code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
from __future__ import annotations
import matplotlib.pyplot as plt # type: ignore
import numpy
# initial triangle of Koch snowflake
UpperCAmelCase__ = numpy.array([0, 0])
UpperCAmelCase__ = numpy.array([0.5, 0.866_0254])
UpperCAmelCase__ = numpy.array([1, 0])
UpperCAmelCase__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1]
def _a ( a :list[numpy.ndarray] , a :int ) -> list[numpy.ndarray]:
a = initial_vectors
for _ in range(a ):
a = iteration_step(a )
return vectors
def _a ( a :list[numpy.ndarray] ) -> list[numpy.ndarray]:
a = []
for i, start_vector in enumerate(vectors[:-1] ):
a = vectors[i + 1]
new_vectors.append(a )
a = end_vector - start_vector
new_vectors.append(start_vector + difference_vector / 3 )
new_vectors.append(
start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) )
new_vectors.append(start_vector + difference_vector * 2 / 3 )
new_vectors.append(vectors[-1] )
return new_vectors
def _a ( a :numpy.ndarray , a :float ) -> numpy.ndarray:
a = numpy.radians(a )
a , a = numpy.cos(a ), numpy.sin(a )
a = numpy.array(((c, -s), (s, c)) )
return numpy.dot(a , a )
def _a ( a :list[numpy.ndarray] ) -> None:
a = plt.gca()
axes.set_aspect('''equal''' )
# matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all
# y-coordinates as inputs, which are constructed from the vector-list using
# zip()
a , a = zip(*a )
plt.plot(a , a )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase__ = iterate(INITIAL_VECTORS, 5)
plot(processed_vectors)
| 0 |
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available
from . import BaseDiffusersCLICommand
def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
return EnvironmentCommand()
class A ( _UpperCAmelCase ):
"""simple docstring"""
@staticmethod
def snake_case__ ( lowercase_ : ArgumentParser )-> Dict:
'''simple docstring'''
A__ = parser.add_parser('env' )
download_parser.set_defaults(func=lowercase_ )
def snake_case__ ( self : List[Any] )-> List[str]:
'''simple docstring'''
A__ = huggingface_hub.__version__
A__ = 'not installed'
A__ = 'NA'
if is_torch_available():
import torch
A__ = torch.__version__
A__ = torch.cuda.is_available()
A__ = 'not installed'
if is_transformers_available():
import transformers
A__ = transformers.__version__
A__ = 'not installed'
if is_accelerate_available():
import accelerate
A__ = accelerate.__version__
A__ = 'not installed'
if is_xformers_available():
import xformers
A__ = xformers.__version__
A__ = {
'`diffusers` version': version,
'Platform': platform.platform(),
'Python version': platform.python_version(),
'PyTorch version (GPU?)': F'{pt_version} ({pt_cuda_available})',
'Huggingface_hub version': hub_version,
'Transformers version': transformers_version,
'Accelerate version': accelerate_version,
'xFormers version': xformers_version,
'Using GPU in script?': '<fill in>',
'Using distributed or parallel set-up in script?': '<fill in>',
}
print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' )
print(self.format_dict(lowercase_ ) )
return info
@staticmethod
def snake_case__ ( lowercase_ : int )-> Optional[Any]:
'''simple docstring'''
return "\n".join([F'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
| 7 | 0 |
'''simple docstring'''
def lowerCAmelCase_ ( snake_case_ : list ) -> bool:
'''simple docstring'''
if not isinstance(snake_case_ , snake_case_ ):
raise ValueError("Input series is not valid, valid series - [2, 4, 6]" )
if len(snake_case_ ) == 0:
raise ValueError("Input list must be a non empty list" )
if len(snake_case_ ) == 1:
return True
UpperCAmelCase_ = series[1] - series[0]
for index in range(len(snake_case_ ) - 1 ):
if series[index + 1] - series[index] != common_diff:
return False
return True
def lowerCAmelCase_ ( snake_case_ : list ) -> float:
'''simple docstring'''
if not isinstance(snake_case_ , snake_case_ ):
raise ValueError("Input series is not valid, valid series - [2, 4, 6]" )
if len(snake_case_ ) == 0:
raise ValueError("Input list must be a non empty list" )
UpperCAmelCase_ = 0
for val in series:
answer += val
return answer / len(snake_case_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 1 |
import unittest
from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
lowercase_ = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
@require_tokenizers
class A ( _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = ReformerTokenizer
lowerCamelCase = ReformerTokenizerFast
lowerCamelCase = True
lowerCamelCase = False
lowerCamelCase = True
def snake_case__ ( self : Any )-> str:
'''simple docstring'''
super().setUp()
A__ = ReformerTokenizer(lowercase_,keep_accents=lowercase_ )
tokenizer.save_pretrained(self.tmpdirname )
def snake_case__ ( self : Optional[int] )-> Optional[int]:
'''simple docstring'''
A__ = '<s>'
A__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ),lowercase_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ),lowercase_ )
def snake_case__ ( self : str )-> Tuple:
'''simple docstring'''
A__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0],'<unk>' )
self.assertEqual(vocab_keys[1],'<s>' )
self.assertEqual(vocab_keys[-1],'j' )
self.assertEqual(len(lowercase_ ),1_0_0_0 )
def snake_case__ ( self : Dict )-> Dict:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size,1_0_0_0 )
def snake_case__ ( self : Dict )-> List[str]:
'''simple docstring'''
if not self.test_rust_tokenizer:
return
A__ = self.get_tokenizer()
A__ = self.get_rust_tokenizer()
A__ = 'I was born in 92000, and this is falsé.'
A__ = tokenizer.tokenize(lowercase_ )
A__ = rust_tokenizer.tokenize(lowercase_ )
self.assertListEqual(lowercase_,lowercase_ )
A__ = tokenizer.encode(lowercase_,add_special_tokens=lowercase_ )
A__ = rust_tokenizer.encode(lowercase_,add_special_tokens=lowercase_ )
self.assertListEqual(lowercase_,lowercase_ )
A__ = self.get_rust_tokenizer()
A__ = tokenizer.encode(lowercase_ )
A__ = rust_tokenizer.encode(lowercase_ )
self.assertListEqual(lowercase_,lowercase_ )
def snake_case__ ( self : int,lowercase_ : Optional[int]=1_5 )-> Optional[Any]:
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
A__ = self.rust_tokenizer_class.from_pretrained(lowercase_,**lowercase_ )
# Simple input
A__ = 'This is a simple input'
A__ = ['This is a simple input 1', 'This is a simple input 2']
A__ = ('This is a simple input', 'This is a pair')
A__ = [
('This is a simple input 1', 'This is a simple input 2'),
('This is a simple pair 1', 'This is a simple pair 2'),
]
# Simple input tests
self.assertRaises(lowercase_,tokenizer_r.encode,lowercase_,max_length=lowercase_,padding='max_length' )
# Simple input
self.assertRaises(lowercase_,tokenizer_r.encode_plus,lowercase_,max_length=lowercase_,padding='max_length' )
# Simple input
self.assertRaises(
lowercase_,tokenizer_r.batch_encode_plus,lowercase_,max_length=lowercase_,padding='max_length',)
# Pair input
self.assertRaises(lowercase_,tokenizer_r.encode,lowercase_,max_length=lowercase_,padding='max_length' )
# Pair input
self.assertRaises(lowercase_,tokenizer_r.encode_plus,lowercase_,max_length=lowercase_,padding='max_length' )
# Pair input
self.assertRaises(
lowercase_,tokenizer_r.batch_encode_plus,lowercase_,max_length=lowercase_,padding='max_length',)
def snake_case__ ( self : List[Any] )-> Tuple:
'''simple docstring'''
pass
def snake_case__ ( self : Dict )-> str:
'''simple docstring'''
A__ = ReformerTokenizer(lowercase_,keep_accents=lowercase_ )
A__ = tokenizer.tokenize('This is a test' )
self.assertListEqual(lowercase_,['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowercase_ ),[2_8_5, 4_6, 1_0, 1_7_0, 3_8_2],)
A__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
lowercase_,[
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
],)
A__ = tokenizer.convert_tokens_to_ids(lowercase_ )
self.assertListEqual(
lowercase_,[8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4],)
A__ = tokenizer.convert_ids_to_tokens(lowercase_ )
self.assertListEqual(
lowercase_,[
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
],)
@cached_property
def snake_case__ ( self : Optional[int] )-> Any:
'''simple docstring'''
return ReformerTokenizer.from_pretrained('google/reformer-crime-and-punishment' )
@slow
def snake_case__ ( self : str )-> Tuple:
'''simple docstring'''
A__ = 'Hello World!'
A__ = [1_2_6, 3_2, 2_6_2, 1_5_2, 3_8, 7_2, 2_8_7]
self.assertListEqual(lowercase_,self.big_tokenizer.encode(lowercase_ ) )
@slow
def snake_case__ ( self : Optional[int] )-> str:
'''simple docstring'''
A__ = (
'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'
' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'
)
A__ = [
1_0_8,
2_6_5,
2_4,
1_1_1,
4,
2_5_8,
1_5_6,
3_5,
2_8,
2_7_5,
3,
2_5_9,
2_9_7,
2_6_0,
8_4,
4,
3_5,
1_1_0,
4_4,
8,
2_5_9,
9_1,
2_6_8,
2_1,
1_1,
2_0_9,
2_7_4,
1_0_9,
2_6_6,
2_7_7,
1_1_7,
8_6,
9_3,
3_1_5,
2_5_8,
2_7_8,
2_5_8,
2_7_7,
2_5_8,
0,
2_5_8,
2_8_8,
2_5_8,
3_1_9,
2_5_8,
0,
2_5_8,
0,
2_5_8,
0,
2_5_8,
0,
2_5_8,
2_8_7,
2_5_8,
3_1_5,
2_5_8,
2_8_9,
2_5_8,
2_7_8,
9_9,
2_6_9,
2_6_6,
2_6_2,
8,
2_5_9,
2_4_1,
4,
2_1_7,
2_3_0,
2_6_8,
2_6_6,
5_5,
1_6_8,
1_0_6,
7_5,
1_9_3,
2_6_6,
2_2_3,
2_7,
4_9,
2_6,
2_8_2,
2_5,
2_6_4,
2_9_9,
1_9,
2_6,
0,
2_5_8,
2_7_7,
1_1_7,
8_6,
9_3,
1_7_6,
1_8_3,
2_7_0,
1_1,
2_6_2,
4_2,
6_1,
2_6_5,
]
self.assertListEqual(lowercase_,self.big_tokenizer.encode(lowercase_ ) )
@require_torch
@slow
def snake_case__ ( self : int )-> Any:
'''simple docstring'''
import torch
from transformers import ReformerConfig, ReformerModel
# Build sequence
A__ = list(self.big_tokenizer.get_vocab().keys() )[:1_0]
A__ = ' '.join(lowercase_ )
A__ = self.big_tokenizer.encode_plus(lowercase_,return_tensors='pt' )
A__ = self.big_tokenizer.batch_encode_plus([sequence, sequence],return_tensors='pt' )
A__ = ReformerConfig()
# The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024)
A__ = encoded_sequence['input_ids'].shape
A__ = ReformerModel(lowercase_ )
# Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320)
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**lowercase_ )
model(**lowercase_ )
@slow
def snake_case__ ( self : int )-> Tuple:
'''simple docstring'''
A__ = {'input_ids': [[1_0_8, 2_6_5, 2_4, 1_1_1, 4, 2_5_8, 1_5_6, 7, 5_1, 2_7_9, 5_8, 7, 7_6, 2_5, 6_9, 2_7_8], [1_4_0, 2_4_3, 2_6_4, 1_3_4, 1_7, 2_6_7, 7_7, 2_6_3, 2_2, 2_6_2, 2_9_7, 2_5_8, 3_0_4, 1_7_7, 2_7_9, 2_6_6, 1_4, 8_9, 1_3, 3_5, 2_6_1, 2_9_9, 2_7_2, 1_3_7, 2_7_5, 2_7_8]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# This tokenizer does not know some characters like ")".
# That is the reason why we use very simple texts here.
# Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064
A__ = [
'This is a very simple sentence.',
'The quick brown fox jumps over the lazy dog.',
]
self.tokenizer_integration_test_util(
expected_encoding=lowercase_,model_name='google/reformer-crime-and-punishment',revision='0e6c3decb8211d49bf881013425dc8b0448b3f5a',padding=lowercase_,sequences=lowercase_,)
| 7 | 0 |
'''simple docstring'''
from typing import Optional
from urllib.parse import quote
import huggingface_hub as hfh
from packaging import version
def _SCREAMING_SNAKE_CASE (A , A , A = None ) -> str:
"""simple docstring"""
if version.parse(hfh.__version__ ).release < version.parse('''0.11.0''' ).release:
# old versions of hfh don't url-encode the file path
lowercase__ = quote(A )
return hfh.hf_hub_url(A , A , repo_type='''dataset''' , revision=A )
| 2 |
def _snake_case( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , ) -> float:
'''simple docstring'''
A__ = [redshift, radiation_density, matter_density, dark_energy]
if any(p < 0 for p in parameters ):
raise ValueError('All input parameters must be positive' )
if any(p > 1 for p in parameters[1:4] ):
raise ValueError('Relative densities cannot be greater than one' )
else:
A__ = 1 - (matter_density + radiation_density + dark_energy)
A__ = (
radiation_density * (redshift + 1) ** 4
+ matter_density * (redshift + 1) ** 3
+ curvature * (redshift + 1) ** 2
+ dark_energy
)
A__ = hubble_constant * e_a ** (1 / 2)
return hubble
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
# demo LCDM approximation
lowercase_ = 0.3
print(
hubble_parameter(
hubble_constant=68.3,
radiation_density=1e-4,
matter_density=matter_density,
dark_energy=1 - matter_density,
redshift=0,
)
)
| 7 | 0 |
'''simple docstring'''
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : List[Any] = 0
A : Any = len(snake_case__ )
for i in range(n - 1 ):
for j in range(i + 1 , snake_case__ ):
if arr[i] > arr[j]:
num_inversions += 1
return num_inversions
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if len(snake_case__ ) <= 1:
return arr, 0
A : Any = len(snake_case__ ) // 2
A : List[Any] = arr[0:mid]
A : Union[str, Any] = arr[mid:]
A, A : List[str] = count_inversions_recursive(snake_case__ )
A, A : Dict = count_inversions_recursive(snake_case__ )
A, A : Dict = _count_cross_inversions(snake_case__ , snake_case__ )
A : Optional[int] = inversion_p + inversions_q + cross_inversions
return c, num_inversions
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : Tuple = []
A : Optional[Any] = 0
while i < len(snake_case__ ) and j < len(snake_case__ ):
if p[i] > q[j]:
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
# These are all inversions. The claim emerges from the
# property that P is sorted.
num_inversion += len(snake_case__ ) - i
r.append(q[j] )
j += 1
else:
r.append(p[i] )
i += 1
if i < len(snake_case__ ):
r.extend(p[i:] )
else:
r.extend(q[j:] )
return r, num_inversion
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : Tuple = [10, 2, 1, 5, 5, 2, 11]
# this arr has 8 inversions:
# (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2)
A : List[Any] = count_inversions_bf(snake_case__ )
A, A : int = count_inversions_recursive(snake_case__ )
assert num_inversions_bf == num_inversions_recursive == 8
print('''number of inversions = ''' , snake_case__ )
# testing an array with zero inversion (a sorted arr_1)
arr_a.sort()
A : Tuple = count_inversions_bf(snake_case__ )
A, A : Optional[int] = count_inversions_recursive(snake_case__ )
assert num_inversions_bf == num_inversions_recursive == 0
print('''number of inversions = ''' , snake_case__ )
# an empty list should also have zero inversions
A : int = []
A : List[Any] = count_inversions_bf(snake_case__ )
A, A : Optional[int] = count_inversions_recursive(snake_case__ )
assert num_inversions_bf == num_inversions_recursive == 0
print('''number of inversions = ''' , snake_case__ )
if __name__ == "__main__":
main()
| 3 |
from typing import Union
import fire
import torch
from tqdm import tqdm
def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str = "cpu" , SCREAMING_SNAKE_CASE__ : Union[str, None] = None ) -> None:
'''simple docstring'''
A__ = torch.load(SCREAMING_SNAKE_CASE__ , map_location=SCREAMING_SNAKE_CASE__ )
for k, v in tqdm(state_dict.items() ):
if not isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ):
raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' )
A__ = v.half()
if save_path is None: # overwrite src_path
A__ = src_path
torch.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
fire.Fire(convert)
| 7 | 0 |
'''simple docstring'''
import unittest
from transformers import AlbertTokenizer, AlbertTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
__snake_case =get_tests_dir("""fixtures/spiece.model""")
@require_sentencepiece
@require_tokenizers
class UpperCAmelCase_ ( __lowercase , unittest.TestCase ):
lowerCamelCase : List[str] = AlbertTokenizer
lowerCamelCase : Dict = AlbertTokenizerFast
lowerCamelCase : Optional[Any] = True
lowerCamelCase : Any = True
lowerCamelCase : str = True
def __UpperCAmelCase ( self : int ) -> int:
super().setUp()
# We have a SentencePiece fixture for testing
lowerCAmelCase = AlbertTokenizer(UpperCAmelCase__ )
tokenizer.save_pretrained(self.tmpdirname )
def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : List[str] ) -> Union[str, Any]:
lowerCAmelCase = 'this is a test'
lowerCAmelCase = 'this is a test'
return input_text, output_text
def __UpperCAmelCase ( self : List[str] ) -> List[Any]:
lowerCAmelCase = '<pad>'
lowerCAmelCase = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ )
def __UpperCAmelCase ( self : Tuple ) -> int:
lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<pad>' )
self.assertEqual(vocab_keys[1] , '<unk>' )
self.assertEqual(vocab_keys[-1] , '▁eloquent' )
self.assertEqual(len(UpperCAmelCase__ ) , 3_0_0_0_0 )
def __UpperCAmelCase ( self : str ) -> List[str]:
self.assertEqual(self.get_tokenizer().vocab_size , 3_0_0_0_0 )
def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]:
if not self.test_rust_tokenizer:
return
lowerCAmelCase = self.get_tokenizer()
lowerCAmelCase = self.get_rust_tokenizer()
lowerCAmelCase = 'I was born in 92000, and this is falsé.'
lowerCAmelCase = tokenizer.tokenize(UpperCAmelCase__ )
lowerCAmelCase = rust_tokenizer.tokenize(UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
lowerCAmelCase = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
lowerCAmelCase = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
lowerCAmelCase = self.get_rust_tokenizer()
lowerCAmelCase = tokenizer.encode(UpperCAmelCase__ )
lowerCAmelCase = rust_tokenizer.encode(UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
def __UpperCAmelCase ( self : str ) -> str:
lowerCAmelCase = AlbertTokenizer(UpperCAmelCase__ , keep_accents=UpperCAmelCase__ )
lowerCAmelCase = tokenizer.tokenize('This is a test' )
self.assertListEqual(UpperCAmelCase__ , ['▁this', '▁is', '▁a', '▁test'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , [4_8, 2_5, 2_1, 1_2_8_9] )
lowerCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
UpperCAmelCase__ , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.'] )
lowerCAmelCase = tokenizer.convert_tokens_to_ids(UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__ , [3_1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] )
lowerCAmelCase = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ )
self.assertListEqual(
UpperCAmelCase__ , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.'] , )
def __UpperCAmelCase ( self : str ) -> Tuple:
lowerCAmelCase = AlbertTokenizer(UpperCAmelCase__ )
lowerCAmelCase = tokenizer.encode('sequence builders' )
lowerCAmelCase = tokenizer.encode('multi-sequence build' )
lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ )
lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ , UpperCAmelCase__ )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
@slow
def __UpperCAmelCase ( self : Dict ) -> int:
# fmt: off
lowerCAmelCase = {'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 2_1_9_7_0, 1_3, 5, 6_0_9_2, 1_6_7, 2_8, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 7_0_2_8, 1_2_0_5_1, 1_8, 1_7, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 3_5_1_5, 1_8_6_8_4, 8, 4_4_6_1, 6, 1_9_2_7, 2_9_7, 8, 1_2_0_6_0, 2_6_0_7, 1_8, 1_3, 5, 4_4_6_1, 1_5, 1_0_5_3_8, 3_8, 8, 1_3_5, 1_5, 8_2_2, 5_8, 1_5, 9_9_3, 1_0_3_6_3, 1_5, 1_4_6_0, 8_0_0_5, 4_4_6_1, 1_5, 9_9_3, 2_5_5, 2_3_2_8, 9, 9, 9, 6, 2_6, 1_1_1_2, 8_1_6, 3_2_6_0, 1_3, 5, 1_0_3, 2_3_7_7, 6, 1_7, 1_1_1_2, 8_1_6, 2_7_8_2, 1_3, 5, 1_0_3, 1_0_6_4_1, 6, 2_9, 8_4, 2_5_1_2, 2_4_3_0, 7_8_2, 1_8_6_8_4, 2_7_6_1, 1_9, 8_0_8, 2_4_3_0, 2_5_5_6, 1_7, 8_5_5, 1_4_8_0, 9_4_7_7, 4_0_9_1, 1_2_8, 1_1_7_1_2, 1_5, 7_1_0_3, 2_1_5_3, 6_7_3, 1_7, 2_4_8_8_3, 9_9_9_0, 9, 3], [2, 1_1_5_0_2, 2_5, 1_0_0_6, 2_0, 7_8_2, 8, 1_1_8_0_9, 8_5_5, 1_7_3_2, 1_9_3_9_3, 1_8_6_6_7, 3_7, 3_6_7, 2_1_0_1_8, 6_9, 1_8_5_4, 3_4, 1_1_8_6_0, 1_9_1_2_4, 2_7, 1_5_6, 2_2_5, 1_7, 1_9_3, 4_1_4_1, 1_9, 6_5, 9_1_2_4, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 1_4, 2_2_3_1, 8_8_6, 2_3_8_5, 1_7_6_5_9, 8_4, 1_4, 1_6_7_9_2, 1_9_5_2, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=UpperCAmelCase__ , model_name='albert-base-v2' , revision='6b6560eaf5ff2e250b00c50f380c5389a9c2d82e' , )
| 4 |
import os
# Precomputes a list of the 100 first triangular numbers
lowercase_ = [int(0.5 * n * (n + 1)) for n in range(1, 101)]
def _snake_case( ) -> int:
'''simple docstring'''
A__ = os.path.dirname(os.path.realpath(SCREAMING_SNAKE_CASE__ ) )
A__ = os.path.join(SCREAMING_SNAKE_CASE__ , 'words.txt' )
A__ = ''
with open(SCREAMING_SNAKE_CASE__ ) as f:
A__ = f.readline()
A__ = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )]
A__ = [
word
for word in [sum(ord(SCREAMING_SNAKE_CASE__ ) - 64 for x in word ) for word in words]
if word in TRIANGULAR_NUMBERS
]
return len(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
print(solution())
| 7 | 0 |
import os
import pytest
from datasets import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
)
UpperCAmelCase__ = pytest.mark.integration
@pytest.mark.parametrize('''path''' , ['''paws''', '''csv'''] )
def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Optional[Any]:
"""simple docstring"""
inspect_dataset(__snake_case , __snake_case )
_lowercase =path + '''.py'''
assert script_name in os.listdir(__snake_case )
assert "__pycache__" not in os.listdir(__snake_case )
@pytest.mark.filterwarnings('''ignore:inspect_metric is deprecated:FutureWarning''' )
@pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' )
@pytest.mark.parametrize('''path''' , ['''accuracy'''] )
def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Any:
"""simple docstring"""
inspect_metric(__snake_case , __snake_case )
_lowercase =path + '''.py'''
assert script_name in os.listdir(__snake_case )
assert "__pycache__" not in os.listdir(__snake_case )
@pytest.mark.parametrize(
'''path, config_name, expected_splits''' , [
('''squad''', '''plain_text''', ['''train''', '''validation''']),
('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']),
('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']),
] , )
def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> Tuple:
"""simple docstring"""
_lowercase =get_dataset_config_info(__snake_case , config_name=__snake_case )
assert info.config_name == config_name
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
'''path, config_name, expected_exception''' , [
('''paws''', None, ValueError),
] , )
def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> int:
"""simple docstring"""
with pytest.raises(__snake_case ):
get_dataset_config_info(__snake_case , config_name=__snake_case )
@pytest.mark.parametrize(
'''path, expected''' , [
('''squad''', '''plain_text'''),
('''acronym_identification''', '''default'''),
('''lhoestq/squad''', '''plain_text'''),
('''lhoestq/test''', '''default'''),
('''lhoestq/demo1''', '''lhoestq--demo1'''),
('''dalle-mini/wit''', '''dalle-mini--wit'''),
] , )
def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Optional[int]:
"""simple docstring"""
_lowercase =get_dataset_config_names(__snake_case )
assert expected in config_names
@pytest.mark.parametrize(
'''path, expected_configs, expected_splits_in_first_config''' , [
('''squad''', ['''plain_text'''], ['''train''', '''validation''']),
('''dalle-mini/wit''', ['''dalle-mini--wit'''], ['''train''']),
('''paws''', ['''labeled_final''', '''labeled_swap''', '''unlabeled_final'''], ['''train''', '''test''', '''validation''']),
] , )
def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> List[str]:
"""simple docstring"""
_lowercase =get_dataset_infos(__snake_case )
assert list(infos.keys() ) == expected_configs
_lowercase =expected_configs[0]
assert expected_config in infos
_lowercase =infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits_in_first_config
@pytest.mark.parametrize(
'''path, expected_config, expected_splits''' , [
('''squad''', '''plain_text''', ['''train''', '''validation''']),
('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']),
('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']),
] , )
def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> Tuple:
"""simple docstring"""
_lowercase =get_dataset_infos(__snake_case )
assert expected_config in infos
_lowercase =infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
'''path, config_name, expected_exception''' , [
('''paws''', None, ValueError),
] , )
def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> Union[str, Any]:
"""simple docstring"""
with pytest.raises(__snake_case ):
get_dataset_split_names(__snake_case , config_name=__snake_case )
| 5 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionAttendAndExcitePipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_numpy, skip_mps, slow
from diffusers.utils.testing_utils import require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
lowercase_ = False
@skip_mps
class A ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = StableDiffusionAttendAndExcitePipeline
lowerCamelCase = False
lowerCamelCase = TEXT_TO_IMAGE_PARAMS
lowerCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS.union({'token_indices'} )
lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS
lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS
@classmethod
def snake_case__ ( cls : Any )-> Optional[Any]:
'''simple docstring'''
super().setUpClass()
torch.use_deterministic_algorithms(lowercase_ )
@classmethod
def snake_case__ ( cls : Optional[Any] )-> Dict:
'''simple docstring'''
super().tearDownClass()
torch.use_deterministic_algorithms(lowercase_ )
def snake_case__ ( self : List[str] )-> int:
'''simple docstring'''
torch.manual_seed(0 )
A__ = UNetaDConditionModel(
block_out_channels=(3_2, 6_4),layers_per_block=1,sample_size=3_2,in_channels=4,out_channels=4,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'),up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'),cross_attention_dim=3_2,attention_head_dim=(2, 4),use_linear_projection=lowercase_,)
A__ = DDIMScheduler(
beta_start=0.00_085,beta_end=0.012,beta_schedule='scaled_linear',clip_sample=lowercase_,set_alpha_to_one=lowercase_,)
torch.manual_seed(0 )
A__ = AutoencoderKL(
block_out_channels=[3_2, 6_4],in_channels=3,out_channels=3,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'],up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'],latent_channels=4,sample_size=1_2_8,)
torch.manual_seed(0 )
A__ = CLIPTextConfig(
bos_token_id=0,eos_token_id=2,hidden_size=3_2,intermediate_size=3_7,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1_0_0_0,hidden_act='gelu',projection_dim=5_1_2,)
A__ = CLIPTextModel(lowercase_ )
A__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
A__ = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def snake_case__ ( self : Tuple,lowercase_ : str,lowercase_ : List[Any]=0 )-> int:
'''simple docstring'''
if str(lowercase_ ).startswith('mps' ):
A__ = torch.manual_seed(lowercase_ )
else:
A__ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
A__ = A__ = {
'prompt': 'a cat and a frog',
'token_indices': [2, 5],
'generator': generator,
'num_inference_steps': 1,
'guidance_scale': 6.0,
'output_type': 'numpy',
'max_iter_to_alter': 2,
'thresholds': {0: 0.7},
}
return inputs
def snake_case__ ( self : List[str] )-> Optional[Any]:
'''simple docstring'''
A__ = 'cpu'
A__ = self.get_dummy_components()
A__ = self.pipeline_class(**lowercase_ )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
A__ = self.get_dummy_inputs(lowercase_ )
A__ = pipe(**lowercase_ ).images
A__ = image[0, -3:, -3:, -1]
self.assertEqual(image.shape,(1, 6_4, 6_4, 3) )
A__ = np.array(
[0.63_905_364, 0.62_897_307, 0.48_599_017, 0.5_133_624, 0.5_550_048, 0.45_769_516, 0.50_326_973, 0.5_023_139, 0.45_384_496] )
A__ = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(lowercase_,1E-3 )
def snake_case__ ( self : str )-> Optional[Any]:
'''simple docstring'''
super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 )
def snake_case__ ( self : str )-> int:
'''simple docstring'''
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def snake_case__ ( self : str )-> Optional[int]:
'''simple docstring'''
self._test_inference_batch_single_identical(batch_size=2,expected_max_diff=7E-4 )
def snake_case__ ( self : Optional[Any] )-> int:
'''simple docstring'''
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 )
def snake_case__ ( self : Union[str, Any] )-> str:
'''simple docstring'''
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 )
def snake_case__ ( self : Dict )-> Any:
'''simple docstring'''
super().test_save_load_local(expected_max_difference=5E-4 )
def snake_case__ ( self : Dict )-> List[str]:
'''simple docstring'''
super().test_save_load_optional_components(expected_max_difference=4E-4 )
@require_torch_gpu
@slow
class A ( unittest.TestCase ):
"""simple docstring"""
@classmethod
def snake_case__ ( cls : Any )-> Optional[int]:
'''simple docstring'''
super().setUpClass()
torch.use_deterministic_algorithms(lowercase_ )
@classmethod
def snake_case__ ( cls : int )-> List[Any]:
'''simple docstring'''
super().tearDownClass()
torch.use_deterministic_algorithms(lowercase_ )
def snake_case__ ( self : List[Any] )-> Any:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case__ ( self : Union[str, Any] )-> List[Any]:
'''simple docstring'''
A__ = torch.manual_seed(5_1 )
A__ = StableDiffusionAttendAndExcitePipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4',safety_checker=lowercase_,torch_dtype=torch.floataa )
pipe.to('cuda' )
A__ = 'a painting of an elephant with glasses'
A__ = [5, 7]
A__ = pipe(
prompt=lowercase_,token_indices=lowercase_,guidance_scale=7.5,generator=lowercase_,num_inference_steps=5,max_iter_to_alter=5,output_type='numpy',).images[0]
A__ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' )
assert np.abs((expected_image - image).max() ) < 5E-1
| 7 | 0 |
from typing import Optional
from torch import nn
from .transformer_ad import TransformeraDModel, TransformeraDModelOutput
class __A( nn.Module ):
def __init__( self , _snake_case = 16 , _snake_case = 88 , _snake_case = None , _snake_case = 1 , _snake_case = 0.0 , _snake_case = 32 , _snake_case = None , _snake_case = False , _snake_case = None , _snake_case = None , _snake_case = "geglu" , _snake_case = None , ) -> Any:
'''simple docstring'''
super().__init__()
__a = nn.ModuleList(
[
TransformeraDModel(
num_attention_heads=_snake_case , attention_head_dim=_snake_case , in_channels=_snake_case , num_layers=_snake_case , dropout=_snake_case , norm_num_groups=_snake_case , cross_attention_dim=_snake_case , attention_bias=_snake_case , sample_size=_snake_case , num_vector_embeds=_snake_case , activation_fn=_snake_case , num_embeds_ada_norm=_snake_case , )
for _ in range(2 )
] )
# Variables that can be set by a pipeline:
# The ratio of transformer1 to transformer2's output states to be combined during inference
__a = 0.5
# The shape of `encoder_hidden_states` is expected to be
# `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
__a = [77, 257]
# Which transformer to use to encode which condition.
# E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
__a = [1, 0]
def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case = True , ) -> Tuple:
'''simple docstring'''
__a = hidden_states
__a = []
__a = 0
# attention_mask is not used yet
for i in range(2 ):
# for each of the two transformers, pass the corresponding condition tokens
__a = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
__a = self.transformer_index_for_condition[i]
__a = self.transformers[transformer_index](
_snake_case , encoder_hidden_states=_snake_case , timestep=_snake_case , cross_attention_kwargs=_snake_case , return_dict=_snake_case , )[0]
encoded_states.append(encoded_state - input_states )
tokens_start += self.condition_lengths[i]
__a = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
__a = output_states + input_states
if not return_dict:
return (output_states,)
return TransformeraDModelOutput(sample=_snake_case ) | 6 |
import argparse
from pathlib import Path
import torch
from packaging import version
from torch.onnx import export
from diffusers import AutoencoderKL
lowercase_ = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11")
def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : tuple , SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , ) -> Union[str, Any]:
'''simple docstring'''
output_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
if is_torch_less_than_1_11:
export(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE__ , output_names=SCREAMING_SNAKE_CASE__ , dynamic_axes=SCREAMING_SNAKE_CASE__ , do_constant_folding=SCREAMING_SNAKE_CASE__ , use_external_data_format=SCREAMING_SNAKE_CASE__ , enable_onnx_checker=SCREAMING_SNAKE_CASE__ , opset_version=SCREAMING_SNAKE_CASE__ , )
else:
export(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE__ , output_names=SCREAMING_SNAKE_CASE__ , dynamic_axes=SCREAMING_SNAKE_CASE__ , do_constant_folding=SCREAMING_SNAKE_CASE__ , opset_version=SCREAMING_SNAKE_CASE__ , )
@torch.no_grad()
def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : bool = False ) -> Tuple:
'''simple docstring'''
A__ = torch.floataa if fpaa else torch.floataa
if fpaa and torch.cuda.is_available():
A__ = 'cuda'
elif fpaa and not torch.cuda.is_available():
raise ValueError('`float16` model export is only supported on GPUs with CUDA' )
else:
A__ = 'cpu'
A__ = Path(SCREAMING_SNAKE_CASE__ )
# VAE DECODER
A__ = AutoencoderKL.from_pretrained(model_path + '/vae' )
A__ = vae_decoder.config.latent_channels
# forward only through the decoder part
A__ = vae_decoder.decode
onnx_export(
SCREAMING_SNAKE_CASE__ , model_args=(
torch.randn(1 , SCREAMING_SNAKE_CASE__ , 25 , 25 ).to(device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ ),
False,
) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={
'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'},
} , opset=SCREAMING_SNAKE_CASE__ , )
del vae_decoder
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
parser.add_argument(
"--model_path",
type=str,
required=True,
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).",
)
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--opset",
default=14,
type=int,
help="The version of the ONNX operator set to use.",
)
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode")
lowercase_ = parser.parse_args()
print(args.output_path)
convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
print("SD: Done: ONNX")
| 7 | 0 |
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import datasets
import numpy as np
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
PreTrainedTokenizer,
TFAutoModelForSequenceClassification,
TFTrainer,
TFTrainingArguments,
)
from transformers.utils import logging as hf_logging
hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , ):
snake_case_ = {}
if train_file is not None:
snake_case_ = [train_file]
if eval_file is not None:
snake_case_ = [eval_file]
if test_file is not None:
snake_case_ = [test_file]
snake_case_ = datasets.load_dataset('''csv''' , data_files=SCREAMING_SNAKE_CASE__ )
snake_case_ = list(ds[list(files.keys() )[0]].features.keys() )
snake_case_ = features_name.pop(SCREAMING_SNAKE_CASE__ )
snake_case_ = list(set(ds[list(files.keys() )[0]][label_name] ) )
snake_case_ = {label: i for i, label in enumerate(SCREAMING_SNAKE_CASE__ )}
snake_case_ = tokenizer.model_input_names
snake_case_ = {}
if len(SCREAMING_SNAKE_CASE__ ) == 1:
for k in files.keys():
snake_case_ = ds[k].map(
lambda SCREAMING_SNAKE_CASE__ : tokenizer.batch_encode_plus(
example[features_name[0]] , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding='''max_length''' ) , batched=SCREAMING_SNAKE_CASE__ , )
elif len(SCREAMING_SNAKE_CASE__ ) == 2:
for k in files.keys():
snake_case_ = ds[k].map(
lambda SCREAMING_SNAKE_CASE__ : tokenizer.batch_encode_plus(
(example[features_name[0]], example[features_name[1]]) , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding='''max_length''' , ) , batched=SCREAMING_SNAKE_CASE__ , )
def gen_train():
for ex in transformed_ds[datasets.Split.TRAIN]:
snake_case_ = {k: v for k, v in ex.items() if k in input_names}
snake_case_ = labelaid[ex[label_name]]
yield (d, label)
def gen_val():
for ex in transformed_ds[datasets.Split.VALIDATION]:
snake_case_ = {k: v for k, v in ex.items() if k in input_names}
snake_case_ = labelaid[ex[label_name]]
yield (d, label)
def gen_test():
for ex in transformed_ds[datasets.Split.TEST]:
snake_case_ = {k: v for k, v in ex.items() if k in input_names}
snake_case_ = labelaid[ex[label_name]]
yield (d, label)
snake_case_ = (
tf.data.Dataset.from_generator(
SCREAMING_SNAKE_CASE__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TRAIN in transformed_ds
else None
)
if train_ds is not None:
snake_case_ = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) )
snake_case_ = (
tf.data.Dataset.from_generator(
SCREAMING_SNAKE_CASE__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.VALIDATION in transformed_ds
else None
)
if val_ds is not None:
snake_case_ = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) )
snake_case_ = (
tf.data.Dataset.from_generator(
SCREAMING_SNAKE_CASE__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TEST in transformed_ds
else None
)
if test_ds is not None:
snake_case_ = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) )
return train_ds, val_ds, test_ds, labelaid
lowerCAmelCase_ = logging.getLogger(__name__)
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = field(metadata={"help": "Which column contains the label"} )
SCREAMING_SNAKE_CASE : str = field(default=__A , metadata={"help": "The path of the training file"} )
SCREAMING_SNAKE_CASE : Optional[str] = field(default=__A , metadata={"help": "The path of the development file"} )
SCREAMING_SNAKE_CASE : Optional[str] = field(default=__A , metadata={"help": "The path of the test file"} )
SCREAMING_SNAKE_CASE : int = field(
default=128 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
SCREAMING_SNAKE_CASE : bool = field(
default=__A , metadata={"help": "Overwrite the cached training and evaluation sets"} )
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
SCREAMING_SNAKE_CASE : Optional[str] = field(
default=__A , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
SCREAMING_SNAKE_CASE : Optional[str] = field(
default=__A , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
SCREAMING_SNAKE_CASE : bool = field(default=__A , metadata={"help": "Set this flag to use fast tokenization."} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
SCREAMING_SNAKE_CASE : Optional[str] = field(
default=__A , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
def __SCREAMING_SNAKE_CASE ():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) )
snake_case_, snake_case_, snake_case_ = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use'''
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , )
logger.info(
F'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, '''
F'''16-bits training: {training_args.fpaa}''' )
logger.info(F'''Training/evaluation parameters {training_args}''' )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
snake_case_ = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
snake_case_, snake_case_, snake_case_, snake_case_ = get_tfds(
train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=SCREAMING_SNAKE_CASE__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , )
snake_case_ = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(SCREAMING_SNAKE_CASE__ ) , labelaid=SCREAMING_SNAKE_CASE__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , )
with training_args.strategy.scope():
snake_case_ = TFAutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE__ , cache_dir=model_args.cache_dir , )
def compute_metrics(SCREAMING_SNAKE_CASE__ ) -> Dict:
snake_case_ = np.argmax(p.predictions , axis=1 )
return {"acc": (preds == p.label_ids).mean()}
# Initialize our Trainer
snake_case_ = TFTrainer(
model=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , train_dataset=SCREAMING_SNAKE_CASE__ , eval_dataset=SCREAMING_SNAKE_CASE__ , compute_metrics=SCREAMING_SNAKE_CASE__ , )
# Training
if training_args.do_train:
trainer.train()
trainer.save_model()
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
snake_case_ = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
snake_case_ = trainer.evaluate()
snake_case_ = os.path.join(training_args.output_dir , '''eval_results.txt''' )
with open(SCREAMING_SNAKE_CASE__ , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(F''' {key} = {value}''' )
writer.write(F'''{key} = {value}\n''' )
results.update(SCREAMING_SNAKE_CASE__ )
return results
if __name__ == "__main__":
main() | 8 |
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class A ( _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase = (DPMSolverSinglestepScheduler,)
lowerCamelCase = (('num_inference_steps', 25),)
def snake_case__ ( self : Tuple,**lowercase_ : Dict )-> Optional[int]:
'''simple docstring'''
A__ = {
'num_train_timesteps': 1_0_0_0,
'beta_start': 0.0_001,
'beta_end': 0.02,
'beta_schedule': 'linear',
'solver_order': 2,
'prediction_type': 'epsilon',
'thresholding': False,
'sample_max_value': 1.0,
'algorithm_type': 'dpmsolver++',
'solver_type': 'midpoint',
'lambda_min_clipped': -float('inf' ),
'variance_type': None,
}
config.update(**lowercase_ )
return config
def snake_case__ ( self : str,lowercase_ : Optional[Any]=0,**lowercase_ : Any )-> List[Any]:
'''simple docstring'''
A__ = dict(self.forward_default_kwargs )
A__ = kwargs.pop('num_inference_steps',lowercase_ )
A__ = self.dummy_sample
A__ = 0.1 * sample
A__ = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
A__ = self.get_scheduler_config(**lowercase_ )
A__ = scheduler_class(**lowercase_ )
scheduler.set_timesteps(lowercase_ )
# copy over dummy past residuals
A__ = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowercase_ )
A__ = scheduler_class.from_pretrained(lowercase_ )
new_scheduler.set_timesteps(lowercase_ )
# copy over dummy past residuals
A__ = dummy_past_residuals[: new_scheduler.config.solver_order]
A__ , A__ = sample, sample
for t in range(lowercase_,time_step + scheduler.config.solver_order + 1 ):
A__ = scheduler.step(lowercase_,lowercase_,lowercase_,**lowercase_ ).prev_sample
A__ = new_scheduler.step(lowercase_,lowercase_,lowercase_,**lowercase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def snake_case__ ( self : List[str] )-> List[Any]:
'''simple docstring'''
pass
def snake_case__ ( self : Tuple,lowercase_ : Union[str, Any]=0,**lowercase_ : Union[str, Any] )-> Union[str, Any]:
'''simple docstring'''
A__ = dict(self.forward_default_kwargs )
A__ = kwargs.pop('num_inference_steps',lowercase_ )
A__ = self.dummy_sample
A__ = 0.1 * sample
A__ = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
A__ = self.get_scheduler_config()
A__ = scheduler_class(**lowercase_ )
scheduler.set_timesteps(lowercase_ )
# copy over dummy past residuals (must be after setting timesteps)
A__ = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowercase_ )
A__ = scheduler_class.from_pretrained(lowercase_ )
# copy over dummy past residuals
new_scheduler.set_timesteps(lowercase_ )
# copy over dummy past residual (must be after setting timesteps)
A__ = dummy_past_residuals[: new_scheduler.config.solver_order]
A__ = scheduler.step(lowercase_,lowercase_,lowercase_,**lowercase_ ).prev_sample
A__ = new_scheduler.step(lowercase_,lowercase_,lowercase_,**lowercase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def snake_case__ ( self : Optional[Any],lowercase_ : Optional[int]=None,**lowercase_ : int )-> int:
'''simple docstring'''
if scheduler is None:
A__ = self.scheduler_classes[0]
A__ = self.get_scheduler_config(**lowercase_ )
A__ = scheduler_class(**lowercase_ )
A__ = self.scheduler_classes[0]
A__ = self.get_scheduler_config(**lowercase_ )
A__ = scheduler_class(**lowercase_ )
A__ = 1_0
A__ = self.dummy_model()
A__ = self.dummy_sample_deter
scheduler.set_timesteps(lowercase_ )
for i, t in enumerate(scheduler.timesteps ):
A__ = model(lowercase_,lowercase_ )
A__ = scheduler.step(lowercase_,lowercase_,lowercase_ ).prev_sample
return sample
def snake_case__ ( self : Any )-> str:
'''simple docstring'''
A__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() )
A__ = 5_0
A__ = self.dummy_model()
A__ = self.dummy_sample_deter
scheduler.set_timesteps(lowercase_ )
# make sure that the first t is uneven
for i, t in enumerate(scheduler.timesteps[3:] ):
A__ = model(lowercase_,lowercase_ )
A__ = scheduler.step(lowercase_,lowercase_,lowercase_ ).prev_sample
A__ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_mean.item() - 0.2_574 ) < 1E-3
def snake_case__ ( self : Optional[Any] )-> List[Any]:
'''simple docstring'''
for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=lowercase_ )
def snake_case__ ( self : int )-> Optional[Any]:
'''simple docstring'''
A__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() )
A__ = self.full_loop(scheduler=lowercase_ )
A__ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_mean.item() - 0.2_791 ) < 1E-3
A__ = DEISMultistepScheduler.from_config(scheduler.config )
A__ = DPMSolverMultistepScheduler.from_config(scheduler.config )
A__ = UniPCMultistepScheduler.from_config(scheduler.config )
A__ = DPMSolverSinglestepScheduler.from_config(scheduler.config )
A__ = self.full_loop(scheduler=lowercase_ )
A__ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_mean.item() - 0.2_791 ) < 1E-3
def snake_case__ ( self : Tuple )-> Any:
'''simple docstring'''
self.check_over_configs(thresholding=lowercase_ )
for order in [1, 2, 3]:
for solver_type in ["midpoint", "heun"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=lowercase_,prediction_type=lowercase_,sample_max_value=lowercase_,algorithm_type='dpmsolver++',solver_order=lowercase_,solver_type=lowercase_,)
def snake_case__ ( self : List[Any] )-> int:
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowercase_ )
def snake_case__ ( self : Dict )-> List[Any]:
'''simple docstring'''
for algorithm_type in ["dpmsolver", "dpmsolver++"]:
for solver_type in ["midpoint", "heun"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=lowercase_,solver_type=lowercase_,prediction_type=lowercase_,algorithm_type=lowercase_,)
A__ = self.full_loop(
solver_order=lowercase_,solver_type=lowercase_,prediction_type=lowercase_,algorithm_type=lowercase_,)
assert not torch.isnan(lowercase_ ).any(), "Samples have nan numbers"
def snake_case__ ( self : Optional[int] )-> Tuple:
'''simple docstring'''
self.check_over_configs(lower_order_final=lowercase_ )
self.check_over_configs(lower_order_final=lowercase_ )
def snake_case__ ( self : Tuple )-> Optional[int]:
'''simple docstring'''
self.check_over_configs(lambda_min_clipped=-float('inf' ) )
self.check_over_configs(lambda_min_clipped=-5.1 )
def snake_case__ ( self : Optional[Any] )-> Tuple:
'''simple docstring'''
self.check_over_configs(variance_type=lowercase_ )
self.check_over_configs(variance_type='learned_range' )
def snake_case__ ( self : str )-> Any:
'''simple docstring'''
for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]:
self.check_over_forward(num_inference_steps=lowercase_,time_step=0 )
def snake_case__ ( self : Tuple )-> Tuple:
'''simple docstring'''
A__ = self.full_loop()
A__ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_mean.item() - 0.2_791 ) < 1E-3
def snake_case__ ( self : Any )-> Union[str, Any]:
'''simple docstring'''
A__ = self.full_loop(use_karras_sigmas=lowercase_ )
A__ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_mean.item() - 0.2_248 ) < 1E-3
def snake_case__ ( self : Union[str, Any] )-> Tuple:
'''simple docstring'''
A__ = self.full_loop(prediction_type='v_prediction' )
A__ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_mean.item() - 0.1_453 ) < 1E-3
def snake_case__ ( self : Tuple )-> int:
'''simple docstring'''
A__ = self.full_loop(prediction_type='v_prediction',use_karras_sigmas=lowercase_ )
A__ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_mean.item() - 0.0_649 ) < 1E-3
def snake_case__ ( self : List[Any] )-> int:
'''simple docstring'''
A__ = self.scheduler_classes[0]
A__ = self.get_scheduler_config(thresholding=lowercase_,dynamic_thresholding_ratio=0 )
A__ = scheduler_class(**lowercase_ )
A__ = 1_0
A__ = self.dummy_model()
A__ = self.dummy_sample_deter.half()
scheduler.set_timesteps(lowercase_ )
for i, t in enumerate(scheduler.timesteps ):
A__ = model(lowercase_,lowercase_ )
A__ = scheduler.step(lowercase_,lowercase_,lowercase_ ).prev_sample
assert sample.dtype == torch.floataa
| 7 | 0 |
import time
from contextlib import contextmanager
from pathlib import Path
import pytest
import requests
from huggingface_hub.hf_api import HfApi, HfFolder
__lowerCAmelCase : Optional[Any] ='__DUMMY_TRANSFORMERS_USER__'
__lowerCAmelCase : Dict ='Dummy User'
__lowerCAmelCase : Tuple ='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'
__lowerCAmelCase : str ='https://hub-ci.huggingface.co'
__lowerCAmelCase : List[Any] =CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}'
__lowerCAmelCase : Dict =CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}'
__lowerCAmelCase : Optional[int] =Path('~/.huggingface/hub_ci_token').expanduser()
@pytest.fixture
def _UpperCamelCase ( lowercase__ ):
monkeypatch.setattr(
'''huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE''' , lowercase__ )
@pytest.fixture
def _UpperCamelCase ( lowercase__ ):
monkeypatch.setattr('''datasets.config.HF_ENDPOINT''' , lowercase__ )
monkeypatch.setattr('''datasets.config.HUB_DATASETS_URL''' , lowercase__ )
@pytest.fixture
def _UpperCamelCase ( lowercase__ ):
monkeypatch.setattr('''huggingface_hub.hf_api.HfFolder.path_token''' , lowercase__ )
@pytest.fixture
def _UpperCamelCase ( lowercase__ , lowercase__ ):
HfFolder.save_token(lowercase__ )
yield
HfFolder.delete_token()
@pytest.fixture(scope='''session''' )
def _UpperCamelCase ( ):
return HfApi(endpoint=lowercase__ )
@pytest.fixture(scope='''session''' )
def _UpperCamelCase ( lowercase__ ):
__SCREAMING_SNAKE_CASE : Optional[Any] = HfFolder.get_token()
HfFolder.save_token(lowercase__ )
yield CI_HUB_USER_TOKEN
if previous_token is not None:
HfFolder.save_token(lowercase__ )
@pytest.fixture
def _UpperCamelCase ( lowercase__ ):
def _cleanup_repo(lowercase__ ):
hf_api.delete_repo(lowercase__ , token=lowercase__ , repo_type='''dataset''' )
return _cleanup_repo
@pytest.fixture
def _UpperCamelCase ( lowercase__ ):
@contextmanager
def _temporary_repo(lowercase__ ):
try:
yield repo_id
finally:
cleanup_repo(lowercase__ )
return _temporary_repo
@pytest.fixture(scope='''session''' )
def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ):
__SCREAMING_SNAKE_CASE : Dict = F'''repo_txt_data-{int(time.time() * 10e3 )}'''
__SCREAMING_SNAKE_CASE : Optional[int] = F'''{CI_HUB_USER}/{repo_name}'''
hf_api.create_repo(lowercase__ , token=lowercase__ , repo_type='''dataset''' , private=lowercase__ )
hf_api.upload_file(
token=lowercase__ , path_or_fileobj=str(lowercase__ ) , path_in_repo='''data/text_data.txt''' , repo_id=lowercase__ , repo_type='''dataset''' , )
yield repo_id
try:
hf_api.delete_repo(lowercase__ , token=lowercase__ , repo_type='''dataset''' )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ):
return hf_private_dataset_repo_txt_data_
@pytest.fixture(scope='''session''' )
def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ):
__SCREAMING_SNAKE_CASE : List[Any] = F'''repo_zipped_txt_data-{int(time.time() * 10e3 )}'''
__SCREAMING_SNAKE_CASE : Optional[Any] = F'''{CI_HUB_USER}/{repo_name}'''
hf_api.create_repo(lowercase__ , token=lowercase__ , repo_type='''dataset''' , private=lowercase__ )
hf_api.upload_file(
token=lowercase__ , path_or_fileobj=str(lowercase__ ) , path_in_repo='''data.zip''' , repo_id=lowercase__ , repo_type='''dataset''' , )
yield repo_id
try:
hf_api.delete_repo(lowercase__ , token=lowercase__ , repo_type='''dataset''' )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ):
return hf_private_dataset_repo_zipped_txt_data_
@pytest.fixture(scope='''session''' )
def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ):
__SCREAMING_SNAKE_CASE : Dict = F'''repo_zipped_img_data-{int(time.time() * 10e3 )}'''
__SCREAMING_SNAKE_CASE : List[str] = F'''{CI_HUB_USER}/{repo_name}'''
hf_api.create_repo(lowercase__ , token=lowercase__ , repo_type='''dataset''' , private=lowercase__ )
hf_api.upload_file(
token=lowercase__ , path_or_fileobj=str(lowercase__ ) , path_in_repo='''data.zip''' , repo_id=lowercase__ , repo_type='''dataset''' , )
yield repo_id
try:
hf_api.delete_repo(lowercase__ , token=lowercase__ , repo_type='''dataset''' )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ):
return hf_private_dataset_repo_zipped_img_data_
| 9 |
class A :
"""simple docstring"""
def __init__( self : Any,lowercase_ : Tuple,lowercase_ : Any,lowercase_ : List[str] )-> List[Any]:
'''simple docstring'''
A__ = name
A__ = value
A__ = weight
def __repr__( self : int )-> Tuple:
'''simple docstring'''
return F'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})'
def snake_case__ ( self : Any )-> str:
'''simple docstring'''
return self.value
def snake_case__ ( self : Any )-> Tuple:
'''simple docstring'''
return self.name
def snake_case__ ( self : Any )-> Dict:
'''simple docstring'''
return self.weight
def snake_case__ ( self : Union[str, Any] )-> Optional[Any]:
'''simple docstring'''
return self.value / self.weight
def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]:
'''simple docstring'''
A__ = []
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
menu.append(Things(name[i] , value[i] , weight[i] ) )
return menu
def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Any:
'''simple docstring'''
A__ = sorted(SCREAMING_SNAKE_CASE__ , key=SCREAMING_SNAKE_CASE__ , reverse=SCREAMING_SNAKE_CASE__ )
A__ = []
A__ , A__ = 0.0, 0.0
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
if (total_cost + items_copy[i].get_weight()) <= max_cost:
result.append(items_copy[i] )
total_cost += items_copy[i].get_weight()
total_value += items_copy[i].get_value()
return (result, total_value)
def _snake_case( ) -> Any:
'''simple docstring'''
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 | 0 |
from __future__ import annotations
import unittest
from transformers import RoFormerConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerModel,
)
from transformers.models.roformer.modeling_tf_roformer import (
TFRoFormerSelfAttention,
TFRoFormerSinusoidalPositionalEmbedding,
)
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__(self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict=13 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Any=99 , UpperCAmelCase_ : List[Any]=32 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : Tuple=4 , UpperCAmelCase_ : Any=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[int]=512 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Tuple=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Tuple=None , ) ->Any:
'''simple docstring'''
lowerCamelCase__: Any =parent
lowerCamelCase__: int =13
lowerCamelCase__: List[str] =7
lowerCamelCase__: int =True
lowerCamelCase__: int =True
lowerCamelCase__: Tuple =True
lowerCamelCase__: List[str] =True
lowerCamelCase__: Any =99
lowerCamelCase__: List[Any] =32
lowerCamelCase__: Union[str, Any] =2
lowerCamelCase__: List[str] =4
lowerCamelCase__: Optional[Any] =37
lowerCamelCase__: Any ="gelu"
lowerCamelCase__: int =0.1
lowerCamelCase__: List[str] =0.1
lowerCamelCase__: str =512
lowerCamelCase__: Tuple =16
lowerCamelCase__: Optional[int] =2
lowerCamelCase__: List[Any] =0.02
lowerCamelCase__: str =3
lowerCamelCase__: int =4
lowerCamelCase__: int =None
def SCREAMING_SNAKE_CASE_ (self : Any) ->int:
'''simple docstring'''
lowerCamelCase__: Dict =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowerCamelCase__: Optional[Any] =None
if self.use_input_mask:
lowerCamelCase__: Tuple =random_attention_mask([self.batch_size, self.seq_length])
lowerCamelCase__: Optional[Any] =None
if self.use_token_type_ids:
lowerCamelCase__: Dict =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
lowerCamelCase__: Dict =None
lowerCamelCase__: Optional[Any] =None
lowerCamelCase__: str =None
if self.use_labels:
lowerCamelCase__: Tuple =ids_tensor([self.batch_size] , self.type_sequence_label_size)
lowerCamelCase__: Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
lowerCamelCase__: str =ids_tensor([self.batch_size] , self.num_choices)
lowerCamelCase__: List[Any] =RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any]) ->int:
'''simple docstring'''
lowerCamelCase__: List[Any] =TFRoFormerModel(config=UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] ={"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowerCamelCase__: List[Any] =[input_ids, input_mask]
lowerCamelCase__: Dict =model(UpperCAmelCase_)
lowerCamelCase__: str =model(UpperCAmelCase_)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any]) ->Dict:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =True
lowerCamelCase__: int =TFRoFormerForCausalLM(config=UpperCAmelCase_)
lowerCamelCase__: Optional[int] ={
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
lowerCamelCase__: Any =model(UpperCAmelCase_)["logits"]
self.parent.assertListEqual(
list(prediction_scores.numpy().shape) , [self.batch_size, self.seq_length, self.vocab_size])
def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str]) ->int:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =TFRoFormerForMaskedLM(config=UpperCAmelCase_)
lowerCamelCase__: Tuple ={
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: List[Any] =self.num_labels
lowerCamelCase__: Tuple =TFRoFormerForSequenceClassification(config=UpperCAmelCase_)
lowerCamelCase__: List[Any] ={
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
lowerCamelCase__: Tuple =model(UpperCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int) ->List[str]:
'''simple docstring'''
lowerCamelCase__: Dict =self.num_choices
lowerCamelCase__: List[Any] =TFRoFormerForMultipleChoice(config=UpperCAmelCase_)
lowerCamelCase__: List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase_ , 1) , (1, self.num_choices, 1))
lowerCamelCase__: List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase_ , 1) , (1, self.num_choices, 1))
lowerCamelCase__: int =tf.tile(tf.expand_dims(UpperCAmelCase_ , 1) , (1, self.num_choices, 1))
lowerCamelCase__: List[Any] ={
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
lowerCamelCase__: Tuple =model(UpperCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices))
def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any]) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: List[str] =self.num_labels
lowerCamelCase__: Optional[int] =TFRoFormerForTokenClassification(config=UpperCAmelCase_)
lowerCamelCase__: Dict ={
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : int) ->str:
'''simple docstring'''
lowerCamelCase__: Dict =TFRoFormerForQuestionAnswering(config=UpperCAmelCase_)
lowerCamelCase__: Optional[int] ={
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
lowerCamelCase__: Optional[Any] =model(UpperCAmelCase_)
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def SCREAMING_SNAKE_CASE_ (self : int) ->Tuple:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =self.prepare_config_and_inputs()
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) ,
): int =config_and_inputs
lowerCamelCase__: Optional[Any] ={"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowercase_ = (
(
TFRoFormerModel,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerForMultipleChoice,
)
if is_tf_available()
else ()
)
lowercase_ = (
{
"feature-extraction": TFRoFormerModel,
"fill-mask": TFRoFormerForMaskedLM,
"question-answering": TFRoFormerForQuestionAnswering,
"text-classification": TFRoFormerForSequenceClassification,
"text-generation": TFRoFormerForCausalLM,
"token-classification": TFRoFormerForTokenClassification,
"zero-shot": TFRoFormerForSequenceClassification,
}
if is_tf_available()
else {}
)
lowercase_ = False
lowercase_ = False
def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int) ->str:
'''simple docstring'''
if pipeline_test_casse_name == "TextGenerationPipelineTests":
return True
return False
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->int:
'''simple docstring'''
lowerCamelCase__: int =TFRoFormerModelTester(self)
lowerCamelCase__: Any =ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37)
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any:
'''simple docstring'''
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict:
'''simple docstring'''
lowerCamelCase__: Dict =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: int =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : str) ->List[str]:
'''simple docstring'''
lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head(*UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str:
'''simple docstring'''
lowerCamelCase__: Optional[int] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Any) ->str:
'''simple docstring'''
lowerCamelCase__: int =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Dict:
'''simple docstring'''
lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict:
'''simple docstring'''
lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_)
@slow
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: Dict =TFRoFormerModel.from_pretrained("junnyu/roformer_chinese_base")
self.assertIsNotNone(UpperCAmelCase_)
@require_tf
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@slow
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: List[str] =TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base")
lowerCamelCase__: Union[str, Any] =tf.constant([[0, 1, 2, 3, 4, 5]])
lowerCamelCase__: int =model(UpperCAmelCase_)[0]
# TODO Replace vocab size
lowerCamelCase__: str =50_000
lowerCamelCase__: int =[1, 6, vocab_size]
self.assertEqual(output.shape , UpperCAmelCase_)
print(output[:, :3, :3])
# TODO Replace values below with what was printed above.
lowerCamelCase__: List[Any] =tf.constant(
[
[
[-0.1205_3341, -1.026_4901, 0.2922_1946],
[-1.513_3783, 0.19_7433, 0.1519_0607],
[-5.013_5403, -3.90_0256, -0.8403_8764],
]
])
tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4)
@require_tf
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
lowercase_ = 1E-4
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =tf.constant([[4, 10]])
lowerCamelCase__: Any =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6)
lowerCamelCase__: Dict =emba(input_ids.shape)
lowerCamelCase__: Dict =tf.constant(
[[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]])
tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance)
def SCREAMING_SNAKE_CASE_ (self : str) ->int:
'''simple docstring'''
lowerCamelCase__: Dict =tf.constant(
[
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[0.8415, 0.8219, 0.8020, 0.7819, 0.7617],
[0.9093, 0.9364, 0.9581, 0.9749, 0.9870],
])
lowerCamelCase__: List[str] =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512)
emba([2, 16, 512])
lowerCamelCase__: str =emba.weight[:3, :5]
tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance)
@require_tf
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
lowercase_ = 1E-4
def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: int =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa) , shape=(2, 12, 16, 64)) / 100
lowerCamelCase__: Tuple =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa) , shape=(2, 12, 16, 64)) / 100
lowerCamelCase__: Any =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64)
lowerCamelCase__: int =embed_positions([2, 16, 768])[None, None, :, :]
lowerCamelCase__ , lowerCamelCase__: int =TFRoFormerSelfAttention.apply_rotary_position_embeddings(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Optional[int] =tf.constant(
[
[0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700],
[-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343],
[-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985],
[-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871],
[0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980],
[3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253],
])
lowerCamelCase__: Union[str, Any] =tf.constant(
[
[0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700],
[0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343],
[1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985],
[2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871],
[-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980],
[-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253],
])
tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance)
tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance)
| 10 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json",
}
class A ( _UpperCAmelCase , _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase = 'resnet'
lowerCamelCase = ['basic', 'bottleneck']
def __init__( self : Optional[Any],lowercase_ : int=3,lowercase_ : List[str]=6_4,lowercase_ : int=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8],lowercase_ : Tuple=[3, 4, 6, 3],lowercase_ : Union[str, Any]="bottleneck",lowercase_ : List[str]="relu",lowercase_ : Tuple=False,lowercase_ : List[str]=None,lowercase_ : List[Any]=None,**lowercase_ : str,)-> Optional[Any]:
'''simple docstring'''
super().__init__(**lowercase_ )
if layer_type not in self.layer_types:
raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' )
A__ = num_channels
A__ = embedding_size
A__ = hidden_sizes
A__ = depths
A__ = layer_type
A__ = hidden_act
A__ = downsample_in_first_stage
A__ = ['stem'] + [F'stage{idx}' for idx in range(1,len(lowercase_ ) + 1 )]
A__ , A__ = get_aligned_output_features_output_indices(
out_features=lowercase_,out_indices=lowercase_,stage_names=self.stage_names )
class A ( _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase = version.parse('1.11' )
@property
def snake_case__ ( self : List[Any] )-> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def snake_case__ ( self : Any )-> float:
'''simple docstring'''
return 1E-3
| 7 | 0 |
from __future__ import annotations
import os
from collections.abc import Mapping
lowerCAmelCase__ = tuple[int, int]
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase) -> None:
_A : set[int] = vertices
_A : dict[EdgeT, int] = {
(min(__lowerCamelCase), max(__lowerCamelCase)): weight for edge, weight in edges.items()
}
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> None:
self.vertices.add(edge[0])
self.vertices.add(edge[1])
_A : int = weight
def _lowerCamelCase ( self) -> Graph:
_A : Graph = Graph({min(self.vertices)} , {})
_A : EdgeT
_A : int
_A : EdgeT
_A : int
while len(subgraph.vertices) < len(self.vertices):
_A : Any = max(self.edges.values()) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
_A : int = edge
_A : int = weight
subgraph.add_edge(__lowerCamelCase , __lowerCamelCase)
return subgraph
def _UpperCAmelCase (UpperCamelCase__ : str = "p107_network.txt" ):
_A : str = os.path.abspath(os.path.dirname(UpperCamelCase__ ) )
_A : str = os.path.join(UpperCamelCase__ , UpperCamelCase__ )
_A : dict[EdgeT, int] = {}
_A : list[str]
_A : int
_A : int
with open(UpperCamelCase__ ) as f:
_A : Dict = f.read().strip().split("\n" )
_A : List[str] = [line.split("," ) for line in data]
for edgea in range(1 , len(UpperCamelCase__ ) ):
for edgea in range(UpperCamelCase__ ):
if adjaceny_matrix[edgea][edgea] != "-":
_A : List[Any] = int(adjaceny_matrix[edgea][edgea] )
_A : Graph = Graph(set(range(len(UpperCamelCase__ ) ) ) , UpperCamelCase__ )
_A : Graph = graph.prims_algorithm()
_A : int = sum(graph.edges.values() )
_A : int = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(f"{solution() = }")
| 11 |
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"t5-small": "https://huggingface.co/t5-small/resolve/main/config.json",
"t5-base": "https://huggingface.co/t5-base/resolve/main/config.json",
"t5-large": "https://huggingface.co/t5-large/resolve/main/config.json",
"t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json",
"t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json",
}
class A ( _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase = 't5'
lowerCamelCase = ['past_key_values']
lowerCamelCase = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'}
def __init__( self : Union[str, Any],lowercase_ : int=3_2_1_2_8,lowercase_ : int=5_1_2,lowercase_ : List[str]=6_4,lowercase_ : Tuple=2_0_4_8,lowercase_ : Any=6,lowercase_ : List[str]=None,lowercase_ : Union[str, Any]=8,lowercase_ : int=3_2,lowercase_ : Dict=1_2_8,lowercase_ : Optional[int]=0.1,lowercase_ : List[str]=1E-6,lowercase_ : Tuple=1.0,lowercase_ : Any="relu",lowercase_ : Union[str, Any]=True,lowercase_ : Optional[Any]=True,lowercase_ : int=0,lowercase_ : str=1,**lowercase_ : str,)-> Any:
'''simple docstring'''
A__ = vocab_size
A__ = d_model
A__ = d_kv
A__ = d_ff
A__ = num_layers
A__ = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
A__ = num_heads
A__ = relative_attention_num_buckets
A__ = relative_attention_max_distance
A__ = dropout_rate
A__ = layer_norm_epsilon
A__ = initializer_factor
A__ = feed_forward_proj
A__ = use_cache
A__ = self.feed_forward_proj.split('-' )
A__ = act_info[-1]
A__ = act_info[0] == 'gated'
if len(lowercase_ ) > 1 and act_info[0] != "gated" or len(lowercase_ ) > 2:
raise ValueError(
F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.'
'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '
'\'gated-gelu\' or \'relu\'' )
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
A__ = 'gelu_new'
super().__init__(
pad_token_id=lowercase_,eos_token_id=lowercase_,is_encoder_decoder=lowercase_,**lowercase_,)
class A ( _UpperCAmelCase ):
"""simple docstring"""
@property
def snake_case__ ( self : Tuple )-> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
A__ = {
'input_ids': {0: 'batch', 1: 'encoder_sequence'},
'attention_mask': {0: 'batch', 1: 'encoder_sequence'},
}
if self.use_past:
A__ = 'past_encoder_sequence + sequence'
A__ = {0: 'batch'}
A__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'}
else:
A__ = {0: 'batch', 1: 'decoder_sequence'}
A__ = {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(lowercase_,direction='inputs' )
return common_inputs
@property
def snake_case__ ( self : Any )-> int:
'''simple docstring'''
return 1_3
| 7 | 0 |
from __future__ import annotations
from math import pi
# Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of
# Pi and the function
UpperCAmelCase_ = 1.054_571_817E-34 # unit of ℏ : J * s
UpperCAmelCase_ = 3E8 # unit of c : m * s^-1
def lowerCamelCase__ ( A__ : float , A__ : float , A__ : float ):
'''simple docstring'''
if (force, area, distance).count(0 ) != 1:
raise ValueError("""One and only one argument must be 0""" )
if force < 0:
raise ValueError("""Magnitude of force can not be negative""" )
if distance < 0:
raise ValueError("""Distance can not be negative""" )
if area < 0:
raise ValueError("""Area can not be negative""" )
if force == 0:
__lowerCamelCase = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (
240 * (distance) ** 4
)
return {"force": force}
elif area == 0:
__lowerCamelCase = (240 * force * (distance) ** 4) / (
REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2
)
return {"area": area}
elif distance == 0:
__lowerCamelCase = (
(REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force)
) ** (1 / 4)
return {"distance": distance}
raise ValueError("""One and only one argument must be 0""" )
# Run doctest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 |
def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]:
'''simple docstring'''
global f # a global dp table for knapsack
if f[i][j] < 0:
if j < wt[i - 1]:
A__ = mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
A__ = max(
mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , j - wt[i - 1] ) + val[i - 1] , )
A__ = val
return f[i][j]
def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Tuple:
'''simple docstring'''
A__ = [[0] * (w + 1) for _ in range(n + 1 )]
for i in range(1 , n + 1 ):
for w_ in range(1 , w + 1 ):
if wt[i - 1] <= w_:
A__ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] )
else:
A__ = dp[i - 1][w_]
return dp[n][w_], dp
def _snake_case( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : list ) -> Union[str, Any]:
'''simple docstring'''
if not (isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) )):
raise ValueError(
'Both the weights and values vectors must be either lists or tuples' )
A__ = len(SCREAMING_SNAKE_CASE__ )
if num_items != len(SCREAMING_SNAKE_CASE__ ):
A__ = (
'The number of weights must be the same as the number of values.\n'
f'But got {num_items} weights and {len(SCREAMING_SNAKE_CASE__ )} values'
)
raise ValueError(SCREAMING_SNAKE_CASE__ )
for i in range(SCREAMING_SNAKE_CASE__ ):
if not isinstance(wt[i] , SCREAMING_SNAKE_CASE__ ):
A__ = (
'All weights must be integers but got weight of '
f'type {type(wt[i] )} at index {i}'
)
raise TypeError(SCREAMING_SNAKE_CASE__ )
A__ , A__ = knapsack(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A__ = set()
_construct_solution(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return optimal_val, example_optional_set
def _snake_case( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : set ) -> Optional[int]:
'''simple docstring'''
if i > 0 and j > 0:
if dp[i - 1][j] == dp[i][j]:
_construct_solution(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
optimal_set.add(SCREAMING_SNAKE_CASE__ )
_construct_solution(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , i - 1 , j - wt[i - 1] , SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
lowercase_ = [3, 2, 4, 4]
lowercase_ = [4, 3, 2, 3]
lowercase_ = 4
lowercase_ = 6
lowercase_ = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)]
lowercase_ , lowercase_ = knapsack(w, wt, val, n)
print(optimal_solution)
print(mf_knapsack(n, wt, val, w)) # switched the n and w
# testing the dynamic programming problem with example
# the optimal subset for the above example are items 3 and 4
lowercase_ , lowercase_ = knapsack_with_example_solution(w, wt, val)
assert optimal_solution == 8
assert optimal_subset == {3, 4}
print("optimal_value = ", optimal_solution)
print("An optimal subset corresponding to the optimal value", optimal_subset)
| 7 | 0 |
import copy
import os
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence
from datasets.features import ArrayaD, ClassLabel, Features, Image, Value
from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects
from datasets.keyhash import DuplicatedKeysError, InvalidKeyError
from .utils import require_pil
class __lowercase ( UpperCAmelCase_ ):
"""simple docstring"""
def _SCREAMING_SNAKE_CASE ( self : int):
SCREAMING_SNAKE_CASE_: Optional[Any] = pa.array(TypedSequence([1, 2, 3]))
self.assertEqual(arr.type , pa.intaa())
def _SCREAMING_SNAKE_CASE ( self : str):
with self.assertRaises(lowerCAmelCase__):
SCREAMING_SNAKE_CASE_: Optional[int] = pa.array(TypedSequence([1, 2, 3]) , type=pa.intaa())
def _SCREAMING_SNAKE_CASE ( self : Dict):
with self.assertRaises(lowerCAmelCase__):
SCREAMING_SNAKE_CASE_: Dict = pa.array(TypedSequence([1, 2, 3] , try_type=Value("bool") , type=Value("int64")))
def _SCREAMING_SNAKE_CASE ( self : str):
SCREAMING_SNAKE_CASE_: Dict = pa.array(TypedSequence([1, 2, 3] , type=Value("int32")))
self.assertEqual(arr.type , pa.intaa())
def _SCREAMING_SNAKE_CASE ( self : str):
with self.assertRaises((TypeError, pa.lib.ArrowInvalid)):
SCREAMING_SNAKE_CASE_: List[str] = pa.array(TypedSequence(["foo", "bar"] , type=Value("int64")))
def _SCREAMING_SNAKE_CASE ( self : List[str]):
SCREAMING_SNAKE_CASE_: Optional[int] = pa.array(TypedSequence([1, 2, 3] , try_type=Value("int32")))
self.assertEqual(arr.type , pa.intaa())
def _SCREAMING_SNAKE_CASE ( self : Optional[int]):
SCREAMING_SNAKE_CASE_: Dict = pa.array(TypedSequence(["foo", "bar"] , try_type=Value("int64")))
self.assertEqual(arr.type , pa.string())
def _SCREAMING_SNAKE_CASE ( self : str):
SCREAMING_SNAKE_CASE_: int = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , "int64")))
self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64"))
def _SCREAMING_SNAKE_CASE ( self : str):
with self.assertRaises((TypeError, pa.lib.ArrowInvalid)):
SCREAMING_SNAKE_CASE_: List[str] = pa.array(TypedSequence(["foo", "bar"] , type=ArrayaD((1, 3) , "int64")))
def _SCREAMING_SNAKE_CASE ( self : Any):
SCREAMING_SNAKE_CASE_: Optional[int] = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , "int64")))
self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64"))
def _SCREAMING_SNAKE_CASE ( self : Any):
SCREAMING_SNAKE_CASE_: List[Any] = pa.array(TypedSequence(["foo", "bar"] , try_type=ArrayaD((1, 3) , "int64")))
self.assertEqual(arr.type , pa.string())
@require_pil
def _SCREAMING_SNAKE_CASE ( self : str):
import PIL.Image
SCREAMING_SNAKE_CASE_: Tuple = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta).reshape(2 , 5))
with patch(
"datasets.arrow_writer.cast_to_python_objects" , side_effect=lowerCAmelCase__) as mock_cast_to_python_objects:
SCREAMING_SNAKE_CASE_: Tuple = pa.array(TypedSequence([{"path": None, "bytes": b"image_bytes"}, pil_image] , type=Image()))
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = mock_cast_to_python_objects.call_args_list[-1]
self.assertIn("optimize_list_casting" , lowerCAmelCase__)
self.assertFalse(kwargs["optimize_list_casting"])
def A_ ( _UpperCAmelCase , _UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: Dict = pa.BufferReader(_UpperCAmelCase ) if isinstance(_UpperCAmelCase , pa.Buffer ) else pa.memory_map(_UpperCAmelCase )
SCREAMING_SNAKE_CASE_: Optional[int] = pa.ipc.open_stream(_UpperCAmelCase )
SCREAMING_SNAKE_CASE_: pa.Table = f.read_all()
assert len(pa_table.to_batches() ) == expected_num_chunks
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
del pa_table
@pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] )
@pytest.mark.parametrize(
"fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] )
def A_ ( _UpperCAmelCase , _UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: Optional[int] = pa.BufferOutputStream()
SCREAMING_SNAKE_CASE_: Optional[Any] = pa.schema(_UpperCAmelCase ) if fields else None
with ArrowWriter(stream=_UpperCAmelCase , schema=_UpperCAmelCase , writer_batch_size=_UpperCAmelCase ) as writer:
writer.write({"col_1": "foo", "col_2": 1} )
writer.write({"col_1": "bar", "col_2": 2} )
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
SCREAMING_SNAKE_CASE_: str = {"col_1": pa.string(), "col_2": pa.intaa()}
assert writer._schema == pa.schema(_UpperCAmelCase , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def A_ ( ):
SCREAMING_SNAKE_CASE_: Optional[Any] = pa.BufferOutputStream()
SCREAMING_SNAKE_CASE_: int = Features({"labels": ClassLabel(names=["neg", "pos"] )} )
with ArrowWriter(stream=_UpperCAmelCase , features=_UpperCAmelCase ) as writer:
writer.write({"labels": 0} )
writer.write({"labels": 1} )
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == features.arrow_schema
assert writer._schema.metadata == features.arrow_schema.metadata
SCREAMING_SNAKE_CASE_: Any = pa.BufferReader(output.getvalue() )
SCREAMING_SNAKE_CASE_: Optional[int] = pa.ipc.open_stream(_UpperCAmelCase )
SCREAMING_SNAKE_CASE_: pa.Table = f.read_all()
SCREAMING_SNAKE_CASE_: str = pa_table.schema
assert pa_table.num_rows == 2
assert schema == features.arrow_schema
assert schema.metadata == features.arrow_schema.metadata
assert features == Features.from_arrow_schema(_UpperCAmelCase )
@pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] )
def A_ ( _UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: str = pa.BufferOutputStream()
with ArrowWriter(
stream=_UpperCAmelCase , writer_batch_size=_UpperCAmelCase , hash_salt="split_name" , check_duplicates=_UpperCAmelCase , ) as writer:
with pytest.raises(_UpperCAmelCase ):
writer.write({"col_1": "foo", "col_2": 1} , key=[1, 2] )
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = writer.finalize()
@pytest.mark.parametrize("writer_batch_size" , [None, 2, 10] )
def A_ ( _UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: Tuple = pa.BufferOutputStream()
with ArrowWriter(
stream=_UpperCAmelCase , writer_batch_size=_UpperCAmelCase , hash_salt="split_name" , check_duplicates=_UpperCAmelCase , ) as writer:
with pytest.raises(_UpperCAmelCase ):
writer.write({"col_1": "foo", "col_2": 1} , key=10 )
writer.write({"col_1": "bar", "col_2": 2} , key=10 )
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = writer.finalize()
@pytest.mark.parametrize("writer_batch_size" , [None, 2, 10] )
def A_ ( _UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: int = pa.BufferOutputStream()
with ArrowWriter(
stream=_UpperCAmelCase , writer_batch_size=_UpperCAmelCase , hash_salt="split_name" , check_duplicates=_UpperCAmelCase , ) as writer:
writer.write({"col_1": "foo", "col_2": 1} , key=1 )
writer.write({"col_1": "bar", "col_2": 2} , key=2 )
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] )
@pytest.mark.parametrize(
"fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] )
def A_ ( _UpperCAmelCase , _UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: Tuple = pa.BufferOutputStream()
SCREAMING_SNAKE_CASE_: List[Any] = pa.schema(_UpperCAmelCase ) if fields else None
with ArrowWriter(stream=_UpperCAmelCase , schema=_UpperCAmelCase , writer_batch_size=_UpperCAmelCase ) as writer:
writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} )
writer.write_batch({"col_1": [], "col_2": []} )
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
SCREAMING_SNAKE_CASE_: List[str] = {"col_1": pa.string(), "col_2": pa.intaa()}
assert writer._schema == pa.schema(_UpperCAmelCase , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] )
@pytest.mark.parametrize(
"fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] )
def A_ ( _UpperCAmelCase , _UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: Any = pa.BufferOutputStream()
SCREAMING_SNAKE_CASE_: str = pa.schema(_UpperCAmelCase ) if fields else None
with ArrowWriter(stream=_UpperCAmelCase , schema=_UpperCAmelCase , writer_batch_size=_UpperCAmelCase ) as writer:
writer.write_table(pa.Table.from_pydict({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) )
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
SCREAMING_SNAKE_CASE_: Dict = {"col_1": pa.string(), "col_2": pa.intaa()}
assert writer._schema == pa.schema(_UpperCAmelCase , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] )
@pytest.mark.parametrize(
"fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] )
def A_ ( _UpperCAmelCase , _UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: Tuple = pa.BufferOutputStream()
SCREAMING_SNAKE_CASE_: Any = pa.schema(_UpperCAmelCase ) if fields else None
with ArrowWriter(stream=_UpperCAmelCase , schema=_UpperCAmelCase , writer_batch_size=_UpperCAmelCase ) as writer:
writer.write_row(pa.Table.from_pydict({"col_1": ["foo"], "col_2": [1]} ) )
writer.write_row(pa.Table.from_pydict({"col_1": ["bar"], "col_2": [2]} ) )
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
SCREAMING_SNAKE_CASE_: List[str] = {"col_1": pa.string(), "col_2": pa.intaa()}
assert writer._schema == pa.schema(_UpperCAmelCase , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def A_ ( ):
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE_: Optional[int] = {"col_1": pa.string(), "col_2": pa.intaa()}
SCREAMING_SNAKE_CASE_: Any = os.path.join(_UpperCAmelCase , "test.arrow" )
with ArrowWriter(path=_UpperCAmelCase , schema=pa.schema(_UpperCAmelCase ) ) as writer:
writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} )
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == pa.schema(_UpperCAmelCase , metadata=writer._schema.metadata )
_check_output(_UpperCAmelCase , 1 )
def A_ ( _UpperCAmelCase ):
if pa.types.is_list(_UpperCAmelCase ):
return get_base_dtype(arr_type.value_type )
else:
return arr_type
def A_ ( _UpperCAmelCase , _UpperCAmelCase ):
if isinstance(lst[0] , _UpperCAmelCase ):
change_first_primitive_element_in_list(lst[0] , _UpperCAmelCase )
else:
SCREAMING_SNAKE_CASE_: Optional[int] = value
@pytest.mark.parametrize("optimized_int_type, expected_dtype" , [(None, pa.intaa()), (Value("int32" ), pa.intaa())] )
@pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: Tuple = pa.array(TypedSequence(_UpperCAmelCase , optimized_int_type=_UpperCAmelCase ) )
assert get_base_dtype(arr.type ) == expected_dtype
@pytest.mark.parametrize(
"col, expected_dtype" , [
("attention_mask", pa.inta()),
("special_tokens_mask", pa.inta()),
("token_type_ids", pa.inta()),
("input_ids", pa.intaa()),
("other", pa.intaa()),
] , )
@pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
# in range
SCREAMING_SNAKE_CASE_: List[str] = pa.array(OptimizedTypedSequence(_UpperCAmelCase , col=_UpperCAmelCase ) )
assert get_base_dtype(arr.type ) == expected_dtype
# not in range
if col != "other":
# avoids errors due to in-place modifications
SCREAMING_SNAKE_CASE_: Optional[int] = copy.deepcopy(_UpperCAmelCase )
SCREAMING_SNAKE_CASE_: str = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1
change_first_primitive_element_in_list(_UpperCAmelCase , _UpperCAmelCase )
SCREAMING_SNAKE_CASE_: int = pa.array(OptimizedTypedSequence(_UpperCAmelCase , col=_UpperCAmelCase ) )
assert get_base_dtype(arr.type ) == pa.intaa()
@pytest.mark.parametrize("raise_exception" , [False, True] )
def A_ ( _UpperCAmelCase , _UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: Any = str(tmp_path / "dataset-train.arrow" )
try:
with ArrowWriter(path=_UpperCAmelCase ) as writer:
if raise_exception:
raise pa.lib.ArrowInvalid()
else:
writer.stream.close()
except pa.lib.ArrowInvalid:
pass
finally:
assert writer.stream.closed
def A_ ( _UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: str = "mock://dataset-train.arrow"
with ArrowWriter(path=_UpperCAmelCase , storage_options=mockfs.storage_options ) as writer:
assert isinstance(writer._fs , type(_UpperCAmelCase ) )
assert writer._fs.storage_options == mockfs.storage_options
writer.write({"col_1": "foo", "col_2": 1} )
writer.write({"col_1": "bar", "col_2": 2} )
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert mockfs.exists(_UpperCAmelCase )
def A_ ( ):
SCREAMING_SNAKE_CASE_: List[str] = pa.BufferOutputStream()
with ParquetWriter(stream=_UpperCAmelCase ) as writer:
writer.write({"col_1": "foo", "col_2": 1} )
writer.write({"col_1": "bar", "col_2": 2} )
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
SCREAMING_SNAKE_CASE_: int = pa.BufferReader(output.getvalue() )
SCREAMING_SNAKE_CASE_: pa.Table = pq.read_table(_UpperCAmelCase )
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
@require_pil
@pytest.mark.parametrize("embed_local_files" , [False, True] )
def A_ ( _UpperCAmelCase , _UpperCAmelCase ):
import PIL.Image
SCREAMING_SNAKE_CASE_: Any = str(tmp_path / "test_image_rgb.jpg" )
PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(_UpperCAmelCase , format="png" )
SCREAMING_SNAKE_CASE_: Any = pa.BufferOutputStream()
with ParquetWriter(
stream=_UpperCAmelCase , features=Features({"image": Image()} ) , embed_local_files=_UpperCAmelCase ) as writer:
writer.write({"image": image_path} )
writer.finalize()
SCREAMING_SNAKE_CASE_: Union[str, Any] = pa.BufferReader(output.getvalue() )
SCREAMING_SNAKE_CASE_: pa.Table = pq.read_table(_UpperCAmelCase )
SCREAMING_SNAKE_CASE_: int = pa_table.to_pydict()
if embed_local_files:
assert isinstance(out["image"][0]["path"] , _UpperCAmelCase )
with open(_UpperCAmelCase , "rb" ) as f:
assert out["image"][0]["bytes"] == f.read()
else:
assert out["image"][0]["path"] == image_path
assert out["image"][0]["bytes"] is None
def A_ ( ):
SCREAMING_SNAKE_CASE_: Dict = pa.schema([pa.field("col_1" , pa.string() , nullable=_UpperCAmelCase )] )
SCREAMING_SNAKE_CASE_: int = pa.BufferOutputStream()
with ArrowWriter(stream=_UpperCAmelCase ) as writer:
writer._build_writer(inferred_schema=_UpperCAmelCase )
assert writer._schema == pa.schema([pa.field("col_1" , pa.string() )] )
| 13 |
import unittest
from transformers import AlbertTokenizer, AlbertTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
lowercase_ = get_tests_dir("fixtures/spiece.model")
@require_sentencepiece
@require_tokenizers
class A ( _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = AlbertTokenizer
lowerCamelCase = AlbertTokenizerFast
lowerCamelCase = True
lowerCamelCase = True
lowerCamelCase = True
def snake_case__ ( self : Dict )-> Any:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
A__ = AlbertTokenizer(lowercase_ )
tokenizer.save_pretrained(self.tmpdirname )
def snake_case__ ( self : List[str],lowercase_ : str )-> Any:
'''simple docstring'''
A__ = 'this is a test'
A__ = 'this is a test'
return input_text, output_text
def snake_case__ ( self : List[Any] )-> Optional[int]:
'''simple docstring'''
A__ = '<pad>'
A__ = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ),lowercase_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ),lowercase_ )
def snake_case__ ( self : List[str] )-> str:
'''simple docstring'''
A__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0],'<pad>' )
self.assertEqual(vocab_keys[1],'<unk>' )
self.assertEqual(vocab_keys[-1],'▁eloquent' )
self.assertEqual(len(lowercase_ ),3_0_0_0_0 )
def snake_case__ ( self : int )-> List[Any]:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size,3_0_0_0_0 )
def snake_case__ ( self : Union[str, Any] )-> List[Any]:
'''simple docstring'''
if not self.test_rust_tokenizer:
return
A__ = self.get_tokenizer()
A__ = self.get_rust_tokenizer()
A__ = 'I was born in 92000, and this is falsé.'
