code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { """configuration_table_transformer""": [ """TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TableTransformerConfig""", """TableTransformerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TableTransformerForObjectDetection""", """TableTransformerModel""", """TableTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
364
'''simple docstring''' from collections.abc import Generator from math import sin def UpperCAmelCase_ (__a : bytes ): """simple docstring""" if len(__a ) != 3_2: raise ValueError('Input must be of length 32' ) _a : Any = b'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def UpperCAmelCase_ (__a : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) _a : List[str] = format(__a , '08x' )[-8:] _a : str = b'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def UpperCAmelCase_ (__a : bytes ): """simple docstring""" _a : List[Any] = b'' for char in message: bit_string += format(__a , '08b' ).encode('utf-8' ) _a : int = format(len(__a ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__a ) % 5_1_2 != 4_4_8: bit_string += b"0" bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] ) return bit_string def UpperCAmelCase_ (__a : bytes ): """simple docstring""" if len(__a ) % 5_1_2 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(__a ) , 5_1_2 ): _a : List[Any] = bit_string[pos : pos + 5_1_2] _a : str = [] for i in range(0 , 5_1_2 , 3_2 ): block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) ) yield block_words def UpperCAmelCase_ (__a : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) _a : List[str] = format(__a , '032b' ) _a : int = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(__a , 2 ) def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" return (a + b) % 2**3_2 def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2 def UpperCAmelCase_ (__a : bytes ): """simple docstring""" _a : str = preprocess(__a ) _a : Optional[int] = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )] # Starting states _a : int = 0x67_45_23_01 _a : Union[str, Any] = 0xEF_CD_AB_89 _a : str = 0x98_BA_DC_FE _a : List[Any] = 0x10_32_54_76 _a : Optional[int] = [ 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__a ): _a : Union[str, Any] = aa _a : List[Any] = ba _a : List[Any] = ca _a : Dict = da # Hash current chunk for i in range(6_4 ): if i <= 1_5: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _a : Optional[int] = d ^ (b & (c ^ d)) _a : Optional[Any] = i elif i <= 3_1: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _a : Optional[Any] = c ^ (d & (b ^ c)) _a : Dict = (5 * i + 1) % 1_6 elif i <= 4_7: _a : Optional[Any] = b ^ c ^ d _a : Dict = (3 * i + 5) % 1_6 else: _a : int = c ^ (b | not_aa(__a )) _a : List[str] = (7 * i) % 1_6 _a : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**3_2 _a : Union[str, Any] = d _a : Tuple = c _a : Optional[int] = b _a : Union[str, Any] = sum_aa(__a , left_rotate_aa(__a , shift_amounts[i] ) ) # Add hashed chunk to running total _a : Any = sum_aa(__a , __a ) _a : Dict = sum_aa(__a , __a ) _a : Union[str, Any] = sum_aa(__a , __a ) _a : str = sum_aa(__a , __a ) _a : Optional[Any] = reformat_hex(__a ) + reformat_hex(__a ) + reformat_hex(__a ) + reformat_hex(__a ) return digest if __name__ == "__main__": import doctest doctest.testmod()
5
0
'''simple docstring''' import datasets from .evaluate import evaluate __lowerCAmelCase = '\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n' __lowerCAmelCase = '\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n' __lowerCAmelCase = '\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric("cuad")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): """simple docstring""" def __lowercase ( self : Optional[int] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': { 'id': datasets.Value('string' ), 'prediction_text': datasets.features.Sequence(datasets.Value('string' ) ), }, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ) ,codebase_urls=['https://www.atticusprojectai.org/cuad'] ,reference_urls=['https://www.atticusprojectai.org/cuad'] ,) def __lowercase ( self : List[Any] ,_a : str ,_a : int ): '''simple docstring''' _a : Union[str, Any] = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} _a : Any = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] _a : Optional[Any] = evaluate(dataset=SCREAMING_SNAKE_CASE_ ,predictions=SCREAMING_SNAKE_CASE_ ) return score
365
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCAmelCase_ (__a : str , __a : Dict=0.999 , __a : List[str]="cosine" , ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(__a : Union[str, Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__a : int ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _a : Tuple = [] for i in range(__a ): _a : Union[str, Any] = i / num_diffusion_timesteps _a : Any = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__a ) / alpha_bar_fn(__a ) , __a ) ) return torch.tensor(__a , dtype=torch.floataa ) class UpperCAmelCase__ ( lowercase__ , lowercase__ ): """simple docstring""" __UpperCAmelCase : Optional[Any] = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase : Dict = 2 @register_to_config def __init__( self : str ,_a : int = 1000 ,_a : float = 0.0_0085 ,_a : float = 0.012 ,_a : str = "linear" ,_a : Optional[Union[np.ndarray, List[float]]] = None ,_a : str = "epsilon" ,_a : Optional[bool] = False ,_a : Optional[bool] = False ,_a : float = 1.0 ,_a : str = "linspace" ,_a : int = 0 ,): '''simple docstring''' if trained_betas is not None: _a : List[str] = torch.tensor(_a ,dtype=torch.floataa ) elif beta_schedule == "linear": _a : Tuple = torch.linspace(_a ,_a ,_a ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _a : List[str] = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,_a ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _a : Dict = betas_for_alpha_bar(_a ,alpha_transform_type='cosine' ) elif beta_schedule == "exp": _a : Tuple = betas_for_alpha_bar(_a ,alpha_transform_type='exp' ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) _a : Optional[Any] = 1.0 - self.betas _a : Optional[int] = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(_a ,_a ,_a ) _a : Optional[int] = use_karras_sigmas def __lowercase ( self : Any ,_a : Union[str, Any] ,_a : Optional[Any]=None ): '''simple docstring''' if schedule_timesteps is None: _a : List[Any] = self.timesteps _a : Dict = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _a : int = 1 if len(_a ) > 1 else 0 else: _a : str = timestep.cpu().item() if torch.is_tensor(_a ) else timestep _a : str = self._index_counter[timestep_int] return indices[pos].item() @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __lowercase ( self : int ,_a : torch.FloatTensor ,_a : Union[float, torch.FloatTensor] ,): '''simple docstring''' _a : List[Any] = self.index_for_timestep(_a ) _a : Tuple = self.sigmas[step_index] _a : Optional[Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def __lowercase ( self : Any ,_a : int ,_a : Union[str, torch.device] = None ,_a : Optional[int] = None ,): '''simple docstring''' _a : Optional[Any] = num_inference_steps _a : Dict = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _a : Optional[Any] = np.linspace(0 ,num_train_timesteps - 1 ,_a ,dtype=_a )[::-1].copy() elif self.config.timestep_spacing == "leading": _a : str = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a : int = (np.arange(0 ,_a ) * step_ratio).round()[::-1].copy().astype(_a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _a : Any = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a : Union[str, Any] = (np.arange(_a ,0 ,-step_ratio )).round().copy().astype(_a ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _a : Tuple = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _a : Union[str, Any] = np.log(_a ) _a : str = np.interp(_a ,np.arange(0 ,len(_a ) ) ,_a ) if self.config.use_karras_sigmas: _a : List[Any] = self._convert_to_karras(in_sigmas=_a ,num_inference_steps=self.num_inference_steps ) _a : Dict = np.array([self._sigma_to_t(_a ,_a ) for sigma in sigmas] ) _a : int = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _a : Union[str, Any] = torch.from_numpy(_a ).to(device=_a ) _a : Any = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) _a : List[Any] = torch.from_numpy(_a ) _a : List[str] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(_a ).startswith('mps' ): # mps does not support float64 _a : Tuple = timesteps.to(_a ,dtype=torch.floataa ) else: _a : Dict = timesteps.to(device=_a ) # empty dt and derivative _a : Tuple = None _a : Optional[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _a : Union[str, Any] = defaultdict(_a ) def __lowercase ( self : str ,_a : Dict ,_a : Dict ): '''simple docstring''' _a : Optional[int] = np.log(_a ) # get distribution _a : Union[str, Any] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range _a : List[Any] = np.cumsum((dists >= 0) ,axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) _a : Tuple = low_idx + 1 _a : Union[str, Any] = log_sigmas[low_idx] _a : Optional[Any] = log_sigmas[high_idx] # interpolate sigmas _a : Optional[Any] = (low - log_sigma) / (low - high) _a : List[str] = np.clip(_a ,0 ,1 ) # transform interpolation to time range _a : Union[str, Any] = (1 - w) * low_idx + w * high_idx _a : List[str] = t.reshape(sigma.shape ) return t def __lowercase ( self : int ,_a : torch.FloatTensor ,_a : Tuple ): '''simple docstring''' _a : float = in_sigmas[-1].item() _a : float = in_sigmas[0].item() _a : Tuple = 7.0 # 7.0 is the value used in the paper _a : str = np.linspace(0 ,1 ,_a ) _a : Optional[Any] = sigma_min ** (1 / rho) _a : Union[str, Any] = sigma_max ** (1 / rho) _a : str = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' return self.dt is None def __lowercase ( self : int ,_a : Union[torch.FloatTensor, np.ndarray] ,_a : Union[float, torch.FloatTensor] ,_a : Union[torch.FloatTensor, np.ndarray] ,_a : bool = True ,): '''simple docstring''' _a : Union[str, Any] = self.index_for_timestep(_a ) # advance index counter by 1 _a : Any = timestep.cpu().item() if torch.is_tensor(_a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _a : Tuple = self.sigmas[step_index] _a : int = self.sigmas[step_index + 1] else: # 2nd order / Heun's method _a : List[str] = self.sigmas[step_index - 1] _a : List[Any] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _a : Optional[int] = 0 _a : Tuple = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _a : Dict = sigma_hat if self.state_in_first_order else sigma_next _a : Optional[int] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _a : List[Any] = sigma_hat if self.state_in_first_order else sigma_next _a : List[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": _a : Union[str, Any] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: _a : Optional[int] = pred_original_sample.clamp( -self.config.clip_sample_range ,self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _a : Optional[Any] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _a : Any = sigma_next - sigma_hat # store for 2nd order step _a : int = derivative _a : List[str] = dt _a : Union[str, Any] = sample else: # 2. 2nd order / Heun's method _a : Dict = (sample - pred_original_sample) / sigma_next _a : Tuple = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample _a : Optional[Any] = self.dt _a : Union[str, Any] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" _a : List[Any] = None _a : Union[str, Any] = None _a : Dict = None _a : str = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_a ) def __lowercase ( self : Optional[int] ,_a : torch.FloatTensor ,_a : torch.FloatTensor ,_a : torch.FloatTensor ,): '''simple docstring''' _a : str = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_a ): # mps does not support float64 _a : Dict = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) _a : Optional[Any] = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: _a : int = self.timesteps.to(original_samples.device ) _a : Optional[Any] = timesteps.to(original_samples.device ) _a : Any = [self.index_for_timestep(_a ,_a ) for t in timesteps] _a : Optional[int] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _a : Optional[Any] = sigma.unsqueeze(-1 ) _a : Any = original_samples + noise * sigma return noisy_samples def __len__( self : Optional[int] ): '''simple docstring''' return self.config.num_train_timesteps
5
0
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {"""vocab_file""": """spiece.model"""} __lowerCAmelCase = { """vocab_file""": { """AI-Sweden/gpt-sw3-126m""": """https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-350m""": """https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-1.6b""": """https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-6.7b""": """https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-20b""": """https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model""", } } __lowerCAmelCase = { """AI-Sweden/gpt-sw3-126m""": 2_0_4_8, """AI-Sweden/gpt-sw3-350m""": 2_0_4_8, """AI-Sweden/gpt-sw3-1.6b""": 2_0_4_8, """AI-Sweden/gpt-sw3-6.7b""": 2_0_4_8, """AI-Sweden/gpt-sw3-20b""": 2_0_4_8, } class UpperCAmelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase : Optional[int] = VOCAB_FILES_NAMES __UpperCAmelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Optional[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : List[Any] ,_a : Optional[Any] ,_a : str=False ,_a : Union[str, Any]=False ,_a : int=False ,_a : Any=None ,_a : Optional[Any]=None ,_a : int=None ,_a : Optional[int]=None ,_a : Optional[Dict[str, Any]] = None ,**_a : Tuple ,): '''simple docstring''' _a : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs _a : Tuple = kwargs.get('name_or_path' ) if name_or_path is None: logger.warning( 'name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,' ' you are testing the model, this can safely be ignored' ) _a : int = '''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing _a : Any = '''<|endoftext|>''' if eos_token is None else eos_token _a : Union[str, Any] = '''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: _a : Optional[Any] = unk_token if pad_token is None else pad_token _a : Tuple = eos_token if bos_token is None else bos_token else: _a : str = '''<pad>''' if pad_token is None else pad_token _a : Union[str, Any] = '''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=UpperCamelCase__ ,remove_space=UpperCamelCase__ ,keep_accents=UpperCamelCase__ ,bos_token=UpperCamelCase__ ,eos_token=UpperCamelCase__ ,unk_token=UpperCamelCase__ ,pad_token=UpperCamelCase__ ,sp_model_kwargs=self.sp_model_kwargs ,**UpperCamelCase__ ,) _a : str = do_lower_case _a : List[str] = remove_space _a : Any = keep_accents _a : List[str] = vocab_file _a : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase__ ) # Used for whitespace normalization in input texts # fmt : off _a : Optional[int] = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing _a : List[Any] = re.compile( F"""[{''.join(map(UpperCamelCase__ ,list(range(0 ,9 ) ) + list(range(11 ,32 ) ) + list(range(127 ,160 ) ) + [160, 173, 8203] ) )}]""" ) def __getstate__( self : Tuple ): '''simple docstring''' _a : Union[str, Any] = self.__dict__.copy() _a : Any = None return state def __setstate__( self : str ,_a : str ): '''simple docstring''' _a : List[str] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _a : str = {} _a : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return len(self.sp_model ) def __lowercase ( self : Any ,_a : str ): '''simple docstring''' _a : Union[str, Any] = self.non_printing_characters_re.sub('' ,UpperCamelCase__ ) # Normalize whitespaces _a : Union[str, Any] = ''''''.join([char if char not in self.whitespaces else ' ' for char in text] ) # NFC Unicode normalization _a : List[Any] = unicodedata.normalize('NFC' ,UpperCamelCase__ ) return text def __lowercase ( self : Any ,_a : str ,**_a : Any ): '''simple docstring''' _a : Union[str, Any] = self.preprocess_text(UpperCamelCase__ ) return self.sp_model.encode(UpperCamelCase__ ,out_type=UpperCamelCase__ ) def __lowercase ( self : str ,_a : str ): '''simple docstring''' return self.sp_model.PieceToId(UpperCamelCase__ ) def __lowercase ( self : Optional[int] ,_a : int ): '''simple docstring''' return self.sp_model.IdToPiece(UpperCamelCase__ ) @staticmethod def __lowercase ( _a : str ): '''simple docstring''' return out_string def __lowercase ( self : List[Any] ,_a : List[str] ): '''simple docstring''' _a : Optional[int] = [] _a : str = '''''' _a : Optional[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase__ ) + token _a : Union[str, Any] = True _a : str = [] else: current_sub_tokens.append(UpperCamelCase__ ) _a : Tuple = False out_string += self.sp_model.decode(UpperCamelCase__ ) return out_string def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[int] = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowercase ( self : Dict ,_a : str ,_a : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(UpperCamelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : str = os.path.join( UpperCamelCase__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ ,'wb' ) as fi: _a : Optional[int] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,) def __lowercase ( self : int ,_a : Union[str, List[str]] ,_a : Union[str, bool] = False ): '''simple docstring''' if isinstance(UpperCamelCase__ ,UpperCamelCase__ ): _a : Optional[int] = self.preprocess_text(UpperCamelCase__ ) _a : Union[str, Any] = self.sp_model.encode(UpperCamelCase__ ) else: _a : List[str] = [self.preprocess_text(UpperCamelCase__ ) for t in text] _a : List[Any] = self.sp_model.encode(UpperCamelCase__ ) if return_tensors is True or return_tensors == "pt": _a : Tuple = torch.tensor(UpperCamelCase__ ) return token_ids def __lowercase ( self : str ,_a : Union[int, List[int]] ): '''simple docstring''' return self.sp_model.decode(UpperCamelCase__ ) def __lowercase ( self : Any ,_a : "Conversation" ): '''simple docstring''' _a : Union[str, Any] = [F"""User: {text}""" if is_user else F"""Bot: {text}""" for is_user, text in conversation.iter_texts()] _a : Dict = ( F"""{self.eos_token}{self.bos_token}""" + F"""{self.bos_token}""".join(UpperCamelCase__ ) + F"""{self.bos_token}Bot:""" ) return self.encode(text=UpperCamelCase__ )
366
'''simple docstring''' import qiskit def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" _a : Any = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _a : List[Any] = qiskit.QuantumCircuit(__a , __a ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator _a : Tuple = qiskit.execute(__a , __a , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__a ) if __name__ == "__main__": print(f'''Total count for various states are: {single_qubit_measure(1, 1)}''')
5
0
'''simple docstring''' from math import sqrt def UpperCAmelCase_ (__a : Tuple ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(lowerCamelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase_ (__a : Optional[int] = 1_0_0_0_1 ) -> int: """simple docstring""" _a : Any = 0 _a : List[Any] = 1 while count != nth and number < 3: number += 1 if is_prime(lowerCamelCase_ ): count += 1 while count != nth: number += 2 if is_prime(lowerCamelCase_ ): count += 1 return number if __name__ == "__main__": print(f'''{solution() = }''')
367
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() def __lowercase ( self : str ): '''simple docstring''' _a : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) _a : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) _a : List[str] = 'xvjiarui/stable-diffusion-2-inpainting' _a, _a : str = FlaxStableDiffusionInpaintPipeline.from_pretrained(_a ,safety_checker=_a ) _a : str = 'Face of a yellow cat, high resolution, sitting on a park bench' _a : int = jax.random.PRNGKey(0 ) _a : Tuple = 50 _a : Any = jax.device_count() _a : Dict = num_samples * [prompt] _a : Optional[Any] = num_samples * [init_image] _a : str = num_samples * [mask_image] _a, _a, _a : Optional[Any] = pipeline.prepare_inputs(_a ,_a ,_a ) # shard inputs and rng _a : Optional[Any] = replicate(_a ) _a : str = jax.random.split(_a ,jax.device_count() ) _a : Dict = shard(_a ) _a : int = shard(_a ) _a : int = shard(_a ) _a : Union[str, Any] = pipeline( _a ,_a ,_a ,_a ,_a ,_a ,jit=_a ) _a : Union[str, Any] = output.images.reshape(_a ,512 ,512 ,3 ) _a : Union[str, Any] = images[0, 253:256, 253:256, -1] _a : str = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _a : Union[str, Any] = jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
5
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCAmelCase = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
368
'''simple docstring''' def UpperCAmelCase_ (__a : str , __a : str ): """simple docstring""" _a : int = len(__a ) + 1 _a : List[str] = len(__a ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. _a : Optional[int] = [[0 for i in range(__a )] for j in range(__a )] # since string of zero length match pattern of zero length _a : str = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , __a ): _a : Optional[Any] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , __a ): _a : Dict = dp[0][j - 2] if pattern[j - 1] == '*' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , __a ): for j in range(1 , __a ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": _a : Tuple = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: _a : List[str] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): _a : int = dp[i - 1][j] else: _a : Any = 0 else: _a : Optional[Any] = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") __lowerCAmelCase = """aab""" __lowerCAmelCase = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f'''{input_string} matches the given pattern {pattern}''') else: print(f'''{input_string} does not match with the given pattern {pattern}''')
5
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __lowerCAmelCase = logging.get_logger(__name__) if is_vision_available(): import PIL class UpperCAmelCase__ ( _lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : int = ["pixel_values"] def __init__( self : Tuple ,_a : bool = True ,_a : Dict[str, int] = None ,_a : PILImageResampling = PILImageResampling.BICUBIC ,_a : bool = True ,_a : Dict[str, int] = None ,_a : bool = True ,_a : Union[int, float] = 1 / 255 ,_a : bool = True ,_a : Optional[Union[float, List[float]]] = None ,_a : Optional[Union[float, List[float]]] = None ,_a : bool = True ,**_a : int ,): '''simple docstring''' super().__init__(**_lowercase ) _a : Any = size if size is not None else {'shortest_edge': 224} _a : List[Any] = get_size_dict(_lowercase ,default_to_square=_lowercase ) _a : str = crop_size if crop_size is not None else {'height': 224, 'width': 224} _a : Tuple = get_size_dict(_lowercase ,default_to_square=_lowercase ,param_name='crop_size' ) _a : Union[str, Any] = do_resize _a : Union[str, Any] = size _a : Dict = resample _a : List[str] = do_center_crop _a : str = crop_size _a : int = do_rescale _a : Optional[Any] = rescale_factor _a : Optional[int] = do_normalize _a : Optional[int] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _a : int = image_std if image_std is not None else OPENAI_CLIP_STD _a : Union[str, Any] = do_convert_rgb def __lowercase ( self : Union[str, Any] ,_a : np.ndarray ,_a : Dict[str, int] ,_a : PILImageResampling = PILImageResampling.BICUBIC ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : Union[str, Any] ,): '''simple docstring''' _a : str = get_size_dict(_lowercase ,default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) _a : int = get_resize_output_image_size(_lowercase ,size=size['shortest_edge'] ,default_to_square=_lowercase ) return resize(_lowercase ,size=_lowercase ,resample=_lowercase ,data_format=_lowercase ,**_lowercase ) def __lowercase ( self : Any ,_a : np.ndarray ,_a : Dict[str, int] ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : str ,): '''simple docstring''' _a : Any = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(_lowercase ,size=(size['height'], size['width']) ,data_format=_lowercase ,**_lowercase ) def __lowercase ( self : Optional[Any] ,_a : np.ndarray ,_a : Union[int, float] ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : Dict ,): '''simple docstring''' return rescale(_lowercase ,scale=_lowercase ,data_format=_lowercase ,**_lowercase ) def __lowercase ( self : Any ,_a : np.ndarray ,_a : Union[float, List[float]] ,_a : Union[float, List[float]] ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : Union[str, Any] ,): '''simple docstring''' return normalize(_lowercase ,mean=_lowercase ,std=_lowercase ,data_format=_lowercase ,**_lowercase ) def __lowercase ( self : Dict ,_a : ImageInput ,_a : bool = None ,_a : Dict[str, int] = None ,_a : PILImageResampling = None ,_a : bool = None ,_a : int = None ,_a : bool = None ,_a : float = None ,_a : bool = None ,_a : Optional[Union[float, List[float]]] = None ,_a : Optional[Union[float, List[float]]] = None ,_a : bool = None ,_a : Optional[Union[str, TensorType]] = None ,_a : Optional[ChannelDimension] = ChannelDimension.FIRST ,**_a : Any ,): '''simple docstring''' _a : Dict = do_resize if do_resize is not None else self.do_resize _a : int = size if size is not None else self.size _a : Dict = get_size_dict(_lowercase ,param_name='size' ,default_to_square=_lowercase ) _a : Optional[Any] = resample if resample is not None else self.resample _a : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _a : List[str] = crop_size if crop_size is not None else self.crop_size _a : Dict = get_size_dict(_lowercase ,param_name='crop_size' ,default_to_square=_lowercase ) _a : Tuple = do_rescale if do_rescale is not None else self.do_rescale _a : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor _a : str = do_normalize if do_normalize is not None else self.do_normalize _a : List[Any] = image_mean if image_mean is not None else self.image_mean _a : Optional[Any] = image_std if image_std is not None else self.image_std _a : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _a : int = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _a : int = [convert_to_rgb(_lowercase ) for image in images] # All transformations expect numpy arrays. _a : str = [to_numpy_array(_lowercase ) for image in images] if do_resize: _a : str = [self.resize(image=_lowercase ,size=_lowercase ,resample=_lowercase ) for image in images] if do_center_crop: _a : List[str] = [self.center_crop(image=_lowercase ,size=_lowercase ) for image in images] if do_rescale: _a : Dict = [self.rescale(image=_lowercase ,scale=_lowercase ) for image in images] if do_normalize: _a : Optional[int] = [self.normalize(image=_lowercase ,mean=_lowercase ,std=_lowercase ) for image in images] _a : Optional[int] = [to_channel_dimension_format(_lowercase ,_lowercase ) for image in images] _a : Optional[Any] = {'pixel_values': images} return BatchFeature(data=_lowercase ,tensor_type=_lowercase )
369
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Dict = BlenderbotSmallTokenizer __UpperCAmelCase : Tuple = False def __lowercase ( self : List[Any] ): '''simple docstring''' super().setUp() _a : List[str] = ['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] _a : Tuple = dict(zip(_a ,range(len(_a ) ) ) ) _a : List[Any] = ['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] _a : List[Any] = {'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} _a : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) _a : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(_a ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(_a ) ) def __lowercase ( self : List[Any] ,**_a : int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname ,**_a ) def __lowercase ( self : Tuple ,_a : int ): '''simple docstring''' _a : Optional[Any] = 'adapt act apte' _a : Dict = 'adapt act apte' return input_text, output_text def __lowercase ( self : int ): '''simple docstring''' _a : Optional[int] = BlenderbotSmallTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) _a : Union[str, Any] = 'adapt act apte' _a : Dict = ['adapt', 'act', 'ap@@', 'te'] _a : Tuple = tokenizer.tokenize(_a ) self.assertListEqual(_a ,_a ) _a : List[str] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] _a : Dict = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) ,_a ) def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : str = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] _a : Union[str, Any] = 'I am a small frog.' _a : int = tok([src_text] ,padding=_a ,truncation=_a )['input_ids'] _a : str = tok.batch_decode(_a ,skip_special_tokens=_a ,clean_up_tokenization_spaces=_a )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[int] = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) _a : Union[str, Any] = 'I am a small frog .' _a : Optional[Any] = '.' _a : Optional[Any] = tok(_a )['input_ids'] _a : Union[str, Any] = tok(_a )['input_ids'] assert encoded[-1] == encoded_dot[0]
5
0
'''simple docstring''' import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def UpperCAmelCase_ (__a : List[str] ): """simple docstring""" monkeypatch.setattr('datasets.utils.deprecation_utils._emitted_deprecation_warnings' , set() ) @pytest.fixture def UpperCAmelCase_ (__a : int ): """simple docstring""" class UpperCAmelCase__ : """simple docstring""" def __init__( self : Tuple ,_a : Optional[int] ): '''simple docstring''' _a : Union[str, Any] = metric_id class UpperCAmelCase__ : """simple docstring""" __UpperCAmelCase : Tuple = [MetricMock(_a ) for metric_id in ["""accuracy""", """mse""", """precision""", """codeparrot/apps_metric"""]] def __lowercase ( self : Optional[Any] ): '''simple docstring''' return self._metrics monkeypatch.setattr('datasets.inspect.huggingface_hub' , HfhMock() ) @pytest.mark.parametrize( 'func, args' , [(load_metric, ('metrics/mse',)), (list_metrics, ()), (inspect_metric, ('metrics/mse', 'tmp_path'))] ) def UpperCAmelCase_ (__a : List[str] , __a : Optional[Any] , __a : str , __a : Optional[int] , __a : str ): """simple docstring""" if "tmp_path" in args: _a : List[str] = tuple(arg if arg != 'tmp_path' else tmp_path for arg in args ) with pytest.warns(a__ , match='https://huggingface.co/docs/evaluate' ): func(*a__ )
370
'''simple docstring''' __lowerCAmelCase = { """A""": """.-""", """B""": """-...""", """C""": """-.-.""", """D""": """-..""", """E""": """.""", """F""": """..-.""", """G""": """--.""", """H""": """....""", """I""": """..""", """J""": """.---""", """K""": """-.-""", """L""": """.-..""", """M""": """--""", """N""": """-.""", """O""": """---""", """P""": """.--.""", """Q""": """--.-""", """R""": """.-.""", """S""": """...""", """T""": """-""", """U""": """..-""", """V""": """...-""", """W""": """.--""", """X""": """-..-""", """Y""": """-.--""", """Z""": """--..""", """1""": """.----""", """2""": """..---""", """3""": """...--""", """4""": """....-""", """5""": """.....""", """6""": """-....""", """7""": """--...""", """8""": """---..""", """9""": """----.""", """0""": """-----""", """&""": """.-...""", """@""": """.--.-.""", """:""": """---...""", """,""": """--..--""", """.""": """.-.-.-""", """'""": """.----.""", """\"""": """.-..-.""", """?""": """..--..""", """/""": """-..-.""", """=""": """-...-""", """+""": """.-.-.""", """-""": """-....-""", """(""": """-.--.""", """)""": """-.--.-""", """!""": """-.-.--""", """ """: """/""" } # Exclamation mark is not in ITU-R recommendation # fmt: on __lowerCAmelCase = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCAmelCase_ (__a : str ): """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCAmelCase_ (__a : str ): """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCAmelCase_ (): """simple docstring""" _a : List[str] = 'Morse code here!' print(__a ) _a : Tuple = encrypt(__a ) print(__a ) _a : str = decrypt(__a ) print(__a ) if __name__ == "__main__": main()
5
0
'''simple docstring''' import math class UpperCAmelCase__ : """simple docstring""" def __init__( self : int ,_a : Optional[int]=0 ): # a graph with Node 0,1,...,N-1 '''simple docstring''' _a : int = n _a : Any = [ [math.inf for j in range(0 ,_A )] for i in range(0 ,_A ) ] # adjacency matrix for weight _a : Optional[int] = [ [math.inf for j in range(0 ,_A )] for i in range(0 ,_A ) ] # dp[i][j] stores minimum distance from i to j def __lowercase ( self : Optional[Any] ,_a : List[str] ,_a : Dict ,_a : List[str] ): '''simple docstring''' _a : List[Any] = w def __lowercase ( self : Any ): '''simple docstring''' for k in range(0 ,self.n ): for i in range(0 ,self.n ): for j in range(0 ,self.n ): _a : Union[str, Any] = min(self.dp[i][j] ,self.dp[i][k] + self.dp[k][j] ) def __lowercase ( self : Any ,_a : Tuple ,_a : int ): '''simple docstring''' return self.dp[u][v] if __name__ == "__main__": __lowerCAmelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 1_0) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 1_0) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
371
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCAmelCase = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 1_2_8, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 5_0, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 1_0, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 1_0, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @classmethod def __lowercase ( cls : Optional[Any] ): '''simple docstring''' _a : List[Any] = TOKEN HfFolder.save_token(_a ) @classmethod def __lowercase ( cls : List[Any] ): '''simple docstring''' try: delete_repo(token=cls._token ,repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='test-dynamic-config' ) except HTTPError: pass def __lowercase ( self : List[str] ): '''simple docstring''' _a : Any = BertConfig( vocab_size=99 ,hidden_size=32 ,num_hidden_layers=5 ,num_attention_heads=4 ,intermediate_size=37 ) config.push_to_hub('test-config' ,use_auth_token=self._token ) _a : Optional[Any] = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) # Reset repo delete_repo(token=self._token ,repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_a ,repo_id='test-config' ,push_to_hub=_a ,use_auth_token=self._token ) _a : Dict = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Tuple = BertConfig( vocab_size=99 ,hidden_size=32 ,num_hidden_layers=5 ,num_attention_heads=4 ,intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' ,use_auth_token=self._token ) _a : Union[str, Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) # Reset repo delete_repo(token=self._token ,repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _a ,repo_id='valid_org/test-config-org' ,push_to_hub=_a ,use_auth_token=self._token ) _a : Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) def __lowercase ( self : List[Any] ): '''simple docstring''' CustomConfig.register_for_auto_class() _a : Optional[Any] = CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' ,use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map ,{'AutoConfig': 'custom_configuration.CustomConfig'} ) _a : int = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" ,trust_remote_code=_a ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ ,'CustomConfig' ) self.assertEqual(new_config.attribute ,42 ) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Optional[Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _a : int = c.n_embd + 1 # int _a : str = c.resid_pdrop + 1.0 # float _a : Dict = not c.scale_attn_weights # bool _a : List[Any] = c.summary_type + 'foo' # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(_a ,c.n_embd ,'mismatch for key: n_embd' ) self.assertEqual(_a ,c.resid_pdrop ,'mismatch for key: resid_pdrop' ) self.assertEqual(_a ,c.scale_attn_weights ,'mismatch for key: scale_attn_weights' ) self.assertEqual(_a ,c.summary_type ,'mismatch for key: summary_type' ) def __lowercase ( self : List[str] ): '''simple docstring''' _a : int = PretrainedConfig() _a : int = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( _a ,['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) _a : Dict = [key for key, value in config_common_kwargs.items() if value == getattr(_a ,_a )] if len(_a ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F""" {', '.join(_a )}.""" ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' with self.assertRaises(_a ): # config is in subfolder, the following should not work without specifying the subfolder _a : List[Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) _a : List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ,subfolder='bert' ) self.assertIsNotNone(_a ) def __lowercase ( self : List[Any] ): '''simple docstring''' _a : List[Any] = mock.Mock() _a : Any = 500 _a : Any = {} _a : Any = HTTPError _a : List[Any] = {} # Download this model to make sure it's in the cache. _a : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' ,return_value=_a ) as mock_head: _a : Optional[int] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Optional[int] = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : int = AutoConfig.from_pretrained('bert-base-cased' ) _a : List[str] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(_a ) _a : str = 2 json.dump(configuration.to_dict() ,open(os.path.join(_a ,'config.4.0.0.json' ) ,'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _a : int = AutoConfig.from_pretrained(_a ) self.assertEqual(new_configuration.hidden_size ,2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _a : Tuple = ['config.42.0.0.json'] _a : int = 768 configuration.save_pretrained(_a ) shutil.move(os.path.join(_a ,'config.4.0.0.json' ) ,os.path.join(_a ,'config.42.0.0.json' ) ) _a : int = AutoConfig.from_pretrained(_a ) self.assertEqual(new_configuration.hidden_size ,768 ) def __lowercase ( self : str ): '''simple docstring''' _a : Tuple = 'hf-internal-testing/test-two-configs' import transformers as new_transformers _a : Optional[int] = 'v4.0.0' _a, _a : Tuple = new_transformers.models.auto.AutoConfig.from_pretrained( _a ,return_unused_kwargs=_a ) self.assertEqual(new_configuration.hidden_size ,2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(_a ,{} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _a : str = 'v3.0.0' _a : Optional[Any] = old_transformers.models.auto.AutoConfig.from_pretrained(_a ) self.assertEqual(old_configuration.hidden_size ,768 )
5
0
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : int = LayoutLMTokenizer __UpperCAmelCase : Union[str, Any] = LayoutLMTokenizerFast __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : str = True def __lowercase ( self : Optional[int] ): '''simple docstring''' super().setUp() _a : Optional[Any] = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _a : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def __lowercase ( self : Optional[int] ,**_a : Union[str, Any] ): '''simple docstring''' return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**_a ) def __lowercase ( self : List[Any] ,_a : Optional[Any] ): '''simple docstring''' _a : List[Any] = """UNwant\u00E9d,running""" _a : Optional[int] = """unwanted, running""" return input_text, output_text def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Union[str, Any] = self.tokenizer_class(self.vocab_file ) _a : Optional[Any] = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_a ,['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) ,[7, 4, 5, 10, 8, 9] ) def __lowercase ( self : Any ): '''simple docstring''' pass
350
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint __lowerCAmelCase = { """169M""": 1_2, """430M""": 2_4, """1B5""": 2_4, """3B""": 3_2, """7B""": 3_2, """14B""": 4_0, } __lowerCAmelCase = { """169M""": 7_6_8, """430M""": 1_0_2_4, """1B5""": 2_0_4_8, """3B""": 2_5_6_0, """7B""": 4_0_9_6, """14B""": 5_1_2_0, } def UpperCAmelCase_ (__a : Dict ): """simple docstring""" _a : List[Any] = list(state_dict.keys() ) for name in state_dict_keys: _a : List[Any] = state_dict.pop(__a ) # emb -> embedding if name.startswith('emb.' ): _a : List[str] = name.replace('emb.' , 'embeddings.' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0' ): _a : Dict = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' ) # att -> attention _a : int = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , __a ) # ffn -> feed_forward _a : str = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , __a ) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k' ): _a : Any = name.replace('.time_mix_k' , '.time_mix_key' ) # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v' ): _a : int = name.replace('.time_mix_v' , '.time_mix_value' ) # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r' ): _a : Tuple = name.replace('.time_mix_r' , '.time_mix_receptance' ) if name != "head.weight": _a : Tuple = 'rwkv.' + name _a : List[Any] = weight return state_dict def UpperCAmelCase_ (__a : Tuple , __a : Union[str, Any] , __a : List[str] , __a : str=None , __a : List[str]=None , __a : int=False , __a : int=None ): """simple docstring""" if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.' ) _a : List[Any] = 5_0_2_7_7 _a : Optional[Any] = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' ) else: _a : Optional[Any] = PreTrainedTokenizerFast(tokenizer_file=__a ) _a : List[Any] = len(__a ) tokenizer.save_pretrained(__a ) # 2. Build the config _a : List[str] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: _a : str = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.' ) if size not in possible_sizes: raise ValueError(f"""`size` should be one of {possible_sizes}, got {size}.""" ) _a : str = RwkvConfig( vocab_size=__a , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(__a ) # 3. Download model file then convert state_dict _a : Tuple = hf_hub_download(__a , __a ) _a : Optional[int] = torch.load(__a , map_location='cpu' ) _a : Dict = convert_state_dict(__a ) # 4. Split in shards and save _a, _a : List[Any] = shard_checkpoint(__a ) for shard_file, shard in shards.items(): torch.save(__a , os.path.join(__a , __a ) ) if index is not None: _a : Dict = os.path.join(__a , __a ) # Save the index as well with open(__a , 'w' , encoding='utf-8' ) as f: _a : List[Any] = json.dumps(__a , indent=2 , sort_keys=__a ) + '\n' f.write(__a ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' ) _a : List[Any] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: _a : Optional[Any] = torch.load(os.path.join(__a , __a ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(__a , __a ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.' ) _a : List[str] = AutoModelForCausalLM.from_pretrained(__a ) model.push_to_hub(__a , max_shard_size='2GB' ) tokenizer.push_to_hub(__a ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--repo_id""", default=None, type=str, required=True, help="""Repo ID from which to pull the checkpoint.""" ) parser.add_argument( """--checkpoint_file""", default=None, type=str, required=True, help="""Name of the checkpoint file in the repo.""" ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""Where to save the converted model.""" ) parser.add_argument( """--tokenizer_file""", default=None, type=str, help="""Path to the tokenizer file to use (if not provided, only the model is converted).""", ) parser.add_argument( """--size""", default=None, type=str, help="""Size of the model. Will be inferred from the `checkpoint_file` if not passed.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Push to the Hub the converted model.""", ) parser.add_argument( """--model_name""", default=None, type=str, help="""Name of the pushed model on the Hub, including the username / organization.""", ) __lowerCAmelCase = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
5
0
'''simple docstring''' import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def UpperCAmelCase_ (__a : Optional[Any] , __a : List[str] , __a : List[str] ): """simple docstring""" _a : Optional[int] = 1.5 _a : Tuple = int(factor * num_class_images ) _a : List[Any] = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=lowerCAmelCase__ , aesthetic_weight=0.1 ) os.makedirs(f"""{class_data_dir}/images""" , exist_ok=lowerCAmelCase__ ) if len(list(Path(f"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: _a : List[Any] = client.query(text=lowerCAmelCase__ ) if len(lowerCAmelCase__ ) >= factor * num_class_images or num_images > 1e4: break else: _a : Optional[Any] = int(factor * num_images ) _a : int = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=lowerCAmelCase__ , aesthetic_weight=0.1 , ) _a : Optional[Any] = 0 _a : Optional[int] = 0 _a : Dict = tqdm(desc='downloading real regularization images' , total=lowerCAmelCase__ ) with open(f"""{class_data_dir}/caption.txt""" , 'w' ) as fa, open(f"""{class_data_dir}/urls.txt""" , 'w' ) as fa, open( f"""{class_data_dir}/images.txt""" , 'w' ) as fa: while total < num_class_images: _a : str = class_images[count] count += 1 try: _a : Any = requests.get(images['url'] ) if img.status_code == 2_0_0: _a : List[Any] = Image.open(BytesIO(img.content ) ) with open(f"""{class_data_dir}/images/{total}.jpg""" , 'wb' ) as f: f.write(img.content ) fa.write(images['caption'] + '\n' ) fa.write(images['url'] + '\n' ) fa.write(f"""{class_data_dir}/images/{total}.jpg""" + '\n' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def UpperCAmelCase_ (): """simple docstring""" _a : str = argparse.ArgumentParser('' , add_help=lowerCAmelCase__ ) parser.add_argument('--class_prompt' , help='text prompt to retrieve images' , required=lowerCAmelCase__ , type=lowerCAmelCase__ ) parser.add_argument('--class_data_dir' , help='path to save images' , required=lowerCAmelCase__ , type=lowerCAmelCase__ ) parser.add_argument('--num_class_images' , help='number of images to download' , default=2_0_0 , type=lowerCAmelCase__ ) return parser.parse_args() if __name__ == "__main__": __lowerCAmelCase = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
351
'''simple docstring''' import comet # From: unbabel-comet import torch import datasets __lowerCAmelCase = datasets.logging.get_logger(__name__) __lowerCAmelCase = """\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel's Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = \"{COMET}: A Neural Framework for {MT} Evaluation\", author = \"Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon\", booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\", month = nov, year = \"2020\", address = \"Online\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\", pages = \"2685--2702\", } """ __lowerCAmelCase = """\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. """ __lowerCAmelCase = """ COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric('comet') >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"] >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"] >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results[\"scores\"]]) [0.19, 0.92] """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): """simple docstring""" def __lowercase ( self : Optional[int] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='https://unbabel.github.io/COMET/html/index.html' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'sources': datasets.Value('string' ,id='sequence' ), 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Value('string' ,id='sequence' ), } ) ,codebase_urls=['https://github.com/Unbabel/COMET'] ,reference_urls=[ 'https://github.com/Unbabel/COMET', 'https://www.aclweb.org/anthology/2020.emnlp-main.213/', 'http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6', ] ,) def __lowercase ( self : int ,_a : int ): '''simple docstring''' if self.config_name == "default": _a : List[Any] = comet.load_from_checkpoint(comet.download_model('wmt20-comet-da' ) ) else: _a : List[str] = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def __lowercase ( self : Tuple ,_a : List[Any] ,_a : Dict ,_a : Optional[Any] ,_a : List[str]=None ,_a : Tuple=False ): '''simple docstring''' if gpus is None: _a : str = 1 if torch.cuda.is_available() else 0 _a : Optional[Any] = {'src': sources, 'mt': predictions, 'ref': references} _a : Optional[Any] = [dict(zip(_a ,_a ) ) for t in zip(*data.values() )] _a, _a : Tuple = self.scorer.predict(_a ,gpus=_a ,progress_bar=_a ) return {"mean_score": mean_score, "scores": scores}
5
0
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black __lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. __lowerCAmelCase = """ def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states """ class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : Any ): '''simple docstring''' _a : List[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir ,'models/bert/' ) ) _a : Union[str, Any] = self.transformer_dir shutil.copy( os.path.join(_a ,'src/transformers/models/bert/modeling_bert.py' ) ,os.path.join(self.transformer_dir ,'models/bert/modeling_bert.py' ) ,) def __lowercase ( self : Tuple ): '''simple docstring''' _a : List[str] = 'src/transformers' shutil.rmtree(self.transformer_dir ) def __lowercase ( self : Optional[Any] ,_a : Any ,_a : List[str] ,_a : int ,_a : List[str]=None ): '''simple docstring''' _a : Dict = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _a : Union[str, Any] = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _a : List[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} ,line_length=119 ) _a : List[str] = black.format_str(_a ,mode=_a ) _a : Union[str, Any] = os.path.join(self.transformer_dir ,'new_code.py' ) with open(_a ,'w' ,newline='\n' ) as f: f.write(_a ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_a ) ) == 0 ) else: check_copies.is_copy_consistent(f.name ,overwrite=_a ) with open(_a ,'r' ) as f: self.assertTrue(f.read() ,_a ) def __lowercase ( self : Tuple ): '''simple docstring''' _a : Dict = check_copies.find_code_in_transformers('models.bert.modeling_bert.BertLMPredictionHead' ) self.assertEqual(_a ,_a ) def __lowercase ( self : List[Any] ): '''simple docstring''' self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' ,'BertLMPredictionHead' ,REFERENCE_CODE + '\n' ,) # With no empty line at the end self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' ,'BertLMPredictionHead' ,_a ,) # Copy consistency with rename self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' ,'TestModelLMPredictionHead' ,re.sub('Bert' ,'TestModel' ,_a ) ,) # Copy consistency with a really long name _a : Optional[Any] = 'TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( F"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""" ,F"""{long_class_name}LMPredictionHead""" ,re.sub('Bert' ,_a ,_a ) ,) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' ,'TestModelLMPredictionHead' ,_a ,overwrite_result=re.sub('Bert' ,'TestModel' ,_a ) ,) def __lowercase ( self : Any ): '''simple docstring''' _a : Tuple = check_copies.LOCALIZED_READMES['README_zh-hans.md'] _a : str = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),' ' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**' ' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders' ' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang' ' Luong, Quoc V. Le, Christopher D. Manning.' ) _a : Optional[Any] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) _a : str = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文' ' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自' ' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather' ' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,' ' Christopher D. Manning 发布。\n' ) _a, _a : Union[str, Any] = check_copies.convert_to_localized_md( _a ,_a ,localized_readme['format_model_list'] ) self.assertFalse(_a ) self.assertEqual(_a ,_a ) _a, _a : Optional[Any] = check_copies.convert_to_localized_md( _a ,_a ,localized_readme['format_model_list'] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_a ) _a : Optional[int] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.' ) _a : List[Any] = ( '1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and' ' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) _a : Union[str, Any] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) _a, _a : str = check_copies.convert_to_localized_md( _a ,_a ,localized_readme['format_model_list'] ) # Check if the model link is synchronized. self.assertEqual(_a ,_a )
352
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
0
'''simple docstring''' import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) __lowerCAmelCase = logging.getLogger() __lowerCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCAmelCase__ ( lowercase_ ): """simple docstring""" def __lowercase ( self : Any ,_a : List[Any] ): '''simple docstring''' os.makedirs(a__ ,exist_ok=a__ ) _a : Dict = {'source': 'What is love ?', 'target': 'life'} _a : Optional[int] = {'train': 12, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: _a : Optional[int] = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(a__ ,F"""{split}.{field}""" ) ,'w' ) as f: f.write(a__ ) def __lowercase ( self : Optional[int] ,_a : Optional[int] ,_a : int = "pytorch" ): '''simple docstring''' _a : List[Any] = self.get_auto_remove_tmp_dir() _a : Optional[Any] = os.path.join(a__ ,'output' ) _a : str = os.path.join(a__ ,'data' ) self._create_dummy_data(data_dir=a__ ) _a : str = F"""\n --data_dir {data_dir} \\n --output_dir {output_dir} \\n --model_name_or_path facebook/rag-sequence-base \\n --model_type rag_sequence \\n --do_train \\n --do_predict \\n --n_val -1 \\n --val_check_interval 1.0 \\n --train_batch_size 2 \\n --eval_batch_size 1 \\n --max_source_length 25 \\n --max_target_length 25 \\n --val_max_target_length 25 \\n --test_max_target_length 25 \\n --label_smoothing 0.1 \\n --dropout 0.1 \\n --attention_dropout 0.1 \\n --weight_decay 0.001 \\n --adam_epsilon 1e-08 \\n --max_grad_norm 0.1 \\n --lr_scheduler polynomial \\n --learning_rate 3e-04 \\n --num_train_epochs 1 \\n --warmup_steps 4 \\n --gradient_accumulation_steps 1 \\n --distributed-port 8787 \\n --use_dummy_dataset 1 \\n --distributed_retriever {distributed_retriever} \\n """.split() if gpus > 0: testargs.append(F"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) _a : Optional[int] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(a__ ,env=self.get_env() ) _a : Any = os.path.join(a__ ,'metrics.json' ) with open(a__ ) as f: _a : List[Any] = json.load(a__ ) return result @require_torch_gpu def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Any = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] ,0.2 ) @require_torch_multi_gpu def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Tuple = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] ,0.2 ) @require_torch_gpu @require_ray def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Dict = self._run_finetune(gpus=1 ,distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] ,0.2 ) @require_torch_multi_gpu @require_ray def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : int = self._run_finetune(gpus=1 ,distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] ,0.2 )
353
'''simple docstring''' import sys def UpperCAmelCase_ (__a : List[str] ): """simple docstring""" _a : List[str] = len(__a ) _a : Dict = [[0 for x in range(__a )] for x in range(__a )] _a : Union[str, Any] = [[0 for x in range(__a )] for x in range(__a )] for chain_length in range(2 , __a ): for a in range(1 , n - chain_length + 1 ): _a : Tuple = a + chain_length - 1 _a : Any = sys.maxsize for c in range(__a , __a ): _a : Optional[Any] = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: _a : Dict = cost _a : Any = c return matrix, sol def UpperCAmelCase_ (__a : Tuple , __a : List[str] , __a : Dict ): """simple docstring""" if i == j: print('A' + str(__a ) , end=' ' ) else: print('(' , end=' ' ) print_optiomal_solution(__a , __a , optimal_solution[i][j] ) print_optiomal_solution(__a , optimal_solution[i][j] + 1 , __a ) print(')' , end=' ' ) def UpperCAmelCase_ (): """simple docstring""" _a : Any = [3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] _a : Any = len(__a ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 _a, _a : Union[str, Any] = matrix_chain_order(__a ) print('No. of Operation required: ' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__a , 1 , n - 1 ) if __name__ == "__main__": main()
5
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) def UpperCAmelCase_ (__a : Any , __a : int ): """simple docstring""" _a : List[Any] = b.T _a : Union[str, Any] = np.sum(np.square(__a ) , axis=1 ) _a : int = np.sum(np.square(__a ) , axis=0 ) _a : str = np.matmul(__a , __a ) _a : Optional[int] = aa[:, None] - 2 * ab + ba[None, :] return d def UpperCAmelCase_ (__a : Dict , __a : Optional[int] ): """simple docstring""" _a : Tuple = x.reshape(-1 , 3 ) _a : Union[str, Any] = squared_euclidean_distance(__a , __a ) return np.argmin(__a , axis=1 ) class UpperCAmelCase__ ( UpperCamelCase__ ): """simple docstring""" __UpperCAmelCase : str = ['''pixel_values'''] def __init__( self : int ,_a : Optional[Union[List[List[int]], np.ndarray]] = None ,_a : bool = True ,_a : Dict[str, int] = None ,_a : PILImageResampling = PILImageResampling.BILINEAR ,_a : bool = True ,_a : bool = True ,**_a : Dict ,): '''simple docstring''' super().__init__(**UpperCamelCase_ ) _a : Tuple = size if size is not None else {'height': 256, 'width': 256} _a : Optional[Any] = get_size_dict(UpperCamelCase_ ) _a : List[Any] = np.array(UpperCamelCase_ ) if clusters is not None else None _a : int = do_resize _a : Any = size _a : str = resample _a : Optional[int] = do_normalize _a : Optional[int] = do_color_quantize def __lowercase ( self : Optional[Any] ,_a : np.ndarray ,_a : Dict[str, int] ,_a : PILImageResampling = PILImageResampling.BILINEAR ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : Any ,): '''simple docstring''' _a : Dict = get_size_dict(UpperCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F"""Size dictionary must contain both height and width keys. Got {size.keys()}""" ) return resize( UpperCamelCase_ ,size=(size['height'], size['width']) ,resample=UpperCamelCase_ ,data_format=UpperCamelCase_ ,**UpperCamelCase_ ) def __lowercase ( self : Any ,_a : np.ndarray ,_a : Optional[Union[str, ChannelDimension]] = None ,): '''simple docstring''' _a : Union[str, Any] = rescale(image=UpperCamelCase_ ,scale=1 / 127.5 ,data_format=UpperCamelCase_ ) _a : Optional[Any] = image - 1 return image def __lowercase ( self : List[Any] ,_a : ImageInput ,_a : bool = None ,_a : Dict[str, int] = None ,_a : PILImageResampling = None ,_a : bool = None ,_a : Optional[bool] = None ,_a : Optional[Union[List[List[int]], np.ndarray]] = None ,_a : Optional[Union[str, TensorType]] = None ,_a : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST ,**_a : Tuple ,): '''simple docstring''' _a : Optional[int] = do_resize if do_resize is not None else self.do_resize _a : Optional[int] = size if size is not None else self.size _a : Union[str, Any] = get_size_dict(UpperCamelCase_ ) _a : str = resample if resample is not None else self.resample _a : Any = do_normalize if do_normalize is not None else self.do_normalize _a : Tuple = do_color_quantize if do_color_quantize is not None else self.do_color_quantize _a : int = clusters if clusters is not None else self.clusters _a : Optional[int] = np.array(UpperCamelCase_ ) _a : List[str] = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_color_quantize and clusters is None: raise ValueError('Clusters must be specified if do_color_quantize is True.' ) # All transformations expect numpy arrays. _a : Dict = [to_numpy_array(UpperCamelCase_ ) for image in images] if do_resize: _a : List[str] = [self.resize(image=UpperCamelCase_ ,size=UpperCamelCase_ ,resample=UpperCamelCase_ ) for image in images] if do_normalize: _a : Optional[Any] = [self.normalize(image=UpperCamelCase_ ) for image in images] if do_color_quantize: _a : Optional[int] = [to_channel_dimension_format(UpperCamelCase_ ,ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) _a : Optional[Any] = np.array(UpperCamelCase_ ) _a : int = color_quantize(UpperCamelCase_ ,UpperCamelCase_ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) _a : Dict = images.shape[0] _a : List[str] = images.reshape(UpperCamelCase_ ,-1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. _a : List[str] = list(UpperCamelCase_ ) else: _a : Tuple = [to_channel_dimension_format(UpperCamelCase_ ,UpperCamelCase_ ) for image in images] _a : List[Any] = {'input_ids': images} return BatchFeature(data=UpperCamelCase_ ,tensor_type=UpperCamelCase_ )
