code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = "vit_msn" def __init__( self : Dict , _UpperCamelCase : Optional[int]=7_6_8 , _UpperCamelCase : Optional[Any]=1_2 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : str=3_0_7_2 , _UpperCamelCase : Tuple="gelu" , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : List[str]=0.02 , _UpperCamelCase : List[Any]=1e-06 , _UpperCamelCase : Any=2_2_4 , _UpperCamelCase : Optional[Any]=1_6 , _UpperCamelCase : Any=3 , _UpperCamelCase : str=True , **_UpperCamelCase : Any , ) ->int: super().__init__(**_UpperCamelCase ) snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias
8
import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = 10001 ): try: snake_case_ = int(SCREAMING_SNAKE_CASE__ ) except (TypeError, ValueError): raise TypeError('''Parameter nth must be int or castable to int.''' ) from None if nth <= 0: raise ValueError('''Parameter nth must be greater than or equal to one.''' ) snake_case_ = [] snake_case_ = 2 while len(SCREAMING_SNAKE_CASE__ ) < nth: if is_prime(SCREAMING_SNAKE_CASE__ ): primes.append(SCREAMING_SNAKE_CASE__ ) num += 1 else: num += 1 return primes[len(SCREAMING_SNAKE_CASE__ ) - 1] if __name__ == "__main__": print(f"""{solution() = }""")
8
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowerCAmelCase_ = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = "albert" def __init__( self : Tuple , _UpperCamelCase : List[str]=3_0_0_0_0 , _UpperCamelCase : Optional[Any]=1_2_8 , _UpperCamelCase : List[Any]=4_0_9_6 , _UpperCamelCase : int=1_2 , _UpperCamelCase : Union[str, Any]=1 , _UpperCamelCase : Any=6_4 , _UpperCamelCase : str=1_6_3_8_4 , _UpperCamelCase : str=1 , _UpperCamelCase : Union[str, Any]="gelu_new" , _UpperCamelCase : Union[str, Any]=0 , _UpperCamelCase : Union[str, Any]=0 , _UpperCamelCase : Optional[Any]=5_1_2 , _UpperCamelCase : Any=2 , _UpperCamelCase : List[str]=0.02 , _UpperCamelCase : Dict=1e-12 , _UpperCamelCase : Tuple=0.1 , _UpperCamelCase : Tuple="absolute" , _UpperCamelCase : int=0 , _UpperCamelCase : int=2 , _UpperCamelCase : Any=3 , **_UpperCamelCase : Dict , ) ->Dict: super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) snake_case_ = vocab_size snake_case_ = embedding_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_hidden_groups snake_case_ = num_attention_heads snake_case_ = inner_group_num snake_case_ = hidden_act snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = classifier_dropout_prob snake_case_ = position_embedding_type class snake_case_ ( __A ): '''simple docstring''' @property def snake_case__( self : Optional[int] ) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: snake_case_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
8
from sklearn.metrics import mean_squared_error import datasets lowerCAmelCase_ = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' lowerCAmelCase_ = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' lowerCAmelCase_ = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): '''simple docstring''' def snake_case__( self : Optional[int] ) ->List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] , ) def snake_case__( self : List[Any] ) ->Optional[int]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def snake_case__( self : int , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any=None , _UpperCamelCase : Optional[int]="uniform_average" , _UpperCamelCase : Tuple=True ) ->Tuple: snake_case_ = mean_squared_error( _UpperCamelCase , _UpperCamelCase , sample_weight=_UpperCamelCase , multioutput=_UpperCamelCase , squared=_UpperCamelCase ) return {"mse": mse}
8
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case_ : '''simple docstring''' def __init__( self : Dict , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Dict=1_3 , _UpperCamelCase : Optional[Any]=3_2 , _UpperCamelCase : List[Any]=3 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : Optional[int]=[1_0, 2_0, 3_0, 4_0] , _UpperCamelCase : Optional[int]=[2, 2, 3, 2] , _UpperCamelCase : Union[str, Any]=True , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : int=3_7 , _UpperCamelCase : Any="gelu" , _UpperCamelCase : Tuple=1_0 , _UpperCamelCase : str=0.02 , _UpperCamelCase : Optional[int]=["stage2", "stage3", "stage4"] , _UpperCamelCase : List[str]=3 , _UpperCamelCase : List[str]=None , ) ->str: snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = num_channels snake_case_ = num_stages snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = is_training snake_case_ = use_labels snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = out_features snake_case_ = num_labels snake_case_ = scope snake_case_ = num_stages def snake_case__( self : Optional[int] ) ->int: snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = self.get_config() return config, pixel_values, labels def snake_case__( self : int ) ->List[str]: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def snake_case__( self : Optional[int] ) ->Optional[int]: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_1_2 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_UpperCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=4_0 , auxiliary_channels=2_5_6 , auxiliary_num_convs=1 , auxiliary_concat_input=_UpperCamelCase , loss_ignore_index=2_5_5 , num_labels=self.num_labels , ) def snake_case__( self : Optional[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any] ) ->int: snake_case_ = UperNetForSemanticSegmentation(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def snake_case__( self : List[Any] ) ->int: snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ) = config_and_inputs snake_case_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case_ ( __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = (UperNetForSemanticSegmentation,) if is_torch_available() else () SCREAMING_SNAKE_CASE : Union[str, Any] = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : str = False def snake_case__( self : str ) ->int: snake_case_ = UperNetModelTester(self ) snake_case_ = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=3_7 ) def snake_case__( self : int ) ->List[str]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case__( self : List[Any] ) ->Dict: return def snake_case__( self : Tuple ) ->str: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(_UpperCamelCase ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def snake_case__( self : List[str] ) ->Optional[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCamelCase ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def snake_case__( self : List[str] ) ->Tuple: pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def snake_case__( self : Any ) ->Tuple: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def snake_case__( self : Any ) ->Optional[int]: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def snake_case__( self : int ) ->str: pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def snake_case__( self : Dict ) ->Tuple: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def snake_case__( self : Optional[int] ) ->Dict: pass def snake_case__( self : Any ) ->Any: def check_hidden_states_output(_UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] ): snake_case_ = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) snake_case_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case_ = self.model_tester.num_stages self.assertEqual(len(_UpperCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Tuple ) ->Union[str, Any]: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = _config_zero_init(_UpperCamelCase ) snake_case_ = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: snake_case_ = model_class(config=_UpperCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason='''UperNet does not have tied weights''' ) def snake_case__( self : List[Any] ) ->Tuple: pass @slow def snake_case__( self : List[str] ) ->List[Any]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = UperNetForSemanticSegmentation.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE (): snake_case_ = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' ) snake_case_ = Image.open(SCREAMING_SNAKE_CASE__ ).convert('''RGB''' ) return image @require_torch @require_vision @slow class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Optional[Any] ) ->Dict: snake_case_ = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) snake_case_ = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(_UpperCamelCase ) snake_case_ = prepare_img() snake_case_ = processor(images=_UpperCamelCase , return_tensors='''pt''' ).to(_UpperCamelCase ) with torch.no_grad(): snake_case_ = model(**_UpperCamelCase ) snake_case_ = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) snake_case_ = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) def snake_case__( self : int ) ->Optional[Any]: snake_case_ = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) snake_case_ = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(_UpperCamelCase ) snake_case_ = prepare_img() snake_case_ = processor(images=_UpperCamelCase , return_tensors='''pt''' ).to(_UpperCamelCase ) with torch.no_grad(): snake_case_ = model(**_UpperCamelCase ) snake_case_ = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) snake_case_ = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _UpperCamelCase , atol=1e-4 ) )
8
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = [] if len(SCREAMING_SNAKE_CASE__ ) == 1: return [nums.copy()] for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): snake_case_ = nums.pop(0 ) snake_case_ = permute(SCREAMING_SNAKE_CASE__ ) for perm in permutations: perm.append(SCREAMING_SNAKE_CASE__ ) result.extend(SCREAMING_SNAKE_CASE__ ) nums.append(SCREAMING_SNAKE_CASE__ ) return result def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): def backtrack(SCREAMING_SNAKE_CASE__ ): if start == len(SCREAMING_SNAKE_CASE__ ) - 1: output.append(nums[:] ) else: for i in range(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ): snake_case_, snake_case_ = nums[i], nums[start] backtrack(start + 1 ) snake_case_, snake_case_ = nums[i], nums[start] # backtrack snake_case_ = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function lowerCAmelCase_ = permutea([1, 2, 3]) print(res) doctest.testmod()
8
1
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=7 ): snake_case_ = None if token is not None: snake_case_ = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F'''Bearer {token}'''} # The id of a workflow (not of a workflow run) snake_case_ = '''636036''' snake_case_ = F'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' snake_case_ = requests.get(SCREAMING_SNAKE_CASE__ , headers=SCREAMING_SNAKE_CASE__ ).json() return result["workflow_runs"] def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = get_daily_ci_runs(SCREAMING_SNAKE_CASE__ ) snake_case_ = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": snake_case_ = workflow_run['''id'''] break return workflow_run_id def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = get_last_daily_ci_runs(SCREAMING_SNAKE_CASE__ ) if workflow_run_id is not None: snake_case_ = get_artifacts_links(worflow_run_id=SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: snake_case_ = artifacts_links[artifact_name] download_artifact( artifact_name=SCREAMING_SNAKE_CASE__ , artifact_url=SCREAMING_SNAKE_CASE__ , output_dir=SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): get_last_daily_ci_artifacts(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = {} for artifact_name in artifact_names: snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''{artifact_name}.zip''' ) if os.path.isfile(SCREAMING_SNAKE_CASE__ ): snake_case_ = {} with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): # read the file with z.open(SCREAMING_SNAKE_CASE__ ) as f: snake_case_ = f.read().decode('''UTF-8''' ) return results
8
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
8
1
import fire from utils import calculate_rouge, save_json def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ ): snake_case_ = [x.strip() for x in open(SCREAMING_SNAKE_CASE__ ).readlines()] snake_case_ = [x.strip() for x in open(SCREAMING_SNAKE_CASE__ ).readlines()][: len(SCREAMING_SNAKE_CASE__ )] snake_case_ = calculate_rouge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if save_path is not None: save_json(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , indent=SCREAMING_SNAKE_CASE__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
8
from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=__A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = ["note_seq"] def __init__( self : Optional[int] , *_UpperCamelCase : str , **_UpperCamelCase : Optional[int] ) ->Any: requires_backends(self , ['''note_seq'''] ) @classmethod def snake_case__( cls : int , *_UpperCamelCase : Any , **_UpperCamelCase : List[Any] ) ->int: requires_backends(cls , ['''note_seq'''] ) @classmethod def snake_case__( cls : Dict , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : Union[str, Any] ) ->List[str]: requires_backends(cls , ['''note_seq'''] )
8
1
from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = ["input_values", "padding_mask"] def __init__( self : Any , _UpperCamelCase : int = 1 , _UpperCamelCase : int = 2_4_0_0_0 , _UpperCamelCase : float = 0.0 , _UpperCamelCase : float = None , _UpperCamelCase : float = None , **_UpperCamelCase : List[Any] , ) ->List[str]: super().__init__(feature_size=_UpperCamelCase , sampling_rate=_UpperCamelCase , padding_value=_UpperCamelCase , **_UpperCamelCase ) snake_case_ = chunk_length_s snake_case_ = overlap @property def snake_case__( self : Tuple ) ->Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def snake_case__( self : int ) ->Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self : Tuple , _UpperCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _UpperCamelCase : Optional[Union[bool, str, PaddingStrategy]] = None , _UpperCamelCase : Optional[bool] = False , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[Union[str, TensorType]] = None , _UpperCamelCase : Optional[int] = None , ) ->BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if padding and truncation: raise ValueError('''Both padding and truncation were set. Make sure you only set one.''' ) elif padding is None: # by default let's pad the inputs snake_case_ = True snake_case_ = bool( isinstance(_UpperCamelCase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: snake_case_ = [np.asarray(_UpperCamelCase , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(_UpperCamelCase , np.ndarray ): snake_case_ = np.asarray(_UpperCamelCase , dtype=np.floataa ) elif isinstance(_UpperCamelCase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): snake_case_ = raw_audio.astype(np.floataa ) # always return batch if not is_batched: snake_case_ = [np.asarray(_UpperCamelCase ).T] # verify inputs are valid for idx, example in enumerate(_UpperCamelCase ): if example.ndim > 2: raise ValueError(f'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f'''Expected stereo audio but example has {example.shape[-1]} channels''' ) snake_case_ = None snake_case_ = BatchFeature({'''input_values''': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: snake_case_ = min(array.shape[0] for array in raw_audio ) snake_case_ = int(np.floor(max_length / self.chunk_stride ) ) snake_case_ = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: snake_case_ = max(array.shape[0] for array in raw_audio ) snake_case_ = int(np.ceil(max_length / self.chunk_stride ) ) snake_case_ = (nb_step - 1) * self.chunk_stride + self.chunk_length snake_case_ = '''max_length''' else: snake_case_ = input_values # normal padding on batch if padded_inputs is None: snake_case_ = self.pad( _UpperCamelCase , max_length=_UpperCamelCase , truncation=_UpperCamelCase , padding=_UpperCamelCase , return_attention_mask=_UpperCamelCase , ) if padding: snake_case_ = padded_inputs.pop('''attention_mask''' ) snake_case_ = [] for example in padded_inputs.pop('''input_values''' ): if self.feature_size == 1: snake_case_ = example[..., None] input_values.append(example.T ) snake_case_ = input_values if return_tensors is not None: snake_case_ = padded_inputs.convert_to_tensors(_UpperCamelCase ) return padded_inputs
8
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = "vit_msn" def __init__( self : Dict , _UpperCamelCase : Optional[int]=7_6_8 , _UpperCamelCase : Optional[Any]=1_2 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : str=3_0_7_2 , _UpperCamelCase : Tuple="gelu" , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : List[str]=0.02 , _UpperCamelCase : List[Any]=1e-06 , _UpperCamelCase : Any=2_2_4 , _UpperCamelCase : Optional[Any]=1_6 , _UpperCamelCase : Any=3 , _UpperCamelCase : str=True , **_UpperCamelCase : Any , ) ->int: super().__init__(**_UpperCamelCase ) snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias
8
1
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __SCREAMING_SNAKE_CASE (*SCREAMING_SNAKE_CASE__ ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = list(SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): snake_case_ = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 128 ): if function is None: return functools.partial(SCREAMING_SNAKE_CASE__ , starting_batch_size=SCREAMING_SNAKE_CASE__ ) snake_case_ = starting_batch_size def decorator(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() snake_case_ = list(inspect.signature(SCREAMING_SNAKE_CASE__ ).parameters.keys() ) # Guard against user error if len(SCREAMING_SNAKE_CASE__ ) < (len(SCREAMING_SNAKE_CASE__ ) + 1): snake_case_ = ''', '''.join([F'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F'''Batch size was passed into `{function.__name__}` as the first argument when called.''' F'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) except Exception as e: if should_reduce_batch_size(SCREAMING_SNAKE_CASE__ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
8
from __future__ import annotations from math import pi, sqrt def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
8
1
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip lowerCAmelCase_ = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return max(metric_fn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for gt in ground_truths ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = [line.strip() for line in open(SCREAMING_SNAKE_CASE__ , '''r''' ).readlines()] snake_case_ = [] if args.gold_data_mode == "qa": snake_case_ = pd.read_csv(SCREAMING_SNAKE_CASE__ , sep='''\t''' , header=SCREAMING_SNAKE_CASE__ ) for answer_list in data[1]: snake_case_ = ast.literal_eval(SCREAMING_SNAKE_CASE__ ) answers.append(SCREAMING_SNAKE_CASE__ ) else: snake_case_ = [line.strip() for line in open(SCREAMING_SNAKE_CASE__ , '''r''' ).readlines()] snake_case_ = [[reference] for reference in references] snake_case_ = snake_case_ = snake_case_ = 0 for prediction, ground_truths in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): total += 1 em += metric_max_over_ground_truths(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) fa += metric_max_over_ground_truths(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = 100.0 * em / total snake_case_ = 100.0 * fa / total logger.info(F'''F1: {fa:.2f}''' ) logger.info(F'''EM: {em:.2f}''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = args.k snake_case_ = [line.strip() for line in open(SCREAMING_SNAKE_CASE__ , '''r''' ).readlines()] snake_case_ = [line.strip() for line in open(SCREAMING_SNAKE_CASE__ , '''r''' ).readlines()] snake_case_ = snake_case_ = 0 for hypo, reference in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = set(hypo.split('''\t''' )[:k] ) snake_case_ = set(reference.split('''\t''' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k snake_case_ = 100.0 * em / total logger.info(F'''Precision@{k}: {em: .2f}''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): def strip_title(SCREAMING_SNAKE_CASE__ ): if title.startswith('''"''' ): snake_case_ = title[1:] if title.endswith('''"''' ): snake_case_ = title[:-1] return title snake_case_ = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , )['''input_ids'''].to(args.device ) snake_case_ = rag_model.rag.question_encoder(SCREAMING_SNAKE_CASE__ ) snake_case_ = question_enc_outputs[0] snake_case_ = rag_model.retriever( SCREAMING_SNAKE_CASE__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , ) snake_case_ = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) snake_case_ = [] for docs in all_docs: snake_case_ = [strip_title(SCREAMING_SNAKE_CASE__ ) for title in docs['''title''']] provenance_strings.append('''\t'''.join(SCREAMING_SNAKE_CASE__ ) ) return provenance_strings def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): with torch.no_grad(): snake_case_ = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ ) snake_case_ = inputs_dict.input_ids.to(args.device ) snake_case_ = inputs_dict.attention_mask.to(args.device ) snake_case_ = rag_model.generate( # rag_model overwrites generate SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=SCREAMING_SNAKE_CASE__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) snake_case_ = rag_model.retriever.generator_tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) if args.print_predictions: for q, a in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): logger.info('''Q: {} - A: {}'''.format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) return answers def __SCREAMING_SNAKE_CASE (): snake_case_ = argparse.ArgumentParser() parser.add_argument( '''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=SCREAMING_SNAKE_CASE__ , help=( '''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the''' ''' model_name_or_path''' ) , ) parser.add_argument( '''--index_name''' , default=SCREAMING_SNAKE_CASE__ , choices=['''exact''', '''compressed''', '''legacy'''] , type=SCREAMING_SNAKE_CASE__ , help='''RAG model retriever type''' , ) parser.add_argument( '''--index_path''' , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help='''Path to the retrieval index''' , ) parser.add_argument('''--n_docs''' , default=5 , type=SCREAMING_SNAKE_CASE__ , help='''Number of retrieved docs''' ) parser.add_argument( '''--model_name_or_path''' , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=SCREAMING_SNAKE_CASE__ , help=( '''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates''' ''' precision@k.''' ) , ) parser.add_argument('''--k''' , default=1 , type=SCREAMING_SNAKE_CASE__ , help='''k for the precision@k calculation''' ) parser.add_argument( '''--evaluation_set''' , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='''Path to a file containing evaluation samples''' , ) parser.add_argument( '''--gold_data_path''' , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='''Path to a tab-separated file with gold samples''' , ) parser.add_argument( '''--gold_data_mode''' , default='''qa''' , type=SCREAMING_SNAKE_CASE__ , choices=['''qa''', '''ans'''] , help=( '''Format of the gold data file''' '''qa - a single line in the following format: question [tab] answer_list''' '''ans - a single line of the gold file contains the expected answer string''' ) , ) parser.add_argument( '''--predictions_path''' , type=SCREAMING_SNAKE_CASE__ , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , ) parser.add_argument( '''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , ) parser.add_argument( '''--eval_batch_size''' , default=8 , type=SCREAMING_SNAKE_CASE__ , help='''Batch size per GPU/CPU for evaluation.''' , ) parser.add_argument( '''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , ) parser.add_argument( '''--num_beams''' , default=4 , type=SCREAMING_SNAKE_CASE__ , help='''Number of beams to be used when generating answers''' , ) parser.add_argument('''--min_length''' , default=1 , type=SCREAMING_SNAKE_CASE__ , help='''Min length of the generated answers''' ) parser.add_argument('''--max_length''' , default=50 , type=SCREAMING_SNAKE_CASE__ , help='''Max length of the generated answers''' ) parser.add_argument( '''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , ) parser.add_argument( '''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , ) snake_case_ = parser.parse_args() snake_case_ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) return args def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = {} if args.model_type is None: snake_case_ = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('''rag''' ): snake_case_ = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration snake_case_ = args.n_docs if args.index_name is not None: snake_case_ = args.index_name if args.index_path is not None: snake_case_ = args.index_path else: snake_case_ = BartForConditionalGeneration snake_case_ = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('''Evaluate the following checkpoints: %s''' , SCREAMING_SNAKE_CASE__ ) snake_case_ = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k snake_case_ = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) ) score_fn(SCREAMING_SNAKE_CASE__ , args.predictions_path , args.gold_data_path ) continue logger.info('''***** Running evaluation for {} *****'''.format(SCREAMING_SNAKE_CASE__ ) ) logger.info(''' Batch size = %d''' , args.eval_batch_size ) logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) ) if args.model_type.startswith('''rag''' ): snake_case_ = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case_ = model_class.from_pretrained(SCREAMING_SNAKE_CASE__ , retriever=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) model.retriever.init_retrieval() else: snake_case_ = model_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) model.to(args.device ) with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file: snake_case_ = [] for line in tqdm(SCREAMING_SNAKE_CASE__ ): questions.append(line.strip() ) if len(SCREAMING_SNAKE_CASE__ ) == args.eval_batch_size: snake_case_ = evaluate_batch_fn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) preds_file.write('''\n'''.join(SCREAMING_SNAKE_CASE__ ) + '''\n''' ) preds_file.flush() snake_case_ = [] if len(SCREAMING_SNAKE_CASE__ ) > 0: snake_case_ = evaluate_batch_fn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) preds_file.write('''\n'''.join(SCREAMING_SNAKE_CASE__ ) ) preds_file.flush() score_fn(SCREAMING_SNAKE_CASE__ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": lowerCAmelCase_ = get_args() main(args)
8
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return x + 2 class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Optional[Any] ) ->int: snake_case_ = '''x = 3''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase , {'''x''': 3} ) snake_case_ = '''x = y''' snake_case_ = {'''y''': 5} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 5, '''y''': 5} ) def snake_case__( self : Dict ) ->Optional[int]: snake_case_ = '''y = add_two(x)''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} ) # Won't work without the tool with CaptureStdout() as out: snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result is None assert "tried to execute add_two" in out.out def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = '''x = 3''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase , {'''x''': 3} ) def snake_case__( self : Optional[int] ) ->Optional[int]: snake_case_ = '''test_dict = {\'x\': x, \'y\': add_two(x)}''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} ) self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def snake_case__( self : Dict ) ->str: snake_case_ = '''x = 3\ny = 5''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} ) def snake_case__( self : str ) ->Tuple: snake_case_ = '''text = f\'This is x: {x}.\'''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''text''': '''This is x: 3.'''} ) def snake_case__( self : Optional[Any] ) ->List[str]: snake_case_ = '''if x <= 3:\n y = 2\nelse:\n y = 5''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 2} ) snake_case_ = {'''x''': 8} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 8, '''y''': 5} ) def snake_case__( self : str ) ->str: snake_case_ = '''test_list = [x, add_two(x)]''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , [3, 5] ) self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_list''': [3, 5]} ) def snake_case__( self : Any ) ->List[Any]: snake_case_ = '''y = x''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 3} ) def snake_case__( self : Optional[int] ) ->Dict: snake_case_ = '''test_list = [x, add_two(x)]\ntest_list[1]''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_list''': [3, 5]} ) snake_case_ = '''test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def snake_case__( self : Optional[Any] ) ->int: snake_case_ = '''x = 0\nfor i in range(3):\n x = i''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {'''range''': range} , state=_UpperCamelCase ) assert result == 2 self.assertDictEqual(_UpperCamelCase , {'''x''': 2, '''i''': 2} )
8
1
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) lowerCAmelCase_ = logging.getLogger() def __SCREAMING_SNAKE_CASE (): snake_case_ = argparse.ArgumentParser() parser.add_argument('''-f''' ) snake_case_ = parser.parse_args() return args.f def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = {} snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''all_results.json''' ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): with open(SCREAMING_SNAKE_CASE__ , '''r''' ) as f: snake_case_ = json.load(SCREAMING_SNAKE_CASE__ ) else: raise ValueError(F'''can\'t find {path}''' ) return results def __SCREAMING_SNAKE_CASE (): snake_case_ = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() lowerCAmelCase_ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class snake_case_ ( __A ): '''simple docstring''' @classmethod def snake_case__( cls : Optional[int] ) ->List[Any]: # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU snake_case_ = tempfile.mkdtemp() snake_case_ = os.path.join(cls.tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) snake_case_ = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case__( cls : Dict ) ->str: shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__( self : int ) ->Optional[int]: snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = f''' {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking '''.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) snake_case_ = get_results(_UpperCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__( self : Any ) ->int: snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = f''' {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking '''.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) snake_case_ = get_results(_UpperCamelCase ) self.assertLess(result['''perplexity'''] , 1_0_0 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__( self : str ) ->Union[str, Any]: snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = f''' {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ = get_results(_UpperCamelCase ) self.assertLess(result['''perplexity'''] , 4_2 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__( self : Tuple ) ->Union[str, Any]: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu snake_case_ = 7 if get_gpu_count() > 1 else 2 snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = f''' {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ = get_results(_UpperCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertLess(result['''train_loss'''] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__( self : Optional[int] ) ->str: snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = f''' {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ = get_results(_UpperCamelCase ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] , 2_8 ) self.assertGreaterEqual(result['''eval_exact'''] , 2_8 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__( self : List[str] ) ->List[str]: snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = f''' {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ = get_results(_UpperCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__( self : str ) ->Any: snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = f''' {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ = get_results(_UpperCamelCase ) self.assertGreaterEqual(result['''eval_rouge1'''] , 1_0 ) self.assertGreaterEqual(result['''eval_rouge2'''] , 2 ) self.assertGreaterEqual(result['''eval_rougeL'''] , 7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__( self : Any ) ->List[str]: snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = f''' {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ = get_results(_UpperCamelCase ) self.assertGreaterEqual(result['''eval_bleu'''] , 3_0 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''translation_no_trainer''' ) ) ) @slow def snake_case__( self : Optional[Any] ) ->Union[str, Any]: snake_case_ = logging.StreamHandler(sys.stdout ) logger.addHandler(_UpperCamelCase ) snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = f''' {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch '''.split() run_command(self._launch_args + testargs ) snake_case_ = get_results(_UpperCamelCase ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__( self : Any ) ->Union[str, Any]: snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = f''' {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 '''.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) snake_case_ = get_results(_UpperCamelCase ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''image_classification_no_trainer''' ) ) )
8
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Any , _UpperCamelCase : Any , _UpperCamelCase : Tuple ) ->List[Any]: return f'''gaussian_noise_s={seed}_shape={'_'.join([str(_UpperCamelCase ) for s in shape] )}.npy''' def snake_case__( self : Any ) ->List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case__( self : int , _UpperCamelCase : Union[str, Any]=0 , _UpperCamelCase : int=(4, 4, 6_4, 6_4) , _UpperCamelCase : Optional[int]=False ) ->Tuple: snake_case_ = jnp.bfloataa if fpaa else jnp.floataa snake_case_ = jnp.array(load_hf_numpy(self.get_file_format(_UpperCamelCase , _UpperCamelCase ) ) , dtype=_UpperCamelCase ) return image def snake_case__( self : List[Any] , _UpperCamelCase : Optional[Any]=False , _UpperCamelCase : Optional[int]="CompVis/stable-diffusion-v1-4" ) ->Optional[Any]: snake_case_ = jnp.bfloataa if fpaa else jnp.floataa snake_case_ = '''bf16''' if fpaa else None snake_case_, snake_case_ = FlaxUNetaDConditionModel.from_pretrained( _UpperCamelCase , subfolder='''unet''' , dtype=_UpperCamelCase , revision=_UpperCamelCase ) return model, params def snake_case__( self : Dict , _UpperCamelCase : List[Any]=0 , _UpperCamelCase : Tuple=(4, 7_7, 7_6_8) , _UpperCamelCase : List[Any]=False ) ->int: snake_case_ = jnp.bfloataa if fpaa else jnp.floataa snake_case_ = jnp.array(load_hf_numpy(self.get_file_format(_UpperCamelCase , _UpperCamelCase ) ) , dtype=_UpperCamelCase ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [1_7, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_0_0_0, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def snake_case__( self : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] ) ->Union[str, Any]: snake_case_, snake_case_ = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=_UpperCamelCase ) snake_case_ = self.get_latents(_UpperCamelCase , fpaa=_UpperCamelCase ) snake_case_ = self.get_encoder_hidden_states(_UpperCamelCase , fpaa=_UpperCamelCase ) snake_case_ = model.apply( {'''params''': params} , _UpperCamelCase , jnp.array(_UpperCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=_UpperCamelCase , ).sample assert sample.shape == latents.shape snake_case_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) snake_case_ = jnp.array(_UpperCamelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [1_7, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_0_0_0, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def snake_case__( self : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str ) ->Dict: snake_case_, snake_case_ = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=_UpperCamelCase ) snake_case_ = self.get_latents(_UpperCamelCase , shape=(4, 4, 9_6, 9_6) , fpaa=_UpperCamelCase ) snake_case_ = self.get_encoder_hidden_states(_UpperCamelCase , shape=(4, 7_7, 1_0_2_4) , fpaa=_UpperCamelCase ) snake_case_ = model.apply( {'''params''': params} , _UpperCamelCase , jnp.array(_UpperCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=_UpperCamelCase , ).sample assert sample.shape == latents.shape snake_case_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) snake_case_ = jnp.array(_UpperCamelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-2 )
8
1
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = 1000 ): snake_case_, snake_case_ = 1, 1 snake_case_ = [] for i in range(1 , n + 1 ): snake_case_ = prev_numerator + 2 * prev_denominator snake_case_ = prev_numerator + prev_denominator if len(str(SCREAMING_SNAKE_CASE__ ) ) > len(str(SCREAMING_SNAKE_CASE__ ) ): result.append(SCREAMING_SNAKE_CASE__ ) snake_case_ = numerator snake_case_ = denominator return len(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(f"""{solution() = }""")
8
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __SCREAMING_SNAKE_CASE (*SCREAMING_SNAKE_CASE__ ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = list(SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): snake_case_ = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 128 ): if function is None: return functools.partial(SCREAMING_SNAKE_CASE__ , starting_batch_size=SCREAMING_SNAKE_CASE__ ) snake_case_ = starting_batch_size def decorator(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() snake_case_ = list(inspect.signature(SCREAMING_SNAKE_CASE__ ).parameters.keys() ) # Guard against user error if len(SCREAMING_SNAKE_CASE__ ) < (len(SCREAMING_SNAKE_CASE__ ) + 1): snake_case_ = ''', '''.join([F'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F'''Batch size was passed into `{function.__name__}` as the first argument when called.''' F'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) except Exception as e: if should_reduce_batch_size(SCREAMING_SNAKE_CASE__ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
8
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase_ = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''ViTFeatureExtractor'''] lowerCAmelCase_ = ['''ViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTForImageClassification''', '''ViTForMaskedImageModeling''', '''ViTModel''', '''ViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''TFViTForImageClassification''', '''TFViTModel''', '''TFViTPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''FlaxViTForImageClassification''', '''FlaxViTModel''', '''FlaxViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return [ord(SCREAMING_SNAKE_CASE__ ) - 96 for elem in plain] def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return "".join(chr(elem + 96 ) for elem in encoded ) def __SCREAMING_SNAKE_CASE (): snake_case_ = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , SCREAMING_SNAKE_CASE__ ) print('''Decoded:''' , decode(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": main()
8
1
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig lowerCAmelCase_ = { '''susnato/ernie-m-base_pytorch''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json''', '''susnato/ernie-m-large_pytorch''': '''https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json''', } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = "ernie_m" SCREAMING_SNAKE_CASE : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self : List[str] , _UpperCamelCase : int = 2_5_0_0_0_2 , _UpperCamelCase : int = 7_6_8 , _UpperCamelCase : int = 1_2 , _UpperCamelCase : int = 1_2 , _UpperCamelCase : int = 3_0_7_2 , _UpperCamelCase : str = "gelu" , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : int = 5_1_4 , _UpperCamelCase : float = 0.02 , _UpperCamelCase : int = 1 , _UpperCamelCase : float = 1e-05 , _UpperCamelCase : List[str]=None , _UpperCamelCase : Union[str, Any]=False , _UpperCamelCase : Optional[int]=0.0 , **_UpperCamelCase : Optional[Any] , ) ->Union[str, Any]: super().__init__(pad_token_id=_UpperCamelCase , **_UpperCamelCase ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = classifier_dropout snake_case_ = is_decoder snake_case_ = act_dropout
8
import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(SCREAMING_SNAKE_CASE__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('''This should never happen''' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. lowerCAmelCase_ = '''Enter the base and the power separated by a comma: ''' lowerCAmelCase_ , lowerCAmelCase_ = map(int, input(prompt).split(''',''')) lowerCAmelCase_ , lowerCAmelCase_ = map(int, input(prompt).split(''',''')) # We find the log of each number, using the function res(), which takes two # arguments. lowerCAmelCase_ = res(xa, ya) lowerCAmelCase_ = res(xa, ya) # We check for the largest number if resa > resa: print('''Largest number is''', xa, '''^''', ya) elif resa > resa: print('''Largest number is''', xa, '''^''', ya) else: print('''Both are equal''')
8
1