A__ = tokenizer.tokenize(lowercase_ )
A__ = rust_tokenizer.tokenize(lowercase_ )
self.assertListEqual(lowercase_,lowercase_ )
A__ = tokenizer.encode(lowercase_,add_special_tokens=lowercase_ )
A__ = rust_tokenizer.encode(lowercase_,add_special_tokens=lowercase_ )
self.assertListEqual(lowercase_,lowercase_ )
A__ = self.get_rust_tokenizer()
A__ = tokenizer.encode(lowercase_ )
A__ = rust_tokenizer.encode(lowercase_ )
self.assertListEqual(lowercase_,lowercase_ )
def snake_case__ ( self : int )-> int:
'''simple docstring'''
A__ = AlbertTokenizer(lowercase_,keep_accents=lowercase_ )
A__ = tokenizer.tokenize('This is a test' )
self.assertListEqual(lowercase_,['▁this', '▁is', '▁a', '▁test'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ),[4_8, 2_5, 2_1, 1_2_8_9] )
A__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
lowercase_,['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.'] )
A__ = tokenizer.convert_tokens_to_ids(lowercase_ )
self.assertListEqual(lowercase_,[3_1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] )
A__ = tokenizer.convert_ids_to_tokens(lowercase_ )
self.assertListEqual(
lowercase_,['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.'],)
def snake_case__ ( self : Union[str, Any] )-> str:
'''simple docstring'''
A__ = AlbertTokenizer(lowercase_ )
A__ = tokenizer.encode('sequence builders' )
A__ = tokenizer.encode('multi-sequence build' )
A__ = tokenizer.build_inputs_with_special_tokens(lowercase_ )
A__ = tokenizer.build_inputs_with_special_tokens(lowercase_,lowercase_ )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
@slow
def snake_case__ ( self : Any )-> Tuple:
'''simple docstring'''
A__ = {'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 2_1_9_7_0, 1_3, 5, 6_0_9_2, 1_6_7, 2_8, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 7_0_2_8, 1_2_0_5_1, 1_8, 1_7, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 3_5_1_5, 1_8_6_8_4, 8, 4_4_6_1, 6, 1_9_2_7, 2_9_7, 8, 1_2_0_6_0, 2_6_0_7, 1_8, 1_3, 5, 4_4_6_1, 1_5, 1_0_5_3_8, 3_8, 8, 1_3_5, 1_5, 8_2_2, 5_8, 1_5, 9_9_3, 1_0_3_6_3, 1_5, 1_4_6_0, 8_0_0_5, 4_4_6_1, 1_5, 9_9_3, 2_5_5, 2_3_2_8, 9, 9, 9, 6, 2_6, 1_1_1_2, 8_1_6, 3_2_6_0, 1_3, 5, 1_0_3, 2_3_7_7, 6, 1_7, 1_1_1_2, 8_1_6, 2_7_8_2, 1_3, 5, 1_0_3, 1_0_6_4_1, 6, 2_9, 8_4, 2_5_1_2, 2_4_3_0, 7_8_2, 1_8_6_8_4, 2_7_6_1, 1_9, 8_0_8, 2_4_3_0, 2_5_5_6, 1_7, 8_5_5, 1_4_8_0, 9_4_7_7, 4_0_9_1, 1_2_8, 1_1_7_1_2, 1_5, 7_1_0_3, 2_1_5_3, 6_7_3, 1_7, 2_4_8_8_3, 9_9_9_0, 9, 3], [2, 1_1_5_0_2, 2_5, 1_0_0_6, 2_0, 7_8_2, 8, 1_1_8_0_9, 8_5_5, 1_7_3_2, 1_9_3_9_3, 1_8_6_6_7, 3_7, 3_6_7, 2_1_0_1_8, 6_9, 1_8_5_4, 3_4, 1_1_8_6_0, 1_9_1_2_4, 2_7, 1_5_6, 2_2_5, 1_7, 1_9_3, 4_1_4_1, 1_9, 6_5, 9_1_2_4, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 1_4, 2_2_3_1, 8_8_6, 2_3_8_5, 1_7_6_5_9, 8_4, 1_4, 1_6_7_9_2, 1_9_5_2, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowercase_,model_name='albert-base-v2',revision='6b6560eaf5ff2e250b00c50f380c5389a9c2d82e',)
| 7 | 0 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
BertTokenizer,
ViltConfig,
ViltForImageAndTextRetrieval,
ViltForImagesAndTextClassification,
ViltForMaskedLM,
ViltForQuestionAnswering,
ViltImageProcessor,
ViltProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase : int = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=False , lowercase_=False , lowercase_=False ) -> Optional[Any]:
"""simple docstring"""
A__ = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"""transformer.blocks.{i}.norm1.weight""", f"""vilt.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((f"""transformer.blocks.{i}.norm1.bias""", f"""vilt.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append(
(f"""transformer.blocks.{i}.attn.proj.weight""", f"""vilt.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append(
(f"""transformer.blocks.{i}.attn.proj.bias""", f"""vilt.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((f"""transformer.blocks.{i}.norm2.weight""", f"""vilt.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((f"""transformer.blocks.{i}.norm2.bias""", f"""vilt.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append(
(f"""transformer.blocks.{i}.mlp.fc1.weight""", f"""vilt.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((f"""transformer.blocks.{i}.mlp.fc1.bias""", f"""vilt.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((f"""transformer.blocks.{i}.mlp.fc2.weight""", f"""vilt.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((f"""transformer.blocks.{i}.mlp.fc2.bias""", f"""vilt.encoder.layer.{i}.output.dense.bias""") )
# embeddings
rename_keys.extend(
[
# text embeddings
('''text_embeddings.word_embeddings.weight''', '''vilt.embeddings.text_embeddings.word_embeddings.weight'''),
(
'''text_embeddings.position_embeddings.weight''',
'''vilt.embeddings.text_embeddings.position_embeddings.weight''',
),
('''text_embeddings.position_ids''', '''vilt.embeddings.text_embeddings.position_ids'''),
(
'''text_embeddings.token_type_embeddings.weight''',
'''vilt.embeddings.text_embeddings.token_type_embeddings.weight''',
),
('''text_embeddings.LayerNorm.weight''', '''vilt.embeddings.text_embeddings.LayerNorm.weight'''),
('''text_embeddings.LayerNorm.bias''', '''vilt.embeddings.text_embeddings.LayerNorm.bias'''),
# patch embeddings
('''transformer.cls_token''', '''vilt.embeddings.cls_token'''),
('''transformer.patch_embed.proj.weight''', '''vilt.embeddings.patch_embeddings.projection.weight'''),
('''transformer.patch_embed.proj.bias''', '''vilt.embeddings.patch_embeddings.projection.bias'''),
('''transformer.pos_embed''', '''vilt.embeddings.position_embeddings'''),
# token type embeddings
('''token_type_embeddings.weight''', '''vilt.embeddings.token_type_embeddings.weight'''),
] )
# final layernorm + pooler
rename_keys.extend(
[
('''transformer.norm.weight''', '''vilt.layernorm.weight'''),
('''transformer.norm.bias''', '''vilt.layernorm.bias'''),
('''pooler.dense.weight''', '''vilt.pooler.dense.weight'''),
('''pooler.dense.bias''', '''vilt.pooler.dense.bias'''),
] )
# classifier head(s)
if vqa_model:
# classification head
rename_keys.extend(
[
('''vqa_classifier.0.weight''', '''classifier.0.weight'''),
('''vqa_classifier.0.bias''', '''classifier.0.bias'''),
('''vqa_classifier.1.weight''', '''classifier.1.weight'''),
('''vqa_classifier.1.bias''', '''classifier.1.bias'''),
('''vqa_classifier.3.weight''', '''classifier.3.weight'''),
('''vqa_classifier.3.bias''', '''classifier.3.bias'''),
] )
elif nlvr_model:
# classification head
rename_keys.extend(
[
('''nlvr2_classifier.0.weight''', '''classifier.0.weight'''),
('''nlvr2_classifier.0.bias''', '''classifier.0.bias'''),
('''nlvr2_classifier.1.weight''', '''classifier.1.weight'''),
('''nlvr2_classifier.1.bias''', '''classifier.1.bias'''),
('''nlvr2_classifier.3.weight''', '''classifier.3.weight'''),
('''nlvr2_classifier.3.bias''', '''classifier.3.bias'''),
] )
else:
pass
return rename_keys
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
A__ = '''vilt.'''
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
A__ = state_dict.pop(f"""transformer.blocks.{i}.attn.qkv.weight""" )
A__ = state_dict.pop(f"""transformer.blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
A__ = in_proj_weight[
: config.hidden_size, :
]
A__ = in_proj_bias[: config.hidden_size]
A__ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
A__ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
A__ = in_proj_weight[
-config.hidden_size :, :
]
A__ = in_proj_bias[-config.hidden_size :]
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[int]:
"""simple docstring"""
A__ = ['''head.weight''', '''head.bias''']
for k in ignore_keys:
state_dict.pop(lowercase_ , lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
A__ = dct.pop(lowercase_ )
A__ = val
@torch.no_grad()
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]:
"""simple docstring"""
A__ = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=lowercase_ )
A__ = False
A__ = False
A__ = False
A__ = False
if "vqa" in checkpoint_url:
A__ = True
A__ = 3_129
A__ = '''huggingface/label-files'''
A__ = '''vqa2-id2label.json'''
A__ = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) )
A__ = {int(lowercase_ ): v for k, v in idalabel.items()}
A__ = idalabel
A__ = {v: k for k, v in idalabel.items()}
A__ = ViltForQuestionAnswering(lowercase_ )
elif "nlvr" in checkpoint_url:
A__ = True
A__ = 2
A__ = {0: '''False''', 1: '''True'''}
A__ = {v: k for k, v in config.idalabel.items()}
A__ = 3
A__ = ViltForImagesAndTextClassification(lowercase_ )
elif "irtr" in checkpoint_url:
A__ = True
A__ = ViltForImageAndTextRetrieval(lowercase_ )
elif "mlm_itm" in checkpoint_url:
A__ = True
A__ = ViltForMaskedLM(lowercase_ )
else:
raise ValueError('''Unknown model type''' )
# load state_dict of original model, remove and rename some keys
A__ = torch.hub.load_state_dict_from_url(lowercase_ , map_location='''cpu''' )['''state_dict''']
A__ = create_rename_keys(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
for src, dest in rename_keys:
rename_key(lowercase_ , lowercase_ , lowercase_ )
read_in_q_k_v(lowercase_ , lowercase_ )
if mlm_model or irtr_model:
A__ = ['''itm_score.fc.weight''', '''itm_score.fc.bias''']
for k in ignore_keys:
state_dict.pop(lowercase_ , lowercase_ )
# load state dict into HuggingFace model
model.eval()
if mlm_model:
A__ , A__ = model.load_state_dict(lowercase_ , strict=lowercase_ )
assert missing_keys == ["mlm_score.decoder.bias"]
else:
model.load_state_dict(lowercase_ )
# Define processor
A__ = ViltImageProcessor(size=384 )
A__ = BertTokenizer.from_pretrained('''bert-base-uncased''' )
A__ = ViltProcessor(lowercase_ , lowercase_ )
# Forward pass on example inputs (image + text)
if nlvr_model:
A__ = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=lowercase_ ).raw )
A__ = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=lowercase_ ).raw )
A__ = (
'''The left image contains twice the number of dogs as the right image, and at least two dogs in total are'''
''' standing.'''
)
A__ = processor(lowercase_ , lowercase_ , return_tensors='''pt''' )
A__ = processor(lowercase_ , lowercase_ , return_tensors='''pt''' )
A__ = model(
input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , )
else:
A__ = Image.open(requests.get('''http://images.cocodataset.org/val2017/000000039769.jpg''' , stream=lowercase_ ).raw )
if mlm_model:
A__ = '''a bunch of [MASK] laying on a [MASK].'''
else:
A__ = '''How many cats are there?'''
A__ = processor(lowercase_ , lowercase_ , return_tensors='''pt''' )
A__ = model(**lowercase_ )
# Verify outputs
if mlm_model:
A__ = torch.Size([1, 11, 30_522] )
A__ = torch.tensor([-12.50_61, -12.51_23, -12.51_74] )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , lowercase_ , atol=1E-4 )
# verify masked token prediction equals "cats"
A__ = outputs.logits[0, 4, :].argmax(-1 ).item()
assert tokenizer.decode([predicted_id] ) == "cats"
elif vqa_model:
A__ = torch.Size([1, 3_129] )
A__ = torch.tensor([-15.94_95, -18.14_72, -10.30_41] )
assert torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4 )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , lowercase_ , atol=1E-4 )
# verify vqa prediction equals "2"
A__ = outputs.logits.argmax(-1 ).item()
assert model.config.idalabel[predicted_idx] == "2"
elif nlvr_model:
A__ = torch.Size([1, 2] )
A__ = torch.tensor([-2.87_21, 2.12_91] )
assert torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4 )
assert outputs.logits.shape == expected_shape
Path(lowercase_ ).mkdir(exist_ok=lowercase_ )
print(f"""Saving model and processor to {pytorch_dump_folder_path}""" )
model.save_pretrained(lowercase_ )
processor.save_pretrained(lowercase_ )
if __name__ == "__main__":
_lowerCamelCase : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint_url""",
default="""https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt""",
type=str,
help="""URL of the checkpoint you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
_lowerCamelCase : Optional[Any] = parser.parse_args()
convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 14 |
from typing import Dict
from .base import GenericTensor, Pipeline
class A ( _UpperCAmelCase ):
"""simple docstring"""
def snake_case__ ( self : int,lowercase_ : Dict=None,lowercase_ : Tuple=None,lowercase_ : List[Any]=None,**lowercase_ : Any )-> Optional[Any]:
'''simple docstring'''
if tokenize_kwargs is None:
A__ = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' )
A__ = truncation
A__ = tokenize_kwargs
A__ = {}
if return_tensors is not None:
A__ = return_tensors
return preprocess_params, {}, postprocess_params
def snake_case__ ( self : Dict,lowercase_ : List[Any],**lowercase_ : Tuple )-> Dict[str, GenericTensor]:
'''simple docstring'''
A__ = self.framework
A__ = self.tokenizer(lowercase_,return_tensors=lowercase_,**lowercase_ )
return model_inputs
def snake_case__ ( self : Tuple,lowercase_ : int )-> Optional[Any]:
'''simple docstring'''
A__ = self.model(**lowercase_ )
return model_outputs
def snake_case__ ( self : Tuple,lowercase_ : Tuple,lowercase_ : List[str]=False )-> Any:
'''simple docstring'''
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self : List[Any],*lowercase_ : int,**lowercase_ : Optional[Any] )-> int:
'''simple docstring'''
return super().__call__(*lowercase_,**lowercase_ )
| 7 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE :int = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Dict = [
'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST',
'WavLMForAudioFrameClassification',
'WavLMForCTC',
'WavLMForSequenceClassification',
'WavLMForXVector',
'WavLMModel',
'WavLMPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavlm import (
WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST,
WavLMForAudioFrameClassification,
WavLMForCTC,
WavLMForSequenceClassification,
WavLMForXVector,
WavLMModel,
WavLMPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE :str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 15 |
from timeit import timeit
def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> int:
'''simple docstring'''
if number < 0:
raise ValueError('the value of input must not be negative' )
A__ = 0
while number:
number &= number - 1
result += 1
return result
def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> int:
'''simple docstring'''
if number < 0:
raise ValueError('the value of input must not be negative' )
A__ = 0
while number:
if number % 2 == 1:
result += 1
number >>= 1
return result
def _snake_case( ) -> None:
'''simple docstring'''
def do_benchmark(SCREAMING_SNAKE_CASE__ : int ) -> None:
A__ = 'import __main__ as z'
print(f'Benchmark when {number = }:' )
print(f'{get_set_bits_count_using_modulo_operator(SCREAMING_SNAKE_CASE__ ) = }' )
A__ = timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=SCREAMING_SNAKE_CASE__ )
print(f'timeit() runs in {timing} seconds' )
print(f'{get_set_bits_count_using_brian_kernighans_algorithm(SCREAMING_SNAKE_CASE__ ) = }' )
A__ = timeit(
'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=SCREAMING_SNAKE_CASE__ , )
print(f'timeit() runs in {timing} seconds' )
for number in (25, 37, 58, 0):
do_benchmark(SCREAMING_SNAKE_CASE__ )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 7 | 0 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification
def __UpperCAmelCase ( __lowerCamelCase ) -> List[str]:
lowercase__ : int = SwinvaConfig()
lowercase__ : Optional[Any] = swinva_name.split('''_''' )
lowercase__ : Union[str, Any] = name_split[1]
if "to" in name_split[3]:
lowercase__ : Dict = int(name_split[3][-3:] )
else:
lowercase__ : str = int(name_split[3] )
if "to" in name_split[2]:
lowercase__ : str = int(name_split[2][-2:] )
else:
lowercase__ : Dict = int(name_split[2][6:] )
if model_size == "tiny":
lowercase__ : Optional[Any] = 96
lowercase__ : Optional[int] = (2, 2, 6, 2)
lowercase__ : Union[str, Any] = (3, 6, 12, 24)
elif model_size == "small":
lowercase__ : List[str] = 96
lowercase__ : Any = (2, 2, 18, 2)
lowercase__ : List[Any] = (3, 6, 12, 24)
elif model_size == "base":
lowercase__ : Optional[Any] = 1_28
lowercase__ : Dict = (2, 2, 18, 2)
lowercase__ : List[Any] = (4, 8, 16, 32)
else:
lowercase__ : Optional[Any] = 1_92
lowercase__ : Optional[Any] = (2, 2, 18, 2)
lowercase__ : Any = (6, 12, 24, 48)
if "to" in swinva_name:
lowercase__ : List[str] = (12, 12, 12, 6)
if ("22k" in swinva_name) and ("to" not in swinva_name):
lowercase__ : Tuple = 2_18_41
lowercase__ : Any = '''huggingface/label-files'''
lowercase__ : str = '''imagenet-22k-id2label.json'''
lowercase__ : Union[str, Any] = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) )
lowercase__ : Tuple = {int(__lowerCamelCase ): v for k, v in idalabel.items()}
lowercase__ : Union[str, Any] = idalabel
lowercase__ : Tuple = {v: k for k, v in idalabel.items()}
else:
lowercase__ : str = 10_00
lowercase__ : Union[str, Any] = '''huggingface/label-files'''
lowercase__ : Dict = '''imagenet-1k-id2label.json'''
lowercase__ : Optional[int] = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) )
lowercase__ : Any = {int(__lowerCamelCase ): v for k, v in idalabel.items()}
lowercase__ : List[str] = idalabel
lowercase__ : Optional[Any] = {v: k for k, v in idalabel.items()}
lowercase__ : Tuple = img_size
lowercase__ : Dict = num_classes
lowercase__ : Union[str, Any] = embed_dim
lowercase__ : Optional[int] = depths
lowercase__ : Tuple = num_heads
lowercase__ : List[Any] = window_size
return config
def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[Any]:
if "patch_embed.proj" in name:
lowercase__ : List[str] = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "patch_embed.norm" in name:
lowercase__ : Optional[Any] = name.replace('''patch_embed.norm''' , '''embeddings.norm''' )
if "layers" in name:
lowercase__ : List[Any] = '''encoder.''' + name
if "attn.proj" in name:
lowercase__ : Tuple = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
lowercase__ : Tuple = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
lowercase__ : Optional[Any] = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
lowercase__ : Optional[int] = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
lowercase__ : Optional[int] = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
lowercase__ : Union[str, Any] = name.replace('''mlp.fc2''' , '''output.dense''' )
if "q_bias" in name:
lowercase__ : Union[str, Any] = name.replace('''q_bias''' , '''query.bias''' )
if "k_bias" in name:
lowercase__ : str = name.replace('''k_bias''' , '''key.bias''' )
if "v_bias" in name:
lowercase__ : Dict = name.replace('''v_bias''' , '''value.bias''' )
if "cpb_mlp" in name:
lowercase__ : Any = name.replace('''cpb_mlp''' , '''continuous_position_bias_mlp''' )
if name == "norm.weight":
lowercase__ : Union[str, Any] = '''layernorm.weight'''
if name == "norm.bias":
lowercase__ : int = '''layernorm.bias'''
if "head" in name:
lowercase__ : Optional[Any] = name.replace('''head''' , '''classifier''' )
else:
lowercase__ : List[str] = '''swinv2.''' + name
return name
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]:
for key in orig_state_dict.copy().keys():
lowercase__ : str = orig_state_dict.pop(__lowerCamelCase )
if "mask" in key:
continue
elif "qkv" in key:
lowercase__ : str = key.split('''.''' )
lowercase__ : Tuple = int(key_split[1] )
lowercase__ : int = int(key_split[3] )
lowercase__ : Union[str, Any] = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
lowercase__ : Tuple = val[:dim, :]
lowercase__ : Any = val[dim : dim * 2, :]
lowercase__ : str = val[-dim:, :]
else:
lowercase__ : str = val[:dim]
lowercase__ : int = val[
dim : dim * 2
]
lowercase__ : Optional[int] = val[-dim:]
else:
lowercase__ : int = val
return orig_state_dict
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]:
lowercase__ : Dict = timm.create_model(__lowerCamelCase , pretrained=__lowerCamelCase )
timm_model.eval()
lowercase__ : Union[str, Any] = get_swinva_config(__lowerCamelCase )
lowercase__ : Tuple = SwinvaForImageClassification(__lowerCamelCase )
model.eval()
lowercase__ : str = convert_state_dict(timm_model.state_dict() , __lowerCamelCase )
model.load_state_dict(__lowerCamelCase )
lowercase__ : Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowercase__ : Any = AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swinva_name.replace('''_''' , '''-''' ) ) )
lowercase__ : Optional[Any] = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw )
lowercase__ : Tuple = image_processor(images=__lowerCamelCase , return_tensors='''pt''' )
lowercase__ : str = timm_model(inputs['''pixel_values'''] )
lowercase__ : List[str] = model(**__lowerCamelCase ).logits
assert torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 )
print(f"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__lowerCamelCase )
print(f"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(__lowerCamelCase )
model.push_to_hub(
repo_path_or_name=Path(__lowerCamelCase , __lowerCamelCase ) , organization='''nandwalritik''' , commit_message='''Add model''' , )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--swinv2_name',
default='swinv2_tiny_patch4_window8_256',
type=str,
help='Name of the Swinv2 timm model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
lowerCAmelCase_ = parser.parse_args()
convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
| 16 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation
def _snake_case( SCREAMING_SNAKE_CASE__ : Any ) -> int:
'''simple docstring'''
A__ = 384
A__ = 7
if "tiny" in model_name:
A__ = 96
A__ = (2, 2, 6, 2)
A__ = (3, 6, 12, 24)
elif "small" in model_name:
A__ = 96
A__ = (2, 2, 18, 2)
A__ = (3, 6, 12, 24)
elif "base" in model_name:
A__ = 128
A__ = (2, 2, 18, 2)
A__ = (4, 8, 16, 32)
A__ = 12
A__ = 512
elif "large" in model_name:
A__ = 192
A__ = (2, 2, 18, 2)
A__ = (6, 12, 24, 48)
A__ = 12
A__ = 768
# set label information
A__ = 150
A__ = 'huggingface/label-files'
A__ = 'ade20k-id2label.json'
A__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) )
A__ = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()}
A__ = {v: k for k, v in idalabel.items()}
A__ = SwinConfig(
embed_dim=SCREAMING_SNAKE_CASE__ , depths=SCREAMING_SNAKE_CASE__ , num_heads=SCREAMING_SNAKE_CASE__ , window_size=SCREAMING_SNAKE_CASE__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , )
A__ = UperNetConfig(
backbone_config=SCREAMING_SNAKE_CASE__ , auxiliary_in_channels=SCREAMING_SNAKE_CASE__ , num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ , )
return config
def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Dict:
'''simple docstring'''
A__ = []
# fmt: off
# stem
rename_keys.append(('backbone.patch_embed.projection.weight', 'backbone.embeddings.patch_embeddings.projection.weight') )
rename_keys.append(('backbone.patch_embed.projection.bias', 'backbone.embeddings.patch_embeddings.projection.bias') )
rename_keys.append(('backbone.patch_embed.norm.weight', 'backbone.embeddings.norm.weight') )
rename_keys.append(('backbone.patch_embed.norm.bias', 'backbone.embeddings.norm.bias') )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm1.weight', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm1.bias', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table', f'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index', f'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight', f'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias', f'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm2.weight', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm2.bias', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight', f'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias', f'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight', f'backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias', f'backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias') )
if i < 3:
rename_keys.append((f'backbone.stages.{i}.downsample.reduction.weight', f'backbone.encoder.layers.{i}.downsample.reduction.weight') )
rename_keys.append((f'backbone.stages.{i}.downsample.norm.weight', f'backbone.encoder.layers.{i}.downsample.norm.weight') )
rename_keys.append((f'backbone.stages.{i}.downsample.norm.bias', f'backbone.encoder.layers.{i}.downsample.norm.bias') )
rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') )
rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') )
# decode head
rename_keys.extend(
[
('decode_head.conv_seg.weight', 'decode_head.classifier.weight'),
('decode_head.conv_seg.bias', 'decode_head.classifier.bias'),
('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'),
('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'),
] )
# fmt: on
return rename_keys
def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[int]:
'''simple docstring'''
A__ = dct.pop(SCREAMING_SNAKE_CASE__ )
A__ = val
def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
'''simple docstring'''
A__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
A__ = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
A__ = state_dict.pop(f'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight' )
A__ = state_dict.pop(f'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
A__ = in_proj_weight[:dim, :]
A__ = in_proj_bias[: dim]
A__ = in_proj_weight[
dim : dim * 2, :
]
A__ = in_proj_bias[
dim : dim * 2
]
A__ = in_proj_weight[
-dim :, :
]
A__ = in_proj_bias[-dim :]
# fmt: on
def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
A__ , A__ = x.shape
A__ = x.reshape(SCREAMING_SNAKE_CASE__ , 4 , in_channel // 4 )
A__ = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return x
def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple ) -> List[str]:
'''simple docstring'''
A__ , A__ = x.shape
A__ = x.reshape(SCREAMING_SNAKE_CASE__ , in_channel // 4 , 4 )
A__ = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return x
def _snake_case( SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]:
'''simple docstring'''
A__ = x.shape[0]
A__ = x.reshape(4 , in_channel // 4 )
A__ = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(SCREAMING_SNAKE_CASE__ )
return x
def _snake_case( SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]:
'''simple docstring'''
A__ = x.shape[0]
A__ = x.reshape(in_channel // 4 , 4 )
A__ = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(SCREAMING_SNAKE_CASE__ )
return x
def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
A__ = {
'upernet-swin-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth',
'upernet-swin-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth',
'upernet-swin-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth',
'upernet-swin-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth',
}
A__ = model_name_to_url[model_name]
A__ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location='cpu' , file_name=SCREAMING_SNAKE_CASE__ )[
'state_dict'
]
for name, param in state_dict.items():
print(SCREAMING_SNAKE_CASE__ , param.shape )
A__ = get_upernet_config(SCREAMING_SNAKE_CASE__ )
A__ = UperNetForSemanticSegmentation(SCREAMING_SNAKE_CASE__ )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
A__ = state_dict.pop(SCREAMING_SNAKE_CASE__ )
if "bn" in key:
A__ = key.replace('bn' , 'batch_norm' )
A__ = val
# rename keys
A__ = create_rename_keys(SCREAMING_SNAKE_CASE__ )
for src, dest in rename_keys:
rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
read_in_q_k_v(SCREAMING_SNAKE_CASE__ , config.backbone_config )
# fix downsample parameters
for key, value in state_dict.items():
if "downsample" in key:
if "reduction" in key:
A__ = reverse_correct_unfold_reduction_order(SCREAMING_SNAKE_CASE__ )
if "norm" in key:
A__ = reverse_correct_unfold_norm_order(SCREAMING_SNAKE_CASE__ )
model.load_state_dict(SCREAMING_SNAKE_CASE__ )
# verify on image
A__ = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg'
A__ = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ).convert('RGB' )
A__ = SegformerImageProcessor()
A__ = processor(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values
with torch.no_grad():
A__ = model(SCREAMING_SNAKE_CASE__ )
A__ = outputs.logits
print(logits.shape )
print('First values of logits:' , logits[0, 0, :3, :3] )
# assert values
if model_name == "upernet-swin-tiny":
A__ = torch.tensor(
[[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] )
elif model_name == "upernet-swin-small":
A__ = torch.tensor(
[[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] )
elif model_name == "upernet-swin-base":
A__ = torch.tensor(
[[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] )
elif model_name == "upernet-swin-large":
A__ = torch.tensor(
[[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] )
print('Logits:' , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(SCREAMING_SNAKE_CASE__ )
print(f'Saving processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(SCREAMING_SNAKE_CASE__ )
if push_to_hub:
print(f'Pushing model and processor for {model_name} to hub' )
model.push_to_hub(f'openmmlab/{model_name}' )
processor.push_to_hub(f'openmmlab/{model_name}' )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="upernet-swin-tiny",
type=str,
choices=[f"""upernet-swin-{size}""" for size in ["tiny", "small", "base", "large"]],
help="Name of the Swin + UperNet model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
lowercase_ = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 7 | 0 |
"""simple docstring"""
import argparse
import logging
import sys
from unittest.mock import patch
import run_glue_deebert
from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow
logging.basicConfig(level=logging.DEBUG)
_a = logging.getLogger()
def _A ( ) -> Dict:
'''simple docstring'''
__lowercase = argparse.ArgumentParser()
parser.add_argument("-f")
__lowercase = parser.parse_args()
return args.f
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
def _lowercase ( self : Dict ):
__lowercase = logging.StreamHandler(sys.stdout )
logger.addHandler(UpperCAmelCase__ )
def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[Any] ):
__lowercase = get_gpu_count()
if n_gpu > 1:
pass
# XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560
# script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py"
# distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split()
# cmd = [sys.executable] + distributed_args + args
# execute_subprocess_async(cmd, env=self.get_env())
# XXX: test the results - need to save them first into .json file
else:
args.insert(0, "run_glue_deebert.py" )
with patch.object(UpperCAmelCase__, "argv", UpperCAmelCase__ ):
__lowercase = run_glue_deebert.main()
for value in result.values():
self.assertGreaterEqual(UpperCAmelCase__, 0.666 )
@slow
@require_torch_non_multi_gpu
def _lowercase ( self : Optional[int] ):
__lowercase = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split()
self.run_and_check(UpperCAmelCase__ )
__lowercase = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split()
self.run_and_check(UpperCAmelCase__ )
__lowercase = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split()
self.run_and_check(UpperCAmelCase__ )
| 17 |
import math
import os
from copy import deepcopy
import datasets
import evaluate
import torch
import transformers
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from accelerate import Accelerator
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import is_tpu_available, set_seed
lowercase_ = "true"
def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=82 , SCREAMING_SNAKE_CASE__ : Optional[int]=16 ) -> Optional[Any]:
'''simple docstring'''
set_seed(42 )
A__ = RegressionModel()
A__ = deepcopy(SCREAMING_SNAKE_CASE__ )
A__ = RegressionDataset(length=SCREAMING_SNAKE_CASE__ )
A__ = DataLoader(SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ )
model.to(accelerator.device )
A__ , A__ = accelerator.prepare(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return model, ddp_model, dataloader
def _snake_case( SCREAMING_SNAKE_CASE__ : Accelerator , SCREAMING_SNAKE_CASE__ : Tuple=False ) -> int:
'''simple docstring'''
A__ = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' )
A__ = load_dataset('glue' , 'mrpc' , split='validation' )
def tokenize_function(SCREAMING_SNAKE_CASE__ : List[Any] ):
A__ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ )
return outputs
with accelerator.main_process_first():
A__ = dataset.map(
SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , remove_columns=['idx', 'sentence1', 'sentence2'] , )
A__ = tokenized_datasets.rename_column('label' , 'labels' )
def collate_fn(SCREAMING_SNAKE_CASE__ : Dict ):
if use_longest:
return tokenizer.pad(SCREAMING_SNAKE_CASE__ , padding='longest' , return_tensors='pt' )
return tokenizer.pad(SCREAMING_SNAKE_CASE__ , padding='max_length' , max_length=128 , return_tensors='pt' )
return DataLoader(SCREAMING_SNAKE_CASE__ , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=16 )
def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ) -> str:
'''simple docstring'''
A__ = Accelerator(dispatch_batches=SCREAMING_SNAKE_CASE__ , split_batches=SCREAMING_SNAKE_CASE__ )
A__ = get_dataloader(SCREAMING_SNAKE_CASE__ , not dispatch_batches )
A__ = AutoModelForSequenceClassification.from_pretrained(
'hf-internal-testing/mrpc-bert-base-cased' , return_dict=SCREAMING_SNAKE_CASE__ )
A__ , A__ = accelerator.prepare(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator
def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]:
'''simple docstring'''
A__ = []
for batch in dataloader:
A__ , A__ = batch.values()
with torch.no_grad():
A__ = model(SCREAMING_SNAKE_CASE__ )
A__ , A__ = accelerator.gather_for_metrics((logit, target) )
logits_and_targets.append((logit, target) )
A__ , A__ = [], []
for logit, targ in logits_and_targets:
logits.append(SCREAMING_SNAKE_CASE__ )
targs.append(SCREAMING_SNAKE_CASE__ )
A__ , A__ = torch.cat(SCREAMING_SNAKE_CASE__ ), torch.cat(SCREAMING_SNAKE_CASE__ )
return logits, targs
def _snake_case( SCREAMING_SNAKE_CASE__ : Accelerator , SCREAMING_SNAKE_CASE__ : int=82 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : Tuple=16 ) -> List[Any]:
'''simple docstring'''
A__ , A__ , A__ = get_basic_setup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A__ , A__ = generate_predictions(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
assert (
len(SCREAMING_SNAKE_CASE__ ) == num_samples
), f'Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(SCREAMING_SNAKE_CASE__ )}'
def _snake_case( SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False ) -> str:
'''simple docstring'''
A__ = evaluate.load('glue' , 'mrpc' )
A__ , A__ = get_mrpc_setup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# First do baseline
A__ , A__ , A__ = setup['no']
model.to(SCREAMING_SNAKE_CASE__ )
model.eval()
for batch in dataloader:
batch.to(SCREAMING_SNAKE_CASE__ )
with torch.inference_mode():
A__ = model(**SCREAMING_SNAKE_CASE__ )
A__ = outputs.logits.argmax(dim=-1 )
metric.add_batch(predictions=SCREAMING_SNAKE_CASE__ , references=batch['labels'] )
A__ = metric.compute()
# Then do distributed
A__ , A__ , A__ = setup['ddp']
model.eval()
for batch in dataloader:
with torch.inference_mode():
A__ = model(**SCREAMING_SNAKE_CASE__ )
A__ = outputs.logits.argmax(dim=-1 )
A__ = batch['labels']
A__ , A__ = accelerator.gather_for_metrics((preds, references) )
metric.add_batch(predictions=SCREAMING_SNAKE_CASE__ , references=SCREAMING_SNAKE_CASE__ )
A__ = metric.compute()
for key in "accuracy f1".split():
assert math.isclose(
baseline[key] , distributed[key] ), f'Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n'
def _snake_case( ) -> Optional[Any]:
'''simple docstring'''
A__ = Accelerator(split_batches=SCREAMING_SNAKE_CASE__ , dispatch_batches=SCREAMING_SNAKE_CASE__ )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# These are a bit slower so they should only be ran on the GPU or TPU
if torch.cuda.is_available() or is_tpu_available():
if accelerator.is_local_main_process:
print('**Testing gather_for_metrics**' )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
if accelerator.is_local_main_process:
print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`' )
test_mrpc(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print('**Test torch metrics**' )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
A__ = Accelerator(split_batches=SCREAMING_SNAKE_CASE__ , dispatch_batches=SCREAMING_SNAKE_CASE__ )
if accelerator.is_local_main_process:
print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99' )
test_torch_metrics(SCREAMING_SNAKE_CASE__ , 99 )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print('**Test last batch is not dropped when perfectly divisible**' )
A__ = Accelerator()
test_torch_metrics(SCREAMING_SNAKE_CASE__ , 512 )
accelerator.state._reset_state()
def _snake_case( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 7 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__lowerCamelCase : Dict = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Any = [
'''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ViTMAEForPreTraining''',
'''ViTMAELayer''',
'''ViTMAEModel''',
'''ViTMAEPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Optional[Any] = [
'''TFViTMAEForPreTraining''',
'''TFViTMAEModel''',
'''TFViTMAEPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_mae import (
VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMAEForPreTraining,
ViTMAELayer,
ViTMAEModel,
ViTMAEPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel
else:
import sys
__lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 18 |
def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple:
'''simple docstring'''
A__ = 0
A__ = len(SCREAMING_SNAKE_CASE__ ) - 1
while left <= right:
# avoid divided by 0 during interpolation
if sorted_collection[left] == sorted_collection[right]:
if sorted_collection[left] == item:
return left
else:
return None
A__ = left + ((item - sorted_collection[left]) * (right - left)) // (
sorted_collection[right] - sorted_collection[left]
)
# out of range check
if point < 0 or point >= len(SCREAMING_SNAKE_CASE__ ):
return None
A__ = sorted_collection[point]
if current_item == item:
return point
else:
if point < left:
A__ = left
A__ = point
elif point > right:
A__ = right
A__ = point
else:
if item < current_item:
A__ = point - 1
else:
A__ = point + 1
return None
def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str:
'''simple docstring'''
if sorted_collection[left] == sorted_collection[right]:
if sorted_collection[left] == item:
return left
else:
return None
A__ = left + ((item - sorted_collection[left]) * (right - left)) // (
sorted_collection[right] - sorted_collection[left]
)
# out of range check
if point < 0 or point >= len(SCREAMING_SNAKE_CASE__ ):
return None
if sorted_collection[point] == item:
return point
elif point < left:
return interpolation_search_by_recursion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
elif point > right:
return interpolation_search_by_recursion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
if sorted_collection[point] > item:
return interpolation_search_by_recursion(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , point - 1 )
else:
return interpolation_search_by_recursion(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , point + 1 , SCREAMING_SNAKE_CASE__ )
def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple:
'''simple docstring'''
if collection != sorted(SCREAMING_SNAKE_CASE__ ):
raise ValueError('Collection must be ascending sorted' )
return True
if __name__ == "__main__":
import sys
lowercase_ = 0
if debug == 1:
lowercase_ = [10, 30, 40, 45, 50, 66, 77, 93]
try:
__assert_sorted(collection)
except ValueError:
sys.exit("Sequence must be ascending sorted to apply interpolation search")
lowercase_ = 67
lowercase_ = interpolation_search(collection, target)
if result is not None:
print(f"""{target} found at positions: {result}""")
else:
print("Not found")
| 7 | 0 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_lxmert import LxmertTokenizer
__A ={'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
__A ={
'''vocab_file''': {
'''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''',
},
'''tokenizer_file''': {
'''unc-nlp/lxmert-base-uncased''': (
'''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json'''
),
},
}
__A ={
'''unc-nlp/lxmert-base-uncased''': 5_1_2,
}
__A ={
'''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True},
}
class _SCREAMING_SNAKE_CASE ( snake_case_ ):
lowerCAmelCase__ = VOCAB_FILES_NAMES
lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase__ = PRETRAINED_INIT_CONFIGURATION
lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase__ = LxmertTokenizer
def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ) -> Dict:
super().__init__(
lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , )
lowerCamelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" , lowercase ) != do_lower_case
or normalizer_state.get("strip_accents" , lowercase ) != strip_accents
or normalizer_state.get("handle_chinese_chars" , lowercase ) != tokenize_chinese_chars
):
lowerCamelCase_ = getattr(lowercase , normalizer_state.pop("type" ) )
lowerCamelCase_ = do_lower_case
lowerCamelCase_ = strip_accents
lowerCamelCase_ = tokenize_chinese_chars
lowerCamelCase_ = normalizer_class(**lowercase )
lowerCamelCase_ = do_lower_case
def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase=None ) -> Union[str, Any]:
lowerCamelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> List[int]:
lowerCamelCase_ = [self.sep_token_id]
lowerCamelCase_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> Tuple[str]:
lowerCamelCase_ = self._tokenizer.model.save(lowercase , name=lowercase )
return tuple(lowercase )
| 19 |
from argparse import ArgumentParser
from datasets.commands.convert import ConvertCommand
from datasets.commands.dummy_data import DummyDataCommand
from datasets.commands.env import EnvironmentCommand
from datasets.commands.run_beam import RunBeamCommand
from datasets.commands.test import TestCommand
from datasets.utils.logging import set_verbosity_info
def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple:
'''simple docstring'''
return {key.lstrip('-' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )}
def _snake_case( ) -> Dict:
'''simple docstring'''
A__ = ArgumentParser(
'HuggingFace Datasets CLI tool' , usage='datasets-cli <command> [<args>]' , allow_abbrev=SCREAMING_SNAKE_CASE__ )
A__ = parser.add_subparsers(help='datasets-cli command helpers' )
set_verbosity_info()
# Register commands
ConvertCommand.register_subcommand(SCREAMING_SNAKE_CASE__ )
EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE__ )
TestCommand.register_subcommand(SCREAMING_SNAKE_CASE__ )
RunBeamCommand.register_subcommand(SCREAMING_SNAKE_CASE__ )
DummyDataCommand.register_subcommand(SCREAMING_SNAKE_CASE__ )
# Parse args
A__ , A__ = parser.parse_known_args()
if not hasattr(SCREAMING_SNAKE_CASE__ , 'func' ):
parser.print_help()
exit(1 )
A__ = parse_unknown_args(SCREAMING_SNAKE_CASE__ )
# Run
A__ = args.func(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
service.run()
if __name__ == "__main__":
main()
| 7 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
lowercase : Optional[int] = {"""configuration_fnet""": ["""FNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FNetConfig"""]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : Union[str, Any] = ["""FNetTokenizer"""]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : List[str] = ["""FNetTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : str = [
"""FNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""FNetForMaskedLM""",
"""FNetForMultipleChoice""",
"""FNetForNextSentencePrediction""",
"""FNetForPreTraining""",
"""FNetForQuestionAnswering""",
"""FNetForSequenceClassification""",
"""FNetForTokenClassification""",
"""FNetLayer""",
"""FNetModel""",
"""FNetPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet import FNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet_fast import FNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_fnet import (
FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FNetForMaskedLM,
FNetForMultipleChoice,
FNetForNextSentencePrediction,
FNetForPreTraining,
FNetForQuestionAnswering,
FNetForSequenceClassification,
FNetForTokenClassification,
FNetLayer,
FNetModel,
FNetPreTrainedModel,
)
else:
import sys
lowercase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 20 |
from __future__ import annotations
import inspect
import unittest
from transformers import ViTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTForImageClassification, TFViTModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class A :
"""simple docstring"""
def __init__( self : Union[str, Any],lowercase_ : Any,lowercase_ : Union[str, Any]=1_3,lowercase_ : Tuple=3_0,lowercase_ : List[Any]=2,lowercase_ : Optional[int]=3,lowercase_ : Union[str, Any]=True,lowercase_ : Tuple=True,lowercase_ : Any=3_2,lowercase_ : List[str]=2,lowercase_ : Optional[int]=4,lowercase_ : Union[str, Any]=3_7,lowercase_ : Tuple="gelu",lowercase_ : str=0.1,lowercase_ : Tuple=0.1,lowercase_ : Union[str, Any]=1_0,lowercase_ : int=0.02,lowercase_ : List[Any]=3,lowercase_ : Any=None,)-> Dict:
'''simple docstring'''
A__ = parent
A__ = batch_size
A__ = image_size
A__ = patch_size
A__ = num_channels
A__ = is_training
A__ = use_labels
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = type_sequence_label_size
A__ = initializer_range
A__ = scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
A__ = (image_size // patch_size) ** 2
A__ = num_patches + 1
def snake_case__ ( self : int )-> List[str]:
'''simple docstring'''
A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
A__ = None
if self.use_labels:
A__ = ids_tensor([self.batch_size],self.type_sequence_label_size )
A__ = self.get_config()
return config, pixel_values, labels
def snake_case__ ( self : Tuple )-> List[Any]:
'''simple docstring'''
return ViTConfig(
image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,is_decoder=lowercase_,initializer_range=self.initializer_range,)
def snake_case__ ( self : List[str],lowercase_ : int,lowercase_ : Union[str, Any],lowercase_ : Tuple )-> Optional[Any]:
'''simple docstring'''
A__ = TFViTModel(config=lowercase_ )
A__ = model(lowercase_,training=lowercase_ )
self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) )
# Test with an image with different size than the one specified in config.
A__ = self.image_size // 2
A__ = pixel_values[:, :, :image_size, :image_size]
A__ = model(lowercase_,interpolate_pos_encoding=lowercase_,training=lowercase_ )
A__ = (image_size // self.patch_size) ** 2 + 1
self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, seq_length, self.hidden_size) )
def snake_case__ ( self : List[Any],lowercase_ : List[Any],lowercase_ : List[Any],lowercase_ : List[Any] )-> Dict:
'''simple docstring'''
A__ = self.type_sequence_label_size
A__ = TFViTForImageClassification(lowercase_ )
A__ = model(lowercase_,labels=lowercase_,training=lowercase_ )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) )
# Test with an image with different size than the one specified in config.
A__ = self.image_size // 2
A__ = pixel_values[:, :, :image_size, :image_size]
A__ = model(lowercase_,interpolate_pos_encoding=lowercase_,training=lowercase_ )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
A__ = 1
A__ = TFViTForImageClassification(lowercase_ )
A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
A__ = model(lowercase_ )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) )
def snake_case__ ( self : Any )-> Optional[Any]:
'''simple docstring'''
A__ = self.prepare_config_and_inputs()
A__ , A__ , A__ = config_and_inputs
A__ = {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class A ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = (TFViTModel, TFViTForImageClassification) if is_tf_available() else ()
lowerCamelCase = (
{'feature-extraction': TFViTModel, 'image-classification': TFViTForImageClassification}
if is_tf_available()
else {}
)
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
def snake_case__ ( self : int )-> List[Any]:
'''simple docstring'''
A__ = TFViTModelTester(self )
A__ = ConfigTester(self,config_class=lowercase_,has_text_modality=lowercase_,hidden_size=3_7 )
def snake_case__ ( self : Any )-> Optional[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='ViT does not use inputs_embeds' )
def snake_case__ ( self : Optional[Any] )-> str:
'''simple docstring'''
pass
@unittest.skip(reason='ViT does not use inputs_embeds' )
def snake_case__ ( self : Any )-> int:
'''simple docstring'''
pass
def snake_case__ ( self : str )-> Dict:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = model_class(lowercase_ )
self.assertIsInstance(model.get_input_embeddings(),(tf.keras.layers.Layer) )
A__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowercase_,tf.keras.layers.Layer ) )
def snake_case__ ( self : int )-> List[str]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = model_class(lowercase_ )
A__ = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A__ = [*signature.parameters.keys()]
A__ = ['pixel_values']
self.assertListEqual(arg_names[:1],lowercase_ )
def snake_case__ ( self : Union[str, Any] )-> Optional[Any]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase_ )
def snake_case__ ( self : Optional[Any] )-> Optional[Any]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowercase_ )
@slow
def snake_case__ ( self : Union[str, Any] )-> Union[str, Any]:
'''simple docstring'''
A__ = TFViTModel.from_pretrained('google/vit-base-patch16-224' )
self.assertIsNotNone(lowercase_ )
def _snake_case( ) -> str:
'''simple docstring'''
A__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
@require_vision
class A ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def snake_case__ ( self : List[Any] )-> str:
'''simple docstring'''
return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None
@slow
def snake_case__ ( self : Any )-> Dict:
'''simple docstring'''
A__ = TFViTForImageClassification.from_pretrained('google/vit-base-patch16-224' )
A__ = self.default_image_processor
A__ = prepare_img()
A__ = image_processor(images=lowercase_,return_tensors='tf' )
# forward pass
A__ = model(**lowercase_ )
# verify the logits
A__ = tf.TensorShape((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape,lowercase_ )
A__ = tf.constant([-0.2_744, 0.8_215, -0.0_836] )
tf.debugging.assert_near(outputs.logits[0, :3],lowercase_,atol=1E-4 )
| 7 | 0 |
def UpperCamelCase_( lowerCamelCase_ ) -> float:
_lowercase : Dict = 0
while len(lowerCamelCase_ ) > 1:
_lowercase : Dict = 0
# Consider two files with minimum cost to be merged
for _ in range(2 ):
_lowercase : Union[str, Any] = files.index(min(lowerCamelCase_ ) )
temp += files[min_index]
files.pop(lowerCamelCase_ )
files.append(lowerCamelCase_ )
optimal_merge_cost += temp
return optimal_merge_cost
if __name__ == "__main__":
import doctest
doctest.testmod()
| 21 |
import unittest
from parameterized import parameterized
from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
GPTNeoXModel,
)
class A :
"""simple docstring"""
def __init__( self : str,lowercase_ : Any,lowercase_ : Tuple=1_3,lowercase_ : str=7,lowercase_ : Tuple=True,lowercase_ : int=True,lowercase_ : List[Any]=True,lowercase_ : List[str]=True,lowercase_ : List[str]=9_9,lowercase_ : List[Any]=6_4,lowercase_ : List[str]=5,lowercase_ : Optional[Any]=4,lowercase_ : Optional[Any]=3_7,lowercase_ : Optional[Any]="gelu",lowercase_ : int=0.1,lowercase_ : str=0.1,lowercase_ : Optional[Any]=5_1_2,lowercase_ : int=1_6,lowercase_ : List[Any]=2,lowercase_ : Union[str, Any]=0.02,lowercase_ : Tuple=3,lowercase_ : List[Any]=4,lowercase_ : str=None,)-> Union[str, Any]:
'''simple docstring'''
A__ = parent
A__ = batch_size
A__ = seq_length
A__ = is_training
A__ = use_input_mask
A__ = use_token_type_ids
A__ = use_labels
A__ = vocab_size
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = max_position_embeddings
A__ = type_vocab_size
A__ = type_sequence_label_size
A__ = initializer_range
A__ = num_labels
A__ = num_choices
A__ = scope
A__ = vocab_size - 1
def snake_case__ ( self : str )-> Optional[Any]:
'''simple docstring'''
A__ = ids_tensor([self.batch_size, self.seq_length],self.vocab_size )
A__ = None
if self.use_input_mask:
A__ = random_attention_mask([self.batch_size, self.seq_length] )
A__ = None
if self.use_labels:
A__ = ids_tensor([self.batch_size, self.seq_length],self.num_labels )
A__ = self.get_config()
return config, input_ids, input_mask, token_labels
def snake_case__ ( self : List[Any] )-> Tuple:
'''simple docstring'''
return GPTNeoXConfig(
vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=lowercase_,initializer_range=self.initializer_range,pad_token_id=self.pad_token_id,)
def snake_case__ ( self : Optional[int] )-> Union[str, Any]:
'''simple docstring'''
A__ , A__ , A__ , A__ = self.prepare_config_and_inputs()
A__ = True
return config, input_ids, input_mask, token_labels
def snake_case__ ( self : Any,lowercase_ : List[Any],lowercase_ : List[Any],lowercase_ : str )-> Any:
'''simple docstring'''
A__ = GPTNeoXModel(config=lowercase_ )
model.to(lowercase_ )
model.eval()
A__ = model(lowercase_,attention_mask=lowercase_ )
A__ = model(lowercase_ )
self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) )
def snake_case__ ( self : Union[str, Any],lowercase_ : List[str],lowercase_ : Dict,lowercase_ : Optional[Any] )-> Tuple:
'''simple docstring'''
A__ = True
A__ = GPTNeoXModel(lowercase_ )
model.to(lowercase_ )
model.eval()
A__ = model(lowercase_,attention_mask=lowercase_ )
self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) )
def snake_case__ ( self : Union[str, Any],lowercase_ : str,lowercase_ : Union[str, Any],lowercase_ : Union[str, Any],lowercase_ : List[str] )-> List[str]:
'''simple docstring'''
A__ = GPTNeoXForCausalLM(config=lowercase_ )
model.to(lowercase_ )
model.eval()
A__ = model(lowercase_,attention_mask=lowercase_,labels=lowercase_ )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) )
def snake_case__ ( self : Optional[int],lowercase_ : Optional[int],lowercase_ : Optional[int],lowercase_ : Dict,lowercase_ : Any )-> int:
'''simple docstring'''
A__ = self.num_labels
A__ = GPTNeoXForQuestionAnswering(lowercase_ )
model.to(lowercase_ )
model.eval()
A__ = model(lowercase_,attention_mask=lowercase_ )
self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) )
def snake_case__ ( self : List[str],lowercase_ : List[str],lowercase_ : int,lowercase_ : Union[str, Any],lowercase_ : Optional[int] )-> str:
'''simple docstring'''
A__ = self.num_labels
A__ = GPTNeoXForSequenceClassification(lowercase_ )
model.to(lowercase_ )
model.eval()
A__ = ids_tensor([self.batch_size],self.type_sequence_label_size )
A__ = model(lowercase_,attention_mask=lowercase_,labels=lowercase_ )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) )
def snake_case__ ( self : Any,lowercase_ : Union[str, Any],lowercase_ : List[Any],lowercase_ : Optional[Any],lowercase_ : int )-> Union[str, Any]:
'''simple docstring'''
A__ = self.num_labels
A__ = GPTNeoXForTokenClassification(lowercase_ )
model.to(lowercase_ )
model.eval()
A__ = model(lowercase_,attention_mask=lowercase_,labels=lowercase_ )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) )
def snake_case__ ( self : int,lowercase_ : str,lowercase_ : int,lowercase_ : Union[str, Any] )-> List[Any]:
'''simple docstring'''
A__ = True
A__ = GPTNeoXForCausalLM(config=lowercase_ )
model.to(lowercase_ )
model.eval()
# first forward pass
A__ = model(lowercase_,attention_mask=lowercase_,use_cache=lowercase_ )
A__ = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
A__ = ids_tensor((self.batch_size, 3),config.vocab_size )
A__ = ids_tensor((self.batch_size, 3),vocab_size=2 )
# append to next input_ids and
A__ = torch.cat([input_ids, next_tokens],dim=-1 )
A__ = torch.cat([input_mask, next_mask],dim=-1 )
A__ = model(lowercase_,attention_mask=lowercase_,output_hidden_states=lowercase_ )
A__ = output_from_no_past['hidden_states'][0]
A__ = model(
lowercase_,attention_mask=lowercase_,past_key_values=lowercase_,output_hidden_states=lowercase_,)['hidden_states'][0]
# select random slice
A__ = ids_tensor((1,),output_from_past.shape[-1] ).item()
A__ = output_from_no_past[:, -3:, random_slice_idx].detach()
A__ = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(lowercase_,lowercase_,atol=1E-3 ) )
def snake_case__ ( self : str )-> Union[str, Any]:
'''simple docstring'''
A__ = self.prepare_config_and_inputs()
A__ , A__ , A__ , A__ = config_and_inputs
A__ = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class A ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = (
(
GPTNeoXModel,
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
)
if is_torch_available()
else ()
)
lowerCamelCase = (GPTNeoXForCausalLM,) if is_torch_available() else ()
lowerCamelCase = (
{
'feature-extraction': GPTNeoXModel,
'question-answering': GPTNeoXForQuestionAnswering,
'text-classification': GPTNeoXForSequenceClassification,
'text-generation': GPTNeoXForCausalLM,
'token-classification': GPTNeoXForTokenClassification,
'zero-shot': GPTNeoXForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
def snake_case__ ( self : str )-> Tuple:
'''simple docstring'''
A__ = GPTNeoXModelTester(self )
A__ = ConfigTester(self,config_class=lowercase_,hidden_size=6_4,num_attention_heads=8 )
def snake_case__ ( self : Optional[Any] )-> Union[str, Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def snake_case__ ( self : Union[str, Any] )-> Union[str, Any]:
'''simple docstring'''
A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(lowercase_,lowercase_,lowercase_ )
def snake_case__ ( self : Dict )-> List[Any]:
'''simple docstring'''
A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(lowercase_,lowercase_,lowercase_ )
def snake_case__ ( self : List[str] )-> Any:
'''simple docstring'''
A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs_for_decoder()
A__ = None
self.model_tester.create_and_check_model_as_decoder(lowercase_,lowercase_,lowercase_ )
def snake_case__ ( self : Optional[Any] )-> str:
'''simple docstring'''
A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(lowercase_,lowercase_,lowercase_ )
def snake_case__ ( self : Dict )-> Dict:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_causal_lm(*lowercase_ )
def snake_case__ ( self : Tuple )-> List[Any]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*lowercase_ )
def snake_case__ ( self : Any )-> List[str]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*lowercase_ )
def snake_case__ ( self : str )-> Tuple:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowercase_ )
@unittest.skip(reason='Feed forward chunking is not implemented' )
def snake_case__ ( self : Union[str, Any] )-> Optional[Any]:
'''simple docstring'''
pass
@parameterized.expand([('linear',), ('dynamic',)] )
def snake_case__ ( self : List[str],lowercase_ : Any )-> List[str]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
A__ = ids_tensor([1, 1_0],config.vocab_size )
A__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )],config.vocab_size )
set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights
A__ = GPTNeoXModel(lowercase_ )
original_model.to(lowercase_ )
original_model.eval()
A__ = original_model(lowercase_ ).last_hidden_state
A__ = original_model(lowercase_ ).last_hidden_state
set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights
A__ = {'type': scaling_type, 'factor': 10.0}
A__ = GPTNeoXModel(lowercase_ )
scaled_model.to(lowercase_ )
scaled_model.eval()
A__ = scaled_model(lowercase_ ).last_hidden_state
A__ = scaled_model(lowercase_ ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(lowercase_,lowercase_,atol=1E-5 ) )
else:
self.assertFalse(torch.allclose(lowercase_,lowercase_,atol=1E-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(lowercase_,lowercase_,atol=1E-5 ) )
@require_torch
class A ( unittest.TestCase ):
"""simple docstring"""
@slow
def snake_case__ ( self : Tuple )-> Union[str, Any]:
'''simple docstring'''
A__ = AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped' )
for checkpointing in [True, False]:
A__ = GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped' )
if checkpointing:
model.gradient_checkpointing_enable()
else:
model.gradient_checkpointing_disable()
model.to(lowercase_ )
A__ = tokenizer('My favorite food is',return_tensors='pt' ).to(lowercase_ )
# The hub repo. is updated on 2023-04-04, resulting in poor outputs.
# See: https://github.com/huggingface/transformers/pull/24193
A__ = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure'
A__ = model.generate(**lowercase_,do_sample=lowercase_,max_new_tokens=2_0 )
A__ = tokenizer.batch_decode(lowercase_ )[0]
self.assertEqual(lowercase_,lowercase_ )
| 7 | 0 |
'''simple docstring'''
import argparse
import json
from tqdm import tqdm
def UpperCAmelCase_ ( ) -> Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--src_path" , type=__lowercase , default="biencoder-nq-dev.json" , help="Path to raw DPR training data" , )
parser.add_argument(
"--evaluation_set" , type=__lowercase , help="where to store parsed evaluation_set file" , )
parser.add_argument(
"--gold_data_path" , type=__lowercase , help="where to store parsed gold_data_path file" , )
_UpperCAmelCase = parser.parse_args()
with open(args.src_path , "r" ) as src_file, open(args.evaluation_set , "w" ) as eval_file, open(
args.gold_data_path , "w" ) as gold_file:
_UpperCAmelCase = json.load(__lowercase )
for dpr_record in tqdm(__lowercase ):
_UpperCAmelCase = dpr_record["question"]
_UpperCAmelCase = [context["title"] for context in dpr_record["positive_ctxs"]]
eval_file.write(question + "\n" )
gold_file.write("\t".join(__lowercase ) + "\n" )
if __name__ == "__main__":
main()
| 22 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json",
}
class A ( _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase = 'open-llama'
def __init__( self : Any,lowercase_ : Optional[int]=1_0_0_0_0_0,lowercase_ : Union[str, Any]=4_0_9_6,lowercase_ : Dict=1_1_0_0_8,lowercase_ : Dict=3_2,lowercase_ : Optional[int]=3_2,lowercase_ : Dict="silu",lowercase_ : Union[str, Any]=2_0_4_8,lowercase_ : Optional[int]=0.02,lowercase_ : Dict=1E-6,lowercase_ : Dict=True,lowercase_ : List[Any]=0,lowercase_ : Optional[int]=1,lowercase_ : str=2,lowercase_ : str=False,lowercase_ : str=True,lowercase_ : int=0.1,lowercase_ : List[Any]=0.1,lowercase_ : List[Any]=True,lowercase_ : Union[str, Any]=True,lowercase_ : Any=None,**lowercase_ : List[Any],)-> Tuple:
'''simple docstring'''
A__ = vocab_size
A__ = max_position_embeddings
A__ = hidden_size
A__ = intermediate_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = hidden_act
A__ = initializer_range
A__ = rms_norm_eps
A__ = use_cache
A__ = kwargs.pop(
'use_memorry_efficient_attention',lowercase_ )
A__ = hidden_dropout_prob
A__ = attention_dropout_prob
A__ = use_stable_embedding
A__ = shared_input_output_embedding
A__ = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=lowercase_,bos_token_id=lowercase_,eos_token_id=lowercase_,tie_word_embeddings=lowercase_,**lowercase_,)
def snake_case__ ( self : str )-> str:
'''simple docstring'''
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling,lowercase_ ) or len(self.rope_scaling ) != 2:
raise ValueError(
'`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '
F'got {self.rope_scaling}' )
A__ = self.rope_scaling.get('type',lowercase_ )
A__ = self.rope_scaling.get('factor',lowercase_ )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
F'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' )
if rope_scaling_factor is None or not isinstance(lowercase_,lowercase_ ) or rope_scaling_factor <= 1.0:
raise ValueError(F'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
| 7 | 0 |
'''simple docstring'''
import argparse
import ast
import logging
import os
import sys
import pandas as pd
import torch
from tqdm import tqdm
from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration
from transformers import logging as transformers_logging
sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip
from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip
UpperCamelCase__: Union[str, Any] = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
transformers_logging.set_verbosity_info()
def snake_case_ ( _lowerCAmelCase : str ) -> Optional[int]:
if "token" in model_name_or_path:
return "rag_token"
if "sequence" in model_name_or_path:
return "rag_sequence"
if "bart" in model_name_or_path:
return "bart"
return None
def snake_case_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str ) -> Dict:
return max(metric_fn(_lowerCAmelCase , _lowerCAmelCase ) for gt in ground_truths )
def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] ) -> List[str]:
UpperCAmelCase : str = [line.strip() for line in open(_lowerCAmelCase , '''r''' ).readlines()]
UpperCAmelCase : Optional[Any] = []
if args.gold_data_mode == "qa":
UpperCAmelCase : Optional[int] = pd.read_csv(_lowerCAmelCase , sep='''\t''' , header=_lowerCAmelCase )
for answer_list in data[1]:
UpperCAmelCase : int = ast.literal_eval(_lowerCAmelCase )
answers.append(_lowerCAmelCase )
else:
UpperCAmelCase : int = [line.strip() for line in open(_lowerCAmelCase , '''r''' ).readlines()]
UpperCAmelCase : Optional[Any] = [[reference] for reference in references]
UpperCAmelCase : Optional[int] = 0
for prediction, ground_truths in zip(_lowerCAmelCase , _lowerCAmelCase ):
total += 1
em += metric_max_over_ground_truths(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
fa += metric_max_over_ground_truths(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase : Union[str, Any] = 1_0_0.0 * em / total
UpperCAmelCase : Any = 1_0_0.0 * fa / total
logger.info(f"""F1: {fa:.2f}""" )
logger.info(f"""EM: {em:.2f}""" )
def snake_case_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] ) -> Optional[Any]:
UpperCAmelCase : Union[str, Any] = args.k
UpperCAmelCase : Tuple = [line.strip() for line in open(_lowerCAmelCase , '''r''' ).readlines()]
UpperCAmelCase : Tuple = [line.strip() for line in open(_lowerCAmelCase , '''r''' ).readlines()]
UpperCAmelCase : Any = 0
for hypo, reference in zip(_lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase : Dict = set(hypo.split('''\t''' )[:k] )
UpperCAmelCase : Optional[Any] = set(reference.split('''\t''' ) )
total += 1
em += len(hypo_provenance & ref_provenance ) / k
UpperCAmelCase : str = 1_0_0.0 * em / total
logger.info(f"""Precision@{k}: {em: .2f}""" )
def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Dict ) -> Optional[int]:
def strip_title(_lowerCAmelCase : Optional[int] ):
if title.startswith('''"''' ):
UpperCAmelCase : Tuple = title[1:]
if title.endswith('''"''' ):
UpperCAmelCase : Optional[Any] = title[:-1]
return title
UpperCAmelCase : Union[str, Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
_lowerCAmelCase , return_tensors='''pt''' , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , )['''input_ids'''].to(args.device )
UpperCAmelCase : str = rag_model.rag.question_encoder(_lowerCAmelCase )
UpperCAmelCase : Union[str, Any] = question_enc_outputs[0]
UpperCAmelCase : Any = rag_model.retriever(
_lowerCAmelCase , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , )
UpperCAmelCase : int = rag_model.retriever.index.get_doc_dicts(result.doc_ids )
UpperCAmelCase : int = []
for docs in all_docs:
UpperCAmelCase : Optional[int] = [strip_title(_lowerCAmelCase ) for title in docs['''title''']]
provenance_strings.append('''\t'''.join(_lowerCAmelCase ) )
return provenance_strings
def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Dict ) -> List[str]:
with torch.no_grad():
UpperCAmelCase : Any = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
_lowerCAmelCase , return_tensors='''pt''' , padding=_lowerCAmelCase , truncation=_lowerCAmelCase )
UpperCAmelCase : Union[str, Any] = inputs_dict.input_ids.to(args.device )
UpperCAmelCase : Union[str, Any] = inputs_dict.attention_mask.to(args.device )
UpperCAmelCase : Optional[int] = rag_model.generate( # rag_model overwrites generate
_lowerCAmelCase , attention_mask=_lowerCAmelCase , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_lowerCAmelCase , num_return_sequences=1 , bad_words_ids=[[0, 0]] , )
UpperCAmelCase : str = rag_model.retriever.generator_tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase )
if args.print_predictions:
for q, a in zip(_lowerCAmelCase , _lowerCAmelCase ):
logger.info('''Q: {} - A: {}'''.format(_lowerCAmelCase , _lowerCAmelCase ) )
return answers
def snake_case_ ( ) -> List[Any]:
UpperCAmelCase : Any = argparse.ArgumentParser()
parser.add_argument(
'''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=_lowerCAmelCase , help=(
'''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the'''
''' model_name_or_path'''
) , )
parser.add_argument(
'''--index_name''' , default=_lowerCAmelCase , choices=['''exact''', '''compressed''', '''legacy'''] , type=_lowerCAmelCase , help='''RAG model retriever type''' , )
parser.add_argument(
'''--index_path''' , default=_lowerCAmelCase , type=_lowerCAmelCase , help='''Path to the retrieval index''' , )
parser.add_argument('''--n_docs''' , default=5 , type=_lowerCAmelCase , help='''Number of retrieved docs''' )
parser.add_argument(
'''--model_name_or_path''' , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , )
parser.add_argument(
'''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=_lowerCAmelCase , help=(
'''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates'''
''' precision@k.'''
) , )
parser.add_argument('''--k''' , default=1 , type=_lowerCAmelCase , help='''k for the precision@k calculation''' )
parser.add_argument(
'''--evaluation_set''' , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help='''Path to a file containing evaluation samples''' , )
parser.add_argument(
'''--gold_data_path''' , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help='''Path to a tab-separated file with gold samples''' , )
parser.add_argument(
'''--gold_data_mode''' , default='''qa''' , type=_lowerCAmelCase , choices=['''qa''', '''ans'''] , help=(
'''Format of the gold data file'''
'''qa - a single line in the following format: question [tab] answer_list'''
'''ans - a single line of the gold file contains the expected answer string'''
) , )
parser.add_argument(
'''--predictions_path''' , type=_lowerCAmelCase , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , )
parser.add_argument(
'''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , )
parser.add_argument(
'''--eval_batch_size''' , default=8 , type=_lowerCAmelCase , help='''Batch size per GPU/CPU for evaluation.''' , )
parser.add_argument(
'''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , )
parser.add_argument(
'''--num_beams''' , default=4 , type=_lowerCAmelCase , help='''Number of beams to be used when generating answers''' , )
parser.add_argument('''--min_length''' , default=1 , type=_lowerCAmelCase , help='''Min length of the generated answers''' )
parser.add_argument('''--max_length''' , default=50 , type=_lowerCAmelCase , help='''Max length of the generated answers''' )
parser.add_argument(
'''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , )
parser.add_argument(
'''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , )
UpperCAmelCase : Any = parser.parse_args()
UpperCAmelCase : str = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' )
return args
def snake_case_ ( _lowerCAmelCase : Union[str, Any] ) -> int:
UpperCAmelCase : int = {}
if args.model_type is None:
UpperCAmelCase : Union[str, Any] = infer_model_type(args.model_name_or_path )
assert args.model_type is not None
if args.model_type.startswith('''rag''' ):
UpperCAmelCase : Optional[Any] = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration
UpperCAmelCase : Dict = args.n_docs
if args.index_name is not None:
UpperCAmelCase : Dict = args.index_name
if args.index_path is not None:
UpperCAmelCase : str = args.index_path
else:
UpperCAmelCase : int = BartForConditionalGeneration
UpperCAmelCase : Optional[Any] = (
[f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()]
if args.eval_all_checkpoints
else [args.model_name_or_path]
)
logger.info('''Evaluate the following checkpoints: %s''' , _lowerCAmelCase )
UpperCAmelCase : str = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k
UpperCAmelCase : Any = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval
for checkpoint in checkpoints:
if os.path.exists(args.predictions_path ) and (not args.recalculate):
logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) )
score_fn(_lowerCAmelCase , args.predictions_path , args.gold_data_path )
continue
logger.info('''***** Running evaluation for {} *****'''.format(_lowerCAmelCase ) )
logger.info(''' Batch size = %d''' , args.eval_batch_size )
logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) )
if args.model_type.startswith('''rag''' ):
UpperCAmelCase : int = RagRetriever.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase )
UpperCAmelCase : Optional[Any] = model_class.from_pretrained(_lowerCAmelCase , retriever=_lowerCAmelCase , **_lowerCAmelCase )
model.retriever.init_retrieval()
else:
UpperCAmelCase : Union[str, Any] = model_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase )
model.to(args.device )
with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file:
UpperCAmelCase : List[str] = []
for line in tqdm(_lowerCAmelCase ):
questions.append(line.strip() )
if len(_lowerCAmelCase ) == args.eval_batch_size:
UpperCAmelCase : Any = evaluate_batch_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
preds_file.write('''\n'''.join(_lowerCAmelCase ) + '''\n''' )
preds_file.flush()
UpperCAmelCase : str = []
if len(_lowerCAmelCase ) > 0:
UpperCAmelCase : Optional[int] = evaluate_batch_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
preds_file.write('''\n'''.join(_lowerCAmelCase ) )
preds_file.flush()
score_fn(_lowerCAmelCase , args.predictions_path , args.gold_data_path )
if __name__ == "__main__":
UpperCamelCase__: List[str] = get_args()
main(args)
| 23 |
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available
from . import BaseDiffusersCLICommand
def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
return EnvironmentCommand()
class A ( _UpperCAmelCase ):
"""simple docstring"""
@staticmethod
def snake_case__ ( lowercase_ : ArgumentParser )-> Dict:
'''simple docstring'''
A__ = parser.add_parser('env' )
download_parser.set_defaults(func=lowercase_ )
def snake_case__ ( self : List[Any] )-> List[str]:
'''simple docstring'''
A__ = huggingface_hub.__version__
A__ = 'not installed'
A__ = 'NA'
if is_torch_available():
import torch
A__ = torch.__version__
A__ = torch.cuda.is_available()
A__ = 'not installed'
if is_transformers_available():
import transformers
A__ = transformers.__version__
A__ = 'not installed'
if is_accelerate_available():
import accelerate
A__ = accelerate.__version__
A__ = 'not installed'
if is_xformers_available():
import xformers
A__ = xformers.__version__
A__ = {
'`diffusers` version': version,
'Platform': platform.platform(),
'Python version': platform.python_version(),
'PyTorch version (GPU?)': F'{pt_version} ({pt_cuda_available})',
'Huggingface_hub version': hub_version,
'Transformers version': transformers_version,
'Accelerate version': accelerate_version,
'xFormers version': xformers_version,
'Using GPU in script?': '<fill in>',
'Using distributed or parallel set-up in script?': '<fill in>',
}
print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' )
print(self.format_dict(lowercase_ ) )
return info
@staticmethod
def snake_case__ ( lowercase_ : int )-> Optional[Any]:
'''simple docstring'''
return "\n".join([F'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
| 7 | 0 |
def lowerCamelCase__ ( snake_case_ : int = 100 ) -> int:
__snake_case = n * (n + 1) * (2 * n + 1) / 6
__snake_case = (n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares )
if __name__ == "__main__":
print(F'{solution() = }')
| 24 |
import unittest
from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
lowercase_ = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
@require_tokenizers
class A ( _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = ReformerTokenizer
lowerCamelCase = ReformerTokenizerFast
lowerCamelCase = True
lowerCamelCase = False
lowerCamelCase = True
def snake_case__ ( self : Any )-> str:
'''simple docstring'''
super().setUp()
A__ = ReformerTokenizer(lowercase_,keep_accents=lowercase_ )
tokenizer.save_pretrained(self.tmpdirname )
def snake_case__ ( self : Optional[int] )-> Optional[int]:
'''simple docstring'''
A__ = '<s>'
A__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ),lowercase_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ),lowercase_ )
def snake_case__ ( self : str )-> Tuple:
'''simple docstring'''
A__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0],'<unk>' )
self.assertEqual(vocab_keys[1],'<s>' )
self.assertEqual(vocab_keys[-1],'j' )
self.assertEqual(len(lowercase_ ),1_0_0_0 )
def snake_case__ ( self : Dict )-> Dict:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size,1_0_0_0 )
def snake_case__ ( self : Dict )-> List[str]:
'''simple docstring'''
if not self.test_rust_tokenizer:
return
A__ = self.get_tokenizer()
A__ = self.get_rust_tokenizer()
A__ = 'I was born in 92000, and this is falsé.'
A__ = tokenizer.tokenize(lowercase_ )
A__ = rust_tokenizer.tokenize(lowercase_ )
self.assertListEqual(lowercase_,lowercase_ )
A__ = tokenizer.encode(lowercase_,add_special_tokens=lowercase_ )
A__ = rust_tokenizer.encode(lowercase_,add_special_tokens=lowercase_ )
self.assertListEqual(lowercase_,lowercase_ )
A__ = self.get_rust_tokenizer()
A__ = tokenizer.encode(lowercase_ )
A__ = rust_tokenizer.encode(lowercase_ )
self.assertListEqual(lowercase_,lowercase_ )
def snake_case__ ( self : int,lowercase_ : Optional[int]=1_5 )-> Optional[Any]:
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
A__ = self.rust_tokenizer_class.from_pretrained(lowercase_,**lowercase_ )
# Simple input
A__ = 'This is a simple input'
A__ = ['This is a simple input 1', 'This is a simple input 2']
A__ = ('This is a simple input', 'This is a pair')
A__ = [
('This is a simple input 1', 'This is a simple input 2'),
('This is a simple pair 1', 'This is a simple pair 2'),
]
# Simple input tests
self.assertRaises(lowercase_,tokenizer_r.encode,lowercase_,max_length=lowercase_,padding='max_length' )
# Simple input
self.assertRaises(lowercase_,tokenizer_r.encode_plus,lowercase_,max_length=lowercase_,padding='max_length' )
# Simple input
self.assertRaises(
lowercase_,tokenizer_r.batch_encode_plus,lowercase_,max_length=lowercase_,padding='max_length',)
# Pair input
self.assertRaises(lowercase_,tokenizer_r.encode,lowercase_,max_length=lowercase_,padding='max_length' )
# Pair input
self.assertRaises(lowercase_,tokenizer_r.encode_plus,lowercase_,max_length=lowercase_,padding='max_length' )
# Pair input
self.assertRaises(
lowercase_,tokenizer_r.batch_encode_plus,lowercase_,max_length=lowercase_,padding='max_length',)
def snake_case__ ( self : List[Any] )-> Tuple:
'''simple docstring'''
pass
def snake_case__ ( self : Dict )-> str:
'''simple docstring'''
A__ = ReformerTokenizer(lowercase_,keep_accents=lowercase_ )
A__ = tokenizer.tokenize('This is a test' )
self.assertListEqual(lowercase_,['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowercase_ ),[2_8_5, 4_6, 1_0, 1_7_0, 3_8_2],)
A__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
lowercase_,[
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
],)
A__ = tokenizer.convert_tokens_to_ids(lowercase_ )
self.assertListEqual(
lowercase_,[8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4],)
A__ = tokenizer.convert_ids_to_tokens(lowercase_ )
self.assertListEqual(
lowercase_,[
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
],)
@cached_property
def snake_case__ ( self : Optional[int] )-> Any:
'''simple docstring'''
return ReformerTokenizer.from_pretrained('google/reformer-crime-and-punishment' )
@slow
def snake_case__ ( self : str )-> Tuple:
'''simple docstring'''
A__ = 'Hello World!'