354
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase_ (__a : Optional[Any] ): """simple docstring""" _a : int = FileLock(str(tmpdir / 'foo.lock' ) ) _a : List[Any] = FileLock(str(tmpdir / 'foo.lock' ) ) _a : Any = 0.01 with locka.acquire(): with pytest.raises(__a ): _a : int = time.time() locka.acquire(__a ) assert time.time() - _start > timeout def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Dict = 'a' * 1_0_0_0 + '.lock' _a : int = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('.lock' ) assert not locka._lock_file.endswith(__a ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 _a : Dict = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__a ): locka.acquire(0 )
5
0
'''simple docstring''' def UpperCAmelCase_ (__a : list ): """simple docstring""" if len(lowerCamelCase_ ) <= 1: return [tuple(lowerCamelCase_ )] _a : List[str] = [] def generate(__a : int , __a : list ): _a : int = [0] * n res.append(tuple(lowerCamelCase_ ) ) _a : int = 0 while i < n: if c[i] < i: if i % 2 == 0: _a : Optional[int] = arr[i], arr[0] else: _a : Optional[Any] = arr[i], arr[c[i]] res.append(tuple(lowerCamelCase_ ) ) c[i] += 1 _a : int = 0 else: _a : List[str] = 0 i += 1 generate(len(lowerCamelCase_ ) , lowerCamelCase_ ) return res if __name__ == "__main__": __lowerCAmelCase = input("""Enter numbers separated by a comma:\n""").strip() __lowerCAmelCase = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
355
'''simple docstring''' def UpperCAmelCase_ (__a : int = 1_0**1_2 ): """simple docstring""" _a : List[str] = 1 _a : Optional[int] = 0 _a : Any = 1 _a : List[str] = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f'''{solution() = }''')
5
0
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Optional[Any] = inspect.getfile(accelerate.test_utils ) _a : Dict = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 _a : Tuple = test_metrics @require_cpu def __lowercase ( self : Tuple ): '''simple docstring''' debug_launcher(self.test_metrics.main ,num_processes=1 ) @require_cpu def __lowercase ( self : List[Any] ): '''simple docstring''' debug_launcher(self.test_metrics.main ) @require_single_gpu def __lowercase ( self : Union[str, Any] ): '''simple docstring''' self.test_metrics.main() @require_multi_gpu def __lowercase ( self : Tuple ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) _a : Any = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() )
356
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __lowerCAmelCase = { """vocab_file""": {"""mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"""}, """tokenizer_file""": { """mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json""" }, } __lowerCAmelCase = {"""mobilebert-uncased""": 5_1_2} __lowerCAmelCase = {} class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Any = VOCAB_FILES_NAMES __UpperCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Tuple = PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Optional[Any] = MobileBertTokenizer def __init__( self : Dict ,_a : List[Any]=None ,_a : Optional[Any]=None ,_a : Union[str, Any]=True ,_a : Dict="[UNK]" ,_a : Union[str, Any]="[SEP]" ,_a : Any="[PAD]" ,_a : Optional[int]="[CLS]" ,_a : Optional[Any]="[MASK]" ,_a : Dict=True ,_a : Any=None ,**_a : Optional[Any] ,): '''simple docstring''' super().__init__( _a ,tokenizer_file=_a ,do_lower_case=_a ,unk_token=_a ,sep_token=_a ,pad_token=_a ,cls_token=_a ,mask_token=_a ,tokenize_chinese_chars=_a ,strip_accents=_a ,**_a ,) _a : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,_a ) != do_lower_case or normalizer_state.get('strip_accents' ,_a ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,_a ) != tokenize_chinese_chars ): _a : Optional[Any] = getattr(_a ,normalizer_state.pop('type' ) ) _a : Dict = do_lower_case _a : str = strip_accents _a : Tuple = tokenize_chinese_chars _a : Optional[Any] = normalizer_class(**_a ) _a : str = do_lower_case def __lowercase ( self : Tuple ,_a : Union[str, Any] ,_a : List[str]=None ): '''simple docstring''' _a : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowercase ( self : List[str] ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' _a : List[str] = [self.sep_token_id] _a : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowercase ( self : Union[str, Any] ,_a : str ,_a : Optional[str] = None ): '''simple docstring''' _a : int = self._tokenizer.model.save(_a ,name=_a ) return tuple(_a )
5
0
'''simple docstring''' import fire from utils import calculate_rouge, save_json def UpperCAmelCase_ (__a : Optional[Any] , __a : List[str] , __a : Union[str, Any]=None , **__a : Tuple ): """simple docstring""" _a : Optional[Any] = [x.strip() for x in open(_A ).readlines()] _a : Dict = [x.strip() for x in open(_A ).readlines()][: len(_A )] _a : Optional[Any] = calculate_rouge(_A , _A , **_A ) if save_path is not None: save_json(_A , _A , indent=_A ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
357
'''simple docstring''' def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : List[Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" _a : Optional[int] = '' _a : List[str] = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__a ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _a, _a : Optional[int] = 0, 0 # length[i] shows the length of palindromic substring with center i _a : Optional[Any] = [1 for i in range(len(__a ) )] # for each character in new_string find corresponding palindromic string _a : Dict = 0 for j in range(len(__a ) ): _a : Dict = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__a ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _a : Optional[int] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _a : str = j - k + 1 # noqa: E741 _a : Any = j + k - 1 # update max_length and start position if max_length < length[j]: _a : Union[str, Any] = length[j] _a : List[str] = j # create that string _a : Tuple = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
5
0
'''simple docstring''' import os def UpperCAmelCase_ (__a : List[Any] = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(lowerCAmelCase__ ) , lowerCAmelCase__ ) ) as input_file: _a : int = [ [int(lowerCAmelCase__ ) for element in line.split(',' )] for line in input_file.readlines() ] _a : Tuple = len(lowerCAmelCase__ ) _a : List[Any] = len(matrix[0] ) _a : List[str] = [[-1 for _ in range(lowerCAmelCase__ )] for _ in range(lowerCAmelCase__ )] for i in range(lowerCAmelCase__ ): _a : List[Any] = matrix[i][0] for j in range(1 , lowerCAmelCase__ ): for i in range(lowerCAmelCase__ ): _a : Union[str, Any] = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , lowerCAmelCase__ ): _a : Union[str, Any] = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): _a : str = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
358
'''simple docstring''' from functools import lru_cache @lru_cache def UpperCAmelCase_ (__a : int ): """simple docstring""" if num < 0: raise ValueError('Number should not be negative.' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
0
'''simple docstring''' import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { """kakaobrain/align-base""": """https://huggingface.co/kakaobrain/align-base/resolve/main/config.json""", } class UpperCAmelCase__ ( __a ): """simple docstring""" __UpperCAmelCase : Tuple = """align_text_model""" def __init__( self : Union[str, Any] ,_a : Union[str, Any]=3_0522 ,_a : Union[str, Any]=768 ,_a : Optional[Any]=12 ,_a : Optional[int]=12 ,_a : Union[str, Any]=3072 ,_a : Optional[Any]="gelu" ,_a : Optional[int]=0.1 ,_a : List[str]=0.1 ,_a : str=512 ,_a : List[Any]=2 ,_a : Optional[Any]=0.02 ,_a : Optional[int]=1E-12 ,_a : Optional[int]=0 ,_a : Union[str, Any]="absolute" ,_a : Union[str, Any]=True ,**_a : Union[str, Any] ,): '''simple docstring''' super().__init__(**a__ ) _a : int = vocab_size _a : List[Any] = hidden_size _a : Union[str, Any] = num_hidden_layers _a : str = num_attention_heads _a : Optional[Any] = hidden_act _a : Any = intermediate_size _a : Optional[int] = hidden_dropout_prob _a : Tuple = attention_probs_dropout_prob _a : List[str] = max_position_embeddings _a : Tuple = type_vocab_size _a : List[str] = initializer_range _a : List[Any] = layer_norm_eps _a : Optional[Any] = position_embedding_type _a : int = use_cache _a : List[Any] = pad_token_id @classmethod def __lowercase ( cls : Dict ,_a : Union[str, os.PathLike] ,**_a : List[str] ): '''simple docstring''' cls._set_token_in_kwargs(a__ ) _a, _a : Dict = cls.get_config_dict(a__ ,**a__ ) # get the text config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": _a : Optional[int] = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(a__ ,**a__ ) class UpperCAmelCase__ ( __a ): """simple docstring""" __UpperCAmelCase : Optional[int] = """align_vision_model""" def __init__( self : Union[str, Any] ,_a : int = 3 ,_a : int = 600 ,_a : float = 2.0 ,_a : float = 3.1 ,_a : int = 8 ,_a : List[int] = [3, 3, 5, 3, 5, 5, 3] ,_a : List[int] = [32, 16, 24, 40, 80, 112, 192] ,_a : List[int] = [16, 24, 40, 80, 112, 192, 320] ,_a : List[int] = [] ,_a : List[int] = [1, 2, 2, 2, 1, 2, 1] ,_a : List[int] = [1, 2, 2, 3, 3, 4, 1] ,_a : List[int] = [1, 6, 6, 6, 6, 6, 6] ,_a : float = 0.25 ,_a : str = "swish" ,_a : int = 2560 ,_a : str = "mean" ,_a : float = 0.02 ,_a : float = 0.001 ,_a : float = 0.99 ,_a : float = 0.2 ,**_a : int ,): '''simple docstring''' super().__init__(**a__ ) _a : List[Any] = num_channels _a : Tuple = image_size _a : List[str] = width_coefficient _a : Any = depth_coefficient _a : Any = depth_divisor _a : Union[str, Any] = kernel_sizes _a : List[Any] = in_channels _a : Any = out_channels _a : Tuple = depthwise_padding _a : Union[str, Any] = strides _a : Optional[Any] = num_block_repeats _a : Optional[Any] = expand_ratios _a : List[str] = squeeze_expansion_ratio _a : Union[str, Any] = hidden_act _a : Optional[int] = hidden_dim _a : Any = pooling_type _a : Optional[int] = initializer_range _a : Dict = batch_norm_eps _a : Any = batch_norm_momentum _a : Dict = drop_connect_rate _a : Tuple = sum(a__ ) * 4 @classmethod def __lowercase ( cls : Optional[int] ,_a : Union[str, os.PathLike] ,**_a : List[str] ): '''simple docstring''' cls._set_token_in_kwargs(a__ ) _a, _a : List[Any] = cls.get_config_dict(a__ ,**a__ ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": _a : Optional[int] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(a__ ,**a__ ) class UpperCAmelCase__ ( __a ): """simple docstring""" __UpperCAmelCase : Tuple = """align""" __UpperCAmelCase : Dict = True def __init__( self : List[str] ,_a : List[str]=None ,_a : Optional[int]=None ,_a : int=640 ,_a : Any=1.0 ,_a : Optional[int]=0.02 ,**_a : str ,): '''simple docstring''' super().__init__(**a__ ) if text_config is None: _a : Tuple = {} logger.info('text_config is None. Initializing the AlignTextConfig with default values.' ) if vision_config is None: _a : Optional[Any] = {} logger.info('vision_config is None. Initializing the AlignVisionConfig with default values.' ) _a : str = AlignTextConfig(**a__ ) _a : Optional[Any] = AlignVisionConfig(**a__ ) _a : Optional[int] = projection_dim _a : Any = temperature_init_value _a : Dict = initializer_range @classmethod def __lowercase ( cls : Tuple ,_a : AlignTextConfig ,_a : AlignVisionConfig ,**_a : str ): '''simple docstring''' return cls(text_config=text_config.to_dict() ,vision_config=vision_config.to_dict() ,**a__ ) def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Optional[Any] = copy.deepcopy(self.__dict__ ) _a : Union[str, Any] = self.text_config.to_dict() _a : str = self.vision_config.to_dict() _a : int = self.__class__.model_type return output
359
'''simple docstring''' import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib __lowerCAmelCase = threading.Lock() __lowerCAmelCase = None __lowerCAmelCase = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } __lowerCAmelCase = logging.WARNING __lowerCAmelCase = True def UpperCAmelCase_ (): """simple docstring""" _a : Dict = os.getenv('TRANSFORMERS_VERBOSITY' , __a ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def UpperCAmelCase_ (): """simple docstring""" return __name__.split('.' )[0] def UpperCAmelCase_ (): """simple docstring""" return logging.getLogger(_get_library_name() ) def UpperCAmelCase_ (): """simple docstring""" global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _a : str = logging.StreamHandler() # Set sys.stderr as stream. _a : Optional[Any] = sys.stderr.flush # Apply our default configuration to the library root logger. _a : List[Any] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) _a : List[str] = False def UpperCAmelCase_ (): """simple docstring""" global _default_handler with _lock: if not _default_handler: return _a : int = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) _a : str = None def UpperCAmelCase_ (): """simple docstring""" return log_levels def UpperCAmelCase_ (__a : Optional[str] = None ): """simple docstring""" if name is None: _a : List[Any] = _get_library_name() _configure_library_root_logger() return logging.getLogger(__a ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def UpperCAmelCase_ (__a : int ): """simple docstring""" _configure_library_root_logger() _get_library_root_logger().setLevel(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def UpperCAmelCase_ (__a : logging.Handler ): """simple docstring""" _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(__a ) def UpperCAmelCase_ (__a : logging.Handler ): """simple docstring""" _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(__a ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() _a : Union[str, Any] = False def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() _a : Dict = True def UpperCAmelCase_ (): """simple docstring""" _a : Any = _get_library_root_logger().handlers for handler in handlers: _a : Union[str, Any] = logging.Formatter('[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s' ) handler.setFormatter(__a ) def UpperCAmelCase_ (): """simple docstring""" _a : Union[str, Any] = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(__a ) def UpperCAmelCase_ (self : Union[str, Any] , *__a : Union[str, Any] , **__a : Union[str, Any] ): """simple docstring""" _a : Union[str, Any] = os.getenv('TRANSFORMERS_NO_ADVISORY_WARNINGS' , __a ) if no_advisory_warnings: return self.warning(*__a , **__a ) __lowerCAmelCase = warning_advice @functools.lru_cache(__a ) def UpperCAmelCase_ (self : int , *__a : Optional[Any] , **__a : Any ): """simple docstring""" self.warning(*__a , **__a ) __lowerCAmelCase = warning_once class UpperCAmelCase__ : """simple docstring""" def __init__( self : Any ,*_a : Tuple ,**_a : int ): # pylint: disable=unused-argument '''simple docstring''' _a : int = args[0] if args else None def __iter__( self : str ): '''simple docstring''' return iter(self._iterator ) def __getattr__( self : List[Any] ,_a : int ): '''simple docstring''' def empty_fn(*_a : Optional[Any] ,**_a : Any ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : List[str] ): '''simple docstring''' return self def __exit__( self : List[str] ,_a : str ,_a : List[Any] ,_a : str ): '''simple docstring''' return class UpperCAmelCase__ : """simple docstring""" def __call__( self : Union[str, Any] ,*_a : Tuple ,**_a : Tuple ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm(*_a ,**_a ) else: return EmptyTqdm(*_a ,**_a ) def __lowercase ( self : str ,*_a : List[Any] ,**_a : Any ): '''simple docstring''' _a : Any = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_a ,**_a ) def __lowercase ( self : List[str] ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() __lowerCAmelCase = _tqdm_cls() def UpperCAmelCase_ (): """simple docstring""" global _tqdm_active return bool(_tqdm_active ) def UpperCAmelCase_ (): """simple docstring""" global _tqdm_active _a : str = True hf_hub_utils.enable_progress_bars() def UpperCAmelCase_ (): """simple docstring""" global _tqdm_active _a : Dict = False hf_hub_utils.disable_progress_bars()
5
0
'''simple docstring''' import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase__ ( lowerCamelCase__ ): """simple docstring""" __UpperCAmelCase : List[Any] = (UnCLIPScheduler,) def __lowercase ( self : Optional[int] ,**_a : Union[str, Any] ): '''simple docstring''' _a : int = { '''num_train_timesteps''': 1000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**__A ) return config def __lowercase ( self : Tuple ): '''simple docstring''' for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=__A ) def __lowercase ( self : List[Any] ): '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=__A ) def __lowercase ( self : Optional[int] ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__A ) def __lowercase ( self : Dict ): '''simple docstring''' for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=__A ) def __lowercase ( self : int ): '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=__A ) def __lowercase ( self : int ): '''simple docstring''' for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=__A ,prev_timestep=__A ) def __lowercase ( self : int ): '''simple docstring''' _a : List[Any] = self.scheduler_classes[0] _a : List[Any] = self.get_scheduler_config(variance_type='fixed_small_log' ) _a : List[Any] = scheduler_class(**__A ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1E-5 def __lowercase ( self : int ): '''simple docstring''' _a : Union[str, Any] = self.scheduler_classes[0] _a : List[Any] = self.get_scheduler_config(variance_type='learned_range' ) _a : str = scheduler_class(**__A ) _a : int = 0.5 assert scheduler._get_variance(1 ,predicted_variance=__A ) - -10.171_2790 < 1E-5 assert scheduler._get_variance(487 ,predicted_variance=__A ) - -5.799_8052 < 1E-5 assert scheduler._get_variance(999 ,predicted_variance=__A ) - -0.001_0011 < 1E-5 def __lowercase ( self : List[str] ): '''simple docstring''' _a : str = self.scheduler_classes[0] _a : List[Any] = self.get_scheduler_config() _a : Optional[int] = scheduler_class(**__A ) _a : int = scheduler.timesteps _a : Tuple = self.dummy_model() _a : int = self.dummy_sample_deter _a : Optional[Any] = torch.manual_seed(0 ) for i, t in enumerate(__A ): # 1. predict noise residual _a : Optional[int] = model(__A ,__A ) # 2. predict previous mean of sample x_t-1 _a : Optional[int] = scheduler.step(__A ,__A ,__A ,generator=__A ).prev_sample _a : List[Any] = pred_prev_sample _a : int = torch.sum(torch.abs(__A ) ) _a : Tuple = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1E-2 assert abs(result_mean.item() - 0.328_4743 ) < 1E-3 def __lowercase ( self : Tuple ): '''simple docstring''' _a : int = self.scheduler_classes[0] _a : Tuple = self.get_scheduler_config() _a : Union[str, Any] = scheduler_class(**__A ) scheduler.set_timesteps(25 ) _a : Dict = scheduler.timesteps _a : int = self.dummy_model() _a : Optional[int] = self.dummy_sample_deter _a : Any = torch.manual_seed(0 ) for i, t in enumerate(__A ): # 1. predict noise residual _a : str = model(__A ,__A ) if i + 1 == timesteps.shape[0]: _a : Optional[int] = None else: _a : List[str] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _a : Any = scheduler.step( __A ,__A ,__A ,prev_timestep=__A ,generator=__A ).prev_sample _a : List[Any] = pred_prev_sample _a : Tuple = torch.sum(torch.abs(__A ) ) _a : Optional[int] = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1E-2 assert abs(result_mean.item() - 0.336_2038 ) < 1E-3 def __lowercase ( self : List[str] ): '''simple docstring''' pass def __lowercase ( self : List[Any] ): '''simple docstring''' pass
360
'''simple docstring''' def UpperCAmelCase_ (__a : list[int] , __a : list[int] ): """simple docstring""" if not len(__a ) == len(__a ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients _a, _a, _a : Tuple = equationa _a, _a, _a : str = equationa # Calculate the determinants of the matrices _a : Union[str, Any] = aa * ba - aa * ba _a : List[Any] = ca * ba - ca * ba _a : List[Any] = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _a : int = determinant_x / determinant _a : List[str] = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
5
0
'''simple docstring''' import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification __lowerCAmelCase = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co __lowerCAmelCase = """main""" # Default branch name __lowerCAmelCase = """f2c752cfc5c0ab6f4bdec59acea69eefbee381c2""" # One particular commit (not the top of `main`) __lowerCAmelCase = """aaaaaaa""" # This commit does not exist, so we should 404. __lowerCAmelCase = """d9e9f15bc825e4b2c9249e9578f884bbcb5e3684""" # Sha-1 of config.json on the top of `main`, for checking purposes __lowerCAmelCase = """4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3""" @contextlib.contextmanager def UpperCAmelCase_ (): """simple docstring""" print('Welcome!' ) yield print('Bye!' ) @contextlib.contextmanager def UpperCAmelCase_ (): """simple docstring""" print('Bonjour!' ) yield print('Au revoir!' ) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : List[str] ): '''simple docstring''' assert transformers.__spec__ is not None assert importlib.util.find_spec('transformers' ) is not None class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @unittest.mock.patch('sys.stdout' ,new_callable=io.StringIO ) def __lowercase ( self : List[Any] ,_a : Optional[Any] ): '''simple docstring''' with ContextManagers([] ): print('Transformers are awesome!' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() ,'Transformers are awesome!\n' ) @unittest.mock.patch('sys.stdout' ,new_callable=io.StringIO ) def __lowercase ( self : Any ,_a : Tuple ): '''simple docstring''' with ContextManagers([context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() ,'Welcome!\nTransformers are awesome!\nBye!\n' ) @unittest.mock.patch('sys.stdout' ,new_callable=io.StringIO ) def __lowercase ( self : Dict ,_a : Union[str, Any] ): '''simple docstring''' with ContextManagers([context_fr(), context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() ,'Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n' ) @require_torch def __lowercase ( self : Optional[Any] ): '''simple docstring''' self.assertEqual(find_labels(__a ) ,['labels'] ) self.assertEqual(find_labels(__a ) ,['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(__a ) ,['start_positions', 'end_positions'] ) class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" pass self.assertEqual(find_labels(__a ) ,['labels'] ) @require_tf def __lowercase ( self : List[Any] ): '''simple docstring''' self.assertEqual(find_labels(__a ) ,['labels'] ) self.assertEqual(find_labels(__a ) ,['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(__a ) ,['start_positions', 'end_positions'] ) class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" pass self.assertEqual(find_labels(__a ) ,['labels'] ) @require_flax def __lowercase ( self : Union[str, Any] ): '''simple docstring''' self.assertEqual(find_labels(__a ) ,[] ) self.assertEqual(find_labels(__a ) ,[] ) self.assertEqual(find_labels(__a ) ,[] ) class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" pass self.assertEqual(find_labels(__a ) ,[] )
361
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase__ : """simple docstring""" def __init__( self : int ,_a : List[str] ,_a : Optional[Any]=13 ,_a : str=30 ,_a : str=2 ,_a : Union[str, Any]=3 ,_a : Optional[Any]=True ,_a : int=True ,_a : Union[str, Any]=32 ,_a : List[Any]=5 ,_a : Union[str, Any]=4 ,_a : int=37 ,_a : Any="gelu" ,_a : Union[str, Any]=0.1 ,_a : str=0.1 ,_a : List[str]=10 ,_a : Dict=0.02 ,_a : Tuple=None ,): '''simple docstring''' _a : Any = parent _a : int = batch_size _a : List[Any] = image_size _a : Optional[int] = patch_size _a : List[str] = num_channels _a : Dict = is_training _a : Dict = use_labels _a : Optional[Any] = hidden_size _a : str = num_hidden_layers _a : Optional[int] = num_attention_heads _a : Dict = intermediate_size _a : Union[str, Any] = hidden_act _a : List[str] = hidden_dropout_prob _a : Any = attention_probs_dropout_prob _a : List[str] = type_sequence_label_size _a : int = initializer_range _a : List[Any] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _a : Union[str, Any] = (image_size // patch_size) ** 2 _a : Tuple = num_patches + 1 def __lowercase ( self : Any ): '''simple docstring''' _a : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : str = None if self.use_labels: _a : Tuple = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _a : List[str] = self.get_config() return config, pixel_values, labels def __lowercase ( self : Optional[int] ): '''simple docstring''' return ViTMSNConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,initializer_range=self.initializer_range ,) def __lowercase ( self : Tuple ,_a : Any ,_a : List[Any] ,_a : int ): '''simple docstring''' _a : str = ViTMSNModel(config=_a ) model.to(_a ) model.eval() _a : int = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : List[Any] ,_a : str ,_a : Tuple ,_a : Dict ): '''simple docstring''' _a : Tuple = self.type_sequence_label_size _a : int = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _a : Dict = model(_a ,labels=_a ) print('Pixel and labels shape: {pixel_values.shape}, {labels.shape}' ) print('Labels: {labels}' ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _a : int = 1 _a : Optional[Any] = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _a : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a : Optional[int] = model(_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[int] = self.prepare_config_and_inputs() _a, _a, _a : int = config_and_inputs _a : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __UpperCAmelCase : List[Any] = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase : str = False __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = False def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : List[str] = ViTMSNModelTester(self ) _a : Optional[int] = ConfigTester(self ,config_class=_a ,has_text_modality=_a ,hidden_size=37 ) def __lowercase ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViTMSN does not use inputs_embeds' ) def __lowercase ( self : List[str] ): '''simple docstring''' pass def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a, _a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[Any] = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _a : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a ,nn.Linear ) ) def __lowercase ( self : Any ): '''simple docstring''' _a, _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[str] = model_class(_a ) _a : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : List[Any] = [*signature.parameters.keys()] _a : int = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_a ) def __lowercase ( self : List[str] ): '''simple docstring''' _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __lowercase ( self : int ): '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Dict = ViTMSNModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def UpperCAmelCase_ (): """simple docstring""" _a : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained('facebook/vit-msn-small' ) if is_vision_available() else None @slow def __lowercase ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(2 ) _a : List[str] = ViTMSNForImageClassification.from_pretrained('facebook/vit-msn-small' ).to(_a ) _a : List[str] = self.default_image_processor _a : int = prepare_img() _a : Tuple = image_processor(images=_a ,return_tensors='pt' ).to(_a ) # forward pass with torch.no_grad(): _a : Optional[int] = model(**_a ) # verify the logits _a : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,_a ) _a : List[Any] = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_a ,atol=1E-4 ) )
5
0
'''simple docstring''' import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def UpperCAmelCase_ (__a : Tuple , __a : Union[str, Any] ): """simple docstring""" _a : Union[str, Any] = checkpoint _a : Union[str, Any] = {} _a : Tuple = vae_state_dict['encoder.conv_in.weight'] _a : Dict = vae_state_dict['encoder.conv_in.bias'] _a : Optional[int] = vae_state_dict['encoder.conv_out.weight'] _a : List[Any] = vae_state_dict['encoder.conv_out.bias'] _a : Tuple = vae_state_dict['encoder.norm_out.weight'] _a : Tuple = vae_state_dict['encoder.norm_out.bias'] _a : Tuple = vae_state_dict['decoder.conv_in.weight'] _a : int = vae_state_dict['decoder.conv_in.bias'] _a : str = vae_state_dict['decoder.conv_out.weight'] _a : str = vae_state_dict['decoder.conv_out.bias'] _a : Any = vae_state_dict['decoder.norm_out.weight'] _a : List[Any] = vae_state_dict['decoder.norm_out.bias'] _a : List[str] = vae_state_dict['quant_conv.weight'] _a : str = vae_state_dict['quant_conv.bias'] _a : Optional[int] = vae_state_dict['post_quant_conv.weight'] _a : Optional[int] = vae_state_dict['post_quant_conv.bias'] # Retrieves the keys for the encoder down blocks only _a : List[Any] = len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'encoder.down' in layer} ) _a : List[str] = { layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(UpperCAmelCase__ ) } # Retrieves the keys for the decoder up blocks only _a : Dict = len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'decoder.up' in layer} ) _a : Any = { layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(UpperCAmelCase__ ) } for i in range(UpperCAmelCase__ ): _a : Any = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key] if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: _a : Tuple = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.weight""" ) _a : int = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.bias""" ) _a : Optional[Any] = renew_vae_resnet_paths(UpperCAmelCase__ ) _a : str = {'old': f"""down.{i}.block""", 'new': f"""down_blocks.{i}.resnets"""} assign_to_checkpoint(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , additional_replacements=[meta_path] , config=UpperCAmelCase__ ) _a : Optional[int] = [key for key in vae_state_dict if 'encoder.mid.block' in key] _a : Any = 2 for i in range(1 , num_mid_res_blocks + 1 ): _a : Dict = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key] _a : Dict = renew_vae_resnet_paths(UpperCAmelCase__ ) _a : str = {'old': f"""mid.block_{i}""", 'new': f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , additional_replacements=[meta_path] , config=UpperCAmelCase__ ) _a : List[Any] = [key for key in vae_state_dict if 'encoder.mid.attn' in key] _a : Union[str, Any] = renew_vae_attention_paths(UpperCAmelCase__ ) _a : int = {'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'} assign_to_checkpoint(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , additional_replacements=[meta_path] , config=UpperCAmelCase__ ) conv_attn_to_linear(UpperCAmelCase__ ) for i in range(UpperCAmelCase__ ): _a : Union[str, Any] = num_up_blocks - 1 - i _a : Dict = [ key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key ] if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: _a : str = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.weight""" ] _a : str = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.bias""" ] _a : Any = renew_vae_resnet_paths(UpperCAmelCase__ ) _a : List[Any] = {'old': f"""up.{block_id}.block""", 'new': f"""up_blocks.{i}.resnets"""} assign_to_checkpoint(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , additional_replacements=[meta_path] , config=UpperCAmelCase__ ) _a : List[Any] = [key for key in vae_state_dict if 'decoder.mid.block' in key] _a : List[Any] = 2 for i in range(1 , num_mid_res_blocks + 1 ): _a : Tuple = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key] _a : Tuple = renew_vae_resnet_paths(UpperCAmelCase__ ) _a : Union[str, Any] = {'old': f"""mid.block_{i}""", 'new': f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , additional_replacements=[meta_path] , config=UpperCAmelCase__ ) _a : List[Any] = [key for key in vae_state_dict if 'decoder.mid.attn' in key] _a : Any = renew_vae_attention_paths(UpperCAmelCase__ ) _a : Optional[Any] = {'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'} assign_to_checkpoint(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , additional_replacements=[meta_path] , config=UpperCAmelCase__ ) conv_attn_to_linear(UpperCAmelCase__ ) return new_checkpoint def UpperCAmelCase_ (__a : int , __a : Dict , ): """simple docstring""" _a : Union[str, Any] = requests.get( ' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml' ) _a : Union[str, Any] = io.BytesIO(r.content ) _a : str = OmegaConf.load(UpperCAmelCase__ ) _a : Optional[int] = 5_1_2 _a : Union[str, Any] = 'cuda' if torch.cuda.is_available() else 'cpu' if checkpoint_path.endswith('safetensors' ): from safetensors import safe_open _a : Optional[Any] = {} with safe_open(UpperCAmelCase__ , framework='pt' , device='cpu' ) as f: for key in f.keys(): _a : Dict = f.get_tensor(UpperCAmelCase__ ) else: _a : str = torch.load(UpperCAmelCase__ , map_location=UpperCAmelCase__ )['state_dict'] # Convert the VAE model. _a : Dict = create_vae_diffusers_config(UpperCAmelCase__ , image_size=UpperCAmelCase__ ) _a : str = custom_convert_ldm_vae_checkpoint(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Tuple = AutoencoderKL(**UpperCAmelCase__ ) vae.load_state_dict(UpperCAmelCase__ ) vae.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--vae_pt_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") __lowerCAmelCase = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
362
'''simple docstring''' import requests from bsa import BeautifulSoup def UpperCAmelCase_ (__a : str = "https://www.worldometers.info/coronavirus" ): """simple docstring""" _a : List[str] = BeautifulSoup(requests.get(__a ).text , 'html.parser' ) _a : Dict = soup.findAll('h1' ) _a : Union[str, Any] = soup.findAll('div' , {'class': 'maincounter-number'} ) keys += soup.findAll('span' , {'class': 'panel-title'} ) values += soup.findAll('div' , {'class': 'number-table-main'} ) return {key.text.strip(): value.text.strip() for key, value in zip(__a , __a )} if __name__ == "__main__": print("""\033[1m""" + """COVID-19 Status of the World""" + """\033[0m\n""") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
5
0
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class UpperCAmelCase__ : """simple docstring""" def __init__( self : Any ,_a : str ): '''simple docstring''' _a : List[str] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _a : Dict = len(_A ) - 1 def __lowercase ( self : List[str] ,_a : Any ): '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." _a : Union[str, Any] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree ,_A ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(_A ) ,5 ) == 1 return output_values def __lowercase ( self : Tuple ,_a : Tuple ): '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." _a : int = self.basis_function(_A ) _a : List[str] = 0.0 _a : Dict = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def __lowercase ( self : Dict ,_a : Any = 0.01 ): '''simple docstring''' from matplotlib import pyplot as plt # type: ignore _a : Dict = [] # x coordinates of points to plot _a : Optional[Any] = [] # y coordinates of points to plot _a : Tuple = 0.0 while t <= 1: _a : List[Any] = self.bezier_curve_function(_A ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size _a : Any = [i[0] for i in self.list_of_points] _a : Union[str, Any] = [i[1] for i in self.list_of_points] plt.plot( _A ,_A ,color='blue' ,label='Curve of Degree ' + str(self.degree ) ,) plt.scatter(_A ,_A ,color='red' ,label='Control Points' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
363
'''simple docstring''' import argparse from collections import defaultdict import yaml __lowerCAmelCase = """docs/source/en/_toctree.yml""" def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Any = defaultdict(__a ) for doc in model_doc: counts[doc["local"]] += 1 _a : List[str] = [key for key, value in counts.items() if value > 1] _a : str = [] for duplicate_key in duplicates: _a : Union[str, Any] = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(__a ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(__a , key=lambda __a : s["title"].lower() ) def UpperCAmelCase_ (__a : Optional[int]=False ): """simple docstring""" with open(__a , encoding='utf-8' ) as f: _a : Tuple = yaml.safe_load(f.read() ) # Get to the API doc _a : Union[str, Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 _a : Union[str, Any] = content[api_idx]['sections'] # Then to the model doc _a : List[str] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 _a : List[str] = api_doc[model_idx]['sections'] _a : List[Any] = [(idx, section) for idx, section in enumerate(__a ) if 'sections' in section] _a : Tuple = False for idx, modality_doc in modalities_docs: _a : List[Any] = modality_doc['sections'] _a : Any = clean_model_doc_toc(__a ) if old_modality_doc != new_modality_doc: _a : Union[str, Any] = True if overwrite: _a : str = new_modality_doc if diff: if overwrite: _a : Dict = model_doc _a : Dict = api_doc with open(__a , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(__a , allow_unicode=__a ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") __lowerCAmelCase = parser.parse_args() check_model_doc(args.fix_and_overwrite)
5
0
'''simple docstring''' import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def UpperCAmelCase_ (__a : Dict ): """simple docstring""" _a : Optional[Any] = int(snake_case__ ) _a : int = t // 3_6_0_0, (t // 6_0) % 6_0, t % 6_0 return f"""{h}:{m:02d}:{s:02d}""" if h != 0 else f"""{m:02d}:{s:02d}""" def UpperCAmelCase_ (__a : Union[str, Any] , __a : List[Any] , __a : int , __a : Optional[int] , __a : List[str]=3_0_0 ): """simple docstring""" return f""" <div> {prefix} <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress> {label} </div> """ def UpperCAmelCase_ (__a : Any ): """simple docstring""" _a : Dict = '<table border="1" class="dataframe">\n' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f""" <th>{i}</th>\n""" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: _a : List[str] = f"""{elt:.6f}""" if isinstance(snake_case__ , snake_case__ ) else str(snake_case__ ) html_code += f""" <td>{elt}</td>\n""" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class UpperCAmelCase__ : """simple docstring""" __UpperCAmelCase : str = 5 __UpperCAmelCase : Dict = 0.2 def __init__( self : Optional[Any] ,_a : Union[str, Any] ,_a : int = None ,_a : Optional[Any] = True ,_a : Optional[int] = None ,_a : Union[str, Any] = 300 ,): '''simple docstring''' _a : Dict = total _a : Union[str, Any] = '' if prefix is None else prefix _a : Optional[int] = leave _a : Any = parent _a : List[Any] = width _a : int = None _a : int = None _a : Dict = None def __lowercase ( self : str ,_a : int ,_a : Tuple = False ,_a : Tuple = None ): '''simple docstring''' _a : Optional[int] = value if comment is not None: _a : Any = comment if self.last_value is None: _a : str = time.time() _a : str = value _a : List[str] = None _a : Optional[int] = self.warmup _a : Optional[Any] = 1 self.update_bar(SCREAMING_SNAKE_CASE_ ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for ,self.total ): if self.first_calls > 0: self.first_calls -= 1 _a : List[str] = time.time() _a : str = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: _a : Optional[int] = self.elapsed_time / (value - self.start_value) else: _a : List[Any] = None if value >= self.total: _a : Any = self.total _a : Dict = None if not self.leave: self.close() elif self.average_time_per_item is not None: _a : List[Any] = self.average_time_per_item * (self.total - value) self.update_bar(SCREAMING_SNAKE_CASE_ ) _a : int = value _a : Tuple = current_time if self.average_time_per_item is None: _a : int = 1 else: _a : Optional[Any] = max(int(self.update_every / self.average_time_per_item ) ,1 ) def __lowercase ( self : Any ,_a : Tuple ,_a : Any=None ): '''simple docstring''' _a : List[Any] = ' ' * (len(str(self.total ) ) - len(str(SCREAMING_SNAKE_CASE_ ) )) + str(SCREAMING_SNAKE_CASE_ ) if self.elapsed_time is None: _a : Optional[int] = F"""[{spaced_value}/{self.total} : < :""" elif self.predicted_remaining is None: _a : int = F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )}""" else: _a : Any = ( F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <""" F""" {format_time(self.predicted_remaining )}""" ) self.label += F""", {1/self.average_time_per_item:.2f} it/s""" self.label += "]" if self.comment is None or len(self.comment ) == 0 else F""", {self.comment}]""" self.display() def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : int = html_progress_bar(self.value ,self.total ,self.prefix ,self.label ,self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: _a : Optional[int] = disp.display(disp.HTML(self.html_code ) ,display_id=SCREAMING_SNAKE_CASE_ ) else: self.output.update(disp.HTML(self.html_code ) ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' if self.parent is None and self.output is not None: self.output.update(disp.HTML('' ) ) class UpperCAmelCase__ ( a__ ): """simple docstring""" def __init__( self : Optional[int] ,_a : List[Any] ,_a : Optional[int]=None ): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ ) _a : str = None if column_names is None else [column_names] _a : Any = None def __lowercase ( self : str ): '''simple docstring''' _a : Optional[Any] = html_progress_bar(self.value ,self.total ,self.prefix ,self.label ,self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: _a : Union[str, Any] = disp.display(disp.HTML(self.html_code ) ,display_id=SCREAMING_SNAKE_CASE_ ) else: self.output.update(disp.HTML(self.html_code ) ) def __lowercase ( self : Any ,_a : Tuple ): '''simple docstring''' if self.inner_table is None: _a : List[str] = [list(values.keys() ), list(values.values() )] else: _a : int = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(SCREAMING_SNAKE_CASE_ ) _a : List[str] = columns self.inner_table.append([values[c] for c in columns] ) def __lowercase ( self : Any ,_a : Any ,_a : List[str]=None ,_a : Optional[Any]=300 ): '''simple docstring''' _a : Any = NotebookProgressBar(SCREAMING_SNAKE_CASE_ ,prefix=SCREAMING_SNAKE_CASE_ ,parent=self ,width=SCREAMING_SNAKE_CASE_ ) return self.child_bar def __lowercase ( self : Dict ): '''simple docstring''' _a : Optional[Any] = None self.display() class UpperCAmelCase__ ( a__ ): """simple docstring""" def __init__( self : Dict ): '''simple docstring''' _a : List[Any] = None _a : int = None _a : Union[str, Any] = False def __lowercase ( self : List[str] ,_a : List[Any] ,_a : Optional[Any] ,_a : Any ,**_a : int ): '''simple docstring''' _a : Dict = 'Epoch' if args.evaluation_strategy == IntervalStrategy.EPOCH else 'Step' _a : Optional[int] = 0 _a : Optional[int] = 0 _a : str = [self.first_column] + ['Training Loss'] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('Validation Loss' ) _a : List[Any] = NotebookTrainingTracker(state.max_steps ,SCREAMING_SNAKE_CASE_ ) def __lowercase ( self : Optional[Any] ,_a : Any ,_a : Any ,_a : Dict ,**_a : Optional[int] ): '''simple docstring''' _a : List[str] = int(state.epoch ) if int(state.epoch ) == state.epoch else F"""{state.epoch:.2f}""" self.training_tracker.update( state.global_step + 1 ,comment=F"""Epoch {epoch}/{state.num_train_epochs}""" ,force_update=self._force_next_update ,) _a : Optional[Any] = False def __lowercase ( self : List[str] ,_a : int ,_a : Dict ,_a : Optional[Any] ,_a : List[str]=None ,**_a : Tuple ): '''simple docstring''' if not has_length(SCREAMING_SNAKE_CASE_ ): return if self.prediction_bar is None: if self.training_tracker is not None: _a : Tuple = self.training_tracker.add_child(len(SCREAMING_SNAKE_CASE_ ) ) else: _a : Any = NotebookProgressBar(len(SCREAMING_SNAKE_CASE_ ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def __lowercase ( self : Dict ,_a : Tuple ,_a : Any ,_a : List[str] ,**_a : Dict ): '''simple docstring''' if self.prediction_bar is not None: self.prediction_bar.close() _a : Optional[Any] = None def __lowercase ( self : List[Any] ,_a : Tuple ,_a : Any ,_a : List[str] ,_a : str=None ,**_a : str ): '''simple docstring''' if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: _a : int = {'Training Loss': logs['loss']} # First column is necessarily Step sine we're not in epoch eval strategy _a : List[Any] = state.global_step self.training_tracker.write_line(SCREAMING_SNAKE_CASE_ ) def __lowercase ( self : Optional[int] ,_a : Dict ,_a : Any ,_a : Union[str, Any] ,_a : List[str]=None ,**_a : Optional[int] ): '''simple docstring''' if self.training_tracker is not None: _a : List[str] = {'Training Loss': 'No log', 'Validation Loss': 'No log'} for log in reversed(state.log_history ): if "loss" in log: _a : List[Any] = log['loss'] break if self.first_column == "Epoch": _a : Any = int(state.epoch ) else: _a : Optional[int] = state.global_step _a : List[str] = 'eval' for k in metrics: if k.endswith('_loss' ): _a : int = re.sub(R'\_loss$' ,'' ,SCREAMING_SNAKE_CASE_ ) _a : Union[str, Any] = metrics.pop('total_flos' ,SCREAMING_SNAKE_CASE_ ) _a : Any = metrics.pop('epoch' ,SCREAMING_SNAKE_CASE_ ) _a : int = metrics.pop(F"""{metric_key_prefix}_runtime""" ,SCREAMING_SNAKE_CASE_ ) _a : List[Any] = metrics.pop(F"""{metric_key_prefix}_samples_per_second""" ,SCREAMING_SNAKE_CASE_ ) _a : List[str] = metrics.pop(F"""{metric_key_prefix}_steps_per_second""" ,SCREAMING_SNAKE_CASE_ ) _a : str = metrics.pop(F"""{metric_key_prefix}_jit_compilation_time""" ,SCREAMING_SNAKE_CASE_ ) for k, v in metrics.items(): if k == F"""{metric_key_prefix}_loss""": _a : Tuple = v else: _a : List[str] = k.split('_' ) _a : Optional[Any] = ' '.join([part.capitalize() for part in splits[1:]] ) _a : Optional[int] = v self.training_tracker.write_line(SCREAMING_SNAKE_CASE_ ) self.training_tracker.remove_child() _a : Any = None # Evaluation takes a long time so we should force the next update. _a : Optional[int] = True def __lowercase ( self : int ,_a : Optional[int] ,_a : Any ,_a : Any ,**_a : Union[str, Any] ): '''simple docstring''' self.training_tracker.update( state.global_step ,comment=F"""Epoch {int(state.epoch )}/{state.num_train_epochs}""" ,force_update=SCREAMING_SNAKE_CASE_ ) _a : Dict = None
364
'''simple docstring''' from collections.abc import Generator from math import sin def UpperCAmelCase_ (__a : bytes ): """simple docstring""" if len(__a ) != 3_2: raise ValueError('Input must be of length 32' ) _a : Any = b'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def UpperCAmelCase_ (__a : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) _a : List[str] = format(__a , '08x' )[-8:] _a : str = b'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def UpperCAmelCase_ (__a : bytes ): """simple docstring""" _a : List[Any] = b'' for char in message: bit_string += format(__a , '08b' ).encode('utf-8' ) _a : int = format(len(__a ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__a ) % 5_1_2 != 4_4_8: bit_string += b"0" bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] ) return bit_string def UpperCAmelCase_ (__a : bytes ): """simple docstring""" if len(__a ) % 5_1_2 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(__a ) , 5_1_2 ): _a : List[Any] = bit_string[pos : pos + 5_1_2] _a : str = [] for i in range(0 , 5_1_2 , 3_2 ): block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) ) yield block_words def UpperCAmelCase_ (__a : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) _a : List[str] = format(__a , '032b' ) _a : int = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(__a , 2 ) def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" return (a + b) % 2**3_2 def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2 def UpperCAmelCase_ (__a : bytes ): """simple docstring""" _a : str = preprocess(__a ) _a : Optional[int] = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )] # Starting states _a : int = 0x67_45_23_01 _a : Union[str, Any] = 0xEF_CD_AB_89 _a : str = 0x98_BA_DC_FE _a : List[Any] = 0x10_32_54_76 _a : Optional[int] = [ 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__a ): _a : Union[str, Any] = aa _a : List[Any] = ba _a : List[Any] = ca _a : Dict = da # Hash current chunk for i in range(6_4 ): if i <= 1_5: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _a : Optional[int] = d ^ (b & (c ^ d)) _a : Optional[Any] = i elif i <= 3_1: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _a : Optional[Any] = c ^ (d & (b ^ c)) _a : Dict = (5 * i + 1) % 1_6 elif i <= 4_7: _a : Optional[Any] = b ^ c ^ d _a : Dict = (3 * i + 5) % 1_6 else: _a : int = c ^ (b | not_aa(__a )) _a : List[str] = (7 * i) % 1_6 _a : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**3_2 _a : Union[str, Any] = d _a : Tuple = c _a : Optional[int] = b _a : Union[str, Any] = sum_aa(__a , left_rotate_aa(__a , shift_amounts[i] ) ) # Add hashed chunk to running total _a : Any = sum_aa(__a , __a ) _a : Dict = sum_aa(__a , __a ) _a : Union[str, Any] = sum_aa(__a , __a ) _a : str = sum_aa(__a , __a ) _a : Optional[Any] = reformat_hex(__a ) + reformat_hex(__a ) + reformat_hex(__a ) + reformat_hex(__a ) return digest if __name__ == "__main__": import doctest doctest.testmod()
5
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase : Dict = 42 class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : str ,_a : Any=3 ,_a : List[Any]=3 ,_a : Union[str, Any]=("DownEncoderBlock2D",) ,_a : List[Any]=(64,) ,_a : Optional[Any]=2 ,_a : Dict=32 ,_a : List[Any]="silu" ,_a : Union[str, Any]=True ,): '''simple docstring''' super().__init__() _a : Optional[Any] = layers_per_block _a : Tuple = torch.nn.Convad( _a ,block_out_channels[0] ,kernel_size=3 ,stride=1 ,padding=1 ,) _a : Tuple = None _a : Any = nn.ModuleList([] ) # down _a : Union[str, Any] = block_out_channels[0] for i, down_block_type in enumerate(_a ): _a : Any = output_channel _a : str = block_out_channels[i] _a : Tuple = i == len(_a ) - 1 _a : List[str] = get_down_block( _a ,num_layers=self.layers_per_block ,in_channels=_a ,out_channels=_a ,add_downsample=not is_final_block ,resnet_eps=1E-6 ,downsample_padding=0 ,resnet_act_fn=_a ,resnet_groups=_a ,attention_head_dim=_a ,temb_channels=_a ,) self.down_blocks.append(_a ) # mid _a : List[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1E-6 ,resnet_act_fn=_a ,output_scale_factor=1 ,resnet_time_scale_shift='default' ,attention_head_dim=block_out_channels[-1] ,resnet_groups=_a ,temb_channels=_a ,) # out _a : Dict = nn.GroupNorm(num_channels=block_out_channels[-1] ,num_groups=_a ,eps=1E-6 ) _a : str = nn.SiLU() _a : Dict = 2 * out_channels if double_z else out_channels _a : Tuple = nn.Convad(block_out_channels[-1] ,_a ,3 ,padding=1 ) _a : int = False def __lowercase ( self : Dict ,_a : Any ): '''simple docstring''' _a : Union[str, Any] = x _a : Any = self.conv_in(_a ) if self.training and self.gradient_checkpointing: def create_custom_forward(_a : Tuple ): def custom_forward(*_a : List[Any] ): return module(*_a ) return custom_forward # down if is_torch_version('>=' ,'1.11.0' ): for down_block in self.down_blocks: _a : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(_a ) ,_a ,use_reentrant=_a ) # middle _a : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,_a ,use_reentrant=_a ) else: for down_block in self.down_blocks: _a : Union[str, Any] = torch.utils.checkpoint.checkpoint(create_custom_forward(_a ) ,_a ) # middle _a : Optional[int] = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) ,_a ) else: # down for down_block in self.down_blocks: _a : List[Any] = down_block(_a ) # middle _a : Optional[int] = self.mid_block(_a ) # post-process _a : Optional[int] = self.conv_norm_out(_a ) _a : Dict = self.conv_act(_a ) _a : Union[str, Any] = self.conv_out(_a ) return sample class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] ,_a : Dict=3 ,_a : Optional[int]=3 ,_a : Any=("UpDecoderBlock2D",) ,_a : List[Any]=(64,) ,_a : Dict=2 ,_a : Dict=32 ,_a : Tuple="silu" ,_a : str="group" ,): '''simple docstring''' super().__init__() _a : Any = layers_per_block _a : List[Any] = nn.Convad( _a ,block_out_channels[-1] ,kernel_size=3 ,stride=1 ,padding=1 ,) _a : Optional[int] = None _a : Any = nn.ModuleList([] ) _a : List[Any] = in_channels if norm_type == 'spatial' else None # mid _a : int = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1E-6 ,resnet_act_fn=_a ,output_scale_factor=1 ,resnet_time_scale_shift='default' if norm_type == 'group' else norm_type ,attention_head_dim=block_out_channels[-1] ,resnet_groups=_a ,temb_channels=_a ,) # up _a : int = list(reversed(_a ) ) _a : List[Any] = reversed_block_out_channels[0] for i, up_block_type in enumerate(_a ): _a : str = output_channel _a : List[str] = reversed_block_out_channels[i] _a : Any = i == len(_a ) - 1 _a : str = get_up_block( _a ,num_layers=self.layers_per_block + 1 ,in_channels=_a ,out_channels=_a ,prev_output_channel=_a ,add_upsample=not is_final_block ,resnet_eps=1E-6 ,resnet_act_fn=_a ,resnet_groups=_a ,attention_head_dim=_a ,temb_channels=_a ,resnet_time_scale_shift=_a ,) self.up_blocks.append(_a ) _a : Optional[Any] = output_channel # out if norm_type == "spatial": _a : Union[str, Any] = SpatialNorm(block_out_channels[0] ,_a ) else: _a : Optional[int] = nn.GroupNorm(num_channels=block_out_channels[0] ,num_groups=_a ,eps=1E-6 ) _a : Tuple = nn.SiLU() _a : Union[str, Any] = nn.Convad(block_out_channels[0] ,_a ,3 ,padding=1 ) _a : Optional[Any] = False def __lowercase ( self : Union[str, Any] ,_a : List[str] ,_a : Union[str, Any]=None ): '''simple docstring''' _a : str = z _a : Optional[Any] = self.conv_in(_a ) _a : Union[str, Any] = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(_a : Dict ): def custom_forward(*_a : List[str] ): return module(*_a ) return custom_forward if is_torch_version('>=' ,'1.11.0' ): # middle _a : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,_a ,_a ,use_reentrant=_a ) _a : Union[str, Any] = sample.to(_a ) # up for up_block in self.up_blocks: _a : str = torch.utils.checkpoint.checkpoint( create_custom_forward(_a ) ,_a ,_a ,use_reentrant=_a ) else: # middle _a : Union[str, Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,_a ,_a ) _a : Tuple = sample.to(_a ) # up for up_block in self.up_blocks: _a : str = torch.utils.checkpoint.checkpoint(create_custom_forward(_a ) ,_a ,_a ) else: # middle _a : Dict = self.mid_block(_a ,_a ) _a : Union[str, Any] = sample.to(_a ) # up for up_block in self.up_blocks: _a : Tuple = up_block(_a ,_a ) # post-process if latent_embeds is None: _a : Dict = self.conv_norm_out(_a ) else: _a : Dict = self.conv_norm_out(_a ,_a ) _a : Dict = self.conv_act(_a ) _a : Dict = self.conv_out(_a ) return sample class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : int ,_a : int ,_a : List[str] ,_a : str ,_a : int=None ,_a : Union[str, Any]="random" ,_a : Optional[int]=False ,_a : Any=True ): '''simple docstring''' super().__init__() _a : List[Any] = n_e _a : Union[str, Any] = vq_embed_dim _a : Tuple = beta _a : List[str] = legacy _a : Any = nn.Embedding(self.n_e ,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e ,1.0 / self.n_e ) _a : Any = remap if self.remap is not None: self.register_buffer('used' ,torch.tensor(np.load(self.remap ) ) ) _a : int = self.used.shape[0] _a : Optional[int] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": _a : int = self.re_embed _a : Dict = self.re_embed + 1 print( F"""Remapping {self.n_e} indices to {self.re_embed} indices. """ F"""Using {self.unknown_index} for unknown indices.""" ) else: _a : int = n_e _a : Optional[int] = sane_index_shape def __lowercase ( self : Dict ,_a : int ): '''simple docstring''' _a : Any = inds.shape assert len(_a ) > 1 _a : Any = inds.reshape(ishape[0] ,-1 ) _a : List[str] = self.used.to(_a ) _a : Optional[int] = (inds[:, :, None] == used[None, None, ...]).long() _a : Optional[Any] = match.argmax(-1 ) _a : str = match.sum(2 ) < 1 if self.unknown_index == "random": _a : List[Any] = torch.randint(0 ,self.re_embed ,size=new[unknown].shape ).to(device=new.device ) else: _a : str = self.unknown_index return new.reshape(_a ) def __lowercase ( self : Optional[Any] ,_a : Dict ): '''simple docstring''' _a : Optional[Any] = inds.shape assert len(_a ) > 1 _a : int = inds.reshape(ishape[0] ,-1 ) _a : int = self.used.to(_a ) if self.re_embed > self.used.shape[0]: # extra token _a : Optional[Any] = 0 # simply set to zero _a : List[str] = torch.gather(used[None, :][inds.shape[0] * [0], :] ,1 ,_a ) return back.reshape(_a ) def __lowercase ( self : Dict ,_a : Tuple ): '''simple docstring''' _a : Tuple = z.permute(0 ,2 ,3 ,1 ).contiguous() _a : Dict = z.view(-1 ,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z _a : Any = torch.argmin(torch.cdist(_a ,self.embedding.weight ) ,dim=1 ) _a : List[Any] = self.embedding(_a ).view(z.shape ) _a : Tuple = None _a : Union[str, Any] = None # compute loss for embedding if not self.legacy: _a : str = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: _a : Optional[int] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients _a : Dict = z + (z_q - z).detach() # reshape back to match original input shape _a : Optional[Any] = z_q.permute(0 ,3 ,1 ,2 ).contiguous() if self.remap is not None: _a : Dict = min_encoding_indices.reshape(z.shape[0] ,-1 ) # add batch axis _a : Tuple = self.remap_to_used(_a ) _a : Dict = min_encoding_indices.reshape(-1 ,1 ) # flatten if self.sane_index_shape: _a : str = min_encoding_indices.reshape(z_q.shape[0] ,z_q.shape[2] ,z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def __lowercase ( self : str ,_a : Any ,_a : Any ): '''simple docstring''' if self.remap is not None: _a : Optional[int] = indices.reshape(shape[0] ,-1 ) # add batch axis _a : int = self.unmap_to_all(_a ) _a : List[Any] = indices.reshape(-1 ) # flatten again # get quantized latent vectors _a : Union[str, Any] = self.embedding(_a ) if shape is not None: _a : Optional[int] = z_q.view(_a ) # reshape back to match original input shape _a : str = z_q.permute(0 ,3 ,1 ,2 ).contiguous() return z_q class UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self : List[Any] ,_a : List[Any] ,_a : List[str]=False ): '''simple docstring''' _a : Union[str, Any] = parameters _a, _a : Union[str, Any] = torch.chunk(_a ,2 ,dim=1 ) _a : Tuple = torch.clamp(self.logvar ,-30.0 ,20.0 ) _a : Dict = deterministic _a : List[str] = torch.exp(0.5 * self.logvar ) _a : Dict = torch.exp(self.logvar ) if self.deterministic: _a : Tuple = torch.zeros_like( self.mean ,device=self.parameters.device ,dtype=self.parameters.dtype ) def __lowercase ( self : Dict ,_a : str = None ): '''simple docstring''' _a : Tuple = randn_tensor( self.mean.shape ,generator=_a ,device=self.parameters.device ,dtype=self.parameters.dtype ) _a : Optional[int] = self.mean + self.std * sample return x def __lowercase ( self : int ,_a : Union[str, Any]=None ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean ,2 ) + self.var - 1.0 - self.logvar ,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean ,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar ,dim=[1, 2, 3] ,) def __lowercase ( self : List[Any] ,_a : int ,_a : List[str]=[1, 2, 3] ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) _a : Tuple = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean ,2 ) / self.var ,dim=_a ) def __lowercase ( self : Any ): '''simple docstring''' return self.mean
365