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('''1.6'''): lowerCAmelCase_ = True from torch.cuda.amp import autocast lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__A , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) SCREAMING_SNAKE_CASE : Optional[bool] = field( default=__A , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) SCREAMING_SNAKE_CASE : Optional[bool] = field( default=__A , metadata={"help": "Whether to log verbose messages or not."} , ) SCREAMING_SNAKE_CASE : Optional[float] = field( default=2.0 , metadata={"help": "Maximum temperature for gumbel softmax."} ) SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.5 , metadata={"help": "Minimum temperature for gumbel softmax."} ) SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.99_9995 , metadata={"help": "Decay of gumbel temperature during training."} ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) snake_case_ = logging.WARNING if model_args.verbose_logging: snake_case_ = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): snake_case_ = logging.INFO logger.setLevel(SCREAMING_SNAKE_CASE__ ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = field( default=__A , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__A , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) SCREAMING_SNAKE_CASE : Optional[str] = field( default="validation" , metadata={ "help": ( "The name of the validation data set split to use (via the datasets library). Defaults to 'validation'" ) } , ) SCREAMING_SNAKE_CASE : Optional[str] = field( default="file" , metadata={"help": "Column in the dataset that contains speech file path. Defaults to 'file'"} , ) SCREAMING_SNAKE_CASE : bool = field( default=__A , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) SCREAMING_SNAKE_CASE : Optional[int] = field( default=1 , metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" } , ) SCREAMING_SNAKE_CASE : Optional[int] = field( default=__A , metadata={"help": "The number of processes to use for the preprocessing."} , ) SCREAMING_SNAKE_CASE : Optional[float] = field( default=20.0 , metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"} ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : WavaVecaForPreTraining SCREAMING_SNAKE_CASE : WavaVecaFeatureExtractor SCREAMING_SNAKE_CASE : Union[bool, str] = "longest" SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[int] = None def __call__( self : Dict , _UpperCamelCase : List[Dict[str, Union[List[int], torch.Tensor]]] ) ->Dict[str, torch.Tensor]: # reformat list to dict and set to pytorch format snake_case_ = self.feature_extractor.pad( _UpperCamelCase , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) snake_case_ = self.model._get_feat_extract_output_lengths(batch['''input_values'''].shape[-1] ) snake_case_ = batch['''input_values'''].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula snake_case_ = self.model._get_feat_extract_output_lengths(batch['''attention_mask'''].sum(-1 ) ).to( torch.long ) snake_case_ = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch['''input_values'''].device ) # these two operations makes sure that all values # before the output lengths indices are attended to snake_case_ = 1 snake_case_ = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices snake_case_ = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=_UpperCamelCase , min_masks=2 , ) return batch class snake_case_ ( __A ): '''simple docstring''' def __init__( self : Optional[int] , *_UpperCamelCase : Tuple , _UpperCamelCase : Optional[Any]=1 , _UpperCamelCase : str=0 , _UpperCamelCase : List[str]=1.0 , **_UpperCamelCase : Union[str, Any] ) ->str: super().__init__(*_UpperCamelCase , **_UpperCamelCase ) snake_case_ = 0 snake_case_ = max_gumbel_temp snake_case_ = min_gumbel_temp snake_case_ = gumbel_temp_decay def snake_case__( self : Optional[int] , _UpperCamelCase : nn.Module , _UpperCamelCase : Dict[str, Union[torch.Tensor, Any]] ) ->torch.Tensor: model.train() snake_case_ = self._prepare_inputs(_UpperCamelCase ) if self.use_amp: with autocast(): snake_case_ = self.compute_loss(_UpperCamelCase , _UpperCamelCase ) else: snake_case_ = self.compute_loss(_UpperCamelCase , _UpperCamelCase ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": snake_case_ = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": snake_case_ = loss.sum() / (inputs['''mask_time_indices''']).sum() else: raise ValueError(f'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: snake_case_ = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_UpperCamelCase ).backward() elif self.use_apex: with amp.scale_loss(_UpperCamelCase , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_UpperCamelCase ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def __SCREAMING_SNAKE_CASE (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) snake_case_, snake_case_, snake_case_ = parser.parse_args_into_dataclasses() configure_logger(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Downloading and loading a dataset from the hub. snake_case_ = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" snake_case_ = DatasetDict() snake_case_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}[:{data_args.validation_split_percentage}%]''' , cache_dir=model_args.cache_dir , ) snake_case_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}[{data_args.validation_split_percentage}%:]''' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" snake_case_ = DatasetDict() snake_case_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split='''validation''' , cache_dir=model_args.cache_dir , ) snake_case_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}''' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported snake_case_ = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=SCREAMING_SNAKE_CASE__ ) def prepare_dataset(SCREAMING_SNAKE_CASE__ ): # check that all files have the correct sampling rate snake_case_, snake_case_ = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays snake_case_ = datasets.map( SCREAMING_SNAKE_CASE__ , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets['''train'''].column_names ) # filter audio files that are too long snake_case_ = vectorized_datasets.filter( lambda SCREAMING_SNAKE_CASE__ : len(data['''speech'''] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(SCREAMING_SNAKE_CASE__ ): return feature_extractor(batch['''speech'''] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` snake_case_ = vectorized_datasets.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets['''train'''].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 snake_case_ = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( '''PreTraining is only supported for ``config.do_stable_layer_norm=True`` and''' ''' ``config.feat_extract_norm=\'layer\'''' ) snake_case_ = WavaVecaForPreTraining(SCREAMING_SNAKE_CASE__ ) snake_case_ = DataCollatorForWavaVecaPretraining(model=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ ) snake_case_ = WavaVecaPreTrainer( model=SCREAMING_SNAKE_CASE__ , data_collator=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , train_dataset=vectorized_datasets['''train'''] , eval_dataset=vectorized_datasets['''validation'''] , tokenizer=SCREAMING_SNAKE_CASE__ , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
8
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'''vocab_file''': '''spiece.model'''} lowerCAmelCase_ = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), } } lowerCAmelCase_ = { '''google/bigbird-roberta-base''': 40_96, '''google/bigbird-roberta-large''': 40_96, '''google/bigbird-base-trivia-itc''': 40_96, } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : List[Any] = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : List[str] , _UpperCamelCase : List[str] , _UpperCamelCase : Dict="<unk>" , _UpperCamelCase : List[str]="<s>" , _UpperCamelCase : Tuple="</s>" , _UpperCamelCase : Any="<pad>" , _UpperCamelCase : Any="[SEP]" , _UpperCamelCase : Optional[Any]="[MASK]" , _UpperCamelCase : Any="[CLS]" , _UpperCamelCase : Optional[Dict[str, Any]] = None , **_UpperCamelCase : Dict , ) ->None: snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else bos_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else eos_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else unk_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else pad_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else cls_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , sep_token=_UpperCamelCase , mask_token=_UpperCamelCase , cls_token=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) @property def snake_case__( self : str ) ->List[Any]: return self.sp_model.get_piece_size() def snake_case__( self : int ) ->Union[str, Any]: snake_case_ = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ) ->Any: snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self : str , _UpperCamelCase : List[Any] ) ->List[str]: snake_case_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case__( self : Optional[int] , _UpperCamelCase : str ) ->List[str]: return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def snake_case__( self : str , _UpperCamelCase : List[str] ) ->Tuple: return self.sp_model.piece_to_id(_UpperCamelCase ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : str ) ->List[Any]: snake_case_ = self.sp_model.IdToPiece(_UpperCamelCase ) return token def snake_case__( self : Dict , _UpperCamelCase : Optional[int] ) ->List[str]: snake_case_ = [] snake_case_ = '''''' snake_case_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token snake_case_ = True snake_case_ = [] else: current_sub_tokens.append(_UpperCamelCase ) snake_case_ = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def snake_case__( self : int , _UpperCamelCase : List[int] , _UpperCamelCase : bool = False , _UpperCamelCase : bool = None , _UpperCamelCase : bool = True , **_UpperCamelCase : List[str] , ) ->str: snake_case_ = kwargs.pop('''use_source_tokenizer''' , _UpperCamelCase ) snake_case_ = self.convert_ids_to_tokens(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 snake_case_ = [] snake_case_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCamelCase ) ) snake_case_ = [] sub_texts.append(_UpperCamelCase ) else: current_sub_text.append(_UpperCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: snake_case_ = re.sub(R''' (\[(MASK|SEP)\])''' , R'''\1''' , ''' '''.join(_UpperCamelCase ) ) else: snake_case_ = ''''''.join(_UpperCamelCase ) snake_case_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: snake_case_ = self.clean_up_tokenization(_UpperCamelCase ) return clean_text else: return text def snake_case__( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) ->Tuple[str]: if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,) def snake_case__( self : Tuple , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def snake_case__( self : List[str] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : bool = False ) ->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) + [1] return [1] + ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def snake_case__( self : List[Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
8
1
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : int class snake_case_ : '''simple docstring''' def __init__( self : Dict , _UpperCamelCase : int ) ->int: snake_case_ = [[] for _ in range(_UpperCamelCase )] snake_case_ = size def __getitem__( self : Optional[Any] , _UpperCamelCase : int ) ->Iterator[Edge]: return iter(self._graph[vertex] ) @property def snake_case__( self : Union[str, Any] ) ->Dict: return self._size def snake_case__( self : List[str] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int ) ->Dict: if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(_UpperCamelCase , _UpperCamelCase ) ) def snake_case__( self : Dict , _UpperCamelCase : int , _UpperCamelCase : int ) ->int | None: snake_case_ = deque([start_vertex] ) snake_case_ = [None] * self.size snake_case_ = 0 while queue: snake_case_ = queue.popleft() snake_case_ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: snake_case_ = current_distance + edge.weight snake_case_ = distances[edge.destination_vertex] if ( isinstance(_UpperCamelCase , _UpperCamelCase ) and new_distance >= dest_vertex_distance ): continue snake_case_ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
8
from __future__ import annotations from collections.abc import Generator def __SCREAMING_SNAKE_CASE (): snake_case_ = {} snake_case_ = 2 while True: snake_case_ = factor_map.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if factor: snake_case_ = factor + prime while x in factor_map: x += factor snake_case_ = factor else: snake_case_ = prime yield prime prime += 1 def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = 1E10 ): snake_case_ = sieve() snake_case_ = 1 while True: snake_case_ = next(SCREAMING_SNAKE_CASE__ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(SCREAMING_SNAKE_CASE__ ) n += 2 if __name__ == "__main__": print(solution())
8
1
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class snake_case_ : '''simple docstring''' @property def snake_case__( self : List[Any] ) ->List[Any]: return self.get_dummy_input() @property def snake_case__( self : Optional[int] ) ->Optional[Any]: if self.block_type == "down": return (4, 3_2, 1_6, 1_6) elif self.block_type == "mid": return (4, 3_2, 3_2, 3_2) elif self.block_type == "up": return (4, 3_2, 6_4, 6_4) raise ValueError(f'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def snake_case__( self : Optional[int] , _UpperCamelCase : int=True , _UpperCamelCase : int=False , _UpperCamelCase : List[str]=False , _UpperCamelCase : List[Any]=False , ) ->Optional[int]: snake_case_ = 4 snake_case_ = 3_2 snake_case_ = (3_2, 3_2) snake_case_ = torch.manual_seed(0 ) snake_case_ = torch.device(_UpperCamelCase ) snake_case_ = (batch_size, num_channels) + sizes snake_case_ = randn_tensor(_UpperCamelCase , generator=_UpperCamelCase , device=_UpperCamelCase ) snake_case_ = {'''hidden_states''': hidden_states} if include_temb: snake_case_ = 1_2_8 snake_case_ = randn_tensor((batch_size, temb_channels) , generator=_UpperCamelCase , device=_UpperCamelCase ) if include_res_hidden_states_tuple: snake_case_ = torch.manual_seed(1 ) snake_case_ = (randn_tensor(_UpperCamelCase , generator=_UpperCamelCase , device=_UpperCamelCase ),) if include_encoder_hidden_states: snake_case_ = floats_tensor((batch_size, 3_2, 3_2) ).to(_UpperCamelCase ) if include_skip_sample: snake_case_ = randn_tensor(((batch_size, 3) + sizes) , generator=_UpperCamelCase , device=_UpperCamelCase ) return dummy_input def snake_case__( self : Dict ) ->Optional[int]: snake_case_ = { '''in_channels''': 3_2, '''out_channels''': 3_2, '''temb_channels''': 1_2_8, } if self.block_type == "up": snake_case_ = 3_2 if self.block_type == "mid": init_dict.pop('''out_channels''' ) snake_case_ = self.dummy_input return init_dict, inputs_dict def snake_case__( self : Optional[int] , _UpperCamelCase : Union[str, Any] ) ->str: snake_case_, snake_case_ = self.prepare_init_args_and_inputs_for_common() snake_case_ = self.block_class(**_UpperCamelCase ) unet_block.to(_UpperCamelCase ) unet_block.eval() with torch.no_grad(): snake_case_ = unet_block(**_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ): snake_case_ = output[0] self.assertEqual(output.shape , self.output_shape ) snake_case_ = output[0, -1, -3:, -3:] snake_case_ = torch.tensor(_UpperCamelCase ).to(_UpperCamelCase ) assert torch_all_close(output_slice.flatten() , _UpperCamelCase , atol=5e-3 ) @unittest.skipIf(torch_device == '''mps''' , '''Training is not supported in mps''' ) def snake_case__( self : Any ) ->Union[str, Any]: snake_case_, snake_case_ = self.prepare_init_args_and_inputs_for_common() snake_case_ = self.block_class(**_UpperCamelCase ) model.to(_UpperCamelCase ) model.train() snake_case_ = model(**_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ): snake_case_ = output[0] snake_case_ = torch.device(_UpperCamelCase ) snake_case_ = randn_tensor(output.shape , device=_UpperCamelCase ) snake_case_ = torch.nn.functional.mse_loss(_UpperCamelCase , _UpperCamelCase ) loss.backward()
8
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 lowerCAmelCase_ = get_tests_dir('''fixtures''') class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Union[str, Any] ) ->Dict: # A mock response for an HTTP head request to emulate server down snake_case_ = mock.Mock() snake_case_ = 5_0_0 snake_case_ = {} snake_case_ = HTTPError snake_case_ = {} # Download this model to make sure it's in the cache. snake_case_ = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_UpperCamelCase ) as mock_head: snake_case_ = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # This check we did call the fake head request mock_head.assert_called() def snake_case__( self : List[str] ) ->Optional[int]: # This test is for deprecated behavior and can be removed in v5 snake_case_ = ViTImageProcessor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json''' ) def snake_case__( self : Any ) ->List[str]: with self.assertRaises(_UpperCamelCase ): # config is in subfolder, the following should not work without specifying the subfolder snake_case_ = AutoImageProcessor.from_pretrained('''hf-internal-testing/stable-diffusion-all-variants''' ) snake_case_ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/stable-diffusion-all-variants''' , subfolder='''feature_extractor''' ) self.assertIsNotNone(_UpperCamelCase ) @is_staging_test class snake_case_ ( unittest.TestCase ): '''simple docstring''' @classmethod def snake_case__( cls : List[Any] ) ->Dict: snake_case_ = TOKEN HfFolder.save_token(_UpperCamelCase ) @classmethod def snake_case__( cls : List[Any] ) ->Optional[int]: try: delete_repo(token=cls._token , repo_id='''test-image-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-image-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-image-processor''' ) except HTTPError: pass def snake_case__( self : Any ) ->List[Any]: snake_case_ = ViTImageProcessor.from_pretrained(_UpperCamelCase ) image_processor.push_to_hub('''test-image-processor''' , use_auth_token=self._token ) snake_case_ = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _UpperCamelCase , repo_id='''test-image-processor''' , push_to_hub=_UpperCamelCase , use_auth_token=self._token ) snake_case_ = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) def snake_case__( self : str ) ->List[str]: snake_case_ = ViTImageProcessor.from_pretrained(_UpperCamelCase ) image_processor.push_to_hub('''valid_org/test-image-processor''' , use_auth_token=self._token ) snake_case_ = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _UpperCamelCase , repo_id='''valid_org/test-image-processor-org''' , push_to_hub=_UpperCamelCase , use_auth_token=self._token ) snake_case_ = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor-org''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) def snake_case__( self : List[str] ) ->Tuple: CustomImageProcessor.register_for_auto_class() snake_case_ = CustomImageProcessor.from_pretrained(_UpperCamelCase ) image_processor.push_to_hub('''test-dynamic-image-processor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'''AutoImageProcessor''': '''custom_image_processing.CustomImageProcessor'''} , ) snake_case_ = AutoImageProcessor.from_pretrained( f'''{USER}/test-dynamic-image-processor''' , trust_remote_code=_UpperCamelCase ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , '''CustomImageProcessor''' )
8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = "philschmid/bart-large-cnn-samsum" SCREAMING_SNAKE_CASE : Tuple = ( "This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, " "and returns a summary of the text." ) SCREAMING_SNAKE_CASE : str = "summarizer" SCREAMING_SNAKE_CASE : str = AutoTokenizer SCREAMING_SNAKE_CASE : str = AutoModelForSeqaSeqLM SCREAMING_SNAKE_CASE : Optional[int] = ["text"] SCREAMING_SNAKE_CASE : Optional[int] = ["text"] def snake_case__( self : str , _UpperCamelCase : int ) ->Optional[int]: return self.pre_processor(_UpperCamelCase , return_tensors='''pt''' , truncation=_UpperCamelCase ) def snake_case__( self : Tuple , _UpperCamelCase : Optional[int] ) ->Tuple: return self.model.generate(**_UpperCamelCase )[0] def snake_case__( self : Optional[Any] , _UpperCamelCase : Optional[int] ) ->Any: return self.pre_processor.decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase )
8
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''post_extract_proj''': '''feature_projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.upsample.0''': '''encoder.upsample.projection''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): for attribute in key.split('''.''' ): snake_case_ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if weight_type is not None: snake_case_ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).shape else: snake_case_ = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case_ = value elif weight_type == "weight_g": snake_case_ = value elif weight_type == "weight_v": snake_case_ = value elif weight_type == "bias": snake_case_ = value else: snake_case_ = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = [] snake_case_ = fairseq_model.state_dict() snake_case_ = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case_ = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hf_model.config.feat_extract_norm == '''group''' , ) snake_case_ = True else: for key, mapped_key in MAPPING.items(): snake_case_ = '''sew.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: snake_case_ = True if "*" in mapped_key: snake_case_ = name.split(SCREAMING_SNAKE_CASE__ )[0].split('''.''' )[-2] snake_case_ = mapped_key.replace('''*''' , SCREAMING_SNAKE_CASE__ ) if "weight_g" in name: snake_case_ = '''weight_g''' elif "weight_v" in name: snake_case_ = '''weight_v''' elif "weight" in name: snake_case_ = '''weight''' elif "bias" in name: snake_case_ = '''bias''' else: snake_case_ = None set_recursively(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = full_name.split('''conv_layers.''' )[-1] snake_case_ = name.split('''.''' ) snake_case_ = int(items[0] ) snake_case_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) snake_case_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = SEWConfig() if is_finetuned: snake_case_ = model.wav_encoder.wav_model.cfg else: snake_case_ = model.cfg snake_case_ = fs_config.conv_bias snake_case_ = eval(fs_config.conv_feature_layers ) snake_case_ = [x[0] for x in conv_layers] snake_case_ = [x[1] for x in conv_layers] snake_case_ = [x[2] for x in conv_layers] snake_case_ = '''gelu''' snake_case_ = '''layer''' if fs_config.extractor_mode == '''layer_norm''' else '''group''' snake_case_ = 0.0 snake_case_ = fs_config.activation_fn.name snake_case_ = fs_config.encoder_embed_dim snake_case_ = 0.02 snake_case_ = fs_config.encoder_ffn_embed_dim snake_case_ = 1E-5 snake_case_ = fs_config.encoder_layerdrop snake_case_ = fs_config.encoder_attention_heads snake_case_ = fs_config.conv_pos_groups snake_case_ = fs_config.conv_pos snake_case_ = len(SCREAMING_SNAKE_CASE__ ) snake_case_ = fs_config.encoder_layers snake_case_ = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: snake_case_ = model.cfg snake_case_ = fs_config.final_dropout snake_case_ = fs_config.layerdrop snake_case_ = fs_config.activation_dropout snake_case_ = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 snake_case_ = fs_config.attention_dropout snake_case_ = fs_config.dropout_input snake_case_ = fs_config.dropout snake_case_ = fs_config.mask_channel_length snake_case_ = fs_config.mask_channel_prob snake_case_ = fs_config.mask_length snake_case_ = fs_config.mask_prob snake_case_ = '''Wav2Vec2FeatureExtractor''' snake_case_ = '''Wav2Vec2CTCTokenizer''' return config @torch.no_grad() def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=True ): if is_finetuned: snake_case_, snake_case_, snake_case_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: snake_case_, snake_case_, snake_case_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: snake_case_ = SEWConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) else: snake_case_ = convert_config(model[0] , SCREAMING_SNAKE_CASE__ ) snake_case_ = model[0].eval() snake_case_ = True if config.feat_extract_norm == '''layer''' else False snake_case_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , ) if is_finetuned: if dict_path: snake_case_ = Dictionary.load(SCREAMING_SNAKE_CASE__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case_ = target_dict.pad_index snake_case_ = target_dict.bos_index snake_case_ = target_dict.pad_index snake_case_ = target_dict.bos_index snake_case_ = target_dict.eos_index snake_case_ = len(target_dict.symbols ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''vocab.json''' ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(SCREAMING_SNAKE_CASE__ ) ) return os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices , SCREAMING_SNAKE_CASE__ ) snake_case_ = WavaVecaCTCTokenizer( SCREAMING_SNAKE_CASE__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=SCREAMING_SNAKE_CASE__ , ) snake_case_ = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case_ = SEWForCTC(SCREAMING_SNAKE_CASE__ ) else: snake_case_ = SEWModel(SCREAMING_SNAKE_CASE__ ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ ) recursively_load_weights(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--is_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) lowerCAmelCase_ = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
8
from collections import deque from .hash_table import HashTable class snake_case_ ( __A ): '''simple docstring''' def __init__( self : int , *_UpperCamelCase : int , **_UpperCamelCase : Tuple ) ->Tuple: super().__init__(*_UpperCamelCase , **_UpperCamelCase ) def snake_case__( self : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Dict ) ->Tuple: snake_case_ = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_UpperCamelCase ) snake_case_ = self.values[key] def snake_case__( self : List[Any] ) ->str: return ( sum(self.charge_factor - len(_UpperCamelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def snake_case__( self : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int]=None ) ->str: if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_UpperCamelCase ) == 0 ): return key return super()._collision_resolution(_UpperCamelCase , _UpperCamelCase )
8
1
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
8
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = len(SCREAMING_SNAKE_CASE__ ) # We need to create solution object to save path. snake_case_ = [[0 for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ )] snake_case_ = run_maze(SCREAMING_SNAKE_CASE__ , 0 , 0 , SCREAMING_SNAKE_CASE__ ) if solved: print('''\n'''.join(str(SCREAMING_SNAKE_CASE__ ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = len(SCREAMING_SNAKE_CASE__ ) # Final check point. if i == j == (size - 1): snake_case_ = 1 return True snake_case_ = (not i < 0) and (not j < 0) # Check lower bounds snake_case_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. snake_case_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited snake_case_ = 1 # check for directions if ( run_maze(SCREAMING_SNAKE_CASE__ , i + 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , j + 1 , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , j - 1 , SCREAMING_SNAKE_CASE__ ) ): return True snake_case_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
8
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''google/switch-base-8''': '''https://huggingface.co/google/switch-base-8/blob/main/config.json''', } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = "switch_transformers" SCREAMING_SNAKE_CASE : Tuple = ["past_key_values"] SCREAMING_SNAKE_CASE : int = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : Tuple , _UpperCamelCase : Optional[int]=3_2_1_2_8 , _UpperCamelCase : Any=7_6_8 , _UpperCamelCase : Optional[Any]=6_4 , _UpperCamelCase : List[Any]=2_0_4_8 , _UpperCamelCase : Union[str, Any]=6_4 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : List[Any]=3 , _UpperCamelCase : str=1_2 , _UpperCamelCase : Union[str, Any]=3 , _UpperCamelCase : Tuple=1_2 , _UpperCamelCase : Dict=8 , _UpperCamelCase : Any=False , _UpperCamelCase : Dict=0.01 , _UpperCamelCase : Optional[Any]="float32" , _UpperCamelCase : Optional[int]=False , _UpperCamelCase : List[str]=3_2 , _UpperCamelCase : str=1_2_8 , _UpperCamelCase : Tuple=0.1 , _UpperCamelCase : List[str]=1e-6 , _UpperCamelCase : Optional[int]=0.001 , _UpperCamelCase : Optional[int]=0.001 , _UpperCamelCase : Any=1.0 , _UpperCamelCase : Optional[int]="relu" , _UpperCamelCase : Dict=True , _UpperCamelCase : Optional[int]=False , _UpperCamelCase : Dict=True , _UpperCamelCase : Tuple=0 , _UpperCamelCase : List[Any]=1 , **_UpperCamelCase : Tuple , ) ->str: snake_case_ = vocab_size snake_case_ = d_model snake_case_ = d_kv snake_case_ = d_ff snake_case_ = num_sparse_encoder_layers snake_case_ = num_layers snake_case_ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry snake_case_ = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: snake_case_ = self.num_layers // self.num_sparse_encoder_layers else: snake_case_ = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: snake_case_ = self.num_decoder_layers // self.num_sparse_decoder_layers else: snake_case_ = self.num_decoder_layers # HACK: this will create 0 sparse layers snake_case_ = num_heads snake_case_ = num_experts snake_case_ = expert_capacity snake_case_ = router_bias snake_case_ = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) snake_case_ = router_dtype snake_case_ = router_ignore_padding_tokens snake_case_ = relative_attention_num_buckets snake_case_ = relative_attention_max_distance snake_case_ = dropout_rate snake_case_ = layer_norm_epsilon snake_case_ = initializer_factor snake_case_ = feed_forward_proj snake_case_ = use_cache snake_case_ = add_router_probs snake_case_ = router_z_loss_coef snake_case_ = router_aux_loss_coef snake_case_ = self.feed_forward_proj.split('''-''' ) snake_case_ = act_info[-1] snake_case_ = act_info[0] == '''gated''' if len(_UpperCamelCase ) > 1 and act_info[0] != "gated" or len(_UpperCamelCase ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": snake_case_ = '''gelu_new''' super().__init__( pad_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase , )
8
from decimal import Decimal, getcontext from math import ceil, factorial def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError('''Undefined for non-integers''' ) elif precision < 1: raise ValueError('''Undefined for non-natural numbers''' ) snake_case_ = precision snake_case_ = ceil(precision / 14 ) snake_case_ = 426880 * Decimal(10005 ).sqrt() snake_case_ = 1 snake_case_ = 13591409 snake_case_ = Decimal(SCREAMING_SNAKE_CASE__ ) for k in range(1 , SCREAMING_SNAKE_CASE__ ): snake_case_ = factorial(6 * k ) // (factorial(3 * k ) * factorial(SCREAMING_SNAKE_CASE__ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": lowerCAmelCase_ = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
8
1
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( '''kwargs, expected''' , [ ({'''num_shards''': 0, '''max_num_jobs''': 1}, []), ({'''num_shards''': 10, '''max_num_jobs''': 1}, [range(10 )]), ({'''num_shards''': 10, '''max_num_jobs''': 10}, [range(SCREAMING_SNAKE_CASE__ , i + 1 ) for i in range(10 )]), ({'''num_shards''': 1, '''max_num_jobs''': 10}, [range(1 )]), ({'''num_shards''': 10, '''max_num_jobs''': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'''num_shards''': 3, '''max_num_jobs''': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = _distribute_shards(**SCREAMING_SNAKE_CASE__ ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, max_num_jobs, expected''' , [ ({'''foo''': 0}, 10, [{'''foo''': 0}]), ({'''shards''': [0, 1, 2, 3]}, 1, [{'''shards''': [0, 1, 2, 3]}]), ({'''shards''': [0, 1, 2, 3]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}, {'''shards''': [2]}, {'''shards''': [3]}]), ({'''shards''': [0, 1]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}]), ({'''shards''': [0, 1, 2, 3]}, 2, [{'''shards''': [0, 1]}, {'''shards''': [2, 3]}]), ] , ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = _split_gen_kwargs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, expected''' , [ ({'''foo''': 0}, 1), ({'''shards''': [0]}, 1), ({'''shards''': [0, 1, 2, 3]}, 4), ({'''shards''': [0, 1, 2, 3], '''foo''': 0}, 4), ({'''shards''': [0, 1, 2, 3], '''other''': (0, 1)}, 4), ({'''shards''': [0, 1, 2, 3], '''shards2''': [0, 1]}, RuntimeError), ] , ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if expected is RuntimeError: with pytest.raises(SCREAMING_SNAKE_CASE__ ): _number_of_shards_in_gen_kwargs(SCREAMING_SNAKE_CASE__ ) else: snake_case_ = _number_of_shards_in_gen_kwargs(SCREAMING_SNAKE_CASE__ ) assert out == expected
8
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class snake_case_ ( __A ): '''simple docstring''' def __init__( self : int , _UpperCamelCase : pyspark.sql.DataFrame , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Optional[Features] = None , _UpperCamelCase : bool = True , _UpperCamelCase : str = None , _UpperCamelCase : bool = False , _UpperCamelCase : str = None , _UpperCamelCase : bool = True , _UpperCamelCase : str = "arrow" , **_UpperCamelCase : Tuple , ) ->str: super().__init__( split=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase , streaming=_UpperCamelCase , **_UpperCamelCase , ) snake_case_ = load_from_cache_file snake_case_ = file_format snake_case_ = Spark( df=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , working_dir=_UpperCamelCase , **_UpperCamelCase , ) def snake_case__( self : int ) ->Tuple: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) snake_case_ = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=_UpperCamelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
8
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable lowerCAmelCase_ = {'''configuration_dpt''': ['''DPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DPTConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''DPTFeatureExtractor'''] lowerCAmelCase_ = ['''DPTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''DPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DPTForDepthEstimation''', '''DPTForSemanticSegmentation''', '''DPTModel''', '''DPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''microsoft/biogpt''': '''https://huggingface.co/microsoft/biogpt/resolve/main/config.json''', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = "biogpt" def __init__( self : Any , _UpperCamelCase : Dict=4_2_3_8_4 , _UpperCamelCase : Dict=1_0_2_4 , _UpperCamelCase : Optional[Any]=2_4 , _UpperCamelCase : Union[str, Any]=1_6 , _UpperCamelCase : Union[str, Any]=4_0_9_6 , _UpperCamelCase : Union[str, Any]="gelu" , _UpperCamelCase : Tuple=0.1 , _UpperCamelCase : int=0.1 , _UpperCamelCase : Union[str, Any]=1_0_2_4 , _UpperCamelCase : Optional[int]=0.02 , _UpperCamelCase : str=1e-12 , _UpperCamelCase : List[str]=True , _UpperCamelCase : str=True , _UpperCamelCase : List[str]=0.0 , _UpperCamelCase : Optional[Any]=0.0 , _UpperCamelCase : int=1 , _UpperCamelCase : List[Any]=0 , _UpperCamelCase : Any=2 , **_UpperCamelCase : List[str] , ) ->List[Any]: snake_case_ = vocab_size snake_case_ = max_position_embeddings snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = scale_embedding snake_case_ = use_cache snake_case_ = layerdrop snake_case_ = activation_dropout super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
8
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCAmelCase_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase_ = { '''vocab_file''': { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''unc-nlp/lxmert-base-uncased''': ( '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase_ = { '''unc-nlp/lxmert-base-uncased''': 5_12, } lowerCAmelCase_ = { '''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True}, } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Any = LxmertTokenizer def __init__( self : Union[str, Any] , _UpperCamelCase : int=None , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : Dict=True , _UpperCamelCase : Any="[UNK]" , _UpperCamelCase : Tuple="[SEP]" , _UpperCamelCase : List[Any]="[PAD]" , _UpperCamelCase : Union[str, Any]="[CLS]" , _UpperCamelCase : str="[MASK]" , _UpperCamelCase : List[str]=True , _UpperCamelCase : List[str]=None , **_UpperCamelCase : List[str] , ) ->Any: super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , **_UpperCamelCase , ) snake_case_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _UpperCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _UpperCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _UpperCamelCase ) != tokenize_chinese_chars ): snake_case_ = getattr(_UpperCamelCase , normalizer_state.pop('''type''' ) ) snake_case_ = do_lower_case snake_case_ = strip_accents snake_case_ = tokenize_chinese_chars snake_case_ = normalizer_class(**_UpperCamelCase ) snake_case_ = do_lower_case def snake_case__( self : Optional[int] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str]=None ) ->List[Any]: snake_case_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__( self : int , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__( self : Any , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) ->Tuple[str]: snake_case_ = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
8
1
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = "char" SCREAMING_SNAKE_CASE : Optional[Any] = "bpe" SCREAMING_SNAKE_CASE : List[str] = "wp" lowerCAmelCase_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = ["image_processor", "char_tokenizer"] SCREAMING_SNAKE_CASE : str = "ViTImageProcessor" SCREAMING_SNAKE_CASE : Any = "MgpstrTokenizer" def __init__( self : Tuple , _UpperCamelCase : int=None , _UpperCamelCase : List[str]=None , **_UpperCamelCase : str ) ->Union[str, Any]: snake_case_ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _UpperCamelCase , ) snake_case_ = kwargs.pop('''feature_extractor''' ) snake_case_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) snake_case_ = tokenizer snake_case_ = AutoTokenizer.from_pretrained('''gpt2''' ) snake_case_ = AutoTokenizer.from_pretrained('''bert-base-uncased''' ) super().__init__(_UpperCamelCase , _UpperCamelCase ) def __call__( self : Optional[Any] , _UpperCamelCase : List[Any]=None , _UpperCamelCase : Optional[int]=None , _UpperCamelCase : Union[str, Any]=None , **_UpperCamelCase : Any ) ->str: if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: snake_case_ = self.image_processor(_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase ) if text is not None: snake_case_ = self.char_tokenizer(_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase ) if text is None: return inputs elif images is None: return encodings else: snake_case_ = encodings['''input_ids'''] return inputs def snake_case__( self : Optional[Any] , _UpperCamelCase : Any ) ->Optional[Any]: snake_case_, snake_case_, snake_case_ = sequences snake_case_ = char_preds.size(0 ) snake_case_, snake_case_ = self._decode_helper(_UpperCamelCase , '''char''' ) snake_case_, snake_case_ = self._decode_helper(_UpperCamelCase , '''bpe''' ) snake_case_, snake_case_ = self._decode_helper(_UpperCamelCase , '''wp''' ) snake_case_ = [] snake_case_ = [] for i in range(_UpperCamelCase ): snake_case_ = [char_scores[i], bpe_scores[i], wp_scores[i]] snake_case_ = [char_strs[i], bpe_strs[i], wp_strs[i]] snake_case_ = scores.index(max(_UpperCamelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) snake_case_ = {} snake_case_ = final_strs snake_case_ = final_scores snake_case_ = char_strs snake_case_ = bpe_strs snake_case_ = wp_strs return out def snake_case__( self : Optional[int] , _UpperCamelCase : Any , _UpperCamelCase : Optional[Any] ) ->str: if format == DecodeType.CHARACTER: snake_case_ = self.char_decode snake_case_ = 1 snake_case_ = '''[s]''' elif format == DecodeType.BPE: snake_case_ = self.bpe_decode snake_case_ = 2 snake_case_ = '''#''' elif format == DecodeType.WORDPIECE: snake_case_ = self.wp_decode snake_case_ = 1_0_2 snake_case_ = '''[SEP]''' else: raise ValueError(f'''Format {format} is not supported.''' ) snake_case_, snake_case_ = [], [] snake_case_ = pred_logits.size(0 ) snake_case_ = pred_logits.size(1 ) snake_case_, snake_case_ = pred_logits.topk(1 , dim=-1 , largest=_UpperCamelCase , sorted=_UpperCamelCase ) snake_case_ = preds_index.view(-1 , _UpperCamelCase )[:, 1:] snake_case_ = decoder(_UpperCamelCase ) snake_case_, snake_case_ = torch.nn.functional.softmax(_UpperCamelCase , dim=2 ).max(dim=2 ) snake_case_ = preds_max_prob[:, 1:] for index in range(_UpperCamelCase ): snake_case_ = preds_str[index].find(_UpperCamelCase ) snake_case_ = preds_str[index][:pred_eos] snake_case_ = preds_index[index].cpu().tolist() snake_case_ = pred_index.index(_UpperCamelCase ) if eos_token in pred_index else -1 snake_case_ = preds_max_prob[index][: pred_eos_index + 1] snake_case_ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(_UpperCamelCase ) conf_scores.append(_UpperCamelCase ) return dec_strs, conf_scores def snake_case__( self : int , _UpperCamelCase : List[str] ) ->Any: snake_case_ = [seq.replace(''' ''' , '''''' ) for seq in self.char_tokenizer.batch_decode(_UpperCamelCase )] return decode_strs def snake_case__( self : Optional[int] , _UpperCamelCase : List[Any] ) ->List[str]: return self.bpe_tokenizer.batch_decode(_UpperCamelCase ) def snake_case__( self : Tuple , _UpperCamelCase : Union[str, Any] ) ->Dict: snake_case_ = [seq.replace(''' ''' , '''''' ) for seq in self.wp_tokenizer.batch_decode(_UpperCamelCase )] return decode_strs
8
import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = 10001 ): try: snake_case_ = int(SCREAMING_SNAKE_CASE__ ) except (TypeError, ValueError): raise TypeError('''Parameter nth must be int or castable to int.''' ) from None if nth <= 0: raise ValueError('''Parameter nth must be greater than or equal to one.''' ) snake_case_ = [] snake_case_ = 2 while len(SCREAMING_SNAKE_CASE__ ) < nth: if is_prime(SCREAMING_SNAKE_CASE__ ): primes.append(SCREAMING_SNAKE_CASE__ ) num += 1 else: num += 1 return primes[len(SCREAMING_SNAKE_CASE__ ) - 1] if __name__ == "__main__": print(f"""{solution() = }""")
8
1
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class snake_case_ ( __A ): '''simple docstring''' def snake_case__( self : int , _UpperCamelCase : float ) ->float: return 0.0 def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) snake_case_ = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = 512 snake_case_ = [1] + [0] * (size - 1) snake_case_ = [filter_type.process(SCREAMING_SNAKE_CASE__ ) for item in inputs] snake_case_ = [0] * (samplerate - size) # zero-padding outputs += filler snake_case_ = np.abs(np.fft.fft(SCREAMING_SNAKE_CASE__ ) ) snake_case_ = 20 * np.logaa(SCREAMING_SNAKE_CASE__ ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) # Display within reasonable bounds snake_case_ = get_bounds(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel('''Gain (dB)''' ) plt.plot(SCREAMING_SNAKE_CASE__ ) plt.show() def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = 512 snake_case_ = [1] + [0] * (size - 1) snake_case_ = [filter_type.process(SCREAMING_SNAKE_CASE__ ) for item in inputs] snake_case_ = [0] * (samplerate - size) # zero-padding outputs += filler snake_case_ = np.angle(np.fft.fft(SCREAMING_SNAKE_CASE__ ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel('''Phase shift (Radians)''' ) plt.plot(np.unwrap(SCREAMING_SNAKE_CASE__ , -2 * pi ) ) plt.show()
8
from sklearn.metrics import mean_squared_error import datasets lowerCAmelCase_ = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' lowerCAmelCase_ = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' lowerCAmelCase_ = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): '''simple docstring''' def snake_case__( self : Optional[int] ) ->List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] , ) def snake_case__( self : List[Any] ) ->Optional[int]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def snake_case__( self : int , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any=None , _UpperCamelCase : Optional[int]="uniform_average" , _UpperCamelCase : Tuple=True ) ->Tuple: snake_case_ = mean_squared_error( _UpperCamelCase , _UpperCamelCase , sample_weight=_UpperCamelCase , multioutput=_UpperCamelCase , squared=_UpperCamelCase ) return {"mse": mse}
8
1
import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = SwinConfig() snake_case_ = swin_name.split('''_''' ) snake_case_ = name_split[1] snake_case_ = int(name_split[4] ) snake_case_ = int(name_split[3][-1] ) if model_size == "tiny": snake_case_ = 96 snake_case_ = (2, 2, 6, 2) snake_case_ = (3, 6, 12, 24) elif model_size == "small": snake_case_ = 96 snake_case_ = (2, 2, 18, 2) snake_case_ = (3, 6, 12, 24) elif model_size == "base": snake_case_ = 128 snake_case_ = (2, 2, 18, 2) snake_case_ = (4, 8, 16, 32) else: snake_case_ = 192 snake_case_ = (2, 2, 18, 2) snake_case_ = (6, 12, 24, 48) if "in22k" in swin_name: snake_case_ = 21841 else: snake_case_ = 1000 snake_case_ = '''huggingface/label-files''' snake_case_ = '''imagenet-1k-id2label.json''' snake_case_ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' ) , '''r''' ) ) snake_case_ = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} snake_case_ = img_size snake_case_ = num_classes snake_case_ = embed_dim snake_case_ = depths snake_case_ = num_heads snake_case_ = window_size return config def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if "patch_embed.proj" in name: snake_case_ = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: snake_case_ = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: snake_case_ = '''encoder.''' + name if "attn.proj" in name: snake_case_ = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: snake_case_ = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: snake_case_ = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: snake_case_ = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: snake_case_ = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: snake_case_ = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "norm.weight": snake_case_ = '''layernorm.weight''' if name == "norm.bias": snake_case_ = '''layernorm.bias''' if "head" in name: snake_case_ = name.replace('''head''' , '''classifier''' ) else: snake_case_ = '''swin.''' + name return name def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): for key in orig_state_dict.copy().keys(): snake_case_ = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "mask" in key: continue elif "qkv" in key: snake_case_ = key.split('''.''' ) snake_case_ = int(key_split[1] ) snake_case_ = int(key_split[3] ) snake_case_ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[ dim : dim * 2, : ] snake_case_ = val[-dim:, :] else: snake_case_ = val[ :dim ] snake_case_ = val[ dim : dim * 2 ] snake_case_ = val[ -dim: ] else: snake_case_ = val return orig_state_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = timm.create_model(SCREAMING_SNAKE_CASE__ , pretrained=SCREAMING_SNAKE_CASE__ ) timm_model.eval() snake_case_ = get_swin_config(SCREAMING_SNAKE_CASE__ ) snake_case_ = SwinForImageClassification(SCREAMING_SNAKE_CASE__ ) model.eval() snake_case_ = convert_state_dict(timm_model.state_dict() , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) snake_case_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case_ = AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swin_name.replace('''_''' , '''-''' ) ) ) snake_case_ = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) snake_case_ = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' ) snake_case_ = timm_model(inputs['''pixel_values'''] ) snake_case_ = model(**SCREAMING_SNAKE_CASE__ ).logits assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) print(F'''Saving model {swin_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swin_name''', default='''swin_tiny_patch4_window7_224''', type=str, help='''Name of the Swin timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCAmelCase_ = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