A__ = [1_2_6, 3_2, 2_6_2, 1_5_2, 3_8, 7_2, 2_8_7]
self.assertListEqual(lowercase_,self.big_tokenizer.encode(lowercase_ ) )
@slow
def snake_case__ ( self : Optional[int] )-> str:
'''simple docstring'''
A__ = (
'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'
' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'
)
A__ = [
1_0_8,
2_6_5,
2_4,
1_1_1,
4,
2_5_8,
1_5_6,
3_5,
2_8,
2_7_5,
3,
2_5_9,
2_9_7,
2_6_0,
8_4,
4,
3_5,
1_1_0,
4_4,
8,
2_5_9,
9_1,
2_6_8,
2_1,
1_1,
2_0_9,
2_7_4,
1_0_9,
2_6_6,
2_7_7,
1_1_7,
8_6,
9_3,
3_1_5,
2_5_8,
2_7_8,
2_5_8,
2_7_7,
2_5_8,
0,
2_5_8,
2_8_8,
2_5_8,
3_1_9,
2_5_8,
0,
2_5_8,
0,
2_5_8,
0,
2_5_8,
0,
2_5_8,
2_8_7,
2_5_8,
3_1_5,
2_5_8,
2_8_9,
2_5_8,
2_7_8,
9_9,
2_6_9,
2_6_6,
2_6_2,
8,
2_5_9,
2_4_1,
4,
2_1_7,
2_3_0,
2_6_8,
2_6_6,
5_5,
1_6_8,
1_0_6,
7_5,
1_9_3,
2_6_6,
2_2_3,
2_7,
4_9,
2_6,
2_8_2,
2_5,
2_6_4,
2_9_9,
1_9,
2_6,
0,
2_5_8,
2_7_7,
1_1_7,
8_6,
9_3,
1_7_6,
1_8_3,
2_7_0,
1_1,
2_6_2,
4_2,
6_1,
2_6_5,
]
self.assertListEqual(lowercase_,self.big_tokenizer.encode(lowercase_ ) )
@require_torch
@slow
def snake_case__ ( self : int )-> Any:
'''simple docstring'''
import torch
from transformers import ReformerConfig, ReformerModel
# Build sequence
A__ = list(self.big_tokenizer.get_vocab().keys() )[:1_0]
A__ = ' '.join(lowercase_ )
A__ = self.big_tokenizer.encode_plus(lowercase_,return_tensors='pt' )
A__ = self.big_tokenizer.batch_encode_plus([sequence, sequence],return_tensors='pt' )
A__ = ReformerConfig()
# The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024)
A__ = encoded_sequence['input_ids'].shape
A__ = ReformerModel(lowercase_ )
# Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320)
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**lowercase_ )
model(**lowercase_ )
@slow
def snake_case__ ( self : int )-> Tuple:
'''simple docstring'''
A__ = {'input_ids': [[1_0_8, 2_6_5, 2_4, 1_1_1, 4, 2_5_8, 1_5_6, 7, 5_1, 2_7_9, 5_8, 7, 7_6, 2_5, 6_9, 2_7_8], [1_4_0, 2_4_3, 2_6_4, 1_3_4, 1_7, 2_6_7, 7_7, 2_6_3, 2_2, 2_6_2, 2_9_7, 2_5_8, 3_0_4, 1_7_7, 2_7_9, 2_6_6, 1_4, 8_9, 1_3, 3_5, 2_6_1, 2_9_9, 2_7_2, 1_3_7, 2_7_5, 2_7_8]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# This tokenizer does not know some characters like ")".
# That is the reason why we use very simple texts here.
# Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064
A__ = [
'This is a very simple sentence.',
'The quick brown fox jumps over the lazy dog.',
]
self.tokenizer_integration_test_util(
expected_encoding=lowercase_,model_name='google/reformer-crime-and-punishment',revision='0e6c3decb8211d49bf881013425dc8b0448b3f5a',padding=lowercase_,sequences=lowercase_,)
| 7 | 0 |
"""simple docstring"""
import logging
import os
import sys
from pathlib import Path
from unittest.mock import patch
from parameterized import parameterized
from run_eval import run_generate
from run_eval_search import run_search
from transformers.testing_utils import CaptureStdout, TestCasePlus, slow
from utils import ROUGE_KEYS
logging.basicConfig(level=logging.DEBUG)
UpperCAmelCase__ : List[Any] = logging.getLogger()
def lowercase_ ( _snake_case ,_snake_case ):
SCREAMING_SNAKE_CASE__ : Union[str, Any] = """\n""".join(_snake_case )
Path(_snake_case ).open("""w""" ).writelines(_snake_case )
UpperCAmelCase__ : Union[str, Any] = 'patrickvonplaten/t5-tiny-random'
UpperCAmelCase__ : Optional[int] = 'sshleifer/bart-tiny-random'
UpperCAmelCase__ : Dict = 'sshleifer/tiny-mbart'
UpperCAmelCase__ : int = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks
class lowerCAmelCase_ (a__ ):
"""simple docstring"""
def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source"""
SCREAMING_SNAKE_CASE__ : List[Any] = input_file_name.parent / """utest_output.txt"""
assert not output_file_name.exists()
SCREAMING_SNAKE_CASE__ : str = [""" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."""]
_dump_articles(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : Any = str(Path(self.get_auto_remove_tmp_dir() ) / """scores.json""" )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = """translation_en_to_de""" if model == T5_TINY else """summarization"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = F'''
run_eval_search.py
{model}
{input_file_name}
{output_file_name}
--score_path {score_path}
--task {task}
--num_beams 2
--length_penalty 2.0
'''.split()
with patch.object(SCREAMING_SNAKE_CASE__ , """argv""" , SCREAMING_SNAKE_CASE__ ):
run_generate()
assert Path(SCREAMING_SNAKE_CASE__ ).exists()
# os.remove(Path(output_file_name))
def __magic_name__ (self ) -> Dict:
"""simple docstring"""
self.run_eval_tester(SCREAMING_SNAKE_CASE__ )
@parameterized.expand([BART_TINY, MBART_TINY] )
@slow
def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Dict:
"""simple docstring"""
self.run_eval_tester(SCREAMING_SNAKE_CASE__ )
@parameterized.expand([T5_TINY, MBART_TINY] )
@slow
def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source"""
SCREAMING_SNAKE_CASE__ : int = input_file_name.parent / """utest_output.txt"""
assert not output_file_name.exists()
SCREAMING_SNAKE_CASE__ : Any = {
"""en""": ["""Machine learning is great, isn't it?""", """I like to eat bananas""", """Tomorrow is another great day!"""],
"""de""": [
"""Maschinelles Lernen ist großartig, oder?""",
"""Ich esse gerne Bananen""",
"""Morgen ist wieder ein toller Tag!""",
],
}
SCREAMING_SNAKE_CASE__ : List[str] = Path(self.get_auto_remove_tmp_dir() )
SCREAMING_SNAKE_CASE__ : Tuple = str(tmp_dir / """scores.json""" )
SCREAMING_SNAKE_CASE__ : Tuple = str(tmp_dir / """val.target""" )
_dump_articles(SCREAMING_SNAKE_CASE__ , text["""en"""] )
_dump_articles(SCREAMING_SNAKE_CASE__ , text["""de"""] )
SCREAMING_SNAKE_CASE__ : str = """translation_en_to_de""" if model == T5_TINY else """summarization"""
SCREAMING_SNAKE_CASE__ : List[Any] = F'''
run_eval_search.py
{model}
{str(SCREAMING_SNAKE_CASE__ )}
{str(SCREAMING_SNAKE_CASE__ )}
--score_path {score_path}
--reference_path {reference_path}
--task {task}
'''.split()
testargs.extend(["""--search""", """num_beams=1:2 length_penalty=0.9:1.0"""] )
with patch.object(SCREAMING_SNAKE_CASE__ , """argv""" , SCREAMING_SNAKE_CASE__ ):
with CaptureStdout() as cs:
run_search()
SCREAMING_SNAKE_CASE__ : Optional[Any] = [""" num_beams | length_penalty""", model, """Best score args"""]
SCREAMING_SNAKE_CASE__ : Any = ["""Info"""]
if "translation" in task:
expected_strings.append("""bleu""" )
else:
expected_strings.extend(SCREAMING_SNAKE_CASE__ )
for w in expected_strings:
assert w in cs.out
for w in un_expected_strings:
assert w not in cs.out
assert Path(SCREAMING_SNAKE_CASE__ ).exists()
os.remove(Path(SCREAMING_SNAKE_CASE__ ) )
| 25 |
def _snake_case( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , ) -> float:
'''simple docstring'''
A__ = [redshift, radiation_density, matter_density, dark_energy]
if any(p < 0 for p in parameters ):
raise ValueError('All input parameters must be positive' )
if any(p > 1 for p in parameters[1:4] ):
raise ValueError('Relative densities cannot be greater than one' )
else:
A__ = 1 - (matter_density + radiation_density + dark_energy)
A__ = (
radiation_density * (redshift + 1) ** 4
+ matter_density * (redshift + 1) ** 3
+ curvature * (redshift + 1) ** 2
+ dark_energy
)
A__ = hubble_constant * e_a ** (1 / 2)
return hubble
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
# demo LCDM approximation
lowercase_ = 0.3
print(
hubble_parameter(
hubble_constant=68.3,
radiation_density=1e-4,
matter_density=matter_density,
dark_energy=1 - matter_density,
redshift=0,
)
)
| 7 | 0 |
from math import factorial
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
if successes > trials:
raise ValueError("""successes must be lower or equal to trials""" )
if trials < 0 or successes < 0:
raise ValueError("""the function is defined for non-negative integers""" )
if not isinstance(snake_case_,snake_case_ ) or not isinstance(snake_case_,snake_case_ ):
raise ValueError("""the function is defined for non-negative integers""" )
if not 0 < prob < 1:
raise ValueError("""prob has to be in range of 1 - 0""" )
_A : Union[str, Any] = (prob**successes) * ((1 - prob) ** (trials - successes))
# Calculate the binomial coefficient: n! / k!(n-k)!
_A : Any = float(factorial(snake_case_ ) )
coefficient /= factorial(snake_case_ ) * factorial(trials - successes )
return probability * coefficient
if __name__ == "__main__":
from doctest import testmod
testmod()
print("Probability of 2 successes out of 4 trails")
print("with probability of 0.75 is:", end=" ")
print(binomial_distribution(2, 4, 0.7_5))
| 26 |
from typing import Union
import fire
import torch
from tqdm import tqdm
def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str = "cpu" , SCREAMING_SNAKE_CASE__ : Union[str, None] = None ) -> None:
'''simple docstring'''
A__ = torch.load(SCREAMING_SNAKE_CASE__ , map_location=SCREAMING_SNAKE_CASE__ )
for k, v in tqdm(state_dict.items() ):
if not isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ):
raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' )
A__ = v.half()
if save_path is None: # overwrite src_path
A__ = src_path
torch.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
fire.Fire(convert)
| 7 | 0 |
'''simple docstring'''
import math
import os
import sys
def lowerCamelCase (_SCREAMING_SNAKE_CASE : str ):
__a : str = ''
try:
with open(_SCREAMING_SNAKE_CASE , 'rb' ) as binary_file:
__a : str = binary_file.read()
for dat in data:
__a : str = F"""{dat:08b}"""
result += curr_byte
return result
except OSError:
print('File not accessible' )
sys.exit()
def lowerCamelCase (_SCREAMING_SNAKE_CASE : dict[str, str] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str ):
lexicon.pop(_SCREAMING_SNAKE_CASE )
__a : Tuple = last_match_id
if math.loga(_SCREAMING_SNAKE_CASE ).is_integer():
for curr_key in lexicon:
__a : List[Any] = '0' + lexicon[curr_key]
__a : Optional[Any] = bin(_SCREAMING_SNAKE_CASE )[2:]
def lowerCamelCase (_SCREAMING_SNAKE_CASE : str ):
__a : List[Any] = {'0': '0', '1': '1'}
__a , __a : Union[str, Any] = '', ''
__a : Dict = len(_SCREAMING_SNAKE_CASE )
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
__a : Optional[int] = lexicon[curr_string]
result += last_match_id
add_key_to_lexicon(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
index += 1
__a : List[Any] = ''
while curr_string != "" and curr_string not in lexicon:
curr_string += "0"
if curr_string != "":
__a : List[Any] = lexicon[curr_string]
result += last_match_id
return result
def lowerCamelCase (_SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ):
__a : Any = os.path.getsize(_SCREAMING_SNAKE_CASE )
__a : int = bin(_SCREAMING_SNAKE_CASE )[2:]
__a : Dict = len(_SCREAMING_SNAKE_CASE )
return "0" * (length_length - 1) + file_length_binary + compressed
def lowerCamelCase (_SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ):
__a : Any = 8
try:
with open(_SCREAMING_SNAKE_CASE , 'wb' ) as opened_file:
__a : Optional[int] = [
to_write[i : i + byte_length]
for i in range(0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append('10000000' )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array:
opened_file.write(int(_SCREAMING_SNAKE_CASE , 2 ).to_bytes(1 , byteorder='big' ) )
except OSError:
print('File not accessible' )
sys.exit()
def lowerCamelCase (_SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ):
__a : List[str] = read_file_binary(_SCREAMING_SNAKE_CASE )
__a : Tuple = compress_data(_SCREAMING_SNAKE_CASE )
__a : Union[str, Any] = add_file_length(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
write_file_binary(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 27 |
import os
# Precomputes a list of the 100 first triangular numbers
lowercase_ = [int(0.5 * n * (n + 1)) for n in range(1, 101)]
def _snake_case( ) -> int:
'''simple docstring'''
A__ = os.path.dirname(os.path.realpath(SCREAMING_SNAKE_CASE__ ) )
A__ = os.path.join(SCREAMING_SNAKE_CASE__ , 'words.txt' )
A__ = ''
with open(SCREAMING_SNAKE_CASE__ ) as f:
A__ = f.readline()
A__ = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )]
A__ = [
word
for word in [sum(ord(SCREAMING_SNAKE_CASE__ ) - 64 for x in word ) for word in words]
if word in TRIANGULAR_NUMBERS
]
return len(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
print(solution())
| 7 | 0 |
'''simple docstring'''
_lowerCamelCase : Optional[Any] = 9.8_06_65
def __lowerCamelCase ( A__ , A__ , A__ = g ) -> float:
"""simple docstring"""
if fluid_density <= 0:
raise ValueError('Impossible fluid density' )
if volume < 0:
raise ValueError('Impossible Object volume' )
if gravity <= 0:
raise ValueError('Impossible Gravity' )
return fluid_density * gravity * volume
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
| 28 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionAttendAndExcitePipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_numpy, skip_mps, slow
from diffusers.utils.testing_utils import require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
lowercase_ = False
@skip_mps
class A ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = StableDiffusionAttendAndExcitePipeline
lowerCamelCase = False
lowerCamelCase = TEXT_TO_IMAGE_PARAMS
lowerCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS.union({'token_indices'} )
lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS
lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS
@classmethod
def snake_case__ ( cls : Any )-> Optional[Any]:
'''simple docstring'''
super().setUpClass()
torch.use_deterministic_algorithms(lowercase_ )
@classmethod
def snake_case__ ( cls : Optional[Any] )-> Dict:
'''simple docstring'''
super().tearDownClass()
torch.use_deterministic_algorithms(lowercase_ )
def snake_case__ ( self : List[str] )-> int:
'''simple docstring'''
torch.manual_seed(0 )
A__ = UNetaDConditionModel(
block_out_channels=(3_2, 6_4),layers_per_block=1,sample_size=3_2,in_channels=4,out_channels=4,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'),up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'),cross_attention_dim=3_2,attention_head_dim=(2, 4),use_linear_projection=lowercase_,)
A__ = DDIMScheduler(
beta_start=0.00_085,beta_end=0.012,beta_schedule='scaled_linear',clip_sample=lowercase_,set_alpha_to_one=lowercase_,)
torch.manual_seed(0 )
A__ = AutoencoderKL(
block_out_channels=[3_2, 6_4],in_channels=3,out_channels=3,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'],up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'],latent_channels=4,sample_size=1_2_8,)
torch.manual_seed(0 )
A__ = CLIPTextConfig(
bos_token_id=0,eos_token_id=2,hidden_size=3_2,intermediate_size=3_7,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1_0_0_0,hidden_act='gelu',projection_dim=5_1_2,)
A__ = CLIPTextModel(lowercase_ )
A__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
A__ = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def snake_case__ ( self : Tuple,lowercase_ : str,lowercase_ : List[Any]=0 )-> int:
'''simple docstring'''
if str(lowercase_ ).startswith('mps' ):
A__ = torch.manual_seed(lowercase_ )
else:
A__ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
A__ = A__ = {
'prompt': 'a cat and a frog',
'token_indices': [2, 5],
'generator': generator,
'num_inference_steps': 1,
'guidance_scale': 6.0,
'output_type': 'numpy',
'max_iter_to_alter': 2,
'thresholds': {0: 0.7},
}
return inputs
def snake_case__ ( self : List[str] )-> Optional[Any]:
'''simple docstring'''
A__ = 'cpu'
A__ = self.get_dummy_components()
A__ = self.pipeline_class(**lowercase_ )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
A__ = self.get_dummy_inputs(lowercase_ )
A__ = pipe(**lowercase_ ).images
A__ = image[0, -3:, -3:, -1]
self.assertEqual(image.shape,(1, 6_4, 6_4, 3) )
A__ = np.array(
[0.63_905_364, 0.62_897_307, 0.48_599_017, 0.5_133_624, 0.5_550_048, 0.45_769_516, 0.50_326_973, 0.5_023_139, 0.45_384_496] )
A__ = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(lowercase_,1E-3 )
def snake_case__ ( self : str )-> Optional[Any]:
'''simple docstring'''
super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 )
def snake_case__ ( self : str )-> int:
'''simple docstring'''
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def snake_case__ ( self : str )-> Optional[int]:
'''simple docstring'''
self._test_inference_batch_single_identical(batch_size=2,expected_max_diff=7E-4 )
def snake_case__ ( self : Optional[Any] )-> int:
'''simple docstring'''
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 )
def snake_case__ ( self : Union[str, Any] )-> str:
'''simple docstring'''
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 )
def snake_case__ ( self : Dict )-> Any:
'''simple docstring'''
super().test_save_load_local(expected_max_difference=5E-4 )
def snake_case__ ( self : Dict )-> List[str]:
'''simple docstring'''
super().test_save_load_optional_components(expected_max_difference=4E-4 )
@require_torch_gpu
@slow
class A ( unittest.TestCase ):
"""simple docstring"""
@classmethod
def snake_case__ ( cls : Any )-> Optional[int]:
'''simple docstring'''
super().setUpClass()
torch.use_deterministic_algorithms(lowercase_ )
@classmethod
def snake_case__ ( cls : int )-> List[Any]:
'''simple docstring'''
super().tearDownClass()
torch.use_deterministic_algorithms(lowercase_ )
def snake_case__ ( self : List[Any] )-> Any:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case__ ( self : Union[str, Any] )-> List[Any]:
'''simple docstring'''
A__ = torch.manual_seed(5_1 )
A__ = StableDiffusionAttendAndExcitePipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4',safety_checker=lowercase_,torch_dtype=torch.floataa )
pipe.to('cuda' )
A__ = 'a painting of an elephant with glasses'
A__ = [5, 7]
A__ = pipe(
prompt=lowercase_,token_indices=lowercase_,guidance_scale=7.5,generator=lowercase_,num_inference_steps=5,max_iter_to_alter=5,output_type='numpy',).images[0]
A__ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' )
assert np.abs((expected_image - image).max() ) < 5E-1
| 7 | 0 |
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import BatchEncoding, MarianTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available
if is_sentencepiece_available():
from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json
from ...test_tokenization_common import TokenizerTesterMixin
__UpperCAmelCase = get_tests_dir('fixtures/test_sentencepiece.model')
__UpperCAmelCase = {'target_lang': 'fi', 'source_lang': 'en'}
__UpperCAmelCase = '>>zh<<'
__UpperCAmelCase = 'Helsinki-NLP/'
if is_torch_available():
__UpperCAmelCase = 'pt'
elif is_tf_available():
__UpperCAmelCase = 'tf'
else:
__UpperCAmelCase = 'jax'
@require_sentencepiece
class lowerCamelCase (_snake_case , unittest.TestCase ):
'''simple docstring'''
_snake_case : Any = MarianTokenizer
_snake_case : Union[str, Any] = False
_snake_case : Optional[Any] = True
def __UpperCAmelCase ( self ) -> Optional[int]:
super().setUp()
UpperCAmelCase_ : List[Any] = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>']
UpperCAmelCase_ : str = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase ) ) ) )
UpperCAmelCase_ : Any = Path(self.tmpdirname )
save_json(_UpperCamelCase , save_dir / VOCAB_FILES_NAMES['vocab'] )
save_json(_UpperCamelCase , save_dir / VOCAB_FILES_NAMES['tokenizer_config_file'] )
if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists():
copyfile(_UpperCamelCase , save_dir / VOCAB_FILES_NAMES['source_spm'] )
copyfile(_UpperCamelCase , save_dir / VOCAB_FILES_NAMES['target_spm'] )
UpperCAmelCase_ : Optional[int] = MarianTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def __UpperCAmelCase ( self , **_UpperCamelCase ) -> MarianTokenizer:
return MarianTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase )
def __UpperCAmelCase ( self , _UpperCamelCase ) -> Dict:
return (
"This is a test",
"This is a test",
)
def __UpperCAmelCase ( self ) -> Dict:
UpperCAmelCase_ : int = '</s>'
UpperCAmelCase_ : List[str] = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCamelCase ) , _UpperCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCamelCase ) , _UpperCamelCase )
def __UpperCAmelCase ( self ) -> Union[str, Any]:
UpperCAmelCase_ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '</s>' )
self.assertEqual(vocab_keys[1] , '<unk>' )
self.assertEqual(vocab_keys[-1] , '<pad>' )
self.assertEqual(len(_UpperCamelCase ) , 9 )
def __UpperCAmelCase ( self ) -> Optional[Any]:
self.assertEqual(self.get_tokenizer().vocab_size , 9 )
def __UpperCAmelCase ( self ) -> List[Any]:
UpperCAmelCase_ : int = MarianTokenizer.from_pretrained(f"{ORG_NAME}opus-mt-en-de" )
UpperCAmelCase_ : Tuple = en_de_tokenizer(['I am a small frog'] , return_tensors=_UpperCamelCase )
self.assertIsInstance(_UpperCamelCase , _UpperCamelCase )
UpperCAmelCase_ : Any = [3_8, 1_2_1, 1_4, 6_9_7, 3_8_8_4_8, 0]
self.assertListEqual(_UpperCamelCase , batch.input_ids[0] )
UpperCAmelCase_ : Optional[int] = tempfile.mkdtemp()
en_de_tokenizer.save_pretrained(_UpperCamelCase )
UpperCAmelCase_ : Tuple = [x.name for x in Path(_UpperCamelCase ).glob('*' )]
self.assertIn('source.spm' , _UpperCamelCase )
MarianTokenizer.from_pretrained(_UpperCamelCase )
def __UpperCAmelCase ( self ) -> List[Any]:
UpperCAmelCase_ : List[Any] = self.get_tokenizer()
UpperCAmelCase_ : int = tok(
['I am a small frog' * 1_0_0_0, 'I am a small frog'] , padding=_UpperCamelCase , truncation=_UpperCamelCase , return_tensors=_UpperCamelCase )
self.assertIsInstance(_UpperCamelCase , _UpperCamelCase )
self.assertEqual(batch.input_ids.shape , (2, 5_1_2) )
def __UpperCAmelCase ( self ) -> str:
UpperCAmelCase_ : Optional[Any] = self.get_tokenizer()
UpperCAmelCase_ : Any = tok(['I am a tiny frog', 'I am a small frog'] , padding=_UpperCamelCase , return_tensors=_UpperCamelCase )
self.assertIsInstance(_UpperCamelCase , _UpperCamelCase )
self.assertEqual(batch_smaller.input_ids.shape , (2, 1_0) )
@slow
def __UpperCAmelCase ( self ) -> Optional[Any]:
# fmt: off
UpperCAmelCase_ : Any = {'input_ids': [[4_3_4_9_5, 4_6_2, 2_0, 4_2_1_6_4, 1_3_6_9, 5_2, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 7_4_9_1, 3_8_9_9_9, 6, 8, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 4_6_6_9, 3_7_8_6_7, 1_3, 7_5_2_5, 2_7, 1_5_9_3, 9_8_8, 1_3, 3_3_9_7_2, 7_0_2_9, 6, 2_0, 8_2_5_1, 3_8_3, 2, 2_7_0, 5_8_6_6, 3_7_8_8, 2, 2_3_5_3, 8_2_5_1, 1_2_3_3_8, 2, 1_3_9_5_8, 3_8_7, 2, 3_6_2_9, 6_9_5_3, 1_8_8, 2_9_0_0, 2, 1_3_9_5_8, 8_0_1_1, 1_1_5_0_1, 2_3, 8_4_6_0, 4_0_7_3, 3_4_0_0_9, 2_0, 4_3_5, 1_1_4_3_9, 2_7, 8, 8_4_6_0, 4_0_7_3, 6_0_0_4, 2_0, 9_9_8_8, 3_7_5, 2_7, 3_3, 2_6_6, 1_9_4_5, 1_0_7_6, 1_3_5_0, 3_7_8_6_7, 3_2_8_8, 5, 5_7_7, 1_0_7_6, 4_3_7_4, 8, 5_0_8_2, 5, 2_6_4_5_3, 2_5_7, 5_5_6, 4_0_3, 2, 2_4_2, 1_3_2, 3_8_3, 3_1_6, 4_9_2, 8, 1_0_7_6_7, 6, 3_1_6, 3_0_4, 4_2_3_9, 3, 0], [1_4_8, 1_5_7_2_2, 1_9, 1_8_3_9, 1_2, 1_3_5_0, 1_3, 2_2_3_2_7, 5_0_8_2, 5_4_1_8, 4_7_5_6_7, 3_5_9_3_8, 5_9, 3_1_8, 1_9_5_5_2, 1_0_8, 2_1_8_3, 5_4, 1_4_9_7_6, 4_8_3_5, 3_2, 5_4_7, 1_1_1_4, 8, 3_1_5, 2_4_1_7, 5, 9_2, 1_9_0_8_8, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0], [3_6, 6_3_9_5, 1_2_5_7_0, 3_9_1_4_7, 1_1_5_9_7, 6, 2_6_6, 4, 4_5_4_0_5, 7_2_9_6, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCamelCase , model_name='Helsinki-NLP/opus-mt-en-de' , revision='1a8c2263da11e68e50938f97e10cd57820bd504c' , decode_kwargs={'use_source_tokenizer': True} , )
def __UpperCAmelCase ( self ) -> Union[str, Any]:
UpperCAmelCase_ : Optional[Any] = MarianTokenizer.from_pretrained('hf-internal-testing/test-marian-two-vocabs' )
UpperCAmelCase_ : Optional[int] = 'Tämä on testi'
UpperCAmelCase_ : str = 'This is a test'
UpperCAmelCase_ : Any = [7_6, 7, 2_0_4_7, 2]
UpperCAmelCase_ : List[str] = [6_9, 1_2, 1_1, 9_4_0, 2]
UpperCAmelCase_ : Any = tokenizer(_UpperCamelCase ).input_ids
self.assertListEqual(_UpperCamelCase , _UpperCamelCase )
UpperCAmelCase_ : Optional[int] = tokenizer(text_target=_UpperCamelCase ).input_ids
self.assertListEqual(_UpperCamelCase , _UpperCamelCase )
UpperCAmelCase_ : str = tokenizer.decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase )
self.assertEqual(_UpperCamelCase , _UpperCamelCase )
| 29 |
import argparse
from pathlib import Path
import torch
from packaging import version
from torch.onnx import export
from diffusers import AutoencoderKL
lowercase_ = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11")
def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : tuple , SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , ) -> Union[str, Any]:
'''simple docstring'''
output_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
if is_torch_less_than_1_11:
export(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE__ , output_names=SCREAMING_SNAKE_CASE__ , dynamic_axes=SCREAMING_SNAKE_CASE__ , do_constant_folding=SCREAMING_SNAKE_CASE__ , use_external_data_format=SCREAMING_SNAKE_CASE__ , enable_onnx_checker=SCREAMING_SNAKE_CASE__ , opset_version=SCREAMING_SNAKE_CASE__ , )
else:
export(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE__ , output_names=SCREAMING_SNAKE_CASE__ , dynamic_axes=SCREAMING_SNAKE_CASE__ , do_constant_folding=SCREAMING_SNAKE_CASE__ , opset_version=SCREAMING_SNAKE_CASE__ , )
@torch.no_grad()
def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : bool = False ) -> Tuple:
'''simple docstring'''
A__ = torch.floataa if fpaa else torch.floataa
if fpaa and torch.cuda.is_available():
A__ = 'cuda'
elif fpaa and not torch.cuda.is_available():
raise ValueError('`float16` model export is only supported on GPUs with CUDA' )
else:
A__ = 'cpu'
A__ = Path(SCREAMING_SNAKE_CASE__ )
# VAE DECODER
A__ = AutoencoderKL.from_pretrained(model_path + '/vae' )
A__ = vae_decoder.config.latent_channels
# forward only through the decoder part
A__ = vae_decoder.decode
onnx_export(
SCREAMING_SNAKE_CASE__ , model_args=(
torch.randn(1 , SCREAMING_SNAKE_CASE__ , 25 , 25 ).to(device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ ),
False,
) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={
'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'},
} , opset=SCREAMING_SNAKE_CASE__ , )
del vae_decoder
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
parser.add_argument(
"--model_path",
type=str,
required=True,
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).",
)
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--opset",
default=14,
type=int,
help="The version of the ONNX operator set to use.",
)
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode")
lowercase_ = parser.parse_args()
print(args.output_path)
convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
print("SD: Done: ONNX")
| 7 | 0 |
import numpy as np
import torch
from torch.utils.data import Dataset, IterableDataset
from ..utils.generic import ModelOutput
class lowercase__( UpperCAmelCase ):
"""simple docstring"""
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str ) -> Optional[int]:
lowercase_ = dataset
lowercase_ = process
lowercase_ = params
def __len__( self : Optional[Any] ) -> Tuple:
return len(self.dataset )
def __getitem__( self : str , SCREAMING_SNAKE_CASE_ : str ) -> Dict:
lowercase_ = self.dataset[i]
lowercase_ = self.process(SCREAMING_SNAKE_CASE_ , **self.params )
return processed
class lowercase__( UpperCAmelCase ):
"""simple docstring"""
def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str]=None ) -> int:
lowercase_ = loader
lowercase_ = infer
lowercase_ = params
if loader_batch_size == 1:
# Let's spare some time by deactivating altogether
lowercase_ = None
lowercase_ = loader_batch_size
# Internal bookkeeping
lowercase_ = None
lowercase_ = None
def __len__( self : Optional[int] ) -> int:
return len(self.loader )
def __iter__( self : List[str] ) -> int:
lowercase_ = iter(self.loader )
return self
def _lowercase ( self : Optional[Any] ) -> Dict:
if isinstance(self._loader_batch_data , torch.Tensor ):
# Batch data is simple tensor, just fetch the slice
lowercase_ = self._loader_batch_data[self._loader_batch_index]
else:
# Batch data is assumed to be BaseModelOutput (or dict)
lowercase_ = {}
for k, element in self._loader_batch_data.items():
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
# Convert ModelOutput to tuple first
lowercase_ = element.to_tuple()
if isinstance(element[0] , torch.Tensor ):
lowercase_ = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
lowercase_ = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
# Those are stored as lists of tensors so need specific unbatching.
if isinstance(element[0] , torch.Tensor ):
lowercase_ = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
lowercase_ = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if element is None:
# This can happen for optional data that get passed around
lowercase_ = None
elif isinstance(element[self._loader_batch_index] , torch.Tensor ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
lowercase_ = element[self._loader_batch_index].unsqueeze(0 )
elif isinstance(element[self._loader_batch_index] , np.ndarray ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
lowercase_ = np.expand_dims(element[self._loader_batch_index] , 0 )
else:
# This is typically a list, so no need to `unsqueeze`.
lowercase_ = element[self._loader_batch_index]
# Recreate the element by reusing the original class to make it look
# batch_size=1
lowercase_ = self._loader_batch_data.__class__(SCREAMING_SNAKE_CASE_ )
self._loader_batch_index += 1
return result
def _lowercase ( self : int ) -> Dict:
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
# We are currently unrolling a batch so we just need to return
# the current item within a batch
return self.loader_batch_item()
# We're out of items within a batch
lowercase_ = next(self.iterator )
lowercase_ = self.infer(SCREAMING_SNAKE_CASE_ , **self.params )
# We now have a batch of "inferred things".
if self.loader_batch_size is not None:
# Try to infer the size of the batch
if isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ):
lowercase_ = processed
else:
lowercase_ = list(processed.keys() )[0]
lowercase_ = processed[key]
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
lowercase_ = len(SCREAMING_SNAKE_CASE_ )
else:
lowercase_ = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
lowercase_ = observed_batch_size
# Setting internal index to unwrap the batch
lowercase_ = processed
lowercase_ = 0
return self.loader_batch_item()
else:
# We're not unrolling batches
return processed
class lowercase__( UpperCAmelCase ):
"""simple docstring"""
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any=None ) -> Union[str, Any]:
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def __iter__( self : Tuple ) -> Optional[Any]:
lowercase_ = iter(self.loader )
lowercase_ = None
return self
def _lowercase ( self : int ) -> str:
if self.subiterator is None:
lowercase_ = self.infer(next(self.iterator ) , **self.params )
try:
# Try to return next item
lowercase_ = next(self.subiterator )
except StopIteration:
# When a preprocess iterator ends, we can start lookig at the next item
# ChunkIterator will keep feeding until ALL elements of iterator
# all have created their subiterator and have been iterating against.
#
# Another way to look at it, is we're basically flattening lists of lists
# into a single list, but with generators
lowercase_ = self.infer(next(self.iterator ) , **self.params )
lowercase_ = next(self.subiterator )
return processed
class lowercase__( UpperCAmelCase ):
"""simple docstring"""
def __iter__( self : Tuple ) -> Any:
lowercase_ = iter(self.loader )
return self
def _lowercase ( self : List[Any] ) -> str:
# Extremely similar to PipelineIterator in its unpacking mechanism
# BUT, we have an extra required item which is the presence of `is_last`
# That is because everything is flattened by `PipelineChunkIterator` we
# need to keep track of how to regroup here in the original `process`
# boundaries so that `process` and `postprocess` see the same data.
# This iterator accumulates items (possibly while unbatching) until it
# its a `is_last` and then just passes it on to the caller.
lowercase_ = False
lowercase_ = []
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
while self._loader_batch_index < self.loader_batch_size:
lowercase_ = self.loader_batch_item()
lowercase_ = item.pop('''is_last''' )
accumulator.append(SCREAMING_SNAKE_CASE_ )
if is_last:
return accumulator
while not is_last:
lowercase_ = self.infer(next(self.iterator ) , **self.params )
if self.loader_batch_size is not None:
if isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ):
lowercase_ = processed
else:
lowercase_ = list(processed.keys() )[0]
lowercase_ = processed[key]
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
lowercase_ = len(SCREAMING_SNAKE_CASE_ )
else:
lowercase_ = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
lowercase_ = observed_batch_size
lowercase_ = processed
lowercase_ = 0
while self._loader_batch_index < self.loader_batch_size:
lowercase_ = self.loader_batch_item()
lowercase_ = item.pop('''is_last''' )
accumulator.append(SCREAMING_SNAKE_CASE_ )
if is_last:
return accumulator
else:
lowercase_ = processed
lowercase_ = item.pop('''is_last''' )
accumulator.append(SCREAMING_SNAKE_CASE_ )
return accumulator
class lowercase__( UpperCAmelCase ):
"""simple docstring"""
def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dataset , SCREAMING_SNAKE_CASE_ : str ) -> int:
lowercase_ = dataset
lowercase_ = key
def __len__( self : Optional[Any] ) -> Optional[int]:
return len(self.dataset )
def __getitem__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int ) -> Tuple:
return self.dataset[i][self.key]
class lowercase__( UpperCAmelCase ):
"""simple docstring"""
def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : Dataset , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ) -> Optional[int]:
lowercase_ = dataset
lowercase_ = keya
lowercase_ = keya
def __len__( self : Tuple ) -> List[str]:
return len(self.dataset )
def __getitem__( self : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Union[str, Any]:
return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
| 30 |
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class A ( _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase = (DPMSolverSinglestepScheduler,)
lowerCamelCase = (('num_inference_steps', 25),)
def snake_case__ ( self : Tuple,**lowercase_ : Dict )-> Optional[int]:
'''simple docstring'''
A__ = {
'num_train_timesteps': 1_0_0_0,
'beta_start': 0.0_001,
'beta_end': 0.02,
'beta_schedule': 'linear',
'solver_order': 2,
'prediction_type': 'epsilon',
'thresholding': False,
'sample_max_value': 1.0,
'algorithm_type': 'dpmsolver++',
'solver_type': 'midpoint',
'lambda_min_clipped': -float('inf' ),
'variance_type': None,
}
config.update(**lowercase_ )
return config
def snake_case__ ( self : str,lowercase_ : Optional[Any]=0,**lowercase_ : Any )-> List[Any]:
'''simple docstring'''
A__ = dict(self.forward_default_kwargs )
A__ = kwargs.pop('num_inference_steps',lowercase_ )
A__ = self.dummy_sample
A__ = 0.1 * sample
A__ = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
A__ = self.get_scheduler_config(**lowercase_ )
A__ = scheduler_class(**lowercase_ )
scheduler.set_timesteps(lowercase_ )
# copy over dummy past residuals
A__ = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowercase_ )
A__ = scheduler_class.from_pretrained(lowercase_ )
new_scheduler.set_timesteps(lowercase_ )
# copy over dummy past residuals
A__ = dummy_past_residuals[: new_scheduler.config.solver_order]
A__ , A__ = sample, sample
for t in range(lowercase_,time_step + scheduler.config.solver_order + 1 ):
A__ = scheduler.step(lowercase_,lowercase_,lowercase_,**lowercase_ ).prev_sample
A__ = new_scheduler.step(lowercase_,lowercase_,lowercase_,**lowercase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def snake_case__ ( self : List[str] )-> List[Any]:
'''simple docstring'''
pass
def snake_case__ ( self : Tuple,lowercase_ : Union[str, Any]=0,**lowercase_ : Union[str, Any] )-> Union[str, Any]:
'''simple docstring'''
A__ = dict(self.forward_default_kwargs )
A__ = kwargs.pop('num_inference_steps',lowercase_ )
A__ = self.dummy_sample
A__ = 0.1 * sample
A__ = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
A__ = self.get_scheduler_config()
A__ = scheduler_class(**lowercase_ )
scheduler.set_timesteps(lowercase_ )
# copy over dummy past residuals (must be after setting timesteps)
A__ = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowercase_ )
A__ = scheduler_class.from_pretrained(lowercase_ )
# copy over dummy past residuals
new_scheduler.set_timesteps(lowercase_ )
# copy over dummy past residual (must be after setting timesteps)
A__ = dummy_past_residuals[: new_scheduler.config.solver_order]
A__ = scheduler.step(lowercase_,lowercase_,lowercase_,**lowercase_ ).prev_sample
A__ = new_scheduler.step(lowercase_,lowercase_,lowercase_,**lowercase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def snake_case__ ( self : Optional[Any],lowercase_ : Optional[int]=None,**lowercase_ : int )-> int:
'''simple docstring'''
if scheduler is None:
A__ = self.scheduler_classes[0]
A__ = self.get_scheduler_config(**lowercase_ )
A__ = scheduler_class(**lowercase_ )
A__ = self.scheduler_classes[0]
A__ = self.get_scheduler_config(**lowercase_ )
A__ = scheduler_class(**lowercase_ )
A__ = 1_0
A__ = self.dummy_model()
A__ = self.dummy_sample_deter
scheduler.set_timesteps(lowercase_ )
for i, t in enumerate(scheduler.timesteps ):
A__ = model(lowercase_,lowercase_ )
A__ = scheduler.step(lowercase_,lowercase_,lowercase_ ).prev_sample
return sample
def snake_case__ ( self : Any )-> str:
'''simple docstring'''
A__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() )
A__ = 5_0
A__ = self.dummy_model()
A__ = self.dummy_sample_deter
scheduler.set_timesteps(lowercase_ )
# make sure that the first t is uneven
for i, t in enumerate(scheduler.timesteps[3:] ):
A__ = model(lowercase_,lowercase_ )
A__ = scheduler.step(lowercase_,lowercase_,lowercase_ ).prev_sample
A__ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_mean.item() - 0.2_574 ) < 1E-3
def snake_case__ ( self : Optional[Any] )-> List[Any]:
'''simple docstring'''
for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=lowercase_ )
def snake_case__ ( self : int )-> Optional[Any]:
'''simple docstring'''
A__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() )
A__ = self.full_loop(scheduler=lowercase_ )
A__ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_mean.item() - 0.2_791 ) < 1E-3
A__ = DEISMultistepScheduler.from_config(scheduler.config )
A__ = DPMSolverMultistepScheduler.from_config(scheduler.config )
A__ = UniPCMultistepScheduler.from_config(scheduler.config )
A__ = DPMSolverSinglestepScheduler.from_config(scheduler.config )
A__ = self.full_loop(scheduler=lowercase_ )
A__ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_mean.item() - 0.2_791 ) < 1E-3
def snake_case__ ( self : Tuple )-> Any:
'''simple docstring'''
self.check_over_configs(thresholding=lowercase_ )
for order in [1, 2, 3]:
for solver_type in ["midpoint", "heun"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=lowercase_,prediction_type=lowercase_,sample_max_value=lowercase_,algorithm_type='dpmsolver++',solver_order=lowercase_,solver_type=lowercase_,)
def snake_case__ ( self : List[Any] )-> int:
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowercase_ )
def snake_case__ ( self : Dict )-> List[Any]:
'''simple docstring'''
for algorithm_type in ["dpmsolver", "dpmsolver++"]:
for solver_type in ["midpoint", "heun"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=lowercase_,solver_type=lowercase_,prediction_type=lowercase_,algorithm_type=lowercase_,)
A__ = self.full_loop(
solver_order=lowercase_,solver_type=lowercase_,prediction_type=lowercase_,algorithm_type=lowercase_,)
assert not torch.isnan(lowercase_ ).any(), "Samples have nan numbers"
def snake_case__ ( self : Optional[int] )-> Tuple:
'''simple docstring'''
self.check_over_configs(lower_order_final=lowercase_ )
self.check_over_configs(lower_order_final=lowercase_ )
def snake_case__ ( self : Tuple )-> Optional[int]:
'''simple docstring'''
self.check_over_configs(lambda_min_clipped=-float('inf' ) )
self.check_over_configs(lambda_min_clipped=-5.1 )
def snake_case__ ( self : Optional[Any] )-> Tuple:
'''simple docstring'''
self.check_over_configs(variance_type=lowercase_ )
self.check_over_configs(variance_type='learned_range' )
def snake_case__ ( self : str )-> Any:
'''simple docstring'''
for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]:
self.check_over_forward(num_inference_steps=lowercase_,time_step=0 )
def snake_case__ ( self : Tuple )-> Tuple:
'''simple docstring'''
A__ = self.full_loop()
A__ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_mean.item() - 0.2_791 ) < 1E-3
def snake_case__ ( self : Any )-> Union[str, Any]:
'''simple docstring'''
A__ = self.full_loop(use_karras_sigmas=lowercase_ )
A__ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_mean.item() - 0.2_248 ) < 1E-3
def snake_case__ ( self : Union[str, Any] )-> Tuple:
'''simple docstring'''
A__ = self.full_loop(prediction_type='v_prediction' )
A__ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_mean.item() - 0.1_453 ) < 1E-3
def snake_case__ ( self : Tuple )-> int:
'''simple docstring'''
A__ = self.full_loop(prediction_type='v_prediction',use_karras_sigmas=lowercase_ )
A__ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_mean.item() - 0.0_649 ) < 1E-3
def snake_case__ ( self : List[Any] )-> int:
'''simple docstring'''
A__ = self.scheduler_classes[0]
A__ = self.get_scheduler_config(thresholding=lowercase_,dynamic_thresholding_ratio=0 )
A__ = scheduler_class(**lowercase_ )
A__ = 1_0
A__ = self.dummy_model()
A__ = self.dummy_sample_deter.half()
scheduler.set_timesteps(lowercase_ )
for i, t in enumerate(scheduler.timesteps ):
A__ = model(lowercase_,lowercase_ )
A__ = scheduler.step(lowercase_,lowercase_,lowercase_ ).prev_sample
assert sample.dtype == torch.floataa
| 7 | 0 |
'''simple docstring'''
import inspect
import os
import torch
from transformers import AutoModel
from transformers.testing_utils import mockenv_context
from transformers.trainer_utils import set_seed
import accelerate
from accelerate.accelerator import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils.testing import (
AccelerateTestCase,
TempDirTestCase,
execute_subprocess_async,
require_cuda,
require_fsdp,
require_multi_gpu,
slow,
)
from accelerate.utils.constants import (
FSDP_AUTO_WRAP_POLICY,
FSDP_BACKWARD_PREFETCH,
FSDP_SHARDING_STRATEGY,
FSDP_STATE_DICT_TYPE,
)
from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin
from accelerate.utils.other import patch_environment
set_seed(42)
__SCREAMING_SNAKE_CASE : Any = """bert-base-cased"""
__SCREAMING_SNAKE_CASE : Any = """fp16"""
__SCREAMING_SNAKE_CASE : Optional[Any] = """bf16"""
__SCREAMING_SNAKE_CASE : Dict = [FPaa, BFaa]
@require_fsdp
@require_cuda
class lowerCamelCase_ (snake_case__ ):
'''simple docstring'''
def _A ( self : Union[str, Any] ):
super().setUp()
_UpperCAmelCase : Optional[int] = dict(
ACCELERATE_USE_FSDP="true" , MASTER_ADDR="localhost" , MASTER_PORT="10999" , RANK="0" , LOCAL_RANK="0" , WORLD_SIZE="1" , )
def _A ( self : Optional[Any] ):
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
for i, strategy in enumerate(A ):
_UpperCAmelCase : Union[str, Any] = self.dist_env.copy()
_UpperCAmelCase : Any = F"""{i + 1}"""
_UpperCAmelCase : str = strategy
with mockenv_context(**A ):
_UpperCAmelCase : Any = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) )
def _A ( self : Any ):
from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch
for i, prefetch_policy in enumerate(A ):
_UpperCAmelCase : Union[str, Any] = self.dist_env.copy()
_UpperCAmelCase : Optional[Any] = prefetch_policy
with mockenv_context(**A ):
_UpperCAmelCase : Union[str, Any] = FullyShardedDataParallelPlugin()
if prefetch_policy == "NO_PREFETCH":
self.assertIsNone(fsdp_plugin.backward_prefetch )
else:
self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) )
def _A ( self : int ):
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
for i, state_dict_type in enumerate(A ):
_UpperCAmelCase : Optional[int] = self.dist_env.copy()
_UpperCAmelCase : Tuple = state_dict_type
with mockenv_context(**A ):
_UpperCAmelCase : List[str] = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) )
if state_dict_type == "FULL_STATE_DICT":
self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu )
self.assertTrue(fsdp_plugin.state_dict_config.ranka_only )
def _A ( self : List[str] ):
_UpperCAmelCase : List[str] = AutoModel.from_pretrained(A )
for policy in FSDP_AUTO_WRAP_POLICY:
_UpperCAmelCase : Any = self.dist_env.copy()
_UpperCAmelCase : Optional[int] = policy
if policy == "TRANSFORMER_BASED_WRAP":
_UpperCAmelCase : Optional[Any] = "BertLayer"
elif policy == "SIZE_BASED_WRAP":
_UpperCAmelCase : Any = "2000"
with mockenv_context(**A ):
_UpperCAmelCase : List[Any] = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(A )
if policy == "NO_WRAP":
self.assertIsNone(fsdp_plugin.auto_wrap_policy )
else:
self.assertIsNotNone(fsdp_plugin.auto_wrap_policy )
_UpperCAmelCase : Any = self.dist_env.copy()
_UpperCAmelCase : Tuple = "TRANSFORMER_BASED_WRAP"
_UpperCAmelCase : Tuple = "T5Layer"
with mockenv_context(**A ):
_UpperCAmelCase : Dict = FullyShardedDataParallelPlugin()
with self.assertRaises(A ) as cm:
fsdp_plugin.set_auto_wrap_policy(A )
self.assertTrue("Could not find the transformer layer class to wrap in the model." in str(cm.exception ) )
_UpperCAmelCase : str = self.dist_env.copy()
_UpperCAmelCase : Optional[int] = "SIZE_BASED_WRAP"
_UpperCAmelCase : List[str] = "0"
with mockenv_context(**A ):
_UpperCAmelCase : List[Any] = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(A )
self.assertIsNone(fsdp_plugin.auto_wrap_policy )
def _A ( self : List[str] ):
from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
for mp_dtype in dtypes:
_UpperCAmelCase : str = self.dist_env.copy()
_UpperCAmelCase : str = mp_dtype
with mockenv_context(**A ):
_UpperCAmelCase : int = Accelerator()
if mp_dtype == "fp16":
_UpperCAmelCase : Union[str, Any] = torch.floataa
elif mp_dtype == "bf16":
_UpperCAmelCase : Union[str, Any] = torch.bfloataa
_UpperCAmelCase : Optional[int] = MixedPrecision(param_dtype=A , reduce_dtype=A , buffer_dtype=A )
self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , A )
if mp_dtype == FPaa:
self.assertTrue(isinstance(accelerator.scaler , A ) )
elif mp_dtype == BFaa:
self.assertIsNone(accelerator.scaler )
AcceleratorState._reset_state(A )
def _A ( self : Optional[Any] ):
from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload
for flag in [True, False]:
_UpperCAmelCase : str = self.dist_env.copy()
_UpperCAmelCase : Dict = str(A ).lower()
with mockenv_context(**A ):
_UpperCAmelCase : Tuple = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=A ) )
@require_fsdp
@require_multi_gpu
@slow
class lowerCamelCase_ (snake_case__ ):
'''simple docstring'''
def _A ( self : List[Any] ):
super().setUp()
_UpperCAmelCase : Optional[int] = 0.82
_UpperCAmelCase : int = [
"fsdp_shard_grad_op_transformer_based_wrap",
"fsdp_full_shard_transformer_based_wrap",
]
_UpperCAmelCase : Tuple = {
"multi_gpu_fp16": 3200,
"fsdp_shard_grad_op_transformer_based_wrap_fp16": 2000,
"fsdp_full_shard_transformer_based_wrap_fp16": 1900,
# Disabling below test as it overwhelms the RAM memory usage
# on CI self-hosted runner leading to tests getting killed.
# "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang
}
_UpperCAmelCase : Tuple = 160
_UpperCAmelCase : Any = 160
_UpperCAmelCase : List[str] = inspect.getfile(accelerate.test_utils )
_UpperCAmelCase : int = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps"] )
def _A ( self : Optional[Any] ):
_UpperCAmelCase : Union[str, Any] = os.path.join(self.test_scripts_folder , "test_performance.py" )
_UpperCAmelCase : Optional[int] = ["accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp"]
for config in self.performance_configs:
_UpperCAmelCase : Tuple = cmd.copy()
for i, strategy in enumerate(A ):
if strategy.lower() in config:
cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" )
break
if "fp32" in config:
cmd_config.append("--mixed_precision=no" )
else:
cmd_config.append("--mixed_precision=fp16" )
if "cpu_offload" in config:
cmd_config.append("--fsdp_offload_params=True" )
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in config:
cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" )
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" )
elif policy == "SIZE_BASED_WRAP":
cmd_config.append("--fsdp_min_num_params=2000" )
cmd_config.extend(
[
self.test_file_path,
F"""--output_dir={self.tmpdir}""",
F"""--performance_lower_bound={self.performance_lower_bound}""",
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(A , env=os.environ.copy() )
def _A ( self : List[Any] ):
_UpperCAmelCase : Dict = os.path.join(self.test_scripts_folder , "test_checkpointing.py" )
_UpperCAmelCase : Union[str, Any] = [
"accelerate",
"launch",
"--num_processes=2",
"--num_machines=1",
"--machine_rank=0",
"--use_fsdp",
"--mixed_precision=fp16",
"--fsdp_transformer_layer_cls_to_wrap=BertLayer",
]
for i, strategy in enumerate(A ):
_UpperCAmelCase : Optional[Any] = cmd.copy()
cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" )
if strategy != "FULL_SHARD":
continue
_UpperCAmelCase : Optional[Any] = len(A )
for state_dict_type in FSDP_STATE_DICT_TYPE:
_UpperCAmelCase : Optional[Any] = cmd_config[:state_dict_config_index]
cmd_config.append(F"""--fsdp_state_dict_type={state_dict_type}""" )
cmd_config.extend(
[
self.test_file_path,
F"""--output_dir={self.tmpdir}""",
"--partial_train_epoch=1",
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(A , env=os.environ.copy() )
_UpperCAmelCase : Optional[int] = cmd_config[:-1]
_UpperCAmelCase : List[str] = os.path.join(self.tmpdir , "epoch_0" )
cmd_config.extend(
[
F"""--resume_from_checkpoint={resume_from_checkpoint}""",
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(A , env=os.environ.copy() )
def _A ( self : List[Any] ):
_UpperCAmelCase : str = os.path.join(self.test_scripts_folder , "test_peak_memory_usage.py" )
_UpperCAmelCase : Tuple = [
"accelerate",
"launch",
"--num_processes=2",
"--num_machines=1",
"--machine_rank=0",
]
for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items():
_UpperCAmelCase : str = cmd.copy()
if "fp16" in spec:
cmd_config.extend(["--mixed_precision=fp16"] )
else:
cmd_config.extend(["--mixed_precision=no"] )
if "multi_gpu" in spec:
continue
else:
cmd_config.extend(["--use_fsdp"] )
for i, strategy in enumerate(A ):
if strategy.lower() in spec:
cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" )
break
if "cpu_offload" in spec:
cmd_config.append("--fsdp_offload_params=True" )
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in spec:
cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" )
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" )
elif policy == "SIZE_BASED_WRAP":
cmd_config.append("--fsdp_min_num_params=2000" )
cmd_config.extend(
[
self.test_file_path,
F"""--output_dir={self.tmpdir}""",
F"""--peak_memory_upper_bound={peak_mem_upper_bound}""",
F"""--n_train={self.n_train}""",
F"""--n_val={self.n_val}""",
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(A , env=os.environ.copy() )
| 31 |
class A :
"""simple docstring"""
def __init__( self : Any,lowercase_ : Tuple,lowercase_ : Any,lowercase_ : List[str] )-> List[Any]:
'''simple docstring'''
A__ = name
A__ = value
A__ = weight
def __repr__( self : int )-> Tuple:
'''simple docstring'''
return F'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})'
def snake_case__ ( self : Any )-> str:
'''simple docstring'''
return self.value
def snake_case__ ( self : Any )-> Tuple:
'''simple docstring'''
return self.name
def snake_case__ ( self : Any )-> Dict:
'''simple docstring'''
return self.weight
def snake_case__ ( self : Union[str, Any] )-> Optional[Any]:
'''simple docstring'''
return self.value / self.weight
def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]:
'''simple docstring'''
A__ = []
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
menu.append(Things(name[i] , value[i] , weight[i] ) )
return menu
def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Any:
'''simple docstring'''
A__ = sorted(SCREAMING_SNAKE_CASE__ , key=SCREAMING_SNAKE_CASE__ , reverse=SCREAMING_SNAKE_CASE__ )
A__ = []
A__ , A__ = 0.0, 0.0
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
if (total_cost + items_copy[i].get_weight()) <= max_cost:
result.append(items_copy[i] )
total_cost += items_copy[i].get_weight()
total_value += items_copy[i].get_value()
return (result, total_value)
def _snake_case( ) -> Any:
'''simple docstring'''
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 | 0 |
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.31.0')
UpperCAmelCase_ : Dict = logging.getLogger(__name__)
@dataclass
class SCREAMING_SNAKE_CASE__ :
snake_case__ : str = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
snake_case__ : Optional[str] = field(
default=lowercase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
snake_case__ : Optional[str] = field(
default=lowercase__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
snake_case__ : Optional[str] = field(
default=lowercase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
snake_case__ : bool = field(
default=lowercase__ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , )
snake_case__ : str = field(
default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , )
snake_case__ : bool = field(
default=lowercase__ , metadata={
'''help''': (
'''Will use the token generated when running `huggingface-cli login` (necessary to use this script '''
'''with private models).'''
)
} , )
@dataclass
class SCREAMING_SNAKE_CASE__ :
snake_case__ : Optional[str] = field(default=lowercase__ , metadata={'''help''': '''The input training data file (a text file).'''} )
snake_case__ : Optional[str] = field(
default=lowercase__ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , )
snake_case__ : bool = field(
default=lowercase__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
snake_case__ : Optional[int] = field(
default=lowercase__ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , )
snake_case__ : Optional[int] = field(
default=lowercase__ , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. If passed, sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
snake_case__ : bool = field(
default=lowercase__ , metadata={
'''help''': (
'''Whether to pad all samples to the maximum sentence length. '''
'''If False, will pad the samples dynamically when batching to the maximum length in the batch. More '''
'''efficient on GPU but very bad for TPU.'''
)
} , )
snake_case__ : Optional[int] = field(
default=lowercase__ , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of training examples to this '''
'''value if set.'''
)
} , )
snake_case__ : Optional[int] = field(
default=lowercase__ , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of evaluation examples to this '''
'''value if set.'''
)
} , )
def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]:
if self.train_file is not None:
a_ : str = self.train_file.split('.' )[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
a_ : Dict = self.validation_file.split('.' )[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class SCREAMING_SNAKE_CASE__ :
snake_case__ : PreTrainedTokenizerBase
snake_case__ : Union[bool, str, PaddingStrategy] = True
snake_case__ : Optional[int] = None
snake_case__ : Optional[int] = None
def __call__( self : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> str:
a_ : str = 'label' if 'label' in features[0].keys() else 'labels'
a_ : Union[str, Any] = [feature.pop(SCREAMING_SNAKE_CASE__ ) for feature in features]
a_ : Any = len(SCREAMING_SNAKE_CASE__ )
a_ : int = len(features[0]['input_ids'] )
a_ : int = [
[{k: v[i] for k, v in feature.items()} for i in range(SCREAMING_SNAKE_CASE__ )] for feature in features
]
a_ : Optional[Any] = list(chain(*SCREAMING_SNAKE_CASE__ ) )
a_ : Tuple = self.tokenizer.pad(
SCREAMING_SNAKE_CASE__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , )
# Un-flatten
a_ : Union[str, Any] = {k: v.view(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , -1 ) for k, v in batch.items()}
# Add back labels
a_ : Dict = torch.tensor(SCREAMING_SNAKE_CASE__ , dtype=torch.intaa )
return batch
def SCREAMING_SNAKE_CASE_ ( ) -> str:
"""simple docstring"""
a_ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
a_ , a_ , a_ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
a_ , a_ , a_ : Optional[int] = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('run_swag' , __A , __A )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
a_ : Dict = training_args.get_process_log_level()
logger.setLevel(__A )
datasets.utils.logging.set_verbosity(__A )
transformers.utils.logging.set_verbosity(__A )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(F"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
a_ : str = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
a_ : int = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'Use --overwrite_output_dir to overcome.' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
a_ : List[str] = {}
if data_args.train_file is not None:
a_ : int = data_args.train_file
if data_args.validation_file is not None:
a_ : Dict = data_args.validation_file
a_ : Tuple = data_args.train_file.split('.' )[-1]
a_ : List[str] = load_dataset(
__A , data_files=__A , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
# Downloading and loading the swag dataset from the hub.
a_ : Tuple = load_dataset(
'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
a_ : List[Any] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
a_ : List[Any] = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
a_ : Optional[int] = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
a_ : int = [F"""ending{i}""" for i in range(4 )]
a_ : Dict = 'sent1'
a_ : Dict = 'sent2'
if data_args.max_seq_length is None:
a_ : int = tokenizer.model_max_length
if max_seq_length > 10_24:
logger.warning(
'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value'
' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can'
' override this default with `--block_size xxx`.' )
a_ : List[Any] = 10_24
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"""
F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" )
a_ : Union[str, Any] = min(data_args.max_seq_length , tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(__A : Tuple ):
a_ : Optional[int] = [[context] * 4 for context in examples[context_name]]
a_ : Union[str, Any] = examples[question_header_name]
a_ : Optional[Any] = [
[F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(__A )
]
# Flatten out
a_ : Optional[int] = list(chain(*__A ) )
a_ : Any = list(chain(*__A ) )
# Tokenize
a_ : Any = tokenizer(
__A , __A , truncation=__A , max_length=__A , padding='max_length' if data_args.pad_to_max_length else False , )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0 , len(__A ) , 4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError('--do_train requires a train dataset' )
a_ : Optional[int] = raw_datasets['train']
if data_args.max_train_samples is not None:
a_ : str = min(len(__A ) , data_args.max_train_samples )
a_ : List[str] = train_dataset.select(range(__A ) )
with training_args.main_process_first(desc='train dataset map pre-processing' ):
a_ : int = train_dataset.map(
__A , batched=__A , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError('--do_eval requires a validation dataset' )
a_ : Union[str, Any] = raw_datasets['validation']
if data_args.max_eval_samples is not None:
a_ : List[str] = min(len(__A ) , data_args.max_eval_samples )
a_ : int = eval_dataset.select(range(__A ) )
with training_args.main_process_first(desc='validation dataset map pre-processing' ):
a_ : int = eval_dataset.map(
__A , batched=__A , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
# Data collator
a_ : List[Any] = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=__A , pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(__A : Optional[Any] ):
a_ , a_ : List[Any] = eval_predictions
a_ : Tuple = np.argmax(__A , axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
a_ : str = Trainer(
model=__A , args=__A , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__A , data_collator=__A , compute_metrics=__A , )
# Training
if training_args.do_train:
a_ : Any = None
if training_args.resume_from_checkpoint is not None:
a_ : Optional[Any] = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
a_ : Optional[int] = last_checkpoint
a_ : Dict = trainer.train(resume_from_checkpoint=__A )
trainer.save_model() # Saves the tokenizer too for easy upload
a_ : Union[str, Any] = train_result.metrics
a_ : Optional[int] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(__A )
)
a_ : Any = min(__A , len(__A ) )
trainer.log_metrics('train' , __A )
trainer.save_metrics('train' , __A )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('*** Evaluate ***' )
a_ : Dict = trainer.evaluate()
a_ : List[str] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__A )
a_ : List[Any] = min(__A , len(__A ) )
trainer.log_metrics('eval' , __A )
trainer.save_metrics('eval' , __A )
a_ : Optional[Any] = {
'finetuned_from': model_args.model_name_or_path,
'tasks': 'multiple-choice',
'dataset_tags': 'swag',
'dataset_args': 'regular',
'dataset': 'SWAG',
'language': 'en',
}
if training_args.push_to_hub:
trainer.push_to_hub(**__A )
else:
trainer.create_model_card(**__A )
def SCREAMING_SNAKE_CASE_ ( __A : List[Any] ) -> Any:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 32 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json",
}
class A ( _UpperCAmelCase , _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase = 'resnet'
lowerCamelCase = ['basic', 'bottleneck']
def __init__( self : Optional[Any],lowercase_ : int=3,lowercase_ : List[str]=6_4,lowercase_ : int=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8],lowercase_ : Tuple=[3, 4, 6, 3],lowercase_ : Union[str, Any]="bottleneck",lowercase_ : List[str]="relu",lowercase_ : Tuple=False,lowercase_ : List[str]=None,lowercase_ : List[Any]=None,**lowercase_ : str,)-> Optional[Any]:
'''simple docstring'''
super().__init__(**lowercase_ )
if layer_type not in self.layer_types:
raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' )
A__ = num_channels
A__ = embedding_size
A__ = hidden_sizes
A__ = depths
A__ = layer_type
A__ = hidden_act
A__ = downsample_in_first_stage
A__ = ['stem'] + [F'stage{idx}' for idx in range(1,len(lowercase_ ) + 1 )]
A__ , A__ = get_aligned_output_features_output_indices(
out_features=lowercase_,out_indices=lowercase_,stage_names=self.stage_names )
class A ( _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase = version.parse('1.11' )
@property
def snake_case__ ( self : List[Any] )-> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def snake_case__ ( self : Any )-> float:
'''simple docstring'''
return 1E-3
| 7 | 0 |
"""simple docstring"""
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all image processors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...image_processing_utils import ImageProcessingMixin
from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
__A : str = logging.get_logger(__name__)
__A : Union[str, Any] = OrderedDict(
[
('''align''', '''EfficientNetImageProcessor'''),
('''beit''', '''BeitImageProcessor'''),
('''bit''', '''BitImageProcessor'''),
('''blip''', '''BlipImageProcessor'''),
('''blip-2''', '''BlipImageProcessor'''),
('''bridgetower''', '''BridgeTowerImageProcessor'''),
('''chinese_clip''', '''ChineseCLIPImageProcessor'''),
('''clip''', '''CLIPImageProcessor'''),
('''clipseg''', '''ViTImageProcessor'''),
('''conditional_detr''', '''ConditionalDetrImageProcessor'''),
('''convnext''', '''ConvNextImageProcessor'''),
('''convnextv2''', '''ConvNextImageProcessor'''),
('''cvt''', '''ConvNextImageProcessor'''),
('''data2vec-vision''', '''BeitImageProcessor'''),
('''deformable_detr''', '''DeformableDetrImageProcessor'''),
('''deit''', '''DeiTImageProcessor'''),
('''deta''', '''DetaImageProcessor'''),
('''detr''', '''DetrImageProcessor'''),
('''dinat''', '''ViTImageProcessor'''),
('''donut-swin''', '''DonutImageProcessor'''),
('''dpt''', '''DPTImageProcessor'''),
('''efficientformer''', '''EfficientFormerImageProcessor'''),
('''efficientnet''', '''EfficientNetImageProcessor'''),
('''flava''', '''FlavaImageProcessor'''),
('''focalnet''', '''BitImageProcessor'''),
('''git''', '''CLIPImageProcessor'''),
('''glpn''', '''GLPNImageProcessor'''),
('''groupvit''', '''CLIPImageProcessor'''),
('''imagegpt''', '''ImageGPTImageProcessor'''),
('''instructblip''', '''BlipImageProcessor'''),
('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''),
('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''),
('''levit''', '''LevitImageProcessor'''),
('''mask2former''', '''Mask2FormerImageProcessor'''),
('''maskformer''', '''MaskFormerImageProcessor'''),
('''mgp-str''', '''ViTImageProcessor'''),
('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''),
('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''),
('''mobilevit''', '''MobileViTImageProcessor'''),
('''mobilevit''', '''MobileViTImageProcessor'''),
('''mobilevitv2''', '''MobileViTImageProcessor'''),
('''nat''', '''ViTImageProcessor'''),
('''oneformer''', '''OneFormerImageProcessor'''),
('''owlvit''', '''OwlViTImageProcessor'''),
('''perceiver''', '''PerceiverImageProcessor'''),
('''pix2struct''', '''Pix2StructImageProcessor'''),
('''poolformer''', '''PoolFormerImageProcessor'''),
('''regnet''', '''ConvNextImageProcessor'''),
('''resnet''', '''ConvNextImageProcessor'''),
('''sam''', '''SamImageProcessor'''),
('''segformer''', '''SegformerImageProcessor'''),
('''swiftformer''', '''ViTImageProcessor'''),
('''swin''', '''ViTImageProcessor'''),
('''swin2sr''', '''Swin2SRImageProcessor'''),
('''swinv2''', '''ViTImageProcessor'''),
('''table-transformer''', '''DetrImageProcessor'''),
('''timesformer''', '''VideoMAEImageProcessor'''),
('''tvlt''', '''TvltImageProcessor'''),
('''upernet''', '''SegformerImageProcessor'''),
('''van''', '''ConvNextImageProcessor'''),
('''videomae''', '''VideoMAEImageProcessor'''),
('''vilt''', '''ViltImageProcessor'''),
('''vit''', '''ViTImageProcessor'''),
('''vit_hybrid''', '''ViTHybridImageProcessor'''),
('''vit_mae''', '''ViTImageProcessor'''),
('''vit_msn''', '''ViTImageProcessor'''),
('''xclip''', '''CLIPImageProcessor'''),
('''yolos''', '''YolosImageProcessor'''),
]
)
__A : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES)
def lowercase ( __snake_case : str ):
for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items():
if class_name in extractors:
lowercase_ : Dict = model_type_to_module_name(__snake_case )
lowercase_ : Optional[Any] = importlib.import_module(F'''.{module_name}''' , '''transformers.models''' )
try:
return getattr(__snake_case , __snake_case )
except AttributeError:
continue
for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items():
if getattr(__snake_case , '''__name__''' , __snake_case ) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
lowercase_ : str = importlib.import_module('''transformers''' )
if hasattr(__snake_case , __snake_case ):
return getattr(__snake_case , __snake_case )
return None
def lowercase ( __snake_case : Union[str, os.PathLike] , __snake_case : Optional[Union[str, os.PathLike]] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : Optional[Dict[str, str]] = None , __snake_case : Optional[Union[bool, str]] = None , __snake_case : Optional[str] = None , __snake_case : bool = False , **__snake_case : List[str] , ):
lowercase_ : Optional[Any] = get_file_from_repo(
__snake_case , __snake_case , cache_dir=__snake_case , force_download=__snake_case , resume_download=__snake_case , proxies=__snake_case , use_auth_token=__snake_case , revision=__snake_case , local_files_only=__snake_case , )
if resolved_config_file is None:
logger.info(
'''Could not locate the image processor configuration file, will try to use the model config instead.''' )
return {}
with open(__snake_case , encoding='''utf-8''' ) as reader:
return json.load(__snake_case )
class _UpperCAmelCase :
def __init__( self : Tuple ) -> Union[str, Any]:
raise EnvironmentError(
'''AutoImageProcessor is designed to be instantiated '''
'''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' )
@classmethod
@replace_list_option_in_docstrings(A )
def A ( cls : Union[str, Any] , A : List[Any] , **A : Tuple ) -> Dict:
lowercase_ : Tuple = kwargs.pop('''config''' , A )
lowercase_ : Tuple = kwargs.pop('''trust_remote_code''' , A )
lowercase_ : Optional[Any] = True
lowercase_ , lowercase_ : Optional[Any] = ImageProcessingMixin.get_image_processor_dict(A , **A )
lowercase_ : Union[str, Any] = config_dict.get('''image_processor_type''' , A )
lowercase_ : Tuple = None
if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ):
lowercase_ : Optional[int] = config_dict['''auto_map''']['''AutoImageProcessor''']
# If we still don't have the image processor class, check if we're loading from a previous feature extractor config
# and if so, infer the image processor class from there.
if image_processor_class is None and image_processor_auto_map is None:
lowercase_ : Union[str, Any] = config_dict.pop('''feature_extractor_type''' , A )
if feature_extractor_class is not None:
logger.warning(
'''Could not find image processor class in the image processor config or the model config. Loading'''
''' based on pattern matching with the model\'s feature extractor configuration.''' )
lowercase_ : List[Any] = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' )
if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ):
lowercase_ : str = config_dict['''auto_map''']['''AutoFeatureExtractor''']
lowercase_ : int = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' )
logger.warning(
'''Could not find image processor auto map in the image processor config or the model config.'''
''' Loading based on pattern matching with the model\'s feature extractor configuration.''' )
# If we don't find the image processor class in the image processor config, let's try the model config.
if image_processor_class is None and image_processor_auto_map is None:
if not isinstance(A , A ):
lowercase_ : List[Any] = AutoConfig.from_pretrained(A , **A )
# It could be in `config.image_processor_type``
lowercase_ : Tuple = getattr(A , '''image_processor_type''' , A )
if hasattr(A , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map:
lowercase_ : Tuple = config.auto_map['''AutoImageProcessor''']
if image_processor_class is not None:
lowercase_ : Tuple = image_processor_class_from_name(A )
lowercase_ : Tuple = image_processor_auto_map is not None
lowercase_ : Any = image_processor_class is not None or type(A ) in IMAGE_PROCESSOR_MAPPING
lowercase_ : Tuple = resolve_trust_remote_code(
A , A , A , A )
if has_remote_code and trust_remote_code:
lowercase_ : Dict = get_class_from_dynamic_module(
A , A , **A )
lowercase_ : List[str] = kwargs.pop('''code_revision''' , A )
if os.path.isdir(A ):
image_processor_class.register_for_auto_class()
return image_processor_class.from_dict(A , **A )
elif image_processor_class is not None:
return image_processor_class.from_dict(A , **A )
# Last try: we use the IMAGE_PROCESSOR_MAPPING.
elif type(A ) in IMAGE_PROCESSOR_MAPPING:
lowercase_ : int = IMAGE_PROCESSOR_MAPPING[type(A )]
return image_processor_class.from_dict(A , **A )
raise ValueError(
F'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a '''
F'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following '''
F'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' )
@staticmethod
def A ( A : int , A : Dict ) -> Dict:
IMAGE_PROCESSOR_MAPPING.register(A , A )
| 33 |
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"t5-small": "https://huggingface.co/t5-small/resolve/main/config.json",
"t5-base": "https://huggingface.co/t5-base/resolve/main/config.json",
"t5-large": "https://huggingface.co/t5-large/resolve/main/config.json",
"t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json",
"t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json",
}
class A ( _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase = 't5'
lowerCamelCase = ['past_key_values']
lowerCamelCase = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'}
def __init__( self : Union[str, Any],lowercase_ : int=3_2_1_2_8,lowercase_ : int=5_1_2,lowercase_ : List[str]=6_4,lowercase_ : Tuple=2_0_4_8,lowercase_ : Any=6,lowercase_ : List[str]=None,lowercase_ : Union[str, Any]=8,lowercase_ : int=3_2,lowercase_ : Dict=1_2_8,lowercase_ : Optional[int]=0.1,lowercase_ : List[str]=1E-6,lowercase_ : Tuple=1.0,lowercase_ : Any="relu",lowercase_ : Union[str, Any]=True,lowercase_ : Optional[Any]=True,lowercase_ : int=0,lowercase_ : str=1,**lowercase_ : str,)-> Any:
'''simple docstring'''
A__ = vocab_size
A__ = d_model
A__ = d_kv
A__ = d_ff
A__ = num_layers
A__ = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
A__ = num_heads
A__ = relative_attention_num_buckets
A__ = relative_attention_max_distance
A__ = dropout_rate
A__ = layer_norm_epsilon
A__ = initializer_factor
A__ = feed_forward_proj
A__ = use_cache
A__ = self.feed_forward_proj.split('-' )
A__ = act_info[-1]
A__ = act_info[0] == 'gated'
if len(lowercase_ ) > 1 and act_info[0] != "gated" or len(lowercase_ ) > 2:
raise ValueError(
F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.'
'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '
'\'gated-gelu\' or \'relu\'' )
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
A__ = 'gelu_new'
super().__init__(
pad_token_id=lowercase_,eos_token_id=lowercase_,is_encoder_decoder=lowercase_,**lowercase_,)
class A ( _UpperCAmelCase ):
"""simple docstring"""
@property
def snake_case__ ( self : Tuple )-> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
A__ = {
'input_ids': {0: 'batch', 1: 'encoder_sequence'},
'attention_mask': {0: 'batch', 1: 'encoder_sequence'},
}
if self.use_past:
A__ = 'past_encoder_sequence + sequence'
A__ = {0: 'batch'}
A__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'}
else:
A__ = {0: 'batch', 1: 'decoder_sequence'}
A__ = {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(lowercase_,direction='inputs' )
return common_inputs
@property
def snake_case__ ( self : Any )-> int:
'''simple docstring'''
return 1_3
| 7 | 0 |
'''simple docstring'''
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class _a ( __a ):
__a : List[str] = ["""image_processor""", """tokenizer"""]
__a : List[str] = """BlipImageProcessor"""
__a : Union[str, Any] = ("""BertTokenizer""", """BertTokenizerFast""")
def __init__( self : Any , lowercase : List[str] , lowercase : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase = False
super().__init__(lowercase , lowercase )
UpperCAmelCase = self.image_processor
def __call__( self : Optional[Any] , lowercase : ImageInput = None , lowercase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowercase : bool = True , lowercase : Union[bool, str, PaddingStrategy] = False , lowercase : Union[bool, str, TruncationStrategy] = None , lowercase : Optional[int] = None , lowercase : int = 0 , lowercase : Optional[int] = None , lowercase : Optional[bool] = None , lowercase : bool = False , lowercase : bool = False , lowercase : bool = False , lowercase : bool = False , lowercase : bool = False , lowercase : bool = True , lowercase : Optional[Union[str, TensorType]] = None , **lowercase : Any , ):
'''simple docstring'''
if images is None and text is None:
raise ValueError('''You have to specify either images or text.''' )
# Get only text
if images is None:
UpperCAmelCase = self.tokenizer
UpperCAmelCase = self.tokenizer(
text=lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , stride=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=lowercase , return_overflowing_tokens=lowercase , return_special_tokens_mask=lowercase , return_offsets_mapping=lowercase , return_token_type_ids=lowercase , return_length=lowercase , verbose=lowercase , return_tensors=lowercase , **lowercase , )
return text_encoding
# add pixel_values
UpperCAmelCase = self.image_processor(lowercase , return_tensors=lowercase )
if text is not None:
UpperCAmelCase = self.tokenizer(
text=lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , stride=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=lowercase , return_overflowing_tokens=lowercase , return_special_tokens_mask=lowercase , return_offsets_mapping=lowercase , return_token_type_ids=lowercase , return_length=lowercase , verbose=lowercase , return_tensors=lowercase , **lowercase , )
else:
UpperCAmelCase = None
if text_encoding is not None:
encoding_image_processor.update(lowercase )
return encoding_image_processor
def A ( self : Union[str, Any] , *lowercase : Union[str, Any] , **lowercase : Optional[Any] ):
'''simple docstring'''
return self.tokenizer.batch_decode(*lowercase , **lowercase )
def A ( self : Dict , *lowercase : List[str] , **lowercase : Optional[Any] ):
'''simple docstring'''
return self.tokenizer.decode(*lowercase , **lowercase )
@property
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = self.tokenizer.model_input_names
UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 34 |
def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]:
'''simple docstring'''
global f # a global dp table for knapsack
if f[i][j] < 0:
if j < wt[i - 1]:
A__ = mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
A__ = max(
mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , j - wt[i - 1] ) + val[i - 1] , )
A__ = val
return f[i][j]
def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Tuple:
'''simple docstring'''
A__ = [[0] * (w + 1) for _ in range(n + 1 )]
for i in range(1 , n + 1 ):
for w_ in range(1 , w + 1 ):
if wt[i - 1] <= w_:
A__ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] )
else:
A__ = dp[i - 1][w_]
return dp[n][w_], dp
def _snake_case( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : list ) -> Union[str, Any]:
'''simple docstring'''
if not (isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) )):
raise ValueError(
'Both the weights and values vectors must be either lists or tuples' )
A__ = len(SCREAMING_SNAKE_CASE__ )
if num_items != len(SCREAMING_SNAKE_CASE__ ):
A__ = (
'The number of weights must be the same as the number of values.\n'
f'But got {num_items} weights and {len(SCREAMING_SNAKE_CASE__ )} values'
)
raise ValueError(SCREAMING_SNAKE_CASE__ )
for i in range(SCREAMING_SNAKE_CASE__ ):
if not isinstance(wt[i] , SCREAMING_SNAKE_CASE__ ):
A__ = (
'All weights must be integers but got weight of '
f'type {type(wt[i] )} at index {i}'
)
raise TypeError(SCREAMING_SNAKE_CASE__ )
A__ , A__ = knapsack(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A__ = set()
_construct_solution(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return optimal_val, example_optional_set
def _snake_case( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : set ) -> Optional[int]:
'''simple docstring'''
if i > 0 and j > 0:
if dp[i - 1][j] == dp[i][j]:
_construct_solution(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
optimal_set.add(SCREAMING_SNAKE_CASE__ )
_construct_solution(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , i - 1 , j - wt[i - 1] , SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
lowercase_ = [3, 2, 4, 4]
lowercase_ = [4, 3, 2, 3]
lowercase_ = 4
lowercase_ = 6
lowercase_ = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)]
lowercase_ , lowercase_ = knapsack(w, wt, val, n)
print(optimal_solution)
print(mf_knapsack(n, wt, val, w)) # switched the n and w
# testing the dynamic programming problem with example
# the optimal subset for the above example are items 3 and 4
lowercase_ , lowercase_ = knapsack_with_example_solution(w, wt, val)
assert optimal_solution == 8
assert optimal_subset == {3, 4}
print("optimal_value = ", optimal_solution)
print("An optimal subset corresponding to the optimal value", optimal_subset)
| 7 | 0 |
'''simple docstring'''
from math import sqrt
import numpy as np
from sympy import symbols
# Coefficient
# Speed of light (m/s)
__a = 2_9979_2458
# Symbols
__a , __a , __a , __a = symbols("ct x y z")
def __snake_case( _lowerCAmelCase ) -> float:
if velocity > c:
raise ValueError("""Speed must not exceed light speed 299,792,458 [m/s]!""" )
elif velocity < 1:
# Usually the speed should be much higher than 1 (c order of magnitude)
raise ValueError("""Speed must be greater than or equal to 1!""" )
return velocity / c
def __snake_case( _lowerCAmelCase ) -> float:
return 1 / sqrt(1 - beta(_lowerCAmelCase ) ** 2 )
def __snake_case( _lowerCAmelCase ) -> np.ndarray:
return np.array(
[
[gamma(_lowerCAmelCase ), -gamma(_lowerCAmelCase ) * beta(_lowerCAmelCase ), 0, 0],
[-gamma(_lowerCAmelCase ) * beta(_lowerCAmelCase ), gamma(_lowerCAmelCase ), 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
] )
def __snake_case( _lowerCAmelCase , _lowerCAmelCase = None ) -> np.ndarray:
# Ensure event is not empty
if event is None:
snake_case__ : List[Any] = np.array([ct, x, y, z] ) # Symbolic four vector
else:
event[0] *= c # x0 is ct (speed of light * time)
return transformation_matrix(_lowerCAmelCase ) @ event
if __name__ == "__main__":
import doctest
doctest.testmod()
# Example of symbolic vector:
__a = transform(2997_9245)
print("Example of four vector: ")
print(F"ct' = {four_vector[0]}")
print(F"x' = {four_vector[1]}")
print(F"y' = {four_vector[2]}")
print(F"z' = {four_vector[3]}")
# Substitute symbols with numerical values
__a = {ct: c, x: 1, y: 1, z: 1}
__a = [four_vector[i].subs(sub_dict) for i in range(4)]
print(F"\n{numerical_vector}")
| 35 |
import unittest
from transformers import AlbertTokenizer, AlbertTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
lowercase_ = get_tests_dir("fixtures/spiece.model")
@require_sentencepiece
@require_tokenizers
class A ( _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = AlbertTokenizer
lowerCamelCase = AlbertTokenizerFast
lowerCamelCase = True
lowerCamelCase = True
lowerCamelCase = True
def snake_case__ ( self : Dict )-> Any:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
A__ = AlbertTokenizer(lowercase_ )
tokenizer.save_pretrained(self.tmpdirname )
def snake_case__ ( self : List[str],lowercase_ : str )-> Any:
'''simple docstring'''
A__ = 'this is a test'
A__ = 'this is a test'
return input_text, output_text
def snake_case__ ( self : List[Any] )-> Optional[int]:
'''simple docstring'''
A__ = '<pad>'
A__ = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ),lowercase_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ),lowercase_ )
def snake_case__ ( self : List[str] )-> str:
'''simple docstring'''
A__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0],'<pad>' )
self.assertEqual(vocab_keys[1],'<unk>' )
self.assertEqual(vocab_keys[-1],'▁eloquent' )
self.assertEqual(len(lowercase_ ),3_0_0_0_0 )
def snake_case__ ( self : int )-> List[Any]:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size,3_0_0_0_0 )
def snake_case__ ( self : Union[str, Any] )-> List[Any]:
'''simple docstring'''
if not self.test_rust_tokenizer:
return
A__ = self.get_tokenizer()
A__ = self.get_rust_tokenizer()
A__ = 'I was born in 92000, and this is falsé.'
