case)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase_ = True
check_hidden_states_output(_snake_case , _snake_case , _snake_case)
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
UpperCAmelCase_ = self._prepare_for_class(_snake_case , _snake_case)
UpperCAmelCase_ = model_class(_snake_case)
@jax.jit
def model_jitted(_snake_case : str , **_snake_case : Union[str, Any]):
return model(pixel_values=_snake_case , **_snake_case)
with self.subTest('''JIT Enabled'''):
UpperCAmelCase_ = model_jitted(**_snake_case).to_tuple()
with self.subTest('''JIT Disabled'''):
with jax.disable_jit():
UpperCAmelCase_ = model_jitted(**_snake_case).to_tuple()
self.assertEqual(len(_snake_case) , len(_snake_case))
for jitted_output, output in zip(_snake_case , _snake_case):
self.assertEqual(jitted_output.shape , output.shape)
def A () -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_flax
class __snake_case ( unittest.TestCase ):
@cached_property
def lowerCamelCase ( self : Dict):
"""simple docstring"""
return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''') if is_vision_available() else None
@slow
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''')
UpperCAmelCase_ = self.default_image_processor
UpperCAmelCase_ = prepare_img()
UpperCAmelCase_ = image_processor(images=_snake_case , return_tensors='''np''')
UpperCAmelCase_ = model(**_snake_case)
# verify the logits
UpperCAmelCase_ = (1, 1000)
self.assertEqual(outputs.logits.shape , _snake_case)
UpperCAmelCase_ = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6])
self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _snake_case , atol=1e-4))
| 7 | 0 |
import math
def A (__A : list , __A : int = 0 , __A : int = 0 ) -> list:
"""simple docstring"""
UpperCAmelCase_ = end or len(__A )
for i in range(__A , __A ):
UpperCAmelCase_ = i
UpperCAmelCase_ = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
UpperCAmelCase_ = array[temp_index - 1]
temp_index -= 1
UpperCAmelCase_ = temp_index_value
return array
def A (__A : list , __A : int , __A : int ) -> None: # Max Heap
"""simple docstring"""
UpperCAmelCase_ = index
UpperCAmelCase_ = 2 * index + 1 # Left Node
UpperCAmelCase_ = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
UpperCAmelCase_ = left_index
if right_index < heap_size and array[largest] < array[right_index]:
UpperCAmelCase_ = right_index
if largest != index:
UpperCAmelCase_ , UpperCAmelCase_ = array[largest], array[index]
heapify(__A , __A , __A )
def A (__A : list ) -> list:
"""simple docstring"""
UpperCAmelCase_ = len(__A )
for i in range(n // 2 , -1 , -1 ):
heapify(__A , __A , __A )
for i in range(n - 1 , 0 , -1 ):
UpperCAmelCase_ , UpperCAmelCase_ = array[0], array[i]
heapify(__A , 0 , __A )
return array
def A (__A : list , __A : int , __A : int , __A : int ) -> int:
"""simple docstring"""
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def A (__A : list , __A : int , __A : int , __A : int ) -> int:
"""simple docstring"""
UpperCAmelCase_ = low
UpperCAmelCase_ = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
UpperCAmelCase_ , UpperCAmelCase_ = array[j], array[i]
i += 1
def A (__A : list ) -> list:
"""simple docstring"""
if len(__A ) == 0:
return array
UpperCAmelCase_ = 2 * math.ceil(math.loga(len(__A ) ) )
UpperCAmelCase_ = 16
return intro_sort(__A , 0 , len(__A ) , __A , __A )
def A (__A : list , __A : int , __A : int , __A : int , __A : int ) -> list:
"""simple docstring"""
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(__A )
max_depth -= 1
UpperCAmelCase_ = median_of_a(__A , __A , start + ((end - start) // 2) + 1 , end - 1 )
UpperCAmelCase_ = partition(__A , __A , __A , __A )
intro_sort(__A , __A , __A , __A , __A )
UpperCAmelCase_ = p
return insertion_sort(__A , __A , __A )
if __name__ == "__main__":
import doctest
doctest.testmod()
snake_case_ : Union[str, Any] = input("Enter numbers separated by a comma : ").strip()
snake_case_ : Any = [float(item) for item in user_input.split(",")]
print(sort(unsorted))
| 369 |
import comet # From: unbabel-comet
import torch
import datasets
snake_case_ : Tuple = datasets.logging.get_logger(__name__)
snake_case_ : str = "\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel's Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = \"{COMET}: A Neural Framework for {MT} Evaluation\",\n author = \"Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\",\n pages = \"2685--2702\",\n}\n"
snake_case_ : Tuple = "\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n"
snake_case_ : Optional[int] = "\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric('comet')\n >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use\n >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"]\n >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"]\n >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [0.19, 0.92]\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __snake_case ( datasets.Metric ):
def lowerCamelCase ( self : Any):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''sources''': datasets.Value('''string''' , id='''sequence'''),
'''predictions''': datasets.Value('''string''' , id='''sequence'''),
'''references''': datasets.Value('''string''' , id='''sequence'''),
}) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[
'''https://github.com/Unbabel/COMET''',
'''https://www.aclweb.org/anthology/2020.emnlp-main.213/''',
'''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''',
] , )
def lowerCamelCase ( self : List[Any] , _snake_case : Optional[int]):
"""simple docstring"""
if self.config_name == "default":
UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da'''))
else:
UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model(self.config_name))
def lowerCamelCase ( self : List[Any] , _snake_case : str , _snake_case : List[str] , _snake_case : Tuple , _snake_case : int=None , _snake_case : Optional[Any]=False):
"""simple docstring"""
if gpus is None:
UpperCAmelCase_ = 1 if torch.cuda.is_available() else 0
UpperCAmelCase_ = {'''src''': sources, '''mt''': predictions, '''ref''': references}
UpperCAmelCase_ = [dict(zip(_snake_case , _snake_case)) for t in zip(*data.values())]
UpperCAmelCase_ , UpperCAmelCase_ = self.scorer.predict(_snake_case , gpus=_snake_case , progress_bar=_snake_case)
return {"mean_score": mean_score, "scores": scores}
| 7 | 0 |
import os
# Precomputes a list of the 100 first triangular numbers
snake_case_ : Dict = [int(0.5 * n * (n + 1)) for n in range(1, 101)]
def A () -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ = os.path.dirname(os.path.realpath(__A ) )
UpperCAmelCase_ = os.path.join(__A , '''words.txt''' )
UpperCAmelCase_ = ''''''
with open(__A ) as f:
UpperCAmelCase_ = f.readline()
UpperCAmelCase_ = [word.strip('''"''' ) for word in words.strip('''\r\n''' ).split(''',''' )]
UpperCAmelCase_ = [
word
for word in [sum(ord(__A ) - 64 for x in word ) for word in words]
if word in TRIANGULAR_NUMBERS
]
return len(__A )
if __name__ == "__main__":
print(solution())
| 370 |
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class __snake_case ( a ):
UpperCAmelCase__ : Optional[int] = (DPMSolverSinglestepScheduler,)
UpperCAmelCase__ : str = (('''num_inference_steps''', 2_5),)
def lowerCamelCase ( self : Dict , **_snake_case : Dict):
"""simple docstring"""
UpperCAmelCase_ = {
'''num_train_timesteps''': 1000,
'''beta_start''': 0.0_0_0_1,
'''beta_end''': 0.0_2,
'''beta_schedule''': '''linear''',
'''solver_order''': 2,
'''prediction_type''': '''epsilon''',
'''thresholding''': False,
'''sample_max_value''': 1.0,
'''algorithm_type''': '''dpmsolver++''',
'''solver_type''': '''midpoint''',
'''lambda_min_clipped''': -float('''inf'''),
'''variance_type''': None,
}
config.update(**_snake_case)
return config
def lowerCamelCase ( self : Dict , _snake_case : int=0 , **_snake_case : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = dict(self.forward_default_kwargs)
UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _snake_case)
UpperCAmelCase_ = self.dummy_sample
UpperCAmelCase_ = 0.1 * sample
UpperCAmelCase_ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase_ = self.get_scheduler_config(**_snake_case)
UpperCAmelCase_ = scheduler_class(**_snake_case)
scheduler.set_timesteps(_snake_case)
# copy over dummy past residuals
UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_snake_case)
UpperCAmelCase_ = scheduler_class.from_pretrained(_snake_case)
new_scheduler.set_timesteps(_snake_case)
# copy over dummy past residuals
UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order]
UpperCAmelCase_ , UpperCAmelCase_ = sample, sample
for t in range(_snake_case , time_step + scheduler.config.solver_order + 1):
UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample
UpperCAmelCase_ = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
pass
def lowerCamelCase ( self : Tuple , _snake_case : Optional[Any]=0 , **_snake_case : int):
"""simple docstring"""
UpperCAmelCase_ = dict(self.forward_default_kwargs)
UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _snake_case)
UpperCAmelCase_ = self.dummy_sample
UpperCAmelCase_ = 0.1 * sample
UpperCAmelCase_ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase_ = self.get_scheduler_config()
UpperCAmelCase_ = scheduler_class(**_snake_case)
scheduler.set_timesteps(_snake_case)
# copy over dummy past residuals (must be after setting timesteps)
UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_snake_case)
UpperCAmelCase_ = scheduler_class.from_pretrained(_snake_case)
# copy over dummy past residuals
new_scheduler.set_timesteps(_snake_case)
# copy over dummy past residual (must be after setting timesteps)
UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order]
UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample
UpperCAmelCase_ = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def lowerCamelCase ( self : Dict , _snake_case : int=None , **_snake_case : Optional[Any]):
"""simple docstring"""
if scheduler is None:
UpperCAmelCase_ = self.scheduler_classes[0]
UpperCAmelCase_ = self.get_scheduler_config(**_snake_case)
UpperCAmelCase_ = scheduler_class(**_snake_case)
UpperCAmelCase_ = self.scheduler_classes[0]
UpperCAmelCase_ = self.get_scheduler_config(**_snake_case)
UpperCAmelCase_ = scheduler_class(**_snake_case)
UpperCAmelCase_ = 10
UpperCAmelCase_ = self.dummy_model()
UpperCAmelCase_ = self.dummy_sample_deter
scheduler.set_timesteps(_snake_case)
for i, t in enumerate(scheduler.timesteps):
UpperCAmelCase_ = model(_snake_case , _snake_case)
UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample
return sample
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config())
UpperCAmelCase_ = 50
UpperCAmelCase_ = self.dummy_model()
UpperCAmelCase_ = self.dummy_sample_deter
scheduler.set_timesteps(_snake_case)
# make sure that the first t is uneven
for i, t in enumerate(scheduler.timesteps[3:]):
UpperCAmelCase_ = model(_snake_case , _snake_case)
UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.2_5_7_4) < 1e-3
def lowerCamelCase ( self : int):
"""simple docstring"""
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=_snake_case)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config())
UpperCAmelCase_ = self.full_loop(scheduler=_snake_case)
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3
UpperCAmelCase_ = DEISMultistepScheduler.from_config(scheduler.config)
UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(scheduler.config)
UpperCAmelCase_ = UniPCMultistepScheduler.from_config(scheduler.config)
UpperCAmelCase_ = DPMSolverSinglestepScheduler.from_config(scheduler.config)
UpperCAmelCase_ = self.full_loop(scheduler=_snake_case)
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
self.check_over_configs(thresholding=_snake_case)
for order in [1, 2, 3]:
for solver_type in ["midpoint", "heun"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=_snake_case , prediction_type=_snake_case , sample_max_value=_snake_case , algorithm_type='''dpmsolver++''' , solver_order=_snake_case , solver_type=_snake_case , )
def lowerCamelCase ( self : Dict):
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_snake_case)
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
for algorithm_type in ["dpmsolver", "dpmsolver++"]:
for solver_type in ["midpoint", "heun"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , )
UpperCAmelCase_ = self.full_loop(
solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , )
assert not torch.isnan(_snake_case).any(), "Samples have nan numbers"
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
self.check_over_configs(lower_order_final=_snake_case)
self.check_over_configs(lower_order_final=_snake_case)
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
self.check_over_configs(lambda_min_clipped=-float('''inf'''))
self.check_over_configs(lambda_min_clipped=-5.1)
def lowerCamelCase ( self : int):
"""simple docstring"""
self.check_over_configs(variance_type=_snake_case)
self.check_over_configs(variance_type='''learned_range''')
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=_snake_case , time_step=0)
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = self.full_loop()
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = self.full_loop(use_karras_sigmas=_snake_case)
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.2_2_4_8) < 1e-3
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''')
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.1_4_5_3) < 1e-3
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=_snake_case)
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.0_6_4_9) < 1e-3
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = self.scheduler_classes[0]
UpperCAmelCase_ = self.get_scheduler_config(thresholding=_snake_case , dynamic_thresholding_ratio=0)
UpperCAmelCase_ = scheduler_class(**_snake_case)
UpperCAmelCase_ = 10
UpperCAmelCase_ = self.dummy_model()
UpperCAmelCase_ = self.dummy_sample_deter.half()
scheduler.set_timesteps(_snake_case)
for i, t in enumerate(scheduler.timesteps):
UpperCAmelCase_ = model(_snake_case , _snake_case)
UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample
assert sample.dtype == torch.floataa
| 7 | 0 |
import json
import os
import shutil
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoConfig, BertConfig, GPTaConfig
from transformers.configuration_utils import PretrainedConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
snake_case_ : List[str] = {
"return_dict": False,
"output_hidden_states": True,
"output_attentions": True,
"torchscript": True,
"torch_dtype": "float16",
"use_bfloat16": True,
"tf_legacy_loss": True,
"pruned_heads": {"a": 1},
"tie_word_embeddings": False,
"is_decoder": True,
"cross_attention_hidden_size": 128,
"add_cross_attention": True,
"tie_encoder_decoder": True,
"max_length": 50,
"min_length": 3,
"do_sample": True,
"early_stopping": True,
"num_beams": 3,
"num_beam_groups": 3,
"diversity_penalty": 0.5,
"temperature": 2.0,
"top_k": 10,
"top_p": 0.7,
"typical_p": 0.2,
"repetition_penalty": 0.8,
"length_penalty": 0.8,
"no_repeat_ngram_size": 5,
"encoder_no_repeat_ngram_size": 5,
"bad_words_ids": [1, 2, 3],
"num_return_sequences": 3,
"chunk_size_feed_forward": 5,
"output_scores": True,
"return_dict_in_generate": True,
"forced_bos_token_id": 2,
"forced_eos_token_id": 3,
"remove_invalid_values": True,
"architectures": ["BertModel"],
"finetuning_task": "translation",
"id2label": {0: "label"},
"label2id": {"label": "0"},
"tokenizer_class": "BertTokenizerFast",
"prefix": "prefix",
"bos_token_id": 6,
"pad_token_id": 7,
"eos_token_id": 8,
"sep_token_id": 9,
"decoder_start_token_id": 10,
"exponential_decay_length_penalty": (5, 1.01),
"suppress_tokens": [0, 1],
"begin_suppress_tokens": 2,
"task_specific_params": {"translation": "some_params"},
"problem_type": "regression",
}
@is_staging_test
class __snake_case ( unittest.TestCase ):
@classmethod
def lowerCamelCase ( cls : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = TOKEN
HfFolder.save_token(_snake_case)
@classmethod
def lowerCamelCase ( cls : List[str]):
"""simple docstring"""
try:
delete_repo(token=cls._token , repo_id='''test-config''')
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''')
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''test-dynamic-config''')
except HTTPError:
pass
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37)
config.push_to_hub('''test-config''' , use_auth_token=self._token)
UpperCAmelCase_ = BertConfig.from_pretrained(F"""{USER}/test-config""")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_snake_case , getattr(_snake_case , _snake_case))
# Reset repo
delete_repo(token=self._token , repo_id='''test-config''')
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(_snake_case , repo_id='''test-config''' , push_to_hub=_snake_case , use_auth_token=self._token)
UpperCAmelCase_ = BertConfig.from_pretrained(F"""{USER}/test-config""")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_snake_case , getattr(_snake_case , _snake_case))
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37)
config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token)
UpperCAmelCase_ = BertConfig.from_pretrained('''valid_org/test-config-org''')
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_snake_case , getattr(_snake_case , _snake_case))
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-config-org''')
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
_snake_case , repo_id='''valid_org/test-config-org''' , push_to_hub=_snake_case , use_auth_token=self._token)
UpperCAmelCase_ = BertConfig.from_pretrained('''valid_org/test-config-org''')
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_snake_case , getattr(_snake_case , _snake_case))
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
CustomConfig.register_for_auto_class()
UpperCAmelCase_ = CustomConfig(attribute=42)
config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token)
# This has added the proper auto_map field to the config
self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''})
UpperCAmelCase_ = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=_snake_case)
# Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module
self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''')
self.assertEqual(new_config.attribute , 42)
class __snake_case ( unittest.TestCase ):
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = GPTaConfig()
# attempt to modify each of int/float/bool/str config records and verify they were updated
UpperCAmelCase_ = c.n_embd + 1 # int
UpperCAmelCase_ = c.resid_pdrop + 1.0 # float
UpperCAmelCase_ = not c.scale_attn_weights # bool
UpperCAmelCase_ = c.summary_type + '''foo''' # str
c.update_from_string(
F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""")
self.assertEqual(_snake_case , c.n_embd , '''mismatch for key: n_embd''')
self.assertEqual(_snake_case , c.resid_pdrop , '''mismatch for key: resid_pdrop''')
self.assertEqual(_snake_case , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''')
self.assertEqual(_snake_case , c.summary_type , '''mismatch for key: summary_type''')
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = PretrainedConfig()
UpperCAmelCase_ = [key for key in base_config.__dict__ if key not in config_common_kwargs]
# If this part of the test fails, you have arguments to addin config_common_kwargs above.
self.assertListEqual(
_snake_case , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version'''])
UpperCAmelCase_ = [key for key, value in config_common_kwargs.items() if value == getattr(_snake_case , _snake_case)]
if len(_snake_case) > 0:
raise ValueError(
'''The following keys are set with the default values in'''
''' `test_configuration_common.config_common_kwargs` pick another value for them:'''
F""" {", ".join(_snake_case)}.""")
def lowerCamelCase ( self : str):
"""simple docstring"""
with self.assertRaises(_snake_case):
# config is in subfolder, the following should not work without specifying the subfolder
UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''')
UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''')
self.assertIsNotNone(_snake_case)
def lowerCamelCase ( self : Any):
"""simple docstring"""
UpperCAmelCase_ = mock.Mock()
UpperCAmelCase_ = 500
UpperCAmelCase_ = {}
UpperCAmelCase_ = HTTPError
UpperCAmelCase_ = {}
# Download this model to make sure it's in the cache.
UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''')
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('''requests.Session.request''' , return_value=_snake_case) as mock_head:
UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''')
# This check we did call the fake head request
mock_head.assert_called()
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = BertConfig.from_pretrained(
'''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''')
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = AutoConfig.from_pretrained('''bert-base-cased''')
UpperCAmelCase_ = ['''config.4.0.0.json''']
with tempfile.TemporaryDirectory() as tmp_dir:
configuration.save_pretrained(_snake_case)
UpperCAmelCase_ = 2
json.dump(configuration.to_dict() , open(os.path.join(_snake_case , '''config.4.0.0.json''') , '''w'''))
# This should pick the new configuration file as the version of Transformers is > 4.0.0
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
self.assertEqual(new_configuration.hidden_size , 2)
# Will need to be adjusted if we reach v42 and this test is still here.
# Should pick the old configuration file as the version of Transformers is < 4.42.0
UpperCAmelCase_ = ['''config.42.0.0.json''']
UpperCAmelCase_ = 768
configuration.save_pretrained(_snake_case)
shutil.move(os.path.join(_snake_case , '''config.4.0.0.json''') , os.path.join(_snake_case , '''config.42.0.0.json'''))
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
self.assertEqual(new_configuration.hidden_size , 768)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = '''hf-internal-testing/test-two-configs'''
import transformers as new_transformers
UpperCAmelCase_ = '''v4.0.0'''
UpperCAmelCase_ , UpperCAmelCase_ = new_transformers.models.auto.AutoConfig.from_pretrained(
_snake_case , return_unused_kwargs=_snake_case)
self.assertEqual(new_configuration.hidden_size , 2)
# This checks `_configuration_file` ia not kept in the kwargs by mistake.
self.assertDictEqual(_snake_case , {})
# Testing an older version by monkey-patching the version in the module it's used.
import transformers as old_transformers
UpperCAmelCase_ = '''v3.0.0'''
UpperCAmelCase_ = old_transformers.models.auto.AutoConfig.from_pretrained(_snake_case)
self.assertEqual(old_configuration.hidden_size , 768)
| 371 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
snake_case_ : List[Any] = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Tuple = ["DeiTFeatureExtractor"]
snake_case_ : List[str] = ["DeiTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : List[Any] = [
"DEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"DeiTForImageClassification",
"DeiTForImageClassificationWithTeacher",
"DeiTForMaskedImageModeling",
"DeiTModel",
"DeiTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Dict = [
"TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFDeiTForImageClassification",
"TFDeiTForImageClassificationWithTeacher",
"TFDeiTForMaskedImageModeling",
"TFDeiTModel",
"TFDeiTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_deit import DeiTFeatureExtractor
from .image_processing_deit import DeiTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_deit import (
DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
DeiTModel,
DeiTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_deit import (
TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
TFDeiTPreTrainedModel,
)
else:
import sys
snake_case_ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 7 | 0 |
import json
import os
from typing import Dict, List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
snake_case_ : List[Any] = logging.get_logger(__name__)
snake_case_ : Optional[int] = {
"vocab_file": "vocab.json",
"tokenizer_config_file": "tokenizer_config.json",
"merges_file": "merges.txt",
}
snake_case_ : List[str] = {
"vocab_file": {
"facebook/s2t-wav2vec2-large-en-de": (
"https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json"
),
},
"tokenizer_config_file": {
"facebook/s2t-wav2vec2-large-en-de": (
"https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json"
),
},
"merges_file": {
"facebook/s2t-wav2vec2-large-en-de": (
"https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt"
),
},
}
snake_case_ : Optional[Any] = "</w>"
snake_case_ : Optional[int] = "@@ "
def A (__A : Any ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ = set()
UpperCAmelCase_ = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
UpperCAmelCase_ = char
return pairs
# Speech2Text2 has no max input length
snake_case_ : str = {"facebook/s2t-wav2vec2-large-en-de": 1024}
class __snake_case ( a ):
UpperCAmelCase__ : int = VOCAB_FILES_NAMES
UpperCAmelCase__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ : Optional[Any] = ['''input_ids''', '''attention_mask''']
def __init__( self : Optional[Any] , _snake_case : Optional[int] , _snake_case : Tuple="<s>" , _snake_case : int="<pad>" , _snake_case : Tuple="</s>" , _snake_case : int="<unk>" , _snake_case : Optional[Any]=False , _snake_case : Optional[int]=None , **_snake_case : Optional[int] , ):
"""simple docstring"""
super().__init__(
unk_token=_snake_case , bos_token=_snake_case , eos_token=_snake_case , pad_token=_snake_case , do_lower_case=_snake_case , **_snake_case , )
UpperCAmelCase_ = do_lower_case
with open(_snake_case , encoding='''utf-8''') as vocab_handle:
UpperCAmelCase_ = json.load(_snake_case)
UpperCAmelCase_ = {v: k for k, v in self.encoder.items()}
if merges_file is None:
logger.info(F"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""")
UpperCAmelCase_ = None
UpperCAmelCase_ = None
else:
with open(_snake_case , encoding='''utf-8''') as merges_handle:
UpperCAmelCase_ = merges_handle.read().split('''\n''')[:-1]
UpperCAmelCase_ = [tuple(merge.split()[:2]) for merge in merges]
UpperCAmelCase_ = dict(zip(_snake_case , range(len(_snake_case))))
UpperCAmelCase_ = {}
@property
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
return len(self.decoder)
def lowerCamelCase ( self : Any):
"""simple docstring"""
return dict(self.encoder , **self.added_tokens_encoder)
def lowerCamelCase ( self : List[Any] , _snake_case : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = tuple(token[:-1]) + (token[-1] + BPE_TOKEN_MERGES,)
if token in self.cache:
return self.cache[token]
UpperCAmelCase_ = get_pairs(_snake_case)
if not pairs:
return token
while True:
UpperCAmelCase_ = min(_snake_case , key=lambda _snake_case: self.bpe_ranks.get(_snake_case , float('''inf''')))
if bigram not in self.bpe_ranks:
break
UpperCAmelCase_ , UpperCAmelCase_ = bigram
UpperCAmelCase_ = []
UpperCAmelCase_ = 0
while i < len(_snake_case):
try:
UpperCAmelCase_ = word.index(_snake_case , _snake_case)
except ValueError:
new_word.extend(word[i:])
break
else:
new_word.extend(word[i:j])
UpperCAmelCase_ = j
if word[i] == first and i < len(_snake_case) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
UpperCAmelCase_ = tuple(_snake_case)
UpperCAmelCase_ = new_word
if len(_snake_case) == 1:
break
else:
UpperCAmelCase_ = get_pairs(_snake_case)
UpperCAmelCase_ = ''' '''.join(_snake_case)
if word == "\n " + BPE_TOKEN_MERGES:
UpperCAmelCase_ = '''\n''' + BPE_TOKEN_MERGES
if word.endswith(_snake_case):
UpperCAmelCase_ = word.replace(_snake_case , '''''')
UpperCAmelCase_ = word.replace(''' ''' , _snake_case)
UpperCAmelCase_ = word
return word
def lowerCamelCase ( self : int , _snake_case : Union[str, Any]):
"""simple docstring"""
if self.bpe_ranks is None:
raise ValueError(
'''This tokenizer was instantiated without a `merges.txt` file, so'''
''' that it can only be used for decoding, not for encoding.'''
'''Make sure to provide `merges.txt` file at instantiation to enable '''
'''encoding.''')
if self.do_lower_case:
UpperCAmelCase_ = text.lower()
UpperCAmelCase_ = text.split()
UpperCAmelCase_ = []
for token in text:
if token:
split_tokens.extend(list(self.bpe(_snake_case).split(''' ''')))
return split_tokens
def lowerCamelCase ( self : Optional[Any] , _snake_case : str):
"""simple docstring"""
return self.encoder.get(_snake_case , self.encoder.get(self.unk_token))
def lowerCamelCase ( self : List[Any] , _snake_case : int):
"""simple docstring"""
UpperCAmelCase_ = self.decoder.get(_snake_case , self.unk_token)
return result
def lowerCamelCase ( self : Dict , _snake_case : List[str]):
"""simple docstring"""
UpperCAmelCase_ = ''' '''.join(_snake_case)
# make sure @@ tokens are concatenated
UpperCAmelCase_ = ''''''.join(string.split(_snake_case))
return string
def lowerCamelCase ( self : Optional[int] , _snake_case : str , _snake_case : Optional[str] = None):
"""simple docstring"""
if not os.path.isdir(_snake_case):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""")
return
UpperCAmelCase_ = os.path.join(
_snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''])
UpperCAmelCase_ = os.path.join(
_snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''])
with open(_snake_case , '''w''' , encoding='''utf-8''') as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=_snake_case , ensure_ascii=_snake_case) + '''\n''')
UpperCAmelCase_ = 0
if self.bpe_ranks is None:
return (vocab_file,)
with open(_snake_case , '''w''' , encoding='''utf-8''') as writer:
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _snake_case: kv[1]):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive."""
''' Please check that the tokenizer is not corrupted!''')
UpperCAmelCase_ = token_index
writer.write(''' '''.join(_snake_case) + '''\n''')
index += 1
return (vocab_file, merges_file)
| 350 |
import sacrebleu as scb
from packaging import version
from sacrebleu import TER
import datasets
snake_case_ : Dict = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n"
snake_case_ : List[str] = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n"
snake_case_ : List[Any] = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __snake_case ( datasets.Metric ):
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
if version.parse(scb.__version__) < version.parse('''1.4.12'''):
raise ImportWarning(
'''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n'''
'''You can install it with `pip install "sacrebleu>=1.4.12"`.''')
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence'''),
'''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''') , id='''references'''),
}) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[
'''https://github.com/jhclark/tercom''',
] , )
def lowerCamelCase ( self : Union[str, Any] , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , ):
"""simple docstring"""
UpperCAmelCase_ = len(references[0])
if any(len(_snake_case) != references_per_prediction for refs in references):
raise ValueError('''Sacrebleu requires the same number of references for each prediction''')
UpperCAmelCase_ = [[refs[i] for refs in references] for i in range(_snake_case)]
UpperCAmelCase_ = TER(
normalized=_snake_case , no_punct=_snake_case , asian_support=_snake_case , case_sensitive=_snake_case , )
UpperCAmelCase_ = sb_ter.corpus_score(_snake_case , _snake_case)
return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
| 7 | 0 |
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
snake_case_ : Any = logging.get_logger(__name__)
def A (__A : Optional[int] , __A : List[Any]=False ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") )
# projection layer + position embeddings
rename_keys.extend(
[
('''cls_token''', '''vit.embeddings.cls_token'''),
('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''),
('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''),
('''pos_embed''', '''vit.embeddings.position_embeddings'''),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
('''norm.weight''', '''layernorm.weight'''),
('''norm.bias''', '''layernorm.bias'''),
('''pre_logits.fc.weight''', '''pooler.dense.weight'''),
('''pre_logits.fc.bias''', '''pooler.dense.bias'''),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
UpperCAmelCase_ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
('''norm.weight''', '''vit.layernorm.weight'''),
('''norm.bias''', '''vit.layernorm.bias'''),
('''head.weight''', '''classifier.weight'''),
('''head.bias''', '''classifier.bias'''),
] )
return rename_keys
def A (__A : Tuple , __A : Tuple , __A : List[Any]=False ) -> Any:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
if base_model:
UpperCAmelCase_ = ''''''
else:
UpperCAmelCase_ = '''vit.'''
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase_ = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" )
UpperCAmelCase_ = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ = in_proj_weight[
: config.hidden_size, :
]
UpperCAmelCase_ = in_proj_bias[: config.hidden_size]
UpperCAmelCase_ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase_ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase_ = in_proj_weight[
-config.hidden_size :, :
]
UpperCAmelCase_ = in_proj_bias[-config.hidden_size :]
def A (__A : List[Any] ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ = ['''head.weight''', '''head.bias''']
for k in ignore_keys:
state_dict.pop(__A , __A )
def A (__A : str , __A : Union[str, Any] , __A : int ) -> Any:
"""simple docstring"""
UpperCAmelCase_ = dct.pop(__A )
UpperCAmelCase_ = val
def A () -> Tuple:
"""simple docstring"""
UpperCAmelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase_ = Image.open(requests.get(__A , stream=__A ).raw )
return im
@torch.no_grad()
def A (__A : Tuple , __A : Dict ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ = ViTConfig()
UpperCAmelCase_ = False
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
if vit_name[-5:] == "in21k":
UpperCAmelCase_ = True
UpperCAmelCase_ = int(vit_name[-12:-10] )
UpperCAmelCase_ = int(vit_name[-9:-6] )
else:
UpperCAmelCase_ = 1000
UpperCAmelCase_ = '''huggingface/label-files'''
UpperCAmelCase_ = '''imagenet-1k-id2label.json'''
UpperCAmelCase_ = json.load(open(hf_hub_download(__A , __A , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase_ = {int(__A ): v for k, v in idalabel.items()}
UpperCAmelCase_ = idalabel
UpperCAmelCase_ = {v: k for k, v in idalabel.items()}
UpperCAmelCase_ = int(vit_name[-6:-4] )
UpperCAmelCase_ = int(vit_name[-3:] )
# size of the architecture
if "deit" in vit_name:
if vit_name[9:].startswith('''tiny''' ):
UpperCAmelCase_ = 192
UpperCAmelCase_ = 768
UpperCAmelCase_ = 12
UpperCAmelCase_ = 3
elif vit_name[9:].startswith('''small''' ):
UpperCAmelCase_ = 384
UpperCAmelCase_ = 1536
UpperCAmelCase_ = 12
UpperCAmelCase_ = 6
else:
pass
else:
if vit_name[4:].startswith('''small''' ):
UpperCAmelCase_ = 768
UpperCAmelCase_ = 2304
UpperCAmelCase_ = 8
UpperCAmelCase_ = 8
elif vit_name[4:].startswith('''base''' ):
pass
elif vit_name[4:].startswith('''large''' ):
UpperCAmelCase_ = 1024
UpperCAmelCase_ = 4096
UpperCAmelCase_ = 24
UpperCAmelCase_ = 16
elif vit_name[4:].startswith('''huge''' ):
UpperCAmelCase_ = 1280
UpperCAmelCase_ = 5120
UpperCAmelCase_ = 32
UpperCAmelCase_ = 16
# load original model from timm
UpperCAmelCase_ = timm.create_model(__A , pretrained=__A )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
UpperCAmelCase_ = timm_model.state_dict()
if base_model:
remove_classification_head_(__A )
UpperCAmelCase_ = create_rename_keys(__A , __A )
for src, dest in rename_keys:
rename_key(__A , __A , __A )
read_in_q_k_v(__A , __A , __A )
# load HuggingFace model
if vit_name[-5:] == "in21k":
UpperCAmelCase_ = ViTModel(__A ).eval()
else:
UpperCAmelCase_ = ViTForImageClassification(__A ).eval()
model.load_state_dict(__A )
# Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor
if "deit" in vit_name:
UpperCAmelCase_ = DeiTImageProcessor(size=config.image_size )
else:
UpperCAmelCase_ = ViTImageProcessor(size=config.image_size )
UpperCAmelCase_ = image_processor(images=prepare_img() , return_tensors='''pt''' )
UpperCAmelCase_ = encoding['''pixel_values''']
UpperCAmelCase_ = model(__A )
if base_model:
UpperCAmelCase_ = timm_model.forward_features(__A )
assert timm_pooled_output.shape == outputs.pooler_output.shape
assert torch.allclose(__A , outputs.pooler_output , atol=1E-3 )
else:
UpperCAmelCase_ = timm_model(__A )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(__A , outputs.logits , atol=1E-3 )
Path(__A ).mkdir(exist_ok=__A )
print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__A )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(__A )
if __name__ == "__main__":
snake_case_ : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--vit_name",
default="vit_base_patch16_224",
type=str,
help="Name of the ViT timm model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
snake_case_ : int = parser.parse_args()
convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
| 351 |
import unittest
from transformers import load_tool
from transformers.utils import is_torch_available
if is_torch_available():
import torch
from transformers.testing_utils import require_torch
from .test_tools_common import ToolTesterMixin
@require_torch
class __snake_case ( unittest.TestCase , a ):
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = load_tool('''text-to-speech''')
self.tool.setup()
def lowerCamelCase ( self : int):
"""simple docstring"""
torch.manual_seed(0)
UpperCAmelCase_ = self.tool('''hey''')
UpperCAmelCase_ = result.to_raw()
self.assertTrue(
torch.allclose(
resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5]) , ))
def lowerCamelCase ( self : Any):
"""simple docstring"""
torch.manual_seed(0)
UpperCAmelCase_ = self.tool('''hey''')
UpperCAmelCase_ = result.to_raw()
self.assertTrue(
torch.allclose(
resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5]) , ))
| 7 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
snake_case_ : str = logging.get_logger(__name__)
snake_case_ : List[Any] = {
"google/realm-cc-news-pretrained-embedder": (
"https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json"
),
"google/realm-cc-news-pretrained-encoder": (
"https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json"
),
"google/realm-cc-news-pretrained-scorer": (
"https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json"
),
"google/realm-cc-news-pretrained-openqa": (
"https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json"
),
"google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json",
"google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json",
"google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json",
"google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json",
# See all REALM models at https://huggingface.co/models?filter=realm
}
class __snake_case ( a ):
UpperCAmelCase__ : List[Any] = '''realm'''
def __init__( self : Union[str, Any] , _snake_case : Union[str, Any]=30522 , _snake_case : int=768 , _snake_case : List[str]=128 , _snake_case : List[str]=12 , _snake_case : Tuple=12 , _snake_case : Tuple=8 , _snake_case : int=3072 , _snake_case : int="gelu_new" , _snake_case : List[str]=0.1 , _snake_case : Dict=0.1 , _snake_case : List[Any]=512 , _snake_case : str=2 , _snake_case : str=0.0_2 , _snake_case : Dict=1e-12 , _snake_case : Union[str, Any]=256 , _snake_case : str=10 , _snake_case : Optional[int]=1e-3 , _snake_case : Dict=5 , _snake_case : Union[str, Any]=320 , _snake_case : Tuple=13353718 , _snake_case : Optional[Any]=5000 , _snake_case : Any=1 , _snake_case : Dict=0 , _snake_case : Optional[int]=2 , **_snake_case : Optional[int] , ):
"""simple docstring"""
super().__init__(pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case)
# Common config
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = retriever_proj_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = num_candidates
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = hidden_dropout_prob
UpperCAmelCase_ = attention_probs_dropout_prob
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = type_vocab_size
UpperCAmelCase_ = layer_norm_eps
# Reader config
UpperCAmelCase_ = span_hidden_size
UpperCAmelCase_ = max_span_width
UpperCAmelCase_ = reader_layer_norm_eps
UpperCAmelCase_ = reader_beam_size
UpperCAmelCase_ = reader_seq_len
# Retrieval config
UpperCAmelCase_ = num_block_records
UpperCAmelCase_ = searcher_beam_size
| 352 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
ImageTextPipelineOutput,
UniDiffuserPipeline,
)
else:
from .modeling_text_decoder import UniDiffuserTextDecoder
from .modeling_uvit import UniDiffuserModel, UTransformeraDModel
from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
| 7 | 0 |
"""simple docstring"""
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
from .timesteps import (
fastaa_timesteps,
smartaa_timesteps,
smartaa_timesteps,
smartaaa_timesteps,
smartaaa_timesteps,
superaa_timesteps,
superaa_timesteps,
superaaa_timesteps,
)
@dataclass
class __snake_case ( a ):
UpperCAmelCase__ : Union[List[PIL.Image.Image], np.ndarray]
UpperCAmelCase__ : Optional[List[bool]]
UpperCAmelCase__ : Optional[List[bool]]
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_if import IFPipeline
from .pipeline_if_imgaimg import IFImgaImgPipeline
from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline
from .pipeline_if_inpainting import IFInpaintingPipeline
from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline
from .pipeline_if_superresolution import IFSuperResolutionPipeline
from .safety_checker import IFSafetyChecker
from .watermark import IFWatermarker
| 353 |
import unittest
from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class __snake_case :
@staticmethod
def lowerCamelCase ( *_snake_case : List[str] , **_snake_case : str):
"""simple docstring"""
pass
@is_pipeline_test
@require_torch
@require_vision
class __snake_case ( unittest.TestCase ):
UpperCAmelCase__ : List[Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
def lowerCamelCase ( self : Any , _snake_case : Optional[Any] , _snake_case : int , _snake_case : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''')
UpperCAmelCase_ = [
{
'''image''': Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png'''),
'''question''': '''How many cats are there?''',
},
{
'''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''',
'''question''': '''How many cats are there?''',
},
]
return vqa_pipeline, examples
def lowerCamelCase ( self : Optional[int] , _snake_case : List[str] , _snake_case : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = vqa_pipeline(_snake_case , top_k=1)
self.assertEqual(
_snake_case , [
[{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}],
[{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}],
] , )
@require_torch
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''')
UpperCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png'''
UpperCAmelCase_ = '''How many cats are there?'''