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCAmelCase_ (__a : str , __a : Dict=0.999 , __a : List[str]="cosine" , ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(__a : Union[str, Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__a : int ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _a : Tuple = [] for i in range(__a ): _a : Union[str, Any] = i / num_diffusion_timesteps _a : Any = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__a ) / alpha_bar_fn(__a ) , __a ) ) return torch.tensor(__a , dtype=torch.floataa ) class UpperCAmelCase__ ( lowercase__ , lowercase__ ): """simple docstring""" __UpperCAmelCase : Optional[Any] = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase : Dict = 2 @register_to_config def __init__( self : str ,_a : int = 1000 ,_a : float = 0.0_0085 ,_a : float = 0.012 ,_a : str = "linear" ,_a : Optional[Union[np.ndarray, List[float]]] = None ,_a : str = "epsilon" ,_a : Optional[bool] = False ,_a : Optional[bool] = False ,_a : float = 1.0 ,_a : str = "linspace" ,_a : int = 0 ,): '''simple docstring''' if trained_betas is not None: _a : List[str] = torch.tensor(_a ,dtype=torch.floataa ) elif beta_schedule == "linear": _a : Tuple = torch.linspace(_a ,_a ,_a ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _a : List[str] = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,_a ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _a : Dict = betas_for_alpha_bar(_a ,alpha_transform_type='cosine' ) elif beta_schedule == "exp": _a : Tuple = betas_for_alpha_bar(_a ,alpha_transform_type='exp' ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) _a : Optional[Any] = 1.0 - self.betas _a : Optional[int] = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(_a ,_a ,_a ) _a : Optional[int] = use_karras_sigmas def __lowercase ( self : Any ,_a : Union[str, Any] ,_a : Optional[Any]=None ): '''simple docstring''' if schedule_timesteps is None: _a : List[Any] = self.timesteps _a : Dict = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _a : int = 1 if len(_a ) > 1 else 0 else: _a : str = timestep.cpu().item() if torch.is_tensor(_a ) else timestep _a : str = self._index_counter[timestep_int] return indices[pos].item() @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __lowercase ( self : int ,_a : torch.FloatTensor ,_a : Union[float, torch.FloatTensor] ,): '''simple docstring''' _a : List[Any] = self.index_for_timestep(_a ) _a : Tuple = self.sigmas[step_index] _a : Optional[Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def __lowercase ( self : Any ,_a : int ,_a : Union[str, torch.device] = None ,_a : Optional[int] = None ,): '''simple docstring''' _a : Optional[Any] = num_inference_steps _a : Dict = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _a : Optional[Any] = np.linspace(0 ,num_train_timesteps - 1 ,_a ,dtype=_a )[::-1].copy() elif self.config.timestep_spacing == "leading": _a : str = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a : int = (np.arange(0 ,_a ) * step_ratio).round()[::-1].copy().astype(_a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _a : Any = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a : Union[str, Any] = (np.arange(_a ,0 ,-step_ratio )).round().copy().astype(_a ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _a : Tuple = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _a : Union[str, Any] = np.log(_a ) _a : str = np.interp(_a ,np.arange(0 ,len(_a ) ) ,_a ) if self.config.use_karras_sigmas: _a : List[Any] = self._convert_to_karras(in_sigmas=_a ,num_inference_steps=self.num_inference_steps ) _a : Dict = np.array([self._sigma_to_t(_a ,_a ) for sigma in sigmas] ) _a : int = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _a : Union[str, Any] = torch.from_numpy(_a ).to(device=_a ) _a : Any = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) _a : List[Any] = torch.from_numpy(_a ) _a : List[str] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(_a ).startswith('mps' ): # mps does not support float64 _a : Tuple = timesteps.to(_a ,dtype=torch.floataa ) else: _a : Dict = timesteps.to(device=_a ) # empty dt and derivative _a : Tuple = None _a : Optional[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _a : Union[str, Any] = defaultdict(_a ) def __lowercase ( self : str ,_a : Dict ,_a : Dict ): '''simple docstring''' _a : Optional[int] = np.log(_a ) # get distribution _a : Union[str, Any] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range _a : List[Any] = np.cumsum((dists >= 0) ,axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) _a : Tuple = low_idx + 1 _a : Union[str, Any] = log_sigmas[low_idx] _a : Optional[Any] = log_sigmas[high_idx] # interpolate sigmas _a : Optional[Any] = (low - log_sigma) / (low - high) _a : List[str] = np.clip(_a ,0 ,1 ) # transform interpolation to time range _a : Union[str, Any] = (1 - w) * low_idx + w * high_idx _a : List[str] = t.reshape(sigma.shape ) return t def __lowercase ( self : int ,_a : torch.FloatTensor ,_a : Tuple ): '''simple docstring''' _a : float = in_sigmas[-1].item() _a : float = in_sigmas[0].item() _a : Tuple = 7.0 # 7.0 is the value used in the paper _a : str = np.linspace(0 ,1 ,_a ) _a : Optional[Any] = sigma_min ** (1 / rho) _a : Union[str, Any] = sigma_max ** (1 / rho) _a : str = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' return self.dt is None def __lowercase ( self : int ,_a : Union[torch.FloatTensor, np.ndarray] ,_a : Union[float, torch.FloatTensor] ,_a : Union[torch.FloatTensor, np.ndarray] ,_a : bool = True ,): '''simple docstring''' _a : Union[str, Any] = self.index_for_timestep(_a ) # advance index counter by 1 _a : Any = timestep.cpu().item() if torch.is_tensor(_a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _a : Tuple = self.sigmas[step_index] _a : int = self.sigmas[step_index + 1] else: # 2nd order / Heun's method _a : List[str] = self.sigmas[step_index - 1] _a : List[Any] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _a : Optional[int] = 0 _a : Tuple = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _a : Dict = sigma_hat if self.state_in_first_order else sigma_next _a : Optional[int] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _a : List[Any] = sigma_hat if self.state_in_first_order else sigma_next _a : List[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": _a : Union[str, Any] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: _a : Optional[int] = pred_original_sample.clamp( -self.config.clip_sample_range ,self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _a : Optional[Any] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _a : Any = sigma_next - sigma_hat # store for 2nd order step _a : int = derivative _a : List[str] = dt _a : Union[str, Any] = sample else: # 2. 2nd order / Heun's method _a : Dict = (sample - pred_original_sample) / sigma_next _a : Tuple = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample _a : Optional[Any] = self.dt _a : Union[str, Any] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" _a : List[Any] = None _a : Union[str, Any] = None _a : Dict = None _a : str = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_a ) def __lowercase ( self : Optional[int] ,_a : torch.FloatTensor ,_a : torch.FloatTensor ,_a : torch.FloatTensor ,): '''simple docstring''' _a : str = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_a ): # mps does not support float64 _a : Dict = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) _a : Optional[Any] = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: _a : int = self.timesteps.to(original_samples.device ) _a : Optional[Any] = timesteps.to(original_samples.device ) _a : Any = [self.index_for_timestep(_a ,_a ) for t in timesteps] _a : Optional[int] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _a : Optional[Any] = sigma.unsqueeze(-1 ) _a : Any = original_samples + noise * sigma return noisy_samples def __len__( self : Optional[int] ): '''simple docstring''' return self.config.num_train_timesteps
5
0
'''simple docstring''' import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast __lowerCAmelCase = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCAmelCase__ ( datasets.BuilderConfig ): """simple docstring""" __UpperCAmelCase : int = 1_0000 __UpperCAmelCase : Optional[List[str]] = None __UpperCAmelCase : Optional[datasets.Features] = None class UpperCAmelCase__ ( datasets.ArrowBasedBuilder ): """simple docstring""" __UpperCAmelCase : Any = ParquetConfig def __lowercase ( self : str ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def __lowercase ( self : Tuple ,_a : Dict ): '''simple docstring''' if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _a : List[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__lowercase ,(str, list, tuple) ): _a : Any = data_files if isinstance(__lowercase ,__lowercase ): _a : int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _a : Tuple = [dl_manager.iter_files(__lowercase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN ,gen_kwargs={'files': files} )] _a : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(__lowercase ,__lowercase ): _a : List[str] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _a : Dict = [dl_manager.iter_files(__lowercase ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(__lowercase ): with open(__lowercase ,'rb' ) as f: _a : int = datasets.Features.from_arrow_schema(pq.read_schema(__lowercase ) ) break splits.append(datasets.SplitGenerator(name=__lowercase ,gen_kwargs={'files': files} ) ) return splits def __lowercase ( self : int ,_a : Tuple ): '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _a : Tuple = table_cast(__lowercase ,self.info.features.arrow_schema ) return pa_table def __lowercase ( self : List[str] ,_a : Tuple ): '''simple docstring''' _a : Any = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(__lowercase ) ): with open(__lowercase ,'rb' ) as f: _a : Dict = pq.ParquetFile(__lowercase ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size ,columns=self.config.columns ) ): _a : Tuple = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F"""{file_idx}_{batch_idx}""", self._cast_table(__lowercase ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(__lowercase )}: {e}""" ) raise
366
'''simple docstring''' import qiskit def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" _a : Any = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _a : List[Any] = qiskit.QuantumCircuit(__a , __a ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator _a : Tuple = qiskit.execute(__a , __a , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__a ) if __name__ == "__main__": print(f'''Total count for various states are: {single_qubit_measure(1, 1)}''')
5
0
'''simple docstring''' def UpperCAmelCase_ (__a : int ) -> int: """simple docstring""" _a : Any = 1 for i in range(1 , num + 1 ): fact *= i return fact def UpperCAmelCase_ (__a : int ) -> int: """simple docstring""" _a : Any = 0 while number > 0: _a : Optional[Any] = number % 1_0 sum_of_digits += last_digit _a : Dict = number // 1_0 # Removing the last_digit from the given number return sum_of_digits def UpperCAmelCase_ (__a : int = 1_0_0 ) -> int: """simple docstring""" _a : Optional[Any] = factorial(snake_case_ ) _a : Optional[Any] = split_and_add(snake_case_ ) return result if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
367
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() def __lowercase ( self : str ): '''simple docstring''' _a : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) _a : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) _a : List[str] = 'xvjiarui/stable-diffusion-2-inpainting' _a, _a : str = FlaxStableDiffusionInpaintPipeline.from_pretrained(_a ,safety_checker=_a ) _a : str = 'Face of a yellow cat, high resolution, sitting on a park bench' _a : int = jax.random.PRNGKey(0 ) _a : Tuple = 50 _a : Any = jax.device_count() _a : Dict = num_samples * [prompt] _a : Optional[Any] = num_samples * [init_image] _a : str = num_samples * [mask_image] _a, _a, _a : Optional[Any] = pipeline.prepare_inputs(_a ,_a ,_a ) # shard inputs and rng _a : Optional[Any] = replicate(_a ) _a : str = jax.random.split(_a ,jax.device_count() ) _a : Dict = shard(_a ) _a : int = shard(_a ) _a : int = shard(_a ) _a : Union[str, Any] = pipeline( _a ,_a ,_a ,_a ,_a ,_a ,jit=_a ) _a : Union[str, Any] = output.images.reshape(_a ,512 ,512 ,3 ) _a : Union[str, Any] = images[0, 253:256, 253:256, -1] _a : str = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _a : Union[str, Any] = jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
5
0
'''simple docstring''' import string def UpperCAmelCase_ (__a : int ): _a : List[Any] = '' for i in sequence: _a : Dict = ord(lowerCAmelCase_ ) if 6_5 <= extract <= 9_0: output += chr(1_5_5 - extract ) elif 9_7 <= extract <= 1_2_2: output += chr(2_1_9 - extract ) else: output += i return output def UpperCAmelCase_ (__a : Any ): _a : Optional[int] = string.ascii_letters _a : str = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(lowerCAmelCase_ )] if c in letters else c for c in sequence ) def UpperCAmelCase_ (): from timeit import timeit print('Running performance benchmarks...' ) _a : Optional[Any] = 'from string import printable ; from __main__ import atbash, atbash_slow' print(f"""> atbash_slow(): {timeit('atbash_slow(printable)' , setup=lowerCAmelCase_ )} seconds""" ) print(f"""> atbash(): {timeit('atbash(printable)' , setup=lowerCAmelCase_ )} seconds""" ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f'''{example} encrypted in atbash: {atbash(example)}''') benchmark()
368
'''simple docstring''' def UpperCAmelCase_ (__a : str , __a : str ): """simple docstring""" _a : int = len(__a ) + 1 _a : List[str] = len(__a ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. _a : Optional[int] = [[0 for i in range(__a )] for j in range(__a )] # since string of zero length match pattern of zero length _a : str = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , __a ): _a : Optional[Any] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , __a ): _a : Dict = dp[0][j - 2] if pattern[j - 1] == '*' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , __a ): for j in range(1 , __a ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": _a : Tuple = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: _a : List[str] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): _a : int = dp[i - 1][j] else: _a : Any = 0 else: _a : Optional[Any] = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") __lowerCAmelCase = """aab""" __lowerCAmelCase = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f'''{input_string} matches the given pattern {pattern}''') else: print(f'''{input_string} does not match with the given pattern {pattern}''')
5
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = torch.device("""cpu""") def UpperCAmelCase_ (): """simple docstring""" _a : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _a : Optional[int] = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) return im def UpperCAmelCase_ (__a : Union[str, Any] ): """simple docstring""" if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def UpperCAmelCase_ (__a : int , __a : List[str] , __a : Optional[Any] ): """simple docstring""" _a : Tuple = dct.pop(__SCREAMING_SNAKE_CASE ) _a : Dict = val def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Optional[int] = [] for k in state_dict.keys(): _a : Dict = k if ".pwconv" in k: _a : Dict = k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: _a : int = k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: _a : Optional[Any] = k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: _a : Union[str, Any] = k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: _a : List[str] = k_new.split('.' ) if ls[2].isdigit(): _a : Optional[Any] = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: _a : List[str] = k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def UpperCAmelCase_ (__a : Any , __a : str , __a : str ): """simple docstring""" _a : int = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size _a : str = 1_0_0_0 _a : Dict = "huggingface/label-files" _a : Tuple = "imagenet-1k-id2label.json" _a : Tuple = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) _a : Optional[int] = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} _a : str = idalabel _a : str = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": _a : List[Any] = [3, 3, 6, 4] _a : Tuple = [4_8, 5_6, 1_1_2, 2_2_0] elif swiftformer_name == "swiftformer_s": _a : int = [3, 3, 9, 6] _a : List[Any] = [4_8, 6_4, 1_6_8, 2_2_4] elif swiftformer_name == "swiftformer_l1": _a : Optional[int] = [4, 3, 1_0, 5] _a : str = [4_8, 9_6, 1_9_2, 3_8_4] elif swiftformer_name == "swiftformer_l3": _a : Tuple = [4, 4, 1_2, 6] _a : int = [6_4, 1_2_8, 3_2_0, 5_1_2] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): _a : int = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , map_location='cpu' , check_hash=__SCREAMING_SNAKE_CASE ) else: _a : Optional[Any] = torch.load(__SCREAMING_SNAKE_CASE , map_location='cpu' ) _a : str = checkpoint _a : int = create_rename_keys(__SCREAMING_SNAKE_CASE ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # load HuggingFace model _a : Dict = SwiftFormerForImageClassification(__SCREAMING_SNAKE_CASE ).eval() hf_model.load_state_dict(__SCREAMING_SNAKE_CASE ) # prepare test inputs _a : Dict = prepare_img() _a : Dict = ViTImageProcessor.from_pretrained('preprocessor_config' ) _a : Any = processor(images=__SCREAMING_SNAKE_CASE , return_tensors='pt' ) # compare outputs from both models _a : Dict = get_expected_output(__SCREAMING_SNAKE_CASE ) _a : str = hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1_0_0_0] ) assert torch.allclose(hf_logits[0, 0:5] , __SCREAMING_SNAKE_CASE , atol=1e-3 ) Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swiftformer_name""", default="""swiftformer_xs""", choices=["""swiftformer_xs""", """swiftformer_s""", """swiftformer_l1""", """swiftformer_l3"""], type=str, help="""Name of the SwiftFormer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""./converted_outputs/""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--original_ckpt""", default=None, type=str, help="""Path to the original model checkpoint.""") __lowerCAmelCase = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
369
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Dict = BlenderbotSmallTokenizer __UpperCAmelCase : Tuple = False def __lowercase ( self : List[Any] ): '''simple docstring''' super().setUp() _a : List[str] = ['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] _a : Tuple = dict(zip(_a ,range(len(_a ) ) ) ) _a : List[Any] = ['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] _a : List[Any] = {'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} _a : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) _a : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(_a ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(_a ) ) def __lowercase ( self : List[Any] ,**_a : int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname ,**_a ) def __lowercase ( self : Tuple ,_a : int ): '''simple docstring''' _a : Optional[Any] = 'adapt act apte' _a : Dict = 'adapt act apte' return input_text, output_text def __lowercase ( self : int ): '''simple docstring''' _a : Optional[int] = BlenderbotSmallTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) _a : Union[str, Any] = 'adapt act apte' _a : Dict = ['adapt', 'act', 'ap@@', 'te'] _a : Tuple = tokenizer.tokenize(_a ) self.assertListEqual(_a ,_a ) _a : List[str] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] _a : Dict = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) ,_a ) def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : str = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] _a : Union[str, Any] = 'I am a small frog.' _a : int = tok([src_text] ,padding=_a ,truncation=_a )['input_ids'] _a : str = tok.batch_decode(_a ,skip_special_tokens=_a ,clean_up_tokenization_spaces=_a )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[int] = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) _a : Union[str, Any] = 'I am a small frog .' _a : Optional[Any] = '.' _a : Optional[Any] = tok(_a )['input_ids'] _a : Union[str, Any] = tok(_a )['input_ids'] assert encoded[-1] == encoded_dot[0]
5
0
'''simple docstring''' from __future__ import annotations class UpperCAmelCase__ : """simple docstring""" def __init__( self : List[str] ,_a : int ): '''simple docstring''' _a : Optional[int] = data _a : int = None _a : str = None def UpperCAmelCase_ (__a : Node | None ): # In Order traversal of the tree """simple docstring""" if tree: display(tree.left ) print(tree.data ) display(tree.right ) def UpperCAmelCase_ (__a : Node | None ): """simple docstring""" return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def UpperCAmelCase_ (__a : Node ): """simple docstring""" if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def UpperCAmelCase_ (): # Main function for testing. """simple docstring""" _a : Union[str, Any] = Node(1 ) _a : List[Any] = Node(2 ) _a : int = Node(3 ) _a : Union[str, Any] = Node(4 ) _a : Union[str, Any] = Node(5 ) _a : int = Node(6 ) _a : str = Node(7 ) _a : Union[str, Any] = Node(8 ) _a : Dict = Node(9 ) print(is_full_binary_tree(__lowerCAmelCase ) ) print(depth_of_tree(__lowerCAmelCase ) ) print('Tree is: ' ) display(__lowerCAmelCase ) if __name__ == "__main__": main()
370
'''simple docstring''' __lowerCAmelCase = { """A""": """.-""", """B""": """-...""", """C""": """-.-.""", """D""": """-..""", """E""": """.""", """F""": """..-.""", """G""": """--.""", """H""": """....""", """I""": """..""", """J""": """.---""", """K""": """-.-""", """L""": """.-..""", """M""": """--""", """N""": """-.""", """O""": """---""", """P""": """.--.""", """Q""": """--.-""", """R""": """.-.""", """S""": """...""", """T""": """-""", """U""": """..-""", """V""": """...-""", """W""": """.--""", """X""": """-..-""", """Y""": """-.--""", """Z""": """--..""", """1""": """.----""", """2""": """..---""", """3""": """...--""", """4""": """....-""", """5""": """.....""", """6""": """-....""", """7""": """--...""", """8""": """---..""", """9""": """----.""", """0""": """-----""", """&""": """.-...""", """@""": """.--.-.""", """:""": """---...""", """,""": """--..--""", """.""": """.-.-.-""", """'""": """.----.""", """\"""": """.-..-.""", """?""": """..--..""", """/""": """-..-.""", """=""": """-...-""", """+""": """.-.-.""", """-""": """-....-""", """(""": """-.--.""", """)""": """-.--.-""", """!""": """-.-.--""", """ """: """/""" } # Exclamation mark is not in ITU-R recommendation # fmt: on __lowerCAmelCase = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCAmelCase_ (__a : str ): """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCAmelCase_ (__a : str ): """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCAmelCase_ (): """simple docstring""" _a : List[str] = 'Morse code here!' print(__a ) _a : Tuple = encrypt(__a ) print(__a ) _a : str = decrypt(__a ) print(__a ) if __name__ == "__main__": main()
5
0
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {"vocab_file": "vocab.json"} __lowerCAmelCase = { "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } __lowerCAmelCase = {"mgp-str": 2_7} class UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase : Dict = VOCAB_FILES_NAMES __UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Dict ,_a : Optional[int] ,_a : List[Any]="[GO]" ,_a : Tuple="[GO]" ,_a : Optional[Any]="[s]" ,_a : List[Any]="[GO]" ,**_a : int ): '''simple docstring''' super().__init__( unk_token=A_ ,bos_token=A_ ,eos_token=A_ ,pad_token=A_ ,**A_ ,) with open(A_ ,encoding='utf-8' ) as vocab_handle: _a : int = json.load(A_ ) _a : Union[str, Any] = {v: k for k, v in self.vocab.items()} @property def __lowercase ( self : Dict ): '''simple docstring''' return len(self.vocab ) def __lowercase ( self : Any ): '''simple docstring''' return dict(self.vocab ,**self.added_tokens_encoder ) def __lowercase ( self : Optional[Any] ,_a : Dict ): '''simple docstring''' _a : Tuple = [] for s in text: char_tokens.extend(A_ ) return char_tokens def __lowercase ( self : str ,_a : int ): '''simple docstring''' return self.vocab.get(A_ ,self.vocab.get(self.unk_token ) ) def __lowercase ( self : Optional[int] ,_a : Dict ): '''simple docstring''' return self.decoder.get(A_ ) def __lowercase ( self : int ,_a : List[Any] ,_a : Optional[int] = None ): '''simple docstring''' if not os.path.isdir(A_ ): logger.error('Vocabulary path ({}) should be a directory'.format(A_ ) ) return _a : Union[str, Any] = os.path.join( A_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) with open(A_ ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.vocab ,indent=2 ,sort_keys=A_ ,ensure_ascii=A_ ) + '\n' ) return (vocab_file,)
371
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCAmelCase = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 1_2_8, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 5_0, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 1_0, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 1_0, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @classmethod def __lowercase ( cls : Optional[Any] ): '''simple docstring''' _a : List[Any] = TOKEN HfFolder.save_token(_a ) @classmethod def __lowercase ( cls : List[Any] ): '''simple docstring''' try: delete_repo(token=cls._token ,repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='test-dynamic-config' ) except HTTPError: pass def __lowercase ( self : List[str] ): '''simple docstring''' _a : Any = BertConfig( vocab_size=99 ,hidden_size=32 ,num_hidden_layers=5 ,num_attention_heads=4 ,intermediate_size=37 ) config.push_to_hub('test-config' ,use_auth_token=self._token ) _a : Optional[Any] = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) # Reset repo delete_repo(token=self._token ,repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_a ,repo_id='test-config' ,push_to_hub=_a ,use_auth_token=self._token ) _a : Dict = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Tuple = BertConfig( vocab_size=99 ,hidden_size=32 ,num_hidden_layers=5 ,num_attention_heads=4 ,intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' ,use_auth_token=self._token ) _a : Union[str, Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) # Reset repo delete_repo(token=self._token ,repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _a ,repo_id='valid_org/test-config-org' ,push_to_hub=_a ,use_auth_token=self._token ) _a : Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) def __lowercase ( self : List[Any] ): '''simple docstring''' CustomConfig.register_for_auto_class() _a : Optional[Any] = CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' ,use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map ,{'AutoConfig': 'custom_configuration.CustomConfig'} ) _a : int = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" ,trust_remote_code=_a ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ ,'CustomConfig' ) self.assertEqual(new_config.attribute ,42 ) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Optional[Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _a : int = c.n_embd + 1 # int _a : str = c.resid_pdrop + 1.0 # float _a : Dict = not c.scale_attn_weights # bool _a : List[Any] = c.summary_type + 'foo' # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(_a ,c.n_embd ,'mismatch for key: n_embd' ) self.assertEqual(_a ,c.resid_pdrop ,'mismatch for key: resid_pdrop' ) self.assertEqual(_a ,c.scale_attn_weights ,'mismatch for key: scale_attn_weights' ) self.assertEqual(_a ,c.summary_type ,'mismatch for key: summary_type' ) def __lowercase ( self : List[str] ): '''simple docstring''' _a : int = PretrainedConfig() _a : int = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( _a ,['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) _a : Dict = [key for key, value in config_common_kwargs.items() if value == getattr(_a ,_a )] if len(_a ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F""" {', '.join(_a )}.""" ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' with self.assertRaises(_a ): # config is in subfolder, the following should not work without specifying the subfolder _a : List[Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) _a : List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ,subfolder='bert' ) self.assertIsNotNone(_a ) def __lowercase ( self : List[Any] ): '''simple docstring''' _a : List[Any] = mock.Mock() _a : Any = 500 _a : Any = {} _a : Any = HTTPError _a : List[Any] = {} # Download this model to make sure it's in the cache. _a : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' ,return_value=_a ) as mock_head: _a : Optional[int] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Optional[int] = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : int = AutoConfig.from_pretrained('bert-base-cased' ) _a : List[str] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(_a ) _a : str = 2 json.dump(configuration.to_dict() ,open(os.path.join(_a ,'config.4.0.0.json' ) ,'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _a : int = AutoConfig.from_pretrained(_a ) self.assertEqual(new_configuration.hidden_size ,2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _a : Tuple = ['config.42.0.0.json'] _a : int = 768 configuration.save_pretrained(_a ) shutil.move(os.path.join(_a ,'config.4.0.0.json' ) ,os.path.join(_a ,'config.42.0.0.json' ) ) _a : int = AutoConfig.from_pretrained(_a ) self.assertEqual(new_configuration.hidden_size ,768 ) def __lowercase ( self : str ): '''simple docstring''' _a : Tuple = 'hf-internal-testing/test-two-configs' import transformers as new_transformers _a : Optional[int] = 'v4.0.0' _a, _a : Tuple = new_transformers.models.auto.AutoConfig.from_pretrained( _a ,return_unused_kwargs=_a ) self.assertEqual(new_configuration.hidden_size ,2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(_a ,{} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _a : str = 'v3.0.0' _a : Optional[Any] = old_transformers.models.auto.AutoConfig.from_pretrained(_a ) self.assertEqual(old_configuration.hidden_size ,768 )
5
0
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask __lowerCAmelCase = logging.getLogger(__name__) class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __init__( self : int ,_a : List[Any]=-1 ): '''simple docstring''' _a : Optional[Any] = label_idx def __lowercase ( self : List[Any] ,_a : str ,_a : Union[Split, str] ): '''simple docstring''' if isinstance(_a ,_a ): _a : Optional[int] = mode.value _a : Optional[int] = os.path.join(_a ,F"""{mode}.txt""" ) _a : List[str] = 1 _a : int = [] with open(_a ,encoding='utf-8' ) as f: _a : Dict = [] _a : Optional[int] = [] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" ,words=_a ,labels=_a ) ) guid_index += 1 _a : Optional[int] = [] _a : Optional[int] = [] else: _a : Optional[int] = line.split(' ' ) words.append(splits[0] ) if len(_a ) > 1: labels.append(splits[self.label_idx].replace('\n' ,'' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" ,words=_a ,labels=_a ) ) return examples def __lowercase ( self : Optional[Any] ,_a : TextIO ,_a : TextIO ,_a : List ): '''simple docstring''' _a : Any = 0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(_a ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _a : List[Any] = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(_a ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' ,line.split()[0] ) def __lowercase ( self : Any ,_a : str ): '''simple docstring''' if path: with open(_a ,'r' ) as f: _a : str = f.read().splitlines() if "O" not in labels: _a : Optional[int] = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __init__( self : str ): '''simple docstring''' super().__init__(label_idx=-2 ) def __lowercase ( self : str ,_a : str ): '''simple docstring''' if path: with open(_a ,'r' ) as f: _a : Optional[int] = f.read().splitlines() if "O" not in labels: _a : Tuple = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __lowercase ( self : Any ,_a : List[Any] ,_a : Union[Split, str] ): '''simple docstring''' if isinstance(_a ,_a ): _a : Union[str, Any] = mode.value _a : List[Any] = os.path.join(_a ,F"""{mode}.txt""" ) _a : int = 1 _a : Optional[Any] = [] with open(_a ,encoding='utf-8' ) as f: for sentence in parse_incr(_a ): _a : Any = [] _a : Optional[Any] = [] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(_a ) == len(_a ) if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" ,words=_a ,labels=_a ) ) guid_index += 1 return examples def __lowercase ( self : Tuple ,_a : TextIO ,_a : TextIO ,_a : List ): '''simple docstring''' _a : Any = 0 for sentence in parse_incr(_a ): _a : List[str] = preds_list[example_id] _a : Optional[Any] = '' for token in sentence: out += F"""{token['form']} ({token['upos']}|{s_p.pop(0 )}) """ out += "\n" writer.write(_a ) example_id += 1 def __lowercase ( self : Optional[Any] ,_a : str ): '''simple docstring''' if path: with open(_a ,'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
350
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint __lowerCAmelCase = { """169M""": 1_2, """430M""": 2_4, """1B5""": 2_4, """3B""": 3_2, """7B""": 3_2, """14B""": 4_0, } __lowerCAmelCase = { """169M""": 7_6_8, """430M""": 1_0_2_4, """1B5""": 2_0_4_8, """3B""": 2_5_6_0, """7B""": 4_0_9_6, """14B""": 5_1_2_0, } def UpperCAmelCase_ (__a : Dict ): """simple docstring""" _a : List[Any] = list(state_dict.keys() ) for name in state_dict_keys: _a : List[Any] = state_dict.pop(__a ) # emb -> embedding if name.startswith('emb.' ): _a : List[str] = name.replace('emb.' , 'embeddings.' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0' ): _a : Dict = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' ) # att -> attention _a : int = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , __a ) # ffn -> feed_forward _a : str = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , __a ) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k' ): _a : Any = name.replace('.time_mix_k' , '.time_mix_key' ) # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v' ): _a : int = name.replace('.time_mix_v' , '.time_mix_value' ) # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r' ): _a : Tuple = name.replace('.time_mix_r' , '.time_mix_receptance' ) if name != "head.weight": _a : Tuple = 'rwkv.' + name _a : List[Any] = weight return state_dict def UpperCAmelCase_ (__a : Tuple , __a : Union[str, Any] , __a : List[str] , __a : str=None , __a : List[str]=None , __a : int=False , __a : int=None ): """simple docstring""" if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.' ) _a : List[Any] = 5_0_2_7_7 _a : Optional[Any] = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' ) else: _a : Optional[Any] = PreTrainedTokenizerFast(tokenizer_file=__a ) _a : List[Any] = len(__a ) tokenizer.save_pretrained(__a ) # 2. Build the config _a : List[str] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: _a : str = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.' ) if size not in possible_sizes: raise ValueError(f"""`size` should be one of {possible_sizes}, got {size}.""" ) _a : str = RwkvConfig( vocab_size=__a , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(__a ) # 3. Download model file then convert state_dict _a : Tuple = hf_hub_download(__a , __a ) _a : Optional[int] = torch.load(__a , map_location='cpu' ) _a : Dict = convert_state_dict(__a ) # 4. Split in shards and save _a, _a : List[Any] = shard_checkpoint(__a ) for shard_file, shard in shards.items(): torch.save(__a , os.path.join(__a , __a ) ) if index is not None: _a : Dict = os.path.join(__a , __a ) # Save the index as well with open(__a , 'w' , encoding='utf-8' ) as f: _a : List[Any] = json.dumps(__a , indent=2 , sort_keys=__a ) + '\n' f.write(__a ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' ) _a : List[Any] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: _a : Optional[Any] = torch.load(os.path.join(__a , __a ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(__a , __a ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.' ) _a : List[str] = AutoModelForCausalLM.from_pretrained(__a ) model.push_to_hub(__a , max_shard_size='2GB' ) tokenizer.push_to_hub(__a ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--repo_id""", default=None, type=str, required=True, help="""Repo ID from which to pull the checkpoint.""" ) parser.add_argument( """--checkpoint_file""", default=None, type=str, required=True, help="""Name of the checkpoint file in the repo.""" ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""Where to save the converted model.""" ) parser.add_argument( """--tokenizer_file""", default=None, type=str, help="""Path to the tokenizer file to use (if not provided, only the model is converted).""", ) parser.add_argument( """--size""", default=None, type=str, help="""Size of the model. Will be inferred from the `checkpoint_file` if not passed.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Push to the Hub the converted model.""", ) parser.add_argument( """--model_name""", default=None, type=str, help="""Name of the pushed model on the Hub, including the username / organization.""", ) __lowerCAmelCase = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
5
0
'''simple docstring''' import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch __lowerCAmelCase = """sshleifer/bart-tiny-random""" __lowerCAmelCase = """patrickvonplaten/t5-tiny-random""" @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self : List[Any] ): '''simple docstring''' return AutoConfig.from_pretrained(_a ) def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Any = create_student_by_copying_alternating_layers(_a ,tempfile.mkdtemp() ,e=1 ,d=1 ) self.assertEqual(student.config.num_hidden_layers ,1 ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : int = create_student_by_copying_alternating_layers(_a ,tempfile.mkdtemp() ,e=1 ,d=_a ) def __lowercase ( self : Dict ): '''simple docstring''' _a : Optional[Any] = create_student_by_copying_alternating_layers(_a ,tempfile.mkdtemp() ,e=1 ,d=_a ) self.assertEqual(student.config.encoder_layers ,1 ) self.assertEqual(student.config.decoder_layers ,self.teacher_config.encoder_layers ) def __lowercase ( self : List[str] ): '''simple docstring''' _a : Union[str, Any] = create_student_by_copying_alternating_layers(_a ,tempfile.mkdtemp() ,e=1 ,d=1 ) self.assertEqual(student.config.encoder_layers ,1 ) self.assertEqual(student.config.decoder_layers ,1 ) def __lowercase ( self : List[Any] ): '''simple docstring''' with self.assertRaises(_a ): create_student_by_copying_alternating_layers(_a ,tempfile.mkdtemp() ,e=_a ,d=_a )
351
'''simple docstring''' import comet # From: unbabel-comet import torch import datasets __lowerCAmelCase = datasets.logging.get_logger(__name__) __lowerCAmelCase = """\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel's Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = \"{COMET}: A Neural Framework for {MT} Evaluation\", author = \"Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon\", booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\", month = nov, year = \"2020\", address = \"Online\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\", pages = \"2685--2702\", } """ __lowerCAmelCase = """\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. """ __lowerCAmelCase = """ COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric('comet') >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"] >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"] >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results[\"scores\"]]) [0.19, 0.92] """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): """simple docstring""" def __lowercase ( self : Optional[int] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='https://unbabel.github.io/COMET/html/index.html' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'sources': datasets.Value('string' ,id='sequence' ), 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Value('string' ,id='sequence' ), } ) ,codebase_urls=['https://github.com/Unbabel/COMET'] ,reference_urls=[ 'https://github.com/Unbabel/COMET', 'https://www.aclweb.org/anthology/2020.emnlp-main.213/', 'http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6', ] ,) def __lowercase ( self : int ,_a : int ): '''simple docstring''' if self.config_name == "default": _a : List[Any] = comet.load_from_checkpoint(comet.download_model('wmt20-comet-da' ) ) else: _a : List[str] = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def __lowercase ( self : Tuple ,_a : List[Any] ,_a : Dict ,_a : Optional[Any] ,_a : List[str]=None ,_a : Tuple=False ): '''simple docstring''' if gpus is None: _a : str = 1 if torch.cuda.is_available() else 0 _a : Optional[Any] = {'src': sources, 'mt': predictions, 'ref': references} _a : Optional[Any] = [dict(zip(_a ,_a ) ) for t in zip(*data.values() )] _a, _a : Tuple = self.scorer.predict(_a ,gpus=_a ,progress_bar=_a ) return {"mean_score": mean_score, "scores": scores}
5
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCAmelCase = { """configuration_efficientnet""": [ """EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientNetConfig""", """EfficientNetOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ["""EfficientNetImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientNetForImageClassification""", """EfficientNetModel""", """EfficientNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
352
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
0
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase__ : """simple docstring""" def __init__( self : int ,_a : List[str] ,_a : Union[str, Any]=13 ,_a : Optional[int]=32 ,_a : int=3 ,_a : List[str]=4 ,_a : Optional[int]=[10, 20, 30, 40] ,_a : Tuple=[2, 2, 3, 2] ,_a : Dict=True ,_a : List[str]=True ,_a : Optional[Any]=37 ,_a : Union[str, Any]="gelu" ,_a : Any=10 ,_a : str=0.02 ,_a : str=["stage2", "stage3", "stage4"] ,_a : List[str]=[2, 3, 4] ,_a : List[Any]=None ,): '''simple docstring''' _a : Dict = parent _a : List[str] = batch_size _a : str = image_size _a : Tuple = num_channels _a : List[str] = num_stages _a : Optional[Any] = hidden_sizes _a : str = depths _a : int = is_training _a : Optional[int] = use_labels _a : Tuple = intermediate_size _a : List[str] = hidden_act _a : Union[str, Any] = num_labels _a : Union[str, Any] = initializer_range _a : Union[str, Any] = out_features _a : List[str] = out_indices _a : Union[str, Any] = scope def __lowercase ( self : str ): '''simple docstring''' _a : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Dict = None if self.use_labels: _a : Union[str, Any] = ids_tensor([self.batch_size] ,self.num_labels ) _a : Optional[Any] = self.get_config() return config, pixel_values, labels def __lowercase ( self : Tuple ): '''simple docstring''' return ConvNextVaConfig( num_channels=self.num_channels ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_stages=self.num_stages ,hidden_act=self.hidden_act ,is_decoder=_a ,initializer_range=self.initializer_range ,out_features=self.out_features ,out_indices=self.out_indices ,num_labels=self.num_labels ,) def __lowercase ( self : Union[str, Any] ,_a : int ,_a : Optional[Any] ,_a : int ): '''simple docstring''' _a : Any = ConvNextVaModel(config=_a ) model.to(_a ) model.eval() _a : Union[str, Any] = model(_a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def __lowercase ( self : Any ,_a : Any ,_a : str ,_a : Optional[Any] ): '''simple docstring''' _a : Tuple = ConvNextVaForImageClassification(_a ) model.to(_a ) model.eval() _a : Optional[Any] = model(_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowercase ( self : Dict ,_a : Any ,_a : List[str] ,_a : List[Any] ): '''simple docstring''' _a : int = ConvNextVaBackbone(config=_a ) model.to(_a ) model.eval() _a : Any = model(_a ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[1:] ) # verify backbone works with out_features=None _a : str = None _a : Optional[Any] = ConvNextVaBackbone(config=_a ) model.to(_a ) model.eval() _a : Dict = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def __lowercase ( self : Dict ): '''simple docstring''' _a : Dict = self.prepare_config_and_inputs() _a : Optional[Any] = config_and_inputs _a : List[str] = {'pixel_values': pixel_values} return config, inputs_dict def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Dict = self.prepare_config_and_inputs() _a : Tuple = config_and_inputs _a : Union[str, Any] = {'pixel_values': pixel_values, 'labels': labels} return config, inputs_dict @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Dict = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) __UpperCAmelCase : Dict = ( {'''feature-extraction''': ConvNextVaModel, '''image-classification''': ConvNextVaForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : Tuple = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : List[Any] = False def __lowercase ( self : Tuple ): '''simple docstring''' _a : Any = ConvNextVaModelTester(self ) _a : Dict = ConfigTester(self ,config_class=_a ,has_text_modality=_a ,hidden_size=37 ) def __lowercase ( self : Any ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowercase ( self : List[str] ): '''simple docstring''' return @unittest.skip(reason='ConvNextV2 does not use inputs_embeds' ) def __lowercase ( self : int ): '''simple docstring''' pass @unittest.skip(reason='ConvNextV2 does not support input and output embeddings' ) def __lowercase ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason='ConvNextV2 does not use feedforward chunking' ) def __lowercase ( self : Tuple ): '''simple docstring''' pass def __lowercase ( self : str ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: _a : Dict = self.model_tester.prepare_config_and_inputs_with_labels() _a : List[str] = True if model_class.__name__ in [ *get_values(_a ), *get_values(_a ), ]: continue _a : Union[str, Any] = model_class(_a ) model.to(_a ) model.train() _a : Any = self._prepare_for_class(_a ,_a ,return_labels=_a ) _a : Optional[int] = model(**_a ).loss loss.backward() def __lowercase ( self : List[str] ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() _a : Tuple = False _a : int = True if ( model_class.__name__ in [*get_values(_a ), *get_values(_a )] or not model_class.supports_gradient_checkpointing ): continue _a : List[Any] = model_class(_a ) model.to(_a ) model.gradient_checkpointing_enable() model.train() _a : Any = self._prepare_for_class(_a ,_a ,return_labels=_a ) _a : str = model(**_a ).loss loss.backward() def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Optional[int] = model_class(_a ) _a : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Any = [*signature.parameters.keys()] _a : Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_a ) def __lowercase ( self : Tuple ): '''simple docstring''' _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self : Any ): '''simple docstring''' def check_hidden_states_output(_a : Any ,_a : List[str] ,_a : List[Any] ): _a : Any = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : int = model(**self._prepare_for_class(_a ,_a ) ) _a : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _a : Tuple = self.model_tester.num_stages self.assertEqual(len(_a ) ,expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) _a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Any = True check_hidden_states_output(_a ,_a ,_a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : Any = True check_hidden_states_output(_a ,_a ,_a ) def __lowercase ( self : str ): '''simple docstring''' _a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __lowercase ( self : int ): '''simple docstring''' for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Optional[int] = ConvNextVaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def UpperCAmelCase_ (): """simple docstring""" _a : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self : Dict ): '''simple docstring''' return AutoImageProcessor.from_pretrained('facebook/convnextv2-tiny-1k-224' ) if is_vision_available() else None @slow def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : str = ConvNextVaForImageClassification.from_pretrained('facebook/convnextv2-tiny-1k-224' ).to(_a ) _a : Any = self.default_image_processor _a : Dict = prepare_img() _a : Tuple = preprocessor(images=_a ,return_tensors='pt' ).to(_a ) # forward pass with torch.no_grad(): _a : str = model(**_a ) # verify the logits _a : int = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,_a ) _a : int = torch.tensor([0.9996, 0.1966, -0.4386] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_a ,atol=1E-4 ) )
353
'''simple docstring''' import sys def UpperCAmelCase_ (__a : List[str] ): """simple docstring""" _a : List[str] = len(__a ) _a : Dict = [[0 for x in range(__a )] for x in range(__a )] _a : Union[str, Any] = [[0 for x in range(__a )] for x in range(__a )] for chain_length in range(2 , __a ): for a in range(1 , n - chain_length + 1 ): _a : Tuple = a + chain_length - 1 _a : Any = sys.maxsize for c in range(__a , __a ): _a : Optional[Any] = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: _a : Dict = cost _a : Any = c return matrix, sol def UpperCAmelCase_ (__a : Tuple , __a : List[str] , __a : Dict ): """simple docstring""" if i == j: print('A' + str(__a ) , end=' ' ) else: print('(' , end=' ' ) print_optiomal_solution(__a , __a , optimal_solution[i][j] ) print_optiomal_solution(__a , optimal_solution[i][j] + 1 , __a ) print(')' , end=' ' ) def UpperCAmelCase_ (): """simple docstring""" _a : Any = [3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] _a : Any = len(__a ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 _a, _a : Union[str, Any] = matrix_chain_order(__a ) print('No. of Operation required: ' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__a , 1 , n - 1 ) if __name__ == "__main__": main()
5
0
'''simple docstring''' __lowerCAmelCase : Optional[int] = [ """VerificationMode""", """Version""", """disable_progress_bar""", """enable_progress_bar""", """is_progress_bar_enabled""", """experimental""", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
354
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase_ (__a : Optional[Any] ): """simple docstring""" _a : int = FileLock(str(tmpdir / 'foo.lock' ) ) _a : List[Any] = FileLock(str(tmpdir / 'foo.lock' ) ) _a : Any = 0.01 with locka.acquire(): with pytest.raises(__a ): _a : int = time.time() locka.acquire(__a ) assert time.time() - _start > timeout def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Dict = 'a' * 1_0_0_0 + '.lock' _a : int = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('.lock' ) assert not locka._lock_file.endswith(__a ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 _a : Dict = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__a ): locka.acquire(0 )
5
0
'''simple docstring''' from typing import Any def UpperCAmelCase_ (__a : list , __a : list , __a : dict , __a : dict , __a : dict , ): """simple docstring""" _validation( __a , __a , __a , __a , __a , ) # Creates data structures and fill initial step _a : dict = {} _a : dict = {} for state in states_space: _a : List[str] = observations_space[0] _a : Union[str, Any] = ( initial_probabilities[state] * emission_probabilities[state][observation] ) _a : Union[str, Any] = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__a ) ): _a : List[Any] = observations_space[o] _a : List[Any] = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function _a : Tuple = '' _a : Tuple = -1 for k_state in states_space: _a : Dict = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: _a : Any = probability _a : Optional[int] = k_state # Update probabilities and pointers dicts _a : str = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) _a : Any = arg_max # The final observation _a : str = observations_space[len(__a ) - 1] # argmax for given final observation _a : str = '' _a : Any = -1 for k_state in states_space: _a : int = probabilities[(k_state, final_observation)] if probability > max_probability: _a : Tuple = probability _a : Optional[int] = k_state _a : str = arg_max # Process pointers backwards _a : Union[str, Any] = last_state _a : Optional[int] = [] for o in range(len(__a ) - 1 , -1 , -1 ): result.append(__a ) _a : List[Any] = pointers[previous, observations_space[o]] result.reverse() return result def UpperCAmelCase_ (__a : Any , __a : Any , __a : Any , __a : Any , __a : Any , ): """simple docstring""" _validate_not_empty( __a , __a , __a , __a , __a , ) _validate_lists(__a , __a ) _validate_dicts( __a , __a , __a ) def UpperCAmelCase_ (__a : Any , __a : Any , __a : Any , __a : Any , __a : Any , ): """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('There\'s an empty parameter' ) def UpperCAmelCase_ (__a : Any , __a : Any ): """simple docstring""" _validate_list(__a , 'observations_space' ) _validate_list(__a , 'states_space' ) def UpperCAmelCase_ (__a : Any , __a : str ): """simple docstring""" if not isinstance(_object , __a ): _a : Any = f"""{var_name} must be a list""" raise ValueError(__a ) else: for x in _object: if not isinstance(__a , __a ): _a : Union[str, Any] = f"""{var_name} must be a list of strings""" raise ValueError(__a ) def UpperCAmelCase_ (__a : Any , __a : Any , __a : Any , ): """simple docstring""" _validate_dict(__a , 'initial_probabilities' , __a ) _validate_nested_dict(__a , 'transition_probabilities' ) _validate_nested_dict(__a , 'emission_probabilities' ) def UpperCAmelCase_ (__a : Any , __a : str ): """simple docstring""" _validate_dict(_object , __a , __a ) for x in _object.values(): _validate_dict(__a , __a , __a , __a ) def UpperCAmelCase_ (__a : Any , __a : str , __a : type , __a : bool = False ): """simple docstring""" if not isinstance(_object , __a ): _a : List[Any] = f"""{var_name} must be a dict""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object ): _a : Union[str, Any] = f"""{var_name} all keys must be strings""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object.values() ): _a : str = 'nested dictionary ' if nested else '' _a : Union[str, Any] = f"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(__a ) if __name__ == "__main__": from doctest import testmod testmod()
355
'''simple docstring''' def UpperCAmelCase_ (__a : int = 1_0**1_2 ): """simple docstring""" _a : List[str] = 1 _a : Optional[int] = 0 _a : Any = 1 _a : List[str] = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f'''{solution() = }''')
5
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase = logging.get_logger(__name__) class UpperCAmelCase__ ( lowercase__ , lowercase__ ): """simple docstring""" __UpperCAmelCase : Dict = '''maskformer-swin''' __UpperCAmelCase : Tuple = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Dict ,_a : Tuple=224 ,_a : Any=4 ,_a : List[str]=3 ,_a : Any=96 ,_a : int=[2, 2, 6, 2] ,_a : Optional[int]=[3, 6, 12, 24] ,_a : List[Any]=7 ,_a : Union[str, Any]=4.0 ,_a : str=True ,_a : int=0.0 ,_a : Optional[Any]=0.0 ,_a : int=0.1 ,_a : Tuple="gelu" ,_a : int=False ,_a : Tuple=0.02 ,_a : int=1E-5 ,_a : Optional[Any]=None ,_a : List[str]=None ,**_a : Tuple ,): '''simple docstring''' super().__init__(**_a ) _a : Optional[Any] = image_size _a : List[Any] = patch_size _a : int = num_channels _a : List[str] = embed_dim _a : int = depths _a : str = len(_a ) _a : Dict = num_heads _a : Any = window_size _a : str = mlp_ratio _a : str = qkv_bias _a : Tuple = hidden_dropout_prob _a : Tuple = attention_probs_dropout_prob _a : Tuple = drop_path_rate _a : List[str] = hidden_act _a : int = use_absolute_embeddings _a : Optional[int] = layer_norm_eps _a : Optional[int] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _a : str = int(embed_dim * 2 ** (len(_a ) - 1) ) _a : Tuple = ['stem'] + [F"""stage{idx}""" for idx in range(1 ,len(_a ) + 1 )] _a : Optional[Any] = get_aligned_output_features_output_indices( out_features=_a ,out_indices=_a ,stage_names=self.stage_names )
356
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __lowerCAmelCase = { """vocab_file""": {"""mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"""}, """tokenizer_file""": { """mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json""" }, } __lowerCAmelCase = {"""mobilebert-uncased""": 5_1_2} __lowerCAmelCase = {} class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Any = VOCAB_FILES_NAMES __UpperCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Tuple = PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Optional[Any] = MobileBertTokenizer def __init__( self : Dict ,_a : List[Any]=None ,_a : Optional[Any]=None ,_a : Union[str, Any]=True ,_a : Dict="[UNK]" ,_a : Union[str, Any]="[SEP]" ,_a : Any="[PAD]" ,_a : Optional[int]="[CLS]" ,_a : Optional[Any]="[MASK]" ,_a : Dict=True ,_a : Any=None ,**_a : Optional[Any] ,): '''simple docstring''' super().__init__( _a ,tokenizer_file=_a ,do_lower_case=_a ,unk_token=_a ,sep_token=_a ,pad_token=_a ,cls_token=_a ,mask_token=_a ,tokenize_chinese_chars=_a ,strip_accents=_a ,**_a ,) _a : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,_a ) != do_lower_case or normalizer_state.get('strip_accents' ,_a ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,_a ) != tokenize_chinese_chars ): _a : Optional[Any] = getattr(_a ,normalizer_state.pop('type' ) ) _a : Dict = do_lower_case _a : str = strip_accents _a : Tuple = tokenize_chinese_chars _a : Optional[Any] = normalizer_class(**_a ) _a : str = do_lower_case def __lowercase ( self : Tuple ,_a : Union[str, Any] ,_a : List[str]=None ): '''simple docstring''' _a : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowercase ( self : List[str] ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' _a : List[str] = [self.sep_token_id] _a : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowercase ( self : Union[str, Any] ,_a : str ,_a : Optional[str] = None ): '''simple docstring''' _a : int = self._tokenizer.model.save(_a ,name=_a ) return tuple(_a )
5
0