A__ = tokenizer.tokenize(lowercase_ )
A__ = rust_tokenizer.tokenize(lowercase_ )
self.assertListEqual(lowercase_,lowercase_ )
A__ = tokenizer.encode(lowercase_,add_special_tokens=lowercase_ )
A__ = rust_tokenizer.encode(lowercase_,add_special_tokens=lowercase_ )
self.assertListEqual(lowercase_,lowercase_ )
A__ = self.get_rust_tokenizer()
A__ = tokenizer.encode(lowercase_ )
A__ = rust_tokenizer.encode(lowercase_ )
self.assertListEqual(lowercase_,lowercase_ )
def snake_case__ ( self : int )-> int:
'''simple docstring'''
A__ = AlbertTokenizer(lowercase_,keep_accents=lowercase_ )
A__ = tokenizer.tokenize('This is a test' )
self.assertListEqual(lowercase_,['▁this', '▁is', '▁a', '▁test'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ),[4_8, 2_5, 2_1, 1_2_8_9] )
A__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
lowercase_,['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.'] )
A__ = tokenizer.convert_tokens_to_ids(lowercase_ )
self.assertListEqual(lowercase_,[3_1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] )
A__ = tokenizer.convert_ids_to_tokens(lowercase_ )
self.assertListEqual(
lowercase_,['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.'],)
def snake_case__ ( self : Union[str, Any] )-> str:
'''simple docstring'''
A__ = AlbertTokenizer(lowercase_ )
A__ = tokenizer.encode('sequence builders' )
A__ = tokenizer.encode('multi-sequence build' )
A__ = tokenizer.build_inputs_with_special_tokens(lowercase_ )
A__ = tokenizer.build_inputs_with_special_tokens(lowercase_,lowercase_ )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
@slow
def snake_case__ ( self : Any )-> Tuple:
'''simple docstring'''
A__ = {'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 2_1_9_7_0, 1_3, 5, 6_0_9_2, 1_6_7, 2_8, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 7_0_2_8, 1_2_0_5_1, 1_8, 1_7, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 3_5_1_5, 1_8_6_8_4, 8, 4_4_6_1, 6, 1_9_2_7, 2_9_7, 8, 1_2_0_6_0, 2_6_0_7, 1_8, 1_3, 5, 4_4_6_1, 1_5, 1_0_5_3_8, 3_8, 8, 1_3_5, 1_5, 8_2_2, 5_8, 1_5, 9_9_3, 1_0_3_6_3, 1_5, 1_4_6_0, 8_0_0_5, 4_4_6_1, 1_5, 9_9_3, 2_5_5, 2_3_2_8, 9, 9, 9, 6, 2_6, 1_1_1_2, 8_1_6, 3_2_6_0, 1_3, 5, 1_0_3, 2_3_7_7, 6, 1_7, 1_1_1_2, 8_1_6, 2_7_8_2, 1_3, 5, 1_0_3, 1_0_6_4_1, 6, 2_9, 8_4, 2_5_1_2, 2_4_3_0, 7_8_2, 1_8_6_8_4, 2_7_6_1, 1_9, 8_0_8, 2_4_3_0, 2_5_5_6, 1_7, 8_5_5, 1_4_8_0, 9_4_7_7, 4_0_9_1, 1_2_8, 1_1_7_1_2, 1_5, 7_1_0_3, 2_1_5_3, 6_7_3, 1_7, 2_4_8_8_3, 9_9_9_0, 9, 3], [2, 1_1_5_0_2, 2_5, 1_0_0_6, 2_0, 7_8_2, 8, 1_1_8_0_9, 8_5_5, 1_7_3_2, 1_9_3_9_3, 1_8_6_6_7, 3_7, 3_6_7, 2_1_0_1_8, 6_9, 1_8_5_4, 3_4, 1_1_8_6_0, 1_9_1_2_4, 2_7, 1_5_6, 2_2_5, 1_7, 1_9_3, 4_1_4_1, 1_9, 6_5, 9_1_2_4, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 1_4, 2_2_3_1, 8_8_6, 2_3_8_5, 1_7_6_5_9, 8_4, 1_4, 1_6_7_9_2, 1_9_5_2, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowercase_,model_name='albert-base-v2',revision='6b6560eaf5ff2e250b00c50f380c5389a9c2d82e',)
| 7 | 0 |
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class UpperCAmelCase_ ( unittest.TestCase):
def snake_case__ ( self, __a):
'''simple docstring'''
for model_result in results.values():
for batch_size, sequence_length in zip(model_result["bs"], model_result["ss"]):
_lowerCAmelCase : Tuple = model_result["result"][batch_size][sequence_length]
self.assertIsNotNone(__a)
def snake_case__ ( self):
'''simple docstring'''
_lowerCAmelCase : Dict = "sshleifer/tiny-gpt2"
_lowerCAmelCase : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID], training=__a, inference=__a, sequence_lengths=[8], batch_sizes=[1], eager_mode=__a, multi_process=__a, )
_lowerCAmelCase : str = TensorFlowBenchmark(__a)
_lowerCAmelCase : List[str] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def snake_case__ ( self):
'''simple docstring'''
_lowerCAmelCase : Tuple = "sgugger/tiny-distilbert-classification"
_lowerCAmelCase : Union[str, Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID], training=__a, inference=__a, sequence_lengths=[8], batch_sizes=[1], multi_process=__a, only_pretrain_model=__a, )
_lowerCAmelCase : Tuple = TensorFlowBenchmark(__a)
_lowerCAmelCase : Tuple = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def snake_case__ ( self):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = "sshleifer/tiny-gpt2"
_lowerCAmelCase : Optional[Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID], training=__a, inference=__a, sequence_lengths=[8], batch_sizes=[1], multi_process=__a, )
_lowerCAmelCase : List[Any] = TensorFlowBenchmark(__a)
_lowerCAmelCase : Optional[int] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def snake_case__ ( self):
'''simple docstring'''
_lowerCAmelCase : str = "sshleifer/tiny-gpt2"
_lowerCAmelCase : Dict = AutoConfig.from_pretrained(__a)
_lowerCAmelCase : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID], training=__a, inference=__a, sequence_lengths=[8], batch_sizes=[1], eager_mode=__a, multi_process=__a, )
_lowerCAmelCase : Any = TensorFlowBenchmark(__a, [config])
_lowerCAmelCase : Optional[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def snake_case__ ( self):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = "sshleifer/tiny-gpt2"
_lowerCAmelCase : int = AutoConfig.from_pretrained(__a)
_lowerCAmelCase : List[Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID], training=__a, inference=__a, sequence_lengths=[8], batch_sizes=[1], multi_process=__a, )
_lowerCAmelCase : Any = TensorFlowBenchmark(__a, [config])
_lowerCAmelCase : Optional[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def snake_case__ ( self):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = "sshleifer/tiny-gpt2"
_lowerCAmelCase : List[Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID], training=__a, inference=__a, sequence_lengths=[8], batch_sizes=[1], multi_process=__a, )
_lowerCAmelCase : List[Any] = TensorFlowBenchmark(__a)
_lowerCAmelCase : List[str] = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
def snake_case__ ( self):
'''simple docstring'''
_lowerCAmelCase : Dict = "sshleifer/tiny-gpt2"
_lowerCAmelCase : Optional[Any] = AutoConfig.from_pretrained(__a)
_lowerCAmelCase : Dict = TensorFlowBenchmarkArguments(
models=[MODEL_ID], training=__a, inference=__a, sequence_lengths=[8], batch_sizes=[1], multi_process=__a, )
_lowerCAmelCase : str = TensorFlowBenchmark(__a, [config])
_lowerCAmelCase : int = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
def snake_case__ ( self):
'''simple docstring'''
_lowerCAmelCase : Tuple = "patrickvonplaten/t5-tiny-random"
_lowerCAmelCase : List[str] = AutoConfig.from_pretrained(__a)
_lowerCAmelCase : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID], training=__a, inference=__a, sequence_lengths=[8], batch_sizes=[1], multi_process=__a, )
_lowerCAmelCase : Optional[Any] = TensorFlowBenchmark(__a, configs=[config])
_lowerCAmelCase : str = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("GPU")) == 0, "Cannot do xla on CPU.")
def snake_case__ ( self):
'''simple docstring'''
_lowerCAmelCase : str = "sshleifer/tiny-gpt2"
_lowerCAmelCase : str = TensorFlowBenchmarkArguments(
models=[MODEL_ID], training=__a, inference=__a, sequence_lengths=[8], batch_sizes=[1], use_xla=__a, multi_process=__a, )
_lowerCAmelCase : Tuple = TensorFlowBenchmark(__a)
_lowerCAmelCase : int = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def snake_case__ ( self):
'''simple docstring'''
_lowerCAmelCase : List[Any] = "sshleifer/tiny-gpt2"
with tempfile.TemporaryDirectory() as tmp_dir:
_lowerCAmelCase : Optional[Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID], inference=__a, save_to_csv=__a, sequence_lengths=[8], batch_sizes=[1], inference_time_csv_file=os.path.join(__a, "inf_time.csv"), inference_memory_csv_file=os.path.join(__a, "inf_mem.csv"), env_info_csv_file=os.path.join(__a, "env.csv"), multi_process=__a, )
_lowerCAmelCase : List[str] = TensorFlowBenchmark(__a)
benchmark.run()
self.assertTrue(Path(os.path.join(__a, "inf_time.csv")).exists())
self.assertTrue(Path(os.path.join(__a, "inf_mem.csv")).exists())
self.assertTrue(Path(os.path.join(__a, "env.csv")).exists())
def snake_case__ ( self):
'''simple docstring'''
_lowerCAmelCase : Dict = "sshleifer/tiny-gpt2"
def _check_summary_is_not_empty(__a):
self.assertTrue(hasattr(__a, "sequential"))
self.assertTrue(hasattr(__a, "cumulative"))
self.assertTrue(hasattr(__a, "current"))
self.assertTrue(hasattr(__a, "total"))
with tempfile.TemporaryDirectory() as tmp_dir:
_lowerCAmelCase : str = TensorFlowBenchmarkArguments(
models=[MODEL_ID], inference=__a, sequence_lengths=[8], batch_sizes=[1], log_filename=os.path.join(__a, "log.txt"), log_print=__a, trace_memory_line_by_line=__a, eager_mode=__a, multi_process=__a, )
_lowerCAmelCase : List[Any] = TensorFlowBenchmark(__a)
_lowerCAmelCase : Tuple = benchmark.run()
_check_summary_is_not_empty(result.inference_summary)
self.assertTrue(Path(os.path.join(__a, "log.txt")).exists())
| 36 |
from typing import Dict
from .base import GenericTensor, Pipeline
class A ( _UpperCAmelCase ):
"""simple docstring"""
def snake_case__ ( self : int,lowercase_ : Dict=None,lowercase_ : Tuple=None,lowercase_ : List[Any]=None,**lowercase_ : Any )-> Optional[Any]:
'''simple docstring'''
if tokenize_kwargs is None:
A__ = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' )
A__ = truncation
A__ = tokenize_kwargs
A__ = {}
if return_tensors is not None:
A__ = return_tensors
return preprocess_params, {}, postprocess_params
def snake_case__ ( self : Dict,lowercase_ : List[Any],**lowercase_ : Tuple )-> Dict[str, GenericTensor]:
'''simple docstring'''
A__ = self.framework
A__ = self.tokenizer(lowercase_,return_tensors=lowercase_,**lowercase_ )
return model_inputs
def snake_case__ ( self : Tuple,lowercase_ : int )-> Optional[Any]:
'''simple docstring'''
A__ = self.model(**lowercase_ )
return model_outputs
def snake_case__ ( self : Tuple,lowercase_ : Tuple,lowercase_ : List[str]=False )-> Any:
'''simple docstring'''
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self : List[Any],*lowercase_ : int,**lowercase_ : Optional[Any] )-> int:
'''simple docstring'''
return super().__call__(*lowercase_,**lowercase_ )
| 7 | 0 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_barthez import BarthezTokenizer
else:
_lowerCAmelCase = None
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''}
_lowerCAmelCase = {
'''vocab_file''': {
'''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''',
'''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''',
'''moussaKam/barthez-orangesum-title''': (
'''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model'''
),
},
'''tokenizer_file''': {
'''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''',
'''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''',
'''moussaKam/barthez-orangesum-title''': (
'''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json'''
),
},
}
_lowerCAmelCase = {
'''moussaKam/mbarthez''': 1024,
'''moussaKam/barthez''': 1024,
'''moussaKam/barthez-orangesum-title''': 1024,
}
_lowerCAmelCase = '''▁'''
class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Tuple = VOCAB_FILES_NAMES
__lowercase : Dict = PRETRAINED_VOCAB_FILES_MAP
__lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowercase : Tuple = ['''input_ids''', '''attention_mask''']
__lowercase : List[str] = BarthezTokenizer
def __init__( self ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase="<s>" ,__UpperCAmelCase="</s>" ,__UpperCAmelCase="</s>" ,__UpperCAmelCase="<s>" ,__UpperCAmelCase="<unk>" ,__UpperCAmelCase="<pad>" ,__UpperCAmelCase="<mask>" ,**__UpperCAmelCase ,) -> Dict:
# Mask token behave like a normal word, i.e. include the space before it
lowerCAmelCase__ : Union[str, Any] = AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else mask_token
super().__init__(
__UpperCAmelCase ,tokenizer_file=__UpperCAmelCase ,bos_token=__UpperCAmelCase ,eos_token=__UpperCAmelCase ,unk_token=__UpperCAmelCase ,sep_token=__UpperCAmelCase ,cls_token=__UpperCAmelCase ,pad_token=__UpperCAmelCase ,mask_token=__UpperCAmelCase ,**__UpperCAmelCase ,)
lowerCAmelCase__ : List[Any] = vocab_file
lowerCAmelCase__ : Union[str, Any] = False if not self.vocab_file else True
def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowerCAmelCase__ : Tuple = [self.cls_token_id]
lowerCAmelCase__ : Union[str, Any] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> List[int]:
lowerCAmelCase__ : Tuple = [self.sep_token_id]
lowerCAmelCase__ : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(__UpperCAmelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
lowerCAmelCase__ : Tuple = os.path.join(
__UpperCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ):
copyfile(self.vocab_file ,__UpperCAmelCase )
return (out_vocab_file,)
| 37 |
from timeit import timeit
def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> int:
'''simple docstring'''
if number < 0:
raise ValueError('the value of input must not be negative' )
A__ = 0
while number:
number &= number - 1
result += 1
return result
def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> int:
'''simple docstring'''
if number < 0:
raise ValueError('the value of input must not be negative' )
A__ = 0
while number:
if number % 2 == 1:
result += 1
number >>= 1
return result
def _snake_case( ) -> None:
'''simple docstring'''
def do_benchmark(SCREAMING_SNAKE_CASE__ : int ) -> None:
A__ = 'import __main__ as z'
print(f'Benchmark when {number = }:' )
print(f'{get_set_bits_count_using_modulo_operator(SCREAMING_SNAKE_CASE__ ) = }' )
A__ = timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=SCREAMING_SNAKE_CASE__ )
print(f'timeit() runs in {timing} seconds' )
print(f'{get_set_bits_count_using_brian_kernighans_algorithm(SCREAMING_SNAKE_CASE__ ) = }' )
A__ = timeit(
'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=SCREAMING_SNAKE_CASE__ , )
print(f'timeit() runs in {timing} seconds' )
for number in (25, 37, 58, 0):
do_benchmark(SCREAMING_SNAKE_CASE__ )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 7 | 0 |
from __future__ import annotations
import sys
from collections import deque
from typing import Generic, TypeVar
UpperCAmelCase_ : Any = TypeVar('''T''')
class _SCREAMING_SNAKE_CASE ( Generic[T] ):
snake_case__ : deque[T] # Cache store of keys
snake_case__ : set[T] # References of the keys in cache
snake_case__ : int = 1_0 # Maximum capacity of cache
def __init__( self : Optional[int] , __lowerCamelCase : int ):
UpperCamelCase :int = deque()
UpperCamelCase :Any = set()
if not n:
UpperCamelCase :Union[str, Any] = sys.maxsize
elif n < 0:
raise ValueError("""n should be an integer greater than 0.""" )
else:
UpperCamelCase :Tuple = n
def _A ( self : List[Any] , __lowerCamelCase : T ):
if x not in self.key_reference:
if len(self.dq_store ) == LRUCache._MAX_CAPACITY:
UpperCamelCase :Any = self.dq_store.pop()
self.key_reference.remove(__lowerCamelCase )
else:
self.dq_store.remove(__lowerCamelCase )
self.dq_store.appendleft(__lowerCamelCase )
self.key_reference.add(__lowerCamelCase )
def _A ( self : int ):
for k in self.dq_store:
print(__lowerCamelCase )
def __repr__( self : Optional[int] ):
return F"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}"""
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase_ : LRUCache[str | int] = LRUCache(4)
lru_cache.refer('''A''')
lru_cache.refer(2)
lru_cache.refer(3)
lru_cache.refer('''A''')
lru_cache.refer(4)
lru_cache.refer(5)
lru_cache.display()
print(lru_cache)
assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
| 38 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation
def _snake_case( SCREAMING_SNAKE_CASE__ : Any ) -> int:
'''simple docstring'''
A__ = 384
A__ = 7
if "tiny" in model_name:
A__ = 96
A__ = (2, 2, 6, 2)
A__ = (3, 6, 12, 24)
elif "small" in model_name:
A__ = 96
A__ = (2, 2, 18, 2)
A__ = (3, 6, 12, 24)
elif "base" in model_name:
A__ = 128
A__ = (2, 2, 18, 2)
A__ = (4, 8, 16, 32)
A__ = 12
A__ = 512
elif "large" in model_name:
A__ = 192
A__ = (2, 2, 18, 2)
A__ = (6, 12, 24, 48)
A__ = 12
A__ = 768
# set label information
A__ = 150
A__ = 'huggingface/label-files'
A__ = 'ade20k-id2label.json'
A__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) )
A__ = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()}
A__ = {v: k for k, v in idalabel.items()}
A__ = SwinConfig(
embed_dim=SCREAMING_SNAKE_CASE__ , depths=SCREAMING_SNAKE_CASE__ , num_heads=SCREAMING_SNAKE_CASE__ , window_size=SCREAMING_SNAKE_CASE__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , )
A__ = UperNetConfig(
backbone_config=SCREAMING_SNAKE_CASE__ , auxiliary_in_channels=SCREAMING_SNAKE_CASE__ , num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ , )
return config
def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Dict:
'''simple docstring'''
A__ = []
# fmt: off
# stem
rename_keys.append(('backbone.patch_embed.projection.weight', 'backbone.embeddings.patch_embeddings.projection.weight') )
rename_keys.append(('backbone.patch_embed.projection.bias', 'backbone.embeddings.patch_embeddings.projection.bias') )
rename_keys.append(('backbone.patch_embed.norm.weight', 'backbone.embeddings.norm.weight') )
rename_keys.append(('backbone.patch_embed.norm.bias', 'backbone.embeddings.norm.bias') )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm1.weight', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm1.bias', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table', f'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index', f'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight', f'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias', f'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm2.weight', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm2.bias', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight', f'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias', f'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight', f'backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias', f'backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias') )
if i < 3:
rename_keys.append((f'backbone.stages.{i}.downsample.reduction.weight', f'backbone.encoder.layers.{i}.downsample.reduction.weight') )
rename_keys.append((f'backbone.stages.{i}.downsample.norm.weight', f'backbone.encoder.layers.{i}.downsample.norm.weight') )
rename_keys.append((f'backbone.stages.{i}.downsample.norm.bias', f'backbone.encoder.layers.{i}.downsample.norm.bias') )
rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') )
rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') )
# decode head
rename_keys.extend(
[
('decode_head.conv_seg.weight', 'decode_head.classifier.weight'),
('decode_head.conv_seg.bias', 'decode_head.classifier.bias'),
('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'),
('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'),
] )
# fmt: on
return rename_keys
def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[int]:
'''simple docstring'''
A__ = dct.pop(SCREAMING_SNAKE_CASE__ )
A__ = val
def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
'''simple docstring'''
A__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
A__ = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
A__ = state_dict.pop(f'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight' )
A__ = state_dict.pop(f'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
A__ = in_proj_weight[:dim, :]
A__ = in_proj_bias[: dim]
A__ = in_proj_weight[
dim : dim * 2, :
]
A__ = in_proj_bias[
dim : dim * 2
]
A__ = in_proj_weight[
-dim :, :
]
A__ = in_proj_bias[-dim :]
# fmt: on
def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
A__ , A__ = x.shape
A__ = x.reshape(SCREAMING_SNAKE_CASE__ , 4 , in_channel // 4 )
A__ = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return x
def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple ) -> List[str]:
'''simple docstring'''
A__ , A__ = x.shape
A__ = x.reshape(SCREAMING_SNAKE_CASE__ , in_channel // 4 , 4 )
A__ = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return x
def _snake_case( SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]:
'''simple docstring'''
A__ = x.shape[0]
A__ = x.reshape(4 , in_channel // 4 )
A__ = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(SCREAMING_SNAKE_CASE__ )
return x
def _snake_case( SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]:
'''simple docstring'''
A__ = x.shape[0]
A__ = x.reshape(in_channel // 4 , 4 )
A__ = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(SCREAMING_SNAKE_CASE__ )
return x
def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
A__ = {
'upernet-swin-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth',
'upernet-swin-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth',
'upernet-swin-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth',
'upernet-swin-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth',
}
A__ = model_name_to_url[model_name]
A__ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location='cpu' , file_name=SCREAMING_SNAKE_CASE__ )[
'state_dict'
]
for name, param in state_dict.items():
print(SCREAMING_SNAKE_CASE__ , param.shape )
A__ = get_upernet_config(SCREAMING_SNAKE_CASE__ )
A__ = UperNetForSemanticSegmentation(SCREAMING_SNAKE_CASE__ )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
A__ = state_dict.pop(SCREAMING_SNAKE_CASE__ )
if "bn" in key:
A__ = key.replace('bn' , 'batch_norm' )
A__ = val
# rename keys
A__ = create_rename_keys(SCREAMING_SNAKE_CASE__ )
for src, dest in rename_keys:
rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
read_in_q_k_v(SCREAMING_SNAKE_CASE__ , config.backbone_config )
# fix downsample parameters
for key, value in state_dict.items():
if "downsample" in key:
if "reduction" in key:
A__ = reverse_correct_unfold_reduction_order(SCREAMING_SNAKE_CASE__ )
if "norm" in key:
A__ = reverse_correct_unfold_norm_order(SCREAMING_SNAKE_CASE__ )
model.load_state_dict(SCREAMING_SNAKE_CASE__ )
# verify on image
A__ = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg'
A__ = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ).convert('RGB' )
A__ = SegformerImageProcessor()
A__ = processor(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values
with torch.no_grad():
A__ = model(SCREAMING_SNAKE_CASE__ )
A__ = outputs.logits
print(logits.shape )
print('First values of logits:' , logits[0, 0, :3, :3] )
# assert values
if model_name == "upernet-swin-tiny":
A__ = torch.tensor(
[[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] )
elif model_name == "upernet-swin-small":
A__ = torch.tensor(
[[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] )
elif model_name == "upernet-swin-base":
A__ = torch.tensor(
[[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] )
elif model_name == "upernet-swin-large":
A__ = torch.tensor(
[[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] )
print('Logits:' , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(SCREAMING_SNAKE_CASE__ )
print(f'Saving processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(SCREAMING_SNAKE_CASE__ )
if push_to_hub:
print(f'Pushing model and processor for {model_name} to hub' )
model.push_to_hub(f'openmmlab/{model_name}' )
processor.push_to_hub(f'openmmlab/{model_name}' )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="upernet-swin-tiny",
type=str,
choices=[f"""upernet-swin-{size}""" for size in ["tiny", "small", "base", "large"]],
help="Name of the Swin + UperNet model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
lowercase_ = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 7 | 0 |
# flake8: noqa
# Lint as: python3
_a = [
'''VerificationMode''',
'''Version''',
'''disable_progress_bar''',
'''enable_progress_bar''',
'''is_progress_bar_enabled''',
'''experimental''',
]
from .info_utils import VerificationMode
from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled
from .version import Version
from .experimental import experimental
| 39 |
import math
import os
from copy import deepcopy
import datasets
import evaluate
import torch
import transformers
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from accelerate import Accelerator
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import is_tpu_available, set_seed
lowercase_ = "true"
def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=82 , SCREAMING_SNAKE_CASE__ : Optional[int]=16 ) -> Optional[Any]:
'''simple docstring'''
set_seed(42 )
A__ = RegressionModel()
A__ = deepcopy(SCREAMING_SNAKE_CASE__ )
A__ = RegressionDataset(length=SCREAMING_SNAKE_CASE__ )
A__ = DataLoader(SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ )
model.to(accelerator.device )
A__ , A__ = accelerator.prepare(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return model, ddp_model, dataloader
def _snake_case( SCREAMING_SNAKE_CASE__ : Accelerator , SCREAMING_SNAKE_CASE__ : Tuple=False ) -> int:
'''simple docstring'''
A__ = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' )
A__ = load_dataset('glue' , 'mrpc' , split='validation' )
def tokenize_function(SCREAMING_SNAKE_CASE__ : List[Any] ):
A__ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ )
return outputs
with accelerator.main_process_first():
A__ = dataset.map(
SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , remove_columns=['idx', 'sentence1', 'sentence2'] , )
A__ = tokenized_datasets.rename_column('label' , 'labels' )
def collate_fn(SCREAMING_SNAKE_CASE__ : Dict ):
if use_longest:
return tokenizer.pad(SCREAMING_SNAKE_CASE__ , padding='longest' , return_tensors='pt' )
return tokenizer.pad(SCREAMING_SNAKE_CASE__ , padding='max_length' , max_length=128 , return_tensors='pt' )
return DataLoader(SCREAMING_SNAKE_CASE__ , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=16 )
def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ) -> str:
'''simple docstring'''
A__ = Accelerator(dispatch_batches=SCREAMING_SNAKE_CASE__ , split_batches=SCREAMING_SNAKE_CASE__ )
A__ = get_dataloader(SCREAMING_SNAKE_CASE__ , not dispatch_batches )
A__ = AutoModelForSequenceClassification.from_pretrained(
'hf-internal-testing/mrpc-bert-base-cased' , return_dict=SCREAMING_SNAKE_CASE__ )
A__ , A__ = accelerator.prepare(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator
def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]:
'''simple docstring'''
A__ = []
for batch in dataloader:
A__ , A__ = batch.values()
with torch.no_grad():
A__ = model(SCREAMING_SNAKE_CASE__ )
A__ , A__ = accelerator.gather_for_metrics((logit, target) )
logits_and_targets.append((logit, target) )
A__ , A__ = [], []
for logit, targ in logits_and_targets:
logits.append(SCREAMING_SNAKE_CASE__ )
targs.append(SCREAMING_SNAKE_CASE__ )
A__ , A__ = torch.cat(SCREAMING_SNAKE_CASE__ ), torch.cat(SCREAMING_SNAKE_CASE__ )
return logits, targs
def _snake_case( SCREAMING_SNAKE_CASE__ : Accelerator , SCREAMING_SNAKE_CASE__ : int=82 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : Tuple=16 ) -> List[Any]:
'''simple docstring'''
A__ , A__ , A__ = get_basic_setup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A__ , A__ = generate_predictions(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
assert (
len(SCREAMING_SNAKE_CASE__ ) == num_samples
), f'Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(SCREAMING_SNAKE_CASE__ )}'
def _snake_case( SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False ) -> str:
'''simple docstring'''
A__ = evaluate.load('glue' , 'mrpc' )
A__ , A__ = get_mrpc_setup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# First do baseline
A__ , A__ , A__ = setup['no']
model.to(SCREAMING_SNAKE_CASE__ )
model.eval()
for batch in dataloader:
batch.to(SCREAMING_SNAKE_CASE__ )
with torch.inference_mode():
A__ = model(**SCREAMING_SNAKE_CASE__ )
A__ = outputs.logits.argmax(dim=-1 )
metric.add_batch(predictions=SCREAMING_SNAKE_CASE__ , references=batch['labels'] )
A__ = metric.compute()
# Then do distributed
A__ , A__ , A__ = setup['ddp']
model.eval()
for batch in dataloader:
with torch.inference_mode():
A__ = model(**SCREAMING_SNAKE_CASE__ )
A__ = outputs.logits.argmax(dim=-1 )
A__ = batch['labels']
A__ , A__ = accelerator.gather_for_metrics((preds, references) )
metric.add_batch(predictions=SCREAMING_SNAKE_CASE__ , references=SCREAMING_SNAKE_CASE__ )
A__ = metric.compute()
for key in "accuracy f1".split():
assert math.isclose(
baseline[key] , distributed[key] ), f'Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n'
def _snake_case( ) -> Optional[Any]:
'''simple docstring'''
A__ = Accelerator(split_batches=SCREAMING_SNAKE_CASE__ , dispatch_batches=SCREAMING_SNAKE_CASE__ )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# These are a bit slower so they should only be ran on the GPU or TPU
if torch.cuda.is_available() or is_tpu_available():
if accelerator.is_local_main_process:
print('**Testing gather_for_metrics**' )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
if accelerator.is_local_main_process:
print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`' )
test_mrpc(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print('**Test torch metrics**' )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
A__ = Accelerator(split_batches=SCREAMING_SNAKE_CASE__ , dispatch_batches=SCREAMING_SNAKE_CASE__ )
if accelerator.is_local_main_process:
print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99' )
test_torch_metrics(SCREAMING_SNAKE_CASE__ , 99 )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print('**Test last batch is not dropped when perfectly divisible**' )
A__ = Accelerator()
test_torch_metrics(SCREAMING_SNAKE_CASE__ , 512 )
accelerator.state._reset_state()
def _snake_case( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 7 | 0 |
"""simple docstring"""
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def lowercase ( A_ , A_ , A_ , A_ , A_ )-> Optional[int]:
'''simple docstring'''
a : Any = StableDiffusionPipeline.from_pretrained(A_ , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
a : str = load_file(A_ )
a : Dict = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
a : Dict = key.split("." )[0].split(LORA_PREFIX_TEXT_ENCODER + "_" )[-1].split("_" )
a : Dict = pipeline.text_encoder
else:
a : List[str] = key.split("." )[0].split(LORA_PREFIX_UNET + "_" )[-1].split("_" )
a : List[Any] = pipeline.unet
# find the target layer
a : Dict = layer_infos.pop(0 )
while len(A_ ) > -1:
try:
a : Dict = curr_layer.__getattr__(A_ )
if len(A_ ) > 0:
a : int = layer_infos.pop(0 )
elif len(A_ ) == 0:
break
except Exception:
if len(A_ ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
a : List[str] = layer_infos.pop(0 )
a : List[str] = []
if "lora_down" in key:
pair_keys.append(key.replace("lora_down" , "lora_up" ) )
pair_keys.append(A_ )
else:
pair_keys.append(A_ )
pair_keys.append(key.replace("lora_up" , "lora_down" ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
a : Optional[int] = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
a : Union[str, Any] = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(A_ , A_ ).unsqueeze(2 ).unsqueeze(3 )
else:
a : int = state_dict[pair_keys[0]].to(torch.floataa )
a : Optional[Any] = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(A_ , A_ )
# update visited list
for item in pair_keys:
visited.append(A_ )
return pipeline
if __name__ == "__main__":
__lowercase = argparse.ArgumentParser()
parser.add_argument(
"""--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format."""
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument(
"""--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors"""
)
parser.add_argument(
"""--lora_prefix_text_encoder""",
default="""lora_te""",
type=str,
help="""The prefix of text encoder weight in safetensors""",
)
parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""")
parser.add_argument(
"""--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not."""
)
parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""")
__lowercase = parser.parse_args()
__lowercase = args.base_model_path
__lowercase = args.checkpoint_path
__lowercase = args.dump_path
__lowercase = args.lora_prefix_unet
__lowercase = args.lora_prefix_text_encoder
__lowercase = args.alpha
__lowercase = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
__lowercase = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 40 |
def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple:
'''simple docstring'''
A__ = 0
A__ = len(SCREAMING_SNAKE_CASE__ ) - 1
while left <= right:
# avoid divided by 0 during interpolation
if sorted_collection[left] == sorted_collection[right]:
if sorted_collection[left] == item:
return left
else:
return None
A__ = left + ((item - sorted_collection[left]) * (right - left)) // (
sorted_collection[right] - sorted_collection[left]
)
# out of range check
if point < 0 or point >= len(SCREAMING_SNAKE_CASE__ ):
return None
A__ = sorted_collection[point]
if current_item == item:
return point
else:
if point < left:
A__ = left
A__ = point
elif point > right:
A__ = right
A__ = point
else:
if item < current_item:
A__ = point - 1
else:
A__ = point + 1
return None
def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str:
'''simple docstring'''
if sorted_collection[left] == sorted_collection[right]:
if sorted_collection[left] == item:
return left
else:
return None
A__ = left + ((item - sorted_collection[left]) * (right - left)) // (
sorted_collection[right] - sorted_collection[left]
)
# out of range check
if point < 0 or point >= len(SCREAMING_SNAKE_CASE__ ):
return None
if sorted_collection[point] == item:
return point
elif point < left:
return interpolation_search_by_recursion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
elif point > right:
return interpolation_search_by_recursion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
if sorted_collection[point] > item:
return interpolation_search_by_recursion(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , point - 1 )
else:
return interpolation_search_by_recursion(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , point + 1 , SCREAMING_SNAKE_CASE__ )
def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple:
'''simple docstring'''
if collection != sorted(SCREAMING_SNAKE_CASE__ ):
raise ValueError('Collection must be ascending sorted' )
return True
if __name__ == "__main__":
import sys
lowercase_ = 0
if debug == 1:
lowercase_ = [10, 30, 40, 45, 50, 66, 77, 93]
try:
__assert_sorted(collection)
except ValueError:
sys.exit("Sequence must be ascending sorted to apply interpolation search")
lowercase_ = 67
lowercase_ = interpolation_search(collection, target)
if result is not None:
print(f"""{target} found at positions: {result}""")
else:
print("Not found")
| 7 | 0 |
'''simple docstring'''
import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.esm.modeling_esmfold import EsmForProteinFolding
class _lowercase :
def __init__( self: List[str] , UpperCamelCase__: Any , UpperCamelCase__: Union[str, Any]=13 , UpperCamelCase__: List[str]=7 , UpperCamelCase__: Optional[Any]=False , UpperCamelCase__: Dict=True , UpperCamelCase__: Tuple=False , UpperCamelCase__: Optional[Any]=False , UpperCamelCase__: List[Any]=19 , UpperCamelCase__: str=32 , UpperCamelCase__: Tuple=5 , UpperCamelCase__: Any=4 , UpperCamelCase__: Dict=37 , UpperCamelCase__: Dict="gelu" , UpperCamelCase__: Any=0.1 , UpperCamelCase__: str=0.1 , UpperCamelCase__: Optional[int]=512 , UpperCamelCase__: str=16 , UpperCamelCase__: List[str]=2 , UpperCamelCase__: List[Any]=0.02 , UpperCamelCase__: str=3 , UpperCamelCase__: List[str]=4 , UpperCamelCase__: Union[str, Any]=None , ):
lowerCamelCase__ : Any = parent
lowerCamelCase__ : str = batch_size
lowerCamelCase__ : Optional[Any] = seq_length
lowerCamelCase__ : List[Any] = is_training
lowerCamelCase__ : Optional[int] = use_input_mask
lowerCamelCase__ : List[str] = use_token_type_ids
lowerCamelCase__ : List[Any] = use_labels
lowerCamelCase__ : List[str] = vocab_size
lowerCamelCase__ : str = hidden_size
lowerCamelCase__ : str = num_hidden_layers
lowerCamelCase__ : Optional[int] = num_attention_heads
lowerCamelCase__ : Any = intermediate_size
lowerCamelCase__ : Any = hidden_act
lowerCamelCase__ : Optional[Any] = hidden_dropout_prob
lowerCamelCase__ : Union[str, Any] = attention_probs_dropout_prob
lowerCamelCase__ : Tuple = max_position_embeddings
lowerCamelCase__ : int = type_vocab_size
lowerCamelCase__ : Dict = type_sequence_label_size
lowerCamelCase__ : int = initializer_range
lowerCamelCase__ : List[Any] = num_labels
lowerCamelCase__ : List[Any] = num_choices
lowerCamelCase__ : Any = scope
def lowerCamelCase_ ( self: Optional[int] ):
lowerCamelCase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase__ : int = None
if self.use_input_mask:
lowerCamelCase__ : int = random_attention_mask([self.batch_size, self.seq_length] )
lowerCamelCase__ : List[str] = None
lowerCamelCase__ : List[str] = None
lowerCamelCase__ : List[Any] = None
if self.use_labels:
lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCamelCase__ : Any = ids_tensor([self.batch_size] , self.num_choices )
lowerCamelCase__ : Any = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCamelCase_ ( self: Optional[int] ):
lowerCamelCase__ : Optional[Any] = EsmConfig(
vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=UpperCamelCase__ , esmfold_config={"""trunk""": {"""num_blocks""": 2}, """fp16_esm""": False} , )
return config
def lowerCamelCase_ ( self: str , UpperCamelCase__: Optional[Any] , UpperCamelCase__: int , UpperCamelCase__: Any , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: str , UpperCamelCase__: Any ):
lowerCamelCase__ : Dict = EsmForProteinFolding(config=UpperCamelCase__ ).float()
model.to(UpperCamelCase__ )
model.eval()
lowerCamelCase__ : Optional[int] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ )
lowerCamelCase__ : Optional[int] = model(UpperCamelCase__ )
lowerCamelCase__ : Dict = model(UpperCamelCase__ )
self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) )
self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) )
def lowerCamelCase_ ( self: str ):
lowerCamelCase__ : int = self.prepare_config_and_inputs()
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) : int = config_and_inputs
lowerCamelCase__ : str = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class _lowercase ( _lowercase , _lowercase , unittest.TestCase ):
a = False
a = (EsmForProteinFolding,) if is_torch_available() else ()
a = ()
a = {} if is_torch_available() else {}
a = False
def lowerCamelCase_ ( self: Union[str, Any] ):
lowerCamelCase__ : Optional[Any] = EsmFoldModelTester(self )
lowerCamelCase__ : Optional[Any] = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 )
def lowerCamelCase_ ( self: Tuple ):
self.config_tester.run_common_tests()
def lowerCamelCase_ ( self: Tuple ):
lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCamelCase__ )
@unittest.skip("""Does not support attention outputs""" )
def lowerCamelCase_ ( self: List[Any] ):
pass
@unittest.skip
def lowerCamelCase_ ( self: int ):
pass
@unittest.skip("""Esm does not support embedding resizing""" )
def lowerCamelCase_ ( self: Optional[Any] ):
pass
@unittest.skip("""Esm does not support embedding resizing""" )
def lowerCamelCase_ ( self: str ):
pass
@unittest.skip("""ESMFold does not support passing input embeds!""" )
def lowerCamelCase_ ( self: List[str] ):
pass
@unittest.skip("""ESMFold does not support head pruning.""" )
def lowerCamelCase_ ( self: int ):
pass
@unittest.skip("""ESMFold does not support head pruning.""" )
def lowerCamelCase_ ( self: Optional[Any] ):
pass
@unittest.skip("""ESMFold does not support head pruning.""" )
def lowerCamelCase_ ( self: List[str] ):
pass
@unittest.skip("""ESMFold does not support head pruning.""" )
def lowerCamelCase_ ( self: Optional[int] ):
pass
@unittest.skip("""ESMFold does not support head pruning.""" )
def lowerCamelCase_ ( self: Tuple ):
pass
@unittest.skip("""ESMFold does not output hidden states in the normal way.""" )
def lowerCamelCase_ ( self: Optional[int] ):
pass
@unittest.skip("""ESMfold does not output hidden states in the normal way.""" )
def lowerCamelCase_ ( self: Union[str, Any] ):
pass
@unittest.skip("""ESMFold only has one output format.""" )
def lowerCamelCase_ ( self: Dict ):
pass
@unittest.skip("""This test doesn't work for ESMFold and doesn't test core functionality""" )
def lowerCamelCase_ ( self: Union[str, Any] ):
pass
@unittest.skip("""ESMFold does not support input chunking.""" )
def lowerCamelCase_ ( self: Any ):
pass
@unittest.skip("""ESMFold doesn't respect you and it certainly doesn't respect your initialization arguments.""" )
def lowerCamelCase_ ( self: Optional[int] ):
pass
@unittest.skip("""ESMFold doesn't support torchscript compilation.""" )
def lowerCamelCase_ ( self: Any ):
pass
@unittest.skip("""ESMFold doesn't support torchscript compilation.""" )
def lowerCamelCase_ ( self: str ):
pass
@unittest.skip("""ESMFold doesn't support torchscript compilation.""" )
def lowerCamelCase_ ( self: List[Any] ):
pass
@unittest.skip("""ESMFold doesn't support data parallel.""" )
def lowerCamelCase_ ( self: Tuple ):
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def lowerCamelCase_ ( self: str ):
pass
@require_torch
class _lowercase ( _lowercase ):
@slow
def lowerCamelCase_ ( self: str ):
lowerCamelCase__ : List[Any] = EsmForProteinFolding.from_pretrained("""facebook/esmfold_v1""" ).float()
model.eval()
lowerCamelCase__ : Optional[int] = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
lowerCamelCase__ : Any = model(UpperCamelCase__ )["""positions"""]
lowerCamelCase__ : Dict = torch.tensor([2.5_828, 0.7_993, -10.9_334] , dtype=torch.floataa )
self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , UpperCamelCase__ , atol=1e-4 ) )
| 41 |
from argparse import ArgumentParser
from datasets.commands.convert import ConvertCommand
from datasets.commands.dummy_data import DummyDataCommand
from datasets.commands.env import EnvironmentCommand
from datasets.commands.run_beam import RunBeamCommand
from datasets.commands.test import TestCommand
from datasets.utils.logging import set_verbosity_info
def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple:
'''simple docstring'''
return {key.lstrip('-' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )}
def _snake_case( ) -> Dict:
'''simple docstring'''
A__ = ArgumentParser(
'HuggingFace Datasets CLI tool' , usage='datasets-cli <command> [<args>]' , allow_abbrev=SCREAMING_SNAKE_CASE__ )
A__ = parser.add_subparsers(help='datasets-cli command helpers' )
set_verbosity_info()
# Register commands
ConvertCommand.register_subcommand(SCREAMING_SNAKE_CASE__ )
EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE__ )
TestCommand.register_subcommand(SCREAMING_SNAKE_CASE__ )
RunBeamCommand.register_subcommand(SCREAMING_SNAKE_CASE__ )
DummyDataCommand.register_subcommand(SCREAMING_SNAKE_CASE__ )
# Parse args
A__ , A__ = parser.parse_known_args()
if not hasattr(SCREAMING_SNAKE_CASE__ , 'func' ):
parser.print_help()
exit(1 )
A__ = parse_unknown_args(SCREAMING_SNAKE_CASE__ )
# Run
A__ = args.func(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
service.run()
if __name__ == "__main__":
main()
| 7 | 0 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import PoolFormerImageProcessor
class __UpperCAmelCase ( unittest.TestCase ):
def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=7 , lowerCAmelCase_=3 , lowerCAmelCase_=30 , lowerCAmelCase_=4_00 , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=0.9 , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=[0.5, 0.5, 0.5] , lowerCAmelCase_=[0.5, 0.5, 0.5] , ):
"""simple docstring"""
_snake_case = size if size is not None else {'shortest_edge': 30}
_snake_case = crop_size if crop_size is not None else {'height': 30, 'width': 30}
_snake_case = parent
_snake_case = batch_size
_snake_case = num_channels
_snake_case = min_resolution
_snake_case = max_resolution
_snake_case = do_resize_and_center_crop
_snake_case = size
_snake_case = crop_pct
_snake_case = crop_size
_snake_case = do_normalize
_snake_case = image_mean
_snake_case = image_std
def lowerCamelCase ( self ):
"""simple docstring"""
return {
"size": self.size,
"do_resize_and_center_crop": self.do_resize_and_center_crop,
"crop_pct": self.crop_pct,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class __UpperCAmelCase ( _lowerCamelCase , unittest.TestCase ):
__lowercase = PoolFormerImageProcessor if is_vision_available() else None
def lowerCamelCase ( self ):
"""simple docstring"""
_snake_case = PoolFormerImageProcessingTester(self )
@property
def lowerCamelCase ( self ):
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCamelCase ( self ):
"""simple docstring"""
_snake_case = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase_ , 'do_resize_and_center_crop' ) )
self.assertTrue(hasattr(lowerCAmelCase_ , 'size' ) )
self.assertTrue(hasattr(lowerCAmelCase_ , 'crop_pct' ) )
self.assertTrue(hasattr(lowerCAmelCase_ , 'do_normalize' ) )
self.assertTrue(hasattr(lowerCAmelCase_ , 'image_mean' ) )
self.assertTrue(hasattr(lowerCAmelCase_ , 'image_std' ) )
def lowerCamelCase ( self ):
"""simple docstring"""
_snake_case = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 30} )
self.assertEqual(image_processor.crop_size , {'height': 30, 'width': 30} )
_snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'shortest_edge': 42} )
self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} )
def lowerCamelCase ( self ):
"""simple docstring"""
pass
def lowerCamelCase ( self ):
"""simple docstring"""
_snake_case = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase_ , Image.Image )
# Test not batched input
_snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_snake_case = image_processing(lowerCAmelCase_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def lowerCamelCase ( self ):
"""simple docstring"""
_snake_case = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , numpify=lowerCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase_ , np.ndarray )
# Test not batched input
_snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_snake_case = image_processing(lowerCAmelCase_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def lowerCamelCase ( self ):
"""simple docstring"""
_snake_case = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase_ , torch.Tensor )
# Test not batched input
_snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_snake_case = image_processing(lowerCAmelCase_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
| 42 |
from __future__ import annotations
import inspect
import unittest
from transformers import ViTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTForImageClassification, TFViTModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class A :
"""simple docstring"""
def __init__( self : Union[str, Any],lowercase_ : Any,lowercase_ : Union[str, Any]=1_3,lowercase_ : Tuple=3_0,lowercase_ : List[Any]=2,lowercase_ : Optional[int]=3,lowercase_ : Union[str, Any]=True,lowercase_ : Tuple=True,lowercase_ : Any=3_2,lowercase_ : List[str]=2,lowercase_ : Optional[int]=4,lowercase_ : Union[str, Any]=3_7,lowercase_ : Tuple="gelu",lowercase_ : str=0.1,lowercase_ : Tuple=0.1,lowercase_ : Union[str, Any]=1_0,lowercase_ : int=0.02,lowercase_ : List[Any]=3,lowercase_ : Any=None,)-> Dict:
'''simple docstring'''
A__ = parent
A__ = batch_size
A__ = image_size
A__ = patch_size
A__ = num_channels
A__ = is_training
A__ = use_labels
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = type_sequence_label_size
A__ = initializer_range
A__ = scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
A__ = (image_size // patch_size) ** 2
A__ = num_patches + 1
def snake_case__ ( self : int )-> List[str]:
'''simple docstring'''
A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
A__ = None
if self.use_labels:
A__ = ids_tensor([self.batch_size],self.type_sequence_label_size )
A__ = self.get_config()
return config, pixel_values, labels
def snake_case__ ( self : Tuple )-> List[Any]:
'''simple docstring'''
return ViTConfig(
image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,is_decoder=lowercase_,initializer_range=self.initializer_range,)
def snake_case__ ( self : List[str],lowercase_ : int,lowercase_ : Union[str, Any],lowercase_ : Tuple )-> Optional[Any]:
'''simple docstring'''
A__ = TFViTModel(config=lowercase_ )
A__ = model(lowercase_,training=lowercase_ )
self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) )
# Test with an image with different size than the one specified in config.
A__ = self.image_size // 2
A__ = pixel_values[:, :, :image_size, :image_size]
A__ = model(lowercase_,interpolate_pos_encoding=lowercase_,training=lowercase_ )
A__ = (image_size // self.patch_size) ** 2 + 1
self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, seq_length, self.hidden_size) )
def snake_case__ ( self : List[Any],lowercase_ : List[Any],lowercase_ : List[Any],lowercase_ : List[Any] )-> Dict:
'''simple docstring'''
A__ = self.type_sequence_label_size
A__ = TFViTForImageClassification(lowercase_ )
A__ = model(lowercase_,labels=lowercase_,training=lowercase_ )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) )
# Test with an image with different size than the one specified in config.
A__ = self.image_size // 2
A__ = pixel_values[:, :, :image_size, :image_size]
A__ = model(lowercase_,interpolate_pos_encoding=lowercase_,training=lowercase_ )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
A__ = 1
A__ = TFViTForImageClassification(lowercase_ )
A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
A__ = model(lowercase_ )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) )
def snake_case__ ( self : Any )-> Optional[Any]:
'''simple docstring'''
A__ = self.prepare_config_and_inputs()
A__ , A__ , A__ = config_and_inputs
A__ = {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class A ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = (TFViTModel, TFViTForImageClassification) if is_tf_available() else ()
lowerCamelCase = (
{'feature-extraction': TFViTModel, 'image-classification': TFViTForImageClassification}
if is_tf_available()
else {}
)
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
def snake_case__ ( self : int )-> List[Any]:
'''simple docstring'''
A__ = TFViTModelTester(self )
A__ = ConfigTester(self,config_class=lowercase_,has_text_modality=lowercase_,hidden_size=3_7 )
def snake_case__ ( self : Any )-> Optional[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='ViT does not use inputs_embeds' )
def snake_case__ ( self : Optional[Any] )-> str:
'''simple docstring'''
pass
@unittest.skip(reason='ViT does not use inputs_embeds' )
def snake_case__ ( self : Any )-> int:
'''simple docstring'''
pass
def snake_case__ ( self : str )-> Dict:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = model_class(lowercase_ )
self.assertIsInstance(model.get_input_embeddings(),(tf.keras.layers.Layer) )
A__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowercase_,tf.keras.layers.Layer ) )
def snake_case__ ( self : int )-> List[str]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = model_class(lowercase_ )
A__ = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A__ = [*signature.parameters.keys()]
A__ = ['pixel_values']
self.assertListEqual(arg_names[:1],lowercase_ )
def snake_case__ ( self : Union[str, Any] )-> Optional[Any]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase_ )
def snake_case__ ( self : Optional[Any] )-> Optional[Any]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowercase_ )
@slow
def snake_case__ ( self : Union[str, Any] )-> Union[str, Any]:
'''simple docstring'''
A__ = TFViTModel.from_pretrained('google/vit-base-patch16-224' )
self.assertIsNotNone(lowercase_ )
def _snake_case( ) -> str:
'''simple docstring'''
A__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
@require_vision
class A ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def snake_case__ ( self : List[Any] )-> str:
'''simple docstring'''
return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None
@slow
def snake_case__ ( self : Any )-> Dict:
'''simple docstring'''
A__ = TFViTForImageClassification.from_pretrained('google/vit-base-patch16-224' )
A__ = self.default_image_processor
A__ = prepare_img()
A__ = image_processor(images=lowercase_,return_tensors='tf' )
# forward pass
A__ = model(**lowercase_ )
# verify the logits
A__ = tf.TensorShape((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape,lowercase_ )
A__ = tf.constant([-0.2_744, 0.8_215, -0.0_836] )
tf.debugging.assert_near(outputs.logits[0, :3],lowercase_,atol=1E-4 )
| 7 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__lowercase = {
'''configuration_clap''': [
'''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ClapAudioConfig''',
'''ClapConfig''',
'''ClapTextConfig''',
],
'''processing_clap''': ['''ClapProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowercase = [
'''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ClapModel''',
'''ClapPreTrainedModel''',
'''ClapTextModel''',
'''ClapTextModelWithProjection''',
'''ClapAudioModel''',
'''ClapAudioModelWithProjection''',
]
__lowercase = ['''ClapFeatureExtractor''']
if TYPE_CHECKING:
from .configuration_clap import (
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
ClapAudioConfig,
ClapConfig,
ClapTextConfig,
)
from .processing_clap import ClapProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_clap import ClapFeatureExtractor
from .modeling_clap import (
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
ClapAudioModel,
ClapAudioModelWithProjection,
ClapModel,
ClapPreTrainedModel,
ClapTextModel,
ClapTextModelWithProjection,
)
else:
import sys
__lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 43 |
import unittest
from parameterized import parameterized
from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
GPTNeoXModel,
)
class A :
"""simple docstring"""
def __init__( self : str,lowercase_ : Any,lowercase_ : Tuple=1_3,lowercase_ : str=7,lowercase_ : Tuple=True,lowercase_ : int=True,lowercase_ : List[Any]=True,lowercase_ : List[str]=True,lowercase_ : List[str]=9_9,lowercase_ : List[Any]=6_4,lowercase_ : List[str]=5,lowercase_ : Optional[Any]=4,lowercase_ : Optional[Any]=3_7,lowercase_ : Optional[Any]="gelu",lowercase_ : int=0.1,lowercase_ : str=0.1,lowercase_ : Optional[Any]=5_1_2,lowercase_ : int=1_6,lowercase_ : List[Any]=2,lowercase_ : Union[str, Any]=0.02,lowercase_ : Tuple=3,lowercase_ : List[Any]=4,lowercase_ : str=None,)-> Union[str, Any]:
'''simple docstring'''
A__ = parent
A__ = batch_size
A__ = seq_length
A__ = is_training
A__ = use_input_mask
A__ = use_token_type_ids
A__ = use_labels
A__ = vocab_size
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = max_position_embeddings
A__ = type_vocab_size
A__ = type_sequence_label_size
A__ = initializer_range
A__ = num_labels
A__ = num_choices
A__ = scope
A__ = vocab_size - 1
def snake_case__ ( self : str )-> Optional[Any]:
'''simple docstring'''
A__ = ids_tensor([self.batch_size, self.seq_length],self.vocab_size )
A__ = None
if self.use_input_mask:
A__ = random_attention_mask([self.batch_size, self.seq_length] )
A__ = None
if self.use_labels:
A__ = ids_tensor([self.batch_size, self.seq_length],self.num_labels )
A__ = self.get_config()
return config, input_ids, input_mask, token_labels
def snake_case__ ( self : List[Any] )-> Tuple:
'''simple docstring'''
return GPTNeoXConfig(
vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=lowercase_,initializer_range=self.initializer_range,pad_token_id=self.pad_token_id,)
def snake_case__ ( self : Optional[int] )-> Union[str, Any]:
'''simple docstring'''
A__ , A__ , A__ , A__ = self.prepare_config_and_inputs()
A__ = True
return config, input_ids, input_mask, token_labels
def snake_case__ ( self : Any,lowercase_ : List[Any],lowercase_ : List[Any],lowercase_ : str )-> Any:
'''simple docstring'''
A__ = GPTNeoXModel(config=lowercase_ )
model.to(lowercase_ )
model.eval()
A__ = model(lowercase_,attention_mask=lowercase_ )
A__ = model(lowercase_ )
self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) )
def snake_case__ ( self : Union[str, Any],lowercase_ : List[str],lowercase_ : Dict,lowercase_ : Optional[Any] )-> Tuple:
'''simple docstring'''
A__ = True
A__ = GPTNeoXModel(lowercase_ )
model.to(lowercase_ )
model.eval()
A__ = model(lowercase_,attention_mask=lowercase_ )
self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) )
def snake_case__ ( self : Union[str, Any],lowercase_ : str,lowercase_ : Union[str, Any],lowercase_ : Union[str, Any],lowercase_ : List[str] )-> List[str]:
'''simple docstring'''
A__ = GPTNeoXForCausalLM(config=lowercase_ )
model.to(lowercase_ )
model.eval()
A__ = model(lowercase_,attention_mask=lowercase_,labels=lowercase_ )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) )
def snake_case__ ( self : Optional[int],lowercase_ : Optional[int],lowercase_ : Optional[int],lowercase_ : Dict,lowercase_ : Any )-> int:
'''simple docstring'''
A__ = self.num_labels
A__ = GPTNeoXForQuestionAnswering(lowercase_ )
model.to(lowercase_ )
model.eval()
A__ = model(lowercase_,attention_mask=lowercase_ )
self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) )
def snake_case__ ( self : List[str],lowercase_ : List[str],lowercase_ : int,lowercase_ : Union[str, Any],lowercase_ : Optional[int] )-> str:
'''simple docstring'''
A__ = self.num_labels
A__ = GPTNeoXForSequenceClassification(lowercase_ )
model.to(lowercase_ )
model.eval()
A__ = ids_tensor([self.batch_size],self.type_sequence_label_size )
A__ = model(lowercase_,attention_mask=lowercase_,labels=lowercase_ )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) )
def snake_case__ ( self : Any,lowercase_ : Union[str, Any],lowercase_ : List[Any],lowercase_ : Optional[Any],lowercase_ : int )-> Union[str, Any]:
'''simple docstring'''
A__ = self.num_labels
A__ = GPTNeoXForTokenClassification(lowercase_ )
model.to(lowercase_ )
model.eval()
A__ = model(lowercase_,attention_mask=lowercase_,labels=lowercase_ )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) )
def snake_case__ ( self : int,lowercase_ : str,lowercase_ : int,lowercase_ : Union[str, Any] )-> List[Any]:
'''simple docstring'''
A__ = True
A__ = GPTNeoXForCausalLM(config=lowercase_ )
model.to(lowercase_ )
model.eval()
# first forward pass
A__ = model(lowercase_,attention_mask=lowercase_,use_cache=lowercase_ )
A__ = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
A__ = ids_tensor((self.batch_size, 3),config.vocab_size )
A__ = ids_tensor((self.batch_size, 3),vocab_size=2 )
# append to next input_ids and
A__ = torch.cat([input_ids, next_tokens],dim=-1 )
A__ = torch.cat([input_mask, next_mask],dim=-1 )
A__ = model(lowercase_,attention_mask=lowercase_,output_hidden_states=lowercase_ )
A__ = output_from_no_past['hidden_states'][0]
A__ = model(
lowercase_,attention_mask=lowercase_,past_key_values=lowercase_,output_hidden_states=lowercase_,)['hidden_states'][0]
# select random slice
A__ = ids_tensor((1,),output_from_past.shape[-1] ).item()
A__ = output_from_no_past[:, -3:, random_slice_idx].detach()
A__ = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(lowercase_,lowercase_,atol=1E-3 ) )
def snake_case__ ( self : str )-> Union[str, Any]:
'''simple docstring'''
A__ = self.prepare_config_and_inputs()
A__ , A__ , A__ , A__ = config_and_inputs
A__ = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class A ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = (
(
GPTNeoXModel,
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
)
if is_torch_available()
else ()
)
lowerCamelCase = (GPTNeoXForCausalLM,) if is_torch_available() else ()
lowerCamelCase = (
{
'feature-extraction': GPTNeoXModel,
'question-answering': GPTNeoXForQuestionAnswering,
'text-classification': GPTNeoXForSequenceClassification,
'text-generation': GPTNeoXForCausalLM,
'token-classification': GPTNeoXForTokenClassification,
'zero-shot': GPTNeoXForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
def snake_case__ ( self : str )-> Tuple:
'''simple docstring'''
A__ = GPTNeoXModelTester(self )
A__ = ConfigTester(self,config_class=lowercase_,hidden_size=6_4,num_attention_heads=8 )
def snake_case__ ( self : Optional[Any] )-> Union[str, Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def snake_case__ ( self : Union[str, Any] )-> Union[str, Any]:
'''simple docstring'''
A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(lowercase_,lowercase_,lowercase_ )
def snake_case__ ( self : Dict )-> List[Any]:
'''simple docstring'''
A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(lowercase_,lowercase_,lowercase_ )
def snake_case__ ( self : List[str] )-> Any:
'''simple docstring'''
A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs_for_decoder()
A__ = None
self.model_tester.create_and_check_model_as_decoder(lowercase_,lowercase_,lowercase_ )
def snake_case__ ( self : Optional[Any] )-> str:
'''simple docstring'''
A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(lowercase_,lowercase_,lowercase_ )
def snake_case__ ( self : Dict )-> Dict:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_causal_lm(*lowercase_ )
def snake_case__ ( self : Tuple )-> List[Any]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*lowercase_ )
def snake_case__ ( self : Any )-> List[str]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*lowercase_ )
def snake_case__ ( self : str )-> Tuple:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowercase_ )
@unittest.skip(reason='Feed forward chunking is not implemented' )
def snake_case__ ( self : Union[str, Any] )-> Optional[Any]:
'''simple docstring'''
pass
@parameterized.expand([('linear',), ('dynamic',)] )
def snake_case__ ( self : List[str],lowercase_ : Any )-> List[str]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
A__ = ids_tensor([1, 1_0],config.vocab_size )
A__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )],config.vocab_size )
set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights
A__ = GPTNeoXModel(lowercase_ )
original_model.to(lowercase_ )
original_model.eval()
A__ = original_model(lowercase_ ).last_hidden_state
A__ = original_model(lowercase_ ).last_hidden_state
set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights
A__ = {'type': scaling_type, 'factor': 10.0}
A__ = GPTNeoXModel(lowercase_ )
scaled_model.to(lowercase_ )
scaled_model.eval()
A__ = scaled_model(lowercase_ ).last_hidden_state
A__ = scaled_model(lowercase_ ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(lowercase_,lowercase_,atol=1E-5 ) )
else:
self.assertFalse(torch.allclose(lowercase_,lowercase_,atol=1E-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(lowercase_,lowercase_,atol=1E-5 ) )
@require_torch
class A ( unittest.TestCase ):
"""simple docstring"""
@slow
def snake_case__ ( self : Tuple )-> Union[str, Any]:
'''simple docstring'''
A__ = AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped' )
for checkpointing in [True, False]:
A__ = GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped' )
if checkpointing:
model.gradient_checkpointing_enable()
else:
model.gradient_checkpointing_disable()
model.to(lowercase_ )
A__ = tokenizer('My favorite food is',return_tensors='pt' ).to(lowercase_ )
# The hub repo. is updated on 2023-04-04, resulting in poor outputs.
# See: https://github.com/huggingface/transformers/pull/24193
A__ = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure'
A__ = model.generate(**lowercase_,do_sample=lowercase_,max_new_tokens=2_0 )
A__ = tokenizer.batch_decode(lowercase_ )[0]
self.assertEqual(lowercase_,lowercase_ )
| 7 | 0 |
"""simple docstring"""
from scipy.stats import pearsonr
import datasets
_a : str = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n'
_a : List[str] = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n'
_a : List[Any] = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __A ( datasets.Metric ):
def __A ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""float""" ),
"""references""": datasets.Value("""float""" ),
} ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , )
def __A ( self , a__ , a__ , a__=False ):
if return_pvalue:
_lowerCAmelCase : List[Any] = pearsonr(a__ , a__ )
return {"pearsonr": results[0], "p-value": results[1]}
else:
return {"pearsonr": float(pearsonr(a__ , a__ )[0] )}
| 44 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json",
}
class A ( _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase = 'open-llama'
def __init__( self : Any,lowercase_ : Optional[int]=1_0_0_0_0_0,lowercase_ : Union[str, Any]=4_0_9_6,lowercase_ : Dict=1_1_0_0_8,lowercase_ : Dict=3_2,lowercase_ : Optional[int]=3_2,lowercase_ : Dict="silu",lowercase_ : Union[str, Any]=2_0_4_8,lowercase_ : Optional[int]=0.02,lowercase_ : Dict=1E-6,lowercase_ : Dict=True,lowercase_ : List[Any]=0,lowercase_ : Optional[int]=1,lowercase_ : str=2,lowercase_ : str=False,lowercase_ : str=True,lowercase_ : int=0.1,lowercase_ : List[Any]=0.1,lowercase_ : List[Any]=True,lowercase_ : Union[str, Any]=True,lowercase_ : Any=None,**lowercase_ : List[Any],)-> Tuple:
'''simple docstring'''
A__ = vocab_size
A__ = max_position_embeddings
A__ = hidden_size
A__ = intermediate_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = hidden_act
A__ = initializer_range
A__ = rms_norm_eps
A__ = use_cache
A__ = kwargs.pop(
'use_memorry_efficient_attention',lowercase_ )
A__ = hidden_dropout_prob
A__ = attention_dropout_prob
A__ = use_stable_embedding
A__ = shared_input_output_embedding
A__ = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=lowercase_,bos_token_id=lowercase_,eos_token_id=lowercase_,tie_word_embeddings=lowercase_,**lowercase_,)
def snake_case__ ( self : str )-> str:
'''simple docstring'''
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling,lowercase_ ) or len(self.rope_scaling ) != 2:
raise ValueError(
'`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '
F'got {self.rope_scaling}' )
A__ = self.rope_scaling.get('type',lowercase_ )
A__ = self.rope_scaling.get('factor',lowercase_ )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
F'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' )
if rope_scaling_factor is None or not isinstance(lowercase_,lowercase_ ) or rope_scaling_factor <= 1.0:
raise ValueError(F'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
| 7 | 0 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json",
# See all LeViT models at https://huggingface.co/models?filter=levit
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = 'levit'
def __init__( self , _a=224 , _a=3 , _a=3 , _a=2 , _a=1 , _a=16 , _a=[128, 256, 384] , _a=[4, 8, 12] , _a=[4, 4, 4] , _a=[16, 16, 16] , _a=0 , _a=[2, 2, 2] , _a=[2, 2, 2] , _a=0.02 , **_a , ):
super().__init__(**_a )
__a = image_size
__a = num_channels
__a = kernel_size
__a = stride
__a = padding
__a = hidden_sizes
__a = num_attention_heads
__a = depths
__a = key_dim
__a = drop_path_rate
__a = patch_size
__a = attention_ratio
__a = mlp_ratio
__a = initializer_range
__a = [
['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = version.parse('1.11' )
@property
def __UpperCAmelCase ( self ):
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def __UpperCAmelCase ( self ):
return 1E-4
| 45 |
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available
from . import BaseDiffusersCLICommand
def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
return EnvironmentCommand()
class A ( _UpperCAmelCase ):
"""simple docstring"""
@staticmethod
def snake_case__ ( lowercase_ : ArgumentParser )-> Dict:
'''simple docstring'''
A__ = parser.add_parser('env' )
download_parser.set_defaults(func=lowercase_ )
def snake_case__ ( self : List[Any] )-> List[str]:
'''simple docstring'''
A__ = huggingface_hub.__version__
A__ = 'not installed'
A__ = 'NA'
if is_torch_available():
import torch
A__ = torch.__version__
A__ = torch.cuda.is_available()
A__ = 'not installed'
if is_transformers_available():
import transformers
A__ = transformers.__version__
A__ = 'not installed'
if is_accelerate_available():
import accelerate
A__ = accelerate.__version__
A__ = 'not installed'
if is_xformers_available():
import xformers
A__ = xformers.__version__
A__ = {
'`diffusers` version': version,
'Platform': platform.platform(),
'Python version': platform.python_version(),
'PyTorch version (GPU?)': F'{pt_version} ({pt_cuda_available})',
'Huggingface_hub version': hub_version,
'Transformers version': transformers_version,
'Accelerate version': accelerate_version,
'xFormers version': xformers_version,
'Using GPU in script?': '<fill in>',
'Using distributed or parallel set-up in script?': '<fill in>',
}
print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' )
print(self.format_dict(lowercase_ ) )
return info
@staticmethod
def snake_case__ ( lowercase_ : int )-> Optional[Any]:
'''simple docstring'''
return "\n".join([F'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
| 7 | 0 |
"""simple docstring"""
from __future__ import annotations
def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
lowerCAmelCase = 0
lowerCAmelCase = len(SCREAMING_SNAKE_CASE ) - 1
while i < j:
if nums[i] + nums[j] == target:
return [i, j]
elif nums[i] + nums[j] < target:
lowerCAmelCase = i + 1
else:
lowerCAmelCase = j - 1
return []
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f'{two_pointer([2, 7, 11, 15], 9) = }')
| 46 |
import unittest
from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
lowercase_ = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
@require_tokenizers
class A ( _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = ReformerTokenizer
lowerCamelCase = ReformerTokenizerFast
lowerCamelCase = True
lowerCamelCase = False
lowerCamelCase = True
def snake_case__ ( self : Any )-> str:
'''simple docstring'''
super().setUp()
A__ = ReformerTokenizer(lowercase_,keep_accents=lowercase_ )
tokenizer.save_pretrained(self.tmpdirname )
def snake_case__ ( self : Optional[int] )-> Optional[int]:
'''simple docstring'''
A__ = '<s>'
A__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ),lowercase_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ),lowercase_ )
def snake_case__ ( self : str )-> Tuple:
'''simple docstring'''
A__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0],'<unk>' )
self.assertEqual(vocab_keys[1],'<s>' )
self.assertEqual(vocab_keys[-1],'j' )
self.assertEqual(len(lowercase_ ),1_0_0_0 )
def snake_case__ ( self : Dict )-> Dict:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size,1_0_0_0 )
def snake_case__ ( self : Dict )-> List[str]:
'''simple docstring'''
if not self.test_rust_tokenizer:
return
A__ = self.get_tokenizer()
A__ = self.get_rust_tokenizer()
A__ = 'I was born in 92000, and this is falsé.'
A__ = tokenizer.tokenize(lowercase_ )
A__ = rust_tokenizer.tokenize(lowercase_ )
self.assertListEqual(lowercase_,lowercase_ )
A__ = tokenizer.encode(lowercase_,add_special_tokens=lowercase_ )
A__ = rust_tokenizer.encode(lowercase_,add_special_tokens=lowercase_ )
self.assertListEqual(lowercase_,lowercase_ )
A__ = self.get_rust_tokenizer()
A__ = tokenizer.encode(lowercase_ )
A__ = rust_tokenizer.encode(lowercase_ )
self.assertListEqual(lowercase_,lowercase_ )
def snake_case__ ( self : int,lowercase_ : Optional[int]=1_5 )-> Optional[Any]:
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
A__ = self.rust_tokenizer_class.from_pretrained(lowercase_,**lowercase_ )
# Simple input
A__ = 'This is a simple input'
A__ = ['This is a simple input 1', 'This is a simple input 2']
A__ = ('This is a simple input', 'This is a pair')
A__ = [
('This is a simple input 1', 'This is a simple input 2'),
('This is a simple pair 1', 'This is a simple pair 2'),
]
# Simple input tests
self.assertRaises(lowercase_,tokenizer_r.encode,lowercase_,max_length=lowercase_,padding='max_length' )
# Simple input
self.assertRaises(lowercase_,tokenizer_r.encode_plus,lowercase_,max_length=lowercase_,padding='max_length' )
# Simple input
self.assertRaises(
lowercase_,tokenizer_r.batch_encode_plus,lowercase_,max_length=lowercase_,padding='max_length',)
# Pair input
self.assertRaises(lowercase_,tokenizer_r.encode,lowercase_,max_length=lowercase_,padding='max_length' )
# Pair input
self.assertRaises(lowercase_,tokenizer_r.encode_plus,lowercase_,max_length=lowercase_,padding='max_length' )
# Pair input
self.assertRaises(
lowercase_,tokenizer_r.batch_encode_plus,lowercase_,max_length=lowercase_,padding='max_length',)
def snake_case__ ( self : List[Any] )-> Tuple:
'''simple docstring'''
pass
def snake_case__ ( self : Dict )-> str:
'''simple docstring'''
A__ = ReformerTokenizer(lowercase_,keep_accents=lowercase_ )
A__ = tokenizer.tokenize('This is a test' )
self.assertListEqual(lowercase_,['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowercase_ ),[2_8_5, 4_6, 1_0, 1_7_0, 3_8_2],)
A__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
lowercase_,[
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
],)
A__ = tokenizer.convert_tokens_to_ids(lowercase_ )
self.assertListEqual(
lowercase_,[8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4],)
A__ = tokenizer.convert_ids_to_tokens(lowercase_ )
self.assertListEqual(
lowercase_,[
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
],)
@cached_property
def snake_case__ ( self : Optional[int] )-> Any:
'''simple docstring'''
return ReformerTokenizer.from_pretrained('google/reformer-crime-and-punishment' )
@slow
def snake_case__ ( self : str )-> Tuple:
'''simple docstring'''
A__ = 'Hello World!'
A__ = [1_2_6, 3_2, 2_6_2, 1_5_2, 3_8, 7_2, 2_8_7]
self.assertListEqual(lowercase_,self.big_tokenizer.encode(lowercase_ ) )
@slow
def snake_case__ ( self : Optional[int] )-> str:
'''simple docstring'''
A__ = (
'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'
' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'
)
A__ = [
1_0_8,
2_6_5,
2_4,
1_1_1,
4,
2_5_8,
1_5_6,
3_5,
2_8,
2_7_5,
3,
2_5_9,
2_9_7,
2_6_0,
8_4,
4,
3_5,
1_1_0,
4_4,
8,
2_5_9,
9_1,
2_6_8,
2_1,
1_1,
2_0_9,
2_7_4,
1_0_9,
2_6_6,
2_7_7,
1_1_7,
8_6,
9_3,
3_1_5,
2_5_8,
2_7_8,
2_5_8,
2_7_7,
2_5_8,
0,
2_5_8,
2_8_8,
2_5_8,
3_1_9,
2_5_8,
0,
2_5_8,
0,
2_5_8,
0,
2_5_8,
0,
2_5_8,
2_8_7,
2_5_8,
3_1_5,
2_5_8,
2_8_9,
2_5_8,
2_7_8,
9_9,
2_6_9,
2_6_6,
2_6_2,
8,
2_5_9,
2_4_1,
4,
2_1_7,
2_3_0,
2_6_8,
2_6_6,
5_5,
1_6_8,
1_0_6,
7_5,
1_9_3,
2_6_6,
2_2_3,
2_7,
4_9,
2_6,
2_8_2,
2_5,
2_6_4,
2_9_9,
1_9,
2_6,
0,
2_5_8,
2_7_7,
1_1_7,
8_6,
9_3,
1_7_6,
1_8_3,
2_7_0,
1_1,
2_6_2,
4_2,
6_1,
2_6_5,
]
self.assertListEqual(lowercase_,self.big_tokenizer.encode(lowercase_ ) )
@require_torch
@slow
def snake_case__ ( self : int )-> Any:
'''simple docstring'''
import torch
from transformers import ReformerConfig, ReformerModel
# Build sequence
A__ = list(self.big_tokenizer.get_vocab().keys() )[:1_0]
A__ = ' '.join(lowercase_ )
A__ = self.big_tokenizer.encode_plus(lowercase_,return_tensors='pt' )
A__ = self.big_tokenizer.batch_encode_plus([sequence, sequence],return_tensors='pt' )
A__ = ReformerConfig()
# The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024)
A__ = encoded_sequence['input_ids'].shape
A__ = ReformerModel(lowercase_ )
# Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320)
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**lowercase_ )
model(**lowercase_ )
@slow
def snake_case__ ( self : int )-> Tuple:
'''simple docstring'''
A__ = {'input_ids': [[1_0_8, 2_6_5, 2_4, 1_1_1, 4, 2_5_8, 1_5_6, 7, 5_1, 2_7_9, 5_8, 7, 7_6, 2_5, 6_9, 2_7_8], [1_4_0, 2_4_3, 2_6_4, 1_3_4, 1_7, 2_6_7, 7_7, 2_6_3, 2_2, 2_6_2, 2_9_7, 2_5_8, 3_0_4, 1_7_7, 2_7_9, 2_6_6, 1_4, 8_9, 1_3, 3_5, 2_6_1, 2_9_9, 2_7_2, 1_3_7, 2_7_5, 2_7_8]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# This tokenizer does not know some characters like ")".