8
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = [] if len(SCREAMING_SNAKE_CASE__ ) == 1: return [nums.copy()] for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): snake_case_ = nums.pop(0 ) snake_case_ = permute(SCREAMING_SNAKE_CASE__ ) for perm in permutations: perm.append(SCREAMING_SNAKE_CASE__ ) result.extend(SCREAMING_SNAKE_CASE__ ) nums.append(SCREAMING_SNAKE_CASE__ ) return result def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): def backtrack(SCREAMING_SNAKE_CASE__ ): if start == len(SCREAMING_SNAKE_CASE__ ) - 1: output.append(nums[:] ) else: for i in range(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ): snake_case_, snake_case_ = nums[i], nums[start] backtrack(start + 1 ) snake_case_, snake_case_ = nums[i], nums[start] # backtrack snake_case_ = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function lowerCAmelCase_ = permutea([1, 2, 3]) print(res) doctest.testmod()
8
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class snake_case_ ( __A , __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = StableDiffusionLatentUpscalePipeline SCREAMING_SNAKE_CASE : Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } SCREAMING_SNAKE_CASE : int = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} SCREAMING_SNAKE_CASE : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS SCREAMING_SNAKE_CASE : Optional[int] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess SCREAMING_SNAKE_CASE : str = frozenset([] ) SCREAMING_SNAKE_CASE : List[Any] = True @property def snake_case__( self : str ) ->int: snake_case_ = 1 snake_case_ = 4 snake_case_ = (1_6, 1_6) snake_case_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_UpperCamelCase ) return image def snake_case__( self : Optional[Any] ) ->Dict: torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=_UpperCamelCase , block_out_channels=[3_2, 3_2, 6_4, 6_4] , time_cond_proj_dim=1_6_0 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=3_2 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=_UpperCamelCase , only_cross_attention=_UpperCamelCase , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) snake_case_ = AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4, 6_4] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) snake_case_ = EulerDiscreteScheduler(prediction_type='''sample''' ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''quick_gelu''' , projection_dim=5_1_2 , ) snake_case_ = CLIPTextModel(_UpperCamelCase ) snake_case_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case_ = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def snake_case__( self : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple=0 ) ->Optional[Any]: if str(_UpperCamelCase ).startswith('''mps''' ): snake_case_ = torch.manual_seed(_UpperCamelCase ) else: snake_case_ = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) snake_case_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def snake_case__( self : Dict ) ->int: snake_case_ = '''cpu''' snake_case_ = self.get_dummy_components() snake_case_ = self.pipeline_class(**_UpperCamelCase ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = pipe(**_UpperCamelCase ).images snake_case_ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_5_6, 2_5_6, 3) ) snake_case_ = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) snake_case_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCamelCase , 1e-3 ) def snake_case__( self : Optional[Any] ) ->Tuple: super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def snake_case__( self : Union[str, Any] ) ->Tuple: super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def snake_case__( self : Optional[Any] ) ->Tuple: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def snake_case__( self : Any ) ->Dict: super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def snake_case__( self : List[str] ) ->List[Any]: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def snake_case__( self : Any ) ->List[str]: super().test_save_load_local(expected_max_difference=3e-3 ) def snake_case__( self : List[str] ) ->List[str]: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def snake_case__( self : str ) ->Optional[Any]: snake_case_ = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] snake_case_ = self.get_dummy_components() snake_case_ = self.pipeline_class(**_UpperCamelCase ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_UpperCamelCase ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = 2 snake_case_ = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue snake_case_ = getattr(_UpperCamelCase , scheduler_enum.name ) snake_case_ = scheduler_cls.from_config(pipe.scheduler.config ) snake_case_ = pipe(**_UpperCamelCase )[0] outputs.append(_UpperCamelCase ) assert check_same_shape(_UpperCamelCase ) @require_torch_gpu @slow class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Any ) ->int: super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__( self : List[Any] ) ->Any: snake_case_ = torch.manual_seed(3_3 ) snake_case_ = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) snake_case_ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case_ = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' snake_case_ = pipe(_UpperCamelCase , generator=_UpperCamelCase , output_type='''latent''' ).images snake_case_ = upscaler( prompt=_UpperCamelCase , image=_UpperCamelCase , num_inference_steps=2_0 , guidance_scale=0 , generator=_UpperCamelCase , output_type='''np''' , ).images[0] snake_case_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def snake_case__( self : Optional[int] ) ->Optional[Any]: snake_case_ = torch.manual_seed(3_3 ) snake_case_ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case_ = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) snake_case_ = upscaler( prompt=_UpperCamelCase , image=_UpperCamelCase , num_inference_steps=2_0 , guidance_scale=0 , generator=_UpperCamelCase , output_type='''np''' , ).images[0] snake_case_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5e-2
8
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
8
1
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def __SCREAMING_SNAKE_CASE (*SCREAMING_SNAKE_CASE__ ): with open(SCREAMING_SNAKE_CASE__ , '''r''' ) as fh: fcntl.flock(SCREAMING_SNAKE_CASE__ , fcntl.LOCK_EX ) try: print(*SCREAMING_SNAKE_CASE__ ) finally: fcntl.flock(SCREAMING_SNAKE_CASE__ , fcntl.LOCK_UN ) lowerCAmelCase_ = int(os.environ['''LOCAL_RANK''']) torch.cuda.set_device(local_rank) lowerCAmelCase_ = torch.device('''cuda''', local_rank) lowerCAmelCase_ = socket.gethostname() lowerCAmelCase_ = f"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group('''nccl''') dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank lowerCAmelCase_ = dist.get_rank() lowerCAmelCase_ = dist.get_world_size() printflock(f"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(f"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(f"""{gpu} is broken""") raise
8
from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=__A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = ["note_seq"] def __init__( self : Optional[int] , *_UpperCamelCase : str , **_UpperCamelCase : Optional[int] ) ->Any: requires_backends(self , ['''note_seq'''] ) @classmethod def snake_case__( cls : int , *_UpperCamelCase : Any , **_UpperCamelCase : List[Any] ) ->int: requires_backends(cls , ['''note_seq'''] ) @classmethod def snake_case__( cls : Dict , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : Union[str, Any] ) ->List[str]: requires_backends(cls , ['''note_seq'''] )
8
1
from statistics import mean import numpy as np def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = 0 # Number of processes finished snake_case_ = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. snake_case_ = [0] * no_of_process # List to include calculation results snake_case_ = [0] * no_of_process # Sort by arrival time. snake_case_ = [burst_time[i] for i in np.argsort(SCREAMING_SNAKE_CASE__ )] snake_case_ = [process_name[i] for i in np.argsort(SCREAMING_SNAKE_CASE__ )] arrival_time.sort() while no_of_process > finished_process_count: snake_case_ = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: snake_case_ = arrival_time[i] snake_case_ = 0 # Index showing the location of the process being performed snake_case_ = 0 # Saves the current response ratio. snake_case_ = 0 for i in range(0 , SCREAMING_SNAKE_CASE__ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: snake_case_ = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: snake_case_ = temp snake_case_ = i # Calculate the turn around time snake_case_ = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. snake_case_ = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = [0] * no_of_process for i in range(0 , SCREAMING_SNAKE_CASE__ ): snake_case_ = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": lowerCAmelCase_ = 5 lowerCAmelCase_ = ['''A''', '''B''', '''C''', '''D''', '''E'''] lowerCAmelCase_ = [1, 2, 3, 4, 5] lowerCAmelCase_ = [1, 2, 3, 4, 5] lowerCAmelCase_ = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) lowerCAmelCase_ = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''') for i in range(0, no_of_process): print( f"""{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t""" f"""{turn_around_time[i]}\t\t\t{waiting_time[i]}""" ) print(f"""average waiting time : {mean(waiting_time):.5f}""") print(f"""average turn around time : {mean(turn_around_time):.5f}""")
8
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = "vit_msn" def __init__( self : Dict , _UpperCamelCase : Optional[int]=7_6_8 , _UpperCamelCase : Optional[Any]=1_2 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : str=3_0_7_2 , _UpperCamelCase : Tuple="gelu" , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : List[str]=0.02 , _UpperCamelCase : List[Any]=1e-06 , _UpperCamelCase : Any=2_2_4 , _UpperCamelCase : Optional[Any]=1_6 , _UpperCamelCase : Any=3 , _UpperCamelCase : str=True , **_UpperCamelCase : Any , ) ->int: super().__init__(**_UpperCamelCase ) snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias
8
1
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): # This function is recursive snake_case_ = len(SCREAMING_SNAKE_CASE__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else snake_case_ = array[0] snake_case_ = False snake_case_ = 1 snake_case_ = [] while not is_found and i < array_length: if array[i] < pivot: snake_case_ = True snake_case_ = [element for element in array[i:] if element >= array[i]] snake_case_ = longest_subsequence(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > len(SCREAMING_SNAKE_CASE__ ): snake_case_ = temp_array else: i += 1 snake_case_ = [element for element in array[1:] if element >= pivot] snake_case_ = [pivot, *longest_subsequence(SCREAMING_SNAKE_CASE__ )] if len(SCREAMING_SNAKE_CASE__ ) > len(SCREAMING_SNAKE_CASE__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
8
from __future__ import annotations from math import pi, sqrt def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
8
1
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : float = 3.0 class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Optional[Any] ) ->Optional[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_UpperCamelCase ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} ) @require_cuda def snake_case__( self : Optional[int] ) ->List[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. snake_case_ = GradScalerKwargs(init_scale=1_0_2_4 , growth_factor=2 ) AcceleratorState._reset_state() snake_case_ = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) snake_case_ = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_0_0_0 ) self.assertEqual(scaler._enabled , _UpperCamelCase ) @require_multi_gpu def snake_case__( self : Tuple ) ->Any: snake_case_ = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) if __name__ == "__main__": lowerCAmelCase_ = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) lowerCAmelCase_ = Accelerator(kwargs_handlers=[ddp_scaler]) lowerCAmelCase_ = torch.nn.Linear(1_00, 2_00) lowerCAmelCase_ = accelerator.prepare(model) # Check the values changed in kwargs lowerCAmelCase_ = '''''' lowerCAmelCase_ = model.bucket_bytes_cap // (10_24 * 10_24) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
8
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return x + 2 class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Optional[Any] ) ->int: snake_case_ = '''x = 3''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase , {'''x''': 3} ) snake_case_ = '''x = y''' snake_case_ = {'''y''': 5} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 5, '''y''': 5} ) def snake_case__( self : Dict ) ->Optional[int]: snake_case_ = '''y = add_two(x)''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} ) # Won't work without the tool with CaptureStdout() as out: snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result is None assert "tried to execute add_two" in out.out def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = '''x = 3''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase , {'''x''': 3} ) def snake_case__( self : Optional[int] ) ->Optional[int]: snake_case_ = '''test_dict = {\'x\': x, \'y\': add_two(x)}''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} ) self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def snake_case__( self : Dict ) ->str: snake_case_ = '''x = 3\ny = 5''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} ) def snake_case__( self : str ) ->Tuple: snake_case_ = '''text = f\'This is x: {x}.\'''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''text''': '''This is x: 3.'''} ) def snake_case__( self : Optional[Any] ) ->List[str]: snake_case_ = '''if x <= 3:\n y = 2\nelse:\n y = 5''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 2} ) snake_case_ = {'''x''': 8} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 8, '''y''': 5} ) def snake_case__( self : str ) ->str: snake_case_ = '''test_list = [x, add_two(x)]''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , [3, 5] ) self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_list''': [3, 5]} ) def snake_case__( self : Any ) ->List[Any]: snake_case_ = '''y = x''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 3} ) def snake_case__( self : Optional[int] ) ->Dict: snake_case_ = '''test_list = [x, add_two(x)]\ntest_list[1]''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_list''': [3, 5]} ) snake_case_ = '''test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def snake_case__( self : Optional[Any] ) ->int: snake_case_ = '''x = 0\nfor i in range(3):\n x = i''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {'''range''': range} , state=_UpperCamelCase ) assert result == 2 self.assertDictEqual(_UpperCamelCase , {'''x''': 2, '''i''': 2} )
8
1
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline lowerCAmelCase_ = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = '''cpu''' lowerCAmelCase_ = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' lowerCAmelCase_ = '''path-to-your-trained-model''' lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: lowerCAmelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) lowerCAmelCase_ = pipe.to(device) # to channels last lowerCAmelCase_ = pipe.unet.to(memory_format=torch.channels_last) lowerCAmelCase_ = pipe.vae.to(memory_format=torch.channels_last) lowerCAmelCase_ = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: lowerCAmelCase_ = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex lowerCAmelCase_ = torch.randn(2, 4, 64, 64) lowerCAmelCase_ = torch.rand(1) * 9_99 lowerCAmelCase_ = torch.randn(2, 77, 7_68) lowerCAmelCase_ = (sample, timestep, encoder_hidden_status) try: lowerCAmelCase_ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: lowerCAmelCase_ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) lowerCAmelCase_ = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) lowerCAmelCase_ = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: lowerCAmelCase_ = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute lowerCAmelCase_ = 6_66 lowerCAmelCase_ = torch.Generator(device).manual_seed(seed) lowerCAmelCase_ = {'''generator''': generator} if args.steps is not None: lowerCAmelCase_ = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): lowerCAmelCase_ = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
8
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Any , _UpperCamelCase : Any , _UpperCamelCase : Tuple ) ->List[Any]: return f'''gaussian_noise_s={seed}_shape={'_'.join([str(_UpperCamelCase ) for s in shape] )}.npy''' def snake_case__( self : Any ) ->List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case__( self : int , _UpperCamelCase : Union[str, Any]=0 , _UpperCamelCase : int=(4, 4, 6_4, 6_4) , _UpperCamelCase : Optional[int]=False ) ->Tuple: snake_case_ = jnp.bfloataa if fpaa else jnp.floataa snake_case_ = jnp.array(load_hf_numpy(self.get_file_format(_UpperCamelCase , _UpperCamelCase ) ) , dtype=_UpperCamelCase ) return image def snake_case__( self : List[Any] , _UpperCamelCase : Optional[Any]=False , _UpperCamelCase : Optional[int]="CompVis/stable-diffusion-v1-4" ) ->Optional[Any]: snake_case_ = jnp.bfloataa if fpaa else jnp.floataa snake_case_ = '''bf16''' if fpaa else None snake_case_, snake_case_ = FlaxUNetaDConditionModel.from_pretrained( _UpperCamelCase , subfolder='''unet''' , dtype=_UpperCamelCase , revision=_UpperCamelCase ) return model, params def snake_case__( self : Dict , _UpperCamelCase : List[Any]=0 , _UpperCamelCase : Tuple=(4, 7_7, 7_6_8) , _UpperCamelCase : List[Any]=False ) ->int: snake_case_ = jnp.bfloataa if fpaa else jnp.floataa snake_case_ = jnp.array(load_hf_numpy(self.get_file_format(_UpperCamelCase , _UpperCamelCase ) ) , dtype=_UpperCamelCase ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [1_7, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_0_0_0, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def snake_case__( self : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] ) ->Union[str, Any]: snake_case_, snake_case_ = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=_UpperCamelCase ) snake_case_ = self.get_latents(_UpperCamelCase , fpaa=_UpperCamelCase ) snake_case_ = self.get_encoder_hidden_states(_UpperCamelCase , fpaa=_UpperCamelCase ) snake_case_ = model.apply( {'''params''': params} , _UpperCamelCase , jnp.array(_UpperCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=_UpperCamelCase , ).sample assert sample.shape == latents.shape snake_case_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) snake_case_ = jnp.array(_UpperCamelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [1_7, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_0_0_0, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def snake_case__( self : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str ) ->Dict: snake_case_, snake_case_ = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=_UpperCamelCase ) snake_case_ = self.get_latents(_UpperCamelCase , shape=(4, 4, 9_6, 9_6) , fpaa=_UpperCamelCase ) snake_case_ = self.get_encoder_hidden_states(_UpperCamelCase , shape=(4, 7_7, 1_0_2_4) , fpaa=_UpperCamelCase ) snake_case_ = model.apply( {'''params''': params} , _UpperCamelCase , jnp.array(_UpperCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=_UpperCamelCase , ).sample assert sample.shape == latents.shape snake_case_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) snake_case_ = jnp.array(_UpperCamelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-2 )
8
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase_ = { '''configuration_convnext''': ['''CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvNextConfig''', '''ConvNextOnnxConfig'''] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''ConvNextFeatureExtractor'''] lowerCAmelCase_ = ['''ConvNextImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvNextForImageClassification''', '''ConvNextModel''', '''ConvNextPreTrainedModel''', '''ConvNextBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''TFConvNextForImageClassification''', '''TFConvNextModel''', '''TFConvNextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
8
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __SCREAMING_SNAKE_CASE (*SCREAMING_SNAKE_CASE__ ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = list(SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): snake_case_ = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 128 ): if function is None: return functools.partial(SCREAMING_SNAKE_CASE__ , starting_batch_size=SCREAMING_SNAKE_CASE__ ) snake_case_ = starting_batch_size def decorator(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() snake_case_ = list(inspect.signature(SCREAMING_SNAKE_CASE__ ).parameters.keys() ) # Guard against user error if len(SCREAMING_SNAKE_CASE__ ) < (len(SCREAMING_SNAKE_CASE__ ) + 1): snake_case_ = ''', '''.join([F'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F'''Batch size was passed into `{function.__name__}` as the first argument when called.''' F'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) except Exception as e: if should_reduce_batch_size(SCREAMING_SNAKE_CASE__ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
8
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = { '''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''], '''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''], '''processing_whisper''': ['''WhisperProcessor'''], '''tokenization_whisper''': ['''WhisperTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''WhisperTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WhisperForConditionalGeneration''', '''WhisperModel''', '''WhisperPreTrainedModel''', '''WhisperForAudioClassification''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWhisperForConditionalGeneration''', '''TFWhisperModel''', '''TFWhisperPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''FlaxWhisperForConditionalGeneration''', '''FlaxWhisperModel''', '''FlaxWhisperPreTrainedModel''', '''FlaxWhisperForAudioClassification''', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return [ord(SCREAMING_SNAKE_CASE__ ) - 96 for elem in plain] def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return "".join(chr(elem + 96 ) for elem in encoded ) def __SCREAMING_SNAKE_CASE (): snake_case_ = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , SCREAMING_SNAKE_CASE__ ) print('''Decoded:''' , decode(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": main()
8
1
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__="pt" ): snake_case_ = {'''add_prefix_space''': True} if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and not line.startswith(''' ''' ) else {} snake_case_ = padding_side return tokenizer( [line] , max_length=SCREAMING_SNAKE_CASE__ , padding='''max_length''' if pad_to_max_length else None , truncation=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , ): snake_case_ = input_ids.ne(SCREAMING_SNAKE_CASE__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class snake_case_ ( __A ): '''simple docstring''' def __init__( self : List[Any] , _UpperCamelCase : Any , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any="train" , _UpperCamelCase : str=None , _UpperCamelCase : Any=None , _UpperCamelCase : Dict=None , _UpperCamelCase : Tuple="" , ) ->Optional[Any]: super().__init__() snake_case_ = Path(_UpperCamelCase ).joinpath(type_path + '''.source''' ) snake_case_ = Path(_UpperCamelCase ).joinpath(type_path + '''.target''' ) snake_case_ = self.get_char_lens(self.src_file ) snake_case_ = max_source_length snake_case_ = max_target_length assert min(self.src_lens ) > 0, f'''found empty line in {self.src_file}''' snake_case_ = tokenizer snake_case_ = prefix if n_obs is not None: snake_case_ = self.src_lens[:n_obs] snake_case_ = src_lang snake_case_ = tgt_lang def __len__( self : List[Any] ) ->str: return len(self.src_lens ) def __getitem__( self : List[str] , _UpperCamelCase : Optional[Any] ) ->Dict[str, torch.Tensor]: snake_case_ = index + 1 # linecache starts at 1 snake_case_ = self.prefix + linecache.getline(str(self.src_file ) , _UpperCamelCase ).rstrip('''\n''' ) snake_case_ = linecache.getline(str(self.tgt_file ) , _UpperCamelCase ).rstrip('''\n''' ) assert source_line, f'''empty source line for index {index}''' assert tgt_line, f'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , _UpperCamelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right snake_case_ = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _UpperCamelCase ) else self.tokenizer ) snake_case_ = self.tokenizer.generator if isinstance(self.tokenizer , _UpperCamelCase ) else self.tokenizer snake_case_ = encode_line(_UpperCamelCase , _UpperCamelCase , self.max_source_length , '''right''' ) snake_case_ = encode_line(_UpperCamelCase , _UpperCamelCase , self.max_target_length , '''right''' ) snake_case_ = source_inputs['''input_ids'''].squeeze() snake_case_ = target_inputs['''input_ids'''].squeeze() snake_case_ = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case__( _UpperCamelCase : str ) ->Optional[Any]: return [len(_UpperCamelCase ) for x in Path(_UpperCamelCase ).open().readlines()] def snake_case__( self : List[Any] , _UpperCamelCase : List[str] ) ->Dict[str, torch.Tensor]: snake_case_ = torch.stack([x['''input_ids'''] for x in batch] ) snake_case_ = torch.stack([x['''attention_mask'''] for x in batch] ) snake_case_ = torch.stack([x['''decoder_input_ids'''] for x in batch] ) snake_case_ = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _UpperCamelCase ) else self.tokenizer.pad_token_id ) snake_case_ = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _UpperCamelCase ) else self.tokenizer.pad_token_id ) snake_case_ = trim_batch(_UpperCamelCase , _UpperCamelCase ) snake_case_, snake_case_ = trim_batch(_UpperCamelCase , _UpperCamelCase , attention_mask=_UpperCamelCase ) snake_case_ = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch lowerCAmelCase_ = getLogger(__name__) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return list(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE__ ) ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = get_git_info() save_json(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , '''git_log.json''' ) ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=4 , **SCREAMING_SNAKE_CASE__ ): with open(SCREAMING_SNAKE_CASE__ , '''w''' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , indent=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): with open(SCREAMING_SNAKE_CASE__ ) as f: return json.load(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (): snake_case_ = git.Repo(search_parent_directories=SCREAMING_SNAKE_CASE__ ) snake_case_ = { '''repo_id''': str(SCREAMING_SNAKE_CASE__ ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), '''hostname''': str(socket.gethostname() ), } return repo_infos def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return list(map(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): with open(SCREAMING_SNAKE_CASE__ , '''wb''' ) as f: return pickle.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): def remove_articles(SCREAMING_SNAKE_CASE__ ): return re.sub(R'''\b(a|an|the)\b''' , ''' ''' , SCREAMING_SNAKE_CASE__ ) def white_space_fix(SCREAMING_SNAKE_CASE__ ): return " ".join(text.split() ) def remove_punc(SCREAMING_SNAKE_CASE__ ): snake_case_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(SCREAMING_SNAKE_CASE__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(SCREAMING_SNAKE_CASE__ ) ) ) ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = normalize_answer(SCREAMING_SNAKE_CASE__ ).split() snake_case_ = normalize_answer(SCREAMING_SNAKE_CASE__ ).split() snake_case_ = Counter(SCREAMING_SNAKE_CASE__ ) & Counter(SCREAMING_SNAKE_CASE__ ) snake_case_ = sum(common.values() ) if num_same == 0: return 0 snake_case_ = 1.0 * num_same / len(SCREAMING_SNAKE_CASE__ ) snake_case_ = 1.0 * num_same / len(SCREAMING_SNAKE_CASE__ ) snake_case_ = (2 * precision * recall) / (precision + recall) return fa def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return normalize_answer(SCREAMING_SNAKE_CASE__ ) == normalize_answer(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) snake_case_ = 0 for hypo, pred in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): em += exact_match_score(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: em /= len(SCREAMING_SNAKE_CASE__ ) return {"em": em} def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return model_prefix.startswith('''rag''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead snake_case_ = '''dropout_rate''' for p in extra_params: if getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if not hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and not hasattr(SCREAMING_SNAKE_CASE__ , equivalent_param[p] ): logger.info('''config doesn\'t have a `{}` attribute'''.format(SCREAMING_SNAKE_CASE__ ) ) delattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) continue snake_case_ = p if hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else equivalent_param[p] setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) delattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return hparams, config
8
import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(SCREAMING_SNAKE_CASE__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('''This should never happen''' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. lowerCAmelCase_ = '''Enter the base and the power separated by a comma: ''' lowerCAmelCase_ , lowerCAmelCase_ = map(int, input(prompt).split(''',''')) lowerCAmelCase_ , lowerCAmelCase_ = map(int, input(prompt).split(''',''')) # We find the log of each number, using the function res(), which takes two # arguments. lowerCAmelCase_ = res(xa, ya) lowerCAmelCase_ = res(xa, ya) # We check for the largest number if resa > resa: print('''Largest number is''', xa, '''^''', ya) elif resa > resa: print('''Largest number is''', xa, '''^''', ya) else: print('''Both are equal''')
8
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''openai/imagegpt-small''': '''''', '''openai/imagegpt-medium''': '''''', '''openai/imagegpt-large''': '''''', } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = "imagegpt" SCREAMING_SNAKE_CASE : List[str] = ["past_key_values"] SCREAMING_SNAKE_CASE : List[Any] = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Union[str, Any] , _UpperCamelCase : Tuple=5_1_2 + 1 , _UpperCamelCase : List[Any]=3_2 * 3_2 , _UpperCamelCase : Optional[Any]=5_1_2 , _UpperCamelCase : Any=2_4 , _UpperCamelCase : Union[str, Any]=8 , _UpperCamelCase : List[str]=None , _UpperCamelCase : List[str]="quick_gelu" , _UpperCamelCase : List[Any]=0.1 , _UpperCamelCase : Optional[Any]=0.1 , _UpperCamelCase : Any=0.1 , _UpperCamelCase : Optional[int]=1e-5 , _UpperCamelCase : Dict=0.02 , _UpperCamelCase : List[Any]=True , _UpperCamelCase : int=True , _UpperCamelCase : Optional[int]=False , _UpperCamelCase : Tuple=False , _UpperCamelCase : Dict=False , **_UpperCamelCase : Dict , ) ->str: snake_case_ = vocab_size snake_case_ = n_positions snake_case_ = n_embd snake_case_ = n_layer snake_case_ = n_head snake_case_ = n_inner snake_case_ = activation_function snake_case_ = resid_pdrop snake_case_ = embd_pdrop snake_case_ = attn_pdrop snake_case_ = layer_norm_epsilon snake_case_ = initializer_range snake_case_ = scale_attn_weights snake_case_ = use_cache snake_case_ = scale_attn_by_inverse_layer_idx snake_case_ = reorder_and_upcast_attn snake_case_ = tie_word_embeddings super().__init__(tie_word_embeddings=_UpperCamelCase , **_UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' @property def snake_case__( self : str ) ->Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def snake_case__( self : str , _UpperCamelCase : "FeatureExtractionMixin" , _UpperCamelCase : int = 1 , _UpperCamelCase : int = -1 , _UpperCamelCase : bool = False , _UpperCamelCase : Optional["TensorType"] = None , _UpperCamelCase : int = 3 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 3_2 , ) ->Mapping[str, Any]: snake_case_ = self._generate_dummy_images(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) snake_case_ = dict(preprocessor(images=_UpperCamelCase , return_tensors=_UpperCamelCase ) ) return inputs
8
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'''vocab_file''': '''spiece.model'''} lowerCAmelCase_ = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), } } lowerCAmelCase_ = { '''google/bigbird-roberta-base''': 40_96, '''google/bigbird-roberta-large''': 40_96, '''google/bigbird-base-trivia-itc''': 40_96, } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : List[Any] = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : List[str] , _UpperCamelCase : List[str] , _UpperCamelCase : Dict="<unk>" , _UpperCamelCase : List[str]="<s>" , _UpperCamelCase : Tuple="</s>" , _UpperCamelCase : Any="<pad>" , _UpperCamelCase : Any="[SEP]" , _UpperCamelCase : Optional[Any]="[MASK]" , _UpperCamelCase : Any="[CLS]" , _UpperCamelCase : Optional[Dict[str, Any]] = None , **_UpperCamelCase : Dict , ) ->None: snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else bos_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else eos_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else unk_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else pad_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else cls_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , sep_token=_UpperCamelCase , mask_token=_UpperCamelCase , cls_token=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) @property def snake_case__( self : str ) ->List[Any]: return self.sp_model.get_piece_size() def snake_case__( self : int ) ->Union[str, Any]: snake_case_ = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ) ->Any: snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self : str , _UpperCamelCase : List[Any] ) ->List[str]: snake_case_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case__( self : Optional[int] , _UpperCamelCase : str ) ->List[str]: return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def snake_case__( self : str , _UpperCamelCase : List[str] ) ->Tuple: return self.sp_model.piece_to_id(_UpperCamelCase ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : str ) ->List[Any]: snake_case_ = self.sp_model.IdToPiece(_UpperCamelCase ) return token def snake_case__( self : Dict , _UpperCamelCase : Optional[int] ) ->List[str]: snake_case_ = [] snake_case_ = '''''' snake_case_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token snake_case_ = True snake_case_ = [] else: current_sub_tokens.append(_UpperCamelCase ) snake_case_ = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def snake_case__( self : int , _UpperCamelCase : List[int] , _UpperCamelCase : bool = False , _UpperCamelCase : bool = None , _UpperCamelCase : bool = True , **_UpperCamelCase : List[str] , ) ->str: snake_case_ = kwargs.pop('''use_source_tokenizer''' , _UpperCamelCase ) snake_case_ = self.convert_ids_to_tokens(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 snake_case_ = [] snake_case_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCamelCase ) ) snake_case_ = [] sub_texts.append(_UpperCamelCase ) else: current_sub_text.append(_UpperCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: snake_case_ = re.sub(R''' (\[(MASK|SEP)\])''' , R'''\1''' , ''' '''.join(_UpperCamelCase ) ) else: snake_case_ = ''''''.join(_UpperCamelCase ) snake_case_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: snake_case_ = self.clean_up_tokenization(_UpperCamelCase ) return clean_text else: return text def snake_case__( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) ->Tuple[str]: if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,) def snake_case__( self : Tuple , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def snake_case__( self : List[str] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : bool = False ) ->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) + [1] return [1] + ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def snake_case__( self : List[Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
8
1
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class snake_case_ ( __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = XLMTokenizer SCREAMING_SNAKE_CASE : Union[str, Any] = False def snake_case__( self : List[str] ) ->Tuple: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case_ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] snake_case_ = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase ) ) ) ) snake_case_ = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(_UpperCamelCase ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(_UpperCamelCase ) ) def snake_case__( self : Any , _UpperCamelCase : int ) ->Any: snake_case_ = '''lower newer''' snake_case_ = '''lower newer''' return input_text, output_text def snake_case__( self : Dict ) ->List[Any]: snake_case_ = XLMTokenizer(self.vocab_file , self.merges_file ) snake_case_ = '''lower''' snake_case_ = ['''low''', '''er</w>'''] snake_case_ = tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = tokens + ['''<unk>'''] snake_case_ = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , _UpperCamelCase ) @slow def snake_case__( self : Any ) ->Dict: snake_case_ = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) snake_case_ = tokenizer.encode('''sequence builders''' , add_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase ) snake_case_ = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase , _UpperCamelCase ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
8
from __future__ import annotations from collections.abc import Generator def __SCREAMING_SNAKE_CASE (): snake_case_ = {} snake_case_ = 2 while True: snake_case_ = factor_map.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if factor: snake_case_ = factor + prime while x in factor_map: x += factor snake_case_ = factor else: snake_case_ = prime yield prime prime += 1 def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = 1E10 ): snake_case_ = sieve() snake_case_ = 1 while True: snake_case_ = next(SCREAMING_SNAKE_CASE__ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(SCREAMING_SNAKE_CASE__ ) n += 2 if __name__ == "__main__": print(solution())
8
1
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCAmelCase_ = '''pt''' elif is_tf_available(): lowerCAmelCase_ = '''tf''' else: lowerCAmelCase_ = '''jax''' class snake_case_ ( __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = ByTaTokenizer SCREAMING_SNAKE_CASE : str = False def snake_case__( self : Optional[Any] ) ->Any: super().setUp() snake_case_ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case__( self : List[str] ) ->Any: return ByTaTokenizer.from_pretrained('''google/byt5-small''' ) def snake_case__( self : str , **_UpperCamelCase : Optional[Any] ) ->ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def snake_case__( self : str , _UpperCamelCase : Any , _UpperCamelCase : Optional[Any]=False , _UpperCamelCase : str=2_0 , _UpperCamelCase : Any=5 ) ->Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. snake_case_ = [] for i in range(len(_UpperCamelCase ) ): try: snake_case_ = tokenizer.decode([i] , clean_up_tokenization_spaces=_UpperCamelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) snake_case_ = list(filter(lambda _UpperCamelCase : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , _UpperCamelCase ) ) snake_case_ = list(filter(lambda _UpperCamelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_UpperCamelCase ) , _UpperCamelCase ) ) if max_length is not None and len(_UpperCamelCase ) > max_length: snake_case_ = toks[:max_length] if min_length is not None and len(_UpperCamelCase ) < min_length and len(_UpperCamelCase ) > 0: while len(_UpperCamelCase ) < min_length: snake_case_ = toks + toks # toks_str = [t[1] for t in toks] snake_case_ = [t[0] for t in toks] # Ensure consistency snake_case_ = tokenizer.decode(_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase ) if " " not in output_txt and len(_UpperCamelCase ) > 1: snake_case_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_UpperCamelCase ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_UpperCamelCase ) ) if with_prefix_space: snake_case_ = ''' ''' + output_txt snake_case_ = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) return output_txt, output_ids def snake_case__( self : Optional[int] ) ->Optional[Any]: snake_case_ = self.ta_base_tokenizer snake_case_ = tokenizer(['''hi</s>''', '''I went to the gym</s>''', '''</s>'''] ) snake_case_ = tokenizer(['''hi''', '''I went to the gym''', ''''''] ) self.assertListEqual(batch_with_eos_added['''input_ids'''] , batch_without_eos_added['''input_ids'''] ) def snake_case__( self : int ) ->Union[str, Any]: snake_case_ = self.ta_base_tokenizer snake_case_ = '''Unicode €.''' snake_case_ = tokenizer(_UpperCamelCase ) snake_case_ = [8_8, 1_1_3, 1_0_8, 1_0_2, 1_1_4, 1_0_3, 1_0_4, 3_5, 2_2_9, 1_3_3, 1_7_5, 4_9, 1] self.assertEqual(encoded['''input_ids'''] , _UpperCamelCase ) # decoding snake_case_ = tokenizer.decode(_UpperCamelCase ) self.assertEqual(_UpperCamelCase , '''Unicode €.</s>''' ) snake_case_ = tokenizer('''e è é ê ë''' ) snake_case_ = [1_0_4, 3_5, 1_9_8, 1_7_1, 3_5, 1_9_8, 1_7_2, 3_5, 1_9_8, 1_7_3, 3_5, 1_9_8, 1_7_4, 1] self.assertEqual(encoded['''input_ids'''] , _UpperCamelCase ) # decoding snake_case_ = tokenizer.decode(_UpperCamelCase ) self.assertEqual(_UpperCamelCase , '''e è é ê ë</s>''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''e è é ê ë</s>''' ) def snake_case__( self : List[Any] ) ->Tuple: snake_case_ = self.ta_base_tokenizer snake_case_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off snake_case_ = [6_8, 3_5, 1_1_1, 1_1_4, 1_1_3, 1_0_6, 3_5, 1_1_5, 1_0_0, 1_1_7, 1_0_0, 1_0_6, 1_1_7, 1_0_0, 1_1_5, 1_0_7, 3_5, 1_0_5, 1_1_4, 1_1_7, 3_5, 1_1_8, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_0_8, 1_2_5, 1_0_0, 1_1_9, 1_0_8, 1_1_4, 1_1_3, 4_9, 1, 0] # fmt: on snake_case_ = tokenizer(_UpperCamelCase , padding=_UpperCamelCase , return_tensors=_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) if FRAMEWORK != "jax": snake_case_ = list(batch.input_ids.numpy()[0] ) else: snake_case_ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual((2, 3_7) , batch.input_ids.shape ) self.assertEqual((2, 3_7) , batch.attention_mask.shape ) def snake_case__( self : Union[str, Any] ) ->Any: snake_case_ = self.ta_base_tokenizer snake_case_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] snake_case_ = tokenizer(_UpperCamelCase , padding=_UpperCamelCase , return_tensors=_UpperCamelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , _UpperCamelCase ) self.assertIn('''attention_mask''' , _UpperCamelCase ) self.assertNotIn('''decoder_input_ids''' , _UpperCamelCase ) self.assertNotIn('''decoder_attention_mask''' , _UpperCamelCase ) def snake_case__( self : Dict ) ->List[str]: snake_case_ = self.ta_base_tokenizer snake_case_ = [ '''Summary of the text.''', '''Another summary.''', ] snake_case_ = tokenizer( text_target=_UpperCamelCase , max_length=3_2 , padding='''max_length''' , truncation=_UpperCamelCase , return_tensors=_UpperCamelCase ) self.assertEqual(3_2 , targets['''input_ids'''].shape[1] ) def snake_case__( self : Tuple ) ->Tuple: snake_case_ = self.ta_base_tokenizer snake_case_ = ['''A long paragraph for summarization. </s>'''] snake_case_ = ['''Summary of the text. </s>'''] # fmt: off snake_case_ = [6_8, 3_5, 1_1_1, 1_1_4, 1_1_3, 1_0_6, 3_5, 1_1_5, 1_0_0, 1_1_7, 1_0_0, 1_0_6, 1_1_7, 1_0_0, 1_1_5, 1_0_7, 3_5, 1_0_5, 1_1_4, 1_1_7, 3_5, 1_1_8, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_0_8, 1_2_5, 1_0_0, 1_1_9, 1_0_8, 1_1_4, 1_1_3, 4_9, 3_5, 1] snake_case_ = [8_6, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_2_4, 3_5, 1_1_4, 1_0_5, 3_5, 1_1_9, 1_0_7, 1_0_4, 3_5, 1_1_9, 1_0_4, 1_2_3, 1_1_9, 4_9, 3_5, 1] # fmt: on snake_case_ = tokenizer(_UpperCamelCase , text_target=_UpperCamelCase ) self.assertEqual(_UpperCamelCase , batch['''input_ids'''][0] ) self.assertEqual(_UpperCamelCase , batch['''labels'''][0] ) def snake_case__( self : Optional[Any] ) ->int: # safety check on max_len default value so we are sure the test works snake_case_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test snake_case_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc snake_case_ = tempfile.mkdtemp() snake_case_ = ''' He is very happy, UNwant\u00E9d,running''' snake_case_ = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) tokenizer.save_pretrained(_UpperCamelCase ) snake_case_ = tokenizer.__class__.from_pretrained(_UpperCamelCase ) snake_case_ = after_tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) shutil.rmtree(_UpperCamelCase ) snake_case_ = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc snake_case_ = tempfile.mkdtemp() snake_case_ = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) snake_case_ = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) snake_case_ = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) tokenizer.save_pretrained(_UpperCamelCase ) snake_case_ = tokenizer.__class__.from_pretrained(_UpperCamelCase ) snake_case_ = after_tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) snake_case_ = tokenizer.__class__.from_pretrained(_UpperCamelCase , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(_UpperCamelCase ) def snake_case__( self : Union[str, Any] ) ->List[Any]: snake_case_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCamelCase ) with open(os.path.join(_UpperCamelCase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: snake_case_ = json.load(_UpperCamelCase ) with open(os.path.join(_UpperCamelCase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: snake_case_ = json.load(_UpperCamelCase ) snake_case_ = [f'''<extra_id_{i}>''' for i in range(1_2_5 )] snake_case_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] snake_case_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(_UpperCamelCase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_UpperCamelCase , _UpperCamelCase ) with open(os.path.join(_UpperCamelCase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_UpperCamelCase , _UpperCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files snake_case_ = tokenizer_class.from_pretrained( _UpperCamelCase , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained snake_case_ = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=_UpperCamelCase )] snake_case_ = tokenizer_class.from_pretrained( _UpperCamelCase , additional_special_tokens=_UpperCamelCase , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def snake_case__( self : str ) ->List[str]: snake_case_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCamelCase ) snake_case_ = tokenizer_class.from_pretrained(_UpperCamelCase ) self.assertTrue(tokenizer.decode([2_5_5] ) == '''''' ) def snake_case__( self : Tuple ) ->Optional[int]: pass def snake_case__( self : int ) ->str: pass def snake_case__( self : Tuple ) ->str: pass def snake_case__( self : int ) ->Optional[Any]: pass def snake_case__( self : Tuple ) ->Dict: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens snake_case_ = self.get_tokenizers(fast=_UpperCamelCase , do_lower_case=_UpperCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): snake_case_ = ['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>'''] snake_case_ = tokenizer.convert_tokens_to_string(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : List[Any] ) ->Tuple: snake_case_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): snake_case_ = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] snake_case_ = 0 snake_case_ = tokenizer.convert_ids_to_tokens( _UpperCamelCase , skip_special_tokens=_UpperCamelCase ) for attr in attributes_list: setattr(_UpperCamelCase , attr + '''_id''' , _UpperCamelCase ) self.assertEqual(getattr(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(getattr(_UpperCamelCase , attr + '''_id''' ) , _UpperCamelCase ) setattr(_UpperCamelCase , attr + '''_id''' , _UpperCamelCase ) self.assertEqual(getattr(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(getattr(_UpperCamelCase , attr + '''_id''' ) , _UpperCamelCase ) setattr(_UpperCamelCase , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(_UpperCamelCase , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(_UpperCamelCase , '''additional_special_tokens_ids''' ) , [] ) setattr(_UpperCamelCase , '''additional_special_tokens_ids''' , [token_id_to_test_setters] ) self.assertListEqual(getattr(_UpperCamelCase , '''additional_special_tokens''' ) , [token_to_test_setters] ) self.assertListEqual(getattr(_UpperCamelCase , '''additional_special_tokens_ids''' ) , [token_id_to_test_setters] )