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class UpperCAmelCase__ : """simple docstring""" def __init__( self : Dict ,_a : List[Any] ,_a : List[str]=2 ,_a : Optional[Any]=True ,_a : Union[str, Any]=False ,_a : List[Any]=10 ,_a : Optional[int]=3 ,_a : List[str]=32 * 8 ,_a : Optional[Any]=32 * 8 ,_a : int=4 ,_a : Union[str, Any]=64 ,): '''simple docstring''' _a : Dict = parent _a : int = batch_size _a : Optional[Any] = is_training _a : Any = use_auxiliary_loss _a : Any = num_queries _a : Tuple = num_channels _a : str = min_size _a : Union[str, Any] = max_size _a : Union[str, Any] = num_labels _a : Union[str, Any] = hidden_dim _a : List[Any] = hidden_dim def __lowercase ( self : int ): '''simple docstring''' _a : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _a ) _a : Optional[Any] = torch.ones([self.batch_size, self.min_size, self.max_size] ,device=_a ) _a : str = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] ,device=_a ) > 0.5 ).float() _a : str = (torch.rand((self.batch_size, self.num_labels) ,device=_a ) > 0.5).long() _a : Union[str, Any] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : List[Any] = MaskaFormerConfig( hidden_size=self.hidden_dim ,) _a : Tuple = self.num_queries _a : str = self.num_labels _a : List[Any] = [1, 1, 1, 1] _a : List[Any] = self.num_channels _a : int = 64 _a : str = 128 _a : List[str] = self.hidden_dim _a : str = self.hidden_dim _a : Tuple = self.hidden_dim return config def __lowercase ( self : Tuple ): '''simple docstring''' _a : Dict = self.prepare_config_and_inputs() _a : List[str] = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def __lowercase ( self : Tuple ,_a : Optional[int] ,_a : List[str] ): '''simple docstring''' _a : Any = output.encoder_hidden_states _a : int = output.pixel_decoder_hidden_states _a : Union[str, Any] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_a ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_a ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_a ) ,config.decoder_layers ) def __lowercase ( self : str ,_a : int ,_a : str ,_a : List[str] ,_a : Optional[Any]=False ): '''simple docstring''' with torch.no_grad(): _a : str = MaskaFormerModel(config=_a ) model.to(_a ) model.eval() _a : List[Any] = model(pixel_values=_a ,pixel_mask=_a ) _a : Optional[int] = model(_a ,output_hidden_states=_a ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape ,(self.batch_size, self.num_queries, self.hidden_dim) ,) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_a ,_a ) def __lowercase ( self : List[str] ,_a : List[str] ,_a : str ,_a : List[Any] ,_a : List[Any] ,_a : Any ): '''simple docstring''' _a : List[str] = MaskaFormerForUniversalSegmentation(config=_a ) model.to(_a ) model.eval() def comm_check_on_output(_a : Optional[int] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape ,(self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) ,) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape ,(self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _a : Optional[Any] = model(pixel_values=_a ,pixel_mask=_a ) _a : Union[str, Any] = model(_a ) comm_check_on_output(_a ) _a : List[str] = model( pixel_values=_a ,pixel_mask=_a ,mask_labels=_a ,class_labels=_a ) comm_check_on_output(_a ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape ,torch.Size([1] ) ) @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : List[Any] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () __UpperCAmelCase : Tuple = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} __UpperCAmelCase : List[str] = False __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Any = False def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : List[str] = MaskaFormerModelTester(self ) _a : List[str] = ConfigTester(self ,config_class=_a ,has_text_modality=_a ) def __lowercase ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self : str ): '''simple docstring''' _a : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_a ,**_a ,output_hidden_states=_a ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_a ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def __lowercase ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip(reason='Mask2Former is not a generative model' ) def __lowercase ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def __lowercase ( self : Tuple ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def __lowercase ( self : Tuple ): '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __lowercase ( self : Any ): '''simple docstring''' pass def __lowercase ( self : Dict ): '''simple docstring''' _a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[Any] = model_class(_a ) _a : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : List[str] = [*signature.parameters.keys()] _a : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_a ) @slow def __lowercase ( self : List[Any] ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: _a : List[str] = MaskaFormerModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Optional[int] = (self.model_tester.min_size,) * 2 _a : List[str] = { 'pixel_values': torch.randn((2, 3, *size) ,device=_a ), 'mask_labels': torch.randn((2, 10, *size) ,device=_a ), 'class_labels': torch.zeros(2 ,10 ,device=_a ).long(), } _a : str = self.model_tester.get_config() _a : str = MaskaFormerForUniversalSegmentation(_a ).to(_a ) _a : int = model(**_a ) self.assertTrue(outputs.loss is not None ) def __lowercase ( self : Dict ): '''simple docstring''' _a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_a ,**_a ,output_hidden_states=_a ) def __lowercase ( self : int ): '''simple docstring''' _a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[Any] = model_class(_a ).to(_a ) _a : Optional[int] = model(**_a ,output_attentions=_a ) self.assertTrue(outputs.attentions is not None ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' if not self.model_tester.is_training: return _a : Tuple = self.all_model_classes[1] _a : str = self.model_tester.prepare_config_and_inputs() _a : Union[str, Any] = model_class(_a ) model.to(_a ) model.train() _a : str = model(_a ,mask_labels=_a ,class_labels=_a ).loss loss.backward() def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : List[str] = self.all_model_classes[1] _a : Tuple = self.model_tester.prepare_config_and_inputs() _a : Optional[Any] = True _a : Any = True _a : Tuple = model_class(_a ).to(_a ) model.train() _a : List[Any] = model(_a ,mask_labels=_a ,class_labels=_a ) _a : Optional[Any] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _a : Any = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() _a : int = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _a : str = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_a ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __lowerCAmelCase = 1e-4 def UpperCAmelCase_ (): """simple docstring""" _a : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self : Tuple ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def __lowercase ( self : List[str] ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def __lowercase ( self : str ): '''simple docstring''' _a : List[str] = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_a ) _a : str = self.default_image_processor _a : List[str] = prepare_img() _a : int = image_processor(_a ,return_tensors='pt' ).to(_a ) _a : List[str] = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_a ,(1, 3, 384, 384) ) with torch.no_grad(): _a : Any = model(**_a ) _a : List[Any] = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(_a ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] ,_a ,atol=_a ) ) _a : Union[str, Any] = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(_a ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] ,_a ,atol=_a ) ) _a : Optional[Any] = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(_a ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] ,_a ,atol=_a ) ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : List[str] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_a ).eval() _a : Dict = self.default_image_processor _a : Any = prepare_img() _a : Union[str, Any] = image_processor(_a ,return_tensors='pt' ).to(_a ) _a : Union[str, Any] = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_a ,(1, 3, 384, 384) ) with torch.no_grad(): _a : Dict = model(**_a ) # masks_queries_logits _a : Any = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) _a : Union[str, Any] = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] _a : Dict = torch.tensor(_a ).to(_a ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,_a ,atol=_a ) ) # class_queries_logits _a : Dict = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape ,(1, model.config.num_queries, model.config.num_labels + 1) ) _a : Any = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(_a ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,_a ,atol=_a ) ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : List[Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_a ).eval() _a : Tuple = self.default_image_processor _a : List[str] = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] ,segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] ,return_tensors='pt' ,) _a : Tuple = inputs['pixel_values'].to(_a ) _a : Optional[Any] = [el.to(_a ) for el in inputs['mask_labels']] _a : List[Any] = [el.to(_a ) for el in inputs['class_labels']] with torch.no_grad(): _a : int = model(**_a ) self.assertTrue(outputs.loss is not None )
357
'''simple docstring''' def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : List[Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" _a : Optional[int] = '' _a : List[str] = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__a ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _a, _a : Optional[int] = 0, 0 # length[i] shows the length of palindromic substring with center i _a : Optional[Any] = [1 for i in range(len(__a ) )] # for each character in new_string find corresponding palindromic string _a : Dict = 0 for j in range(len(__a ) ): _a : Dict = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__a ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _a : Optional[int] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _a : str = j - k + 1 # noqa: E741 _a : Any = j + k - 1 # update max_length and start position if max_length < length[j]: _a : Union[str, Any] = length[j] _a : List[str] = j # create that string _a : Tuple = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
5
0
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase__ : """simple docstring""" def __init__( self : Tuple ,_a : Tuple ,_a : Optional[Any]=13 ,_a : List[str]=7 ,_a : str=True ,_a : List[str]=True ,_a : Optional[int]=True ,_a : Union[str, Any]=True ,_a : Union[str, Any]=True ,_a : Union[str, Any]=False ,_a : Union[str, Any]=False ,_a : List[Any]=False ,_a : str=2 ,_a : List[str]=99 ,_a : Tuple=0 ,_a : List[str]=32 ,_a : Dict=5 ,_a : Union[str, Any]=4 ,_a : Union[str, Any]=0.1 ,_a : Tuple=0.1 ,_a : Union[str, Any]=512 ,_a : Optional[int]=2 ,_a : Any=0.02 ,_a : List[str]=2 ,_a : Dict=4 ,_a : int="last" ,_a : Optional[Any]=True ,_a : str=None ,_a : str=0 ,): '''simple docstring''' _a : Dict = parent _a : Tuple = batch_size _a : List[Any] = seq_length _a : Any = is_training _a : List[Any] = use_input_lengths _a : Optional[Any] = use_token_type_ids _a : Tuple = use_labels _a : Dict = gelu_activation _a : int = sinusoidal_embeddings _a : int = causal _a : Any = asm _a : Dict = n_langs _a : str = vocab_size _a : Optional[int] = n_special _a : List[Any] = hidden_size _a : Any = num_hidden_layers _a : List[Any] = num_attention_heads _a : Optional[Any] = hidden_dropout_prob _a : List[Any] = attention_probs_dropout_prob _a : Dict = max_position_embeddings _a : List[str] = type_sequence_label_size _a : List[str] = initializer_range _a : Any = num_labels _a : Optional[int] = num_choices _a : List[str] = summary_type _a : Optional[Any] = use_proj _a : Dict = scope _a : List[Any] = bos_token_id def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _a : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _a : int = None if self.use_input_lengths: _a : Union[str, Any] = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _a : Optional[Any] = None if self.use_token_type_ids: _a : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) _a : Any = None _a : List[Any] = None _a : Any = None if self.use_labels: _a : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _a : str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _a : Optional[Any] = ids_tensor([self.batch_size] ,2 ).float() _a : List[Any] = ids_tensor([self.batch_size] ,self.num_choices ) _a : str = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __lowercase ( self : List[Any] ): '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,num_labels=self.num_labels ,bos_token_id=self.bos_token_id ,) def __lowercase ( self : Tuple ,_a : Any ,_a : str ,_a : str ,_a : List[Any] ,_a : Optional[Any] ,_a : Tuple ,_a : List[Any] ,_a : Optional[Any] ,_a : List[Any] ,): '''simple docstring''' _a : List[str] = XLMModel(config=_a ) model.to(_a ) model.eval() _a : Union[str, Any] = model(_a ,lengths=_a ,langs=_a ) _a : List[str] = model(_a ,langs=_a ) _a : Any = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : Any ,_a : Any ,_a : int ,_a : str ,_a : Dict ,_a : Union[str, Any] ,_a : Optional[int] ,_a : List[str] ,_a : Dict ,_a : str ,): '''simple docstring''' _a : Union[str, Any] = XLMWithLMHeadModel(_a ) model.to(_a ) model.eval() _a : Optional[int] = model(_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase ( self : List[Any] ,_a : Tuple ,_a : List[str] ,_a : Optional[int] ,_a : Optional[Any] ,_a : Any ,_a : int ,_a : Dict ,_a : Optional[int] ,_a : Union[str, Any] ,): '''simple docstring''' _a : str = XLMForQuestionAnsweringSimple(_a ) model.to(_a ) model.eval() _a : int = model(_a ) _a : int = model(_a ,start_positions=_a ,end_positions=_a ) _a : Optional[int] = outputs self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def __lowercase ( self : Optional[int] ,_a : Optional[Any] ,_a : Optional[int] ,_a : Any ,_a : Tuple ,_a : Optional[int] ,_a : Union[str, Any] ,_a : Union[str, Any] ,_a : str ,_a : List[Any] ,): '''simple docstring''' _a : Tuple = XLMForQuestionAnswering(_a ) model.to(_a ) model.eval() _a : Optional[int] = model(_a ) _a : Tuple = model( _a ,start_positions=_a ,end_positions=_a ,cls_index=_a ,is_impossible=_a ,p_mask=_a ,) _a : Tuple = model( _a ,start_positions=_a ,end_positions=_a ,cls_index=_a ,is_impossible=_a ,) (_a ) : str = result_with_labels.to_tuple() _a : int = model(_a ,start_positions=_a ,end_positions=_a ) (_a ) : int = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape ,() ) self.parent.assertEqual(result.start_top_log_probs.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape ,(self.batch_size,) ) def __lowercase ( self : List[str] ,_a : List[str] ,_a : List[str] ,_a : Union[str, Any] ,_a : Dict ,_a : Optional[Any] ,_a : Any ,_a : Union[str, Any] ,_a : Tuple ,_a : str ,): '''simple docstring''' _a : Dict = XLMForSequenceClassification(_a ) model.to(_a ) model.eval() _a : Any = model(_a ) _a : Optional[int] = model(_a ,labels=_a ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def __lowercase ( self : str ,_a : Optional[Any] ,_a : int ,_a : Optional[int] ,_a : Dict ,_a : int ,_a : int ,_a : Optional[int] ,_a : Optional[Any] ,_a : Union[str, Any] ,): '''simple docstring''' _a : List[str] = self.num_labels _a : Optional[int] = XLMForTokenClassification(_a ) model.to(_a ) model.eval() _a : Tuple = model(_a ,attention_mask=_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def __lowercase ( self : Any ,_a : List[Any] ,_a : Tuple ,_a : List[Any] ,_a : Optional[Any] ,_a : List[str] ,_a : Any ,_a : Optional[int] ,_a : int ,_a : Tuple ,): '''simple docstring''' _a : Tuple = self.num_choices _a : Optional[Any] = XLMForMultipleChoice(config=_a ) model.to(_a ) model.eval() _a : Tuple = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _a : int = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _a : List[Any] = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _a : Optional[int] = model( _a ,attention_mask=_a ,token_type_ids=_a ,labels=_a ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def __lowercase ( self : Any ): '''simple docstring''' _a : Dict = self.prepare_config_and_inputs() ( _a ) : List[str] = config_and_inputs _a : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) __UpperCAmelCase : Any = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __UpperCAmelCase : Any = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def __lowercase ( self : int ,_a : str ,_a : Union[str, Any] ,_a : Optional[int] ,_a : Any ,_a : Any ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __lowercase ( self : Union[str, Any] ,_a : Optional[Any] ,_a : Tuple ,_a : Optional[Any]=False ): '''simple docstring''' _a : Union[str, Any] = super()._prepare_for_class(_a ,_a ,return_labels=_a ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": _a : Tuple = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=_a ) _a : Any = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=_a ) return inputs_dict def __lowercase ( self : List[Any] ): '''simple docstring''' _a : Dict = XLMModelTester(self ) _a : Union[str, Any] = ConfigTester(self ,config_class=_a ,emb_dim=37 ) def __lowercase ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self : Tuple ): '''simple docstring''' _a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*_a ) def __lowercase ( self : str ): '''simple docstring''' _a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*_a ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*_a ) def __lowercase ( self : Tuple ): '''simple docstring''' _a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*_a ) def __lowercase ( self : Dict ): '''simple docstring''' _a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*_a ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*_a ) def __lowercase ( self : int ): '''simple docstring''' _a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*_a ) def __lowercase ( self : Tuple ,_a : Tuple ,_a : Dict ,_a : Union[str, Any] ,_a : List[Any] ,_a : Dict ,_a : List[str]=False ,_a : str=1 ): '''simple docstring''' self.assertIsInstance(_a ,_a ) self.assertListEqual( [isinstance(_a ,_a ) for iter_attentions in attentions] ,[True] * len(_a ) ) self.assertEqual(len(_a ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(_a ): # adds PAD dummy token _a : Optional[Any] = min_length + idx + 1 _a : Optional[Any] = min_length + idx + 1 _a : List[Any] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] ,[expected_shape] * len(_a ) ) def __lowercase ( self : Any ,_a : int ,_a : int ,_a : List[str] ,_a : Tuple ,_a : Union[str, Any] ,_a : Optional[int]=False ,_a : List[Any]=1 ): '''simple docstring''' self.assertIsInstance(_a ,_a ) self.assertListEqual( [isinstance(_a ,_a ) for iter_hidden_states in hidden_states] ,[True] * len(_a ) ,) self.assertEqual(len(_a ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(_a ): # adds PAD dummy token _a : Dict = min_length + idx + 1 _a : int = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] ,[expected_shape] * len(_a ) ,) pass @slow def __lowercase ( self : Optional[Any] ): '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Union[str, Any] = XLMModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[Any] = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(_a ) _a : Optional[int] = torch.tensor([[14, 447]] ,dtype=torch.long ,device=_a ) # the president _a : int = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference _a : Dict = model.generate(_a ,do_sample=_a ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() ,_a )
358
'''simple docstring''' from functools import lru_cache @lru_cache def UpperCAmelCase_ (__a : int ): """simple docstring""" if num < 0: raise ValueError('Number should not be negative.' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
0
'''simple docstring''' import math def UpperCAmelCase_ (__a : int ): """simple docstring""" if not isinstance(__a , __a ): _a : Tuple = f"""Input value of [number={number}] must be an integer""" raise TypeError(__a ) if number < 1: _a : Any = f"""Input value of [number={number}] must be > 0""" raise ValueError(__a ) elif number == 1: return 3 elif number == 2: return 5 else: _a : str = int(math.log(number // 3 , 2 ) ) + 2 _a : Union[str, Any] = [3, 5] _a : Any = 2 _a : List[Any] = 3 for block in range(1 , __a ): for _ in range(__a ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(1_1): __lowerCAmelCase = 0 try: __lowerCAmelCase = proth(number) except ValueError: print(f'''ValueError: there is no {number}th Proth number''') continue print(f'''The {number}th Proth number: {value}''')
359
'''simple docstring''' import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib __lowerCAmelCase = threading.Lock() __lowerCAmelCase = None __lowerCAmelCase = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } __lowerCAmelCase = logging.WARNING __lowerCAmelCase = True def UpperCAmelCase_ (): """simple docstring""" _a : Dict = os.getenv('TRANSFORMERS_VERBOSITY' , __a ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def UpperCAmelCase_ (): """simple docstring""" return __name__.split('.' )[0] def UpperCAmelCase_ (): """simple docstring""" return logging.getLogger(_get_library_name() ) def UpperCAmelCase_ (): """simple docstring""" global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _a : str = logging.StreamHandler() # Set sys.stderr as stream. _a : Optional[Any] = sys.stderr.flush # Apply our default configuration to the library root logger. _a : List[Any] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) _a : List[str] = False def UpperCAmelCase_ (): """simple docstring""" global _default_handler with _lock: if not _default_handler: return _a : int = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) _a : str = None def UpperCAmelCase_ (): """simple docstring""" return log_levels def UpperCAmelCase_ (__a : Optional[str] = None ): """simple docstring""" if name is None: _a : List[Any] = _get_library_name() _configure_library_root_logger() return logging.getLogger(__a ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def UpperCAmelCase_ (__a : int ): """simple docstring""" _configure_library_root_logger() _get_library_root_logger().setLevel(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def UpperCAmelCase_ (__a : logging.Handler ): """simple docstring""" _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(__a ) def UpperCAmelCase_ (__a : logging.Handler ): """simple docstring""" _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(__a ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() _a : Union[str, Any] = False def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() _a : Dict = True def UpperCAmelCase_ (): """simple docstring""" _a : Any = _get_library_root_logger().handlers for handler in handlers: _a : Union[str, Any] = logging.Formatter('[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s' ) handler.setFormatter(__a ) def UpperCAmelCase_ (): """simple docstring""" _a : Union[str, Any] = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(__a ) def UpperCAmelCase_ (self : Union[str, Any] , *__a : Union[str, Any] , **__a : Union[str, Any] ): """simple docstring""" _a : Union[str, Any] = os.getenv('TRANSFORMERS_NO_ADVISORY_WARNINGS' , __a ) if no_advisory_warnings: return self.warning(*__a , **__a ) __lowerCAmelCase = warning_advice @functools.lru_cache(__a ) def UpperCAmelCase_ (self : int , *__a : Optional[Any] , **__a : Any ): """simple docstring""" self.warning(*__a , **__a ) __lowerCAmelCase = warning_once class UpperCAmelCase__ : """simple docstring""" def __init__( self : Any ,*_a : Tuple ,**_a : int ): # pylint: disable=unused-argument '''simple docstring''' _a : int = args[0] if args else None def __iter__( self : str ): '''simple docstring''' return iter(self._iterator ) def __getattr__( self : List[Any] ,_a : int ): '''simple docstring''' def empty_fn(*_a : Optional[Any] ,**_a : Any ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : List[str] ): '''simple docstring''' return self def __exit__( self : List[str] ,_a : str ,_a : List[Any] ,_a : str ): '''simple docstring''' return class UpperCAmelCase__ : """simple docstring""" def __call__( self : Union[str, Any] ,*_a : Tuple ,**_a : Tuple ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm(*_a ,**_a ) else: return EmptyTqdm(*_a ,**_a ) def __lowercase ( self : str ,*_a : List[Any] ,**_a : Any ): '''simple docstring''' _a : Any = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_a ,**_a ) def __lowercase ( self : List[str] ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() __lowerCAmelCase = _tqdm_cls() def UpperCAmelCase_ (): """simple docstring""" global _tqdm_active return bool(_tqdm_active ) def UpperCAmelCase_ (): """simple docstring""" global _tqdm_active _a : str = True hf_hub_utils.enable_progress_bars() def UpperCAmelCase_ (): """simple docstring""" global _tqdm_active _a : Dict = False hf_hub_utils.disable_progress_bars()
5
0
'''simple docstring''' def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(__a , int(b / 2 ) ) * actual_power(__a , int(b / 2 ) ) else: return a * actual_power(__a , int(b / 2 ) ) * actual_power(__a , int(b / 2 ) ) def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" if b < 0: return 1 / actual_power(__a , __a ) return actual_power(__a , __a ) if __name__ == "__main__": print(power(-2, -3))
360
'''simple docstring''' def UpperCAmelCase_ (__a : list[int] , __a : list[int] ): """simple docstring""" if not len(__a ) == len(__a ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients _a, _a, _a : Tuple = equationa _a, _a, _a : str = equationa # Calculate the determinants of the matrices _a : Union[str, Any] = aa * ba - aa * ba _a : List[Any] = ca * ba - ca * ba _a : List[Any] = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _a : int = determinant_x / determinant _a : List[str] = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
5
0
'''simple docstring''' import math import qiskit def UpperCAmelCase_ (__a : int = 1 , __a : int = 1 , __a : int = 1 ): """simple docstring""" if ( isinstance(__a , __a ) or isinstance(__a , __a ) or isinstance(__a , __a ) ): raise TypeError('inputs must be integers.' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('inputs must be positive.' ) if ( (math.floor(__a ) != input_a) or (math.floor(__a ) != input_a) or (math.floor(__a ) != carry_in) ): raise ValueError('inputs must be exact integers.' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('inputs must be less or equal to 2.' ) # build registers _a : Tuple = qiskit.QuantumRegister(4 , 'qr' ) _a : Optional[int] = qiskit.ClassicalRegister(2 , 'cr' ) # list the entries _a : Dict = [input_a, input_a, carry_in] _a : int = qiskit.QuantumCircuit(__a , __a ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__a ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__a ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__a ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __a ) # measure the last two qbits _a : Optional[int] = qiskit.Aer.get_backend('aer_simulator' ) _a : Optional[Any] = qiskit.execute(__a , __a , shots=1_0_0_0 ) return job.result().get_counts(__a ) if __name__ == "__main__": print(f'''Total sum count for state is: {quantum_full_adder(1, 1, 1)}''')
361
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase__ : """simple docstring""" def __init__( self : int ,_a : List[str] ,_a : Optional[Any]=13 ,_a : str=30 ,_a : str=2 ,_a : Union[str, Any]=3 ,_a : Optional[Any]=True ,_a : int=True ,_a : Union[str, Any]=32 ,_a : List[Any]=5 ,_a : Union[str, Any]=4 ,_a : int=37 ,_a : Any="gelu" ,_a : Union[str, Any]=0.1 ,_a : str=0.1 ,_a : List[str]=10 ,_a : Dict=0.02 ,_a : Tuple=None ,): '''simple docstring''' _a : Any = parent _a : int = batch_size _a : List[Any] = image_size _a : Optional[int] = patch_size _a : List[str] = num_channels _a : Dict = is_training _a : Dict = use_labels _a : Optional[Any] = hidden_size _a : str = num_hidden_layers _a : Optional[int] = num_attention_heads _a : Dict = intermediate_size _a : Union[str, Any] = hidden_act _a : List[str] = hidden_dropout_prob _a : Any = attention_probs_dropout_prob _a : List[str] = type_sequence_label_size _a : int = initializer_range _a : List[Any] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _a : Union[str, Any] = (image_size // patch_size) ** 2 _a : Tuple = num_patches + 1 def __lowercase ( self : Any ): '''simple docstring''' _a : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : str = None if self.use_labels: _a : Tuple = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _a : List[str] = self.get_config() return config, pixel_values, labels def __lowercase ( self : Optional[int] ): '''simple docstring''' return ViTMSNConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,initializer_range=self.initializer_range ,) def __lowercase ( self : Tuple ,_a : Any ,_a : List[Any] ,_a : int ): '''simple docstring''' _a : str = ViTMSNModel(config=_a ) model.to(_a ) model.eval() _a : int = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : List[Any] ,_a : str ,_a : Tuple ,_a : Dict ): '''simple docstring''' _a : Tuple = self.type_sequence_label_size _a : int = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _a : Dict = model(_a ,labels=_a ) print('Pixel and labels shape: {pixel_values.shape}, {labels.shape}' ) print('Labels: {labels}' ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _a : int = 1 _a : Optional[Any] = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _a : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a : Optional[int] = model(_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[int] = self.prepare_config_and_inputs() _a, _a, _a : int = config_and_inputs _a : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __UpperCAmelCase : List[Any] = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase : str = False __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = False def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : List[str] = ViTMSNModelTester(self ) _a : Optional[int] = ConfigTester(self ,config_class=_a ,has_text_modality=_a ,hidden_size=37 ) def __lowercase ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViTMSN does not use inputs_embeds' ) def __lowercase ( self : List[str] ): '''simple docstring''' pass def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a, _a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[Any] = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _a : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a ,nn.Linear ) ) def __lowercase ( self : Any ): '''simple docstring''' _a, _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[str] = model_class(_a ) _a : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : List[Any] = [*signature.parameters.keys()] _a : int = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_a ) def __lowercase ( self : List[str] ): '''simple docstring''' _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __lowercase ( self : int ): '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Dict = ViTMSNModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def UpperCAmelCase_ (): """simple docstring""" _a : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained('facebook/vit-msn-small' ) if is_vision_available() else None @slow def __lowercase ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(2 ) _a : List[str] = ViTMSNForImageClassification.from_pretrained('facebook/vit-msn-small' ).to(_a ) _a : List[str] = self.default_image_processor _a : int = prepare_img() _a : Tuple = image_processor(images=_a ,return_tensors='pt' ).to(_a ) # forward pass with torch.no_grad(): _a : Optional[int] = model(**_a ) # verify the logits _a : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,_a ) _a : List[Any] = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_a ,atol=1E-4 ) )
5
0
'''simple docstring''' import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __init__( self : Tuple ,_a : Optional[int] ): '''simple docstring''' _a : Dict = data def __iter__( self : Any ): '''simple docstring''' for element in self.data: yield element def UpperCAmelCase_ (__a : Dict=True ): """simple docstring""" _a : Tuple = Accelerator(even_batches=__a ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def UpperCAmelCase_ (__a : Accelerator , __a : int , __a : int , __a : bool = False ): """simple docstring""" if iterable: _a : Dict = DummyIterableDataset(torch.as_tensor(range(__a ) ) ) else: _a : str = TensorDataset(torch.as_tensor(range(__a ) ) ) _a : List[str] = DataLoader(__a , batch_size=__a ) _a : Any = accelerator.prepare(__a ) return dl def UpperCAmelCase_ (__a : Accelerator , __a : int , __a : int , __a : List[int] , __a : List[int] , ): """simple docstring""" _a : Dict = create_dataloader(accelerator=__a , dataset_size=__a , batch_size=__a ) _a : Any = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def UpperCAmelCase_ (): """simple docstring""" _a : List[str] = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( __a , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( __a , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def UpperCAmelCase_ (): """simple docstring""" _a : Any = create_accelerator(even_batches=__a ) verify_dataloader_batch_sizes( __a , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( __a , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def UpperCAmelCase_ (): """simple docstring""" _a : str = create_accelerator(even_batches=__a ) _a : int = torch.nn.Linear(1 , 1 ) _a : int = accelerator.prepare(__a ) _a : Optional[int] = create_dataloader(__a , dataset_size=3 , batch_size=1 ) _a : Optional[Any] = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(__a ): _a : int = ddp_model(batch[0].float() ) _a : str = output.sum() loss.backward() batch_idxs.append(__a ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def UpperCAmelCase_ (__a : Tuple ): """simple docstring""" with warnings.catch_warnings(record=__a ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , __a ) assert "only supported for multi-GPU" in str(w[-1].message ) def UpperCAmelCase_ (): """simple docstring""" _a : Optional[Any] = True _a : List[Any] = False _a : str = create_accelerator(even_batches=__a ) _a : int = torch.nn.Linear(1 , 1 ) _a : Union[str, Any] = accelerator.prepare(__a ) _a : Dict = create_dataloader(__a , dataset_size=3 , batch_size=1 ) _a : Dict = create_dataloader(__a , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=__a ): _a : List[str] = train_dl.batch_sampler.even_batches _a : List[Any] = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def UpperCAmelCase_ (): """simple docstring""" _a : Dict = True _a : Optional[int] = False _a : Union[str, Any] = create_accelerator(even_batches=__a ) _a : Optional[int] = torch.nn.Linear(1 , 1 ) _a : List[Any] = accelerator.prepare(__a ) create_dataloader(__a , dataset_size=3 , batch_size=1 , iterable=__a ) _a : Union[str, Any] = create_dataloader(__a , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings('ignore' ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__a ): _a : str = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def UpperCAmelCase_ (): """simple docstring""" _a : int = create_accelerator() _a : str = torch.nn.Linear(1 , 1 ) _a : Optional[Any] = accelerator.prepare(__a ) create_dataloader(__a , dataset_size=3 , batch_size=1 , iterable=__a ) with warnings.catch_warnings(record=__a ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__a ): pass assert issubclass(w[-1].category , __a ) assert "only supported for map-style datasets" in str(w[-1].message ) def UpperCAmelCase_ (): """simple docstring""" _a : Optional[Any] = create_accelerator() accelerator.print('Test that even_batches variable ensures uniform batches across processes' ) test_default_ensures_even_batch_sizes() accelerator.print('Run tests with even_batches disabled' ) test_can_disable_even_batches() accelerator.print('Test joining uneven inputs' ) test_can_join_uneven_inputs() accelerator.print('Test overriding even_batches when joining uneven inputs' ) test_join_can_override_even_batches() accelerator.print('Test overriding even_batches for mixed dataloader types' ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print('Test overriding even_batches raises a warning for iterable dataloaders' ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print('Test join with non DDP distributed raises warning' ) _a : Union[str, Any] = accelerator.state.distributed_type _a : List[Any] = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(__a ) _a : List[Any] = original_state if __name__ == "__main__": main()
362
'''simple docstring''' import requests from bsa import BeautifulSoup def UpperCAmelCase_ (__a : str = "https://www.worldometers.info/coronavirus" ): """simple docstring""" _a : List[str] = BeautifulSoup(requests.get(__a ).text , 'html.parser' ) _a : Dict = soup.findAll('h1' ) _a : Union[str, Any] = soup.findAll('div' , {'class': 'maincounter-number'} ) keys += soup.findAll('span' , {'class': 'panel-title'} ) values += soup.findAll('div' , {'class': 'number-table-main'} ) return {key.text.strip(): value.text.strip() for key, value in zip(__a , __a )} if __name__ == "__main__": print("""\033[1m""" + """COVID-19 Status of the World""" + """\033[0m\n""") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
5
0
'''simple docstring''' import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase_ (__a : Any , __a : str , __a : List[Any] ): """simple docstring""" _a : str = LxmertConfig.from_json_file(__a ) print(f"""Building PyTorch model from configuration: {config}""" ) _a : Union[str, Any] = LxmertForPreTraining(__a ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(__a , __a , __a ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __a ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __lowerCAmelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
363
'''simple docstring''' import argparse from collections import defaultdict import yaml __lowerCAmelCase = """docs/source/en/_toctree.yml""" def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Any = defaultdict(__a ) for doc in model_doc: counts[doc["local"]] += 1 _a : List[str] = [key for key, value in counts.items() if value > 1] _a : str = [] for duplicate_key in duplicates: _a : Union[str, Any] = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(__a ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(__a , key=lambda __a : s["title"].lower() ) def UpperCAmelCase_ (__a : Optional[int]=False ): """simple docstring""" with open(__a , encoding='utf-8' ) as f: _a : Tuple = yaml.safe_load(f.read() ) # Get to the API doc _a : Union[str, Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 _a : Union[str, Any] = content[api_idx]['sections'] # Then to the model doc _a : List[str] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 _a : List[str] = api_doc[model_idx]['sections'] _a : List[Any] = [(idx, section) for idx, section in enumerate(__a ) if 'sections' in section] _a : Tuple = False for idx, modality_doc in modalities_docs: _a : List[Any] = modality_doc['sections'] _a : Any = clean_model_doc_toc(__a ) if old_modality_doc != new_modality_doc: _a : Union[str, Any] = True if overwrite: _a : str = new_modality_doc if diff: if overwrite: _a : Dict = model_doc _a : Dict = api_doc with open(__a , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(__a , allow_unicode=__a ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") __lowerCAmelCase = parser.parse_args() check_model_doc(args.fix_and_overwrite)
5
0
'''simple docstring''' import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml __lowerCAmelCase = NewType("""DataClass""", Any) __lowerCAmelCase = NewType("""DataClassType""", Any) def UpperCAmelCase_ (__a : Any ): """simple docstring""" if isinstance(__a , __a ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def UpperCAmelCase_ (__a : list ): """simple docstring""" _a : List[Any] = {str(__a ): choice for choice in choices} return lambda __a : str_to_choice.get(__a , __a ) def UpperCAmelCase_ (*, __a : Union[str, List[str]] = None , __a : str = None , __a : Any = dataclasses.MISSING , __a : Callable[[], Any] = dataclasses.MISSING , __a : dict = None , **__a : str , ): """simple docstring""" if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls _a : str = {} if aliases is not None: _a : Optional[Any] = aliases if help is not None: _a : Union[str, Any] = help return dataclasses.field(metadata=__a , default=__a , default_factory=__a , **__a ) class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Iterable[DataClassType] def __init__( self : int ,_a : Union[DataClassType, Iterable[DataClassType]] ,**_a : List[str] ): '''simple docstring''' if "formatter_class" not in kwargs: _a : List[str] = ArgumentDefaultsHelpFormatter super().__init__(**_a ) if dataclasses.is_dataclass(_a ): _a : Optional[int] = [dataclass_types] _a : Any = list(_a ) for dtype in self.dataclass_types: self._add_dataclass_arguments(_a ) @staticmethod def __lowercase ( _a : ArgumentParser ,_a : dataclasses.Field ): '''simple docstring''' _a : str = F"""--{field.name}""" _a : int = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type ,_a ): raise RuntimeError( 'Unresolved type detected, which should have been done with the help of ' '`typing.get_type_hints` method by default' ) _a : Union[str, Any] = kwargs.pop('aliases' ,[] ) if isinstance(_a ,_a ): _a : Union[str, Any] = [aliases] _a : str = getattr(field.type ,'__origin__' ,field.type ) if origin_type is Union or (hasattr(_a ,'UnionType' ) and isinstance(_a ,types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(_a ) not in field.type.__args__ ): raise ValueError( 'Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because' ' the argument parser only supports one type per argument.' F""" Problem encountered in field '{field.name}'.""" ) if type(_a ) not in field.type.__args__: # filter `str` in Union _a : List[str] = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] _a : List[Any] = getattr(field.type ,'__origin__' ,field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) _a : Tuple = ( field.type.__args__[0] if isinstance(_a ,field.type.__args__[1] ) else field.type.__args__[1] ) _a : Dict = getattr(field.type ,'__origin__' ,field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) _a : Any = {} if origin_type is Literal or (isinstance(field.type ,_a ) and issubclass(field.type ,_a )): if origin_type is Literal: _a : Optional[Any] = field.type.__args__ else: _a : List[str] = [x.value for x in field.type] _a : int = make_choice_type_function(kwargs['choices'] ) if field.default is not dataclasses.MISSING: _a : List[Any] = field.default else: _a : Optional[int] = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument _a : List[str] = copy(_a ) # Hack because type=bool in argparse does not behave as we want. _a : List[Any] = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. _a : List[Any] = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way _a : int = default # This tells argparse we accept 0 or 1 value after --field_name _a : Dict = '?' # This is the value that will get picked if we do --field_name (without value) _a : str = True elif isclass(_a ) and issubclass(_a ,_a ): _a : Any = field.type.__args__[0] _a : Optional[int] = '+' if field.default_factory is not dataclasses.MISSING: _a : Union[str, Any] = field.default_factory() elif field.default is dataclasses.MISSING: _a : Optional[Any] = True else: _a : Union[str, Any] = field.type if field.default is not dataclasses.MISSING: _a : Tuple = field.default elif field.default_factory is not dataclasses.MISSING: _a : Union[str, Any] = field.default_factory() else: _a : int = True parser.add_argument(_a ,*_a ,**_a ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): _a : Optional[Any] = False parser.add_argument(F"""--no_{field.name}""" ,action='store_false' ,dest=field.name ,**_a ) def __lowercase ( self : List[str] ,_a : DataClassType ): '''simple docstring''' if hasattr(_a ,'_argument_group_name' ): _a : Union[str, Any] = self.add_argument_group(dtype._argument_group_name ) else: _a : Optional[Any] = self try: _a : Dict[str, type] = get_type_hints(_a ) except NameError: raise RuntimeError( F"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ 'removing line of `from __future__ import annotations` which opts in Postponed ' 'Evaluation of Annotations (PEP 563)' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(_a ): _a : Union[str, Any] = '.'.join(map(_a ,sys.version_info[:3] ) ) raise RuntimeError( F"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ 'line of `from __future__ import annotations` which opts in union types as ' '`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ' 'support Python versions that lower than 3.10, you need to use ' '`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ' '`X | None`.' ) from ex raise for field in dataclasses.fields(_a ): if not field.init: continue _a : Any = type_hints[field.name] self._parse_dataclass_field(_a ,_a ) def __lowercase ( self : Tuple ,_a : Optional[Any]=None ,_a : List[Any]=False ,_a : Any=True ,_a : Union[str, Any]=None ,_a : str=None ,): '''simple docstring''' if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): _a : Optional[Any] = [] if args_filename: args_files.append(Path(_a ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('.args' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values _a : int = ArgumentParser() args_file_parser.add_argument(_a ,type=_a ,action='append' ) # Use only remaining args for further parsing (remove the args_file_flag) _a : Dict = args_file_parser.parse_known_args(args=_a ) _a : str = vars(_a ).get(args_file_flag.lstrip('-' ) ,_a ) if cmd_args_file_paths: args_files.extend([Path(_a ) for p in cmd_args_file_paths] ) _a : Optional[Any] = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last _a : List[Any] = file_args + args if args is not None else file_args + sys.argv[1:] _a : str = self.parse_known_args(args=_a ) _a : str = [] for dtype in self.dataclass_types: _a : int = {f.name for f in dataclasses.fields(_a ) if f.init} _a : Optional[int] = {k: v for k, v in vars(_a ).items() if k in keys} for k in keys: delattr(_a ,_a ) _a : Dict = dtype(**_a ) outputs.append(_a ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(_a ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def __lowercase ( self : Dict ,_a : Dict[str, Any] ,_a : bool = False ): '''simple docstring''' _a : Optional[int] = set(args.keys() ) _a : Optional[int] = [] for dtype in self.dataclass_types: _a : List[Any] = {f.name for f in dataclasses.fields(_a ) if f.init} _a : Dict = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) _a : Optional[Any] = dtype(**_a ) outputs.append(_a ) if not allow_extra_keys and unused_keys: raise ValueError(F"""Some keys are not used by the HfArgumentParser: {sorted(_a )}""" ) return tuple(_a ) def __lowercase ( self : Dict ,_a : str ,_a : bool = False ): '''simple docstring''' with open(Path(_a ) ,encoding='utf-8' ) as open_json_file: _a : Dict = json.loads(open_json_file.read() ) _a : Union[str, Any] = self.parse_dict(_a ,allow_extra_keys=_a ) return tuple(_a ) def __lowercase ( self : Dict ,_a : str ,_a : bool = False ): '''simple docstring''' _a : List[Any] = self.parse_dict(yaml.safe_load(Path(_a ).read_text() ) ,allow_extra_keys=_a ) return tuple(_a )
364
'''simple docstring''' from collections.abc import Generator from math import sin def UpperCAmelCase_ (__a : bytes ): """simple docstring""" if len(__a ) != 3_2: raise ValueError('Input must be of length 32' ) _a : Any = b'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def UpperCAmelCase_ (__a : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) _a : List[str] = format(__a , '08x' )[-8:] _a : str = b'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def UpperCAmelCase_ (__a : bytes ): """simple docstring""" _a : List[Any] = b'' for char in message: bit_string += format(__a , '08b' ).encode('utf-8' ) _a : int = format(len(__a ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__a ) % 5_1_2 != 4_4_8: bit_string += b"0" bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] ) return bit_string def UpperCAmelCase_ (__a : bytes ): """simple docstring""" if len(__a ) % 5_1_2 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(__a ) , 5_1_2 ): _a : List[Any] = bit_string[pos : pos + 5_1_2] _a : str = [] for i in range(0 , 5_1_2 , 3_2 ): block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) ) yield block_words def UpperCAmelCase_ (__a : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) _a : List[str] = format(__a , '032b' ) _a : int = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(__a , 2 ) def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" return (a + b) % 2**3_2 def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2 def UpperCAmelCase_ (__a : bytes ): """simple docstring""" _a : str = preprocess(__a ) _a : Optional[int] = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )] # Starting states _a : int = 0x67_45_23_01 _a : Union[str, Any] = 0xEF_CD_AB_89 _a : str = 0x98_BA_DC_FE _a : List[Any] = 0x10_32_54_76 _a : Optional[int] = [ 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__a ): _a : Union[str, Any] = aa _a : List[Any] = ba _a : List[Any] = ca _a : Dict = da # Hash current chunk for i in range(6_4 ): if i <= 1_5: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _a : Optional[int] = d ^ (b & (c ^ d)) _a : Optional[Any] = i elif i <= 3_1: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _a : Optional[Any] = c ^ (d & (b ^ c)) _a : Dict = (5 * i + 1) % 1_6 elif i <= 4_7: _a : Optional[Any] = b ^ c ^ d _a : Dict = (3 * i + 5) % 1_6 else: _a : int = c ^ (b | not_aa(__a )) _a : List[str] = (7 * i) % 1_6 _a : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**3_2 _a : Union[str, Any] = d _a : Tuple = c _a : Optional[int] = b _a : Union[str, Any] = sum_aa(__a , left_rotate_aa(__a , shift_amounts[i] ) ) # Add hashed chunk to running total _a : Any = sum_aa(__a , __a ) _a : Dict = sum_aa(__a , __a ) _a : Union[str, Any] = sum_aa(__a , __a ) _a : str = sum_aa(__a , __a ) _a : Optional[Any] = reformat_hex(__a ) + reformat_hex(__a ) + reformat_hex(__a ) + reformat_hex(__a ) return digest if __name__ == "__main__": import doctest doctest.testmod()
5
0
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase_ (__a : Optional[Any] ): """simple docstring""" _a : int = FileLock(str(tmpdir / 'foo.lock' ) ) _a : List[Any] = FileLock(str(tmpdir / 'foo.lock' ) ) _a : Any = 0.01 with locka.acquire(): with pytest.raises(__a ): _a : int = time.time() locka.acquire(__a ) assert time.time() - _start > timeout def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Dict = 'a' * 1_0_0_0 + '.lock' _a : int = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('.lock' ) assert not locka._lock_file.endswith(__a ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 _a : Dict = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__a ): locka.acquire(0 )
365
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCAmelCase_ (__a : str , __a : Dict=0.999 , __a : List[str]="cosine" , ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(__a : Union[str, Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__a : int ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _a : Tuple = [] for i in range(__a ): _a : Union[str, Any] = i / num_diffusion_timesteps _a : Any = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__a ) / alpha_bar_fn(__a ) , __a ) ) return torch.tensor(__a , dtype=torch.floataa ) class UpperCAmelCase__ ( lowercase__ , lowercase__ ): """simple docstring""" __UpperCAmelCase : Optional[Any] = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase : Dict = 2 @register_to_config def __init__( self : str ,_a : int = 1000 ,_a : float = 0.0_0085 ,_a : float = 0.012 ,_a : str = "linear" ,_a : Optional[Union[np.ndarray, List[float]]] = None ,_a : str = "epsilon" ,_a : Optional[bool] = False ,_a : Optional[bool] = False ,_a : float = 1.0 ,_a : str = "linspace" ,_a : int = 0 ,): '''simple docstring''' if trained_betas is not None: _a : List[str] = torch.tensor(_a ,dtype=torch.floataa ) elif beta_schedule == "linear": _a : Tuple = torch.linspace(_a ,_a ,_a ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _a : List[str] = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,_a ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _a : Dict = betas_for_alpha_bar(_a ,alpha_transform_type='cosine' ) elif beta_schedule == "exp": _a : Tuple = betas_for_alpha_bar(_a ,alpha_transform_type='exp' ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) _a : Optional[Any] = 1.0 - self.betas _a : Optional[int] = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(_a ,_a ,_a ) _a : Optional[int] = use_karras_sigmas def __lowercase ( self : Any ,_a : Union[str, Any] ,_a : Optional[Any]=None ): '''simple docstring''' if schedule_timesteps is None: _a : List[Any] = self.timesteps _a : Dict = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _a : int = 1 if len(_a ) > 1 else 0 else: _a : str = timestep.cpu().item() if torch.is_tensor(_a ) else timestep _a : str = self._index_counter[timestep_int] return indices[pos].item() @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __lowercase ( self : int ,_a : torch.FloatTensor ,_a : Union[float, torch.FloatTensor] ,): '''simple docstring''' _a : List[Any] = self.index_for_timestep(_a ) _a : Tuple = self.sigmas[step_index] _a : Optional[Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def __lowercase ( self : Any ,_a : int ,_a : Union[str, torch.device] = None ,_a : Optional[int] = None ,): '''simple docstring''' _a : Optional[Any] = num_inference_steps _a : Dict = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _a : Optional[Any] = np.linspace(0 ,num_train_timesteps - 1 ,_a ,dtype=_a )[::-1].copy() elif self.config.timestep_spacing == "leading": _a : str = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a : int = (np.arange(0 ,_a ) * step_ratio).round()[::-1].copy().astype(_a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _a : Any = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a : Union[str, Any] = (np.arange(_a ,0 ,-step_ratio )).round().copy().astype(_a ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _a : Tuple = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _a : Union[str, Any] = np.log(_a ) _a : str = np.interp(_a ,np.arange(0 ,len(_a ) ) ,_a ) if self.config.use_karras_sigmas: _a : List[Any] = self._convert_to_karras(in_sigmas=_a ,num_inference_steps=self.num_inference_steps ) _a : Dict = np.array([self._sigma_to_t(_a ,_a ) for sigma in sigmas] ) _a : int = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _a : Union[str, Any] = torch.from_numpy(_a ).to(device=_a ) _a : Any = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) _a : List[Any] = torch.from_numpy(_a ) _a : List[str] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(_a ).startswith('mps' ): # mps does not support float64 _a : Tuple = timesteps.to(_a ,dtype=torch.floataa ) else: _a : Dict = timesteps.to(device=_a ) # empty dt and derivative _a : Tuple = None _a : Optional[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _a : Union[str, Any] = defaultdict(_a ) def __lowercase ( self : str ,_a : Dict ,_a : Dict ): '''simple docstring''' _a : Optional[int] = np.log(_a ) # get distribution _a : Union[str, Any] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range _a : List[Any] = np.cumsum((dists >= 0) ,axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) _a : Tuple = low_idx + 1 _a : Union[str, Any] = log_sigmas[low_idx] _a : Optional[Any] = log_sigmas[high_idx] # interpolate sigmas _a : Optional[Any] = (low - log_sigma) / (low - high) _a : List[str] = np.clip(_a ,0 ,1 ) # transform interpolation to time range _a : Union[str, Any] = (1 - w) * low_idx + w * high_idx _a : List[str] = t.reshape(sigma.shape ) return t def __lowercase ( self : int ,_a : torch.FloatTensor ,_a : Tuple ): '''simple docstring''' _a : float = in_sigmas[-1].item() _a : float = in_sigmas[0].item() _a : Tuple = 7.0 # 7.0 is the value used in the paper _a : str = np.linspace(0 ,1 ,_a ) _a : Optional[Any] = sigma_min ** (1 / rho) _a : Union[str, Any] = sigma_max ** (1 / rho) _a : str = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' return self.dt is None def __lowercase ( self : int ,_a : Union[torch.FloatTensor, np.ndarray] ,_a : Union[float, torch.FloatTensor] ,_a : Union[torch.FloatTensor, np.ndarray] ,_a : bool = True ,): '''simple docstring''' _a : Union[str, Any] = self.index_for_timestep(_a ) # advance index counter by 1 _a : Any = timestep.cpu().item() if torch.is_tensor(_a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _a : Tuple = self.sigmas[step_index] _a : int = self.sigmas[step_index + 1] else: # 2nd order / Heun's method _a : List[str] = self.sigmas[step_index - 1] _a : List[Any] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _a : Optional[int] = 0 _a : Tuple = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _a : Dict = sigma_hat if self.state_in_first_order else sigma_next _a : Optional[int] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _a : List[Any] = sigma_hat if self.state_in_first_order else sigma_next _a : List[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": _a : Union[str, Any] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: _a : Optional[int] = pred_original_sample.clamp( -self.config.clip_sample_range ,self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _a : Optional[Any] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _a : Any = sigma_next - sigma_hat # store for 2nd order step _a : int = derivative _a : List[str] = dt _a : Union[str, Any] = sample else: # 2. 2nd order / Heun's method _a : Dict = (sample - pred_original_sample) / sigma_next _a : Tuple = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample _a : Optional[Any] = self.dt _a : Union[str, Any] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" _a : List[Any] = None _a : Union[str, Any] = None _a : Dict = None _a : str = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_a ) def __lowercase ( self : Optional[int] ,_a : torch.FloatTensor ,_a : torch.FloatTensor ,_a : torch.FloatTensor ,): '''simple docstring''' _a : str = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_a ): # mps does not support float64 _a : Dict = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) _a : Optional[Any] = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: _a : int = self.timesteps.to(original_samples.device ) _a : Optional[Any] = timesteps.to(original_samples.device ) _a : Any = [self.index_for_timestep(_a ,_a ) for t in timesteps] _a : Optional[int] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _a : Optional[Any] = sigma.unsqueeze(-1 ) _a : Any = original_samples + noise * sigma return noisy_samples def __len__( self : Optional[int] ): '''simple docstring''' return self.config.num_train_timesteps
5
0
'''simple docstring''' import argparse import struct import unittest class UpperCAmelCase__ : """simple docstring""" def __init__( self : List[str] ,_a : bytes ): '''simple docstring''' _a : Optional[int] = data # Initialize hash values _a : Dict = [ 0X6a09_e667, 0Xbb67_ae85, 0X3c6e_f372, 0Xa54f_f53a, 0X510e_527f, 0X9b05_688c, 0X1f83_d9ab, 0X5be0_cd19, ] # Initialize round constants _a : Optional[Any] = [ 0X428a_2f98, 0X7137_4491, 0Xb5c0_fbcf, 0Xe9b5_dba5, 0X3956_c25b, 0X59f1_11f1, 0X923f_82a4, 0Xab1c_5ed5, 0Xd807_aa98, 0X1283_5b01, 0X2431_85be, 0X550c_7dc3, 0X72be_5d74, 0X80de_b1fe, 0X9bdc_06a7, 0Xc19b_f174, 0Xe49b_69c1, 0Xefbe_4786, 0X0fc1_9dc6, 0X240c_a1cc, 0X2de9_2c6f, 0X4a74_84aa, 0X5cb0_a9dc, 0X76f9_88da, 0X983e_5152, 0Xa831_c66d, 0Xb003_27c8, 0Xbf59_7fc7, 0Xc6e0_0bf3, 0Xd5a7_9147, 0X06ca_6351, 0X1429_2967, 0X27b7_0a85, 0X2e1b_2138, 0X4d2c_6dfc, 0X5338_0d13, 0X650a_7354, 0X766a_0abb, 0X81c2_c92e, 0X9272_2c85, 0Xa2bf_e8a1, 0Xa81a_664b, 0Xc24b_8b70, 0Xc76c_51a3, 0Xd192_e819, 0Xd699_0624, 0Xf40e_3585, 0X106a_a070, 0X19a4_c116, 0X1e37_6c08, 0X2748_774c, 0X34b0_bcb5, 0X391c_0cb3, 0X4ed8_aa4a, 0X5b9c_ca4f, 0X682e_6ff3, 0X748f_82ee, 0X78a5_636f, 0X84c8_7814, 0X8cc7_0208, 0X90be_fffa, 0Xa450_6ceb, 0Xbef9_a3f7, 0Xc671_78f2, ] _a : Tuple = self.preprocessing(self.data ) self.final_hash() @staticmethod def __lowercase ( _a : bytes ): '''simple docstring''' _a : Tuple = B'\x80' + (B'\x00' * (63 - (len(_a ) + 8) % 64)) _a : Optional[int] = struct.pack('>Q' ,(len(_a ) * 8) ) return data + padding + big_endian_integer def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Tuple = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _a : int = list(struct.unpack('>16L' ,_a ) ) # add 48 0-ed integers words += [0] * 48 _a : int = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array _a : Optional[int] = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) _a : Optional[Any] = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) _a : Dict = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_0000_0000 # Compression _a : Tuple = self.ror(_a ,6 ) ^ self.ror(_a ,11 ) ^ self.ror(_a ,25 ) _a : List[Any] = (e & f) ^ ((~e & 0Xffff_ffff) & g) _a : Dict = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_0000_0000 _a : List[Any] = self.ror(_a ,2 ) ^ self.ror(_a ,13 ) ^ self.ror(_a ,22 ) _a : Optional[Any] = (a & b) ^ (a & c) ^ (b & c) _a : str = (sa + maj) % 0X1_0000_0000 _a : List[str] = ( g, f, e, ((d + tempa) % 0X1_0000_0000), c, b, a, ((tempa + tempa) % 0X1_0000_0000), ) _a : Union[str, Any] = [a, b, c, d, e, f, g, h] # Modify final values _a : Tuple = [ ((element + mutated_hash_values[index]) % 0X1_0000_0000) for index, element in enumerate(self.hashes ) ] _a : Tuple = ''.join([hex(_a )[2:].zfill(8 ) for value in self.hashes] ) def __lowercase ( self : Union[str, Any] ,_a : int ,_a : int ): '''simple docstring''' return 0Xffff_ffff & (value << (32 - rotations)) | (value >> rotations) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : Dict ): '''simple docstring''' import hashlib _a : str = bytes('Test String' ,'utf-8' ) self.assertEqual(SHAaaa(_a ).hash ,hashlib.shaaaa(_a ).hexdigest() ) def UpperCAmelCase_ (): """simple docstring""" import doctest doctest.testmod() _a : int = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) _a : Optional[Any] = parser.parse_args() _a : List[str] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: _a : Dict = f.read() else: _a : Any = bytes(__a , 'utf-8' ) print(SHAaaa(__a ).hash ) if __name__ == "__main__": main()