# That is the reason why we use very simple texts here.
# Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064
A__ = [
'This is a very simple sentence.',
'The quick brown fox jumps over the lazy dog.',
]
self.tokenizer_integration_test_util(
expected_encoding=lowercase_,model_name='google/reformer-crime-and-punishment',revision='0e6c3decb8211d49bf881013425dc8b0448b3f5a',padding=lowercase_,sequences=lowercase_,)
| 7 | 0 |
'''simple docstring'''
import importlib
import shutil
import threading
import warnings
from typing import List
import fsspec
import fsspec.asyn
from . import compression
from .hffilesystem import HfFileSystem
lowerCamelCase : Union[str, Any] = importlib.util.find_spec("s3fs") is not None
if _has_safs:
from .safilesystem import SaFileSystem # noqa: F401
lowerCamelCase : List[compression.BaseCompressedFileFileSystem] = [
compression.BzaFileSystem,
compression.GzipFileSystem,
compression.LzaFileSystem,
compression.XzFileSystem,
compression.ZstdFileSystem,
]
# Register custom filesystems
for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]:
if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class:
warnings.warn(f'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''')
fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True)
def _lowerCAmelCase ( _UpperCamelCase : str ) -> str:
"""simple docstring"""
if "://" in dataset_path:
_SCREAMING_SNAKE_CASE =dataset_path.split('://' )[1]
return dataset_path
def _lowerCAmelCase ( _UpperCamelCase : fsspec.AbstractFileSystem ) -> bool:
"""simple docstring"""
if fs is not None and fs.protocol != "file":
return True
else:
return False
def _lowerCAmelCase ( _UpperCamelCase : fsspec.AbstractFileSystem , _UpperCamelCase : str , _UpperCamelCase : str ) -> int:
"""simple docstring"""
_SCREAMING_SNAKE_CASE =not is_remote_filesystem(_UpperCamelCase )
if is_local:
# LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory
shutil.move(fs._strip_protocol(_UpperCamelCase ) , fs._strip_protocol(_UpperCamelCase ) )
else:
fs.mv(_UpperCamelCase , _UpperCamelCase , recursive=_UpperCamelCase )
def _lowerCAmelCase ( ) -> None:
"""simple docstring"""
if hasattr(fsspec.asyn , 'reset_lock' ):
# for future fsspec>2022.05.0
fsspec.asyn.reset_lock()
else:
_SCREAMING_SNAKE_CASE =None
_SCREAMING_SNAKE_CASE =None
_SCREAMING_SNAKE_CASE =threading.Lock()
| 47 |
def _snake_case( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , ) -> float:
'''simple docstring'''
A__ = [redshift, radiation_density, matter_density, dark_energy]
if any(p < 0 for p in parameters ):
raise ValueError('All input parameters must be positive' )
if any(p > 1 for p in parameters[1:4] ):
raise ValueError('Relative densities cannot be greater than one' )
else:
A__ = 1 - (matter_density + radiation_density + dark_energy)
A__ = (
radiation_density * (redshift + 1) ** 4
+ matter_density * (redshift + 1) ** 3
+ curvature * (redshift + 1) ** 2
+ dark_energy
)
A__ = hubble_constant * e_a ** (1 / 2)
return hubble
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
# demo LCDM approximation
lowercase_ = 0.3
print(
hubble_parameter(
hubble_constant=68.3,
radiation_density=1e-4,
matter_density=matter_density,
dark_energy=1 - matter_density,
redshift=0,
)
)
| 7 | 0 |
from .integrations import (
is_optuna_available,
is_ray_available,
is_sigopt_available,
is_wandb_available,
run_hp_search_optuna,
run_hp_search_ray,
run_hp_search_sigopt,
run_hp_search_wandb,
)
from .trainer_utils import (
HPSearchBackend,
default_hp_space_optuna,
default_hp_space_ray,
default_hp_space_sigopt,
default_hp_space_wandb,
)
from .utils import logging
SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger(__name__)
class UpperCamelCase__ :
'''simple docstring'''
lowerCamelCase_ : str
lowerCamelCase_ : str = None
@staticmethod
def _lowercase ( ) -> Dict:
raise NotImplementedError
def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) -> str:
raise NotImplementedError
def _lowercase ( self , UpperCamelCase__ ) -> List[Any]:
raise NotImplementedError
def _lowercase ( self ) -> Union[str, Any]:
if not self.is_available():
raise RuntimeError(
F'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' )
@classmethod
def _lowercase ( cls ) -> List[str]:
return F'''`pip install {cls.pip_package or cls.name}`'''
class UpperCamelCase__ (lowerCAmelCase__ ):
'''simple docstring'''
lowerCamelCase_ : Tuple = """optuna"""
@staticmethod
def _lowercase ( ) -> int:
return is_optuna_available()
def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]:
return run_hp_search_optuna(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ )
def _lowercase ( self , UpperCamelCase__ ) -> Optional[int]:
return default_hp_space_optuna(UpperCamelCase__ )
class UpperCamelCase__ (lowerCAmelCase__ ):
'''simple docstring'''
lowerCamelCase_ : List[Any] = """ray"""
lowerCamelCase_ : Optional[Any] = """'ray[tune]'"""
@staticmethod
def _lowercase ( ) -> Any:
return is_ray_available()
def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]:
return run_hp_search_ray(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ )
def _lowercase ( self , UpperCamelCase__ ) -> Dict:
return default_hp_space_ray(UpperCamelCase__ )
class UpperCamelCase__ (lowerCAmelCase__ ):
'''simple docstring'''
lowerCamelCase_ : str = """sigopt"""
@staticmethod
def _lowercase ( ) -> str:
return is_sigopt_available()
def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]:
return run_hp_search_sigopt(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ )
def _lowercase ( self , UpperCamelCase__ ) -> Optional[Any]:
return default_hp_space_sigopt(UpperCamelCase__ )
class UpperCamelCase__ (lowerCAmelCase__ ):
'''simple docstring'''
lowerCamelCase_ : List[str] = """wandb"""
@staticmethod
def _lowercase ( ) -> List[Any]:
return is_wandb_available()
def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) -> str:
return run_hp_search_wandb(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ )
def _lowercase ( self , UpperCamelCase__ ) -> Dict:
return default_hp_space_wandb(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ : str = {
HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend]
}
def A ( ) -> str:
lowerCamelCase : Tuple = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()]
if len(_SCREAMING_SNAKE_CASE ) > 0:
lowerCamelCase : List[Any] = available_backends[0].name
if len(_SCREAMING_SNAKE_CASE ) > 1:
logger.info(
f'''{len(_SCREAMING_SNAKE_CASE )} hyperparameter search backends available. Using {name} as the default.''' )
return name
raise RuntimeError(
"No hyperparameter search backend available.\n"
+ "\n".join(
f''' - To install {backend.name} run {backend.pip_install()}'''
for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
| 48 |
from typing import Union
import fire
import torch
from tqdm import tqdm
def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str = "cpu" , SCREAMING_SNAKE_CASE__ : Union[str, None] = None ) -> None:
'''simple docstring'''
A__ = torch.load(SCREAMING_SNAKE_CASE__ , map_location=SCREAMING_SNAKE_CASE__ )
for k, v in tqdm(state_dict.items() ):
if not isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ):
raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' )
A__ = v.half()
if save_path is None: # overwrite src_path
A__ = src_path
torch.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
fire.Fire(convert)
| 7 | 0 |
import unittest
from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__snake_case :Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''')
@require_sentencepiece
class _A ( __UpperCAmelCase ,unittest.TestCase ):
UpperCamelCase__ : List[Any] = XLMProphetNetTokenizer
UpperCamelCase__ : List[Any] = False
UpperCamelCase__ : Optional[Any] = True
def _lowerCamelCase ( self : str):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
__a = XLMProphetNetTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE)
tokenizer.save_pretrained(self.tmpdirname)
def _lowerCamelCase ( self : List[Any]):
'''simple docstring'''
__a = '''[PAD]'''
__a = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE)
def _lowerCamelCase ( self : Optional[Any]):
'''simple docstring'''
__a = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0] , '''[PAD]''')
self.assertEqual(vocab_keys[1] , '''[CLS]''')
self.assertEqual(vocab_keys[-1] , '''j''')
self.assertEqual(len(__SCREAMING_SNAKE_CASE) , 1_012)
def _lowerCamelCase ( self : Union[str, Any]):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 1_012)
def _lowerCamelCase ( self : List[Any]):
'''simple docstring'''
__a = XLMProphetNetTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE)
__a = tokenizer.tokenize('''This is a test''')
self.assertListEqual(__SCREAMING_SNAKE_CASE , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
__a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''')
self.assertListEqual(
__SCREAMING_SNAKE_CASE , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
__a = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE)
self.assertListEqual(
__SCREAMING_SNAKE_CASE , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4]
] , )
__a = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE)
self.assertListEqual(
__SCREAMING_SNAKE_CASE , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''[UNK]''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''[UNK]''',
'''.''',
] , )
@cached_property
def _lowerCamelCase ( self : Dict):
'''simple docstring'''
return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''')
@slow
def _lowerCamelCase ( self : str):
'''simple docstring'''
__a = '''Hello World!'''
__a = [35_389, 6_672, 49, 2]
self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE))
@slow
def _lowerCamelCase ( self : Tuple):
'''simple docstring'''
__a = {'''input_ids''': [[11_073, 82_783, 18, 26, 82_783, 549, 51_540, 248, 17_209, 1_301, 217, 20, 215_186, 1_325, 147, 17_209, 1_301, 217, 20, 56_370, 53, 122_020, 20, 16_477, 27, 87_355, 4_548, 20, 4_728, 78_392, 17, 159_969, 18, 26, 24_491, 629, 15, 538, 22_704, 5_439, 15, 2_788, 24_491, 9_885, 15, 43_534, 605, 15, 814, 18_403, 33_200, 29, 15, 43_534, 24_458, 12_410, 111, 24_966, 83_669, 9_637, 144_068, 26, 850, 22_346, 27, 147, 24_966, 83_669, 83_490, 26, 39_113, 735, 27, 689, 656, 2_800, 1_339, 4_600, 53, 122_020, 115_785, 34, 816, 1_339, 46_887, 18, 147, 53_905, 1_951, 42_238, 41_170, 17_732, 834, 436, 15, 27_523, 98_733, 217, 147, 5_542, 4_981, 930, 17_347, 16, 2], [20_091, 629, 94, 82_786, 58, 490, 20, 1_528, 84, 53_905, 344, 80_592, 110_128, 18_822, 5_267, 1_306, 62, 152_537, 308, 7_997, 401, 124_427, 549, 35_442, 225, 109, 15_055, 25_748, 147, 7_119, 43_712, 34, 767, 135_366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63_784, 119_466, 17, 147_808, 88_214, 18, 656, 81, 32, 3_296, 10_280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__SCREAMING_SNAKE_CASE , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
| 49 |
import os
# Precomputes a list of the 100 first triangular numbers
lowercase_ = [int(0.5 * n * (n + 1)) for n in range(1, 101)]
def _snake_case( ) -> int:
'''simple docstring'''
A__ = os.path.dirname(os.path.realpath(SCREAMING_SNAKE_CASE__ ) )
A__ = os.path.join(SCREAMING_SNAKE_CASE__ , 'words.txt' )
A__ = ''
with open(SCREAMING_SNAKE_CASE__ ) as f:
A__ = f.readline()
A__ = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )]
A__ = [
word
for word in [sum(ord(SCREAMING_SNAKE_CASE__ ) - 64 for x in word ) for word in words]
if word in TRIANGULAR_NUMBERS
]
return len(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
print(solution())
| 7 | 0 |
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class lowerCAmelCase ( __UpperCamelCase, unittest.TestCase ):
UpperCAmelCase__ = KandinskyVaaControlnetPipeline
UpperCAmelCase__ = ["""image_embeds""", """negative_image_embeds""", """hint"""]
UpperCAmelCase__ = ["""image_embeds""", """negative_image_embeds""", """hint"""]
UpperCAmelCase__ = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
UpperCAmelCase__ = False
@property
def A_ ( self : Union[str, Any] ) -> List[Any]:
return 32
@property
def A_ ( self : Optional[int] ) -> str:
return 32
@property
def A_ ( self : str ) -> Tuple:
return self.time_input_dim
@property
def A_ ( self : int ) -> Any:
return self.time_input_dim * 4
@property
def A_ ( self : List[str] ) -> int:
return 100
@property
def A_ ( self : int ) -> Union[str, Any]:
torch.manual_seed(0 )
lowerCamelCase__ : List[str] = {
'in_channels': 8,
# Out channels is double in channels because predicts mean and variance
'out_channels': 8,
'addition_embed_type': 'image_hint',
'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'),
'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'),
'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn',
'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2),
'layers_per_block': 1,
'encoder_hid_dim': self.text_embedder_hidden_size,
'encoder_hid_dim_type': 'image_proj',
'cross_attention_dim': self.cross_attention_dim,
'attention_head_dim': 4,
'resnet_time_scale_shift': 'scale_shift',
'class_embed_type': None,
}
lowerCamelCase__ : Dict = UNetaDConditionModel(**UpperCAmelCase )
return model
@property
def A_ ( self : Any ) -> Optional[int]:
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def A_ ( self : Union[str, Any] ) -> List[str]:
torch.manual_seed(0 )
lowerCamelCase__ : Optional[Any] = VQModel(**self.dummy_movq_kwargs )
return model
def A_ ( self : Tuple ) -> Dict:
lowerCamelCase__ : Optional[Any] = self.dummy_unet
lowerCamelCase__ : str = self.dummy_movq
lowerCamelCase__ : Optional[Any] = DDIMScheduler(
num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=UpperCAmelCase , set_alpha_to_one=UpperCAmelCase , steps_offset=1 , prediction_type='epsilon' , thresholding=UpperCAmelCase , )
lowerCamelCase__ : Optional[Any] = {
'unet': unet,
'scheduler': scheduler,
'movq': movq,
}
return components
def A_ ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : str=0 ) -> List[Any]:
lowerCamelCase__ : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase )
lowerCamelCase__ : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
UpperCAmelCase )
# create hint
lowerCamelCase__ : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase )
if str(UpperCAmelCase ).startswith('mps' ):
lowerCamelCase__ : Dict = torch.manual_seed(UpperCAmelCase )
else:
lowerCamelCase__ : List[str] = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase )
lowerCamelCase__ : Optional[Any] = {
'image_embeds': image_embeds,
'negative_image_embeds': negative_image_embeds,
'hint': hint,
'generator': generator,
'height': 64,
'width': 64,
'guidance_scale': 4.0,
'num_inference_steps': 2,
'output_type': 'np',
}
return inputs
def A_ ( self : List[Any] ) -> Any:
lowerCamelCase__ : int = 'cpu'
lowerCamelCase__ : List[str] = self.get_dummy_components()
lowerCamelCase__ : List[str] = self.pipeline_class(**UpperCAmelCase )
lowerCamelCase__ : Union[str, Any] = pipe.to(UpperCAmelCase )
pipe.set_progress_bar_config(disable=UpperCAmelCase )
lowerCamelCase__ : Dict = pipe(**self.get_dummy_inputs(UpperCAmelCase ) )
lowerCamelCase__ : Optional[int] = output.images
lowerCamelCase__ : Union[str, Any] = pipe(
**self.get_dummy_inputs(UpperCAmelCase ) , return_dict=UpperCAmelCase , )[0]
lowerCamelCase__ : List[Any] = image[0, -3:, -3:, -1]
lowerCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCamelCase__ : Dict = np.array(
[0.6_9_5_9_8_2_6, 0.8_6_8_2_7_9, 0.7_5_5_8_0_9_2, 0.6_8_7_6_9_4_6_7, 0.8_5_8_0_5_8_0_4, 0.6_5_9_7_7_4_9_6, 0.4_4_8_8_5_3_0_2, 0.5_9_5_9_1_1_1, 0.4_2_5_1_5_9_5] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
@slow
@require_torch_gpu
class lowerCAmelCase ( unittest.TestCase ):
def A_ ( self : Optional[int] ) -> Optional[int]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A_ ( self : Optional[int] ) -> Optional[Any]:
lowerCamelCase__ : int = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy' )
lowerCamelCase__ : Tuple = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinskyv22/hint_image_cat.png' )
lowerCamelCase__ : str = torch.from_numpy(np.array(UpperCAmelCase ) ).float() / 2_5_5.0
lowerCamelCase__ : Optional[Any] = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
lowerCamelCase__ : Optional[Any] = KandinskyVaaPriorPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa )
pipe_prior.to(UpperCAmelCase )
lowerCamelCase__ : Union[str, Any] = KandinskyVaaControlnetPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa )
lowerCamelCase__ : str = pipeline.to(UpperCAmelCase )
pipeline.set_progress_bar_config(disable=UpperCAmelCase )
lowerCamelCase__ : Union[str, Any] = 'A robot, 4k photo'
lowerCamelCase__ : int = torch.Generator(device='cuda' ).manual_seed(0 )
lowerCamelCase__ , lowerCamelCase__ : Tuple = pipe_prior(
UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=5 , negative_prompt='' , ).to_tuple()
lowerCamelCase__ : Union[str, Any] = torch.Generator(device='cuda' ).manual_seed(0 )
lowerCamelCase__ : List[Any] = pipeline(
image_embeds=UpperCAmelCase , negative_image_embeds=UpperCAmelCase , hint=UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=100 , output_type='np' , )
lowerCamelCase__ : List[str] = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase )
| 50 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionAttendAndExcitePipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_numpy, skip_mps, slow
from diffusers.utils.testing_utils import require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
lowercase_ = False
@skip_mps
class A ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = StableDiffusionAttendAndExcitePipeline
lowerCamelCase = False
lowerCamelCase = TEXT_TO_IMAGE_PARAMS
lowerCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS.union({'token_indices'} )
lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS
lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS
@classmethod
def snake_case__ ( cls : Any )-> Optional[Any]:
'''simple docstring'''
super().setUpClass()
torch.use_deterministic_algorithms(lowercase_ )
@classmethod
def snake_case__ ( cls : Optional[Any] )-> Dict:
'''simple docstring'''
super().tearDownClass()
torch.use_deterministic_algorithms(lowercase_ )
def snake_case__ ( self : List[str] )-> int:
'''simple docstring'''
torch.manual_seed(0 )
A__ = UNetaDConditionModel(
block_out_channels=(3_2, 6_4),layers_per_block=1,sample_size=3_2,in_channels=4,out_channels=4,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'),up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'),cross_attention_dim=3_2,attention_head_dim=(2, 4),use_linear_projection=lowercase_,)
A__ = DDIMScheduler(
beta_start=0.00_085,beta_end=0.012,beta_schedule='scaled_linear',clip_sample=lowercase_,set_alpha_to_one=lowercase_,)
torch.manual_seed(0 )
A__ = AutoencoderKL(
block_out_channels=[3_2, 6_4],in_channels=3,out_channels=3,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'],up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'],latent_channels=4,sample_size=1_2_8,)
torch.manual_seed(0 )
A__ = CLIPTextConfig(
bos_token_id=0,eos_token_id=2,hidden_size=3_2,intermediate_size=3_7,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1_0_0_0,hidden_act='gelu',projection_dim=5_1_2,)
A__ = CLIPTextModel(lowercase_ )
A__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
A__ = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def snake_case__ ( self : Tuple,lowercase_ : str,lowercase_ : List[Any]=0 )-> int:
'''simple docstring'''
if str(lowercase_ ).startswith('mps' ):
A__ = torch.manual_seed(lowercase_ )
else:
A__ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
A__ = A__ = {
'prompt': 'a cat and a frog',
'token_indices': [2, 5],
'generator': generator,
'num_inference_steps': 1,
'guidance_scale': 6.0,
'output_type': 'numpy',
'max_iter_to_alter': 2,
'thresholds': {0: 0.7},
}
return inputs
def snake_case__ ( self : List[str] )-> Optional[Any]:
'''simple docstring'''
A__ = 'cpu'
A__ = self.get_dummy_components()
A__ = self.pipeline_class(**lowercase_ )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
A__ = self.get_dummy_inputs(lowercase_ )
A__ = pipe(**lowercase_ ).images
A__ = image[0, -3:, -3:, -1]
self.assertEqual(image.shape,(1, 6_4, 6_4, 3) )
A__ = np.array(
[0.63_905_364, 0.62_897_307, 0.48_599_017, 0.5_133_624, 0.5_550_048, 0.45_769_516, 0.50_326_973, 0.5_023_139, 0.45_384_496] )
A__ = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(lowercase_,1E-3 )
def snake_case__ ( self : str )-> Optional[Any]:
'''simple docstring'''
super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 )
def snake_case__ ( self : str )-> int:
'''simple docstring'''
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def snake_case__ ( self : str )-> Optional[int]:
'''simple docstring'''
self._test_inference_batch_single_identical(batch_size=2,expected_max_diff=7E-4 )
def snake_case__ ( self : Optional[Any] )-> int:
'''simple docstring'''
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 )
def snake_case__ ( self : Union[str, Any] )-> str:
'''simple docstring'''
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 )
def snake_case__ ( self : Dict )-> Any:
'''simple docstring'''
super().test_save_load_local(expected_max_difference=5E-4 )
def snake_case__ ( self : Dict )-> List[str]:
'''simple docstring'''
super().test_save_load_optional_components(expected_max_difference=4E-4 )
@require_torch_gpu
@slow
class A ( unittest.TestCase ):
"""simple docstring"""
@classmethod
def snake_case__ ( cls : Any )-> Optional[int]:
'''simple docstring'''
super().setUpClass()
torch.use_deterministic_algorithms(lowercase_ )
@classmethod
def snake_case__ ( cls : int )-> List[Any]:
'''simple docstring'''
super().tearDownClass()
torch.use_deterministic_algorithms(lowercase_ )
def snake_case__ ( self : List[Any] )-> Any:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case__ ( self : Union[str, Any] )-> List[Any]:
'''simple docstring'''
A__ = torch.manual_seed(5_1 )
A__ = StableDiffusionAttendAndExcitePipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4',safety_checker=lowercase_,torch_dtype=torch.floataa )
pipe.to('cuda' )
A__ = 'a painting of an elephant with glasses'
A__ = [5, 7]
A__ = pipe(
prompt=lowercase_,token_indices=lowercase_,guidance_scale=7.5,generator=lowercase_,num_inference_steps=5,max_iter_to_alter=5,output_type='numpy',).images[0]
A__ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' )
assert np.abs((expected_image - image).max() ) < 5E-1
| 7 | 0 |
from typing import List, Optional, Union
import torch
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
snake_case_ : str = logging.get_logger(__name__) # pylint: disable=invalid-name
snake_case_ : Tuple = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\")\n >>> pipe_prior.to(\"cuda\")\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\")\n >>> pipe.to(\"cuda\")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save(\"cat.png\")\n ```\n"
def A (__A : Any , __A : List[str] , __A : Optional[int]=8 ) -> str:
"""simple docstring"""
UpperCAmelCase_ = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
UpperCAmelCase_ = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
class __snake_case ( a ):
def __init__( self : List[str] , _snake_case : UNetaDConditionModel , _snake_case : DDPMScheduler , _snake_case : VQModel , ):
"""simple docstring"""
super().__init__()
self.register_modules(
unet=_snake_case , scheduler=_snake_case , movq=_snake_case , )
UpperCAmelCase_ = 2 ** (len(self.movq.config.block_out_channels) - 1)
def lowerCamelCase ( self : int , _snake_case : List[str] , _snake_case : Any , _snake_case : int , _snake_case : Optional[Any] , _snake_case : str , _snake_case : Optional[Any]):
"""simple docstring"""
if latents is None:
UpperCAmelCase_ = randn_tensor(_snake_case , generator=_snake_case , device=_snake_case , dtype=_snake_case)
else:
if latents.shape != shape:
raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""")
UpperCAmelCase_ = latents.to(_snake_case)
UpperCAmelCase_ = latents * scheduler.init_noise_sigma
return latents
def lowerCamelCase ( self : Any , _snake_case : Union[str, Any]=0):
"""simple docstring"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('''Please install accelerate via `pip install accelerate`''')
UpperCAmelCase_ = torch.device(F"""cuda:{gpu_id}""")
UpperCAmelCase_ = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(_snake_case , _snake_case)
def lowerCamelCase ( self : List[str] , _snake_case : Optional[int]=0):
"""simple docstring"""
if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0'''):
from accelerate import cpu_offload_with_hook
else:
raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''')
UpperCAmelCase_ = torch.device(F"""cuda:{gpu_id}""")
if self.device.type != "cpu":
self.to('''cpu''' , silence_dtype_warnings=_snake_case)
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
UpperCAmelCase_ = None
for cpu_offloaded_model in [self.unet, self.movq]:
UpperCAmelCase_ , UpperCAmelCase_ = cpu_offload_with_hook(_snake_case , _snake_case , prev_module_hook=_snake_case)
# We'll offload the last model manually.
UpperCAmelCase_ = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
if not hasattr(self.unet , '''_hf_hook'''):
return self.device
for module in self.unet.modules():
if (
hasattr(_snake_case , '''_hf_hook''')
and hasattr(module._hf_hook , '''execution_device''')
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
@torch.no_grad()
@replace_example_docstring(_snake_case)
def __call__( self : List[Any] , _snake_case : Union[torch.FloatTensor, List[torch.FloatTensor]] , _snake_case : Union[torch.FloatTensor, List[torch.FloatTensor]] , _snake_case : int = 512 , _snake_case : int = 512 , _snake_case : int = 100 , _snake_case : float = 4.0 , _snake_case : int = 1 , _snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _snake_case : Optional[torch.FloatTensor] = None , _snake_case : Optional[str] = "pil" , _snake_case : bool = True , ):
"""simple docstring"""
UpperCAmelCase_ = self._execution_device
UpperCAmelCase_ = guidance_scale > 1.0
if isinstance(_snake_case , _snake_case):
UpperCAmelCase_ = torch.cat(_snake_case , dim=0)
UpperCAmelCase_ = image_embeds.shape[0] * num_images_per_prompt
if isinstance(_snake_case , _snake_case):
UpperCAmelCase_ = torch.cat(_snake_case , dim=0)
if do_classifier_free_guidance:
UpperCAmelCase_ = image_embeds.repeat_interleave(_snake_case , dim=0)
UpperCAmelCase_ = negative_image_embeds.repeat_interleave(_snake_case , dim=0)
UpperCAmelCase_ = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=_snake_case)
self.scheduler.set_timesteps(_snake_case , device=_snake_case)
UpperCAmelCase_ = self.scheduler.timesteps
UpperCAmelCase_ = self.unet.config.in_channels
UpperCAmelCase_ , UpperCAmelCase_ = downscale_height_and_width(_snake_case , _snake_case , self.movq_scale_factor)
# create initial latent
UpperCAmelCase_ = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , image_embeds.dtype , _snake_case , _snake_case , _snake_case , self.scheduler , )
for i, t in enumerate(self.progress_bar(_snake_case)):
# expand the latents if we are doing classifier free guidance
UpperCAmelCase_ = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
UpperCAmelCase_ = {'''image_embeds''': image_embeds}
UpperCAmelCase_ = self.unet(
sample=_snake_case , timestep=_snake_case , encoder_hidden_states=_snake_case , added_cond_kwargs=_snake_case , return_dict=_snake_case , )[0]
if do_classifier_free_guidance:
UpperCAmelCase_ , UpperCAmelCase_ = noise_pred.split(latents.shape[1] , dim=1)
UpperCAmelCase_ , UpperCAmelCase_ = noise_pred.chunk(2)
UpperCAmelCase_ , UpperCAmelCase_ = variance_pred.chunk(2)
UpperCAmelCase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
UpperCAmelCase_ = torch.cat([noise_pred, variance_pred_text] , dim=1)
if not (
hasattr(self.scheduler.config , '''variance_type''')
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
UpperCAmelCase_ , UpperCAmelCase_ = noise_pred.split(latents.shape[1] , dim=1)
# compute the previous noisy sample x_t -> x_t-1
UpperCAmelCase_ = self.scheduler.step(
_snake_case , _snake_case , _snake_case , generator=_snake_case , )[0]
# post-processing
UpperCAmelCase_ = self.movq.decode(_snake_case , force_not_quantize=_snake_case)['''sample''']
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""")
if output_type in ["np", "pil"]:
UpperCAmelCase_ = image * 0.5 + 0.5
UpperCAmelCase_ = image.clamp(0 , 1)
UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1).float().numpy()
if output_type == "pil":
UpperCAmelCase_ = self.numpy_to_pil(_snake_case)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_snake_case)
| 51 |
import argparse
from pathlib import Path
import torch
from packaging import version
from torch.onnx import export
from diffusers import AutoencoderKL
lowercase_ = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11")
def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : tuple , SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , ) -> Union[str, Any]:
'''simple docstring'''
output_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
if is_torch_less_than_1_11:
export(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE__ , output_names=SCREAMING_SNAKE_CASE__ , dynamic_axes=SCREAMING_SNAKE_CASE__ , do_constant_folding=SCREAMING_SNAKE_CASE__ , use_external_data_format=SCREAMING_SNAKE_CASE__ , enable_onnx_checker=SCREAMING_SNAKE_CASE__ , opset_version=SCREAMING_SNAKE_CASE__ , )
else:
export(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE__ , output_names=SCREAMING_SNAKE_CASE__ , dynamic_axes=SCREAMING_SNAKE_CASE__ , do_constant_folding=SCREAMING_SNAKE_CASE__ , opset_version=SCREAMING_SNAKE_CASE__ , )
@torch.no_grad()
def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : bool = False ) -> Tuple:
'''simple docstring'''
A__ = torch.floataa if fpaa else torch.floataa
if fpaa and torch.cuda.is_available():
A__ = 'cuda'
elif fpaa and not torch.cuda.is_available():
raise ValueError('`float16` model export is only supported on GPUs with CUDA' )
else:
A__ = 'cpu'
A__ = Path(SCREAMING_SNAKE_CASE__ )
# VAE DECODER
A__ = AutoencoderKL.from_pretrained(model_path + '/vae' )
A__ = vae_decoder.config.latent_channels
# forward only through the decoder part
A__ = vae_decoder.decode
onnx_export(
SCREAMING_SNAKE_CASE__ , model_args=(
torch.randn(1 , SCREAMING_SNAKE_CASE__ , 25 , 25 ).to(device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ ),
False,
) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={
'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'},
} , opset=SCREAMING_SNAKE_CASE__ , )
del vae_decoder
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
parser.add_argument(
"--model_path",
type=str,
required=True,
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).",
)
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--opset",
default=14,
type=int,
help="The version of the ONNX operator set to use.",
)
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode")
lowercase_ = parser.parse_args()
print(args.output_path)
convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
print("SD: Done: ONNX")
| 7 | 0 |
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__lowerCamelCase : Optional[int] = {"""configuration_mmbt""": ["""MMBTConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : List[Any] = ["""MMBTForClassification""", """MMBTModel""", """ModalEmbeddings"""]
if TYPE_CHECKING:
from .configuration_mmbt import MMBTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings
else:
import sys
__lowerCamelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 52 |
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class A ( _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase = (DPMSolverSinglestepScheduler,)
lowerCamelCase = (('num_inference_steps', 25),)
def snake_case__ ( self : Tuple,**lowercase_ : Dict )-> Optional[int]:
'''simple docstring'''
A__ = {
'num_train_timesteps': 1_0_0_0,
'beta_start': 0.0_001,
'beta_end': 0.02,
'beta_schedule': 'linear',
'solver_order': 2,
'prediction_type': 'epsilon',
'thresholding': False,
'sample_max_value': 1.0,
'algorithm_type': 'dpmsolver++',
'solver_type': 'midpoint',
'lambda_min_clipped': -float('inf' ),
'variance_type': None,
}
config.update(**lowercase_ )
return config
def snake_case__ ( self : str,lowercase_ : Optional[Any]=0,**lowercase_ : Any )-> List[Any]:
'''simple docstring'''
A__ = dict(self.forward_default_kwargs )
A__ = kwargs.pop('num_inference_steps',lowercase_ )
A__ = self.dummy_sample
A__ = 0.1 * sample
A__ = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
A__ = self.get_scheduler_config(**lowercase_ )
A__ = scheduler_class(**lowercase_ )
scheduler.set_timesteps(lowercase_ )
# copy over dummy past residuals
A__ = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowercase_ )
A__ = scheduler_class.from_pretrained(lowercase_ )
new_scheduler.set_timesteps(lowercase_ )
# copy over dummy past residuals
A__ = dummy_past_residuals[: new_scheduler.config.solver_order]
A__ , A__ = sample, sample
for t in range(lowercase_,time_step + scheduler.config.solver_order + 1 ):
A__ = scheduler.step(lowercase_,lowercase_,lowercase_,**lowercase_ ).prev_sample
A__ = new_scheduler.step(lowercase_,lowercase_,lowercase_,**lowercase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def snake_case__ ( self : List[str] )-> List[Any]:
'''simple docstring'''
pass
def snake_case__ ( self : Tuple,lowercase_ : Union[str, Any]=0,**lowercase_ : Union[str, Any] )-> Union[str, Any]:
'''simple docstring'''
A__ = dict(self.forward_default_kwargs )
A__ = kwargs.pop('num_inference_steps',lowercase_ )
A__ = self.dummy_sample
A__ = 0.1 * sample
A__ = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
A__ = self.get_scheduler_config()
A__ = scheduler_class(**lowercase_ )
scheduler.set_timesteps(lowercase_ )
# copy over dummy past residuals (must be after setting timesteps)
A__ = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowercase_ )
A__ = scheduler_class.from_pretrained(lowercase_ )
# copy over dummy past residuals
new_scheduler.set_timesteps(lowercase_ )
# copy over dummy past residual (must be after setting timesteps)
A__ = dummy_past_residuals[: new_scheduler.config.solver_order]
A__ = scheduler.step(lowercase_,lowercase_,lowercase_,**lowercase_ ).prev_sample
A__ = new_scheduler.step(lowercase_,lowercase_,lowercase_,**lowercase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def snake_case__ ( self : Optional[Any],lowercase_ : Optional[int]=None,**lowercase_ : int )-> int:
'''simple docstring'''
if scheduler is None:
A__ = self.scheduler_classes[0]
A__ = self.get_scheduler_config(**lowercase_ )
A__ = scheduler_class(**lowercase_ )
A__ = self.scheduler_classes[0]
A__ = self.get_scheduler_config(**lowercase_ )
A__ = scheduler_class(**lowercase_ )
A__ = 1_0
A__ = self.dummy_model()
A__ = self.dummy_sample_deter
scheduler.set_timesteps(lowercase_ )
for i, t in enumerate(scheduler.timesteps ):
A__ = model(lowercase_,lowercase_ )
A__ = scheduler.step(lowercase_,lowercase_,lowercase_ ).prev_sample
return sample
def snake_case__ ( self : Any )-> str:
'''simple docstring'''
A__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() )
A__ = 5_0
A__ = self.dummy_model()
A__ = self.dummy_sample_deter
scheduler.set_timesteps(lowercase_ )
# make sure that the first t is uneven
for i, t in enumerate(scheduler.timesteps[3:] ):
A__ = model(lowercase_,lowercase_ )
A__ = scheduler.step(lowercase_,lowercase_,lowercase_ ).prev_sample
A__ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_mean.item() - 0.2_574 ) < 1E-3
def snake_case__ ( self : Optional[Any] )-> List[Any]:
'''simple docstring'''
for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=lowercase_ )
def snake_case__ ( self : int )-> Optional[Any]:
'''simple docstring'''
A__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() )
A__ = self.full_loop(scheduler=lowercase_ )
A__ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_mean.item() - 0.2_791 ) < 1E-3
A__ = DEISMultistepScheduler.from_config(scheduler.config )
A__ = DPMSolverMultistepScheduler.from_config(scheduler.config )
A__ = UniPCMultistepScheduler.from_config(scheduler.config )
A__ = DPMSolverSinglestepScheduler.from_config(scheduler.config )
A__ = self.full_loop(scheduler=lowercase_ )
A__ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_mean.item() - 0.2_791 ) < 1E-3
def snake_case__ ( self : Tuple )-> Any:
'''simple docstring'''
self.check_over_configs(thresholding=lowercase_ )
for order in [1, 2, 3]:
for solver_type in ["midpoint", "heun"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=lowercase_,prediction_type=lowercase_,sample_max_value=lowercase_,algorithm_type='dpmsolver++',solver_order=lowercase_,solver_type=lowercase_,)
def snake_case__ ( self : List[Any] )-> int:
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowercase_ )
def snake_case__ ( self : Dict )-> List[Any]:
'''simple docstring'''
for algorithm_type in ["dpmsolver", "dpmsolver++"]:
for solver_type in ["midpoint", "heun"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=lowercase_,solver_type=lowercase_,prediction_type=lowercase_,algorithm_type=lowercase_,)
A__ = self.full_loop(
solver_order=lowercase_,solver_type=lowercase_,prediction_type=lowercase_,algorithm_type=lowercase_,)
assert not torch.isnan(lowercase_ ).any(), "Samples have nan numbers"
def snake_case__ ( self : Optional[int] )-> Tuple:
'''simple docstring'''
self.check_over_configs(lower_order_final=lowercase_ )
self.check_over_configs(lower_order_final=lowercase_ )
def snake_case__ ( self : Tuple )-> Optional[int]:
'''simple docstring'''
self.check_over_configs(lambda_min_clipped=-float('inf' ) )
self.check_over_configs(lambda_min_clipped=-5.1 )
def snake_case__ ( self : Optional[Any] )-> Tuple:
'''simple docstring'''
self.check_over_configs(variance_type=lowercase_ )
self.check_over_configs(variance_type='learned_range' )
def snake_case__ ( self : str )-> Any:
'''simple docstring'''
for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]:
self.check_over_forward(num_inference_steps=lowercase_,time_step=0 )
def snake_case__ ( self : Tuple )-> Tuple:
'''simple docstring'''
A__ = self.full_loop()
A__ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_mean.item() - 0.2_791 ) < 1E-3
def snake_case__ ( self : Any )-> Union[str, Any]:
'''simple docstring'''
A__ = self.full_loop(use_karras_sigmas=lowercase_ )
A__ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_mean.item() - 0.2_248 ) < 1E-3
def snake_case__ ( self : Union[str, Any] )-> Tuple:
'''simple docstring'''
A__ = self.full_loop(prediction_type='v_prediction' )
A__ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_mean.item() - 0.1_453 ) < 1E-3
def snake_case__ ( self : Tuple )-> int:
'''simple docstring'''
A__ = self.full_loop(prediction_type='v_prediction',use_karras_sigmas=lowercase_ )
A__ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_mean.item() - 0.0_649 ) < 1E-3
def snake_case__ ( self : List[Any] )-> int:
'''simple docstring'''
A__ = self.scheduler_classes[0]
A__ = self.get_scheduler_config(thresholding=lowercase_,dynamic_thresholding_ratio=0 )
A__ = scheduler_class(**lowercase_ )
A__ = 1_0
A__ = self.dummy_model()
A__ = self.dummy_sample_deter.half()
scheduler.set_timesteps(lowercase_ )
for i, t in enumerate(scheduler.timesteps ):
A__ = model(lowercase_,lowercase_ )
A__ = scheduler.step(lowercase_,lowercase_,lowercase_ ).prev_sample
assert sample.dtype == torch.floataa
| 7 | 0 |
'''simple docstring'''
import argparse
import importlib
from pathlib import Path
# Test all the extensions added in the setup
a__ : Tuple =[
'''kernels/rwkv/wkv_cuda.cu''',
'''kernels/rwkv/wkv_op.cpp''',
'''kernels/deformable_detr/ms_deform_attn.h''',
'''kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh''',
'''models/graphormer/algos_graphormer.pyx''',
]
def lowercase__ ( __lowercase : Union[str, Any] ) -> Any:
"""simple docstring"""
for file in FILES_TO_FIND:
if not (transformers_path / file).exists():
return False
return True
if __name__ == "__main__":
a__ : Tuple =argparse.ArgumentParser()
parser.add_argument('''--check_lib''', action='''store_true''', help='''Whether to check the build or the actual package.''')
a__ : Union[str, Any] =parser.parse_args()
if args.check_lib:
a__ : Optional[int] =importlib.import_module('''transformers''')
a__ : List[str] =Path(transformers_module.__file__).parent
else:
a__ : Tuple =Path.cwd() / '''build/lib/transformers'''
if not test_custom_files_are_present(transformers_path):
raise ValueError('''The built release does not contain the custom files. Fix this before going further!''')
| 53 |
class A :
"""simple docstring"""
def __init__( self : Any,lowercase_ : Tuple,lowercase_ : Any,lowercase_ : List[str] )-> List[Any]:
'''simple docstring'''
A__ = name
A__ = value
A__ = weight
def __repr__( self : int )-> Tuple:
'''simple docstring'''
return F'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})'
def snake_case__ ( self : Any )-> str:
'''simple docstring'''
return self.value
def snake_case__ ( self : Any )-> Tuple:
'''simple docstring'''
return self.name
def snake_case__ ( self : Any )-> Dict:
'''simple docstring'''
return self.weight
def snake_case__ ( self : Union[str, Any] )-> Optional[Any]:
'''simple docstring'''
return self.value / self.weight
def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]:
'''simple docstring'''
A__ = []
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
menu.append(Things(name[i] , value[i] , weight[i] ) )
return menu
def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Any:
'''simple docstring'''
A__ = sorted(SCREAMING_SNAKE_CASE__ , key=SCREAMING_SNAKE_CASE__ , reverse=SCREAMING_SNAKE_CASE__ )
A__ = []
A__ , A__ = 0.0, 0.0
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
if (total_cost + items_copy[i].get_weight()) <= max_cost:
result.append(items_copy[i] )
total_cost += items_copy[i].get_weight()
total_value += items_copy[i].get_value()
return (result, total_value)
def _snake_case( ) -> Any:
'''simple docstring'''
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 | 0 |
"""simple docstring"""
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class UpperCamelCase_ ( UpperCamelCase):
"""simple docstring"""
snake_case__ : List[str] = ["image_processor", "tokenizer"]
snake_case__ : Any = "BlipImageProcessor"
snake_case__ : Any = ("BertTokenizer", "BertTokenizerFast")
def __init__( self : str , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Any ) -> Any:
__SCREAMING_SNAKE_CASE = False
super().__init__(UpperCAmelCase__ , UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = self.image_processor
def __call__( self : Union[str, Any] , UpperCAmelCase__ : ImageInput = None , UpperCAmelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase__ : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , **UpperCAmelCase__ : Union[str, Any] , ) -> BatchEncoding:
if images is None and text is None:
raise ValueError("You have to specify either images or text." )
# Get only text
if images is None:
__SCREAMING_SNAKE_CASE = self.tokenizer
__SCREAMING_SNAKE_CASE = self.tokenizer(
text=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , stride=UpperCAmelCase__ , pad_to_multiple_of=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , return_overflowing_tokens=UpperCAmelCase__ , return_special_tokens_mask=UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ , return_length=UpperCAmelCase__ , verbose=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , **UpperCAmelCase__ , )
return text_encoding
# add pixel_values
__SCREAMING_SNAKE_CASE = self.image_processor(UpperCAmelCase__ , return_tensors=UpperCAmelCase__ )
if text is not None:
__SCREAMING_SNAKE_CASE = self.tokenizer(
text=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , stride=UpperCAmelCase__ , pad_to_multiple_of=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , return_overflowing_tokens=UpperCAmelCase__ , return_special_tokens_mask=UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ , return_length=UpperCAmelCase__ , verbose=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , **UpperCAmelCase__ , )
else:
__SCREAMING_SNAKE_CASE = None
if text_encoding is not None:
encoding_image_processor.update(UpperCAmelCase__ )
return encoding_image_processor
def UpperCAmelCase_ ( self : str , *UpperCAmelCase__ : str , **UpperCAmelCase__ : List[Any] ) -> List[str]:
return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__ )
def UpperCAmelCase_ ( self : str , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : Tuple ) -> List[str]:
return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__ )
@property
def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]:
__SCREAMING_SNAKE_CASE = self.tokenizer.model_input_names
__SCREAMING_SNAKE_CASE = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 54 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json",
}
class A ( _UpperCAmelCase , _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase = 'resnet'
lowerCamelCase = ['basic', 'bottleneck']
def __init__( self : Optional[Any],lowercase_ : int=3,lowercase_ : List[str]=6_4,lowercase_ : int=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8],lowercase_ : Tuple=[3, 4, 6, 3],lowercase_ : Union[str, Any]="bottleneck",lowercase_ : List[str]="relu",lowercase_ : Tuple=False,lowercase_ : List[str]=None,lowercase_ : List[Any]=None,**lowercase_ : str,)-> Optional[Any]:
'''simple docstring'''
super().__init__(**lowercase_ )
if layer_type not in self.layer_types:
raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' )
A__ = num_channels
A__ = embedding_size
A__ = hidden_sizes
A__ = depths
A__ = layer_type
A__ = hidden_act
A__ = downsample_in_first_stage
A__ = ['stem'] + [F'stage{idx}' for idx in range(1,len(lowercase_ ) + 1 )]
A__ , A__ = get_aligned_output_features_output_indices(
out_features=lowercase_,out_indices=lowercase_,stage_names=self.stage_names )
class A ( _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase = version.parse('1.11' )
@property
def snake_case__ ( self : List[Any] )-> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def snake_case__ ( self : Any )-> float:
'''simple docstring'''
return 1E-3
| 7 | 0 |
'''simple docstring'''
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import BatchEncoding, MarianTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available
if is_sentencepiece_available():
from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json
from ...test_tokenization_common import TokenizerTesterMixin
a_ : List[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""")
a_ : List[str] = {"""target_lang""": """fi""", """source_lang""": """en"""}
a_ : Any = """>>zh<<"""
a_ : List[Any] = """Helsinki-NLP/"""
if is_torch_available():
a_ : List[str] = """pt"""
elif is_tf_available():
a_ : List[str] = """tf"""
else:
a_ : Any = """jax"""
@require_sentencepiece
class snake_case ( lowercase , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase = MarianTokenizer
_lowerCamelCase = False
_lowerCamelCase = True
def snake_case ( self ):
"""simple docstring"""
super().setUp()
lowerCamelCase_ = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"]
lowerCamelCase_ = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) )
lowerCamelCase_ = Path(self.tmpdirname )
save_json(UpperCamelCase , save_dir / VOCAB_FILES_NAMES["vocab"] )
save_json(UpperCamelCase , save_dir / VOCAB_FILES_NAMES["tokenizer_config_file"] )
if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists():
copyfile(UpperCamelCase , save_dir / VOCAB_FILES_NAMES["source_spm"] )
copyfile(UpperCamelCase , save_dir / VOCAB_FILES_NAMES["target_spm"] )
lowerCamelCase_ = MarianTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def snake_case ( self , **UpperCamelCase ):
"""simple docstring"""
return MarianTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase )
def snake_case ( self , UpperCamelCase ):
"""simple docstring"""
return (
"This is a test",
"This is a test",
)
def snake_case ( self ):
"""simple docstring"""
lowerCamelCase_ = "</s>"
lowerCamelCase_ = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase ) , UpperCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase ) , UpperCamelCase )
def snake_case ( self ):
"""simple docstring"""
lowerCamelCase_ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "</s>" )
self.assertEqual(vocab_keys[1] , "<unk>" )
self.assertEqual(vocab_keys[-1] , "<pad>" )
self.assertEqual(len(UpperCamelCase ) , 9 )
def snake_case ( self ):
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 9 )
def snake_case ( self ):
"""simple docstring"""
lowerCamelCase_ = MarianTokenizer.from_pretrained(f'''{ORG_NAME}opus-mt-en-de''' )
lowerCamelCase_ = en_de_tokenizer(["I am a small frog"] , return_tensors=UpperCamelCase )
self.assertIsInstance(UpperCamelCase , UpperCamelCase )
lowerCamelCase_ = [38, 121, 14, 697, 3_8848, 0]
self.assertListEqual(UpperCamelCase , batch.input_ids[0] )
lowerCamelCase_ = tempfile.mkdtemp()
en_de_tokenizer.save_pretrained(UpperCamelCase )
lowerCamelCase_ = [x.name for x in Path(UpperCamelCase ).glob("*" )]
self.assertIn("source.spm" , UpperCamelCase )
MarianTokenizer.from_pretrained(UpperCamelCase )
def snake_case ( self ):
"""simple docstring"""
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = tok(
["I am a small frog" * 1000, "I am a small frog"] , padding=UpperCamelCase , truncation=UpperCamelCase , return_tensors=UpperCamelCase )
self.assertIsInstance(UpperCamelCase , UpperCamelCase )
self.assertEqual(batch.input_ids.shape , (2, 512) )
def snake_case ( self ):
"""simple docstring"""
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = tok(["I am a tiny frog", "I am a small frog"] , padding=UpperCamelCase , return_tensors=UpperCamelCase )
self.assertIsInstance(UpperCamelCase , UpperCamelCase )
self.assertEqual(batch_smaller.input_ids.shape , (2, 10) )
@slow
def snake_case ( self ):
"""simple docstring"""
# fmt: off
lowerCamelCase_ = {"input_ids": [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=UpperCamelCase , model_name="Helsinki-NLP/opus-mt-en-de" , revision="1a8c2263da11e68e50938f97e10cd57820bd504c" , decode_kwargs={"use_source_tokenizer": True} , )
def snake_case ( self ):
"""simple docstring"""
lowerCamelCase_ = MarianTokenizer.from_pretrained("hf-internal-testing/test-marian-two-vocabs" )
lowerCamelCase_ = "Tämä on testi"
lowerCamelCase_ = "This is a test"
lowerCamelCase_ = [76, 7, 2047, 2]
lowerCamelCase_ = [69, 12, 11, 940, 2]
lowerCamelCase_ = tokenizer(UpperCamelCase ).input_ids
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowerCamelCase_ = tokenizer(text_target=UpperCamelCase ).input_ids
self.assertListEqual(UpperCamelCase , UpperCamelCase )
lowerCamelCase_ = tokenizer.decode(UpperCamelCase , skip_special_tokens=UpperCamelCase )
self.assertEqual(UpperCamelCase , UpperCamelCase )
| 55 |
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"t5-small": "https://huggingface.co/t5-small/resolve/main/config.json",
"t5-base": "https://huggingface.co/t5-base/resolve/main/config.json",
"t5-large": "https://huggingface.co/t5-large/resolve/main/config.json",
"t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json",
"t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json",
}
class A ( _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase = 't5'
lowerCamelCase = ['past_key_values']
lowerCamelCase = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'}
def __init__( self : Union[str, Any],lowercase_ : int=3_2_1_2_8,lowercase_ : int=5_1_2,lowercase_ : List[str]=6_4,lowercase_ : Tuple=2_0_4_8,lowercase_ : Any=6,lowercase_ : List[str]=None,lowercase_ : Union[str, Any]=8,lowercase_ : int=3_2,lowercase_ : Dict=1_2_8,lowercase_ : Optional[int]=0.1,lowercase_ : List[str]=1E-6,lowercase_ : Tuple=1.0,lowercase_ : Any="relu",lowercase_ : Union[str, Any]=True,lowercase_ : Optional[Any]=True,lowercase_ : int=0,lowercase_ : str=1,**lowercase_ : str,)-> Any:
'''simple docstring'''
A__ = vocab_size
A__ = d_model
A__ = d_kv
A__ = d_ff
A__ = num_layers
A__ = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
A__ = num_heads
A__ = relative_attention_num_buckets
A__ = relative_attention_max_distance
A__ = dropout_rate
A__ = layer_norm_epsilon
A__ = initializer_factor
A__ = feed_forward_proj
A__ = use_cache
A__ = self.feed_forward_proj.split('-' )
A__ = act_info[-1]
A__ = act_info[0] == 'gated'
if len(lowercase_ ) > 1 and act_info[0] != "gated" or len(lowercase_ ) > 2:
raise ValueError(
F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.'
'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '
'\'gated-gelu\' or \'relu\'' )
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
A__ = 'gelu_new'
super().__init__(
pad_token_id=lowercase_,eos_token_id=lowercase_,is_encoder_decoder=lowercase_,**lowercase_,)
class A ( _UpperCAmelCase ):
"""simple docstring"""
@property
def snake_case__ ( self : Tuple )-> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
A__ = {
'input_ids': {0: 'batch', 1: 'encoder_sequence'},
'attention_mask': {0: 'batch', 1: 'encoder_sequence'},
}
if self.use_past:
A__ = 'past_encoder_sequence + sequence'
A__ = {0: 'batch'}
A__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'}
else:
A__ = {0: 'batch', 1: 'decoder_sequence'}
A__ = {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(lowercase_,direction='inputs' )
return common_inputs
@property
def snake_case__ ( self : Any )-> int:
'''simple docstring'''
return 1_3
| 7 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a : Tuple = logging.get_logger(__name__)
a : List[str] = {
'facebook/data2vec-vision-base-ft': (
'https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json'
),
}
class a ( _lowerCamelCase ):
snake_case_ = "data2vec-vision"
def __init__( self : Optional[Any] , lowercase_ : str=768 , lowercase_ : Union[str, Any]=12 , lowercase_ : int=12 , lowercase_ : str=3072 , lowercase_ : Dict="gelu" , lowercase_ : Any=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : int=0.02 , lowercase_ : Union[str, Any]=1e-12 , lowercase_ : Optional[Any]=224 , lowercase_ : List[Any]=16 , lowercase_ : List[Any]=3 , lowercase_ : Tuple=False , lowercase_ : Dict=False , lowercase_ : Union[str, Any]=False , lowercase_ : List[Any]=False , lowercase_ : Dict=0.1 , lowercase_ : Optional[int]=0.1 , lowercase_ : Optional[int]=True , lowercase_ : Optional[int]=[3, 5, 7, 11] , lowercase_ : Tuple=[1, 2, 3, 6] , lowercase_ : List[Any]=True , lowercase_ : Tuple=0.4 , lowercase_ : Tuple=256 , lowercase_ : Optional[int]=1 , lowercase_ : Optional[Any]=False , lowercase_ : Union[str, Any]=255 , **lowercase_ : str , ):
super().__init__(**lowercase_ )
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = initializer_range
snake_case_ = layer_norm_eps
snake_case_ = image_size
snake_case_ = patch_size
snake_case_ = num_channels
snake_case_ = use_mask_token
snake_case_ = use_absolute_position_embeddings
snake_case_ = use_relative_position_bias
snake_case_ = use_shared_relative_position_bias
snake_case_ = layer_scale_init_value
snake_case_ = drop_path_rate
snake_case_ = use_mean_pooling
# decode head attributes (semantic segmentation)
snake_case_ = out_indices
snake_case_ = pool_scales
# auxiliary head attributes (semantic segmentation)
snake_case_ = use_auxiliary_head
snake_case_ = auxiliary_loss_weight
snake_case_ = auxiliary_channels
snake_case_ = auxiliary_num_convs
snake_case_ = auxiliary_concat_input
snake_case_ = semantic_loss_ignore_index
class a ( _lowerCamelCase ):
snake_case_ = version.parse("1.11" )
@property
def A_ ( self : Any ):
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def A_ ( self : str ):
return 1e-4
| 56 |
def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]:
'''simple docstring'''
global f # a global dp table for knapsack
if f[i][j] < 0:
if j < wt[i - 1]:
A__ = mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
A__ = max(
mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , j - wt[i - 1] ) + val[i - 1] , )
A__ = val
return f[i][j]
def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Tuple:
'''simple docstring'''
A__ = [[0] * (w + 1) for _ in range(n + 1 )]
for i in range(1 , n + 1 ):
for w_ in range(1 , w + 1 ):
if wt[i - 1] <= w_:
A__ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] )
else:
A__ = dp[i - 1][w_]
return dp[n][w_], dp
def _snake_case( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : list ) -> Union[str, Any]:
'''simple docstring'''
if not (isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) )):
raise ValueError(
'Both the weights and values vectors must be either lists or tuples' )
A__ = len(SCREAMING_SNAKE_CASE__ )
if num_items != len(SCREAMING_SNAKE_CASE__ ):
A__ = (
'The number of weights must be the same as the number of values.\n'
f'But got {num_items} weights and {len(SCREAMING_SNAKE_CASE__ )} values'
)
raise ValueError(SCREAMING_SNAKE_CASE__ )
for i in range(SCREAMING_SNAKE_CASE__ ):
if not isinstance(wt[i] , SCREAMING_SNAKE_CASE__ ):
A__ = (
'All weights must be integers but got weight of '
f'type {type(wt[i] )} at index {i}'
)
raise TypeError(SCREAMING_SNAKE_CASE__ )
A__ , A__ = knapsack(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A__ = set()
_construct_solution(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return optimal_val, example_optional_set
def _snake_case( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : set ) -> Optional[int]:
'''simple docstring'''
if i > 0 and j > 0:
if dp[i - 1][j] == dp[i][j]:
_construct_solution(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
optimal_set.add(SCREAMING_SNAKE_CASE__ )
_construct_solution(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , i - 1 , j - wt[i - 1] , SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
lowercase_ = [3, 2, 4, 4]
lowercase_ = [4, 3, 2, 3]
lowercase_ = 4
lowercase_ = 6
lowercase_ = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)]
lowercase_ , lowercase_ = knapsack(w, wt, val, n)
print(optimal_solution)
print(mf_knapsack(n, wt, val, w)) # switched the n and w
# testing the dynamic programming problem with example
# the optimal subset for the above example are items 3 and 4
lowercase_ , lowercase_ = knapsack_with_example_solution(w, wt, val)
assert optimal_solution == 8
assert optimal_subset == {3, 4}
print("optimal_value = ", optimal_solution)
print("An optimal subset corresponding to the optimal value", optimal_subset)
| 7 | 0 |
"""simple docstring"""
import sacrebleu as scb
from packaging import version
from sacrebleu import TER
import datasets
A : Optional[Any] = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n"
A : Optional[int] = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n"
A : Any = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class _UpperCamelCase ( datasets.Metric ):
'''simple docstring'''
def snake_case ( self ):
if version.parse(scb.__version__ ) < version.parse("1.4.12" ):
raise ImportWarning(
"To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n"
"You can install it with `pip install \"sacrebleu>=1.4.12\"`." )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ),
} ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[
"https://github.com/jhclark/tercom",
] , )
def snake_case ( self , __a , __a , __a = False , __a = False , __a = False , __a = False , ):
__lowerCAmelCase = len(references[0] )
if any(len(__a ) != references_per_prediction for refs in references ):
raise ValueError("Sacrebleu requires the same number of references for each prediction" )
__lowerCAmelCase = [[refs[i] for refs in references] for i in range(__a )]
__lowerCAmelCase = TER(
normalized=__a , no_punct=__a , asian_support=__a , case_sensitive=__a , )
__lowerCAmelCase = sb_ter.corpus_score(__a , __a )
return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
| 57 |
import unittest
from transformers import AlbertTokenizer, AlbertTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
lowercase_ = get_tests_dir("fixtures/spiece.model")
@require_sentencepiece
@require_tokenizers
class A ( _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = AlbertTokenizer
lowerCamelCase = AlbertTokenizerFast
lowerCamelCase = True
lowerCamelCase = True
lowerCamelCase = True
def snake_case__ ( self : Dict )-> Any:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
A__ = AlbertTokenizer(lowercase_ )
tokenizer.save_pretrained(self.tmpdirname )
def snake_case__ ( self : List[str],lowercase_ : str )-> Any:
'''simple docstring'''
A__ = 'this is a test'
A__ = 'this is a test'
return input_text, output_text
def snake_case__ ( self : List[Any] )-> Optional[int]:
'''simple docstring'''
A__ = '<pad>'
A__ = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ),lowercase_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ),lowercase_ )
def snake_case__ ( self : List[str] )-> str:
'''simple docstring'''
A__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0],'<pad>' )
self.assertEqual(vocab_keys[1],'<unk>' )
self.assertEqual(vocab_keys[-1],'▁eloquent' )
self.assertEqual(len(lowercase_ ),3_0_0_0_0 )
def snake_case__ ( self : int )-> List[Any]:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size,3_0_0_0_0 )
def snake_case__ ( self : Union[str, Any] )-> List[Any]:
'''simple docstring'''
if not self.test_rust_tokenizer:
return
A__ = self.get_tokenizer()
A__ = self.get_rust_tokenizer()
A__ = 'I was born in 92000, and this is falsé.'
A__ = tokenizer.tokenize(lowercase_ )
A__ = rust_tokenizer.tokenize(lowercase_ )
self.assertListEqual(lowercase_,lowercase_ )
A__ = tokenizer.encode(lowercase_,add_special_tokens=lowercase_ )
A__ = rust_tokenizer.encode(lowercase_,add_special_tokens=lowercase_ )
self.assertListEqual(lowercase_,lowercase_ )
A__ = self.get_rust_tokenizer()
A__ = tokenizer.encode(lowercase_ )
A__ = rust_tokenizer.encode(lowercase_ )
self.assertListEqual(lowercase_,lowercase_ )
def snake_case__ ( self : int )-> int:
'''simple docstring'''
A__ = AlbertTokenizer(lowercase_,keep_accents=lowercase_ )
A__ = tokenizer.tokenize('This is a test' )
self.assertListEqual(lowercase_,['▁this', '▁is', '▁a', '▁test'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ),[4_8, 2_5, 2_1, 1_2_8_9] )
A__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
lowercase_,['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.'] )
A__ = tokenizer.convert_tokens_to_ids(lowercase_ )
self.assertListEqual(lowercase_,[3_1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] )
A__ = tokenizer.convert_ids_to_tokens(lowercase_ )
self.assertListEqual(
lowercase_,['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.'],)
def snake_case__ ( self : Union[str, Any] )-> str:
'''simple docstring'''
A__ = AlbertTokenizer(lowercase_ )
A__ = tokenizer.encode('sequence builders' )
A__ = tokenizer.encode('multi-sequence build' )
A__ = tokenizer.build_inputs_with_special_tokens(lowercase_ )
A__ = tokenizer.build_inputs_with_special_tokens(lowercase_,lowercase_ )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
@slow
def snake_case__ ( self : Any )-> Tuple:
'''simple docstring'''
A__ = {'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 2_1_9_7_0, 1_3, 5, 6_0_9_2, 1_6_7, 2_8, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 7_0_2_8, 1_2_0_5_1, 1_8, 1_7, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 3_5_1_5, 1_8_6_8_4, 8, 4_4_6_1, 6, 1_9_2_7, 2_9_7, 8, 1_2_0_6_0, 2_6_0_7, 1_8, 1_3, 5, 4_4_6_1, 1_5, 1_0_5_3_8, 3_8, 8, 1_3_5, 1_5, 8_2_2, 5_8, 1_5, 9_9_3, 1_0_3_6_3, 1_5, 1_4_6_0, 8_0_0_5, 4_4_6_1, 1_5, 9_9_3, 2_5_5, 2_3_2_8, 9, 9, 9, 6, 2_6, 1_1_1_2, 8_1_6, 3_2_6_0, 1_3, 5, 1_0_3, 2_3_7_7, 6, 1_7, 1_1_1_2, 8_1_6, 2_7_8_2, 1_3, 5, 1_0_3, 1_0_6_4_1, 6, 2_9, 8_4, 2_5_1_2, 2_4_3_0, 7_8_2, 1_8_6_8_4, 2_7_6_1, 1_9, 8_0_8, 2_4_3_0, 2_5_5_6, 1_7, 8_5_5, 1_4_8_0, 9_4_7_7, 4_0_9_1, 1_2_8, 1_1_7_1_2, 1_5, 7_1_0_3, 2_1_5_3, 6_7_3, 1_7, 2_4_8_8_3, 9_9_9_0, 9, 3], [2, 1_1_5_0_2, 2_5, 1_0_0_6, 2_0, 7_8_2, 8, 1_1_8_0_9, 8_5_5, 1_7_3_2, 1_9_3_9_3, 1_8_6_6_7, 3_7, 3_6_7, 2_1_0_1_8, 6_9, 1_8_5_4, 3_4, 1_1_8_6_0, 1_9_1_2_4, 2_7, 1_5_6, 2_2_5, 1_7, 1_9_3, 4_1_4_1, 1_9, 6_5, 9_1_2_4, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 1_4, 2_2_3_1, 8_8_6, 2_3_8_5, 1_7_6_5_9, 8_4, 1_4, 1_6_7_9_2, 1_9_5_2, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowercase_,model_name='albert-base-v2',revision='6b6560eaf5ff2e250b00c50f380c5389a9c2d82e',)
| 7 | 0 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
lowercase_ = {
"""Acehnese Arabic""": """ace_Arab""",
"""Acehnese Latin""": """ace_Latn""",
"""Mesopotamian Arabic""": """acm_Arab""",
"""Ta'izzi-Adeni Arabic""": """acq_Arab""",
"""Tunisian Arabic""": """aeb_Arab""",
"""Afrikaans""": """afr_Latn""",
"""South Levantine Arabic""": """ajp_Arab""",
"""Akan""": """aka_Latn""",
"""Amharic""": """amh_Ethi""",
"""North Levantine Arabic""": """apc_Arab""",
"""Modern Standard Arabic""": """arb_Arab""",
"""Modern Standard Arabic Romanized""": """arb_Latn""",
"""Najdi Arabic""": """ars_Arab""",
"""Moroccan Arabic""": """ary_Arab""",
"""Egyptian Arabic""": """arz_Arab""",
"""Assamese""": """asm_Beng""",
"""Asturian""": """ast_Latn""",
"""Awadhi""": """awa_Deva""",
"""Central Aymara""": """ayr_Latn""",
"""South Azerbaijani""": """azb_Arab""",
"""North Azerbaijani""": """azj_Latn""",
"""Bashkir""": """bak_Cyrl""",
"""Bambara""": """bam_Latn""",
"""Balinese""": """ban_Latn""",
"""Belarusian""": """bel_Cyrl""",
"""Bemba""": """bem_Latn""",
"""Bengali""": """ben_Beng""",
"""Bhojpuri""": """bho_Deva""",
"""Banjar Arabic""": """bjn_Arab""",
"""Banjar Latin""": """bjn_Latn""",
"""Standard Tibetan""": """bod_Tibt""",
"""Bosnian""": """bos_Latn""",
"""Buginese""": """bug_Latn""",
"""Bulgarian""": """bul_Cyrl""",
"""Catalan""": """cat_Latn""",
"""Cebuano""": """ceb_Latn""",
"""Czech""": """ces_Latn""",
"""Chokwe""": """cjk_Latn""",
"""Central Kurdish""": """ckb_Arab""",
"""Crimean Tatar""": """crh_Latn""",
"""Welsh""": """cym_Latn""",
"""Danish""": """dan_Latn""",
"""German""": """deu_Latn""",
"""Southwestern Dinka""": """dik_Latn""",
"""Dyula""": """dyu_Latn""",
"""Dzongkha""": """dzo_Tibt""",
"""Greek""": """ell_Grek""",
"""English""": """eng_Latn""",
"""Esperanto""": """epo_Latn""",
"""Estonian""": """est_Latn""",
"""Basque""": """eus_Latn""",
"""Ewe""": """ewe_Latn""",
"""Faroese""": """fao_Latn""",
"""Fijian""": """fij_Latn""",
"""Finnish""": """fin_Latn""",
"""Fon""": """fon_Latn""",
"""French""": """fra_Latn""",
"""Friulian""": """fur_Latn""",
"""Nigerian Fulfulde""": """fuv_Latn""",
"""Scottish Gaelic""": """gla_Latn""",
"""Irish""": """gle_Latn""",
"""Galician""": """glg_Latn""",
"""Guarani""": """grn_Latn""",
"""Gujarati""": """guj_Gujr""",
"""Haitian Creole""": """hat_Latn""",
"""Hausa""": """hau_Latn""",
"""Hebrew""": """heb_Hebr""",
"""Hindi""": """hin_Deva""",
"""Chhattisgarhi""": """hne_Deva""",
"""Croatian""": """hrv_Latn""",
"""Hungarian""": """hun_Latn""",
"""Armenian""": """hye_Armn""",
"""Igbo""": """ibo_Latn""",
"""Ilocano""": """ilo_Latn""",
"""Indonesian""": """ind_Latn""",
"""Icelandic""": """isl_Latn""",
"""Italian""": """ita_Latn""",
"""Javanese""": """jav_Latn""",
"""Japanese""": """jpn_Jpan""",
"""Kabyle""": """kab_Latn""",
"""Jingpho""": """kac_Latn""",
"""Kamba""": """kam_Latn""",
"""Kannada""": """kan_Knda""",
"""Kashmiri Arabic""": """kas_Arab""",
"""Kashmiri Devanagari""": """kas_Deva""",
"""Georgian""": """kat_Geor""",
"""Central Kanuri Arabic""": """knc_Arab""",
"""Central Kanuri Latin""": """knc_Latn""",
"""Kazakh""": """kaz_Cyrl""",
"""Kabiyè""": """kbp_Latn""",
"""Kabuverdianu""": """kea_Latn""",
"""Khmer""": """khm_Khmr""",
"""Kikuyu""": """kik_Latn""",
"""Kinyarwanda""": """kin_Latn""",
"""Kyrgyz""": """kir_Cyrl""",
"""Kimbundu""": """kmb_Latn""",
"""Northern Kurdish""": """kmr_Latn""",
"""Kikongo""": """kon_Latn""",
"""Korean""": """kor_Hang""",
"""Lao""": """lao_Laoo""",
"""Ligurian""": """lij_Latn""",
"""Limburgish""": """lim_Latn""",
"""Lingala""": """lin_Latn""",
"""Lithuanian""": """lit_Latn""",
"""Lombard""": """lmo_Latn""",
"""Latgalian""": """ltg_Latn""",
"""Luxembourgish""": """ltz_Latn""",
"""Luba-Kasai""": """lua_Latn""",
"""Ganda""": """lug_Latn""",
"""Luo""": """luo_Latn""",
"""Mizo""": """lus_Latn""",
"""Standard Latvian""": """lvs_Latn""",
"""Magahi""": """mag_Deva""",
"""Maithili""": """mai_Deva""",
"""Malayalam""": """mal_Mlym""",
"""Marathi""": """mar_Deva""",
"""Minangkabau Arabic """: """min_Arab""",
"""Minangkabau Latin""": """min_Latn""",
"""Macedonian""": """mkd_Cyrl""",
"""Plateau Malagasy""": """plt_Latn""",
"""Maltese""": """mlt_Latn""",
"""Meitei Bengali""": """mni_Beng""",
"""Halh Mongolian""": """khk_Cyrl""",
"""Mossi""": """mos_Latn""",
"""Maori""": """mri_Latn""",
"""Burmese""": """mya_Mymr""",
"""Dutch""": """nld_Latn""",
"""Norwegian Nynorsk""": """nno_Latn""",
"""Norwegian Bokmål""": """nob_Latn""",
"""Nepali""": """npi_Deva""",
"""Northern Sotho""": """nso_Latn""",
"""Nuer""": """nus_Latn""",
"""Nyanja""": """nya_Latn""",
"""Occitan""": """oci_Latn""",
"""West Central Oromo""": """gaz_Latn""",
"""Odia""": """ory_Orya""",
"""Pangasinan""": """pag_Latn""",
"""Eastern Panjabi""": """pan_Guru""",
"""Papiamento""": """pap_Latn""",
"""Western Persian""": """pes_Arab""",
"""Polish""": """pol_Latn""",
"""Portuguese""": """por_Latn""",
"""Dari""": """prs_Arab""",
"""Southern Pashto""": """pbt_Arab""",
"""Ayacucho Quechua""": """quy_Latn""",
"""Romanian""": """ron_Latn""",
"""Rundi""": """run_Latn""",
"""Russian""": """rus_Cyrl""",
"""Sango""": """sag_Latn""",
"""Sanskrit""": """san_Deva""",
"""Santali""": """sat_Olck""",
"""Sicilian""": """scn_Latn""",
"""Shan""": """shn_Mymr""",
"""Sinhala""": """sin_Sinh""",
"""Slovak""": """slk_Latn""",
"""Slovenian""": """slv_Latn""",
"""Samoan""": """smo_Latn""",
"""Shona""": """sna_Latn""",
"""Sindhi""": """snd_Arab""",
"""Somali""": """som_Latn""",
"""Southern Sotho""": """sot_Latn""",
"""Spanish""": """spa_Latn""",
"""Tosk Albanian""": """als_Latn""",
"""Sardinian""": """srd_Latn""",
"""Serbian""": """srp_Cyrl""",
"""Swati""": """ssw_Latn""",
"""Sundanese""": """sun_Latn""",
"""Swedish""": """swe_Latn""",
"""Swahili""": """swh_Latn""",
"""Silesian""": """szl_Latn""",
"""Tamil""": """tam_Taml""",
"""Tatar""": """tat_Cyrl""",
"""Telugu""": """tel_Telu""",
"""Tajik""": """tgk_Cyrl""",
"""Tagalog""": """tgl_Latn""",
"""Thai""": """tha_Thai""",
"""Tigrinya""": """tir_Ethi""",
"""Tamasheq Latin""": """taq_Latn""",
"""Tamasheq Tifinagh""": """taq_Tfng""",
"""Tok Pisin""": """tpi_Latn""",
"""Tswana""": """tsn_Latn""",
"""Tsonga""": """tso_Latn""",
"""Turkmen""": """tuk_Latn""",
"""Tumbuka""": """tum_Latn""",
"""Turkish""": """tur_Latn""",
"""Twi""": """twi_Latn""",
"""Central Atlas Tamazight""": """tzm_Tfng""",
"""Uyghur""": """uig_Arab""",
"""Ukrainian""": """ukr_Cyrl""",
"""Umbundu""": """umb_Latn""",
"""Urdu""": """urd_Arab""",
"""Northern Uzbek""": """uzn_Latn""",
"""Venetian""": """vec_Latn""",
"""Vietnamese""": """vie_Latn""",
"""Waray""": """war_Latn""",
"""Wolof""": """wol_Latn""",
"""Xhosa""": """xho_Latn""",
"""Eastern Yiddish""": """ydd_Hebr""",
"""Yoruba""": """yor_Latn""",
"""Yue Chinese""": """yue_Hant""",
"""Chinese Simplified""": """zho_Hans""",
"""Chinese Traditional""": """zho_Hant""",
"""Standard Malay""": """zsm_Latn""",
"""Zulu""": """zul_Latn""",
}
class a_ ( snake_case_ ):
'''simple docstring'''
UpperCamelCase = '''facebook/nllb-200-distilled-600M'''
UpperCamelCase = (
'''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should '''
'''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, '''
'''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in '''
'''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.'''