UpperCAmelCase_ = vqa_pipeline(image=_snake_case , question='''How many cats are there?''' , top_k=2)
self.assertEqual(
_snake_case , [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}, {'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}])
UpperCAmelCase_ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2)
self.assertEqual(
_snake_case , [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}, {'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}])
@slow
@require_torch
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''dandelin/vilt-b32-finetuned-vqa''')
UpperCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png'''
UpperCAmelCase_ = '''How many cats are there?'''
UpperCAmelCase_ = vqa_pipeline(image=_snake_case , question=_snake_case , top_k=2)
self.assertEqual(
nested_simplify(_snake_case , decimals=4) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}])
UpperCAmelCase_ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2)
self.assertEqual(
nested_simplify(_snake_case , decimals=4) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}])
UpperCAmelCase_ = vqa_pipeline(
[{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2)
self.assertEqual(
nested_simplify(_snake_case , decimals=4) , [[{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]] * 2 , )
@require_tf
@unittest.skip('''Visual question answering not implemented in TF''')
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
pass
| 7 | 0 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
snake_case_ : Any = logging.get_logger(__name__)
snake_case_ : List[Any] = "▁"
snake_case_ : Any = {"vocab_file": "sentencepiece.bpe.model"}
snake_case_ : List[Any] = {
"vocab_file": {
"facebook/mbart-large-50-one-to-many-mmt": (
"https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model"
),
}
}
snake_case_ : List[str] = {
"facebook/mbart-large-50-one-to-many-mmt": 1024,
}
# fmt: off
snake_case_ : int = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"]
class __snake_case ( a ):
UpperCAmelCase__ : int = VOCAB_FILES_NAMES
UpperCAmelCase__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ : Tuple = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ : List[str] = ['''input_ids''', '''attention_mask''']
UpperCAmelCase__ : List[int] = []
UpperCAmelCase__ : List[int] = []
def __init__( self : List[Any] , _snake_case : Tuple , _snake_case : Optional[Any]=None , _snake_case : Any=None , _snake_case : Dict="</s>" , _snake_case : int="</s>" , _snake_case : Optional[Any]="<s>" , _snake_case : List[Any]="<unk>" , _snake_case : List[str]="<pad>" , _snake_case : List[str]="<mask>" , _snake_case : Optional[Dict[str, Any]] = None , **_snake_case : str , ):
"""simple docstring"""
UpperCAmelCase_ = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case) if isinstance(_snake_case , _snake_case) else mask_token
UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs
UpperCAmelCase_ = kwargs.get('''additional_special_tokens''' , [])
kwargs["additional_special_tokens"] += [
code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"]
]
super().__init__(
src_lang=_snake_case , tgt_lang=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , pad_token=_snake_case , mask_token=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , )
UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(str(_snake_case))
UpperCAmelCase_ = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
UpperCAmelCase_ = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
UpperCAmelCase_ = 1
UpperCAmelCase_ = len(self.sp_model)
UpperCAmelCase_ = {
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_snake_case)
}
UpperCAmelCase_ = {v: k for k, v in self.lang_code_to_id.items()}
UpperCAmelCase_ = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset
self.fairseq_tokens_to_ids.update(self.lang_code_to_id)
UpperCAmelCase_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
UpperCAmelCase_ = src_lang if src_lang is not None else '''en_XX'''
UpperCAmelCase_ = self.lang_code_to_id[self._src_lang]
UpperCAmelCase_ = tgt_lang
self.set_src_lang_special_tokens(self._src_lang)
@property
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token
@property
def lowerCamelCase ( self : int):
"""simple docstring"""
return self._src_lang
@src_lang.setter
def lowerCamelCase ( self : Optional[Any] , _snake_case : str):
"""simple docstring"""
UpperCAmelCase_ = new_src_lang
self.set_src_lang_special_tokens(self._src_lang)
def __getstate__( self : int):
"""simple docstring"""
UpperCAmelCase_ = self.__dict__.copy()
UpperCAmelCase_ = None
return state
def __setstate__( self : str , _snake_case : Dict):
"""simple docstring"""
UpperCAmelCase_ = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs'''):
UpperCAmelCase_ = {}
UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = {self.convert_ids_to_tokens(_snake_case): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def lowerCamelCase ( self : int , _snake_case : str):
"""simple docstring"""
return self.sp_model.encode(_snake_case , out_type=_snake_case)
def lowerCamelCase ( self : Dict , _snake_case : str):
"""simple docstring"""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
UpperCAmelCase_ = self.sp_model.PieceToId(_snake_case)
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def lowerCamelCase ( self : Dict , _snake_case : int):
"""simple docstring"""
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset)
def lowerCamelCase ( self : str , _snake_case : Any):
"""simple docstring"""
UpperCAmelCase_ = []
UpperCAmelCase_ = ''''''
UpperCAmelCase_ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(_snake_case) + token
UpperCAmelCase_ = True
UpperCAmelCase_ = []
else:
current_sub_tokens.append(_snake_case)
UpperCAmelCase_ = False
out_string += self.sp_model.decode(_snake_case)
return out_string.strip()
def lowerCamelCase ( self : Tuple , _snake_case : str , _snake_case : Optional[str] = None):
"""simple docstring"""
if not os.path.isdir(_snake_case):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""")
return
UpperCAmelCase_ = os.path.join(
_snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''])
if os.path.abspath(self.vocab_file) != os.path.abspath(_snake_case) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file , _snake_case)
elif not os.path.isfile(self.vocab_file):
with open(_snake_case , '''wb''') as fi:
UpperCAmelCase_ = self.sp_model.serialized_model_proto()
fi.write(_snake_case)
return (out_vocab_file,)
def lowerCamelCase ( self : Optional[Any] , _snake_case : List[int] , _snake_case : Optional[List[int]] = None , _snake_case : bool = False):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case)
UpperCAmelCase_ = [1] * len(self.prefix_tokens)
UpperCAmelCase_ = [1] * len(self.suffix_tokens)
if token_ids_a is None:
return prefix_ones + ([0] * len(_snake_case)) + suffix_ones
return prefix_ones + ([0] * len(_snake_case)) + ([0] * len(_snake_case)) + suffix_ones
def lowerCamelCase ( self : int , _snake_case : List[int] , _snake_case : Optional[List[int]] = None):
"""simple docstring"""
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def lowerCamelCase ( self : List[str] , _snake_case : List[str] , _snake_case : str , _snake_case : Optional[str] , _snake_case : Optional[str] , **_snake_case : Any):
"""simple docstring"""
if src_lang is None or tgt_lang is None:
raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''')
UpperCAmelCase_ = src_lang
UpperCAmelCase_ = self(_snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , **_snake_case)
UpperCAmelCase_ = self.convert_tokens_to_ids(_snake_case)
UpperCAmelCase_ = tgt_lang_id
return inputs
def lowerCamelCase ( self : str , _snake_case : List[str] , _snake_case : str = "en_XX" , _snake_case : Optional[List[str]] = None , _snake_case : str = "ro_RO" , **_snake_case : Optional[int] , ):
"""simple docstring"""
UpperCAmelCase_ = src_lang
UpperCAmelCase_ = tgt_lang
return super().prepare_seqaseq_batch(_snake_case , _snake_case , **_snake_case)
def lowerCamelCase ( self : str):
"""simple docstring"""
return self.set_src_lang_special_tokens(self.src_lang)
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
return self.set_tgt_lang_special_tokens(self.tgt_lang)
def lowerCamelCase ( self : Tuple , _snake_case : str):
"""simple docstring"""
UpperCAmelCase_ = self.lang_code_to_id[src_lang]
UpperCAmelCase_ = [self.cur_lang_code_id]
UpperCAmelCase_ = [self.eos_token_id]
def lowerCamelCase ( self : Any , _snake_case : str):
"""simple docstring"""
UpperCAmelCase_ = self.lang_code_to_id[tgt_lang]
UpperCAmelCase_ = [self.cur_lang_code_id]
UpperCAmelCase_ = [self.eos_token_id]
| 354 |
from timeit import timeit
def A (__A : int ) -> int:
"""simple docstring"""
if number < 0:
raise ValueError('''the value of input must not be negative''' )
UpperCAmelCase_ = 0
while number:
number &= number - 1
result += 1
return result
def A (__A : int ) -> int:
"""simple docstring"""
if number < 0:
raise ValueError('''the value of input must not be negative''' )
UpperCAmelCase_ = 0
while number:
if number % 2 == 1:
result += 1
number >>= 1
return result
def A () -> None:
"""simple docstring"""
def do_benchmark(__A : int ) -> None:
UpperCAmelCase_ = '''import __main__ as z'''
print(F"""Benchmark when {number = }:""" )
print(F"""{get_set_bits_count_using_modulo_operator(__A ) = }""" )
UpperCAmelCase_ = timeit('''z.get_set_bits_count_using_modulo_operator(25)''' , setup=__A )
print(F"""timeit() runs in {timing} seconds""" )
print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(__A ) = }""" )
UpperCAmelCase_ = timeit(
'''z.get_set_bits_count_using_brian_kernighans_algorithm(25)''' , setup=__A , )
print(F"""timeit() runs in {timing} seconds""" )
for number in (25, 37, 58, 0):
do_benchmark(__A )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 7 | 0 |
import numpy as np
from nltk.translate import meteor_score
import datasets
from datasets.config import importlib_metadata, version
snake_case_ : Tuple = version.parse(importlib_metadata.version('''nltk'''))
if NLTK_VERSION >= version.Version('''3.6.4'''):
from nltk import word_tokenize
snake_case_ : Optional[Any] = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n"
snake_case_ : Optional[Any] = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n"
snake_case_ : Dict = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __snake_case ( datasets.Metric ):
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence'''),
'''references''': datasets.Value('''string''' , id='''sequence'''),
}) , codebase_urls=['''https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'''] , reference_urls=[
'''https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score''',
'''https://en.wikipedia.org/wiki/METEOR''',
] , )
def lowerCamelCase ( self : Union[str, Any] , _snake_case : Union[str, Any]):
"""simple docstring"""
import nltk
nltk.download('''wordnet''')
if NLTK_VERSION >= version.Version('''3.6.5'''):
nltk.download('''punkt''')
if NLTK_VERSION >= version.Version('''3.6.6'''):
nltk.download('''omw-1.4''')
def lowerCamelCase ( self : List[str] , _snake_case : Optional[int] , _snake_case : str , _snake_case : List[str]=0.9 , _snake_case : Optional[int]=3 , _snake_case : Optional[int]=0.5):
"""simple docstring"""
if NLTK_VERSION >= version.Version('''3.6.5'''):
UpperCAmelCase_ = [
meteor_score.single_meteor_score(
word_tokenize(_snake_case) , word_tokenize(_snake_case) , alpha=_snake_case , beta=_snake_case , gamma=_snake_case)
for ref, pred in zip(_snake_case , _snake_case)
]
else:
UpperCAmelCase_ = [
meteor_score.single_meteor_score(_snake_case , _snake_case , alpha=_snake_case , beta=_snake_case , gamma=_snake_case)
for ref, pred in zip(_snake_case , _snake_case)
]
return {"meteor": np.mean(_snake_case)}
| 355 |
import unittest
import numpy as np
import torch
from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad
class __snake_case ( unittest.TestCase ):
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = 10
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = [1, 2, 3, 4]
UpperCAmelCase_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0]
self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case)
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case)
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case)
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = '''It was the year of Our Lord one thousand seven hundred and
seventy-five.\n\nSpiritual revelations were conceded to England at that
favoured period, as at this.'''
UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case)
self.assertEqual(_snake_case , [])
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = ''''''
UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case)
self.assertEqual(_snake_case , [])
self.assertEqual(_snake_case , [])
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = (
'''It was the year of Our Lord one thousand seven hundred and '''
'''seventy-five\n\nSpiritual revelations were conceded to England '''
'''at that favoured period, as at this.\n@highlight\n\nIt was the best of times'''
)
UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case)
UpperCAmelCase_ = [
'''It was the year of Our Lord one thousand seven hundred and seventy-five.''',
'''Spiritual revelations were conceded to England at that favoured period, as at this.''',
]
self.assertEqual(_snake_case , _snake_case)
UpperCAmelCase_ = ['''It was the best of times.''']
self.assertEqual(_snake_case , _snake_case)
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = torch.tensor([1, 2, 3, 4])
UpperCAmelCase_ = torch.tensor([1, 1, 1, 1])
np.testing.assert_array_equal(build_mask(_snake_case , 0).numpy() , expected.numpy())
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = torch.tensor([1, 2, 3, 4, 23, 23, 23])
UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0])
np.testing.assert_array_equal(build_mask(_snake_case , 23).numpy() , expected.numpy())
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ = torch.tensor([8, 2, 3, 4, 1, 1, 1])
UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0])
np.testing.assert_array_equal(build_mask(_snake_case , 1).numpy() , expected.numpy())
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = 101
UpperCAmelCase_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]])
UpperCAmelCase_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]])
UpperCAmelCase_ = compute_token_type_ids(_snake_case , _snake_case)
np.testing.assert_array_equal(_snake_case , _snake_case)
| 7 | 0 |
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionPipeline
from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device
snake_case_ : Optional[Any] = False
class __snake_case ( unittest.TestCase ):
pass
@nightly
@require_torch_gpu
class __snake_case ( unittest.TestCase ):
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa)
pipe.to(_snake_case)
pipe.set_progress_bar_config(disable=_snake_case)
UpperCAmelCase_ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''')
UpperCAmelCase_ = torch.manual_seed(0)
UpperCAmelCase_ = pipe.dual_guided(
prompt='''first prompt''' , image=_snake_case , text_to_image_strength=0.7_5 , generator=_snake_case , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(_snake_case)
UpperCAmelCase_ = VersatileDiffusionPipeline.from_pretrained(_snake_case , torch_dtype=torch.floataa)
pipe.to(_snake_case)
pipe.set_progress_bar_config(disable=_snake_case)
UpperCAmelCase_ = generator.manual_seed(0)
UpperCAmelCase_ = pipe.dual_guided(
prompt='''first prompt''' , image=_snake_case , text_to_image_strength=0.7_5 , generator=_snake_case , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images
assert np.abs(image - new_image).sum() < 1e-5, "Models don't have the same forward pass"
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa)
pipe.to(_snake_case)
pipe.set_progress_bar_config(disable=_snake_case)
UpperCAmelCase_ = '''cyberpunk 2077'''
UpperCAmelCase_ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''')
UpperCAmelCase_ = torch.manual_seed(0)
UpperCAmelCase_ = pipe.dual_guided(
prompt=_snake_case , image=_snake_case , text_to_image_strength=0.7_5 , generator=_snake_case , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images
UpperCAmelCase_ = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
UpperCAmelCase_ = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
UpperCAmelCase_ = '''A painting of a squirrel eating a burger '''
UpperCAmelCase_ = torch.manual_seed(0)
UpperCAmelCase_ = pipe.text_to_image(
prompt=_snake_case , generator=_snake_case , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''').images
UpperCAmelCase_ = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
UpperCAmelCase_ = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
UpperCAmelCase_ = pipe.image_variation(_snake_case , generator=_snake_case , output_type='''numpy''').images
UpperCAmelCase_ = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
UpperCAmelCase_ = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
| 356 |
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import MaMaaaTokenizer, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from transformers.utils import is_sentencepiece_available
if is_sentencepiece_available():
from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json
from ...test_tokenization_common import TokenizerTesterMixin
if is_sentencepiece_available():
snake_case_ : Any = get_tests_dir("fixtures/test_sentencepiece.model")
if is_torch_available():
from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right
snake_case_ : Optional[Any] = 128022
snake_case_ : Optional[int] = 128028
@require_sentencepiece
class __snake_case ( a , unittest.TestCase ):
UpperCAmelCase__ : List[str] = MaMaaaTokenizer
UpperCAmelCase__ : int = False
UpperCAmelCase__ : Dict = False
UpperCAmelCase__ : List[str] = True
def lowerCamelCase ( self : str):
"""simple docstring"""
super().setUp()
UpperCAmelCase_ = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>''']
UpperCAmelCase_ = dict(zip(_snake_case , range(len(_snake_case))))
UpperCAmelCase_ = Path(self.tmpdirname)
save_json(_snake_case , save_dir / VOCAB_FILES_NAMES['''vocab_file'''])
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(_snake_case , save_dir / VOCAB_FILES_NAMES['''spm_file'''])
UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(self.tmpdirname)
tokenizer.save_pretrained(self.tmpdirname)
def lowerCamelCase ( self : str , **_snake_case : Union[str, Any]):
"""simple docstring"""
return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **_snake_case)
def lowerCamelCase ( self : Optional[int] , _snake_case : List[str]):
"""simple docstring"""
return (
"This is a test",
"This is a test",
)
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = '''</s>'''
UpperCAmelCase_ = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case) , _snake_case)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case) , _snake_case)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = self.get_tokenizer()
UpperCAmelCase_ = list(tokenizer.get_vocab().keys())
self.assertEqual(vocab_keys[0] , '''</s>''')
self.assertEqual(vocab_keys[1] , '''<unk>''')
self.assertEqual(vocab_keys[-1] , '''<s>''')
self.assertEqual(len(_snake_case) , tokenizer.vocab_size + len(tokenizer.get_added_vocab()))
@unittest.skip('''Skip this test while all models are still to be uploaded.''')
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
pass
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = self.get_tokenizer()
UpperCAmelCase_ = tokenizer.tokenize('''This is a test''')
self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_snake_case) , [2, 3, 4, 5, 6] , )
UpperCAmelCase_ = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6])
self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''])
UpperCAmelCase_ = tokenizer.convert_tokens_to_string(_snake_case)
self.assertEqual(_snake_case , '''This is a test''')
@slow
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = {'''input_ids''': [[128022, 110108, 397, 11, 38272, 2247, 124811, 285, 18105, 1586, 207, 7, 39534, 4428, 397, 1019, 18105, 1586, 207, 7, 41337, 16786, 241, 7, 20214, 17, 125690, 10398, 7, 44378, 58069, 68342, 7798, 7343, 11, 299, 33310, 4, 158, 37350, 94077, 4569, 299, 33310, 90, 4, 52840, 290, 4, 31270, 112, 299, 682, 4, 52840, 39953, 14079, 193, 52519, 90894, 17894, 120697, 11, 40445, 551, 17, 1019, 52519, 90894, 17756, 963, 11, 40445, 480, 17, 9792, 1120, 5173, 1393, 6240, 16786, 241, 120996, 28, 1245, 1393, 118240, 11123, 1019, 93612, 2691, 10618, 98058, 120409, 1928, 279, 4, 40683, 367, 178, 207, 1019, 103, 103121, 506, 65296, 5, 2], [128022, 21217, 367, 117, 125450, 128, 719, 7, 7308, 40, 93612, 12669, 1116, 16704, 71, 17785, 3699, 15592, 35, 144, 9584, 241, 11943, 713, 950, 799, 2247, 88427, 150, 149, 118813, 120706, 1019, 106906, 81518, 28, 1224, 22799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128022, 1658, 123311, 5155, 5578, 4722, 279, 14947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_snake_case , model_name='''facebook/m2m100_418M''' , revision='''c168bae485c864188cf9aa0e4108b0b6934dc91e''' , )
@require_torch
@require_sentencepiece
@require_tokenizers
class __snake_case ( unittest.TestCase ):
UpperCAmelCase__ : Dict = '''facebook/m2m100_418M'''
UpperCAmelCase__ : Dict = [
'''In my opinion, there are two levels of response from the French government.''',
'''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''',
]
UpperCAmelCase__ : Dict = [
'''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''',
'''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''',
]
# fmt: off
UpperCAmelCase__ : Any = [EN_CODE, 5_9_3, 1_9_4_9, 1_1_5_7_8_1, 4, 7_1_5_8_6, 4_2_3_4, 6_0_6_3_3, 1_2_6_2_3_3, 4_3_2, 1_2_3_8_0_8, 1_5_5_9_2, 1_1_9_7, 1_1_7_1_3_2, 1_2_0_6_1_8, 5, 2]
@classmethod
def lowerCamelCase ( cls : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='''en''' , tgt_lang='''fr''')
UpperCAmelCase_ = 1
return cls
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
self.assertEqual(self.tokenizer.get_lang_id('''ar''') , 128006)
self.assertEqual(self.tokenizer.get_lang_id('''en''') , 128022)
self.assertEqual(self.tokenizer.get_lang_id('''ro''') , 128076)
self.assertEqual(self.tokenizer.get_lang_id('''mr''') , 128063)
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = self.tokenizer.get_vocab()
self.assertEqual(len(_snake_case) , self.tokenizer.vocab_size)
self.assertEqual(vocab['''<unk>'''] , 3)
self.assertIn(self.tokenizer.get_lang_token('''en''') , _snake_case)
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = '''en'''
UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0]
self.assertListEqual(self.expected_src_tokens , _snake_case)
def lowerCamelCase ( self : Any):
"""simple docstring"""
self.assertIn(_snake_case , self.tokenizer.all_special_ids)
# fmt: off
UpperCAmelCase_ = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2]
# fmt: on
UpperCAmelCase_ = self.tokenizer.decode(_snake_case , skip_special_tokens=_snake_case)
UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_snake_case)
self.assertEqual(_snake_case , _snake_case)
self.assertNotIn(self.tokenizer.eos_token , _snake_case)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = tempfile.mkdtemp()
UpperCAmelCase_ = self.tokenizer.lang_token_to_id
self.tokenizer.save_pretrained(_snake_case)
UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(_snake_case)
self.assertDictEqual(new_tok.lang_token_to_id , _snake_case)
@require_torch
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = '''en'''
UpperCAmelCase_ = '''fr'''
UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_snake_case , return_tensors='''pt''')
UpperCAmelCase_ = shift_tokens_right(
batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id)
for k in batch:
UpperCAmelCase_ = batch[k].tolist()
# batch = {k: v.tolist() for k,v in batch.items()}
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
# batch.decoder_inputs_ids[0][0] ==
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == FR_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2] == [2, FR_CODE]
@require_torch
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = '''mr'''
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')])
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id])
UpperCAmelCase_ = '''zh'''
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')])
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id])
@require_torch
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = '''mr'''
self.tokenizer._switch_to_target_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')])
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id])
self.tokenizer._switch_to_input_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)])
UpperCAmelCase_ = '''zh'''
self.tokenizer._switch_to_target_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')])
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id])
self.tokenizer._switch_to_input_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)])
@require_torch
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = self.tokenizer._build_translation_inputs('''A test''' , return_tensors='''pt''' , src_lang='''en''' , tgt_lang='''ar''')
self.assertEqual(
nested_simplify(_snake_case) , {
# en_XX, A, test, EOS
'''input_ids''': [[128022, 58, 4183, 2]],
'''attention_mask''': [[1, 1, 1, 1]],
# ar_AR
'''forced_bos_token_id''': 128006,
} , )
| 7 | 0 |
def A (__A : dict ) -> set:
"""simple docstring"""
UpperCAmelCase_ = set()
# edges = list of graph's edges
UpperCAmelCase_ = get_edges(__A )
# While there are still elements in edges list, take an arbitrary edge
# (from_node, to_node) and add his extremity to chosen_vertices and then
# remove all arcs adjacent to the from_node and to_node
while edges:
UpperCAmelCase_ , UpperCAmelCase_ = edges.pop()
chosen_vertices.add(__A )
chosen_vertices.add(__A )
for edge in edges.copy():
if from_node in edge or to_node in edge:
edges.discard(__A )
return chosen_vertices
def A (__A : dict ) -> set:
"""simple docstring"""
UpperCAmelCase_ = set()
for from_node, to_nodes in graph.items():
for to_node in to_nodes:
edges.add((from_node, to_node) )
return edges
if __name__ == "__main__":
import doctest
doctest.testmod()
# graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
# print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
| 357 |
from typing import Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
snake_case_ : List[str] = logging.get_logger(__name__)
@add_end_docstrings(a )
class __snake_case ( a ):
def __init__( self : Tuple , *_snake_case : List[Any] , **_snake_case : Optional[Any]):
"""simple docstring"""
super().__init__(*_snake_case , **_snake_case)
self.check_model_type(_snake_case)
def lowerCamelCase ( self : List[str] , _snake_case : Optional[int]=None , _snake_case : Optional[Any]=None , _snake_case : str=None , **_snake_case : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ = {}, {}
if padding is not None:
UpperCAmelCase_ = padding
if truncation is not None:
UpperCAmelCase_ = truncation
if top_k is not None:
UpperCAmelCase_ = top_k
return preprocess_params, {}, postprocess_params
def __call__( self : List[Any] , _snake_case : Union["Image.Image", str] , _snake_case : str = None , **_snake_case : str):
"""simple docstring"""
if isinstance(_snake_case , (Image.Image, str)) and isinstance(_snake_case , _snake_case):
UpperCAmelCase_ = {'''image''': image, '''question''': question}
else:
UpperCAmelCase_ = image
UpperCAmelCase_ = super().__call__(_snake_case , **_snake_case)
return results
def lowerCamelCase ( self : Union[str, Any] , _snake_case : int , _snake_case : Optional[int]=False , _snake_case : int=False):
"""simple docstring"""
UpperCAmelCase_ = load_image(inputs['''image'''])
UpperCAmelCase_ = self.tokenizer(
inputs['''question'''] , return_tensors=self.framework , padding=_snake_case , truncation=_snake_case)
UpperCAmelCase_ = self.image_processor(images=_snake_case , return_tensors=self.framework)
model_inputs.update(_snake_case)
return model_inputs
def lowerCamelCase ( self : List[Any] , _snake_case : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = self.model(**_snake_case)
return model_outputs
def lowerCamelCase ( self : str , _snake_case : Optional[Any] , _snake_case : List[str]=5):
"""simple docstring"""
if top_k > self.model.config.num_labels:
UpperCAmelCase_ = self.model.config.num_labels
if self.framework == "pt":
UpperCAmelCase_ = model_outputs.logits.sigmoid()[0]
UpperCAmelCase_ , UpperCAmelCase_ = probs.topk(_snake_case)
else:
raise ValueError(F"""Unsupported framework: {self.framework}""")
UpperCAmelCase_ = scores.tolist()
UpperCAmelCase_ = ids.tolist()
return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_snake_case , _snake_case)]
| 7 | 0 |
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
snake_case_ : List[str] = logging.get_logger(__name__)
snake_case_ : List[str] = {"vocab_file": "spiece.model"}
snake_case_ : Optional[int] = {
"vocab_file": {
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model",
}
}
snake_case_ : List[Any] = {
"xlnet-base-cased": None,
"xlnet-large-cased": None,
}
# Segments (not really needed)
snake_case_ : List[str] = 0
snake_case_ : int = 1
snake_case_ : Optional[int] = 2
snake_case_ : Optional[int] = 3
snake_case_ : List[Any] = 4
class __snake_case ( a ):
UpperCAmelCase__ : Any = VOCAB_FILES_NAMES
UpperCAmelCase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ : int = '''left'''
def __init__( self : Tuple , _snake_case : Optional[Any] , _snake_case : Optional[int]=False , _snake_case : int=True , _snake_case : List[Any]=False , _snake_case : int="<s>" , _snake_case : Union[str, Any]="</s>" , _snake_case : List[str]="<unk>" , _snake_case : str="<sep>" , _snake_case : Optional[Any]="<pad>" , _snake_case : Tuple="<cls>" , _snake_case : int="<mask>" , _snake_case : Union[str, Any]=["<eop>", "<eod>"] , _snake_case : Optional[Dict[str, Any]] = None , **_snake_case : int , ):
"""simple docstring"""
UpperCAmelCase_ = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case) if isinstance(_snake_case , _snake_case) else mask_token
UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_snake_case , remove_space=_snake_case , keep_accents=_snake_case , bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , additional_special_tokens=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , )
UpperCAmelCase_ = 3
UpperCAmelCase_ = do_lower_case
UpperCAmelCase_ = remove_space
UpperCAmelCase_ = keep_accents
UpperCAmelCase_ = vocab_file
UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(_snake_case)
@property
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
return len(self.sp_model)
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = {self.convert_ids_to_tokens(_snake_case): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def __getstate__( self : Any):
"""simple docstring"""
UpperCAmelCase_ = self.__dict__.copy()
UpperCAmelCase_ = None
return state
def __setstate__( self : str , _snake_case : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs'''):
UpperCAmelCase_ = {}
UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def lowerCamelCase ( self : int , _snake_case : Any):
"""simple docstring"""
if self.remove_space:
UpperCAmelCase_ = ''' '''.join(inputs.strip().split())
else:
UpperCAmelCase_ = inputs
UpperCAmelCase_ = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''')
if not self.keep_accents:
UpperCAmelCase_ = unicodedata.normalize('''NFKD''' , _snake_case)
UpperCAmelCase_ = ''''''.join([c for c in outputs if not unicodedata.combining(_snake_case)])
if self.do_lower_case:
UpperCAmelCase_ = outputs.lower()
return outputs
def lowerCamelCase ( self : Any , _snake_case : str):
"""simple docstring"""
UpperCAmelCase_ = self.preprocess_text(_snake_case)
UpperCAmelCase_ = self.sp_model.encode(_snake_case , out_type=_snake_case)
UpperCAmelCase_ = []
for piece in pieces:
if len(_snake_case) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit():
UpperCAmelCase_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_snake_case , ''''''))
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0]) == 1:
UpperCAmelCase_ = cur_pieces[1:]
else:
UpperCAmelCase_ = cur_pieces[0][1:]
cur_pieces.append(piece[-1])
new_pieces.extend(_snake_case)
else:
new_pieces.append(_snake_case)
return new_pieces
def lowerCamelCase ( self : Tuple , _snake_case : Dict):
"""simple docstring"""
return self.sp_model.PieceToId(_snake_case)
def lowerCamelCase ( self : str , _snake_case : Union[str, Any]):
"""simple docstring"""
return self.sp_model.IdToPiece(_snake_case)
def lowerCamelCase ( self : List[Any] , _snake_case : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = ''''''.join(_snake_case).replace(_snake_case , ''' ''').strip()
return out_string
def lowerCamelCase ( self : Any , _snake_case : List[int] , _snake_case : bool = False , _snake_case : bool = None , _snake_case : bool = True , **_snake_case : Dict , ):
"""simple docstring"""
UpperCAmelCase_ = kwargs.pop('''use_source_tokenizer''' , _snake_case)
UpperCAmelCase_ = self.convert_ids_to_tokens(_snake_case , skip_special_tokens=_snake_case)
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
UpperCAmelCase_ = []
UpperCAmelCase_ = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(_snake_case))
UpperCAmelCase_ = []
sub_texts.append(_snake_case)
else:
current_sub_text.append(_snake_case)
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(_snake_case))
# Mimic the behavior of the Rust tokenizer:
# By default, there are no spaces between special tokens
UpperCAmelCase_ = ''''''.join(_snake_case)
UpperCAmelCase_ = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
UpperCAmelCase_ = self.clean_up_tokenization(_snake_case)
return clean_text
else:
return text
def lowerCamelCase ( self : Dict , _snake_case : List[int] , _snake_case : Optional[List[int]] = None):
"""simple docstring"""
UpperCAmelCase_ = [self.sep_token_id]
UpperCAmelCase_ = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def lowerCamelCase ( self : Tuple , _snake_case : List[int] , _snake_case : Optional[List[int]] = None , _snake_case : bool = False):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case)
if token_ids_a is not None:
return ([0] * len(_snake_case)) + [1] + ([0] * len(_snake_case)) + [1, 1]
return ([0] * len(_snake_case)) + [1, 1]
def lowerCamelCase ( self : Any , _snake_case : List[int] , _snake_case : Optional[List[int]] = None):
"""simple docstring"""
UpperCAmelCase_ = [self.sep_token_id]
UpperCAmelCase_ = [2]
if token_ids_a is None:
return len(token_ids_a + sep) * [0] + cls_segment_id
return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id
def lowerCamelCase ( self : Tuple , _snake_case : str , _snake_case : Optional[str] = None):
"""simple docstring"""
if not os.path.isdir(_snake_case):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""")
return
UpperCAmelCase_ = os.path.join(
_snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''])
if os.path.abspath(self.vocab_file) != os.path.abspath(_snake_case) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file , _snake_case)
elif not os.path.isfile(self.vocab_file):
with open(_snake_case , '''wb''') as fi:
UpperCAmelCase_ = self.sp_model.serialized_model_proto()
fi.write(_snake_case)
return (out_vocab_file,)
| 358 |
import sys
def A (__A : int ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ = len(__A )
UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )]
UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )]
for chain_length in range(2 , __A ):
for a in range(1 , n - chain_length + 1 ):
UpperCAmelCase_ = a + chain_length - 1
UpperCAmelCase_ = sys.maxsize
for c in range(__A , __A ):
UpperCAmelCase_ = (
matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b]
)
if cost < matrix[a][b]:
UpperCAmelCase_ = cost
UpperCAmelCase_ = c
return matrix, sol
def A (__A : Any , __A : Dict , __A : Optional[int] ) -> Optional[int]:
"""simple docstring"""
if i == j:
print('''A''' + str(__A ) , end=''' ''' )
else:
print('''(''' , end=''' ''' )
print_optiomal_solution(__A , __A , optimal_solution[i][j] )
print_optiomal_solution(__A , optimal_solution[i][j] + 1 , __A )
print(''')''' , end=''' ''' )
def A () -> List[str]:
"""simple docstring"""
UpperCAmelCase_ = [30, 35, 15, 5, 10, 20, 25]
UpperCAmelCase_ = len(__A )
# Size of matrix created from above array will be
# 30*35 35*15 15*5 5*10 10*20 20*25
UpperCAmelCase_ , UpperCAmelCase_ = matrix_chain_order(__A )
print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) )
print_optiomal_solution(__A , 1 , n - 1 )
if __name__ == "__main__":
main()
| 7 | 0 |
"""simple docstring"""
def A (__A : List[str] , __A : List[Any] , __A : Dict , __A : List[str] ) -> Tuple:
"""simple docstring"""
global f # a global dp table for knapsack
if f[i][j] < 0:
if j < wt[i - 1]:
UpperCAmelCase_ = mf_knapsack(i - 1 , __A , __A , __A )
else:
UpperCAmelCase_ = max(
mf_knapsack(i - 1 , __A , __A , __A ) , mf_knapsack(i - 1 , __A , __A , j - wt[i - 1] ) + val[i - 1] , )
UpperCAmelCase_ = val
return f[i][j]
def A (__A : Optional[Any] , __A : int , __A : Tuple , __A : int ) -> str:
"""simple docstring"""
UpperCAmelCase_ = [[0] * (w + 1) for _ in range(n + 1 )]
for i in range(1 , n + 1 ):
for w_ in range(1 , w + 1 ):
if wt[i - 1] <= w_:
UpperCAmelCase_ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] )
else:
UpperCAmelCase_ = dp[i - 1][w_]
return dp[n][w_], dp
def A (__A : int , __A : list , __A : list ) -> List[str]:
"""simple docstring"""
if not (isinstance(__A , (list, tuple) ) and isinstance(__A , (list, tuple) )):
raise ValueError(
'''Both the weights and values vectors must be either lists or tuples''' )
UpperCAmelCase_ = len(__A )
if num_items != len(__A ):
UpperCAmelCase_ = (
'''The number of weights must be the same as the number of values.\n'''
F"""But got {num_items} weights and {len(__A )} values"""
)
raise ValueError(__A )
for i in range(__A ):
if not isinstance(wt[i] , __A ):
UpperCAmelCase_ = (
'''All weights must be integers but got weight of '''
F"""type {type(wt[i] )} at index {i}"""
)
raise TypeError(__A )
UpperCAmelCase_ , UpperCAmelCase_ = knapsack(__A , __A , __A , __A )
UpperCAmelCase_ = set()
_construct_solution(__A , __A , __A , __A , __A )
return optimal_val, example_optional_set
def A (__A : list , __A : list , __A : int , __A : int , __A : set ) -> Tuple:
"""simple docstring"""
if i > 0 and j > 0:
if dp[i - 1][j] == dp[i][j]:
_construct_solution(__A , __A , i - 1 , __A , __A )
else:
optimal_set.add(__A )
_construct_solution(__A , __A , i - 1 , j - wt[i - 1] , __A )
if __name__ == "__main__":
snake_case_ : str = [3, 2, 4, 4]
snake_case_ : Optional[Any] = [4, 3, 2, 3]
snake_case_ : str = 4
snake_case_ : Any = 6
snake_case_ : List[Any] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)]
snake_case_ : Any = knapsack(w, wt, val, n)
print(optimal_solution)
print(mf_knapsack(n, wt, val, w)) # switched the n and w
# testing the dynamic programming problem with example
# the optimal subset for the above example are items 3 and 4
snake_case_ : List[Any] = knapsack_with_example_solution(w, wt, val)
assert optimal_solution == 8
assert optimal_subset == {3, 4}
print("optimal_value = ", optimal_solution)
print("An optimal subset corresponding to the optimal value", optimal_subset)
| 359 |
import inspect
import os
import re
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
snake_case_ : int = "src/transformers"