366
'''simple docstring''' import qiskit def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" _a : Any = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _a : List[Any] = qiskit.QuantumCircuit(__a , __a ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator _a : Tuple = qiskit.execute(__a , __a , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__a ) if __name__ == "__main__": print(f'''Total count for various states are: {single_qubit_measure(1, 1)}''')
5
0
'''simple docstring''' __lowerCAmelCase = [ """DownloadConfig""", """DownloadManager""", """DownloadMode""", """StreamingDownloadManager""", ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
367
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() def __lowercase ( self : str ): '''simple docstring''' _a : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) _a : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) _a : List[str] = 'xvjiarui/stable-diffusion-2-inpainting' _a, _a : str = FlaxStableDiffusionInpaintPipeline.from_pretrained(_a ,safety_checker=_a ) _a : str = 'Face of a yellow cat, high resolution, sitting on a park bench' _a : int = jax.random.PRNGKey(0 ) _a : Tuple = 50 _a : Any = jax.device_count() _a : Dict = num_samples * [prompt] _a : Optional[Any] = num_samples * [init_image] _a : str = num_samples * [mask_image] _a, _a, _a : Optional[Any] = pipeline.prepare_inputs(_a ,_a ,_a ) # shard inputs and rng _a : Optional[Any] = replicate(_a ) _a : str = jax.random.split(_a ,jax.device_count() ) _a : Dict = shard(_a ) _a : int = shard(_a ) _a : int = shard(_a ) _a : Union[str, Any] = pipeline( _a ,_a ,_a ,_a ,_a ,_a ,jit=_a ) _a : Union[str, Any] = output.images.reshape(_a ,512 ,512 ,3 ) _a : Union[str, Any] = images[0, 253:256, 253:256, -1] _a : str = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _a : Union[str, Any] = jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
5
0
'''simple docstring''' def UpperCAmelCase_ (__a : Dict ): _a : Optional[Any] = 1 _a : Optional[Any] = 2 while i * i <= n: _a : Dict = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def UpperCAmelCase_ (): _a : Any = 1 _a : Dict = 1 while True: i += 1 t_num += i if count_divisors(__a ) > 5_0_0: break return t_num if __name__ == "__main__": print(solution())
368
'''simple docstring''' def UpperCAmelCase_ (__a : str , __a : str ): """simple docstring""" _a : int = len(__a ) + 1 _a : List[str] = len(__a ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. _a : Optional[int] = [[0 for i in range(__a )] for j in range(__a )] # since string of zero length match pattern of zero length _a : str = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , __a ): _a : Optional[Any] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , __a ): _a : Dict = dp[0][j - 2] if pattern[j - 1] == '*' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , __a ): for j in range(1 , __a ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": _a : Tuple = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: _a : List[str] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): _a : int = dp[i - 1][j] else: _a : Any = 0 else: _a : Optional[Any] = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") __lowerCAmelCase = """aab""" __lowerCAmelCase = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f'''{input_string} matches the given pattern {pattern}''') else: print(f'''{input_string} does not match with the given pattern {pattern}''')
5
0
'''simple docstring''' import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py __lowerCAmelCase = """src/transformers""" __lowerCAmelCase = """docs/source/en""" __lowerCAmelCase = """.""" def UpperCAmelCase_ (__a : List[str] , __a : Dict , __a : Optional[Any] ): """simple docstring""" with open(__a , 'r' , encoding='utf-8' , newline='\n' ) as f: _a : List[str] = f.readlines() # Find the start prompt. _a : Dict = 0 while not lines[start_index].startswith(__a ): start_index += 1 start_index += 1 _a : List[Any] = start_index while not lines[end_index].startswith(__a ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | __lowerCAmelCase = """Model|Encoder|Decoder|ForConditionalGeneration""" # Regexes that match TF/Flax/PT model names. __lowerCAmelCase = re.compile(r"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") __lowerCAmelCase = re.compile(r"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __lowerCAmelCase = re.compile(r"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # This is to make sure the transformers module imported is the one in the repo. __lowerCAmelCase = direct_transformers_import(TRANSFORMERS_PATH) def UpperCAmelCase_ (__a : int ): """simple docstring""" _a : Tuple = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , __a ) return [m.group(0 ) for m in matches] def UpperCAmelCase_ (__a : Optional[int] , __a : Optional[Any] ): """simple docstring""" _a : str = 2 if text == '✅' or text == '❌' else len(__a ) _a : List[Any] = (width - text_length) // 2 _a : Optional[Any] = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def UpperCAmelCase_ (): """simple docstring""" _a : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _a : List[str] = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } _a : Optional[int] = {name: config.replace('Config' , '' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. _a : List[Any] = collections.defaultdict(__a ) _a : Union[str, Any] = collections.defaultdict(__a ) _a : Optional[Any] = collections.defaultdict(__a ) _a : Optional[int] = collections.defaultdict(__a ) _a : int = collections.defaultdict(__a ) # Let's lookup through all transformers object (once). for attr_name in dir(__a ): _a : Tuple = None if attr_name.endswith('Tokenizer' ): _a : str = slow_tokenizers _a : int = attr_name[:-9] elif attr_name.endswith('TokenizerFast' ): _a : Union[str, Any] = fast_tokenizers _a : Union[str, Any] = attr_name[:-1_3] elif _re_tf_models.match(__a ) is not None: _a : List[str] = tf_models _a : Union[str, Any] = _re_tf_models.match(__a ).groups()[0] elif _re_flax_models.match(__a ) is not None: _a : Optional[int] = flax_models _a : Union[str, Any] = _re_flax_models.match(__a ).groups()[0] elif _re_pt_models.match(__a ) is not None: _a : Any = pt_models _a : List[Any] = _re_pt_models.match(__a ).groups()[0] if lookup_dict is not None: while len(__a ) > 0: if attr_name in model_name_to_prefix.values(): _a : int = True break # Try again after removing the last word in the name _a : Optional[Any] = ''.join(camel_case_split(__a )[:-1] ) # Let's build that table! _a : Tuple = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) _a : List[Any] = ['Model', 'Tokenizer slow', 'Tokenizer fast', 'PyTorch support', 'TensorFlow support', 'Flax Support'] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). _a : int = [len(__a ) + 2 for c in columns] _a : Optional[Any] = max([len(__a ) for name in model_names] ) + 2 # Build the table per se _a : Any = '|' + '|'.join([_center_text(__a , __a ) for c, w in zip(__a , __a )] ) + '|\n' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([':' + '-' * (w - 2) + ':' for w in widths] ) + "|\n" _a : Optional[int] = {True: '✅', False: '❌'} for name in model_names: _a : Optional[Any] = model_name_to_prefix[name] _a : str = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(__a , __a ) for l, w in zip(__a , __a )] ) + "|\n" return table def UpperCAmelCase_ (__a : List[Any]=False ): """simple docstring""" _a : Union[str, Any] = _find_text_in_file( filename=os.path.join(__a , 'index.md' ) , start_prompt='<!--This table is updated automatically from the auto modules' , end_prompt='<!-- End table-->' , ) _a : Dict = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(__a , 'index.md' ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( 'The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") __lowerCAmelCase = parser.parse_args() check_model_table(args.fix_and_overwrite)
369
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Dict = BlenderbotSmallTokenizer __UpperCAmelCase : Tuple = False def __lowercase ( self : List[Any] ): '''simple docstring''' super().setUp() _a : List[str] = ['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] _a : Tuple = dict(zip(_a ,range(len(_a ) ) ) ) _a : List[Any] = ['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] _a : List[Any] = {'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} _a : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) _a : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(_a ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(_a ) ) def __lowercase ( self : List[Any] ,**_a : int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname ,**_a ) def __lowercase ( self : Tuple ,_a : int ): '''simple docstring''' _a : Optional[Any] = 'adapt act apte' _a : Dict = 'adapt act apte' return input_text, output_text def __lowercase ( self : int ): '''simple docstring''' _a : Optional[int] = BlenderbotSmallTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) _a : Union[str, Any] = 'adapt act apte' _a : Dict = ['adapt', 'act', 'ap@@', 'te'] _a : Tuple = tokenizer.tokenize(_a ) self.assertListEqual(_a ,_a ) _a : List[str] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] _a : Dict = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) ,_a ) def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : str = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] _a : Union[str, Any] = 'I am a small frog.' _a : int = tok([src_text] ,padding=_a ,truncation=_a )['input_ids'] _a : str = tok.batch_decode(_a ,skip_special_tokens=_a ,clean_up_tokenization_spaces=_a )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[int] = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) _a : Union[str, Any] = 'I am a small frog .' _a : Optional[Any] = '.' _a : Optional[Any] = tok(_a )['input_ids'] _a : Union[str, Any] = tok(_a )['input_ids'] assert encoded[-1] == encoded_dot[0]
5
0
'''simple docstring''' from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def UpperCAmelCase_ (__a : bool = True , *__a : List[Any] , **__a : List[str] ): """simple docstring""" if not is_tqdm_available(): raise ImportError('Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.' ) _a : Optional[int] = False if main_process_only: _a : Union[str, Any] = PartialState().local_process_index == 0 return _tqdm(*__a , **__a , disable=__a )
370
'''simple docstring''' __lowerCAmelCase = { """A""": """.-""", """B""": """-...""", """C""": """-.-.""", """D""": """-..""", """E""": """.""", """F""": """..-.""", """G""": """--.""", """H""": """....""", """I""": """..""", """J""": """.---""", """K""": """-.-""", """L""": """.-..""", """M""": """--""", """N""": """-.""", """O""": """---""", """P""": """.--.""", """Q""": """--.-""", """R""": """.-.""", """S""": """...""", """T""": """-""", """U""": """..-""", """V""": """...-""", """W""": """.--""", """X""": """-..-""", """Y""": """-.--""", """Z""": """--..""", """1""": """.----""", """2""": """..---""", """3""": """...--""", """4""": """....-""", """5""": """.....""", """6""": """-....""", """7""": """--...""", """8""": """---..""", """9""": """----.""", """0""": """-----""", """&""": """.-...""", """@""": """.--.-.""", """:""": """---...""", """,""": """--..--""", """.""": """.-.-.-""", """'""": """.----.""", """\"""": """.-..-.""", """?""": """..--..""", """/""": """-..-.""", """=""": """-...-""", """+""": """.-.-.""", """-""": """-....-""", """(""": """-.--.""", """)""": """-.--.-""", """!""": """-.-.--""", """ """: """/""" } # Exclamation mark is not in ITU-R recommendation # fmt: on __lowerCAmelCase = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCAmelCase_ (__a : str ): """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCAmelCase_ (__a : str ): """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCAmelCase_ (): """simple docstring""" _a : List[str] = 'Morse code here!' print(__a ) _a : Tuple = encrypt(__a ) print(__a ) _a : str = decrypt(__a ) print(__a ) if __name__ == "__main__": main()
5
0
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __init__( self : Optional[int] ,_a : Union[str, Any] ,_a : Tuple=13 ,_a : Union[str, Any]=7 ,_a : Tuple=True ,_a : int=True ,_a : int=True ,_a : str=True ,_a : Optional[int]=99 ,_a : Union[str, Any]=32 ,_a : List[str]=5 ,_a : List[str]=4 ,_a : Dict=37 ,_a : Any="gelu" ,_a : Dict=0.1 ,_a : List[Any]=0.1 ,_a : List[str]=512 ,_a : str=16 ,_a : Optional[int]=2 ,_a : Optional[Any]=0.02 ,_a : int=False ,_a : Tuple=True ,_a : Dict="None" ,_a : Optional[Any]=3 ,_a : Dict=4 ,_a : Any=None ,): '''simple docstring''' _a : int = parent _a : str = batch_size _a : Dict = seq_length _a : Optional[int] = is_training _a : Union[str, Any] = use_input_mask _a : Optional[int] = use_token_type_ids _a : Tuple = use_labels _a : Optional[int] = vocab_size _a : str = hidden_size _a : Dict = num_hidden_layers _a : Dict = num_attention_heads _a : List[Any] = intermediate_size _a : int = hidden_act _a : Dict = hidden_dropout_prob _a : str = attention_probs_dropout_prob _a : List[str] = max_position_embeddings _a : str = type_vocab_size _a : Any = type_sequence_label_size _a : Union[str, Any] = initializer_range _a : Union[str, Any] = num_labels _a : List[str] = num_choices _a : Optional[Any] = relative_attention _a : Dict = position_biased_input _a : Optional[int] = pos_att_type _a : List[Any] = scope def __lowercase ( self : Any ): '''simple docstring''' _a : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _a : int = None if self.use_input_mask: _a : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) _a : Optional[Any] = None if self.use_token_type_ids: _a : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) _a : Optional[Any] = None _a : List[Any] = None _a : List[str] = None if self.use_labels: _a : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _a : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _a : int = ids_tensor([self.batch_size] ,self.num_choices ) _a : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowercase ( self : Optional[int] ): '''simple docstring''' return DebertaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,relative_attention=self.relative_attention ,position_biased_input=self.position_biased_input ,pos_att_type=self.pos_att_type ,) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Union[str, Any] = self.get_config() _a : Optional[int] = 300 return config def __lowercase ( self : Dict ,_a : str ): '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ) ,[] ) def __lowercase ( self : List[Any] ,_a : Dict ,_a : Optional[Any] ,_a : Any ,_a : int ,_a : Optional[int] ,_a : Dict ,_a : List[Any] ): '''simple docstring''' _a : List[str] = DebertaModel(config=_a ) model.to(_a ) model.eval() _a : Tuple = model(_a ,attention_mask=_a ,token_type_ids=_a )[0] _a : Optional[int] = model(_a ,token_type_ids=_a )[0] _a : Tuple = model(_a )[0] self.parent.assertListEqual(list(sequence_output.size() ) ,[self.batch_size, self.seq_length, self.hidden_size] ) def __lowercase ( self : int ,_a : Optional[int] ,_a : Tuple ,_a : Tuple ,_a : Dict ,_a : Tuple ,_a : str ,_a : Union[str, Any] ): '''simple docstring''' _a : Any = DebertaForMaskedLM(config=_a ) model.to(_a ) model.eval() _a : str = model(_a ,attention_mask=_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase ( self : List[str] ,_a : str ,_a : List[str] ,_a : int ,_a : Any ,_a : Tuple ,_a : List[Any] ,_a : int ): '''simple docstring''' _a : List[Any] = self.num_labels _a : List[str] = DebertaForSequenceClassification(_a ) model.to(_a ) model.eval() _a : str = model(_a ,attention_mask=_a ,token_type_ids=_a ,labels=_a ) self.parent.assertListEqual(list(result.logits.size() ) ,[self.batch_size, self.num_labels] ) self.check_loss_output(_a ) def __lowercase ( self : Any ,_a : Dict ,_a : Optional[int] ,_a : Dict ,_a : List[Any] ,_a : int ,_a : Any ,_a : Optional[Any] ): '''simple docstring''' _a : Tuple = self.num_labels _a : List[str] = DebertaForTokenClassification(config=_a ) model.to(_a ) model.eval() _a : List[str] = model(_a ,attention_mask=_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def __lowercase ( self : Tuple ,_a : List[str] ,_a : Tuple ,_a : Tuple ,_a : int ,_a : List[Any] ,_a : Union[str, Any] ,_a : Optional[int] ): '''simple docstring''' _a : Dict = DebertaForQuestionAnswering(config=_a ) model.to(_a ) model.eval() _a : int = model( _a ,attention_mask=_a ,token_type_ids=_a ,start_positions=_a ,end_positions=_a ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Any = self.prepare_config_and_inputs() ( _a ) : str = config_and_inputs _a : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Any = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) __UpperCAmelCase : Union[str, Any] = ( { '''feature-extraction''': DebertaModel, '''fill-mask''': DebertaForMaskedLM, '''question-answering''': DebertaForQuestionAnswering, '''text-classification''': DebertaForSequenceClassification, '''token-classification''': DebertaForTokenClassification, '''zero-shot''': DebertaForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase : Dict = True __UpperCAmelCase : int = False __UpperCAmelCase : str = False __UpperCAmelCase : Any = False __UpperCAmelCase : Union[str, Any] = False def __lowercase ( self : str ): '''simple docstring''' _a : Any = DebertaModelTester(self ) _a : Any = ConfigTester(self ,config_class=_a ,hidden_size=37 ) def __lowercase ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_a ) def __lowercase ( self : List[Any] ): '''simple docstring''' _a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_a ) def __lowercase ( self : int ): '''simple docstring''' _a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_a ) def __lowercase ( self : Any ): '''simple docstring''' _a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_a ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_a ) @slow def __lowercase ( self : List[str] ): '''simple docstring''' for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Dict = DebertaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='Model not available yet' ) def __lowercase ( self : Tuple ): '''simple docstring''' pass @slow def __lowercase ( self : int ): '''simple docstring''' _a : Optional[Any] = DebertaModel.from_pretrained('microsoft/deberta-base' ) _a : Optional[int] = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) _a : Optional[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _a : Dict = model(_a ,attention_mask=_a )[0] # compare the actual values for a slice. _a : int = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,_a ,atol=1E-4 ) ,F"""{output[:, 1:4, 1:4]}""" )
371
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCAmelCase = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 1_2_8, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 5_0, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 1_0, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 1_0, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @classmethod def __lowercase ( cls : Optional[Any] ): '''simple docstring''' _a : List[Any] = TOKEN HfFolder.save_token(_a ) @classmethod def __lowercase ( cls : List[Any] ): '''simple docstring''' try: delete_repo(token=cls._token ,repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='test-dynamic-config' ) except HTTPError: pass def __lowercase ( self : List[str] ): '''simple docstring''' _a : Any = BertConfig( vocab_size=99 ,hidden_size=32 ,num_hidden_layers=5 ,num_attention_heads=4 ,intermediate_size=37 ) config.push_to_hub('test-config' ,use_auth_token=self._token ) _a : Optional[Any] = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) # Reset repo delete_repo(token=self._token ,repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_a ,repo_id='test-config' ,push_to_hub=_a ,use_auth_token=self._token ) _a : Dict = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Tuple = BertConfig( vocab_size=99 ,hidden_size=32 ,num_hidden_layers=5 ,num_attention_heads=4 ,intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' ,use_auth_token=self._token ) _a : Union[str, Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) # Reset repo delete_repo(token=self._token ,repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _a ,repo_id='valid_org/test-config-org' ,push_to_hub=_a ,use_auth_token=self._token ) _a : Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) def __lowercase ( self : List[Any] ): '''simple docstring''' CustomConfig.register_for_auto_class() _a : Optional[Any] = CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' ,use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map ,{'AutoConfig': 'custom_configuration.CustomConfig'} ) _a : int = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" ,trust_remote_code=_a ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ ,'CustomConfig' ) self.assertEqual(new_config.attribute ,42 ) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Optional[Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _a : int = c.n_embd + 1 # int _a : str = c.resid_pdrop + 1.0 # float _a : Dict = not c.scale_attn_weights # bool _a : List[Any] = c.summary_type + 'foo' # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(_a ,c.n_embd ,'mismatch for key: n_embd' ) self.assertEqual(_a ,c.resid_pdrop ,'mismatch for key: resid_pdrop' ) self.assertEqual(_a ,c.scale_attn_weights ,'mismatch for key: scale_attn_weights' ) self.assertEqual(_a ,c.summary_type ,'mismatch for key: summary_type' ) def __lowercase ( self : List[str] ): '''simple docstring''' _a : int = PretrainedConfig() _a : int = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( _a ,['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) _a : Dict = [key for key, value in config_common_kwargs.items() if value == getattr(_a ,_a )] if len(_a ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F""" {', '.join(_a )}.""" ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' with self.assertRaises(_a ): # config is in subfolder, the following should not work without specifying the subfolder _a : List[Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) _a : List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ,subfolder='bert' ) self.assertIsNotNone(_a ) def __lowercase ( self : List[Any] ): '''simple docstring''' _a : List[Any] = mock.Mock() _a : Any = 500 _a : Any = {} _a : Any = HTTPError _a : List[Any] = {} # Download this model to make sure it's in the cache. _a : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' ,return_value=_a ) as mock_head: _a : Optional[int] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Optional[int] = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : int = AutoConfig.from_pretrained('bert-base-cased' ) _a : List[str] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(_a ) _a : str = 2 json.dump(configuration.to_dict() ,open(os.path.join(_a ,'config.4.0.0.json' ) ,'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _a : int = AutoConfig.from_pretrained(_a ) self.assertEqual(new_configuration.hidden_size ,2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _a : Tuple = ['config.42.0.0.json'] _a : int = 768 configuration.save_pretrained(_a ) shutil.move(os.path.join(_a ,'config.4.0.0.json' ) ,os.path.join(_a ,'config.42.0.0.json' ) ) _a : int = AutoConfig.from_pretrained(_a ) self.assertEqual(new_configuration.hidden_size ,768 ) def __lowercase ( self : str ): '''simple docstring''' _a : Tuple = 'hf-internal-testing/test-two-configs' import transformers as new_transformers _a : Optional[int] = 'v4.0.0' _a, _a : Tuple = new_transformers.models.auto.AutoConfig.from_pretrained( _a ,return_unused_kwargs=_a ) self.assertEqual(new_configuration.hidden_size ,2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(_a ,{} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _a : str = 'v3.0.0' _a : Optional[Any] = old_transformers.models.auto.AutoConfig.from_pretrained(_a ) self.assertEqual(old_configuration.hidden_size ,768 )
5
0
'''simple docstring''' import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class UpperCAmelCase__ : """simple docstring""" def __init__( self : Optional[int] ,_a : List[str] ,_a : Optional[Any]=99 ,_a : Tuple=13 ,_a : Any=7 ,_a : List[Any]=9 ,_a : str=True ,_a : Optional[Any]=True ,_a : List[str]=False ,_a : Optional[Any]=32 ,_a : Dict=5 ,_a : Optional[int]=4 ,_a : Optional[Any]=37 ,_a : List[Any]=8 ,_a : Optional[int]=0.1 ,_a : List[str]=0.002 ,_a : int=1 ,_a : Dict=0 ,_a : List[str]=0 ,_a : Dict=None ,_a : Dict=None ,): '''simple docstring''' _a : str = parent _a : Dict = batch_size _a : Optional[int] = encoder_seq_length _a : List[str] = decoder_seq_length # For common tests _a : Tuple = self.decoder_seq_length _a : Dict = is_training _a : Optional[Any] = use_attention_mask _a : Dict = use_labels _a : Optional[Any] = vocab_size _a : int = hidden_size _a : List[str] = num_hidden_layers _a : Optional[int] = num_attention_heads _a : Optional[int] = d_ff _a : List[str] = relative_attention_num_buckets _a : List[str] = dropout_rate _a : Dict = initializer_factor _a : int = eos_token_id _a : Union[str, Any] = pad_token_id _a : Tuple = decoder_start_token_id _a : int = None _a : Union[str, Any] = decoder_layers def __lowercase ( self : Optional[Any] ): '''simple docstring''' return TaConfig.from_pretrained('google/umt5-base' ) def __lowercase ( self : str ,_a : Union[str, Any] ,_a : int ,_a : Any ,_a : str=None ,_a : List[str]=None ,_a : str=None ,_a : Tuple=None ,_a : Tuple=None ,): '''simple docstring''' if attention_mask is None: _a : Tuple = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _a : Any = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _a : Tuple = torch.ones(config.num_hidden_layers ,config.num_attention_heads ,device=_a ) if decoder_head_mask is None: _a : Tuple = torch.ones(config.num_decoder_layers ,config.num_attention_heads ,device=_a ) if cross_attn_head_mask is None: _a : Tuple = torch.ones( config.num_decoder_layers ,config.num_attention_heads ,device=_a ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Any = ids_tensor([self.batch_size, self.encoder_seq_length] ,self.vocab_size ) _a : Any = ids_tensor([self.batch_size, self.decoder_seq_length] ,self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _a : Any = input_ids.clamp(self.pad_token_id + 1 ) _a : Any = decoder_input_ids.clamp(self.pad_token_id + 1 ) _a : int = self.get_config() _a : List[str] = config.num_attention_heads _a : List[Any] = self.prepare_inputs_dict(_a ,_a ,_a ) return config, input_dict def __lowercase ( self : Tuple ): '''simple docstring''' _a : Dict = self.prepare_config_and_inputs() return config, inputs_dict def __lowercase ( self : Any ): '''simple docstring''' return TaConfig( vocab_size=166 ,d_model=self.hidden_size ,d_ff=self.d_ff ,d_kv=self.hidden_size // self.num_attention_heads ,num_layers=self.num_hidden_layers ,num_decoder_layers=self.decoder_layers ,num_heads=self.num_attention_heads ,relative_attention_num_buckets=self.relative_attention_num_buckets ,dropout_rate=self.dropout_rate ,initializer_factor=self.initializer_factor ,eos_token_id=self.eos_token_id ,bos_token_id=self.pad_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.decoder_start_token_id ,) def __lowercase ( self : Dict ): '''simple docstring''' return TaConfig( vocab_size=self.vocab_size ,d_model=self.hidden_size ,d_ff=self.d_ff ,d_kv=self.hidden_size // self.num_attention_heads ,num_layers=self.num_hidden_layers ,num_decoder_layers=self.decoder_layers ,num_heads=self.num_attention_heads ,relative_attention_num_buckets=self.relative_attention_num_buckets ,dropout_rate=self.dropout_rate ,initializer_factor=self.initializer_factor ,eos_token_id=self.eos_token_id ,bos_token_id=self.pad_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.decoder_start_token_id ,) def __lowercase ( self : List[Any] ,_a : Dict ,_a : List[str] ,_a : Optional[int] ,_a : Optional[int] ,_a : Union[str, Any] ,_a : int ,): '''simple docstring''' _a : Union[str, Any] = UMTaModel(config=_a ) model.to(_a ) model.eval() _a : Tuple = model( input_ids=_a ,decoder_input_ids=_a ,attention_mask=_a ,decoder_attention_mask=_a ,) _a : List[str] = model(input_ids=_a ,decoder_input_ids=_a ) _a : int = result.last_hidden_state _a : Dict = result.past_key_values _a : List[Any] = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() ,(self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() ,(self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(_a ) ,config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) ,4 ) def __lowercase ( self : str ,_a : int ,_a : Dict ,_a : Union[str, Any] ,_a : Optional[Any] ,_a : Optional[Any] ,_a : Tuple ,): '''simple docstring''' _a : Any = UMTaModel(config=_a ).get_decoder().to(_a ).eval() # first forward pass _a : Any = model(_a ,use_cache=_a ) _a : Optional[Any] = model(_a ) _a : Dict = model(_a ,use_cache=_a ) self.parent.assertTrue(len(_a ) == len(_a ) ) self.parent.assertTrue(len(_a ) == len(_a ) + 1 ) _a : List[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _a : List[str] = ids_tensor((self.batch_size, 1) ,config.vocab_size ) # append to next input_ids and _a : List[str] = torch.cat([input_ids, next_tokens] ,dim=-1 ) _a : Tuple = model(_a )['last_hidden_state'] _a : Tuple = model(_a ,past_key_values=_a )['last_hidden_state'] # select random slice _a : Tuple = ids_tensor((1,) ,output_from_past.shape[-1] ).item() _a : Optional[Any] = output_from_no_past[:, -1, random_slice_idx].detach() _a : Dict = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_a ,_a ,atol=1E-3 ) ) def __lowercase ( self : Optional[Any] ,_a : int ,_a : str ,): '''simple docstring''' _a : Optional[Any] = UMTaModel(config=_a ).to(_a ).half().eval() _a : List[str] = model(**_a )['last_hidden_state'] self.parent.assertFalse(torch.isnan(_a ).any().item() ) @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : int = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) __UpperCAmelCase : List[Any] = (UMTaForConditionalGeneration,) if is_torch_available() else () __UpperCAmelCase : List[Any] = ( { '''conversational''': UMTaForConditionalGeneration, '''feature-extraction''': UMTaModel, '''summarization''': UMTaForConditionalGeneration, '''text2text-generation''': UMTaForConditionalGeneration, '''translation''': UMTaForConditionalGeneration, '''question-answering''': UMTaForQuestionAnswering, } if is_torch_available() else {} ) __UpperCAmelCase : str = True __UpperCAmelCase : int = False __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Tuple = True __UpperCAmelCase : int = True # The small UMT5 model needs higher percentages for CPU/MP tests __UpperCAmelCase : List[Any] = [0.8, 0.9] def __lowercase ( self : int ): '''simple docstring''' _a : Optional[int] = UMTaModelTester(self ) @unittest.skip('Test has a segmentation fault on torch 1.8.0' ) def __lowercase ( self : Any ): '''simple docstring''' _a : List[Any] = self.model_tester.prepare_config_and_inputs() _a : str = UMTaModel(config_and_inputs[0] ).to(_a ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( _a ,(config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) ,F"""{tmpdirname}/t5_test.onnx""" ,export_params=_a ,opset_version=9 ,input_names=['input_ids', 'decoder_input_ids'] ,) @unittest.skipIf(torch_device == 'cpu' ,'Cant do half precision' ) def __lowercase ( self : str ): '''simple docstring''' _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*_a ) def __lowercase ( self : List[Any] ): '''simple docstring''' _a : List[str] = ['encoder_attentions', 'decoder_attentions', 'cross_attentions'] _a : List[Any] = self.model_tester.prepare_config_and_inputs() _a : Optional[int] = config_and_inputs[0] _a : Optional[int] = UMTaForConditionalGeneration(_a ).eval() model.to(_a ) _a : Tuple = { 'head_mask': torch.zeros(config.num_layers ,config.num_heads ,device=_a ), 'decoder_head_mask': torch.zeros(config.num_decoder_layers ,config.num_heads ,device=_a ), 'cross_attn_head_mask': torch.zeros(config.num_decoder_layers ,config.num_heads ,device=_a ), } for attn_name, (name, mask) in zip(_a ,head_masking.items() ): _a : Optional[Any] = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": _a : Union[str, Any] = torch.ones( config.num_decoder_layers ,config.num_heads ,device=_a ) _a : Dict = model.generate( config_and_inputs[1]['input_ids'] ,num_beams=1 ,max_length=3 ,output_attentions=_a ,return_dict_in_generate=_a ,**_a ,) # We check the state of decoder_attentions and cross_attentions just from the last step _a : Any = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) ,0.0 ) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' pass @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Any = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' ,return_dict=_a ).to(_a ) _a : Optional[Any] = AutoTokenizer.from_pretrained('google/umt5-small' ,use_fast=_a ,legacy=_a ) _a : Any = [ 'Bonjour monsieur <extra_id_0> bien <extra_id_1>.', 'No se como puedo <extra_id_0>.', 'This is the reason why we <extra_id_0> them.', 'The <extra_id_0> walks in <extra_id_1>, seats', 'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.', ] _a : List[str] = tokenizer(_a ,return_tensors='pt' ,padding=_a ).input_ids # fmt: off _a : Dict = torch.tensor( [ [ 3_8530, 21_0703, 25_6299, 1410, 25_6298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 2_5922, 25_6299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 1_9014, 1_0620, 758, 25_6299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 25_6299, 1_4869, 281, 301, 25_6298, 275, 11_9983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 25_6299, 1_4869, 281, 2234, 289, 2275, 333,6_1391, 289, 25_6298, 543, 25_6297, 16_8714, 329, 25_6296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(_a ,_a ) _a : Optional[int] = model.generate(input_ids.to(_a ) ) _a : str = [ '<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>', '<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', ] _a : Dict = tokenizer.batch_decode(_a ) self.assertEqual(_a ,_a )
350
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint __lowerCAmelCase = { """169M""": 1_2, """430M""": 2_4, """1B5""": 2_4, """3B""": 3_2, """7B""": 3_2, """14B""": 4_0, } __lowerCAmelCase = { """169M""": 7_6_8, """430M""": 1_0_2_4, """1B5""": 2_0_4_8, """3B""": 2_5_6_0, """7B""": 4_0_9_6, """14B""": 5_1_2_0, } def UpperCAmelCase_ (__a : Dict ): """simple docstring""" _a : List[Any] = list(state_dict.keys() ) for name in state_dict_keys: _a : List[Any] = state_dict.pop(__a ) # emb -> embedding if name.startswith('emb.' ): _a : List[str] = name.replace('emb.' , 'embeddings.' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0' ): _a : Dict = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' ) # att -> attention _a : int = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , __a ) # ffn -> feed_forward _a : str = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , __a ) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k' ): _a : Any = name.replace('.time_mix_k' , '.time_mix_key' ) # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v' ): _a : int = name.replace('.time_mix_v' , '.time_mix_value' ) # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r' ): _a : Tuple = name.replace('.time_mix_r' , '.time_mix_receptance' ) if name != "head.weight": _a : Tuple = 'rwkv.' + name _a : List[Any] = weight return state_dict def UpperCAmelCase_ (__a : Tuple , __a : Union[str, Any] , __a : List[str] , __a : str=None , __a : List[str]=None , __a : int=False , __a : int=None ): """simple docstring""" if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.' ) _a : List[Any] = 5_0_2_7_7 _a : Optional[Any] = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' ) else: _a : Optional[Any] = PreTrainedTokenizerFast(tokenizer_file=__a ) _a : List[Any] = len(__a ) tokenizer.save_pretrained(__a ) # 2. Build the config _a : List[str] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: _a : str = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.' ) if size not in possible_sizes: raise ValueError(f"""`size` should be one of {possible_sizes}, got {size}.""" ) _a : str = RwkvConfig( vocab_size=__a , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(__a ) # 3. Download model file then convert state_dict _a : Tuple = hf_hub_download(__a , __a ) _a : Optional[int] = torch.load(__a , map_location='cpu' ) _a : Dict = convert_state_dict(__a ) # 4. Split in shards and save _a, _a : List[Any] = shard_checkpoint(__a ) for shard_file, shard in shards.items(): torch.save(__a , os.path.join(__a , __a ) ) if index is not None: _a : Dict = os.path.join(__a , __a ) # Save the index as well with open(__a , 'w' , encoding='utf-8' ) as f: _a : List[Any] = json.dumps(__a , indent=2 , sort_keys=__a ) + '\n' f.write(__a ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' ) _a : List[Any] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: _a : Optional[Any] = torch.load(os.path.join(__a , __a ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(__a , __a ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.' ) _a : List[str] = AutoModelForCausalLM.from_pretrained(__a ) model.push_to_hub(__a , max_shard_size='2GB' ) tokenizer.push_to_hub(__a ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--repo_id""", default=None, type=str, required=True, help="""Repo ID from which to pull the checkpoint.""" ) parser.add_argument( """--checkpoint_file""", default=None, type=str, required=True, help="""Name of the checkpoint file in the repo.""" ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""Where to save the converted model.""" ) parser.add_argument( """--tokenizer_file""", default=None, type=str, help="""Path to the tokenizer file to use (if not provided, only the model is converted).""", ) parser.add_argument( """--size""", default=None, type=str, help="""Size of the model. Will be inferred from the `checkpoint_file` if not passed.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Push to the Hub the converted model.""", ) parser.add_argument( """--model_name""", default=None, type=str, help="""Name of the pushed model on the Hub, including the username / organization.""", ) __lowerCAmelCase = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
5
0
'''simple docstring''' import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : List[str] = ProphetNetTokenizer __UpperCAmelCase : List[Any] = False def __lowercase ( self : Tuple ): '''simple docstring''' super().setUp() _a : Dict = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _a : Dict = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def __lowercase ( self : Dict ,_a : Union[str, Any] ): '''simple docstring''' _a : Any = 'UNwant\u00E9d,running' _a : Any = 'unwanted, running' return input_text, output_text def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Any = self.tokenizer_class(self.vocab_file ) _a : str = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_a ,['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) ,[9, 6, 7, 12, 10, 11] ) def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : str = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) ,['ah', '\u535A', '\u63A8', 'zz'] ) def __lowercase ( self : str ): '''simple docstring''' _a : int = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) ,['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['hello'] ) def __lowercase ( self : str ): '''simple docstring''' _a : List[Any] = BasicTokenizer(do_lower_case=_a ,strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['h\u00E9llo'] ) def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[Any] = BasicTokenizer(do_lower_case=_a ,strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['hello'] ) def __lowercase ( self : Tuple ): '''simple docstring''' _a : Any = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['hello'] ) def __lowercase ( self : int ): '''simple docstring''' _a : Tuple = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) ,['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __lowercase ( self : Dict ): '''simple docstring''' _a : Dict = BasicTokenizer(do_lower_case=_a ,strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Union[str, Any] = BasicTokenizer(do_lower_case=_a ,strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __lowercase ( self : Dict ): '''simple docstring''' _a : List[Any] = BasicTokenizer(do_lower_case=_a ,never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) ,['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Dict = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] _a : List[str] = {} for i, token in enumerate(_a ): _a : List[str] = i _a : Any = WordpieceTokenizer(vocab=_a ,unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) ,[] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) ,['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) ,['[UNK]', 'runn', '##ing'] ) @require_torch def __lowercase ( self : Dict ): '''simple docstring''' _a : Union[str, Any] = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) _a : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _a : str = [1037, 2146, 2_0423, 2005, 7680, 7849, 3989, 1012, 102] _a : Union[str, Any] = tokenizer(_a ,padding=_a ,return_tensors='pt' ) self.assertIsInstance(_a ,_a ) _a : Optional[Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_a ,_a ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) def __lowercase ( self : int ): '''simple docstring''' self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def __lowercase ( self : List[str] ): '''simple docstring''' self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def __lowercase ( self : str ): '''simple docstring''' self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) @slow def __lowercase ( self : List[Any] ): '''simple docstring''' _a : Dict = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) _a : Tuple = tokenizer.encode('sequence builders' ,add_special_tokens=_a ) _a : Union[str, Any] = tokenizer.encode('multi-sequence build' ,add_special_tokens=_a ) _a : int = tokenizer.build_inputs_with_special_tokens(_a ) _a : str = tokenizer.build_inputs_with_special_tokens(_a ,_a ) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_a + [102]
351
'''simple docstring''' import comet # From: unbabel-comet import torch import datasets __lowerCAmelCase = datasets.logging.get_logger(__name__) __lowerCAmelCase = """\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel's Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = \"{COMET}: A Neural Framework for {MT} Evaluation\", author = \"Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon\", booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\", month = nov, year = \"2020\", address = \"Online\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\", pages = \"2685--2702\", } """ __lowerCAmelCase = """\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. """ __lowerCAmelCase = """ COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric('comet') >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"] >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"] >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results[\"scores\"]]) [0.19, 0.92] """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): """simple docstring""" def __lowercase ( self : Optional[int] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='https://unbabel.github.io/COMET/html/index.html' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'sources': datasets.Value('string' ,id='sequence' ), 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Value('string' ,id='sequence' ), } ) ,codebase_urls=['https://github.com/Unbabel/COMET'] ,reference_urls=[ 'https://github.com/Unbabel/COMET', 'https://www.aclweb.org/anthology/2020.emnlp-main.213/', 'http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6', ] ,) def __lowercase ( self : int ,_a : int ): '''simple docstring''' if self.config_name == "default": _a : List[Any] = comet.load_from_checkpoint(comet.download_model('wmt20-comet-da' ) ) else: _a : List[str] = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def __lowercase ( self : Tuple ,_a : List[Any] ,_a : Dict ,_a : Optional[Any] ,_a : List[str]=None ,_a : Tuple=False ): '''simple docstring''' if gpus is None: _a : str = 1 if torch.cuda.is_available() else 0 _a : Optional[Any] = {'src': sources, 'mt': predictions, 'ref': references} _a : Optional[Any] = [dict(zip(_a ,_a ) ) for t in zip(*data.values() )] _a, _a : Tuple = self.scorer.predict(_a ,gpus=_a ,progress_bar=_a ) return {"mean_score": mean_score, "scores": scores}
5
0
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers __lowerCAmelCase = [int(0.5 * n * (n + 1)) for n in range(1, 1_0_1)] def UpperCAmelCase_ (): """simple docstring""" _a : Tuple = os.path.dirname(os.path.realpath(__a ) ) _a : int = os.path.join(__a , 'words.txt' ) _a : Union[str, Any] = '' with open(__a ) as f: _a : Dict = f.readline() _a : Tuple = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] _a : str = [ word for word in [sum(ord(__a ) - 6_4 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__a ) if __name__ == "__main__": print(solution())
352
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
0
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. __lowerCAmelCase = 1_0 def UpperCAmelCase_ (__a : int , __a : int , __a : list[int] , __a : int ): """simple docstring""" for i in range(__a , __a ): if array[i] == target: return i return -1 def UpperCAmelCase_ (__a : list[int] , __a : int ): """simple docstring""" _a : Union[str, Any] = 0 _a : List[Any] = len(__a ) while left <= right: if right - left < precision: return lin_search(__a , __a , __a , __a ) _a : Tuple = (left + right) // 3 + 1 _a : str = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: _a : Optional[int] = one_third - 1 elif array[two_third] < target: _a : Tuple = two_third + 1 else: _a : Optional[Any] = one_third + 1 _a : Any = two_third - 1 else: return -1 def UpperCAmelCase_ (__a : int , __a : int , __a : list[int] , __a : int ): """simple docstring""" if left < right: if right - left < precision: return lin_search(__a , __a , __a , __a ) _a : List[str] = (left + right) // 3 + 1 _a : int = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(__a , one_third - 1 , __a , __a ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , __a , __a , __a ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , __a , __a ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase = input("""Enter numbers separated by comma:\n""").strip() __lowerCAmelCase = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), f"List must be ordered.\n{collection}." __lowerCAmelCase = int(input("""Enter the number to be found in the list:\n""").strip()) __lowerCAmelCase = ite_ternary_search(collection, target) __lowerCAmelCase = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'''Iterative search: {target} found at positions: {resulta}''') print(f'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
353
'''simple docstring''' import sys def UpperCAmelCase_ (__a : List[str] ): """simple docstring""" _a : List[str] = len(__a ) _a : Dict = [[0 for x in range(__a )] for x in range(__a )] _a : Union[str, Any] = [[0 for x in range(__a )] for x in range(__a )] for chain_length in range(2 , __a ): for a in range(1 , n - chain_length + 1 ): _a : Tuple = a + chain_length - 1 _a : Any = sys.maxsize for c in range(__a , __a ): _a : Optional[Any] = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: _a : Dict = cost _a : Any = c return matrix, sol def UpperCAmelCase_ (__a : Tuple , __a : List[str] , __a : Dict ): """simple docstring""" if i == j: print('A' + str(__a ) , end=' ' ) else: print('(' , end=' ' ) print_optiomal_solution(__a , __a , optimal_solution[i][j] ) print_optiomal_solution(__a , optimal_solution[i][j] + 1 , __a ) print(')' , end=' ' ) def UpperCAmelCase_ (): """simple docstring""" _a : Any = [3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] _a : Any = len(__a ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 _a, _a : Union[str, Any] = matrix_chain_order(__a ) print('No. of Operation required: ' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__a , 1 , n - 1 ) if __name__ == "__main__": main()
5
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : Any = """▁""" __lowerCAmelCase : Tuple = {"""vocab_file""": """sentencepiece.bpe.model"""} __lowerCAmelCase : int = { """vocab_file""": { """facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model""", } } __lowerCAmelCase : List[Any] = { """facebook/xglm-564M""": 2_0_4_8, } class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Any = VOCAB_FILES_NAMES __UpperCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Dict = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] ,_a : Optional[int] ,_a : Dict="<s>" ,_a : Optional[int]="</s>" ,_a : Optional[int]="</s>" ,_a : Any="<s>" ,_a : str="<unk>" ,_a : Tuple="<pad>" ,_a : Optional[Dict[str, Any]] = None ,**_a : Optional[Any] ,): '''simple docstring''' _a : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer _a : Dict = 7 _a : Optional[int] = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] _a : List[str] = kwargs.get('additional_special_tokens' ,[] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_a ,eos_token=_a ,unk_token=_a ,sep_token=_a ,cls_token=_a ,pad_token=_a ,sp_model_kwargs=self.sp_model_kwargs ,**_a ,) _a : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_a ) ) _a : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _a : Optional[int] = 1 # Mimic fairseq token-to-id alignment for the first 4 token _a : int = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} _a : Optional[int] = len(self.sp_model ) _a : Dict = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_a ) _a : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Dict ): '''simple docstring''' _a : str = self.__dict__.copy() _a : Any = None _a : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self : List[Any] ,_a : Tuple ): '''simple docstring''' _a : List[str] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _a : Union[str, Any] = {} _a : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __lowercase ( self : List[Any] ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a _a : int = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def __lowercase ( self : Tuple ,_a : List[int] ,_a : Optional[List[int]] = None ,_a : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a ,token_ids_a=_a ,already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) def __lowercase ( self : Any ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' _a : Optional[Any] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def __lowercase ( self : List[Any] ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def __lowercase ( self : Tuple ): '''simple docstring''' _a : Optional[Any] = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowercase ( self : Optional[Any] ,_a : str ): '''simple docstring''' return self.sp_model.encode(_a ,out_type=_a ) def __lowercase ( self : Union[str, Any] ,_a : Optional[Any] ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _a : Union[str, Any] = self.sp_model.PieceToId(_a ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __lowercase ( self : List[Any] ,_a : int ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __lowercase ( self : int ,_a : List[str] ): '''simple docstring''' _a : Any = ''.join(_a ).replace(_a ,' ' ).strip() return out_string def __lowercase ( self : int ,_a : str ,_a : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(_a ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : Dict = os.path.join( _a ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_a ) elif not os.path.isfile(self.vocab_file ): with open(_a ,'wb' ) as fi: _a : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
354
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase_ (__a : Optional[Any] ): """simple docstring""" _a : int = FileLock(str(tmpdir / 'foo.lock' ) ) _a : List[Any] = FileLock(str(tmpdir / 'foo.lock' ) ) _a : Any = 0.01 with locka.acquire(): with pytest.raises(__a ): _a : int = time.time() locka.acquire(__a ) assert time.time() - _start > timeout def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Dict = 'a' * 1_0_0_0 + '.lock' _a : int = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('.lock' ) assert not locka._lock_file.endswith(__a ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 _a : Dict = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__a ): locka.acquire(0 )
5
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { """microsoft/focalnet-tiny""": """https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json""", } class UpperCAmelCase__ ( lowercase__ , lowercase__ ): """simple docstring""" __UpperCAmelCase : Dict = '''focalnet''' def __init__( self : List[Any] ,_a : Optional[Any]=224 ,_a : int=4 ,_a : Union[str, Any]=3 ,_a : List[str]=96 ,_a : Union[str, Any]=False ,_a : str=[192, 384, 768, 768] ,_a : Dict=[2, 2, 6, 2] ,_a : Any=[2, 2, 2, 2] ,_a : str=[3, 3, 3, 3] ,_a : Optional[int]="gelu" ,_a : Tuple=4.0 ,_a : str=0.0 ,_a : Union[str, Any]=0.1 ,_a : str=False ,_a : int=1E-4 ,_a : Dict=False ,_a : Optional[Any]=False ,_a : Optional[int]=False ,_a : str=0.02 ,_a : Optional[Any]=1E-5 ,_a : List[str]=32 ,_a : Tuple=None ,_a : Any=None ,**_a : Optional[Any] ,): '''simple docstring''' super().__init__(**_a ) _a : List[str] = image_size _a : Optional[Any] = patch_size _a : List[str] = num_channels _a : List[str] = embed_dim _a : Optional[int] = use_conv_embed _a : Optional[Any] = hidden_sizes _a : Dict = depths _a : int = focal_levels _a : Optional[int] = focal_windows _a : List[str] = hidden_act _a : List[Any] = mlp_ratio _a : Optional[int] = hidden_dropout_prob _a : Optional[int] = drop_path_rate _a : str = use_layerscale _a : Any = layerscale_value _a : Tuple = use_post_layernorm _a : List[str] = use_post_layernorm_in_modulation _a : Optional[int] = normalize_modulator _a : Optional[int] = initializer_range _a : Any = layer_norm_eps _a : Optional[int] = encoder_stride _a : List[Any] = ['stem'] + [F"""stage{idx}""" for idx in range(1 ,len(self.depths ) + 1 )] _a : Dict = get_aligned_output_features_output_indices( out_features=_a ,out_indices=_a ,stage_names=self.stage_names )
355
'''simple docstring''' def UpperCAmelCase_ (__a : int = 1_0**1_2 ): """simple docstring""" _a : List[str] = 1 _a : Optional[int] = 0 _a : Any = 1 _a : List[str] = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f'''{solution() = }''')
5
0
'''simple docstring''' import os def UpperCAmelCase_ (__a : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(__a ) , __a ) ) as input_file: _a : List[str] = [ [int(__a ) for element in line.split(',' )] for line in input_file.readlines() ] _a : List[str] = len(__a ) _a : Union[str, Any] = len(matrix[0] ) _a : str = [[-1 for _ in range(__a )] for _ in range(__a )] for i in range(__a ): _a : Optional[Any] = matrix[i][0] for j in range(1 , __a ): for i in range(__a ): _a : int = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __a ): _a : Optional[int] = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): _a : Optional[int] = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
356
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __lowerCAmelCase = { """vocab_file""": {"""mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"""}, """tokenizer_file""": { """mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json""" }, } __lowerCAmelCase = {"""mobilebert-uncased""": 5_1_2} __lowerCAmelCase = {} class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Any = VOCAB_FILES_NAMES __UpperCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Tuple = PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Optional[Any] = MobileBertTokenizer def __init__( self : Dict ,_a : List[Any]=None ,_a : Optional[Any]=None ,_a : Union[str, Any]=True ,_a : Dict="[UNK]" ,_a : Union[str, Any]="[SEP]" ,_a : Any="[PAD]" ,_a : Optional[int]="[CLS]" ,_a : Optional[Any]="[MASK]" ,_a : Dict=True ,_a : Any=None ,**_a : Optional[Any] ,): '''simple docstring''' super().__init__( _a ,tokenizer_file=_a ,do_lower_case=_a ,unk_token=_a ,sep_token=_a ,pad_token=_a ,cls_token=_a ,mask_token=_a ,tokenize_chinese_chars=_a ,strip_accents=_a ,**_a ,) _a : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,_a ) != do_lower_case or normalizer_state.get('strip_accents' ,_a ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,_a ) != tokenize_chinese_chars ): _a : Optional[Any] = getattr(_a ,normalizer_state.pop('type' ) ) _a : Dict = do_lower_case _a : str = strip_accents _a : Tuple = tokenize_chinese_chars _a : Optional[Any] = normalizer_class(**_a ) _a : str = do_lower_case def __lowercase ( self : Tuple ,_a : Union[str, Any] ,_a : List[str]=None ): '''simple docstring''' _a : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowercase ( self : List[str] ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' _a : List[str] = [self.sep_token_id] _a : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowercase ( self : Union[str, Any] ,_a : str ,_a : Optional[str] = None ): '''simple docstring''' _a : int = self._tokenizer.model.save(_a ,name=_a ) return tuple(_a )
5
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { """configuration_timesformer""": ["""TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimesformerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimesformerModel""", """TimesformerForVideoClassification""", """TimesformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
357
'''simple docstring''' def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : List[Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" _a : Optional[int] = '' _a : List[str] = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__a ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _a, _a : Optional[int] = 0, 0 # length[i] shows the length of palindromic substring with center i _a : Optional[Any] = [1 for i in range(len(__a ) )] # for each character in new_string find corresponding palindromic string _a : Dict = 0 for j in range(len(__a ) ): _a : Dict = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__a ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _a : Optional[int] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _a : str = j - k + 1 # noqa: E741 _a : Any = j + k - 1 # update max_length and start position if max_length < length[j]: _a : Union[str, Any] = length[j] _a : List[str] = j # create that string _a : Tuple = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
5
0
'''simple docstring''' def UpperCAmelCase_ (__a : str , __a : str ): """simple docstring""" _a : str = len(__a ) _a : Union[str, Any] = len(__a ) _a : int = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] _a : List[str] = True for i in range(__a ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: _a : List[Any] = True if a[i].islower(): _a : Dict = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
358