)
UpperCamelCase = '''translator'''
UpperCamelCase = AutoTokenizer
UpperCamelCase = AutoModelForSeqaSeqLM
UpperCamelCase = LANGUAGE_CODES
UpperCamelCase = ['''text''', '''text''', '''text''']
UpperCamelCase = ['''text''']
def snake_case_( self , A , A , A ) -> Optional[int]:
if src_lang not in self.lang_to_code:
raise ValueError(f'{src_lang} is not a supported language.' )
if tgt_lang not in self.lang_to_code:
raise ValueError(f'{tgt_lang} is not a supported language.' )
_SCREAMING_SNAKE_CASE = self.lang_to_code[src_lang]
_SCREAMING_SNAKE_CASE = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
A , return_tensors="""pt""" , src_lang=A , tgt_lang=A )
def snake_case_( self , A ) -> str:
return self.model.generate(**A )
def snake_case_( self , A ) -> Any:
return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=A )
| 58 |
from typing import Dict
from .base import GenericTensor, Pipeline
class A ( _UpperCAmelCase ):
"""simple docstring"""
def snake_case__ ( self : int,lowercase_ : Dict=None,lowercase_ : Tuple=None,lowercase_ : List[Any]=None,**lowercase_ : Any )-> Optional[Any]:
'''simple docstring'''
if tokenize_kwargs is None:
A__ = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' )
A__ = truncation
A__ = tokenize_kwargs
A__ = {}
if return_tensors is not None:
A__ = return_tensors
return preprocess_params, {}, postprocess_params
def snake_case__ ( self : Dict,lowercase_ : List[Any],**lowercase_ : Tuple )-> Dict[str, GenericTensor]:
'''simple docstring'''
A__ = self.framework
A__ = self.tokenizer(lowercase_,return_tensors=lowercase_,**lowercase_ )
return model_inputs
def snake_case__ ( self : Tuple,lowercase_ : int )-> Optional[Any]:
'''simple docstring'''
A__ = self.model(**lowercase_ )
return model_outputs
def snake_case__ ( self : Tuple,lowercase_ : Tuple,lowercase_ : List[str]=False )-> Any:
'''simple docstring'''
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self : List[Any],*lowercase_ : int,**lowercase_ : Optional[Any] )-> int:
'''simple docstring'''
return super().__call__(*lowercase_,**lowercase_ )
| 7 | 0 |
import multiprocessing
from typing import TYPE_CHECKING, Optional, Union
from .. import Dataset, Features, config
from ..formatting import query_table
from ..packaged_modules.sql.sql import Sql
from ..utils import logging
from .abc import AbstractDatasetInputStream
if TYPE_CHECKING:
import sqlitea
import sqlalchemy
class UpperCAmelCase ( A_ ):
def __init__(self : Tuple , snake_case__ : Union[str, "sqlalchemy.sql.Selectable"] , snake_case__ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , snake_case__ : Optional[Features] = None , snake_case__ : str = None , snake_case__ : bool = False , **snake_case__ : Dict , ) -> Optional[int]:
'''simple docstring'''
super().__init__(features=snake_case__ , cache_dir=snake_case__ , keep_in_memory=snake_case__ , **snake_case__ )
snake_case : Tuple = Sql(
cache_dir=snake_case__ , features=snake_case__ , sql=snake_case__ , con=snake_case__ , **snake_case__ , )
def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[int]:
'''simple docstring'''
snake_case : Optional[int] = None
snake_case : int = None
snake_case : List[str] = None
snake_case : int = None
self.builder.download_and_prepare(
download_config=snake_case__ , download_mode=snake_case__ , verification_mode=snake_case__ , base_path=snake_case__ , )
# Build dataset for splits
snake_case : Optional[int] = self.builder.as_dataset(
split="train" , verification_mode=snake_case__ , in_memory=self.keep_in_memory )
return dataset
class UpperCAmelCase :
def __init__(self : Union[str, Any] , snake_case__ : Dataset , snake_case__ : str , snake_case__ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , snake_case__ : Optional[int] = None , snake_case__ : Optional[int] = None , **snake_case__ : Dict , ) -> Optional[Any]:
'''simple docstring'''
if num_proc is not None and num_proc <= 0:
raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" )
snake_case : Any = dataset
snake_case : Dict = name
snake_case : Optional[Any] = con
snake_case : Any = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
snake_case : Optional[int] = num_proc
snake_case : str = to_sql_kwargs
def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> int:
'''simple docstring'''
snake_case : int = self.to_sql_kwargs.pop("sql" , snake_case__ )
snake_case : Tuple = self.to_sql_kwargs.pop("con" , snake_case__ )
snake_case : Tuple = self.to_sql_kwargs.pop("index" , snake_case__ )
snake_case : Union[str, Any] = self._write(index=snake_case__ , **self.to_sql_kwargs )
return written
def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Tuple ) -> Optional[Any]:
'''simple docstring'''
snake_case , snake_case , snake_case : Tuple = args
snake_case : Optional[int] = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs
snake_case : List[Any] = query_table(
table=self.dataset.data , key=slice(snake_case__ , offset + self.batch_size ) , indices=self.dataset._indices , )
snake_case : List[Any] = batch.to_pandas()
snake_case : Optional[Any] = df.to_sql(self.name , self.con , index=snake_case__ , **snake_case__ )
return num_rows or len(snake_case__ )
def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : str , **snake_case__ : Union[str, Any] ) -> int:
'''simple docstring'''
snake_case : List[str] = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ):
written += self._batch_sql((offset, index, to_sql_kwargs) )
else:
snake_case , snake_case : List[str] = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for num_rows in logging.tqdm(
pool.imap(
self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , snake_case__ , snake_case__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ):
written += num_rows
return written
| 59 |
from timeit import timeit
def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> int:
'''simple docstring'''
if number < 0:
raise ValueError('the value of input must not be negative' )
A__ = 0
while number:
number &= number - 1
result += 1
return result
def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> int:
'''simple docstring'''
if number < 0:
raise ValueError('the value of input must not be negative' )
A__ = 0
while number:
if number % 2 == 1:
result += 1
number >>= 1
return result
def _snake_case( ) -> None:
'''simple docstring'''
def do_benchmark(SCREAMING_SNAKE_CASE__ : int ) -> None:
A__ = 'import __main__ as z'
print(f'Benchmark when {number = }:' )
print(f'{get_set_bits_count_using_modulo_operator(SCREAMING_SNAKE_CASE__ ) = }' )
A__ = timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=SCREAMING_SNAKE_CASE__ )
print(f'timeit() runs in {timing} seconds' )
print(f'{get_set_bits_count_using_brian_kernighans_algorithm(SCREAMING_SNAKE_CASE__ ) = }' )
A__ = timeit(
'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=SCREAMING_SNAKE_CASE__ , )
print(f'timeit() runs in {timing} seconds' )
for number in (25, 37, 58, 0):
do_benchmark(SCREAMING_SNAKE_CASE__ )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 7 | 0 |
"""simple docstring"""
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Sequence, Value
from .base import TaskTemplate
@dataclass(frozen=a__ )
class snake_case_( a__ ):
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
__UpperCamelCase = field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True} )
__UpperCamelCase = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} )
__UpperCamelCase = Features(
{
'''answers''': Sequence(
{
'''text''': Value('''string''' ),
'''answer_start''': Value('''int32''' ),
} )
} )
__UpperCamelCase = "question"
__UpperCamelCase = "context"
__UpperCamelCase = "answers"
@property
def lowerCamelCase__ ( self : Dict ):
return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
| 60 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation
def _snake_case( SCREAMING_SNAKE_CASE__ : Any ) -> int:
'''simple docstring'''
A__ = 384
A__ = 7
if "tiny" in model_name:
A__ = 96
A__ = (2, 2, 6, 2)
A__ = (3, 6, 12, 24)
elif "small" in model_name:
A__ = 96
A__ = (2, 2, 18, 2)
A__ = (3, 6, 12, 24)
elif "base" in model_name:
A__ = 128
A__ = (2, 2, 18, 2)
A__ = (4, 8, 16, 32)
A__ = 12
A__ = 512
elif "large" in model_name:
A__ = 192
A__ = (2, 2, 18, 2)
A__ = (6, 12, 24, 48)
A__ = 12
A__ = 768
# set label information
A__ = 150
A__ = 'huggingface/label-files'
A__ = 'ade20k-id2label.json'
A__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) )
A__ = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()}
A__ = {v: k for k, v in idalabel.items()}
A__ = SwinConfig(
embed_dim=SCREAMING_SNAKE_CASE__ , depths=SCREAMING_SNAKE_CASE__ , num_heads=SCREAMING_SNAKE_CASE__ , window_size=SCREAMING_SNAKE_CASE__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , )
A__ = UperNetConfig(
backbone_config=SCREAMING_SNAKE_CASE__ , auxiliary_in_channels=SCREAMING_SNAKE_CASE__ , num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ , )
return config
def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Dict:
'''simple docstring'''
A__ = []
# fmt: off
# stem
rename_keys.append(('backbone.patch_embed.projection.weight', 'backbone.embeddings.patch_embeddings.projection.weight') )
rename_keys.append(('backbone.patch_embed.projection.bias', 'backbone.embeddings.patch_embeddings.projection.bias') )
rename_keys.append(('backbone.patch_embed.norm.weight', 'backbone.embeddings.norm.weight') )
rename_keys.append(('backbone.patch_embed.norm.bias', 'backbone.embeddings.norm.bias') )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm1.weight', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm1.bias', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table', f'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index', f'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight', f'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias', f'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm2.weight', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm2.bias', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight', f'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias', f'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight', f'backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias', f'backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias') )
if i < 3:
rename_keys.append((f'backbone.stages.{i}.downsample.reduction.weight', f'backbone.encoder.layers.{i}.downsample.reduction.weight') )
rename_keys.append((f'backbone.stages.{i}.downsample.norm.weight', f'backbone.encoder.layers.{i}.downsample.norm.weight') )
rename_keys.append((f'backbone.stages.{i}.downsample.norm.bias', f'backbone.encoder.layers.{i}.downsample.norm.bias') )
rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') )
rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') )
# decode head
rename_keys.extend(
[
('decode_head.conv_seg.weight', 'decode_head.classifier.weight'),
('decode_head.conv_seg.bias', 'decode_head.classifier.bias'),
('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'),
('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'),
] )
# fmt: on
return rename_keys
def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[int]:
'''simple docstring'''
A__ = dct.pop(SCREAMING_SNAKE_CASE__ )
A__ = val
def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
'''simple docstring'''
A__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
A__ = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
A__ = state_dict.pop(f'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight' )
A__ = state_dict.pop(f'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
A__ = in_proj_weight[:dim, :]
A__ = in_proj_bias[: dim]
A__ = in_proj_weight[
dim : dim * 2, :
]
A__ = in_proj_bias[
dim : dim * 2
]
A__ = in_proj_weight[
-dim :, :
]
A__ = in_proj_bias[-dim :]
# fmt: on
def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
A__ , A__ = x.shape
A__ = x.reshape(SCREAMING_SNAKE_CASE__ , 4 , in_channel // 4 )
A__ = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return x
def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple ) -> List[str]:
'''simple docstring'''
A__ , A__ = x.shape
A__ = x.reshape(SCREAMING_SNAKE_CASE__ , in_channel // 4 , 4 )
A__ = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return x
def _snake_case( SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]:
'''simple docstring'''
A__ = x.shape[0]
A__ = x.reshape(4 , in_channel // 4 )
A__ = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(SCREAMING_SNAKE_CASE__ )
return x
def _snake_case( SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]:
'''simple docstring'''
A__ = x.shape[0]
A__ = x.reshape(in_channel // 4 , 4 )
A__ = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(SCREAMING_SNAKE_CASE__ )
return x
def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
A__ = {
'upernet-swin-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth',
'upernet-swin-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth',
'upernet-swin-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth',
'upernet-swin-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth',
}
A__ = model_name_to_url[model_name]
A__ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location='cpu' , file_name=SCREAMING_SNAKE_CASE__ )[
'state_dict'
]
for name, param in state_dict.items():
print(SCREAMING_SNAKE_CASE__ , param.shape )
A__ = get_upernet_config(SCREAMING_SNAKE_CASE__ )
A__ = UperNetForSemanticSegmentation(SCREAMING_SNAKE_CASE__ )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
A__ = state_dict.pop(SCREAMING_SNAKE_CASE__ )
if "bn" in key:
A__ = key.replace('bn' , 'batch_norm' )
A__ = val
# rename keys
A__ = create_rename_keys(SCREAMING_SNAKE_CASE__ )
for src, dest in rename_keys:
rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
read_in_q_k_v(SCREAMING_SNAKE_CASE__ , config.backbone_config )
# fix downsample parameters
for key, value in state_dict.items():
if "downsample" in key:
if "reduction" in key:
A__ = reverse_correct_unfold_reduction_order(SCREAMING_SNAKE_CASE__ )
if "norm" in key:
A__ = reverse_correct_unfold_norm_order(SCREAMING_SNAKE_CASE__ )
model.load_state_dict(SCREAMING_SNAKE_CASE__ )
# verify on image
A__ = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg'
A__ = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ).convert('RGB' )
A__ = SegformerImageProcessor()
A__ = processor(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values
with torch.no_grad():
A__ = model(SCREAMING_SNAKE_CASE__ )
A__ = outputs.logits
print(logits.shape )
print('First values of logits:' , logits[0, 0, :3, :3] )
# assert values
if model_name == "upernet-swin-tiny":
A__ = torch.tensor(
[[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] )
elif model_name == "upernet-swin-small":
A__ = torch.tensor(
[[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] )
elif model_name == "upernet-swin-base":
A__ = torch.tensor(
[[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] )
elif model_name == "upernet-swin-large":
A__ = torch.tensor(
[[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] )
print('Logits:' , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(SCREAMING_SNAKE_CASE__ )
print(f'Saving processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(SCREAMING_SNAKE_CASE__ )
if push_to_hub:
print(f'Pushing model and processor for {model_name} to hub' )
model.push_to_hub(f'openmmlab/{model_name}' )
processor.push_to_hub(f'openmmlab/{model_name}' )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="upernet-swin-tiny",
type=str,
choices=[f"""upernet-swin-{size}""" for size in ["tiny", "small", "base", "large"]],
help="Name of the Swin + UperNet model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
lowercase_ = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 7 | 0 |
"""simple docstring"""
import argparse
import os
import torch
from transformers import FlavaImageCodebook, FlavaImageCodebookConfig
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : int = s.rsplit(__lowerCamelCase, __lowerCamelCase )
return new.join(__lowerCamelCase )
def __a ( __lowerCamelCase ):
# encoder.embeddings are double copied in original FLAVA
return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items() )
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : Optional[int] = {}
UpperCAmelCase_ : List[str] = ["group_1", "group_2", "group_3", "group_4"]
for key, value in state_dict.items():
for group_key in group_keys:
if group_key in key:
UpperCAmelCase_ : Tuple = key.replace(f"""{group_key}.""", f"""{group_key}.group.""" )
if "res_path" in key:
UpperCAmelCase_ : Optional[Any] = key.replace("res_path.", "res_path.path." )
if key.endswith(".w" ):
UpperCAmelCase_ : Any = rreplace(__lowerCamelCase, ".w", ".weight", 1 )
if key.endswith(".b" ):
UpperCAmelCase_ : Optional[Any] = rreplace(__lowerCamelCase, ".b", ".bias", 1 )
UpperCAmelCase_ : Optional[Any] = value.float()
return upgrade
@torch.no_grad()
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=True ):
from dall_e import Encoder
UpperCAmelCase_ : Any = Encoder()
if os.path.exists(__lowerCamelCase ):
UpperCAmelCase_ : str = torch.load(__lowerCamelCase )
else:
UpperCAmelCase_ : List[str] = torch.hub.load_state_dict_from_url(__lowerCamelCase )
if isinstance(__lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : Any = ckpt.state_dict()
encoder.load_state_dict(__lowerCamelCase )
if config_path is not None:
UpperCAmelCase_ : int = FlavaImageCodebookConfig.from_pretrained(__lowerCamelCase )
else:
UpperCAmelCase_ : List[Any] = FlavaImageCodebookConfig()
UpperCAmelCase_ : str = FlavaImageCodebook(__lowerCamelCase ).eval()
UpperCAmelCase_ : Dict = encoder.state_dict()
UpperCAmelCase_ : List[str] = upgrade_state_dict(__lowerCamelCase )
hf_model.load_state_dict(__lowerCamelCase )
UpperCAmelCase_ : List[str] = hf_model.state_dict()
UpperCAmelCase_ : List[Any] = count_parameters(__lowerCamelCase )
UpperCAmelCase_ : List[Any] = count_parameters(__lowerCamelCase )
assert torch.allclose(__lowerCamelCase, __lowerCamelCase, atol=1E-3 )
if save_checkpoint:
hf_model.save_pretrained(__lowerCamelCase )
else:
return hf_state_dict
if __name__ == "__main__":
_a = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
_a = parser.parse_args()
convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 61 |
import math
import os
from copy import deepcopy
import datasets
import evaluate
import torch
import transformers
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from accelerate import Accelerator
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import is_tpu_available, set_seed
lowercase_ = "true"
def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=82 , SCREAMING_SNAKE_CASE__ : Optional[int]=16 ) -> Optional[Any]:
'''simple docstring'''
set_seed(42 )
A__ = RegressionModel()
A__ = deepcopy(SCREAMING_SNAKE_CASE__ )
A__ = RegressionDataset(length=SCREAMING_SNAKE_CASE__ )
A__ = DataLoader(SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ )
model.to(accelerator.device )
A__ , A__ = accelerator.prepare(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return model, ddp_model, dataloader
def _snake_case( SCREAMING_SNAKE_CASE__ : Accelerator , SCREAMING_SNAKE_CASE__ : Tuple=False ) -> int:
'''simple docstring'''
A__ = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' )
A__ = load_dataset('glue' , 'mrpc' , split='validation' )
def tokenize_function(SCREAMING_SNAKE_CASE__ : List[Any] ):
A__ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ )
return outputs
with accelerator.main_process_first():
A__ = dataset.map(
SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , remove_columns=['idx', 'sentence1', 'sentence2'] , )
A__ = tokenized_datasets.rename_column('label' , 'labels' )
def collate_fn(SCREAMING_SNAKE_CASE__ : Dict ):
if use_longest:
return tokenizer.pad(SCREAMING_SNAKE_CASE__ , padding='longest' , return_tensors='pt' )
return tokenizer.pad(SCREAMING_SNAKE_CASE__ , padding='max_length' , max_length=128 , return_tensors='pt' )
return DataLoader(SCREAMING_SNAKE_CASE__ , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=16 )
def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ) -> str:
'''simple docstring'''
A__ = Accelerator(dispatch_batches=SCREAMING_SNAKE_CASE__ , split_batches=SCREAMING_SNAKE_CASE__ )
A__ = get_dataloader(SCREAMING_SNAKE_CASE__ , not dispatch_batches )
A__ = AutoModelForSequenceClassification.from_pretrained(
'hf-internal-testing/mrpc-bert-base-cased' , return_dict=SCREAMING_SNAKE_CASE__ )
A__ , A__ = accelerator.prepare(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator
def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]:
'''simple docstring'''
A__ = []
for batch in dataloader:
A__ , A__ = batch.values()
with torch.no_grad():
A__ = model(SCREAMING_SNAKE_CASE__ )
A__ , A__ = accelerator.gather_for_metrics((logit, target) )
logits_and_targets.append((logit, target) )
A__ , A__ = [], []
for logit, targ in logits_and_targets:
logits.append(SCREAMING_SNAKE_CASE__ )
targs.append(SCREAMING_SNAKE_CASE__ )
A__ , A__ = torch.cat(SCREAMING_SNAKE_CASE__ ), torch.cat(SCREAMING_SNAKE_CASE__ )
return logits, targs
def _snake_case( SCREAMING_SNAKE_CASE__ : Accelerator , SCREAMING_SNAKE_CASE__ : int=82 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : Tuple=16 ) -> List[Any]:
'''simple docstring'''
A__ , A__ , A__ = get_basic_setup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A__ , A__ = generate_predictions(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
assert (
len(SCREAMING_SNAKE_CASE__ ) == num_samples
), f'Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(SCREAMING_SNAKE_CASE__ )}'
def _snake_case( SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False ) -> str:
'''simple docstring'''
A__ = evaluate.load('glue' , 'mrpc' )
A__ , A__ = get_mrpc_setup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# First do baseline
A__ , A__ , A__ = setup['no']
model.to(SCREAMING_SNAKE_CASE__ )
model.eval()
for batch in dataloader:
batch.to(SCREAMING_SNAKE_CASE__ )
with torch.inference_mode():
A__ = model(**SCREAMING_SNAKE_CASE__ )
A__ = outputs.logits.argmax(dim=-1 )
metric.add_batch(predictions=SCREAMING_SNAKE_CASE__ , references=batch['labels'] )
A__ = metric.compute()
# Then do distributed
A__ , A__ , A__ = setup['ddp']
model.eval()
for batch in dataloader:
with torch.inference_mode():
A__ = model(**SCREAMING_SNAKE_CASE__ )
A__ = outputs.logits.argmax(dim=-1 )
A__ = batch['labels']
A__ , A__ = accelerator.gather_for_metrics((preds, references) )
metric.add_batch(predictions=SCREAMING_SNAKE_CASE__ , references=SCREAMING_SNAKE_CASE__ )
A__ = metric.compute()
for key in "accuracy f1".split():
assert math.isclose(
baseline[key] , distributed[key] ), f'Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n'
def _snake_case( ) -> Optional[Any]:
'''simple docstring'''
A__ = Accelerator(split_batches=SCREAMING_SNAKE_CASE__ , dispatch_batches=SCREAMING_SNAKE_CASE__ )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# These are a bit slower so they should only be ran on the GPU or TPU
if torch.cuda.is_available() or is_tpu_available():
if accelerator.is_local_main_process:
print('**Testing gather_for_metrics**' )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
if accelerator.is_local_main_process:
print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`' )
test_mrpc(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print('**Test torch metrics**' )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
A__ = Accelerator(split_batches=SCREAMING_SNAKE_CASE__ , dispatch_batches=SCREAMING_SNAKE_CASE__ )
if accelerator.is_local_main_process:
print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99' )
test_torch_metrics(SCREAMING_SNAKE_CASE__ , 99 )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print('**Test last batch is not dropped when perfectly divisible**' )
A__ = Accelerator()
test_torch_metrics(SCREAMING_SNAKE_CASE__ , 512 )
accelerator.state._reset_state()
def _snake_case( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 7 | 0 |
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class UpperCAmelCase__ :
"""simple docstring"""
UpperCAmelCase__ : List[Any] = XGLMConfig
UpperCAmelCase__ : List[str] = {}
UpperCAmelCase__ : Any = "gelu"
def __init__( self , A_ , A_=14 , A_=7 , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=0.02 , ) -> Optional[Any]:
__UpperCamelCase =parent
__UpperCamelCase =batch_size
__UpperCamelCase =seq_length
__UpperCamelCase =is_training
__UpperCamelCase =use_input_mask
__UpperCamelCase =use_labels
__UpperCamelCase =vocab_size
__UpperCamelCase =d_model
__UpperCamelCase =num_hidden_layers
__UpperCamelCase =num_attention_heads
__UpperCamelCase =ffn_dim
__UpperCamelCase =activation_function
__UpperCamelCase =activation_dropout
__UpperCamelCase =attention_dropout
__UpperCamelCase =max_position_embeddings
__UpperCamelCase =initializer_range
__UpperCamelCase =None
__UpperCamelCase =0
__UpperCamelCase =2
__UpperCamelCase =1
def _a ( self ) -> Optional[Any]:
return XGLMConfig.from_pretrained('facebook/xglm-564M' )
def _a ( self ) -> Dict:
__UpperCamelCase =tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
__UpperCamelCase =None
if self.use_input_mask:
__UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] )
__UpperCamelCase =self.get_config()
__UpperCamelCase =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _a ( self ) -> Optional[int]:
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=A_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=A_ , )
def _a ( self ) -> Any:
__UpperCamelCase =self.prepare_config_and_inputs()
(
(
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) ,
) =config_and_inputs
__UpperCamelCase ={
'input_ids': input_ids,
'head_mask': head_mask,
}
return config, inputs_dict
@require_tf
class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase__ : int = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
UpperCAmelCase__ : Optional[Any] = (TFXGLMForCausalLM,) if is_tf_available() else ()
UpperCAmelCase__ : Dict = (
{"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {}
)
UpperCAmelCase__ : Tuple = False
UpperCAmelCase__ : Optional[int] = False
UpperCAmelCase__ : Optional[Any] = False
def _a ( self ) -> Tuple:
__UpperCamelCase =TFXGLMModelTester(self )
__UpperCamelCase =ConfigTester(self , config_class=A_ , n_embd=37 )
def _a ( self ) -> Any:
self.config_tester.run_common_tests()
@slow
def _a ( self ) -> Optional[int]:
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCamelCase =TFXGLMModel.from_pretrained(A_ )
self.assertIsNotNone(A_ )
@unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' )
def _a ( self ) -> str:
super().test_resize_token_embeddings()
@require_tf
class UpperCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _a ( self , A_=True ) -> int:
__UpperCamelCase =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
__UpperCamelCase =tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
__UpperCamelCase =[2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581]
# fmt: on
__UpperCamelCase =model.generate(A_ , do_sample=A_ , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , A_ )
@slow
def _a ( self ) -> Any:
__UpperCamelCase =XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
__UpperCamelCase =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
tf.random.set_seed(0 )
__UpperCamelCase =tokenizer('Today is a nice day and' , return_tensors='tf' )
__UpperCamelCase =tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(':/CPU:0' ):
__UpperCamelCase =model.generate(A_ , do_sample=A_ , seed=[7, 0] )
__UpperCamelCase =tokenizer.decode(output_ids[0] , skip_special_tokens=A_ )
__UpperCamelCase =(
'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due'
)
self.assertEqual(A_ , A_ )
@slow
def _a ( self ) -> Optional[Any]:
__UpperCamelCase =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
__UpperCamelCase =XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
__UpperCamelCase ='left'
# use different length sentences to test batching
__UpperCamelCase =[
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When',
'Hello, my dog is a little',
]
__UpperCamelCase =tokenizer(A_ , return_tensors='tf' , padding=A_ )
__UpperCamelCase =inputs['input_ids']
__UpperCamelCase =model.generate(input_ids=A_ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 )
__UpperCamelCase =tokenizer(sentences[0] , return_tensors='tf' ).input_ids
__UpperCamelCase =model.generate(input_ids=A_ , max_new_tokens=12 )
__UpperCamelCase =tokenizer(sentences[1] , return_tensors='tf' ).input_ids
__UpperCamelCase =model.generate(input_ids=A_ , max_new_tokens=12 )
__UpperCamelCase =tokenizer.batch_decode(A_ , skip_special_tokens=A_ )
__UpperCamelCase =tokenizer.decode(output_non_padded[0] , skip_special_tokens=A_ )
__UpperCamelCase =tokenizer.decode(output_padded[0] , skip_special_tokens=A_ )
__UpperCamelCase =[
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be '
'a single',
'Hello, my dog is a little bit of a shy one, but he is very friendly',
]
self.assertListEqual(A_ , A_ )
self.assertListEqual(A_ , [non_padded_sentence, padded_sentence] )
| 62 |
def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple:
'''simple docstring'''
A__ = 0
A__ = len(SCREAMING_SNAKE_CASE__ ) - 1
while left <= right:
# avoid divided by 0 during interpolation
if sorted_collection[left] == sorted_collection[right]:
if sorted_collection[left] == item:
return left
else:
return None
A__ = left + ((item - sorted_collection[left]) * (right - left)) // (
sorted_collection[right] - sorted_collection[left]
)
# out of range check
if point < 0 or point >= len(SCREAMING_SNAKE_CASE__ ):
return None
A__ = sorted_collection[point]
if current_item == item:
return point
else:
if point < left:
A__ = left
A__ = point
elif point > right:
A__ = right
A__ = point
else:
if item < current_item:
A__ = point - 1
else:
A__ = point + 1
return None
def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str:
'''simple docstring'''
if sorted_collection[left] == sorted_collection[right]:
if sorted_collection[left] == item:
return left
else:
return None
A__ = left + ((item - sorted_collection[left]) * (right - left)) // (
sorted_collection[right] - sorted_collection[left]
)
# out of range check
if point < 0 or point >= len(SCREAMING_SNAKE_CASE__ ):
return None
if sorted_collection[point] == item:
return point
elif point < left:
return interpolation_search_by_recursion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
elif point > right:
return interpolation_search_by_recursion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
if sorted_collection[point] > item:
return interpolation_search_by_recursion(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , point - 1 )
else:
return interpolation_search_by_recursion(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , point + 1 , SCREAMING_SNAKE_CASE__ )
def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple:
'''simple docstring'''
if collection != sorted(SCREAMING_SNAKE_CASE__ ):
raise ValueError('Collection must be ascending sorted' )
return True
if __name__ == "__main__":
import sys
lowercase_ = 0
if debug == 1:
lowercase_ = [10, 30, 40, 45, 50, 66, 77, 93]
try:
__assert_sorted(collection)
except ValueError:
sys.exit("Sequence must be ascending sorted to apply interpolation search")
lowercase_ = 67
lowercase_ = interpolation_search(collection, target)
if result is not None:
print(f"""{target} found at positions: {result}""")
else:
print("Not found")
| 7 | 0 |
'''simple docstring'''
from math import sqrt
def _lowerCamelCase ( lowercase : int ) -> int:
_a = 0
for i in range(1 , int(sqrt(lowercase ) + 1 ) ):
if n % i == 0 and i != sqrt(lowercase ):
total += i + n // i
elif i == sqrt(lowercase ):
total += i
return total - n
def _lowerCamelCase ( lowercase : int = 1_0000 ) -> int:
_a = sum(
i
for i in range(1 , lowercase )
if sum_of_divisors(sum_of_divisors(lowercase ) ) == i and sum_of_divisors(lowercase ) != i )
return total
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 63 |
from argparse import ArgumentParser
from datasets.commands.convert import ConvertCommand
from datasets.commands.dummy_data import DummyDataCommand
from datasets.commands.env import EnvironmentCommand
from datasets.commands.run_beam import RunBeamCommand
from datasets.commands.test import TestCommand
from datasets.utils.logging import set_verbosity_info
def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple:
'''simple docstring'''
return {key.lstrip('-' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )}
def _snake_case( ) -> Dict:
'''simple docstring'''
A__ = ArgumentParser(
'HuggingFace Datasets CLI tool' , usage='datasets-cli <command> [<args>]' , allow_abbrev=SCREAMING_SNAKE_CASE__ )
A__ = parser.add_subparsers(help='datasets-cli command helpers' )
set_verbosity_info()
# Register commands
ConvertCommand.register_subcommand(SCREAMING_SNAKE_CASE__ )
EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE__ )
TestCommand.register_subcommand(SCREAMING_SNAKE_CASE__ )
RunBeamCommand.register_subcommand(SCREAMING_SNAKE_CASE__ )
DummyDataCommand.register_subcommand(SCREAMING_SNAKE_CASE__ )
# Parse args
A__ , A__ = parser.parse_known_args()
if not hasattr(SCREAMING_SNAKE_CASE__ , 'func' ):
parser.print_help()
exit(1 )
A__ = parse_unknown_args(SCREAMING_SNAKE_CASE__ )
# Run
A__ = args.func(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
service.run()
if __name__ == "__main__":
main()
| 7 | 0 |
"""simple docstring"""
import collections
import inspect
import unittest
from typing import Dict, List, Tuple
from transformers import MaskFormerSwinConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device
from transformers.utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MaskFormerSwinBackbone
from transformers.models.maskformer import MaskFormerSwinModel
class lowercase:
'''simple docstring'''
def __init__( self: Any, a_: Union[str, Any], a_: Dict=13, a_: Optional[Any]=32, a_: Any=2, a_: Any=3, a_: Optional[Any]=16, a_: List[str]=[1, 2, 1], a_: int=[2, 2, 4], a_: Dict=2, a_: Optional[int]=2.0, a_: Union[str, Any]=True, a_: Optional[Any]=0.0, a_: Optional[int]=0.0, a_: Union[str, Any]=0.1, a_: str="gelu", a_: int=False, a_: Union[str, Any]=True, a_: Dict=0.02, a_: List[Any]=1E-5, a_: int=True, a_: Union[str, Any]=None, a_: Optional[int]=True, a_: List[Any]=10, a_: Tuple=8, a_: Optional[Any]=["stage1", "stage2", "stage3"], a_: Union[str, Any]=[1, 2, 3], ):
'''simple docstring'''
_snake_case : str = parent
_snake_case : Optional[int] = batch_size
_snake_case : Any = image_size
_snake_case : int = patch_size
_snake_case : Union[str, Any] = num_channels
_snake_case : int = embed_dim
_snake_case : Optional[Any] = depths
_snake_case : Tuple = num_heads
_snake_case : Union[str, Any] = window_size
_snake_case : List[Any] = mlp_ratio
_snake_case : Union[str, Any] = qkv_bias
_snake_case : List[Any] = hidden_dropout_prob
_snake_case : Dict = attention_probs_dropout_prob
_snake_case : Union[str, Any] = drop_path_rate
_snake_case : str = hidden_act
_snake_case : Union[str, Any] = use_absolute_embeddings
_snake_case : Optional[Any] = patch_norm
_snake_case : Any = layer_norm_eps
_snake_case : Union[str, Any] = initializer_range
_snake_case : Union[str, Any] = is_training
_snake_case : Optional[Any] = scope
_snake_case : Union[str, Any] = use_labels
_snake_case : Union[str, Any] = type_sequence_label_size
_snake_case : str = encoder_stride
_snake_case : List[Any] = out_features
_snake_case : Tuple = out_indices
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
_snake_case : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_snake_case : Tuple = None
if self.use_labels:
_snake_case : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size )
_snake_case : List[str] = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
return MaskFormerSwinConfig(
image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, embed_dim=self.embed_dim, depths=self.depths, num_heads=self.num_heads, window_size=self.window_size, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, drop_path_rate=self.drop_path_rate, hidden_act=self.hidden_act, use_absolute_embeddings=self.use_absolute_embeddings, path_norm=self.patch_norm, layer_norm_eps=self.layer_norm_eps, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, out_features=self.out_features, out_indices=self.out_indices, )
def UpperCamelCase_ ( self: str, a_: List[str], a_: List[str], a_: str ):
'''simple docstring'''
_snake_case : str = MaskFormerSwinModel(config=a_ )
model.to(a_ )
model.eval()
_snake_case : Any = model(a_ )
_snake_case : List[str] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
_snake_case : List[str] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, expected_dim) )
def UpperCamelCase_ ( self: Dict, a_: Tuple, a_: Tuple, a_: Any ):
'''simple docstring'''
_snake_case : int = MaskFormerSwinBackbone(config=a_ )
model.to(a_ )
model.eval()
_snake_case : str = model(a_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ), [13, 16, 16, 16] )
# verify channels
self.parent.assertEqual(len(model.channels ), len(config.out_features ) )
self.parent.assertListEqual(model.channels, [16, 32, 64] )
# verify ValueError
with self.parent.assertRaises(a_ ):
_snake_case : Optional[Any] = ["""stem"""]
_snake_case : Tuple = MaskFormerSwinBackbone(config=a_ )
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case : Any = self.prepare_config_and_inputs()
_snake_case , _snake_case , _snake_case : List[Any] = config_and_inputs
_snake_case : Optional[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowercase( __a , __a , unittest.TestCase ):
'''simple docstring'''
lowercase__ = (
(
MaskFormerSwinModel,
MaskFormerSwinBackbone,
)
if is_torch_available()
else ()
)
lowercase__ = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {}
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case : List[Any] = MaskFormerSwinModelTester(self )
_snake_case : List[str] = ConfigTester(self, config_class=a_, embed_dim=37 )
@require_torch_multi_gpu
@unittest.skip(
reason=(
"""`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with"""
""" `nn.DataParallel`"""
) )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
return
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a_ )
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*a_ )
@unittest.skip("""Swin does not use inputs_embeds""" )
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
pass
@unittest.skip("""Swin does not support feedforward chunking""" )
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case , _snake_case : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case : Optional[int] = model_class(a_ )
self.assertIsInstance(model.get_input_embeddings(), (nn.Module) )
_snake_case : Optional[Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(a_, nn.Linear ) )
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
_snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case : Tuple = model_class(a_ )
_snake_case : str = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_snake_case : Union[str, Any] = [*signature.parameters.keys()]
_snake_case : List[Any] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1], a_ )
@unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" )
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
pass
@unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" )
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: int, a_: str, a_: Dict, a_: Union[str, Any], a_: Union[str, Any] ):
'''simple docstring'''
_snake_case : Any = model_class(a_ )
model.to(a_ )
model.eval()
with torch.no_grad():
_snake_case : Optional[Any] = model(**self._prepare_for_class(a_, a_ ) )
_snake_case : Optional[Any] = outputs.hidden_states
_snake_case : Any = getattr(
self.model_tester, """expected_num_hidden_layers""", len(self.model_tester.depths ) + 1 )
self.assertEqual(len(a_ ), a_ )
# Swin has a different seq_length
_snake_case : int = (
config.patch_size
if isinstance(config.patch_size, collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
_snake_case : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ), [num_patches, self.model_tester.embed_dim], )
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
_snake_case , _snake_case : int = self.model_tester.prepare_config_and_inputs_for_common()
_snake_case : Any = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size, collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
_snake_case : Tuple = True
self.check_hidden_states_output(a_, a_, a_, a_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_snake_case : Optional[Any] = True
self.check_hidden_states_output(a_, a_, a_, a_ )
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
_snake_case , _snake_case : int = self.model_tester.prepare_config_and_inputs_for_common()
_snake_case : str = 3
_snake_case : List[str] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size, collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
_snake_case : List[Any] = (
config.patch_size
if isinstance(config.patch_size, collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
_snake_case : List[str] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
_snake_case : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
_snake_case : Any = True
self.check_hidden_states_output(a_, a_, a_, (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_snake_case : Dict = True
self.check_hidden_states_output(a_, a_, a_, (padded_height, padded_width) )
@unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
pass
@unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" )
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
pass
@unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
_snake_case , _snake_case : str = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(a_: List[str] ):
_snake_case : Union[str, Any] = 0
return t
def check_equivalence(a_: List[Any], a_: List[Any], a_: List[str], a_: List[str]={} ):
with torch.no_grad():
_snake_case : Any = model(**a_, return_dict=a_, **a_ )
_snake_case : int = model(**a_, return_dict=a_, **a_ ).to_tuple()
def recursive_check(a_: Union[str, Any], a_: Tuple ):
if isinstance(a_, (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(a_, a_ ):
recursive_check(a_, a_ )
elif isinstance(a_, a_ ):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values(), dict_object.values() ):
recursive_check(a_, a_ )
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(a_ ), set_nan_tensor_to_zero(a_ ), atol=1E-5 ), msg=(
"""Tuple and dict output are not equal. Difference:"""
f" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:"
f" {torch.isnan(a_ ).any()} and `inf`: {torch.isinf(a_ )}. Dict has"
f" `nan`: {torch.isnan(a_ ).any()} and `inf`: {torch.isinf(a_ )}."
), )
recursive_check(a_, a_ )
for model_class in self.all_model_classes:
_snake_case : Tuple = model_class(a_ )
model.to(a_ )
model.eval()
_snake_case : int = self._prepare_for_class(a_, a_ )
_snake_case : str = self._prepare_for_class(a_, a_ )
check_equivalence(a_, a_, a_ )
_snake_case : str = self._prepare_for_class(a_, a_, return_labels=a_ )
_snake_case : str = self._prepare_for_class(a_, a_, return_labels=a_ )
check_equivalence(a_, a_, a_ )
_snake_case : Tuple = self._prepare_for_class(a_, a_ )
_snake_case : str = self._prepare_for_class(a_, a_ )
check_equivalence(a_, a_, a_, {"""output_hidden_states""": True} )
_snake_case : int = self._prepare_for_class(a_, a_, return_labels=a_ )
_snake_case : Optional[int] = self._prepare_for_class(a_, a_, return_labels=a_ )
check_equivalence(a_, a_, a_, {"""output_hidden_states""": True} )
@require_torch
class lowercase( unittest.TestCase , __a ):
'''simple docstring'''
lowercase__ = (MaskFormerSwinBackbone,) if is_torch_available() else ()
lowercase__ = MaskFormerSwinConfig
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : List[Any] = MaskFormerSwinModelTester(self )
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
_snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
_snake_case : Tuple = inputs_dict["""pixel_values"""].shape[0]
for backbone_class in self.all_model_classes:
_snake_case : Any = backbone_class(a_ )
backbone.to(a_ )
backbone.eval()
_snake_case : Union[str, Any] = backbone(**a_ )
# Test default outputs and verify feature maps
self.assertIsInstance(outputs.feature_maps, a_ )
self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) )
for feature_map, n_channels in zip(outputs.feature_maps, backbone.channels ):
self.assertTrue(feature_map.shape[:2], (batch_size, n_channels) )
self.assertIsNone(outputs.hidden_states )
self.assertIsNone(outputs.attentions )
# Test output_hidden_states=True
_snake_case : List[str] = backbone(**a_, output_hidden_states=a_ )
self.assertIsNotNone(outputs.hidden_states )
self.assertTrue(len(outputs.hidden_states ), len(backbone.stage_names ) )
# We skip the stem layer
for hidden_states, n_channels in zip(outputs.hidden_states[1:], backbone.channels ):
for hidden_state in hidden_states:
# Hidden states are in the format (batch_size, (height * width), n_channels)
_snake_case , _snake_case , _snake_case : Any = hidden_state.shape
self.assertTrue((h_batch_size, h_n_channels), (batch_size, n_channels) )
# Test output_attentions=True
if self.has_attentions:
_snake_case : Dict = backbone(**a_, output_attentions=a_ )
self.assertIsNotNone(outputs.attentions )
| 64 |
from __future__ import annotations
import inspect
import unittest
from transformers import ViTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTForImageClassification, TFViTModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class A :
"""simple docstring"""
def __init__( self : Union[str, Any],lowercase_ : Any,lowercase_ : Union[str, Any]=1_3,lowercase_ : Tuple=3_0,lowercase_ : List[Any]=2,lowercase_ : Optional[int]=3,lowercase_ : Union[str, Any]=True,lowercase_ : Tuple=True,lowercase_ : Any=3_2,lowercase_ : List[str]=2,lowercase_ : Optional[int]=4,lowercase_ : Union[str, Any]=3_7,lowercase_ : Tuple="gelu",lowercase_ : str=0.1,lowercase_ : Tuple=0.1,lowercase_ : Union[str, Any]=1_0,lowercase_ : int=0.02,lowercase_ : List[Any]=3,lowercase_ : Any=None,)-> Dict:
'''simple docstring'''
A__ = parent
A__ = batch_size
A__ = image_size
A__ = patch_size
A__ = num_channels
A__ = is_training
A__ = use_labels
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = type_sequence_label_size
A__ = initializer_range
A__ = scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
A__ = (image_size // patch_size) ** 2
A__ = num_patches + 1
def snake_case__ ( self : int )-> List[str]:
'''simple docstring'''
A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
A__ = None
if self.use_labels:
A__ = ids_tensor([self.batch_size],self.type_sequence_label_size )
A__ = self.get_config()
return config, pixel_values, labels
def snake_case__ ( self : Tuple )-> List[Any]:
'''simple docstring'''
return ViTConfig(
image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,is_decoder=lowercase_,initializer_range=self.initializer_range,)
def snake_case__ ( self : List[str],lowercase_ : int,lowercase_ : Union[str, Any],lowercase_ : Tuple )-> Optional[Any]:
'''simple docstring'''
A__ = TFViTModel(config=lowercase_ )
A__ = model(lowercase_,training=lowercase_ )
self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) )
# Test with an image with different size than the one specified in config.
A__ = self.image_size // 2
A__ = pixel_values[:, :, :image_size, :image_size]
A__ = model(lowercase_,interpolate_pos_encoding=lowercase_,training=lowercase_ )
A__ = (image_size // self.patch_size) ** 2 + 1
self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, seq_length, self.hidden_size) )
def snake_case__ ( self : List[Any],lowercase_ : List[Any],lowercase_ : List[Any],lowercase_ : List[Any] )-> Dict:
'''simple docstring'''
A__ = self.type_sequence_label_size
A__ = TFViTForImageClassification(lowercase_ )
A__ = model(lowercase_,labels=lowercase_,training=lowercase_ )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) )
# Test with an image with different size than the one specified in config.
A__ = self.image_size // 2
A__ = pixel_values[:, :, :image_size, :image_size]
A__ = model(lowercase_,interpolate_pos_encoding=lowercase_,training=lowercase_ )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
A__ = 1
A__ = TFViTForImageClassification(lowercase_ )
A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
A__ = model(lowercase_ )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) )
def snake_case__ ( self : Any )-> Optional[Any]:
'''simple docstring'''
A__ = self.prepare_config_and_inputs()
A__ , A__ , A__ = config_and_inputs
A__ = {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class A ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = (TFViTModel, TFViTForImageClassification) if is_tf_available() else ()
lowerCamelCase = (
{'feature-extraction': TFViTModel, 'image-classification': TFViTForImageClassification}
if is_tf_available()
else {}
)
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
def snake_case__ ( self : int )-> List[Any]:
'''simple docstring'''
A__ = TFViTModelTester(self )
A__ = ConfigTester(self,config_class=lowercase_,has_text_modality=lowercase_,hidden_size=3_7 )
def snake_case__ ( self : Any )-> Optional[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='ViT does not use inputs_embeds' )
def snake_case__ ( self : Optional[Any] )-> str:
'''simple docstring'''
pass
@unittest.skip(reason='ViT does not use inputs_embeds' )
def snake_case__ ( self : Any )-> int:
'''simple docstring'''
pass
def snake_case__ ( self : str )-> Dict:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = model_class(lowercase_ )
self.assertIsInstance(model.get_input_embeddings(),(tf.keras.layers.Layer) )
A__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowercase_,tf.keras.layers.Layer ) )
def snake_case__ ( self : int )-> List[str]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = model_class(lowercase_ )
A__ = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A__ = [*signature.parameters.keys()]
A__ = ['pixel_values']
self.assertListEqual(arg_names[:1],lowercase_ )
def snake_case__ ( self : Union[str, Any] )-> Optional[Any]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase_ )
def snake_case__ ( self : Optional[Any] )-> Optional[Any]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowercase_ )
@slow
def snake_case__ ( self : Union[str, Any] )-> Union[str, Any]:
'''simple docstring'''
A__ = TFViTModel.from_pretrained('google/vit-base-patch16-224' )
self.assertIsNotNone(lowercase_ )
def _snake_case( ) -> str:
'''simple docstring'''
A__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
@require_vision
class A ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def snake_case__ ( self : List[Any] )-> str:
'''simple docstring'''
return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None
@slow
def snake_case__ ( self : Any )-> Dict:
'''simple docstring'''
A__ = TFViTForImageClassification.from_pretrained('google/vit-base-patch16-224' )
A__ = self.default_image_processor
A__ = prepare_img()
A__ = image_processor(images=lowercase_,return_tensors='tf' )
# forward pass
A__ = model(**lowercase_ )
# verify the logits
A__ = tf.TensorShape((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape,lowercase_ )
A__ = tf.constant([-0.2_744, 0.8_215, -0.0_836] )
tf.debugging.assert_near(outputs.logits[0, :3],lowercase_,atol=1E-4 )
| 7 | 0 |
def lowerCAmelCase_ ( __A, __A ) -> float:
'''simple docstring'''
def get_matched_characters(__A, __A ) -> str:
UpperCAmelCase__ = []
UpperCAmelCase__ = min(len(_stra ), len(_stra ) ) // 2
for i, l in enumerate(_stra ):
UpperCAmelCase__ = int(max(0, i - limit ) )
UpperCAmelCase__ = int(min(i + limit + 1, len(_stra ) ) )
if l in _stra[left:right]:
matched.append(__A )
UpperCAmelCase__ = f"""{_stra[0:_stra.index(__A )]} {_stra[_stra.index(__A ) + 1:]}"""
return "".join(__A )
# matching characters
UpperCAmelCase__ = get_matched_characters(__A, __A )
UpperCAmelCase__ = get_matched_characters(__A, __A )
UpperCAmelCase__ = len(__A )
# transposition
UpperCAmelCase__ = (
len([(ca, ca) for ca, ca in zip(__A, __A ) if ca != ca] ) // 2
)
if not match_count:
UpperCAmelCase__ = 0.0
else:
UpperCAmelCase__ = (
1
/ 3
* (
match_count / len(__A )
+ match_count / len(__A )
+ (match_count - transpositions) / match_count
)
)
# common prefix up to 4 characters
UpperCAmelCase__ = 0
for ca, ca in zip(stra[:4], stra[:4] ):
if ca == ca:
prefix_len += 1
else:
break
return jaro + 0.1 * prefix_len * (1 - jaro)
if __name__ == "__main__":
import doctest
doctest.testmod()
print(jaro_winkler('hello', 'world'))
| 65 |
import unittest
from parameterized import parameterized
from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
GPTNeoXModel,
)
class A :
"""simple docstring"""
def __init__( self : str,lowercase_ : Any,lowercase_ : Tuple=1_3,lowercase_ : str=7,lowercase_ : Tuple=True,lowercase_ : int=True,lowercase_ : List[Any]=True,lowercase_ : List[str]=True,lowercase_ : List[str]=9_9,lowercase_ : List[Any]=6_4,lowercase_ : List[str]=5,lowercase_ : Optional[Any]=4,lowercase_ : Optional[Any]=3_7,lowercase_ : Optional[Any]="gelu",lowercase_ : int=0.1,lowercase_ : str=0.1,lowercase_ : Optional[Any]=5_1_2,lowercase_ : int=1_6,lowercase_ : List[Any]=2,lowercase_ : Union[str, Any]=0.02,lowercase_ : Tuple=3,lowercase_ : List[Any]=4,lowercase_ : str=None,)-> Union[str, Any]:
'''simple docstring'''
A__ = parent
A__ = batch_size
A__ = seq_length
A__ = is_training
A__ = use_input_mask
A__ = use_token_type_ids
A__ = use_labels
A__ = vocab_size
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = max_position_embeddings
A__ = type_vocab_size
A__ = type_sequence_label_size
A__ = initializer_range
A__ = num_labels
A__ = num_choices
A__ = scope
A__ = vocab_size - 1
def snake_case__ ( self : str )-> Optional[Any]:
'''simple docstring'''
A__ = ids_tensor([self.batch_size, self.seq_length],self.vocab_size )
A__ = None
if self.use_input_mask:
A__ = random_attention_mask([self.batch_size, self.seq_length] )
A__ = None
if self.use_labels:
A__ = ids_tensor([self.batch_size, self.seq_length],self.num_labels )
A__ = self.get_config()
return config, input_ids, input_mask, token_labels
def snake_case__ ( self : List[Any] )-> Tuple:
'''simple docstring'''
return GPTNeoXConfig(
vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=lowercase_,initializer_range=self.initializer_range,pad_token_id=self.pad_token_id,)
def snake_case__ ( self : Optional[int] )-> Union[str, Any]:
'''simple docstring'''
A__ , A__ , A__ , A__ = self.prepare_config_and_inputs()
A__ = True
return config, input_ids, input_mask, token_labels
def snake_case__ ( self : Any,lowercase_ : List[Any],lowercase_ : List[Any],lowercase_ : str )-> Any:
'''simple docstring'''
A__ = GPTNeoXModel(config=lowercase_ )
model.to(lowercase_ )
model.eval()
A__ = model(lowercase_,attention_mask=lowercase_ )
A__ = model(lowercase_ )
self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) )
def snake_case__ ( self : Union[str, Any],lowercase_ : List[str],lowercase_ : Dict,lowercase_ : Optional[Any] )-> Tuple:
'''simple docstring'''
A__ = True
A__ = GPTNeoXModel(lowercase_ )
model.to(lowercase_ )
model.eval()
A__ = model(lowercase_,attention_mask=lowercase_ )
self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) )
def snake_case__ ( self : Union[str, Any],lowercase_ : str,lowercase_ : Union[str, Any],lowercase_ : Union[str, Any],lowercase_ : List[str] )-> List[str]:
'''simple docstring'''
A__ = GPTNeoXForCausalLM(config=lowercase_ )
model.to(lowercase_ )
model.eval()
A__ = model(lowercase_,attention_mask=lowercase_,labels=lowercase_ )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) )
def snake_case__ ( self : Optional[int],lowercase_ : Optional[int],lowercase_ : Optional[int],lowercase_ : Dict,lowercase_ : Any )-> int:
'''simple docstring'''
A__ = self.num_labels
A__ = GPTNeoXForQuestionAnswering(lowercase_ )
model.to(lowercase_ )
model.eval()
A__ = model(lowercase_,attention_mask=lowercase_ )
self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) )
def snake_case__ ( self : List[str],lowercase_ : List[str],lowercase_ : int,lowercase_ : Union[str, Any],lowercase_ : Optional[int] )-> str:
'''simple docstring'''
A__ = self.num_labels
A__ = GPTNeoXForSequenceClassification(lowercase_ )
model.to(lowercase_ )
model.eval()
A__ = ids_tensor([self.batch_size],self.type_sequence_label_size )
A__ = model(lowercase_,attention_mask=lowercase_,labels=lowercase_ )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) )
def snake_case__ ( self : Any,lowercase_ : Union[str, Any],lowercase_ : List[Any],lowercase_ : Optional[Any],lowercase_ : int )-> Union[str, Any]:
'''simple docstring'''
A__ = self.num_labels
A__ = GPTNeoXForTokenClassification(lowercase_ )
model.to(lowercase_ )
model.eval()
A__ = model(lowercase_,attention_mask=lowercase_,labels=lowercase_ )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) )
def snake_case__ ( self : int,lowercase_ : str,lowercase_ : int,lowercase_ : Union[str, Any] )-> List[Any]:
'''simple docstring'''
A__ = True
A__ = GPTNeoXForCausalLM(config=lowercase_ )
model.to(lowercase_ )
model.eval()
# first forward pass
A__ = model(lowercase_,attention_mask=lowercase_,use_cache=lowercase_ )
A__ = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
A__ = ids_tensor((self.batch_size, 3),config.vocab_size )
A__ = ids_tensor((self.batch_size, 3),vocab_size=2 )
# append to next input_ids and
A__ = torch.cat([input_ids, next_tokens],dim=-1 )
A__ = torch.cat([input_mask, next_mask],dim=-1 )
A__ = model(lowercase_,attention_mask=lowercase_,output_hidden_states=lowercase_ )
A__ = output_from_no_past['hidden_states'][0]
A__ = model(
lowercase_,attention_mask=lowercase_,past_key_values=lowercase_,output_hidden_states=lowercase_,)['hidden_states'][0]
# select random slice
A__ = ids_tensor((1,),output_from_past.shape[-1] ).item()
A__ = output_from_no_past[:, -3:, random_slice_idx].detach()
A__ = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(lowercase_,lowercase_,atol=1E-3 ) )
def snake_case__ ( self : str )-> Union[str, Any]:
'''simple docstring'''
A__ = self.prepare_config_and_inputs()
A__ , A__ , A__ , A__ = config_and_inputs
A__ = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class A ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = (
(
GPTNeoXModel,
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
)
if is_torch_available()
else ()
)
lowerCamelCase = (GPTNeoXForCausalLM,) if is_torch_available() else ()
lowerCamelCase = (
{
'feature-extraction': GPTNeoXModel,
'question-answering': GPTNeoXForQuestionAnswering,
'text-classification': GPTNeoXForSequenceClassification,
'text-generation': GPTNeoXForCausalLM,
'token-classification': GPTNeoXForTokenClassification,
'zero-shot': GPTNeoXForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
def snake_case__ ( self : str )-> Tuple:
'''simple docstring'''
A__ = GPTNeoXModelTester(self )
A__ = ConfigTester(self,config_class=lowercase_,hidden_size=6_4,num_attention_heads=8 )
def snake_case__ ( self : Optional[Any] )-> Union[str, Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def snake_case__ ( self : Union[str, Any] )-> Union[str, Any]:
'''simple docstring'''
A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(lowercase_,lowercase_,lowercase_ )
def snake_case__ ( self : Dict )-> List[Any]:
'''simple docstring'''
A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(lowercase_,lowercase_,lowercase_ )
def snake_case__ ( self : List[str] )-> Any:
'''simple docstring'''
A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs_for_decoder()
A__ = None
self.model_tester.create_and_check_model_as_decoder(lowercase_,lowercase_,lowercase_ )
def snake_case__ ( self : Optional[Any] )-> str:
'''simple docstring'''
A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(lowercase_,lowercase_,lowercase_ )
def snake_case__ ( self : Dict )-> Dict:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_causal_lm(*lowercase_ )
def snake_case__ ( self : Tuple )-> List[Any]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*lowercase_ )
def snake_case__ ( self : Any )-> List[str]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*lowercase_ )
def snake_case__ ( self : str )-> Tuple:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowercase_ )
@unittest.skip(reason='Feed forward chunking is not implemented' )
def snake_case__ ( self : Union[str, Any] )-> Optional[Any]:
'''simple docstring'''
pass
@parameterized.expand([('linear',), ('dynamic',)] )
def snake_case__ ( self : List[str],lowercase_ : Any )-> List[str]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
A__ = ids_tensor([1, 1_0],config.vocab_size )
A__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )],config.vocab_size )
set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights
A__ = GPTNeoXModel(lowercase_ )
original_model.to(lowercase_ )
original_model.eval()
A__ = original_model(lowercase_ ).last_hidden_state
A__ = original_model(lowercase_ ).last_hidden_state
set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights
A__ = {'type': scaling_type, 'factor': 10.0}
A__ = GPTNeoXModel(lowercase_ )
scaled_model.to(lowercase_ )
scaled_model.eval()
A__ = scaled_model(lowercase_ ).last_hidden_state
A__ = scaled_model(lowercase_ ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(lowercase_,lowercase_,atol=1E-5 ) )
else:
self.assertFalse(torch.allclose(lowercase_,lowercase_,atol=1E-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(lowercase_,lowercase_,atol=1E-5 ) )
@require_torch
class A ( unittest.TestCase ):
"""simple docstring"""
@slow
def snake_case__ ( self : Tuple )-> Union[str, Any]:
'''simple docstring'''
A__ = AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped' )
for checkpointing in [True, False]:
A__ = GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped' )
if checkpointing:
model.gradient_checkpointing_enable()
else:
model.gradient_checkpointing_disable()
model.to(lowercase_ )
A__ = tokenizer('My favorite food is',return_tensors='pt' ).to(lowercase_ )
# The hub repo. is updated on 2023-04-04, resulting in poor outputs.
# See: https://github.com/huggingface/transformers/pull/24193
A__ = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure'
A__ = model.generate(**lowercase_,do_sample=lowercase_,max_new_tokens=2_0 )
A__ = tokenizer.batch_decode(lowercase_ )[0]
self.assertEqual(lowercase_,lowercase_ )
| 7 | 0 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ..models.auto import AutoModelForVisionaSeq
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class lowerCamelCase ( _lowerCAmelCase ):
'''simple docstring'''
_A : Optional[Any] = """Salesforce/blip-image-captioning-base"""
_A : Dict = (
"""This is a tool that generates a description of an image. It takes an input named `image` which should be the """
"""image to caption, and returns a text that contains the description in English."""
)
_A : int = """image_captioner"""
_A : Optional[int] = AutoModelForVisionaSeq
_A : List[str] = ["""image"""]
_A : Tuple = ["""text"""]
def __init__( self: List[Any] , *snake_case: Optional[int] , **snake_case: str ) -> Optional[int]:
requires_backends(self , ["""vision"""] )
super().__init__(*snake_case , **snake_case )
def lowerCAmelCase_ ( self: Any , snake_case: "Image" ) -> Optional[Any]:
return self.pre_processor(images=snake_case , return_tensors="""pt""" )
def lowerCAmelCase_ ( self: Any , snake_case: List[str] ) -> List[str]:
return self.model.generate(**snake_case )
def lowerCAmelCase_ ( self: Tuple , snake_case: Tuple ) -> Tuple:
return self.pre_processor.batch_decode(snake_case , skip_special_tokens=snake_case )[0].strip()
| 66 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json",
}
class A ( _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase = 'open-llama'
def __init__( self : Any,lowercase_ : Optional[int]=1_0_0_0_0_0,lowercase_ : Union[str, Any]=4_0_9_6,lowercase_ : Dict=1_1_0_0_8,lowercase_ : Dict=3_2,lowercase_ : Optional[int]=3_2,lowercase_ : Dict="silu",lowercase_ : Union[str, Any]=2_0_4_8,lowercase_ : Optional[int]=0.02,lowercase_ : Dict=1E-6,lowercase_ : Dict=True,lowercase_ : List[Any]=0,lowercase_ : Optional[int]=1,lowercase_ : str=2,lowercase_ : str=False,lowercase_ : str=True,lowercase_ : int=0.1,lowercase_ : List[Any]=0.1,lowercase_ : List[Any]=True,lowercase_ : Union[str, Any]=True,lowercase_ : Any=None,**lowercase_ : List[Any],)-> Tuple:
'''simple docstring'''
A__ = vocab_size
A__ = max_position_embeddings
A__ = hidden_size
A__ = intermediate_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = hidden_act
A__ = initializer_range
A__ = rms_norm_eps
A__ = use_cache
A__ = kwargs.pop(
'use_memorry_efficient_attention',lowercase_ )
A__ = hidden_dropout_prob
A__ = attention_dropout_prob
A__ = use_stable_embedding
A__ = shared_input_output_embedding
A__ = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=lowercase_,bos_token_id=lowercase_,eos_token_id=lowercase_,tie_word_embeddings=lowercase_,**lowercase_,)
def snake_case__ ( self : str )-> str:
'''simple docstring'''
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling,lowercase_ ) or len(self.rope_scaling ) != 2:
raise ValueError(
'`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '
F'got {self.rope_scaling}' )
A__ = self.rope_scaling.get('type',lowercase_ )
A__ = self.rope_scaling.get('factor',lowercase_ )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
F'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' )
if rope_scaling_factor is None or not isinstance(lowercase_,lowercase_ ) or rope_scaling_factor <= 1.0:
raise ValueError(F'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
| 7 | 0 |
'''simple docstring'''
import os
import unittest
from tempfile import TemporaryDirectory
import torch
import torch.nn as nn
from accelerate.utils import (
OffloadedWeightsLoader,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
)
class a__ ( nn.Module ):
def __init__( self : str ):
"""simple docstring"""
super().__init__()
__lowerCamelCase = nn.Linear(3 , 4 )
__lowerCamelCase = nn.BatchNormad(4 )
__lowerCamelCase = nn.Linear(4 , 5 )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : str ):
"""simple docstring"""
return self.lineara(self.batchnorm(self.lineara(a ) ) )
class a__ ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
__lowerCamelCase = ModelForTest()
with TemporaryDirectory() as tmp_dir:
offload_state_dict(a , model.state_dict() )
__lowerCamelCase = os.path.join(a , '''index.json''' )
self.assertTrue(os.path.isfile(a ) )
# TODO: add tests on what is inside the index
for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]:
__lowerCamelCase = os.path.join(a , f"""{key}.dat""" )
self.assertTrue(os.path.isfile(a ) )
# TODO: add tests on the fact weights are properly loaded
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
__lowerCamelCase = [torch.floataa, torch.floataa, torch.bfloataa]
for dtype in dtypes:
__lowerCamelCase = torch.randn(2 , 3 , dtype=a )
with TemporaryDirectory() as tmp_dir:
__lowerCamelCase = offload_weight(a , '''weight''' , a , {} )
__lowerCamelCase = os.path.join(a , '''weight.dat''' )
self.assertTrue(os.path.isfile(a ) )
self.assertDictEqual(a , {'''weight''': {'''shape''': [2, 3], '''dtype''': str(a ).split('''.''' )[1]}} )
__lowerCamelCase = load_offloaded_weight(a , index['''weight'''] )
self.assertTrue(torch.equal(a , a ) )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
__lowerCamelCase = ModelForTest()
__lowerCamelCase = model.state_dict()
__lowerCamelCase = {k: v for k, v in state_dict.items() if '''linear2''' not in k}
__lowerCamelCase = {k: v for k, v in state_dict.items() if '''linear2''' in k}
with TemporaryDirectory() as tmp_dir:
offload_state_dict(a , a )
__lowerCamelCase = OffloadedWeightsLoader(state_dict=a , save_folder=a )
# Every key is there with the right value
self.assertEqual(sorted(a ) , sorted(state_dict.keys() ) )
for key, param in state_dict.items():
self.assertTrue(torch.allclose(a , weight_map[key] ) )
__lowerCamelCase = {k: v for k, v in state_dict.items() if '''weight''' in k}
__lowerCamelCase = {k: v for k, v in state_dict.items() if '''weight''' not in k}
with TemporaryDirectory() as tmp_dir:
offload_state_dict(a , a )
__lowerCamelCase = OffloadedWeightsLoader(state_dict=a , save_folder=a )
# Every key is there with the right value
self.assertEqual(sorted(a ) , sorted(state_dict.keys() ) )
for key, param in state_dict.items():
self.assertTrue(torch.allclose(a , weight_map[key] ) )
with TemporaryDirectory() as tmp_dir:
offload_state_dict(a , a )
# Duplicates are removed
__lowerCamelCase = OffloadedWeightsLoader(state_dict=a , save_folder=a )
# Every key is there with the right value
self.assertEqual(sorted(a ) , sorted(state_dict.keys() ) )
for key, param in state_dict.items():
self.assertTrue(torch.allclose(a , weight_map[key] ) )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
__lowerCamelCase = {'''a.1''': 0, '''a.10''': 1, '''a.2''': 2}
__lowerCamelCase = extract_submodules_state_dict(a , ['''a.1''', '''a.2'''] )
self.assertDictEqual(a , {'''a.1''': 0, '''a.2''': 2} )
__lowerCamelCase = {'''a.1.a''': 0, '''a.10.a''': 1, '''a.2.a''': 2}
__lowerCamelCase = extract_submodules_state_dict(a , ['''a.1''', '''a.2'''] )
self.assertDictEqual(a , {'''a.1.a''': 0, '''a.2.a''': 2} )
| 67 |
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available
from . import BaseDiffusersCLICommand
def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
return EnvironmentCommand()
class A ( _UpperCAmelCase ):
"""simple docstring"""
@staticmethod
def snake_case__ ( lowercase_ : ArgumentParser )-> Dict:
'''simple docstring'''
A__ = parser.add_parser('env' )
download_parser.set_defaults(func=lowercase_ )
def snake_case__ ( self : List[Any] )-> List[str]:
'''simple docstring'''
A__ = huggingface_hub.__version__
A__ = 'not installed'
A__ = 'NA'
if is_torch_available():
import torch
A__ = torch.__version__
A__ = torch.cuda.is_available()
A__ = 'not installed'
if is_transformers_available():
import transformers
A__ = transformers.__version__
A__ = 'not installed'
if is_accelerate_available():
import accelerate
A__ = accelerate.__version__
A__ = 'not installed'
if is_xformers_available():
import xformers
A__ = xformers.__version__
A__ = {
'`diffusers` version': version,
'Platform': platform.platform(),
'Python version': platform.python_version(),
'PyTorch version (GPU?)': F'{pt_version} ({pt_cuda_available})',
'Huggingface_hub version': hub_version,
'Transformers version': transformers_version,
'Accelerate version': accelerate_version,
'xFormers version': xformers_version,
'Using GPU in script?': '<fill in>',
'Using distributed or parallel set-up in script?': '<fill in>',
}
print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' )
print(self.format_dict(lowercase_ ) )
return info
@staticmethod
def snake_case__ ( lowercase_ : int )-> Optional[Any]:
'''simple docstring'''
return "\n".join([F'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
| 7 | 0 |
import os
from typing import Dict, List, Tuple, TypeVar, Union
lowerCAmelCase__ = TypeVar("""T""")
lowerCAmelCase__ = Union[List[T], Tuple[T, ...]]
lowerCAmelCase__ = Union[T, List[T], Dict[str, T]]
lowerCAmelCase__ = Union[str, bytes, os.PathLike]
| 68 |
import unittest
from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
lowercase_ = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
@require_tokenizers
class A ( _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = ReformerTokenizer
lowerCamelCase = ReformerTokenizerFast
lowerCamelCase = True
lowerCamelCase = False
lowerCamelCase = True
def snake_case__ ( self : Any )-> str:
'''simple docstring'''
super().setUp()
A__ = ReformerTokenizer(lowercase_,keep_accents=lowercase_ )
tokenizer.save_pretrained(self.tmpdirname )
def snake_case__ ( self : Optional[int] )-> Optional[int]:
'''simple docstring'''
A__ = '<s>'
A__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ),lowercase_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ),lowercase_ )
def snake_case__ ( self : str )-> Tuple:
'''simple docstring'''
A__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0],'<unk>' )
self.assertEqual(vocab_keys[1],'<s>' )
self.assertEqual(vocab_keys[-1],'j' )
self.assertEqual(len(lowercase_ ),1_0_0_0 )
def snake_case__ ( self : Dict )-> Dict:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size,1_0_0_0 )
def snake_case__ ( self : Dict )-> List[str]:
'''simple docstring'''
if not self.test_rust_tokenizer:
return
A__ = self.get_tokenizer()
A__ = self.get_rust_tokenizer()
A__ = 'I was born in 92000, and this is falsé.'
A__ = tokenizer.tokenize(lowercase_ )
A__ = rust_tokenizer.tokenize(lowercase_ )
self.assertListEqual(lowercase_,lowercase_ )
A__ = tokenizer.encode(lowercase_,add_special_tokens=lowercase_ )
A__ = rust_tokenizer.encode(lowercase_,add_special_tokens=lowercase_ )
self.assertListEqual(lowercase_,lowercase_ )
A__ = self.get_rust_tokenizer()
A__ = tokenizer.encode(lowercase_ )
A__ = rust_tokenizer.encode(lowercase_ )
self.assertListEqual(lowercase_,lowercase_ )
def snake_case__ ( self : int,lowercase_ : Optional[int]=1_5 )-> Optional[Any]:
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
A__ = self.rust_tokenizer_class.from_pretrained(lowercase_,**lowercase_ )
# Simple input
A__ = 'This is a simple input'
A__ = ['This is a simple input 1', 'This is a simple input 2']
A__ = ('This is a simple input', 'This is a pair')
A__ = [
('This is a simple input 1', 'This is a simple input 2'),
('This is a simple pair 1', 'This is a simple pair 2'),
]
# Simple input tests
self.assertRaises(lowercase_,tokenizer_r.encode,lowercase_,max_length=lowercase_,padding='max_length' )
# Simple input
self.assertRaises(lowercase_,tokenizer_r.encode_plus,lowercase_,max_length=lowercase_,padding='max_length' )
# Simple input
self.assertRaises(
lowercase_,tokenizer_r.batch_encode_plus,lowercase_,max_length=lowercase_,padding='max_length',)
# Pair input
self.assertRaises(lowercase_,tokenizer_r.encode,lowercase_,max_length=lowercase_,padding='max_length' )
# Pair input
self.assertRaises(lowercase_,tokenizer_r.encode_plus,lowercase_,max_length=lowercase_,padding='max_length' )
# Pair input
self.assertRaises(
lowercase_,tokenizer_r.batch_encode_plus,lowercase_,max_length=lowercase_,padding='max_length',)
def snake_case__ ( self : List[Any] )-> Tuple:
'''simple docstring'''
pass
def snake_case__ ( self : Dict )-> str:
'''simple docstring'''
A__ = ReformerTokenizer(lowercase_,keep_accents=lowercase_ )
A__ = tokenizer.tokenize('This is a test' )
self.assertListEqual(lowercase_,['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowercase_ ),[2_8_5, 4_6, 1_0, 1_7_0, 3_8_2],)
A__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
lowercase_,[
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
],)
A__ = tokenizer.convert_tokens_to_ids(lowercase_ )
self.assertListEqual(
lowercase_,[8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4],)
A__ = tokenizer.convert_ids_to_tokens(lowercase_ )
self.assertListEqual(
lowercase_,[
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
],)
@cached_property
def snake_case__ ( self : Optional[int] )-> Any:
'''simple docstring'''
return ReformerTokenizer.from_pretrained('google/reformer-crime-and-punishment' )
@slow
def snake_case__ ( self : str )-> Tuple:
'''simple docstring'''
A__ = 'Hello World!'
A__ = [1_2_6, 3_2, 2_6_2, 1_5_2, 3_8, 7_2, 2_8_7]
self.assertListEqual(lowercase_,self.big_tokenizer.encode(lowercase_ ) )
@slow
def snake_case__ ( self : Optional[int] )-> str:
'''simple docstring'''
A__ = (
'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'
' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'
)
A__ = [
1_0_8,
2_6_5,
2_4,
1_1_1,
4,
2_5_8,
1_5_6,
3_5,
2_8,
2_7_5,
3,
2_5_9,
2_9_7,
2_6_0,
8_4,
4,
3_5,
1_1_0,
4_4,
8,
2_5_9,
9_1,
2_6_8,
2_1,
1_1,
2_0_9,
2_7_4,
1_0_9,
2_6_6,
2_7_7,
1_1_7,
8_6,
9_3,
3_1_5,
2_5_8,
2_7_8,
2_5_8,
2_7_7,
2_5_8,
0,
2_5_8,
2_8_8,
2_5_8,
3_1_9,
2_5_8,
0,
2_5_8,
0,
2_5_8,
0,
2_5_8,
0,
2_5_8,
2_8_7,
2_5_8,
3_1_5,
2_5_8,
2_8_9,
2_5_8,
2_7_8,
9_9,
2_6_9,
2_6_6,
2_6_2,
8,
2_5_9,
2_4_1,
4,
2_1_7,
2_3_0,
2_6_8,
2_6_6,
5_5,
1_6_8,
1_0_6,
7_5,
1_9_3,
2_6_6,
2_2_3,
2_7,
4_9,
2_6,
2_8_2,
2_5,
2_6_4,
2_9_9,
1_9,
2_6,
0,
2_5_8,
2_7_7,
1_1_7,
8_6,
9_3,
1_7_6,
1_8_3,
2_7_0,
1_1,
2_6_2,
4_2,
6_1,
2_6_5,
]
self.assertListEqual(lowercase_,self.big_tokenizer.encode(lowercase_ ) )
@require_torch
@slow
def snake_case__ ( self : int )-> Any:
'''simple docstring'''
import torch
from transformers import ReformerConfig, ReformerModel
# Build sequence
A__ = list(self.big_tokenizer.get_vocab().keys() )[:1_0]
A__ = ' '.join(lowercase_ )
A__ = self.big_tokenizer.encode_plus(lowercase_,return_tensors='pt' )
A__ = self.big_tokenizer.batch_encode_plus([sequence, sequence],return_tensors='pt' )
A__ = ReformerConfig()
# The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024)
A__ = encoded_sequence['input_ids'].shape
A__ = ReformerModel(lowercase_ )
# Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320)
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**lowercase_ )
model(**lowercase_ )
@slow
def snake_case__ ( self : int )-> Tuple:
'''simple docstring'''
A__ = {'input_ids': [[1_0_8, 2_6_5, 2_4, 1_1_1, 4, 2_5_8, 1_5_6, 7, 5_1, 2_7_9, 5_8, 7, 7_6, 2_5, 6_9, 2_7_8], [1_4_0, 2_4_3, 2_6_4, 1_3_4, 1_7, 2_6_7, 7_7, 2_6_3, 2_2, 2_6_2, 2_9_7, 2_5_8, 3_0_4, 1_7_7, 2_7_9, 2_6_6, 1_4, 8_9, 1_3, 3_5, 2_6_1, 2_9_9, 2_7_2, 1_3_7, 2_7_5, 2_7_8]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# This tokenizer does not know some characters like ")".
# That is the reason why we use very simple texts here.
# Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064
A__ = [
'This is a very simple sentence.',
'The quick brown fox jumps over the lazy dog.',
]
self.tokenizer_integration_test_util(
expected_encoding=lowercase_,model_name='google/reformer-crime-and-punishment',revision='0e6c3decb8211d49bf881013425dc8b0448b3f5a',padding=lowercase_,sequences=lowercase_,)
| 7 | 0 |
"""simple docstring"""
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import (
AutoProcessor,
BertTokenizerFast,
BlipImageProcessor,
GPTaTokenizer,
InstructBlipProcessor,
PreTrainedTokenizerFast,
)
@require_vision
class UpperCamelCase ( unittest.TestCase ):
def a_ ( self) -> Optional[Any]:
snake_case_ = tempfile.mkdtemp()
snake_case_ = BlipImageProcessor()
snake_case_ = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model')
snake_case_ = BertTokenizerFast.from_pretrained('hf-internal-testing/tiny-random-bert')
snake_case_ = InstructBlipProcessor(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__)
processor.save_pretrained(self.tmpdirname)
def a_ ( self, **lowerCAmelCase__) -> str:
return AutoProcessor.from_pretrained(self.tmpdirname, **lowerCAmelCase__).tokenizer
def a_ ( self, **lowerCAmelCase__) -> Dict:
return AutoProcessor.from_pretrained(self.tmpdirname, **lowerCAmelCase__).image_processor
def a_ ( self, **lowerCAmelCase__) -> Optional[Any]:
return AutoProcessor.from_pretrained(self.tmpdirname, **lowerCAmelCase__).qformer_tokenizer
def a_ ( self) -> Dict:
shutil.rmtree(self.tmpdirname)
def a_ ( self) -> str:
snake_case_ = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta)]
snake_case_ = [Image.fromarray(np.moveaxis(lowerCAmelCase__, 0, -1)) for x in image_inputs]
return image_inputs
def a_ ( self) -> List[str]:
snake_case_ = InstructBlipProcessor(
tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor(), qformer_tokenizer=self.get_qformer_tokenizer(), )
processor.save_pretrained(self.tmpdirname)
snake_case_ = self.get_tokenizer(bos_token='(BOS)', eos_token='(EOS)')
snake_case_ = self.get_image_processor(do_normalize=lowerCAmelCase__, padding_value=1.0)
snake_case_ = InstructBlipProcessor.from_pretrained(
self.tmpdirname, bos_token='(BOS)', eos_token='(EOS)', do_normalize=lowerCAmelCase__, padding_value=1.0)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer, lowerCAmelCase__)
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor, lowerCAmelCase__)
self.assertIsInstance(processor.qformer_tokenizer, lowerCAmelCase__)
def a_ ( self) -> Optional[int]:
snake_case_ = self.get_image_processor()
snake_case_ = self.get_tokenizer()
snake_case_ = self.get_qformer_tokenizer()
snake_case_ = InstructBlipProcessor(
tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__, qformer_tokenizer=lowerCAmelCase__)
snake_case_ = self.prepare_image_inputs()
snake_case_ = image_processor(lowerCAmelCase__, return_tensors='np')
snake_case_ = processor(images=lowerCAmelCase__, return_tensors='np')
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
def a_ ( self) -> str:
snake_case_ = self.get_image_processor()
snake_case_ = self.get_tokenizer()
snake_case_ = self.get_qformer_tokenizer()
snake_case_ = InstructBlipProcessor(
tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__, qformer_tokenizer=lowerCAmelCase__)
snake_case_ = 'lower newer'
snake_case_ = processor(text=lowerCAmelCase__)
snake_case_ = tokenizer(lowerCAmelCase__, return_token_type_ids=lowerCAmelCase__)
snake_case_ = qformer_tokenizer(lowerCAmelCase__, return_token_type_ids=lowerCAmelCase__)
for key in encoded_tokens.keys():
self.assertListEqual(encoded_tokens[key], encoded_processor[key])
for key in encoded_tokens_qformer.keys():
self.assertListEqual(encoded_tokens_qformer[key], encoded_processor['qformer_' + key])
def a_ ( self) -> Any:
snake_case_ = self.get_image_processor()
snake_case_ = self.get_tokenizer()
snake_case_ = self.get_qformer_tokenizer()
snake_case_ = InstructBlipProcessor(
tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__, qformer_tokenizer=lowerCAmelCase__)
snake_case_ = 'lower newer'
snake_case_ = self.prepare_image_inputs()
snake_case_ = processor(text=lowerCAmelCase__, images=lowerCAmelCase__)
self.assertListEqual(
list(inputs.keys()), ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'], )
# test if it raises when no input is passed
with pytest.raises(lowerCAmelCase__):
processor()
def a_ ( self) -> int:
snake_case_ = self.get_image_processor()
snake_case_ = self.get_tokenizer()
snake_case_ = self.get_qformer_tokenizer()
snake_case_ = InstructBlipProcessor(
tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__, qformer_tokenizer=lowerCAmelCase__)
snake_case_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
snake_case_ = processor.batch_decode(lowerCAmelCase__)
snake_case_ = tokenizer.batch_decode(lowerCAmelCase__)
self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__)
def a_ ( self) -> Tuple:
snake_case_ = self.get_image_processor()
snake_case_ = self.get_tokenizer()
snake_case_ = self.get_qformer_tokenizer()
snake_case_ = InstructBlipProcessor(
tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__, qformer_tokenizer=lowerCAmelCase__)
snake_case_ = 'lower newer'
snake_case_ = self.prepare_image_inputs()
snake_case_ = processor(text=lowerCAmelCase__, images=lowerCAmelCase__)
self.assertListEqual(
list(inputs.keys()), ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'], )
| 69 |
def _snake_case( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , ) -> float:
'''simple docstring'''
A__ = [redshift, radiation_density, matter_density, dark_energy]
if any(p < 0 for p in parameters ):
raise ValueError('All input parameters must be positive' )
if any(p > 1 for p in parameters[1:4] ):
raise ValueError('Relative densities cannot be greater than one' )
else:
A__ = 1 - (matter_density + radiation_density + dark_energy)
A__ = (
radiation_density * (redshift + 1) ** 4
+ matter_density * (redshift + 1) ** 3
+ curvature * (redshift + 1) ** 2
+ dark_energy
)
A__ = hubble_constant * e_a ** (1 / 2)
return hubble
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
# demo LCDM approximation
lowercase_ = 0.3
print(
hubble_parameter(
hubble_constant=68.3,
radiation_density=1e-4,
matter_density=matter_density,
dark_energy=1 - matter_density,
redshift=0,
)
)
| 7 | 0 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class UpperCAmelCase ( unittest.TestCase ):
def __init__( self : List[Any] , __snake_case : Optional[int] , __snake_case : int=7 , __snake_case : int=3 , __snake_case : Union[str, Any]=30 , __snake_case : int=4_00 , __snake_case : int=True , __snake_case : Tuple=None , __snake_case : List[str]=True , __snake_case : int=[0.5, 0.5, 0.5] , __snake_case : str=[0.5, 0.5, 0.5] , __snake_case : Optional[Any]=True , __snake_case : Dict=1 / 2_55 , __snake_case : List[Any]=True , ) -> Optional[int]:
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
_lowerCAmelCase = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 13_33}
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = min_resolution
_lowerCAmelCase = max_resolution
_lowerCAmelCase = do_resize
_lowerCAmelCase = size
_lowerCAmelCase = do_normalize
_lowerCAmelCase = image_mean
_lowerCAmelCase = image_std
_lowerCAmelCase = do_rescale
_lowerCAmelCase = rescale_factor
_lowerCAmelCase = do_pad
def lowercase__ ( self : List[str] ) -> Optional[Any]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def lowercase__ ( self : List[Any] , __snake_case : List[str] , __snake_case : Tuple=False ) -> Any:
if not batched:
_lowerCAmelCase = image_inputs[0]
if isinstance(__snake_case , Image.Image ):
_lowerCAmelCase , _lowerCAmelCase = image.size
else:
_lowerCAmelCase , _lowerCAmelCase = image.shape[1], image.shape[2]
if w < h:
_lowerCAmelCase = int(self.size["""shortest_edge"""] * h / w )
_lowerCAmelCase = self.size["""shortest_edge"""]
elif w > h:
_lowerCAmelCase = self.size["""shortest_edge"""]
_lowerCAmelCase = int(self.size["""shortest_edge"""] * w / h )
else:
_lowerCAmelCase = self.size["""shortest_edge"""]
_lowerCAmelCase = self.size["""shortest_edge"""]
else:
_lowerCAmelCase = []
for image in image_inputs:
_lowerCAmelCase , _lowerCAmelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
_lowerCAmelCase = max(__snake_case , key=lambda __snake_case : item[0] )[0]
_lowerCAmelCase = max(__snake_case , key=lambda __snake_case : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class UpperCAmelCase ( snake_case_ , unittest.TestCase ):
_lowercase: Any = DeformableDetrImageProcessor if is_vision_available() else None
def lowercase__ ( self : Dict ) -> str:
_lowerCAmelCase = DeformableDetrImageProcessingTester(self )
@property
def lowercase__ ( self : str ) -> Tuple:
return self.image_processor_tester.prepare_image_processor_dict()
def lowercase__ ( self : List[Any] ) -> List[str]:
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__snake_case , """image_mean""" ) )
self.assertTrue(hasattr(__snake_case , """image_std""" ) )
self.assertTrue(hasattr(__snake_case , """do_normalize""" ) )
self.assertTrue(hasattr(__snake_case , """do_resize""" ) )
self.assertTrue(hasattr(__snake_case , """do_rescale""" ) )
self.assertTrue(hasattr(__snake_case , """do_pad""" ) )
self.assertTrue(hasattr(__snake_case , """size""" ) )
def lowercase__ ( self : Optional[Any] ) -> Optional[Any]:
_lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 13_33} )
self.assertEqual(image_processor.do_pad , __snake_case )
_lowerCAmelCase = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__snake_case )
self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} )
self.assertEqual(image_processor.do_pad , __snake_case )
def lowercase__ ( self : Optional[int] ) -> Any:
pass
def lowercase__ ( self : Tuple ) -> List[Any]:
# Initialize image_processing
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case )
for image in image_inputs:
self.assertIsInstance(__snake_case , Image.Image )
# Test not batched input
_lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
_lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(__snake_case )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case )
_lowerCAmelCase = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def lowercase__ ( self : Dict ) -> Any:
# Initialize image_processing
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case )
for image in image_inputs:
self.assertIsInstance(__snake_case , np.ndarray )
# Test not batched input
_lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
_lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(__snake_case )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_lowerCAmelCase = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values
_lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def lowercase__ ( self : Optional[Any] ) -> Any:
# Initialize image_processing
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case )
for image in image_inputs:
self.assertIsInstance(__snake_case , torch.Tensor )
# Test not batched input
_lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
_lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(__snake_case )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_lowerCAmelCase = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values
_lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def lowercase__ ( self : Optional[int] ) -> Tuple:
# prepare image and target
_lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f:
_lowerCAmelCase = json.loads(f.read() )
_lowerCAmelCase = {"""image_id""": 3_97_69, """annotations""": target}
# encode them
_lowerCAmelCase = DeformableDetrImageProcessor()
_lowerCAmelCase = image_processing(images=__snake_case , annotations=__snake_case , return_tensors="""pt""" )
# verify pixel values
_lowerCAmelCase = torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding["""pixel_values"""].shape , __snake_case )
_lowerCAmelCase = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __snake_case , atol=1E-4 ) )
# verify area
_lowerCAmelCase = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __snake_case ) )
# verify boxes
_lowerCAmelCase = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __snake_case )
_lowerCAmelCase = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __snake_case , atol=1E-3 ) )
# verify image_id
_lowerCAmelCase = torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __snake_case ) )
# verify is_crowd
_lowerCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __snake_case ) )
# verify class_labels
_lowerCAmelCase = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __snake_case ) )
# verify orig_size
_lowerCAmelCase = torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __snake_case ) )
# verify size
_lowerCAmelCase = torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __snake_case ) )
@slow
def lowercase__ ( self : Optional[Any] ) -> int:
# prepare image, target and masks_path
_lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f:
_lowerCAmelCase = json.loads(f.read() )
_lowerCAmelCase = {"""file_name""": """000000039769.png""", """image_id""": 3_97_69, """segments_info""": target}
_lowerCAmelCase = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" )
# encode them
_lowerCAmelCase = DeformableDetrImageProcessor(format="""coco_panoptic""" )
_lowerCAmelCase = image_processing(images=__snake_case , annotations=__snake_case , masks_path=__snake_case , return_tensors="""pt""" )
# verify pixel values
_lowerCAmelCase = torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding["""pixel_values"""].shape , __snake_case )
_lowerCAmelCase = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __snake_case , atol=1E-4 ) )
# verify area
_lowerCAmelCase = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __snake_case ) )
# verify boxes
_lowerCAmelCase = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __snake_case )
_lowerCAmelCase = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __snake_case , atol=1E-3 ) )
# verify image_id
_lowerCAmelCase = torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __snake_case ) )
# verify is_crowd
_lowerCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __snake_case ) )
# verify class_labels
_lowerCAmelCase = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __snake_case ) )
# verify masks
_lowerCAmelCase = 82_28_73
self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __snake_case )
# verify orig_size
_lowerCAmelCase = torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __snake_case ) )
# verify size
_lowerCAmelCase = torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __snake_case ) )
| 70 |
from typing import Union
import fire
import torch
from tqdm import tqdm
def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str = "cpu" , SCREAMING_SNAKE_CASE__ : Union[str, None] = None ) -> None:
'''simple docstring'''
A__ = torch.load(SCREAMING_SNAKE_CASE__ , map_location=SCREAMING_SNAKE_CASE__ )
for k, v in tqdm(state_dict.items() ):
if not isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ):
raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' )
A__ = v.half()
if save_path is None: # overwrite src_path
A__ = src_path
torch.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
fire.Fire(convert)
| 7 | 0 |
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
A_ :Dict = [
'''python''',
'''tqdm''',
'''regex''',
'''requests''',
'''packaging''',
'''filelock''',
'''numpy''',
'''tokenizers''',
'''huggingface-hub''',
'''safetensors''',
'''accelerate''',
'''pyyaml''',
]
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
elif pkg == "accelerate":
# must be loaded here, or else tqdm check may fail
from .utils import is_accelerate_available
# Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of
# Transformers with PyTorch
if not is_accelerate_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py")
def A ( a_ ,a_=None ) -> Union[str, Any]:
require_version(deps[pkg] ,a_ )
| 71 |
import os
# Precomputes a list of the 100 first triangular numbers
lowercase_ = [int(0.5 * n * (n + 1)) for n in range(1, 101)]
def _snake_case( ) -> int:
'''simple docstring'''
A__ = os.path.dirname(os.path.realpath(SCREAMING_SNAKE_CASE__ ) )
A__ = os.path.join(SCREAMING_SNAKE_CASE__ , 'words.txt' )
A__ = ''
with open(SCREAMING_SNAKE_CASE__ ) as f:
A__ = f.readline()
A__ = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )]
A__ = [
word
for word in [sum(ord(SCREAMING_SNAKE_CASE__ ) - 64 for x in word ) for word in words]
if word in TRIANGULAR_NUMBERS
]
return len(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
print(solution())
| 7 | 0 |
"""simple docstring"""
from __future__ import annotations
from random import random
class __snake_case :
def __init__( self : Dict , __lowerCAmelCase : int | None = None ):
"""simple docstring"""
_lowerCamelCase : List[Any] = value
_lowerCamelCase : Any = random()
_lowerCamelCase : Node | None = None
_lowerCamelCase : Node | None = None
def __repr__( self : Any ):
"""simple docstring"""
from pprint import pformat
if self.left is None and self.right is None:
return f'''\'{self.value}: {self.prior:.5}\''''
else:
return pformat(
{f'''{self.value}: {self.prior:.5}''': (self.left, self.right)} , indent=1 )
def __str__( self : Tuple ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = str(self.value ) + ''' '''
_lowerCamelCase : Any = str(self.left or '''''' )
_lowerCamelCase : Any = str(self.right or '''''' )
return value + left + right
def snake_case_ ( A_ : Node | None, A_ : int ):
'''simple docstring'''
if root is None: # None tree is split into 2 Nones
return None, None
elif root.value is None:
return None, None
else:
if value < root.value:
_lowerCamelCase , _lowerCamelCase : str = split(root.left, A_ )
return left, root
else:
_lowerCamelCase , _lowerCamelCase : Dict = split(root.right, A_ )
return root, right
def snake_case_ ( A_ : Node | None, A_ : Node | None ):
'''simple docstring'''
if (not left) or (not right): # If one node is None, return the other
return left or right
elif left.prior < right.prior:
_lowerCamelCase : str = merge(left.right, A_ )
return left
else:
_lowerCamelCase : str = merge(A_, right.left )
return right
def snake_case_ ( A_ : Node | None, A_ : int ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = Node(A_ )
_lowerCamelCase , _lowerCamelCase : List[Any] = split(A_, A_ )
return merge(merge(A_, A_ ), A_ )
def snake_case_ ( A_ : Node | None, A_ : int ):
'''simple docstring'''
_lowerCamelCase , _lowerCamelCase : Any = split(A_, value - 1 )
_lowerCamelCase , _lowerCamelCase : Any = split(A_, A_ )
return merge(A_, A_ )
def snake_case_ ( A_ : Node | None ):
'''simple docstring'''
if not root: # None
return
else:
inorder(root.left )
print(root.value, end=''',''' )
inorder(root.right )
def snake_case_ ( A_ : Node | None, A_ : str ):
'''simple docstring'''
for arg in args.split():
if arg[0] == "+":
_lowerCamelCase : Any = insert(A_, int(arg[1:] ) )
elif arg[0] == "-":
_lowerCamelCase : Optional[Any] = erase(A_, int(arg[1:] ) )
else:
print('''Unknown command''' )
return root
def snake_case_ ( ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = None
print(
'''enter numbers to create a tree, + value to add value into treap, '''
'''- value to erase all nodes with value. \'q\' to quit. ''' )
_lowerCamelCase : Optional[int] = input()
while args != "q":
_lowerCamelCase : List[str] = interact_treap(A_, A_ )
print(A_ )
_lowerCamelCase : Optional[Any] = input()
print('''good by!''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 72 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionAttendAndExcitePipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_numpy, skip_mps, slow
from diffusers.utils.testing_utils import require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
lowercase_ = False
@skip_mps
class A ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = StableDiffusionAttendAndExcitePipeline
lowerCamelCase = False
lowerCamelCase = TEXT_TO_IMAGE_PARAMS
lowerCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS.union({'token_indices'} )
lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS
lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS
@classmethod
def snake_case__ ( cls : Any )-> Optional[Any]:
'''simple docstring'''
super().setUpClass()
torch.use_deterministic_algorithms(lowercase_ )
@classmethod
def snake_case__ ( cls : Optional[Any] )-> Dict:
'''simple docstring'''
super().tearDownClass()
torch.use_deterministic_algorithms(lowercase_ )
def snake_case__ ( self : List[str] )-> int:
'''simple docstring'''
torch.manual_seed(0 )
A__ = UNetaDConditionModel(
block_out_channels=(3_2, 6_4),layers_per_block=1,sample_size=3_2,in_channels=4,out_channels=4,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'),up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'),cross_attention_dim=3_2,attention_head_dim=(2, 4),use_linear_projection=lowercase_,)
A__ = DDIMScheduler(
beta_start=0.00_085,beta_end=0.012,beta_schedule='scaled_linear',clip_sample=lowercase_,set_alpha_to_one=lowercase_,)
torch.manual_seed(0 )
A__ = AutoencoderKL(
block_out_channels=[3_2, 6_4],in_channels=3,out_channels=3,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'],up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'],latent_channels=4,sample_size=1_2_8,)
torch.manual_seed(0 )
A__ = CLIPTextConfig(
bos_token_id=0,eos_token_id=2,hidden_size=3_2,intermediate_size=3_7,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1_0_0_0,hidden_act='gelu',projection_dim=5_1_2,)
A__ = CLIPTextModel(lowercase_ )
A__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
A__ = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def snake_case__ ( self : Tuple,lowercase_ : str,lowercase_ : List[Any]=0 )-> int:
'''simple docstring'''
if str(lowercase_ ).startswith('mps' ):
A__ = torch.manual_seed(lowercase_ )
else:
A__ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
A__ = A__ = {
'prompt': 'a cat and a frog',
'token_indices': [2, 5],
'generator': generator,
'num_inference_steps': 1,
'guidance_scale': 6.0,
'output_type': 'numpy',
'max_iter_to_alter': 2,
'thresholds': {0: 0.7},
}
return inputs
def snake_case__ ( self : List[str] )-> Optional[Any]:
'''simple docstring'''
A__ = 'cpu'
A__ = self.get_dummy_components()
A__ = self.pipeline_class(**lowercase_ )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
A__ = self.get_dummy_inputs(lowercase_ )
A__ = pipe(**lowercase_ ).images
A__ = image[0, -3:, -3:, -1]
self.assertEqual(image.shape,(1, 6_4, 6_4, 3) )
A__ = np.array(
[0.63_905_364, 0.62_897_307, 0.48_599_017, 0.5_133_624, 0.5_550_048, 0.45_769_516, 0.50_326_973, 0.5_023_139, 0.45_384_496] )
A__ = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(lowercase_,1E-3 )
def snake_case__ ( self : str )-> Optional[Any]:
'''simple docstring'''
super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 )
def snake_case__ ( self : str )-> int:
'''simple docstring'''
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def snake_case__ ( self : str )-> Optional[int]:
'''simple docstring'''
self._test_inference_batch_single_identical(batch_size=2,expected_max_diff=7E-4 )
def snake_case__ ( self : Optional[Any] )-> int:
'''simple docstring'''
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 )
def snake_case__ ( self : Union[str, Any] )-> str:
'''simple docstring'''
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 )
def snake_case__ ( self : Dict )-> Any:
'''simple docstring'''
super().test_save_load_local(expected_max_difference=5E-4 )
def snake_case__ ( self : Dict )-> List[str]:
'''simple docstring'''
super().test_save_load_optional_components(expected_max_difference=4E-4 )
@require_torch_gpu
@slow
class A ( unittest.TestCase ):
"""simple docstring"""
@classmethod
def snake_case__ ( cls : Any )-> Optional[int]:
'''simple docstring'''
super().setUpClass()
torch.use_deterministic_algorithms(lowercase_ )
@classmethod
def snake_case__ ( cls : int )-> List[Any]:
'''simple docstring'''
super().tearDownClass()
torch.use_deterministic_algorithms(lowercase_ )
def snake_case__ ( self : List[Any] )-> Any:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case__ ( self : Union[str, Any] )-> List[Any]:
'''simple docstring'''
A__ = torch.manual_seed(5_1 )
A__ = StableDiffusionAttendAndExcitePipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4',safety_checker=lowercase_,torch_dtype=torch.floataa )
pipe.to('cuda' )
A__ = 'a painting of an elephant with glasses'
A__ = [5, 7]
A__ = pipe(
prompt=lowercase_,token_indices=lowercase_,guidance_scale=7.5,generator=lowercase_,num_inference_steps=5,max_iter_to_alter=5,output_type='numpy',).images[0]
A__ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' )
assert np.abs((expected_image - image).max() ) < 5E-1
| 7 | 0 |
import copy
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
a =logging.get_logger(__name__)
a ={
"""microsoft/conditional-detr-resnet-50""": (
"""https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json"""
),
}
class A_ ( SCREAMING_SNAKE_CASE ):
_UpperCAmelCase : List[str] = '''conditional_detr'''
_UpperCAmelCase : int = ['''past_key_values''']
_UpperCAmelCase : Optional[int] = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
}
def __init__( self : Dict ,SCREAMING_SNAKE_CASE__ : int=True ,SCREAMING_SNAKE_CASE__ : List[str]=None ,SCREAMING_SNAKE_CASE__ : List[str]=3 ,SCREAMING_SNAKE_CASE__ : int=3_0_0 ,SCREAMING_SNAKE_CASE__ : str=6 ,SCREAMING_SNAKE_CASE__ : Dict=2_0_4_8 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=8 ,SCREAMING_SNAKE_CASE__ : int=6 ,SCREAMING_SNAKE_CASE__ : Optional[int]=2_0_4_8 ,SCREAMING_SNAKE_CASE__ : List[Any]=8 ,SCREAMING_SNAKE_CASE__ : int=0.0 ,SCREAMING_SNAKE_CASE__ : Tuple=0.0 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=True ,SCREAMING_SNAKE_CASE__ : Optional[Any]="relu" ,SCREAMING_SNAKE_CASE__ : List[Any]=2_5_6 ,SCREAMING_SNAKE_CASE__ : List[Any]=0.1 ,SCREAMING_SNAKE_CASE__ : Any=0.0 ,SCREAMING_SNAKE_CASE__ : List[Any]=0.0 ,SCREAMING_SNAKE_CASE__ : str=0.02 ,SCREAMING_SNAKE_CASE__ : Tuple=1.0 ,SCREAMING_SNAKE_CASE__ : str=False ,SCREAMING_SNAKE_CASE__ : Dict="sine" ,SCREAMING_SNAKE_CASE__ : int="resnet50" ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=True ,SCREAMING_SNAKE_CASE__ : str=False ,SCREAMING_SNAKE_CASE__ : Tuple=2 ,SCREAMING_SNAKE_CASE__ : Optional[int]=5 ,SCREAMING_SNAKE_CASE__ : int=2 ,SCREAMING_SNAKE_CASE__ : List[str]=1 ,SCREAMING_SNAKE_CASE__ : int=1 ,SCREAMING_SNAKE_CASE__ : str=2 ,SCREAMING_SNAKE_CASE__ : Optional[int]=5 ,SCREAMING_SNAKE_CASE__ : int=2 ,SCREAMING_SNAKE_CASE__ : Dict=0.25 ,**SCREAMING_SNAKE_CASE__ : Union[str, Any] ,):
if backbone_config is not None and use_timm_backbone:
raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.')
if not use_timm_backbone:
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.')