8
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { '''configuration_blip_2''': [ '''BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Blip2Config''', '''Blip2QFormerConfig''', '''Blip2VisionConfig''', ], '''processing_blip_2''': ['''Blip2Processor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Blip2Model''', '''Blip2QFormerModel''', '''Blip2PreTrainedModel''', '''Blip2ForConditionalGeneration''', '''Blip2VisionModel''', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = "philschmid/bart-large-cnn-samsum" SCREAMING_SNAKE_CASE : Tuple = ( "This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, " "and returns a summary of the text." ) SCREAMING_SNAKE_CASE : str = "summarizer" SCREAMING_SNAKE_CASE : str = AutoTokenizer SCREAMING_SNAKE_CASE : str = AutoModelForSeqaSeqLM SCREAMING_SNAKE_CASE : Optional[int] = ["text"] SCREAMING_SNAKE_CASE : Optional[int] = ["text"] def snake_case__( self : str , _UpperCamelCase : int ) ->Optional[int]: return self.pre_processor(_UpperCamelCase , return_tensors='''pt''' , truncation=_UpperCamelCase ) def snake_case__( self : Tuple , _UpperCamelCase : Optional[int] ) ->Tuple: return self.model.generate(**_UpperCamelCase )[0] def snake_case__( self : Optional[Any] , _UpperCamelCase : Optional[int] ) ->Any: return self.pre_processor.decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase )
8
1
from __future__ import annotations import os from collections.abc import Mapping lowerCAmelCase_ = tuple[int, int] class snake_case_ : '''simple docstring''' def __init__( self : Dict , _UpperCamelCase : set[int] , _UpperCamelCase : Mapping[EdgeT, int] ) ->None: snake_case_ = vertices snake_case_ = { (min(_UpperCamelCase ), max(_UpperCamelCase )): weight for edge, weight in edges.items() } def snake_case__( self : Union[str, Any] , _UpperCamelCase : EdgeT , _UpperCamelCase : int ) ->None: self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) snake_case_ = weight def snake_case__( self : Dict ) ->Graph: snake_case_ = Graph({min(self.vertices )} , {} ) snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 while len(subgraph.vertices ) < len(self.vertices ): snake_case_ = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: snake_case_ = edge snake_case_ = weight subgraph.add_edge(_UpperCamelCase , _UpperCamelCase ) return subgraph def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = "p107_network.txt" ): snake_case_ = os.path.abspath(os.path.dirname(SCREAMING_SNAKE_CASE__ ) ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = {} snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 with open(SCREAMING_SNAKE_CASE__ ) as f: snake_case_ = f.read().strip().split('''\n''' ) snake_case_ = [line.split(''',''' ) for line in data] for edgea in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): for edgea in range(SCREAMING_SNAKE_CASE__ ): if adjaceny_matrix[edgea][edgea] != "-": snake_case_ = int(adjaceny_matrix[edgea][edgea] ) snake_case_ = Graph(set(range(len(SCREAMING_SNAKE_CASE__ ) ) ) , SCREAMING_SNAKE_CASE__ ) snake_case_ = graph.prims_algorithm() snake_case_ = sum(graph.edges.values() ) snake_case_ = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f"""{solution() = }""")
8
from collections import deque from .hash_table import HashTable class snake_case_ ( __A ): '''simple docstring''' def __init__( self : int , *_UpperCamelCase : int , **_UpperCamelCase : Tuple ) ->Tuple: super().__init__(*_UpperCamelCase , **_UpperCamelCase ) def snake_case__( self : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Dict ) ->Tuple: snake_case_ = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_UpperCamelCase ) snake_case_ = self.values[key] def snake_case__( self : List[Any] ) ->str: return ( sum(self.charge_factor - len(_UpperCamelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def snake_case__( self : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int]=None ) ->str: if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_UpperCamelCase ) == 0 ): return key return super()._collision_resolution(_UpperCamelCase , _UpperCamelCase )
8
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/config.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/config.json''' # See all FNet models at https://huggingface.co/models?filter=fnet } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = "fnet" def __init__( self : List[Any] , _UpperCamelCase : Tuple=3_2_0_0_0 , _UpperCamelCase : Optional[Any]=7_6_8 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : str=3_0_7_2 , _UpperCamelCase : Optional[int]="gelu_new" , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : Union[str, Any]=5_1_2 , _UpperCamelCase : Tuple=4 , _UpperCamelCase : Tuple=0.02 , _UpperCamelCase : Tuple=1e-12 , _UpperCamelCase : List[str]=False , _UpperCamelCase : Union[str, Any]=5_1_2 , _UpperCamelCase : Any=3 , _UpperCamelCase : str=1 , _UpperCamelCase : List[Any]=2 , **_UpperCamelCase : List[str] , ) ->Union[str, Any]: super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) snake_case_ = vocab_size snake_case_ = max_position_embeddings snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = initializer_range snake_case_ = type_vocab_size snake_case_ = layer_norm_eps snake_case_ = use_tpu_fourier_optimizations snake_case_ = tpu_short_seq_length
8
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = len(SCREAMING_SNAKE_CASE__ ) # We need to create solution object to save path. snake_case_ = [[0 for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ )] snake_case_ = run_maze(SCREAMING_SNAKE_CASE__ , 0 , 0 , SCREAMING_SNAKE_CASE__ ) if solved: print('''\n'''.join(str(SCREAMING_SNAKE_CASE__ ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = len(SCREAMING_SNAKE_CASE__ ) # Final check point. if i == j == (size - 1): snake_case_ = 1 return True snake_case_ = (not i < 0) and (not j < 0) # Check lower bounds snake_case_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. snake_case_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited snake_case_ = 1 # check for directions if ( run_maze(SCREAMING_SNAKE_CASE__ , i + 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , j + 1 , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , j - 1 , SCREAMING_SNAKE_CASE__ ) ): return True snake_case_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
8
1
def _a ( a :int = 10 , a :int = 22 ) -> int: a = range(1 , a ) a = range(1 , a ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f"""{solution(10, 22) = }""")
0
from decimal import Decimal, getcontext from math import ceil, factorial def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError('''Undefined for non-integers''' ) elif precision < 1: raise ValueError('''Undefined for non-natural numbers''' ) snake_case_ = precision snake_case_ = ceil(precision / 14 ) snake_case_ = 426880 * Decimal(10005 ).sqrt() snake_case_ = 1 snake_case_ = 13591409 snake_case_ = Decimal(SCREAMING_SNAKE_CASE__ ) for k in range(1 , SCREAMING_SNAKE_CASE__ ): snake_case_ = factorial(6 * k ) // (factorial(3 * k ) * factorial(SCREAMING_SNAKE_CASE__ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": lowerCAmelCase_ = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
8
0
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class __A ( unittest.TestCase , UpperCamelCase__ ): def _lowercase (self : Any ): UpperCAmelCase_ = load_tool("text-classification" ) self.tool.setup() UpperCAmelCase_ = load_tool("text-classification" , remote=__a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(__a , "positive" ) def _lowercase (self : List[Any] ): UpperCAmelCase_ = self.remote_tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(__a , "positive" ) def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = self.tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(__a , "positive" ) def _lowercase (self : List[Any] ): UpperCAmelCase_ = self.remote_tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(__a , "positive" )
1
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class snake_case_ ( __A ): '''simple docstring''' def __init__( self : int , _UpperCamelCase : pyspark.sql.DataFrame , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Optional[Features] = None , _UpperCamelCase : bool = True , _UpperCamelCase : str = None , _UpperCamelCase : bool = False , _UpperCamelCase : str = None , _UpperCamelCase : bool = True , _UpperCamelCase : str = "arrow" , **_UpperCamelCase : Tuple , ) ->str: super().__init__( split=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase , streaming=_UpperCamelCase , **_UpperCamelCase , ) snake_case_ = load_from_cache_file snake_case_ = file_format snake_case_ = Spark( df=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , working_dir=_UpperCamelCase , **_UpperCamelCase , ) def snake_case__( self : int ) ->Tuple: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) snake_case_ = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=_UpperCamelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
8
0
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowerCamelCase : Optional[Any] = 'hf-internal-testing/tiny-random-bert' lowerCamelCase : Optional[int] = os.path.join(TRANSFORMERS_CACHE, 'models--hf-internal-testing--tiny-random-bert') lowerCamelCase : Optional[Any] = '9b8c223d42b2188cb49d29af482996f9d0f3e5a6' class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = cached_file(UpperCamelCase , UpperCamelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(UpperCamelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(UpperCamelCase , UpperCamelCase ) ) ) with open(os.path.join(UpperCamelCase , '''refs''' , '''main''' ) ) as f: lowercase__ = f.read() self.assertEqual(UpperCamelCase , os.path.join(UpperCamelCase , '''snapshots''' , UpperCamelCase , UpperCamelCase ) ) self.assertTrue(os.path.isfile(UpperCamelCase ) ) # File is cached at the same place the second time. lowercase__ = cached_file(UpperCamelCase , UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase ) # Using a specific revision to test the full commit hash. lowercase__ = cached_file(UpperCamelCase , UpperCamelCase , revision='''9b8c223''' ) self.assertEqual(UpperCamelCase , os.path.join(UpperCamelCase , '''snapshots''' , UpperCamelCase , UpperCamelCase ) ) def UpperCamelCase__ (self : Tuple ): '''simple docstring''' with self.assertRaisesRegex(UpperCamelCase , '''is not a valid model identifier''' ): lowercase__ = cached_file('''tiny-random-bert''' , UpperCamelCase ) with self.assertRaisesRegex(UpperCamelCase , '''is not a valid git identifier''' ): lowercase__ = cached_file(UpperCamelCase , UpperCamelCase , revision='''aaaa''' ) with self.assertRaisesRegex(UpperCamelCase , '''does not appear to have a file named''' ): lowercase__ = cached_file(UpperCamelCase , '''conf''' ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' with self.assertRaisesRegex(UpperCamelCase , '''does not appear to have a file named''' ): lowercase__ = cached_file(UpperCamelCase , '''conf''' ) with open(os.path.join(UpperCamelCase , '''refs''' , '''main''' ) ) as f: lowercase__ = f.read() self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase , '''.no_exist''' , UpperCamelCase , '''conf''' ) ) ) lowercase__ = cached_file(UpperCamelCase , '''conf''' , _raise_exceptions_for_missing_entries=UpperCamelCase ) self.assertIsNone(UpperCamelCase ) lowercase__ = cached_file(UpperCamelCase , '''conf''' , local_files_only=UpperCamelCase , _raise_exceptions_for_missing_entries=UpperCamelCase ) self.assertIsNone(UpperCamelCase ) lowercase__ = mock.Mock() lowercase__ = 500 lowercase__ = {} lowercase__ = HTTPError lowercase__ = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=UpperCamelCase ) as mock_head: lowercase__ = cached_file(UpperCamelCase , '''conf''' , _raise_exceptions_for_connection_errors=UpperCamelCase ) self.assertIsNone(UpperCamelCase ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase__ (self : Dict ): '''simple docstring''' self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , UpperCamelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , UpperCamelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , UpperCamelCase ) ) def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(UpperCamelCase , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , UpperCamelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(UpperCamelCase , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , UpperCamelCase , revision='''ahaha''' ) lowercase__ = get_file_from_repo('''bert-base-cased''' , UpperCamelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. lowercase__ = json.loads(open(UpperCamelCase , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 768 ) def UpperCamelCase__ (self : Tuple ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ = Path(UpperCamelCase ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(UpperCamelCase , '''a.txt''' ) , str(UpperCamelCase ) ) self.assertIsNone(get_file_from_repo(UpperCamelCase , '''b.txt''' ) )
2
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable lowerCAmelCase_ = {'''configuration_dpt''': ['''DPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DPTConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''DPTFeatureExtractor'''] lowerCAmelCase_ = ['''DPTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''DPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DPTForDepthEstimation''', '''DPTForSemanticSegmentation''', '''DPTModel''', '''DPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase : Any = { 'configuration_vision_text_dual_encoder': ['VisionTextDualEncoderConfig'], 'processing_vision_text_dual_encoder': ['VisionTextDualEncoderProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = ['VisionTextDualEncoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = ['FlaxVisionTextDualEncoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[Any] = ['TFVisionTextDualEncoderModel'] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
3
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCAmelCase_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase_ = { '''vocab_file''': { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''unc-nlp/lxmert-base-uncased''': ( '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase_ = { '''unc-nlp/lxmert-base-uncased''': 5_12, } lowerCAmelCase_ = { '''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True}, } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Any = LxmertTokenizer def __init__( self : Union[str, Any] , _UpperCamelCase : int=None , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : Dict=True , _UpperCamelCase : Any="[UNK]" , _UpperCamelCase : Tuple="[SEP]" , _UpperCamelCase : List[Any]="[PAD]" , _UpperCamelCase : Union[str, Any]="[CLS]" , _UpperCamelCase : str="[MASK]" , _UpperCamelCase : List[str]=True , _UpperCamelCase : List[str]=None , **_UpperCamelCase : List[str] , ) ->Any: super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , **_UpperCamelCase , ) snake_case_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _UpperCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _UpperCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _UpperCamelCase ) != tokenize_chinese_chars ): snake_case_ = getattr(_UpperCamelCase , normalizer_state.pop('''type''' ) ) snake_case_ = do_lower_case snake_case_ = strip_accents snake_case_ = tokenize_chinese_chars snake_case_ = normalizer_class(**_UpperCamelCase ) snake_case_ = do_lower_case def snake_case__( self : Optional[int] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str]=None ) ->List[Any]: snake_case_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__( self : int , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__( self : Any , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) ->Tuple[str]: snake_case_ = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
8
0
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __snake_case =random.Random() def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Dict=1.0 , lowerCamelCase : Dict=None , lowerCamelCase : str=None ): if rng is None: lowerCAmelCase = global_rng lowerCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any]=7 , UpperCAmelCase__ : str=4_0_0 , UpperCAmelCase__ : List[Any]=2_0_0_0 , UpperCAmelCase__ : Dict=1 , UpperCAmelCase__ : Dict=0.0 , UpperCAmelCase__ : List[Any]=1_6_0_0_0 , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Tuple=True , ) -> List[Any]: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = min_seq_length lowerCAmelCase = max_seq_length lowerCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase = feature_size lowerCAmelCase = padding_value lowerCAmelCase = sampling_rate lowerCAmelCase = return_attention_mask lowerCAmelCase = do_normalize def __UpperCAmelCase ( self : Any ) -> List[Any]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : Optional[int]=False , UpperCAmelCase__ : Optional[int]=False ) -> Dict: def _flatten(UpperCAmelCase__ : Tuple ): return list(itertools.chain(*UpperCAmelCase__ ) ) if equal_length: lowerCAmelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCAmelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase = [np.asarray(UpperCAmelCase__ ) for x in speech_inputs] return speech_inputs class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): lowerCamelCase : Tuple = WavaVecaFeatureExtractor def __UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: lowerCAmelCase = WavaVecaFeatureExtractionTester(self ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : Optional[Any] ) -> Union[str, Any]: self.assertTrue(np.all(np.mean(UpperCAmelCase__ , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(UpperCAmelCase__ , axis=0 ) - 1 ) < 1E-3 ) ) def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = [np.asarray(UpperCAmelCase__ ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # Test batched lowerCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] lowerCAmelCase = np.asarray(UpperCAmelCase__ ) lowerCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = ['longest', 'max_length', 'do_not_pad'] lowerCAmelCase = [None, 1_6_0_0, None] for max_length, padding in zip(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase = feat_extract(UpperCAmelCase__ , padding=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors='np' ) lowerCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self.assertTrue(input_values[0][8_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def __UpperCAmelCase ( self : int ) -> str: lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = range(8_0_0 , 1_4_0_0 , 2_0_0 ) lowerCAmelCase = [floats_list((1, x) )[0] for x in lengths] lowerCAmelCase = ['longest', 'max_length', 'do_not_pad'] lowerCAmelCase = [None, 1_6_0_0, None] for max_length, padding in zip(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase = feat_extract(UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding=UpperCAmelCase__ ) lowerCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def __UpperCAmelCase ( self : Optional[Any] ) -> Tuple: lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = feat_extract( UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=1_0_0_0 , padding='max_length' , return_tensors='np' ) lowerCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def __UpperCAmelCase ( self : Any ) -> Tuple: lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = feat_extract( UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=1_0_0_0 , padding='longest' , return_tensors='np' ) lowerCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0) ) lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = feat_extract( UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=2_0_0_0 , padding='longest' , return_tensors='np' ) lowerCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0) ) @require_torch def __UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: import torch lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = np.random.rand(1_0_0 ).astype(np.floataa ) lowerCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def __UpperCAmelCase ( self : Any ) -> Optional[int]: # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: lowerCAmelCase = WavaVecaConfig.from_pretrained(UpperCAmelCase__ ) lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained(UpperCAmelCase__ ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == 'layer' )
4
import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = 10001 ): try: snake_case_ = int(SCREAMING_SNAKE_CASE__ ) except (TypeError, ValueError): raise TypeError('''Parameter nth must be int or castable to int.''' ) from None if nth <= 0: raise ValueError('''Parameter nth must be greater than or equal to one.''' ) snake_case_ = [] snake_case_ = 2 while len(SCREAMING_SNAKE_CASE__ ) < nth: if is_prime(SCREAMING_SNAKE_CASE__ ): primes.append(SCREAMING_SNAKE_CASE__ ) num += 1 else: num += 1 return primes[len(SCREAMING_SNAKE_CASE__ ) - 1] if __name__ == "__main__": print(f"""{solution() = }""")
8
0
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) UpperCAmelCase__ = pytest.mark.integration @pytest.mark.parametrize('''path''' , ['''paws''', '''csv'''] ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Optional[Any]: """simple docstring""" inspect_dataset(__snake_case , __snake_case ) _lowercase =path + '''.py''' assert script_name in os.listdir(__snake_case ) assert "__pycache__" not in os.listdir(__snake_case ) @pytest.mark.filterwarnings('''ignore:inspect_metric is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.parametrize('''path''' , ['''accuracy'''] ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Any: """simple docstring""" inspect_metric(__snake_case , __snake_case ) _lowercase =path + '''.py''' assert script_name in os.listdir(__snake_case ) assert "__pycache__" not in os.listdir(__snake_case ) @pytest.mark.parametrize( '''path, config_name, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> Tuple: """simple docstring""" _lowercase =get_dataset_config_info(__snake_case , config_name=__snake_case ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> int: """simple docstring""" with pytest.raises(__snake_case ): get_dataset_config_info(__snake_case , config_name=__snake_case ) @pytest.mark.parametrize( '''path, expected''' , [ ('''squad''', '''plain_text'''), ('''acronym_identification''', '''default'''), ('''lhoestq/squad''', '''plain_text'''), ('''lhoestq/test''', '''default'''), ('''lhoestq/demo1''', '''lhoestq--demo1'''), ('''dalle-mini/wit''', '''dalle-mini--wit'''), ] , ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Optional[int]: """simple docstring""" _lowercase =get_dataset_config_names(__snake_case ) assert expected in config_names @pytest.mark.parametrize( '''path, expected_configs, expected_splits_in_first_config''' , [ ('''squad''', ['''plain_text'''], ['''train''', '''validation''']), ('''dalle-mini/wit''', ['''dalle-mini--wit'''], ['''train''']), ('''paws''', ['''labeled_final''', '''labeled_swap''', '''unlabeled_final'''], ['''train''', '''test''', '''validation''']), ] , ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> List[str]: """simple docstring""" _lowercase =get_dataset_infos(__snake_case ) assert list(infos.keys() ) == expected_configs _lowercase =expected_configs[0] assert expected_config in infos _lowercase =infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( '''path, expected_config, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> Tuple: """simple docstring""" _lowercase =get_dataset_infos(__snake_case ) assert expected_config in infos _lowercase =infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> Union[str, Any]: """simple docstring""" with pytest.raises(__snake_case ): get_dataset_split_names(__snake_case , config_name=__snake_case )
5
from sklearn.metrics import mean_squared_error import datasets lowerCAmelCase_ = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' lowerCAmelCase_ = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' lowerCAmelCase_ = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): '''simple docstring''' def snake_case__( self : Optional[int] ) ->List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] , ) def snake_case__( self : List[Any] ) ->Optional[int]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def snake_case__( self : int , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any=None , _UpperCamelCase : Optional[int]="uniform_average" , _UpperCamelCase : Tuple=True ) ->Tuple: snake_case_ = mean_squared_error( _UpperCamelCase , _UpperCamelCase , sample_weight=_UpperCamelCase , multioutput=_UpperCamelCase , squared=_UpperCamelCase ) return {"mse": mse}
8
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __A( a , unittest.TestCase ): snake_case_ = ShapEImgaImgPipeline snake_case_ = ['''image'''] snake_case_ = ['''image'''] snake_case_ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] snake_case_ = False @property def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' return 8 @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) __a = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) __a = CLIPVisionModel(_snake_case ) return model @property def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a = CLIPImageProcessor( crop_size=224 , do_center_crop=_snake_case , do_normalize=_snake_case , do_resize=_snake_case , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=224 , ) return image_processor @property def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) __a = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } __a = PriorTransformer(**_snake_case ) return model @property def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) __a = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } __a = ShapERenderer(**_snake_case ) return model def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = self.dummy_prior __a = self.dummy_image_encoder __a = self.dummy_image_processor __a = self.dummy_renderer __a = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1_024 , prediction_type='''sample''' , use_karras_sigmas=_snake_case , clip_sample=_snake_case , clip_sample_range=1.0 , ) __a = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case=0 ) -> List[Any]: '''simple docstring''' __a = floats_tensor((1, 3, 64, 64) , rng=random.Random(_snake_case ) ).to(_snake_case ) if str(_snake_case ).startswith('''mps''' ): __a = torch.manual_seed(_snake_case ) else: __a = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) __a = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a = '''cpu''' __a = self.get_dummy_components() __a = self.pipeline_class(**_snake_case ) __a = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) __a = pipe(**self.get_dummy_inputs(_snake_case ) ) __a = output.images[0] __a = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __a = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = torch_device == '''cpu''' __a = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_snake_case , relax_max_difference=_snake_case , ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = self.get_dummy_components() __a = self.pipeline_class(**_snake_case ) __a = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) __a = 1 __a = 2 __a = self.get_dummy_inputs(_snake_case ) for key in inputs.keys(): if key in self.batch_params: __a = batch_size * [inputs[key]] __a = pipe(**_snake_case , num_images_per_prompt=_snake_case )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) __a = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) __a = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) __a = torch.Generator(device=_snake_case ).manual_seed(0 ) __a = pipe( _snake_case , generator=_snake_case , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_snake_case , _snake_case )
6
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = [] if len(SCREAMING_SNAKE_CASE__ ) == 1: return [nums.copy()] for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): snake_case_ = nums.pop(0 ) snake_case_ = permute(SCREAMING_SNAKE_CASE__ ) for perm in permutations: perm.append(SCREAMING_SNAKE_CASE__ ) result.extend(SCREAMING_SNAKE_CASE__ ) nums.append(SCREAMING_SNAKE_CASE__ ) return result def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): def backtrack(SCREAMING_SNAKE_CASE__ ): if start == len(SCREAMING_SNAKE_CASE__ ) - 1: output.append(nums[:] ) else: for i in range(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ): snake_case_, snake_case_ = nums[i], nums[start] backtrack(start + 1 ) snake_case_, snake_case_ = nums[i], nums[start] # backtrack snake_case_ = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function lowerCAmelCase_ = permutea([1, 2, 3]) print(res) doctest.testmod()
8
0
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A ( unittest.TestCase ): """simple docstring""" def __init__( self : Union[str, Any],lowercase_ : str,lowercase_ : Optional[int]=3,lowercase_ : Optional[Any]=3_2,lowercase_ : str=3,lowercase_ : List[str]=1_0,lowercase_ : List[Any]=[1_0, 2_0, 3_0, 4_0],lowercase_ : Dict=[1, 1, 2, 1],lowercase_ : List[str]=True,lowercase_ : Tuple=True,lowercase_ : Optional[Any]="relu",lowercase_ : Tuple=3,lowercase_ : Any=None,)-> Tuple: '''simple docstring''' A__ = parent A__ = batch_size A__ = image_size A__ = num_channels A__ = embeddings_size A__ = hidden_sizes A__ = depths A__ = is_training A__ = use_labels A__ = hidden_act A__ = num_labels A__ = scope A__ = len(lowercase_ ) def snake_case__ ( self : Any )-> List[Any]: '''simple docstring''' A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = self.get_config() return config, pixel_values def snake_case__ ( self : Any )-> Dict: '''simple docstring''' return RegNetConfig( num_channels=self.num_channels,embeddings_size=self.embeddings_size,hidden_sizes=self.hidden_sizes,depths=self.depths,hidden_act=self.hidden_act,num_labels=self.num_labels,image_size=self.image_size,) def snake_case__ ( self : List[Any],lowercase_ : Optional[Any],lowercase_ : List[str] )-> List[str]: '''simple docstring''' A__ = FlaxRegNetModel(config=lowercase_ ) A__ = model(lowercase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape,(self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2),) def snake_case__ ( self : Any,lowercase_ : int,lowercase_ : List[str] )-> Optional[Any]: '''simple docstring''' A__ = self.num_labels A__ = FlaxRegNetForImageClassification(config=lowercase_ ) A__ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def snake_case__ ( self : Tuple )-> str: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ , A__ = config_and_inputs A__ = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def snake_case__ ( self : Tuple )-> None: '''simple docstring''' A__ = FlaxRegNetModelTester(self ) A__ = ConfigTester(self,config_class=lowercase_,has_text_modality=lowercase_ ) def snake_case__ ( self : Union[str, Any] )-> List[Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case__ ( self : List[str] )-> int: '''simple docstring''' return def snake_case__ ( self : str )-> Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def snake_case__ ( self : str )-> Tuple: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def snake_case__ ( self : int )-> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def snake_case__ ( self : Optional[Any] )-> str: '''simple docstring''' pass def snake_case__ ( self : int )-> Dict: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(lowercase_ ) A__ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['pixel_values'] self.assertListEqual(arg_names[:1],lowercase_ ) def snake_case__ ( self : Optional[Any] )-> Optional[Any]: '''simple docstring''' def check_hidden_states_output(lowercase_ : List[str],lowercase_ : List[Any],lowercase_ : Optional[int] ): A__ = model_class(lowercase_ ) A__ = model(**self._prepare_for_class(lowercase_,lowercase_ ) ) A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A__ = self.model_tester.num_stages self.assertEqual(len(lowercase_ ),expected_num_stages + 1 ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(lowercase_,lowercase_,lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(lowercase_,lowercase_,lowercase_ ) def snake_case__ ( self : Tuple )-> Tuple: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A__ = self._prepare_for_class(lowercase_,lowercase_ ) A__ = model_class(lowercase_ ) @jax.jit def model_jitted(lowercase_ : int,**lowercase_ : Dict ): return model(pixel_values=lowercase_,**lowercase_ ) with self.subTest('JIT Enabled' ): A__ = model_jitted(**lowercase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): A__ = model_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ),len(lowercase_ ) ) for jitted_output, output in zip(lowercase_,lowercase_ ): self.assertEqual(jitted_output.shape,output.shape ) def _snake_case( ) -> Dict: '''simple docstring''' A__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class A ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case__ ( self : Dict )-> Optional[int]: '''simple docstring''' return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def snake_case__ ( self : Union[str, Any] )-> str: '''simple docstring''' A__ = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=lowercase_,return_tensors='np' ) A__ = model(**lowercase_ ) # verify the logits A__ = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape,lowercase_ ) A__ = jnp.array([-0.4_180, -1.5_051, -3.4_836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3],lowercase_,atol=1E-4 ) )
7
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
8
0
import argparse import math import traceback import dateutil.parser as date_parser import requests def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : List[str] = {} __SCREAMING_SNAKE_CASE : Optional[Any] = job['''started_at'''] __SCREAMING_SNAKE_CASE : List[str] = job['''completed_at'''] __SCREAMING_SNAKE_CASE : List[str] = date_parser.parse(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = date_parser.parse(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = round((end_datetime - start_datetime).total_seconds() / 60.0 ) __SCREAMING_SNAKE_CASE : Any = start __SCREAMING_SNAKE_CASE : Optional[int] = end __SCREAMING_SNAKE_CASE : Dict = duration_in_min return job_info def _UpperCamelCase ( lowercase__ , lowercase__=None ): __SCREAMING_SNAKE_CASE : Optional[Any] = None if token is not None: __SCREAMING_SNAKE_CASE : Optional[int] = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F'''Bearer {token}'''} __SCREAMING_SNAKE_CASE : int = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' __SCREAMING_SNAKE_CASE : int = requests.get(lowercase__ , headers=lowercase__ ).json() __SCREAMING_SNAKE_CASE : Optional[Any] = {} try: job_time.update({job['''name''']: extract_time_from_single_job(lowercase__ ) for job in result['''jobs''']} ) __SCREAMING_SNAKE_CASE : Optional[int] = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = requests.get(url + F'''&page={i + 2}''' , headers=lowercase__ ).json() job_time.update({job['''name''']: extract_time_from_single_job(lowercase__ ) for job in result['''jobs''']} ) return job_time except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} if __name__ == "__main__": __lowerCAmelCase : int =argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') __lowerCAmelCase : Tuple =parser.parse_args() __lowerCAmelCase : Any =get_job_time(args.workflow_run_id) __lowerCAmelCase : int =dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f"""{k}: {v["duration"]}""")
9
from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=__A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = ["note_seq"] def __init__( self : Optional[int] , *_UpperCamelCase : str , **_UpperCamelCase : Optional[int] ) ->Any: requires_backends(self , ['''note_seq'''] ) @classmethod def snake_case__( cls : int , *_UpperCamelCase : Any , **_UpperCamelCase : List[Any] ) ->int: requires_backends(cls , ['''note_seq'''] ) @classmethod def snake_case__( cls : Dict , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : Union[str, Any] ) ->List[str]: requires_backends(cls , ['''note_seq'''] )
8
0
from typing import Union import fire import torch from tqdm import tqdm def lowerCAmelCase_ ( __a , __a = "cpu" , __a = None ) -> None: """simple docstring""" lowerCamelCase__: int =torch.load(__a , map_location=__a ) for k, v in tqdm(state_dict.items() ): if not isinstance(__a , torch.Tensor ): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" ) lowerCamelCase__: Union[str, Any] =v.half() if save_path is None: # overwrite src_path lowerCamelCase__: List[str] =src_path torch.save(__a , __a ) if __name__ == "__main__": fire.Fire(convert)
10
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = "vit_msn" def __init__( self : Dict , _UpperCamelCase : Optional[int]=7_6_8 , _UpperCamelCase : Optional[Any]=1_2 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : str=3_0_7_2 , _UpperCamelCase : Tuple="gelu" , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : List[str]=0.02 , _UpperCamelCase : List[Any]=1e-06 , _UpperCamelCase : Any=2_2_4 , _UpperCamelCase : Optional[Any]=1_6 , _UpperCamelCase : Any=3 , _UpperCamelCase : str=True , **_UpperCamelCase : Any , ) ->int: super().__init__(**_UpperCamelCase ) snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias
8
0
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowerCAmelCase__ = None lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json', 'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json', }, } lowerCAmelCase__ = { 'facebook/mbart-large-en-ro': 10_24, 'facebook/mbart-large-cc25': 10_24, } # fmt: off lowerCAmelCase__ = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] __SCREAMING_SNAKE_CASE = MBartTokenizer __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="<s>" , __lowerCamelCase="</s>" , __lowerCamelCase="</s>" , __lowerCamelCase="<s>" , __lowerCamelCase="<unk>" , __lowerCamelCase="<pad>" , __lowerCamelCase="<mask>" , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase , ) -> Optional[int]: # Mask token behave like a normal word, i.e. include the space before it _A : List[str] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase) if isinstance(__lowerCamelCase , __lowerCamelCase) else mask_token super().__init__( vocab_file=__lowerCamelCase , tokenizer_file=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , **__lowerCamelCase , ) _A : Union[str, Any] = vocab_file _A : int = False if not self.vocab_file else True _A : Optional[int] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens]) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens}) _A : Union[str, Any] = { lang_code: self.convert_tokens_to_ids(__lowerCamelCase) for lang_code in FAIRSEQ_LANGUAGE_CODES } _A : Optional[int] = src_lang if src_lang is not None else "en_XX" _A : Union[str, Any] = self.convert_tokens_to_ids(self._src_lang) _A : int = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def _lowerCamelCase ( self) -> str: return self._src_lang @src_lang.setter def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: _A : List[str] = [self.sep_token_id] _A : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") _A : str = src_lang _A : Any = self(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) _A : Tuple = self.convert_tokens_to_ids(__lowerCamelCase) _A : Dict = tgt_lang_id return inputs def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = "en_XX" , __lowerCamelCase = None , __lowerCamelCase = "ro_RO" , **__lowerCamelCase , ) -> BatchEncoding: _A : Any = src_lang _A : int = tgt_lang return super().prepare_seqaseq_batch(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self) -> List[str]: return self.set_src_lang_special_tokens(self.src_lang) def _lowerCamelCase ( self) -> List[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang) def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : int = self.convert_tokens_to_ids(__lowerCamelCase) _A : int = [] _A : List[str] = [self.eos_token_id, self.cur_lang_code] _A : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens) _A : str = self.convert_ids_to_tokens(self.suffix_tokens) _A : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Optional[int] = self.convert_tokens_to_ids(__lowerCamelCase) _A : List[Any] = [] _A : str = [self.eos_token_id, self.cur_lang_code] _A : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens) _A : int = self.convert_ids_to_tokens(self.suffix_tokens) _A : str = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(__lowerCamelCase): logger.error(F"Vocabulary path ({save_directory}) should be a directory.") return _A : int = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__lowerCamelCase): copyfile(self.vocab_file , __lowerCamelCase) return (out_vocab_file,)