'''simple docstring''' from functools import lru_cache @lru_cache def UpperCAmelCase_ (__a : int ): """simple docstring""" if num < 0: raise ValueError('Number should not be negative.' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Optional[Any] = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: _a : List[str] = [1_4_4, 1_9_2, 2_4_0] _a : int = [1_6, 3_2, 6_4, 9_6, 1_2_8, 1_6_0, 6_4_0] elif "mobilevit_xs" in mobilevit_name: _a : Optional[Any] = [9_6, 1_2_0, 1_4_4] _a : int = [1_6, 3_2, 4_8, 6_4, 8_0, 9_6, 3_8_4] elif "mobilevit_xxs" in mobilevit_name: _a : Any = [6_4, 8_0, 9_6] _a : List[Any] = [1_6, 1_6, 2_4, 4_8, 6_4, 8_0, 3_2_0] _a : List[str] = 0.05 _a : Any = 2.0 if mobilevit_name.startswith('deeplabv3_' ): _a : Union[str, Any] = 5_1_2 _a : Any = 1_6 _a : Optional[Any] = 2_1 _a : Optional[Any] = 'pascal-voc-id2label.json' else: _a : Tuple = 1_0_0_0 _a : Optional[int] = 'imagenet-1k-id2label.json' _a : Any = 'huggingface/label-files' _a : Dict = json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) _a : List[str] = {int(__a ): v for k, v in idalabel.items()} _a : List[str] = idalabel _a : Optional[int] = {v: k for k, v in idalabel.items()} return config def UpperCAmelCase_ (__a : str , __a : str=False ): """simple docstring""" for i in range(1 , 6 ): if f"""layer_{i}.""" in name: _a : Any = name.replace(f"""layer_{i}.""" , f"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: _a : Any = name.replace('conv_1.' , 'conv_stem.' ) if ".block." in name: _a : Any = name.replace('.block.' , '.' ) if "exp_1x1" in name: _a : Tuple = name.replace('exp_1x1' , 'expand_1x1' ) if "red_1x1" in name: _a : List[str] = name.replace('red_1x1' , 'reduce_1x1' ) if ".local_rep.conv_3x3." in name: _a : Optional[int] = name.replace('.local_rep.conv_3x3.' , '.conv_kxk.' ) if ".local_rep.conv_1x1." in name: _a : Tuple = name.replace('.local_rep.conv_1x1.' , '.conv_1x1.' ) if ".norm." in name: _a : Optional[Any] = name.replace('.norm.' , '.normalization.' ) if ".conv." in name: _a : Union[str, Any] = name.replace('.conv.' , '.convolution.' ) if ".conv_proj." in name: _a : Tuple = name.replace('.conv_proj.' , '.conv_projection.' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if f""".{i}.{j}.""" in name: _a : List[Any] = name.replace(f""".{i}.{j}.""" , f""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if f""".{i}.{j}.""" in name: _a : Tuple = name.replace(f""".{i}.{j}.""" , f""".{i}.""" ) if "expand_1x1" in name: _a : List[str] = name.replace('expand_1x1' , 'downsampling_layer.expand_1x1' ) if "conv_3x3" in name: _a : List[str] = name.replace('conv_3x3' , 'downsampling_layer.conv_3x3' ) if "reduce_1x1" in name: _a : str = name.replace('reduce_1x1' , 'downsampling_layer.reduce_1x1' ) for i in range(2 , 5 ): if f""".global_rep.{i}.weight""" in name: _a : Optional[int] = name.replace(f""".global_rep.{i}.weight""" , '.layernorm.weight' ) if f""".global_rep.{i}.bias""" in name: _a : int = name.replace(f""".global_rep.{i}.bias""" , '.layernorm.bias' ) if ".global_rep." in name: _a : int = name.replace('.global_rep.' , '.transformer.' ) if ".pre_norm_mha.0." in name: _a : Optional[int] = name.replace('.pre_norm_mha.0.' , '.layernorm_before.' ) if ".pre_norm_mha.1.out_proj." in name: _a : str = name.replace('.pre_norm_mha.1.out_proj.' , '.attention.output.dense.' ) if ".pre_norm_ffn.0." in name: _a : List[Any] = name.replace('.pre_norm_ffn.0.' , '.layernorm_after.' ) if ".pre_norm_ffn.1." in name: _a : Dict = name.replace('.pre_norm_ffn.1.' , '.intermediate.dense.' ) if ".pre_norm_ffn.4." in name: _a : List[Any] = name.replace('.pre_norm_ffn.4.' , '.output.dense.' ) if ".transformer." in name: _a : List[str] = name.replace('.transformer.' , '.transformer.layer.' ) if ".aspp_layer." in name: _a : Any = name.replace('.aspp_layer.' , '.' ) if ".aspp_pool." in name: _a : List[Any] = name.replace('.aspp_pool.' , '.' ) if "seg_head." in name: _a : str = name.replace('seg_head.' , 'segmentation_head.' ) if "segmentation_head.classifier.classifier." in name: _a : Optional[Any] = name.replace('segmentation_head.classifier.classifier.' , 'segmentation_head.classifier.' ) if "classifier.fc." in name: _a : Optional[Any] = name.replace('classifier.fc.' , 'classifier.' ) elif (not base_model) and ("segmentation_head." not in name): _a : Optional[Any] = 'mobilevit.' + name return name def UpperCAmelCase_ (__a : List[str] , __a : Optional[Any] , __a : Tuple=False ): """simple docstring""" if base_model: _a : Tuple = '' else: _a : Union[str, Any] = 'mobilevit.' for key in orig_state_dict.copy().keys(): _a : List[Any] = orig_state_dict.pop(__a ) if key[:8] == "encoder.": _a : Union[str, Any] = key[8:] if "qkv" in key: _a : Any = key.split('.' ) _a : str = int(key_split[0][6:] ) - 1 _a : Any = int(key_split[3] ) _a : Any = model.get_submodule(f"""{model_prefix}encoder.layer.{layer_num}""" ) _a : Union[str, Any] = layer.transformer.layer[transformer_num].attention.attention.all_head_size _a : List[Any] = ( f"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: _a : Dict = val[:dim, :] _a : Optional[int] = val[dim : dim * 2, :] _a : Any = val[-dim:, :] else: _a : Any = val[:dim] _a : List[Any] = val[dim : dim * 2] _a : Dict = val[-dim:] else: _a : Tuple = val return orig_state_dict def UpperCAmelCase_ (): """simple docstring""" _a : List[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' _a : int = Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def UpperCAmelCase_ (__a : Union[str, Any] , __a : Optional[int] , __a : Tuple , __a : str=False ): """simple docstring""" _a : Dict = get_mobilevit_config(__a ) # load original state_dict _a : Dict = torch.load(__a , map_location='cpu' ) # load 🤗 model if mobilevit_name.startswith('deeplabv3_' ): _a : Any = MobileViTForSemanticSegmentation(__a ).eval() else: _a : List[str] = MobileViTForImageClassification(__a ).eval() _a : Union[str, Any] = convert_state_dict(__a , __a ) model.load_state_dict(__a ) # Check outputs on an image, prepared by MobileViTImageProcessor _a : Optional[int] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 3_2 ) _a : str = image_processor(images=prepare_img() , return_tensors='pt' ) _a : Optional[Any] = model(**__a ) _a : Dict = outputs.logits if mobilevit_name.startswith('deeplabv3_' ): assert logits.shape == (1, 2_1, 3_2, 3_2) if mobilevit_name == "deeplabv3_mobilevit_s": _a : Optional[int] = torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": _a : Union[str, Any] = torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": _a : Dict = torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ] ) else: raise ValueError(f"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , __a , atol=1e-4 ) else: assert logits.shape == (1, 1_0_0_0) if mobilevit_name == "mobilevit_s": _a : Optional[int] = torch.tensor([-0.9866, 0.2392, -1.1241] ) elif mobilevit_name == "mobilevit_xs": _a : Optional[int] = torch.tensor([-2.4761, -0.9399, -1.9587] ) elif mobilevit_name == "mobilevit_xxs": _a : Any = torch.tensor([-1.9364, -1.2327, -0.4653] ) else: raise ValueError(f"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , __a , atol=1e-4 ) Path(__a ).mkdir(exist_ok=__a ) print(f"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__a ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__a ) if push_to_hub: _a : Tuple = { 'mobilevit_s': 'mobilevit-small', 'mobilevit_xs': 'mobilevit-x-small', 'mobilevit_xxs': 'mobilevit-xx-small', 'deeplabv3_mobilevit_s': 'deeplabv3-mobilevit-small', 'deeplabv3_mobilevit_xs': 'deeplabv3-mobilevit-x-small', 'deeplabv3_mobilevit_xxs': 'deeplabv3-mobilevit-xx-small', } print('Pushing to the hub...' ) _a : Optional[int] = model_mapping[mobilevit_name] image_processor.push_to_hub(__a , organization='apple' ) model.push_to_hub(__a , organization='apple' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--mobilevit_name""", default="""mobilevit_s""", type=str, help=( """Name of the MobileViT model you'd like to convert. Should be one of 'mobilevit_s', 'mobilevit_xs',""" """ 'mobilevit_xxs', 'deeplabv3_mobilevit_s', 'deeplabv3_mobilevit_xs', 'deeplabv3_mobilevit_xxs'.""" ), ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original state dict (.pt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __lowerCAmelCase = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
359
'''simple docstring''' import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib __lowerCAmelCase = threading.Lock() __lowerCAmelCase = None __lowerCAmelCase = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } __lowerCAmelCase = logging.WARNING __lowerCAmelCase = True def UpperCAmelCase_ (): """simple docstring""" _a : Dict = os.getenv('TRANSFORMERS_VERBOSITY' , __a ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def UpperCAmelCase_ (): """simple docstring""" return __name__.split('.' )[0] def UpperCAmelCase_ (): """simple docstring""" return logging.getLogger(_get_library_name() ) def UpperCAmelCase_ (): """simple docstring""" global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _a : str = logging.StreamHandler() # Set sys.stderr as stream. _a : Optional[Any] = sys.stderr.flush # Apply our default configuration to the library root logger. _a : List[Any] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) _a : List[str] = False def UpperCAmelCase_ (): """simple docstring""" global _default_handler with _lock: if not _default_handler: return _a : int = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) _a : str = None def UpperCAmelCase_ (): """simple docstring""" return log_levels def UpperCAmelCase_ (__a : Optional[str] = None ): """simple docstring""" if name is None: _a : List[Any] = _get_library_name() _configure_library_root_logger() return logging.getLogger(__a ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def UpperCAmelCase_ (__a : int ): """simple docstring""" _configure_library_root_logger() _get_library_root_logger().setLevel(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def UpperCAmelCase_ (__a : logging.Handler ): """simple docstring""" _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(__a ) def UpperCAmelCase_ (__a : logging.Handler ): """simple docstring""" _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(__a ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() _a : Union[str, Any] = False def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() _a : Dict = True def UpperCAmelCase_ (): """simple docstring""" _a : Any = _get_library_root_logger().handlers for handler in handlers: _a : Union[str, Any] = logging.Formatter('[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s' ) handler.setFormatter(__a ) def UpperCAmelCase_ (): """simple docstring""" _a : Union[str, Any] = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(__a ) def UpperCAmelCase_ (self : Union[str, Any] , *__a : Union[str, Any] , **__a : Union[str, Any] ): """simple docstring""" _a : Union[str, Any] = os.getenv('TRANSFORMERS_NO_ADVISORY_WARNINGS' , __a ) if no_advisory_warnings: return self.warning(*__a , **__a ) __lowerCAmelCase = warning_advice @functools.lru_cache(__a ) def UpperCAmelCase_ (self : int , *__a : Optional[Any] , **__a : Any ): """simple docstring""" self.warning(*__a , **__a ) __lowerCAmelCase = warning_once class UpperCAmelCase__ : """simple docstring""" def __init__( self : Any ,*_a : Tuple ,**_a : int ): # pylint: disable=unused-argument '''simple docstring''' _a : int = args[0] if args else None def __iter__( self : str ): '''simple docstring''' return iter(self._iterator ) def __getattr__( self : List[Any] ,_a : int ): '''simple docstring''' def empty_fn(*_a : Optional[Any] ,**_a : Any ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : List[str] ): '''simple docstring''' return self def __exit__( self : List[str] ,_a : str ,_a : List[Any] ,_a : str ): '''simple docstring''' return class UpperCAmelCase__ : """simple docstring""" def __call__( self : Union[str, Any] ,*_a : Tuple ,**_a : Tuple ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm(*_a ,**_a ) else: return EmptyTqdm(*_a ,**_a ) def __lowercase ( self : str ,*_a : List[Any] ,**_a : Any ): '''simple docstring''' _a : Any = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_a ,**_a ) def __lowercase ( self : List[str] ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() __lowerCAmelCase = _tqdm_cls() def UpperCAmelCase_ (): """simple docstring""" global _tqdm_active return bool(_tqdm_active ) def UpperCAmelCase_ (): """simple docstring""" global _tqdm_active _a : str = True hf_hub_utils.enable_progress_bars() def UpperCAmelCase_ (): """simple docstring""" global _tqdm_active _a : Dict = False hf_hub_utils.disable_progress_bars()
5
0
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : int = DanceDiffusionPipeline __UpperCAmelCase : Optional[int] = UNCONDITIONAL_AUDIO_GENERATION_PARAMS __UpperCAmelCase : Tuple = PipelineTesterMixin.required_optional_params - { '''callback''', '''latents''', '''callback_steps''', '''output_type''', '''num_images_per_prompt''', } __UpperCAmelCase : Optional[int] = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Dict = False def __lowercase ( self : int ): '''simple docstring''' torch.manual_seed(0 ) _a : Dict = UNetaDModel( block_out_channels=(32, 32, 64) ,extra_in_channels=16 ,sample_size=512 ,sample_rate=1_6000 ,in_channels=2 ,out_channels=2 ,flip_sin_to_cos=_a ,use_timestep_embedding=_a ,time_embedding_type='fourier' ,mid_block_type='UNetMidBlock1D' ,down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') ,up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') ,) _a : List[Any] = IPNDMScheduler() _a : str = { 'unet': unet, 'scheduler': scheduler, } return components def __lowercase ( self : Union[str, Any] ,_a : Dict ,_a : Union[str, Any]=0 ): '''simple docstring''' if str(_a ).startswith('mps' ): _a : List[Any] = torch.manual_seed(_a ) else: _a : Any = torch.Generator(device=_a ).manual_seed(_a ) _a : str = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def __lowercase ( self : Tuple ): '''simple docstring''' _a : int = 'cpu' # ensure determinism for the device-dependent torch.Generator _a : Dict = self.get_dummy_components() _a : Any = DanceDiffusionPipeline(**_a ) _a : List[str] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _a : Dict = self.get_dummy_inputs(_a ) _a : List[Any] = pipe(**_a ) _a : Tuple = output.audios _a : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _a : List[Any] = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return super().test_save_load_local() @skip_mps def __lowercase ( self : List[str] ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def __lowercase ( self : Optional[int] ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def __lowercase ( self : Tuple ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self : List[str] ): '''simple docstring''' _a : Tuple = torch_device _a : str = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) _a : Optional[Any] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _a : int = torch.manual_seed(0 ) _a : Union[str, Any] = pipe(generator=_a ,num_inference_steps=100 ,audio_length_in_s=4.096 ) _a : Tuple = output.audios _a : Optional[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _a : Any = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def __lowercase ( self : List[str] ): '''simple docstring''' _a : List[str] = torch_device _a : Union[str, Any] = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ,torch_dtype=torch.floataa ) _a : Optional[int] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _a : List[Any] = torch.manual_seed(0 ) _a : Optional[int] = pipe(generator=_a ,num_inference_steps=100 ,audio_length_in_s=4.096 ) _a : Tuple = output.audios _a : Union[str, Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _a : Any = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
360
'''simple docstring''' def UpperCAmelCase_ (__a : list[int] , __a : list[int] ): """simple docstring""" if not len(__a ) == len(__a ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients _a, _a, _a : Tuple = equationa _a, _a, _a : str = equationa # Calculate the determinants of the matrices _a : Union[str, Any] = aa * ba - aa * ba _a : List[Any] = ca * ba - ca * ba _a : List[Any] = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _a : int = determinant_x / determinant _a : List[str] = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
5
0
'''simple docstring''' def UpperCAmelCase_ (__a : str , __a : str ): """simple docstring""" assert x is not None assert y is not None _a : Optional[int] = len(__a ) _a : int = len(__a ) # declaring the array for storing the dp values _a : Union[str, Any] = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): _a : Union[str, Any] = 1 if x[i - 1] == y[j - 1] else 0 _a : Optional[int] = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) _a : int = '' _a : Tuple = m, n while i > 0 and j > 0: _a : str = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: _a : Union[str, Any] = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": __lowerCAmelCase = """AGGTAB""" __lowerCAmelCase = """GXTXAYB""" __lowerCAmelCase = 4 __lowerCAmelCase = """GTAB""" __lowerCAmelCase , __lowerCAmelCase = longest_common_subsequence(a, b) print("""len =""", ln, """, sub-sequence =""", subseq) import doctest doctest.testmod()
361
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase__ : """simple docstring""" def __init__( self : int ,_a : List[str] ,_a : Optional[Any]=13 ,_a : str=30 ,_a : str=2 ,_a : Union[str, Any]=3 ,_a : Optional[Any]=True ,_a : int=True ,_a : Union[str, Any]=32 ,_a : List[Any]=5 ,_a : Union[str, Any]=4 ,_a : int=37 ,_a : Any="gelu" ,_a : Union[str, Any]=0.1 ,_a : str=0.1 ,_a : List[str]=10 ,_a : Dict=0.02 ,_a : Tuple=None ,): '''simple docstring''' _a : Any = parent _a : int = batch_size _a : List[Any] = image_size _a : Optional[int] = patch_size _a : List[str] = num_channels _a : Dict = is_training _a : Dict = use_labels _a : Optional[Any] = hidden_size _a : str = num_hidden_layers _a : Optional[int] = num_attention_heads _a : Dict = intermediate_size _a : Union[str, Any] = hidden_act _a : List[str] = hidden_dropout_prob _a : Any = attention_probs_dropout_prob _a : List[str] = type_sequence_label_size _a : int = initializer_range _a : List[Any] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _a : Union[str, Any] = (image_size // patch_size) ** 2 _a : Tuple = num_patches + 1 def __lowercase ( self : Any ): '''simple docstring''' _a : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : str = None if self.use_labels: _a : Tuple = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _a : List[str] = self.get_config() return config, pixel_values, labels def __lowercase ( self : Optional[int] ): '''simple docstring''' return ViTMSNConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,initializer_range=self.initializer_range ,) def __lowercase ( self : Tuple ,_a : Any ,_a : List[Any] ,_a : int ): '''simple docstring''' _a : str = ViTMSNModel(config=_a ) model.to(_a ) model.eval() _a : int = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : List[Any] ,_a : str ,_a : Tuple ,_a : Dict ): '''simple docstring''' _a : Tuple = self.type_sequence_label_size _a : int = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _a : Dict = model(_a ,labels=_a ) print('Pixel and labels shape: {pixel_values.shape}, {labels.shape}' ) print('Labels: {labels}' ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _a : int = 1 _a : Optional[Any] = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _a : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a : Optional[int] = model(_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[int] = self.prepare_config_and_inputs() _a, _a, _a : int = config_and_inputs _a : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __UpperCAmelCase : List[Any] = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase : str = False __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = False def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : List[str] = ViTMSNModelTester(self ) _a : Optional[int] = ConfigTester(self ,config_class=_a ,has_text_modality=_a ,hidden_size=37 ) def __lowercase ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViTMSN does not use inputs_embeds' ) def __lowercase ( self : List[str] ): '''simple docstring''' pass def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a, _a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[Any] = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _a : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a ,nn.Linear ) ) def __lowercase ( self : Any ): '''simple docstring''' _a, _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[str] = model_class(_a ) _a : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : List[Any] = [*signature.parameters.keys()] _a : int = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_a ) def __lowercase ( self : List[str] ): '''simple docstring''' _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __lowercase ( self : int ): '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Dict = ViTMSNModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def UpperCAmelCase_ (): """simple docstring""" _a : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained('facebook/vit-msn-small' ) if is_vision_available() else None @slow def __lowercase ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(2 ) _a : List[str] = ViTMSNForImageClassification.from_pretrained('facebook/vit-msn-small' ).to(_a ) _a : List[str] = self.default_image_processor _a : int = prepare_img() _a : Tuple = image_processor(images=_a ,return_tensors='pt' ).to(_a ) # forward pass with torch.no_grad(): _a : Optional[int] = model(**_a ) # verify the logits _a : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,_a ) _a : List[Any] = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_a ,atol=1E-4 ) )
5
0
'''simple docstring''' import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Optional[Any] = ['''image_processor''', '''tokenizer'''] __UpperCAmelCase : Union[str, Any] = '''BlipImageProcessor''' __UpperCAmelCase : Any = '''AutoTokenizer''' def __init__( self : Optional[Any] ,_a : Any ,_a : List[str] ,_a : Optional[int] ): '''simple docstring''' super().__init__(_a ,_a ) # add QFormer tokenizer _a : Dict = qformer_tokenizer def __call__( self : List[str] ,_a : ImageInput = None ,_a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,_a : bool = True ,_a : Union[bool, str, PaddingStrategy] = False ,_a : Union[bool, str, TruncationStrategy] = None ,_a : Optional[int] = None ,_a : int = 0 ,_a : Optional[int] = None ,_a : Optional[bool] = None ,_a : bool = False ,_a : bool = False ,_a : bool = False ,_a : bool = False ,_a : bool = False ,_a : bool = True ,_a : Optional[Union[str, TensorType]] = None ,**_a : Optional[Any] ,): '''simple docstring''' if images is None and text is None: raise ValueError('You have to specify at least images or text.' ) _a : List[str] = BatchFeature() if text is not None: _a : int = self.tokenizer( text=_a ,add_special_tokens=_a ,padding=_a ,truncation=_a ,max_length=_a ,stride=_a ,pad_to_multiple_of=_a ,return_attention_mask=_a ,return_overflowing_tokens=_a ,return_special_tokens_mask=_a ,return_offsets_mapping=_a ,return_token_type_ids=_a ,return_length=_a ,verbose=_a ,return_tensors=_a ,**_a ,) encoding.update(_a ) _a : str = self.qformer_tokenizer( text=_a ,add_special_tokens=_a ,padding=_a ,truncation=_a ,max_length=_a ,stride=_a ,pad_to_multiple_of=_a ,return_attention_mask=_a ,return_overflowing_tokens=_a ,return_special_tokens_mask=_a ,return_offsets_mapping=_a ,return_token_type_ids=_a ,return_length=_a ,verbose=_a ,return_tensors=_a ,**_a ,) _a : Optional[Any] = qformer_text_encoding.pop('input_ids' ) _a : Union[str, Any] = qformer_text_encoding.pop('attention_mask' ) if images is not None: _a : Optional[int] = self.image_processor(_a ,return_tensors=_a ) encoding.update(_a ) return encoding def __lowercase ( self : str ,*_a : List[Any] ,**_a : str ): '''simple docstring''' return self.tokenizer.batch_decode(*_a ,**_a ) def __lowercase ( self : int ,*_a : Tuple ,**_a : Tuple ): '''simple docstring''' return self.tokenizer.decode(*_a ,**_a ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def __lowercase ( self : List[str] ): '''simple docstring''' _a : Union[str, Any] = self.tokenizer.model_input_names _a : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def __lowercase ( self : List[str] ,_a : Union[str, Any] ,**_a : Tuple ): '''simple docstring''' if os.path.isfile(_a ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(_a ,exist_ok=_a ) _a : List[Any] = os.path.join(_a ,'qformer_tokenizer' ) self.qformer_tokenizer.save_pretrained(_a ) return super().save_pretrained(_a ,**_a ) @classmethod def __lowercase ( cls : Union[str, Any] ,_a : Optional[int] ,**_a : int ): '''simple docstring''' _a : List[str] = AutoTokenizer.from_pretrained(_a ,subfolder='qformer_tokenizer' ) _a : str = cls._get_arguments_from_pretrained(_a ,**_a ) args.append(_a ) return cls(*_a )
362
'''simple docstring''' import requests from bsa import BeautifulSoup def UpperCAmelCase_ (__a : str = "https://www.worldometers.info/coronavirus" ): """simple docstring""" _a : List[str] = BeautifulSoup(requests.get(__a ).text , 'html.parser' ) _a : Dict = soup.findAll('h1' ) _a : Union[str, Any] = soup.findAll('div' , {'class': 'maincounter-number'} ) keys += soup.findAll('span' , {'class': 'panel-title'} ) values += soup.findAll('div' , {'class': 'number-table-main'} ) return {key.text.strip(): value.text.strip() for key, value in zip(__a , __a )} if __name__ == "__main__": print("""\033[1m""" + """COVID-19 Status of the World""" + """\033[0m\n""") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
5
0
'''simple docstring''' from typing import Any import numpy as np def UpperCAmelCase_ (__a : np.ndarray ): """simple docstring""" return np.array_equal(__a , matrix.conjugate().T ) def UpperCAmelCase_ (__a : np.ndarray , __a : np.ndarray ): """simple docstring""" _a : Tuple = v.conjugate().T _a : int = v_star.dot(__a ) assert isinstance(__a , np.ndarray ) return (v_star_dot.dot(__a )) / (v_star.dot(__a )) def UpperCAmelCase_ (): """simple docstring""" _a : Tuple = np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]] ) _a : Any = np.array([[1], [2], [3]] ) assert is_hermitian(__a ), f"""{a} is not hermitian.""" print(rayleigh_quotient(__a , __a ) ) _a : List[Any] = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(__a ), f"""{a} is not hermitian.""" assert rayleigh_quotient(__a , __a ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
363
'''simple docstring''' import argparse from collections import defaultdict import yaml __lowerCAmelCase = """docs/source/en/_toctree.yml""" def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Any = defaultdict(__a ) for doc in model_doc: counts[doc["local"]] += 1 _a : List[str] = [key for key, value in counts.items() if value > 1] _a : str = [] for duplicate_key in duplicates: _a : Union[str, Any] = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(__a ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(__a , key=lambda __a : s["title"].lower() ) def UpperCAmelCase_ (__a : Optional[int]=False ): """simple docstring""" with open(__a , encoding='utf-8' ) as f: _a : Tuple = yaml.safe_load(f.read() ) # Get to the API doc _a : Union[str, Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 _a : Union[str, Any] = content[api_idx]['sections'] # Then to the model doc _a : List[str] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 _a : List[str] = api_doc[model_idx]['sections'] _a : List[Any] = [(idx, section) for idx, section in enumerate(__a ) if 'sections' in section] _a : Tuple = False for idx, modality_doc in modalities_docs: _a : List[Any] = modality_doc['sections'] _a : Any = clean_model_doc_toc(__a ) if old_modality_doc != new_modality_doc: _a : Union[str, Any] = True if overwrite: _a : str = new_modality_doc if diff: if overwrite: _a : Dict = model_doc _a : Dict = api_doc with open(__a , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(__a , allow_unicode=__a ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") __lowerCAmelCase = parser.parse_args() check_model_doc(args.fix_and_overwrite)
5
0
'''simple docstring''' import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList __lowerCAmelCase = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""] class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __init__( self : List[Any] ,_a : int ,_a : Union[str, Any] ,_a : List[str]=None ,_a : Dict=1 ): '''simple docstring''' _a : str = tokenizer _a : List[Any] = dataset _a : Dict = len(_a ) if n_tasks is None else n_tasks _a : Tuple = n_copies def __iter__( self : int ): '''simple docstring''' _a : Optional[Any] = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) _a : str = self.tokenizer(_a ,padding=_a ,return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __init__( self : Optional[Any] ,_a : List[Any] ,_a : Any ,_a : Optional[int] ): '''simple docstring''' _a : Optional[int] = start_length _a : int = eof_strings _a : Dict = tokenizer def __call__( self : Optional[int] ,_a : Tuple ,_a : str ,**_a : List[Any] ): '''simple docstring''' _a : int = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) _a : int = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(_a ) def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Dict = re.split('(%s)' % '|'.join(__a ) , __a ) # last string should be "" return "".join(string_list[:-2] ) def UpperCAmelCase_ (__a : Dict , __a : Optional[Any] , __a : Union[str, Any] , __a : int , __a : List[Any] , __a : Optional[Any]=2_0 , **__a : str ): """simple docstring""" _a : Any = defaultdict(__a ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__a ) ): with torch.no_grad(): _a : str = batch['ids'].shape[-1] _a : List[Any] = accelerator.unwrap_model(__a ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=__a , **__a ) # each task is generated batch_size times _a : Optional[Any] = batch['task_id'].repeat(__a ) _a : int = accelerator.pad_across_processes( __a , dim=1 , pad_index=tokenizer.pad_token_id ) _a : List[str] = accelerator.gather((generated_tokens, generated_tasks) ) _a : Any = generated_tokens.cpu().numpy() _a : List[str] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(__a , __a ): gen_token_dict[task].append(__a ) _a : str = [[] for _ in range(__a )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: _a : Tuple = tokenizer.decode(__a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) code_gens[task].append(remove_last_block(__a ) ) return code_gens def UpperCAmelCase_ (): """simple docstring""" _a : Any = HfArgumentParser(__a ) _a : Tuple = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric _a : Optional[int] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing _a : Union[str, Any] = 'false' if args.num_workers is None: _a : str = multiprocessing.cpu_count() # Use dataset load to feed to accelerate _a : Any = Accelerator() set_seed(args.seed , device_specific=__a ) # Load model and tokenizer _a : Optional[int] = AutoTokenizer.from_pretrained(args.model_ckpt ) _a : Optional[int] = tokenizer.eos_token _a : Optional[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings _a : Dict = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , __a , __a )] ), } # Load evaluation dataset and metric _a : Optional[int] = load_dataset('openai_humaneval' ) _a : Optional[int] = load_metric('code_eval' ) _a : List[Any] = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) _a : Union[str, Any] = args.n_samples // args.batch_size _a : str = TokenizedDataset(__a , human_eval['test'] , n_copies=__a , n_tasks=__a ) # do not confuse args.batch_size, which is actually the num_return_sequences _a : str = DataLoader(__a , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: _a : Tuple = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception _a : str = accelerator.prepare(__a , __a ) _a : Optional[int] = complete_code( __a , __a , __a , __a , n_tasks=__a , batch_size=args.batch_size , **__a , ) if accelerator.is_main_process: _a : List[Any] = [] for task in tqdm(range(__a ) ): _a : Dict = human_eval['test'][task]['test'] _a : Optional[int] = f"""check({human_eval['test'][task]['entry_point']})""" references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric _a : str = code_eval_metric.compute( references=__a , predictions=__a , num_workers=args.num_workers ) print(f"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(__a , __a ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
364
'''simple docstring''' from collections.abc import Generator from math import sin def UpperCAmelCase_ (__a : bytes ): """simple docstring""" if len(__a ) != 3_2: raise ValueError('Input must be of length 32' ) _a : Any = b'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def UpperCAmelCase_ (__a : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) _a : List[str] = format(__a , '08x' )[-8:] _a : str = b'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def UpperCAmelCase_ (__a : bytes ): """simple docstring""" _a : List[Any] = b'' for char in message: bit_string += format(__a , '08b' ).encode('utf-8' ) _a : int = format(len(__a ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__a ) % 5_1_2 != 4_4_8: bit_string += b"0" bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] ) return bit_string def UpperCAmelCase_ (__a : bytes ): """simple docstring""" if len(__a ) % 5_1_2 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(__a ) , 5_1_2 ): _a : List[Any] = bit_string[pos : pos + 5_1_2] _a : str = [] for i in range(0 , 5_1_2 , 3_2 ): block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) ) yield block_words def UpperCAmelCase_ (__a : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) _a : List[str] = format(__a , '032b' ) _a : int = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(__a , 2 ) def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" return (a + b) % 2**3_2 def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2 def UpperCAmelCase_ (__a : bytes ): """simple docstring""" _a : str = preprocess(__a ) _a : Optional[int] = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )] # Starting states _a : int = 0x67_45_23_01 _a : Union[str, Any] = 0xEF_CD_AB_89 _a : str = 0x98_BA_DC_FE _a : List[Any] = 0x10_32_54_76 _a : Optional[int] = [ 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__a ): _a : Union[str, Any] = aa _a : List[Any] = ba _a : List[Any] = ca _a : Dict = da # Hash current chunk for i in range(6_4 ): if i <= 1_5: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _a : Optional[int] = d ^ (b & (c ^ d)) _a : Optional[Any] = i elif i <= 3_1: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _a : Optional[Any] = c ^ (d & (b ^ c)) _a : Dict = (5 * i + 1) % 1_6 elif i <= 4_7: _a : Optional[Any] = b ^ c ^ d _a : Dict = (3 * i + 5) % 1_6 else: _a : int = c ^ (b | not_aa(__a )) _a : List[str] = (7 * i) % 1_6 _a : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**3_2 _a : Union[str, Any] = d _a : Tuple = c _a : Optional[int] = b _a : Union[str, Any] = sum_aa(__a , left_rotate_aa(__a , shift_amounts[i] ) ) # Add hashed chunk to running total _a : Any = sum_aa(__a , __a ) _a : Dict = sum_aa(__a , __a ) _a : Union[str, Any] = sum_aa(__a , __a ) _a : str = sum_aa(__a , __a ) _a : Optional[Any] = reformat_hex(__a ) + reformat_hex(__a ) + reformat_hex(__a ) + reformat_hex(__a ) return digest if __name__ == "__main__": import doctest doctest.testmod()
5
0
'''simple docstring''' import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": __lowerCAmelCase = """%20""".join(argv[1:]) if len(argv) > 1 else quote(str(input("""Search: """))) print("""Googling.....""") __lowerCAmelCase = f'''https://www.google.com/search?q={query}&num=100''' __lowerCAmelCase = requests.get( url, headers={"""User-Agent""": str(UserAgent().random)}, ) try: __lowerCAmelCase = ( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """yuRUbf"""}) .find("""a""") .get("""href""") ) except AttributeError: __lowerCAmelCase = parse_qs( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """kCrYT"""}) .find("""a""") .get("""href""") )["""url"""][0] webbrowser.open(link)
365
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCAmelCase_ (__a : str , __a : Dict=0.999 , __a : List[str]="cosine" , ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(__a : Union[str, Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__a : int ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _a : Tuple = [] for i in range(__a ): _a : Union[str, Any] = i / num_diffusion_timesteps _a : Any = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__a ) / alpha_bar_fn(__a ) , __a ) ) return torch.tensor(__a , dtype=torch.floataa ) class UpperCAmelCase__ ( lowercase__ , lowercase__ ): """simple docstring""" __UpperCAmelCase : Optional[Any] = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase : Dict = 2 @register_to_config def __init__( self : str ,_a : int = 1000 ,_a : float = 0.0_0085 ,_a : float = 0.012 ,_a : str = "linear" ,_a : Optional[Union[np.ndarray, List[float]]] = None ,_a : str = "epsilon" ,_a : Optional[bool] = False ,_a : Optional[bool] = False ,_a : float = 1.0 ,_a : str = "linspace" ,_a : int = 0 ,): '''simple docstring''' if trained_betas is not None: _a : List[str] = torch.tensor(_a ,dtype=torch.floataa ) elif beta_schedule == "linear": _a : Tuple = torch.linspace(_a ,_a ,_a ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _a : List[str] = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,_a ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _a : Dict = betas_for_alpha_bar(_a ,alpha_transform_type='cosine' ) elif beta_schedule == "exp": _a : Tuple = betas_for_alpha_bar(_a ,alpha_transform_type='exp' ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) _a : Optional[Any] = 1.0 - self.betas _a : Optional[int] = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(_a ,_a ,_a ) _a : Optional[int] = use_karras_sigmas def __lowercase ( self : Any ,_a : Union[str, Any] ,_a : Optional[Any]=None ): '''simple docstring''' if schedule_timesteps is None: _a : List[Any] = self.timesteps _a : Dict = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _a : int = 1 if len(_a ) > 1 else 0 else: _a : str = timestep.cpu().item() if torch.is_tensor(_a ) else timestep _a : str = self._index_counter[timestep_int] return indices[pos].item() @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __lowercase ( self : int ,_a : torch.FloatTensor ,_a : Union[float, torch.FloatTensor] ,): '''simple docstring''' _a : List[Any] = self.index_for_timestep(_a ) _a : Tuple = self.sigmas[step_index] _a : Optional[Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def __lowercase ( self : Any ,_a : int ,_a : Union[str, torch.device] = None ,_a : Optional[int] = None ,): '''simple docstring''' _a : Optional[Any] = num_inference_steps _a : Dict = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _a : Optional[Any] = np.linspace(0 ,num_train_timesteps - 1 ,_a ,dtype=_a )[::-1].copy() elif self.config.timestep_spacing == "leading": _a : str = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a : int = (np.arange(0 ,_a ) * step_ratio).round()[::-1].copy().astype(_a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _a : Any = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a : Union[str, Any] = (np.arange(_a ,0 ,-step_ratio )).round().copy().astype(_a ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _a : Tuple = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _a : Union[str, Any] = np.log(_a ) _a : str = np.interp(_a ,np.arange(0 ,len(_a ) ) ,_a ) if self.config.use_karras_sigmas: _a : List[Any] = self._convert_to_karras(in_sigmas=_a ,num_inference_steps=self.num_inference_steps ) _a : Dict = np.array([self._sigma_to_t(_a ,_a ) for sigma in sigmas] ) _a : int = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _a : Union[str, Any] = torch.from_numpy(_a ).to(device=_a ) _a : Any = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) _a : List[Any] = torch.from_numpy(_a ) _a : List[str] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(_a ).startswith('mps' ): # mps does not support float64 _a : Tuple = timesteps.to(_a ,dtype=torch.floataa ) else: _a : Dict = timesteps.to(device=_a ) # empty dt and derivative _a : Tuple = None _a : Optional[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _a : Union[str, Any] = defaultdict(_a ) def __lowercase ( self : str ,_a : Dict ,_a : Dict ): '''simple docstring''' _a : Optional[int] = np.log(_a ) # get distribution _a : Union[str, Any] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range _a : List[Any] = np.cumsum((dists >= 0) ,axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) _a : Tuple = low_idx + 1 _a : Union[str, Any] = log_sigmas[low_idx] _a : Optional[Any] = log_sigmas[high_idx] # interpolate sigmas _a : Optional[Any] = (low - log_sigma) / (low - high) _a : List[str] = np.clip(_a ,0 ,1 ) # transform interpolation to time range _a : Union[str, Any] = (1 - w) * low_idx + w * high_idx _a : List[str] = t.reshape(sigma.shape ) return t def __lowercase ( self : int ,_a : torch.FloatTensor ,_a : Tuple ): '''simple docstring''' _a : float = in_sigmas[-1].item() _a : float = in_sigmas[0].item() _a : Tuple = 7.0 # 7.0 is the value used in the paper _a : str = np.linspace(0 ,1 ,_a ) _a : Optional[Any] = sigma_min ** (1 / rho) _a : Union[str, Any] = sigma_max ** (1 / rho) _a : str = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' return self.dt is None def __lowercase ( self : int ,_a : Union[torch.FloatTensor, np.ndarray] ,_a : Union[float, torch.FloatTensor] ,_a : Union[torch.FloatTensor, np.ndarray] ,_a : bool = True ,): '''simple docstring''' _a : Union[str, Any] = self.index_for_timestep(_a ) # advance index counter by 1 _a : Any = timestep.cpu().item() if torch.is_tensor(_a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _a : Tuple = self.sigmas[step_index] _a : int = self.sigmas[step_index + 1] else: # 2nd order / Heun's method _a : List[str] = self.sigmas[step_index - 1] _a : List[Any] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _a : Optional[int] = 0 _a : Tuple = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _a : Dict = sigma_hat if self.state_in_first_order else sigma_next _a : Optional[int] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _a : List[Any] = sigma_hat if self.state_in_first_order else sigma_next _a : List[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": _a : Union[str, Any] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: _a : Optional[int] = pred_original_sample.clamp( -self.config.clip_sample_range ,self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _a : Optional[Any] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _a : Any = sigma_next - sigma_hat # store for 2nd order step _a : int = derivative _a : List[str] = dt _a : Union[str, Any] = sample else: # 2. 2nd order / Heun's method _a : Dict = (sample - pred_original_sample) / sigma_next _a : Tuple = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample _a : Optional[Any] = self.dt _a : Union[str, Any] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" _a : List[Any] = None _a : Union[str, Any] = None _a : Dict = None _a : str = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_a ) def __lowercase ( self : Optional[int] ,_a : torch.FloatTensor ,_a : torch.FloatTensor ,_a : torch.FloatTensor ,): '''simple docstring''' _a : str = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_a ): # mps does not support float64 _a : Dict = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) _a : Optional[Any] = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: _a : int = self.timesteps.to(original_samples.device ) _a : Optional[Any] = timesteps.to(original_samples.device ) _a : Any = [self.index_for_timestep(_a ,_a ) for t in timesteps] _a : Optional[int] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _a : Optional[Any] = sigma.unsqueeze(-1 ) _a : Any = original_samples + noise * sigma return noisy_samples def __len__( self : Optional[int] ): '''simple docstring''' return self.config.num_train_timesteps
5
0
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule __lowerCAmelCase = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
366
'''simple docstring''' import qiskit def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" _a : Any = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _a : List[Any] = qiskit.QuantumCircuit(__a , __a ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator _a : Tuple = qiskit.execute(__a , __a , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__a ) if __name__ == "__main__": print(f'''Total count for various states are: {single_qubit_measure(1, 1)}''')
5
0
'''simple docstring''' import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType __lowerCAmelCase = logging.get_logger(__name__) class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = '''vision-encoder-decoder''' __UpperCAmelCase : Tuple = True def __init__( self : List[Any] ,**_a : List[Any] ): '''simple docstring''' super().__init__(**_a ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F"""A configuraton of type {self.model_type} cannot be instantiated because """ F"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) _a : Tuple = kwargs.pop('encoder' ) _a : int = encoder_config.pop('model_type' ) _a : List[str] = kwargs.pop('decoder' ) _a : Union[str, Any] = decoder_config.pop('model_type' ) _a : Optional[Any] = AutoConfig.for_model(_a ,**_a ) _a : List[Any] = AutoConfig.for_model(_a ,**_a ) _a : int = True @classmethod def __lowercase ( cls : List[Any] ,_a : PretrainedConfig ,_a : PretrainedConfig ,**_a : Dict ): '''simple docstring''' logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) _a : Optional[int] = True _a : str = True return cls(encoder=encoder_config.to_dict() ,decoder=decoder_config.to_dict() ,**_a ) def __lowercase ( self : int ): '''simple docstring''' _a : Optional[int] = copy.deepcopy(self.__dict__ ) _a : Tuple = self.encoder.to_dict() _a : Optional[Any] = self.decoder.to_dict() _a : str = self.__class__.model_type return output class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = version.parse('''1.11''' ) @property def __lowercase ( self : List[Any] ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __lowercase ( self : List[str] ): '''simple docstring''' return 1E-4 @property def __lowercase ( self : Optional[int] ): '''simple docstring''' return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} ) class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" @property def __lowercase ( self : Any ): '''simple docstring''' _a : str = OrderedDict() _a : Optional[Any] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} _a : Dict = {0: 'batch', 1: 'past_decoder_sequence + sequence'} _a : Any = {0: 'batch', 1: 'encoder_sequence'} return common_inputs def __lowercase ( self : Any ,_a : "PreTrainedTokenizerBase" ,_a : int = -1 ,_a : int = -1 ,_a : bool = False ,_a : Optional["TensorType"] = None ,): '''simple docstring''' import torch _a : List[str] = OrderedDict() _a : Optional[Any] = super().generate_dummy_inputs( _a ,batch_size=_a ,seq_length=_a ,is_pair=_a ,framework=_a ) _a : Optional[int] = dummy_input['input_ids'].shape _a : Dict = (batch, encoder_sequence, self._config.encoder_hidden_size) _a : Tuple = dummy_input.pop('input_ids' ) _a : int = dummy_input.pop('attention_mask' ) _a : str = torch.zeros(_a ) return common_inputs class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' pass def __lowercase ( self : List[str] ,_a : PretrainedConfig ): '''simple docstring''' return VisionEncoderDecoderEncoderOnnxConfig(_a ) def __lowercase ( self : List[str] ,_a : PretrainedConfig ,_a : PretrainedConfig ,_a : str = "default" ): '''simple docstring''' _a : Optional[Any] = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_a ,_a )
367
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() def __lowercase ( self : str ): '''simple docstring''' _a : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) _a : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) _a : List[str] = 'xvjiarui/stable-diffusion-2-inpainting' _a, _a : str = FlaxStableDiffusionInpaintPipeline.from_pretrained(_a ,safety_checker=_a ) _a : str = 'Face of a yellow cat, high resolution, sitting on a park bench' _a : int = jax.random.PRNGKey(0 ) _a : Tuple = 50 _a : Any = jax.device_count() _a : Dict = num_samples * [prompt] _a : Optional[Any] = num_samples * [init_image] _a : str = num_samples * [mask_image] _a, _a, _a : Optional[Any] = pipeline.prepare_inputs(_a ,_a ,_a ) # shard inputs and rng _a : Optional[Any] = replicate(_a ) _a : str = jax.random.split(_a ,jax.device_count() ) _a : Dict = shard(_a ) _a : int = shard(_a ) _a : int = shard(_a ) _a : Union[str, Any] = pipeline( _a ,_a ,_a ,_a ,_a ,_a ,jit=_a ) _a : Union[str, Any] = output.images.reshape(_a ,512 ,512 ,3 ) _a : Union[str, Any] = images[0, 253:256, 253:256, -1] _a : str = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _a : Union[str, Any] = jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
5
0
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase_ (__a : Union[str, Any] , __a : Optional[int] , __a : List[str]=None ): assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" _a : List[Any] = nn.Parameter(__a ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" _a : Tuple = nn.Parameter(__a ) def UpperCAmelCase_ (__a : str , __a : Optional[int] , __a : Any ): _a : int = np.asarray(weights[0] ) _a : Optional[Any] = np.asarray(weights[1] ) _a : Tuple = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(__a ).transpose(1 , 2 ).contiguous().view(-1 , __a ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__a ).transpose(1 , 2 ).contiguous().view(-1 , __a ) , ) set_param( torch_layer.output.dense , torch.tensor(__a ).view(-1 , __a ).contiguous().transpose(0 , 1 ) , ) def UpperCAmelCase_ (__a : int , __a : List[Any] , __a : List[str] ): _a : List[Any] = np.asarray(weights[0] ) _a : Optional[Any] = np.asarray(weights[1] ) _a : List[str] = np.asarray(weights[2] ) _a : List[Any] = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(__a ).transpose(1 , 2 ).contiguous().view(-1 , __a ) , ) set_param( torch_layer.self_attention.key , torch.tensor(__a ).transpose(1 , 2 ).contiguous().view(-1 , __a ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__a ).transpose(1 , 2 ).contiguous().view(-1 , __a ) , ) set_param( torch_layer.output.dense , torch.tensor(__a ).view(-1 , __a ).contiguous().transpose(0 , 1 ) , ) def UpperCAmelCase_ (__a : Optional[Any] , __a : str , __a : Union[str, Any] ): _a : Dict = weights[0][0][0] _a : Tuple = np.asarray(layer_norm_a[0] ) _a : Dict = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(__a ) , torch.tensor(__a ) , ) # lsh weights + output _a : List[str] = weights[0][1] if len(__a ) < 4: set_layer_weights_in_torch_lsh(__a , torch_block.attention , __a ) else: set_layer_weights_in_torch_local(__a , torch_block.attention , __a ) # intermediate weighs _a : str = weights[2][0][1][2] # Chunked Feed Forward if len(__a ) == 4: _a : Optional[Any] = intermediate_weights[2] # layernorm 2 _a : str = np.asarray(intermediate_weights[0][0] ) _a : List[str] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(__a ) , torch.tensor(__a ) , ) # intermediate dense _a : Tuple = np.asarray(intermediate_weights[1][0] ) _a : Dict = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(__a ).transpose(0 , 1 ).contiguous() , torch.tensor(__a ) , ) # intermediate out _a : Union[str, Any] = np.asarray(intermediate_weights[4][0] ) _a : int = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(__a ).transpose(0 , 1 ).contiguous() , torch.tensor(__a ) , ) def UpperCAmelCase_ (__a : str , __a : List[Any] , __a : List[str] ): _a : Union[str, Any] = torch_model.reformer # word embeds _a : List[str] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(__a ) , ) if isinstance(weights[3] , __a ): _a : str = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _a : Union[str, Any] = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" _a : int = nn.Parameter(torch.tensor(__a ) ) _a : Optional[Any] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( __a ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _a : Dict = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(__a , __a , __a ) # output layer norm _a : str = np.asarray(weights[7][0] ) _a : Any = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(__a ) , torch.tensor(__a ) , ) # output embeddings _a : Dict = np.asarray(weights[9][0] ) _a : List[str] = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(__a ).transpose(0 , 1 ).contiguous() , torch.tensor(__a ) , ) def UpperCAmelCase_ (__a : Any , __a : Union[str, Any] , __a : Optional[int] ): _a : Tuple = ReformerConfig.from_json_file(__a ) print(f"""Building PyTorch model from configuration: {config}""" ) _a : int = ReformerModelWithLMHead(__a ) with open(__a , 'rb' ) as f: _a : List[str] = pickle.load(__a )['weights'] set_model_weights_in_torch(__a , __a , config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __a ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--trax_model_pkl_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained Reformer model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __lowerCAmelCase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
368
'''simple docstring''' def UpperCAmelCase_ (__a : str , __a : str ): """simple docstring""" _a : int = len(__a ) + 1 _a : List[str] = len(__a ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. _a : Optional[int] = [[0 for i in range(__a )] for j in range(__a )] # since string of zero length match pattern of zero length _a : str = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , __a ): _a : Optional[Any] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , __a ): _a : Dict = dp[0][j - 2] if pattern[j - 1] == '*' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , __a ): for j in range(1 , __a ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": _a : Tuple = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: _a : List[str] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): _a : int = dp[i - 1][j] else: _a : Any = 0 else: _a : Optional[Any] = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") __lowerCAmelCase = """aab""" __lowerCAmelCase = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f'''{input_string} matches the given pattern {pattern}''') else: print(f'''{input_string} does not match with the given pattern {pattern}''')
5
0
'''simple docstring''' import re import subprocess import sys __lowerCAmelCase = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") __lowerCAmelCase = subprocess.check_output(f'''git diff --name-only {fork_point_sha}'''.split()).decode("""utf-8""").split() __lowerCAmelCase = """|""".join(sys.argv[1:]) __lowerCAmelCase = re.compile(rf'''^({joined_dirs}).*?\.py$''') __lowerCAmelCase = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
369
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Dict = BlenderbotSmallTokenizer __UpperCAmelCase : Tuple = False def __lowercase ( self : List[Any] ): '''simple docstring''' super().setUp() _a : List[str] = ['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] _a : Tuple = dict(zip(_a ,range(len(_a ) ) ) ) _a : List[Any] = ['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] _a : List[Any] = {'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} _a : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) _a : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(_a ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(_a ) ) def __lowercase ( self : List[Any] ,**_a : int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname ,**_a ) def __lowercase ( self : Tuple ,_a : int ): '''simple docstring''' _a : Optional[Any] = 'adapt act apte' _a : Dict = 'adapt act apte' return input_text, output_text def __lowercase ( self : int ): '''simple docstring''' _a : Optional[int] = BlenderbotSmallTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) _a : Union[str, Any] = 'adapt act apte' _a : Dict = ['adapt', 'act', 'ap@@', 'te'] _a : Tuple = tokenizer.tokenize(_a ) self.assertListEqual(_a ,_a ) _a : List[str] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] _a : Dict = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) ,_a ) def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : str = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] _a : Union[str, Any] = 'I am a small frog.' _a : int = tok([src_text] ,padding=_a ,truncation=_a )['input_ids'] _a : str = tok.batch_decode(_a ,skip_special_tokens=_a ,clean_up_tokenization_spaces=_a )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[int] = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) _a : Union[str, Any] = 'I am a small frog .' _a : Optional[Any] = '.' _a : Optional[Any] = tok(_a )['input_ids'] _a : Union[str, Any] = tok(_a )['input_ids'] assert encoded[-1] == encoded_dot[0]
5
0
'''simple docstring''' from bisect import bisect from itertools import accumulate def UpperCAmelCase_ (__a : Dict , __a : List[Any] , __a : Tuple , __a : Tuple ): """simple docstring""" _a : int = sorted(zip(__a , __a ) , key=lambda __a : x[0] / x[1] , reverse=__a ) _a : str = [i[0] for i in r], [i[1] for i in r] _a : str = list(accumulate(__a ) ) _a : Optional[int] = bisect(__a , __a ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
370
'''simple docstring''' __lowerCAmelCase = { """A""": """.-""", """B""": """-...""", """C""": """-.-.""", """D""": """-..""", """E""": """.""", """F""": """..-.""", """G""": """--.""", """H""": """....""", """I""": """..""", """J""": """.---""", """K""": """-.-""", """L""": """.-..""", """M""": """--""", """N""": """-.""", """O""": """---""", """P""": """.--.""", """Q""": """--.-""", """R""": """.-.""", """S""": """...""", """T""": """-""", """U""": """..-""", """V""": """...-""", """W""": """.--""", """X""": """-..-""", """Y""": """-.--""", """Z""": """--..""", """1""": """.----""", """2""": """..---""", """3""": """...--""", """4""": """....-""", """5""": """.....""", """6""": """-....""", """7""": """--...""", """8""": """---..""", """9""": """----.""", """0""": """-----""", """&""": """.-...""", """@""": """.--.-.""", """:""": """---...""", """,""": """--..--""", """.""": """.-.-.-""", """'""": """.----.""", """\"""": """.-..-.""", """?""": """..--..""", """/""": """-..-.""", """=""": """-...-""", """+""": """.-.-.""", """-""": """-....-""", """(""": """-.--.""", """)""": """-.--.-""", """!""": """-.-.--""", """ """: """/""" } # Exclamation mark is not in ITU-R recommendation # fmt: on __lowerCAmelCase = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCAmelCase_ (__a : str ): """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCAmelCase_ (__a : str ): """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCAmelCase_ (): """simple docstring""" _a : List[str] = 'Morse code here!' print(__a ) _a : Tuple = encrypt(__a ) print(__a ) _a : str = decrypt(__a ) print(__a ) if __name__ == "__main__": main()
5
0