__lowerCamelCase : str = CONFIG_MAPPING['resnet'](out_features=['stage4'])
elif isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__):
__lowerCamelCase : int = backbone_config.get('model_type')
__lowerCamelCase : Optional[int] = CONFIG_MAPPING[backbone_model_type]
__lowerCamelCase : int = config_class.from_dict(SCREAMING_SNAKE_CASE__)
__lowerCamelCase : Optional[Any] = use_timm_backbone
__lowerCamelCase : Dict = backbone_config
__lowerCamelCase : int = num_channels
__lowerCamelCase : Union[str, Any] = num_queries
__lowerCamelCase : List[Any] = d_model
__lowerCamelCase : str = encoder_ffn_dim
__lowerCamelCase : Union[str, Any] = encoder_layers
__lowerCamelCase : Union[str, Any] = encoder_attention_heads
__lowerCamelCase : Union[str, Any] = decoder_ffn_dim
__lowerCamelCase : Optional[Any] = decoder_layers
__lowerCamelCase : int = decoder_attention_heads
__lowerCamelCase : Optional[Any] = dropout
__lowerCamelCase : Optional[Any] = attention_dropout
__lowerCamelCase : Any = activation_dropout
__lowerCamelCase : int = activation_function
__lowerCamelCase : Dict = init_std
__lowerCamelCase : int = init_xavier_std
__lowerCamelCase : Any = encoder_layerdrop
__lowerCamelCase : str = decoder_layerdrop
__lowerCamelCase : Dict = encoder_layers
__lowerCamelCase : List[str] = auxiliary_loss
__lowerCamelCase : Optional[int] = position_embedding_type
__lowerCamelCase : List[str] = backbone
__lowerCamelCase : Dict = use_pretrained_backbone
__lowerCamelCase : Union[str, Any] = dilation
# Hungarian matcher
__lowerCamelCase : Dict = class_cost
__lowerCamelCase : Dict = bbox_cost
__lowerCamelCase : Any = giou_cost
# Loss coefficients
__lowerCamelCase : List[str] = mask_loss_coefficient
__lowerCamelCase : Optional[int] = dice_loss_coefficient
__lowerCamelCase : Any = cls_loss_coefficient
__lowerCamelCase : str = bbox_loss_coefficient
__lowerCamelCase : str = giou_loss_coefficient
__lowerCamelCase : Optional[Any] = focal_alpha
super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__)
@property
def lowerCAmelCase ( self : Union[str, Any]):
return self.encoder_attention_heads
@property
def lowerCAmelCase ( self : int):
return self.d_model
def lowerCAmelCase ( self : str):
__lowerCamelCase : Optional[int] = copy.deepcopy(self.__dict__)
if self.backbone_config is not None:
__lowerCamelCase : str = self.backbone_config.to_dict()
__lowerCamelCase : Optional[int] = self.__class__.model_type
return output
class A_ ( SCREAMING_SNAKE_CASE ):
_UpperCAmelCase : int = version.parse('''1.11''' )
@property
def lowerCAmelCase ( self : Optional[int]):
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
('pixel_mask', {0: 'batch'}),
])
@property
def lowerCAmelCase ( self : Optional[Any]):
return 1E-5
@property
def lowerCAmelCase ( self : str):
return 1_2
| 73 |
import argparse
from pathlib import Path
import torch
from packaging import version
from torch.onnx import export
from diffusers import AutoencoderKL
lowercase_ = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11")
def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : tuple , SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , ) -> Union[str, Any]:
'''simple docstring'''
output_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
if is_torch_less_than_1_11:
export(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE__ , output_names=SCREAMING_SNAKE_CASE__ , dynamic_axes=SCREAMING_SNAKE_CASE__ , do_constant_folding=SCREAMING_SNAKE_CASE__ , use_external_data_format=SCREAMING_SNAKE_CASE__ , enable_onnx_checker=SCREAMING_SNAKE_CASE__ , opset_version=SCREAMING_SNAKE_CASE__ , )
else:
export(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE__ , output_names=SCREAMING_SNAKE_CASE__ , dynamic_axes=SCREAMING_SNAKE_CASE__ , do_constant_folding=SCREAMING_SNAKE_CASE__ , opset_version=SCREAMING_SNAKE_CASE__ , )
@torch.no_grad()
def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : bool = False ) -> Tuple:
'''simple docstring'''
A__ = torch.floataa if fpaa else torch.floataa
if fpaa and torch.cuda.is_available():
A__ = 'cuda'
elif fpaa and not torch.cuda.is_available():
raise ValueError('`float16` model export is only supported on GPUs with CUDA' )
else:
A__ = 'cpu'
A__ = Path(SCREAMING_SNAKE_CASE__ )
# VAE DECODER
A__ = AutoencoderKL.from_pretrained(model_path + '/vae' )
A__ = vae_decoder.config.latent_channels
# forward only through the decoder part
A__ = vae_decoder.decode
onnx_export(
SCREAMING_SNAKE_CASE__ , model_args=(
torch.randn(1 , SCREAMING_SNAKE_CASE__ , 25 , 25 ).to(device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ ),
False,
) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={
'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'},
} , opset=SCREAMING_SNAKE_CASE__ , )
del vae_decoder
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
parser.add_argument(
"--model_path",
type=str,
required=True,
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).",
)
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--opset",
default=14,
type=int,
help="The version of the ONNX operator set to use.",
)
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode")
lowercase_ = parser.parse_args()
print(args.output_path)
convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
print("SD: Done: ONNX")
| 7 | 0 |
"""simple docstring"""
import string
import numpy
def _snake_case ( snake_case__ : int , snake_case__ : int ):
return b if a == 0 else greatest_common_divisor(b % a , snake_case__ )
class lowerCAmelCase_ :
'''simple docstring'''
_lowerCamelCase: int = string.ascii_uppercase + string.digits
# This cipher takes alphanumerics into account
# i.e. a total of 36 characters
# take x and return x % len(key_string)
_lowerCamelCase: int = numpy.vectorize(lambda _lowercase : x % 36 )
_lowerCamelCase: Optional[Any] = numpy.vectorize(_lowercase )
def __init__( self : Optional[Any] ,A_ : numpy.ndarray ) -> None:
A = self.modulus(A_ ) # mod36 calc's on the encrypt key
self.check_determinant() # validate the determinant of the encryption key
A = encrypt_key.shape[0]
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ) -> int:
return self.key_string.index(A_ )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : int ) -> str:
return self.key_string[round(A_ )]
def _SCREAMING_SNAKE_CASE ( self : Any ) -> None:
A = round(numpy.linalg.det(self.encrypt_key ) )
if det < 0:
A = det % len(self.key_string )
A = len(self.key_string )
if greatest_common_divisor(A_ ,len(self.key_string ) ) != 1:
A = (
F'determinant modular {req_l} of encryption key({det}) '
F'is not co prime w.r.t {req_l}.\nTry another key.'
)
raise ValueError(A_ )
def _SCREAMING_SNAKE_CASE ( self : int ,A_ : str ) -> str:
A = [char for char in text.upper() if char in self.key_string]
A = chars[-1]
while len(A_ ) % self.break_key != 0:
chars.append(A_ )
return "".join(A_ )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ) -> str:
A = self.process_text(text.upper() )
A = ''
for i in range(0 ,len(A_ ) - self.break_key + 1 ,self.break_key ):
A = text[i : i + self.break_key]
A = [self.replace_letters(A_ ) for char in batch]
A = numpy.array([vec] ).T
A = self.modulus(self.encrypt_key.dot(A_ ) ).T.tolist()[
0
]
A = ''.join(
self.replace_digits(A_ ) for num in batch_encrypted )
encrypted += encrypted_batch
return encrypted
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> numpy.ndarray:
A = round(numpy.linalg.det(self.encrypt_key ) )
if det < 0:
A = det % len(self.key_string )
A = None
for i in range(len(self.key_string ) ):
if (det * i) % len(self.key_string ) == 1:
A = i
break
A = (
det_inv
* numpy.linalg.det(self.encrypt_key )
* numpy.linalg.inv(self.encrypt_key )
)
return self.to_int(self.modulus(A_ ) )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ) -> str:
A = self.make_decrypt_key()
A = self.process_text(text.upper() )
A = ''
for i in range(0 ,len(A_ ) - self.break_key + 1 ,self.break_key ):
A = text[i : i + self.break_key]
A = [self.replace_letters(A_ ) for char in batch]
A = numpy.array([vec] ).T
A = self.modulus(decrypt_key.dot(A_ ) ).T.tolist()[0]
A = ''.join(
self.replace_digits(A_ ) for num in batch_decrypted )
decrypted += decrypted_batch
return decrypted
def _snake_case ( ):
A = int(input('Enter the order of the encryption key: ' ) )
A = []
print('Enter each row of the encryption key with space separated integers' )
for _ in range(snake_case__ ):
A = [int(snake_case__ ) for x in input().split()]
hill_matrix.append(snake_case__ )
A = HillCipher(numpy.array(snake_case__ ) )
print('Would you like to encrypt or decrypt some text? (1 or 2)' )
A = input('\n1. Encrypt\n2. Decrypt\n' )
if option == "1":
A = input('What text would you like to encrypt?: ' )
print('Your encrypted text is:' )
print(hc.encrypt(snake_case__ ) )
elif option == "2":
A = input('What text would you like to decrypt?: ' )
print('Your decrypted text is:' )
print(hc.decrypt(snake_case__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main() | 74 |
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class A ( _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase = (DPMSolverSinglestepScheduler,)
lowerCamelCase = (('num_inference_steps', 25),)
def snake_case__ ( self : Tuple,**lowercase_ : Dict )-> Optional[int]:
'''simple docstring'''
A__ = {
'num_train_timesteps': 1_0_0_0,
'beta_start': 0.0_001,
'beta_end': 0.02,
'beta_schedule': 'linear',
'solver_order': 2,
'prediction_type': 'epsilon',
'thresholding': False,
'sample_max_value': 1.0,
'algorithm_type': 'dpmsolver++',
'solver_type': 'midpoint',
'lambda_min_clipped': -float('inf' ),
'variance_type': None,
}
config.update(**lowercase_ )
return config
def snake_case__ ( self : str,lowercase_ : Optional[Any]=0,**lowercase_ : Any )-> List[Any]:
'''simple docstring'''
A__ = dict(self.forward_default_kwargs )
A__ = kwargs.pop('num_inference_steps',lowercase_ )
A__ = self.dummy_sample
A__ = 0.1 * sample
A__ = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
A__ = self.get_scheduler_config(**lowercase_ )
A__ = scheduler_class(**lowercase_ )
scheduler.set_timesteps(lowercase_ )
# copy over dummy past residuals
A__ = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowercase_ )
A__ = scheduler_class.from_pretrained(lowercase_ )
new_scheduler.set_timesteps(lowercase_ )
# copy over dummy past residuals
A__ = dummy_past_residuals[: new_scheduler.config.solver_order]
A__ , A__ = sample, sample
for t in range(lowercase_,time_step + scheduler.config.solver_order + 1 ):
A__ = scheduler.step(lowercase_,lowercase_,lowercase_,**lowercase_ ).prev_sample
A__ = new_scheduler.step(lowercase_,lowercase_,lowercase_,**lowercase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def snake_case__ ( self : List[str] )-> List[Any]:
'''simple docstring'''
pass
def snake_case__ ( self : Tuple,lowercase_ : Union[str, Any]=0,**lowercase_ : Union[str, Any] )-> Union[str, Any]:
'''simple docstring'''
A__ = dict(self.forward_default_kwargs )
A__ = kwargs.pop('num_inference_steps',lowercase_ )
A__ = self.dummy_sample
A__ = 0.1 * sample
A__ = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
A__ = self.get_scheduler_config()
A__ = scheduler_class(**lowercase_ )
scheduler.set_timesteps(lowercase_ )
# copy over dummy past residuals (must be after setting timesteps)
A__ = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowercase_ )
A__ = scheduler_class.from_pretrained(lowercase_ )
# copy over dummy past residuals
new_scheduler.set_timesteps(lowercase_ )
# copy over dummy past residual (must be after setting timesteps)
A__ = dummy_past_residuals[: new_scheduler.config.solver_order]
A__ = scheduler.step(lowercase_,lowercase_,lowercase_,**lowercase_ ).prev_sample
A__ = new_scheduler.step(lowercase_,lowercase_,lowercase_,**lowercase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def snake_case__ ( self : Optional[Any],lowercase_ : Optional[int]=None,**lowercase_ : int )-> int:
'''simple docstring'''
if scheduler is None:
A__ = self.scheduler_classes[0]
A__ = self.get_scheduler_config(**lowercase_ )
A__ = scheduler_class(**lowercase_ )
A__ = self.scheduler_classes[0]
A__ = self.get_scheduler_config(**lowercase_ )
A__ = scheduler_class(**lowercase_ )
A__ = 1_0
A__ = self.dummy_model()
A__ = self.dummy_sample_deter
scheduler.set_timesteps(lowercase_ )
for i, t in enumerate(scheduler.timesteps ):
A__ = model(lowercase_,lowercase_ )
A__ = scheduler.step(lowercase_,lowercase_,lowercase_ ).prev_sample
return sample
def snake_case__ ( self : Any )-> str:
'''simple docstring'''
A__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() )
A__ = 5_0
A__ = self.dummy_model()
A__ = self.dummy_sample_deter
scheduler.set_timesteps(lowercase_ )
# make sure that the first t is uneven
for i, t in enumerate(scheduler.timesteps[3:] ):
A__ = model(lowercase_,lowercase_ )
A__ = scheduler.step(lowercase_,lowercase_,lowercase_ ).prev_sample
A__ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_mean.item() - 0.2_574 ) < 1E-3
def snake_case__ ( self : Optional[Any] )-> List[Any]:
'''simple docstring'''
for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=lowercase_ )
def snake_case__ ( self : int )-> Optional[Any]:
'''simple docstring'''
A__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() )
A__ = self.full_loop(scheduler=lowercase_ )
A__ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_mean.item() - 0.2_791 ) < 1E-3
A__ = DEISMultistepScheduler.from_config(scheduler.config )
A__ = DPMSolverMultistepScheduler.from_config(scheduler.config )
A__ = UniPCMultistepScheduler.from_config(scheduler.config )
A__ = DPMSolverSinglestepScheduler.from_config(scheduler.config )
A__ = self.full_loop(scheduler=lowercase_ )
A__ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_mean.item() - 0.2_791 ) < 1E-3
def snake_case__ ( self : Tuple )-> Any:
'''simple docstring'''
self.check_over_configs(thresholding=lowercase_ )
for order in [1, 2, 3]:
for solver_type in ["midpoint", "heun"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=lowercase_,prediction_type=lowercase_,sample_max_value=lowercase_,algorithm_type='dpmsolver++',solver_order=lowercase_,solver_type=lowercase_,)
def snake_case__ ( self : List[Any] )-> int:
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowercase_ )
def snake_case__ ( self : Dict )-> List[Any]:
'''simple docstring'''
for algorithm_type in ["dpmsolver", "dpmsolver++"]:
for solver_type in ["midpoint", "heun"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=lowercase_,solver_type=lowercase_,prediction_type=lowercase_,algorithm_type=lowercase_,)
A__ = self.full_loop(
solver_order=lowercase_,solver_type=lowercase_,prediction_type=lowercase_,algorithm_type=lowercase_,)
assert not torch.isnan(lowercase_ ).any(), "Samples have nan numbers"
def snake_case__ ( self : Optional[int] )-> Tuple:
'''simple docstring'''
self.check_over_configs(lower_order_final=lowercase_ )
self.check_over_configs(lower_order_final=lowercase_ )
def snake_case__ ( self : Tuple )-> Optional[int]:
'''simple docstring'''
self.check_over_configs(lambda_min_clipped=-float('inf' ) )
self.check_over_configs(lambda_min_clipped=-5.1 )
def snake_case__ ( self : Optional[Any] )-> Tuple:
'''simple docstring'''
self.check_over_configs(variance_type=lowercase_ )
self.check_over_configs(variance_type='learned_range' )
def snake_case__ ( self : str )-> Any:
'''simple docstring'''
for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]:
self.check_over_forward(num_inference_steps=lowercase_,time_step=0 )
def snake_case__ ( self : Tuple )-> Tuple:
'''simple docstring'''
A__ = self.full_loop()
A__ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_mean.item() - 0.2_791 ) < 1E-3
def snake_case__ ( self : Any )-> Union[str, Any]:
'''simple docstring'''
A__ = self.full_loop(use_karras_sigmas=lowercase_ )
A__ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_mean.item() - 0.2_248 ) < 1E-3
def snake_case__ ( self : Union[str, Any] )-> Tuple:
'''simple docstring'''
A__ = self.full_loop(prediction_type='v_prediction' )
A__ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_mean.item() - 0.1_453 ) < 1E-3
def snake_case__ ( self : Tuple )-> int:
'''simple docstring'''
A__ = self.full_loop(prediction_type='v_prediction',use_karras_sigmas=lowercase_ )
A__ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_mean.item() - 0.0_649 ) < 1E-3
def snake_case__ ( self : List[Any] )-> int:
'''simple docstring'''
A__ = self.scheduler_classes[0]
A__ = self.get_scheduler_config(thresholding=lowercase_,dynamic_thresholding_ratio=0 )
A__ = scheduler_class(**lowercase_ )
A__ = 1_0
A__ = self.dummy_model()
A__ = self.dummy_sample_deter.half()
scheduler.set_timesteps(lowercase_ )
for i, t in enumerate(scheduler.timesteps ):
A__ = model(lowercase_,lowercase_ )
A__ = scheduler.step(lowercase_,lowercase_,lowercase_ ).prev_sample
assert sample.dtype == torch.floataa
| 7 | 0 |
'''simple docstring'''
from math import isqrt
def a_ ( __snake_case : int ) -> bool:
"""simple docstring"""
return all(number % divisor != 0 for divisor in range(2 , isqrt(__snake_case ) + 1 ) )
def a_ ( __snake_case : int = 10**6 ) -> int:
"""simple docstring"""
lowerCamelCase_ =0
lowerCamelCase_ =1
lowerCamelCase_ =7
while prime_candidate < max_prime:
primes_count += is_prime(__snake_case )
cube_index += 1
prime_candidate += 6 * cube_index
return primes_count
if __name__ == "__main__":
print(F"""{solution() = }""")
| 75 |
class A :
"""simple docstring"""
def __init__( self : Any,lowercase_ : Tuple,lowercase_ : Any,lowercase_ : List[str] )-> List[Any]:
'''simple docstring'''
A__ = name
A__ = value
A__ = weight
def __repr__( self : int )-> Tuple:
'''simple docstring'''
return F'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})'
def snake_case__ ( self : Any )-> str:
'''simple docstring'''
return self.value
def snake_case__ ( self : Any )-> Tuple:
'''simple docstring'''
return self.name
def snake_case__ ( self : Any )-> Dict:
'''simple docstring'''
return self.weight
def snake_case__ ( self : Union[str, Any] )-> Optional[Any]:
'''simple docstring'''
return self.value / self.weight
def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]:
'''simple docstring'''
A__ = []
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
menu.append(Things(name[i] , value[i] , weight[i] ) )
return menu
def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Any:
'''simple docstring'''
A__ = sorted(SCREAMING_SNAKE_CASE__ , key=SCREAMING_SNAKE_CASE__ , reverse=SCREAMING_SNAKE_CASE__ )
A__ = []
A__ , A__ = 0.0, 0.0
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
if (total_cost + items_copy[i].get_weight()) <= max_cost:
result.append(items_copy[i] )
total_cost += items_copy[i].get_weight()
total_value += items_copy[i].get_value()
return (result, total_value)
def _snake_case( ) -> Any:
'''simple docstring'''
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 | 0 |
from __future__ import annotations
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import is_tf_available, is_vision_available
from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_tf_bert import TFBertModelTester
from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester
from ..deit.test_modeling_tf_deit import TFDeiTModelTester
from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester
from ..vit.test_modeling_tf_vit import TFViTModelTester
if is_tf_available():
from transformers import (
TFBertModel,
TFCLIPVisionModel,
TFDeiTModel,
TFRobertaModel,
TFVisionTextDualEncoderModel,
TFViTModel,
VisionTextDualEncoderConfig,
)
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor
def lowerCamelCase__ ( _a):
if isinstance(_a , collections.abc.Iterable):
return x
return (x, x)
@require_tf
class _UpperCamelCase :
'''simple docstring'''
def __UpperCamelCase ( self : Optional[int] , a : List[str] , a : int ) -> Union[str, Any]:
"""simple docstring"""
pass
def __UpperCamelCase ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
pass
def __UpperCamelCase ( self : Any ) -> List[Any]:
"""simple docstring"""
pass
def __UpperCamelCase ( self : Optional[int] , a : Any , a : int , a : Optional[int] , a : List[str] , a : Optional[Any]=None , **a : List[Any] ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(a , a )
SCREAMING_SNAKE_CASE : Dict = TFVisionTextDualEncoderModel(a )
SCREAMING_SNAKE_CASE : Any = model(input_ids=a , pixel_values=a , attention_mask=a )
self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim) )
def __UpperCamelCase ( self : Union[str, Any] , a : Optional[int] , a : Dict , a : List[str] , a : Tuple , a : Union[str, Any]=None , **a : int ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = self.get_vision_text_model(a , a )
SCREAMING_SNAKE_CASE : Tuple = TFVisionTextDualEncoderModel(vision_model=a , text_model=a )
SCREAMING_SNAKE_CASE : List[str] = model(input_ids=a , pixel_values=a , attention_mask=a )
self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) )
def __UpperCamelCase ( self : str , a : int , a : List[str] , a : Optional[Any] , a : Optional[Any] , a : List[Any]=None , **a : Dict ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = self.get_vision_text_model(a , a )
SCREAMING_SNAKE_CASE : List[str] = {"vision_model": vision_model, "text_model": text_model}
SCREAMING_SNAKE_CASE : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**a )
SCREAMING_SNAKE_CASE : Optional[Any] = model(input_ids=a , pixel_values=a , attention_mask=a )
self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) )
def __UpperCamelCase ( self : int , a : Dict , a : Tuple , a : List[str] , a : int , a : Tuple=None , **a : List[Any] ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = self.get_vision_text_model(a , a )
SCREAMING_SNAKE_CASE : Optional[Any] = TFVisionTextDualEncoderModel(vision_model=a , text_model=a )
SCREAMING_SNAKE_CASE : Any = model(input_ids=a , pixel_values=a , attention_mask=a )
SCREAMING_SNAKE_CASE : str = output[0].numpy()
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(a )
SCREAMING_SNAKE_CASE : Optional[Any] = TFVisionTextDualEncoderModel.from_pretrained(a )
SCREAMING_SNAKE_CASE : List[str] = model(input_ids=a , pixel_values=a , attention_mask=a )
SCREAMING_SNAKE_CASE : Any = after_output[0].numpy()
SCREAMING_SNAKE_CASE : Union[str, Any] = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(a , 1e-5 )
def __UpperCamelCase ( self : int , a : List[str] , a : Union[str, Any] , a : Optional[int] , a : str , a : Optional[Any]=None , **a : Optional[Any] ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Any = self.get_vision_text_model(a , a )
SCREAMING_SNAKE_CASE : Union[str, Any] = TFVisionTextDualEncoderModel(vision_model=a , text_model=a )
SCREAMING_SNAKE_CASE : int = model(
input_ids=a , pixel_values=a , attention_mask=a , output_attentions=a )
SCREAMING_SNAKE_CASE : Optional[int] = output.vision_model_output.attentions
self.assertEqual(len(a ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
SCREAMING_SNAKE_CASE : str = to_atuple(vision_model.config.image_size )
SCREAMING_SNAKE_CASE : Dict = to_atuple(vision_model.config.patch_size )
SCREAMING_SNAKE_CASE : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
SCREAMING_SNAKE_CASE : Dict = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
SCREAMING_SNAKE_CASE : Any = output.text_model_output.attentions
self.assertEqual(len(a ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def __UpperCamelCase ( self : str , a : np.ndarray , a : np.ndarray , a : float ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = np.abs((a - b) ).max()
self.assertLessEqual(a , a , F"Difference between torch and flax is {diff} (>= {tol})." )
def __UpperCamelCase ( self : Dict ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_model(**a )
def __UpperCamelCase ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**a )
def __UpperCamelCase ( self : int ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**a )
def __UpperCamelCase ( self : int ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = self.prepare_config_and_inputs()
self.check_save_load(**a )
def __UpperCamelCase ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**a )
@slow
def __UpperCamelCase ( self : List[Any] ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[str] = self.get_pretrained_model_and_inputs()
SCREAMING_SNAKE_CASE : str = model_a(**a )
SCREAMING_SNAKE_CASE : List[str] = outputs[0].numpy()
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(a )
SCREAMING_SNAKE_CASE : Optional[int] = TFVisionTextDualEncoderModel.from_pretrained(a )
SCREAMING_SNAKE_CASE : Union[str, Any] = model_a(**a )
SCREAMING_SNAKE_CASE : str = after_outputs[0].numpy()
SCREAMING_SNAKE_CASE : Optional[int] = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(a , 1e-5 )
@require_tf
class _UpperCamelCase ( __A , unittest.TestCase ):
'''simple docstring'''
def __UpperCamelCase ( self : List[str] ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
"hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-random-bert" )
SCREAMING_SNAKE_CASE : Any = 13
SCREAMING_SNAKE_CASE : str = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
SCREAMING_SNAKE_CASE : int = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
SCREAMING_SNAKE_CASE : List[str] = random_attention_mask([batch_size, 4] )
SCREAMING_SNAKE_CASE : Tuple = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask}
return model, inputs
def __UpperCamelCase ( self : Optional[int] , a : List[Any] , a : Dict ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = TFViTModel(a , name="vision_model" )
SCREAMING_SNAKE_CASE : Optional[Any] = TFBertModel(a , name="text_model" )
return vision_model, text_model
def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = TFViTModelTester(self )
SCREAMING_SNAKE_CASE : Tuple = TFBertModelTester(self )
SCREAMING_SNAKE_CASE : int = vit_model_tester.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE : Optional[int] = bert_model_tester.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Any = vision_config_and_inputs
(
(
SCREAMING_SNAKE_CASE
) ,(
SCREAMING_SNAKE_CASE
) ,(
SCREAMING_SNAKE_CASE
) ,(
SCREAMING_SNAKE_CASE
) ,(
SCREAMING_SNAKE_CASE
) ,(
SCREAMING_SNAKE_CASE
) ,(
SCREAMING_SNAKE_CASE
) ,
) : Tuple = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_tf
class _UpperCamelCase ( __A , unittest.TestCase ):
'''simple docstring'''
def __UpperCamelCase ( self : Dict ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
"Rocketknight1/tiny-random-deit-tf" , "hf-internal-testing/tiny-random-roberta" )
SCREAMING_SNAKE_CASE : Any = 13
SCREAMING_SNAKE_CASE : Tuple = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
SCREAMING_SNAKE_CASE : Optional[Any] = random_attention_mask([batch_size, 4] )
SCREAMING_SNAKE_CASE : Dict = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask}
return model, inputs
def __UpperCamelCase ( self : Dict , a : Tuple , a : Any , a : Union[str, Any] , a : Tuple , a : Optional[Any]=None , **a : Optional[int] ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = self.get_vision_text_model(a , a )
SCREAMING_SNAKE_CASE : str = TFVisionTextDualEncoderModel(vision_model=a , text_model=a )
SCREAMING_SNAKE_CASE : Tuple = model(
input_ids=a , pixel_values=a , attention_mask=a , output_attentions=a )
SCREAMING_SNAKE_CASE : Tuple = output.vision_model_output.attentions
self.assertEqual(len(a ) , vision_config.num_hidden_layers )
# in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens)
SCREAMING_SNAKE_CASE : int = to_atuple(vision_model.config.image_size )
SCREAMING_SNAKE_CASE : Dict = to_atuple(vision_model.config.patch_size )
SCREAMING_SNAKE_CASE : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
SCREAMING_SNAKE_CASE : int = num_patches + 2
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
SCREAMING_SNAKE_CASE : Union[str, Any] = output.text_model_output.attentions
self.assertEqual(len(a ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def __UpperCamelCase ( self : str , a : Optional[Any] , a : Optional[Any] ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = TFDeiTModel(a , name="vision_model" )
SCREAMING_SNAKE_CASE : Union[str, Any] = TFRobertaModel(a , name="text_model" )
return vision_model, text_model
def __UpperCamelCase ( self : int ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = TFDeiTModelTester(self )
SCREAMING_SNAKE_CASE : List[str] = TFRobertaModelTester(self )
SCREAMING_SNAKE_CASE : List[str] = vit_model_tester.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE : Any = bert_model_tester.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = vision_config_and_inputs
(
(
SCREAMING_SNAKE_CASE
) ,(
SCREAMING_SNAKE_CASE
) ,(
SCREAMING_SNAKE_CASE
) ,(
SCREAMING_SNAKE_CASE
) ,(
SCREAMING_SNAKE_CASE
) ,(
SCREAMING_SNAKE_CASE
) ,(
SCREAMING_SNAKE_CASE
) ,
) : Any = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_tf
class _UpperCamelCase ( __A , unittest.TestCase ):
'''simple docstring'''
def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
"Rocketknight1/tiny-random-clip-tf" , "hf-internal-testing/tiny-random-bert" )
SCREAMING_SNAKE_CASE : Optional[int] = 13
SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
SCREAMING_SNAKE_CASE : Dict = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
SCREAMING_SNAKE_CASE : Dict = random_attention_mask([batch_size, 4] )
SCREAMING_SNAKE_CASE : Tuple = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask}
return model, inputs
def __UpperCamelCase ( self : Union[str, Any] , a : Optional[int] , a : int ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = TFCLIPVisionModel(a , name="vision_model" )
SCREAMING_SNAKE_CASE : List[Any] = TFBertModel(a , name="text_model" )
return vision_model, text_model
def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = TFCLIPVisionModelTester(self )
SCREAMING_SNAKE_CASE : Optional[Any] = TFBertModelTester(self )
SCREAMING_SNAKE_CASE : Tuple = clip_model_tester.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE : Optional[Any] = bert_model_tester.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = vision_config_and_inputs
(
(
SCREAMING_SNAKE_CASE
) ,(
SCREAMING_SNAKE_CASE
) ,(
SCREAMING_SNAKE_CASE
) ,(
SCREAMING_SNAKE_CASE
) ,(
SCREAMING_SNAKE_CASE
) ,(
SCREAMING_SNAKE_CASE
) ,(
SCREAMING_SNAKE_CASE
) ,
) : Union[str, Any] = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_vision
@require_tf
class _UpperCamelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def __UpperCamelCase ( self : List[str] ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = TFVisionTextDualEncoderModel.from_pretrained(
"clip-italian/clip-italian" , logit_scale_init_value=1.0 , from_pt=a )
SCREAMING_SNAKE_CASE : Any = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" )
SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE : List[Any] = processor(
text=["una foto di un gatto", "una foto di un cane"] , images=a , padding=a , return_tensors="np" )
SCREAMING_SNAKE_CASE : Tuple = model(**a )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
SCREAMING_SNAKE_CASE : Optional[int] = np.array([[1.228_4727, 0.310_4122]] )
self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , a , atol=1e-3 ) ) | 76 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json",
}
class A ( _UpperCAmelCase , _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase = 'resnet'
lowerCamelCase = ['basic', 'bottleneck']
def __init__( self : Optional[Any],lowercase_ : int=3,lowercase_ : List[str]=6_4,lowercase_ : int=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8],lowercase_ : Tuple=[3, 4, 6, 3],lowercase_ : Union[str, Any]="bottleneck",lowercase_ : List[str]="relu",lowercase_ : Tuple=False,lowercase_ : List[str]=None,lowercase_ : List[Any]=None,**lowercase_ : str,)-> Optional[Any]:
'''simple docstring'''
super().__init__(**lowercase_ )
if layer_type not in self.layer_types:
raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' )
A__ = num_channels
A__ = embedding_size
A__ = hidden_sizes
A__ = depths
A__ = layer_type
A__ = hidden_act
A__ = downsample_in_first_stage
A__ = ['stem'] + [F'stage{idx}' for idx in range(1,len(lowercase_ ) + 1 )]
A__ , A__ = get_aligned_output_features_output_indices(
out_features=lowercase_,out_indices=lowercase_,stage_names=self.stage_names )
class A ( _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase = version.parse('1.11' )
@property
def snake_case__ ( self : List[Any] )-> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def snake_case__ ( self : Any )-> float:
'''simple docstring'''
return 1E-3
| 7 | 0 |
"""simple docstring"""
import doctest
from collections import deque
import numpy as np
class UpperCAmelCase_ :
def __init__( self ) -> None:
lowercase__ : str = [2, 1, 2, -1]
lowercase__ : str = [1, 2, 3, 4]
def _UpperCAmelCase ( self ) -> list[float]:
lowercase__ : Optional[Any] = len(self.first_signal )
lowercase__ : str = len(self.second_signal )
lowercase__ : Optional[int] = max(a , a )
# create a zero matrix of max_length x max_length
lowercase__ : Tuple = [[0] * max_length for i in range(a )]
# fills the smaller signal with zeros to make both signals of same length
if length_first_signal < length_second_signal:
self.first_signal += [0] * (max_length - length_first_signal)
elif length_first_signal > length_second_signal:
self.second_signal += [0] * (max_length - length_second_signal)
for i in range(a ):
lowercase__ : List[str] = deque(self.second_signal )
rotated_signal.rotate(a )
for j, item in enumerate(a ):
matrix[i][j] += item
# multiply the matrix with the first signal
lowercase__ : Union[str, Any] = np.matmul(np.transpose(a ) , np.transpose(self.first_signal ) )
# rounding-off to two decimal places
return [round(a , 2 ) for i in final_signal]
if __name__ == "__main__":
doctest.testmod()
| 77 |
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"t5-small": "https://huggingface.co/t5-small/resolve/main/config.json",
"t5-base": "https://huggingface.co/t5-base/resolve/main/config.json",
"t5-large": "https://huggingface.co/t5-large/resolve/main/config.json",
"t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json",
"t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json",
}
class A ( _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase = 't5'
lowerCamelCase = ['past_key_values']
lowerCamelCase = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'}
def __init__( self : Union[str, Any],lowercase_ : int=3_2_1_2_8,lowercase_ : int=5_1_2,lowercase_ : List[str]=6_4,lowercase_ : Tuple=2_0_4_8,lowercase_ : Any=6,lowercase_ : List[str]=None,lowercase_ : Union[str, Any]=8,lowercase_ : int=3_2,lowercase_ : Dict=1_2_8,lowercase_ : Optional[int]=0.1,lowercase_ : List[str]=1E-6,lowercase_ : Tuple=1.0,lowercase_ : Any="relu",lowercase_ : Union[str, Any]=True,lowercase_ : Optional[Any]=True,lowercase_ : int=0,lowercase_ : str=1,**lowercase_ : str,)-> Any:
'''simple docstring'''
A__ = vocab_size
A__ = d_model
A__ = d_kv
A__ = d_ff
A__ = num_layers
A__ = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
A__ = num_heads
A__ = relative_attention_num_buckets
A__ = relative_attention_max_distance
A__ = dropout_rate
A__ = layer_norm_epsilon
A__ = initializer_factor
A__ = feed_forward_proj
A__ = use_cache
A__ = self.feed_forward_proj.split('-' )
A__ = act_info[-1]
A__ = act_info[0] == 'gated'
if len(lowercase_ ) > 1 and act_info[0] != "gated" or len(lowercase_ ) > 2:
raise ValueError(
F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.'
'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '
'\'gated-gelu\' or \'relu\'' )
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
A__ = 'gelu_new'
super().__init__(
pad_token_id=lowercase_,eos_token_id=lowercase_,is_encoder_decoder=lowercase_,**lowercase_,)
class A ( _UpperCAmelCase ):
"""simple docstring"""
@property
def snake_case__ ( self : Tuple )-> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
A__ = {
'input_ids': {0: 'batch', 1: 'encoder_sequence'},
'attention_mask': {0: 'batch', 1: 'encoder_sequence'},
}
if self.use_past:
A__ = 'past_encoder_sequence + sequence'
A__ = {0: 'batch'}
A__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'}
else:
A__ = {0: 'batch', 1: 'decoder_sequence'}
A__ = {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(lowercase_,direction='inputs' )
return common_inputs
@property
def snake_case__ ( self : Any )-> int:
'''simple docstring'''
return 1_3
| 7 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
snake_case_ = {"""configuration_reformer""": ["""REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ReformerConfig"""]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ = ["""ReformerTokenizer"""]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ = ["""ReformerTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ = [
"""REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ReformerAttention""",
"""ReformerForMaskedLM""",
"""ReformerForQuestionAnswering""",
"""ReformerForSequenceClassification""",
"""ReformerLayer""",
"""ReformerModel""",
"""ReformerModelWithLMHead""",
"""ReformerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer import ReformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer_fast import ReformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_reformer import (
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ReformerAttention,
ReformerForMaskedLM,
ReformerForQuestionAnswering,
ReformerForSequenceClassification,
ReformerLayer,
ReformerModel,
ReformerModelWithLMHead,
ReformerPreTrainedModel,
)
else:
import sys
snake_case_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 78 |
def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]:
'''simple docstring'''
global f # a global dp table for knapsack
if f[i][j] < 0:
if j < wt[i - 1]:
A__ = mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
A__ = max(
mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , j - wt[i - 1] ) + val[i - 1] , )
A__ = val
return f[i][j]
def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Tuple:
'''simple docstring'''
A__ = [[0] * (w + 1) for _ in range(n + 1 )]
for i in range(1 , n + 1 ):
for w_ in range(1 , w + 1 ):
if wt[i - 1] <= w_:
A__ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] )
else:
A__ = dp[i - 1][w_]
return dp[n][w_], dp
def _snake_case( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : list ) -> Union[str, Any]:
'''simple docstring'''
if not (isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) )):
raise ValueError(
'Both the weights and values vectors must be either lists or tuples' )
A__ = len(SCREAMING_SNAKE_CASE__ )
if num_items != len(SCREAMING_SNAKE_CASE__ ):
A__ = (
'The number of weights must be the same as the number of values.\n'
f'But got {num_items} weights and {len(SCREAMING_SNAKE_CASE__ )} values'
)
raise ValueError(SCREAMING_SNAKE_CASE__ )
for i in range(SCREAMING_SNAKE_CASE__ ):
if not isinstance(wt[i] , SCREAMING_SNAKE_CASE__ ):
A__ = (
'All weights must be integers but got weight of '
f'type {type(wt[i] )} at index {i}'
)
raise TypeError(SCREAMING_SNAKE_CASE__ )
A__ , A__ = knapsack(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A__ = set()
_construct_solution(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return optimal_val, example_optional_set
def _snake_case( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : set ) -> Optional[int]:
'''simple docstring'''
if i > 0 and j > 0:
if dp[i - 1][j] == dp[i][j]:
_construct_solution(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
optimal_set.add(SCREAMING_SNAKE_CASE__ )
_construct_solution(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , i - 1 , j - wt[i - 1] , SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
lowercase_ = [3, 2, 4, 4]
lowercase_ = [4, 3, 2, 3]
lowercase_ = 4
lowercase_ = 6
lowercase_ = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)]
lowercase_ , lowercase_ = knapsack(w, wt, val, n)
print(optimal_solution)
print(mf_knapsack(n, wt, val, w)) # switched the n and w
# testing the dynamic programming problem with example
# the optimal subset for the above example are items 3 and 4
lowercase_ , lowercase_ = knapsack_with_example_solution(w, wt, val)
assert optimal_solution == 8
assert optimal_subset == {3, 4}
print("optimal_value = ", optimal_solution)
print("An optimal subset corresponding to the optimal value", optimal_subset)
| 7 | 0 |
'''simple docstring'''
import os
import unittest
from transformers import LxmertTokenizer, LxmertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _UpperCAmelCase ( snake_case_ , unittest.TestCase ):
"""simple docstring"""
snake_case = LxmertTokenizer
snake_case = LxmertTokenizerFast
snake_case = True
snake_case = True
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
super().setUp()
_A = [
"[UNK]",
"[CLS]",
"[SEP]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
_A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
def lowerCAmelCase ( self : Dict , __UpperCAmelCase : List[str] ):
'''simple docstring'''
_A = "UNwant\u00E9d,running"
_A = "unwanted, running"
return input_text, output_text
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
_A = self.tokenizer_class(self.vocab_file )
_A = tokenizer.tokenize("UNwant\u00E9d,running" )
self.assertListEqual(__UpperCAmelCase , ["un", "##want", "##ed", ",", "runn", "##ing"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [7, 4, 5, 10, 8, 9] )
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
if not self.test_rust_tokenizer:
return
_A = self.get_tokenizer()
_A = self.get_rust_tokenizer()
_A = "I was born in 92000, and this is falsé."
_A = tokenizer.tokenize(__UpperCAmelCase )
_A = rust_tokenizer.tokenize(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
_A = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase )
_A = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
_A = self.get_rust_tokenizer()
_A = tokenizer.encode(__UpperCAmelCase )
_A = rust_tokenizer.encode(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
| 79 |
import unittest
from transformers import AlbertTokenizer, AlbertTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
lowercase_ = get_tests_dir("fixtures/spiece.model")
@require_sentencepiece
@require_tokenizers
class A ( _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = AlbertTokenizer
lowerCamelCase = AlbertTokenizerFast
lowerCamelCase = True
lowerCamelCase = True
lowerCamelCase = True
def snake_case__ ( self : Dict )-> Any:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
A__ = AlbertTokenizer(lowercase_ )
tokenizer.save_pretrained(self.tmpdirname )
def snake_case__ ( self : List[str],lowercase_ : str )-> Any:
'''simple docstring'''
A__ = 'this is a test'
A__ = 'this is a test'
return input_text, output_text
def snake_case__ ( self : List[Any] )-> Optional[int]:
'''simple docstring'''
A__ = '<pad>'
A__ = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ),lowercase_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ),lowercase_ )
def snake_case__ ( self : List[str] )-> str:
'''simple docstring'''
A__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0],'<pad>' )
self.assertEqual(vocab_keys[1],'<unk>' )
self.assertEqual(vocab_keys[-1],'▁eloquent' )
self.assertEqual(len(lowercase_ ),3_0_0_0_0 )
def snake_case__ ( self : int )-> List[Any]:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size,3_0_0_0_0 )
def snake_case__ ( self : Union[str, Any] )-> List[Any]:
'''simple docstring'''
if not self.test_rust_tokenizer:
return
A__ = self.get_tokenizer()
A__ = self.get_rust_tokenizer()
A__ = 'I was born in 92000, and this is falsé.'
A__ = tokenizer.tokenize(lowercase_ )
A__ = rust_tokenizer.tokenize(lowercase_ )
self.assertListEqual(lowercase_,lowercase_ )
A__ = tokenizer.encode(lowercase_,add_special_tokens=lowercase_ )
A__ = rust_tokenizer.encode(lowercase_,add_special_tokens=lowercase_ )
self.assertListEqual(lowercase_,lowercase_ )
A__ = self.get_rust_tokenizer()
A__ = tokenizer.encode(lowercase_ )
A__ = rust_tokenizer.encode(lowercase_ )
self.assertListEqual(lowercase_,lowercase_ )
def snake_case__ ( self : int )-> int:
'''simple docstring'''
A__ = AlbertTokenizer(lowercase_,keep_accents=lowercase_ )
A__ = tokenizer.tokenize('This is a test' )
self.assertListEqual(lowercase_,['▁this', '▁is', '▁a', '▁test'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ),[4_8, 2_5, 2_1, 1_2_8_9] )
A__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
lowercase_,['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.'] )
A__ = tokenizer.convert_tokens_to_ids(lowercase_ )
self.assertListEqual(lowercase_,[3_1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] )
A__ = tokenizer.convert_ids_to_tokens(lowercase_ )
self.assertListEqual(
lowercase_,['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.'],)
def snake_case__ ( self : Union[str, Any] )-> str:
'''simple docstring'''
A__ = AlbertTokenizer(lowercase_ )
A__ = tokenizer.encode('sequence builders' )
A__ = tokenizer.encode('multi-sequence build' )
A__ = tokenizer.build_inputs_with_special_tokens(lowercase_ )
A__ = tokenizer.build_inputs_with_special_tokens(lowercase_,lowercase_ )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
@slow
def snake_case__ ( self : Any )-> Tuple:
'''simple docstring'''
A__ = {'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 2_1_9_7_0, 1_3, 5, 6_0_9_2, 1_6_7, 2_8, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 7_0_2_8, 1_2_0_5_1, 1_8, 1_7, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 3_5_1_5, 1_8_6_8_4, 8, 4_4_6_1, 6, 1_9_2_7, 2_9_7, 8, 1_2_0_6_0, 2_6_0_7, 1_8, 1_3, 5, 4_4_6_1, 1_5, 1_0_5_3_8, 3_8, 8, 1_3_5, 1_5, 8_2_2, 5_8, 1_5, 9_9_3, 1_0_3_6_3, 1_5, 1_4_6_0, 8_0_0_5, 4_4_6_1, 1_5, 9_9_3, 2_5_5, 2_3_2_8, 9, 9, 9, 6, 2_6, 1_1_1_2, 8_1_6, 3_2_6_0, 1_3, 5, 1_0_3, 2_3_7_7, 6, 1_7, 1_1_1_2, 8_1_6, 2_7_8_2, 1_3, 5, 1_0_3, 1_0_6_4_1, 6, 2_9, 8_4, 2_5_1_2, 2_4_3_0, 7_8_2, 1_8_6_8_4, 2_7_6_1, 1_9, 8_0_8, 2_4_3_0, 2_5_5_6, 1_7, 8_5_5, 1_4_8_0, 9_4_7_7, 4_0_9_1, 1_2_8, 1_1_7_1_2, 1_5, 7_1_0_3, 2_1_5_3, 6_7_3, 1_7, 2_4_8_8_3, 9_9_9_0, 9, 3], [2, 1_1_5_0_2, 2_5, 1_0_0_6, 2_0, 7_8_2, 8, 1_1_8_0_9, 8_5_5, 1_7_3_2, 1_9_3_9_3, 1_8_6_6_7, 3_7, 3_6_7, 2_1_0_1_8, 6_9, 1_8_5_4, 3_4, 1_1_8_6_0, 1_9_1_2_4, 2_7, 1_5_6, 2_2_5, 1_7, 1_9_3, 4_1_4_1, 1_9, 6_5, 9_1_2_4, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 1_4, 2_2_3_1, 8_8_6, 2_3_8_5, 1_7_6_5_9, 8_4, 1_4, 1_6_7_9_2, 1_9_5_2, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowercase_,model_name='albert-base-v2',revision='6b6560eaf5ff2e250b00c50f380c5389a9c2d82e',)
| 7 | 0 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .attention_processor import AttentionProcessor, AttnProcessor
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder
@dataclass
class lowercase_ ( a__ ):
__UpperCAmelCase = 42
class lowercase_ ( a__ , a__ ):
__UpperCAmelCase = True
@register_to_config
def __init__( self , a = 3 , a = 3 , a = ("DownEncoderBlock2D",) , a = ("UpDecoderBlock2D",) , a = (64,) , a = 1 , a = "silu" , a = 4 , a = 32 , a = 32 , a = 0.1_8215 , ):
super().__init__()
# pass init params to Encoder
UpperCamelCase__ = Encoder(
in_channels=a , out_channels=a , down_block_types=a , block_out_channels=a , layers_per_block=a , act_fn=a , norm_num_groups=a , double_z=a , )
# pass init params to Decoder
UpperCamelCase__ = Decoder(
in_channels=a , out_channels=a , up_block_types=a , block_out_channels=a , layers_per_block=a , norm_num_groups=a , act_fn=a , )
UpperCamelCase__ = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 )
UpperCamelCase__ = nn.Convad(a , a , 1 )
UpperCamelCase__ = False
UpperCamelCase__ = False
# only relevant if vae tiling is enabled
UpperCamelCase__ = self.config.sample_size
UpperCamelCase__ = (
self.config.sample_size[0]
if isinstance(self.config.sample_size , (list, tuple) )
else self.config.sample_size
)
UpperCamelCase__ = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) )
UpperCamelCase__ = 0.25
def __a ( self , a , a=False ):
if isinstance(a , (Encoder, Decoder) ):
UpperCamelCase__ = value
def __a ( self , a = True ):
UpperCamelCase__ = use_tiling
def __a ( self ):
self.enable_tiling(a )
def __a ( self ):
UpperCamelCase__ = True
def __a ( self ):
UpperCamelCase__ = False
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def __a ( self ):
UpperCamelCase__ = {}
def fn_recursive_add_processors(a , a , a ):
if hasattr(a , "set_processor" ):
UpperCamelCase__ = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(f'''{name}.{sub_name}''' , a , a )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(a , a , a )
return processors
def __a ( self , a ):
UpperCamelCase__ = len(self.attn_processors.keys() )
if isinstance(a , a ) and len(a ) != count:
raise ValueError(
f'''A dict of processors was passed, but the number of processors {len(a )} does not match the'''
f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' )
def fn_recursive_attn_processor(a , a , a ):
if hasattr(a , "set_processor" ):
if not isinstance(a , a ):
module.set_processor(a )
else:
module.set_processor(processor.pop(f'''{name}.processor''' ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f'''{name}.{sub_name}''' , a , a )
for name, module in self.named_children():
fn_recursive_attn_processor(a , a , a )
def __a ( self ):
self.set_attn_processor(AttnProcessor() )
@apply_forward_hook
def __a ( self , a , a = True ):
if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
return self.tiled_encode(a , return_dict=a )
if self.use_slicing and x.shape[0] > 1:
UpperCamelCase__ = [self.encoder(a ) for x_slice in x.split(1 )]
UpperCamelCase__ = torch.cat(a )
else:
UpperCamelCase__ = self.encoder(a )
UpperCamelCase__ = self.quant_conv(a )
UpperCamelCase__ = DiagonalGaussianDistribution(a )
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=a )
def __a ( self , a , a = True ):
if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size):
return self.tiled_decode(a , return_dict=a )
UpperCamelCase__ = self.post_quant_conv(a )
UpperCamelCase__ = self.decoder(a )
if not return_dict:
return (dec,)
return DecoderOutput(sample=a )
@apply_forward_hook
def __a ( self , a , a = True ):
if self.use_slicing and z.shape[0] > 1:
UpperCamelCase__ = [self._decode(a ).sample for z_slice in z.split(1 )]
UpperCamelCase__ = torch.cat(a )
else:
UpperCamelCase__ = self._decode(a ).sample
if not return_dict:
return (decoded,)
return DecoderOutput(sample=a )
def __a ( self , a , a , a ):
UpperCamelCase__ = min(a.shape[2] , b.shape[2] , a )
for y in range(a ):
UpperCamelCase__ = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent)
return b
def __a ( self , a , a , a ):
UpperCamelCase__ = min(a.shape[3] , b.shape[3] , a )
for x in range(a ):
UpperCamelCase__ = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent)
return b
def __a ( self , a , a = True ):
UpperCamelCase__ = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) )
UpperCamelCase__ = int(self.tile_latent_min_size * self.tile_overlap_factor )
UpperCamelCase__ = self.tile_latent_min_size - blend_extent
# Split the image into 512x512 tiles and encode them separately.
UpperCamelCase__ = []
for i in range(0 , x.shape[2] , a ):
UpperCamelCase__ = []
for j in range(0 , x.shape[3] , a ):
UpperCamelCase__ = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
UpperCamelCase__ = self.encoder(a )
UpperCamelCase__ = self.quant_conv(a )
row.append(a )
rows.append(a )
UpperCamelCase__ = []
for i, row in enumerate(a ):
UpperCamelCase__ = []
for j, tile in enumerate(a ):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
UpperCamelCase__ = self.blend_v(rows[i - 1][j] , a , a )
if j > 0:
UpperCamelCase__ = self.blend_h(row[j - 1] , a , a )
result_row.append(tile[:, :, :row_limit, :row_limit] )
result_rows.append(torch.cat(a , dim=3 ) )
UpperCamelCase__ = torch.cat(a , dim=2 )
UpperCamelCase__ = DiagonalGaussianDistribution(a )
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=a )
def __a ( self , a , a = True ):
UpperCamelCase__ = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) )
UpperCamelCase__ = int(self.tile_sample_min_size * self.tile_overlap_factor )
UpperCamelCase__ = self.tile_sample_min_size - blend_extent
# Split z into overlapping 64x64 tiles and decode them separately.
# The tiles have an overlap to avoid seams between tiles.
UpperCamelCase__ = []
for i in range(0 , z.shape[2] , a ):
UpperCamelCase__ = []
for j in range(0 , z.shape[3] , a ):
UpperCamelCase__ = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size]
UpperCamelCase__ = self.post_quant_conv(a )
UpperCamelCase__ = self.decoder(a )
row.append(a )
rows.append(a )
UpperCamelCase__ = []
for i, row in enumerate(a ):
UpperCamelCase__ = []
for j, tile in enumerate(a ):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
UpperCamelCase__ = self.blend_v(rows[i - 1][j] , a , a )
if j > 0:
UpperCamelCase__ = self.blend_h(row[j - 1] , a , a )
result_row.append(tile[:, :, :row_limit, :row_limit] )
result_rows.append(torch.cat(a , dim=3 ) )
UpperCamelCase__ = torch.cat(a , dim=2 )
if not return_dict:
return (dec,)
return DecoderOutput(sample=a )
def __a ( self , a , a = False , a = True , a = None , ):
UpperCamelCase__ = sample
UpperCamelCase__ = self.encode(a ).latent_dist
if sample_posterior:
UpperCamelCase__ = posterior.sample(generator=a )
else:
UpperCamelCase__ = posterior.mode()
UpperCamelCase__ = self.decode(a ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=a )
| 80 |
from typing import Dict
from .base import GenericTensor, Pipeline
class A ( _UpperCAmelCase ):
"""simple docstring"""
def snake_case__ ( self : int,lowercase_ : Dict=None,lowercase_ : Tuple=None,lowercase_ : List[Any]=None,**lowercase_ : Any )-> Optional[Any]:
'''simple docstring'''
if tokenize_kwargs is None:
A__ = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' )
A__ = truncation
A__ = tokenize_kwargs
A__ = {}
if return_tensors is not None:
A__ = return_tensors
return preprocess_params, {}, postprocess_params
def snake_case__ ( self : Dict,lowercase_ : List[Any],**lowercase_ : Tuple )-> Dict[str, GenericTensor]:
'''simple docstring'''
A__ = self.framework
A__ = self.tokenizer(lowercase_,return_tensors=lowercase_,**lowercase_ )
return model_inputs
def snake_case__ ( self : Tuple,lowercase_ : int )-> Optional[Any]:
'''simple docstring'''
A__ = self.model(**lowercase_ )
return model_outputs
def snake_case__ ( self : Tuple,lowercase_ : Tuple,lowercase_ : List[str]=False )-> Any:
'''simple docstring'''
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self : List[Any],*lowercase_ : int,**lowercase_ : Optional[Any] )-> int:
'''simple docstring'''
return super().__call__(*lowercase_,**lowercase_ )
| 7 | 0 |
"""simple docstring"""
import argparse
import torch
# Step 1. clone https://github.com/microsoft/unilm
# Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd
# Step 3. cd unilm
# Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink
# import classes
from unilm.wavlm.WavLM import WavLM as WavLMOrig
from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig
from transformers import WavLMConfig, WavLMModel, logging
logging.set_verbosity_info()
lowerCamelCase_ : List[Any] = logging.get_logger(__name__)
lowerCamelCase_ : Tuple = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn.grep_linear""": """encoder.layers.*.attention.gru_rel_pos_linear""",
"""self_attn.relative_attention_bias""": """encoder.layers.*.attention.rel_attn_embed""",
"""self_attn.grep_a""": """encoder.layers.*.attention.gru_rel_pos_const""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """ctc_proj""",
"""mask_emb""": """masked_spec_embed""",
}
lowerCamelCase_ : Dict = [
"""ctc_proj""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
]
def _A ( lowercase , lowercase , lowercase , lowercase , lowercase ):
"""simple docstring"""
for attribute in key.split('''.''' ):
a =getattr(lowercase , lowercase )
if weight_type is not None:
a =getattr(lowercase , lowercase ).shape
else:
a =hf_pointer.shape
assert hf_shape == value.shape, (
f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
f''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
a =value
elif weight_type == "weight_g":
a =value
elif weight_type == "weight_v":
a =value
elif weight_type == "bias":
a =value
else:
a =value
logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def _A ( lowercase , lowercase ):
"""simple docstring"""
a =[]
a =fairseq_model.state_dict()
a =hf_model.feature_extractor
for name, value in fairseq_dict.items():
a =False
if "conv_layers" in name:
load_conv_layer(
lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == '''group''' , )
a =True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
a =True
if "*" in mapped_key:
a =name.split(lowercase )[0].split('''.''' )[-2]
a =mapped_key.replace('''*''' , lowercase )
if "weight_g" in name:
a ='''weight_g'''
elif "weight_v" in name:
a ='''weight_v'''
elif "bias" in name and "relative_attention_bias" not in name:
a ='''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
a ='''weight'''
else:
a =None
set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase )
continue
if not is_used:
unused_weights.append(lowercase )
logger.warning(f'''Unused weights: {unused_weights}''' )
def _A ( lowercase , lowercase , lowercase , lowercase , lowercase ):
"""simple docstring"""
a =full_name.split('''conv_layers.''' )[-1]
a =name.split('''.''' )
a =int(items[0] )
a =int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
a =value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
a =value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
a =value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
a =value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(lowercase )
@torch.no_grad()
def _A ( lowercase , lowercase , lowercase=None ):
"""simple docstring"""
# load the pre-trained checkpoints
a =torch.load(lowercase )
a =WavLMConfigOrig(checkpoint['''cfg'''] )
a =WavLMOrig(lowercase )
model.load_state_dict(checkpoint['''model'''] )
model.eval()
if config_path is not None:
a =WavLMConfig.from_pretrained(lowercase )
else:
a =WavLMConfig()
a =WavLMModel(lowercase )
recursively_load_weights(lowercase , lowercase )
hf_wavlm.save_pretrained(lowercase )
if __name__ == "__main__":
lowerCamelCase_ : int = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
lowerCamelCase_ : Tuple = parser.parse_args()
convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path) | 81 |
from timeit import timeit
def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> int:
'''simple docstring'''
if number < 0:
raise ValueError('the value of input must not be negative' )
A__ = 0
while number:
number &= number - 1
result += 1
return result
def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> int:
'''simple docstring'''
if number < 0:
raise ValueError('the value of input must not be negative' )
A__ = 0
while number:
if number % 2 == 1:
result += 1
number >>= 1
return result
def _snake_case( ) -> None:
'''simple docstring'''
def do_benchmark(SCREAMING_SNAKE_CASE__ : int ) -> None:
A__ = 'import __main__ as z'
print(f'Benchmark when {number = }:' )
print(f'{get_set_bits_count_using_modulo_operator(SCREAMING_SNAKE_CASE__ ) = }' )
A__ = timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=SCREAMING_SNAKE_CASE__ )
print(f'timeit() runs in {timing} seconds' )
print(f'{get_set_bits_count_using_brian_kernighans_algorithm(SCREAMING_SNAKE_CASE__ ) = }' )
A__ = timeit(
'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=SCREAMING_SNAKE_CASE__ , )
print(f'timeit() runs in {timing} seconds' )
for number in (25, 37, 58, 0):
do_benchmark(SCREAMING_SNAKE_CASE__ )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 7 | 0 |
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
flip_channel_order,
get_resize_output_image_size,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging
if is_vision_available():
import PIL
if is_torch_available():
import torch
A__ = logging.get_logger(__name__)
class __lowerCAmelCase ( lowerCamelCase__ ):
__lowerCamelCase = ['''pixel_values''']
def __init__( self , _snake_case = True , _snake_case = None , _snake_case = PILImageResampling.BILINEAR , _snake_case = True , _snake_case = 1 / 255 , _snake_case = True , _snake_case = None , _snake_case = True , **_snake_case , ):
"""simple docstring"""
super().__init__(**_snake_case )
_lowerCAmelCase = size if size is not None else {"""shortest_edge""": 224}
_lowerCAmelCase = get_size_dict(_snake_case , default_to_square=_snake_case )
_lowerCAmelCase = crop_size if crop_size is not None else {"""height""": 256, """width""": 256}
_lowerCAmelCase = get_size_dict(_snake_case , param_name="""crop_size""" )
_lowerCAmelCase = do_resize
_lowerCAmelCase = size
_lowerCAmelCase = resample
_lowerCAmelCase = do_rescale
_lowerCAmelCase = rescale_factor
_lowerCAmelCase = do_center_crop
_lowerCAmelCase = crop_size
_lowerCAmelCase = do_flip_channel_order
def snake_case ( self , _snake_case , _snake_case , _snake_case = PIL.Image.BILINEAR , _snake_case = None , **_snake_case , ):
"""simple docstring"""
_lowerCAmelCase = get_size_dict(_snake_case , default_to_square=_snake_case )
if "shortest_edge" not in size:
raise ValueError(F'The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}' )
_lowerCAmelCase = get_resize_output_image_size(_snake_case , size=size["""shortest_edge"""] , default_to_square=_snake_case )
return resize(_snake_case , size=_snake_case , resample=_snake_case , data_format=_snake_case , **_snake_case )
def snake_case ( self , _snake_case , _snake_case , _snake_case = None , **_snake_case , ):
"""simple docstring"""
_lowerCAmelCase = get_size_dict(_snake_case )
if "height" not in size or "width" not in size:
raise ValueError(F'The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}' )
return center_crop(_snake_case , size=(size["""height"""], size["""width"""]) , data_format=_snake_case , **_snake_case )
def snake_case ( self , _snake_case , _snake_case , _snake_case = None , **_snake_case , ):
"""simple docstring"""
return rescale(_snake_case , scale=_snake_case , data_format=_snake_case , **_snake_case )
def snake_case ( self , _snake_case , _snake_case = None ):
"""simple docstring"""
return flip_channel_order(_snake_case , data_format=_snake_case )
def snake_case ( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = ChannelDimension.FIRST , **_snake_case , ):
"""simple docstring"""
_lowerCAmelCase = do_resize if do_resize is not None else self.do_resize
_lowerCAmelCase = resample if resample is not None else self.resample
_lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
_lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
_lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
_lowerCAmelCase = (
do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order
)
_lowerCAmelCase = size if size is not None else self.size
_lowerCAmelCase = get_size_dict(_snake_case , default_to_square=_snake_case )
_lowerCAmelCase = crop_size if crop_size is not None else self.crop_size
_lowerCAmelCase = get_size_dict(_snake_case , param_name="""crop_size""" )
_lowerCAmelCase = make_list_of_images(_snake_case )
if not valid_images(_snake_case ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None:
raise ValueError("""Size must be specified if do_resize is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
# All transformations expect numpy arrays.
_lowerCAmelCase = [to_numpy_array(_snake_case ) for image in images]
if do_resize:
_lowerCAmelCase = [self.resize(image=_snake_case , size=_snake_case , resample=_snake_case ) for image in images]
if do_center_crop:
_lowerCAmelCase = [self.center_crop(image=_snake_case , size=_snake_case ) for image in images]
if do_rescale:
_lowerCAmelCase = [self.rescale(image=_snake_case , scale=_snake_case ) for image in images]
# the pretrained checkpoints assume images are BGR, not RGB
if do_flip_channel_order:
_lowerCAmelCase = [self.flip_channel_order(image=_snake_case ) for image in images]
_lowerCAmelCase = [to_channel_dimension_format(_snake_case , _snake_case ) for image in images]
_lowerCAmelCase = {"""pixel_values""": images}
return BatchFeature(data=_snake_case , tensor_type=_snake_case )
def snake_case ( self , _snake_case , _snake_case = None ):
"""simple docstring"""
_lowerCAmelCase = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(_snake_case ) != len(_snake_case ):
raise ValueError(
"""Make sure that you pass in as many target sizes as the batch dimension of the logits""" )
if is_torch_tensor(_snake_case ):
_lowerCAmelCase = target_sizes.numpy()
_lowerCAmelCase = []
for idx in range(len(_snake_case ) ):
_lowerCAmelCase = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=_snake_case )
_lowerCAmelCase = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(_snake_case )
else:
_lowerCAmelCase = logits.argmax(dim=1 )
_lowerCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 82 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation
def _snake_case( SCREAMING_SNAKE_CASE__ : Any ) -> int:
'''simple docstring'''
A__ = 384
A__ = 7
if "tiny" in model_name:
A__ = 96
A__ = (2, 2, 6, 2)
A__ = (3, 6, 12, 24)
elif "small" in model_name:
A__ = 96
A__ = (2, 2, 18, 2)
A__ = (3, 6, 12, 24)
elif "base" in model_name:
A__ = 128
A__ = (2, 2, 18, 2)
A__ = (4, 8, 16, 32)
A__ = 12
A__ = 512
elif "large" in model_name:
A__ = 192
A__ = (2, 2, 18, 2)
A__ = (6, 12, 24, 48)
A__ = 12
A__ = 768
# set label information
A__ = 150
A__ = 'huggingface/label-files'
A__ = 'ade20k-id2label.json'
A__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) )
A__ = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()}
A__ = {v: k for k, v in idalabel.items()}
A__ = SwinConfig(
embed_dim=SCREAMING_SNAKE_CASE__ , depths=SCREAMING_SNAKE_CASE__ , num_heads=SCREAMING_SNAKE_CASE__ , window_size=SCREAMING_SNAKE_CASE__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , )
A__ = UperNetConfig(
backbone_config=SCREAMING_SNAKE_CASE__ , auxiliary_in_channels=SCREAMING_SNAKE_CASE__ , num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ , )
return config
def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Dict:
'''simple docstring'''
A__ = []
# fmt: off
# stem
rename_keys.append(('backbone.patch_embed.projection.weight', 'backbone.embeddings.patch_embeddings.projection.weight') )
rename_keys.append(('backbone.patch_embed.projection.bias', 'backbone.embeddings.patch_embeddings.projection.bias') )
rename_keys.append(('backbone.patch_embed.norm.weight', 'backbone.embeddings.norm.weight') )
rename_keys.append(('backbone.patch_embed.norm.bias', 'backbone.embeddings.norm.bias') )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm1.weight', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm1.bias', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table', f'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index', f'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight', f'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias', f'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm2.weight', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm2.bias', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight', f'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias', f'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight', f'backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias', f'backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias') )
if i < 3:
rename_keys.append((f'backbone.stages.{i}.downsample.reduction.weight', f'backbone.encoder.layers.{i}.downsample.reduction.weight') )
rename_keys.append((f'backbone.stages.{i}.downsample.norm.weight', f'backbone.encoder.layers.{i}.downsample.norm.weight') )
rename_keys.append((f'backbone.stages.{i}.downsample.norm.bias', f'backbone.encoder.layers.{i}.downsample.norm.bias') )
rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') )
rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') )
# decode head
rename_keys.extend(
[
('decode_head.conv_seg.weight', 'decode_head.classifier.weight'),
('decode_head.conv_seg.bias', 'decode_head.classifier.bias'),
('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'),
('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'),
] )
# fmt: on
return rename_keys
def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[int]:
'''simple docstring'''
A__ = dct.pop(SCREAMING_SNAKE_CASE__ )
A__ = val
def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
'''simple docstring'''
A__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
A__ = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
A__ = state_dict.pop(f'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight' )
A__ = state_dict.pop(f'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
A__ = in_proj_weight[:dim, :]
A__ = in_proj_bias[: dim]
A__ = in_proj_weight[
dim : dim * 2, :
]
A__ = in_proj_bias[
dim : dim * 2
]
A__ = in_proj_weight[
-dim :, :
]
A__ = in_proj_bias[-dim :]
# fmt: on
def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
A__ , A__ = x.shape
A__ = x.reshape(SCREAMING_SNAKE_CASE__ , 4 , in_channel // 4 )
A__ = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return x
def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple ) -> List[str]:
'''simple docstring'''
A__ , A__ = x.shape
A__ = x.reshape(SCREAMING_SNAKE_CASE__ , in_channel // 4 , 4 )
A__ = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return x
def _snake_case( SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]:
'''simple docstring'''
A__ = x.shape[0]
A__ = x.reshape(4 , in_channel // 4 )
A__ = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(SCREAMING_SNAKE_CASE__ )
return x
def _snake_case( SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]:
'''simple docstring'''
A__ = x.shape[0]
A__ = x.reshape(in_channel // 4 , 4 )
A__ = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(SCREAMING_SNAKE_CASE__ )
return x
def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
A__ = {
'upernet-swin-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth',
'upernet-swin-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth',
'upernet-swin-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth',
'upernet-swin-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth',
}
A__ = model_name_to_url[model_name]
A__ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location='cpu' , file_name=SCREAMING_SNAKE_CASE__ )[
'state_dict'
]
for name, param in state_dict.items():
print(SCREAMING_SNAKE_CASE__ , param.shape )
A__ = get_upernet_config(SCREAMING_SNAKE_CASE__ )
A__ = UperNetForSemanticSegmentation(SCREAMING_SNAKE_CASE__ )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
A__ = state_dict.pop(SCREAMING_SNAKE_CASE__ )
if "bn" in key:
A__ = key.replace('bn' , 'batch_norm' )
A__ = val
# rename keys
A__ = create_rename_keys(SCREAMING_SNAKE_CASE__ )
for src, dest in rename_keys:
rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
read_in_q_k_v(SCREAMING_SNAKE_CASE__ , config.backbone_config )
# fix downsample parameters
for key, value in state_dict.items():
if "downsample" in key:
if "reduction" in key:
A__ = reverse_correct_unfold_reduction_order(SCREAMING_SNAKE_CASE__ )
if "norm" in key:
A__ = reverse_correct_unfold_norm_order(SCREAMING_SNAKE_CASE__ )
model.load_state_dict(SCREAMING_SNAKE_CASE__ )
# verify on image
A__ = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg'
A__ = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ).convert('RGB' )
A__ = SegformerImageProcessor()
A__ = processor(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values
with torch.no_grad():
A__ = model(SCREAMING_SNAKE_CASE__ )
A__ = outputs.logits
print(logits.shape )
print('First values of logits:' , logits[0, 0, :3, :3] )
# assert values
if model_name == "upernet-swin-tiny":
A__ = torch.tensor(
[[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] )
elif model_name == "upernet-swin-small":
A__ = torch.tensor(
[[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] )
elif model_name == "upernet-swin-base":
A__ = torch.tensor(
[[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] )
elif model_name == "upernet-swin-large":
A__ = torch.tensor(
[[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] )
print('Logits:' , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(SCREAMING_SNAKE_CASE__ )
print(f'Saving processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(SCREAMING_SNAKE_CASE__ )
if push_to_hub:
print(f'Pushing model and processor for {model_name} to hub' )
model.push_to_hub(f'openmmlab/{model_name}' )
processor.push_to_hub(f'openmmlab/{model_name}' )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="upernet-swin-tiny",
type=str,
choices=[f"""upernet-swin-{size}""" for size in ["tiny", "small", "base", "large"]],
help="Name of the Swin + UperNet model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
lowercase_ = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 7 | 0 |
'''simple docstring'''
from __future__ import annotations
from random import random
from typing import Generic, TypeVar
snake_case_ : Tuple = TypeVar('KT')
snake_case_ : Union[str, Any] = TypeVar('VT')
class lowercase__ ( Generic[KT, VT] ):
def __init__( self : Tuple ,lowerCamelCase__ : KT | str = "root" ,lowerCamelCase__ : VT | None = None ):
'''simple docstring'''
_UpperCamelCase : Optional[Any] = key
_UpperCamelCase : Optional[int] = value
_UpperCamelCase : list[Node[KT, VT]] = []
def __repr__( self : Any ):
'''simple docstring'''
return F'Node({self.key}: {self.value})'
@property
def UpperCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
return len(self.forward )
class lowercase__ ( Generic[KT, VT] ):
def __init__( self : List[str] ,lowerCamelCase__ : float = 0.5 ,lowerCamelCase__ : int = 16 ):
'''simple docstring'''
_UpperCamelCase : Node[KT, VT] = Node[KT, VT]()
_UpperCamelCase : int = 0
_UpperCamelCase : int = p
_UpperCamelCase : List[str] = max_level
def __str__( self : int ):
'''simple docstring'''
_UpperCamelCase : List[Any] = list(self )
if len(lowerCamelCase__ ) == 0:
return F'SkipList(level={self.level})'
_UpperCamelCase : List[str] = max((len(str(lowerCamelCase__ ) ) for item in items) ,default=4 )
_UpperCamelCase : Union[str, Any] = max(lowerCamelCase__ ,4 ) + 4
_UpperCamelCase : str = self.head
_UpperCamelCase : int = []
_UpperCamelCase : Union[str, Any] = node.forward.copy()
lines.append(F'[{node.key}]'.ljust(lowerCamelCase__ ,'-' ) + '* ' * len(lowerCamelCase__ ) )
lines.append(' ' * label_size + '| ' * len(lowerCamelCase__ ) )
while len(node.forward ) != 0:
_UpperCamelCase : Optional[int] = node.forward[0]
lines.append(
F'[{node.key}]'.ljust(lowerCamelCase__ ,'-' )
+ ' '.join(str(n.key ) if n.key == node.key else '|' for n in forwards ) )
lines.append(' ' * label_size + '| ' * len(lowerCamelCase__ ) )
_UpperCamelCase : str = node.forward
lines.append('None'.ljust(lowerCamelCase__ ) + '* ' * len(lowerCamelCase__ ) )
return F'SkipList(level={self.level})\n' + "\n".join(lowerCamelCase__ )
def __iter__( self : List[Any] ):
'''simple docstring'''
_UpperCamelCase : Dict = self.head
while len(node.forward ) != 0:
yield node.forward[0].key
_UpperCamelCase : List[str] = node.forward[0]
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
_UpperCamelCase : Union[str, Any] = 1
while random() < self.p and level < self.max_level:
level += 1
return level
def UpperCamelCase_ ( self : Optional[int] ,lowerCamelCase__ : Tuple ):
'''simple docstring'''
_UpperCamelCase : List[str] = []
_UpperCamelCase : List[str] = self.head
for i in reversed(range(self.level ) ):
# i < node.level - When node level is lesser than `i` decrement `i`.
# node.forward[i].key < key - Jumping to node with key value higher
# or equal to searched key would result
# in skipping searched key.
while i < node.level and node.forward[i].key < key:
_UpperCamelCase : Optional[int] = node.forward[i]
# Each leftmost node (relative to searched node) will potentially have to
# be updated.
update_vector.append(lowerCamelCase__ )
update_vector.reverse() # Note that we were inserting values in reverse order.