# This is to make sure the transformers module imported is the one in the repo.
snake_case_ : Union[str, Any] = direct_transformers_import(PATH_TO_TRANSFORMERS)
snake_case_ : Union[str, Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING
snake_case_ : Union[str, Any] = {
# used to compute the property `self.chunk_length`
"EncodecConfig": ["overlap"],
# used as `self.bert_model = BertModel(config, ...)`
"DPRConfig": True,
# not used in modeling files, but it's an important information
"FSMTConfig": ["langs"],
# used internally in the configuration class file
"GPTNeoConfig": ["attention_types"],
# used internally in the configuration class file
"EsmConfig": ["is_folding_model"],
# used during training (despite we don't have training script for these models yet)
"Mask2FormerConfig": ["ignore_value"],
# `ignore_value` used during training (despite we don't have training script for these models yet)
# `norm` used in conversion script (despite not using in the modeling file)
"OneFormerConfig": ["ignore_value", "norm"],
# used during preprocessing and collation, see `collating_graphormer.py`
"GraphormerConfig": ["spatial_pos_max"],
# used internally in the configuration class file
"T5Config": ["feed_forward_proj"],
# used internally in the configuration class file
# `tokenizer_class` get default value `T5Tokenizer` intentionally
"MT5Config": ["feed_forward_proj", "tokenizer_class"],
"UMT5Config": ["feed_forward_proj", "tokenizer_class"],
# used internally in the configuration class file
"LongT5Config": ["feed_forward_proj"],
# used internally in the configuration class file
"SwitchTransformersConfig": ["feed_forward_proj"],
# having default values other than `1e-5` - we can't fix them without breaking
"BioGptConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"GLPNConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"SegformerConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"CvtConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"PerceiverConfig": ["layer_norm_eps"],
# used internally to calculate the feature size
"InformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate the feature size
"TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate the feature size
"AutoformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate `mlp_dim`
"SamVisionConfig": ["mlp_ratio"],
# For (head) training, but so far not implemented
"ClapAudioConfig": ["num_classes"],
# Not used, but providing useful information to users
"SpeechT5HifiGanConfig": ["sampling_rate"],
}
# TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure
SPECIAL_CASES_TO_ALLOW.update(
{
"CLIPSegConfig": True,
"DeformableDetrConfig": True,
"DetaConfig": True,
"DinatConfig": True,
"DonutSwinConfig": True,
"EfficientFormerConfig": True,
"FSMTConfig": True,
"JukeboxConfig": True,
"LayoutLMv2Config": True,
"MaskFormerSwinConfig": True,
"MT5Config": True,
"NatConfig": True,
"OneFormerConfig": True,
"PerceiverConfig": True,
"RagConfig": True,
"SpeechT5Config": True,
"SwinConfig": True,
"Swin2SRConfig": True,
"Swinv2Config": True,
"SwitchTransformersConfig": True,
"TableTransformerConfig": True,
"TapasConfig": True,
"TransfoXLConfig": True,
"UniSpeechConfig": True,
"UniSpeechSatConfig": True,
"WavLMConfig": True,
"WhisperConfig": True,
# TODO: @Arthur (for `alignment_head` and `alignment_layer`)
"JukeboxPriorConfig": True,
# TODO: @Younes (for `is_decoder`)
"Pix2StructTextConfig": True,
}
)
def A (__A : List[Any] , __A : Optional[int] , __A : str , __A : Dict ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ = False
for attribute in attributes:
for modeling_source in source_strings:
# check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)`
if (
F"""config.{attribute}""" in modeling_source
or F"""getattr(config, \"{attribute}\"""" in modeling_source
or F"""getattr(self.config, \"{attribute}\"""" in modeling_source
):
UpperCAmelCase_ = True
# Deal with multi-line cases
elif (
re.search(
RF"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , __A , )
is not None
):
UpperCAmelCase_ = True
# `SequenceSummary` is called with `SequenceSummary(config)`
elif attribute in [
"summary_type",
"summary_use_proj",
"summary_activation",
"summary_last_dropout",
"summary_proj_to_labels",
"summary_first_dropout",
]:
if "SequenceSummary" in modeling_source:
UpperCAmelCase_ = True
if attribute_used:
break
if attribute_used:
break
# common and important attributes, even if they do not always appear in the modeling files
UpperCAmelCase_ = [
'''bos_index''',
'''eos_index''',
'''pad_index''',
'''unk_index''',
'''mask_index''',
'''image_size''',
'''use_cache''',
'''out_features''',
'''out_indices''',
]
UpperCAmelCase_ = ['''encoder_no_repeat_ngram_size''']
# Special cases to be allowed
UpperCAmelCase_ = True
if not attribute_used:
UpperCAmelCase_ = False
for attribute in attributes:
# Allow if the default value in the configuration class is different from the one in `PretrainedConfig`
if attribute in ["is_encoder_decoder"] and default_value is True:
UpperCAmelCase_ = True
elif attribute in ["tie_word_embeddings"] and default_value is False:
UpperCAmelCase_ = True
# Allow cases without checking the default value in the configuration class
elif attribute in attributes_to_allow + attributes_used_in_generation:
UpperCAmelCase_ = True
elif attribute.endswith('''_token_id''' ):
UpperCAmelCase_ = True
# configuration class specific cases
if not case_allowed:
UpperCAmelCase_ = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] )
UpperCAmelCase_ = allowed_cases is True or attribute in allowed_cases
return attribute_used or case_allowed
def A (__A : Tuple ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ = dict(inspect.signature(config_class.__init__ ).parameters )
UpperCAmelCase_ = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']]
UpperCAmelCase_ = [signature[param].default for param in parameter_names]
# If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long
# as one variant is used, the test should pass
UpperCAmelCase_ = {}
if len(config_class.attribute_map ) > 0:
UpperCAmelCase_ = {v: k for k, v in config_class.attribute_map.items()}
# Get the path to modeling source files
UpperCAmelCase_ = inspect.getsourcefile(__A )
UpperCAmelCase_ = os.path.dirname(__A )
# Let's check against all frameworks: as long as one framework uses an attribute, we are good.
UpperCAmelCase_ = [os.path.join(__A , __A ) for fn in os.listdir(__A ) if fn.startswith('''modeling_''' )]
# Get the source code strings
UpperCAmelCase_ = []
for path in modeling_paths:
if os.path.isfile(__A ):
with open(__A ) as fp:
modeling_sources.append(fp.read() )
UpperCAmelCase_ = []
for config_param, default_value in zip(__A , __A ):
# `attributes` here is all the variant names for `config_param`
UpperCAmelCase_ = [config_param]
# some configuration classes have non-empty `attribute_map`, and both names could be used in the
# corresponding modeling files. As long as one of them appears, it is fine.
if config_param in reversed_attribute_map:
attributes.append(reversed_attribute_map[config_param] )
if not check_attribute_being_used(__A , __A , __A , __A ):
unused_attributes.append(attributes[0] )
return sorted(__A )
def A () -> Any:
"""simple docstring"""
UpperCAmelCase_ = {}
for _config_class in list(CONFIG_MAPPING.values() ):
# Skip deprecated models
if "models.deprecated" in _config_class.__module__:
continue
# Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.)
UpperCAmelCase_ = [
cls
for name, cls in inspect.getmembers(
inspect.getmodule(_config_class ) , lambda __A : inspect.isclass(__A )
and issubclass(__A , __A )
and inspect.getmodule(__A ) == inspect.getmodule(_config_class ) , )
]
for config_class in config_classes_in_module:
UpperCAmelCase_ = check_config_attributes_being_used(__A )
if len(__A ) > 0:
UpperCAmelCase_ = unused_attributes
if len(__A ) > 0:
UpperCAmelCase_ = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n'''
for name, attributes in configs_with_unused_attributes.items():
error += F"""{name}: {attributes}\n"""
raise ValueError(__A )
if __name__ == "__main__":
check_config_attributes()
| 7 | 0 |
from typing import Dict, List
from nltk.translate import gleu_score
import datasets
from datasets import MetricInfo
snake_case_ : List[Any] = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n"
snake_case_ : Optional[int] = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n"
snake_case_ : str = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __snake_case ( datasets.Metric ):
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''') , id='''sequence'''),
'''references''': datasets.Sequence(
datasets.Sequence(datasets.Value('''string''' , id='''token''') , id='''sequence''') , id='''references'''),
}) , )
def lowerCamelCase ( self : Union[str, Any] , _snake_case : List[List[List[str]]] , _snake_case : List[List[str]] , _snake_case : int = 1 , _snake_case : int = 4 , ):
"""simple docstring"""
return {
"google_bleu": gleu_score.corpus_gleu(
list_of_references=_snake_case , hypotheses=_snake_case , min_len=_snake_case , max_len=_snake_case)
}
| 360 |
import unittest
from diffusers import FlaxAutoencoderKL
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax
from .test_modeling_common_flax import FlaxModelTesterMixin
if is_flax_available():
import jax
@require_flax
class __snake_case ( a , unittest.TestCase ):
UpperCAmelCase__ : Optional[Any] = FlaxAutoencoderKL
@property
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = 4
UpperCAmelCase_ = 3
UpperCAmelCase_ = (32, 32)
UpperCAmelCase_ = jax.random.PRNGKey(0)
UpperCAmelCase_ = jax.random.uniform(_snake_case , ((batch_size, num_channels) + sizes))
return {"sample": image, "prng_key": prng_key}
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = {
'''block_out_channels''': [32, 64],
'''in_channels''': 3,
'''out_channels''': 3,
'''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''],
'''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''],
'''latent_channels''': 4,
}
UpperCAmelCase_ = self.dummy_input
return init_dict, inputs_dict
| 7 | 0 |
import asyncio
import os
import shutil
import subprocess
import sys
import tempfile
import unittest
from distutils.util import strtobool
from functools import partial
from pathlib import Path
from typing import List, Union
from unittest import mock
import torch
from ..state import AcceleratorState, PartialState
from ..utils import (
gather,
is_bnb_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_mps_available,
is_safetensors_available,
is_tensorboard_available,
is_torch_version,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
def A (__A : Tuple , __A : Any=False ) -> str:
"""simple docstring"""
try:
UpperCAmelCase_ = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
UpperCAmelCase_ = default
else:
# KEY is set, convert it to True or False.
try:
UpperCAmelCase_ = strtobool(__A )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(F"""If set, {key} must be yes or no.""" )
return _value
snake_case_ : int = parse_flag_from_env("RUN_SLOW", default=False)
def A (__A : List[str] ) -> List[str]:
"""simple docstring"""
return unittest.skip('''Test was skipped''' )(__A )
def A (__A : List[str] ) -> List[str]:
"""simple docstring"""
return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(__A )
def A (__A : Dict ) -> Dict:
"""simple docstring"""
return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(__A )
def A (__A : Optional[Any] ) -> str:
"""simple docstring"""
return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(__A )
def A (__A : Tuple ) -> Any:
"""simple docstring"""
return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(__A )
def A (__A : List[str] ) -> Tuple:
"""simple docstring"""
return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(__A )
def A (__A : List[Any] ) -> List[str]:
"""simple docstring"""
return unittest.skipUnless(
is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(__A )
def A (__A : Union[str, Any] ) -> int:
"""simple docstring"""
return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(__A )
def A (__A : List[str] ) -> Optional[Any]:
"""simple docstring"""
return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(__A )
def A (__A : Dict ) -> str:
"""simple docstring"""
return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(__A )
def A (__A : Union[str, Any] ) -> str:
"""simple docstring"""
return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(__A )
def A (__A : Dict ) -> Dict:
"""simple docstring"""
return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(__A )
def A (__A : str ) -> Dict:
"""simple docstring"""
return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(__A )
def A (__A : List[str] ) -> Optional[int]:
"""simple docstring"""
return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(__A )
def A (__A : List[str] ) -> List[str]:
"""simple docstring"""
return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(__A )
def A (__A : Optional[int] ) -> List[Any]:
"""simple docstring"""
return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(__A )
def A (__A : List[Any]=None , __A : Dict=None ) -> Union[str, Any]:
"""simple docstring"""
if test_case is None:
return partial(__A , version=__A )
return unittest.skipUnless(is_torch_version('''>=''' , __A ) , F"""test requires torch version >= {version}""" )(__A )
def A (__A : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(__A )
def A (__A : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(__A )
def A (__A : List[str] ) -> List[str]:
"""simple docstring"""
return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(__A )
snake_case_ : Tuple = (
any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available()
)
def A (__A : Union[str, Any] ) -> Dict:
"""simple docstring"""
return unittest.skipUnless(
_atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(__A )
class __snake_case ( unittest.TestCase ):
UpperCAmelCase__ : Union[str, Any] = True
@classmethod
def lowerCamelCase ( cls : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = tempfile.mkdtemp()
@classmethod
def lowerCamelCase ( cls : List[Any]):
"""simple docstring"""
if os.path.exists(cls.tmpdir):
shutil.rmtree(cls.tmpdir)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
if self.clear_on_setup:
for path in Path(self.tmpdir).glob('''**/*'''):
if path.is_file():
path.unlink()
elif path.is_dir():
shutil.rmtree(_snake_case)
class __snake_case ( unittest.TestCase ):
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
super().tearDown()
# Reset the state of the AcceleratorState singleton.
AcceleratorState._reset_state()
PartialState._reset_state()
class __snake_case ( unittest.TestCase ):
def lowerCamelCase ( self : Dict , _snake_case : Union[mock.Mock, List[mock.Mock]]):
"""simple docstring"""
UpperCAmelCase_ = mocks if isinstance(_snake_case , (tuple, list)) else [mocks]
for m in self.mocks:
m.start()
self.addCleanup(m.stop)
def A (__A : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ = AcceleratorState()
UpperCAmelCase_ = tensor[None].clone().to(state.device )
UpperCAmelCase_ = gather(__A ).cpu()
UpperCAmelCase_ = tensor[0].cpu()
for i in range(tensors.shape[0] ):
if not torch.equal(tensors[i] , __A ):
return False
return True
class __snake_case :
def __init__( self : int , _snake_case : Any , _snake_case : Tuple , _snake_case : Any):
"""simple docstring"""
UpperCAmelCase_ = returncode
UpperCAmelCase_ = stdout
UpperCAmelCase_ = stderr
async def A (__A : Any , __A : Any ) -> int:
"""simple docstring"""
while True:
UpperCAmelCase_ = await stream.readline()
if line:
callback(__A )
else:
break
async def A (__A : List[str] , __A : str=None , __A : str=None , __A : str=None , __A : int=False , __A : List[Any]=False ) -> _RunOutput:
"""simple docstring"""
if echo:
print('''\nRunning: ''' , ''' '''.join(__A ) )
UpperCAmelCase_ = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=__A , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__A , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
UpperCAmelCase_ = []
UpperCAmelCase_ = []
def tee(__A : int , __A : Dict , __A : Dict , __A : List[Any]="" ):
UpperCAmelCase_ = line.decode('''utf-8''' ).rstrip()
sink.append(__A )
if not quiet:
print(__A , __A , file=__A )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
asyncio.create_task(_read_stream(p.stdout , lambda __A : tee(__A , __A , sys.stdout , label='''stdout:''' ) ) ),
asyncio.create_task(_read_stream(p.stderr , lambda __A : tee(__A , __A , sys.stderr , label='''stderr:''' ) ) ),
] , timeout=__A , )
return _RunOutput(await p.wait() , __A , __A )
def A (__A : int , __A : List[str]=None , __A : Dict=None , __A : int=180 , __A : Union[str, Any]=False , __A : Union[str, Any]=True ) -> _RunOutput:
"""simple docstring"""
UpperCAmelCase_ = asyncio.get_event_loop()
UpperCAmelCase_ = loop.run_until_complete(
_stream_subprocess(__A , env=__A , stdin=__A , timeout=__A , quiet=__A , echo=__A ) )
UpperCAmelCase_ = ''' '''.join(__A )
if result.returncode > 0:
UpperCAmelCase_ = '''\n'''.join(result.stderr )
raise RuntimeError(
F"""'{cmd_str}' failed with returncode {result.returncode}\n\n"""
F"""The combined stderr from workers follows:\n{stderr}""" )
return result
class __snake_case ( a ):
pass
def A (__A : List[str] , __A : List[Any]=False ) -> Tuple:
"""simple docstring"""
try:
UpperCAmelCase_ = subprocess.check_output(__A , stderr=subprocess.STDOUT )
if return_stdout:
if hasattr(__A , '''decode''' ):
UpperCAmelCase_ = output.decode('''utf-8''' )
return output
except subprocess.CalledProcessError as e:
raise SubprocessCallException(
F"""Command `{" ".join(__A )}` failed with the following error:\n\n{e.output.decode()}""" ) from e
| 361 |
import json
import os
import shutil
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoConfig, BertConfig, GPTaConfig
from transformers.configuration_utils import PretrainedConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
snake_case_ : List[str] = {
"return_dict": False,
"output_hidden_states": True,
"output_attentions": True,
"torchscript": True,
"torch_dtype": "float16",
"use_bfloat16": True,
"tf_legacy_loss": True,
"pruned_heads": {"a": 1},
"tie_word_embeddings": False,
"is_decoder": True,
"cross_attention_hidden_size": 128,
"add_cross_attention": True,
"tie_encoder_decoder": True,
"max_length": 50,
"min_length": 3,
"do_sample": True,
"early_stopping": True,
"num_beams": 3,
"num_beam_groups": 3,
"diversity_penalty": 0.5,
"temperature": 2.0,
"top_k": 10,
"top_p": 0.7,
"typical_p": 0.2,
"repetition_penalty": 0.8,
"length_penalty": 0.8,
"no_repeat_ngram_size": 5,
"encoder_no_repeat_ngram_size": 5,
"bad_words_ids": [1, 2, 3],
"num_return_sequences": 3,
"chunk_size_feed_forward": 5,
"output_scores": True,
"return_dict_in_generate": True,
"forced_bos_token_id": 2,
"forced_eos_token_id": 3,
"remove_invalid_values": True,
"architectures": ["BertModel"],
"finetuning_task": "translation",
"id2label": {0: "label"},
"label2id": {"label": "0"},
"tokenizer_class": "BertTokenizerFast",
"prefix": "prefix",
"bos_token_id": 6,
"pad_token_id": 7,
"eos_token_id": 8,
"sep_token_id": 9,
"decoder_start_token_id": 10,
"exponential_decay_length_penalty": (5, 1.01),
"suppress_tokens": [0, 1],
"begin_suppress_tokens": 2,
"task_specific_params": {"translation": "some_params"},
"problem_type": "regression",
}
@is_staging_test
class __snake_case ( unittest.TestCase ):
@classmethod
def lowerCamelCase ( cls : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = TOKEN
HfFolder.save_token(_snake_case)
@classmethod
def lowerCamelCase ( cls : List[str]):
"""simple docstring"""
try:
delete_repo(token=cls._token , repo_id='''test-config''')
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''')
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''test-dynamic-config''')
except HTTPError:
pass
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37)
config.push_to_hub('''test-config''' , use_auth_token=self._token)
UpperCAmelCase_ = BertConfig.from_pretrained(F"""{USER}/test-config""")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_snake_case , getattr(_snake_case , _snake_case))
# Reset repo
delete_repo(token=self._token , repo_id='''test-config''')
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(_snake_case , repo_id='''test-config''' , push_to_hub=_snake_case , use_auth_token=self._token)
UpperCAmelCase_ = BertConfig.from_pretrained(F"""{USER}/test-config""")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_snake_case , getattr(_snake_case , _snake_case))
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37)
config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token)
UpperCAmelCase_ = BertConfig.from_pretrained('''valid_org/test-config-org''')
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_snake_case , getattr(_snake_case , _snake_case))
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-config-org''')
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
_snake_case , repo_id='''valid_org/test-config-org''' , push_to_hub=_snake_case , use_auth_token=self._token)
UpperCAmelCase_ = BertConfig.from_pretrained('''valid_org/test-config-org''')
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_snake_case , getattr(_snake_case , _snake_case))
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
CustomConfig.register_for_auto_class()
UpperCAmelCase_ = CustomConfig(attribute=42)
config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token)
# This has added the proper auto_map field to the config
self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''})
UpperCAmelCase_ = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=_snake_case)
# Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module
self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''')
self.assertEqual(new_config.attribute , 42)
class __snake_case ( unittest.TestCase ):
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = GPTaConfig()
# attempt to modify each of int/float/bool/str config records and verify they were updated
UpperCAmelCase_ = c.n_embd + 1 # int
UpperCAmelCase_ = c.resid_pdrop + 1.0 # float
UpperCAmelCase_ = not c.scale_attn_weights # bool
UpperCAmelCase_ = c.summary_type + '''foo''' # str
c.update_from_string(
F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""")
self.assertEqual(_snake_case , c.n_embd , '''mismatch for key: n_embd''')
self.assertEqual(_snake_case , c.resid_pdrop , '''mismatch for key: resid_pdrop''')
self.assertEqual(_snake_case , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''')
self.assertEqual(_snake_case , c.summary_type , '''mismatch for key: summary_type''')
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = PretrainedConfig()
UpperCAmelCase_ = [key for key in base_config.__dict__ if key not in config_common_kwargs]
# If this part of the test fails, you have arguments to addin config_common_kwargs above.
self.assertListEqual(
_snake_case , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version'''])
UpperCAmelCase_ = [key for key, value in config_common_kwargs.items() if value == getattr(_snake_case , _snake_case)]
if len(_snake_case) > 0:
raise ValueError(
'''The following keys are set with the default values in'''
''' `test_configuration_common.config_common_kwargs` pick another value for them:'''
F""" {", ".join(_snake_case)}.""")
def lowerCamelCase ( self : str):
"""simple docstring"""
with self.assertRaises(_snake_case):
# config is in subfolder, the following should not work without specifying the subfolder
UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''')
UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''')
self.assertIsNotNone(_snake_case)
def lowerCamelCase ( self : Any):
"""simple docstring"""
UpperCAmelCase_ = mock.Mock()
UpperCAmelCase_ = 500
UpperCAmelCase_ = {}
UpperCAmelCase_ = HTTPError
UpperCAmelCase_ = {}
# Download this model to make sure it's in the cache.
UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''')
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('''requests.Session.request''' , return_value=_snake_case) as mock_head:
UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''')
# This check we did call the fake head request
mock_head.assert_called()
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = BertConfig.from_pretrained(
'''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''')
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = AutoConfig.from_pretrained('''bert-base-cased''')
UpperCAmelCase_ = ['''config.4.0.0.json''']
with tempfile.TemporaryDirectory() as tmp_dir:
configuration.save_pretrained(_snake_case)
UpperCAmelCase_ = 2
json.dump(configuration.to_dict() , open(os.path.join(_snake_case , '''config.4.0.0.json''') , '''w'''))
# This should pick the new configuration file as the version of Transformers is > 4.0.0
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
self.assertEqual(new_configuration.hidden_size , 2)
# Will need to be adjusted if we reach v42 and this test is still here.
# Should pick the old configuration file as the version of Transformers is < 4.42.0
UpperCAmelCase_ = ['''config.42.0.0.json''']
UpperCAmelCase_ = 768
configuration.save_pretrained(_snake_case)
shutil.move(os.path.join(_snake_case , '''config.4.0.0.json''') , os.path.join(_snake_case , '''config.42.0.0.json'''))
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
self.assertEqual(new_configuration.hidden_size , 768)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = '''hf-internal-testing/test-two-configs'''
import transformers as new_transformers
UpperCAmelCase_ = '''v4.0.0'''
UpperCAmelCase_ , UpperCAmelCase_ = new_transformers.models.auto.AutoConfig.from_pretrained(
_snake_case , return_unused_kwargs=_snake_case)
self.assertEqual(new_configuration.hidden_size , 2)
# This checks `_configuration_file` ia not kept in the kwargs by mistake.
self.assertDictEqual(_snake_case , {})
# Testing an older version by monkey-patching the version in the module it's used.
import transformers as old_transformers
UpperCAmelCase_ = '''v3.0.0'''
UpperCAmelCase_ = old_transformers.models.auto.AutoConfig.from_pretrained(_snake_case)
self.assertEqual(old_configuration.hidden_size , 768)
| 7 | 0 |
def A (__A : int = 1000000 ) -> int:
"""simple docstring"""
UpperCAmelCase_ = [i - 1 for i in range(limit + 1 )]
for i in range(2 , limit + 1 ):
if phi[i] == i - 1:
for j in range(2 * i , limit + 1 , __A ):
phi[j] -= phi[j] // i
return sum(phi[2 : limit + 1] )
if __name__ == "__main__":
print(solution())
| 362 |
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
snake_case_ : List[Any] = (3, 9, -11, 0, 7, 5, 1, -1)
snake_case_ : str = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class __snake_case :
UpperCAmelCase__ : int
UpperCAmelCase__ : Node | None
class __snake_case :
def __init__( self : Optional[int] , _snake_case : Iterable[int]):
"""simple docstring"""
UpperCAmelCase_ = None
for i in sorted(_snake_case , reverse=_snake_case):
UpperCAmelCase_ = Node(_snake_case , self.head)
def __iter__( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = self.head
while node:
yield node.data
UpperCAmelCase_ = node.next_node
def __len__( self : int):
"""simple docstring"""
return sum(1 for _ in self)
def __str__( self : Optional[Any]):
"""simple docstring"""
return " -> ".join([str(_snake_case) for node in self])
def A (__A : SortedLinkedList , __A : SortedLinkedList ) -> SortedLinkedList:
"""simple docstring"""
return SortedLinkedList(list(__A ) + list(__A ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
snake_case_ : Union[str, Any] = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
| 7 | 0 |
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __snake_case ( a ):
UpperCAmelCase__ : Optional[Any] = ['''image_processor''', '''tokenizer''']
UpperCAmelCase__ : int = '''BridgeTowerImageProcessor'''
UpperCAmelCase__ : Tuple = ('''RobertaTokenizer''', '''RobertaTokenizerFast''')
def __init__( self : Optional[Any] , _snake_case : Optional[Any] , _snake_case : str):
"""simple docstring"""
super().__init__(_snake_case , _snake_case)
def __call__( self : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _snake_case : bool = True , _snake_case : Union[bool, str, PaddingStrategy] = False , _snake_case : Union[bool, str, TruncationStrategy] = None , _snake_case : Optional[int] = None , _snake_case : int = 0 , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[bool] = None , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = True , _snake_case : Optional[Union[str, TensorType]] = None , **_snake_case : str , ):
"""simple docstring"""
UpperCAmelCase_ = self.tokenizer(
text=_snake_case , add_special_tokens=_snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , stride=_snake_case , pad_to_multiple_of=_snake_case , return_token_type_ids=_snake_case , return_attention_mask=_snake_case , return_overflowing_tokens=_snake_case , return_special_tokens_mask=_snake_case , return_offsets_mapping=_snake_case , return_length=_snake_case , verbose=_snake_case , return_tensors=_snake_case , **_snake_case , )
# add pixel_values + pixel_mask
UpperCAmelCase_ = self.image_processor(
_snake_case , return_tensors=_snake_case , do_normalize=_snake_case , do_center_crop=_snake_case , **_snake_case)
encoding.update(_snake_case)
return encoding
def lowerCamelCase ( self : List[str] , *_snake_case : List[Any] , **_snake_case : Optional[int]):
"""simple docstring"""
return self.tokenizer.batch_decode(*_snake_case , **_snake_case)
def lowerCamelCase ( self : str , *_snake_case : List[Any] , **_snake_case : str):
"""simple docstring"""
return self.tokenizer.decode(*_snake_case , **_snake_case)
@property
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = self.tokenizer.model_input_names
UpperCAmelCase_ = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
| 363 |
import os
import warnings
from typing import List, Optional
from ...tokenization_utils_base import BatchEncoding
from ...utils import logging
from .configuration_rag import RagConfig
snake_case_ : Union[str, Any] = logging.get_logger(__name__)
class __snake_case :
def __init__( self : int , _snake_case : List[Any] , _snake_case : Tuple):
"""simple docstring"""
UpperCAmelCase_ = question_encoder
UpperCAmelCase_ = generator
UpperCAmelCase_ = self.question_encoder
def lowerCamelCase ( self : Union[str, Any] , _snake_case : Optional[int]):
"""simple docstring"""
if os.path.isfile(_snake_case):
raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""")
os.makedirs(_snake_case , exist_ok=_snake_case)
UpperCAmelCase_ = os.path.join(_snake_case , '''question_encoder_tokenizer''')
UpperCAmelCase_ = os.path.join(_snake_case , '''generator_tokenizer''')
self.question_encoder.save_pretrained(_snake_case)
self.generator.save_pretrained(_snake_case)
@classmethod
def lowerCamelCase ( cls : Optional[Any] , _snake_case : Optional[Any] , **_snake_case : Optional[int]):
"""simple docstring"""
from ..auto.tokenization_auto import AutoTokenizer
UpperCAmelCase_ = kwargs.pop('''config''' , _snake_case)
if config is None:
UpperCAmelCase_ = RagConfig.from_pretrained(_snake_case)
UpperCAmelCase_ = AutoTokenizer.from_pretrained(
_snake_case , config=config.question_encoder , subfolder='''question_encoder_tokenizer''')
UpperCAmelCase_ = AutoTokenizer.from_pretrained(
_snake_case , config=config.generator , subfolder='''generator_tokenizer''')
return cls(question_encoder=_snake_case , generator=_snake_case)
def __call__( self : List[Any] , *_snake_case : List[str] , **_snake_case : List[Any]):
"""simple docstring"""
return self.current_tokenizer(*_snake_case , **_snake_case)
def lowerCamelCase ( self : List[Any] , *_snake_case : str , **_snake_case : Union[str, Any]):
"""simple docstring"""
return self.generator.batch_decode(*_snake_case , **_snake_case)
def lowerCamelCase ( self : str , *_snake_case : Optional[int] , **_snake_case : Any):
"""simple docstring"""
return self.generator.decode(*_snake_case , **_snake_case)
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = self.question_encoder
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = self.generator
def lowerCamelCase ( self : Optional[Any] , _snake_case : List[str] , _snake_case : Optional[List[str]] = None , _snake_case : Optional[int] = None , _snake_case : Optional[int] = None , _snake_case : str = "longest" , _snake_case : str = None , _snake_case : bool = True , **_snake_case : Optional[int] , ):
"""simple docstring"""
warnings.warn(
'''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the '''
'''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` '''
'''context manager to prepare your targets. See the documentation of your specific tokenizer for more '''
'''details''' , _snake_case , )
if max_length is None:
UpperCAmelCase_ = self.current_tokenizer.model_max_length
UpperCAmelCase_ = self(
_snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , max_length=_snake_case , padding=_snake_case , truncation=_snake_case , **_snake_case , )
if tgt_texts is None:
return model_inputs
# Process tgt_texts
if max_target_length is None:
UpperCAmelCase_ = self.current_tokenizer.model_max_length
UpperCAmelCase_ = self(
text_target=_snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case , **_snake_case , )
UpperCAmelCase_ = labels['''input_ids''']
return model_inputs
| 7 | 0 |
from math import sqrt
def A (__A : int ) -> bool:
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(sqrt(__A ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def A (__A : int = 10001 ) -> int:
"""simple docstring"""
UpperCAmelCase_ = 0
UpperCAmelCase_ = 1
while count != nth and number < 3:
number += 1
if is_prime(__A ):
count += 1
while count != nth:
number += 2
if is_prime(__A ):
count += 1
return number
if __name__ == "__main__":
print(f"{solution() = }")
| 364 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class __snake_case ( unittest.TestCase ):
@slow
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-base''')
UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]])
# The dog is cute and lives in the garden house
UpperCAmelCase_ = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim
UpperCAmelCase_ = torch.tensor(
[[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]])
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
UpperCAmelCase_ = model(_snake_case)['''last_hidden_state'''].detach()
self.assertEqual(output.shape , _snake_case)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3))
@slow
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-large''')
UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]])
# The dog is cute and lives in the garden house
UpperCAmelCase_ = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim
UpperCAmelCase_ = torch.tensor(
[[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]])
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
UpperCAmelCase_ = model(_snake_case)['''last_hidden_state'''].detach()
self.assertEqual(output.shape , _snake_case)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3))
| 7 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
snake_case_ : int = {
"configuration_mobilevit": ["MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileViTConfig", "MobileViTOnnxConfig"],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Optional[int] = ["MobileViTFeatureExtractor"]
snake_case_ : Dict = ["MobileViTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Optional[int] = [
"MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"MobileViTForImageClassification",
"MobileViTForSemanticSegmentation",
"MobileViTModel",
"MobileViTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Any = [
"TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFMobileViTForImageClassification",
"TFMobileViTForSemanticSegmentation",
"TFMobileViTModel",
"TFMobileViTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_mobilevit import MobileViTFeatureExtractor
from .image_processing_mobilevit import MobileViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilevit import (
MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTModel,
MobileViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mobilevit import (
TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFMobileViTForImageClassification,
TFMobileViTForSemanticSegmentation,
TFMobileViTModel,
TFMobileViTPreTrainedModel,
)
else:
import sys
snake_case_ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 365 |
from maths.prime_factors import prime_factors
def A (__A : int ) -> int:
"""simple docstring"""
if not isinstance(__A , __A ):
UpperCAmelCase_ = F"""Input value of [number={number}] must be an integer"""
raise TypeError(__A )
if number < 1:
raise ValueError('''Input must be a positive integer''' )
return -1 if len(prime_factors(__A ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 | 0 |
"""simple docstring"""
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import TensorType, is_torch_available, logging
snake_case_ : Any = logging.get_logger(__name__)
snake_case_ : List[str] = {
"Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json",
# See all Marian models at https://huggingface.co/models?filter=marian
}
class __snake_case ( a ):
UpperCAmelCase__ : Tuple = '''marian'''
UpperCAmelCase__ : List[Any] = ['''past_key_values''']
UpperCAmelCase__ : str = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__( self : int , _snake_case : List[str]=58101 , _snake_case : List[Any]=None , _snake_case : List[Any]=1024 , _snake_case : Union[str, Any]=12 , _snake_case : int=4096 , _snake_case : Optional[Any]=16 , _snake_case : Union[str, Any]=12 , _snake_case : Optional[int]=4096 , _snake_case : int=16 , _snake_case : Tuple=0.0 , _snake_case : Optional[int]=0.0 , _snake_case : Optional[Any]=True , _snake_case : Union[str, Any]=True , _snake_case : Any="gelu" , _snake_case : Optional[Any]=1024 , _snake_case : Optional[Any]=0.1 , _snake_case : Union[str, Any]=0.0 , _snake_case : List[Any]=0.0 , _snake_case : Tuple=0.0_2 , _snake_case : str=58100 , _snake_case : Union[str, Any]=False , _snake_case : Any=58100 , _snake_case : Dict=0 , _snake_case : Union[str, Any]=0 , _snake_case : Any=True , **_snake_case : Any , ):
"""simple docstring"""
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = decoder_vocab_size or vocab_size
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = d_model
UpperCAmelCase_ = encoder_ffn_dim
UpperCAmelCase_ = encoder_layers
UpperCAmelCase_ = encoder_attention_heads
UpperCAmelCase_ = decoder_ffn_dim
UpperCAmelCase_ = decoder_layers
UpperCAmelCase_ = decoder_attention_heads
UpperCAmelCase_ = dropout
UpperCAmelCase_ = attention_dropout
UpperCAmelCase_ = activation_dropout
UpperCAmelCase_ = activation_function
UpperCAmelCase_ = init_std
UpperCAmelCase_ = encoder_layerdrop
UpperCAmelCase_ = decoder_layerdrop
UpperCAmelCase_ = use_cache
UpperCAmelCase_ = encoder_layers
UpperCAmelCase_ = scale_embedding # scale factor will be sqrt(d_model) if True
UpperCAmelCase_ = share_encoder_decoder_embeddings
super().__init__(
pad_token_id=_snake_case , eos_token_id=_snake_case , is_encoder_decoder=_snake_case , decoder_start_token_id=_snake_case , forced_eos_token_id=_snake_case , **_snake_case , )
class __snake_case ( a ):
@property
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
if self.task in ["default", "seq2seq-lm"]:
UpperCAmelCase_ = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
])
if self.use_past:
UpperCAmelCase_ = {0: '''batch'''}
UpperCAmelCase_ = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
UpperCAmelCase_ = {0: '''batch''', 1: '''decoder_sequence'''}
UpperCAmelCase_ = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(_snake_case , direction='''inputs''')
elif self.task == "causal-lm":