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser __lowerCAmelCase = logging.getLogger(__name__) torch.set_grad_enabled(False) __lowerCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu""" def UpperCAmelCase_ (__a : str , __a : int=1_0_0 , __a : Tuple=" " ): """simple docstring""" _a : int = text.split(__a ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__a ) , __a )] def UpperCAmelCase_ (__a : dict ): """simple docstring""" _a : Dict = [], [] for title, text in zip(documents['title'] , documents['text'] ): if text is not None: for passage in split_text(__a ): titles.append(title if title is not None else '' ) texts.append(__a ) return {"title": titles, "text": texts} def UpperCAmelCase_ (__a : dict , __a : DPRContextEncoder , __a : DPRContextEncoderTokenizerFast ): """simple docstring""" _a : Dict = ctx_tokenizer( documents['title'] , documents['text'] , truncation=__a , padding='longest' , return_tensors='pt' )['input_ids'] _a : Optional[int] = ctx_encoder(input_ids.to(device=__a ) , return_dict=__a ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def UpperCAmelCase_ (__a : "RagExampleArguments" , __a : "ProcessingArguments" , __a : "IndexHnswArguments" , ): """simple docstring""" logger.info('Step 1 - Create the dataset' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way _a : Any = load_dataset( 'csv' , data_files=[rag_example_args.csv_path] , split='train' , delimiter='\t' , column_names=['title', 'text'] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _a : List[str] = dataset.map(__a , batched=__a , num_proc=processing_args.num_proc ) # And compute the embeddings _a : Optional[int] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__a ) _a : int = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) _a : str = Features( {'text': Value('string' ), 'title': Value('string' ), 'embeddings': Sequence(Value('float32' ) )} ) # optional, save as float32 instead of float64 to save space _a : Optional[Any] = dataset.map( partial(__a , ctx_encoder=__a , ctx_tokenizer=__a ) , batched=__a , batch_size=processing_args.batch_size , features=__a , ) # And finally save your dataset _a : str = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset' ) dataset.save_to_disk(__a ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('Step 2 - Index the dataset' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _a : Union[str, Any] = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('embeddings' , custom_index=__a ) # And save the index _a : Optional[int] = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset_hnsw_index.faiss' ) dataset.get_index('embeddings' ).save(__a ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class UpperCAmelCase__ : """simple docstring""" __UpperCAmelCase : str = field( default=str(Path(lowercase__ ).parent / '''test_run''' / '''dummy-kb''' / '''my_knowledge_dataset.csv''' ) , metadata={'''help''': '''Path to a tab-separated csv file with columns \'title\' and \'text\''''} , ) __UpperCAmelCase : Optional[str] = field( default=lowercase__ , metadata={'''help''': '''Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'''} , ) __UpperCAmelCase : str = field( default='''facebook/rag-sequence-nq''' , metadata={'''help''': '''The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''''} , ) __UpperCAmelCase : str = field( default='''facebook/dpr-ctx_encoder-multiset-base''' , metadata={ '''help''': ( '''The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or''' ''' \'facebook/dpr-ctx_encoder-multiset-base\'''' ) } , ) __UpperCAmelCase : Optional[str] = field( default=str(Path(lowercase__ ).parent / '''test_run''' / '''dummy-kb''' ) , metadata={'''help''': '''Path to a directory where the dataset passages and the index will be saved'''} , ) @dataclass class UpperCAmelCase__ : """simple docstring""" __UpperCAmelCase : Optional[int] = field( default=lowercase__ , metadata={ '''help''': '''The number of processes to use to split the documents into passages. Default is single process.''' } , ) __UpperCAmelCase : int = field( default=16 , metadata={ '''help''': '''The batch size to use when computing the passages embeddings using the DPR context encoder.''' } , ) @dataclass class UpperCAmelCase__ : """simple docstring""" __UpperCAmelCase : int = field( default=768 , metadata={'''help''': '''The dimension of the embeddings to pass to the HNSW Faiss index.'''} , ) __UpperCAmelCase : int = field( default=128 , metadata={ '''help''': ( '''The number of bi-directional links created for every new element during the HNSW index construction.''' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) __lowerCAmelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: __lowerCAmelCase = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
371
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCAmelCase = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 1_2_8, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 5_0, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 1_0, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 1_0, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @classmethod def __lowercase ( cls : Optional[Any] ): '''simple docstring''' _a : List[Any] = TOKEN HfFolder.save_token(_a ) @classmethod def __lowercase ( cls : List[Any] ): '''simple docstring''' try: delete_repo(token=cls._token ,repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='test-dynamic-config' ) except HTTPError: pass def __lowercase ( self : List[str] ): '''simple docstring''' _a : Any = BertConfig( vocab_size=99 ,hidden_size=32 ,num_hidden_layers=5 ,num_attention_heads=4 ,intermediate_size=37 ) config.push_to_hub('test-config' ,use_auth_token=self._token ) _a : Optional[Any] = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) # Reset repo delete_repo(token=self._token ,repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_a ,repo_id='test-config' ,push_to_hub=_a ,use_auth_token=self._token ) _a : Dict = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Tuple = BertConfig( vocab_size=99 ,hidden_size=32 ,num_hidden_layers=5 ,num_attention_heads=4 ,intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' ,use_auth_token=self._token ) _a : Union[str, Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) # Reset repo delete_repo(token=self._token ,repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _a ,repo_id='valid_org/test-config-org' ,push_to_hub=_a ,use_auth_token=self._token ) _a : Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) def __lowercase ( self : List[Any] ): '''simple docstring''' CustomConfig.register_for_auto_class() _a : Optional[Any] = CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' ,use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map ,{'AutoConfig': 'custom_configuration.CustomConfig'} ) _a : int = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" ,trust_remote_code=_a ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ ,'CustomConfig' ) self.assertEqual(new_config.attribute ,42 ) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Optional[Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _a : int = c.n_embd + 1 # int _a : str = c.resid_pdrop + 1.0 # float _a : Dict = not c.scale_attn_weights # bool _a : List[Any] = c.summary_type + 'foo' # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(_a ,c.n_embd ,'mismatch for key: n_embd' ) self.assertEqual(_a ,c.resid_pdrop ,'mismatch for key: resid_pdrop' ) self.assertEqual(_a ,c.scale_attn_weights ,'mismatch for key: scale_attn_weights' ) self.assertEqual(_a ,c.summary_type ,'mismatch for key: summary_type' ) def __lowercase ( self : List[str] ): '''simple docstring''' _a : int = PretrainedConfig() _a : int = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( _a ,['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) _a : Dict = [key for key, value in config_common_kwargs.items() if value == getattr(_a ,_a )] if len(_a ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F""" {', '.join(_a )}.""" ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' with self.assertRaises(_a ): # config is in subfolder, the following should not work without specifying the subfolder _a : List[Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) _a : List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ,subfolder='bert' ) self.assertIsNotNone(_a ) def __lowercase ( self : List[Any] ): '''simple docstring''' _a : List[Any] = mock.Mock() _a : Any = 500 _a : Any = {} _a : Any = HTTPError _a : List[Any] = {} # Download this model to make sure it's in the cache. _a : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' ,return_value=_a ) as mock_head: _a : Optional[int] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Optional[int] = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : int = AutoConfig.from_pretrained('bert-base-cased' ) _a : List[str] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(_a ) _a : str = 2 json.dump(configuration.to_dict() ,open(os.path.join(_a ,'config.4.0.0.json' ) ,'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _a : int = AutoConfig.from_pretrained(_a ) self.assertEqual(new_configuration.hidden_size ,2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _a : Tuple = ['config.42.0.0.json'] _a : int = 768 configuration.save_pretrained(_a ) shutil.move(os.path.join(_a ,'config.4.0.0.json' ) ,os.path.join(_a ,'config.42.0.0.json' ) ) _a : int = AutoConfig.from_pretrained(_a ) self.assertEqual(new_configuration.hidden_size ,768 ) def __lowercase ( self : str ): '''simple docstring''' _a : Tuple = 'hf-internal-testing/test-two-configs' import transformers as new_transformers _a : Optional[int] = 'v4.0.0' _a, _a : Tuple = new_transformers.models.auto.AutoConfig.from_pretrained( _a ,return_unused_kwargs=_a ) self.assertEqual(new_configuration.hidden_size ,2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(_a ,{} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _a : str = 'v3.0.0' _a : Optional[Any] = old_transformers.models.auto.AutoConfig.from_pretrained(_a ) self.assertEqual(old_configuration.hidden_size ,768 )
5
0
'''simple docstring''' import logging from transformers import PretrainedConfig __lowerCAmelCase = logging.getLogger(__name__) __lowerCAmelCase = { """bertabs-finetuned-cnndm""": """https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json""", } class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Tuple = '''bertabs''' def __init__( self : Union[str, Any] ,_a : Optional[int]=3_0522 ,_a : List[Any]=512 ,_a : Any=6 ,_a : Union[str, Any]=512 ,_a : List[Any]=8 ,_a : int=512 ,_a : Union[str, Any]=0.2 ,_a : Union[str, Any]=6 ,_a : Union[str, Any]=768 ,_a : str=8 ,_a : str=2048 ,_a : str=0.2 ,**_a : List[str] ,): '''simple docstring''' super().__init__(**_a ) _a : Any = vocab_size _a : List[Any] = max_pos _a : Union[str, Any] = enc_layers _a : Optional[Any] = enc_hidden_size _a : Dict = enc_heads _a : List[Any] = enc_ff_size _a : Any = enc_dropout _a : Any = dec_layers _a : List[str] = dec_hidden_size _a : Dict = dec_heads _a : Optional[int] = dec_ff_size _a : Optional[int] = dec_dropout
350
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint __lowerCAmelCase = { """169M""": 1_2, """430M""": 2_4, """1B5""": 2_4, """3B""": 3_2, """7B""": 3_2, """14B""": 4_0, } __lowerCAmelCase = { """169M""": 7_6_8, """430M""": 1_0_2_4, """1B5""": 2_0_4_8, """3B""": 2_5_6_0, """7B""": 4_0_9_6, """14B""": 5_1_2_0, } def UpperCAmelCase_ (__a : Dict ): """simple docstring""" _a : List[Any] = list(state_dict.keys() ) for name in state_dict_keys: _a : List[Any] = state_dict.pop(__a ) # emb -> embedding if name.startswith('emb.' ): _a : List[str] = name.replace('emb.' , 'embeddings.' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0' ): _a : Dict = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' ) # att -> attention _a : int = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , __a ) # ffn -> feed_forward _a : str = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , __a ) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k' ): _a : Any = name.replace('.time_mix_k' , '.time_mix_key' ) # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v' ): _a : int = name.replace('.time_mix_v' , '.time_mix_value' ) # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r' ): _a : Tuple = name.replace('.time_mix_r' , '.time_mix_receptance' ) if name != "head.weight": _a : Tuple = 'rwkv.' + name _a : List[Any] = weight return state_dict def UpperCAmelCase_ (__a : Tuple , __a : Union[str, Any] , __a : List[str] , __a : str=None , __a : List[str]=None , __a : int=False , __a : int=None ): """simple docstring""" if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.' ) _a : List[Any] = 5_0_2_7_7 _a : Optional[Any] = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' ) else: _a : Optional[Any] = PreTrainedTokenizerFast(tokenizer_file=__a ) _a : List[Any] = len(__a ) tokenizer.save_pretrained(__a ) # 2. Build the config _a : List[str] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: _a : str = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.' ) if size not in possible_sizes: raise ValueError(f"""`size` should be one of {possible_sizes}, got {size}.""" ) _a : str = RwkvConfig( vocab_size=__a , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(__a ) # 3. Download model file then convert state_dict _a : Tuple = hf_hub_download(__a , __a ) _a : Optional[int] = torch.load(__a , map_location='cpu' ) _a : Dict = convert_state_dict(__a ) # 4. Split in shards and save _a, _a : List[Any] = shard_checkpoint(__a ) for shard_file, shard in shards.items(): torch.save(__a , os.path.join(__a , __a ) ) if index is not None: _a : Dict = os.path.join(__a , __a ) # Save the index as well with open(__a , 'w' , encoding='utf-8' ) as f: _a : List[Any] = json.dumps(__a , indent=2 , sort_keys=__a ) + '\n' f.write(__a ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' ) _a : List[Any] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: _a : Optional[Any] = torch.load(os.path.join(__a , __a ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(__a , __a ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.' ) _a : List[str] = AutoModelForCausalLM.from_pretrained(__a ) model.push_to_hub(__a , max_shard_size='2GB' ) tokenizer.push_to_hub(__a ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--repo_id""", default=None, type=str, required=True, help="""Repo ID from which to pull the checkpoint.""" ) parser.add_argument( """--checkpoint_file""", default=None, type=str, required=True, help="""Name of the checkpoint file in the repo.""" ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""Where to save the converted model.""" ) parser.add_argument( """--tokenizer_file""", default=None, type=str, help="""Path to the tokenizer file to use (if not provided, only the model is converted).""", ) parser.add_argument( """--size""", default=None, type=str, help="""Size of the model. Will be inferred from the `checkpoint_file` if not passed.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Push to the Hub the converted model.""", ) parser.add_argument( """--model_name""", default=None, type=str, help="""Name of the pushed model on the Hub, including the username / organization.""", ) __lowerCAmelCase = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
5
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCAmelCase__ : """simple docstring""" @staticmethod def __lowercase ( *_a : Optional[int] ,**_a : Optional[int] ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Any = MODEL_FOR_OBJECT_DETECTION_MAPPING def __lowercase ( self : Dict ,_a : int ,_a : Tuple ,_a : Dict ): '''simple docstring''' _a : Dict = ObjectDetectionPipeline(model=_a ,image_processor=_a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __lowercase ( self : Union[str, Any] ,_a : List[Any] ,_a : List[Any] ): '''simple docstring''' _a : List[str] = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png' ,threshold=0.0 ) self.assertGreater(len(_a ) ,0 ) for detected_object in outputs: self.assertEqual( _a ,{ 'score': ANY(_a ), 'label': ANY(_a ), 'box': {'xmin': ANY(_a ), 'ymin': ANY(_a ), 'xmax': ANY(_a ), 'ymax': ANY(_a )}, } ,) import datasets _a : Tuple = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' ,'image' ,split='test' ) _a : List[Any] = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] _a : str = object_detector(_a ,threshold=0.0 ) self.assertEqual(len(_a ) ,len(_a ) ) for outputs in batch_outputs: self.assertGreater(len(_a ) ,0 ) for detected_object in outputs: self.assertEqual( _a ,{ 'score': ANY(_a ), 'label': ANY(_a ), 'box': {'xmin': ANY(_a ), 'ymin': ANY(_a ), 'xmax': ANY(_a ), 'ymax': ANY(_a )}, } ,) @require_tf @unittest.skip('Object detection not implemented in TF' ) def __lowercase ( self : int ): '''simple docstring''' pass @require_torch def __lowercase ( self : Any ): '''simple docstring''' _a : List[Any] = 'hf-internal-testing/tiny-detr-mobilenetsv3' _a : int = AutoModelForObjectDetection.from_pretrained(_a ) _a : Optional[Any] = AutoFeatureExtractor.from_pretrained(_a ) _a : int = ObjectDetectionPipeline(model=_a ,feature_extractor=_a ) _a : Dict = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ,threshold=0.0 ) self.assertEqual( nested_simplify(_a ,decimals=4 ) ,[ {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ] ,) _a : Dict = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ,threshold=0.0 ,) self.assertEqual( nested_simplify(_a ,decimals=4 ) ,[ [ {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], [ {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], ] ,) @require_torch @slow def __lowercase ( self : Any ): '''simple docstring''' _a : Any = 'facebook/detr-resnet-50' _a : List[str] = AutoModelForObjectDetection.from_pretrained(_a ) _a : str = AutoFeatureExtractor.from_pretrained(_a ) _a : Union[str, Any] = ObjectDetectionPipeline(model=_a ,feature_extractor=_a ) _a : int = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(_a ,decimals=4 ) ,[ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] ,) _a : str = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(_a ,decimals=4 ) ,[ [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ] ,) @require_torch @slow def __lowercase ( self : Tuple ): '''simple docstring''' _a : Tuple = 'facebook/detr-resnet-50' _a : List[Any] = pipeline('object-detection' ,model=_a ) _a : List[str] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(_a ,decimals=4 ) ,[ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] ,) _a : List[str] = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(_a ,decimals=4 ) ,[ [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ] ,) @require_torch @slow def __lowercase ( self : Tuple ): '''simple docstring''' _a : Optional[Any] = 0.9985 _a : List[str] = 'facebook/detr-resnet-50' _a : List[Any] = pipeline('object-detection' ,model=_a ) _a : Union[str, Any] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ,threshold=_a ) self.assertEqual( nested_simplify(_a ,decimals=4 ) ,[ {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] ,) @require_torch @require_pytesseract @slow def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Optional[int] = 'Narsil/layoutlmv3-finetuned-funsd' _a : Tuple = 0.9993 _a : Optional[Any] = pipeline('object-detection' ,model=_a ,threshold=_a ) _a : List[Any] = object_detector( 'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' ) self.assertEqual( nested_simplify(_a ,decimals=4 ) ,[ {'score': 0.9993, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, {'score': 0.9993, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, ] ,)
351
'''simple docstring''' import comet # From: unbabel-comet import torch import datasets __lowerCAmelCase = datasets.logging.get_logger(__name__) __lowerCAmelCase = """\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel's Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = \"{COMET}: A Neural Framework for {MT} Evaluation\", author = \"Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon\", booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\", month = nov, year = \"2020\", address = \"Online\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\", pages = \"2685--2702\", } """ __lowerCAmelCase = """\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. """ __lowerCAmelCase = """ COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric('comet') >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"] >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"] >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results[\"scores\"]]) [0.19, 0.92] """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): """simple docstring""" def __lowercase ( self : Optional[int] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='https://unbabel.github.io/COMET/html/index.html' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'sources': datasets.Value('string' ,id='sequence' ), 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Value('string' ,id='sequence' ), } ) ,codebase_urls=['https://github.com/Unbabel/COMET'] ,reference_urls=[ 'https://github.com/Unbabel/COMET', 'https://www.aclweb.org/anthology/2020.emnlp-main.213/', 'http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6', ] ,) def __lowercase ( self : int ,_a : int ): '''simple docstring''' if self.config_name == "default": _a : List[Any] = comet.load_from_checkpoint(comet.download_model('wmt20-comet-da' ) ) else: _a : List[str] = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def __lowercase ( self : Tuple ,_a : List[Any] ,_a : Dict ,_a : Optional[Any] ,_a : List[str]=None ,_a : Tuple=False ): '''simple docstring''' if gpus is None: _a : str = 1 if torch.cuda.is_available() else 0 _a : Optional[Any] = {'src': sources, 'mt': predictions, 'ref': references} _a : Optional[Any] = [dict(zip(_a ,_a ) ) for t in zip(*data.values() )] _a, _a : Tuple = self.scorer.predict(_a ,gpus=_a ,progress_bar=_a ) return {"mean_score": mean_score, "scores": scores}
5
0
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase_ (__a : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True __lowerCAmelCase = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def UpperCAmelCase_ (__a : int ): """simple docstring""" if not isinstance(__a , __a ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) _a : Optional[int] = [] for num in range(len(__a ) ): _a : List[str] = 0 while 2 * i * i <= odd_composites[num]: _a : Optional[Any] = odd_composites[num] - 2 * i * i if is_prime(__a ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(__a ) == n: return list_nums return [] def UpperCAmelCase_ (): """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(f'''{solution() = }''')
352
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
0
'''simple docstring''' __lowerCAmelCase = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} __lowerCAmelCase = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCAmelCase_ (__a : dict[int, list[int]] , __a : int , __a : list[bool] ): """simple docstring""" _a : Optional[Any] = True _a : Dict = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__a , __a , __a ) order.append(__a ) return order def UpperCAmelCase_ (__a : dict[int, list[int]] , __a : int , __a : list[bool] ): """simple docstring""" _a : List[str] = True _a : Tuple = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__a , __a , __a ) return component def UpperCAmelCase_ (__a : dict[int, list[int]] ): """simple docstring""" _a : Dict = len(__a ) * [False] _a : dict[int, list[int]] = {vert: [] for vert in range(len(__a ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__a ) _a : Union[str, Any] = [] for i, was_visited in enumerate(__a ): if not was_visited: order += topology_sort(__a , __a , __a ) _a : Optional[Any] = [] _a : Union[str, Any] = len(__a ) * [False] for i in range(len(__a ) ): _a : List[str] = order[len(__a ) - i - 1] if not visited[vert]: _a : List[str] = find_components(__a , __a , __a ) components_list.append(__a ) return components_list
353
'''simple docstring''' import sys def UpperCAmelCase_ (__a : List[str] ): """simple docstring""" _a : List[str] = len(__a ) _a : Dict = [[0 for x in range(__a )] for x in range(__a )] _a : Union[str, Any] = [[0 for x in range(__a )] for x in range(__a )] for chain_length in range(2 , __a ): for a in range(1 , n - chain_length + 1 ): _a : Tuple = a + chain_length - 1 _a : Any = sys.maxsize for c in range(__a , __a ): _a : Optional[Any] = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: _a : Dict = cost _a : Any = c return matrix, sol def UpperCAmelCase_ (__a : Tuple , __a : List[str] , __a : Dict ): """simple docstring""" if i == j: print('A' + str(__a ) , end=' ' ) else: print('(' , end=' ' ) print_optiomal_solution(__a , __a , optimal_solution[i][j] ) print_optiomal_solution(__a , optimal_solution[i][j] + 1 , __a ) print(')' , end=' ' ) def UpperCAmelCase_ (): """simple docstring""" _a : Any = [3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] _a : Any = len(__a ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 _a, _a : Union[str, Any] = matrix_chain_order(__a ) print('No. of Operation required: ' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__a , 1 , n - 1 ) if __name__ == "__main__": main()
5
0
'''simple docstring''' import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __lowerCAmelCase : Tuple = 1_6 __lowerCAmelCase : Optional[Any] = 3_2 def UpperCAmelCase_ (__a : Accelerator , __a : int = 1_6 ): """simple docstring""" _a : List[Any] = AutoTokenizer.from_pretrained('bert-base-cased' ) _a : Optional[Any] = load_dataset('glue' , 'mrpc' ) def tokenize_function(__a : List[str] ): # max_length=None => use the model max length (it's actually the default) _a : List[Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__a , max_length=__a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _a : Dict = datasets.map( __a , batched=__a , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _a : str = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(__a : int ): # On TPU it's best to pad everything to the same length or training will be very slow. _a : str = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _a : Any = 1_6 elif accelerator.mixed_precision != "no": _a : Any = 8 else: _a : List[Any] = None return tokenizer.pad( __a , padding='longest' , max_length=__a , pad_to_multiple_of=__a , return_tensors='pt' , ) # Instantiate dataloaders. _a : List[str] = DataLoader( tokenized_datasets['train'] , shuffle=__a , collate_fn=__a , batch_size=__a , drop_last=__a ) _a : int = DataLoader( tokenized_datasets['validation'] , shuffle=__a , collate_fn=__a , batch_size=__a , drop_last=(accelerator.mixed_precision == 'fp8') , ) return train_dataloader, eval_dataloader def UpperCAmelCase_ (__a : Dict , __a : str ): """simple docstring""" _a : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _a : List[str] = config['lr'] _a : Optional[Any] = int(config['num_epochs'] ) _a : Union[str, Any] = int(config['seed'] ) _a : List[str] = int(config['batch_size'] ) _a : List[str] = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation _a : int = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _a : Any = batch_size // MAX_GPU_BATCH_SIZE _a : Union[str, Any] = MAX_GPU_BATCH_SIZE set_seed(__a ) _a : int = get_dataloaders(__a , __a ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _a : Any = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=__a ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _a : Tuple = model.to(accelerator.device ) # Instantiate optimizer _a : Union[str, Any] = AdamW(params=model.parameters() , lr=__a ) # Instantiate scheduler _a : List[Any] = get_linear_schedule_with_warmup( optimizer=__a , num_warmup_steps=1_0_0 , num_training_steps=(len(__a ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _a : Any = accelerator.prepare( __a , __a , __a , __a , __a ) # Now we train the model for epoch in range(__a ): model.train() for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _a : Union[str, Any] = model(**__a ) _a : str = outputs.loss _a : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(__a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _a : Union[str, Any] = model(**__a ) _a : Union[str, Any] = outputs.logits.argmax(dim=-1 ) _a : Tuple = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=__a , references=__a , ) _a : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __a ) def UpperCAmelCase_ (): """simple docstring""" _a : Any = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=__a , default=__a , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) _a : List[Any] = parser.parse_args() _a : str = {'lr': 2e-5, 'num_epochs': 3, 'seed': 4_2, 'batch_size': 1_6} training_function(__a , __a ) if __name__ == "__main__": main()
354
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase_ (__a : Optional[Any] ): """simple docstring""" _a : int = FileLock(str(tmpdir / 'foo.lock' ) ) _a : List[Any] = FileLock(str(tmpdir / 'foo.lock' ) ) _a : Any = 0.01 with locka.acquire(): with pytest.raises(__a ): _a : int = time.time() locka.acquire(__a ) assert time.time() - _start > timeout def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Dict = 'a' * 1_0_0_0 + '.lock' _a : int = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('.lock' ) assert not locka._lock_file.endswith(__a ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 _a : Dict = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__a ): locka.acquire(0 )
5
0
'''simple docstring''' from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, """constant""": get_constant_schedule, """constant_w_warmup""": get_constant_schedule_with_warmup, } class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __init__( self : int ,_a : str=None ,_a : int=None ,*_a : Optional[int] ,**_a : List[str] ): '''simple docstring''' super().__init__(*_a ,**_a ) if config is None: assert isinstance(self.model ,_a ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F""" {self.model.__class__}""" ) _a : Tuple = self.model.config else: _a : Tuple = config _a : int = data_args _a : Tuple = self.config.tgt_vocab_size if isinstance(self.config ,_a ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F"""The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for""" ' padding..' ) if self.args.label_smoothing == 0: _a : List[Any] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _a : str = label_smoothed_nll_loss def __lowercase ( self : Dict ,_a : int ): '''simple docstring''' if self.optimizer is None: _a : Dict = ['bias', 'LayerNorm.weight'] _a : List[str] = [ { 'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], 'weight_decay': self.args.weight_decay, }, { 'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] _a : List[Any] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _a : List[Any] = Adafactor _a : Tuple = {'scale_parameter': False, 'relative_step': False} else: _a : Tuple = AdamW _a : int = { 'betas': (self.args.adam_betaa, self.args.adam_betaa), 'eps': self.args.adam_epsilon, } _a : Union[str, Any] = self.args.learning_rate if self.sharded_ddp: _a : Optional[int] = OSS( params=_a ,optim=_a ,**_a ,) else: _a : Tuple = optimizer_cls(_a ,**_a ) if self.lr_scheduler is None: _a : int = self._get_lr_scheduler(_a ) else: # ignoring --lr_scheduler logger.warning('scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.' ) def __lowercase ( self : Union[str, Any] ,_a : Dict ): '''simple docstring''' _a : Optional[Any] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _a : Any = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _a : int = schedule_func(self.optimizer ,num_warmup_steps=self.args.warmup_steps ) else: _a : Union[str, Any] = schedule_func( self.optimizer ,num_warmup_steps=self.args.warmup_steps ,num_training_steps=_a ) return scheduler def __lowercase ( self : List[str] ): '''simple docstring''' if isinstance(self.train_dataset ,torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size ,distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) ,) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def __lowercase ( self : List[str] ,_a : Tuple ,_a : Tuple ,_a : int ): '''simple docstring''' if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _a : Tuple = model(**_a ,use_cache=_a )[0] _a : int = self.loss_fn(logits.view(-1 ,logits.shape[-1] ) ,labels.view(-1 ) ) else: # compute usual loss via models _a : List[Any] = model(**_a ,labels=_a ,use_cache=_a )[:2] else: # compute label smoothed loss _a : Any = model(**_a ,use_cache=_a )[0] _a : int = torch.nn.functional.log_softmax(_a ,dim=-1 ) _a : Optional[int] = self.loss_fn(_a ,_a ,self.args.label_smoothing ,ignore_index=self.config.pad_token_id ) return loss, logits def __lowercase ( self : Union[str, Any] ,_a : int ,_a : Any ): '''simple docstring''' _a : List[Any] = inputs.pop('labels' ) _a : Any = self._compute_loss(_a ,_a ,_a ) return loss def __lowercase ( self : List[str] ,_a : nn.Module ,_a : Dict[str, Union[torch.Tensor, Any]] ,_a : bool ,_a : Optional[List[str]] = None ,): '''simple docstring''' _a : List[str] = self._prepare_inputs(_a ) _a : List[str] = { 'max_length': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, 'num_beams': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _a : List[Any] = self.model.generate( inputs['input_ids'] ,attention_mask=inputs['attention_mask'] ,**_a ,) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _a : Union[str, Any] = self._pad_tensors_to_max_len(_a ,gen_kwargs['max_length'] ) _a : Union[str, Any] = inputs.pop('labels' ) with torch.no_grad(): # compute loss on predict data _a : Tuple = self._compute_loss(_a ,_a ,_a ) _a : Optional[Any] = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _a : Union[str, Any] = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _a : List[str] = self._pad_tensors_to_max_len(_a ,gen_kwargs['max_length'] ) return (loss, logits, labels) def __lowercase ( self : List[str] ,_a : Optional[int] ,_a : Tuple ): '''simple docstring''' _a : str = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( 'Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be' F""" padded to `max_length`={max_length}""" ) _a : Dict = pad_token_id * torch.ones( (tensor.shape[0], max_length) ,dtype=tensor.dtype ,device=tensor.device ) _a : Optional[int] = tensor return padded_tensor
355
'''simple docstring''' def UpperCAmelCase_ (__a : int = 1_0**1_2 ): """simple docstring""" _a : List[str] = 1 _a : Optional[int] = 0 _a : Any = 1 _a : List[str] = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f'''{solution() = }''')
5
0
'''simple docstring''' from timeit import timeit def UpperCAmelCase_ (__a : int ): """simple docstring""" if number < 0: raise ValueError('the value of input must not be negative' ) _a : Tuple = 0 while number: number &= number - 1 result += 1 return result def UpperCAmelCase_ (__a : int ): """simple docstring""" if number < 0: raise ValueError('the value of input must not be negative' ) _a : Optional[int] = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def UpperCAmelCase_ (): """simple docstring""" def do_benchmark(__a : int ) -> None: _a : Dict = 'import __main__ as z' print(f"""Benchmark when {number = }:""" ) print(f"""{get_set_bits_count_using_modulo_operator(__a ) = }""" ) _a : Tuple = timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=__a ) print(f"""timeit() runs in {timing} seconds""" ) print(f"""{get_set_bits_count_using_brian_kernighans_algorithm(__a ) = }""" ) _a : Dict = timeit( 'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=__a , ) print(f"""timeit() runs in {timing} seconds""" ) for number in (2_5, 3_7, 5_8, 0): do_benchmark(__a ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
356
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __lowerCAmelCase = { """vocab_file""": {"""mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"""}, """tokenizer_file""": { """mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json""" }, } __lowerCAmelCase = {"""mobilebert-uncased""": 5_1_2} __lowerCAmelCase = {} class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Any = VOCAB_FILES_NAMES __UpperCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Tuple = PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Optional[Any] = MobileBertTokenizer def __init__( self : Dict ,_a : List[Any]=None ,_a : Optional[Any]=None ,_a : Union[str, Any]=True ,_a : Dict="[UNK]" ,_a : Union[str, Any]="[SEP]" ,_a : Any="[PAD]" ,_a : Optional[int]="[CLS]" ,_a : Optional[Any]="[MASK]" ,_a : Dict=True ,_a : Any=None ,**_a : Optional[Any] ,): '''simple docstring''' super().__init__( _a ,tokenizer_file=_a ,do_lower_case=_a ,unk_token=_a ,sep_token=_a ,pad_token=_a ,cls_token=_a ,mask_token=_a ,tokenize_chinese_chars=_a ,strip_accents=_a ,**_a ,) _a : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,_a ) != do_lower_case or normalizer_state.get('strip_accents' ,_a ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,_a ) != tokenize_chinese_chars ): _a : Optional[Any] = getattr(_a ,normalizer_state.pop('type' ) ) _a : Dict = do_lower_case _a : str = strip_accents _a : Tuple = tokenize_chinese_chars _a : Optional[Any] = normalizer_class(**_a ) _a : str = do_lower_case def __lowercase ( self : Tuple ,_a : Union[str, Any] ,_a : List[str]=None ): '''simple docstring''' _a : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowercase ( self : List[str] ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' _a : List[str] = [self.sep_token_id] _a : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowercase ( self : Union[str, Any] ,_a : str ,_a : Optional[str] = None ): '''simple docstring''' _a : int = self._tokenizer.model.save(_a ,name=_a ) return tuple(_a )
5
0
'''simple docstring''' def UpperCAmelCase_ (__a : str , __a : int ): """simple docstring""" _a : list[list[str]] = [[] for _ in range(__a )] _a : Optional[int] = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1 or len(__a ) <= key: return input_string for position, character in enumerate(__a ): _a : int = position % (lowest * 2) # puts it in bounds _a : Tuple = min(__a , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(__a ) _a : List[Any] = [''.join(__a ) for row in temp_grid] _a : Optional[int] = ''.join(__a ) return output_string def UpperCAmelCase_ (__a : str , __a : int ): """simple docstring""" _a : Optional[Any] = [] _a : List[str] = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1: return input_string _a : list[list[str]] = [[] for _ in range(__a )] # generates template for position in range(len(__a ) ): _a : Optional[int] = position % (lowest * 2) # puts it in bounds _a : List[str] = min(__a , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('*' ) _a : Any = 0 for row in temp_grid: # fills in the characters _a : str = input_string[counter : counter + len(__a )] grid.append(list(__a ) ) counter += len(__a ) _a : int = '' # reads as zigzag for position in range(len(__a ) ): _a : str = position % (lowest * 2) # puts it in bounds _a : Union[str, Any] = min(__a , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Optional[int] = {} for key_guess in range(1 , len(__a ) ): # tries every key _a : Optional[Any] = decrypt(__a , __a ) return results if __name__ == "__main__": import doctest doctest.testmod()
357
'''simple docstring''' def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : List[Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" _a : Optional[int] = '' _a : List[str] = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__a ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _a, _a : Optional[int] = 0, 0 # length[i] shows the length of palindromic substring with center i _a : Optional[Any] = [1 for i in range(len(__a ) )] # for each character in new_string find corresponding palindromic string _a : Dict = 0 for j in range(len(__a ) ): _a : Dict = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__a ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _a : Optional[int] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _a : str = j - k + 1 # noqa: E741 _a : Any = j + k - 1 # update max_length and start position if max_length < length[j]: _a : Union[str, Any] = length[j] _a : List[str] = j # create that string _a : Tuple = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
5
0
'''simple docstring''' import requests from bsa import BeautifulSoup def UpperCAmelCase_ (__a : str = "AAPL" ): """simple docstring""" _a : Tuple = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" _a : List[Any] = BeautifulSoup(requests.get(__a ).text , 'html.parser' ) _a : Any = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_ ).find('span' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
358
'''simple docstring''' from functools import lru_cache @lru_cache def UpperCAmelCase_ (__a : int ): """simple docstring""" if num < 0: raise ValueError('Number should not be negative.' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
0
'''simple docstring''' from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] ,_a : int = 16 ,_a : int = 88 ,_a : Optional[int] = None ,_a : int = 1 ,_a : float = 0.0 ,_a : int = 32 ,_a : Optional[int] = None ,_a : bool = False ,_a : Optional[int] = None ,_a : Optional[int] = None ,_a : str = "geglu" ,_a : Optional[int] = None ,): '''simple docstring''' super().__init__() _a : str = nn.ModuleList( [ TransformeraDModel( num_attention_heads=_a ,attention_head_dim=_a ,in_channels=_a ,num_layers=_a ,dropout=_a ,norm_num_groups=_a ,cross_attention_dim=_a ,attention_bias=_a ,sample_size=_a ,num_vector_embeds=_a ,activation_fn=_a ,num_embeds_ada_norm=_a ,) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _a : Dict = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _a : Optional[Any] = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _a : List[str] = [1, 0] def __lowercase ( self : Dict ,_a : str ,_a : int ,_a : Any=None ,_a : List[str]=None ,_a : str=None ,_a : bool = True ,): '''simple docstring''' _a : List[Any] = hidden_states _a : int = [] _a : List[Any] = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _a : Optional[int] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _a : Union[str, Any] = self.transformer_index_for_condition[i] _a : Any = self.transformers[transformer_index]( _a ,encoder_hidden_states=_a ,timestep=_a ,cross_attention_kwargs=_a ,return_dict=_a ,)[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _a : Tuple = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _a : Any = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=_a )
359
'''simple docstring''' import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib __lowerCAmelCase = threading.Lock() __lowerCAmelCase = None __lowerCAmelCase = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } __lowerCAmelCase = logging.WARNING __lowerCAmelCase = True def UpperCAmelCase_ (): """simple docstring""" _a : Dict = os.getenv('TRANSFORMERS_VERBOSITY' , __a ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def UpperCAmelCase_ (): """simple docstring""" return __name__.split('.' )[0] def UpperCAmelCase_ (): """simple docstring""" return logging.getLogger(_get_library_name() ) def UpperCAmelCase_ (): """simple docstring""" global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _a : str = logging.StreamHandler() # Set sys.stderr as stream. _a : Optional[Any] = sys.stderr.flush # Apply our default configuration to the library root logger. _a : List[Any] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) _a : List[str] = False def UpperCAmelCase_ (): """simple docstring""" global _default_handler with _lock: if not _default_handler: return _a : int = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) _a : str = None def UpperCAmelCase_ (): """simple docstring""" return log_levels def UpperCAmelCase_ (__a : Optional[str] = None ): """simple docstring""" if name is None: _a : List[Any] = _get_library_name() _configure_library_root_logger() return logging.getLogger(__a ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def UpperCAmelCase_ (__a : int ): """simple docstring""" _configure_library_root_logger() _get_library_root_logger().setLevel(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def UpperCAmelCase_ (__a : logging.Handler ): """simple docstring""" _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(__a ) def UpperCAmelCase_ (__a : logging.Handler ): """simple docstring""" _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(__a ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() _a : Union[str, Any] = False def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() _a : Dict = True def UpperCAmelCase_ (): """simple docstring""" _a : Any = _get_library_root_logger().handlers for handler in handlers: _a : Union[str, Any] = logging.Formatter('[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s' ) handler.setFormatter(__a ) def UpperCAmelCase_ (): """simple docstring""" _a : Union[str, Any] = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(__a ) def UpperCAmelCase_ (self : Union[str, Any] , *__a : Union[str, Any] , **__a : Union[str, Any] ): """simple docstring""" _a : Union[str, Any] = os.getenv('TRANSFORMERS_NO_ADVISORY_WARNINGS' , __a ) if no_advisory_warnings: return self.warning(*__a , **__a ) __lowerCAmelCase = warning_advice @functools.lru_cache(__a ) def UpperCAmelCase_ (self : int , *__a : Optional[Any] , **__a : Any ): """simple docstring""" self.warning(*__a , **__a ) __lowerCAmelCase = warning_once class UpperCAmelCase__ : """simple docstring""" def __init__( self : Any ,*_a : Tuple ,**_a : int ): # pylint: disable=unused-argument '''simple docstring''' _a : int = args[0] if args else None def __iter__( self : str ): '''simple docstring''' return iter(self._iterator ) def __getattr__( self : List[Any] ,_a : int ): '''simple docstring''' def empty_fn(*_a : Optional[Any] ,**_a : Any ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : List[str] ): '''simple docstring''' return self def __exit__( self : List[str] ,_a : str ,_a : List[Any] ,_a : str ): '''simple docstring''' return class UpperCAmelCase__ : """simple docstring""" def __call__( self : Union[str, Any] ,*_a : Tuple ,**_a : Tuple ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm(*_a ,**_a ) else: return EmptyTqdm(*_a ,**_a ) def __lowercase ( self : str ,*_a : List[Any] ,**_a : Any ): '''simple docstring''' _a : Any = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_a ,**_a ) def __lowercase ( self : List[str] ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() __lowerCAmelCase = _tqdm_cls() def UpperCAmelCase_ (): """simple docstring""" global _tqdm_active return bool(_tqdm_active ) def UpperCAmelCase_ (): """simple docstring""" global _tqdm_active _a : str = True hf_hub_utils.enable_progress_bars() def UpperCAmelCase_ (): """simple docstring""" global _tqdm_active _a : Dict = False hf_hub_utils.disable_progress_bars()
5
0
'''simple docstring''' from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("""To use the rich extension, install rich with `pip install rich`""")
360
'''simple docstring''' def UpperCAmelCase_ (__a : list[int] , __a : list[int] ): """simple docstring""" if not len(__a ) == len(__a ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients _a, _a, _a : Tuple = equationa _a, _a, _a : str = equationa # Calculate the determinants of the matrices _a : Union[str, Any] = aa * ba - aa * ba _a : List[Any] = ca * ba - ca * ba _a : List[Any] = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _a : int = determinant_x / determinant _a : List[str] = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
5
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCAmelCase = { """configuration_chinese_clip""": [ """CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ChineseCLIPConfig""", """ChineseCLIPOnnxConfig""", """ChineseCLIPTextConfig""", """ChineseCLIPVisionConfig""", ], """processing_chinese_clip""": ["""ChineseCLIPProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ["""ChineseCLIPFeatureExtractor"""] __lowerCAmelCase = ["""ChineseCLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ChineseCLIPModel""", """ChineseCLIPPreTrainedModel""", """ChineseCLIPTextModel""", """ChineseCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
361
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase__ : """simple docstring""" def __init__( self : int ,_a : List[str] ,_a : Optional[Any]=13 ,_a : str=30 ,_a : str=2 ,_a : Union[str, Any]=3 ,_a : Optional[Any]=True ,_a : int=True ,_a : Union[str, Any]=32 ,_a : List[Any]=5 ,_a : Union[str, Any]=4 ,_a : int=37 ,_a : Any="gelu" ,_a : Union[str, Any]=0.1 ,_a : str=0.1 ,_a : List[str]=10 ,_a : Dict=0.02 ,_a : Tuple=None ,): '''simple docstring''' _a : Any = parent _a : int = batch_size _a : List[Any] = image_size _a : Optional[int] = patch_size _a : List[str] = num_channels _a : Dict = is_training _a : Dict = use_labels _a : Optional[Any] = hidden_size _a : str = num_hidden_layers _a : Optional[int] = num_attention_heads _a : Dict = intermediate_size _a : Union[str, Any] = hidden_act _a : List[str] = hidden_dropout_prob _a : Any = attention_probs_dropout_prob _a : List[str] = type_sequence_label_size _a : int = initializer_range _a : List[Any] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _a : Union[str, Any] = (image_size // patch_size) ** 2 _a : Tuple = num_patches + 1 def __lowercase ( self : Any ): '''simple docstring''' _a : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : str = None if self.use_labels: _a : Tuple = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _a : List[str] = self.get_config() return config, pixel_values, labels def __lowercase ( self : Optional[int] ): '''simple docstring''' return ViTMSNConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,initializer_range=self.initializer_range ,) def __lowercase ( self : Tuple ,_a : Any ,_a : List[Any] ,_a : int ): '''simple docstring''' _a : str = ViTMSNModel(config=_a ) model.to(_a ) model.eval() _a : int = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : List[Any] ,_a : str ,_a : Tuple ,_a : Dict ): '''simple docstring''' _a : Tuple = self.type_sequence_label_size _a : int = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _a : Dict = model(_a ,labels=_a ) print('Pixel and labels shape: {pixel_values.shape}, {labels.shape}' ) print('Labels: {labels}' ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _a : int = 1 _a : Optional[Any] = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _a : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a : Optional[int] = model(_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[int] = self.prepare_config_and_inputs() _a, _a, _a : int = config_and_inputs _a : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __UpperCAmelCase : List[Any] = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase : str = False __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = False def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : List[str] = ViTMSNModelTester(self ) _a : Optional[int] = ConfigTester(self ,config_class=_a ,has_text_modality=_a ,hidden_size=37 ) def __lowercase ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViTMSN does not use inputs_embeds' ) def __lowercase ( self : List[str] ): '''simple docstring''' pass def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a, _a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[Any] = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _a : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a ,nn.Linear ) ) def __lowercase ( self : Any ): '''simple docstring''' _a, _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[str] = model_class(_a ) _a : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : List[Any] = [*signature.parameters.keys()] _a : int = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_a ) def __lowercase ( self : List[str] ): '''simple docstring''' _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __lowercase ( self : int ): '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Dict = ViTMSNModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def UpperCAmelCase_ (): """simple docstring""" _a : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained('facebook/vit-msn-small' ) if is_vision_available() else None @slow def __lowercase ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(2 ) _a : List[str] = ViTMSNForImageClassification.from_pretrained('facebook/vit-msn-small' ).to(_a ) _a : List[str] = self.default_image_processor _a : int = prepare_img() _a : Tuple = image_processor(images=_a ,return_tensors='pt' ).to(_a ) # forward pass with torch.no_grad(): _a : Optional[int] = model(**_a ) # verify the logits _a : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,_a ) _a : List[Any] = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_a ,atol=1E-4 ) )
5
0
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) __lowerCAmelCase = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def UpperCAmelCase_ (__a : Optional[Any] , __a : Any ): """simple docstring""" inspect_dataset(__a , __a ) _a : List[Any] = path + '.py' assert script_name in os.listdir(__a ) assert "__pycache__" not in os.listdir(__a ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def UpperCAmelCase_ (__a : Union[str, Any] , __a : List[str] ): """simple docstring""" inspect_metric(__a , __a ) _a : Optional[int] = path + '.py' assert script_name in os.listdir(__a ) assert "__pycache__" not in os.listdir(__a ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def UpperCAmelCase_ (__a : str , __a : List[str] , __a : List[str] ): """simple docstring""" _a : List[Any] = get_dataset_config_info(__a , config_name=__a ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def UpperCAmelCase_ (__a : Dict , __a : Optional[Any] , __a : Optional[int] ): """simple docstring""" with pytest.raises(__a ): get_dataset_config_info(__a , config_name=__a ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def UpperCAmelCase_ (__a : int , __a : Optional[Any] ): """simple docstring""" _a : str = get_dataset_config_names(__a ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def UpperCAmelCase_ (__a : Tuple , __a : Optional[int] , __a : Any ): """simple docstring""" _a : List[Any] = get_dataset_infos(__a ) assert list(infos.keys() ) == expected_configs _a : List[Any] = expected_configs[0] assert expected_config in infos _a : Dict = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def UpperCAmelCase_ (__a : Optional[Any] , __a : List[Any] , __a : Optional[int] ): """simple docstring""" _a : Optional[Any] = get_dataset_infos(__a ) assert expected_config in infos _a : Tuple = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def UpperCAmelCase_ (__a : Union[str, Any] , __a : List[str] , __a : Optional[int] ): """simple docstring""" with pytest.raises(__a ): get_dataset_split_names(__a , config_name=__a )
362
'''simple docstring''' import requests from bsa import BeautifulSoup def UpperCAmelCase_ (__a : str = "https://www.worldometers.info/coronavirus" ): """simple docstring""" _a : List[str] = BeautifulSoup(requests.get(__a ).text , 'html.parser' ) _a : Dict = soup.findAll('h1' ) _a : Union[str, Any] = soup.findAll('div' , {'class': 'maincounter-number'} ) keys += soup.findAll('span' , {'class': 'panel-title'} ) values += soup.findAll('div' , {'class': 'number-table-main'} ) return {key.text.strip(): value.text.strip() for key, value in zip(__a , __a )} if __name__ == "__main__": print("""\033[1m""" + """COVID-19 Status of the World""" + """\033[0m\n""") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
5
0
'''simple docstring''' import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCAmelCase_ (__a : BertModel , __a : str , __a : str ): """simple docstring""" _a : Optional[Any] = ('dense.weight', 'attention.self.query', 'attention.self.key', 'attention.self.value') _a : str = ( ('layer.', 'layer_'), ('word_embeddings.weight', 'word_embeddings'), ('position_embeddings.weight', 'position_embeddings'), ('token_type_embeddings.weight', 'token_type_embeddings'), ('.', '/'), ('LayerNorm/weight', 'LayerNorm/gamma'), ('LayerNorm/bias', 'LayerNorm/beta'), ('weight', 'kernel'), ) if not os.path.isdir(__a ): os.makedirs(__a ) _a : List[str] = model.state_dict() def to_tf_var_name(__a : str ): for patt, repl in iter(__a ): _a : Optional[int] = name.replace(__a , __a ) return f"""bert/{name}""" def create_tf_var(__a : np.ndarray , __a : str , __a : tf.Session ): _a : Union[str, Any] = tf.dtypes.as_dtype(tensor.dtype ) _a : Union[str, Any] = tf.get_variable(dtype=__a , shape=tensor.shape , name=__a , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__a ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _a : str = to_tf_var_name(__a ) _a : Tuple = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _a : str = torch_tensor.T _a : str = create_tf_var(tensor=__a , name=__a , session=__a ) tf.keras.backend.set_value(__a , __a ) _a : Optional[Any] = session.run(__a ) print(f"""Successfully created {tf_name}: {np.allclose(__a , __a )}""" ) _a : Optional[int] = tf.train.Saver(tf.trainable_variables() ) saver.save(__a , os.path.join(__a , model_name.replace('-' , '_' ) + '.ckpt' ) ) def UpperCAmelCase_ (__a : Union[str, Any]=None ): """simple docstring""" _a : Dict = argparse.ArgumentParser() parser.add_argument('--model_name' , type=__a , required=__a , help='model name e.g. bert-base-uncased' ) parser.add_argument( '--cache_dir' , type=__a , default=__a , required=__a , help='Directory containing pytorch model' ) parser.add_argument('--pytorch_model_path' , type=__a , required=__a , help='/path/to/<pytorch-model-name>.bin' ) parser.add_argument('--tf_cache_dir' , type=__a , required=__a , help='Directory in which to save tensorflow model' ) _a : Dict = parser.parse_args(__a ) _a : int = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=__a , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
363
'''simple docstring''' import argparse from collections import defaultdict import yaml __lowerCAmelCase = """docs/source/en/_toctree.yml""" def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Any = defaultdict(__a ) for doc in model_doc: counts[doc["local"]] += 1 _a : List[str] = [key for key, value in counts.items() if value > 1] _a : str = [] for duplicate_key in duplicates: _a : Union[str, Any] = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(__a ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(__a , key=lambda __a : s["title"].lower() ) def UpperCAmelCase_ (__a : Optional[int]=False ): """simple docstring""" with open(__a , encoding='utf-8' ) as f: _a : Tuple = yaml.safe_load(f.read() ) # Get to the API doc _a : Union[str, Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 _a : Union[str, Any] = content[api_idx]['sections'] # Then to the model doc _a : List[str] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 _a : List[str] = api_doc[model_idx]['sections'] _a : List[Any] = [(idx, section) for idx, section in enumerate(__a ) if 'sections' in section] _a : Tuple = False for idx, modality_doc in modalities_docs: _a : List[Any] = modality_doc['sections'] _a : Any = clean_model_doc_toc(__a ) if old_modality_doc != new_modality_doc: _a : Union[str, Any] = True if overwrite: _a : str = new_modality_doc if diff: if overwrite: _a : Dict = model_doc _a : Dict = api_doc with open(__a , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(__a , allow_unicode=__a ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") __lowerCAmelCase = parser.parse_args() check_model_doc(args.fix_and_overwrite)
5
0
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __lowerCAmelCase = Lock() def UpperCAmelCase_ (__a : Union[str, Any] , __a : Optional[Any] , __a : Optional[int] , __a : Optional[int] , __a : List[Any] , __a : Union[str, Any] , __a : Union[str, Any] ): """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 1_0 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(__a ) process_lock.release() # receive your right neighbor's value process_lock.acquire() _a : List[Any] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left _a : List[str] = min(__a , __a ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(__a ) process_lock.release() # receive your left neighbor's value process_lock.acquire() _a : Dict = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right _a : Union[str, Any] = max(__a , __a ) # after all swaps are performed, send the values back to main result_pipe[1].send(__a ) def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : int = [] _a : List[Any] = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop _a : Dict = Pipe() _a : Optional[Any] = Pipe() process_array_.append( Process( target=__a , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) _a : List[Any] = temp_rs _a : Optional[int] = temp_rr for i in range(1 , len(__a ) - 1 ): _a : int = Pipe() _a : List[str] = Pipe() process_array_.append( Process( target=__a , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) _a : List[str] = temp_rs _a : str = temp_rr process_array_.append( Process( target=__a , args=( len(__a ) - 1, arr[len(__a ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(__a ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(__a ) ): _a : List[str] = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCAmelCase_ (): """simple docstring""" _a : Optional[int] = list(range(1_0 , 0 , -1 ) ) print('Initial List' ) print(*__a ) _a : Tuple = odd_even_transposition(__a ) print('Sorted List\n' ) print(*__a ) if __name__ == "__main__": main()