11
from __future__ import annotations from math import pi, sqrt def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef UpperCAmelCase_ = ( 'This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' ) def lowerCamelCase__ ( A__ : int , A__ : List[Any] ): '''simple docstring''' warnings.warn(A__ , A__ ) requires_backends(A__ , """sklearn""" ) return (preds == labels).mean() def lowerCamelCase__ ( A__ : List[str] , A__ : Any ): '''simple docstring''' warnings.warn(A__ , A__ ) requires_backends(A__ , """sklearn""" ) __lowerCamelCase = simple_accuracy(A__ , A__ ) __lowerCamelCase = fa_score(y_true=A__ , y_pred=A__ ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def lowerCamelCase__ ( A__ : Tuple , A__ : Union[str, Any] ): '''simple docstring''' warnings.warn(A__ , A__ ) requires_backends(A__ , """sklearn""" ) __lowerCamelCase = pearsonr(A__ , A__ )[0] __lowerCamelCase = spearmanr(A__ , A__ )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def lowerCamelCase__ ( A__ : Tuple , A__ : List[str] , A__ : int ): '''simple docstring''' warnings.warn(A__ , A__ ) requires_backends(A__ , """sklearn""" ) assert len(A__ ) == len(A__ ), f'Predictions and labels have mismatched lengths {len(A__ )} and {len(A__ )}' if task_name == "cola": return {"mcc": matthews_corrcoef(A__ , A__ )} elif task_name == "sst-2": return {"acc": simple_accuracy(A__ , A__ )} elif task_name == "mrpc": return acc_and_fa(A__ , A__ ) elif task_name == "sts-b": return pearson_and_spearman(A__ , A__ ) elif task_name == "qqp": return acc_and_fa(A__ , A__ ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(A__ , A__ )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(A__ , A__ )} elif task_name == "qnli": return {"acc": simple_accuracy(A__ , A__ )} elif task_name == "rte": return {"acc": simple_accuracy(A__ , A__ )} elif task_name == "wnli": return {"acc": simple_accuracy(A__ , A__ )} elif task_name == "hans": return {"acc": simple_accuracy(A__ , A__ )} else: raise KeyError(A__ ) def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : int , A__ : Optional[int] ): '''simple docstring''' warnings.warn(A__ , A__ ) requires_backends(A__ , """sklearn""" ) if len(A__ ) != len(A__ ): raise ValueError(f'Predictions and labels have mismatched lengths {len(A__ )} and {len(A__ )}' ) if task_name == "xnli": return {"acc": simple_accuracy(A__ , A__ )} else: raise KeyError(A__ )
12
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return x + 2 class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Optional[Any] ) ->int: snake_case_ = '''x = 3''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase , {'''x''': 3} ) snake_case_ = '''x = y''' snake_case_ = {'''y''': 5} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 5, '''y''': 5} ) def snake_case__( self : Dict ) ->Optional[int]: snake_case_ = '''y = add_two(x)''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} ) # Won't work without the tool with CaptureStdout() as out: snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result is None assert "tried to execute add_two" in out.out def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = '''x = 3''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase , {'''x''': 3} ) def snake_case__( self : Optional[int] ) ->Optional[int]: snake_case_ = '''test_dict = {\'x\': x, \'y\': add_two(x)}''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} ) self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def snake_case__( self : Dict ) ->str: snake_case_ = '''x = 3\ny = 5''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} ) def snake_case__( self : str ) ->Tuple: snake_case_ = '''text = f\'This is x: {x}.\'''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''text''': '''This is x: 3.'''} ) def snake_case__( self : Optional[Any] ) ->List[str]: snake_case_ = '''if x <= 3:\n y = 2\nelse:\n y = 5''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 2} ) snake_case_ = {'''x''': 8} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 8, '''y''': 5} ) def snake_case__( self : str ) ->str: snake_case_ = '''test_list = [x, add_two(x)]''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , [3, 5] ) self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_list''': [3, 5]} ) def snake_case__( self : Any ) ->List[Any]: snake_case_ = '''y = x''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 3} ) def snake_case__( self : Optional[int] ) ->Dict: snake_case_ = '''test_list = [x, add_two(x)]\ntest_list[1]''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_list''': [3, 5]} ) snake_case_ = '''test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def snake_case__( self : Optional[Any] ) ->int: snake_case_ = '''x = 0\nfor i in range(3):\n x = i''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {'''range''': range} , state=_UpperCamelCase ) assert result == 2 self.assertDictEqual(_UpperCamelCase , {'''x''': 2, '''i''': 2} )
8
0
from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
13
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Any , _UpperCamelCase : Any , _UpperCamelCase : Tuple ) ->List[Any]: return f'''gaussian_noise_s={seed}_shape={'_'.join([str(_UpperCamelCase ) for s in shape] )}.npy''' def snake_case__( self : Any ) ->List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case__( self : int , _UpperCamelCase : Union[str, Any]=0 , _UpperCamelCase : int=(4, 4, 6_4, 6_4) , _UpperCamelCase : Optional[int]=False ) ->Tuple: snake_case_ = jnp.bfloataa if fpaa else jnp.floataa snake_case_ = jnp.array(load_hf_numpy(self.get_file_format(_UpperCamelCase , _UpperCamelCase ) ) , dtype=_UpperCamelCase ) return image def snake_case__( self : List[Any] , _UpperCamelCase : Optional[Any]=False , _UpperCamelCase : Optional[int]="CompVis/stable-diffusion-v1-4" ) ->Optional[Any]: snake_case_ = jnp.bfloataa if fpaa else jnp.floataa snake_case_ = '''bf16''' if fpaa else None snake_case_, snake_case_ = FlaxUNetaDConditionModel.from_pretrained( _UpperCamelCase , subfolder='''unet''' , dtype=_UpperCamelCase , revision=_UpperCamelCase ) return model, params def snake_case__( self : Dict , _UpperCamelCase : List[Any]=0 , _UpperCamelCase : Tuple=(4, 7_7, 7_6_8) , _UpperCamelCase : List[Any]=False ) ->int: snake_case_ = jnp.bfloataa if fpaa else jnp.floataa snake_case_ = jnp.array(load_hf_numpy(self.get_file_format(_UpperCamelCase , _UpperCamelCase ) ) , dtype=_UpperCamelCase ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [1_7, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_0_0_0, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def snake_case__( self : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] ) ->Union[str, Any]: snake_case_, snake_case_ = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=_UpperCamelCase ) snake_case_ = self.get_latents(_UpperCamelCase , fpaa=_UpperCamelCase ) snake_case_ = self.get_encoder_hidden_states(_UpperCamelCase , fpaa=_UpperCamelCase ) snake_case_ = model.apply( {'''params''': params} , _UpperCamelCase , jnp.array(_UpperCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=_UpperCamelCase , ).sample assert sample.shape == latents.shape snake_case_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) snake_case_ = jnp.array(_UpperCamelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [1_7, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_0_0_0, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def snake_case__( self : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str ) ->Dict: snake_case_, snake_case_ = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=_UpperCamelCase ) snake_case_ = self.get_latents(_UpperCamelCase , shape=(4, 4, 9_6, 9_6) , fpaa=_UpperCamelCase ) snake_case_ = self.get_encoder_hidden_states(_UpperCamelCase , shape=(4, 7_7, 1_0_2_4) , fpaa=_UpperCamelCase ) snake_case_ = model.apply( {'''params''': params} , _UpperCamelCase , jnp.array(_UpperCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=_UpperCamelCase , ).sample assert sample.shape == latents.shape snake_case_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) snake_case_ = jnp.array(_UpperCamelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-2 )
8
0
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ = False ) -> list[float]: """simple docstring""" if radian_mode: return [magnitude * cos(lowercase_ ), magnitude * sin(lowercase_ )] return [magnitude * cos(radians(lowercase_ ) ), magnitude * sin(radians(lowercase_ ) )] def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ = 10**-1 ) -> bool: """simple docstring""" A__ = cross(lowercase_ , lowercase_ ) A__ = sum(lowercase_ ) return abs(lowercase_ ) < eps if __name__ == "__main__": # Test to check if it works _lowerCamelCase : Optional[Any] = array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) _lowerCamelCase : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg _lowerCamelCase : Union[str, Any] = array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) _lowerCamelCase : Dict = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg _lowerCamelCase : Dict = array([[0, -2000], [0, -1200], [0, 15600], [0, -12400]]) _lowerCamelCase : Optional[Any] = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
14
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __SCREAMING_SNAKE_CASE (*SCREAMING_SNAKE_CASE__ ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = list(SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): snake_case_ = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 128 ): if function is None: return functools.partial(SCREAMING_SNAKE_CASE__ , starting_batch_size=SCREAMING_SNAKE_CASE__ ) snake_case_ = starting_batch_size def decorator(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() snake_case_ = list(inspect.signature(SCREAMING_SNAKE_CASE__ ).parameters.keys() ) # Guard against user error if len(SCREAMING_SNAKE_CASE__ ) < (len(SCREAMING_SNAKE_CASE__ ) + 1): snake_case_ = ''', '''.join([F'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F'''Batch size was passed into `{function.__name__}` as the first argument when called.''' F'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) except Exception as e: if should_reduce_batch_size(SCREAMING_SNAKE_CASE__ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
8
0
SCREAMING_SNAKE_CASE :int = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} SCREAMING_SNAKE_CASE :Optional[Any] = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCAmelCase ( a_ , a_ , a_ ) -> list[int]: """simple docstring""" __A = True __A = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(a_ , a_ , a_ ) order.append(a_ ) return order def UpperCAmelCase ( a_ , a_ , a_ ) -> list[int]: """simple docstring""" __A = True __A = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(a_ , a_ , a_ ) return component def UpperCAmelCase ( a_ ) -> list[list[int]]: """simple docstring""" __A = len(a_ ) * [False] __A = {vert: [] for vert in range(len(a_ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(a_ ) __A = [] for i, was_visited in enumerate(a_ ): if not was_visited: order += topology_sort(a_ , a_ , a_ ) __A = [] __A = len(a_ ) * [False] for i in range(len(a_ ) ): __A = order[len(a_ ) - i - 1] if not visited[vert]: __A = find_components(a_ , a_ , a_ ) components_list.append(a_ ) return components_list
15
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return [ord(SCREAMING_SNAKE_CASE__ ) - 96 for elem in plain] def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return "".join(chr(elem + 96 ) for elem in encoded ) def __SCREAMING_SNAKE_CASE (): snake_case_ = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , SCREAMING_SNAKE_CASE__ ) print('''Decoded:''' , decode(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": main()
8
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase_ = { 'configuration_layoutlmv3': [ 'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv3Config', 'LayoutLMv3OnnxConfig', ], 'processing_layoutlmv3': ['LayoutLMv3Processor'], 'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['LayoutLMv3TokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv3ForQuestionAnswering', 'LayoutLMv3ForSequenceClassification', 'LayoutLMv3ForTokenClassification', 'LayoutLMv3Model', 'LayoutLMv3PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLayoutLMv3ForQuestionAnswering', 'TFLayoutLMv3ForSequenceClassification', 'TFLayoutLMv3ForTokenClassification', 'TFLayoutLMv3Model', 'TFLayoutLMv3PreTrainedModel', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['LayoutLMv3FeatureExtractor'] lowerCAmelCase_ = ['LayoutLMv3ImageProcessor'] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(SCREAMING_SNAKE_CASE__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('''This should never happen''' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. lowerCAmelCase_ = '''Enter the base and the power separated by a comma: ''' lowerCAmelCase_ , lowerCAmelCase_ = map(int, input(prompt).split(''',''')) lowerCAmelCase_ , lowerCAmelCase_ = map(int, input(prompt).split(''',''')) # We find the log of each number, using the function res(), which takes two # arguments. lowerCAmelCase_ = res(xa, ya) lowerCAmelCase_ = res(xa, ya) # We check for the largest number if resa > resa: print('''Largest number is''', xa, '''^''', ya) elif resa > resa: print('''Largest number is''', xa, '''^''', ya) else: print('''Both are equal''')
8
0
"""simple docstring""" class _lowerCAmelCase : """simple docstring""" def __init__( self : int ): __lowercase = "" __lowercase = "" __lowercase = [] def _lowercase ( self : int, UpperCAmelCase__ : int, UpperCAmelCase__ : int ): if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: __lowercase = self.__min_dist_top_down_dp(m - 1, n - 1 ) else: __lowercase = self.__min_dist_top_down_dp(UpperCAmelCase__, n - 1 ) __lowercase = self.__min_dist_top_down_dp(m - 1, UpperCAmelCase__ ) __lowercase = self.__min_dist_top_down_dp(m - 1, n - 1 ) __lowercase = 1 + min(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) return self.dp[m][n] def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : str, UpperCAmelCase__ : str ): __lowercase = worda __lowercase = worda __lowercase = [[-1 for _ in range(len(UpperCAmelCase__ ) )] for _ in range(len(UpperCAmelCase__ ) )] return self.__min_dist_top_down_dp(len(UpperCAmelCase__ ) - 1, len(UpperCAmelCase__ ) - 1 ) def _lowercase ( self : int, UpperCAmelCase__ : str, UpperCAmelCase__ : str ): __lowercase = worda __lowercase = worda __lowercase = len(UpperCAmelCase__ ) __lowercase = len(UpperCAmelCase__ ) __lowercase = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty __lowercase = j elif j == 0: # second string is empty __lowercase = i elif worda[i - 1] == worda[j - 1]: # last characters are equal __lowercase = self.dp[i - 1][j - 1] else: __lowercase = self.dp[i][j - 1] __lowercase = self.dp[i - 1][j] __lowercase = self.dp[i - 1][j - 1] __lowercase = 1 + min(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) return self.dp[m][n] if __name__ == "__main__": _a = EditDistance() print('****************** Testing Edit Distance DP Algorithm ******************') print() _a = input('Enter the first string: ').strip() _a = input('Enter the second string: ').strip() print() print(F"The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}") print(F"The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}") print() print('*************** End of Testing Edit Distance DP Algorithm ***************')
17
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'''vocab_file''': '''spiece.model'''} lowerCAmelCase_ = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), } } lowerCAmelCase_ = { '''google/bigbird-roberta-base''': 40_96, '''google/bigbird-roberta-large''': 40_96, '''google/bigbird-base-trivia-itc''': 40_96, } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : List[Any] = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : List[str] , _UpperCamelCase : List[str] , _UpperCamelCase : Dict="<unk>" , _UpperCamelCase : List[str]="<s>" , _UpperCamelCase : Tuple="</s>" , _UpperCamelCase : Any="<pad>" , _UpperCamelCase : Any="[SEP]" , _UpperCamelCase : Optional[Any]="[MASK]" , _UpperCamelCase : Any="[CLS]" , _UpperCamelCase : Optional[Dict[str, Any]] = None , **_UpperCamelCase : Dict , ) ->None: snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else bos_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else eos_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else unk_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else pad_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else cls_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , sep_token=_UpperCamelCase , mask_token=_UpperCamelCase , cls_token=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) @property def snake_case__( self : str ) ->List[Any]: return self.sp_model.get_piece_size() def snake_case__( self : int ) ->Union[str, Any]: snake_case_ = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ) ->Any: snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self : str , _UpperCamelCase : List[Any] ) ->List[str]: snake_case_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case__( self : Optional[int] , _UpperCamelCase : str ) ->List[str]: return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def snake_case__( self : str , _UpperCamelCase : List[str] ) ->Tuple: return self.sp_model.piece_to_id(_UpperCamelCase ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : str ) ->List[Any]: snake_case_ = self.sp_model.IdToPiece(_UpperCamelCase ) return token def snake_case__( self : Dict , _UpperCamelCase : Optional[int] ) ->List[str]: snake_case_ = [] snake_case_ = '''''' snake_case_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token snake_case_ = True snake_case_ = [] else: current_sub_tokens.append(_UpperCamelCase ) snake_case_ = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def snake_case__( self : int , _UpperCamelCase : List[int] , _UpperCamelCase : bool = False , _UpperCamelCase : bool = None , _UpperCamelCase : bool = True , **_UpperCamelCase : List[str] , ) ->str: snake_case_ = kwargs.pop('''use_source_tokenizer''' , _UpperCamelCase ) snake_case_ = self.convert_ids_to_tokens(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 snake_case_ = [] snake_case_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCamelCase ) ) snake_case_ = [] sub_texts.append(_UpperCamelCase ) else: current_sub_text.append(_UpperCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: snake_case_ = re.sub(R''' (\[(MASK|SEP)\])''' , R'''\1''' , ''' '''.join(_UpperCamelCase ) ) else: snake_case_ = ''''''.join(_UpperCamelCase ) snake_case_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: snake_case_ = self.clean_up_tokenization(_UpperCamelCase ) return clean_text else: return text def snake_case__( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) ->Tuple[str]: if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,) def snake_case__( self : Tuple , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def snake_case__( self : List[str] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : bool = False ) ->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) + [1] return [1] + ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def snake_case__( self : List[Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
8
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __lowerCamelCase : Tuple = logging.get_logger(__name__) __lowerCamelCase : Optional[Any] = { '''openai/whisper-base''': '''https://huggingface.co/openai/whisper-base/resolve/main/config.json''', } # fmt: off __lowerCamelCase : List[str] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_57, 3_66, 4_38, 5_32, 6_85, 7_05, 7_96, 9_30, 10_58, 12_20, 12_67, 12_79, 13_03, 13_43, 13_77, 13_91, 16_35, 17_82, 18_75, 21_62, 23_61, 24_88, 34_67, 40_08, 42_11, 46_00, 48_08, 52_99, 58_55, 63_29, 72_03, 96_09, 99_59, 1_05_63, 1_07_86, 1_14_20, 1_17_09, 1_19_07, 1_31_63, 1_36_97, 1_37_00, 1_48_08, 1_53_06, 1_64_10, 1_67_91, 1_79_92, 1_92_03, 1_95_10, 2_07_24, 2_23_05, 2_29_35, 2_70_07, 3_01_09, 3_04_20, 3_34_09, 3_49_49, 4_02_83, 4_04_93, 4_05_49, 4_72_82, 4_91_46, 5_02_57, 5_03_59, 5_03_60, 5_03_61 ] __lowerCamelCase : Union[str, Any] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_59, 5_03, 5_22, 5_42, 8_73, 8_93, 9_02, 9_18, 9_22, 9_31, 13_50, 18_53, 19_82, 24_60, 26_27, 32_46, 32_53, 32_68, 35_36, 38_46, 39_61, 41_83, 46_67, 65_85, 66_47, 72_73, 90_61, 93_83, 1_04_28, 1_09_29, 1_19_38, 1_20_33, 1_23_31, 1_25_62, 1_37_93, 1_41_57, 1_46_35, 1_52_65, 1_56_18, 1_65_53, 1_66_04, 1_83_62, 1_89_56, 2_00_75, 2_16_75, 2_25_20, 2_61_30, 2_61_61, 2_64_35, 2_82_79, 2_94_64, 3_16_50, 3_23_02, 3_24_70, 3_68_65, 4_28_63, 4_74_25, 4_98_70, 5_02_54, 5_02_58, 5_03_60, 5_03_61, 5_03_62 ] class a__ ( A__ ): A = 'whisper' A = ['past_key_values'] A = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[Any],_A : Any=5_1865,_A : Optional[int]=80,_A : List[str]=6,_A : List[str]=4,_A : List[Any]=6,_A : Tuple=4,_A : Any=1536,_A : List[str]=1536,_A : Union[str, Any]=0.0,_A : Dict=0.0,_A : str=5_0257,_A : Optional[int]=True,_A : Optional[Any]=True,_A : Union[str, Any]="gelu",_A : List[str]=256,_A : Union[str, Any]=0.0,_A : Union[str, Any]=0.0,_A : Union[str, Any]=0.0,_A : Union[str, Any]=0.02,_A : int=False,_A : Tuple=1500,_A : Optional[Any]=448,_A : List[Any]=5_0256,_A : Tuple=5_0256,_A : Dict=5_0256,_A : Dict=None,_A : Union[str, Any]=[220, 5_0256],_A : Optional[int]=False,_A : int=256,_A : str=False,_A : Optional[int]=0.05,_A : List[Any]=10,_A : Dict=2,_A : str=0.0,_A : Union[str, Any]=10,_A : Optional[int]=0,_A : List[Any]=7,**_A : int,): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = vocab_size SCREAMING_SNAKE_CASE_ : Any = num_mel_bins SCREAMING_SNAKE_CASE_ : Dict = d_model SCREAMING_SNAKE_CASE_ : Optional[int] = encoder_layers SCREAMING_SNAKE_CASE_ : Optional[int] = encoder_attention_heads SCREAMING_SNAKE_CASE_ : Dict = decoder_layers SCREAMING_SNAKE_CASE_ : int = decoder_attention_heads SCREAMING_SNAKE_CASE_ : List[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE_ : List[Any] = encoder_ffn_dim SCREAMING_SNAKE_CASE_ : Tuple = dropout SCREAMING_SNAKE_CASE_ : Optional[int] = attention_dropout SCREAMING_SNAKE_CASE_ : Dict = activation_dropout SCREAMING_SNAKE_CASE_ : Union[str, Any] = activation_function SCREAMING_SNAKE_CASE_ : Union[str, Any] = init_std SCREAMING_SNAKE_CASE_ : List[Any] = encoder_layerdrop SCREAMING_SNAKE_CASE_ : Optional[Any] = decoder_layerdrop SCREAMING_SNAKE_CASE_ : Optional[Any] = use_cache SCREAMING_SNAKE_CASE_ : List[Any] = encoder_layers SCREAMING_SNAKE_CASE_ : Any = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE_ : int = max_source_positions SCREAMING_SNAKE_CASE_ : Any = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE_ : List[str] = classifier_proj_size SCREAMING_SNAKE_CASE_ : Tuple = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE_ : List[Any] = apply_spec_augment SCREAMING_SNAKE_CASE_ : Tuple = mask_time_prob SCREAMING_SNAKE_CASE_ : List[str] = mask_time_length SCREAMING_SNAKE_CASE_ : Optional[int] = mask_time_min_masks SCREAMING_SNAKE_CASE_ : List[Any] = mask_feature_prob SCREAMING_SNAKE_CASE_ : str = mask_feature_length SCREAMING_SNAKE_CASE_ : Dict = mask_feature_min_masks SCREAMING_SNAKE_CASE_ : Dict = median_filter_width super().__init__( pad_token_id=_A,bos_token_id=_A,eos_token_id=_A,is_encoder_decoder=_A,decoder_start_token_id=_A,suppress_tokens=_A,begin_suppress_tokens=_A,**_A,) class a__ ( A__ ): @property def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ] ) if self.use_past: SCREAMING_SNAKE_CASE_ : str = {0: "batch"} else: SCREAMING_SNAKE_CASE_ : Optional[int] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(_A,direction="inputs" ) return common_inputs def __UpperCamelCase ( self : Any,_A : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],_A : int = -1,_A : int = -1,_A : bool = False,_A : Optional["TensorType"] = None,_A : int = 2_2050,_A : float = 5.0,_A : int = 220,): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = OrderedDict() SCREAMING_SNAKE_CASE_ : Tuple = OnnxConfig.generate_dummy_inputs( self,preprocessor=preprocessor.feature_extractor,batch_size=_A,framework=_A,sampling_rate=_A,time_duration=_A,frequency=_A,) SCREAMING_SNAKE_CASE_ : Optional[int] = encoder_inputs["input_features"].shape[2] SCREAMING_SNAKE_CASE_ : int = encoder_sequence_length // 2 if self.use_past else seq_length SCREAMING_SNAKE_CASE_ : Dict = super().generate_dummy_inputs( preprocessor.tokenizer,_A,_A,_A,_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = encoder_inputs.pop("input_features" ) SCREAMING_SNAKE_CASE_ : List[str] = decoder_inputs.pop("decoder_input_ids" ) if "past_key_values" in decoder_inputs: SCREAMING_SNAKE_CASE_ : Any = decoder_inputs.pop("past_key_values" ) return dummy_inputs @property def __UpperCamelCase ( self : Any ): """simple docstring""" return 1E-3
18
from __future__ import annotations from collections.abc import Generator def __SCREAMING_SNAKE_CASE (): snake_case_ = {} snake_case_ = 2 while True: snake_case_ = factor_map.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if factor: snake_case_ = factor + prime while x in factor_map: x += factor snake_case_ = factor else: snake_case_ = prime yield prime prime += 1 def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = 1E10 ): snake_case_ = sieve() snake_case_ = 1 while True: snake_case_ = next(SCREAMING_SNAKE_CASE__ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(SCREAMING_SNAKE_CASE__ ) n += 2 if __name__ == "__main__": print(solution())
8
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_( self ) -> int: lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = BlipImageProcessor() lowerCamelCase_ = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) lowerCamelCase_ = BlipaProcessor(lowercase , lowercase ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_( self , **lowercase ) -> Union[str, Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase ).tokenizer def SCREAMING_SNAKE_CASE_( self , **lowercase ) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase ).image_processor def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: lowerCamelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase_ = [Image.fromarray(np.moveaxis(lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCamelCase_ = self.get_image_processor(do_normalize=lowercase , padding_value=1.0 ) lowerCamelCase_ = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = BlipaProcessor(tokenizer=lowercase , image_processor=lowercase ) lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = image_processor(lowercase , return_tensors="np" ) lowerCamelCase_ = processor(images=lowercase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = BlipaProcessor(tokenizer=lowercase , image_processor=lowercase ) lowerCamelCase_ = "lower newer" lowerCamelCase_ = processor(text=lowercase ) lowerCamelCase_ = tokenizer(lowercase , return_token_type_ids=lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = BlipaProcessor(tokenizer=lowercase , image_processor=lowercase ) lowerCamelCase_ = "lower newer" lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=lowercase , images=lowercase ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(lowercase ): processor() def SCREAMING_SNAKE_CASE_( self ) -> Tuple: lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = BlipaProcessor(tokenizer=lowercase , image_processor=lowercase ) lowerCamelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ = processor.batch_decode(lowercase ) lowerCamelCase_ = tokenizer.batch_decode(lowercase ) self.assertListEqual(lowercase , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = BlipaProcessor(tokenizer=lowercase , image_processor=lowercase ) lowerCamelCase_ = "lower newer" lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=lowercase , images=lowercase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
19
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
0
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 lowercase : Optional[Any] = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") lowercase : Optional[Any] = get_tests_dir("""fixtures/vocab.json""") lowercase : int = get_tests_dir("""fixtures""") class __snake_case ( unittest.TestCase ): _a : Union[str, Any]= ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = 0 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Optional[int] = WavaVecaConfig() lowercase : Any = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) # save in new folder model_config.save_pretrained(snake_case ) processor.save_pretrained(snake_case ) lowercase : Optional[Any] = AutoProcessor.from_pretrained(snake_case ) self.assertIsInstance(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(snake_case ,os.path.join(snake_case ,snake_case ) ) copyfile(snake_case ,os.path.join(snake_case ,"""vocab.json""" ) ) lowercase : str = AutoProcessor.from_pretrained(snake_case ) self.assertIsInstance(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Optional[int] = WavaVecaFeatureExtractor() lowercase : Optional[int] = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) lowercase : List[str] = WavaVecaProcessor(snake_case ,snake_case ) # save in new folder processor.save_pretrained(snake_case ) # drop `processor_class` in tokenizer with open(os.path.join(snake_case ,snake_case ) ,"""r""" ) as f: lowercase : Optional[int] = json.load(snake_case ) config_dict.pop("""processor_class""" ) with open(os.path.join(snake_case ,snake_case ) ,"""w""" ) as f: f.write(json.dumps(snake_case ) ) lowercase : str = AutoProcessor.from_pretrained(snake_case ) self.assertIsInstance(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : List[str] = WavaVecaFeatureExtractor() lowercase : List[Any] = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) lowercase : List[str] = WavaVecaProcessor(snake_case ,snake_case ) # save in new folder processor.save_pretrained(snake_case ) # drop `processor_class` in feature extractor with open(os.path.join(snake_case ,snake_case ) ,"""r""" ) as f: lowercase : str = json.load(snake_case ) config_dict.pop("""processor_class""" ) with open(os.path.join(snake_case ,snake_case ) ,"""w""" ) as f: f.write(json.dumps(snake_case ) ) lowercase : Tuple = AutoProcessor.from_pretrained(snake_case ) self.assertIsInstance(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Tuple = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" ) model_config.save_pretrained(snake_case ) # copy relevant files copyfile(snake_case ,os.path.join(snake_case ,"""vocab.json""" ) ) # create emtpy sample processor with open(os.path.join(snake_case ,snake_case ) ,"""w""" ) as f: f.write("""{}""" ) lowercase : str = AutoProcessor.from_pretrained(snake_case ) self.assertIsInstance(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with self.assertRaises(snake_case ): lowercase : Optional[int] = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case ): lowercase : Tuple = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" ,trust_remote_code=snake_case ) lowercase : Dict = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ,trust_remote_code=snake_case ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ ,"""NewProcessor""" ) lowercase : Optional[Any] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ ,"""NewFeatureExtractor""" ) lowercase : Optional[Any] = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ ,"""NewTokenizerFast""" ) # Test we can also load the slow version lowercase : Optional[Any] = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" ,trust_remote_code=snake_case ,use_fast=snake_case ) lowercase : List[Any] = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ ,"""NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ ,"""NewTokenizer""" ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' try: AutoConfig.register("""custom""" ,snake_case ) AutoFeatureExtractor.register(snake_case ,snake_case ) AutoTokenizer.register(snake_case ,slow_tokenizer_class=snake_case ) AutoProcessor.register(snake_case ,snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case ): AutoProcessor.register(snake_case ,snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API lowercase : Tuple = CustomFeatureExtractor.from_pretrained(snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase : List[str] = os.path.join(snake_case ,"""vocab.txt""" ) with open(snake_case ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) lowercase : int = CustomTokenizer(snake_case ) lowercase : Union[str, Any] = CustomProcessor(snake_case ,snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(snake_case ) lowercase : str = AutoProcessor.from_pretrained(snake_case ) self.assertIsInstance(snake_case ,snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' class __snake_case ( lowerCAmelCase ): _a : List[Any]= False class __snake_case ( lowerCAmelCase ): _a : Optional[int]= False class __snake_case ( lowerCAmelCase ): _a : List[Any]= "AutoFeatureExtractor" _a : Union[str, Any]= "AutoTokenizer" _a : str= False try: AutoConfig.register("""custom""" ,snake_case ) AutoFeatureExtractor.register(snake_case ,snake_case ) AutoTokenizer.register(snake_case ,slow_tokenizer_class=snake_case ) AutoProcessor.register(snake_case ,snake_case ) # If remote code is not set, the default is to use local classes. lowercase : Optional[Any] = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) self.assertEqual(processor.__class__.__name__ ,"""NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. lowercase : Dict = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" ,trust_remote_code=snake_case ) self.assertEqual(processor.__class__.__name__ ,"""NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. lowercase : Union[str, Any] = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" ,trust_remote_code=snake_case ) self.assertEqual(processor.__class__.__name__ ,"""NewProcessor""" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(processor.__class__.__name__ ,"""BertTokenizerFast""" ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" ) self.assertEqual(processor.__class__.__name__ ,"""ConvNextImageProcessor""" ) @is_staging_test class __snake_case ( unittest.TestCase ): _a : Dict= ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def _SCREAMING_SNAKE_CASE ( cls ): '''simple docstring''' lowercase : List[Any] = TOKEN HfFolder.save_token(snake_case ) @classmethod def _SCREAMING_SNAKE_CASE ( cls ): '''simple docstring''' try: delete_repo(token=cls._token ,repo_id="""test-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="""valid_org/test-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="""test-dynamic-processor""" ) except HTTPError: pass def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = WavaVecaProcessor.from_pretrained(snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(snake_case ,"""test-processor""" ) ,push_to_hub=snake_case ,use_auth_token=self._token ) lowercase : List[str] = WavaVecaProcessor.from_pretrained(f"{USER}/test-processor" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(snake_case ,getattr(new_processor.feature_extractor ,snake_case ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() ,processor.tokenizer.get_vocab() ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = WavaVecaProcessor.from_pretrained(snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(snake_case ,"""test-processor-org""" ) ,push_to_hub=snake_case ,use_auth_token=self._token ,organization="""valid_org""" ,) lowercase : Optional[int] = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(snake_case ,getattr(new_processor.feature_extractor ,snake_case ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() ,processor.tokenizer.get_vocab() ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() lowercase : Dict = CustomFeatureExtractor.from_pretrained(snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase : List[Any] = os.path.join(snake_case ,"""vocab.txt""" ) with open(snake_case ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) lowercase : List[Any] = CustomTokenizer(snake_case ) lowercase : Optional[Any] = CustomProcessor(snake_case ,snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f"{USER}/test-dynamic-processor" ,token=self._token ) lowercase : Dict = Repository(snake_case ,clone_from=f"{USER}/test-dynamic-processor" ,token=self._token ) processor.save_pretrained(snake_case ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map ,{ """AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""", """AutoProcessor""": """custom_processing.CustomProcessor""", } ,) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(snake_case ,"""tokenizer_config.json""" ) ) as f: lowercase : Dict = json.load(snake_case ) self.assertDictEqual( tokenizer_config["""auto_map"""] ,{ """AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None], """AutoProcessor""": """custom_processing.CustomProcessor""", } ,) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(snake_case ,"""custom_feature_extraction.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(snake_case ,"""custom_tokenization.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(snake_case ,"""custom_processing.py""" ) ) ) repo.push_to_hub() lowercase : Any = AutoProcessor.from_pretrained(f"{USER}/test-dynamic-processor" ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ ,"""CustomProcessor""" )
20
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = "philschmid/bart-large-cnn-samsum" SCREAMING_SNAKE_CASE : Tuple = ( "This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, " "and returns a summary of the text." ) SCREAMING_SNAKE_CASE : str = "summarizer" SCREAMING_SNAKE_CASE : str = AutoTokenizer SCREAMING_SNAKE_CASE : str = AutoModelForSeqaSeqLM SCREAMING_SNAKE_CASE : Optional[int] = ["text"] SCREAMING_SNAKE_CASE : Optional[int] = ["text"] def snake_case__( self : str , _UpperCamelCase : int ) ->Optional[int]: return self.pre_processor(_UpperCamelCase , return_tensors='''pt''' , truncation=_UpperCamelCase ) def snake_case__( self : Tuple , _UpperCamelCase : Optional[int] ) ->Tuple: return self.model.generate(**_UpperCamelCase )[0] def snake_case__( self : Optional[Any] , _UpperCamelCase : Optional[int] ) ->Any: return self.pre_processor.decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase )
8
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class _lowerCamelCase( _a ): lowercase_ : Dict = """deformable_detr""" lowercase_ : int = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self, lowerCamelCase=True, lowerCamelCase=None, lowerCamelCase=3, lowerCamelCase=3_00, lowerCamelCase=10_24, lowerCamelCase=6, lowerCamelCase=10_24, lowerCamelCase=8, lowerCamelCase=6, lowerCamelCase=10_24, lowerCamelCase=8, lowerCamelCase=0.0, lowerCamelCase=True, lowerCamelCase="relu", lowerCamelCase=2_56, lowerCamelCase=0.1, lowerCamelCase=0.0, lowerCamelCase=0.0, lowerCamelCase=0.0_2, lowerCamelCase=1.0, lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase="sine", lowerCamelCase="resnet50", lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase=4, lowerCamelCase=4, lowerCamelCase=4, lowerCamelCase=False, lowerCamelCase=3_00, lowerCamelCase=False, lowerCamelCase=1, lowerCamelCase=5, lowerCamelCase=2, lowerCamelCase=1, lowerCamelCase=1, lowerCamelCase=5, lowerCamelCase=2, lowerCamelCase=0.1, lowerCamelCase=0.2_5, lowerCamelCase=False, **lowerCamelCase, ) -> Optional[int]: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.') if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.') _lowercase : List[str] = CONFIG_MAPPING['resnet'](out_features=['stage4']) elif isinstance(lowerCamelCase, lowerCamelCase): _lowercase : List[str] = backbone_config.get('model_type') _lowercase : str = CONFIG_MAPPING[backbone_model_type] _lowercase : Optional[int] = config_class.from_dict(lowerCamelCase) _lowercase : Tuple = use_timm_backbone _lowercase : List[str] = backbone_config _lowercase : Tuple = num_channels _lowercase : Optional[Any] = num_queries _lowercase : Optional[Any] = max_position_embeddings _lowercase : Optional[int] = d_model _lowercase : int = encoder_ffn_dim _lowercase : List[Any] = encoder_layers _lowercase : str = encoder_attention_heads _lowercase : str = decoder_ffn_dim _lowercase : Optional[Any] = decoder_layers _lowercase : List[str] = decoder_attention_heads _lowercase : Optional[int] = dropout _lowercase : Optional[Any] = attention_dropout _lowercase : int = activation_dropout _lowercase : Any = activation_function _lowercase : Optional[int] = init_std _lowercase : int = init_xavier_std _lowercase : Union[str, Any] = encoder_layerdrop _lowercase : Tuple = auxiliary_loss _lowercase : Union[str, Any] = position_embedding_type _lowercase : str = backbone _lowercase : List[Any] = use_pretrained_backbone _lowercase : Any = dilation # deformable attributes _lowercase : Any = num_feature_levels _lowercase : Dict = encoder_n_points _lowercase : Dict = decoder_n_points _lowercase : Dict = two_stage _lowercase : Union[str, Any] = two_stage_num_proposals _lowercase : str = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.') # Hungarian matcher _lowercase : Tuple = class_cost _lowercase : int = bbox_cost _lowercase : Optional[int] = giou_cost # Loss coefficients _lowercase : Optional[Any] = mask_loss_coefficient _lowercase : Dict = dice_loss_coefficient _lowercase : Tuple = bbox_loss_coefficient _lowercase : Optional[int] = giou_loss_coefficient _lowercase : Union[str, Any] = eos_coefficient _lowercase : Union[str, Any] = focal_alpha _lowercase : Dict = disable_custom_kernels super().__init__(is_encoder_decoder=lowerCamelCase, **lowerCamelCase) @property def UpperCamelCase ( self) -> int: """simple docstring""" return self.encoder_attention_heads @property def UpperCamelCase ( self) -> int: """simple docstring""" return self.d_model def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = copy.deepcopy(self.__dict__) if self.backbone_config is not None: _lowercase : Union[str, Any] = self.backbone_config.to_dict() _lowercase : Tuple = self.__class__.model_type return output
21
from collections import deque from .hash_table import HashTable class snake_case_ ( __A ): '''simple docstring''' def __init__( self : int , *_UpperCamelCase : int , **_UpperCamelCase : Tuple ) ->Tuple: super().__init__(*_UpperCamelCase , **_UpperCamelCase ) def snake_case__( self : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Dict ) ->Tuple: snake_case_ = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_UpperCamelCase ) snake_case_ = self.values[key] def snake_case__( self : List[Any] ) ->str: return ( sum(self.charge_factor - len(_UpperCamelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def snake_case__( self : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int]=None ) ->str: if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_UpperCamelCase ) == 0 ): return key return super()._collision_resolution(_UpperCamelCase , _UpperCamelCase )
8
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :Dict = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class A_ ( lowerCAmelCase_ ): _lowerCamelCase : List[Any] = """mobilenet_v2""" def __init__( self : str , snake_case_ : List[str]=3 , snake_case_ : Any=2_2_4 , snake_case_ : Union[str, Any]=1.0 , snake_case_ : int=8 , snake_case_ : List[str]=8 , snake_case_ : Dict=6 , snake_case_ : Union[str, Any]=3_2 , snake_case_ : Optional[int]=True , snake_case_ : Optional[Any]=True , snake_case_ : Optional[Any]="relu6" , snake_case_ : int=True , snake_case_ : Any=0.8 , snake_case_ : List[str]=0.0_2 , snake_case_ : Optional[int]=0.0_0_1 , snake_case_ : Dict=2_5_5 , **snake_case_ : Dict , ): super().__init__(**snake_case_ ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = depth_multiplier _UpperCAmelCase = depth_divisible_by _UpperCAmelCase = min_depth _UpperCAmelCase = expand_ratio _UpperCAmelCase = output_stride _UpperCAmelCase = first_layer_is_expansion _UpperCAmelCase = finegrained_output _UpperCAmelCase = hidden_act _UpperCAmelCase = tf_padding _UpperCAmelCase = classifier_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = semantic_loss_ignore_index class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Optional[int] = version.parse("""1.11""" ) @property def lowercase ( self : Optional[int] ): return OrderedDict([("pixel_values", {0: "batch"})] ) @property def lowercase ( self : Union[str, Any] ): if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def lowercase ( self : List[Any] ): return 1e-4
22