# TODO: figure this case out.
UpperCAmelCase_ = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
])
if self.use_past:
UpperCAmelCase_ , UpperCAmelCase_ = self.num_layers
for i in range(_snake_case):
UpperCAmelCase_ = {0: '''batch''', 2: '''past_sequence + sequence'''}
UpperCAmelCase_ = {0: '''batch''', 2: '''past_sequence + sequence'''}
else:
UpperCAmelCase_ = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}),
('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}),
])
return common_inputs
@property
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
if self.task in ["default", "seq2seq-lm"]:
UpperCAmelCase_ = super().outputs
else:
UpperCAmelCase_ = super(_snake_case , self).outputs
if self.use_past:
UpperCAmelCase_ , UpperCAmelCase_ = self.num_layers
for i in range(_snake_case):
UpperCAmelCase_ = {0: '''batch''', 2: '''past_sequence + sequence'''}
UpperCAmelCase_ = {0: '''batch''', 2: '''past_sequence + sequence'''}
return common_outputs
def lowerCamelCase ( self : Tuple , _snake_case : PreTrainedTokenizer , _snake_case : int = -1 , _snake_case : int = -1 , _snake_case : bool = False , _snake_case : Optional[TensorType] = None , ):
"""simple docstring"""
UpperCAmelCase_ = self._generate_dummy_inputs_for_encoder_and_decoder(
_snake_case , _snake_case , _snake_case , _snake_case , _snake_case)
# Generate decoder inputs
UpperCAmelCase_ = seq_length if not self.use_past else 1
UpperCAmelCase_ = self._generate_dummy_inputs_for_encoder_and_decoder(
_snake_case , _snake_case , _snake_case , _snake_case , _snake_case)
UpperCAmelCase_ = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()}
UpperCAmelCase_ = dict(**_snake_case , **_snake_case)
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''')
else:
import torch
UpperCAmelCase_ , UpperCAmelCase_ = common_inputs['''input_ids'''].shape
UpperCAmelCase_ = common_inputs['''decoder_input_ids'''].shape[1]
UpperCAmelCase_ , UpperCAmelCase_ = self.num_attention_heads
UpperCAmelCase_ = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
UpperCAmelCase_ = decoder_seq_length + 3
UpperCAmelCase_ = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
UpperCAmelCase_ = torch.cat(
[common_inputs['''decoder_attention_mask'''], torch.ones(_snake_case , _snake_case)] , dim=1)
UpperCAmelCase_ = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
UpperCAmelCase_ , UpperCAmelCase_ = self.num_layers
UpperCAmelCase_ = min(_snake_case , _snake_case)
UpperCAmelCase_ = max(_snake_case , _snake_case) - min_num_layers
UpperCAmelCase_ = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder'''
for _ in range(_snake_case):
common_inputs["past_key_values"].append(
(
torch.zeros(_snake_case),
torch.zeros(_snake_case),
torch.zeros(_snake_case),
torch.zeros(_snake_case),
))
# TODO: test this.
UpperCAmelCase_ = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape
for _ in range(_snake_case , _snake_case):
common_inputs["past_key_values"].append((torch.zeros(_snake_case), torch.zeros(_snake_case)))
return common_inputs
def lowerCamelCase ( self : Any , _snake_case : PreTrainedTokenizer , _snake_case : int = -1 , _snake_case : int = -1 , _snake_case : bool = False , _snake_case : Optional[TensorType] = None , ):
"""simple docstring"""
UpperCAmelCase_ = self._generate_dummy_inputs_for_encoder_and_decoder(
_snake_case , _snake_case , _snake_case , _snake_case , _snake_case)
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''')
else:
import torch
UpperCAmelCase_ , UpperCAmelCase_ = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
UpperCAmelCase_ = seqlen + 2
UpperCAmelCase_ , UpperCAmelCase_ = self.num_layers
UpperCAmelCase_ , UpperCAmelCase_ = self.num_attention_heads
UpperCAmelCase_ = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
UpperCAmelCase_ = common_inputs['''attention_mask'''].dtype
UpperCAmelCase_ = torch.cat(
[common_inputs['''attention_mask'''], torch.ones(_snake_case , _snake_case , dtype=_snake_case)] , dim=1)
UpperCAmelCase_ = [
(torch.zeros(_snake_case), torch.zeros(_snake_case)) for _ in range(_snake_case)
]
return common_inputs
def lowerCamelCase ( self : Dict , _snake_case : PreTrainedTokenizer , _snake_case : int = -1 , _snake_case : int = -1 , _snake_case : bool = False , _snake_case : Optional[TensorType] = None , ):
"""simple docstring"""
UpperCAmelCase_ = compute_effective_axis_dimension(
_snake_case , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0)
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
UpperCAmelCase_ = tokenizer.num_special_tokens_to_add(_snake_case)
UpperCAmelCase_ = compute_effective_axis_dimension(
_snake_case , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_snake_case)
# Generate dummy inputs according to compute batch and sequence
UpperCAmelCase_ = [''' '''.join([tokenizer.unk_token]) * seq_length] * batch_size
UpperCAmelCase_ = dict(tokenizer(_snake_case , return_tensors=_snake_case))
return common_inputs
def lowerCamelCase ( self : List[Any] , _snake_case : PreTrainedTokenizer , _snake_case : int = -1 , _snake_case : int = -1 , _snake_case : bool = False , _snake_case : Optional[TensorType] = None , ):
"""simple docstring"""
if self.task in ["default", "seq2seq-lm"]:
UpperCAmelCase_ = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
_snake_case , batch_size=_snake_case , seq_length=_snake_case , is_pair=_snake_case , framework=_snake_case)
else:
UpperCAmelCase_ = self._generate_dummy_inputs_for_causal_lm(
_snake_case , batch_size=_snake_case , seq_length=_snake_case , is_pair=_snake_case , framework=_snake_case)
return common_inputs
def lowerCamelCase ( self : Any , _snake_case : Tuple , _snake_case : Any , _snake_case : Optional[int] , _snake_case : List[Any]):
"""simple docstring"""
if self.task in ["default", "seq2seq-lm"]:
UpperCAmelCase_ = super()._flatten_past_key_values_(_snake_case , _snake_case , _snake_case , _snake_case)
else:
UpperCAmelCase_ = super(_snake_case , self)._flatten_past_key_values_(
_snake_case , _snake_case , _snake_case , _snake_case)
@property
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
return 1e-4
| 366 |
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class __snake_case ( unittest.TestCase ):
def lowerCamelCase ( self : Optional[int] , _snake_case : Union[str, Any]):
"""simple docstring"""
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss''']):
UpperCAmelCase_ = model_result['''result'''][batch_size][sequence_length]
self.assertIsNotNone(_snake_case)
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = '''sgugger/tiny-distilbert-classification'''
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , only_pretrain_model=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , torchscript=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''')
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , fpaa=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
# set architectures equal to `None`
UpperCAmelCase_ = None
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config])
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
@unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''')
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_snake_case , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config])
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tinier_bart'''
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config])
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config])
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tinier_bart'''
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config])
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , save_to_csv=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_snake_case , '''inf_time.csv''') , train_memory_csv_file=os.path.join(_snake_case , '''train_mem.csv''') , inference_memory_csv_file=os.path.join(_snake_case , '''inf_mem.csv''') , train_time_csv_file=os.path.join(_snake_case , '''train_time.csv''') , env_info_csv_file=os.path.join(_snake_case , '''env.csv''') , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
benchmark.run()
self.assertTrue(Path(os.path.join(_snake_case , '''inf_time.csv''')).exists())
self.assertTrue(Path(os.path.join(_snake_case , '''train_time.csv''')).exists())
self.assertTrue(Path(os.path.join(_snake_case , '''inf_mem.csv''')).exists())
self.assertTrue(Path(os.path.join(_snake_case , '''train_mem.csv''')).exists())
self.assertTrue(Path(os.path.join(_snake_case , '''env.csv''')).exists())
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
def _check_summary_is_not_empty(_snake_case : Tuple):
self.assertTrue(hasattr(_snake_case , '''sequential'''))
self.assertTrue(hasattr(_snake_case , '''cumulative'''))
self.assertTrue(hasattr(_snake_case , '''current'''))
self.assertTrue(hasattr(_snake_case , '''total'''))
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_snake_case , '''log.txt''') , log_print=_snake_case , trace_memory_line_by_line=_snake_case , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
_check_summary_is_not_empty(result.inference_summary)
_check_summary_is_not_empty(result.train_summary)
self.assertTrue(Path(os.path.join(_snake_case , '''log.txt''')).exists())
| 7 | 0 |
import inspect
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel, VQModel
from ...schedulers import DDIMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class __snake_case ( a ):
def __init__( self : Any , _snake_case : VQModel , _snake_case : UNetaDModel , _snake_case : DDIMScheduler):
"""simple docstring"""
super().__init__()
self.register_modules(vqvae=_snake_case , unet=_snake_case , scheduler=_snake_case)
@torch.no_grad()
def __call__( self : List[str] , _snake_case : int = 1 , _snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _snake_case : float = 0.0 , _snake_case : int = 50 , _snake_case : Optional[str] = "pil" , _snake_case : bool = True , **_snake_case : str , ):
"""simple docstring"""
UpperCAmelCase_ = randn_tensor(
(batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=_snake_case , )
UpperCAmelCase_ = latents.to(self.device)
# scale the initial noise by the standard deviation required by the scheduler
UpperCAmelCase_ = latents * self.scheduler.init_noise_sigma
self.scheduler.set_timesteps(_snake_case)
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
UpperCAmelCase_ = '''eta''' in set(inspect.signature(self.scheduler.step).parameters.keys())
UpperCAmelCase_ = {}
if accepts_eta:
UpperCAmelCase_ = eta
for t in self.progress_bar(self.scheduler.timesteps):
UpperCAmelCase_ = self.scheduler.scale_model_input(_snake_case , _snake_case)
# predict the noise residual
UpperCAmelCase_ = self.unet(_snake_case , _snake_case).sample
# compute the previous noisy sample x_t -> x_t-1
UpperCAmelCase_ = self.scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample
# decode the image latents with the VAE
UpperCAmelCase_ = self.vqvae.decode(_snake_case).sample
UpperCAmelCase_ = (image / 2 + 0.5).clamp(0 , 1)
UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1).numpy()
if output_type == "pil":
UpperCAmelCase_ = self.numpy_to_pil(_snake_case)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_snake_case)
| 367 |
import argparse
import os
import numpy as np
import tensorflow as tf
import torch
from transformers import BertModel
def A (__A : BertModel , __A : str , __A : str ) -> int:
"""simple docstring"""
UpperCAmelCase_ = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''')
UpperCAmelCase_ = (
('''layer.''', '''layer_'''),
('''word_embeddings.weight''', '''word_embeddings'''),
('''position_embeddings.weight''', '''position_embeddings'''),
('''token_type_embeddings.weight''', '''token_type_embeddings'''),
('''.''', '''/'''),
('''LayerNorm/weight''', '''LayerNorm/gamma'''),
('''LayerNorm/bias''', '''LayerNorm/beta'''),
('''weight''', '''kernel'''),
)
if not os.path.isdir(__A ):
os.makedirs(__A )
UpperCAmelCase_ = model.state_dict()
def to_tf_var_name(__A : str ):
for patt, repl in iter(__A ):
UpperCAmelCase_ = name.replace(__A , __A )
return F"""bert/{name}"""
def create_tf_var(__A : np.ndarray , __A : str , __A : tf.Session ):
UpperCAmelCase_ = tf.dtypes.as_dtype(tensor.dtype )
UpperCAmelCase_ = tf.get_variable(dtype=__A , shape=tensor.shape , name=__A , initializer=tf.zeros_initializer() )
session.run(tf.variables_initializer([tf_var] ) )
session.run(__A )
return tf_var
tf.reset_default_graph()
with tf.Session() as session:
for var_name in state_dict:
UpperCAmelCase_ = to_tf_var_name(__A )
UpperCAmelCase_ = state_dict[var_name].numpy()
if any(x in var_name for x in tensors_to_transpose ):
UpperCAmelCase_ = torch_tensor.T
UpperCAmelCase_ = create_tf_var(tensor=__A , name=__A , session=__A )
tf.keras.backend.set_value(__A , __A )
UpperCAmelCase_ = session.run(__A )
print(F"""Successfully created {tf_name}: {np.allclose(__A , __A )}""" )
UpperCAmelCase_ = tf.train.Saver(tf.trainable_variables() )
saver.save(__A , os.path.join(__A , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) )
def A (__A : Any=None ) -> str:
"""simple docstring"""
UpperCAmelCase_ = argparse.ArgumentParser()
parser.add_argument('''--model_name''' , type=__A , required=__A , help='''model name e.g. bert-base-uncased''' )
parser.add_argument(
'''--cache_dir''' , type=__A , default=__A , required=__A , help='''Directory containing pytorch model''' )
parser.add_argument('''--pytorch_model_path''' , type=__A , required=__A , help='''/path/to/<pytorch-model-name>.bin''' )
parser.add_argument('''--tf_cache_dir''' , type=__A , required=__A , help='''Directory in which to save tensorflow model''' )
UpperCAmelCase_ = parser.parse_args(__A )
UpperCAmelCase_ = BertModel.from_pretrained(
pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , )
convert_pytorch_checkpoint_to_tf(model=__A , ckpt_dir=args.tf_cache_dir , model_name=args.model_name )
if __name__ == "__main__":
main()
| 7 | 0 |
import string
import numpy
def A (__A : int , __A : int ) -> int:
"""simple docstring"""
return b if a == 0 else greatest_common_divisor(b % a , __A )
class __snake_case :
UpperCAmelCase__ : Union[str, Any] = string.ascii_uppercase + string.digits
# This cipher takes alphanumerics into account
# i.e. a total of 36 characters
# take x and return x % len(key_string)
UpperCAmelCase__ : Union[str, Any] = numpy.vectorize(lambda a : x % 3_6 )
UpperCAmelCase__ : List[str] = numpy.vectorize(a )
def __init__( self : str , _snake_case : numpy.ndarray):
"""simple docstring"""
UpperCAmelCase_ = self.modulus(_snake_case) # mod36 calc's on the encrypt key
self.check_determinant() # validate the determinant of the encryption key
UpperCAmelCase_ = encrypt_key.shape[0]
def lowerCamelCase ( self : Tuple , _snake_case : str):
"""simple docstring"""
return self.key_string.index(_snake_case)
def lowerCamelCase ( self : str , _snake_case : int):
"""simple docstring"""
return self.key_string[round(_snake_case)]
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = round(numpy.linalg.det(self.encrypt_key))
if det < 0:
UpperCAmelCase_ = det % len(self.key_string)
UpperCAmelCase_ = len(self.key_string)
if greatest_common_divisor(_snake_case , len(self.key_string)) != 1:
UpperCAmelCase_ = (
F"""determinant modular {req_l} of encryption key({det}) """
F"""is not co prime w.r.t {req_l}.\nTry another key."""
)
raise ValueError(_snake_case)
def lowerCamelCase ( self : Optional[int] , _snake_case : str):
"""simple docstring"""
UpperCAmelCase_ = [char for char in text.upper() if char in self.key_string]
UpperCAmelCase_ = chars[-1]
while len(_snake_case) % self.break_key != 0:
chars.append(_snake_case)
return "".join(_snake_case)
def lowerCamelCase ( self : List[Any] , _snake_case : str):
"""simple docstring"""
UpperCAmelCase_ = self.process_text(text.upper())
UpperCAmelCase_ = ''''''
for i in range(0 , len(_snake_case) - self.break_key + 1 , self.break_key):
UpperCAmelCase_ = text[i : i + self.break_key]
UpperCAmelCase_ = [self.replace_letters(_snake_case) for char in batch]
UpperCAmelCase_ = numpy.array([vec]).T
UpperCAmelCase_ = self.modulus(self.encrypt_key.dot(_snake_case)).T.tolist()[
0
]
UpperCAmelCase_ = ''''''.join(
self.replace_digits(_snake_case) for num in batch_encrypted)
encrypted += encrypted_batch
return encrypted
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = round(numpy.linalg.det(self.encrypt_key))
if det < 0:
UpperCAmelCase_ = det % len(self.key_string)
UpperCAmelCase_ = None
for i in range(len(self.key_string)):
if (det * i) % len(self.key_string) == 1:
UpperCAmelCase_ = i
break
UpperCAmelCase_ = (
det_inv
* numpy.linalg.det(self.encrypt_key)
* numpy.linalg.inv(self.encrypt_key)
)
return self.to_int(self.modulus(_snake_case))
def lowerCamelCase ( self : Dict , _snake_case : str):
"""simple docstring"""
UpperCAmelCase_ = self.make_decrypt_key()
UpperCAmelCase_ = self.process_text(text.upper())
UpperCAmelCase_ = ''''''
for i in range(0 , len(_snake_case) - self.break_key + 1 , self.break_key):
UpperCAmelCase_ = text[i : i + self.break_key]
UpperCAmelCase_ = [self.replace_letters(_snake_case) for char in batch]
UpperCAmelCase_ = numpy.array([vec]).T
UpperCAmelCase_ = self.modulus(decrypt_key.dot(_snake_case)).T.tolist()[0]
UpperCAmelCase_ = ''''''.join(
self.replace_digits(_snake_case) for num in batch_decrypted)
decrypted += decrypted_batch
return decrypted
def A () -> None:
"""simple docstring"""
UpperCAmelCase_ = int(input('''Enter the order of the encryption key: ''' ) )
UpperCAmelCase_ = []
print('''Enter each row of the encryption key with space separated integers''' )
for _ in range(__A ):
UpperCAmelCase_ = [int(__A ) for x in input().split()]
hill_matrix.append(__A )
UpperCAmelCase_ = HillCipher(numpy.array(__A ) )
print('''Would you like to encrypt or decrypt some text? (1 or 2)''' )
UpperCAmelCase_ = input('''\n1. Encrypt\n2. Decrypt\n''' )
if option == "1":
UpperCAmelCase_ = input('''What text would you like to encrypt?: ''' )
print('''Your encrypted text is:''' )
print(hc.encrypt(__A ) )
elif option == "2":
UpperCAmelCase_ = input('''What text would you like to decrypt?: ''' )
print('''Your decrypted text is:''' )
print(hc.decrypt(__A ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 368 |
import inspect
import unittest
from transformers import RegNetConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from transformers.utils import cached_property, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __snake_case ( unittest.TestCase ):
def __init__( self : Tuple , _snake_case : List[Any] , _snake_case : Dict=3 , _snake_case : Dict=32 , _snake_case : List[str]=3 , _snake_case : Union[str, Any]=10 , _snake_case : Tuple=[10, 20, 30, 40] , _snake_case : Dict=[1, 1, 2, 1] , _snake_case : List[Any]=True , _snake_case : Dict=True , _snake_case : Union[str, Any]="relu" , _snake_case : Tuple=3 , _snake_case : Union[str, Any]=None , ):
"""simple docstring"""
UpperCAmelCase_ = parent
UpperCAmelCase_ = batch_size
UpperCAmelCase_ = image_size
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = embeddings_size
UpperCAmelCase_ = hidden_sizes
UpperCAmelCase_ = depths
UpperCAmelCase_ = is_training
UpperCAmelCase_ = use_labels
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = num_labels
UpperCAmelCase_ = scope
UpperCAmelCase_ = len(_snake_case)
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
UpperCAmelCase_ = self.get_config()
return config, pixel_values
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def lowerCamelCase ( self : Optional[int] , _snake_case : List[Any] , _snake_case : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = FlaxRegNetModel(config=_snake_case)
UpperCAmelCase_ = model(_snake_case)
# Output shape (b, c, h, w)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowerCamelCase ( self : Optional[Any] , _snake_case : List[Any] , _snake_case : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = self.num_labels
UpperCAmelCase_ = FlaxRegNetForImageClassification(config=_snake_case)
UpperCAmelCase_ = model(_snake_case)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ = self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs
UpperCAmelCase_ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_flax
class __snake_case ( a , unittest.TestCase ):
UpperCAmelCase__ : Union[str, Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else ()
UpperCAmelCase__ : Tuple = False
UpperCAmelCase__ : List[str] = False
UpperCAmelCase__ : int = False
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = FlaxRegNetModelTester(self)
UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case)
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
return
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_snake_case)
@unittest.skip(reason='''RegNet does not use inputs_embeds''')
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
pass
@unittest.skip(reason='''RegNet does not support input and output embeddings''')
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
pass
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = model_class(_snake_case)
UpperCAmelCase_ = inspect.signature(model.__call__)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ = [*signature.parameters.keys()]
UpperCAmelCase_ = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _snake_case)
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
def check_hidden_states_output(_snake_case : List[str] , _snake_case : Dict , _snake_case : List[str]):
UpperCAmelCase_ = model_class(_snake_case)
UpperCAmelCase_ = model(**self._prepare_for_class(_snake_case , _snake_case))
UpperCAmelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCAmelCase_ = self.model_tester.num_stages
self.assertEqual(len(_snake_case) , expected_num_stages + 1)
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = True
check_hidden_states_output(_snake_case , _snake_case , _snake_case)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase_ = True
check_hidden_states_output(_snake_case , _snake_case , _snake_case)
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
UpperCAmelCase_ = self._prepare_for_class(_snake_case , _snake_case)
UpperCAmelCase_ = model_class(_snake_case)
@jax.jit
def model_jitted(_snake_case : str , **_snake_case : Union[str, Any]):
return model(pixel_values=_snake_case , **_snake_case)
with self.subTest('''JIT Enabled'''):
UpperCAmelCase_ = model_jitted(**_snake_case).to_tuple()
with self.subTest('''JIT Disabled'''):
with jax.disable_jit():
UpperCAmelCase_ = model_jitted(**_snake_case).to_tuple()
self.assertEqual(len(_snake_case) , len(_snake_case))
for jitted_output, output in zip(_snake_case , _snake_case):
self.assertEqual(jitted_output.shape , output.shape)
def A () -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_flax
class __snake_case ( unittest.TestCase ):
@cached_property
def lowerCamelCase ( self : Dict):
"""simple docstring"""
return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''') if is_vision_available() else None
@slow
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''')
UpperCAmelCase_ = self.default_image_processor
UpperCAmelCase_ = prepare_img()
UpperCAmelCase_ = image_processor(images=_snake_case , return_tensors='''np''')
UpperCAmelCase_ = model(**_snake_case)
# verify the logits
UpperCAmelCase_ = (1, 1000)
self.assertEqual(outputs.logits.shape , _snake_case)
UpperCAmelCase_ = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6])
self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _snake_case , atol=1e-4))
| 7 | 0 |
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...file_utils import TensorType, is_torch_available
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
snake_case_ : Tuple = logging.get_logger(__name__)
snake_case_ : str = {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json",
# See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small
}
class __snake_case ( a ):
UpperCAmelCase__ : Any = '''blenderbot-small'''
UpperCAmelCase__ : List[Any] = ['''past_key_values''']
UpperCAmelCase__ : List[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__( self : List[str] , _snake_case : List[str]=50265 , _snake_case : Optional[Any]=512 , _snake_case : Optional[Any]=8 , _snake_case : str=2048 , _snake_case : Tuple=16 , _snake_case : int=8 , _snake_case : int=2048 , _snake_case : Dict=16 , _snake_case : Any=0.0 , _snake_case : List[Any]=0.0 , _snake_case : Tuple=True , _snake_case : Union[str, Any]=True , _snake_case : int="gelu" , _snake_case : List[str]=512 , _snake_case : int=0.1 , _snake_case : str=0.0 , _snake_case : List[str]=0.0 , _snake_case : Optional[int]=0.0_2 , _snake_case : Optional[Any]=1 , _snake_case : Dict=False , _snake_case : Tuple=0 , _snake_case : Optional[Any]=1 , _snake_case : Dict=2 , _snake_case : Union[str, Any]=2 , **_snake_case : int , ):
"""simple docstring"""
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = d_model
UpperCAmelCase_ = encoder_ffn_dim
UpperCAmelCase_ = encoder_layers
UpperCAmelCase_ = encoder_attention_heads
UpperCAmelCase_ = decoder_ffn_dim
UpperCAmelCase_ = decoder_layers
UpperCAmelCase_ = decoder_attention_heads
UpperCAmelCase_ = dropout
UpperCAmelCase_ = attention_dropout
UpperCAmelCase_ = activation_dropout
UpperCAmelCase_ = activation_function
UpperCAmelCase_ = init_std
UpperCAmelCase_ = encoder_layerdrop
UpperCAmelCase_ = decoder_layerdrop
UpperCAmelCase_ = use_cache
UpperCAmelCase_ = encoder_layers
UpperCAmelCase_ = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , is_encoder_decoder=_snake_case , decoder_start_token_id=_snake_case , forced_eos_token_id=_snake_case , **_snake_case , )
class __snake_case ( a ):
@property
def lowerCamelCase ( self : int):
"""simple docstring"""
if self.task in ["default", "seq2seq-lm"]:
UpperCAmelCase_ = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
])
if self.use_past:
UpperCAmelCase_ = {0: '''batch'''}
UpperCAmelCase_ = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
UpperCAmelCase_ = {0: '''batch''', 1: '''decoder_sequence'''}
UpperCAmelCase_ = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(_snake_case , direction='''inputs''')
elif self.task == "causal-lm":
# TODO: figure this case out.
UpperCAmelCase_ = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
])
if self.use_past:
UpperCAmelCase_ , UpperCAmelCase_ = self.num_layers
for i in range(_snake_case):
UpperCAmelCase_ = {0: '''batch''', 2: '''past_sequence + sequence'''}
UpperCAmelCase_ = {0: '''batch''', 2: '''past_sequence + sequence'''}
else:
UpperCAmelCase_ = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}),
('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}),
])
return common_inputs
@property
def lowerCamelCase ( self : Dict):
"""simple docstring"""
if self.task in ["default", "seq2seq-lm"]:
UpperCAmelCase_ = super().outputs
else:
UpperCAmelCase_ = super(_snake_case , self).outputs
if self.use_past:
UpperCAmelCase_ , UpperCAmelCase_ = self.num_layers
for i in range(_snake_case):
UpperCAmelCase_ = {0: '''batch''', 2: '''past_sequence + sequence'''}
UpperCAmelCase_ = {0: '''batch''', 2: '''past_sequence + sequence'''}
return common_outputs
def lowerCamelCase ( self : Any , _snake_case : PreTrainedTokenizer , _snake_case : int = -1 , _snake_case : int = -1 , _snake_case : bool = False , _snake_case : Optional[TensorType] = None , ):
"""simple docstring"""
UpperCAmelCase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
_snake_case , _snake_case , _snake_case , _snake_case , _snake_case)
# Generate decoder inputs
UpperCAmelCase_ = seq_length if not self.use_past else 1
UpperCAmelCase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
_snake_case , _snake_case , _snake_case , _snake_case , _snake_case)
UpperCAmelCase_ = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()}
UpperCAmelCase_ = dict(**_snake_case , **_snake_case)
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''')
else:
import torch
UpperCAmelCase_ , UpperCAmelCase_ = common_inputs['''input_ids'''].shape
UpperCAmelCase_ = common_inputs['''decoder_input_ids'''].shape[1]
UpperCAmelCase_ , UpperCAmelCase_ = self.num_attention_heads
UpperCAmelCase_ = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
UpperCAmelCase_ = decoder_seq_length + 3
UpperCAmelCase_ = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
UpperCAmelCase_ = torch.cat(
[common_inputs['''decoder_attention_mask'''], torch.ones(_snake_case , _snake_case)] , dim=1)
UpperCAmelCase_ = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
UpperCAmelCase_ , UpperCAmelCase_ = self.num_layers
UpperCAmelCase_ = min(_snake_case , _snake_case)
UpperCAmelCase_ = max(_snake_case , _snake_case) - min_num_layers
UpperCAmelCase_ = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder'''
for _ in range(_snake_case):
common_inputs["past_key_values"].append(
(
torch.zeros(_snake_case),
torch.zeros(_snake_case),
torch.zeros(_snake_case),
torch.zeros(_snake_case),
))
# TODO: test this.
UpperCAmelCase_ = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape
for _ in range(_snake_case , _snake_case):
common_inputs["past_key_values"].append((torch.zeros(_snake_case), torch.zeros(_snake_case)))
return common_inputs
def lowerCamelCase ( self : Optional[int] , _snake_case : PreTrainedTokenizer , _snake_case : int = -1 , _snake_case : int = -1 , _snake_case : bool = False , _snake_case : Optional[TensorType] = None , ):
"""simple docstring"""
UpperCAmelCase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
_snake_case , _snake_case , _snake_case , _snake_case , _snake_case)
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''')
else:
import torch
UpperCAmelCase_ , UpperCAmelCase_ = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
UpperCAmelCase_ = seqlen + 2
UpperCAmelCase_ , UpperCAmelCase_ = self.num_layers
UpperCAmelCase_ , UpperCAmelCase_ = self.num_attention_heads
UpperCAmelCase_ = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
UpperCAmelCase_ = common_inputs['''attention_mask'''].dtype
UpperCAmelCase_ = torch.cat(
[common_inputs['''attention_mask'''], torch.ones(_snake_case , _snake_case , dtype=_snake_case)] , dim=1)
UpperCAmelCase_ = [
(torch.zeros(_snake_case), torch.zeros(_snake_case)) for _ in range(_snake_case)
]
return common_inputs
def lowerCamelCase ( self : Any , _snake_case : PreTrainedTokenizer , _snake_case : int = -1 , _snake_case : int = -1 , _snake_case : bool = False , _snake_case : Optional[TensorType] = None , ):
"""simple docstring"""
UpperCAmelCase_ = compute_effective_axis_dimension(
_snake_case , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0)
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
UpperCAmelCase_ = tokenizer.num_special_tokens_to_add(_snake_case)
UpperCAmelCase_ = compute_effective_axis_dimension(
_snake_case , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_snake_case)
# Generate dummy inputs according to compute batch and sequence
UpperCAmelCase_ = [''' '''.join([tokenizer.unk_token]) * seq_length] * batch_size
UpperCAmelCase_ = dict(tokenizer(_snake_case , return_tensors=_snake_case))
return common_inputs
def lowerCamelCase ( self : Dict , _snake_case : PreTrainedTokenizer , _snake_case : int = -1 , _snake_case : int = -1 , _snake_case : bool = False , _snake_case : Optional[TensorType] = None , ):
"""simple docstring"""
if self.task in ["default", "seq2seq-lm"]:
UpperCAmelCase_ = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
_snake_case , batch_size=_snake_case , seq_length=_snake_case , is_pair=_snake_case , framework=_snake_case)
elif self.task == "causal-lm":
UpperCAmelCase_ = self._generate_dummy_inputs_for_causal_lm(
_snake_case , batch_size=_snake_case , seq_length=_snake_case , is_pair=_snake_case , framework=_snake_case)
else:
UpperCAmelCase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
_snake_case , batch_size=_snake_case , seq_length=_snake_case , is_pair=_snake_case , framework=_snake_case)
return common_inputs
def lowerCamelCase ( self : Any , _snake_case : Union[str, Any] , _snake_case : Optional[int] , _snake_case : Any , _snake_case : Optional[int]):
"""simple docstring"""
if self.task in ["default", "seq2seq-lm"]:
UpperCAmelCase_ = super()._flatten_past_key_values_(_snake_case , _snake_case , _snake_case , _snake_case)
else:
UpperCAmelCase_ = super(_snake_case , self)._flatten_past_key_values_(
_snake_case , _snake_case , _snake_case , _snake_case)
| 369 |
import comet # From: unbabel-comet
import torch
import datasets
snake_case_ : Tuple = datasets.logging.get_logger(__name__)
snake_case_ : str = "\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel's Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = \"{COMET}: A Neural Framework for {MT} Evaluation\",\n author = \"Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\",\n pages = \"2685--2702\",\n}\n"
snake_case_ : Tuple = "\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n"
snake_case_ : Optional[int] = "\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric('comet')\n >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use\n >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"]\n >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"]\n >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [0.19, 0.92]\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __snake_case ( datasets.Metric ):
def lowerCamelCase ( self : Any):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''sources''': datasets.Value('''string''' , id='''sequence'''),
'''predictions''': datasets.Value('''string''' , id='''sequence'''),
'''references''': datasets.Value('''string''' , id='''sequence'''),
}) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[
'''https://github.com/Unbabel/COMET''',
'''https://www.aclweb.org/anthology/2020.emnlp-main.213/''',
'''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''',
] , )
def lowerCamelCase ( self : List[Any] , _snake_case : Optional[int]):
"""simple docstring"""
if self.config_name == "default":
UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da'''))
else:
UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model(self.config_name))
def lowerCamelCase ( self : List[Any] , _snake_case : str , _snake_case : List[str] , _snake_case : Tuple , _snake_case : int=None , _snake_case : Optional[Any]=False):
"""simple docstring"""
if gpus is None:
UpperCAmelCase_ = 1 if torch.cuda.is_available() else 0
UpperCAmelCase_ = {'''src''': sources, '''mt''': predictions, '''ref''': references}
UpperCAmelCase_ = [dict(zip(_snake_case , _snake_case)) for t in zip(*data.values())]
UpperCAmelCase_ , UpperCAmelCase_ = self.scorer.predict(_snake_case , gpus=_snake_case , progress_bar=_snake_case)
return {"mean_score": mean_score, "scores": scores}
| 7 | 0 |
import os
import shutil
import sys
import tempfile
import unittest
from pathlib import Path
import pytest
import transformers
from transformers import (
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoTokenizer,
BertConfig,
BertTokenizer,
BertTokenizerFast,
CTRLTokenizer,
GPTaTokenizer,
GPTaTokenizerFast,
PreTrainedTokenizerFast,
RobertaTokenizer,
RobertaTokenizerFast,
is_tokenizers_available,
)
from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig
from transformers.models.auto.tokenization_auto import (
TOKENIZER_MAPPING,
get_tokenizer_config,
tokenizer_class_from_name,
)
from transformers.models.roberta.configuration_roberta import RobertaConfig
from transformers.testing_utils import (
DUMMY_DIFF_TOKENIZER_IDENTIFIER,
DUMMY_UNKNOWN_IDENTIFIER,
SMALL_MODEL_IDENTIFIER,
RequestCounter,
require_tokenizers,
slow,
)
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class __snake_case ( unittest.TestCase ):
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = 0
@slow
def lowerCamelCase ( self : Any):
"""simple docstring"""
for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x):
UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case)
self.assertIsNotNone(_snake_case)
self.assertIsInstance(_snake_case , (BertTokenizer, BertTokenizerFast))
self.assertGreater(len(_snake_case) , 0)
for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys():
UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case)
self.assertIsNotNone(_snake_case)
self.assertIsInstance(_snake_case , (GPTaTokenizer, GPTaTokenizerFast))
self.assertGreater(len(_snake_case) , 0)
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case)
self.assertIsInstance(_snake_case , (BertTokenizer, BertTokenizerFast))
self.assertEqual(tokenizer.vocab_size , 12)
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case)
self.assertIsInstance(_snake_case , (RobertaTokenizer, RobertaTokenizerFast))
self.assertEqual(tokenizer.vocab_size , 20)
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
self.assertIsInstance(_snake_case , _snake_case)
# Check that tokenizer_type ≠ model_type
UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case , config=_snake_case)
self.assertIsInstance(_snake_case , (BertTokenizer, BertTokenizerFast))
self.assertEqual(tokenizer.vocab_size , 12)
def lowerCamelCase ( self : str):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(_snake_case , '''vocab.txt'''))
UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case , tokenizer_type='''bert''' , use_fast=_snake_case)
self.assertIsInstance(_snake_case , _snake_case)
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(_snake_case , '''vocab.json'''))
shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(_snake_case , '''merges.txt'''))
UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case , tokenizer_type='''gpt2''' , use_fast=_snake_case)
self.assertIsInstance(_snake_case , _snake_case)
@require_tokenizers
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(_snake_case , '''vocab.txt'''))
UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case , tokenizer_type='''bert''')
self.assertIsInstance(_snake_case , _snake_case)
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(_snake_case , '''vocab.json'''))
shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(_snake_case , '''merges.txt'''))
UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case , tokenizer_type='''gpt2''')
self.assertIsInstance(_snake_case , _snake_case)
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
with pytest.raises(_snake_case):
AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''')
@require_tokenizers
def lowerCamelCase ( self : str):
"""simple docstring"""
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
UpperCAmelCase_ = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''')
self.assertIsInstance(_snake_case , (BertTokenizer, BertTokenizerFast))
if isinstance(_snake_case , _snake_case):
self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , _snake_case)
else:
self.assertEqual(tokenizer.do_lower_case , _snake_case)
self.assertEqual(tokenizer.model_max_length , 512)
@require_tokenizers
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
with self.assertRaisesRegex(
_snake_case , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ):
UpperCAmelCase_ = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''')
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = TOKENIZER_MAPPING.values()
UpperCAmelCase_ = []
for slow_tok, fast_tok in tokenizers:
if slow_tok is not None:
tokenizer_names.append(slow_tok.__name__)
if fast_tok is not None:
tokenizer_names.append(fast_tok.__name__)
for tokenizer_name in tokenizer_names:
# must find the right class
tokenizer_class_from_name(_snake_case)
@require_tokenizers
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=_snake_case) , _snake_case)
self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''') , _snake_case)
@require_tokenizers
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=_snake_case)
UpperCAmelCase_ = '''Hello, world. How are you?'''