364
'''simple docstring''' from collections.abc import Generator from math import sin def UpperCAmelCase_ (__a : bytes ): """simple docstring""" if len(__a ) != 3_2: raise ValueError('Input must be of length 32' ) _a : Any = b'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def UpperCAmelCase_ (__a : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) _a : List[str] = format(__a , '08x' )[-8:] _a : str = b'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def UpperCAmelCase_ (__a : bytes ): """simple docstring""" _a : List[Any] = b'' for char in message: bit_string += format(__a , '08b' ).encode('utf-8' ) _a : int = format(len(__a ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__a ) % 5_1_2 != 4_4_8: bit_string += b"0" bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] ) return bit_string def UpperCAmelCase_ (__a : bytes ): """simple docstring""" if len(__a ) % 5_1_2 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(__a ) , 5_1_2 ): _a : List[Any] = bit_string[pos : pos + 5_1_2] _a : str = [] for i in range(0 , 5_1_2 , 3_2 ): block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) ) yield block_words def UpperCAmelCase_ (__a : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) _a : List[str] = format(__a , '032b' ) _a : int = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(__a , 2 ) def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" return (a + b) % 2**3_2 def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2 def UpperCAmelCase_ (__a : bytes ): """simple docstring""" _a : str = preprocess(__a ) _a : Optional[int] = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )] # Starting states _a : int = 0x67_45_23_01 _a : Union[str, Any] = 0xEF_CD_AB_89 _a : str = 0x98_BA_DC_FE _a : List[Any] = 0x10_32_54_76 _a : Optional[int] = [ 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__a ): _a : Union[str, Any] = aa _a : List[Any] = ba _a : List[Any] = ca _a : Dict = da # Hash current chunk for i in range(6_4 ): if i <= 1_5: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _a : Optional[int] = d ^ (b & (c ^ d)) _a : Optional[Any] = i elif i <= 3_1: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _a : Optional[Any] = c ^ (d & (b ^ c)) _a : Dict = (5 * i + 1) % 1_6 elif i <= 4_7: _a : Optional[Any] = b ^ c ^ d _a : Dict = (3 * i + 5) % 1_6 else: _a : int = c ^ (b | not_aa(__a )) _a : List[str] = (7 * i) % 1_6 _a : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**3_2 _a : Union[str, Any] = d _a : Tuple = c _a : Optional[int] = b _a : Union[str, Any] = sum_aa(__a , left_rotate_aa(__a , shift_amounts[i] ) ) # Add hashed chunk to running total _a : Any = sum_aa(__a , __a ) _a : Dict = sum_aa(__a , __a ) _a : Union[str, Any] = sum_aa(__a , __a ) _a : str = sum_aa(__a , __a ) _a : Optional[Any] = reformat_hex(__a ) + reformat_hex(__a ) + reformat_hex(__a ) + reformat_hex(__a ) return digest if __name__ == "__main__": import doctest doctest.testmod()
5
0
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @parameterized.expand([(None,), ('foo.json',)] ) def __lowercase ( self : Union[str, Any] ,_a : Optional[Any] ): '''simple docstring''' _a : List[str] = GenerationConfig( do_sample=_a ,temperature=0.7 ,length_penalty=1.0 ,bad_words_ids=[[1, 2, 3], [4, 5]] ,) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_a ,config_name=_a ) _a : Any = GenerationConfig.from_pretrained(_a ,config_name=_a ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample ,_a ) self.assertEqual(loaded_config.temperature ,0.7 ) self.assertEqual(loaded_config.length_penalty ,1.0 ) self.assertEqual(loaded_config.bad_words_ids ,[[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k ,50 ) self.assertEqual(loaded_config.max_length ,20 ) self.assertEqual(loaded_config.max_time ,_a ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Union[str, Any] = AutoConfig.from_pretrained('gpt2' ) _a : Any = GenerationConfig.from_model_config(_a ) _a : List[Any] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(_a ,_a ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id ,default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id ,model_config.eos_token_id ) def __lowercase ( self : List[Any] ): '''simple docstring''' _a : Any = GenerationConfig() _a : List[str] = { 'max_new_tokens': 1024, 'foo': 'bar', } _a : int = copy.deepcopy(_a ) _a : str = generation_config.update(**_a ) # update_kwargs was not modified (no side effects) self.assertEqual(_a ,_a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens ,1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(_a ,{'foo': 'bar'} ) def __lowercase ( self : int ): '''simple docstring''' _a : Any = GenerationConfig() _a : List[str] = 'bar' with tempfile.TemporaryDirectory('test-generation-config' ) as tmp_dir: generation_config.save_pretrained(_a ) _a : Optional[int] = GenerationConfig.from_pretrained(_a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo ,'bar' ) _a : Dict = GenerationConfig.from_model_config(_a ) assert not hasattr(_a ,'foo' ) # no new kwargs should be initialized if from config def __lowercase ( self : List[str] ): '''simple docstring''' _a : Optional[Any] = GenerationConfig() self.assertEqual(default_config.temperature ,1.0 ) self.assertEqual(default_config.do_sample ,_a ) self.assertEqual(default_config.num_beams ,1 ) _a : Tuple = GenerationConfig( do_sample=_a ,temperature=0.7 ,length_penalty=1.0 ,bad_words_ids=[[1, 2, 3], [4, 5]] ,) self.assertEqual(config.temperature ,0.7 ) self.assertEqual(config.do_sample ,_a ) self.assertEqual(config.num_beams ,1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_a ) _a : Optional[Any] = GenerationConfig.from_pretrained(_a ,temperature=1.0 ) self.assertEqual(loaded_config.temperature ,1.0 ) self.assertEqual(loaded_config.do_sample ,_a ) self.assertEqual(loaded_config.num_beams ,1 ) # default value @is_staging_test class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @classmethod def __lowercase ( cls : Tuple ): '''simple docstring''' _a : int = TOKEN HfFolder.save_token(_a ) @classmethod def __lowercase ( cls : Any ): '''simple docstring''' try: delete_repo(token=cls._token ,repo_id='test-generation-config' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-generation-config-org' ) except HTTPError: pass def __lowercase ( self : List[Any] ): '''simple docstring''' _a : Optional[int] = GenerationConfig( do_sample=_a ,temperature=0.7 ,length_penalty=1.0 ,) config.push_to_hub('test-generation-config' ,use_auth_token=self._token ) _a : Any = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) # Reset repo delete_repo(token=self._token ,repo_id='test-generation-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _a ,repo_id='test-generation-config' ,push_to_hub=_a ,use_auth_token=self._token ) _a : int = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : List[Any] = GenerationConfig( do_sample=_a ,temperature=0.7 ,length_penalty=1.0 ,) config.push_to_hub('valid_org/test-generation-config-org' ,use_auth_token=self._token ) _a : str = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) # Reset repo delete_repo(token=self._token ,repo_id='valid_org/test-generation-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _a ,repo_id='valid_org/test-generation-config-org' ,push_to_hub=_a ,use_auth_token=self._token ) _a : Optional[int] = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) )
365
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCAmelCase_ (__a : str , __a : Dict=0.999 , __a : List[str]="cosine" , ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(__a : Union[str, Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__a : int ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _a : Tuple = [] for i in range(__a ): _a : Union[str, Any] = i / num_diffusion_timesteps _a : Any = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__a ) / alpha_bar_fn(__a ) , __a ) ) return torch.tensor(__a , dtype=torch.floataa ) class UpperCAmelCase__ ( lowercase__ , lowercase__ ): """simple docstring""" __UpperCAmelCase : Optional[Any] = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase : Dict = 2 @register_to_config def __init__( self : str ,_a : int = 1000 ,_a : float = 0.0_0085 ,_a : float = 0.012 ,_a : str = "linear" ,_a : Optional[Union[np.ndarray, List[float]]] = None ,_a : str = "epsilon" ,_a : Optional[bool] = False ,_a : Optional[bool] = False ,_a : float = 1.0 ,_a : str = "linspace" ,_a : int = 0 ,): '''simple docstring''' if trained_betas is not None: _a : List[str] = torch.tensor(_a ,dtype=torch.floataa ) elif beta_schedule == "linear": _a : Tuple = torch.linspace(_a ,_a ,_a ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _a : List[str] = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,_a ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _a : Dict = betas_for_alpha_bar(_a ,alpha_transform_type='cosine' ) elif beta_schedule == "exp": _a : Tuple = betas_for_alpha_bar(_a ,alpha_transform_type='exp' ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) _a : Optional[Any] = 1.0 - self.betas _a : Optional[int] = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(_a ,_a ,_a ) _a : Optional[int] = use_karras_sigmas def __lowercase ( self : Any ,_a : Union[str, Any] ,_a : Optional[Any]=None ): '''simple docstring''' if schedule_timesteps is None: _a : List[Any] = self.timesteps _a : Dict = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _a : int = 1 if len(_a ) > 1 else 0 else: _a : str = timestep.cpu().item() if torch.is_tensor(_a ) else timestep _a : str = self._index_counter[timestep_int] return indices[pos].item() @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __lowercase ( self : int ,_a : torch.FloatTensor ,_a : Union[float, torch.FloatTensor] ,): '''simple docstring''' _a : List[Any] = self.index_for_timestep(_a ) _a : Tuple = self.sigmas[step_index] _a : Optional[Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def __lowercase ( self : Any ,_a : int ,_a : Union[str, torch.device] = None ,_a : Optional[int] = None ,): '''simple docstring''' _a : Optional[Any] = num_inference_steps _a : Dict = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _a : Optional[Any] = np.linspace(0 ,num_train_timesteps - 1 ,_a ,dtype=_a )[::-1].copy() elif self.config.timestep_spacing == "leading": _a : str = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a : int = (np.arange(0 ,_a ) * step_ratio).round()[::-1].copy().astype(_a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _a : Any = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a : Union[str, Any] = (np.arange(_a ,0 ,-step_ratio )).round().copy().astype(_a ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _a : Tuple = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _a : Union[str, Any] = np.log(_a ) _a : str = np.interp(_a ,np.arange(0 ,len(_a ) ) ,_a ) if self.config.use_karras_sigmas: _a : List[Any] = self._convert_to_karras(in_sigmas=_a ,num_inference_steps=self.num_inference_steps ) _a : Dict = np.array([self._sigma_to_t(_a ,_a ) for sigma in sigmas] ) _a : int = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _a : Union[str, Any] = torch.from_numpy(_a ).to(device=_a ) _a : Any = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) _a : List[Any] = torch.from_numpy(_a ) _a : List[str] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(_a ).startswith('mps' ): # mps does not support float64 _a : Tuple = timesteps.to(_a ,dtype=torch.floataa ) else: _a : Dict = timesteps.to(device=_a ) # empty dt and derivative _a : Tuple = None _a : Optional[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _a : Union[str, Any] = defaultdict(_a ) def __lowercase ( self : str ,_a : Dict ,_a : Dict ): '''simple docstring''' _a : Optional[int] = np.log(_a ) # get distribution _a : Union[str, Any] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range _a : List[Any] = np.cumsum((dists >= 0) ,axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) _a : Tuple = low_idx + 1 _a : Union[str, Any] = log_sigmas[low_idx] _a : Optional[Any] = log_sigmas[high_idx] # interpolate sigmas _a : Optional[Any] = (low - log_sigma) / (low - high) _a : List[str] = np.clip(_a ,0 ,1 ) # transform interpolation to time range _a : Union[str, Any] = (1 - w) * low_idx + w * high_idx _a : List[str] = t.reshape(sigma.shape ) return t def __lowercase ( self : int ,_a : torch.FloatTensor ,_a : Tuple ): '''simple docstring''' _a : float = in_sigmas[-1].item() _a : float = in_sigmas[0].item() _a : Tuple = 7.0 # 7.0 is the value used in the paper _a : str = np.linspace(0 ,1 ,_a ) _a : Optional[Any] = sigma_min ** (1 / rho) _a : Union[str, Any] = sigma_max ** (1 / rho) _a : str = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' return self.dt is None def __lowercase ( self : int ,_a : Union[torch.FloatTensor, np.ndarray] ,_a : Union[float, torch.FloatTensor] ,_a : Union[torch.FloatTensor, np.ndarray] ,_a : bool = True ,): '''simple docstring''' _a : Union[str, Any] = self.index_for_timestep(_a ) # advance index counter by 1 _a : Any = timestep.cpu().item() if torch.is_tensor(_a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _a : Tuple = self.sigmas[step_index] _a : int = self.sigmas[step_index + 1] else: # 2nd order / Heun's method _a : List[str] = self.sigmas[step_index - 1] _a : List[Any] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _a : Optional[int] = 0 _a : Tuple = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _a : Dict = sigma_hat if self.state_in_first_order else sigma_next _a : Optional[int] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _a : List[Any] = sigma_hat if self.state_in_first_order else sigma_next _a : List[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": _a : Union[str, Any] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: _a : Optional[int] = pred_original_sample.clamp( -self.config.clip_sample_range ,self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _a : Optional[Any] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _a : Any = sigma_next - sigma_hat # store for 2nd order step _a : int = derivative _a : List[str] = dt _a : Union[str, Any] = sample else: # 2. 2nd order / Heun's method _a : Dict = (sample - pred_original_sample) / sigma_next _a : Tuple = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample _a : Optional[Any] = self.dt _a : Union[str, Any] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" _a : List[Any] = None _a : Union[str, Any] = None _a : Dict = None _a : str = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_a ) def __lowercase ( self : Optional[int] ,_a : torch.FloatTensor ,_a : torch.FloatTensor ,_a : torch.FloatTensor ,): '''simple docstring''' _a : str = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_a ): # mps does not support float64 _a : Dict = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) _a : Optional[Any] = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: _a : int = self.timesteps.to(original_samples.device ) _a : Optional[Any] = timesteps.to(original_samples.device ) _a : Any = [self.index_for_timestep(_a ,_a ) for t in timesteps] _a : Optional[int] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _a : Optional[Any] = sigma.unsqueeze(-1 ) _a : Any = original_samples + noise * sigma return noisy_samples def __len__( self : Optional[int] ): '''simple docstring''' return self.config.num_train_timesteps
5
0
'''simple docstring''' import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __init__( self : Any ,_a : Optional[int] ,_a : Dict=13 ,_a : Union[str, Any]=7 ,_a : List[str]=True ,_a : Optional[Any]=True ,_a : Union[str, Any]=False ,_a : Optional[int]=True ,_a : Dict=99 ,_a : str=32 ,_a : str=5 ,_a : Any=4 ,_a : int=64 ,_a : Optional[int]="gelu" ,_a : List[str]=0.1 ,_a : Optional[Any]=0.1 ,_a : Union[str, Any]=512 ,_a : int=16 ,_a : Any=2 ,_a : int=0.02 ,_a : List[Any]=3 ,_a : List[Any]=4 ,_a : int=None ,_a : Tuple=2 ,_a : Optional[Any]=2 ,_a : Optional[int]=2 ,_a : int=2 ,_a : str=4 ,_a : Tuple=1 ,): '''simple docstring''' _a : int = parent _a : Dict = batch_size _a : Optional[int] = seq_length _a : Optional[int] = is_training _a : Tuple = use_input_mask _a : List[Any] = use_token_type_ids _a : Tuple = use_labels _a : Dict = vocab_size _a : Dict = hidden_size _a : Tuple = num_hidden_layers _a : int = num_attention_heads _a : Optional[int] = intermediate_size _a : str = hidden_act _a : Optional[Any] = hidden_dropout_prob _a : Tuple = attention_probs_dropout_prob _a : Any = max_position_embeddings _a : List[str] = type_vocab_size _a : Optional[int] = type_sequence_label_size _a : Any = initializer_range _a : int = num_labels _a : Optional[int] = num_choices _a : int = scope _a : Dict = q_groups _a : str = k_groups _a : Dict = v_groups _a : str = post_attention_groups _a : List[str] = intermediate_groups _a : List[str] = output_groups def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : int = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _a : Optional[int] = None if self.use_input_mask: _a : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _a : Any = None _a : Optional[Any] = None _a : List[Any] = None if self.use_labels: _a : int = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _a : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _a : Dict = ids_tensor([self.batch_size] ,self.num_choices ) _a : Optional[int] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowercase ( self : List[str] ): '''simple docstring''' return SqueezeBertConfig( embedding_size=self.hidden_size ,vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,attention_probs_dropout_prob=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,q_groups=self.q_groups ,k_groups=self.k_groups ,v_groups=self.v_groups ,post_attention_groups=self.post_attention_groups ,intermediate_groups=self.intermediate_groups ,output_groups=self.output_groups ,) def __lowercase ( self : Optional[Any] ,_a : List[Any] ,_a : str ,_a : Tuple ,_a : List[Any] ,_a : Dict ,_a : Union[str, Any] ): '''simple docstring''' _a : Tuple = SqueezeBertModel(config=_a ) model.to(_a ) model.eval() _a : Any = model(_a ,_a ) _a : Dict = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : Optional[Any] ,_a : Any ,_a : int ,_a : Optional[Any] ,_a : Optional[int] ,_a : Union[str, Any] ,_a : List[str] ): '''simple docstring''' _a : Dict = SqueezeBertForMaskedLM(config=_a ) model.to(_a ) model.eval() _a : List[Any] = model(_a ,attention_mask=_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase ( self : Optional[Any] ,_a : Optional[int] ,_a : List[str] ,_a : Union[str, Any] ,_a : Dict ,_a : Dict ,_a : List[Any] ): '''simple docstring''' _a : List[Any] = SqueezeBertForQuestionAnswering(config=_a ) model.to(_a ) model.eval() _a : Tuple = model( _a ,attention_mask=_a ,start_positions=_a ,end_positions=_a ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def __lowercase ( self : List[str] ,_a : Any ,_a : Optional[int] ,_a : Tuple ,_a : Dict ,_a : Tuple ,_a : str ): '''simple docstring''' _a : Any = self.num_labels _a : Optional[Any] = SqueezeBertForSequenceClassification(_a ) model.to(_a ) model.eval() _a : int = model(_a ,attention_mask=_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowercase ( self : List[Any] ,_a : List[Any] ,_a : Tuple ,_a : Tuple ,_a : int ,_a : int ,_a : Dict ): '''simple docstring''' _a : Any = self.num_labels _a : Optional[Any] = SqueezeBertForTokenClassification(config=_a ) model.to(_a ) model.eval() _a : Any = model(_a ,attention_mask=_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def __lowercase ( self : List[str] ,_a : Optional[Any] ,_a : Tuple ,_a : int ,_a : str ,_a : List[str] ,_a : str ): '''simple docstring''' _a : Union[str, Any] = self.num_choices _a : Optional[Any] = SqueezeBertForMultipleChoice(config=_a ) model.to(_a ) model.eval() _a : int = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _a : Any = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _a : List[Any] = model( _a ,attention_mask=_a ,labels=_a ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def __lowercase ( self : Any ): '''simple docstring''' _a : int = self.prepare_config_and_inputs() (_a) : Optional[Any] = config_and_inputs _a : Dict = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Any = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) __UpperCAmelCase : List[str] = ( { '''feature-extraction''': SqueezeBertModel, '''fill-mask''': SqueezeBertForMaskedLM, '''question-answering''': SqueezeBertForQuestionAnswering, '''text-classification''': SqueezeBertForSequenceClassification, '''token-classification''': SqueezeBertForTokenClassification, '''zero-shot''': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase : Dict = False __UpperCAmelCase : Dict = True __UpperCAmelCase : Optional[Any] = False def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Dict = SqueezeBertModelTester(self ) _a : Optional[Any] = ConfigTester(self ,config_class=_a ,dim=37 ) def __lowercase ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self : Dict ): '''simple docstring''' _a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*_a ) def __lowercase ( self : Tuple ): '''simple docstring''' _a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*_a ) def __lowercase ( self : Dict ): '''simple docstring''' _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*_a ) def __lowercase ( self : Dict ): '''simple docstring''' _a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_a ) def __lowercase ( self : List[str] ): '''simple docstring''' _a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*_a ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_a ) @slow def __lowercase ( self : Union[str, Any] ): '''simple docstring''' for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Dict = SqueezeBertModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_sentencepiece @require_tokenizers @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self : int ): '''simple docstring''' _a : Optional[int] = SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli' ) _a : str = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] ) _a : Optional[Any] = model(_a )[0] _a : Optional[Any] = torch.Size((1, 3) ) self.assertEqual(output.shape ,_a ) _a : Any = torch.tensor([[0.6401, -0.0349, -0.6041]] ) self.assertTrue(torch.allclose(_a ,_a ,atol=1E-4 ) )
366
'''simple docstring''' import qiskit def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" _a : Any = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _a : List[Any] = qiskit.QuantumCircuit(__a , __a ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator _a : Tuple = qiskit.execute(__a , __a , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__a ) if __name__ == "__main__": print(f'''Total count for various states are: {single_qubit_measure(1, 1)}''')
5
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase = { """configuration_mobilebert""": [ """MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileBertConfig""", """MobileBertOnnxConfig""", ], """tokenization_mobilebert""": ["""MobileBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ["""MobileBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileBertForMaskedLM""", """MobileBertForMultipleChoice""", """MobileBertForNextSentencePrediction""", """MobileBertForPreTraining""", """MobileBertForQuestionAnswering""", """MobileBertForSequenceClassification""", """MobileBertForTokenClassification""", """MobileBertLayer""", """MobileBertModel""", """MobileBertPreTrainedModel""", """load_tf_weights_in_mobilebert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileBertForMaskedLM""", """TFMobileBertForMultipleChoice""", """TFMobileBertForNextSentencePrediction""", """TFMobileBertForPreTraining""", """TFMobileBertForQuestionAnswering""", """TFMobileBertForSequenceClassification""", """TFMobileBertForTokenClassification""", """TFMobileBertMainLayer""", """TFMobileBertModel""", """TFMobileBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
367
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() def __lowercase ( self : str ): '''simple docstring''' _a : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) _a : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) _a : List[str] = 'xvjiarui/stable-diffusion-2-inpainting' _a, _a : str = FlaxStableDiffusionInpaintPipeline.from_pretrained(_a ,safety_checker=_a ) _a : str = 'Face of a yellow cat, high resolution, sitting on a park bench' _a : int = jax.random.PRNGKey(0 ) _a : Tuple = 50 _a : Any = jax.device_count() _a : Dict = num_samples * [prompt] _a : Optional[Any] = num_samples * [init_image] _a : str = num_samples * [mask_image] _a, _a, _a : Optional[Any] = pipeline.prepare_inputs(_a ,_a ,_a ) # shard inputs and rng _a : Optional[Any] = replicate(_a ) _a : str = jax.random.split(_a ,jax.device_count() ) _a : Dict = shard(_a ) _a : int = shard(_a ) _a : int = shard(_a ) _a : Union[str, Any] = pipeline( _a ,_a ,_a ,_a ,_a ,_a ,jit=_a ) _a : Union[str, Any] = output.images.reshape(_a ,512 ,512 ,3 ) _a : Union[str, Any] = images[0, 253:256, 253:256, -1] _a : str = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _a : Union[str, Any] = jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
5
0
'''simple docstring''' def UpperCAmelCase_ (__a : int = 4_0_0_0_0_0_0 ): _a : str = [] _a : Optional[Any] = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__a ) _a : Optional[int] = b, a + b return sum(__a ) if __name__ == "__main__": print(f'''{solution() = }''')
368
'''simple docstring''' def UpperCAmelCase_ (__a : str , __a : str ): """simple docstring""" _a : int = len(__a ) + 1 _a : List[str] = len(__a ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. _a : Optional[int] = [[0 for i in range(__a )] for j in range(__a )] # since string of zero length match pattern of zero length _a : str = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , __a ): _a : Optional[Any] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , __a ): _a : Dict = dp[0][j - 2] if pattern[j - 1] == '*' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , __a ): for j in range(1 , __a ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": _a : Tuple = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: _a : List[str] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): _a : int = dp[i - 1][j] else: _a : Any = 0 else: _a : Optional[Any] = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") __lowerCAmelCase = """aab""" __lowerCAmelCase = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f'''{input_string} matches the given pattern {pattern}''') else: print(f'''{input_string} does not match with the given pattern {pattern}''')
5
0
'''simple docstring''' import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase__ : """simple docstring""" def __init__( self : List[Any] ,_a : Optional[int] ,_a : int=13 ,_a : Optional[int]=7 ,_a : str=True ,_a : Union[str, Any]=True ,_a : List[str]=True ,_a : int=True ,_a : str=99 ,_a : str=24 ,_a : str=2 ,_a : Tuple=6 ,_a : str=37 ,_a : Any="gelu" ,_a : Tuple=0.1 ,_a : Any=0.1 ,_a : Optional[Any]=512 ,_a : Union[str, Any]=16 ,_a : Optional[Any]=2 ,_a : Optional[Any]=0.02 ,_a : Any=3 ,_a : Union[str, Any]=None ,_a : List[Any]=1000 ,): '''simple docstring''' _a : int = parent _a : List[str] = batch_size _a : List[str] = seq_length _a : str = is_training _a : Union[str, Any] = use_input_mask _a : Dict = use_token_type_ids _a : int = use_labels _a : Any = vocab_size _a : List[Any] = hidden_size _a : List[str] = num_hidden_layers _a : Dict = num_attention_heads _a : Union[str, Any] = intermediate_size _a : int = hidden_act _a : List[Any] = hidden_dropout_prob _a : Dict = attention_probs_dropout_prob _a : Union[str, Any] = max_position_embeddings _a : str = type_vocab_size _a : Dict = type_sequence_label_size _a : Optional[Any] = initializer_range _a : Any = num_labels _a : List[Any] = scope _a : Dict = range_bbox def __lowercase ( self : Any ): '''simple docstring''' _a : str = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _a : int = ids_tensor([self.batch_size, self.seq_length, 4] ,self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _a : List[Any] = bbox[i, j, 3] _a : Any = bbox[i, j, 1] _a : Union[str, Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: _a : str = bbox[i, j, 2] _a : List[str] = bbox[i, j, 0] _a : Optional[Any] = t _a : str = None if self.use_input_mask: _a : Any = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) _a : List[str] = None if self.use_token_type_ids: _a : int = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) _a : int = None _a : Dict = None if self.use_labels: _a : Tuple = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _a : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _a : Union[str, Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) def __lowercase ( self : Optional[Any] ,_a : List[Any] ,_a : str ,_a : int ,_a : Dict ,_a : List[Any] ,_a : str ,_a : Optional[int] ,): '''simple docstring''' _a : List[Any] = LiltModel(config=_a ) model.to(_a ) model.eval() _a : Any = model(_a ,bbox=_a ,attention_mask=_a ,token_type_ids=_a ) _a : Optional[Any] = model(_a ,bbox=_a ,token_type_ids=_a ) _a : List[Any] = model(_a ,bbox=_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def __lowercase ( self : int ,_a : int ,_a : List[str] ,_a : Union[str, Any] ,_a : str ,_a : Optional[int] ,_a : Tuple ,_a : List[str] ,): '''simple docstring''' _a : str = self.num_labels _a : str = LiltForTokenClassification(config=_a ) model.to(_a ) model.eval() _a : Optional[int] = model( _a ,bbox=_a ,attention_mask=_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def __lowercase ( self : Optional[Any] ,_a : Union[str, Any] ,_a : Union[str, Any] ,_a : List[Any] ,_a : Tuple ,_a : Any ,_a : List[str] ,_a : Union[str, Any] ,): '''simple docstring''' _a : int = LiltForQuestionAnswering(config=_a ) model.to(_a ) model.eval() _a : List[Any] = model( _a ,bbox=_a ,attention_mask=_a ,token_type_ids=_a ,start_positions=_a ,end_positions=_a ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def __lowercase ( self : str ): '''simple docstring''' _a : List[str] = self.prepare_config_and_inputs() ( _a ) : Union[str, Any] = config_and_inputs _a : Tuple = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __UpperCAmelCase : Tuple = ( { '''feature-extraction''': LiltModel, '''question-answering''': LiltForQuestionAnswering, '''text-classification''': LiltForSequenceClassification, '''token-classification''': LiltForTokenClassification, '''zero-shot''': LiltForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase : Tuple = False __UpperCAmelCase : Dict = False def __lowercase ( self : Union[str, Any] ,_a : Optional[int] ,_a : Tuple ,_a : Any ,_a : Dict ,_a : Dict ): '''simple docstring''' return True def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Optional[Any] = LiltModelTester(self ) _a : List[str] = ConfigTester(self ,config_class=_a ,hidden_size=37 ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self : List[Any] ): '''simple docstring''' _a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self : List[Any] ): '''simple docstring''' _a : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _a : Any = type self.model_tester.create_and_check_model(*_a ) def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_a ) def __lowercase ( self : Any ): '''simple docstring''' _a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_a ) @slow def __lowercase ( self : List[Any] ): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Any = LiltModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_torch @slow class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : str ): '''simple docstring''' _a : Optional[Any] = LiltModel.from_pretrained('SCUT-DLVCLab/lilt-roberta-en-base' ).to(_a ) _a : Optional[int] = torch.tensor([[1, 2]] ,device=_a ) _a : Dict = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] ,device=_a ) # forward pass with torch.no_grad(): _a : List[Any] = model(input_ids=_a ,bbox=_a ) _a : Any = torch.Size([1, 2, 768] ) _a : Any = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] ,device=_a ,) self.assertTrue(outputs.last_hidden_state.shape ,_a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] ,_a ,atol=1E-3 ) )
369
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Dict = BlenderbotSmallTokenizer __UpperCAmelCase : Tuple = False def __lowercase ( self : List[Any] ): '''simple docstring''' super().setUp() _a : List[str] = ['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] _a : Tuple = dict(zip(_a ,range(len(_a ) ) ) ) _a : List[Any] = ['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] _a : List[Any] = {'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} _a : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) _a : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(_a ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(_a ) ) def __lowercase ( self : List[Any] ,**_a : int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname ,**_a ) def __lowercase ( self : Tuple ,_a : int ): '''simple docstring''' _a : Optional[Any] = 'adapt act apte' _a : Dict = 'adapt act apte' return input_text, output_text def __lowercase ( self : int ): '''simple docstring''' _a : Optional[int] = BlenderbotSmallTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) _a : Union[str, Any] = 'adapt act apte' _a : Dict = ['adapt', 'act', 'ap@@', 'te'] _a : Tuple = tokenizer.tokenize(_a ) self.assertListEqual(_a ,_a ) _a : List[str] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] _a : Dict = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) ,_a ) def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : str = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] _a : Union[str, Any] = 'I am a small frog.' _a : int = tok([src_text] ,padding=_a ,truncation=_a )['input_ids'] _a : str = tok.batch_decode(_a ,skip_special_tokens=_a ,clean_up_tokenization_spaces=_a )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[int] = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) _a : Union[str, Any] = 'I am a small frog .' _a : Optional[Any] = '.' _a : Optional[Any] = tok(_a )['input_ids'] _a : Union[str, Any] = tok(_a )['input_ids'] assert encoded[-1] == encoded_dot[0]
5
0
'''simple docstring''' import argparse import datetime def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : List[str] = { '0': 'Sunday', '1': 'Monday', '2': 'Tuesday', '3': 'Wednesday', '4': 'Thursday', '5': 'Friday', '6': 'Saturday', } _a : Optional[int] = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(__a ) < 1_1: raise ValueError('Must be 10 characters long' ) # Get month _a : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 1_3: raise ValueError('Month must be between 1 - 12' ) _a : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get day _a : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 3_2: raise ValueError('Date must be between 1 - 31' ) # Get second separator _a : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get year _a : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 4_5 < y < 8_5_0_0: raise ValueError( 'Year out of range. There has to be some sort of limit...right?' ) # Get datetime obj for validation _a : Dict = datetime.date(int(__a ) , int(__a ) , int(__a ) ) # Start math if m <= 2: _a : Optional[Any] = y - 1 _a : Any = m + 1_2 # maths var _a : int = int(str(__a )[:2] ) _a : int = int(str(__a )[2:] ) _a : int = int(2.6 * m - 5.39 ) _a : int = int(c / 4 ) _a : int = int(k / 4 ) _a : int = int(d + k ) _a : int = int(t + u + v + x ) _a : int = int(z - (2 * c) ) _a : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('The date was evaluated incorrectly. Contact developer.' ) # Response _a : str = f"""Your date {date_input}, is a {days[str(__a )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) __lowerCAmelCase = parser.parse_args() zeller(args.date_input)
370
'''simple docstring''' __lowerCAmelCase = { """A""": """.-""", """B""": """-...""", """C""": """-.-.""", """D""": """-..""", """E""": """.""", """F""": """..-.""", """G""": """--.""", """H""": """....""", """I""": """..""", """J""": """.---""", """K""": """-.-""", """L""": """.-..""", """M""": """--""", """N""": """-.""", """O""": """---""", """P""": """.--.""", """Q""": """--.-""", """R""": """.-.""", """S""": """...""", """T""": """-""", """U""": """..-""", """V""": """...-""", """W""": """.--""", """X""": """-..-""", """Y""": """-.--""", """Z""": """--..""", """1""": """.----""", """2""": """..---""", """3""": """...--""", """4""": """....-""", """5""": """.....""", """6""": """-....""", """7""": """--...""", """8""": """---..""", """9""": """----.""", """0""": """-----""", """&""": """.-...""", """@""": """.--.-.""", """:""": """---...""", """,""": """--..--""", """.""": """.-.-.-""", """'""": """.----.""", """\"""": """.-..-.""", """?""": """..--..""", """/""": """-..-.""", """=""": """-...-""", """+""": """.-.-.""", """-""": """-....-""", """(""": """-.--.""", """)""": """-.--.-""", """!""": """-.-.--""", """ """: """/""" } # Exclamation mark is not in ITU-R recommendation # fmt: on __lowerCAmelCase = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCAmelCase_ (__a : str ): """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCAmelCase_ (__a : str ): """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCAmelCase_ (): """simple docstring""" _a : List[str] = 'Morse code here!' print(__a ) _a : Tuple = encrypt(__a ) print(__a ) _a : str = decrypt(__a ) print(__a ) if __name__ == "__main__": main()
5
0
'''simple docstring''' import qiskit def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" _a : Any = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _a : List[Any] = qiskit.QuantumCircuit(__a , __a ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator _a : Tuple = qiskit.execute(__a , __a , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__a ) if __name__ == "__main__": print(f'''Total count for various states are: {single_qubit_measure(1, 1)}''')
371
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCAmelCase = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 1_2_8, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 5_0, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 1_0, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 1_0, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @classmethod def __lowercase ( cls : Optional[Any] ): '''simple docstring''' _a : List[Any] = TOKEN HfFolder.save_token(_a ) @classmethod def __lowercase ( cls : List[Any] ): '''simple docstring''' try: delete_repo(token=cls._token ,repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='test-dynamic-config' ) except HTTPError: pass def __lowercase ( self : List[str] ): '''simple docstring''' _a : Any = BertConfig( vocab_size=99 ,hidden_size=32 ,num_hidden_layers=5 ,num_attention_heads=4 ,intermediate_size=37 ) config.push_to_hub('test-config' ,use_auth_token=self._token ) _a : Optional[Any] = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) # Reset repo delete_repo(token=self._token ,repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_a ,repo_id='test-config' ,push_to_hub=_a ,use_auth_token=self._token ) _a : Dict = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Tuple = BertConfig( vocab_size=99 ,hidden_size=32 ,num_hidden_layers=5 ,num_attention_heads=4 ,intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' ,use_auth_token=self._token ) _a : Union[str, Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) # Reset repo delete_repo(token=self._token ,repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _a ,repo_id='valid_org/test-config-org' ,push_to_hub=_a ,use_auth_token=self._token ) _a : Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) def __lowercase ( self : List[Any] ): '''simple docstring''' CustomConfig.register_for_auto_class() _a : Optional[Any] = CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' ,use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map ,{'AutoConfig': 'custom_configuration.CustomConfig'} ) _a : int = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" ,trust_remote_code=_a ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ ,'CustomConfig' ) self.assertEqual(new_config.attribute ,42 ) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Optional[Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _a : int = c.n_embd + 1 # int _a : str = c.resid_pdrop + 1.0 # float _a : Dict = not c.scale_attn_weights # bool _a : List[Any] = c.summary_type + 'foo' # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(_a ,c.n_embd ,'mismatch for key: n_embd' ) self.assertEqual(_a ,c.resid_pdrop ,'mismatch for key: resid_pdrop' ) self.assertEqual(_a ,c.scale_attn_weights ,'mismatch for key: scale_attn_weights' ) self.assertEqual(_a ,c.summary_type ,'mismatch for key: summary_type' ) def __lowercase ( self : List[str] ): '''simple docstring''' _a : int = PretrainedConfig() _a : int = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( _a ,['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) _a : Dict = [key for key, value in config_common_kwargs.items() if value == getattr(_a ,_a )] if len(_a ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F""" {', '.join(_a )}.""" ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' with self.assertRaises(_a ): # config is in subfolder, the following should not work without specifying the subfolder _a : List[Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) _a : List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ,subfolder='bert' ) self.assertIsNotNone(_a ) def __lowercase ( self : List[Any] ): '''simple docstring''' _a : List[Any] = mock.Mock() _a : Any = 500 _a : Any = {} _a : Any = HTTPError _a : List[Any] = {} # Download this model to make sure it's in the cache. _a : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' ,return_value=_a ) as mock_head: _a : Optional[int] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Optional[int] = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : int = AutoConfig.from_pretrained('bert-base-cased' ) _a : List[str] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(_a ) _a : str = 2 json.dump(configuration.to_dict() ,open(os.path.join(_a ,'config.4.0.0.json' ) ,'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _a : int = AutoConfig.from_pretrained(_a ) self.assertEqual(new_configuration.hidden_size ,2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _a : Tuple = ['config.42.0.0.json'] _a : int = 768 configuration.save_pretrained(_a ) shutil.move(os.path.join(_a ,'config.4.0.0.json' ) ,os.path.join(_a ,'config.42.0.0.json' ) ) _a : int = AutoConfig.from_pretrained(_a ) self.assertEqual(new_configuration.hidden_size ,768 ) def __lowercase ( self : str ): '''simple docstring''' _a : Tuple = 'hf-internal-testing/test-two-configs' import transformers as new_transformers _a : Optional[int] = 'v4.0.0' _a, _a : Tuple = new_transformers.models.auto.AutoConfig.from_pretrained( _a ,return_unused_kwargs=_a ) self.assertEqual(new_configuration.hidden_size ,2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(_a ,{} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _a : str = 'v3.0.0' _a : Optional[Any] = old_transformers.models.auto.AutoConfig.from_pretrained(_a ) self.assertEqual(old_configuration.hidden_size ,768 )
5
0
'''simple docstring''' from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __lt__( self : Optional[int] ,_a : Any ): '''simple docstring''' return self[-1] < other[-1] def __eq__( self : List[str] ,_a : int ): '''simple docstring''' return self[-1] == other[-1] def UpperCAmelCase_ (__a : list ): _a : list[Stack] = [] # sort into stacks for element in collection: _a : str = Stack([element] ) _a : Optional[int] = bisect_left(__a , __a ) if i != len(__a ): stacks[i].append(__a ) else: stacks.append(__a ) # use a heap-based merge to merge stack efficiently _a : Union[str, Any] = merge(*(reversed(__a ) for stack in stacks) ) return collection if __name__ == "__main__": __lowerCAmelCase = input("""Enter numbers separated by a comma:\n""").strip() __lowerCAmelCase = [int(item) for item in user_input.split(""",""")] print(patience_sort(unsorted))
350
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint __lowerCAmelCase = { """169M""": 1_2, """430M""": 2_4, """1B5""": 2_4, """3B""": 3_2, """7B""": 3_2, """14B""": 4_0, } __lowerCAmelCase = { """169M""": 7_6_8, """430M""": 1_0_2_4, """1B5""": 2_0_4_8, """3B""": 2_5_6_0, """7B""": 4_0_9_6, """14B""": 5_1_2_0, } def UpperCAmelCase_ (__a : Dict ): """simple docstring""" _a : List[Any] = list(state_dict.keys() ) for name in state_dict_keys: _a : List[Any] = state_dict.pop(__a ) # emb -> embedding if name.startswith('emb.' ): _a : List[str] = name.replace('emb.' , 'embeddings.' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0' ): _a : Dict = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' ) # att -> attention _a : int = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , __a ) # ffn -> feed_forward _a : str = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , __a ) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k' ): _a : Any = name.replace('.time_mix_k' , '.time_mix_key' ) # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v' ): _a : int = name.replace('.time_mix_v' , '.time_mix_value' ) # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r' ): _a : Tuple = name.replace('.time_mix_r' , '.time_mix_receptance' ) if name != "head.weight": _a : Tuple = 'rwkv.' + name _a : List[Any] = weight return state_dict def UpperCAmelCase_ (__a : Tuple , __a : Union[str, Any] , __a : List[str] , __a : str=None , __a : List[str]=None , __a : int=False , __a : int=None ): """simple docstring""" if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.' ) _a : List[Any] = 5_0_2_7_7 _a : Optional[Any] = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' ) else: _a : Optional[Any] = PreTrainedTokenizerFast(tokenizer_file=__a ) _a : List[Any] = len(__a ) tokenizer.save_pretrained(__a ) # 2. Build the config _a : List[str] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: _a : str = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.' ) if size not in possible_sizes: raise ValueError(f"""`size` should be one of {possible_sizes}, got {size}.""" ) _a : str = RwkvConfig( vocab_size=__a , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(__a ) # 3. Download model file then convert state_dict _a : Tuple = hf_hub_download(__a , __a ) _a : Optional[int] = torch.load(__a , map_location='cpu' ) _a : Dict = convert_state_dict(__a ) # 4. Split in shards and save _a, _a : List[Any] = shard_checkpoint(__a ) for shard_file, shard in shards.items(): torch.save(__a , os.path.join(__a , __a ) ) if index is not None: _a : Dict = os.path.join(__a , __a ) # Save the index as well with open(__a , 'w' , encoding='utf-8' ) as f: _a : List[Any] = json.dumps(__a , indent=2 , sort_keys=__a ) + '\n' f.write(__a ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' ) _a : List[Any] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: _a : Optional[Any] = torch.load(os.path.join(__a , __a ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(__a , __a ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.' ) _a : List[str] = AutoModelForCausalLM.from_pretrained(__a ) model.push_to_hub(__a , max_shard_size='2GB' ) tokenizer.push_to_hub(__a ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--repo_id""", default=None, type=str, required=True, help="""Repo ID from which to pull the checkpoint.""" ) parser.add_argument( """--checkpoint_file""", default=None, type=str, required=True, help="""Name of the checkpoint file in the repo.""" ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""Where to save the converted model.""" ) parser.add_argument( """--tokenizer_file""", default=None, type=str, help="""Path to the tokenizer file to use (if not provided, only the model is converted).""", ) parser.add_argument( """--size""", default=None, type=str, help="""Size of the model. Will be inferred from the `checkpoint_file` if not passed.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Push to the Hub the converted model.""", ) parser.add_argument( """--model_name""", default=None, type=str, help="""Name of the pushed model on the Hub, including the username / organization.""", ) __lowerCAmelCase = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
5
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCAmelCase = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
351
'''simple docstring''' import comet # From: unbabel-comet import torch import datasets __lowerCAmelCase = datasets.logging.get_logger(__name__) __lowerCAmelCase = """\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel's Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = \"{COMET}: A Neural Framework for {MT} Evaluation\", author = \"Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon\", booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\", month = nov, year = \"2020\", address = \"Online\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\", pages = \"2685--2702\", } """ __lowerCAmelCase = """\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. """ __lowerCAmelCase = """ COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric('comet') >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"] >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"] >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results[\"scores\"]]) [0.19, 0.92] """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): """simple docstring""" def __lowercase ( self : Optional[int] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='https://unbabel.github.io/COMET/html/index.html' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'sources': datasets.Value('string' ,id='sequence' ), 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Value('string' ,id='sequence' ), } ) ,codebase_urls=['https://github.com/Unbabel/COMET'] ,reference_urls=[ 'https://github.com/Unbabel/COMET', 'https://www.aclweb.org/anthology/2020.emnlp-main.213/', 'http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6', ] ,) def __lowercase ( self : int ,_a : int ): '''simple docstring''' if self.config_name == "default": _a : List[Any] = comet.load_from_checkpoint(comet.download_model('wmt20-comet-da' ) ) else: _a : List[str] = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def __lowercase ( self : Tuple ,_a : List[Any] ,_a : Dict ,_a : Optional[Any] ,_a : List[str]=None ,_a : Tuple=False ): '''simple docstring''' if gpus is None: _a : str = 1 if torch.cuda.is_available() else 0 _a : Optional[Any] = {'src': sources, 'mt': predictions, 'ref': references} _a : Optional[Any] = [dict(zip(_a ,_a ) ) for t in zip(*data.values() )] _a, _a : Tuple = self.scorer.predict(_a ,gpus=_a ,progress_bar=_a ) return {"mean_score": mean_score, "scores": scores}
5
0
'''simple docstring''' import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class UpperCAmelCase__ : """simple docstring""" def __init__( self : Dict ,_a : Dict ,_a : Dict=13 ,_a : int=7 ,_a : Any=True ,_a : Dict=True ,_a : int=False ,_a : Optional[Any]=True ,_a : Optional[int]=99 ,_a : Union[str, Any]=64 ,_a : Dict=5 ,_a : List[str]=4 ,_a : Union[str, Any]=64 ,_a : Any="gelu" ,_a : Dict=0.1 ,_a : int=0.1 ,_a : Optional[int]=512 ,_a : List[str]=16 ,_a : int=2 ,_a : Optional[Any]=0.02 ,_a : int=3 ,_a : Optional[Any]=4 ,_a : Dict=None ,): '''simple docstring''' _a : List[str] = parent _a : Any = batch_size _a : str = seq_length _a : Dict = is_training _a : int = use_input_mask _a : str = use_token_type_ids _a : Dict = use_labels _a : Optional[int] = vocab_size _a : Tuple = hidden_size _a : str = num_hidden_layers _a : List[Any] = num_attention_heads _a : Any = intermediate_size _a : Optional[Any] = hidden_act _a : Tuple = hidden_dropout_prob _a : Tuple = attention_probs_dropout_prob _a : Optional[Any] = max_position_embeddings _a : int = type_vocab_size _a : Dict = type_sequence_label_size _a : Tuple = initializer_range _a : Optional[Any] = num_labels _a : List[str] = num_choices _a : Dict = scope def __lowercase ( self : List[Any] ): '''simple docstring''' return MPNetConfig.from_pretrained('microsoft/mpnet-base' ) def __lowercase ( self : List[Any] ): '''simple docstring''' _a : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _a : List[str] = None if self.use_input_mask: _a : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _a : Tuple = None _a : List[Any] = None _a : int = None if self.use_labels: _a : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _a : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _a : List[str] = ids_tensor([self.batch_size] ,self.num_choices ) _a : List[str] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowercase ( self : str ): '''simple docstring''' return MPNetConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,) def __lowercase ( self : Optional[Any] ,_a : Dict ,_a : Dict ,_a : str ,_a : Dict ,_a : Any ,_a : int ): '''simple docstring''' _a : List[str] = MPNetModel(config=_a ) model.to(_a ) model.eval() _a : Optional[Any] = model(_a ,_a ) _a : Optional[Any] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def __lowercase ( self : List[Any] ,_a : Optional[Any] ,_a : List[Any] ,_a : List[Any] ,_a : Tuple ,_a : Optional[Any] ,_a : List[Any] ): '''simple docstring''' _a : List[Any] = MPNetForQuestionAnswering(config=_a ) model.to(_a ) model.eval() _a : Tuple = model( _a ,attention_mask=_a ,start_positions=_a ,end_positions=_a ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def __lowercase ( self : List[Any] ,_a : Union[str, Any] ,_a : Optional[Any] ,_a : Union[str, Any] ,_a : Any ,_a : Optional[int] ,_a : Tuple ): '''simple docstring''' _a : int = self.num_labels _a : Union[str, Any] = MPNetForSequenceClassification(_a ) model.to(_a ) model.eval() _a : Optional[int] = model(_a ,attention_mask=_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowercase ( self : Dict ,_a : Any ,_a : Optional[int] ,_a : Tuple ,_a : Union[str, Any] ,_a : Union[str, Any] ,_a : List[str] ): '''simple docstring''' _a : Union[str, Any] = self.num_choices _a : Any = MPNetForMultipleChoice(config=_a ) model.to(_a ) model.eval() _a : Tuple = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _a : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _a : List[str] = model( _a ,attention_mask=_a ,labels=_a ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def __lowercase ( self : Any ,_a : Optional[int] ,_a : Optional[int] ,_a : List[str] ,_a : List[Any] ,_a : Union[str, Any] ,_a : Union[str, Any] ): '''simple docstring''' _a : str = self.num_labels _a : Optional[int] = MPNetForTokenClassification(config=_a ) model.to(_a ) model.eval() _a : Tuple = model(_a ,attention_mask=_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def __lowercase ( self : Any ): '''simple docstring''' _a : Dict = self.prepare_config_and_inputs() (_a) : List[Any] = config_and_inputs _a : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) __UpperCAmelCase : Dict = ( { '''feature-extraction''': MPNetModel, '''fill-mask''': MPNetForMaskedLM, '''question-answering''': MPNetForQuestionAnswering, '''text-classification''': MPNetForSequenceClassification, '''token-classification''': MPNetForTokenClassification, '''zero-shot''': MPNetForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase : Dict = False __UpperCAmelCase : Any = True def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : int = MPNetModelTester(self ) _a : List[Any] = ConfigTester(self ,config_class=_a ,hidden_size=37 ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self : Tuple ): '''simple docstring''' _a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*_a ) def __lowercase ( self : str ): '''simple docstring''' _a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*_a ) def __lowercase ( self : str ): '''simple docstring''' _a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*_a ) def __lowercase ( self : int ): '''simple docstring''' _a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*_a ) def __lowercase ( self : Any ): '''simple docstring''' _a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*_a ) @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self : int ): '''simple docstring''' _a : Optional[int] = MPNetModel.from_pretrained('microsoft/mpnet-base' ) _a : str = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _a : Optional[int] = model(_a )[0] _a : Optional[int] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape ,_a ) _a : Tuple = torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] ,_a ,atol=1E-4 ) )
352
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
0
'''simple docstring''' from collections import deque def UpperCAmelCase_ (__a : Optional[Any] ): """simple docstring""" _a : Any = len(__a ) _a : Optional[Any] = deque() _a : Any = [False for _ in range(__a )] _a : Dict = [-1 for _ in range(__a )] _a : str = index_of[:] def strong_connect(__a : Tuple , __a : List[Any] , __a : Union[str, Any] ): _a : Union[str, Any] = index # the number when this node is seen _a : Tuple = index # lowest rank node reachable from here index += 1 stack.append(__a ) _a : str = True for w in g[v]: if index_of[w] == -1: _a : Optional[Any] = strong_connect(__a , __a , __a ) _a : str = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: _a : List[str] = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: _a : Any = [] _a : List[Any] = stack.pop() _a : Optional[int] = False component.append(__a ) while w != v: _a : Optional[int] = stack.pop() _a : Optional[Any] = False component.append(__a ) components.append(__a ) return index _a : Dict = [] for v in range(__a ): if index_of[v] == -1: strong_connect(__a , 0 , __a ) return components def UpperCAmelCase_ (__a : Any , __a : Union[str, Any] ): """simple docstring""" _a : str = [[] for _ in range(__a )] for u, v in edges: g[u].append(__a ) return g if __name__ == "__main__": # Test __lowerCAmelCase = 7 __lowerCAmelCase = [0, 0, 1, 2, 3, 3, 4, 4, 6] __lowerCAmelCase = [1, 3, 2, 0, 1, 4, 5, 6, 5] __lowerCAmelCase = [(u, v) for u, v in zip(source, target)] __lowerCAmelCase = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
353
'''simple docstring''' import sys def UpperCAmelCase_ (__a : List[str] ): """simple docstring""" _a : List[str] = len(__a ) _a : Dict = [[0 for x in range(__a )] for x in range(__a )] _a : Union[str, Any] = [[0 for x in range(__a )] for x in range(__a )] for chain_length in range(2 , __a ): for a in range(1 , n - chain_length + 1 ): _a : Tuple = a + chain_length - 1 _a : Any = sys.maxsize for c in range(__a , __a ): _a : Optional[Any] = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: _a : Dict = cost _a : Any = c return matrix, sol def UpperCAmelCase_ (__a : Tuple , __a : List[str] , __a : Dict ): """simple docstring""" if i == j: print('A' + str(__a ) , end=' ' ) else: print('(' , end=' ' ) print_optiomal_solution(__a , __a , optimal_solution[i][j] ) print_optiomal_solution(__a , optimal_solution[i][j] + 1 , __a ) print(')' , end=' ' ) def UpperCAmelCase_ (): """simple docstring""" _a : Any = [3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] _a : Any = len(__a ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 _a, _a : Union[str, Any] = matrix_chain_order(__a ) print('No. of Operation required: ' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__a , 1 , n - 1 ) if __name__ == "__main__": main()
5
0