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = len(SCREAMING_SNAKE_CASE__ ) # We need to create solution object to save path. snake_case_ = [[0 for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ )] snake_case_ = run_maze(SCREAMING_SNAKE_CASE__ , 0 , 0 , SCREAMING_SNAKE_CASE__ ) if solved: print('''\n'''.join(str(SCREAMING_SNAKE_CASE__ ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = len(SCREAMING_SNAKE_CASE__ ) # Final check point. if i == j == (size - 1): snake_case_ = 1 return True snake_case_ = (not i < 0) and (not j < 0) # Check lower bounds snake_case_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. snake_case_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited snake_case_ = 1 # check for directions if ( run_maze(SCREAMING_SNAKE_CASE__ , i + 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , j + 1 , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , j - 1 , SCREAMING_SNAKE_CASE__ ) ): return True snake_case_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__: int = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = XLMProphetNetTokenizer lowerCamelCase__ = False lowerCamelCase__ = True def A ( self : Dict ) -> Any: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : Dict = XLMProphetNetTokenizer(__snake_case , keep_accents=__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self : Any ) -> Tuple: UpperCAmelCase : Any = '''[PAD]''' UpperCAmelCase : Optional[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case ) def A ( self : Optional[Any] ) -> Any: UpperCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(__snake_case ) , 1012 ) def A ( self : int ) -> Any: self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def A ( self : Tuple ) -> int: UpperCAmelCase : Optional[Any] = XLMProphetNetTokenizer(__snake_case , keep_accents=__snake_case ) UpperCAmelCase : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase : Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase : Union[str, Any] = tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) UpperCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def A ( self : str ) -> List[Any]: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def A ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase : int = '''Hello World!''' UpperCAmelCase : str = [35389, 6672, 49, 2] self.assertListEqual(__snake_case , self.big_tokenizer.encode(__snake_case ) ) @slow def A ( self : Dict ) -> Union[str, Any]: # fmt: off UpperCAmelCase : int = {'''input_ids''': [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
23
from decimal import Decimal, getcontext from math import ceil, factorial def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError('''Undefined for non-integers''' ) elif precision < 1: raise ValueError('''Undefined for non-natural numbers''' ) snake_case_ = precision snake_case_ = ceil(precision / 14 ) snake_case_ = 426880 * Decimal(10005 ).sqrt() snake_case_ = 1 snake_case_ = 13591409 snake_case_ = Decimal(SCREAMING_SNAKE_CASE__ ) for k in range(1 , SCREAMING_SNAKE_CASE__ ): snake_case_ = factorial(6 * k ) // (factorial(3 * k ) * factorial(SCREAMING_SNAKE_CASE__ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": lowerCAmelCase_ = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
8
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) snake_case_ = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
24
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class snake_case_ ( __A ): '''simple docstring''' def __init__( self : int , _UpperCamelCase : pyspark.sql.DataFrame , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Optional[Features] = None , _UpperCamelCase : bool = True , _UpperCamelCase : str = None , _UpperCamelCase : bool = False , _UpperCamelCase : str = None , _UpperCamelCase : bool = True , _UpperCamelCase : str = "arrow" , **_UpperCamelCase : Tuple , ) ->str: super().__init__( split=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase , streaming=_UpperCamelCase , **_UpperCamelCase , ) snake_case_ = load_from_cache_file snake_case_ = file_format snake_case_ = Spark( df=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , working_dir=_UpperCamelCase , **_UpperCamelCase , ) def snake_case__( self : int ) ->Tuple: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) snake_case_ = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=_UpperCamelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
8
0
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class lowerCAmelCase_ : """simple docstring""" __UpperCamelCase : int __UpperCamelCase : TreeNode | None = None __UpperCamelCase : TreeNode | None = None UpperCAmelCase__ : Optional[int] = namedtuple('CoinsDistribResult', 'moves excess') def lowercase_ ( _snake_case ): if root is None: return 0 # Validation def count_nodes(_snake_case ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_snake_case ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_snake_case ) != count_coins(_snake_case ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(_snake_case ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 ,1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = get_distrib(node.left ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = get_distrib(node.right ) SCREAMING_SNAKE_CASE__ : str = 1 - left_distrib_excess SCREAMING_SNAKE_CASE__ : int = 1 - right_distrib_excess SCREAMING_SNAKE_CASE__ : Tuple = ( left_distrib_moves + right_distrib_moves + abs(_snake_case ) + abs(_snake_case ) ) SCREAMING_SNAKE_CASE__ : Any = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_snake_case ,_snake_case ) return get_distrib(_snake_case )[0] if __name__ == "__main__": import doctest doctest.testmod()
25
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable lowerCAmelCase_ = {'''configuration_dpt''': ['''DPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DPTConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''DPTFeatureExtractor'''] lowerCAmelCase_ = ['''DPTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''DPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DPTForDepthEstimation''', '''DPTForSemanticSegmentation''', '''DPTModel''', '''DPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
0
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def a__ ( self , _a=0 ) -> Optional[Any]: _A : Tuple = floats_tensor((1, 3, 128, 128) , rng=random.Random(_a ) ) _A : Optional[Any] = np.random.RandomState(_a ) _A : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """strength""": 0.75, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def a__ ( self ) -> int: _A : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_a ) _A : Any = self.get_dummy_inputs() _A : List[str] = pipe(**_a ).images _A : Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) _A : List[Any] = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def a__ ( self ) -> Dict: _A : List[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _A : List[Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_a ) pipe.set_progress_bar_config(disable=_a ) _A : List[Any] = self.get_dummy_inputs() _A : Union[str, Any] = pipe(**_a ).images _A : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _A : Dict = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def a__ ( self ) -> List[Any]: _A : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _A : Tuple = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) # warmup pass to apply optimizations _A : List[Any] = pipe(**self.get_dummy_inputs() ) _A : Tuple = self.get_dummy_inputs() _A : List[str] = pipe(**_a ).images _A : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _A : Dict = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def a__ ( self ) -> Union[str, Any]: _A : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _A : Any = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) _A : int = self.get_dummy_inputs() _A : Tuple = pipe(**_a ).images _A : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _A : Any = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def a__ ( self ) -> List[Any]: _A : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _A : Union[str, Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) _A : Optional[Any] = self.get_dummy_inputs() _A : Tuple = pipe(**_a ).images _A : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _A : str = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def a__ ( self ) -> List[str]: _A : Union[str, Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _A : str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) _A : Union[str, Any] = self.get_dummy_inputs() _A : List[str] = pipe(**_a ).images _A : str = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _A : Optional[int] = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowercase ( unittest.TestCase ): @property def a__ ( self ) -> str: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a__ ( self ) -> Optional[int]: _A : Union[str, Any] = ort.SessionOptions() _A : List[str] = False return options def a__ ( self ) -> Tuple: _A : str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) _A : Optional[Any] = init_image.resize((768, 512) ) # using the PNDM scheduler by default _A : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_a ) _A : str = """A fantasy landscape, trending on artstation""" _A : List[str] = np.random.RandomState(0 ) _A : Dict = pipe( prompt=_a , image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=_a , output_type="""np""" , ) _A : Optional[Any] = output.images _A : Optional[Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) _A : Optional[int] = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def a__ ( self ) -> Optional[Any]: _A : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) _A : Union[str, Any] = init_image.resize((768, 512) ) _A : Any = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) _A : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_a , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_a ) _A : str = """A fantasy landscape, trending on artstation""" _A : int = np.random.RandomState(0 ) _A : Optional[Any] = pipe( prompt=_a , image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=_a , output_type="""np""" , ) _A : Tuple = output.images _A : List[Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) _A : List[Any] = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
26
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCAmelCase_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase_ = { '''vocab_file''': { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''unc-nlp/lxmert-base-uncased''': ( '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase_ = { '''unc-nlp/lxmert-base-uncased''': 5_12, } lowerCAmelCase_ = { '''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True}, } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Any = LxmertTokenizer def __init__( self : Union[str, Any] , _UpperCamelCase : int=None , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : Dict=True , _UpperCamelCase : Any="[UNK]" , _UpperCamelCase : Tuple="[SEP]" , _UpperCamelCase : List[Any]="[PAD]" , _UpperCamelCase : Union[str, Any]="[CLS]" , _UpperCamelCase : str="[MASK]" , _UpperCamelCase : List[str]=True , _UpperCamelCase : List[str]=None , **_UpperCamelCase : List[str] , ) ->Any: super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , **_UpperCamelCase , ) snake_case_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _UpperCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _UpperCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _UpperCamelCase ) != tokenize_chinese_chars ): snake_case_ = getattr(_UpperCamelCase , normalizer_state.pop('''type''' ) ) snake_case_ = do_lower_case snake_case_ = strip_accents snake_case_ = tokenize_chinese_chars snake_case_ = normalizer_class(**_UpperCamelCase ) snake_case_ = do_lower_case def snake_case__( self : Optional[int] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str]=None ) ->List[Any]: snake_case_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__( self : int , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__( self : Any , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) ->Tuple[str]: snake_case_ = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
8
0
'''simple docstring''' def lowerCamelCase (_SCREAMING_SNAKE_CASE : int ): if number < 0: raise ValueError('number must not be negative' ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
27
import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = 10001 ): try: snake_case_ = int(SCREAMING_SNAKE_CASE__ ) except (TypeError, ValueError): raise TypeError('''Parameter nth must be int or castable to int.''' ) from None if nth <= 0: raise ValueError('''Parameter nth must be greater than or equal to one.''' ) snake_case_ = [] snake_case_ = 2 while len(SCREAMING_SNAKE_CASE__ ) < nth: if is_prime(SCREAMING_SNAKE_CASE__ ): primes.append(SCREAMING_SNAKE_CASE__ ) num += 1 else: num += 1 return primes[len(SCREAMING_SNAKE_CASE__ ) - 1] if __name__ == "__main__": print(f"""{solution() = }""")
8
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCamelCase : Tuple = { "configuration_blip": [ "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlipConfig", "BlipTextConfig", "BlipVisionConfig", ], "processing_blip": ["BlipProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Any = ["BlipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "BlipModel", "BlipPreTrainedModel", "BlipForConditionalGeneration", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextModel", "BlipForImageTextRetrieval", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = [ "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipForConditionalGeneration", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextModel", "TFBlipForImageTextRetrieval", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys _lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
28
from sklearn.metrics import mean_squared_error import datasets lowerCAmelCase_ = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' lowerCAmelCase_ = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' lowerCAmelCase_ = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): '''simple docstring''' def snake_case__( self : Optional[int] ) ->List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] , ) def snake_case__( self : List[Any] ) ->Optional[int]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def snake_case__( self : int , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any=None , _UpperCamelCase : Optional[int]="uniform_average" , _UpperCamelCase : Tuple=True ) ->Tuple: snake_case_ = mean_squared_error( _UpperCamelCase , _UpperCamelCase , sample_weight=_UpperCamelCase , multioutput=_UpperCamelCase , squared=_UpperCamelCase ) return {"mse": mse}
8
0
from graphs.minimum_spanning_tree_kruskal import kruskal def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ : str = 9 UpperCAmelCase_ : Tuple = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] UpperCAmelCase_ : List[str] = kruskal(__snake_case , __snake_case ) UpperCAmelCase_ : str = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(__snake_case ) == sorted(__snake_case )
29
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = [] if len(SCREAMING_SNAKE_CASE__ ) == 1: return [nums.copy()] for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): snake_case_ = nums.pop(0 ) snake_case_ = permute(SCREAMING_SNAKE_CASE__ ) for perm in permutations: perm.append(SCREAMING_SNAKE_CASE__ ) result.extend(SCREAMING_SNAKE_CASE__ ) nums.append(SCREAMING_SNAKE_CASE__ ) return result def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): def backtrack(SCREAMING_SNAKE_CASE__ ): if start == len(SCREAMING_SNAKE_CASE__ ) - 1: output.append(nums[:] ) else: for i in range(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ): snake_case_, snake_case_ = nums[i], nums[start] backtrack(start + 1 ) snake_case_, snake_case_ = nums[i], nums[start] # backtrack snake_case_ = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function lowerCAmelCase_ = permutea([1, 2, 3]) print(res) doctest.testmod()
8
0
from argparse import ArgumentParser from . import BaseTransformersCLICommand def a ( snake_case__: Tuple ): '''simple docstring''' return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowercase__( UpperCAmelCase ): """simple docstring""" @staticmethod def _lowercase ( SCREAMING_SNAKE_CASE_ : ArgumentParser ) -> int: lowercase_ = parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''' , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''' , action='''store_true''' , help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''' , action='''store_true''' , help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''' , ) download_parser.add_argument('''model''' , type=SCREAMING_SNAKE_CASE_ , help='''Name of the model to download''' ) download_parser.set_defaults(func=SCREAMING_SNAKE_CASE_ ) def __init__( self : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool , SCREAMING_SNAKE_CASE_ : bool ) -> Optional[Any]: lowercase_ = model lowercase_ = cache lowercase_ = force lowercase_ = trust_remote_code def _lowercase ( self : Union[str, Any] ) -> Union[str, Any]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
30
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
8
0
'''simple docstring''' from __future__ import annotations def UpperCamelCase_ ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float , ) -> tuple[str, float]: """simple docstring""" if (stress, tangential_force, area).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif stress < 0: raise ValueError("Stress cannot be negative" ) elif tangential_force < 0: raise ValueError("Tangential Force cannot be negative" ) elif area < 0: raise ValueError("Area cannot be negative" ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
31
from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=__A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = ["note_seq"] def __init__( self : Optional[int] , *_UpperCamelCase : str , **_UpperCamelCase : Optional[int] ) ->Any: requires_backends(self , ['''note_seq'''] ) @classmethod def snake_case__( cls : int , *_UpperCamelCase : Any , **_UpperCamelCase : List[Any] ) ->int: requires_backends(cls , ['''note_seq'''] ) @classmethod def snake_case__( cls : Dict , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : Union[str, Any] ) ->List[str]: requires_backends(cls , ['''note_seq'''] )
8
0
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Dict = {'vocab_file': 'vocab.txt'} UpperCAmelCase_ : Optional[int] = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } UpperCAmelCase_ : Tuple = { 'openbmb/cpm-ant-10b': 1024, } def SCREAMING_SNAKE_CASE_ ( __A : Tuple ) -> Tuple: """simple docstring""" a_ : Union[str, Any] = collections.OrderedDict() with open(__A , 'r' , encoding='utf-8' ) as reader: a_ : int = reader.readlines() for index, token in enumerate(__A ): a_ : Union[str, Any] = token.rstrip('\n' ) a_ : Union[str, Any] = index return vocab class SCREAMING_SNAKE_CASE__ ( lowercase__ ): def __init__( self : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str]="<unk>" , SCREAMING_SNAKE_CASE__ : Optional[Any]=2_0_0 ) -> List[str]: a_ : List[Any] = vocab a_ : Tuple = unk_token a_ : Tuple = max_input_chars_per_word def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Dict: a_ : Any = list(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > self.max_input_chars_per_word: return [self.unk_token] a_ : Tuple = 0 a_ : Union[str, Any] = [] while start < len(SCREAMING_SNAKE_CASE__ ): a_ : List[Any] = len(SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = None while start < end: a_ : Dict = ''.join(chars[start:end] ) if substr in self.vocab: a_ : int = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = end return sub_tokens class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Optional[int] = VOCAB_FILES_NAMES snake_case__ : Dict = PRETRAINED_VOCAB_FILES_MAP snake_case__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : str = ['''input_ids''', '''attention_mask'''] snake_case__ : Union[str, Any] = False def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict="<d>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="</d>" , SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : Optional[int]="</s>" , SCREAMING_SNAKE_CASE__ : Tuple="<pad>" , SCREAMING_SNAKE_CASE__ : str="<unk>" , SCREAMING_SNAKE_CASE__ : str="</n>" , SCREAMING_SNAKE_CASE__ : Any="</_>" , SCREAMING_SNAKE_CASE__ : Tuple="left" , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Union[str, Any]: requires_backends(self , ['jieba'] ) super().__init__( bod_token=SCREAMING_SNAKE_CASE__ , eod_token=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , line_token=SCREAMING_SNAKE_CASE__ , space_token=SCREAMING_SNAKE_CASE__ , padding_side=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) a_ : Tuple = bod_token a_ : str = eod_token a_ : Optional[int] = load_vocab(SCREAMING_SNAKE_CASE__ ) a_ : Tuple = self.encoder[space_token] a_ : Any = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] a_ : str = collections.OrderedDict(sorted(self.encoder.items() , key=lambda SCREAMING_SNAKE_CASE__ : x[1] ) ) a_ : List[Any] = {v: k for k, v in self.encoder.items()} a_ : str = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return self.encoder[self.bod_token] @property def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: return self.encoder[self.eod_token] @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: return self.encoder["\n"] @property def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: return len(self.encoder ) def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Dict: a_ : Union[str, Any] = [] for x in jieba.cut(SCREAMING_SNAKE_CASE__ , cut_all=SCREAMING_SNAKE_CASE__ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) ) return output_tokens def SCREAMING_SNAKE_CASE ( self : str , SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : str ) -> List[Any]: a_ : Optional[Any] = [i for i in token_ids if i >= 0] a_ : int = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] ) -> int: return token in self.encoder def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str: return "".join(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : str , SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]: return self.encoder.get(SCREAMING_SNAKE_CASE__ , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Dict: return self.decoder.get(SCREAMING_SNAKE_CASE__ , self.unk_token ) def SCREAMING_SNAKE_CASE ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: if os.path.isdir(SCREAMING_SNAKE_CASE__ ): a_ : str = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: a_ : str = (filename_prefix + '-' if filename_prefix else '') + save_directory a_ : int = 0 if " " in self.encoder: a_ : List[str] = self.encoder[' '] del self.encoder[" "] if "\n" in self.encoder: a_ : Union[str, Any] = self.encoder['\n'] del self.encoder["\n"] a_ : List[Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda SCREAMING_SNAKE_CASE__ : x[1] ) ) with open(SCREAMING_SNAKE_CASE__ , 'w' , encoding='utf-8' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ' Please check that the vocabulary is not corrupted!' ) a_ : Optional[Any] = token_index writer.write(token + '\n' ) index += 1 return (vocab_file,) def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : List[int] = None ) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is not None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ ))
32
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = "vit_msn" def __init__( self : Dict , _UpperCamelCase : Optional[int]=7_6_8 , _UpperCamelCase : Optional[Any]=1_2 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : str=3_0_7_2 , _UpperCamelCase : Tuple="gelu" , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : List[str]=0.02 , _UpperCamelCase : List[Any]=1e-06 , _UpperCamelCase : Any=2_2_4 , _UpperCamelCase : Optional[Any]=1_6 , _UpperCamelCase : Any=3 , _UpperCamelCase : str=True , **_UpperCamelCase : Any , ) ->int: super().__init__(**_UpperCamelCase ) snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias
8
0
"""simple docstring""" from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _UpperCAmelCase : def __init__( self : Any , A : int , A : Optional[Any]=2 , A : int=3 , A : Optional[Any]=4 , A : Union[str, Any]=2 , A : Dict=7 , A : Any=True , A : List[Any]=True , A : Any=True , A : str=True , A : Union[str, Any]=99 , A : Tuple=36 , A : Optional[int]=2 , A : Union[str, Any]=4 , A : Any=37 , A : Tuple="gelu" , A : Dict=0.1 , A : Optional[Any]=0.1 , A : List[Any]=5_12 , A : List[str]=16 , A : Optional[Any]=2 , A : Any=0.02 , A : Optional[int]=6 , A : int=6 , A : Optional[int]=3 , A : str=4 , A : Tuple=None , A : int=10_00 , ) -> Optional[Any]: lowercase_ : Dict = parent lowercase_ : Dict = batch_size lowercase_ : Optional[Any] = num_channels lowercase_ : List[str] = image_size lowercase_ : str = patch_size lowercase_ : Optional[int] = is_training lowercase_ : str = use_input_mask lowercase_ : Dict = use_token_type_ids lowercase_ : int = use_labels lowercase_ : Tuple = vocab_size lowercase_ : List[Any] = hidden_size lowercase_ : str = num_hidden_layers lowercase_ : Any = num_attention_heads lowercase_ : List[str] = intermediate_size lowercase_ : Optional[Any] = hidden_act lowercase_ : Tuple = hidden_dropout_prob lowercase_ : Optional[Any] = attention_probs_dropout_prob lowercase_ : List[Any] = max_position_embeddings lowercase_ : str = type_vocab_size lowercase_ : str = type_sequence_label_size lowercase_ : List[Any] = initializer_range lowercase_ : Dict = coordinate_size lowercase_ : List[str] = shape_size lowercase_ : int = num_labels lowercase_ : Union[str, Any] = num_choices lowercase_ : Union[str, Any] = scope lowercase_ : Optional[int] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowercase_ : Union[str, Any] = text_seq_length lowercase_ : Tuple = (image_size // patch_size) ** 2 + 1 lowercase_ : Dict = self.text_seq_length + self.image_seq_length def A ( self : Optional[Any] ) -> Optional[Any]: lowercase_ : Optional[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) lowercase_ : List[str] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) lowercase_ : Any = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowercase_ : List[str] = bbox[i, j, 3] lowercase_ : List[str] = bbox[i, j, 1] lowercase_ : List[Any] = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: lowercase_ : Dict = bbox[i, j, 2] lowercase_ : int = bbox[i, j, 0] lowercase_ : int = tmp_coordinate lowercase_ : Any = tf.constant(A ) lowercase_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : List[Any] = None if self.use_input_mask: lowercase_ : List[Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) lowercase_ : Union[str, Any] = None if self.use_token_type_ids: lowercase_ : str = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) lowercase_ : Optional[Any] = None lowercase_ : List[Any] = None if self.use_labels: lowercase_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : Tuple = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) lowercase_ : Optional[Any] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def A ( self : Optional[Any] , A : Optional[int] , A : Optional[Any] , A : Tuple , A : str , A : Optional[int] , A : str ) -> Any: lowercase_ : Tuple = TFLayoutLMvaModel(config=A ) # text + image lowercase_ : Optional[Any] = model(A , pixel_values=A , training=A ) lowercase_ : Optional[Any] = model( A , bbox=A , pixel_values=A , attention_mask=A , token_type_ids=A , training=A , ) lowercase_ : Any = model(A , bbox=A , pixel_values=A , training=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only lowercase_ : Tuple = model(A , training=A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only lowercase_ : Union[str, Any] = model({'''pixel_values''': pixel_values} , training=A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def A ( self : Union[str, Any] , A : str , A : Optional[int] , A : Optional[Any] , A : str , A : List[str] , A : List[str] , A : Tuple ) -> Dict: lowercase_ : int = self.num_labels lowercase_ : Union[str, Any] = TFLayoutLMvaForSequenceClassification(config=A ) lowercase_ : Any = model( A , bbox=A , pixel_values=A , attention_mask=A , token_type_ids=A , labels=A , training=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Dict , A : int , A : int , A : Union[str, Any] , A : Any , A : Optional[int] , A : int , A : int ) -> List[Any]: lowercase_ : Any = self.num_labels lowercase_ : str = TFLayoutLMvaForTokenClassification(config=A ) lowercase_ : Tuple = model( A , bbox=A , pixel_values=A , attention_mask=A , token_type_ids=A , labels=A , training=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def A ( self : Optional[Any] , A : Dict , A : List[Any] , A : Dict , A : Tuple , A : Union[str, Any] , A : Union[str, Any] , A : int ) -> Tuple: lowercase_ : Union[str, Any] = 2 lowercase_ : Dict = TFLayoutLMvaForQuestionAnswering(config=A ) lowercase_ : Optional[Any] = model( A , bbox=A , pixel_values=A , attention_mask=A , token_type_ids=A , start_positions=A , end_positions=A , training=A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : Any ) -> Any: lowercase_ : Optional[int] = self.prepare_config_and_inputs() ((lowercase_) , (lowercase_) , (lowercase_) , (lowercase_) , (lowercase_) , (lowercase_) , (lowercase_) , (lowercase_)) : List[Any] = config_and_inputs lowercase_ : List[str] = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_tf class _UpperCAmelCase ( _A , _A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : int = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE_ : str = ( {"document-question-answering": TFLayoutLMvaForQuestionAnswering, "feature-extraction": TFLayoutLMvaModel} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ : int = False SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = False def A ( self : List[Any] , A : Tuple , A : Optional[int] , A : Dict , A : Tuple , A : List[str] ) -> List[Any]: return True def A ( self : Tuple , A : List[str] , A : Any , A : List[Any]=False ) -> dict: lowercase_ : int = copy.deepcopy(A ) if model_class in get_values(A ): lowercase_ : List[str] = { k: tf.tile(tf.expand_dims(A , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(A , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A ): lowercase_ : int = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(A ): lowercase_ : str = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) lowercase_ : Optional[int] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(A ): lowercase_ : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(A ): lowercase_ : Optional[int] = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def A ( self : Optional[int] ) -> List[str]: lowercase_ : Union[str, Any] = TFLayoutLMvaModelTester(self ) lowercase_ : List[Any] = ConfigTester(self , config_class=A , hidden_size=37 ) def A ( self : str ) -> Any: self.config_tester.run_common_tests() def A ( self : Dict ) -> Optional[int]: lowercase_ , lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Any = model_class(A ) if getattr(A , '''hf_compute_loss''' , A ): # The number of elements in the loss should be the same as the number of elements in the label lowercase_ : Optional[Any] = self._prepare_for_class(inputs_dict.copy() , A , return_labels=A ) lowercase_ : int = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=A )[0] ] lowercase_ : Any = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs lowercase_ : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , A , return_labels=A ) lowercase_ : Any = prepared_for_class.pop('''input_ids''' ) lowercase_ : Optional[Any] = model(A , **A )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions lowercase_ : str = self._prepare_for_class(inputs_dict.copy() , A , return_labels=A ) lowercase_ : Union[str, Any] = prepared_for_class.pop('''input_ids''' ) if "labels" in prepared_for_class: lowercase_ : List[Any] = prepared_for_class['''labels'''].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: lowercase_ : Dict = -1_00 lowercase_ : Tuple = tf.convert_to_tensor(A ) lowercase_ : Union[str, Any] = model(A , **A )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict lowercase_ : List[str] = self._prepare_for_class(inputs_dict.copy() , A , return_labels=A ) lowercase_ : Tuple = model(A )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple lowercase_ : str = self._prepare_for_class(inputs_dict.copy() , A , return_labels=A ) # Get keys that were added with the _prepare_for_class function lowercase_ : List[str] = prepared_for_class.keys() - inputs_dict.keys() lowercase_ : Any = inspect.signature(model.call ).parameters lowercase_ : int = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple lowercase_ : Union[str, Any] = {0: '''input_ids'''} for label_key in label_keys: lowercase_ : Optional[int] = signature_names.index(A ) lowercase_ : Any = label_key lowercase_ : List[str] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple lowercase_ : Any = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: lowercase_ : int = prepared_for_class[value] lowercase_ : Optional[int] = tuple(A ) # Send to model lowercase_ : List[str] = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def A ( self : Tuple ) -> Any: ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(A , A , A , A , A , A ) def A ( self : str ) -> Optional[int]: ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase_ : Optional[int] = type self.model_tester.create_and_check_model(A , A , A , A , A , A ) def A ( self : Tuple ) -> int: ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( A , A , A , A , A , A , A ) def A ( self : Tuple ) -> Union[str, Any]: ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( A , A , A , A , A , A , A ) def A ( self : List[Any] ) -> Optional[Any]: ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( A , A , A , A , A , A , A ) @slow def A ( self : Union[str, Any] ) -> str: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Optional[Any] = TFLayoutLMvaModel.from_pretrained(A ) self.assertIsNotNone(A ) def lowercase ( ): lowercase_ : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf class _UpperCAmelCase ( unittest.TestCase ): @cached_property def A ( self : Dict ) -> Dict: return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None @slow def A ( self : Union[str, Any] ) -> Union[str, Any]: lowercase_ : List[str] = TFLayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ) lowercase_ : List[Any] = self.default_image_processor lowercase_ : Optional[Any] = prepare_img() lowercase_ : Dict = image_processor(images=A , return_tensors='''tf''' ).pixel_values lowercase_ : List[str] = tf.constant([[1, 2]] ) lowercase_ : Dict = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass lowercase_ : List[Any] = model(input_ids=A , bbox=A , pixel_values=A , training=A ) # verify the logits lowercase_ : List[Any] = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , A ) lowercase_ : List[Any] = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , A , atol=1e-4 ) )
33
from __future__ import annotations from math import pi, sqrt def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a ( __a ): __a : Optional[int] = ["""image_processor""", """tokenizer"""] __a : str = """CLIPImageProcessor""" __a : Optional[Any] = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : Optional[int] , lowercase : int=None , lowercase : Tuple=None , **lowercase : List[str] ): '''simple docstring''' UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowercase , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowercase , lowercase ) def __call__( self : int , lowercase : List[str]=None , lowercase : Dict=None , lowercase : Tuple=None , **lowercase : int ): '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCAmelCase = self.tokenizer(lowercase , return_tensors=lowercase , **lowercase ) if images is not None: UpperCAmelCase = self.image_processor(lowercase , return_tensors=lowercase , **lowercase ) if text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase ) , tensor_type=lowercase ) def A ( self : int , *lowercase : Any , **lowercase : Union[str, Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*lowercase , **lowercase ) def A ( self : Optional[Any] , *lowercase : Any , **lowercase : Union[str, Any] ): '''simple docstring''' return self.tokenizer.decode(*lowercase , **lowercase ) @property def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.tokenizer.model_input_names UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A ( self : List[Any] ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase , ) return self.image_processor_class @property def A ( self : Any ): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowercase , ) return self.image_processor
34
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return x + 2 class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Optional[Any] ) ->int: snake_case_ = '''x = 3''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase , {'''x''': 3} ) snake_case_ = '''x = y''' snake_case_ = {'''y''': 5} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 5, '''y''': 5} ) def snake_case__( self : Dict ) ->Optional[int]: snake_case_ = '''y = add_two(x)''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} ) # Won't work without the tool with CaptureStdout() as out: snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result is None assert "tried to execute add_two" in out.out def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = '''x = 3''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase , {'''x''': 3} ) def snake_case__( self : Optional[int] ) ->Optional[int]: snake_case_ = '''test_dict = {\'x\': x, \'y\': add_two(x)}''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} ) self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def snake_case__( self : Dict ) ->str: snake_case_ = '''x = 3\ny = 5''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} ) def snake_case__( self : str ) ->Tuple: snake_case_ = '''text = f\'This is x: {x}.\'''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''text''': '''This is x: 3.'''} ) def snake_case__( self : Optional[Any] ) ->List[str]: snake_case_ = '''if x <= 3:\n y = 2\nelse:\n y = 5''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 2} ) snake_case_ = {'''x''': 8} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 8, '''y''': 5} ) def snake_case__( self : str ) ->str: snake_case_ = '''test_list = [x, add_two(x)]''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , [3, 5] ) self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_list''': [3, 5]} ) def snake_case__( self : Any ) ->List[Any]: snake_case_ = '''y = x''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 3} ) def snake_case__( self : Optional[int] ) ->Dict: snake_case_ = '''test_list = [x, add_two(x)]\ntest_list[1]''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_list''': [3, 5]} ) snake_case_ = '''test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def snake_case__( self : Optional[Any] ) ->int: snake_case_ = '''x = 0\nfor i in range(3):\n x = i''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {'''range''': range} , state=_UpperCamelCase ) assert result == 2 self.assertDictEqual(_UpperCamelCase , {'''x''': 2, '''i''': 2} )
8
0
'''simple docstring''' from collections.abc import Sequence def __snake_case( _lowerCAmelCase , _lowerCAmelCase = False ) -> float: if not arr: return 0 snake_case__ : Optional[Any] = 0 if allow_empty_subarrays else float("""-inf""" ) snake_case__ : List[str] = 0.0 for num in arr: snake_case__ : Any = max(0 if allow_empty_subarrays else num , curr_sum + num ) snake_case__ : Optional[Any] = max(_lowerCAmelCase , _lowerCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() __a = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"{max_subarray_sum(nums) = }")
35
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Any , _UpperCamelCase : Any , _UpperCamelCase : Tuple ) ->List[Any]: return f'''gaussian_noise_s={seed}_shape={'_'.join([str(_UpperCamelCase ) for s in shape] )}.npy''' def snake_case__( self : Any ) ->List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case__( self : int , _UpperCamelCase : Union[str, Any]=0 , _UpperCamelCase : int=(4, 4, 6_4, 6_4) , _UpperCamelCase : Optional[int]=False ) ->Tuple: snake_case_ = jnp.bfloataa if fpaa else jnp.floataa snake_case_ = jnp.array(load_hf_numpy(self.get_file_format(_UpperCamelCase , _UpperCamelCase ) ) , dtype=_UpperCamelCase ) return image def snake_case__( self : List[Any] , _UpperCamelCase : Optional[Any]=False , _UpperCamelCase : Optional[int]="CompVis/stable-diffusion-v1-4" ) ->Optional[Any]: snake_case_ = jnp.bfloataa if fpaa else jnp.floataa snake_case_ = '''bf16''' if fpaa else None snake_case_, snake_case_ = FlaxUNetaDConditionModel.from_pretrained( _UpperCamelCase , subfolder='''unet''' , dtype=_UpperCamelCase , revision=_UpperCamelCase ) return model, params def snake_case__( self : Dict , _UpperCamelCase : List[Any]=0 , _UpperCamelCase : Tuple=(4, 7_7, 7_6_8) , _UpperCamelCase : List[Any]=False ) ->int: snake_case_ = jnp.bfloataa if fpaa else jnp.floataa snake_case_ = jnp.array(load_hf_numpy(self.get_file_format(_UpperCamelCase , _UpperCamelCase ) ) , dtype=_UpperCamelCase ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [1_7, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_0_0_0, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def snake_case__( self : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] ) ->Union[str, Any]: snake_case_, snake_case_ = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=_UpperCamelCase ) snake_case_ = self.get_latents(_UpperCamelCase , fpaa=_UpperCamelCase ) snake_case_ = self.get_encoder_hidden_states(_UpperCamelCase , fpaa=_UpperCamelCase ) snake_case_ = model.apply( {'''params''': params} , _UpperCamelCase , jnp.array(_UpperCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=_UpperCamelCase , ).sample assert sample.shape == latents.shape snake_case_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) snake_case_ = jnp.array(_UpperCamelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [1_7, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_0_0_0, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def snake_case__( self : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str ) ->Dict: snake_case_, snake_case_ = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=_UpperCamelCase ) snake_case_ = self.get_latents(_UpperCamelCase , shape=(4, 4, 9_6, 9_6) , fpaa=_UpperCamelCase ) snake_case_ = self.get_encoder_hidden_states(_UpperCamelCase , shape=(4, 7_7, 1_0_2_4) , fpaa=_UpperCamelCase ) snake_case_ = model.apply( {'''params''': params} , _UpperCamelCase , jnp.array(_UpperCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=_UpperCamelCase , ).sample assert sample.shape == latents.shape snake_case_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) snake_case_ = jnp.array(_UpperCamelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-2 )
8
0
import numpy as np def A ( _lowerCamelCase ): '''simple docstring''' return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
36
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __SCREAMING_SNAKE_CASE (*SCREAMING_SNAKE_CASE__ ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = list(SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): snake_case_ = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 128 ): if function is None: return functools.partial(SCREAMING_SNAKE_CASE__ , starting_batch_size=SCREAMING_SNAKE_CASE__ ) snake_case_ = starting_batch_size def decorator(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() snake_case_ = list(inspect.signature(SCREAMING_SNAKE_CASE__ ).parameters.keys() ) # Guard against user error if len(SCREAMING_SNAKE_CASE__ ) < (len(SCREAMING_SNAKE_CASE__ ) + 1): snake_case_ = ''', '''.join([F'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F'''Batch size was passed into `{function.__name__}` as the first argument when called.''' F'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) except Exception as e: if should_reduce_batch_size(SCREAMING_SNAKE_CASE__ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
8
0
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" if p < 2: raise ValueError("""p should not be less than 2!""" ) elif p == 2: return True lowerCAmelCase__ : List[str] = 4 lowerCAmelCase__ : Optional[int] = (1 << p) - 1 for _ in range(p - 2 ): lowerCAmelCase__ : Optional[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
37
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return [ord(SCREAMING_SNAKE_CASE__ ) - 96 for elem in plain] def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return "".join(chr(elem + 96 ) for elem in encoded ) def __SCREAMING_SNAKE_CASE (): snake_case_ = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , SCREAMING_SNAKE_CASE__ ) print('''Decoded:''' , decode(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": main()