UpperCAmelCase_ = tokenizer.tokenize(_snake_case)
self.assertEqual('''[UNK]''' , tokens[0])
UpperCAmelCase_ = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=_snake_case)
UpperCAmelCase_ = tokenizer.tokenize(_snake_case)
self.assertEqual('''[UNK]''' , tokens[0])
@require_tokenizers
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''')
self.assertEqual(type(_snake_case) , _snake_case)
self.assertEqual(tokenizer.model_max_length , 512)
self.assertEqual(tokenizer.vocab_size , 30000)
self.assertEqual(tokenizer.unk_token , '''[UNK]''')
self.assertEqual(tokenizer.padding_side , '''right''')
self.assertEqual(tokenizer.truncation_side , '''right''')
def lowerCamelCase ( self : Any):
"""simple docstring"""
UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case)
self.assertIsInstance(_snake_case , (BertTokenizer, BertTokenizerFast))
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(_snake_case)
UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case)
self.assertIsInstance(_snake_case , tokenizer.__class__)
self.assertEqual(tokenizera.vocab_size , 12)
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = AutoTokenizer.from_pretrained('''ctrl''')
# There is no fast CTRL so this always gives us a slow tokenizer.
self.assertIsInstance(_snake_case , _snake_case)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = get_tokenizer_config('''bert-base-cased''')
UpperCAmelCase_ = config.pop('''_commit_hash''' , _snake_case)
# If we ever update bert-base-cased tokenizer config, this dict here will need to be updated.
self.assertEqual(_snake_case , {'''do_lower_case''': False})
# This model does not have a tokenizer_config so we get back an empty dict.
UpperCAmelCase_ = get_tokenizer_config(_snake_case)
self.assertDictEqual(_snake_case , {})
# A tokenizer saved with `save_pretrained` always creates a tokenizer config.
UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case)
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(_snake_case)
UpperCAmelCase_ = get_tokenizer_config(_snake_case)
# Check the class of the tokenizer was properly saved (note that it always saves the slow class).
self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''')
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
try:
AutoConfig.register('''custom''' , _snake_case)
AutoTokenizer.register(_snake_case , slow_tokenizer_class=_snake_case)
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(_snake_case):
AutoTokenizer.register(_snake_case , slow_tokenizer_class=_snake_case)
UpperCAmelCase_ = CustomTokenizer.from_pretrained(_snake_case)
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(_snake_case)
UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case)
self.assertIsInstance(_snake_case , _snake_case)
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
@require_tokenizers
def lowerCamelCase ( self : str):
"""simple docstring"""
try:
AutoConfig.register('''custom''' , _snake_case)
# Can register in two steps
AutoTokenizer.register(_snake_case , slow_tokenizer_class=_snake_case)
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None))
AutoTokenizer.register(_snake_case , fast_tokenizer_class=_snake_case)
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast))
del TOKENIZER_MAPPING._extra_content[CustomConfig]
# Can register in one step
AutoTokenizer.register(
_snake_case , slow_tokenizer_class=_snake_case , fast_tokenizer_class=_snake_case)
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast))
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(_snake_case):
AutoTokenizer.register(_snake_case , fast_tokenizer_class=_snake_case)
# We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer
# and that model does not have a tokenizer.json
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase_ = BertTokenizerFast.from_pretrained(_snake_case)
bert_tokenizer.save_pretrained(_snake_case)
UpperCAmelCase_ = CustomTokenizerFast.from_pretrained(_snake_case)
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(_snake_case)
UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case)
self.assertIsInstance(_snake_case , _snake_case)
UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case , use_fast=_snake_case)
self.assertIsInstance(_snake_case , _snake_case)
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
with self.assertRaises(_snake_case):
UpperCAmelCase_ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''')
# If remote code is disabled, we can't load this config.
with self.assertRaises(_snake_case):
UpperCAmelCase_ = AutoTokenizer.from_pretrained(
'''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_snake_case)
UpperCAmelCase_ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_snake_case)
self.assertTrue(tokenizer.special_attribute_present)
# Test tokenizer can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(_snake_case)
UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case , trust_remote_code=_snake_case)
self.assertTrue(reloaded_tokenizer.special_attribute_present)
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''')
self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''')
# Test we can also load the slow version
UpperCAmelCase_ = AutoTokenizer.from_pretrained(
'''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_snake_case , use_fast=_snake_case)
self.assertTrue(tokenizer.special_attribute_present)
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''')
# Test tokenizer can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(_snake_case)
UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case , trust_remote_code=_snake_case , use_fast=_snake_case)
self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''')
self.assertTrue(reloaded_tokenizer.special_attribute_present)
else:
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''')
self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''')
@require_tokenizers
def lowerCamelCase ( self : Any):
"""simple docstring"""
class __snake_case ( a ):
UpperCAmelCase__ : Dict = False
class __snake_case ( a ):
UpperCAmelCase__ : List[str] = NewTokenizer
UpperCAmelCase__ : Tuple = False
try:
AutoConfig.register('''custom''' , _snake_case)
AutoTokenizer.register(_snake_case , slow_tokenizer_class=_snake_case)
AutoTokenizer.register(_snake_case , fast_tokenizer_class=_snake_case)
# If remote code is not set, the default is to use local
UpperCAmelCase_ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''')
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''')
self.assertFalse(tokenizer.special_attribute_present)
UpperCAmelCase_ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=_snake_case)
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''')
self.assertFalse(tokenizer.special_attribute_present)
# If remote code is disabled, we load the local one.
UpperCAmelCase_ = AutoTokenizer.from_pretrained(
'''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_snake_case)
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''')
self.assertFalse(tokenizer.special_attribute_present)
UpperCAmelCase_ = AutoTokenizer.from_pretrained(
'''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_snake_case , use_fast=_snake_case)
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''')
self.assertFalse(tokenizer.special_attribute_present)
# If remote is enabled, we load from the Hub
UpperCAmelCase_ = AutoTokenizer.from_pretrained(
'''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_snake_case)
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''')
self.assertTrue(tokenizer.special_attribute_present)
UpperCAmelCase_ = AutoTokenizer.from_pretrained(
'''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_snake_case , use_fast=_snake_case)
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''')
self.assertTrue(tokenizer.special_attribute_present)
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = AutoTokenizer.from_pretrained(
'''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=_snake_case)
self.assertTrue(tokenizer.special_attribute_present)
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''')
# Test we can also load the slow version
UpperCAmelCase_ = AutoTokenizer.from_pretrained(
'''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=_snake_case , use_fast=_snake_case)
self.assertTrue(tokenizer.special_attribute_present)
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''')
else:
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''')
def lowerCamelCase ( self : int):
"""simple docstring"""
with self.assertRaisesRegex(
_snake_case , '''bert-base is not a local folder and is not a valid model identifier'''):
UpperCAmelCase_ = AutoTokenizer.from_pretrained('''bert-base''')
def lowerCamelCase ( self : str):
"""simple docstring"""
with self.assertRaisesRegex(
_snake_case , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'''):
UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case , revision='''aaaaaa''')
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''')
with RequestCounter() as counter:
UpperCAmelCase_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''')
self.assertEqual(counter.get_request_count , 0)
self.assertEqual(counter.head_request_count , 1)
self.assertEqual(counter.other_request_count , 0)
| 370 |
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class __snake_case ( a ):
UpperCAmelCase__ : Optional[int] = (DPMSolverSinglestepScheduler,)
UpperCAmelCase__ : str = (('''num_inference_steps''', 2_5),)
def lowerCamelCase ( self : Dict , **_snake_case : Dict):
"""simple docstring"""
UpperCAmelCase_ = {
'''num_train_timesteps''': 1000,
'''beta_start''': 0.0_0_0_1,
'''beta_end''': 0.0_2,
'''beta_schedule''': '''linear''',
'''solver_order''': 2,
'''prediction_type''': '''epsilon''',
'''thresholding''': False,
'''sample_max_value''': 1.0,
'''algorithm_type''': '''dpmsolver++''',
'''solver_type''': '''midpoint''',
'''lambda_min_clipped''': -float('''inf'''),
'''variance_type''': None,
}
config.update(**_snake_case)
return config
def lowerCamelCase ( self : Dict , _snake_case : int=0 , **_snake_case : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = dict(self.forward_default_kwargs)
UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _snake_case)
UpperCAmelCase_ = self.dummy_sample
UpperCAmelCase_ = 0.1 * sample
UpperCAmelCase_ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase_ = self.get_scheduler_config(**_snake_case)
UpperCAmelCase_ = scheduler_class(**_snake_case)
scheduler.set_timesteps(_snake_case)
# copy over dummy past residuals
UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_snake_case)
UpperCAmelCase_ = scheduler_class.from_pretrained(_snake_case)
new_scheduler.set_timesteps(_snake_case)
# copy over dummy past residuals
UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order]
UpperCAmelCase_ , UpperCAmelCase_ = sample, sample
for t in range(_snake_case , time_step + scheduler.config.solver_order + 1):
UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample
UpperCAmelCase_ = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
pass
def lowerCamelCase ( self : Tuple , _snake_case : Optional[Any]=0 , **_snake_case : int):
"""simple docstring"""
UpperCAmelCase_ = dict(self.forward_default_kwargs)
UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _snake_case)
UpperCAmelCase_ = self.dummy_sample
UpperCAmelCase_ = 0.1 * sample
UpperCAmelCase_ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase_ = self.get_scheduler_config()
UpperCAmelCase_ = scheduler_class(**_snake_case)
scheduler.set_timesteps(_snake_case)
# copy over dummy past residuals (must be after setting timesteps)
UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_snake_case)
UpperCAmelCase_ = scheduler_class.from_pretrained(_snake_case)
# copy over dummy past residuals
new_scheduler.set_timesteps(_snake_case)
# copy over dummy past residual (must be after setting timesteps)
UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order]
UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample
UpperCAmelCase_ = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def lowerCamelCase ( self : Dict , _snake_case : int=None , **_snake_case : Optional[Any]):
"""simple docstring"""
if scheduler is None:
UpperCAmelCase_ = self.scheduler_classes[0]
UpperCAmelCase_ = self.get_scheduler_config(**_snake_case)
UpperCAmelCase_ = scheduler_class(**_snake_case)
UpperCAmelCase_ = self.scheduler_classes[0]
UpperCAmelCase_ = self.get_scheduler_config(**_snake_case)
UpperCAmelCase_ = scheduler_class(**_snake_case)
UpperCAmelCase_ = 10
UpperCAmelCase_ = self.dummy_model()
UpperCAmelCase_ = self.dummy_sample_deter
scheduler.set_timesteps(_snake_case)
for i, t in enumerate(scheduler.timesteps):
UpperCAmelCase_ = model(_snake_case , _snake_case)
UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample
return sample
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config())
UpperCAmelCase_ = 50
UpperCAmelCase_ = self.dummy_model()
UpperCAmelCase_ = self.dummy_sample_deter
scheduler.set_timesteps(_snake_case)
# make sure that the first t is uneven
for i, t in enumerate(scheduler.timesteps[3:]):
UpperCAmelCase_ = model(_snake_case , _snake_case)
UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.2_5_7_4) < 1e-3
def lowerCamelCase ( self : int):
"""simple docstring"""
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=_snake_case)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config())
UpperCAmelCase_ = self.full_loop(scheduler=_snake_case)
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3
UpperCAmelCase_ = DEISMultistepScheduler.from_config(scheduler.config)
UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(scheduler.config)
UpperCAmelCase_ = UniPCMultistepScheduler.from_config(scheduler.config)
UpperCAmelCase_ = DPMSolverSinglestepScheduler.from_config(scheduler.config)
UpperCAmelCase_ = self.full_loop(scheduler=_snake_case)
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
self.check_over_configs(thresholding=_snake_case)
for order in [1, 2, 3]:
for solver_type in ["midpoint", "heun"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=_snake_case , prediction_type=_snake_case , sample_max_value=_snake_case , algorithm_type='''dpmsolver++''' , solver_order=_snake_case , solver_type=_snake_case , )
def lowerCamelCase ( self : Dict):
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_snake_case)
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
for algorithm_type in ["dpmsolver", "dpmsolver++"]:
for solver_type in ["midpoint", "heun"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , )
UpperCAmelCase_ = self.full_loop(
solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , )
assert not torch.isnan(_snake_case).any(), "Samples have nan numbers"
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
self.check_over_configs(lower_order_final=_snake_case)
self.check_over_configs(lower_order_final=_snake_case)
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
self.check_over_configs(lambda_min_clipped=-float('''inf'''))
self.check_over_configs(lambda_min_clipped=-5.1)
def lowerCamelCase ( self : int):
"""simple docstring"""
self.check_over_configs(variance_type=_snake_case)
self.check_over_configs(variance_type='''learned_range''')
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=_snake_case , time_step=0)
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = self.full_loop()
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = self.full_loop(use_karras_sigmas=_snake_case)
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.2_2_4_8) < 1e-3
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''')
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.1_4_5_3) < 1e-3
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=_snake_case)
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.0_6_4_9) < 1e-3
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = self.scheduler_classes[0]
UpperCAmelCase_ = self.get_scheduler_config(thresholding=_snake_case , dynamic_thresholding_ratio=0)
UpperCAmelCase_ = scheduler_class(**_snake_case)
UpperCAmelCase_ = 10
UpperCAmelCase_ = self.dummy_model()
UpperCAmelCase_ = self.dummy_sample_deter.half()
scheduler.set_timesteps(_snake_case)
for i, t in enumerate(scheduler.timesteps):
UpperCAmelCase_ = model(_snake_case , _snake_case)
UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample
assert sample.dtype == torch.floataa
| 7 | 0 |
def A (__A : int = 4000000 ) -> int:
"""simple docstring"""
UpperCAmelCase_ = [0, 1]
UpperCAmelCase_ = 0
while fib[i] <= n:
fib.append(fib[i] + fib[i + 1] )
if fib[i + 2] > n:
break
i += 1
UpperCAmelCase_ = 0
for j in range(len(__A ) - 1 ):
if fib[j] % 2 == 0:
total += fib[j]
return total
if __name__ == "__main__":
print(f"{solution() = }")
| 371 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
snake_case_ : List[Any] = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Tuple = ["DeiTFeatureExtractor"]
snake_case_ : List[str] = ["DeiTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : List[Any] = [
"DEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"DeiTForImageClassification",
"DeiTForImageClassificationWithTeacher",
"DeiTForMaskedImageModeling",
"DeiTModel",
"DeiTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Dict = [
"TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFDeiTForImageClassification",
"TFDeiTForImageClassificationWithTeacher",
"TFDeiTForMaskedImageModeling",
"TFDeiTModel",
"TFDeiTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_deit import DeiTFeatureExtractor
from .image_processing_deit import DeiTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_deit import (
DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
DeiTModel,
DeiTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_deit import (
TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
TFDeiTPreTrainedModel,
)
else:
import sys
snake_case_ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 7 | 0 |
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision.transforms import functional as F
from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection
from transformers.utils import logging
logging.set_verbosity_info()
snake_case_ : Any = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
snake_case_ : str = []
for i in range(6):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(f"transformer.encoder.layers.{i}.self_attn.out_proj.weight", f"encoder.layers.{i}.self_attn.out_proj.weight")
)
rename_keys.append(
(f"transformer.encoder.layers.{i}.self_attn.out_proj.bias", f"encoder.layers.{i}.self_attn.out_proj.bias")
)
rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"encoder.layers.{i}.fc1.weight"))
rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"encoder.layers.{i}.fc1.bias"))
rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"encoder.layers.{i}.fc2.weight"))
rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"encoder.layers.{i}.fc2.bias"))
rename_keys.append(
(f"transformer.encoder.layers.{i}.norm1.weight", f"encoder.layers.{i}.self_attn_layer_norm.weight")
)
rename_keys.append((f"transformer.encoder.layers.{i}.norm1.bias", f"encoder.layers.{i}.self_attn_layer_norm.bias"))
rename_keys.append((f"transformer.encoder.layers.{i}.norm2.weight", f"encoder.layers.{i}.final_layer_norm.weight"))
rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"encoder.layers.{i}.final_layer_norm.bias"))
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"decoder.layers.{i}.self_attn.out_proj.weight")
)
rename_keys.append(
(f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"decoder.layers.{i}.self_attn.out_proj.bias")
)
rename_keys.append(
(
f"transformer.decoder.layers.{i}.multihead_attn.out_proj.weight",
f"decoder.layers.{i}.encoder_attn.out_proj.weight",
)
)
rename_keys.append(
(
f"transformer.decoder.layers.{i}.multihead_attn.out_proj.bias",
f"decoder.layers.{i}.encoder_attn.out_proj.bias",
)
)
rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"decoder.layers.{i}.fc1.weight"))
rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"decoder.layers.{i}.fc1.bias"))
rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"decoder.layers.{i}.fc2.weight"))
rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"decoder.layers.{i}.fc2.bias"))
rename_keys.append(
(f"transformer.decoder.layers.{i}.norm1.weight", f"decoder.layers.{i}.self_attn_layer_norm.weight")
)
rename_keys.append((f"transformer.decoder.layers.{i}.norm1.bias", f"decoder.layers.{i}.self_attn_layer_norm.bias"))
rename_keys.append(
(f"transformer.decoder.layers.{i}.norm2.weight", f"decoder.layers.{i}.encoder_attn_layer_norm.weight")
)
rename_keys.append(
(f"transformer.decoder.layers.{i}.norm2.bias", f"decoder.layers.{i}.encoder_attn_layer_norm.bias")
)
rename_keys.append((f"transformer.decoder.layers.{i}.norm3.weight", f"decoder.layers.{i}.final_layer_norm.weight"))
rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"decoder.layers.{i}.final_layer_norm.bias"))
# convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads
rename_keys.extend(
[
("input_proj.weight", "input_projection.weight"),
("input_proj.bias", "input_projection.bias"),
("query_embed.weight", "query_position_embeddings.weight"),
("transformer.encoder.norm.weight", "encoder.layernorm.weight"),
("transformer.encoder.norm.bias", "encoder.layernorm.bias"),
("transformer.decoder.norm.weight", "decoder.layernorm.weight"),
("transformer.decoder.norm.bias", "decoder.layernorm.bias"),
("class_embed.weight", "class_labels_classifier.weight"),
("class_embed.bias", "class_labels_classifier.bias"),
("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"),
("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"),
("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"),
("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"),
("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"),
("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"),
]
)
def A (__A : Optional[Any] , __A : Tuple , __A : List[str] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ = state_dict.pop(__A )
UpperCAmelCase_ = val
def A (__A : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ = OrderedDict()
for key, value in state_dict.items():
if "backbone.0.body" in key:
UpperCAmelCase_ = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' )
UpperCAmelCase_ = value
else:
UpperCAmelCase_ = value
return new_state_dict
def A (__A : Union[str, Any] ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ = ''''''
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
UpperCAmelCase_ = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" )
UpperCAmelCase_ = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ = in_proj_weight[:256, :]
UpperCAmelCase_ = in_proj_bias[:256]
UpperCAmelCase_ = in_proj_weight[256:512, :]
UpperCAmelCase_ = in_proj_bias[256:512]
UpperCAmelCase_ = in_proj_weight[-256:, :]
UpperCAmelCase_ = in_proj_bias[-256:]
# next: transformer decoder (which is a bit more complex because it also includes cross-attention)
for i in range(6 ):
# read in weights + bias of input projection layer of self-attention
UpperCAmelCase_ = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" )
UpperCAmelCase_ = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ = in_proj_weight[:256, :]
UpperCAmelCase_ = in_proj_bias[:256]
UpperCAmelCase_ = in_proj_weight[256:512, :]
UpperCAmelCase_ = in_proj_bias[256:512]
UpperCAmelCase_ = in_proj_weight[-256:, :]
UpperCAmelCase_ = in_proj_bias[-256:]
# read in weights + bias of input projection layer of cross-attention
UpperCAmelCase_ = state_dict.pop(
F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" )
UpperCAmelCase_ = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) of cross-attention to the state dict
UpperCAmelCase_ = in_proj_weight_cross_attn[:256, :]
UpperCAmelCase_ = in_proj_bias_cross_attn[:256]
UpperCAmelCase_ = in_proj_weight_cross_attn[256:512, :]
UpperCAmelCase_ = in_proj_bias_cross_attn[256:512]
UpperCAmelCase_ = in_proj_weight_cross_attn[-256:, :]
UpperCAmelCase_ = in_proj_bias_cross_attn[-256:]
def A (__A : Optional[int] , __A : int ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ = image.size
UpperCAmelCase_ = max(__A , __A )
UpperCAmelCase_ = 800 if '''detection''' in checkpoint_url else 1000
UpperCAmelCase_ = target_max_size / current_max_size
UpperCAmelCase_ = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) )
return resized_image
def A (__A : Tuple ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ = F.to_tensor(__A )
UpperCAmelCase_ = F.normalize(__A , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] )
return image
@torch.no_grad()
def A (__A : List[Any] , __A : Tuple , __A : str ) -> Optional[Any]:
"""simple docstring"""
logger.info('''Converting model...''' )
# load original state dict
UpperCAmelCase_ = torch.hub.load_state_dict_from_url(__A , map_location='''cpu''' )
# rename keys
for src, dest in rename_keys:
rename_key(__A , __A , __A )
UpperCAmelCase_ = rename_backbone_keys(__A )
# query, key and value matrices need special treatment
read_in_q_k_v(__A )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
UpperCAmelCase_ = '''model.'''
for key in state_dict.copy().keys():
if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ):
UpperCAmelCase_ = state_dict.pop(__A )
UpperCAmelCase_ = val
# create HuggingFace model and load state dict
UpperCAmelCase_ = TableTransformerConfig(
backbone='''resnet18''' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , )
if "detection" in checkpoint_url:
UpperCAmelCase_ = 15
UpperCAmelCase_ = 2
UpperCAmelCase_ = {0: '''table''', 1: '''table rotated'''}
UpperCAmelCase_ = idalabel
UpperCAmelCase_ = {v: k for k, v in idalabel.items()}
else:
UpperCAmelCase_ = 125
UpperCAmelCase_ = 6
UpperCAmelCase_ = {
0: '''table''',
1: '''table column''',
2: '''table row''',
3: '''table column header''',
4: '''table projected row header''',
5: '''table spanning cell''',
}
UpperCAmelCase_ = idalabel
UpperCAmelCase_ = {v: k for k, v in idalabel.items()}
UpperCAmelCase_ = DetrImageProcessor(
format='''coco_detection''' , max_size=800 if '''detection''' in checkpoint_url else 1000 )
UpperCAmelCase_ = TableTransformerForObjectDetection(__A )
model.load_state_dict(__A )
model.eval()
# verify our conversion
UpperCAmelCase_ = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png'''
UpperCAmelCase_ = hf_hub_download(repo_id='''nielsr/example-pdf''' , repo_type='''dataset''' , filename=__A )
UpperCAmelCase_ = Image.open(__A ).convert('''RGB''' )
UpperCAmelCase_ = normalize(resize(__A , __A ) ).unsqueeze(0 )
UpperCAmelCase_ = model(__A )
if "detection" in checkpoint_url:
UpperCAmelCase_ = (1, 15, 3)
UpperCAmelCase_ = torch.tensor(
[[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] )
UpperCAmelCase_ = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] )
else:
UpperCAmelCase_ = (1, 125, 7)
UpperCAmelCase_ = torch.tensor(
[[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] )
UpperCAmelCase_ = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, :3, :3] , __A , atol=1E-4 )
assert torch.allclose(outputs.pred_boxes[0, :3, :3] , __A , atol=1E-4 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
# Save model and image processor
logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" )
Path(__A ).mkdir(exist_ok=__A )
model.save_pretrained(__A )
image_processor.save_pretrained(__A )
if push_to_hub:
# Push model to HF hub
logger.info('''Pushing model to the hub...''' )
UpperCAmelCase_ = (
'''microsoft/table-transformer-detection'''
if '''detection''' in checkpoint_url
else '''microsoft/table-transformer-structure-recognition'''
)
model.push_to_hub(__A )
image_processor.push_to_hub(__A )
if __name__ == "__main__":
snake_case_ : Optional[Any] = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_url",
default="https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth",
type=str,
choices=[
"https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth",
"https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth",
],
help="URL of the Table Transformer checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
snake_case_ : Any = parser.parse_args()
convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 350 |
import sacrebleu as scb
from packaging import version
from sacrebleu import TER
import datasets
snake_case_ : Dict = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n"
snake_case_ : List[str] = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n"
snake_case_ : List[Any] = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __snake_case ( datasets.Metric ):
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
if version.parse(scb.__version__) < version.parse('''1.4.12'''):
raise ImportWarning(
'''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n'''
'''You can install it with `pip install "sacrebleu>=1.4.12"`.''')
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence'''),
'''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''') , id='''references'''),
}) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[
'''https://github.com/jhclark/tercom''',
] , )
def lowerCamelCase ( self : Union[str, Any] , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , ):
"""simple docstring"""
UpperCAmelCase_ = len(references[0])
if any(len(_snake_case) != references_per_prediction for refs in references):
raise ValueError('''Sacrebleu requires the same number of references for each prediction''')
UpperCAmelCase_ = [[refs[i] for refs in references] for i in range(_snake_case)]
UpperCAmelCase_ = TER(
normalized=_snake_case , no_punct=_snake_case , asian_support=_snake_case , case_sensitive=_snake_case , )
UpperCAmelCase_ = sb_ter.corpus_score(_snake_case , _snake_case)
return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
| 7 | 0 |
import math
def A (__A : int ) -> list:
"""simple docstring"""
UpperCAmelCase_ = [True] * n
UpperCAmelCase_ = False
UpperCAmelCase_ = False
UpperCAmelCase_ = True
for i in range(3 , int(n**0.5 + 1 ) , 2 ):
UpperCAmelCase_ = i * 2
while index < n:
UpperCAmelCase_ = False
UpperCAmelCase_ = index + i
UpperCAmelCase_ = [2]
for i in range(3 , __A , 2 ):
if is_prime[i]:
primes.append(__A )
return primes
def A (__A : int = 999966663333 ) -> int:
"""simple docstring"""
UpperCAmelCase_ = math.floor(math.sqrt(__A ) ) + 100
UpperCAmelCase_ = prime_sieve(__A )
UpperCAmelCase_ = 0
UpperCAmelCase_ = 0
UpperCAmelCase_ = primes[prime_index]
while (last_prime**2) <= limit:
UpperCAmelCase_ = primes[prime_index + 1]
UpperCAmelCase_ = last_prime**2
UpperCAmelCase_ = next_prime**2
# Get numbers divisible by lps(current)
UpperCAmelCase_ = lower_bound + last_prime
while upper_bound > current <= limit:
matches_sum += current
current += last_prime
# Reset the upper_bound
while (upper_bound - next_prime) > limit:
upper_bound -= next_prime
# Add the numbers divisible by ups(current)
UpperCAmelCase_ = upper_bound - next_prime
while current > lower_bound:
matches_sum += current
current -= next_prime
# Remove the numbers divisible by both ups and lps
UpperCAmelCase_ = 0
while upper_bound > current <= limit:
if current <= lower_bound:
# Increment the current number
current += last_prime * next_prime
continue
if current > limit:
break
# Remove twice since it was added by both ups and lps
matches_sum -= current * 2
# Increment the current number
current += last_prime * next_prime
# Setup for next pair
UpperCAmelCase_ = next_prime
prime_index += 1
return matches_sum
if __name__ == "__main__":
print(solution())
| 351 |
import unittest
from transformers import load_tool
from transformers.utils import is_torch_available
if is_torch_available():
import torch
from transformers.testing_utils import require_torch
from .test_tools_common import ToolTesterMixin
@require_torch
class __snake_case ( unittest.TestCase , a ):
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = load_tool('''text-to-speech''')
self.tool.setup()
def lowerCamelCase ( self : int):
"""simple docstring"""
torch.manual_seed(0)
UpperCAmelCase_ = self.tool('''hey''')
UpperCAmelCase_ = result.to_raw()
self.assertTrue(
torch.allclose(
resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5]) , ))
def lowerCamelCase ( self : Any):
"""simple docstring"""
torch.manual_seed(0)
UpperCAmelCase_ = self.tool('''hey''')
UpperCAmelCase_ = result.to_raw()
self.assertTrue(
torch.allclose(
resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5]) , ))
| 7 | 0 |
from typing import List
from .keymap import KEYMAP, get_character
def A (__A : str ) -> Tuple:
"""simple docstring"""
def decorator(__A : str ):
UpperCAmelCase_ = getattr(__A , '''handle_key''' , [] )
handle += [key]
setattr(__A , '''handle_key''' , __A )
return func
return decorator
def A (*__A : List[str] ) -> Any:
"""simple docstring"""
def decorator(__A : Any ):
UpperCAmelCase_ = getattr(__A , '''handle_key''' , [] )
handle += keys
setattr(__A , '''handle_key''' , __A )
return func
return decorator
class __snake_case ( a ):
def __new__( cls : Optional[Any] , _snake_case : Dict , _snake_case : str , _snake_case : Dict):
"""simple docstring"""
UpperCAmelCase_ = super().__new__(cls , _snake_case , _snake_case , _snake_case)
if not hasattr(_snake_case , '''key_handler'''):
setattr(_snake_case , '''key_handler''' , {})
setattr(_snake_case , '''handle_input''' , KeyHandler.handle_input)
for value in attrs.values():
UpperCAmelCase_ = getattr(_snake_case , '''handle_key''' , [])
for key in handled_keys:
UpperCAmelCase_ = value
return new_cls
@staticmethod
def lowerCamelCase ( cls : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = get_character()
if char != KEYMAP["undefined"]:
UpperCAmelCase_ = ord(_snake_case)
UpperCAmelCase_ = cls.key_handler.get(_snake_case)
if handler:
UpperCAmelCase_ = char
return handler(cls)
else:
return None
def A (cls : int ) -> int:
"""simple docstring"""
return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
| 352 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
ImageTextPipelineOutput,
UniDiffuserPipeline,
)
else:
from .modeling_text_decoder import UniDiffuserTextDecoder
from .modeling_uvit import UniDiffuserModel, UTransformeraDModel
from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
| 7 | 0 |
"""simple docstring"""
from maths.prime_factors import prime_factors
def A (__A : int ) -> int:
"""simple docstring"""
if not isinstance(__A , __A ):
UpperCAmelCase_ = F"""Input value of [number={number}] must be an integer"""
raise TypeError(__A )
if number < 1:
raise ValueError('''Input must be a positive integer''' )
return -1 if len(prime_factors(__A ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 353 |
import unittest
from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class __snake_case :
@staticmethod
def lowerCamelCase ( *_snake_case : List[str] , **_snake_case : str):
"""simple docstring"""
pass
@is_pipeline_test
@require_torch
@require_vision
class __snake_case ( unittest.TestCase ):
UpperCAmelCase__ : List[Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
def lowerCamelCase ( self : Any , _snake_case : Optional[Any] , _snake_case : int , _snake_case : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''')
UpperCAmelCase_ = [
{
'''image''': Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png'''),
'''question''': '''How many cats are there?''',
},
{
'''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''',
'''question''': '''How many cats are there?''',
},
]
return vqa_pipeline, examples
def lowerCamelCase ( self : Optional[int] , _snake_case : List[str] , _snake_case : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = vqa_pipeline(_snake_case , top_k=1)
self.assertEqual(
_snake_case , [
[{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}],
[{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}],
] , )
@require_torch
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''')
UpperCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png'''
UpperCAmelCase_ = '''How many cats are there?'''
UpperCAmelCase_ = vqa_pipeline(image=_snake_case , question='''How many cats are there?''' , top_k=2)
self.assertEqual(
_snake_case , [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}, {'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}])
UpperCAmelCase_ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2)
self.assertEqual(
_snake_case , [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}, {'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}])
@slow
@require_torch
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''dandelin/vilt-b32-finetuned-vqa''')
UpperCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png'''
UpperCAmelCase_ = '''How many cats are there?'''
UpperCAmelCase_ = vqa_pipeline(image=_snake_case , question=_snake_case , top_k=2)
self.assertEqual(
nested_simplify(_snake_case , decimals=4) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}])
UpperCAmelCase_ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2)
self.assertEqual(
nested_simplify(_snake_case , decimals=4) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}])
UpperCAmelCase_ = vqa_pipeline(
[{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2)
self.assertEqual(
nested_simplify(_snake_case , decimals=4) , [[{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]] * 2 , )
@require_tf
@unittest.skip('''Visual question answering not implemented in TF''')
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
pass
| 7 | 0 |
from __future__ import annotations
import math
def __A (__A : int ) -> bool:
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(__A ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def __A (__A : int ) -> list[int]:
"""simple docstring"""
UpperCAmelCase_ = str(__A )
UpperCAmelCase_ = [n]
for i in range(1 , len(__A ) ):
list_nums.append(int(str_num[i:] ) )
list_nums.append(int(str_num[:-i] ) )
return list_nums
def __A (__A : int ) -> bool:
"""simple docstring"""
if len(str(__A ) ) > 3:
if not is_prime(int(str(__A )[-3:] ) ) or not is_prime(int(str(__A )[:3] ) ):
return False
return True
def __A (__A : int = 11 ) -> list[int]:
"""simple docstring"""
UpperCAmelCase_ = []
UpperCAmelCase_ = 13
while len(__A ) != count:
if validate(__A ):
UpperCAmelCase_ = list_truncated_nums(__A )
if all(is_prime(__A ) for i in list_nums ):
list_truncated_primes.append(__A )
num += 2
return list_truncated_primes
def __A () -> int:
"""simple docstring"""
return sum(compute_truncated_primes(11 ) )
if __name__ == "__main__":
print(f"{sum(compute_truncated_primes(11)) = }")
| 354 |
from timeit import timeit
def A (__A : int ) -> int:
"""simple docstring"""
if number < 0:
raise ValueError('''the value of input must not be negative''' )
UpperCAmelCase_ = 0
while number:
number &= number - 1
result += 1
return result
def A (__A : int ) -> int:
"""simple docstring"""
if number < 0:
raise ValueError('''the value of input must not be negative''' )
UpperCAmelCase_ = 0
while number:
if number % 2 == 1:
result += 1
number >>= 1
return result
def A () -> None:
"""simple docstring"""
def do_benchmark(__A : int ) -> None:
UpperCAmelCase_ = '''import __main__ as z'''
print(F"""Benchmark when {number = }:""" )
print(F"""{get_set_bits_count_using_modulo_operator(__A ) = }""" )
UpperCAmelCase_ = timeit('''z.get_set_bits_count_using_modulo_operator(25)''' , setup=__A )
print(F"""timeit() runs in {timing} seconds""" )
print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(__A ) = }""" )
UpperCAmelCase_ = timeit(
'''z.get_set_bits_count_using_brian_kernighans_algorithm(25)''' , setup=__A , )
print(F"""timeit() runs in {timing} seconds""" )
for number in (25, 37, 58, 0):
do_benchmark(__A )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 7 | 0 |
import json
from typing import Dict, List, Optional, Tuple, Union
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_led import LEDTokenizer
snake_case_ : Optional[int] = logging.get_logger(__name__)
snake_case_ : List[str] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
snake_case_ : Dict = {
"vocab_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json",
},
"merges_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt",
},
"tokenizer_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json",
},
}
snake_case_ : Any = {
"allenai/led-base-16384": 16384,
}
class __snake_case ( a ):
UpperCAmelCase__ : List[str] = VOCAB_FILES_NAMES
UpperCAmelCase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ : Any = LEDTokenizer
UpperCAmelCase__ : str = ['''input_ids''', '''attention_mask''']
def __init__( self : str , _snake_case : Optional[int]=None , _snake_case : int=None , _snake_case : str=None , _snake_case : Optional[Any]="replace" , _snake_case : Dict="<s>" , _snake_case : Optional[Any]="</s>" , _snake_case : Dict="</s>" , _snake_case : List[str]="<s>" , _snake_case : Union[str, Any]="<unk>" , _snake_case : Dict="<pad>" , _snake_case : Tuple="<mask>" , _snake_case : str=False , _snake_case : List[Any]=True , **_snake_case : Tuple , ):
"""simple docstring"""
super().__init__(
_snake_case , _snake_case , tokenizer_file=_snake_case , errors=_snake_case , bos_token=_snake_case , eos_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , unk_token=_snake_case , pad_token=_snake_case , mask_token=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case , **_snake_case , )
UpperCAmelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
if pre_tok_state.get('''add_prefix_space''' , _snake_case) != add_prefix_space:
UpperCAmelCase_ = getattr(_snake_case , pre_tok_state.pop('''type'''))
UpperCAmelCase_ = add_prefix_space
UpperCAmelCase_ = pre_tok_class(**_snake_case)
UpperCAmelCase_ = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
UpperCAmelCase_ = '''post_processor'''
UpperCAmelCase_ = getattr(self.backend_tokenizer , _snake_case , _snake_case)
if tokenizer_component_instance:
UpperCAmelCase_ = json.loads(tokenizer_component_instance.__getstate__())
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
UpperCAmelCase_ = tuple(state['''sep'''])
if "cls" in state:
UpperCAmelCase_ = tuple(state['''cls'''])
UpperCAmelCase_ = False
if state.get('''add_prefix_space''' , _snake_case) != add_prefix_space:
UpperCAmelCase_ = add_prefix_space
UpperCAmelCase_ = True
if state.get('''trim_offsets''' , _snake_case) != trim_offsets:
UpperCAmelCase_ = trim_offsets
UpperCAmelCase_ = True
if changes_to_apply:
UpperCAmelCase_ = getattr(_snake_case , state.pop('''type'''))
UpperCAmelCase_ = component_class(**_snake_case)
setattr(self.backend_tokenizer , _snake_case , _snake_case)
@property
# Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED
def lowerCamelCase ( self : str):
"""simple docstring"""
if self._mask_token is None:
if self.verbose:
logger.error('''Using mask_token, but it is not set yet.''')
return None
return str(self._mask_token)
@mask_token.setter
def lowerCamelCase ( self : Dict , _snake_case : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case) if isinstance(_snake_case , _snake_case) else value
UpperCAmelCase_ = value
def lowerCamelCase ( self : Union[str, Any] , *_snake_case : str , **_snake_case : int):
"""simple docstring"""
UpperCAmelCase_ = kwargs.get('''is_split_into_words''' , _snake_case)
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
'''to use it with pretokenized inputs.''')
return super()._batch_encode_plus(*_snake_case , **_snake_case)
def lowerCamelCase ( self : List[Any] , *_snake_case : int , **_snake_case : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = kwargs.get('''is_split_into_words''' , _snake_case)
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
'''to use it with pretokenized inputs.''')
return super()._encode_plus(*_snake_case , **_snake_case)
def lowerCamelCase ( self : Dict , _snake_case : str , _snake_case : Optional[str] = None):
"""simple docstring"""
UpperCAmelCase_ = self._tokenizer.model.save(_snake_case , name=_snake_case)
return tuple(_snake_case)
def lowerCamelCase ( self : List[str] , _snake_case : List[str] , _snake_case : List[str]=None):
"""simple docstring"""
UpperCAmelCase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def lowerCamelCase ( self : str , _snake_case : List[int] , _snake_case : Optional[List[int]] = None):
"""simple docstring"""
UpperCAmelCase_ = [self.sep_token_id]
UpperCAmelCase_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
def lowerCamelCase ( self : Dict , _snake_case : Union[Dict[str, EncodedInput], BatchEncoding] , _snake_case : Optional[int] = None , _snake_case : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , ):
"""simple docstring"""
UpperCAmelCase_ = super()._pad(
encoded_inputs=_snake_case , max_length=_snake_case , padding_strategy=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , )
# Load from model defaults
if return_attention_mask is None:
UpperCAmelCase_ = '''attention_mask''' in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
UpperCAmelCase_ = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
UpperCAmelCase_ = len(encoded_inputs['''global_attention_mask''']) != len(_snake_case)
if needs_to_be_padded:
UpperCAmelCase_ = len(_snake_case) - len(encoded_inputs['''global_attention_mask'''])
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
UpperCAmelCase_ = (
encoded_inputs['''global_attention_mask'''] + [-1] * difference
)
elif self.padding_side == "left":
UpperCAmelCase_ = [-1] * difference + encoded_inputs[
'''global_attention_mask'''
]
else:
raise ValueError('''Invalid padding strategy:''' + str(self.padding_side))
return encoded_inputs
| 355 |
import unittest
import numpy as np
import torch
from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad
class __snake_case ( unittest.TestCase ):
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = 10
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = [1, 2, 3, 4]
UpperCAmelCase_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0]
self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case)
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case)
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case)
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = '''It was the year of Our Lord one thousand seven hundred and
seventy-five.\n\nSpiritual revelations were conceded to England at that
favoured period, as at this.'''
UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case)
self.assertEqual(_snake_case , [])
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = ''''''
UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case)
self.assertEqual(_snake_case , [])
self.assertEqual(_snake_case , [])
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = (
'''It was the year of Our Lord one thousand seven hundred and '''
'''seventy-five\n\nSpiritual revelations were conceded to England '''
'''at that favoured period, as at this.\n@highlight\n\nIt was the best of times'''
)
UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case)
UpperCAmelCase_ = [
'''It was the year of Our Lord one thousand seven hundred and seventy-five.''',
'''Spiritual revelations were conceded to England at that favoured period, as at this.''',
]
self.assertEqual(_snake_case , _snake_case)
UpperCAmelCase_ = ['''It was the best of times.''']
self.assertEqual(_snake_case , _snake_case)
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = torch.tensor([1, 2, 3, 4])
UpperCAmelCase_ = torch.tensor([1, 1, 1, 1])
np.testing.assert_array_equal(build_mask(_snake_case , 0).numpy() , expected.numpy())
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = torch.tensor([1, 2, 3, 4, 23, 23, 23])
UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0])
np.testing.assert_array_equal(build_mask(_snake_case , 23).numpy() , expected.numpy())
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ = torch.tensor([8, 2, 3, 4, 1, 1, 1])
UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0])
np.testing.assert_array_equal(build_mask(_snake_case , 1).numpy() , expected.numpy())
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = 101
UpperCAmelCase_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]])
UpperCAmelCase_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]])
UpperCAmelCase_ = compute_token_type_ids(_snake_case , _snake_case)
np.testing.assert_array_equal(_snake_case , _snake_case)
| 7 | 0 |
from typing import Dict, Iterable, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends
if is_vision_available():
import PIL
# soft dependency
if is_pytesseract_available():
import pytesseract
snake_case_ : Tuple = logging.get_logger(__name__)
def A (__A : Any , __A : List[str] , __A : Any ) -> List[Any]:
"""simple docstring"""
return [
int(1000 * (box[0] / width) ),
int(1000 * (box[1] / height) ),
int(1000 * (box[2] / width) ),
int(1000 * (box[3] / height) ),
]
def A (__A : np.ndarray , __A : Optional[str] , __A : Optional[str] ) -> str:
"""simple docstring"""
UpperCAmelCase_ = to_pil_image(__A )
UpperCAmelCase_ , UpperCAmelCase_ = pil_image.size
UpperCAmelCase_ = pytesseract.image_to_data(__A , lang=__A , output_type='''dict''' , config=__A )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height''']
# filter empty words and corresponding coordinates
UpperCAmelCase_ = [idx for idx, word in enumerate(__A ) if not word.strip()]
UpperCAmelCase_ = [word for idx, word in enumerate(__A ) if idx not in irrelevant_indices]
UpperCAmelCase_ = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices]
UpperCAmelCase_ = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices]
UpperCAmelCase_ = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices]
UpperCAmelCase_ = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices]
# turn coordinates into (left, top, left+width, top+height) format
UpperCAmelCase_ = []
for x, y, w, h in zip(__A , __A , __A , __A ):
UpperCAmelCase_ = [x, y, x + w, y + h]
actual_boxes.append(__A )
# finally, normalize the bounding boxes
UpperCAmelCase_ = []
for box in actual_boxes:
normalized_boxes.append(normalize_box(__A , __A , __A ) )
assert len(__A ) == len(__A ), "Not as many words as there are bounding boxes"
return words, normalized_boxes
class __snake_case ( a ):
UpperCAmelCase__ : Tuple = ['''pixel_values''']
def __init__( self : Dict , _snake_case : bool = True , _snake_case : Dict[str, int] = None , _snake_case : PILImageResampling = PILImageResampling.BILINEAR , _snake_case : bool = True , _snake_case : float = 1 / 255 , _snake_case : bool = True , _snake_case : Union[float, Iterable[float]] = None , _snake_case : Union[float, Iterable[float]] = None , _snake_case : bool = True , _snake_case : Optional[str] = None , _snake_case : Optional[str] = "" , **_snake_case : Optional[int] , ):
"""simple docstring"""
super().__init__(**_snake_case)
UpperCAmelCase_ = size if size is not None else {'''height''': 224, '''width''': 224}
UpperCAmelCase_ = get_size_dict(_snake_case)
UpperCAmelCase_ = do_resize
UpperCAmelCase_ = size
UpperCAmelCase_ = resample
UpperCAmelCase_ = do_rescale
UpperCAmelCase_ = rescale_value
UpperCAmelCase_ = do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD
UpperCAmelCase_ = apply_ocr
UpperCAmelCase_ = ocr_lang
UpperCAmelCase_ = tesseract_config
def lowerCamelCase ( self : str , _snake_case : np.ndarray , _snake_case : Dict[str, int] , _snake_case : PILImageResampling = PILImageResampling.BILINEAR , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : Union[str, Any] , ):
"""simple docstring"""
UpperCAmelCase_ = get_size_dict(_snake_case)
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""")
UpperCAmelCase_ = (size['''height'''], size['''width'''])
return resize(_snake_case , size=_snake_case , resample=_snake_case , data_format=_snake_case , **_snake_case)
def lowerCamelCase ( self : List[Any] , _snake_case : np.ndarray , _snake_case : Union[int, float] , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : Dict , ):
"""simple docstring"""
return rescale(_snake_case , scale=_snake_case , data_format=_snake_case , **_snake_case)
def lowerCamelCase ( self : Union[str, Any] , _snake_case : np.ndarray , _snake_case : Union[float, Iterable[float]] , _snake_case : Union[float, Iterable[float]] , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : str , ):
"""simple docstring"""
return normalize(_snake_case , mean=_snake_case , std=_snake_case , data_format=_snake_case , **_snake_case)
def lowerCamelCase ( self : Optional[int] , _snake_case : ImageInput , _snake_case : bool = None , _snake_case : Dict[str, int] = None , _snake_case : Optional[int]=None , _snake_case : bool = None , _snake_case : float = None , _snake_case : bool = None , _snake_case : Union[float, Iterable[float]] = None , _snake_case : Union[float, Iterable[float]] = None , _snake_case : bool = None , _snake_case : Optional[str] = None , _snake_case : Optional[str] = None , _snake_case : Optional[Union[str, TensorType]] = None , _snake_case : ChannelDimension = ChannelDimension.FIRST , **_snake_case : List[str] , ):
"""simple docstring"""
UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ = size if size is not None else self.size
UpperCAmelCase_ = get_size_dict(_snake_case)
UpperCAmelCase_ = resample if resample is not None else self.resample
UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase_ = image_std if image_std is not None else self.image_std
UpperCAmelCase_ = apply_ocr if apply_ocr is not None else self.apply_ocr
UpperCAmelCase_ = ocr_lang if ocr_lang is not None else self.ocr_lang
UpperCAmelCase_ = tesseract_config if tesseract_config is not None else self.tesseract_config
UpperCAmelCase_ = make_list_of_images(_snake_case)
if not valid_images(_snake_case):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''')
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''')
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''')
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''')
# All transformations expect numpy arrays.
UpperCAmelCase_ = [to_numpy_array(_snake_case) for image in images]
# Tesseract OCR to get words + normalized bounding boxes
if apply_ocr:
requires_backends(self , '''pytesseract''')
UpperCAmelCase_ = []
UpperCAmelCase_ = []
for image in images:
UpperCAmelCase_ , UpperCAmelCase_ = apply_tesseract(_snake_case , _snake_case , _snake_case)
words_batch.append(_snake_case)
boxes_batch.append(_snake_case)
if do_resize:
UpperCAmelCase_ = [self.resize(image=_snake_case , size=_snake_case , resample=_snake_case) for image in images]
if do_rescale:
UpperCAmelCase_ = [self.rescale(image=_snake_case , scale=_snake_case) for image in images]
if do_normalize:
UpperCAmelCase_ = [self.normalize(image=_snake_case , mean=_snake_case , std=_snake_case) for image in images]
UpperCAmelCase_ = [to_channel_dimension_format(_snake_case , _snake_case) for image in images]
UpperCAmelCase_ = BatchFeature(data={'''pixel_values''': images} , tensor_type=_snake_case)
if apply_ocr:
UpperCAmelCase_ = words_batch
UpperCAmelCase_ = boxes_batch
return data
| 356 |
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import MaMaaaTokenizer, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from transformers.utils import is_sentencepiece_available
if is_sentencepiece_available():
from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json
from ...test_tokenization_common import TokenizerTesterMixin
if is_sentencepiece_available():
snake_case_ : Any = get_tests_dir("fixtures/test_sentencepiece.model")
if is_torch_available():
from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right
snake_case_ : Optional[Any] = 128022
snake_case_ : Optional[int] = 128028
@require_sentencepiece
class __snake_case ( a , unittest.TestCase ):
UpperCAmelCase__ : List[str] = MaMaaaTokenizer
UpperCAmelCase__ : int = False
UpperCAmelCase__ : Dict = False
UpperCAmelCase__ : List[str] = True
def lowerCamelCase ( self : str):
"""simple docstring"""
super().setUp()
UpperCAmelCase_ = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>''']
UpperCAmelCase_ = dict(zip(_snake_case , range(len(_snake_case))))
UpperCAmelCase_ = Path(self.tmpdirname)
save_json(_snake_case , save_dir / VOCAB_FILES_NAMES['''vocab_file'''])
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(_snake_case , save_dir / VOCAB_FILES_NAMES['''spm_file'''])
UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(self.tmpdirname)
tokenizer.save_pretrained(self.tmpdirname)
def lowerCamelCase ( self : str , **_snake_case : Union[str, Any]):
"""simple docstring"""
return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **_snake_case)
def lowerCamelCase ( self : Optional[int] , _snake_case : List[str]):
"""simple docstring"""
return (
"This is a test",
"This is a test",
)
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = '''</s>'''
UpperCAmelCase_ = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case) , _snake_case)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case) , _snake_case)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = self.get_tokenizer()
UpperCAmelCase_ = list(tokenizer.get_vocab().keys())
self.assertEqual(vocab_keys[0] , '''</s>''')
self.assertEqual(vocab_keys[1] , '''<unk>''')
self.assertEqual(vocab_keys[-1] , '''<s>''')
self.assertEqual(len(_snake_case) , tokenizer.vocab_size + len(tokenizer.get_added_vocab()))
@unittest.skip('''Skip this test while all models are still to be uploaded.''')
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
pass
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = self.get_tokenizer()
UpperCAmelCase_ = tokenizer.tokenize('''This is a test''')
self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_snake_case) , [2, 3, 4, 5, 6] , )
UpperCAmelCase_ = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6])
self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''])
UpperCAmelCase_ = tokenizer.convert_tokens_to_string(_snake_case)
self.assertEqual(_snake_case , '''This is a test''')
@slow
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = {'''input_ids''': [[128022, 110108, 397, 11, 38272, 2247, 124811, 285, 18105, 1586, 207, 7, 39534, 4428, 397, 1019, 18105, 1586, 207, 7, 41337, 16786, 241, 7, 20214, 17, 125690, 10398, 7, 44378, 58069, 68342, 7798, 7343, 11, 299, 33310, 4, 158, 37350, 94077, 4569, 299, 33310, 90, 4, 52840, 290, 4, 31270, 112, 299, 682, 4, 52840, 39953, 14079, 193, 52519, 90894, 17894, 120697, 11, 40445, 551, 17, 1019, 52519, 90894, 17756, 963, 11, 40445, 480, 17, 9792, 1120, 5173, 1393, 6240, 16786, 241, 120996, 28, 1245, 1393, 118240, 11123, 1019, 93612, 2691, 10618, 98058, 120409, 1928, 279, 4, 40683, 367, 178, 207, 1019, 103, 103121, 506, 65296, 5, 2], [128022, 21217, 367, 117, 125450, 128, 719, 7, 7308, 40, 93612, 12669, 1116, 16704, 71, 17785, 3699, 15592, 35, 144, 9584, 241, 11943, 713, 950, 799, 2247, 88427, 150, 149, 118813, 120706, 1019, 106906, 81518, 28, 1224, 22799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128022, 1658, 123311, 5155, 5578, 4722, 279, 14947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_snake_case , model_name='''facebook/m2m100_418M''' , revision='''c168bae485c864188cf9aa0e4108b0b6934dc91e''' , )
@require_torch
@require_sentencepiece
@require_tokenizers
class __snake_case ( unittest.TestCase ):
UpperCAmelCase__ : Dict = '''facebook/m2m100_418M'''
UpperCAmelCase__ : Dict = [
'''In my opinion, there are two levels of response from the French government.''',
'''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''',
]
UpperCAmelCase__ : Dict = [
'''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''',
'''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''',
]
# fmt: off
UpperCAmelCase__ : Any = [EN_CODE, 5_9_3, 1_9_4_9, 1_1_5_7_8_1, 4, 7_1_5_8_6, 4_2_3_4, 6_0_6_3_3, 1_2_6_2_3_3, 4_3_2, 1_2_3_8_0_8, 1_5_5_9_2, 1_1_9_7, 1_1_7_1_3_2, 1_2_0_6_1_8, 5, 2]
@classmethod
def lowerCamelCase ( cls : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='''en''' , tgt_lang='''fr''')
UpperCAmelCase_ = 1
return cls
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
self.assertEqual(self.tokenizer.get_lang_id('''ar''') , 128006)
self.assertEqual(self.tokenizer.get_lang_id('''en''') , 128022)
self.assertEqual(self.tokenizer.get_lang_id('''ro''') , 128076)
self.assertEqual(self.tokenizer.get_lang_id('''mr''') , 128063)
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = self.tokenizer.get_vocab()
self.assertEqual(len(_snake_case) , self.tokenizer.vocab_size)
self.assertEqual(vocab['''<unk>'''] , 3)
self.assertIn(self.tokenizer.get_lang_token('''en''') , _snake_case)
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = '''en'''
UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0]
self.assertListEqual(self.expected_src_tokens , _snake_case)
def lowerCamelCase ( self : Any):
"""simple docstring"""
self.assertIn(_snake_case , self.tokenizer.all_special_ids)
# fmt: off
UpperCAmelCase_ = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2]
# fmt: on
UpperCAmelCase_ = self.tokenizer.decode(_snake_case , skip_special_tokens=_snake_case)
UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_snake_case)
self.assertEqual(_snake_case , _snake_case)
self.assertNotIn(self.tokenizer.eos_token , _snake_case)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = tempfile.mkdtemp()
UpperCAmelCase_ = self.tokenizer.lang_token_to_id
self.tokenizer.save_pretrained(_snake_case)
UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(_snake_case)
self.assertDictEqual(new_tok.lang_token_to_id , _snake_case)
@require_torch
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = '''en'''
UpperCAmelCase_ = '''fr'''
UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_snake_case , return_tensors='''pt''')
UpperCAmelCase_ = shift_tokens_right(
batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id)
for k in batch:
UpperCAmelCase_ = batch[k].tolist()
# batch = {k: v.tolist() for k,v in batch.items()}
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
# batch.decoder_inputs_ids[0][0] ==
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == FR_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2] == [2, FR_CODE]
@require_torch
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = '''mr'''
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')])
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id])
UpperCAmelCase_ = '''zh'''
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')])
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id])
@require_torch
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = '''mr'''
self.tokenizer._switch_to_target_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')])
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id])
self.tokenizer._switch_to_input_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)])
UpperCAmelCase_ = '''zh'''
self.tokenizer._switch_to_target_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')])
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id])
self.tokenizer._switch_to_input_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)])
@require_torch
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = self.tokenizer._build_translation_inputs('''A test''' , return_tensors='''pt''' , src_lang='''en''' , tgt_lang='''ar''')
self.assertEqual(
nested_simplify(_snake_case) , {
# en_XX, A, test, EOS
'''input_ids''': [[128022, 58, 4183, 2]],
'''attention_mask''': [[1, 1, 1, 1]],
# ar_AR
'''forced_bos_token_id''': 128006,
} , )
| 7 | 0 |
import os
import unittest
from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class __snake_case ( a , unittest.TestCase ):
UpperCAmelCase__ : Union[str, Any] = TransfoXLTokenizer
UpperCAmelCase__ : List[str] = False
UpperCAmelCase__ : Any = False
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
super().setUp()
UpperCAmelCase_ = [
'''<unk>''',
'''[CLS]''',
'''[SEP]''',
'''want''',
'''unwanted''',
'''wa''',
'''un''',
'''running''',
''',''',
'''low''',
'''l''',
]
UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''])
with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens]))
def lowerCamelCase ( self : Tuple , **_snake_case : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = True
return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **_snake_case)
def lowerCamelCase ( self : Optional[int] , _snake_case : int):
"""simple docstring"""
UpperCAmelCase_ = '''<unk> UNwanted , running'''
UpperCAmelCase_ = '''<unk> unwanted, running'''
return input_text, output_text
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=_snake_case)
UpperCAmelCase_ = tokenizer.tokenize('''<unk> UNwanted , running''')
self.assertListEqual(_snake_case , ['''<unk>''', '''unwanted''', ''',''', '''running'''])
self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case) , [0, 4, 8, 7])
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = TransfoXLTokenizer(lower_case=_snake_case)
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''') , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''])
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = TransfoXLTokenizer(lower_case=_snake_case)
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''') , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''])
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = TransfoXLTokenizer(lower_case=_snake_case)
UpperCAmelCase_ = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?'''
UpperCAmelCase_ = [
'''Hello''',
'''(''',
'''bracket''',
''')''',
'''and''',
'''side''',
'''@-@''',
'''scrolled''',
'''[''',
'''and''',
''']''',
'''Henry''',
'''\'s''',
'''$''',
'''5''',
'''@,@''',
'''000''',
'''with''',
'''3''',
'''@.@''',
'''34''',
'''m''',
'''.''',
'''What''',
'''\'s''',
'''up''',
'''!''',
'''?''',
]
self.assertListEqual(tokenizer.tokenize(_snake_case) , _snake_case)
self.assertEqual(tokenizer.convert_tokens_to_string(_snake_case) , _snake_case)
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = self.get_tokenizer()
UpperCAmelCase_ = len(_snake_case)
tokenizer.add_tokens(['''new1''', '''new2'''])
tokenizer.move_added_token('''new1''' , 1)
# Check that moved token is not copied (duplicate)
self.assertEqual(len(_snake_case) , original_len + 2)
# Check that token is moved to specified id
self.assertEqual(tokenizer.encode('''new1''') , [1])
self.assertEqual(tokenizer.decode([1]) , '''new1''')
| 357 |
from typing import Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
snake_case_ : List[str] = logging.get_logger(__name__)
@add_end_docstrings(a )
class __snake_case ( a ):
def __init__( self : Tuple , *_snake_case : List[Any] , **_snake_case : Optional[Any]):
"""simple docstring"""
super().__init__(*_snake_case , **_snake_case)
self.check_model_type(_snake_case)
def lowerCamelCase ( self : List[str] , _snake_case : Optional[int]=None , _snake_case : Optional[Any]=None , _snake_case : str=None , **_snake_case : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ = {}, {}
if padding is not None:
UpperCAmelCase_ = padding
if truncation is not None:
UpperCAmelCase_ = truncation
if top_k is not None:
UpperCAmelCase_ = top_k
return preprocess_params, {}, postprocess_params
def __call__( self : List[Any] , _snake_case : Union["Image.Image", str] , _snake_case : str = None , **_snake_case : str):
"""simple docstring"""
if isinstance(_snake_case , (Image.Image, str)) and isinstance(_snake_case , _snake_case):
UpperCAmelCase_ = {'''image''': image, '''question''': question}
else:
UpperCAmelCase_ = image
UpperCAmelCase_ = super().__call__(_snake_case , **_snake_case)
return results
def lowerCamelCase ( self : Union[str, Any] , _snake_case : int , _snake_case : Optional[int]=False , _snake_case : int=False):
"""simple docstring"""
UpperCAmelCase_ = load_image(inputs['''image'''])
UpperCAmelCase_ = self.tokenizer(
inputs['''question'''] , return_tensors=self.framework , padding=_snake_case , truncation=_snake_case)
UpperCAmelCase_ = self.image_processor(images=_snake_case , return_tensors=self.framework)
model_inputs.update(_snake_case)
return model_inputs
def lowerCamelCase ( self : List[Any] , _snake_case : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = self.model(**_snake_case)
return model_outputs
def lowerCamelCase ( self : str , _snake_case : Optional[Any] , _snake_case : List[str]=5):
"""simple docstring"""
if top_k > self.model.config.num_labels:
UpperCAmelCase_ = self.model.config.num_labels
if self.framework == "pt":
UpperCAmelCase_ = model_outputs.logits.sigmoid()[0]
UpperCAmelCase_ , UpperCAmelCase_ = probs.topk(_snake_case)
else:
raise ValueError(F"""Unsupported framework: {self.framework}""")
UpperCAmelCase_ = scores.tolist()
UpperCAmelCase_ = ids.tolist()
return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_snake_case , _snake_case)]
| 7 | 0 |
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class __snake_case ( unittest.TestCase ):
def lowerCamelCase ( self : Optional[int] , _snake_case : Union[str, Any]):
"""simple docstring"""
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss''']):
UpperCAmelCase_ = model_result['''result'''][batch_size][sequence_length]
self.assertIsNotNone(_snake_case)
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = '''sgugger/tiny-distilbert-classification'''
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , only_pretrain_model=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , torchscript=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''')
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , fpaa=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
# set architectures equal to `None`
UpperCAmelCase_ = None
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config])
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
@unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''')
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_snake_case , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config])
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tinier_bart'''
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config])
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config])
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tinier_bart'''
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config])
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , save_to_csv=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_snake_case , '''inf_time.csv''') , train_memory_csv_file=os.path.join(_snake_case , '''train_mem.csv''') , inference_memory_csv_file=os.path.join(_snake_case , '''inf_mem.csv''') , train_time_csv_file=os.path.join(_snake_case , '''train_time.csv''') , env_info_csv_file=os.path.join(_snake_case , '''env.csv''') , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
benchmark.run()
self.assertTrue(Path(os.path.join(_snake_case , '''inf_time.csv''')).exists())
self.assertTrue(Path(os.path.join(_snake_case , '''train_time.csv''')).exists())
self.assertTrue(Path(os.path.join(_snake_case , '''inf_mem.csv''')).exists())
self.assertTrue(Path(os.path.join(_snake_case , '''train_mem.csv''')).exists())
self.assertTrue(Path(os.path.join(_snake_case , '''env.csv''')).exists())
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
def _check_summary_is_not_empty(_snake_case : Tuple):
self.assertTrue(hasattr(_snake_case , '''sequential'''))
self.assertTrue(hasattr(_snake_case , '''cumulative'''))
self.assertTrue(hasattr(_snake_case , '''current'''))
self.assertTrue(hasattr(_snake_case , '''total'''))
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_snake_case , '''log.txt''') , log_print=_snake_case , trace_memory_line_by_line=_snake_case , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
_check_summary_is_not_empty(result.inference_summary)
_check_summary_is_not_empty(result.train_summary)
self.assertTrue(Path(os.path.join(_snake_case , '''log.txt''')).exists())
| 358 |
import sys
def A (__A : int ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ = len(__A )
UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )]
UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )]
for chain_length in range(2 , __A ):
for a in range(1 , n - chain_length + 1 ):
UpperCAmelCase_ = a + chain_length - 1
UpperCAmelCase_ = sys.maxsize
for c in range(__A , __A ):
UpperCAmelCase_ = (
matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b]
)
if cost < matrix[a][b]:
UpperCAmelCase_ = cost
UpperCAmelCase_ = c
return matrix, sol
def A (__A : Any , __A : Dict , __A : Optional[int] ) -> Optional[int]:
"""simple docstring"""
if i == j:
print('''A''' + str(__A ) , end=''' ''' )
else:
print('''(''' , end=''' ''' )
print_optiomal_solution(__A , __A , optimal_solution[i][j] )
print_optiomal_solution(__A , optimal_solution[i][j] + 1 , __A )
print(''')''' , end=''' ''' )
def A () -> List[str]:
"""simple docstring"""
UpperCAmelCase_ = [30, 35, 15, 5, 10, 20, 25]
UpperCAmelCase_ = len(__A )
# Size of matrix created from above array will be
# 30*35 35*15 15*5 5*10 10*20 20*25
UpperCAmelCase_ , UpperCAmelCase_ = matrix_chain_order(__A )
print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) )
print_optiomal_solution(__A , 1 , n - 1 )
if __name__ == "__main__":
main()
| 7 | 0 |
"""simple docstring"""
from __future__ import annotations
def A (__A : list[list[int]] ) -> bool:
"""simple docstring"""
UpperCAmelCase_ = len(__A )
# We need to create solution object to save path.
UpperCAmelCase_ = [[0 for _ in range(__A )] for _ in range(__A )]
UpperCAmelCase_ = run_maze(__A , 0 , 0 , __A )
if solved:
print('''\n'''.join(str(__A ) for row in solutions ) )
else:
print('''No solution exists!''' )
return solved
def A (__A : list[list[int]] , __A : int , __A : int , __A : list[list[int]] ) -> bool:
"""simple docstring"""
UpperCAmelCase_ = len(__A )
# Final check point.
if i == j == (size - 1):
UpperCAmelCase_ = 1
return True
UpperCAmelCase_ = (not i < 0) and (not j < 0) # Check lower bounds
UpperCAmelCase_ = (i < size) and (j < size) # Check upper bounds
if lower_flag and upper_flag:
# check for already visited and block points.
UpperCAmelCase_ = (not solutions[i][j]) and (not maze[i][j])
if block_flag:
# check visited
UpperCAmelCase_ = 1
# check for directions
if (
run_maze(__A , i + 1 , __A , __A )
or run_maze(__A , __A , j + 1 , __A )
or run_maze(__A , i - 1 , __A , __A )
or run_maze(__A , __A , j - 1 , __A )
):
return True
UpperCAmelCase_ = 0
return False
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 359 |
import inspect
import os
import re
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
snake_case_ : int = "src/transformers"
# This is to make sure the transformers module imported is the one in the repo.
snake_case_ : Union[str, Any] = direct_transformers_import(PATH_TO_TRANSFORMERS)
snake_case_ : Union[str, Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING
snake_case_ : Union[str, Any] = {
# used to compute the property `self.chunk_length`
"EncodecConfig": ["overlap"],
# used as `self.bert_model = BertModel(config, ...)`
"DPRConfig": True,
# not used in modeling files, but it's an important information
"FSMTConfig": ["langs"],
# used internally in the configuration class file
"GPTNeoConfig": ["attention_types"],
# used internally in the configuration class file
"EsmConfig": ["is_folding_model"],
# used during training (despite we don't have training script for these models yet)
"Mask2FormerConfig": ["ignore_value"],
# `ignore_value` used during training (despite we don't have training script for these models yet)
# `norm` used in conversion script (despite not using in the modeling file)
"OneFormerConfig": ["ignore_value", "norm"],
# used during preprocessing and collation, see `collating_graphormer.py`
"GraphormerConfig": ["spatial_pos_max"],
# used internally in the configuration class file
"T5Config": ["feed_forward_proj"],
# used internally in the configuration class file
# `tokenizer_class` get default value `T5Tokenizer` intentionally
"MT5Config": ["feed_forward_proj", "tokenizer_class"],
"UMT5Config": ["feed_forward_proj", "tokenizer_class"],
# used internally in the configuration class file
"LongT5Config": ["feed_forward_proj"],
# used internally in the configuration class file
"SwitchTransformersConfig": ["feed_forward_proj"],
# having default values other than `1e-5` - we can't fix them without breaking
"BioGptConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"GLPNConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"SegformerConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"CvtConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"PerceiverConfig": ["layer_norm_eps"],
# used internally to calculate the feature size
"InformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate the feature size
"TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate the feature size
"AutoformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate `mlp_dim`
"SamVisionConfig": ["mlp_ratio"],
# For (head) training, but so far not implemented
"ClapAudioConfig": ["num_classes"],
# Not used, but providing useful information to users
"SpeechT5HifiGanConfig": ["sampling_rate"],
}
# TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure
SPECIAL_CASES_TO_ALLOW.update(
{
"CLIPSegConfig": True,
"DeformableDetrConfig": True,
"DetaConfig": True,
"DinatConfig": True,
"DonutSwinConfig": True,
"EfficientFormerConfig": True,
"FSMTConfig": True,
"JukeboxConfig": True,
"LayoutLMv2Config": True,
"MaskFormerSwinConfig": True,
"MT5Config": True,
"NatConfig": True,
"OneFormerConfig": True,
"PerceiverConfig": True,
"RagConfig": True,
"SpeechT5Config": True,
"SwinConfig": True,
"Swin2SRConfig": True,
"Swinv2Config": True,
"SwitchTransformersConfig": True,
"TableTransformerConfig": True,
"TapasConfig": True,
"TransfoXLConfig": True,
"UniSpeechConfig": True,
"UniSpeechSatConfig": True,
"WavLMConfig": True,
"WhisperConfig": True,
# TODO: @Arthur (for `alignment_head` and `alignment_layer`)
"JukeboxPriorConfig": True,
# TODO: @Younes (for `is_decoder`)
"Pix2StructTextConfig": True,
}
)
def A (__A : List[Any] , __A : Optional[int] , __A : str , __A : Dict ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ = False
for attribute in attributes:
for modeling_source in source_strings:
# check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)`
if (
F"""config.{attribute}""" in modeling_source
or F"""getattr(config, \"{attribute}\"""" in modeling_source
or F"""getattr(self.config, \"{attribute}\"""" in modeling_source
):
UpperCAmelCase_ = True
# Deal with multi-line cases
elif (
re.search(
RF"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , __A , )
is not None
):
UpperCAmelCase_ = True
# `SequenceSummary` is called with `SequenceSummary(config)`
elif attribute in [
"summary_type",
"summary_use_proj",
"summary_activation",
"summary_last_dropout",
"summary_proj_to_labels",
"summary_first_dropout",
]:
if "SequenceSummary" in modeling_source:
UpperCAmelCase_ = True
if attribute_used:
break
if attribute_used:
break
# common and important attributes, even if they do not always appear in the modeling files
UpperCAmelCase_ = [
'''bos_index''',
'''eos_index''',
'''pad_index''',
'''unk_index''',
'''mask_index''',
'''image_size''',
'''use_cache''',
'''out_features''',
'''out_indices''',
]
UpperCAmelCase_ = ['''encoder_no_repeat_ngram_size''']
# Special cases to be allowed
UpperCAmelCase_ = True
if not attribute_used:
UpperCAmelCase_ = False
for attribute in attributes:
# Allow if the default value in the configuration class is different from the one in `PretrainedConfig`
if attribute in ["is_encoder_decoder"] and default_value is True:
UpperCAmelCase_ = True
elif attribute in ["tie_word_embeddings"] and default_value is False:
UpperCAmelCase_ = True
# Allow cases without checking the default value in the configuration class
elif attribute in attributes_to_allow + attributes_used_in_generation:
UpperCAmelCase_ = True
elif attribute.endswith('''_token_id''' ):
UpperCAmelCase_ = True
# configuration class specific cases
if not case_allowed:
UpperCAmelCase_ = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] )
UpperCAmelCase_ = allowed_cases is True or attribute in allowed_cases
return attribute_used or case_allowed
def A (__A : Tuple ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ = dict(inspect.signature(config_class.__init__ ).parameters )
UpperCAmelCase_ = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']]
UpperCAmelCase_ = [signature[param].default for param in parameter_names]
# If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long
# as one variant is used, the test should pass
UpperCAmelCase_ = {}
if len(config_class.attribute_map ) > 0:
UpperCAmelCase_ = {v: k for k, v in config_class.attribute_map.items()}
# Get the path to modeling source files
UpperCAmelCase_ = inspect.getsourcefile(__A )
UpperCAmelCase_ = os.path.dirname(__A )
# Let's check against all frameworks: as long as one framework uses an attribute, we are good.
UpperCAmelCase_ = [os.path.join(__A , __A ) for fn in os.listdir(__A ) if fn.startswith('''modeling_''' )]
# Get the source code strings
UpperCAmelCase_ = []
for path in modeling_paths:
if os.path.isfile(__A ):
with open(__A ) as fp:
modeling_sources.append(fp.read() )
UpperCAmelCase_ = []
for config_param, default_value in zip(__A , __A ):
# `attributes` here is all the variant names for `config_param`
UpperCAmelCase_ = [config_param]
# some configuration classes have non-empty `attribute_map`, and both names could be used in the
# corresponding modeling files. As long as one of them appears, it is fine.
if config_param in reversed_attribute_map:
attributes.append(reversed_attribute_map[config_param] )
if not check_attribute_being_used(__A , __A , __A , __A ):
unused_attributes.append(attributes[0] )
return sorted(__A )
def A () -> Any:
"""simple docstring"""
UpperCAmelCase_ = {}
for _config_class in list(CONFIG_MAPPING.values() ):
# Skip deprecated models
if "models.deprecated" in _config_class.__module__:
continue
# Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.)