8
0
import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _A ( self : Any ): for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(__lowerCamelCase ): UpperCamelCase :List[str] = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Optional[int] = FlaxAutoModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow def _A ( self : Optional[int] ): for model_name in ["roberta-base", "roberta-large"]: with self.subTest(__lowerCamelCase ): UpperCamelCase :Dict = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Union[str, Any] = FlaxAutoModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow def _A ( self : int ): for model_name in ["bert-base-cased", "bert-large-uncased"]: UpperCamelCase :str = AutoTokenizer.from_pretrained(__lowerCamelCase ) UpperCamelCase :Union[str, Any] = FlaxBertModel.from_pretrained(__lowerCamelCase ) UpperCamelCase :List[Any] = tokenizer("""Do you support jax jitted function?""" , return_tensors=TensorType.JAX ) @jax.jit def eval(**__lowerCamelCase : int ): return model(**__lowerCamelCase ) eval(**__lowerCamelCase ).block_until_ready() @slow def _A ( self : Union[str, Any] ): for model_name in ["roberta-base", "roberta-large"]: UpperCamelCase :Tuple = AutoTokenizer.from_pretrained(__lowerCamelCase ) UpperCamelCase :Any = FlaxRobertaModel.from_pretrained(__lowerCamelCase ) UpperCamelCase :List[str] = tokenizer("""Do you support jax jitted function?""" , return_tensors=TensorType.JAX ) @jax.jit def eval(**__lowerCamelCase : Any ): return model(**__lowerCamelCase ) eval(**__lowerCamelCase ).block_until_ready() def _A ( self : Any ): with self.assertRaisesRegex( __lowerCamelCase , """bert-base is not a local folder and is not a valid model identifier""" ): UpperCamelCase :Dict = FlaxAutoModel.from_pretrained("""bert-base""" ) def _A ( self : Union[str, Any] ): with self.assertRaisesRegex( __lowerCamelCase , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCamelCase :Optional[int] = FlaxAutoModel.from_pretrained(__lowerCamelCase , revision="""aaaaaa""" ) def _A ( self : Any ): with self.assertRaisesRegex( __lowerCamelCase , """hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack""" , ): UpperCamelCase :int = FlaxAutoModel.from_pretrained("""hf-internal-testing/config-no-model""" ) def _A ( self : List[Any] ): with self.assertRaisesRegex(__lowerCamelCase , """Use `from_pt=True` to load this model""" ): UpperCamelCase :str = FlaxAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""" )
38
import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(SCREAMING_SNAKE_CASE__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('''This should never happen''' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. lowerCAmelCase_ = '''Enter the base and the power separated by a comma: ''' lowerCAmelCase_ , lowerCAmelCase_ = map(int, input(prompt).split(''',''')) lowerCAmelCase_ , lowerCAmelCase_ = map(int, input(prompt).split(''',''')) # We find the log of each number, using the function res(), which takes two # arguments. lowerCAmelCase_ = res(xa, ya) lowerCAmelCase_ = res(xa, ya) # We check for the largest number if resa > resa: print('''Largest number is''', xa, '''^''', ya) elif resa > resa: print('''Largest number is''', xa, '''^''', ya) else: print('''Both are equal''')
8
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCamelCase ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = StableDiffusionInpaintPipeline UpperCamelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS UpperCamelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase__ = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase__ = frozenset([]) def UpperCamelCase ( self ): """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase , ) _UpperCAmelCase = PNDMScheduler(skip_prk_steps=UpperCAmelCase ) torch.manual_seed(0 ) _UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) _UpperCAmelCase = CLIPTextModel(UpperCAmelCase ) _UpperCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _UpperCAmelCase = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase=0 ): """simple docstring""" _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) _UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase = Image.fromarray(np.uinta(UpperCAmelCase ) ).convert('RGB' ).resize((64, 64) ) _UpperCAmelCase = Image.fromarray(np.uinta(image + 4 ) ).convert('RGB' ).resize((64, 64) ) if str(UpperCAmelCase ).startswith('mps' ): _UpperCAmelCase = torch.manual_seed(UpperCAmelCase ) else: _UpperCAmelCase = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) _UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = StableDiffusionInpaintPipeline(**UpperCAmelCase ) _UpperCAmelCase = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) _UpperCAmelCase = self.get_dummy_inputs(UpperCAmelCase ) _UpperCAmelCase = sd_pipe(**UpperCAmelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) _UpperCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy' ) _UpperCAmelCase = 'stabilityai/stable-diffusion-2-inpainting' _UpperCAmelCase = StableDiffusionInpaintPipeline.from_pretrained(UpperCAmelCase , safety_checker=UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() _UpperCAmelCase = 'Face of a yellow cat, high resolution, sitting on a park bench' _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , mask_image=UpperCAmelCase , generator=UpperCAmelCase , output_type='np' , ) _UpperCAmelCase = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9e-3 def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) _UpperCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy' ) _UpperCAmelCase = 'stabilityai/stable-diffusion-2-inpainting' _UpperCAmelCase = StableDiffusionInpaintPipeline.from_pretrained( UpperCAmelCase , torch_dtype=torch.floataa , safety_checker=UpperCAmelCase , ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() _UpperCAmelCase = 'Face of a yellow cat, high resolution, sitting on a park bench' _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , mask_image=UpperCAmelCase , generator=UpperCAmelCase , output_type='np' , ) _UpperCAmelCase = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def UpperCamelCase ( self ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) _UpperCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) _UpperCAmelCase = 'stabilityai/stable-diffusion-2-inpainting' _UpperCAmelCase = PNDMScheduler.from_pretrained(UpperCAmelCase , subfolder='scheduler' ) _UpperCAmelCase = StableDiffusionInpaintPipeline.from_pretrained( UpperCAmelCase , safety_checker=UpperCAmelCase , scheduler=UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _UpperCAmelCase = 'Face of a yellow cat, high resolution, sitting on a park bench' _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , mask_image=UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=2 , output_type='np' , ) _UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
39
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'''vocab_file''': '''spiece.model'''} lowerCAmelCase_ = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), } } lowerCAmelCase_ = { '''google/bigbird-roberta-base''': 40_96, '''google/bigbird-roberta-large''': 40_96, '''google/bigbird-base-trivia-itc''': 40_96, } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : List[Any] = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : List[str] , _UpperCamelCase : List[str] , _UpperCamelCase : Dict="<unk>" , _UpperCamelCase : List[str]="<s>" , _UpperCamelCase : Tuple="</s>" , _UpperCamelCase : Any="<pad>" , _UpperCamelCase : Any="[SEP]" , _UpperCamelCase : Optional[Any]="[MASK]" , _UpperCamelCase : Any="[CLS]" , _UpperCamelCase : Optional[Dict[str, Any]] = None , **_UpperCamelCase : Dict , ) ->None: snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else bos_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else eos_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else unk_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else pad_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else cls_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , sep_token=_UpperCamelCase , mask_token=_UpperCamelCase , cls_token=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) @property def snake_case__( self : str ) ->List[Any]: return self.sp_model.get_piece_size() def snake_case__( self : int ) ->Union[str, Any]: snake_case_ = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ) ->Any: snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self : str , _UpperCamelCase : List[Any] ) ->List[str]: snake_case_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case__( self : Optional[int] , _UpperCamelCase : str ) ->List[str]: return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def snake_case__( self : str , _UpperCamelCase : List[str] ) ->Tuple: return self.sp_model.piece_to_id(_UpperCamelCase ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : str ) ->List[Any]: snake_case_ = self.sp_model.IdToPiece(_UpperCamelCase ) return token def snake_case__( self : Dict , _UpperCamelCase : Optional[int] ) ->List[str]: snake_case_ = [] snake_case_ = '''''' snake_case_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token snake_case_ = True snake_case_ = [] else: current_sub_tokens.append(_UpperCamelCase ) snake_case_ = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def snake_case__( self : int , _UpperCamelCase : List[int] , _UpperCamelCase : bool = False , _UpperCamelCase : bool = None , _UpperCamelCase : bool = True , **_UpperCamelCase : List[str] , ) ->str: snake_case_ = kwargs.pop('''use_source_tokenizer''' , _UpperCamelCase ) snake_case_ = self.convert_ids_to_tokens(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 snake_case_ = [] snake_case_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCamelCase ) ) snake_case_ = [] sub_texts.append(_UpperCamelCase ) else: current_sub_text.append(_UpperCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: snake_case_ = re.sub(R''' (\[(MASK|SEP)\])''' , R'''\1''' , ''' '''.join(_UpperCamelCase ) ) else: snake_case_ = ''''''.join(_UpperCamelCase ) snake_case_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: snake_case_ = self.clean_up_tokenization(_UpperCamelCase ) return clean_text else: return text def snake_case__( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) ->Tuple[str]: if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,) def snake_case__( self : Tuple , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def snake_case__( self : List[str] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : bool = False ) ->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) + [1] return [1] + ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def snake_case__( self : List[Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
8
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class _A ( _a ): """simple docstring""" UpperCAmelCase : List[str] = """audio-spectrogram-transformer""" def __init__( self : List[Any] , __UpperCAmelCase : str=768 , __UpperCAmelCase : Dict=12 , __UpperCAmelCase : Optional[int]=12 , __UpperCAmelCase : Any=3072 , __UpperCAmelCase : List[Any]="gelu" , __UpperCAmelCase : Tuple=0.0 , __UpperCAmelCase : Any=0.0 , __UpperCAmelCase : List[str]=0.02 , __UpperCAmelCase : int=1e-12 , __UpperCAmelCase : str=16 , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : Any=10 , __UpperCAmelCase : List[Any]=10 , __UpperCAmelCase : List[str]=1024 , __UpperCAmelCase : str=128 , **__UpperCAmelCase : Dict , ): super().__init__(**__UpperCAmelCase) a : Any = hidden_size a : Tuple = num_hidden_layers a : Any = num_attention_heads a : Optional[Any] = intermediate_size a : str = hidden_act a : Tuple = hidden_dropout_prob a : Optional[int] = attention_probs_dropout_prob a : Optional[int] = initializer_range a : Any = layer_norm_eps a : Optional[int] = patch_size a : Optional[Any] = qkv_bias a : Optional[Any] = frequency_stride a : Optional[Any] = time_stride a : Tuple = max_length a : Optional[Any] = num_mel_bins
40
from __future__ import annotations from collections.abc import Generator def __SCREAMING_SNAKE_CASE (): snake_case_ = {} snake_case_ = 2 while True: snake_case_ = factor_map.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if factor: snake_case_ = factor + prime while x in factor_map: x += factor snake_case_ = factor else: snake_case_ = prime yield prime prime += 1 def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = 1E10 ): snake_case_ = sieve() snake_case_ = 1 while True: snake_case_ = next(SCREAMING_SNAKE_CASE__ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(SCREAMING_SNAKE_CASE__ ) n += 2 if __name__ == "__main__": print(solution())
8
0
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _A : List[Any] =logging.get_logger(__name__) _A : Tuple ={ '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } _A : List[Any] ={ '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } _A : List[Any] ={'''facebook/blenderbot-3B''': 128} class _lowercase ( _lowercase ): a = VOCAB_FILES_NAMES a = PRETRAINED_VOCAB_FILES_MAP a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a = ["""input_ids""", """attention_mask"""] a = BlenderbotTokenizer def __init__( self: Union[str, Any] , UpperCamelCase__: Union[str, Any]=None , UpperCamelCase__: List[str]=None , UpperCamelCase__: int=None , UpperCamelCase__: Dict="replace" , UpperCamelCase__: Any="<s>" , UpperCamelCase__: Dict="</s>" , UpperCamelCase__: Any="</s>" , UpperCamelCase__: Union[str, Any]="<s>" , UpperCamelCase__: Tuple="<unk>" , UpperCamelCase__: Union[str, Any]="<pad>" , UpperCamelCase__: Optional[Any]="<mask>" , UpperCamelCase__: Tuple=False , UpperCamelCase__: str=True , **UpperCamelCase__: Optional[Any] , ): super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , errors=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ , **UpperCamelCase__ , ) lowerCamelCase__ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCamelCase__ ) != add_prefix_space: lowerCamelCase__ : List[str] = getattr(UpperCamelCase__ , pre_tok_state.pop("""type""" ) ) lowerCamelCase__ : Union[str, Any] = add_prefix_space lowerCamelCase__ : Optional[int] = pre_tok_class(**UpperCamelCase__ ) lowerCamelCase__ : Dict = add_prefix_space lowerCamelCase__ : Tuple = """post_processor""" lowerCamelCase__ : Tuple = getattr(self.backend_tokenizer , UpperCamelCase__ , UpperCamelCase__ ) if tokenizer_component_instance: lowerCamelCase__ : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCamelCase__ : str = tuple(state["""sep"""] ) if "cls" in state: lowerCamelCase__ : Optional[Any] = tuple(state["""cls"""] ) lowerCamelCase__ : Optional[int] = False if state.get("""add_prefix_space""" , UpperCamelCase__ ) != add_prefix_space: lowerCamelCase__ : Tuple = add_prefix_space lowerCamelCase__ : Optional[Any] = True if state.get("""trim_offsets""" , UpperCamelCase__ ) != trim_offsets: lowerCamelCase__ : int = trim_offsets lowerCamelCase__ : int = True if changes_to_apply: lowerCamelCase__ : List[Any] = getattr(UpperCamelCase__ , state.pop("""type""" ) ) lowerCamelCase__ : Any = component_class(**UpperCamelCase__ ) setattr(self.backend_tokenizer , UpperCamelCase__ , UpperCamelCase__ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCamelCase_ ( self: str ): if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase__: str ): lowerCamelCase__ : Union[str, Any] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else value lowerCamelCase__ : int = value def lowerCamelCase_ ( self: Union[str, Any] , *UpperCamelCase__: Optional[Any] , **UpperCamelCase__: Any ): lowerCamelCase__ : List[str] = kwargs.get("""is_split_into_words""" , UpperCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase_ ( self: Optional[int] , *UpperCamelCase__: List[Any] , **UpperCamelCase__: int ): lowerCamelCase__ : List[str] = kwargs.get("""is_split_into_words""" , UpperCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: str , UpperCamelCase__: Optional[str] = None ): lowerCamelCase__ : Dict = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase__: List[int] , UpperCamelCase__: Optional[List[int]] = None ): lowerCamelCase__ : List[Any] = [self.sep_token_id] lowerCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self: Tuple , UpperCamelCase__: List[int] , UpperCamelCase__: Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self: Any , UpperCamelCase__: "Conversation" ): lowerCamelCase__ : List[str] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(""" """ + text ) else: # Generated responses should contain them already. inputs.append(UpperCamelCase__ ) lowerCamelCase__ : str = """ """.join(UpperCamelCase__ ) lowerCamelCase__ : str = self.encode(UpperCamelCase__ ) if len(UpperCamelCase__ ) > self.model_max_length: lowerCamelCase__ : List[Any] = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
41
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: _snake_case = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=__A , default=__A , required=__A , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=__A , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=__A , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=__A , default=42 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=__A , default=0 , help='cuda_id.' , ) _snake_case = parser.parse_args() return args def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> Dict: if not len(__A ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) _snake_case , _snake_case = imgs[0].size _snake_case = Image.new('RGB' , size=(cols * w, rows * h) ) _snake_case , _snake_case = grid.size for i, img in enumerate(__A ): grid.paste(__A , box=(i % cols * w, i // cols * h) ) return grid def SCREAMING_SNAKE_CASE__ ( __A , __A="robotic cat with wings" , __A=7.5 , __A=50 , __A=1 , __A=42 , ) -> Dict: _snake_case = torch.Generator(pipeline.device ).manual_seed(__A ) _snake_case = pipeline( __A , guidance_scale=__A , num_inference_steps=__A , generator=__A , num_images_per_prompt=__A , ).images _snake_case = int(math.sqrt(__A ) ) _snake_case = image_grid(__A , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images lowercase : Optional[Any] = parse_args() # Load models and create wrapper for stable diffusion lowercase : str = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") lowercase : str = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder") lowercase : Any = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") lowercase : Any = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") lowercase : Optional[int] = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) lowercase : Optional[int] = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, "best_model.pt")): lowercase : List[Any] = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, "unet", unet) else: lowercase : Optional[Any] = unet.to(torch.device("cuda", args.cuda_id)) lowercase : Tuple = pipeline.to(unet.device) lowercase , lowercase : Optional[int] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, "{}.png".format("_".join(args.caption.split())))) lowercase : Tuple = os.path.join(args.pretrained_model_name_or_path, "_".join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, "{}.png".format(idx + 1)))
42
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = "philschmid/bart-large-cnn-samsum" SCREAMING_SNAKE_CASE : Tuple = ( "This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, " "and returns a summary of the text." ) SCREAMING_SNAKE_CASE : str = "summarizer" SCREAMING_SNAKE_CASE : str = AutoTokenizer SCREAMING_SNAKE_CASE : str = AutoModelForSeqaSeqLM SCREAMING_SNAKE_CASE : Optional[int] = ["text"] SCREAMING_SNAKE_CASE : Optional[int] = ["text"] def snake_case__( self : str , _UpperCamelCase : int ) ->Optional[int]: return self.pre_processor(_UpperCamelCase , return_tensors='''pt''' , truncation=_UpperCamelCase ) def snake_case__( self : Tuple , _UpperCamelCase : Optional[int] ) ->Tuple: return self.model.generate(**_UpperCamelCase )[0] def snake_case__( self : Optional[Any] , _UpperCamelCase : Optional[int] ) ->Any: return self.pre_processor.decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase )
8
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { '''facebook/wav2vec2-base-960h''': '''https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json''', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Union[str, Any] = """wav2vec2""" def __init__( self , __lowercase=32 , __lowercase=768 , __lowercase=12 , __lowercase=12 , __lowercase=3_072 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.0 , __lowercase=0.0 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.02 , __lowercase=1E-5 , __lowercase="group" , __lowercase="gelu" , __lowercase=(512, 512, 512, 512, 512, 512, 512) , __lowercase=(5, 2, 2, 2, 2, 2, 2) , __lowercase=(10, 3, 3, 3, 3, 2, 2) , __lowercase=False , __lowercase=128 , __lowercase=16 , __lowercase=False , __lowercase=True , __lowercase=0.05 , __lowercase=10 , __lowercase=2 , __lowercase=0.0 , __lowercase=10 , __lowercase=0 , __lowercase=320 , __lowercase=2 , __lowercase=0.1 , __lowercase=100 , __lowercase=256 , __lowercase=256 , __lowercase=0.1 , __lowercase="sum" , __lowercase=False , __lowercase=False , __lowercase=256 , __lowercase=(512, 512, 512, 512, 1_500) , __lowercase=(5, 3, 3, 1, 1) , __lowercase=(1, 2, 3, 1, 1) , __lowercase=512 , __lowercase=0 , __lowercase=1 , __lowercase=2 , __lowercase=False , __lowercase=3 , __lowercase=2 , __lowercase=3 , __lowercase=None , __lowercase=None , **__lowercase , ) -> int: super().__init__(**__lowercase , pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase) __UpperCamelCase :Any = hidden_size __UpperCamelCase :int = feat_extract_norm __UpperCamelCase :Tuple = feat_extract_activation __UpperCamelCase :Union[str, Any] = list(__lowercase) __UpperCamelCase :List[Any] = list(__lowercase) __UpperCamelCase :int = list(__lowercase) __UpperCamelCase :List[Any] = conv_bias __UpperCamelCase :Optional[int] = num_conv_pos_embeddings __UpperCamelCase :Dict = num_conv_pos_embedding_groups __UpperCamelCase :Any = len(self.conv_dim) __UpperCamelCase :List[str] = num_hidden_layers __UpperCamelCase :int = intermediate_size __UpperCamelCase :str = hidden_act __UpperCamelCase :Any = num_attention_heads __UpperCamelCase :int = hidden_dropout __UpperCamelCase :Tuple = attention_dropout __UpperCamelCase :List[str] = activation_dropout __UpperCamelCase :Optional[Any] = feat_proj_dropout __UpperCamelCase :Any = final_dropout __UpperCamelCase :Any = layerdrop __UpperCamelCase :str = layer_norm_eps __UpperCamelCase :Optional[Any] = initializer_range __UpperCamelCase :List[str] = vocab_size __UpperCamelCase :str = do_stable_layer_norm __UpperCamelCase :Union[str, Any] = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCamelCase :List[Any] = apply_spec_augment __UpperCamelCase :Tuple = mask_time_prob __UpperCamelCase :int = mask_time_length __UpperCamelCase :Dict = mask_time_min_masks __UpperCamelCase :str = mask_feature_prob __UpperCamelCase :List[str] = mask_feature_length __UpperCamelCase :Union[str, Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __UpperCamelCase :Optional[Any] = num_codevectors_per_group __UpperCamelCase :List[Any] = num_codevector_groups __UpperCamelCase :Tuple = contrastive_logits_temperature __UpperCamelCase :Optional[int] = feat_quantizer_dropout __UpperCamelCase :Optional[int] = num_negatives __UpperCamelCase :List[Any] = codevector_dim __UpperCamelCase :str = proj_codevector_dim __UpperCamelCase :List[str] = diversity_loss_weight # ctc loss __UpperCamelCase :Tuple = ctc_loss_reduction __UpperCamelCase :Tuple = ctc_zero_infinity # adapter __UpperCamelCase :List[str] = add_adapter __UpperCamelCase :Tuple = adapter_kernel_size __UpperCamelCase :str = adapter_stride __UpperCamelCase :Tuple = num_adapter_layers __UpperCamelCase :Tuple = output_hidden_size or hidden_size __UpperCamelCase :Optional[Any] = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. __UpperCamelCase :Optional[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __UpperCamelCase :Optional[int] = list(__lowercase) __UpperCamelCase :List[Any] = list(__lowercase) __UpperCamelCase :List[Any] = list(__lowercase) __UpperCamelCase :str = xvector_output_dim @property def UpperCamelCase__ ( self) -> List[str]: return functools.reduce(operator.mul , self.conv_stride , 1)
43
from collections import deque from .hash_table import HashTable class snake_case_ ( __A ): '''simple docstring''' def __init__( self : int , *_UpperCamelCase : int , **_UpperCamelCase : Tuple ) ->Tuple: super().__init__(*_UpperCamelCase , **_UpperCamelCase ) def snake_case__( self : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Dict ) ->Tuple: snake_case_ = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_UpperCamelCase ) snake_case_ = self.values[key] def snake_case__( self : List[Any] ) ->str: return ( sum(self.charge_factor - len(_UpperCamelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def snake_case__( self : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int]=None ) ->str: if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_UpperCamelCase ) == 0 ): return key return super()._collision_resolution(_UpperCamelCase , _UpperCamelCase )
8
0
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer _a : str = logging.get_logger(__name__) _a : Union[str, Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _a : int = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } _a : int = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } _a : List[str] = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } _a : List[str] = { 'facebook/dpr-ctx_encoder-single-nq-base': 512, 'facebook/dpr-ctx_encoder-multiset-base': 512, } _a : Optional[Any] = { 'facebook/dpr-question_encoder-single-nq-base': 512, 'facebook/dpr-question_encoder-multiset-base': 512, } _a : Union[str, Any] = { 'facebook/dpr-reader-single-nq-base': 512, 'facebook/dpr-reader-multiset-base': 512, } _a : Optional[int] = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } _a : Any = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } _a : Dict = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[int] = VOCAB_FILES_NAMES _UpperCamelCase : Optional[int] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : List[str] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : int = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Tuple = DPRContextEncoderTokenizer class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Any = VOCAB_FILES_NAMES _UpperCamelCase : Optional[int] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Tuple = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[Any] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Tuple = DPRQuestionEncoderTokenizer _a : List[Any] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) _a : Tuple = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) _a : List[str] = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) class __A : def __call__( self , a__ , a__ = None , a__ = None , a__ = False , a__ = False , a__ = None , a__ = None , a__ = None , **a__ , ): if titles is None and texts is None: return super().__call__( a__ , padding=a__ , truncation=a__ , max_length=a__ , return_tensors=a__ , return_attention_mask=a__ , **a__ , ) elif titles is None or texts is None: _lowerCAmelCase : Union[str, Any] = titles if texts is None else texts return super().__call__( a__ , a__ , padding=a__ , truncation=a__ , max_length=a__ , return_tensors=a__ , return_attention_mask=a__ , **a__ , ) _lowerCAmelCase : Union[str, Any] = titles if not isinstance(a__ , a__ ) else [titles] _lowerCAmelCase : List[Any] = texts if not isinstance(a__ , a__ ) else [texts] _lowerCAmelCase : Union[str, Any] = len(a__ ) _lowerCAmelCase : Union[str, Any] = questions if not isinstance(a__ , a__ ) else [questions] * n_passages assert len(a__ ) == len( a__ ), F"There should be as many titles than texts but got {len(a__ )} titles and {len(a__ )} texts." _lowerCAmelCase : str = super().__call__(a__ , a__ , padding=a__ , truncation=a__ )["""input_ids"""] _lowerCAmelCase : str = super().__call__(a__ , add_special_tokens=a__ , padding=a__ , truncation=a__ )["""input_ids"""] _lowerCAmelCase : Dict = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(a__ , a__ ) ] } if return_attention_mask is not False: _lowerCAmelCase : Tuple = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _lowerCAmelCase : Optional[Any] = attention_mask return self.pad(a__ , padding=a__ , max_length=a__ , return_tensors=a__ ) def __A ( self , a__ , a__ , a__ = 16 , a__ = 64 , a__ = 4 , ): _lowerCAmelCase : Dict = reader_input["""input_ids"""] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = reader_output[:3] _lowerCAmelCase : List[str] = len(a__ ) _lowerCAmelCase : Union[str, Any] = sorted(range(a__ ) , reverse=a__ , key=relevance_logits.__getitem__ ) _lowerCAmelCase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _lowerCAmelCase : Tuple = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _lowerCAmelCase : List[str] = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowerCAmelCase : List[str] = sequence_ids.index(self.pad_token_id ) else: _lowerCAmelCase : Tuple = len(a__ ) _lowerCAmelCase : int = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=a__ , top_spans=a__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=a__ , start_index=a__ , end_index=a__ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(a__ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __A ( self , a__ , a__ , a__ , a__ , ): _lowerCAmelCase : List[str] = [] for start_index, start_score in enumerate(a__ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _lowerCAmelCase : Optional[Any] = sorted(a__ , key=lambda a__ : x[1] , reverse=a__ ) _lowerCAmelCase : Union[str, Any] = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F"Wrong span indices: [{start_index}:{end_index}]" _lowerCAmelCase : Union[str, Any] = end_index - start_index + 1 assert length <= max_answer_length, F"Span is too long: {length} > {max_answer_length}" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(a__ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(SCREAMING_SNAKE_CASE_ ) class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Any = VOCAB_FILES_NAMES _UpperCamelCase : Optional[Any] = READER_PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Union[str, Any] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[int] = READER_PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : int = ["input_ids", "attention_mask"] _UpperCamelCase : Optional[int] = DPRReaderTokenizer
44
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = len(SCREAMING_SNAKE_CASE__ ) # We need to create solution object to save path. snake_case_ = [[0 for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ )] snake_case_ = run_maze(SCREAMING_SNAKE_CASE__ , 0 , 0 , SCREAMING_SNAKE_CASE__ ) if solved: print('''\n'''.join(str(SCREAMING_SNAKE_CASE__ ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = len(SCREAMING_SNAKE_CASE__ ) # Final check point. if i == j == (size - 1): snake_case_ = 1 return True snake_case_ = (not i < 0) and (not j < 0) # Check lower bounds snake_case_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. snake_case_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited snake_case_ = 1 # check for directions if ( run_maze(SCREAMING_SNAKE_CASE__ , i + 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , j + 1 , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , j - 1 , SCREAMING_SNAKE_CASE__ ) ): return True snake_case_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
8
0
"""simple docstring""" import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_a , '''tf_padding''' ) ) self.parent.assertTrue(hasattr(_a , '''depth_multiplier''' ) ) class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a=13 , _a=3 , _a=32 , _a=0.25 , _a=8 , _a=8 , _a=6 , _a=32 , _a=True , _a=True , _a=True , _a="relu6" , _a=1_280 , _a=0.1 , _a=0.02 , _a=True , _a=True , _a=10 , _a=None , ): __a = parent __a = batch_size __a = num_channels __a = image_size __a = depth_multiplier __a = depth_divisible_by __a = min_depth __a = expand_ratio __a = tf_padding __a = output_stride __a = first_layer_is_expansion __a = finegrained_output __a = hidden_act __a = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) __a = classifier_dropout_prob __a = use_labels __a = is_training __a = num_labels __a = initializer_range __a = scope def __UpperCAmelCase ( self ): __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.num_labels ) __a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __a = self.get_config() return config, pixel_values, labels, pixel_labels def __UpperCAmelCase ( self ): return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __UpperCAmelCase ( self , _a , _a , _a , _a ): __a = MobileNetVaModel(config=_a ) model.to(_a ) model.eval() __a = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def __UpperCAmelCase ( self , _a , _a , _a , _a ): __a = self.num_labels __a = MobileNetVaForImageClassification(_a ) model.to(_a ) model.eval() __a = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self , _a , _a , _a , _a ): __a = self.num_labels __a = MobileNetVaForSemanticSegmentation(_a ) model.to(_a ) model.eval() __a = model(_a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __a = model(_a , labels=_a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCAmelCase ( self ): __a = self.prepare_config_and_inputs() __a , __a , __a , __a = config_and_inputs __a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase : str = ( { 'feature-extraction': MobileNetVaModel, 'image-classification': MobileNetVaForImageClassification, 'image-segmentation': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase : List[str] = False __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : str = False def __UpperCAmelCase ( self ): __a = MobileNetVaModelTester(self ) __a = MobileNetVaConfigTester(self , config_class=_a , has_text_modality=_a ) def __UpperCAmelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV2 does not use inputs_embeds''' ) def __UpperCAmelCase ( self ): pass @unittest.skip(reason='''MobileNetV2 does not support input and output embeddings''' ) def __UpperCAmelCase ( self ): pass @unittest.skip(reason='''MobileNetV2 does not output attentions''' ) def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(_a ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __UpperCAmelCase ( self ): def check_hidden_states_output(_a , _a , _a ): __a = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(_a , _a ) ) __a = outputs.hidden_states __a = 16 self.assertEqual(len(_a ) , _a ) __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True check_hidden_states_output(_a , _a , _a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_a ) @slow def __UpperCAmelCase ( self ): for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = MobileNetVaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowercase ( ) -> Dict: __a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCAmelCase ( self ): return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v2_1.0_224''' ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self ): __a = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v2_1.0_224''' ).to(_a ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): __a = model(**_a ) # verify the logits __a = torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape , _a ) __a = torch.tensor([0.2445, -1.1993, 0.1905] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1E-4 ) ) @slow def __UpperCAmelCase ( self ): __a = MobileNetVaForSemanticSegmentation.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' ) __a = model.to(_a ) __a = MobileNetVaImageProcessor.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' ) __a = prepare_img() __a = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): __a = model(**_a ) __a = outputs.logits # verify the logits __a = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , _a ) __a = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=_a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _a , atol=1E-4 ) )
45
from decimal import Decimal, getcontext from math import ceil, factorial def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError('''Undefined for non-integers''' ) elif precision < 1: raise ValueError('''Undefined for non-natural numbers''' ) snake_case_ = precision snake_case_ = ceil(precision / 14 ) snake_case_ = 426880 * Decimal(10005 ).sqrt() snake_case_ = 1 snake_case_ = 13591409 snake_case_ = Decimal(SCREAMING_SNAKE_CASE__ ) for k in range(1 , SCREAMING_SNAKE_CASE__ ): snake_case_ = factorial(6 * k ) // (factorial(3 * k ) * factorial(SCREAMING_SNAKE_CASE__ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": lowerCAmelCase_ = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
8
0
"""simple docstring""" import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if openai_config_file == "": lowerCAmelCase = OpenAIGPTConfig() else: lowerCAmelCase = OpenAIGPTConfig.from_json_file(SCREAMING_SNAKE_CASE ) lowerCAmelCase = OpenAIGPTModel(SCREAMING_SNAKE_CASE ) # Load weights from numpy load_tf_weights_in_openai_gpt(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model lowerCAmelCase = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME lowerCAmelCase = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--openai_checkpoint_folder_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--openai_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
46
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class snake_case_ ( __A ): '''simple docstring''' def __init__( self : int , _UpperCamelCase : pyspark.sql.DataFrame , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Optional[Features] = None , _UpperCamelCase : bool = True , _UpperCamelCase : str = None , _UpperCamelCase : bool = False , _UpperCamelCase : str = None , _UpperCamelCase : bool = True , _UpperCamelCase : str = "arrow" , **_UpperCamelCase : Tuple , ) ->str: super().__init__( split=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase , streaming=_UpperCamelCase , **_UpperCamelCase , ) snake_case_ = load_from_cache_file snake_case_ = file_format snake_case_ = Spark( df=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , working_dir=_UpperCamelCase , **_UpperCamelCase , ) def snake_case__( self : int ) ->Tuple: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) snake_case_ = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=_UpperCamelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
8
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class A__ ( unittest.TestCase ): def __init__( self : Any , _a : List[Any] , _a : Optional[int]=7 , _a : Any=3 , _a : Optional[int]=18 , _a : Dict=30 , _a : int=400 , _a : Any=True , _a : List[str]=None , _a : str=True , _a : str=False , _a : Optional[int]=True , _a : List[str]=True , _a : int=[0.5, 0.5, 0.5] , _a : Tuple=[0.5, 0.5, 0.5] , ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =batch_size _SCREAMING_SNAKE_CASE =num_channels _SCREAMING_SNAKE_CASE =image_size _SCREAMING_SNAKE_CASE =min_resolution _SCREAMING_SNAKE_CASE =max_resolution _SCREAMING_SNAKE_CASE =do_resize _SCREAMING_SNAKE_CASE =size if size is not None else {'height': 18, 'width': 20} _SCREAMING_SNAKE_CASE =do_thumbnail _SCREAMING_SNAKE_CASE =do_align_axis _SCREAMING_SNAKE_CASE =do_pad _SCREAMING_SNAKE_CASE =do_normalize _SCREAMING_SNAKE_CASE =image_mean _SCREAMING_SNAKE_CASE =image_std def A ( self : Any ) -> Optional[Any]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class A__ ( A__ , unittest.TestCase ): A__ = DonutImageProcessor if is_vision_available() else None def A ( self : List[Any] ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =DonutImageProcessingTester(self ) @property def A ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A ( self : Tuple ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , 'do_resize' ) ) self.assertTrue(hasattr(_a , 'size' ) ) self.assertTrue(hasattr(_a , 'do_thumbnail' ) ) self.assertTrue(hasattr(_a , 'do_align_long_axis' ) ) self.assertTrue(hasattr(_a , 'do_pad' ) ) self.assertTrue(hasattr(_a , 'do_normalize' ) ) self.assertTrue(hasattr(_a , 'image_mean' ) ) self.assertTrue(hasattr(_a , 'image_std' ) ) def A ( self : List[str] ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) _SCREAMING_SNAKE_CASE =self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order _SCREAMING_SNAKE_CASE =self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def A ( self : List[Any] ) -> Any: '''simple docstring''' pass @is_flaky() def A ( self : List[Any] ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) # create random PIL images _SCREAMING_SNAKE_CASE =prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _SCREAMING_SNAKE_CASE =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _SCREAMING_SNAKE_CASE =image_processing(_a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def A ( self : str ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _SCREAMING_SNAKE_CASE =prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input _SCREAMING_SNAKE_CASE =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _SCREAMING_SNAKE_CASE =image_processing(_a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def A ( self : List[Any] ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _SCREAMING_SNAKE_CASE =prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input _SCREAMING_SNAKE_CASE =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _SCREAMING_SNAKE_CASE =image_processing(_a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
47
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable lowerCAmelCase_ = {'''configuration_dpt''': ['''DPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DPTConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''DPTFeatureExtractor'''] lowerCAmelCase_ = ['''DPTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''DPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DPTForDepthEstimation''', '''DPTForSemanticSegmentation''', '''DPTModel''', '''DPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
0
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=1024 ,_SCREAMING_SNAKE_CASE=1024 ,_SCREAMING_SNAKE_CASE=False ,**_SCREAMING_SNAKE_CASE ) -> Tuple: lowerCamelCase : Dict = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Tuple = SeqaSeqDataset(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,type_path="train" ,**_SCREAMING_SNAKE_CASE ) lowerCamelCase : Union[str, Any] = tok.pad_token_id def get_lens(_SCREAMING_SNAKE_CASE ): lowerCamelCase : Any = tqdm( DataLoader(_SCREAMING_SNAKE_CASE ,batch_size=512 ,num_workers=8 ,shuffle=_SCREAMING_SNAKE_CASE ,collate_fn=ds.collate_fn ) ,desc=str(ds.len_file ) ,) lowerCamelCase : Optional[int] = [] for batch in dl: lowerCamelCase : List[Any] = batch["input_ids"].ne(_SCREAMING_SNAKE_CASE ).sum(1 ).tolist() lowerCamelCase : List[Any] = batch["labels"].ne(_SCREAMING_SNAKE_CASE ).sum(1 ).tolist() if consider_target: for src, tgt in zip(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): max_lens.append(max(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ) else: max_lens.extend(_SCREAMING_SNAKE_CASE ) return max_lens lowerCamelCase : List[Any] = get_lens(_SCREAMING_SNAKE_CASE ) lowerCamelCase : List[str] = SeqaSeqDataset(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,type_path="val" ,**_SCREAMING_SNAKE_CASE ) lowerCamelCase : Dict = get_lens(_SCREAMING_SNAKE_CASE ) pickle_save(_SCREAMING_SNAKE_CASE ,train_ds.len_file ) pickle_save(_SCREAMING_SNAKE_CASE ,val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
48