UpperCAmelCase_ = [
cls
for name, cls in inspect.getmembers(
inspect.getmodule(_config_class ) , lambda __A : inspect.isclass(__A )
and issubclass(__A , __A )
and inspect.getmodule(__A ) == inspect.getmodule(_config_class ) , )
]
for config_class in config_classes_in_module:
UpperCAmelCase_ = check_config_attributes_being_used(__A )
if len(__A ) > 0:
UpperCAmelCase_ = unused_attributes
if len(__A ) > 0:
UpperCAmelCase_ = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n'''
for name, attributes in configs_with_unused_attributes.items():
error += F"""{name}: {attributes}\n"""
raise ValueError(__A )
if __name__ == "__main__":
check_config_attributes()
| 7 | 0 |
import torch
from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel
class __snake_case ( a ):
UpperCAmelCase__ : Optional[int] = '''M-CLIP'''
def __init__( self : Any , _snake_case : List[Any]=1024 , _snake_case : str=768 , **_snake_case : str):
"""simple docstring"""
UpperCAmelCase_ = transformerDimSize
UpperCAmelCase_ = imageDimSize
super().__init__(**_snake_case)
class __snake_case ( a ):
UpperCAmelCase__ : Any = MCLIPConfig
def __init__( self : List[str] , _snake_case : str , *_snake_case : Union[str, Any] , **_snake_case : Union[str, Any]):
"""simple docstring"""
super().__init__(_snake_case , *_snake_case , **_snake_case)
UpperCAmelCase_ = XLMRobertaModel(_snake_case)
UpperCAmelCase_ = torch.nn.Linear(
in_features=config.transformerDimensions , out_features=config.numDims)
def lowerCamelCase ( self : Optional[Any] , _snake_case : Tuple , _snake_case : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = self.transformer(input_ids=_snake_case , attention_mask=_snake_case)[0]
UpperCAmelCase_ = (embs * attention_mask.unsqueeze(2)).sum(dim=1) / attention_mask.sum(dim=1)[:, None]
return self.LinearTransformation(_snake_case), embs
| 360 |
import unittest
from diffusers import FlaxAutoencoderKL
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax
from .test_modeling_common_flax import FlaxModelTesterMixin
if is_flax_available():
import jax
@require_flax
class __snake_case ( a , unittest.TestCase ):
UpperCAmelCase__ : Optional[Any] = FlaxAutoencoderKL
@property
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = 4
UpperCAmelCase_ = 3
UpperCAmelCase_ = (32, 32)
UpperCAmelCase_ = jax.random.PRNGKey(0)
UpperCAmelCase_ = jax.random.uniform(_snake_case , ((batch_size, num_channels) + sizes))
return {"sample": image, "prng_key": prng_key}
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = {
'''block_out_channels''': [32, 64],
'''in_channels''': 3,
'''out_channels''': 3,
'''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''],
'''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''],
'''latent_channels''': 4,
}
UpperCAmelCase_ = self.dummy_input
return init_dict, inputs_dict
| 7 | 0 |
def A (__A : list ) -> float:
"""simple docstring"""
UpperCAmelCase_ = 0
while len(__A ) > 1:
UpperCAmelCase_ = 0
# Consider two files with minimum cost to be merged
for _ in range(2 ):
UpperCAmelCase_ = files.index(min(__A ) )
temp += files[min_index]
files.pop(__A )
files.append(__A )
optimal_merge_cost += temp
return optimal_merge_cost
if __name__ == "__main__":
import doctest
doctest.testmod()
| 361 |
import json
import os
import shutil
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoConfig, BertConfig, GPTaConfig
from transformers.configuration_utils import PretrainedConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
snake_case_ : List[str] = {
"return_dict": False,
"output_hidden_states": True,
"output_attentions": True,
"torchscript": True,
"torch_dtype": "float16",
"use_bfloat16": True,
"tf_legacy_loss": True,
"pruned_heads": {"a": 1},
"tie_word_embeddings": False,
"is_decoder": True,
"cross_attention_hidden_size": 128,
"add_cross_attention": True,
"tie_encoder_decoder": True,
"max_length": 50,
"min_length": 3,
"do_sample": True,
"early_stopping": True,
"num_beams": 3,
"num_beam_groups": 3,
"diversity_penalty": 0.5,
"temperature": 2.0,
"top_k": 10,
"top_p": 0.7,
"typical_p": 0.2,
"repetition_penalty": 0.8,
"length_penalty": 0.8,
"no_repeat_ngram_size": 5,
"encoder_no_repeat_ngram_size": 5,
"bad_words_ids": [1, 2, 3],
"num_return_sequences": 3,
"chunk_size_feed_forward": 5,
"output_scores": True,
"return_dict_in_generate": True,
"forced_bos_token_id": 2,
"forced_eos_token_id": 3,
"remove_invalid_values": True,
"architectures": ["BertModel"],
"finetuning_task": "translation",
"id2label": {0: "label"},
"label2id": {"label": "0"},
"tokenizer_class": "BertTokenizerFast",
"prefix": "prefix",
"bos_token_id": 6,
"pad_token_id": 7,
"eos_token_id": 8,
"sep_token_id": 9,
"decoder_start_token_id": 10,
"exponential_decay_length_penalty": (5, 1.01),
"suppress_tokens": [0, 1],
"begin_suppress_tokens": 2,
"task_specific_params": {"translation": "some_params"},
"problem_type": "regression",
}
@is_staging_test
class __snake_case ( unittest.TestCase ):
@classmethod
def lowerCamelCase ( cls : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = TOKEN
HfFolder.save_token(_snake_case)
@classmethod
def lowerCamelCase ( cls : List[str]):
"""simple docstring"""
try:
delete_repo(token=cls._token , repo_id='''test-config''')
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''')
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''test-dynamic-config''')
except HTTPError:
pass
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37)
config.push_to_hub('''test-config''' , use_auth_token=self._token)
UpperCAmelCase_ = BertConfig.from_pretrained(F"""{USER}/test-config""")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_snake_case , getattr(_snake_case , _snake_case))
# Reset repo
delete_repo(token=self._token , repo_id='''test-config''')
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(_snake_case , repo_id='''test-config''' , push_to_hub=_snake_case , use_auth_token=self._token)
UpperCAmelCase_ = BertConfig.from_pretrained(F"""{USER}/test-config""")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_snake_case , getattr(_snake_case , _snake_case))
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37)
config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token)
UpperCAmelCase_ = BertConfig.from_pretrained('''valid_org/test-config-org''')
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_snake_case , getattr(_snake_case , _snake_case))
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-config-org''')
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
_snake_case , repo_id='''valid_org/test-config-org''' , push_to_hub=_snake_case , use_auth_token=self._token)
UpperCAmelCase_ = BertConfig.from_pretrained('''valid_org/test-config-org''')
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_snake_case , getattr(_snake_case , _snake_case))
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
CustomConfig.register_for_auto_class()
UpperCAmelCase_ = CustomConfig(attribute=42)
config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token)
# This has added the proper auto_map field to the config
self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''})
UpperCAmelCase_ = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=_snake_case)
# Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module
self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''')
self.assertEqual(new_config.attribute , 42)
class __snake_case ( unittest.TestCase ):
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = GPTaConfig()
# attempt to modify each of int/float/bool/str config records and verify they were updated
UpperCAmelCase_ = c.n_embd + 1 # int
UpperCAmelCase_ = c.resid_pdrop + 1.0 # float
UpperCAmelCase_ = not c.scale_attn_weights # bool
UpperCAmelCase_ = c.summary_type + '''foo''' # str
c.update_from_string(
F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""")
self.assertEqual(_snake_case , c.n_embd , '''mismatch for key: n_embd''')
self.assertEqual(_snake_case , c.resid_pdrop , '''mismatch for key: resid_pdrop''')
self.assertEqual(_snake_case , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''')
self.assertEqual(_snake_case , c.summary_type , '''mismatch for key: summary_type''')
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = PretrainedConfig()
UpperCAmelCase_ = [key for key in base_config.__dict__ if key not in config_common_kwargs]
# If this part of the test fails, you have arguments to addin config_common_kwargs above.
self.assertListEqual(
_snake_case , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version'''])
UpperCAmelCase_ = [key for key, value in config_common_kwargs.items() if value == getattr(_snake_case , _snake_case)]
if len(_snake_case) > 0:
raise ValueError(
'''The following keys are set with the default values in'''
''' `test_configuration_common.config_common_kwargs` pick another value for them:'''
F""" {", ".join(_snake_case)}.""")
def lowerCamelCase ( self : str):
"""simple docstring"""
with self.assertRaises(_snake_case):
# config is in subfolder, the following should not work without specifying the subfolder
UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''')
UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''')
self.assertIsNotNone(_snake_case)
def lowerCamelCase ( self : Any):
"""simple docstring"""
UpperCAmelCase_ = mock.Mock()
UpperCAmelCase_ = 500
UpperCAmelCase_ = {}
UpperCAmelCase_ = HTTPError
UpperCAmelCase_ = {}
# Download this model to make sure it's in the cache.
UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''')
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('''requests.Session.request''' , return_value=_snake_case) as mock_head:
UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''')
# This check we did call the fake head request
mock_head.assert_called()
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = BertConfig.from_pretrained(
'''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''')
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = AutoConfig.from_pretrained('''bert-base-cased''')
UpperCAmelCase_ = ['''config.4.0.0.json''']
with tempfile.TemporaryDirectory() as tmp_dir:
configuration.save_pretrained(_snake_case)
UpperCAmelCase_ = 2
json.dump(configuration.to_dict() , open(os.path.join(_snake_case , '''config.4.0.0.json''') , '''w'''))
# This should pick the new configuration file as the version of Transformers is > 4.0.0
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
self.assertEqual(new_configuration.hidden_size , 2)
# Will need to be adjusted if we reach v42 and this test is still here.
# Should pick the old configuration file as the version of Transformers is < 4.42.0
UpperCAmelCase_ = ['''config.42.0.0.json''']
UpperCAmelCase_ = 768
configuration.save_pretrained(_snake_case)
shutil.move(os.path.join(_snake_case , '''config.4.0.0.json''') , os.path.join(_snake_case , '''config.42.0.0.json'''))
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
self.assertEqual(new_configuration.hidden_size , 768)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = '''hf-internal-testing/test-two-configs'''
import transformers as new_transformers
UpperCAmelCase_ = '''v4.0.0'''
UpperCAmelCase_ , UpperCAmelCase_ = new_transformers.models.auto.AutoConfig.from_pretrained(
_snake_case , return_unused_kwargs=_snake_case)
self.assertEqual(new_configuration.hidden_size , 2)
# This checks `_configuration_file` ia not kept in the kwargs by mistake.
self.assertDictEqual(_snake_case , {})
# Testing an older version by monkey-patching the version in the module it's used.
import transformers as old_transformers
UpperCAmelCase_ = '''v3.0.0'''
UpperCAmelCase_ = old_transformers.models.auto.AutoConfig.from_pretrained(_snake_case)
self.assertEqual(old_configuration.hidden_size , 768)
| 7 | 0 |
def A (__A : int | float | str ) -> tuple[int, int]:
"""simple docstring"""
try:
UpperCAmelCase_ = float(__A )
except ValueError:
raise ValueError('''Please enter a valid number''' )
UpperCAmelCase_ = decimal - int(__A )
if fractional_part == 0:
return int(__A ), 1
else:
UpperCAmelCase_ = len(str(__A ).split('''.''' )[1] )
UpperCAmelCase_ = int(decimal * (10**number_of_frac_digits) )
UpperCAmelCase_ = 10**number_of_frac_digits
UpperCAmelCase_ , UpperCAmelCase_ = denominator, numerator
while True:
UpperCAmelCase_ = dividend % divisor
if remainder == 0:
break
UpperCAmelCase_ , UpperCAmelCase_ = divisor, remainder
UpperCAmelCase_ , UpperCAmelCase_ = numerator / divisor, denominator / divisor
return int(__A ), int(__A )
if __name__ == "__main__":
print(f"{decimal_to_fraction(2) = }")
print(f"{decimal_to_fraction(89.0) = }")
print(f"{decimal_to_fraction('67') = }")
print(f"{decimal_to_fraction('45.0') = }")
print(f"{decimal_to_fraction(1.5) = }")
print(f"{decimal_to_fraction('6.25') = }")
print(f"{decimal_to_fraction('78td') = }")
| 362 |
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
snake_case_ : List[Any] = (3, 9, -11, 0, 7, 5, 1, -1)
snake_case_ : str = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class __snake_case :
UpperCAmelCase__ : int
UpperCAmelCase__ : Node | None
class __snake_case :
def __init__( self : Optional[int] , _snake_case : Iterable[int]):
"""simple docstring"""
UpperCAmelCase_ = None
for i in sorted(_snake_case , reverse=_snake_case):
UpperCAmelCase_ = Node(_snake_case , self.head)
def __iter__( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = self.head
while node:
yield node.data
UpperCAmelCase_ = node.next_node
def __len__( self : int):
"""simple docstring"""
return sum(1 for _ in self)
def __str__( self : Optional[Any]):
"""simple docstring"""
return " -> ".join([str(_snake_case) for node in self])
def A (__A : SortedLinkedList , __A : SortedLinkedList ) -> SortedLinkedList:
"""simple docstring"""
return SortedLinkedList(list(__A ) + list(__A ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
snake_case_ : Union[str, Any] = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
| 7 | 0 |
from argparse import ArgumentParser
from datasets.commands.convert import ConvertCommand
from datasets.commands.dummy_data import DummyDataCommand
from datasets.commands.env import EnvironmentCommand
from datasets.commands.run_beam import RunBeamCommand
from datasets.commands.test import TestCommand
from datasets.utils.logging import set_verbosity_info
def A (__A : Any ) -> Any:
"""simple docstring"""
return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )}
def A () -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ = ArgumentParser(
'''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=__A )
UpperCAmelCase_ = parser.add_subparsers(help='''datasets-cli command helpers''' )
set_verbosity_info()
# Register commands
ConvertCommand.register_subcommand(__A )
EnvironmentCommand.register_subcommand(__A )
TestCommand.register_subcommand(__A )
RunBeamCommand.register_subcommand(__A )
DummyDataCommand.register_subcommand(__A )
# Parse args
UpperCAmelCase_ , UpperCAmelCase_ = parser.parse_known_args()
if not hasattr(__A , '''func''' ):
parser.print_help()
exit(1 )
UpperCAmelCase_ = parse_unknown_args(__A )
# Run
UpperCAmelCase_ = args.func(__A , **__A )
service.run()
if __name__ == "__main__":
main()
| 363 |
import os
import warnings
from typing import List, Optional
from ...tokenization_utils_base import BatchEncoding
from ...utils import logging
from .configuration_rag import RagConfig
snake_case_ : Union[str, Any] = logging.get_logger(__name__)
class __snake_case :
def __init__( self : int , _snake_case : List[Any] , _snake_case : Tuple):
"""simple docstring"""
UpperCAmelCase_ = question_encoder
UpperCAmelCase_ = generator
UpperCAmelCase_ = self.question_encoder
def lowerCamelCase ( self : Union[str, Any] , _snake_case : Optional[int]):
"""simple docstring"""
if os.path.isfile(_snake_case):
raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""")
os.makedirs(_snake_case , exist_ok=_snake_case)
UpperCAmelCase_ = os.path.join(_snake_case , '''question_encoder_tokenizer''')
UpperCAmelCase_ = os.path.join(_snake_case , '''generator_tokenizer''')
self.question_encoder.save_pretrained(_snake_case)
self.generator.save_pretrained(_snake_case)
@classmethod
def lowerCamelCase ( cls : Optional[Any] , _snake_case : Optional[Any] , **_snake_case : Optional[int]):
"""simple docstring"""
from ..auto.tokenization_auto import AutoTokenizer
UpperCAmelCase_ = kwargs.pop('''config''' , _snake_case)
if config is None:
UpperCAmelCase_ = RagConfig.from_pretrained(_snake_case)
UpperCAmelCase_ = AutoTokenizer.from_pretrained(
_snake_case , config=config.question_encoder , subfolder='''question_encoder_tokenizer''')
UpperCAmelCase_ = AutoTokenizer.from_pretrained(
_snake_case , config=config.generator , subfolder='''generator_tokenizer''')
return cls(question_encoder=_snake_case , generator=_snake_case)
def __call__( self : List[Any] , *_snake_case : List[str] , **_snake_case : List[Any]):
"""simple docstring"""
return self.current_tokenizer(*_snake_case , **_snake_case)
def lowerCamelCase ( self : List[Any] , *_snake_case : str , **_snake_case : Union[str, Any]):
"""simple docstring"""
return self.generator.batch_decode(*_snake_case , **_snake_case)
def lowerCamelCase ( self : str , *_snake_case : Optional[int] , **_snake_case : Any):
"""simple docstring"""
return self.generator.decode(*_snake_case , **_snake_case)
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = self.question_encoder
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = self.generator
def lowerCamelCase ( self : Optional[Any] , _snake_case : List[str] , _snake_case : Optional[List[str]] = None , _snake_case : Optional[int] = None , _snake_case : Optional[int] = None , _snake_case : str = "longest" , _snake_case : str = None , _snake_case : bool = True , **_snake_case : Optional[int] , ):
"""simple docstring"""
warnings.warn(
'''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the '''
'''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` '''
'''context manager to prepare your targets. See the documentation of your specific tokenizer for more '''
'''details''' , _snake_case , )
if max_length is None:
UpperCAmelCase_ = self.current_tokenizer.model_max_length
UpperCAmelCase_ = self(
_snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , max_length=_snake_case , padding=_snake_case , truncation=_snake_case , **_snake_case , )
if tgt_texts is None:
return model_inputs
# Process tgt_texts
if max_target_length is None:
UpperCAmelCase_ = self.current_tokenizer.model_max_length
UpperCAmelCase_ = self(
text_target=_snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case , **_snake_case , )
UpperCAmelCase_ = labels['''input_ids''']
return model_inputs
| 7 | 0 |
import enum
import warnings
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
snake_case_ : Optional[Any] = logging.get_logger(__name__)
class __snake_case ( enum.Enum ):
UpperCAmelCase__ : int = 0
UpperCAmelCase__ : Optional[int] = 1
@add_end_docstrings(a )
class __snake_case ( a ):
UpperCAmelCase__ : Dict = '''generated'''
def __init__( self : Optional[int] , *_snake_case : Optional[Any] , **_snake_case : Tuple):
"""simple docstring"""
super().__init__(*_snake_case , **_snake_case)
self.check_model_type(
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if self.framework == '''tf'''
else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING)
def lowerCamelCase ( self : Optional[int] , _snake_case : Optional[int]=None , _snake_case : Optional[int]=None , _snake_case : Tuple=None , _snake_case : Tuple=None , _snake_case : Any=None , _snake_case : Optional[int]=None , **_snake_case : str , ):
"""simple docstring"""
UpperCAmelCase_ = {}
if truncation is not None:
UpperCAmelCase_ = truncation
UpperCAmelCase_ = generate_kwargs
UpperCAmelCase_ = {}
if return_tensors is not None and return_type is None:
UpperCAmelCase_ = ReturnType.TENSORS if return_tensors else ReturnType.TEXT
if return_type is not None:
UpperCAmelCase_ = return_type
if clean_up_tokenization_spaces is not None:
UpperCAmelCase_ = clean_up_tokenization_spaces
if stop_sequence is not None:
UpperCAmelCase_ = self.tokenizer.encode(_snake_case , add_special_tokens=_snake_case)
if len(_snake_case) > 1:
warnings.warn(
'''Stopping on a multiple token sequence is not yet supported on transformers. The first token of'''
''' the stop sequence will be used as the stop sequence string in the interim.''')
UpperCAmelCase_ = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def lowerCamelCase ( self : List[str] , _snake_case : int , _snake_case : int , _snake_case : int):
"""simple docstring"""
return True
def lowerCamelCase ( self : Union[str, Any] , *_snake_case : Union[str, Any] , _snake_case : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = self.model.config.prefix if self.model.config.prefix is not None else ''''''
if isinstance(args[0] , _snake_case):
if self.tokenizer.pad_token_id is None:
raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''')
UpperCAmelCase_ = ([prefix + arg for arg in args[0]],)
UpperCAmelCase_ = True
elif isinstance(args[0] , _snake_case):
UpperCAmelCase_ = (prefix + args[0],)
UpperCAmelCase_ = False
else:
raise ValueError(
F""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""")
UpperCAmelCase_ = self.tokenizer(*_snake_case , padding=_snake_case , truncation=_snake_case , return_tensors=self.framework)
# This is produced by tokenizers but is an invalid generate kwargs
if "token_type_ids" in inputs:
del inputs["token_type_ids"]
return inputs
def __call__( self : Optional[Any] , *_snake_case : str , **_snake_case : Any):
"""simple docstring"""
UpperCAmelCase_ = super().__call__(*_snake_case , **_snake_case)
if (
isinstance(args[0] , _snake_case)
and all(isinstance(_snake_case , _snake_case) for el in args[0])
and all(len(_snake_case) == 1 for res in result)
):
return [res[0] for res in result]
return result
def lowerCamelCase ( self : Tuple , _snake_case : Any , _snake_case : Dict=TruncationStrategy.DO_NOT_TRUNCATE , **_snake_case : Tuple):
"""simple docstring"""
UpperCAmelCase_ = self._parse_and_tokenize(_snake_case , truncation=_snake_case , **_snake_case)
return inputs
def lowerCamelCase ( self : Optional[int] , _snake_case : List[str] , **_snake_case : List[str]):
"""simple docstring"""
if self.framework == "pt":
UpperCAmelCase_ , UpperCAmelCase_ = model_inputs['''input_ids'''].shape
elif self.framework == "tf":
UpperCAmelCase_ , UpperCAmelCase_ = tf.shape(model_inputs['''input_ids''']).numpy()
UpperCAmelCase_ = generate_kwargs.get('''min_length''' , self.model.config.min_length)
UpperCAmelCase_ = generate_kwargs.get('''max_length''' , self.model.config.max_length)
self.check_inputs(_snake_case , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''])
UpperCAmelCase_ = self.model.generate(**_snake_case , **_snake_case)
UpperCAmelCase_ = output_ids.shape[0]
if self.framework == "pt":
UpperCAmelCase_ = output_ids.reshape(_snake_case , out_b // in_b , *output_ids.shape[1:])
elif self.framework == "tf":
UpperCAmelCase_ = tf.reshape(_snake_case , (in_b, out_b // in_b, *output_ids.shape[1:]))
return {"output_ids": output_ids}
def lowerCamelCase ( self : Optional[int] , _snake_case : List[Any] , _snake_case : Any=ReturnType.TEXT , _snake_case : Dict=False):
"""simple docstring"""
UpperCAmelCase_ = []
for output_ids in model_outputs["output_ids"][0]:
if return_type == ReturnType.TENSORS:
UpperCAmelCase_ = {F"""{self.return_name}_token_ids""": output_ids}
elif return_type == ReturnType.TEXT:
UpperCAmelCase_ = {
F"""{self.return_name}_text""": self.tokenizer.decode(
_snake_case , skip_special_tokens=_snake_case , clean_up_tokenization_spaces=_snake_case , )
}
records.append(_snake_case)
return records
@add_end_docstrings(a )
class __snake_case ( a ):
UpperCAmelCase__ : Union[str, Any] = '''summary'''
def __call__( self : Dict , *_snake_case : Dict , **_snake_case : Dict):
"""simple docstring"""
return super().__call__(*_snake_case , **_snake_case)
def lowerCamelCase ( self : Union[str, Any] , _snake_case : int , _snake_case : int , _snake_case : int):
"""simple docstring"""
if max_length < min_length:
logger.warning(F"""Your min_length={min_length} must be inferior than your max_length={max_length}.""")
if input_length < max_length:
logger.warning(
F"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """
'''a summarization task, where outputs shorter than the input are typically wanted, you might '''
F"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""")
@add_end_docstrings(a )
class __snake_case ( a ):
UpperCAmelCase__ : Optional[Any] = '''translation'''
def lowerCamelCase ( self : Any , _snake_case : int , _snake_case : int , _snake_case : int):
"""simple docstring"""
if input_length > 0.9 * max_length:
logger.warning(
F"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """
'''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''')
return True
def lowerCamelCase ( self : Any , *_snake_case : Any , _snake_case : Optional[Any]=TruncationStrategy.DO_NOT_TRUNCATE , _snake_case : int=None , _snake_case : str=None):
"""simple docstring"""
if getattr(self.tokenizer , '''_build_translation_inputs''' , _snake_case):
return self.tokenizer._build_translation_inputs(
*_snake_case , return_tensors=self.framework , truncation=_snake_case , src_lang=_snake_case , tgt_lang=_snake_case)
else:
return super()._parse_and_tokenize(*_snake_case , truncation=_snake_case)
def lowerCamelCase ( self : List[Any] , _snake_case : Optional[Any]=None , _snake_case : Dict=None , **_snake_case : List[Any]):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = super()._sanitize_parameters(**_snake_case)
if src_lang is not None:
UpperCAmelCase_ = src_lang
if tgt_lang is not None:
UpperCAmelCase_ = tgt_lang
if src_lang is None and tgt_lang is None:
# Backward compatibility, direct arguments use is preferred.
UpperCAmelCase_ = kwargs.get('''task''' , self.task)
UpperCAmelCase_ = task.split('''_''')
if task and len(_snake_case) == 4:
# translation, XX, to YY
UpperCAmelCase_ = items[1]
UpperCAmelCase_ = items[3]
return preprocess_params, forward_params, postprocess_params
def __call__( self : List[Any] , *_snake_case : List[str] , **_snake_case : Optional[Any]):
"""simple docstring"""
return super().__call__(*_snake_case , **_snake_case)
| 364 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class __snake_case ( unittest.TestCase ):
@slow
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-base''')
UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]])
# The dog is cute and lives in the garden house
UpperCAmelCase_ = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim
UpperCAmelCase_ = torch.tensor(
[[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]])
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
UpperCAmelCase_ = model(_snake_case)['''last_hidden_state'''].detach()
self.assertEqual(output.shape , _snake_case)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3))
@slow
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-large''')
UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]])
# The dog is cute and lives in the garden house
UpperCAmelCase_ = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim
UpperCAmelCase_ = torch.tensor(
[[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]])
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
UpperCAmelCase_ = model(_snake_case)['''last_hidden_state'''].detach()
self.assertEqual(output.shape , _snake_case)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3))
| 7 | 0 |
"""simple docstring"""
import argparse
import json
import subprocess
def A (__A : List[str] , __A : Dict ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ = []
UpperCAmelCase_ = (
F"""curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\""""
''' https://api.github.com/repos/huggingface/transformers/actions/runners'''
)
UpperCAmelCase_ = subprocess.run(__A , shell=__A , stdout=subprocess.PIPE )
UpperCAmelCase_ = output.stdout.decode('''utf-8''' )
UpperCAmelCase_ = json.loads(__A )
UpperCAmelCase_ = status['''runners''']
for runner in runners:
if runner["name"] in target_runners:
if runner["status"] == "offline":
offline_runners.append(__A )
# save the result so we can report them on Slack
with open('''offline_runners.txt''' , '''w''' ) as fp:
fp.write(json.dumps(__A ) )
if len(__A ) > 0:
UpperCAmelCase_ = '''\n'''.join([x['''name'''] for x in offline_runners] )
raise ValueError(F"""The following runners are offline:\n{failed}""" )
if __name__ == "__main__":
def A (__A : Optional[int] ) -> List[Any]:
"""simple docstring"""
return values.split(''',''' )
snake_case_ : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--target_runners",
default=None,
type=list_str,
required=True,
help="Comma-separated list of runners to check status.",
)
parser.add_argument(
"--token", default=None, type=str, required=True, help="A token that has actions:read permission."
)
snake_case_ : Union[str, Any] = parser.parse_args()
get_runner_status(args.target_runners, args.token)
| 365 |
from maths.prime_factors import prime_factors
def A (__A : int ) -> int:
"""simple docstring"""
if not isinstance(__A , __A ):
UpperCAmelCase_ = F"""Input value of [number={number}] must be an integer"""
raise TypeError(__A )
if number < 1:
raise ValueError('''Input must be a positive integer''' )
return -1 if len(prime_factors(__A ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 | 0 |
"""simple docstring"""
import unittest
from diffusers import FlaxAutoencoderKL
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax
from .test_modeling_common_flax import FlaxModelTesterMixin
if is_flax_available():
import jax
@require_flax
class __snake_case ( a , unittest.TestCase ):
UpperCAmelCase__ : Optional[Any] = FlaxAutoencoderKL
@property
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = 4
UpperCAmelCase_ = 3
UpperCAmelCase_ = (32, 32)
UpperCAmelCase_ = jax.random.PRNGKey(0)
UpperCAmelCase_ = jax.random.uniform(_snake_case , ((batch_size, num_channels) + sizes))
return {"sample": image, "prng_key": prng_key}
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = {
'''block_out_channels''': [32, 64],
'''in_channels''': 3,
'''out_channels''': 3,
'''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''],
'''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''],
'''latent_channels''': 4,
}
UpperCAmelCase_ = self.dummy_input
return init_dict, inputs_dict
| 366 |
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class __snake_case ( unittest.TestCase ):
def lowerCamelCase ( self : Optional[int] , _snake_case : Union[str, Any]):
"""simple docstring"""
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss''']):
UpperCAmelCase_ = model_result['''result'''][batch_size][sequence_length]
self.assertIsNotNone(_snake_case)
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = '''sgugger/tiny-distilbert-classification'''
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , only_pretrain_model=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , torchscript=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''')
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , fpaa=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
# set architectures equal to `None`
UpperCAmelCase_ = None
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config])
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
@unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''')
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_snake_case , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config])
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tinier_bart'''
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config])
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config])
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tinier_bart'''
UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case)
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config])
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , save_to_csv=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_snake_case , '''inf_time.csv''') , train_memory_csv_file=os.path.join(_snake_case , '''train_mem.csv''') , inference_memory_csv_file=os.path.join(_snake_case , '''inf_mem.csv''') , train_time_csv_file=os.path.join(_snake_case , '''train_time.csv''') , env_info_csv_file=os.path.join(_snake_case , '''env.csv''') , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
benchmark.run()
self.assertTrue(Path(os.path.join(_snake_case , '''inf_time.csv''')).exists())
self.assertTrue(Path(os.path.join(_snake_case , '''train_time.csv''')).exists())
self.assertTrue(Path(os.path.join(_snake_case , '''inf_mem.csv''')).exists())
self.assertTrue(Path(os.path.join(_snake_case , '''train_mem.csv''')).exists())
self.assertTrue(Path(os.path.join(_snake_case , '''env.csv''')).exists())
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = '''sshleifer/tiny-gpt2'''
def _check_summary_is_not_empty(_snake_case : Tuple):
self.assertTrue(hasattr(_snake_case , '''sequential'''))
self.assertTrue(hasattr(_snake_case , '''cumulative'''))
self.assertTrue(hasattr(_snake_case , '''current'''))
self.assertTrue(hasattr(_snake_case , '''total'''))
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_snake_case , '''log.txt''') , log_print=_snake_case , trace_memory_line_by_line=_snake_case , multi_process=_snake_case , )
UpperCAmelCase_ = PyTorchBenchmark(_snake_case)
UpperCAmelCase_ = benchmark.run()
_check_summary_is_not_empty(result.inference_summary)
_check_summary_is_not_empty(result.train_summary)
self.assertTrue(Path(os.path.join(_snake_case , '''log.txt''')).exists())
| 7 | 0 |
def A (__A : list , __A : int = 0 ) -> list:
"""simple docstring"""
UpperCAmelCase_ = length or len(__A )
UpperCAmelCase_ = False
for i in range(length - 1 ):
if list_data[i] > list_data[i + 1]:
UpperCAmelCase_ , UpperCAmelCase_ = list_data[i + 1], list_data[i]
UpperCAmelCase_ = True
return list_data if not swapped else bubble_sort(__A , length - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 367 |
import argparse
import os
import numpy as np
import tensorflow as tf
import torch
from transformers import BertModel
def A (__A : BertModel , __A : str , __A : str ) -> int:
"""simple docstring"""
UpperCAmelCase_ = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''')
UpperCAmelCase_ = (
('''layer.''', '''layer_'''),
('''word_embeddings.weight''', '''word_embeddings'''),
('''position_embeddings.weight''', '''position_embeddings'''),
('''token_type_embeddings.weight''', '''token_type_embeddings'''),
('''.''', '''/'''),
('''LayerNorm/weight''', '''LayerNorm/gamma'''),
('''LayerNorm/bias''', '''LayerNorm/beta'''),
('''weight''', '''kernel'''),
)
if not os.path.isdir(__A ):
os.makedirs(__A )
UpperCAmelCase_ = model.state_dict()
def to_tf_var_name(__A : str ):
for patt, repl in iter(__A ):
UpperCAmelCase_ = name.replace(__A , __A )
return F"""bert/{name}"""
def create_tf_var(__A : np.ndarray , __A : str , __A : tf.Session ):
UpperCAmelCase_ = tf.dtypes.as_dtype(tensor.dtype )
UpperCAmelCase_ = tf.get_variable(dtype=__A , shape=tensor.shape , name=__A , initializer=tf.zeros_initializer() )
session.run(tf.variables_initializer([tf_var] ) )
session.run(__A )
return tf_var
tf.reset_default_graph()
with tf.Session() as session:
for var_name in state_dict:
UpperCAmelCase_ = to_tf_var_name(__A )
UpperCAmelCase_ = state_dict[var_name].numpy()
if any(x in var_name for x in tensors_to_transpose ):
UpperCAmelCase_ = torch_tensor.T
UpperCAmelCase_ = create_tf_var(tensor=__A , name=__A , session=__A )
tf.keras.backend.set_value(__A , __A )
UpperCAmelCase_ = session.run(__A )
print(F"""Successfully created {tf_name}: {np.allclose(__A , __A )}""" )
UpperCAmelCase_ = tf.train.Saver(tf.trainable_variables() )
saver.save(__A , os.path.join(__A , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) )
def A (__A : Any=None ) -> str:
"""simple docstring"""
UpperCAmelCase_ = argparse.ArgumentParser()
parser.add_argument('''--model_name''' , type=__A , required=__A , help='''model name e.g. bert-base-uncased''' )
parser.add_argument(
'''--cache_dir''' , type=__A , default=__A , required=__A , help='''Directory containing pytorch model''' )
parser.add_argument('''--pytorch_model_path''' , type=__A , required=__A , help='''/path/to/<pytorch-model-name>.bin''' )
parser.add_argument('''--tf_cache_dir''' , type=__A , required=__A , help='''Directory in which to save tensorflow model''' )
UpperCAmelCase_ = parser.parse_args(__A )
UpperCAmelCase_ = BertModel.from_pretrained(
pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , )
convert_pytorch_checkpoint_to_tf(model=__A , ckpt_dir=args.tf_cache_dir , model_name=args.model_name )
if __name__ == "__main__":
main()
| 7 | 0 |
from typing import Dict
from .base import GenericTensor, Pipeline
class __snake_case ( a ):
def lowerCamelCase ( self : str , _snake_case : List[Any]=None , _snake_case : Optional[int]=None , _snake_case : Any=None , **_snake_case : Dict):
"""simple docstring"""
if tokenize_kwargs is None:
UpperCAmelCase_ = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
'''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''')
UpperCAmelCase_ = truncation
UpperCAmelCase_ = tokenize_kwargs
UpperCAmelCase_ = {}
if return_tensors is not None:
UpperCAmelCase_ = return_tensors
return preprocess_params, {}, postprocess_params
def lowerCamelCase ( self : List[str] , _snake_case : Tuple , **_snake_case : Dict):
"""simple docstring"""
UpperCAmelCase_ = self.framework
UpperCAmelCase_ = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case)
return model_inputs
def lowerCamelCase ( self : Tuple , _snake_case : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = self.model(**_snake_case)
return model_outputs
def lowerCamelCase ( self : List[str] , _snake_case : Any , _snake_case : int=False):
"""simple docstring"""
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self : Any , *_snake_case : int , **_snake_case : List[Any]):
"""simple docstring"""
return super().__call__(*_snake_case , **_snake_case)
| 368 |
import inspect
import unittest
from transformers import RegNetConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from transformers.utils import cached_property, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __snake_case ( unittest.TestCase ):
def __init__( self : Tuple , _snake_case : List[Any] , _snake_case : Dict=3 , _snake_case : Dict=32 , _snake_case : List[str]=3 , _snake_case : Union[str, Any]=10 , _snake_case : Tuple=[10, 20, 30, 40] , _snake_case : Dict=[1, 1, 2, 1] , _snake_case : List[Any]=True , _snake_case : Dict=True , _snake_case : Union[str, Any]="relu" , _snake_case : Tuple=3 , _snake_case : Union[str, Any]=None , ):
"""simple docstring"""
UpperCAmelCase_ = parent
UpperCAmelCase_ = batch_size
UpperCAmelCase_ = image_size
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = embeddings_size
UpperCAmelCase_ = hidden_sizes
UpperCAmelCase_ = depths
UpperCAmelCase_ = is_training
UpperCAmelCase_ = use_labels
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = num_labels
UpperCAmelCase_ = scope
UpperCAmelCase_ = len(_snake_case)
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
UpperCAmelCase_ = self.get_config()
return config, pixel_values
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def lowerCamelCase ( self : Optional[int] , _snake_case : List[Any] , _snake_case : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = FlaxRegNetModel(config=_snake_case)
UpperCAmelCase_ = model(_snake_case)
# Output shape (b, c, h, w)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowerCamelCase ( self : Optional[Any] , _snake_case : List[Any] , _snake_case : Optional[int]):
"""simple docstring"""
UpperCAmelCase_ = self.num_labels
UpperCAmelCase_ = FlaxRegNetForImageClassification(config=_snake_case)
UpperCAmelCase_ = model(_snake_case)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ = self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs
UpperCAmelCase_ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_flax
class __snake_case ( a , unittest.TestCase ):
UpperCAmelCase__ : Union[str, Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else ()
UpperCAmelCase__ : Tuple = False
UpperCAmelCase__ : List[str] = False
UpperCAmelCase__ : int = False
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = FlaxRegNetModelTester(self)
UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case)
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
return
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_snake_case)
@unittest.skip(reason='''RegNet does not use inputs_embeds''')
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
pass
@unittest.skip(reason='''RegNet does not support input and output embeddings''')
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
pass
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = model_class(_snake_case)
UpperCAmelCase_ = inspect.signature(model.__call__)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ = [*signature.parameters.keys()]
UpperCAmelCase_ = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _snake_case)
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
def check_hidden_states_output(_snake_case : List[str] , _snake_case : Dict , _snake_case : List[str]):
UpperCAmelCase_ = model_class(_snake_case)
UpperCAmelCase_ = model(**self._prepare_for_class(_snake_case , _snake_case))
UpperCAmelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCAmelCase_ = self.model_tester.num_stages
self.assertEqual(len(_snake_case) , expected_num_stages + 1)
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = True
check_hidden_states_output(_snake_case , _snake_case , _snake_case)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase_ = True
check_hidden_states_output(_snake_case , _snake_case , _snake_case)
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
UpperCAmelCase_ = self._prepare_for_class(_snake_case , _snake_case)
UpperCAmelCase_ = model_class(_snake_case)
@jax.jit
def model_jitted(_snake_case : str , **_snake_case : Union[str, Any]):
return model(pixel_values=_snake_case , **_snake_case)
with self.subTest('''JIT Enabled'''):
UpperCAmelCase_ = model_jitted(**_snake_case).to_tuple()
with self.subTest('''JIT Disabled'''):
with jax.disable_jit():
UpperCAmelCase_ = model_jitted(**_snake_case).to_tuple()
self.assertEqual(len(_snake_case) , len(_snake_case))
for jitted_output, output in zip(_snake_case , _snake_case):
self.assertEqual(jitted_output.shape , output.shape)
def A () -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_flax
class __snake_case ( unittest.TestCase ):
@cached_property
def lowerCamelCase ( self : Dict):
"""simple docstring"""
return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''') if is_vision_available() else None
@slow
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''')
UpperCAmelCase_ = self.default_image_processor
UpperCAmelCase_ = prepare_img()
UpperCAmelCase_ = image_processor(images=_snake_case , return_tensors='''np''')
UpperCAmelCase_ = model(**_snake_case)
# verify the logits
UpperCAmelCase_ = (1, 1000)
self.assertEqual(outputs.logits.shape , _snake_case)
UpperCAmelCase_ = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6])
self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _snake_case , atol=1e-4))
| 7 | 0 |
from typing import Dict
import numpy as np
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException
if is_tf_available():
import tensorflow as tf
from ..tf_utils import stable_softmax
if is_torch_available():
import torch
snake_case_ : Optional[int] = logging.get_logger(__name__)
@add_end_docstrings(
a , r'''
top_k (`int`, defaults to 5):
The number of predictions to return.
targets (`str` or `List[str]`, *optional*):
When passed, the model will limit the scores to the passed targets instead of looking up in the whole
vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting
token will be used (with a warning, and that might be slower).