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCAmelCase_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase_ = { '''vocab_file''': { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''unc-nlp/lxmert-base-uncased''': ( '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase_ = { '''unc-nlp/lxmert-base-uncased''': 5_12, } lowerCAmelCase_ = { '''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True}, } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Any = LxmertTokenizer def __init__( self : Union[str, Any] , _UpperCamelCase : int=None , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : Dict=True , _UpperCamelCase : Any="[UNK]" , _UpperCamelCase : Tuple="[SEP]" , _UpperCamelCase : List[Any]="[PAD]" , _UpperCamelCase : Union[str, Any]="[CLS]" , _UpperCamelCase : str="[MASK]" , _UpperCamelCase : List[str]=True , _UpperCamelCase : List[str]=None , **_UpperCamelCase : List[str] , ) ->Any: super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , **_UpperCamelCase , ) snake_case_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _UpperCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _UpperCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _UpperCamelCase ) != tokenize_chinese_chars ): snake_case_ = getattr(_UpperCamelCase , normalizer_state.pop('''type''' ) ) snake_case_ = do_lower_case snake_case_ = strip_accents snake_case_ = tokenize_chinese_chars snake_case_ = normalizer_class(**_UpperCamelCase ) snake_case_ = do_lower_case def snake_case__( self : Optional[int] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str]=None ) ->List[Any]: snake_case_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__( self : int , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__( self : Any , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) ->Tuple[str]: snake_case_ = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
8
0
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def __snake_case ( _UpperCAmelCase ): if isinstance(_UpperCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_flax class _A : def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int): '''simple docstring''' pass def _lowerCamelCase ( self : Tuple): '''simple docstring''' pass def _lowerCamelCase ( self : Dict): '''simple docstring''' pass def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : float): '''simple docstring''' __a = np.abs((a - b)).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , F'Difference between torch and flax is {diff} (>= {tol}).') def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=None , **__SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' __a = VisionTextDualEncoderConfig.from_vision_text_configs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = FlaxVisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim)) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim)) def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : int=None , **__SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = {'''vision_model''': vision_model, '''text_model''': text_model} __a = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim)) def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int=None , **__SCREAMING_SNAKE_CASE : List[str]): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = {'''vision_model''': vision_model, '''text_model''': text_model} __a = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) __a = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__SCREAMING_SNAKE_CASE) __a = FlaxVisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) __a = after_output[0] __a = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1E-3) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any]=None , **__SCREAMING_SNAKE_CASE : int): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = {'''vision_model''': vision_model, '''text_model''': text_model} __a = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__SCREAMING_SNAKE_CASE) __a = model( input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE) __a = output.vision_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , vision_config.num_hidden_layers) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __a = to_atuple(vision_model.config.image_size) __a = to_atuple(vision_model.config.patch_size) __a = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __a = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len)) __a = output.text_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any]): '''simple docstring''' pt_model.to(__SCREAMING_SNAKE_CASE) pt_model.eval() # prepare inputs __a = inputs_dict __a = {k: torch.tensor(v.tolist()) for k, v in flax_inputs.items()} with torch.no_grad(): __a = pt_model(**__SCREAMING_SNAKE_CASE).to_tuple() __a = fx_model(**__SCREAMING_SNAKE_CASE).to_tuple() self.assertEqual(len(__SCREAMING_SNAKE_CASE) , len(__SCREAMING_SNAKE_CASE) , '''Output lengths differ between Flax and PyTorch''') for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4]): self.assert_almost_equals(__SCREAMING_SNAKE_CASE , pt_output.numpy() , 4E-2) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__SCREAMING_SNAKE_CASE) __a = FlaxVisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE , from_pt=__SCREAMING_SNAKE_CASE) __a = fx_model_loaded(**__SCREAMING_SNAKE_CASE).to_tuple() self.assertEqual(len(__SCREAMING_SNAKE_CASE) , len(__SCREAMING_SNAKE_CASE) , '''Output lengths differ between Flax and PyTorch''') for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4]): self.assert_almost_equals(__SCREAMING_SNAKE_CASE , pt_output.numpy() , 4E-2) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__SCREAMING_SNAKE_CASE) __a = VisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE , from_flax=__SCREAMING_SNAKE_CASE) pt_model_loaded.to(__SCREAMING_SNAKE_CASE) pt_model_loaded.eval() with torch.no_grad(): __a = pt_model_loaded(**__SCREAMING_SNAKE_CASE).to_tuple() self.assertEqual(len(__SCREAMING_SNAKE_CASE) , len(__SCREAMING_SNAKE_CASE) , '''Output lengths differ between Flax and PyTorch''') for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4]): self.assert_almost_equals(__SCREAMING_SNAKE_CASE , pt_output_loaded.numpy() , 4E-2) def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' __a = VisionTextDualEncoderConfig.from_vision_text_configs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = VisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE) __a = FlaxVisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE) __a = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __SCREAMING_SNAKE_CASE) __a = fx_state self.check_pt_flax_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' __a = VisionTextDualEncoderConfig.from_vision_text_configs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = VisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE) __a = FlaxVisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE) __a = load_flax_weights_in_pytorch_model(__SCREAMING_SNAKE_CASE , fx_model.params) self.check_pt_flax_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_save_load(**__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__SCREAMING_SNAKE_CASE) @is_pt_flax_cross_test def _lowerCamelCase ( self : str): '''simple docstring''' __a = self.prepare_config_and_inputs() __a = config_inputs_dict.pop('''vision_config''') __a = config_inputs_dict.pop('''text_config''') __a = config_inputs_dict self.check_equivalence_pt_to_flax(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) self.check_equivalence_flax_to_pt(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) @slow def _lowerCamelCase ( self : Dict): '''simple docstring''' __a , __a = self.get_pretrained_model_and_inputs() __a = model_a(**__SCREAMING_SNAKE_CASE) __a = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__SCREAMING_SNAKE_CASE) __a = FlaxVisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE) __a = model_a(**__SCREAMING_SNAKE_CASE) __a = after_outputs[0] __a = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1E-5) @require_flax class _A ( __UpperCAmelCase ,unittest.TestCase ): def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=__SCREAMING_SNAKE_CASE , text_from_pt=__SCREAMING_SNAKE_CASE , ) __a = 13 __a = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ]) __a = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size) __a = random_attention_mask([batch_size, 4]) __a = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int]): '''simple docstring''' __a = FlaxViTModel(__SCREAMING_SNAKE_CASE) __a = FlaxBertModel(__SCREAMING_SNAKE_CASE) return vision_model, text_model def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = FlaxViTModelTester(self) __a = FlaxBertModelTester(self) __a = vit_model_tester.prepare_config_and_inputs() __a = bert_model_tester.prepare_config_and_inputs() __a , __a = vision_config_and_inputs __a , __a , __a , __a = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class _A ( __UpperCAmelCase ,unittest.TestCase ): def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-clip''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=__SCREAMING_SNAKE_CASE , text_from_pt=__SCREAMING_SNAKE_CASE , ) __a = 13 __a = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ]) __a = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size) __a = random_attention_mask([batch_size, 4]) __a = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int): '''simple docstring''' __a = FlaxCLIPVisionModel(__SCREAMING_SNAKE_CASE) __a = FlaxBertModel(__SCREAMING_SNAKE_CASE) return vision_model, text_model def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = FlaxCLIPVisionModelTester(self) __a = FlaxBertModelTester(self) __a = clip_model_tester.prepare_config_and_inputs() __a = bert_model_tester.prepare_config_and_inputs() __a , __a = vision_config_and_inputs __a , __a , __a , __a = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class _A ( unittest.TestCase ): @slow def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' , logit_scale_init_value=1.0) __a = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''') __a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') __a = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors='''np''') __a = model(**__SCREAMING_SNAKE_CASE) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __a = np.array([[1.2_28_47_27, 0.3_10_41_22]]) self.assertTrue(np.allclose(outputs.logits_per_image , __SCREAMING_SNAKE_CASE , atol=1E-3))
49
import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = 10001 ): try: snake_case_ = int(SCREAMING_SNAKE_CASE__ ) except (TypeError, ValueError): raise TypeError('''Parameter nth must be int or castable to int.''' ) from None if nth <= 0: raise ValueError('''Parameter nth must be greater than or equal to one.''' ) snake_case_ = [] snake_case_ = 2 while len(SCREAMING_SNAKE_CASE__ ) < nth: if is_prime(SCREAMING_SNAKE_CASE__ ): primes.append(SCREAMING_SNAKE_CASE__ ) num += 1 else: num += 1 return primes[len(SCREAMING_SNAKE_CASE__ ) - 1] if __name__ == "__main__": print(f"""{solution() = }""")
8
0
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCAmelCase : Optional[Any] = """▁""" _UpperCAmelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class lowerCAmelCase ( __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = BertGenerationTokenizer UpperCAmelCase__ = False UpperCAmelCase__ = True def A_ ( self : List[Any] ) -> List[str]: super().setUp() lowerCamelCase__ : Dict = BertGenerationTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self : Optional[Any] ) -> Dict: lowerCamelCase__ : List[str] = '<s>' lowerCamelCase__ : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase ) def A_ ( self : List[str] ) -> Optional[int]: lowerCamelCase__ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(UpperCAmelCase ) , 1002 ) def A_ ( self : List[Any] ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def A_ ( self : Union[str, Any] ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = BertGenerationTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) lowerCamelCase__ : List[str] = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) lowerCamelCase__ : List[str] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCamelCase__ : Optional[int] = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowerCamelCase__ : Optional[Any] = tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def A_ ( self : Dict ) -> Tuple: return BertGenerationTokenizer.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) @slow def A_ ( self : Optional[int] ) -> List[str]: lowerCamelCase__ : Union[str, Any] = 'Hello World!' lowerCamelCase__ : Dict = [18536, 2260, 101] self.assertListEqual(UpperCAmelCase , self.big_tokenizer.encode(UpperCAmelCase ) ) @slow def A_ ( self : Optional[Any] ) -> str: lowerCamelCase__ : List[Any] = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) lowerCamelCase__ : Any = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(UpperCAmelCase , self.big_tokenizer.encode(UpperCAmelCase ) ) @require_torch @slow def A_ ( self : int ) -> Optional[Any]: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence lowerCamelCase__ : str = list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCamelCase__ : int = ' '.join(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = self.big_tokenizer.encode_plus(UpperCAmelCase , return_tensors='pt' , return_token_type_ids=UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=UpperCAmelCase ) lowerCamelCase__ : Tuple = BertGenerationConfig() lowerCamelCase__ : Optional[Any] = BertGenerationEncoder(UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**UpperCAmelCase ) model(**UpperCAmelCase ) @slow def A_ ( self : Optional[int] ) -> List[Any]: # fmt: off lowerCamelCase__ : Any = {'input_ids': [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase , model_name='google/bert_for_seq_generation_L-24_bbc_encoder' , revision='c817d1fd1be2ffa69431227a1fe320544943d4db' , )
50
from sklearn.metrics import mean_squared_error import datasets lowerCAmelCase_ = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' lowerCAmelCase_ = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' lowerCAmelCase_ = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): '''simple docstring''' def snake_case__( self : Optional[int] ) ->List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] , ) def snake_case__( self : List[Any] ) ->Optional[int]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def snake_case__( self : int , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any=None , _UpperCamelCase : Optional[int]="uniform_average" , _UpperCamelCase : Tuple=True ) ->Tuple: snake_case_ = mean_squared_error( _UpperCamelCase , _UpperCamelCase , sample_weight=_UpperCamelCase , multioutput=_UpperCamelCase , squared=_UpperCamelCase ) return {"mse": mse}
8
0
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar snake_case_ : Union[str, Any] = TypeVar("T") class __snake_case ( Generic[T] ): UpperCAmelCase__ : deque[T] # Cache store of keys UpperCAmelCase__ : set[T] # References of the keys in cache UpperCAmelCase__ : int = 1_0 # Maximum capacity of cache def __init__( self : Optional[int] , _snake_case : int): """simple docstring""" UpperCAmelCase_ = deque() UpperCAmelCase_ = set() if not n: UpperCAmelCase_ = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''') else: UpperCAmelCase_ = n def lowerCamelCase ( self : int , _snake_case : T): """simple docstring""" if x not in self.key_reference: if len(self.dq_store) == LRUCache._MAX_CAPACITY: UpperCAmelCase_ = self.dq_store.pop() self.key_reference.remove(_snake_case) else: self.dq_store.remove(_snake_case) self.dq_store.appendleft(_snake_case) self.key_reference.add(_snake_case) def lowerCamelCase ( self : Any): """simple docstring""" for k in self.dq_store: print(_snake_case) def __repr__( self : Optional[Any]): """simple docstring""" return F"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store)}""" if __name__ == "__main__": import doctest doctest.testmod() snake_case_ : LRUCache[str | int] = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
51
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = [] if len(SCREAMING_SNAKE_CASE__ ) == 1: return [nums.copy()] for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): snake_case_ = nums.pop(0 ) snake_case_ = permute(SCREAMING_SNAKE_CASE__ ) for perm in permutations: perm.append(SCREAMING_SNAKE_CASE__ ) result.extend(SCREAMING_SNAKE_CASE__ ) nums.append(SCREAMING_SNAKE_CASE__ ) return result def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): def backtrack(SCREAMING_SNAKE_CASE__ ): if start == len(SCREAMING_SNAKE_CASE__ ) - 1: output.append(nums[:] ) else: for i in range(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ): snake_case_, snake_case_ = nums[i], nums[start] backtrack(start + 1 ) snake_case_, snake_case_ = nums[i], nums[start] # backtrack snake_case_ = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function lowerCAmelCase_ = permutea([1, 2, 3]) print(res) doctest.testmod()
8
0
from cva import destroyAllWindows, imread, imshow, waitKey def A_ ( _lowerCAmelCase ) -> int: # getting number of pixels in the image UpperCamelCase , UpperCamelCase : List[str] = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(_lowerCAmelCase ): for j in range(_lowerCAmelCase ): UpperCamelCase : Tuple = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image __lowerCamelCase : Any = imread("""image_data/lena.jpg""", 1) # convert to its negative __lowerCamelCase : Optional[int] = convert_to_negative(img) # show result image imshow("""negative of original image""", img) waitKey(0) destroyAllWindows()
52
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
8
0
'''simple docstring''' def lowercase__ ( __lowercase : int ) -> int: """simple docstring""" assert isinstance(__lowercase , __lowercase ), F'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: __UpperCamelCase = F'''The input value of [n={number}] has to be > 0''' raise ValueError(__lowercase ) else: __UpperCamelCase = sylvester(number - 1 ) __UpperCamelCase = num - 1 __UpperCamelCase = num return lower * upper + 1 if __name__ == "__main__": print(f'The 8th number in Sylvester\'s sequence: {sylvester(8)}')
53
from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=__A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = ["note_seq"] def __init__( self : Optional[int] , *_UpperCamelCase : str , **_UpperCamelCase : Optional[int] ) ->Any: requires_backends(self , ['''note_seq'''] ) @classmethod def snake_case__( cls : int , *_UpperCamelCase : Any , **_UpperCamelCase : List[Any] ) ->int: requires_backends(cls , ['''note_seq'''] ) @classmethod def snake_case__( cls : Dict , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : Union[str, Any] ) ->List[str]: requires_backends(cls , ['''note_seq'''] )
8
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ : Tuple = logging.get_logger(__name__) a__ : Optional[int] = { '''facebook/xlm-roberta-xl''': '''https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json''', '''facebook/xlm-roberta-xxl''': '''https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json''', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : Optional[int] = "xlm-roberta-xl" def __init__( self : Union[str, Any] , UpperCAmelCase__ : int=2_5_0_8_8_0 , UpperCAmelCase__ : Optional[Any]=2_5_6_0 , UpperCAmelCase__ : Optional[Any]=3_6 , UpperCAmelCase__ : str=3_2 , UpperCAmelCase__ : Optional[Any]=1_0_2_4_0 , UpperCAmelCase__ : List[Any]="gelu" , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : Dict=5_1_4 , UpperCAmelCase__ : Optional[int]=1 , UpperCAmelCase__ : Dict=0.02 , UpperCAmelCase__ : Tuple=1E-05 , UpperCAmelCase__ : Any=1 , UpperCAmelCase__ : str=0 , UpperCAmelCase__ : Tuple=2 , UpperCAmelCase__ : Tuple="absolute" , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : Any=None , **UpperCAmelCase__ : Tuple , ) -> Optional[int]: super().__init__(pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = classifier_dropout class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" @property def UpperCAmelCase_ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE = {0: "batch", 1: "choice", 2: "sequence"} else: __SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
54
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = "vit_msn" def __init__( self : Dict , _UpperCamelCase : Optional[int]=7_6_8 , _UpperCamelCase : Optional[Any]=1_2 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : str=3_0_7_2 , _UpperCamelCase : Tuple="gelu" , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : List[str]=0.02 , _UpperCamelCase : List[Any]=1e-06 , _UpperCamelCase : Any=2_2_4 , _UpperCamelCase : Optional[Any]=1_6 , _UpperCamelCase : Any=3 , _UpperCamelCase : str=True , **_UpperCamelCase : Any , ) ->int: super().__init__(**_UpperCamelCase ) snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias
8
0
'''simple docstring''' import numpy as np def __snake_case ( UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : float = 1E-1_2 , UpperCAmelCase_ : int = 100 , ): assert np.shape(UpperCAmelCase_ )[0] == np.shape(UpperCAmelCase_ )[1] # Ensure proper dimensionality. assert np.shape(UpperCAmelCase_ )[0] == np.shape(UpperCAmelCase_ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(UpperCAmelCase_ ) == np.iscomplexobj(UpperCAmelCase_ ) lowerCamelCase_ = np.iscomplexobj(UpperCAmelCase_ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(UpperCAmelCase_ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. lowerCamelCase_ = False lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 1E1_2 while not convergence: # Multiple matrix by the vector. lowerCamelCase_ = np.dot(UpperCAmelCase_ , UpperCAmelCase_ ) # Normalize the resulting output vector. lowerCamelCase_ = w / np.linalg.norm(UpperCAmelCase_ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) lowerCamelCase_ = vector.conj().T if is_complex else vector.T lowerCamelCase_ = np.dot(UpperCAmelCase_ , np.dot(UpperCAmelCase_ , UpperCAmelCase_ ) ) # Check convergence. lowerCamelCase_ = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: lowerCamelCase_ = True lowerCamelCase_ = lambda_ if is_complex: lowerCamelCase_ = np.real(lambda_ ) return lambda_, vector def __snake_case ( ): lowerCamelCase_ = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) lowerCamelCase_ = np.array([41, 4, 20] ) lowerCamelCase_ = real_input_matrix.astype(np.complexaaa ) lowerCamelCase_ = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T lowerCamelCase_ = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": lowerCamelCase_ = real_input_matrix lowerCamelCase_ = real_vector elif problem_type == "complex": lowerCamelCase_ = complex_input_matrix lowerCamelCase_ = complex_vector # Our implementation. lowerCamelCase_ ,lowerCamelCase_ = power_iteration(UpperCAmelCase_ , UpperCAmelCase_ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). lowerCamelCase_ ,lowerCamelCase_ = np.linalg.eigh(UpperCAmelCase_ ) # Last eigenvalue is the maximum one. lowerCamelCase_ = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. lowerCamelCase_ = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(UpperCAmelCase_ ) - np.abs(UpperCAmelCase_ ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
55
from __future__ import annotations from math import pi, sqrt def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel a : List[str] = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class a ( unittest.TestCase ): @classmethod def A_ ( cls : str ): snake_case_ = TOKEN HfFolder.save_token(lowercase_ ) @classmethod def A_ ( cls : Optional[Any] ): try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def A_ ( self : Tuple ): snake_case_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) snake_case_ = FlaxBertModel(lowercase_ ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) snake_case_ = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) snake_case_ = flatten_dict(unfreeze(model.params ) ) snake_case_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): snake_case_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowercase_ , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowercase_ , repo_id='''test-model-flax''' , push_to_hub=lowercase_ , use_auth_token=self._token ) snake_case_ = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) snake_case_ = flatten_dict(unfreeze(model.params ) ) snake_case_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): snake_case_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowercase_ , 1e-3 , msg=F"{key} not identical" ) def A_ ( self : Optional[Any] ): snake_case_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) snake_case_ = FlaxBertModel(lowercase_ ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) snake_case_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) snake_case_ = flatten_dict(unfreeze(model.params ) ) snake_case_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): snake_case_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowercase_ , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( lowercase_ , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=lowercase_ , use_auth_token=self._token ) snake_case_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) snake_case_ = flatten_dict(unfreeze(model.params ) ) snake_case_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): snake_case_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowercase_ , 1e-3 , msg=F"{key} not identical" ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' snake_case_ = True snake_case_ = flatten_dict(modela.params ) snake_case_ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: snake_case_ = False return models_are_equal @require_flax class a ( unittest.TestCase ): def A_ ( self : Union[str, Any] ): snake_case_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) snake_case_ = FlaxBertModel(lowercase_ ) snake_case_ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowercase_ , lowercase_ ) ) with self.assertRaises(lowercase_ ): snake_case_ = FlaxBertModel.from_pretrained(lowercase_ ) snake_case_ = FlaxBertModel.from_pretrained(lowercase_ , subfolder=lowercase_ ) self.assertTrue(check_models_equal(lowercase_ , lowercase_ ) ) def A_ ( self : Union[str, Any] ): snake_case_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) snake_case_ = FlaxBertModel(lowercase_ ) snake_case_ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowercase_ , lowercase_ ) , max_shard_size='''10KB''' ) with self.assertRaises(lowercase_ ): snake_case_ = FlaxBertModel.from_pretrained(lowercase_ ) snake_case_ = FlaxBertModel.from_pretrained(lowercase_ , subfolder=lowercase_ ) self.assertTrue(check_models_equal(lowercase_ , lowercase_ ) ) def A_ ( self : str ): snake_case_ = '''bert''' snake_case_ = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(lowercase_ ): snake_case_ = FlaxBertModel.from_pretrained(lowercase_ ) snake_case_ = FlaxBertModel.from_pretrained(lowercase_ , subfolder=lowercase_ ) self.assertIsNotNone(lowercase_ ) def A_ ( self : Tuple ): snake_case_ = '''bert''' snake_case_ = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(lowercase_ ): snake_case_ = FlaxBertModel.from_pretrained(lowercase_ ) snake_case_ = FlaxBertModel.from_pretrained(lowercase_ , subfolder=lowercase_ ) self.assertIsNotNone(lowercase_ )
56
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return x + 2 class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Optional[Any] ) ->int: snake_case_ = '''x = 3''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase , {'''x''': 3} ) snake_case_ = '''x = y''' snake_case_ = {'''y''': 5} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 5, '''y''': 5} ) def snake_case__( self : Dict ) ->Optional[int]: snake_case_ = '''y = add_two(x)''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} ) # Won't work without the tool with CaptureStdout() as out: snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result is None assert "tried to execute add_two" in out.out def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = '''x = 3''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase , {'''x''': 3} ) def snake_case__( self : Optional[int] ) ->Optional[int]: snake_case_ = '''test_dict = {\'x\': x, \'y\': add_two(x)}''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} ) self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def snake_case__( self : Dict ) ->str: snake_case_ = '''x = 3\ny = 5''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} ) def snake_case__( self : str ) ->Tuple: snake_case_ = '''text = f\'This is x: {x}.\'''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''text''': '''This is x: 3.'''} ) def snake_case__( self : Optional[Any] ) ->List[str]: snake_case_ = '''if x <= 3:\n y = 2\nelse:\n y = 5''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 2} ) snake_case_ = {'''x''': 8} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 8, '''y''': 5} ) def snake_case__( self : str ) ->str: snake_case_ = '''test_list = [x, add_two(x)]''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , [3, 5] ) self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_list''': [3, 5]} ) def snake_case__( self : Any ) ->List[Any]: snake_case_ = '''y = x''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 3} ) def snake_case__( self : Optional[int] ) ->Dict: snake_case_ = '''test_list = [x, add_two(x)]\ntest_list[1]''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_list''': [3, 5]} ) snake_case_ = '''test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def snake_case__( self : Optional[Any] ) ->int: snake_case_ = '''x = 0\nfor i in range(3):\n x = i''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {'''range''': range} , state=_UpperCamelCase ) assert result == 2 self.assertDictEqual(_UpperCamelCase , {'''x''': 2, '''i''': 2} )
8
0
"""simple docstring""" import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) A : List[str] = { "sample_size": 3_2, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": 1_0_0_0, "block_out_channels": [3_2, 6_4], "attention_head_dim": 8, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } A : Tuple = { "sample_size": 6_4, "in_channels": 3, "out_channels": 3, "layers_per_block": 3, "num_class_embeds": 1_0_0_0, "block_out_channels": [1_9_2, 1_9_2 * 2, 1_9_2 * 3, 1_9_2 * 4], "attention_head_dim": 6_4, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } A : Dict = { "sample_size": 2_5_6, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": None, "block_out_channels": [2_5_6, 2_5_6, 2_5_6 * 2, 2_5_6 * 2, 2_5_6 * 4, 2_5_6 * 4], "attention_head_dim": 6_4, "down_block_types": [ "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "default", "upsample_type": "resnet", "downsample_type": "resnet", } A : Optional[Any] = { "num_train_timesteps": 4_0, "sigma_min": 0.002, "sigma_max": 80.0, } A : List[str] = { "num_train_timesteps": 2_0_1, "sigma_min": 0.002, "sigma_max": 80.0, } A : Optional[Any] = { "num_train_timesteps": 1_5_1, "sigma_min": 0.002, "sigma_max": 80.0, } def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' if isinstance(_UpperCamelCase , _UpperCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("boolean value expected" ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=False ): '''simple docstring''' __lowerCAmelCase = checkpoint[f"{old_prefix}.in_layers.0.weight"] __lowerCAmelCase = checkpoint[f"{old_prefix}.in_layers.0.bias"] __lowerCAmelCase = checkpoint[f"{old_prefix}.in_layers.2.weight"] __lowerCAmelCase = checkpoint[f"{old_prefix}.in_layers.2.bias"] __lowerCAmelCase = checkpoint[f"{old_prefix}.emb_layers.1.weight"] __lowerCAmelCase = checkpoint[f"{old_prefix}.emb_layers.1.bias"] __lowerCAmelCase = checkpoint[f"{old_prefix}.out_layers.0.weight"] __lowerCAmelCase = checkpoint[f"{old_prefix}.out_layers.0.bias"] __lowerCAmelCase = checkpoint[f"{old_prefix}.out_layers.3.weight"] __lowerCAmelCase = checkpoint[f"{old_prefix}.out_layers.3.bias"] if has_skip: __lowerCAmelCase = checkpoint[f"{old_prefix}.skip_connection.weight"] __lowerCAmelCase = checkpoint[f"{old_prefix}.skip_connection.bias"] return new_checkpoint def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = checkpoint[f"{old_prefix}.qkv.weight"].chunk(3 , dim=0 ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = checkpoint[f"{old_prefix}.qkv.bias"].chunk(3 , dim=0 ) __lowerCAmelCase = checkpoint[f"{old_prefix}.norm.weight"] __lowerCAmelCase = checkpoint[f"{old_prefix}.norm.bias"] __lowerCAmelCase = weight_q.squeeze(-1 ).squeeze(-1 ) __lowerCAmelCase = bias_q.squeeze(-1 ).squeeze(-1 ) __lowerCAmelCase = weight_k.squeeze(-1 ).squeeze(-1 ) __lowerCAmelCase = bias_k.squeeze(-1 ).squeeze(-1 ) __lowerCAmelCase = weight_v.squeeze(-1 ).squeeze(-1 ) __lowerCAmelCase = bias_v.squeeze(-1 ).squeeze(-1 ) __lowerCAmelCase = ( checkpoint[f"{old_prefix}.proj_out.weight"].squeeze(-1 ).squeeze(-1 ) ) __lowerCAmelCase = checkpoint[f"{old_prefix}.proj_out.bias"].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = torch.load(_UpperCamelCase , map_location="cpu" ) __lowerCAmelCase = {} __lowerCAmelCase = checkpoint["time_embed.0.weight"] __lowerCAmelCase = checkpoint["time_embed.0.bias"] __lowerCAmelCase = checkpoint["time_embed.2.weight"] __lowerCAmelCase = checkpoint["time_embed.2.bias"] if unet_config["num_class_embeds"] is not None: __lowerCAmelCase = checkpoint["label_emb.weight"] __lowerCAmelCase = checkpoint["input_blocks.0.0.weight"] __lowerCAmelCase = checkpoint["input_blocks.0.0.bias"] __lowerCAmelCase = unet_config["down_block_types"] __lowerCAmelCase = unet_config["layers_per_block"] __lowerCAmelCase = unet_config["attention_head_dim"] __lowerCAmelCase = unet_config["block_out_channels"] __lowerCAmelCase = 1 __lowerCAmelCase = channels_list[0] for i, layer_type in enumerate(_UpperCamelCase ): __lowerCAmelCase = channels_list[i] __lowerCAmelCase = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(_UpperCamelCase ): __lowerCAmelCase = f"down_blocks.{i}.resnets.{j}" __lowerCAmelCase = f"input_blocks.{current_layer}.0" __lowerCAmelCase = True if j == 0 and downsample_block_has_skip else False __lowerCAmelCase = convert_resnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , has_skip=_UpperCamelCase ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(_UpperCamelCase ): __lowerCAmelCase = f"down_blocks.{i}.resnets.{j}" __lowerCAmelCase = f"input_blocks.{current_layer}.0" __lowerCAmelCase = True if j == 0 and downsample_block_has_skip else False __lowerCAmelCase = convert_resnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , has_skip=_UpperCamelCase ) __lowerCAmelCase = f"down_blocks.{i}.attentions.{j}" __lowerCAmelCase = f"input_blocks.{current_layer}.1" __lowerCAmelCase = convert_attention( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) current_layer += 1 if i != len(_UpperCamelCase ) - 1: __lowerCAmelCase = f"down_blocks.{i}.downsamplers.0" __lowerCAmelCase = f"input_blocks.{current_layer}.0" __lowerCAmelCase = convert_resnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) current_layer += 1 __lowerCAmelCase = current_channels # hardcoded the mid-block for now __lowerCAmelCase = "mid_block.resnets.0" __lowerCAmelCase = "middle_block.0" __lowerCAmelCase = convert_resnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase = "mid_block.attentions.0" __lowerCAmelCase = "middle_block.1" __lowerCAmelCase = convert_attention(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase = "mid_block.resnets.1" __lowerCAmelCase = "middle_block.2" __lowerCAmelCase = convert_resnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase = 0 __lowerCAmelCase = unet_config["up_block_types"] for i, layer_type in enumerate(_UpperCamelCase ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): __lowerCAmelCase = f"up_blocks.{i}.resnets.{j}" __lowerCAmelCase = f"output_blocks.{current_layer}.0" __lowerCAmelCase = convert_resnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , has_skip=_UpperCamelCase ) current_layer += 1 if i != len(_UpperCamelCase ) - 1: __lowerCAmelCase = f"up_blocks.{i}.upsamplers.0" __lowerCAmelCase = f"output_blocks.{current_layer-1}.1" __lowerCAmelCase = convert_resnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): __lowerCAmelCase = f"up_blocks.{i}.resnets.{j}" __lowerCAmelCase = f"output_blocks.{current_layer}.0" __lowerCAmelCase = convert_resnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , has_skip=_UpperCamelCase ) __lowerCAmelCase = f"up_blocks.{i}.attentions.{j}" __lowerCAmelCase = f"output_blocks.{current_layer}.1" __lowerCAmelCase = convert_attention( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) current_layer += 1 if i != len(_UpperCamelCase ) - 1: __lowerCAmelCase = f"up_blocks.{i}.upsamplers.0" __lowerCAmelCase = f"output_blocks.{current_layer-1}.2" __lowerCAmelCase = convert_resnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase = checkpoint["out.0.weight"] __lowerCAmelCase = checkpoint["out.0.bias"] __lowerCAmelCase = checkpoint["out.2.weight"] __lowerCAmelCase = checkpoint["out.2.bias"] return new_checkpoint if __name__ == "__main__": A : Dict = argparse.ArgumentParser() parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.") parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model." ) parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.") A : Optional[Any] = parser.parse_args() A : int = strabool(args.class_cond) A : Dict = os.path.basename(args.unet_path) print(f'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: A : Union[str, Any] = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): A : Any = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: A : Union[str, Any] = TEST_UNET_CONFIG else: raise ValueError(f'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: A : Union[str, Any] = None A : int = con_pt_to_diffuser(args.unet_path, unet_config) A : Tuple = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: A : Union[str, Any] = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: A : Any = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): A : Any = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f'''Checkpoint type {ckpt_name} is not currently supported.''') A : Optional[int] = CMStochasticIterativeScheduler(**scheduler_config) A : Optional[Any] = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
57
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Any , _UpperCamelCase : Any , _UpperCamelCase : Tuple ) ->List[Any]: return f'''gaussian_noise_s={seed}_shape={'_'.join([str(_UpperCamelCase ) for s in shape] )}.npy''' def snake_case__( self : Any ) ->List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case__( self : int , _UpperCamelCase : Union[str, Any]=0 , _UpperCamelCase : int=(4, 4, 6_4, 6_4) , _UpperCamelCase : Optional[int]=False ) ->Tuple: snake_case_ = jnp.bfloataa if fpaa else jnp.floataa snake_case_ = jnp.array(load_hf_numpy(self.get_file_format(_UpperCamelCase , _UpperCamelCase ) ) , dtype=_UpperCamelCase ) return image def snake_case__( self : List[Any] , _UpperCamelCase : Optional[Any]=False , _UpperCamelCase : Optional[int]="CompVis/stable-diffusion-v1-4" ) ->Optional[Any]: snake_case_ = jnp.bfloataa if fpaa else jnp.floataa snake_case_ = '''bf16''' if fpaa else None snake_case_, snake_case_ = FlaxUNetaDConditionModel.from_pretrained( _UpperCamelCase , subfolder='''unet''' , dtype=_UpperCamelCase , revision=_UpperCamelCase ) return model, params def snake_case__( self : Dict , _UpperCamelCase : List[Any]=0 , _UpperCamelCase : Tuple=(4, 7_7, 7_6_8) , _UpperCamelCase : List[Any]=False ) ->int: snake_case_ = jnp.bfloataa if fpaa else jnp.floataa snake_case_ = jnp.array(load_hf_numpy(self.get_file_format(_UpperCamelCase , _UpperCamelCase ) ) , dtype=_UpperCamelCase ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [1_7, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_0_0_0, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def snake_case__( self : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] ) ->Union[str, Any]: snake_case_, snake_case_ = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=_UpperCamelCase ) snake_case_ = self.get_latents(_UpperCamelCase , fpaa=_UpperCamelCase ) snake_case_ = self.get_encoder_hidden_states(_UpperCamelCase , fpaa=_UpperCamelCase ) snake_case_ = model.apply( {'''params''': params} , _UpperCamelCase , jnp.array(_UpperCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=_UpperCamelCase , ).sample assert sample.shape == latents.shape snake_case_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) snake_case_ = jnp.array(_UpperCamelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [1_7, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_0_0_0, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def snake_case__( self : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str ) ->Dict: snake_case_, snake_case_ = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=_UpperCamelCase ) snake_case_ = self.get_latents(_UpperCamelCase , shape=(4, 4, 9_6, 9_6) , fpaa=_UpperCamelCase ) snake_case_ = self.get_encoder_hidden_states(_UpperCamelCase , shape=(4, 7_7, 1_0_2_4) , fpaa=_UpperCamelCase ) snake_case_ = model.apply( {'''params''': params} , _UpperCamelCase , jnp.array(_UpperCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=_UpperCamelCase , ).sample assert sample.shape == latents.shape snake_case_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) snake_case_ = jnp.array(_UpperCamelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-2 )
8
0
'''simple docstring''' from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class a_ ( snake_case_ ): '''simple docstring''' def snake_case_( self ) -> Tuple: return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def snake_case_( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(A ) def snake_case_( self ) -> str: _SCREAMING_SNAKE_CASE = self._create_example_records() _SCREAMING_SNAKE_CASE = Dataset.from_list(A ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(A ): self.assertDictEqual(A , example_records[i] ) def snake_case_( self ) -> str: _SCREAMING_SNAKE_CASE = self._create_example_records() _SCREAMING_SNAKE_CASE = Dataset.from_list(A ) _SCREAMING_SNAKE_CASE = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def snake_case_( self ) -> Union[str, Any]: # checks what happens with missing columns _SCREAMING_SNAKE_CASE = [{"""col_1""": 1}, {"""col_2""": """x"""}] _SCREAMING_SNAKE_CASE = Dataset.from_list(A ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def snake_case_( self ) -> Optional[Any]: # checks if the type can be inferred from the second record _SCREAMING_SNAKE_CASE = [{"""col_1""": []}, {"""col_1""": [1, 2]}] _SCREAMING_SNAKE_CASE = Dataset.from_list(A ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def snake_case_( self ) -> str: _SCREAMING_SNAKE_CASE = Dataset.from_list([] ) self.assertEqual(len(A ) , 0 ) self.assertListEqual(dset.column_names , [] )
58
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __SCREAMING_SNAKE_CASE (*SCREAMING_SNAKE_CASE__ ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = list(SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): snake_case_ = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 128 ): if function is None: return functools.partial(SCREAMING_SNAKE_CASE__ , starting_batch_size=SCREAMING_SNAKE_CASE__ ) snake_case_ = starting_batch_size def decorator(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() snake_case_ = list(inspect.signature(SCREAMING_SNAKE_CASE__ ).parameters.keys() ) # Guard against user error if len(SCREAMING_SNAKE_CASE__ ) < (len(SCREAMING_SNAKE_CASE__ ) + 1): snake_case_ = ''', '''.join([F'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F'''Batch size was passed into `{function.__name__}` as the first argument when called.''' F'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) except Exception as e: if should_reduce_batch_size(SCREAMING_SNAKE_CASE__ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
8
0
from __future__ import annotations def UpperCamelCase ( __lowerCamelCase : list[int] ): return len(set(__lowerCamelCase ) ) == len(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
59
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return [ord(SCREAMING_SNAKE_CASE__ ) - 96 for elem in plain] def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return "".join(chr(elem + 96 ) for elem in encoded ) def __SCREAMING_SNAKE_CASE (): snake_case_ = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , SCREAMING_SNAKE_CASE__ ) print('''Decoded:''' , decode(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": main()
8
0
"""simple docstring""" def _snake_case ( _snake_case : list[int] ): if not nums: # Makes sure that the list is not empty raise ValueError('''List is empty''' ) lowerCAmelCase : Tuple = sum(_snake_case ) / len(_snake_case ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
60
import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(SCREAMING_SNAKE_CASE__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('''This should never happen''' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. lowerCAmelCase_ = '''Enter the base and the power separated by a comma: ''' lowerCAmelCase_ , lowerCAmelCase_ = map(int, input(prompt).split(''',''')) lowerCAmelCase_ , lowerCAmelCase_ = map(int, input(prompt).split(''',''')) # We find the log of each number, using the function res(), which takes two # arguments. lowerCAmelCase_ = res(xa, ya) lowerCAmelCase_ = res(xa, ya) # We check for the largest number if resa > resa: print('''Largest number is''', xa, '''^''', ya) elif resa > resa: print('''Largest number is''', xa, '''^''', ya) else: print('''Both are equal''')
8
0