''' , )
class __snake_case ( a ):
def lowerCamelCase ( self : Any , _snake_case : GenericTensor):
"""simple docstring"""
if self.framework == "tf":
UpperCAmelCase_ = tf.where(input_ids == self.tokenizer.mask_token_id).numpy()
elif self.framework == "pt":
UpperCAmelCase_ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_snake_case)
else:
raise ValueError('''Unsupported framework''')
return masked_index
def lowerCamelCase ( self : Optional[Any] , _snake_case : GenericTensor):
"""simple docstring"""
UpperCAmelCase_ = self.get_masked_index(_snake_case)
UpperCAmelCase_ = np.prod(masked_index.shape)
if numel < 1:
raise PipelineException(
'''fill-mask''' , self.model.base_model_prefix , F"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , )
def lowerCamelCase ( self : List[Any] , _snake_case : GenericTensor):
"""simple docstring"""
if isinstance(_snake_case , _snake_case):
for model_input in model_inputs:
self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0])
else:
for input_ids in model_inputs["input_ids"]:
self._ensure_exactly_one_mask_token(_snake_case)
def lowerCamelCase ( self : List[str] , _snake_case : str , _snake_case : Union[str, Any]=None , **_snake_case : Dict):
"""simple docstring"""
if return_tensors is None:
UpperCAmelCase_ = self.framework
UpperCAmelCase_ = self.tokenizer(_snake_case , return_tensors=_snake_case)
self.ensure_exactly_one_mask_token(_snake_case)
return model_inputs
def lowerCamelCase ( self : Tuple , _snake_case : Any):
"""simple docstring"""
UpperCAmelCase_ = self.model(**_snake_case)
UpperCAmelCase_ = model_inputs['''input_ids''']
return model_outputs
def lowerCamelCase ( self : Any , _snake_case : int , _snake_case : Union[str, Any]=5 , _snake_case : Optional[int]=None):
"""simple docstring"""
if target_ids is not None and target_ids.shape[0] < top_k:
UpperCAmelCase_ = target_ids.shape[0]
UpperCAmelCase_ = model_outputs['''input_ids'''][0]
UpperCAmelCase_ = model_outputs['''logits''']
if self.framework == "tf":
UpperCAmelCase_ = tf.where(input_ids == self.tokenizer.mask_token_id).numpy()[:, 0]
UpperCAmelCase_ = outputs.numpy()
UpperCAmelCase_ = outputs[0, masked_index, :]
UpperCAmelCase_ = stable_softmax(_snake_case , axis=-1)
if target_ids is not None:
UpperCAmelCase_ = tf.gather_nd(tf.squeeze(_snake_case , 0) , target_ids.reshape(-1 , 1))
UpperCAmelCase_ = tf.expand_dims(_snake_case , 0)
UpperCAmelCase_ = tf.math.top_k(_snake_case , k=_snake_case)
UpperCAmelCase_ , UpperCAmelCase_ = topk.values.numpy(), topk.indices.numpy()
else:
UpperCAmelCase_ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_snake_case).squeeze(-1)
# Fill mask pipeline supports only one ${mask_token} per sample
UpperCAmelCase_ = outputs[0, masked_index, :]
UpperCAmelCase_ = logits.softmax(dim=-1)
if target_ids is not None:
UpperCAmelCase_ = probs[..., target_ids]
UpperCAmelCase_ , UpperCAmelCase_ = probs.topk(_snake_case)
UpperCAmelCase_ = []
UpperCAmelCase_ = values.shape[0] == 1
for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist())):
UpperCAmelCase_ = []
for v, p in zip(_values , _predictions):
# Copy is important since we're going to modify this array in place
UpperCAmelCase_ = input_ids.numpy().copy()
if target_ids is not None:
UpperCAmelCase_ = target_ids[p].tolist()
UpperCAmelCase_ = p
# Filter padding out:
UpperCAmelCase_ = tokens[np.where(tokens != self.tokenizer.pad_token_id)]
# Originally we skip special tokens to give readable output.
# For multi masks though, the other [MASK] would be removed otherwise
# making the output look odd, so we add them back
UpperCAmelCase_ = self.tokenizer.decode(_snake_case , skip_special_tokens=_snake_case)
UpperCAmelCase_ = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p]), '''sequence''': sequence}
row.append(_snake_case)
result.append(_snake_case)
if single_mask:
return result[0]
return result
def lowerCamelCase ( self : Union[str, Any] , _snake_case : List[Any] , _snake_case : Optional[Any]=None):
"""simple docstring"""
if isinstance(_snake_case , _snake_case):
UpperCAmelCase_ = [targets]
try:
UpperCAmelCase_ = self.tokenizer.get_vocab()
except Exception:
UpperCAmelCase_ = {}
UpperCAmelCase_ = []
for target in targets:
UpperCAmelCase_ = vocab.get(_snake_case , _snake_case)
if id_ is None:
UpperCAmelCase_ = self.tokenizer(
_snake_case , add_special_tokens=_snake_case , return_attention_mask=_snake_case , return_token_type_ids=_snake_case , max_length=1 , truncation=_snake_case , )['''input_ids''']
if len(_snake_case) == 0:
logger.warning(
F"""The specified target token `{target}` does not exist in the model vocabulary. """
'''We cannot replace it with anything meaningful, ignoring it''')
continue
UpperCAmelCase_ = input_ids[0]
# XXX: If users encounter this pass
# it becomes pretty slow, so let's make sure
# The warning enables them to fix the input to
# get faster performance.
logger.warning(
F"""The specified target token `{target}` does not exist in the model vocabulary. """
F"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_)}`.""")
target_ids.append(id_)
UpperCAmelCase_ = list(set(_snake_case))
if len(_snake_case) == 0:
raise ValueError('''At least one target must be provided when passed.''')
UpperCAmelCase_ = np.array(_snake_case)
return target_ids
def lowerCamelCase ( self : Union[str, Any] , _snake_case : Optional[int]=None , _snake_case : List[Any]=None):
"""simple docstring"""
UpperCAmelCase_ = {}
if targets is not None:
UpperCAmelCase_ = self.get_target_ids(_snake_case , _snake_case)
UpperCAmelCase_ = target_ids
if top_k is not None:
UpperCAmelCase_ = top_k
if self.tokenizer.mask_token_id is None:
raise PipelineException(
'''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''')
return {}, {}, postprocess_params
def __call__( self : str , _snake_case : Dict , *_snake_case : Tuple , **_snake_case : str):
"""simple docstring"""
UpperCAmelCase_ = super().__call__(_snake_case , **_snake_case)
if isinstance(_snake_case , _snake_case) and len(_snake_case) == 1:
return outputs[0]
return outputs
| 369 |
import comet # From: unbabel-comet
import torch
import datasets
snake_case_ : Tuple = datasets.logging.get_logger(__name__)
snake_case_ : str = "\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel's Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = \"{COMET}: A Neural Framework for {MT} Evaluation\",\n author = \"Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\",\n pages = \"2685--2702\",\n}\n"
snake_case_ : Tuple = "\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n"
snake_case_ : Optional[int] = "\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric('comet')\n >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use\n >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"]\n >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"]\n >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [0.19, 0.92]\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __snake_case ( datasets.Metric ):
def lowerCamelCase ( self : Any):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''sources''': datasets.Value('''string''' , id='''sequence'''),
'''predictions''': datasets.Value('''string''' , id='''sequence'''),
'''references''': datasets.Value('''string''' , id='''sequence'''),
}) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[
'''https://github.com/Unbabel/COMET''',
'''https://www.aclweb.org/anthology/2020.emnlp-main.213/''',
'''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''',
] , )
def lowerCamelCase ( self : List[Any] , _snake_case : Optional[int]):
"""simple docstring"""
if self.config_name == "default":
UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da'''))
else:
UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model(self.config_name))
def lowerCamelCase ( self : List[Any] , _snake_case : str , _snake_case : List[str] , _snake_case : Tuple , _snake_case : int=None , _snake_case : Optional[Any]=False):
"""simple docstring"""
if gpus is None:
UpperCAmelCase_ = 1 if torch.cuda.is_available() else 0
UpperCAmelCase_ = {'''src''': sources, '''mt''': predictions, '''ref''': references}
UpperCAmelCase_ = [dict(zip(_snake_case , _snake_case)) for t in zip(*data.values())]
UpperCAmelCase_ , UpperCAmelCase_ = self.scorer.predict(_snake_case , gpus=_snake_case , progress_bar=_snake_case)
return {"mean_score": mean_score, "scores": scores}
| 7 | 0 |
import warnings
from ...utils import logging
from .image_processing_clip import CLIPImageProcessor
snake_case_ : int = logging.get_logger(__name__)
class __snake_case ( a ):
def __init__( self : Any , *_snake_case : Union[str, Any] , **_snake_case : List[str]):
"""simple docstring"""
warnings.warn(
'''The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use CLIPImageProcessor instead.''' , _snake_case , )
super().__init__(*_snake_case , **_snake_case)
| 370 |
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class __snake_case ( a ):
UpperCAmelCase__ : Optional[int] = (DPMSolverSinglestepScheduler,)
UpperCAmelCase__ : str = (('''num_inference_steps''', 2_5),)
def lowerCamelCase ( self : Dict , **_snake_case : Dict):
"""simple docstring"""
UpperCAmelCase_ = {
'''num_train_timesteps''': 1000,
'''beta_start''': 0.0_0_0_1,
'''beta_end''': 0.0_2,
'''beta_schedule''': '''linear''',
'''solver_order''': 2,
'''prediction_type''': '''epsilon''',
'''thresholding''': False,
'''sample_max_value''': 1.0,
'''algorithm_type''': '''dpmsolver++''',
'''solver_type''': '''midpoint''',
'''lambda_min_clipped''': -float('''inf'''),
'''variance_type''': None,
}
config.update(**_snake_case)
return config
def lowerCamelCase ( self : Dict , _snake_case : int=0 , **_snake_case : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = dict(self.forward_default_kwargs)
UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _snake_case)
UpperCAmelCase_ = self.dummy_sample
UpperCAmelCase_ = 0.1 * sample
UpperCAmelCase_ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase_ = self.get_scheduler_config(**_snake_case)
UpperCAmelCase_ = scheduler_class(**_snake_case)
scheduler.set_timesteps(_snake_case)
# copy over dummy past residuals
UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_snake_case)
UpperCAmelCase_ = scheduler_class.from_pretrained(_snake_case)
new_scheduler.set_timesteps(_snake_case)
# copy over dummy past residuals
UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order]
UpperCAmelCase_ , UpperCAmelCase_ = sample, sample
for t in range(_snake_case , time_step + scheduler.config.solver_order + 1):
UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample
UpperCAmelCase_ = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
pass
def lowerCamelCase ( self : Tuple , _snake_case : Optional[Any]=0 , **_snake_case : int):
"""simple docstring"""
UpperCAmelCase_ = dict(self.forward_default_kwargs)
UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _snake_case)
UpperCAmelCase_ = self.dummy_sample
UpperCAmelCase_ = 0.1 * sample
UpperCAmelCase_ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase_ = self.get_scheduler_config()
UpperCAmelCase_ = scheduler_class(**_snake_case)
scheduler.set_timesteps(_snake_case)
# copy over dummy past residuals (must be after setting timesteps)
UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_snake_case)
UpperCAmelCase_ = scheduler_class.from_pretrained(_snake_case)
# copy over dummy past residuals
new_scheduler.set_timesteps(_snake_case)
# copy over dummy past residual (must be after setting timesteps)
UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order]
UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample
UpperCAmelCase_ = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def lowerCamelCase ( self : Dict , _snake_case : int=None , **_snake_case : Optional[Any]):
"""simple docstring"""
if scheduler is None:
UpperCAmelCase_ = self.scheduler_classes[0]
UpperCAmelCase_ = self.get_scheduler_config(**_snake_case)
UpperCAmelCase_ = scheduler_class(**_snake_case)
UpperCAmelCase_ = self.scheduler_classes[0]
UpperCAmelCase_ = self.get_scheduler_config(**_snake_case)
UpperCAmelCase_ = scheduler_class(**_snake_case)
UpperCAmelCase_ = 10
UpperCAmelCase_ = self.dummy_model()
UpperCAmelCase_ = self.dummy_sample_deter
scheduler.set_timesteps(_snake_case)
for i, t in enumerate(scheduler.timesteps):
UpperCAmelCase_ = model(_snake_case , _snake_case)
UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample
return sample
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config())
UpperCAmelCase_ = 50
UpperCAmelCase_ = self.dummy_model()
UpperCAmelCase_ = self.dummy_sample_deter
scheduler.set_timesteps(_snake_case)
# make sure that the first t is uneven
for i, t in enumerate(scheduler.timesteps[3:]):
UpperCAmelCase_ = model(_snake_case , _snake_case)
UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.2_5_7_4) < 1e-3
def lowerCamelCase ( self : int):
"""simple docstring"""
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=_snake_case)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config())
UpperCAmelCase_ = self.full_loop(scheduler=_snake_case)
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3
UpperCAmelCase_ = DEISMultistepScheduler.from_config(scheduler.config)
UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(scheduler.config)
UpperCAmelCase_ = UniPCMultistepScheduler.from_config(scheduler.config)
UpperCAmelCase_ = DPMSolverSinglestepScheduler.from_config(scheduler.config)
UpperCAmelCase_ = self.full_loop(scheduler=_snake_case)
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
self.check_over_configs(thresholding=_snake_case)
for order in [1, 2, 3]:
for solver_type in ["midpoint", "heun"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=_snake_case , prediction_type=_snake_case , sample_max_value=_snake_case , algorithm_type='''dpmsolver++''' , solver_order=_snake_case , solver_type=_snake_case , )
def lowerCamelCase ( self : Dict):
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_snake_case)
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
for algorithm_type in ["dpmsolver", "dpmsolver++"]:
for solver_type in ["midpoint", "heun"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , )
UpperCAmelCase_ = self.full_loop(
solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , )
assert not torch.isnan(_snake_case).any(), "Samples have nan numbers"
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
self.check_over_configs(lower_order_final=_snake_case)
self.check_over_configs(lower_order_final=_snake_case)
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
self.check_over_configs(lambda_min_clipped=-float('''inf'''))
self.check_over_configs(lambda_min_clipped=-5.1)
def lowerCamelCase ( self : int):
"""simple docstring"""
self.check_over_configs(variance_type=_snake_case)
self.check_over_configs(variance_type='''learned_range''')
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=_snake_case , time_step=0)
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = self.full_loop()
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = self.full_loop(use_karras_sigmas=_snake_case)
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.2_2_4_8) < 1e-3
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''')
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.1_4_5_3) < 1e-3
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=_snake_case)
UpperCAmelCase_ = torch.mean(torch.abs(_snake_case))
assert abs(result_mean.item() - 0.0_6_4_9) < 1e-3
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = self.scheduler_classes[0]
UpperCAmelCase_ = self.get_scheduler_config(thresholding=_snake_case , dynamic_thresholding_ratio=0)
UpperCAmelCase_ = scheduler_class(**_snake_case)
UpperCAmelCase_ = 10
UpperCAmelCase_ = self.dummy_model()
UpperCAmelCase_ = self.dummy_sample_deter.half()
scheduler.set_timesteps(_snake_case)
for i, t in enumerate(scheduler.timesteps):
UpperCAmelCase_ = model(_snake_case , _snake_case)
UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample
assert sample.dtype == torch.floataa
| 7 | 0 |
from collections import deque
from math import floor
from random import random
from time import time
class __snake_case :
def __init__( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = {}
def lowerCamelCase ( self : Union[str, Any] , _snake_case : List[Any] , _snake_case : Dict , _snake_case : str=1):
"""simple docstring"""
if self.graph.get(_snake_case):
if self.graph[u].count([w, v]) == 0:
self.graph[u].append([w, v])
else:
UpperCAmelCase_ = [[w, v]]
if not self.graph.get(_snake_case):
UpperCAmelCase_ = []
def lowerCamelCase ( self : Any):
"""simple docstring"""
return list(self.graph)
def lowerCamelCase ( self : List[Any] , _snake_case : Union[str, Any] , _snake_case : Optional[Any]):
"""simple docstring"""
if self.graph.get(_snake_case):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(_snake_case)
def lowerCamelCase ( self : Optional[Any] , _snake_case : List[Any]=-2 , _snake_case : Optional[Any]=-1):
"""simple docstring"""
if s == d:
return []
UpperCAmelCase_ = []
UpperCAmelCase_ = []
if s == -2:
UpperCAmelCase_ = list(self.graph)[0]
stack.append(_snake_case)
visited.append(_snake_case)
UpperCAmelCase_ = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s]) != 0:
UpperCAmelCase_ = s
for node in self.graph[s]:
if visited.count(node[1]) < 1:
if node[1] == d:
visited.append(_snake_case)
return visited
else:
stack.append(node[1])
visited.append(node[1])
UpperCAmelCase_ = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(_snake_case) != 0:
UpperCAmelCase_ = stack[len(_snake_case) - 1]
else:
UpperCAmelCase_ = ss
# check if se have reached the starting point
if len(_snake_case) == 0:
return visited
def lowerCamelCase ( self : Union[str, Any] , _snake_case : Union[str, Any]=-1):
"""simple docstring"""
if c == -1:
UpperCAmelCase_ = floor(random() * 10000) + 10
for i in range(_snake_case):
# every vertex has max 100 edges
for _ in range(floor(random() * 102) + 1):
UpperCAmelCase_ = floor(random() * c) + 1
if n != i:
self.add_pair(_snake_case , _snake_case , 1)
def lowerCamelCase ( self : Union[str, Any] , _snake_case : List[str]=-2):
"""simple docstring"""
UpperCAmelCase_ = deque()
UpperCAmelCase_ = []
if s == -2:
UpperCAmelCase_ = list(self.graph)[0]
d.append(_snake_case)
visited.append(_snake_case)
while d:
UpperCAmelCase_ = d.popleft()
if len(self.graph[s]) != 0:
for node in self.graph[s]:
if visited.count(node[1]) < 1:
d.append(node[1])
visited.append(node[1])
return visited
def lowerCamelCase ( self : int , _snake_case : Any):
"""simple docstring"""
UpperCAmelCase_ = 0
for x in self.graph:
for y in self.graph[x]:
if y[1] == u:
count += 1
return count
def lowerCamelCase ( self : List[Any] , _snake_case : Union[str, Any]):
"""simple docstring"""
return len(self.graph[u])
def lowerCamelCase ( self : List[Any] , _snake_case : Tuple=-2):
"""simple docstring"""
UpperCAmelCase_ = []
UpperCAmelCase_ = []
if s == -2:
UpperCAmelCase_ = list(self.graph)[0]
stack.append(_snake_case)
visited.append(_snake_case)
UpperCAmelCase_ = s
UpperCAmelCase_ = []
while True:
# check if there is any non isolated nodes
if len(self.graph[s]) != 0:
UpperCAmelCase_ = s
for node in self.graph[s]:
if visited.count(node[1]) < 1:
stack.append(node[1])
visited.append(node[1])
UpperCAmelCase_ = node[1]
break
# check if all the children are visited
if s == ss:
sorted_nodes.append(stack.pop())
if len(_snake_case) != 0:
UpperCAmelCase_ = stack[len(_snake_case) - 1]
else:
UpperCAmelCase_ = ss
# check if se have reached the starting point
if len(_snake_case) == 0:
return sorted_nodes
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = []
UpperCAmelCase_ = []
UpperCAmelCase_ = list(self.graph)[0]
stack.append(_snake_case)
visited.append(_snake_case)
UpperCAmelCase_ = -2
UpperCAmelCase_ = []
UpperCAmelCase_ = s
UpperCAmelCase_ = False
UpperCAmelCase_ = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s]) != 0:
UpperCAmelCase_ = s
for node in self.graph[s]:
if (
visited.count(node[1]) > 0
and node[1] != parent
and indirect_parents.count(node[1]) > 0
and not on_the_way_back
):
UpperCAmelCase_ = len(_snake_case) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1])
break
else:
anticipating_nodes.add(stack[len_stack])
len_stack -= 1
if visited.count(node[1]) < 1:
stack.append(node[1])
visited.append(node[1])
UpperCAmelCase_ = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
UpperCAmelCase_ = True
if len(_snake_case) != 0:
UpperCAmelCase_ = stack[len(_snake_case) - 1]
else:
UpperCAmelCase_ = False
indirect_parents.append(_snake_case)
UpperCAmelCase_ = s
UpperCAmelCase_ = ss
# check if se have reached the starting point
if len(_snake_case) == 0:
return list(_snake_case)
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = []
UpperCAmelCase_ = []
UpperCAmelCase_ = list(self.graph)[0]
stack.append(_snake_case)
visited.append(_snake_case)
UpperCAmelCase_ = -2
UpperCAmelCase_ = []
UpperCAmelCase_ = s
UpperCAmelCase_ = False
UpperCAmelCase_ = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s]) != 0:
UpperCAmelCase_ = s
for node in self.graph[s]:
if (
visited.count(node[1]) > 0
and node[1] != parent
and indirect_parents.count(node[1]) > 0
and not on_the_way_back
):
UpperCAmelCase_ = len(_snake_case) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1])
break
else:
return True
if visited.count(node[1]) < 1:
stack.append(node[1])
visited.append(node[1])
UpperCAmelCase_ = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
UpperCAmelCase_ = True
if len(_snake_case) != 0:
UpperCAmelCase_ = stack[len(_snake_case) - 1]
else:
UpperCAmelCase_ = False
indirect_parents.append(_snake_case)
UpperCAmelCase_ = s
UpperCAmelCase_ = ss
# check if se have reached the starting point
if len(_snake_case) == 0:
return False
def lowerCamelCase ( self : Any , _snake_case : Optional[Any]=-2 , _snake_case : int=-1):
"""simple docstring"""
UpperCAmelCase_ = time()
self.dfs(_snake_case , _snake_case)
UpperCAmelCase_ = time()
return end - begin
def lowerCamelCase ( self : Tuple , _snake_case : Union[str, Any]=-2):
"""simple docstring"""
UpperCAmelCase_ = time()
self.bfs(_snake_case)
UpperCAmelCase_ = time()
return end - begin
class __snake_case :
def __init__( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = {}
def lowerCamelCase ( self : Optional[Any] , _snake_case : List[Any] , _snake_case : Any , _snake_case : Tuple=1):
"""simple docstring"""
if self.graph.get(_snake_case):
# if there already is a edge
if self.graph[u].count([w, v]) == 0:
self.graph[u].append([w, v])
else:
# if u does not exist
UpperCAmelCase_ = [[w, v]]
# add the other way
if self.graph.get(_snake_case):
# if there already is a edge
if self.graph[v].count([w, u]) == 0:
self.graph[v].append([w, u])
else:
# if u does not exist
UpperCAmelCase_ = [[w, u]]
def lowerCamelCase ( self : Dict , _snake_case : Optional[Any] , _snake_case : Optional[Any]):
"""simple docstring"""
if self.graph.get(_snake_case):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(_snake_case)
# the other way round
if self.graph.get(_snake_case):
for _ in self.graph[v]:
if _[1] == u:
self.graph[v].remove(_snake_case)
def lowerCamelCase ( self : int , _snake_case : List[Any]=-2 , _snake_case : List[Any]=-1):
"""simple docstring"""
if s == d:
return []
UpperCAmelCase_ = []
UpperCAmelCase_ = []
if s == -2:
UpperCAmelCase_ = list(self.graph)[0]
stack.append(_snake_case)
visited.append(_snake_case)
UpperCAmelCase_ = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s]) != 0:
UpperCAmelCase_ = s
for node in self.graph[s]:
if visited.count(node[1]) < 1:
if node[1] == d:
visited.append(_snake_case)
return visited
else:
stack.append(node[1])
visited.append(node[1])
UpperCAmelCase_ = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(_snake_case) != 0:
UpperCAmelCase_ = stack[len(_snake_case) - 1]
else:
UpperCAmelCase_ = ss
# check if se have reached the starting point
if len(_snake_case) == 0:
return visited
def lowerCamelCase ( self : int , _snake_case : Tuple=-1):
"""simple docstring"""
if c == -1:
UpperCAmelCase_ = floor(random() * 10000) + 10
for i in range(_snake_case):
# every vertex has max 100 edges
for _ in range(floor(random() * 102) + 1):
UpperCAmelCase_ = floor(random() * c) + 1
if n != i:
self.add_pair(_snake_case , _snake_case , 1)
def lowerCamelCase ( self : Union[str, Any] , _snake_case : Dict=-2):
"""simple docstring"""
UpperCAmelCase_ = deque()
UpperCAmelCase_ = []
if s == -2:
UpperCAmelCase_ = list(self.graph)[0]
d.append(_snake_case)
visited.append(_snake_case)
while d:
UpperCAmelCase_ = d.popleft()
if len(self.graph[s]) != 0:
for node in self.graph[s]:
if visited.count(node[1]) < 1:
d.append(node[1])
visited.append(node[1])
return visited
def lowerCamelCase ( self : List[str] , _snake_case : Tuple):
"""simple docstring"""
return len(self.graph[u])
def lowerCamelCase ( self : Any):
"""simple docstring"""
UpperCAmelCase_ = []
UpperCAmelCase_ = []
UpperCAmelCase_ = list(self.graph)[0]
stack.append(_snake_case)
visited.append(_snake_case)
UpperCAmelCase_ = -2
UpperCAmelCase_ = []
UpperCAmelCase_ = s
UpperCAmelCase_ = False
UpperCAmelCase_ = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s]) != 0:
UpperCAmelCase_ = s
for node in self.graph[s]:
if (
visited.count(node[1]) > 0
and node[1] != parent
and indirect_parents.count(node[1]) > 0
and not on_the_way_back
):
UpperCAmelCase_ = len(_snake_case) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1])
break
else:
anticipating_nodes.add(stack[len_stack])
len_stack -= 1
if visited.count(node[1]) < 1:
stack.append(node[1])
visited.append(node[1])
UpperCAmelCase_ = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
UpperCAmelCase_ = True
if len(_snake_case) != 0:
UpperCAmelCase_ = stack[len(_snake_case) - 1]
else:
UpperCAmelCase_ = False
indirect_parents.append(_snake_case)
UpperCAmelCase_ = s
UpperCAmelCase_ = ss
# check if se have reached the starting point
if len(_snake_case) == 0:
return list(_snake_case)
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = []
UpperCAmelCase_ = []
UpperCAmelCase_ = list(self.graph)[0]
stack.append(_snake_case)
visited.append(_snake_case)
UpperCAmelCase_ = -2
UpperCAmelCase_ = []
UpperCAmelCase_ = s
UpperCAmelCase_ = False
UpperCAmelCase_ = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s]) != 0:
UpperCAmelCase_ = s
for node in self.graph[s]:
if (
visited.count(node[1]) > 0
and node[1] != parent
and indirect_parents.count(node[1]) > 0
and not on_the_way_back
):
UpperCAmelCase_ = len(_snake_case) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1])
break
else:
return True
if visited.count(node[1]) < 1:
stack.append(node[1])
visited.append(node[1])
UpperCAmelCase_ = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
UpperCAmelCase_ = True
if len(_snake_case) != 0:
UpperCAmelCase_ = stack[len(_snake_case) - 1]
else:
UpperCAmelCase_ = False
indirect_parents.append(_snake_case)
UpperCAmelCase_ = s
UpperCAmelCase_ = ss
# check if se have reached the starting point
if len(_snake_case) == 0:
return False
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
return list(self.graph)
def lowerCamelCase ( self : List[str] , _snake_case : str=-2 , _snake_case : Optional[int]=-1):
"""simple docstring"""
UpperCAmelCase_ = time()
self.dfs(_snake_case , _snake_case)
UpperCAmelCase_ = time()
return end - begin
def lowerCamelCase ( self : Any , _snake_case : Tuple=-2):
"""simple docstring"""
UpperCAmelCase_ = time()
self.bfs(_snake_case)
UpperCAmelCase_ = time()
return end - begin
| 371 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
snake_case_ : List[Any] = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Tuple = ["DeiTFeatureExtractor"]
snake_case_ : List[str] = ["DeiTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : List[Any] = [
"DEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"DeiTForImageClassification",
"DeiTForImageClassificationWithTeacher",
"DeiTForMaskedImageModeling",
"DeiTModel",
"DeiTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Dict = [
"TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFDeiTForImageClassification",
"TFDeiTForImageClassificationWithTeacher",
"TFDeiTForMaskedImageModeling",
"TFDeiTModel",
"TFDeiTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_deit import DeiTFeatureExtractor
from .image_processing_deit import DeiTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_deit import (
DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
DeiTModel,
DeiTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_deit import (
TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
TFDeiTPreTrainedModel,
)
else:
import sys
snake_case_ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 7 | 0 |
def A (__A : str , __A : str ) -> Optional[Any]:
"""simple docstring"""
assert x is not None
assert y is not None
UpperCAmelCase_ = len(__A )
UpperCAmelCase_ = len(__A )
# declaring the array for storing the dp values
UpperCAmelCase_ = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741
for i in range(1 , m + 1 ):
for j in range(1 , n + 1 ):
UpperCAmelCase_ = 1 if x[i - 1] == y[j - 1] else 0
UpperCAmelCase_ = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match )
UpperCAmelCase_ = ''''''
UpperCAmelCase_ , UpperCAmelCase_ = m, n
while i > 0 and j > 0:
UpperCAmelCase_ = 1 if x[i - 1] == y[j - 1] else 0
if l[i][j] == l[i - 1][j - 1] + match:
if match == 1:
UpperCAmelCase_ = x[i - 1] + seq
i -= 1
j -= 1
elif l[i][j] == l[i - 1][j]:
i -= 1
else:
j -= 1
return l[m][n], seq
if __name__ == "__main__":
snake_case_ : Tuple = "AGGTAB"
snake_case_ : Optional[int] = "GXTXAYB"
snake_case_ : int = 4
snake_case_ : Optional[Any] = "GTAB"
snake_case_ : List[Any] = longest_common_subsequence(a, b)
print("len =", ln, ", sub-sequence =", subseq)
import doctest
doctest.testmod()
| 350 |
import sacrebleu as scb
from packaging import version
from sacrebleu import TER
import datasets
snake_case_ : Dict = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n"
snake_case_ : List[str] = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n"
snake_case_ : List[Any] = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __snake_case ( datasets.Metric ):
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
if version.parse(scb.__version__) < version.parse('''1.4.12'''):
raise ImportWarning(
'''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n'''
'''You can install it with `pip install "sacrebleu>=1.4.12"`.''')
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence'''),
'''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''') , id='''references'''),
}) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[
'''https://github.com/jhclark/tercom''',
] , )
def lowerCamelCase ( self : Union[str, Any] , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , ):
"""simple docstring"""
UpperCAmelCase_ = len(references[0])
if any(len(_snake_case) != references_per_prediction for refs in references):
raise ValueError('''Sacrebleu requires the same number of references for each prediction''')
UpperCAmelCase_ = [[refs[i] for refs in references] for i in range(_snake_case)]
UpperCAmelCase_ = TER(
normalized=_snake_case , no_punct=_snake_case , asian_support=_snake_case , case_sensitive=_snake_case , )
UpperCAmelCase_ = sb_ter.corpus_score(_snake_case , _snake_case)
return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
| 7 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
snake_case_ : List[str] = {
"configuration_mask2former": [
"MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"Mask2FormerConfig",
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Optional[Any] = ["Mask2FormerImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : str = [
"MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"Mask2FormerForUniversalSegmentation",
"Mask2FormerModel",
"Mask2FormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_maskaformer import MaskaFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskaformer import (
MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskaFormerForUniversalSegmentation,
MaskaFormerModel,
MaskaFormerPreTrainedModel,
)
else:
import sys
snake_case_ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 351 |
import unittest
from transformers import load_tool
from transformers.utils import is_torch_available
if is_torch_available():
import torch
from transformers.testing_utils import require_torch
from .test_tools_common import ToolTesterMixin
@require_torch
class __snake_case ( unittest.TestCase , a ):
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = load_tool('''text-to-speech''')
self.tool.setup()
def lowerCamelCase ( self : int):
"""simple docstring"""
torch.manual_seed(0)
UpperCAmelCase_ = self.tool('''hey''')
UpperCAmelCase_ = result.to_raw()
self.assertTrue(
torch.allclose(
resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5]) , ))
def lowerCamelCase ( self : Any):
"""simple docstring"""
torch.manual_seed(0)
UpperCAmelCase_ = self.tool('''hey''')
UpperCAmelCase_ = result.to_raw()
self.assertTrue(
torch.allclose(
resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5]) , ))
| 7 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.