# len(node.forward) != 0 - If current node doesn't contain any further
# references then searched key is not present.
# node.forward[0].key == key - Next node key should be equal to search key
# if key is present.
if len(node.forward ) != 0 and node.forward[0].key == key:
return node.forward[0], update_vector
else:
return None, update_vector
def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : KT ):
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase : Any = self._locate_node(lowerCamelCase__ )
if node is not None:
for i, update_node in enumerate(lowerCamelCase__ ):
# Remove or replace all references to removed node.
if update_node.level > i and update_node.forward[i].key == key:
if node.level > i:
_UpperCamelCase : Union[str, Any] = node.forward[i]
else:
_UpperCamelCase : Union[str, Any] = update_node.forward[:i]
def UpperCamelCase_ ( self : int ,lowerCamelCase__ : KT ,lowerCamelCase__ : VT ):
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase : List[Any] = self._locate_node(lowerCamelCase__ )
if node is not None:
_UpperCamelCase : List[str] = value
else:
_UpperCamelCase : Tuple = self.random_level()
if level > self.level:
# After level increase we have to add additional nodes to head.
for _ in range(self.level - 1 ,lowerCamelCase__ ):
update_vector.append(self.head )
_UpperCamelCase : Any = level
_UpperCamelCase : int = Node(lowerCamelCase__ ,lowerCamelCase__ )
for i, update_node in enumerate(update_vector[:level] ):
# Change references to pass through new node.
if update_node.level > i:
new_node.forward.append(update_node.forward[i] )
if update_node.level < i + 1:
update_node.forward.append(lowerCamelCase__ )
else:
_UpperCamelCase : str = new_node
def UpperCamelCase_ ( self : int ,lowerCamelCase__ : VT ):
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase : List[str] = self._locate_node(lowerCamelCase__ )
if node is not None:
return node.value
return None
def A__ ( ):
_UpperCamelCase : Dict = SkipList()
skip_list.insert('Key1' , 3 )
skip_list.insert('Key2' , 1_2 )
skip_list.insert('Key3' , 4_1 )
skip_list.insert('Key4' , -1_9 )
_UpperCamelCase : str = skip_list.head
_UpperCamelCase : Tuple = {}
while node.level != 0:
_UpperCamelCase : Tuple = node.forward[0]
_UpperCamelCase : Optional[Any] = node.value
assert len(UpperCAmelCase_ ) == 4
assert all_values["Key1"] == 3
assert all_values["Key2"] == 1_2
assert all_values["Key3"] == 4_1
assert all_values["Key4"] == -1_9
def A__ ( ):
_UpperCamelCase : List[Any] = SkipList()
skip_list.insert('Key1' , 1_0 )
skip_list.insert('Key1' , 1_2 )
skip_list.insert('Key5' , 7 )
skip_list.insert('Key7' , 1_0 )
skip_list.insert('Key10' , 5 )
skip_list.insert('Key7' , 7 )
skip_list.insert('Key5' , 5 )
skip_list.insert('Key10' , 1_0 )
_UpperCamelCase : Any = skip_list.head
_UpperCamelCase : Dict = {}
while node.level != 0:
_UpperCamelCase : Optional[Any] = node.forward[0]
_UpperCamelCase : Any = node.value
if len(UpperCAmelCase_ ) != 4:
print()
assert len(UpperCAmelCase_ ) == 4
assert all_values["Key1"] == 1_2
assert all_values["Key7"] == 7
assert all_values["Key5"] == 5
assert all_values["Key10"] == 1_0
def A__ ( ):
_UpperCamelCase : Any = SkipList()
assert skip_list.find('Some key' ) is None
def A__ ( ):
_UpperCamelCase : List[Any] = SkipList()
skip_list.insert('Key2' , 2_0 )
assert skip_list.find('Key2' ) == 2_0
skip_list.insert('Some Key' , 1_0 )
skip_list.insert('Key2' , 8 )
skip_list.insert('V' , 1_3 )
assert skip_list.find('Y' ) is None
assert skip_list.find('Key2' ) == 8
assert skip_list.find('Some Key' ) == 1_0
assert skip_list.find('V' ) == 1_3
def A__ ( ):
_UpperCamelCase : Optional[int] = SkipList()
skip_list.delete('Some key' )
assert len(skip_list.head.forward ) == 0
def A__ ( ):
_UpperCamelCase : Optional[int] = SkipList()
skip_list.insert('Key1' , 1_2 )
skip_list.insert('V' , 1_3 )
skip_list.insert('X' , 1_4 )
skip_list.insert('Key2' , 1_5 )
skip_list.delete('V' )
skip_list.delete('Key2' )
assert skip_list.find('V' ) is None
assert skip_list.find('Key2' ) is None
def A__ ( ):
_UpperCamelCase : Optional[Any] = SkipList()
skip_list.insert('Key1' , 1_2 )
skip_list.insert('V' , 1_3 )
skip_list.insert('X' , 1_4 )
skip_list.insert('Key2' , 1_5 )
skip_list.delete('V' )
assert skip_list.find('V' ) is None
assert skip_list.find('X' ) == 1_4
assert skip_list.find('Key1' ) == 1_2
assert skip_list.find('Key2' ) == 1_5
skip_list.delete('X' )
assert skip_list.find('V' ) is None
assert skip_list.find('X' ) is None
assert skip_list.find('Key1' ) == 1_2
assert skip_list.find('Key2' ) == 1_5
skip_list.delete('Key1' )
assert skip_list.find('V' ) is None
assert skip_list.find('X' ) is None
assert skip_list.find('Key1' ) is None
assert skip_list.find('Key2' ) == 1_5
skip_list.delete('Key2' )
assert skip_list.find('V' ) is None
assert skip_list.find('X' ) is None
assert skip_list.find('Key1' ) is None
assert skip_list.find('Key2' ) is None
def A__ ( ):
_UpperCamelCase : Tuple = SkipList()
skip_list.insert('Key1' , 1_2 )
skip_list.insert('V' , 1_3 )
skip_list.insert('X' , 1_4_2 )
skip_list.insert('Key2' , 1_5 )
skip_list.delete('X' )
def traverse_keys(UpperCAmelCase_ ):
yield node.key
for forward_node in node.forward:
yield from traverse_keys(UpperCAmelCase_ )
assert len(set(traverse_keys(skip_list.head ) ) ) == 4
def A__ ( ):
def is_sorted(UpperCAmelCase_ ):
return all(next_item >= item for item, next_item in zip(UpperCAmelCase_ , lst[1:] ) )
_UpperCamelCase : Any = SkipList()
for i in range(1_0 ):
skip_list.insert(UpperCAmelCase_ , UpperCAmelCase_ )
assert is_sorted(list(UpperCAmelCase_ ) )
skip_list.delete(5 )
skip_list.delete(8 )
skip_list.delete(2 )
assert is_sorted(list(UpperCAmelCase_ ) )
skip_list.insert(-1_2 , -1_2 )
skip_list.insert(7_7 , 7_7 )
assert is_sorted(list(UpperCAmelCase_ ) )
def A__ ( ):
for _ in range(1_0_0 ):
# Repeat test 100 times due to the probabilistic nature of skip list
# random values == random bugs
test_insert()
test_insert_overrides_existing_value()
test_searching_empty_list_returns_none()
test_search()
test_deleting_item_from_empty_list_do_nothing()
test_deleted_items_are_not_founded_by_find_method()
test_delete_removes_only_given_key()
test_delete_doesnt_leave_dead_nodes()
test_iter_always_yields_sorted_values()
def A__ ( ):
_UpperCamelCase : Union[str, Any] = SkipList()
skip_list.insert(2 , '2' )
skip_list.insert(4 , '4' )
skip_list.insert(6 , '4' )
skip_list.insert(4 , '5' )
skip_list.insert(8 , '4' )
skip_list.insert(9 , '4' )
skip_list.delete(4 )
print(UpperCAmelCase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 83 |
import math
import os
from copy import deepcopy
import datasets
import evaluate
import torch
import transformers
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from accelerate import Accelerator
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import is_tpu_available, set_seed
lowercase_ = "true"
def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=82 , SCREAMING_SNAKE_CASE__ : Optional[int]=16 ) -> Optional[Any]:
'''simple docstring'''
set_seed(42 )
A__ = RegressionModel()
A__ = deepcopy(SCREAMING_SNAKE_CASE__ )
A__ = RegressionDataset(length=SCREAMING_SNAKE_CASE__ )
A__ = DataLoader(SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ )
model.to(accelerator.device )
A__ , A__ = accelerator.prepare(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return model, ddp_model, dataloader
def _snake_case( SCREAMING_SNAKE_CASE__ : Accelerator , SCREAMING_SNAKE_CASE__ : Tuple=False ) -> int:
'''simple docstring'''
A__ = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' )
A__ = load_dataset('glue' , 'mrpc' , split='validation' )
def tokenize_function(SCREAMING_SNAKE_CASE__ : List[Any] ):
A__ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ )
return outputs
with accelerator.main_process_first():
A__ = dataset.map(
SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , remove_columns=['idx', 'sentence1', 'sentence2'] , )
A__ = tokenized_datasets.rename_column('label' , 'labels' )
def collate_fn(SCREAMING_SNAKE_CASE__ : Dict ):
if use_longest:
return tokenizer.pad(SCREAMING_SNAKE_CASE__ , padding='longest' , return_tensors='pt' )
return tokenizer.pad(SCREAMING_SNAKE_CASE__ , padding='max_length' , max_length=128 , return_tensors='pt' )
return DataLoader(SCREAMING_SNAKE_CASE__ , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=16 )
def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ) -> str:
'''simple docstring'''
A__ = Accelerator(dispatch_batches=SCREAMING_SNAKE_CASE__ , split_batches=SCREAMING_SNAKE_CASE__ )
A__ = get_dataloader(SCREAMING_SNAKE_CASE__ , not dispatch_batches )
A__ = AutoModelForSequenceClassification.from_pretrained(
'hf-internal-testing/mrpc-bert-base-cased' , return_dict=SCREAMING_SNAKE_CASE__ )
A__ , A__ = accelerator.prepare(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator
def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]:
'''simple docstring'''
A__ = []
for batch in dataloader:
A__ , A__ = batch.values()
with torch.no_grad():
A__ = model(SCREAMING_SNAKE_CASE__ )
A__ , A__ = accelerator.gather_for_metrics((logit, target) )
logits_and_targets.append((logit, target) )
A__ , A__ = [], []
for logit, targ in logits_and_targets:
logits.append(SCREAMING_SNAKE_CASE__ )
targs.append(SCREAMING_SNAKE_CASE__ )
A__ , A__ = torch.cat(SCREAMING_SNAKE_CASE__ ), torch.cat(SCREAMING_SNAKE_CASE__ )
return logits, targs
def _snake_case( SCREAMING_SNAKE_CASE__ : Accelerator , SCREAMING_SNAKE_CASE__ : int=82 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : Tuple=16 ) -> List[Any]:
'''simple docstring'''
A__ , A__ , A__ = get_basic_setup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A__ , A__ = generate_predictions(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
assert (
len(SCREAMING_SNAKE_CASE__ ) == num_samples
), f'Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(SCREAMING_SNAKE_CASE__ )}'
def _snake_case( SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False ) -> str:
'''simple docstring'''
A__ = evaluate.load('glue' , 'mrpc' )
A__ , A__ = get_mrpc_setup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# First do baseline
A__ , A__ , A__ = setup['no']
model.to(SCREAMING_SNAKE_CASE__ )
model.eval()
for batch in dataloader:
batch.to(SCREAMING_SNAKE_CASE__ )
with torch.inference_mode():
A__ = model(**SCREAMING_SNAKE_CASE__ )
A__ = outputs.logits.argmax(dim=-1 )
metric.add_batch(predictions=SCREAMING_SNAKE_CASE__ , references=batch['labels'] )
A__ = metric.compute()
# Then do distributed
A__ , A__ , A__ = setup['ddp']
model.eval()
for batch in dataloader:
with torch.inference_mode():
A__ = model(**SCREAMING_SNAKE_CASE__ )
A__ = outputs.logits.argmax(dim=-1 )
A__ = batch['labels']
A__ , A__ = accelerator.gather_for_metrics((preds, references) )
metric.add_batch(predictions=SCREAMING_SNAKE_CASE__ , references=SCREAMING_SNAKE_CASE__ )
A__ = metric.compute()
for key in "accuracy f1".split():
assert math.isclose(
baseline[key] , distributed[key] ), f'Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n'
def _snake_case( ) -> Optional[Any]:
'''simple docstring'''
A__ = Accelerator(split_batches=SCREAMING_SNAKE_CASE__ , dispatch_batches=SCREAMING_SNAKE_CASE__ )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# These are a bit slower so they should only be ran on the GPU or TPU
if torch.cuda.is_available() or is_tpu_available():
if accelerator.is_local_main_process:
print('**Testing gather_for_metrics**' )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
if accelerator.is_local_main_process:
print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`' )
test_mrpc(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print('**Test torch metrics**' )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
A__ = Accelerator(split_batches=SCREAMING_SNAKE_CASE__ , dispatch_batches=SCREAMING_SNAKE_CASE__ )
if accelerator.is_local_main_process:
print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99' )
test_torch_metrics(SCREAMING_SNAKE_CASE__ , 99 )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print('**Test last batch is not dropped when perfectly divisible**' )
A__ = Accelerator()
test_torch_metrics(SCREAMING_SNAKE_CASE__ , 512 )
accelerator.state._reset_state()
def _snake_case( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 7 | 0 |
"""simple docstring"""
import tempfile
import numpy as np
import torch
from transformers import AutoTokenizer, TaEncoderModel
from diffusers import DDPMScheduler, UNetaDConditionModel
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.pipelines.deepfloyd_if import IFWatermarker
from diffusers.utils.testing_utils import torch_device
from ..test_pipelines_common import to_np
class _SCREAMING_SNAKE_CASE :
def __lowerCAmelCase ( self ) -> Tuple:
torch.manual_seed(0 )
lowerCAmelCase_ :int = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" )
torch.manual_seed(0 )
lowerCAmelCase_ :Optional[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" )
torch.manual_seed(0 )
lowerCAmelCase_ :List[Any] = UNetaDConditionModel(
sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[
"""ResnetDownsampleBlock2D""",
"""SimpleCrossAttnDownBlock2D""",
] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , )
unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
torch.manual_seed(0 )
lowerCAmelCase_ :str = DDPMScheduler(
num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0_0_0_1 , beta_end=0.0_2 , thresholding=__A , dynamic_thresholding_ratio=0.9_5 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , )
torch.manual_seed(0 )
lowerCAmelCase_ :int = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
def __lowerCAmelCase ( self ) -> List[str]:
torch.manual_seed(0 )
lowerCAmelCase_ :Dict = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" )
torch.manual_seed(0 )
lowerCAmelCase_ :Dict = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" )
torch.manual_seed(0 )
lowerCAmelCase_ :Optional[Any] = UNetaDConditionModel(
sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[
"""ResnetDownsampleBlock2D""",
"""SimpleCrossAttnDownBlock2D""",
] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , class_embed_type="""timestep""" , mid_block_scale_factor=1.4_1_4 , time_embedding_act_fn="""gelu""" , time_embedding_dim=32 , )
unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
torch.manual_seed(0 )
lowerCAmelCase_ :str = DDPMScheduler(
num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0_0_0_1 , beta_end=0.0_2 , thresholding=__A , dynamic_thresholding_ratio=0.9_5 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , )
torch.manual_seed(0 )
lowerCAmelCase_ :Optional[int] = DDPMScheduler(
num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0_0_0_1 , beta_end=0.0_2 , )
torch.manual_seed(0 )
lowerCAmelCase_ :Dict = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"image_noising_scheduler": image_noising_scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
def __lowerCAmelCase ( self ) -> Dict:
lowerCAmelCase_ :Dict = self.get_dummy_components()
lowerCAmelCase_ :Tuple = self.pipeline_class(**__A )
pipe.to(__A )
pipe.set_progress_bar_config(disable=__A )
lowerCAmelCase_ :Any = self.get_dummy_inputs(__A )
lowerCAmelCase_ :Optional[int] = inputs["""prompt"""]
lowerCAmelCase_ :Optional[int] = inputs["""generator"""]
lowerCAmelCase_ :Any = inputs["""num_inference_steps"""]
lowerCAmelCase_ :Optional[int] = inputs["""output_type"""]
if "image" in inputs:
lowerCAmelCase_ :List[Any] = inputs["""image"""]
else:
lowerCAmelCase_ :int = None
if "mask_image" in inputs:
lowerCAmelCase_ :List[Any] = inputs["""mask_image"""]
else:
lowerCAmelCase_ :int = None
if "original_image" in inputs:
lowerCAmelCase_ :List[Any] = inputs["""original_image"""]
else:
lowerCAmelCase_ :List[Any] = None
lowerCAmelCase_ , lowerCAmelCase_ :int = pipe.encode_prompt(__A )
# inputs with prompt converted to embeddings
lowerCAmelCase_ :List[str] = {
"""prompt_embeds""": prompt_embeds,
"""negative_prompt_embeds""": negative_prompt_embeds,
"""generator""": generator,
"""num_inference_steps""": num_inference_steps,
"""output_type""": output_type,
}
if image is not None:
lowerCAmelCase_ :int = image
if mask_image is not None:
lowerCAmelCase_ :Tuple = mask_image
if original_image is not None:
lowerCAmelCase_ :Optional[Any] = original_image
# set all optional components to None
for optional_component in pipe._optional_components:
setattr(__A , __A , __A )
lowerCAmelCase_ :Optional[int] = pipe(**__A )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(__A )
lowerCAmelCase_ :Optional[int] = self.pipeline_class.from_pretrained(__A )
pipe_loaded.to(__A )
pipe_loaded.set_progress_bar_config(disable=__A )
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(__A , __A ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , )
lowerCAmelCase_ :Dict = self.get_dummy_inputs(__A )
lowerCAmelCase_ :Union[str, Any] = inputs["""generator"""]
lowerCAmelCase_ :Any = inputs["""num_inference_steps"""]
lowerCAmelCase_ :Tuple = inputs["""output_type"""]
# inputs with prompt converted to embeddings
lowerCAmelCase_ :Tuple = {
"""prompt_embeds""": prompt_embeds,
"""negative_prompt_embeds""": negative_prompt_embeds,
"""generator""": generator,
"""num_inference_steps""": num_inference_steps,
"""output_type""": output_type,
}
if image is not None:
lowerCAmelCase_ :Optional[int] = image
if mask_image is not None:
lowerCAmelCase_ :str = mask_image
if original_image is not None:
lowerCAmelCase_ :Tuple = original_image
lowerCAmelCase_ :Union[str, Any] = pipe_loaded(**__A )[0]
lowerCAmelCase_ :Dict = np.abs(to_np(__A ) - to_np(__A ) ).max()
self.assertLess(__A , 1E-4 )
def __lowerCAmelCase ( self ) -> List[str]:
lowerCAmelCase_ :Any = self.get_dummy_components()
lowerCAmelCase_ :Optional[int] = self.pipeline_class(**__A )
pipe.to(__A )
pipe.set_progress_bar_config(disable=__A )
lowerCAmelCase_ :Optional[int] = self.get_dummy_inputs(__A )
lowerCAmelCase_ :Dict = pipe(**__A )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(__A )
lowerCAmelCase_ :Any = self.pipeline_class.from_pretrained(__A )
pipe_loaded.to(__A )
pipe_loaded.set_progress_bar_config(disable=__A )
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
lowerCAmelCase_ :List[Any] = self.get_dummy_inputs(__A )
lowerCAmelCase_ :str = pipe_loaded(**__A )[0]
lowerCAmelCase_ :Dict = np.abs(to_np(__A ) - to_np(__A ) ).max()
self.assertLess(__A , 1E-4 )
| 84 |
def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple:
'''simple docstring'''
A__ = 0
A__ = len(SCREAMING_SNAKE_CASE__ ) - 1
while left <= right:
# avoid divided by 0 during interpolation
if sorted_collection[left] == sorted_collection[right]:
if sorted_collection[left] == item:
return left
else:
return None
A__ = left + ((item - sorted_collection[left]) * (right - left)) // (
sorted_collection[right] - sorted_collection[left]
)
# out of range check
if point < 0 or point >= len(SCREAMING_SNAKE_CASE__ ):
return None
A__ = sorted_collection[point]
if current_item == item:
return point
else:
if point < left:
A__ = left
A__ = point
elif point > right:
A__ = right
A__ = point
else:
if item < current_item:
A__ = point - 1
else:
A__ = point + 1
return None
def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str:
'''simple docstring'''
if sorted_collection[left] == sorted_collection[right]:
if sorted_collection[left] == item:
return left
else:
return None
A__ = left + ((item - sorted_collection[left]) * (right - left)) // (
sorted_collection[right] - sorted_collection[left]
)
# out of range check
if point < 0 or point >= len(SCREAMING_SNAKE_CASE__ ):
return None
if sorted_collection[point] == item:
return point
elif point < left:
return interpolation_search_by_recursion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
elif point > right:
return interpolation_search_by_recursion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
if sorted_collection[point] > item:
return interpolation_search_by_recursion(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , point - 1 )
else:
return interpolation_search_by_recursion(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , point + 1 , SCREAMING_SNAKE_CASE__ )
def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple:
'''simple docstring'''
if collection != sorted(SCREAMING_SNAKE_CASE__ ):
raise ValueError('Collection must be ascending sorted' )
return True
if __name__ == "__main__":
import sys
lowercase_ = 0
if debug == 1:
lowercase_ = [10, 30, 40, 45, 50, 66, 77, 93]
try:
__assert_sorted(collection)
except ValueError:
sys.exit("Sequence must be ascending sorted to apply interpolation search")
lowercase_ = 67
lowercase_ = interpolation_search(collection, target)
if result is not None:
print(f"""{target} found at positions: {result}""")
else:
print("Not found")
| 7 | 0 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class _snake_case ( lowercase_ ):
lowerCAmelCase_ : torch.FloatTensor
class _snake_case ( lowercase_ , lowercase_ ):
@register_to_config
def __init__( self , a__ = 32 , a__ = 64 , a__ = 20 , a__ = 768 , a__=77 , a__=4 , a__ = 0.0 , a__ = "silu" , a__ = None , a__ = None , a__ = "linear" , a__ = "prd" , a__ = None , a__ = None , a__ = None , ) -> Tuple:
'''simple docstring'''
super().__init__()
snake_case_ = num_attention_heads
snake_case_ = attention_head_dim
snake_case_ = num_attention_heads * attention_head_dim
snake_case_ = additional_embeddings
snake_case_ = time_embed_dim or inner_dim
snake_case_ = embedding_proj_dim or embedding_dim
snake_case_ = clip_embed_dim or embedding_dim
snake_case_ = Timesteps(a__ , a__ , 0 )
snake_case_ = TimestepEmbedding(a__ , a__ , out_dim=a__ , act_fn=a__ )
snake_case_ = nn.Linear(a__ , a__ )
if embedding_proj_norm_type is None:
snake_case_ = None
elif embedding_proj_norm_type == "layer":
snake_case_ = nn.LayerNorm(a__ )
else:
raise ValueError(F'unsupported embedding_proj_norm_type: {embedding_proj_norm_type}' )
snake_case_ = nn.Linear(a__ , a__ )
if encoder_hid_proj_type is None:
snake_case_ = None
elif encoder_hid_proj_type == "linear":
snake_case_ = nn.Linear(a__ , a__ )
else:
raise ValueError(F'unsupported encoder_hid_proj_type: {encoder_hid_proj_type}' )
snake_case_ = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , a__ ) )
if added_emb_type == "prd":
snake_case_ = nn.Parameter(torch.zeros(1 , 1 , a__ ) )
elif added_emb_type is None:
snake_case_ = None
else:
raise ValueError(
F'`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.' )
snake_case_ = nn.ModuleList(
[
BasicTransformerBlock(
a__ , a__ , a__ , dropout=a__ , activation_fn="gelu" , attention_bias=a__ , )
for d in range(a__ )
] )
if norm_in_type == "layer":
snake_case_ = nn.LayerNorm(a__ )
elif norm_in_type is None:
snake_case_ = None
else:
raise ValueError(F'Unsupported norm_in_type: {norm_in_type}.' )
snake_case_ = nn.LayerNorm(a__ )
snake_case_ = nn.Linear(a__ , a__ )
snake_case_ = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_0_0_0_0.0 )
causal_attention_mask.triu_(1 )
snake_case_ = causal_attention_mask[None, ...]
self.register_buffer("causal_attention_mask" , a__ , persistent=a__ )
snake_case_ = nn.Parameter(torch.zeros(1 , a__ ) )
snake_case_ = nn.Parameter(torch.zeros(1 , a__ ) )
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def lowerCAmelCase__ ( self ) -> Dict[str, AttentionProcessor]:
'''simple docstring'''
snake_case_ = {}
def fn_recursive_add_processors(a__ , a__ , a__ ):
if hasattr(a__ , "set_processor" ):
snake_case_ = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(F'{name}.{sub_name}' , a__ , a__ )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(a__ , a__ , a__ )
return processors
def lowerCAmelCase__ ( self , a__ ) -> List[Any]:
'''simple docstring'''
snake_case_ = len(self.attn_processors.keys() )
if isinstance(a__ , a__ ) and len(a__ ) != count:
raise ValueError(
F'A dict of processors was passed, but the number of processors {len(a__ )} does not match the'
F' number of attention layers: {count}. Please make sure to pass {count} processor classes.' )
def fn_recursive_attn_processor(a__ , a__ , a__ ):
if hasattr(a__ , "set_processor" ):
if not isinstance(a__ , a__ ):
module.set_processor(a__ )
else:
module.set_processor(processor.pop(F'{name}.processor' ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(F'{name}.{sub_name}' , a__ , a__ )
for name, module in self.named_children():
fn_recursive_attn_processor(a__ , a__ , a__ )
def lowerCAmelCase__ ( self ) -> int:
'''simple docstring'''
self.set_attn_processor(AttnProcessor() )
def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ = None , a__ = None , a__ = True , ) -> Dict:
'''simple docstring'''
snake_case_ = hidden_states.shape[0]
snake_case_ = timestep
if not torch.is_tensor(a__ ):
snake_case_ = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device )
elif torch.is_tensor(a__ ) and len(timesteps.shape ) == 0:
snake_case_ = timesteps[None].to(hidden_states.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
snake_case_ = timesteps * torch.ones(a__ , dtype=timesteps.dtype , device=timesteps.device )
snake_case_ = self.time_proj(a__ )
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
snake_case_ = timesteps_projected.to(dtype=self.dtype )
snake_case_ = self.time_embedding(a__ )
if self.embedding_proj_norm is not None:
snake_case_ = self.embedding_proj_norm(a__ )
snake_case_ = self.embedding_proj(a__ )
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
snake_case_ = self.encoder_hidden_states_proj(a__ )
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set" )
snake_case_ = self.proj_in(a__ )
snake_case_ = self.positional_embedding.to(hidden_states.dtype )
snake_case_ = []
snake_case_ = 0
if encoder_hidden_states is not None:
additional_embeds.append(a__ )
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape ) == 2:
snake_case_ = proj_embeddings[:, None, :]
if len(hidden_states.shape ) == 2:
snake_case_ = hidden_states[:, None, :]
snake_case_ = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
snake_case_ = self.prd_embedding.to(hidden_states.dtype ).expand(a__ , -1 , -1 )
additional_embeds.append(a__ )
snake_case_ = torch.cat(
a__ , dim=1 , )
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
snake_case_ = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
snake_case_ = F.pad(
a__ , (
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) , value=0.0 , )
snake_case_ = hidden_states + positional_embeddings
if attention_mask is not None:
snake_case_ = (1 - attention_mask.to(hidden_states.dtype )) * -1_0_0_0_0.0
snake_case_ = F.pad(a__ , (0, self.additional_embeddings) , value=0.0 )
snake_case_ = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype )
snake_case_ = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 )
if self.norm_in is not None:
snake_case_ = self.norm_in(a__ )
for block in self.transformer_blocks:
snake_case_ = block(a__ , attention_mask=a__ )
snake_case_ = self.norm_out(a__ )
if self.prd_embedding is not None:
snake_case_ = hidden_states[:, -1]
else:
snake_case_ = hidden_states[:, additional_embeddings_len:]
snake_case_ = self.proj_to_clip_embeddings(a__ )
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=a__ )
def lowerCAmelCase__ ( self , a__ ) -> str:
'''simple docstring'''
snake_case_ = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 85 |
from argparse import ArgumentParser
from datasets.commands.convert import ConvertCommand
from datasets.commands.dummy_data import DummyDataCommand
from datasets.commands.env import EnvironmentCommand
from datasets.commands.run_beam import RunBeamCommand
from datasets.commands.test import TestCommand
from datasets.utils.logging import set_verbosity_info
def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple:
'''simple docstring'''
return {key.lstrip('-' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )}
def _snake_case( ) -> Dict:
'''simple docstring'''
A__ = ArgumentParser(
'HuggingFace Datasets CLI tool' , usage='datasets-cli <command> [<args>]' , allow_abbrev=SCREAMING_SNAKE_CASE__ )
A__ = parser.add_subparsers(help='datasets-cli command helpers' )
set_verbosity_info()
# Register commands
ConvertCommand.register_subcommand(SCREAMING_SNAKE_CASE__ )
EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE__ )
TestCommand.register_subcommand(SCREAMING_SNAKE_CASE__ )
RunBeamCommand.register_subcommand(SCREAMING_SNAKE_CASE__ )
DummyDataCommand.register_subcommand(SCREAMING_SNAKE_CASE__ )
# Parse args
A__ , A__ = parser.parse_known_args()
if not hasattr(SCREAMING_SNAKE_CASE__ , 'func' ):
parser.print_help()
exit(1 )
A__ = parse_unknown_args(SCREAMING_SNAKE_CASE__ )
# Run
A__ = args.func(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
service.run()
if __name__ == "__main__":
main()
| 7 | 0 |
"""simple docstring"""
def __lowerCAmelCase (_UpperCamelCase ):
__lowerCAmelCase : Tuple = 0
while num > 0:
digit_sum += num % 10
num //= 10
return digit_sum
def __lowerCAmelCase (_UpperCamelCase = 100 ):
__lowerCAmelCase : Optional[int] = 1
__lowerCAmelCase : Optional[Any] = 2
for i in range(2 , max_n + 1 ):
__lowerCAmelCase : Any = pre_numerator
__lowerCAmelCase : Union[str, Any] = 2 * i // 3 if i % 3 == 0 else 1
__lowerCAmelCase : int = cur_numerator
__lowerCAmelCase : Dict = e_cont * pre_numerator + temp
return sum_digits(_UpperCamelCase )
if __name__ == "__main__":
print(f'{solution() = }') | 86 |
from __future__ import annotations
import inspect
import unittest
from transformers import ViTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTForImageClassification, TFViTModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class A :
"""simple docstring"""
def __init__( self : Union[str, Any],lowercase_ : Any,lowercase_ : Union[str, Any]=1_3,lowercase_ : Tuple=3_0,lowercase_ : List[Any]=2,lowercase_ : Optional[int]=3,lowercase_ : Union[str, Any]=True,lowercase_ : Tuple=True,lowercase_ : Any=3_2,lowercase_ : List[str]=2,lowercase_ : Optional[int]=4,lowercase_ : Union[str, Any]=3_7,lowercase_ : Tuple="gelu",lowercase_ : str=0.1,lowercase_ : Tuple=0.1,lowercase_ : Union[str, Any]=1_0,lowercase_ : int=0.02,lowercase_ : List[Any]=3,lowercase_ : Any=None,)-> Dict:
'''simple docstring'''
A__ = parent
A__ = batch_size
A__ = image_size
A__ = patch_size
A__ = num_channels
A__ = is_training
A__ = use_labels
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = type_sequence_label_size
A__ = initializer_range
A__ = scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
A__ = (image_size // patch_size) ** 2
A__ = num_patches + 1
def snake_case__ ( self : int )-> List[str]:
'''simple docstring'''
A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
A__ = None
if self.use_labels:
A__ = ids_tensor([self.batch_size],self.type_sequence_label_size )
A__ = self.get_config()
return config, pixel_values, labels
def snake_case__ ( self : Tuple )-> List[Any]:
'''simple docstring'''
return ViTConfig(
image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,is_decoder=lowercase_,initializer_range=self.initializer_range,)
def snake_case__ ( self : List[str],lowercase_ : int,lowercase_ : Union[str, Any],lowercase_ : Tuple )-> Optional[Any]:
'''simple docstring'''
A__ = TFViTModel(config=lowercase_ )
A__ = model(lowercase_,training=lowercase_ )
self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) )
# Test with an image with different size than the one specified in config.
A__ = self.image_size // 2
A__ = pixel_values[:, :, :image_size, :image_size]
A__ = model(lowercase_,interpolate_pos_encoding=lowercase_,training=lowercase_ )
A__ = (image_size // self.patch_size) ** 2 + 1
self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, seq_length, self.hidden_size) )
def snake_case__ ( self : List[Any],lowercase_ : List[Any],lowercase_ : List[Any],lowercase_ : List[Any] )-> Dict:
'''simple docstring'''
A__ = self.type_sequence_label_size
A__ = TFViTForImageClassification(lowercase_ )
A__ = model(lowercase_,labels=lowercase_,training=lowercase_ )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) )
# Test with an image with different size than the one specified in config.
A__ = self.image_size // 2
A__ = pixel_values[:, :, :image_size, :image_size]
A__ = model(lowercase_,interpolate_pos_encoding=lowercase_,training=lowercase_ )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
A__ = 1
A__ = TFViTForImageClassification(lowercase_ )
A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
A__ = model(lowercase_ )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) )
def snake_case__ ( self : Any )-> Optional[Any]:
'''simple docstring'''
A__ = self.prepare_config_and_inputs()
A__ , A__ , A__ = config_and_inputs
A__ = {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class A ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = (TFViTModel, TFViTForImageClassification) if is_tf_available() else ()
lowerCamelCase = (
{'feature-extraction': TFViTModel, 'image-classification': TFViTForImageClassification}
if is_tf_available()
else {}
)
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
def snake_case__ ( self : int )-> List[Any]:
'''simple docstring'''
A__ = TFViTModelTester(self )
A__ = ConfigTester(self,config_class=lowercase_,has_text_modality=lowercase_,hidden_size=3_7 )
def snake_case__ ( self : Any )-> Optional[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='ViT does not use inputs_embeds' )
def snake_case__ ( self : Optional[Any] )-> str:
'''simple docstring'''
pass
@unittest.skip(reason='ViT does not use inputs_embeds' )
def snake_case__ ( self : Any )-> int:
'''simple docstring'''
pass
def snake_case__ ( self : str )-> Dict:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = model_class(lowercase_ )
self.assertIsInstance(model.get_input_embeddings(),(tf.keras.layers.Layer) )
A__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowercase_,tf.keras.layers.Layer ) )
def snake_case__ ( self : int )-> List[str]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = model_class(lowercase_ )
A__ = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A__ = [*signature.parameters.keys()]
A__ = ['pixel_values']
self.assertListEqual(arg_names[:1],lowercase_ )
def snake_case__ ( self : Union[str, Any] )-> Optional[Any]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase_ )
def snake_case__ ( self : Optional[Any] )-> Optional[Any]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowercase_ )
@slow
def snake_case__ ( self : Union[str, Any] )-> Union[str, Any]:
'''simple docstring'''
A__ = TFViTModel.from_pretrained('google/vit-base-patch16-224' )
self.assertIsNotNone(lowercase_ )
def _snake_case( ) -> str:
'''simple docstring'''
A__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
@require_vision
class A ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def snake_case__ ( self : List[Any] )-> str:
'''simple docstring'''
return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None
@slow
def snake_case__ ( self : Any )-> Dict:
'''simple docstring'''
A__ = TFViTForImageClassification.from_pretrained('google/vit-base-patch16-224' )
A__ = self.default_image_processor
A__ = prepare_img()
A__ = image_processor(images=lowercase_,return_tensors='tf' )
# forward pass
A__ = model(**lowercase_ )
# verify the logits
A__ = tf.TensorShape((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape,lowercase_ )
A__ = tf.constant([-0.2_744, 0.8_215, -0.0_836] )
tf.debugging.assert_near(outputs.logits[0, :3],lowercase_,atol=1E-4 )
| 7 | 0 |
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class snake_case_ ( __A ,__A ):
@register_to_config
def __init__( self : Any , *,
lowercase_ : int = 4 , lowercase_ : int = 7_68 , lowercase_ : int , lowercase_ : Optional[Any] , ) -> Any:
super().__init__()
lowercase__ : Optional[Any] = nn.Parameter(torch.zeros(lowercase_ ) )
# parameters for additional clip time embeddings
lowercase__ : Tuple = nn.Linear(lowercase_ , lowercase_ )
lowercase__ : int = nn.Linear(lowercase_ , lowercase_ )
# parameters for encoder hidden states
lowercase__ : Dict = clip_extra_context_tokens
lowercase__ : str = nn.Linear(
lowercase_ , self.clip_extra_context_tokens * cross_attention_dim )
lowercase__ : Optional[int] = nn.Linear(lowercase_ , lowercase_ )
lowercase__ : Any = nn.LayerNorm(lowercase_ )
def __UpperCamelCase ( self : Optional[Any] , *, lowercase_ : Tuple , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : str ) -> Any:
if do_classifier_free_guidance:
# Add the classifier free guidance embeddings to the image embeddings
lowercase__ : List[str] = image_embeddings.shape[0]
lowercase__ : Tuple = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 )
lowercase__ : int = classifier_free_guidance_embeddings.expand(
lowercase_ , -1 )
lowercase__ : Tuple = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 )
# The image embeddings batch size and the text embeddings batch size are equal
assert image_embeddings.shape[0] == prompt_embeds.shape[0]
lowercase__ : Optional[Any] = prompt_embeds.shape[0]
# "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and
# adding CLIP embeddings to the existing timestep embedding, ...
lowercase__ : Tuple = self.embedding_proj(lowercase_ )
lowercase__ : Union[str, Any] = self.clip_image_embeddings_project_to_time_embeddings(lowercase_ )
lowercase__ : List[str] = time_projected_image_embeddings + time_projected_prompt_embeds
# ... and by projecting CLIP embeddings into four
# extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder"
lowercase__ : Dict = self.clip_extra_context_tokens_proj(lowercase_ )
lowercase__ : Union[str, Any] = clip_extra_context_tokens.reshape(lowercase_ , -1 , self.clip_extra_context_tokens )
lowercase__ : Dict = clip_extra_context_tokens.permute(0 , 2 , 1 )
lowercase__ : Tuple = self.encoder_hidden_states_proj(lowercase_ )
lowercase__ : Tuple = self.text_encoder_hidden_states_norm(lowercase_ )
lowercase__ : List[str] = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 )
return text_encoder_hidden_states, additive_clip_time_embeddings
| 87 |
import unittest
from parameterized import parameterized
from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
GPTNeoXModel,
)
class A :
"""simple docstring"""
def __init__( self : str,lowercase_ : Any,lowercase_ : Tuple=1_3,lowercase_ : str=7,lowercase_ : Tuple=True,lowercase_ : int=True,lowercase_ : List[Any]=True,lowercase_ : List[str]=True,lowercase_ : List[str]=9_9,lowercase_ : List[Any]=6_4,lowercase_ : List[str]=5,lowercase_ : Optional[Any]=4,lowercase_ : Optional[Any]=3_7,lowercase_ : Optional[Any]="gelu",lowercase_ : int=0.1,lowercase_ : str=0.1,lowercase_ : Optional[Any]=5_1_2,lowercase_ : int=1_6,lowercase_ : List[Any]=2,lowercase_ : Union[str, Any]=0.02,lowercase_ : Tuple=3,lowercase_ : List[Any]=4,lowercase_ : str=None,)-> Union[str, Any]:
'''simple docstring'''
A__ = parent
A__ = batch_size
A__ = seq_length
A__ = is_training
A__ = use_input_mask
A__ = use_token_type_ids
A__ = use_labels
A__ = vocab_size
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = max_position_embeddings
A__ = type_vocab_size
A__ = type_sequence_label_size
A__ = initializer_range
A__ = num_labels
A__ = num_choices
A__ = scope
A__ = vocab_size - 1
def snake_case__ ( self : str )-> Optional[Any]:
'''simple docstring'''
A__ = ids_tensor([self.batch_size, self.seq_length],self.vocab_size )
A__ = None
if self.use_input_mask:
A__ = random_attention_mask([self.batch_size, self.seq_length] )
A__ = None
if self.use_labels:
A__ = ids_tensor([self.batch_size, self.seq_length],self.num_labels )
A__ = self.get_config()
return config, input_ids, input_mask, token_labels
def snake_case__ ( self : List[Any] )-> Tuple:
'''simple docstring'''
return GPTNeoXConfig(
vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=lowercase_,initializer_range=self.initializer_range,pad_token_id=self.pad_token_id,)
def snake_case__ ( self : Optional[int] )-> Union[str, Any]:
'''simple docstring'''
A__ , A__ , A__ , A__ = self.prepare_config_and_inputs()
A__ = True
return config, input_ids, input_mask, token_labels
def snake_case__ ( self : Any,lowercase_ : List[Any],lowercase_ : List[Any],lowercase_ : str )-> Any:
'''simple docstring'''
A__ = GPTNeoXModel(config=lowercase_ )
model.to(lowercase_ )
model.eval()
A__ = model(lowercase_,attention_mask=lowercase_ )
A__ = model(lowercase_ )
self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) )
def snake_case__ ( self : Union[str, Any],lowercase_ : List[str],lowercase_ : Dict,lowercase_ : Optional[Any] )-> Tuple:
'''simple docstring'''
A__ = True
A__ = GPTNeoXModel(lowercase_ )
model.to(lowercase_ )
model.eval()
A__ = model(lowercase_,attention_mask=lowercase_ )
self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) )
def snake_case__ ( self : Union[str, Any],lowercase_ : str,lowercase_ : Union[str, Any],lowercase_ : Union[str, Any],lowercase_ : List[str] )-> List[str]:
'''simple docstring'''
A__ = GPTNeoXForCausalLM(config=lowercase_ )
model.to(lowercase_ )
model.eval()
A__ = model(lowercase_,attention_mask=lowercase_,labels=lowercase_ )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) )
def snake_case__ ( self : Optional[int],lowercase_ : Optional[int],lowercase_ : Optional[int],lowercase_ : Dict,lowercase_ : Any )-> int:
'''simple docstring'''
A__ = self.num_labels
A__ = GPTNeoXForQuestionAnswering(lowercase_ )
model.to(lowercase_ )
model.eval()
A__ = model(lowercase_,attention_mask=lowercase_ )
self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) )
def snake_case__ ( self : List[str],lowercase_ : List[str],lowercase_ : int,lowercase_ : Union[str, Any],lowercase_ : Optional[int] )-> str:
'''simple docstring'''
A__ = self.num_labels
A__ = GPTNeoXForSequenceClassification(lowercase_ )
model.to(lowercase_ )
model.eval()
A__ = ids_tensor([self.batch_size],self.type_sequence_label_size )
A__ = model(lowercase_,attention_mask=lowercase_,labels=lowercase_ )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) )
def snake_case__ ( self : Any,lowercase_ : Union[str, Any],lowercase_ : List[Any],lowercase_ : Optional[Any],lowercase_ : int )-> Union[str, Any]:
'''simple docstring'''
A__ = self.num_labels
A__ = GPTNeoXForTokenClassification(lowercase_ )
model.to(lowercase_ )
model.eval()
A__ = model(lowercase_,attention_mask=lowercase_,labels=lowercase_ )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) )
def snake_case__ ( self : int,lowercase_ : str,lowercase_ : int,lowercase_ : Union[str, Any] )-> List[Any]:
'''simple docstring'''
A__ = True
A__ = GPTNeoXForCausalLM(config=lowercase_ )
model.to(lowercase_ )
model.eval()
# first forward pass
A__ = model(lowercase_,attention_mask=lowercase_,use_cache=lowercase_ )
A__ = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
A__ = ids_tensor((self.batch_size, 3),config.vocab_size )
A__ = ids_tensor((self.batch_size, 3),vocab_size=2 )
# append to next input_ids and
A__ = torch.cat([input_ids, next_tokens],dim=-1 )
A__ = torch.cat([input_mask, next_mask],dim=-1 )
A__ = model(lowercase_,attention_mask=lowercase_,output_hidden_states=lowercase_ )
A__ = output_from_no_past['hidden_states'][0]
A__ = model(
lowercase_,attention_mask=lowercase_,past_key_values=lowercase_,output_hidden_states=lowercase_,)['hidden_states'][0]
# select random slice
A__ = ids_tensor((1,),output_from_past.shape[-1] ).item()
A__ = output_from_no_past[:, -3:, random_slice_idx].detach()
A__ = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(lowercase_,lowercase_,atol=1E-3 ) )
def snake_case__ ( self : str )-> Union[str, Any]:
'''simple docstring'''
A__ = self.prepare_config_and_inputs()
A__ , A__ , A__ , A__ = config_and_inputs
A__ = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class A ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = (
(
GPTNeoXModel,
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
)
if is_torch_available()
else ()
)
lowerCamelCase = (GPTNeoXForCausalLM,) if is_torch_available() else ()
lowerCamelCase = (
{
'feature-extraction': GPTNeoXModel,
'question-answering': GPTNeoXForQuestionAnswering,
'text-classification': GPTNeoXForSequenceClassification,
'text-generation': GPTNeoXForCausalLM,
'token-classification': GPTNeoXForTokenClassification,
'zero-shot': GPTNeoXForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
def snake_case__ ( self : str )-> Tuple:
'''simple docstring'''
A__ = GPTNeoXModelTester(self )
A__ = ConfigTester(self,config_class=lowercase_,hidden_size=6_4,num_attention_heads=8 )
def snake_case__ ( self : Optional[Any] )-> Union[str, Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def snake_case__ ( self : Union[str, Any] )-> Union[str, Any]:
'''simple docstring'''
A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(lowercase_,lowercase_,lowercase_ )
def snake_case__ ( self : Dict )-> List[Any]:
'''simple docstring'''
A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(lowercase_,lowercase_,lowercase_ )
def snake_case__ ( self : List[str] )-> Any:
'''simple docstring'''
A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs_for_decoder()
A__ = None
self.model_tester.create_and_check_model_as_decoder(lowercase_,lowercase_,lowercase_ )
def snake_case__ ( self : Optional[Any] )-> str:
'''simple docstring'''
A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(lowercase_,lowercase_,lowercase_ )
def snake_case__ ( self : Dict )-> Dict:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_causal_lm(*lowercase_ )
def snake_case__ ( self : Tuple )-> List[Any]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*lowercase_ )
def snake_case__ ( self : Any )-> List[str]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*lowercase_ )
def snake_case__ ( self : str )-> Tuple:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowercase_ )
@unittest.skip(reason='Feed forward chunking is not implemented' )
def snake_case__ ( self : Union[str, Any] )-> Optional[Any]:
'''simple docstring'''
pass
@parameterized.expand([('linear',), ('dynamic',)] )
def snake_case__ ( self : List[str],lowercase_ : Any )-> List[str]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
A__ = ids_tensor([1, 1_0],config.vocab_size )
A__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )],config.vocab_size )
set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights
A__ = GPTNeoXModel(lowercase_ )
original_model.to(lowercase_ )
original_model.eval()
A__ = original_model(lowercase_ ).last_hidden_state
A__ = original_model(lowercase_ ).last_hidden_state
set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights
A__ = {'type': scaling_type, 'factor': 10.0}
A__ = GPTNeoXModel(lowercase_ )
scaled_model.to(lowercase_ )
scaled_model.eval()
A__ = scaled_model(lowercase_ ).last_hidden_state
A__ = scaled_model(lowercase_ ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(lowercase_,lowercase_,atol=1E-5 ) )
else:
self.assertFalse(torch.allclose(lowercase_,lowercase_,atol=1E-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(lowercase_,lowercase_,atol=1E-5 ) )
@require_torch
class A ( unittest.TestCase ):
"""simple docstring"""
@slow
def snake_case__ ( self : Tuple )-> Union[str, Any]:
'''simple docstring'''
A__ = AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped' )
for checkpointing in [True, False]:
A__ = GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped' )
if checkpointing:
model.gradient_checkpointing_enable()
else:
model.gradient_checkpointing_disable()
model.to(lowercase_ )
A__ = tokenizer('My favorite food is',return_tensors='pt' ).to(lowercase_ )
# The hub repo. is updated on 2023-04-04, resulting in poor outputs.
# See: https://github.com/huggingface/transformers/pull/24193
A__ = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure'
A__ = model.generate(**lowercase_,do_sample=lowercase_,max_new_tokens=2_0 )
A__ = tokenizer.batch_decode(lowercase_ )[0]
self.assertEqual(lowercase_,lowercase_ )
| 7 | 0 |
from __future__ import annotations
from math import pi, sqrt
def a__ ( A_, A_ ):
'''simple docstring'''
if inductance <= 0:
raise ValueError("""Inductance cannot be 0 or negative""" )
elif capacitance <= 0:
raise ValueError("""Capacitance cannot be 0 or negative""" )
else:
return (
"Resonant frequency",
float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ),
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 88 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json",
}
class A ( _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase = 'open-llama'
def __init__( self : Any,lowercase_ : Optional[int]=1_0_0_0_0_0,lowercase_ : Union[str, Any]=4_0_9_6,lowercase_ : Dict=1_1_0_0_8,lowercase_ : Dict=3_2,lowercase_ : Optional[int]=3_2,lowercase_ : Dict="silu",lowercase_ : Union[str, Any]=2_0_4_8,lowercase_ : Optional[int]=0.02,lowercase_ : Dict=1E-6,lowercase_ : Dict=True,lowercase_ : List[Any]=0,lowercase_ : Optional[int]=1,lowercase_ : str=2,lowercase_ : str=False,lowercase_ : str=True,lowercase_ : int=0.1,lowercase_ : List[Any]=0.1,lowercase_ : List[Any]=True,lowercase_ : Union[str, Any]=True,lowercase_ : Any=None,**lowercase_ : List[Any],)-> Tuple:
'''simple docstring'''
A__ = vocab_size
A__ = max_position_embeddings
A__ = hidden_size
A__ = intermediate_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = hidden_act
A__ = initializer_range
A__ = rms_norm_eps
A__ = use_cache
A__ = kwargs.pop(
'use_memorry_efficient_attention',lowercase_ )
A__ = hidden_dropout_prob
A__ = attention_dropout_prob
A__ = use_stable_embedding
A__ = shared_input_output_embedding
A__ = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=lowercase_,bos_token_id=lowercase_,eos_token_id=lowercase_,tie_word_embeddings=lowercase_,**lowercase_,)
def snake_case__ ( self : str )-> str:
'''simple docstring'''
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling,lowercase_ ) or len(self.rope_scaling ) != 2:
raise ValueError(
'`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '
F'got {self.rope_scaling}' )
A__ = self.rope_scaling.get('type',lowercase_ )
A__ = self.rope_scaling.get('factor',lowercase_ )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
F'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' )
if rope_scaling_factor is None or not isinstance(lowercase_,lowercase_ ) or rope_scaling_factor <= 1.0:
raise ValueError(F'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
| 7 | 0 |
'''simple docstring'''
import numpy as np
import pandas as pd
from sklearn.preprocessing import Normalizer
from sklearn.svm import SVR
from statsmodels.tsa.statespace.sarimax import SARIMAX
def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> float:
_a : List[str] = np.array([[1, item, train_mtch[i]] for i, item in enumerate(lowerCAmelCase_ )] )
_a : Optional[int] = np.array(lowerCAmelCase_ )
_a : Optional[int] = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , lowerCAmelCase_ ) ) , x.transpose() ) , lowerCAmelCase_ )
return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] )
def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> float:
_a : Any = (1, 2, 1)
_a : List[Any] = (1, 1, 0, 7)
_a : int = SARIMAX(
lowerCAmelCase_ , exog=lowerCAmelCase_ , order=lowerCAmelCase_ , seasonal_order=lowerCAmelCase_ )
_a : Optional[int] = model.fit(disp=lowerCAmelCase_ , maxiter=600 , method='nm' )
_a : Union[str, Any] = model_fit.predict(1 , len(lowerCAmelCase_ ) , exog=[test_match] )
return result[0]
def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> float:
_a : Any = SVR(kernel='rbf' , C=1 , gamma=0.1 , epsilon=0.1 )
regressor.fit(lowerCAmelCase_ , lowerCAmelCase_ )
_a : Optional[int] = regressor.predict(lowerCAmelCase_ )
return y_pred[0]
def __lowerCamelCase ( lowerCAmelCase_ ) -> float:
train_user.sort()
_a : Optional[Any] = np.percentile(lowerCAmelCase_ , 25 )
_a : Optional[int] = np.percentile(lowerCAmelCase_ , 75 )
_a : str = qa - qa
_a : Optional[Any] = qa - (iqr * 0.1)
return low_lim
def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> bool:
_a : str = 0
_a : List[Any] = 0
for i in list_vote:
if i > actual_result:
_a : Optional[int] = not_safe + 1
else:
if abs(abs(lowerCAmelCase_ ) - abs(lowerCAmelCase_ ) ) <= 0.1:
safe += 1
else:
not_safe += 1
return safe > not_safe
if __name__ == "__main__":
# data_input_df = pd.read_csv("ex_data.csv", header=None)
__lowerCAmelCase = [[18_231, 0.0, 1], [22_621, 1.0, 2], [15_675, 0.0, 3], [23_583, 1.0, 4]]
__lowerCAmelCase = pd.DataFrame(
data_input, columns=['''total_user''', '''total_even''', '''days''']
)
__lowerCAmelCase = Normalizer().fit_transform(data_input_df.values)
# split data
__lowerCAmelCase = normalize_df[:, 2].tolist()
__lowerCAmelCase = normalize_df[:, 0].tolist()
__lowerCAmelCase = normalize_df[:, 1].tolist()
# for svr (input variable = total date and total match)
__lowerCAmelCase = normalize_df[:, [1, 2]].tolist()
__lowerCAmelCase = x[: len(x) - 1]
__lowerCAmelCase = x[len(x) - 1 :]
# for linear regression & sarimax
__lowerCAmelCase = total_date[: len(total_date) - 1]
__lowerCAmelCase = total_user[: len(total_user) - 1]
__lowerCAmelCase = total_match[: len(total_match) - 1]
__lowerCAmelCase = total_date[len(total_date) - 1 :]
__lowerCAmelCase = total_user[len(total_user) - 1 :]
__lowerCAmelCase = total_match[len(total_match) - 1 :]
# voting system with forecasting
__lowerCAmelCase = [
linear_regression_prediction(
trn_date, trn_user, trn_match, tst_date, tst_match
),
sarimax_predictor(trn_user, trn_match, tst_match),
support_vector_regressor(x_train, x_test, trn_user),
]
# check the safety of today's data
__lowerCAmelCase = '''''' if data_safety_checker(res_vote, tst_user) else '''not '''
print('''Today\'s data is {not_str}safe.''')
| 89 |
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available
from . import BaseDiffusersCLICommand
def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
return EnvironmentCommand()
class A ( _UpperCAmelCase ):
"""simple docstring"""
@staticmethod
def snake_case__ ( lowercase_ : ArgumentParser )-> Dict:
'''simple docstring'''
A__ = parser.add_parser('env' )
download_parser.set_defaults(func=lowercase_ )
def snake_case__ ( self : List[Any] )-> List[str]:
'''simple docstring'''
A__ = huggingface_hub.__version__
A__ = 'not installed'
A__ = 'NA'
if is_torch_available():
import torch
A__ = torch.__version__
A__ = torch.cuda.is_available()
A__ = 'not installed'
if is_transformers_available():
import transformers
A__ = transformers.__version__
A__ = 'not installed'
if is_accelerate_available():
import accelerate
A__ = accelerate.__version__
A__ = 'not installed'
if is_xformers_available():
import xformers
A__ = xformers.__version__
A__ = {
'`diffusers` version': version,
'Platform': platform.platform(),
'Python version': platform.python_version(),
'PyTorch version (GPU?)': F'{pt_version} ({pt_cuda_available})',
'Huggingface_hub version': hub_version,
'Transformers version': transformers_version,
'Accelerate version': accelerate_version,
'xFormers version': xformers_version,
'Using GPU in script?': '<fill in>',
'Using distributed or parallel set-up in script?': '<fill in>',
}
print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' )
print(self.format_dict(lowercase_ ) )
return info
@staticmethod
def snake_case__ ( lowercase_ : int )-> Optional[Any]:
'''simple docstring'''
return "\n".join([F'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
| 7 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__A = {
"configuration_layoutlmv2": ["LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv2Config"],
"processing_layoutlmv2": ["LayoutLMv2Processor"],
"tokenization_layoutlmv2": ["LayoutLMv2Tokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ["LayoutLMv2TokenizerFast"]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ["LayoutLMv2FeatureExtractor"]
__A = ["LayoutLMv2ImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST",
"LayoutLMv2ForQuestionAnswering",
"LayoutLMv2ForSequenceClassification",
"LayoutLMv2ForTokenClassification",
"LayoutLMv2Layer",
"LayoutLMv2Model",
"LayoutLMv2PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaLayer,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 90 |
import unittest
from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
lowercase_ = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
@require_tokenizers
class A ( _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = ReformerTokenizer
lowerCamelCase = ReformerTokenizerFast
lowerCamelCase = True
lowerCamelCase = False
lowerCamelCase = True
def snake_case__ ( self : Any )-> str:
'''simple docstring'''
super().setUp()
A__ = ReformerTokenizer(lowercase_,keep_accents=lowercase_ )
tokenizer.save_pretrained(self.tmpdirname )
def snake_case__ ( self : Optional[int] )-> Optional[int]:
'''simple docstring'''
A__ = '<s>'
A__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ),lowercase_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ),lowercase_ )
def snake_case__ ( self : str )-> Tuple:
'''simple docstring'''
A__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0],'<unk>' )
self.assertEqual(vocab_keys[1],'<s>' )
self.assertEqual(vocab_keys[-1],'j' )
self.assertEqual(len(lowercase_ ),1_0_0_0 )
def snake_case__ ( self : Dict )-> Dict:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size,1_0_0_0 )
def snake_case__ ( self : Dict )-> List[str]:
'''simple docstring'''
if not self.test_rust_tokenizer:
return
A__ = self.get_tokenizer()
A__ = self.get_rust_tokenizer()
A__ = 'I was born in 92000, and this is falsé.'
A__ = tokenizer.tokenize(lowercase_ )
A__ = rust_tokenizer.tokenize(lowercase_ )
self.assertListEqual(lowercase_,lowercase_ )
A__ = tokenizer.encode(lowercase_,add_special_tokens=lowercase_ )
A__ = rust_tokenizer.encode(lowercase_,add_special_tokens=lowercase_ )
self.assertListEqual(lowercase_,lowercase_ )
A__ = self.get_rust_tokenizer()
A__ = tokenizer.encode(lowercase_ )
A__ = rust_tokenizer.encode(lowercase_ )
self.assertListEqual(lowercase_,lowercase_ )
def snake_case__ ( self : int,lowercase_ : Optional[int]=1_5 )-> Optional[Any]:
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
A__ = self.rust_tokenizer_class.from_pretrained(lowercase_,**lowercase_ )
# Simple input
A__ = 'This is a simple input'
A__ = ['This is a simple input 1', 'This is a simple input 2']
A__ = ('This is a simple input', 'This is a pair')
A__ = [
('This is a simple input 1', 'This is a simple input 2'),
('This is a simple pair 1', 'This is a simple pair 2'),
]
# Simple input tests
self.assertRaises(lowercase_,tokenizer_r.encode,lowercase_,max_length=lowercase_,padding='max_length' )
# Simple input
self.assertRaises(lowercase_,tokenizer_r.encode_plus,lowercase_,max_length=lowercase_,padding='max_length' )
# Simple input
self.assertRaises(
lowercase_,tokenizer_r.batch_encode_plus,lowercase_,max_length=lowercase_,padding='max_length',)
# Pair input
self.assertRaises(lowercase_,tokenizer_r.encode,lowercase_,max_length=lowercase_,padding='max_length' )
# Pair input
self.assertRaises(lowercase_,tokenizer_r.encode_plus,lowercase_,max_length=lowercase_,padding='max_length' )
# Pair input
self.assertRaises(
lowercase_,tokenizer_r.batch_encode_plus,lowercase_,max_length=lowercase_,padding='max_length',)
def snake_case__ ( self : List[Any] )-> Tuple:
'''simple docstring'''
pass
def snake_case__ ( self : Dict )-> str:
'''simple docstring'''
A__ = ReformerTokenizer(lowercase_,keep_accents=lowercase_ )
A__ = tokenizer.tokenize('This is a test' )
self.assertListEqual(lowercase_,['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowercase_ ),[2_8_5, 4_6, 1_0, 1_7_0, 3_8_2],)
A__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
lowercase_,[
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
],)
A__ = tokenizer.convert_tokens_to_ids(lowercase_ )
self.assertListEqual(
lowercase_,[8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4],)
A__ = tokenizer.convert_ids_to_tokens(lowercase_ )
self.assertListEqual(
lowercase_,[
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
],)
@cached_property
def snake_case__ ( self : Optional[int] )-> Any:
'''simple docstring'''
return ReformerTokenizer.from_pretrained('google/reformer-crime-and-punishment' )
@slow
def snake_case__ ( self : str )-> Tuple:
'''simple docstring'''
A__ = 'Hello World!'
A__ = [1_2_6, 3_2, 2_6_2, 1_5_2, 3_8, 7_2, 2_8_7]
self.assertListEqual(lowercase_,self.big_tokenizer.encode(lowercase_ ) )
@slow
def snake_case__ ( self : Optional[int] )-> str:
'''simple docstring'''
A__ = (
'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'
' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'
)
A__ = [
1_0_8,
2_6_5,
2_4,
1_1_1,
4,
2_5_8,
1_5_6,
3_5,
2_8,
2_7_5,
3,
2_5_9,
2_9_7,
2_6_0,
8_4,
4,
3_5,
1_1_0,
4_4,
8,
2_5_9,
9_1,
2_6_8,
2_1,
1_1,
2_0_9,
2_7_4,
1_0_9,
2_6_6,
2_7_7,
1_1_7,
8_6,
9_3,
3_1_5,
2_5_8,
2_7_8,
2_5_8,
2_7_7,
2_5_8,
0,
2_5_8,
2_8_8,
2_5_8,
3_1_9,
2_5_8,
0,
2_5_8,
0,
2_5_8,
0,
2_5_8,
0,
2_5_8,
2_8_7,
2_5_8,
3_1_5,
2_5_8,
2_8_9,
2_5_8,
2_7_8,
9_9,
2_6_9,
2_6_6,
2_6_2,
8,
2_5_9,
2_4_1,
4,
2_1_7,
2_3_0,
2_6_8,
2_6_6,
5_5,
1_6_8,
1_0_6,
7_5,
1_9_3,
2_6_6,
2_2_3,
2_7,
4_9,
2_6,
2_8_2,
2_5,
2_6_4,
2_9_9,
1_9,
2_6,
0,
2_5_8,
2_7_7,
1_1_7,
8_6,
9_3,
1_7_6,
1_8_3,
2_7_0,
1_1,
2_6_2,
4_2,
6_1,
2_6_5,
]
self.assertListEqual(lowercase_,self.big_tokenizer.encode(lowercase_ ) )
@require_torch
@slow
def snake_case__ ( self : int )-> Any:
'''simple docstring'''
import torch
from transformers import ReformerConfig, ReformerModel
# Build sequence
A__ = list(self.big_tokenizer.get_vocab().keys() )[:1_0]
A__ = ' '.join(lowercase_ )
A__ = self.big_tokenizer.encode_plus(lowercase_,return_tensors='pt' )
A__ = self.big_tokenizer.batch_encode_plus([sequence, sequence],return_tensors='pt' )
A__ = ReformerConfig()
# The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024)
A__ = encoded_sequence['input_ids'].shape
A__ = ReformerModel(lowercase_ )
# Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320)
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**lowercase_ )
model(**lowercase_ )
@slow
def snake_case__ ( self : int )-> Tuple:
'''simple docstring'''
A__ = {'input_ids': [[1_0_8, 2_6_5, 2_4, 1_1_1, 4, 2_5_8, 1_5_6, 7, 5_1, 2_7_9, 5_8, 7, 7_6, 2_5, 6_9, 2_7_8], [1_4_0, 2_4_3, 2_6_4, 1_3_4, 1_7, 2_6_7, 7_7, 2_6_3, 2_2, 2_6_2, 2_9_7, 2_5_8, 3_0_4, 1_7_7, 2_7_9, 2_6_6, 1_4, 8_9, 1_3, 3_5, 2_6_1, 2_9_9, 2_7_2, 1_3_7, 2_7_5, 2_7_8]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# This tokenizer does not know some characters like ")".
# That is the reason why we use very simple texts here.
# Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064
A__ = [
'This is a very simple sentence.',
'The quick brown fox jumps over the lazy dog.',
]
self.tokenizer_integration_test_util(
expected_encoding=lowercase_,model_name='google/reformer-crime-and-punishment',revision='0e6c3decb8211d49bf881013425dc8b0448b3f5a',padding=lowercase_,sequences=lowercase_,)
| 7 | 0 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
UpperCAmelCase_ : List[str] = logging.get_logger(__name__)
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = ["pixel_values"]
def __init__( self : Tuple , lowercase_ : bool = True , lowercase_ : Optional[Dict[str, int]] = None , lowercase_ : PILImageResampling = PILImageResampling.BILINEAR , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : bool = True , lowercase_ : Union[int, float] = 1 / 255 , lowercase_ : bool = True , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , **lowercase_ : str , ):
'''simple docstring'''
super().__init__(**lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = size if size is not None else {'''shortest_edge''': 256}
SCREAMING_SNAKE_CASE_ : str = get_size_dict(lowercase_ , default_to_square=lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
SCREAMING_SNAKE_CASE_ : int = get_size_dict(lowercase_)
SCREAMING_SNAKE_CASE_ : List[Any] = do_resize
SCREAMING_SNAKE_CASE_ : int = size
SCREAMING_SNAKE_CASE_ : List[Any] = resample
SCREAMING_SNAKE_CASE_ : int = do_center_crop
SCREAMING_SNAKE_CASE_ : List[Any] = crop_size
SCREAMING_SNAKE_CASE_ : List[Any] = do_rescale
SCREAMING_SNAKE_CASE_ : Optional[int] = rescale_factor
SCREAMING_SNAKE_CASE_ : str = do_normalize
SCREAMING_SNAKE_CASE_ : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
SCREAMING_SNAKE_CASE_ : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : PILImageResampling = PILImageResampling.BICUBIC , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Optional[int] , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = get_size_dict(lowercase_ , default_to_square=lowercase_)
if "shortest_edge" not in size:
raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}')
SCREAMING_SNAKE_CASE_ : int = get_resize_output_image_size(lowercase_ , size=size['''shortest_edge'''] , default_to_square=lowercase_)
return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : int , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[str] = get_size_dict(lowercase_)
return center_crop(lowercase_ , size=(size['''height'''], size['''width''']) , data_format=lowercase_ , **lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : np.ndarray , lowercase_ : float , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : List[str]):
'''simple docstring'''
return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_)
def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : np.ndarray , lowercase_ : Union[float, List[float]] , lowercase_ : Union[float, List[float]] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : str , ):
'''simple docstring'''
return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_)
def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : ImageInput , lowercase_ : Optional[bool] = None , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = None , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : Optional[bool] = None , lowercase_ : Optional[float] = None , lowercase_ : Optional[bool] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowercase_ : Dict , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = do_resize if do_resize is not None else self.do_resize
SCREAMING_SNAKE_CASE_ : Union[str, Any] = size if size is not None else self.size
SCREAMING_SNAKE_CASE_ : int = get_size_dict(lowercase_ , default_to_square=lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = resample if resample is not None else self.resample
SCREAMING_SNAKE_CASE_ : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop
SCREAMING_SNAKE_CASE_ : List[str] = crop_size if crop_size is not None else self.crop_size
SCREAMING_SNAKE_CASE_ : Any = get_size_dict(lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = do_rescale if do_rescale is not None else self.do_rescale
SCREAMING_SNAKE_CASE_ : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor
SCREAMING_SNAKE_CASE_ : str = do_normalize if do_normalize is not None else self.do_normalize
SCREAMING_SNAKE_CASE_ : List[Any] = image_mean if image_mean is not None else self.image_mean
SCREAMING_SNAKE_CASE_ : Optional[int] = image_std if image_std is not None else self.image_std
SCREAMING_SNAKE_CASE_ : List[Any] = make_list_of_images(lowercase_)
if not valid_images(lowercase_):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''')
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''')
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''')
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''')
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''')
# All transformations expect numpy arrays.
SCREAMING_SNAKE_CASE_ : Union[str, Any] = [to_numpy_array(lowercase_) for image in images]
if do_resize:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_) for image in images]
if do_center_crop:
SCREAMING_SNAKE_CASE_ : Tuple = [self.center_crop(image=lowercase_ , size=lowercase_) for image in images]
if do_rescale:
SCREAMING_SNAKE_CASE_ : int = [self.rescale(image=lowercase_ , scale=lowercase_) for image in images]
if do_normalize:
SCREAMING_SNAKE_CASE_ : Optional[int] = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_) for image in images]
SCREAMING_SNAKE_CASE_ : Any = [to_channel_dimension_format(lowercase_ , lowercase_) for image in images]
SCREAMING_SNAKE_CASE_ : Dict = {'''pixel_values''': images}
return BatchFeature(data=lowercase_ , tensor_type=lowercase_)
| 91 |
def _snake_case( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , ) -> float:
'''simple docstring'''
A__ = [redshift, radiation_density, matter_density, dark_energy]
if any(p < 0 for p in parameters ):
raise ValueError('All input parameters must be positive' )
if any(p > 1 for p in parameters[1:4] ):
raise ValueError('Relative densities cannot be greater than one' )
else:
A__ = 1 - (matter_density + radiation_density + dark_energy)
A__ = (
radiation_density * (redshift + 1) ** 4
+ matter_density * (redshift + 1) ** 3
+ curvature * (redshift + 1) ** 2
+ dark_energy
)
A__ = hubble_constant * e_a ** (1 / 2)
return hubble
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
# demo LCDM approximation
lowercase_ = 0.3
print(
hubble_parameter(
hubble_constant=68.3,
radiation_density=1e-4,
matter_density=matter_density,
dark_energy=1 - matter_density,
redshift=0,
)
)
| 7 | 0 |
def _a ( SCREAMING_SNAKE_CASE_ : list ):
if len(SCREAMING_SNAKE_CASE_ ) <= 1:
return [tuple(SCREAMING_SNAKE_CASE_ )]
__lowerCAmelCase = []
def generate(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list ):
if k == 1:
res.append(tuple(arr[:] ) )
return
generate(k - 1 , SCREAMING_SNAKE_CASE_ )
for i in range(k - 1 ):
if k % 2 == 0: # k is even
__lowerCAmelCase , __lowerCAmelCase = arr[k - 1], arr[i]
else: # k is odd
__lowerCAmelCase , __lowerCAmelCase = arr[k - 1], arr[0]
generate(k - 1 , SCREAMING_SNAKE_CASE_ )
generate(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
return res
if __name__ == "__main__":
UpperCamelCase__ = input("""Enter numbers separated by a comma:\n""").strip()
UpperCamelCase__ = [int(item) for item in user_input.split(""",""")]
print(heaps(arr))
| 92 |
from typing import Union
import fire
import torch
from tqdm import tqdm
def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str = "cpu" , SCREAMING_SNAKE_CASE__ : Union[str, None] = None ) -> None:
'''simple docstring'''
A__ = torch.load(SCREAMING_SNAKE_CASE__ , map_location=SCREAMING_SNAKE_CASE__ )
for k, v in tqdm(state_dict.items() ):
if not isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ):
raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' )
A__ = v.half()
if save_path is None: # overwrite src_path
A__ = src_path
torch.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
fire.Fire(convert)
| 7 | 0 |
'''simple docstring'''
from bisect import bisect
from itertools import accumulate
def snake_case_ ( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
"""simple docstring"""
lowercase_ : str = sorted(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , key=lambda __SCREAMING_SNAKE_CASE : x[0] / x[1] , reverse=__SCREAMING_SNAKE_CASE )
lowercase_ , lowercase_ : List[Any] = [i[0] for i in r], [i[1] for i in r]
lowercase_ : List[str] = list(accumulate(__SCREAMING_SNAKE_CASE ) )
lowercase_ : List[Any] = bisect(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
return (
0
if k == 0
else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k])
if k != n
else sum(vl[:k] )
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 93 |
import os
# Precomputes a list of the 100 first triangular numbers
lowercase_ = [int(0.5 * n * (n + 1)) for n in range(1, 101)]
def _snake_case( ) -> int:
'''simple docstring'''
A__ = os.path.dirname(os.path.realpath(SCREAMING_SNAKE_CASE__ ) )
A__ = os.path.join(SCREAMING_SNAKE_CASE__ , 'words.txt' )
A__ = ''
with open(SCREAMING_SNAKE_CASE__ ) as f:
A__ = f.readline()
A__ = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )]
A__ = [
word
for word in [sum(ord(SCREAMING_SNAKE_CASE__ ) - 64 for x in word ) for word in words]
if word in TRIANGULAR_NUMBERS
]
return len(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
print(solution())
| 7 | 0 |
from __future__ import annotations
import unittest
import numpy as np
from transformers import BlipTextConfig
from transformers.testing_utils import require_tf, slow
from transformers.utils import is_tf_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
if is_tf_available():
import tensorflow as tf
from transformers import TFBlipTextModel
from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST
class _snake_case :
def __init__( self , _lowerCamelCase , _lowerCamelCase=12 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=99 , _lowerCamelCase=32 , _lowerCamelCase=32 , _lowerCamelCase=2 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=0.02 , _lowerCamelCase=0 , _lowerCamelCase=None , ):
a :str = parent
a :Dict = batch_size
a :List[Any] = seq_length
a :int = is_training
a :List[Any] = use_input_mask
a :List[Any] = use_labels
a :Optional[int] = vocab_size
a :Any = hidden_size
a :int = projection_dim
a :List[Any] = num_hidden_layers
a :Any = num_attention_heads
a :Tuple = intermediate_size
a :Tuple = dropout
a :Tuple = attention_dropout
a :Any = max_position_embeddings
a :Optional[Any] = initializer_range
a :List[Any] = scope
a :Tuple = bos_token_id
def SCREAMING_SNAKE_CASE__ ( self ):
a :Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
a :List[Any] = None
if self.use_input_mask:
a :int = random_attention_mask([self.batch_size, self.seq_length] )
if input_mask is not None:
a :Union[str, Any] = input_mask.numpy()
a , a :int = input_mask.shape
a :str = np.random.randint(1 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(_lowerCamelCase ):
a :List[Any] = 1
a :int = 0
a :Tuple = self.get_config()
return config, input_ids, tf.convert_to_tensor(_lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self ):
return BlipTextConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , )
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
a :Optional[int] = TFBlipTextModel(config=_lowerCamelCase )
a :str = model(_lowerCamelCase , attention_mask=_lowerCamelCase , training=_lowerCamelCase )
a :Optional[int] = model(_lowerCamelCase , training=_lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def SCREAMING_SNAKE_CASE__ ( self ):
a :str = self.prepare_config_and_inputs()
a , a , a :Tuple = config_and_inputs
a :Dict = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class _snake_case ( _snake_case , unittest.TestCase ):
SCREAMING_SNAKE_CASE__ = (TFBlipTextModel,) if is_tf_available() else ()
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = False
def SCREAMING_SNAKE_CASE__ ( self ):
a :Tuple = BlipTextModelTester(self )
a :List[str] = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37 )
def SCREAMING_SNAKE_CASE__ ( self ):
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self ):
a :Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self ):
pass
def SCREAMING_SNAKE_CASE__ ( self ):
pass
@unittest.skip(reason='''Blip does not use inputs_embeds''' )
def SCREAMING_SNAKE_CASE__ ( self ):
pass
@unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' )
def SCREAMING_SNAKE_CASE__ ( self ):
pass
@unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' )
def SCREAMING_SNAKE_CASE__ ( self ):
pass
@slow
def SCREAMING_SNAKE_CASE__ ( self ):
for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
a :Any = TFBlipTextModel.from_pretrained(_lowerCamelCase )
self.assertIsNotNone(_lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase=True ):
super().test_pt_tf_model_equivalence(allow_missing_keys=_lowerCamelCase )
| 94 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionAttendAndExcitePipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_numpy, skip_mps, slow
from diffusers.utils.testing_utils import require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
lowercase_ = False
@skip_mps
class A ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = StableDiffusionAttendAndExcitePipeline
lowerCamelCase = False
lowerCamelCase = TEXT_TO_IMAGE_PARAMS
lowerCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS.union({'token_indices'} )
lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS
lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS
@classmethod
def snake_case__ ( cls : Any )-> Optional[Any]:
'''simple docstring'''
super().setUpClass()
torch.use_deterministic_algorithms(lowercase_ )
@classmethod
def snake_case__ ( cls : Optional[Any] )-> Dict:
'''simple docstring'''
super().tearDownClass()
torch.use_deterministic_algorithms(lowercase_ )
def snake_case__ ( self : List[str] )-> int:
'''simple docstring'''
torch.manual_seed(0 )
A__ = UNetaDConditionModel(
block_out_channels=(3_2, 6_4),layers_per_block=1,sample_size=3_2,in_channels=4,out_channels=4,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'),up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'),cross_attention_dim=3_2,attention_head_dim=(2, 4),use_linear_projection=lowercase_,)
A__ = DDIMScheduler(
beta_start=0.00_085,beta_end=0.012,beta_schedule='scaled_linear',clip_sample=lowercase_,set_alpha_to_one=lowercase_,)
torch.manual_seed(0 )
A__ = AutoencoderKL(
block_out_channels=[3_2, 6_4],in_channels=3,out_channels=3,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'],up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'],latent_channels=4,sample_size=1_2_8,)
torch.manual_seed(0 )
A__ = CLIPTextConfig(
bos_token_id=0,eos_token_id=2,hidden_size=3_2,intermediate_size=3_7,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1_0_0_0,hidden_act='gelu',projection_dim=5_1_2,)
A__ = CLIPTextModel(lowercase_ )
A__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
A__ = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def snake_case__ ( self : Tuple,lowercase_ : str,lowercase_ : List[Any]=0 )-> int:
'''simple docstring'''
if str(lowercase_ ).startswith('mps' ):
A__ = torch.manual_seed(lowercase_ )
else:
A__ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
A__ = A__ = {
'prompt': 'a cat and a frog',
'token_indices': [2, 5],
'generator': generator,
'num_inference_steps': 1,
'guidance_scale': 6.0,
'output_type': 'numpy',
'max_iter_to_alter': 2,
'thresholds': {0: 0.7},
}
return inputs
def snake_case__ ( self : List[str] )-> Optional[Any]:
'''simple docstring'''
A__ = 'cpu'
A__ = self.get_dummy_components()
A__ = self.pipeline_class(**lowercase_ )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
A__ = self.get_dummy_inputs(lowercase_ )
A__ = pipe(**lowercase_ ).images
A__ = image[0, -3:, -3:, -1]
self.assertEqual(image.shape,(1, 6_4, 6_4, 3) )
A__ = np.array(
[0.63_905_364, 0.62_897_307, 0.48_599_017, 0.5_133_624, 0.5_550_048, 0.45_769_516, 0.50_326_973, 0.5_023_139, 0.45_384_496] )
A__ = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(lowercase_,1E-3 )
def snake_case__ ( self : str )-> Optional[Any]:
'''simple docstring'''
super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 )
def snake_case__ ( self : str )-> int:
'''simple docstring'''
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def snake_case__ ( self : str )-> Optional[int]:
'''simple docstring'''
self._test_inference_batch_single_identical(batch_size=2,expected_max_diff=7E-4 )
def snake_case__ ( self : Optional[Any] )-> int:
'''simple docstring'''
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 )
def snake_case__ ( self : Union[str, Any] )-> str:
'''simple docstring'''
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 )
def snake_case__ ( self : Dict )-> Any:
'''simple docstring'''
super().test_save_load_local(expected_max_difference=5E-4 )
def snake_case__ ( self : Dict )-> List[str]:
'''simple docstring'''
super().test_save_load_optional_components(expected_max_difference=4E-4 )
@require_torch_gpu
@slow
class A ( unittest.TestCase ):
"""simple docstring"""
@classmethod
def snake_case__ ( cls : Any )-> Optional[int]:
'''simple docstring'''
super().setUpClass()
torch.use_deterministic_algorithms(lowercase_ )
@classmethod
def snake_case__ ( cls : int )-> List[Any]:
'''simple docstring'''
super().tearDownClass()
torch.use_deterministic_algorithms(lowercase_ )
def snake_case__ ( self : List[Any] )-> Any:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case__ ( self : Union[str, Any] )-> List[Any]:
'''simple docstring'''
A__ = torch.manual_seed(5_1 )
A__ = StableDiffusionAttendAndExcitePipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4',safety_checker=lowercase_,torch_dtype=torch.floataa )
pipe.to('cuda' )
A__ = 'a painting of an elephant with glasses'
A__ = [5, 7]
A__ = pipe(
prompt=lowercase_,token_indices=lowercase_,guidance_scale=7.5,generator=lowercase_,num_inference_steps=5,max_iter_to_alter=5,output_type='numpy',).images[0]
A__ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' )
assert np.abs((expected_image - image).max() ) < 5E-1
| 7 | 0 |
import argparse
import fairseq
import torch
from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging
logging.set_verbosity_info()
UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__)
UpperCAmelCase : Union[str, Any] = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""encoder.layer_norm_for_extract""": """layer_norm_for_extract""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""label_embs_concat""": """label_embeddings_concat""",
"""mask_emb""": """masked_spec_embed""",
"""spk_proj""": """speaker_proj""",
}
UpperCAmelCase : List[Any] = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
"""label_embeddings_concat""",
"""speaker_proj""",
"""layer_norm_for_extract""",
]
def _A ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[str] ):
"""simple docstring"""
for attribute in key.split("." ):
a__ : Optional[Any] =getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if weight_type is not None:
a__ : Optional[Any] =getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape
else:
a__ : Optional[Any] =hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
f''' {value.shape} for {full_name}''' )
if weight_type == "weight":
a__ : Optional[int] =value
elif weight_type == "weight_g":
a__ : List[str] =value
elif weight_type == "weight_v":
a__ : Any =value
elif weight_type == "bias":
a__ : Optional[int] =value
else:
a__ : int =value
logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def _A ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any ):
"""simple docstring"""
a__ : int =[]
a__ : Optional[Any] =fairseq_model.state_dict()
a__ : Any =hf_model.unispeech_sat.feature_extractor
for name, value in fairseq_dict.items():
a__ : List[str] =False
if "conv_layers" in name:
load_conv_layer(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == "group" , )
a__ : Any =True
else:
for key, mapped_key in MAPPING.items():
a__ : str ="unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key):
# special case since naming is very similar
continue
a__ : Tuple =True
if "*" in mapped_key:
a__ : Union[str, Any] =name.split(SCREAMING_SNAKE_CASE )[0].split("." )[-2]
a__ : Any =mapped_key.replace("*" , SCREAMING_SNAKE_CASE )
if "weight_g" in name:
a__ : Any ="weight_g"
elif "weight_v" in name:
a__ : Union[str, Any] ="weight_v"
elif "bias" in name:
a__ : Tuple ="bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
a__ : int ="weight"
else:
a__ : Optional[Any] =None
set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
continue
if not is_used:
unused_weights.append(SCREAMING_SNAKE_CASE )
logger.warning(f'''Unused weights: {unused_weights}''' )
def _A ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict ):
"""simple docstring"""
a__ : Optional[Any] =full_name.split("conv_layers." )[-1]
a__ : Dict =name.split("." )
a__ : str =int(items[0] )
a__ : Union[str, Any] =int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' )
a__ : Optional[Any] =value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' )
a__ : str =value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' )
a__ : int =value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' )
a__ : List[str] =value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(SCREAMING_SNAKE_CASE )
@torch.no_grad()
def _A ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Any=True ):
"""simple docstring"""
if config_path is not None:
a__ : Optional[int] =UniSpeechSatConfig.from_pretrained(SCREAMING_SNAKE_CASE )
else:
a__ : Optional[Any] =UniSpeechSatConfig()
a__ : List[Any] =""
if is_finetuned:
a__ : Optional[int] =UniSpeechSatForCTC(SCREAMING_SNAKE_CASE )
else:
a__ : int =UniSpeechSatForPreTraining(SCREAMING_SNAKE_CASE )
a__ , a__ , a__ : str =fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} )
a__ : Optional[Any] =model[0].eval()
recursively_load_weights(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
UpperCAmelCase : Union[str, Any] = parser.parse_args()
convert_unispeech_sat_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 95 |
import argparse
from pathlib import Path
import torch
from packaging import version
from torch.onnx import export
from diffusers import AutoencoderKL
lowercase_ = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11")
def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : tuple , SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , ) -> Union[str, Any]:
'''simple docstring'''
output_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
if is_torch_less_than_1_11:
export(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE__ , output_names=SCREAMING_SNAKE_CASE__ , dynamic_axes=SCREAMING_SNAKE_CASE__ , do_constant_folding=SCREAMING_SNAKE_CASE__ , use_external_data_format=SCREAMING_SNAKE_CASE__ , enable_onnx_checker=SCREAMING_SNAKE_CASE__ , opset_version=SCREAMING_SNAKE_CASE__ , )
else:
export(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE__ , output_names=SCREAMING_SNAKE_CASE__ , dynamic_axes=SCREAMING_SNAKE_CASE__ , do_constant_folding=SCREAMING_SNAKE_CASE__ , opset_version=SCREAMING_SNAKE_CASE__ , )
@torch.no_grad()
def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : bool = False ) -> Tuple:
'''simple docstring'''
A__ = torch.floataa if fpaa else torch.floataa
if fpaa and torch.cuda.is_available():
A__ = 'cuda'
elif fpaa and not torch.cuda.is_available():
raise ValueError('`float16` model export is only supported on GPUs with CUDA' )
else:
A__ = 'cpu'
A__ = Path(SCREAMING_SNAKE_CASE__ )
# VAE DECODER
A__ = AutoencoderKL.from_pretrained(model_path + '/vae' )
A__ = vae_decoder.config.latent_channels
# forward only through the decoder part
A__ = vae_decoder.decode
onnx_export(
SCREAMING_SNAKE_CASE__ , model_args=(
torch.randn(1 , SCREAMING_SNAKE_CASE__ , 25 , 25 ).to(device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ ),
False,
) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={
'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'},
} , opset=SCREAMING_SNAKE_CASE__ , )
del vae_decoder
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
parser.add_argument(
"--model_path",
type=str,
required=True,
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).",
)
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--opset",
default=14,
type=int,
help="The version of the ONNX operator set to use.",
)
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode")
lowercase_ = parser.parse_args()
print(args.output_path)
convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
print("SD: Done: ONNX")
| 7 | 0 |
"""simple docstring"""
import argparse
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline
if __name__ == "__main__":
lowercase__ = argparse.ArgumentParser()
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument(
"""--txt2img_unclip""",
default="""kakaobrain/karlo-v1-alpha""",
type=str,
required=False,
help="""The pretrained txt2img unclip.""",
)
lowercase__ = parser.parse_args()
lowercase__ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip)
lowercase__ = CLIPImageProcessor()
lowercase__ = CLIPVisionModelWithProjection.from_pretrained("""openai/clip-vit-large-patch14""")
lowercase__ = UnCLIPImageVariationPipeline(
decoder=txtaimg.decoder,
text_encoder=txtaimg.text_encoder,
tokenizer=txtaimg.tokenizer,
text_proj=txtaimg.text_proj,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
super_res_first=txtaimg.super_res_first,
super_res_last=txtaimg.super_res_last,
decoder_scheduler=txtaimg.decoder_scheduler,
super_res_scheduler=txtaimg.super_res_scheduler,
)
imgaimg.save_pretrained(args.dump_path) | 96 |
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class A ( _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase = (DPMSolverSinglestepScheduler,)
lowerCamelCase = (('num_inference_steps', 25),)
def snake_case__ ( self : Tuple,**lowercase_ : Dict )-> Optional[int]:
'''simple docstring'''
A__ = {
'num_train_timesteps': 1_0_0_0,
'beta_start': 0.0_001,
'beta_end': 0.02,
'beta_schedule': 'linear',
'solver_order': 2,
'prediction_type': 'epsilon',
'thresholding': False,
'sample_max_value': 1.0,
'algorithm_type': 'dpmsolver++',
'solver_type': 'midpoint',
'lambda_min_clipped': -float('inf' ),
'variance_type': None,
}
config.update(**lowercase_ )
return config
def snake_case__ ( self : str,lowercase_ : Optional[Any]=0,**lowercase_ : Any )-> List[Any]:
'''simple docstring'''
A__ = dict(self.forward_default_kwargs )
A__ = kwargs.pop('num_inference_steps',lowercase_ )
A__ = self.dummy_sample
A__ = 0.1 * sample
A__ = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
A__ = self.get_scheduler_config(**lowercase_ )
A__ = scheduler_class(**lowercase_ )
scheduler.set_timesteps(lowercase_ )
# copy over dummy past residuals
A__ = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowercase_ )
A__ = scheduler_class.from_pretrained(lowercase_ )
new_scheduler.set_timesteps(lowercase_ )
# copy over dummy past residuals
A__ = dummy_past_residuals[: new_scheduler.config.solver_order]
A__ , A__ = sample, sample
for t in range(lowercase_,time_step + scheduler.config.solver_order + 1 ):
A__ = scheduler.step(lowercase_,lowercase_,lowercase_,**lowercase_ ).prev_sample
A__ = new_scheduler.step(lowercase_,lowercase_,lowercase_,**lowercase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def snake_case__ ( self : List[str] )-> List[Any]:
'''simple docstring'''
pass
def snake_case__ ( self : Tuple,lowercase_ : Union[str, Any]=0,**lowercase_ : Union[str, Any] )-> Union[str, Any]:
'''simple docstring'''
A__ = dict(self.forward_default_kwargs )
A__ = kwargs.pop('num_inference_steps',lowercase_ )
A__ = self.dummy_sample
A__ = 0.1 * sample
A__ = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
A__ = self.get_scheduler_config()
A__ = scheduler_class(**lowercase_ )
scheduler.set_timesteps(lowercase_ )
# copy over dummy past residuals (must be after setting timesteps)
A__ = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowercase_ )
A__ = scheduler_class.from_pretrained(lowercase_ )
# copy over dummy past residuals
new_scheduler.set_timesteps(lowercase_ )
# copy over dummy past residual (must be after setting timesteps)
A__ = dummy_past_residuals[: new_scheduler.config.solver_order]
A__ = scheduler.step(lowercase_,lowercase_,lowercase_,**lowercase_ ).prev_sample
A__ = new_scheduler.step(lowercase_,lowercase_,lowercase_,**lowercase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def snake_case__ ( self : Optional[Any],lowercase_ : Optional[int]=None,**lowercase_ : int )-> int:
'''simple docstring'''
if scheduler is None:
A__ = self.scheduler_classes[0]
A__ = self.get_scheduler_config(**lowercase_ )
A__ = scheduler_class(**lowercase_ )
A__ = self.scheduler_classes[0]
A__ = self.get_scheduler_config(**lowercase_ )
A__ = scheduler_class(**lowercase_ )
A__ = 1_0
A__ = self.dummy_model()
A__ = self.dummy_sample_deter
scheduler.set_timesteps(lowercase_ )
for i, t in enumerate(scheduler.timesteps ):
A__ = model(lowercase_,lowercase_ )
A__ = scheduler.step(lowercase_,lowercase_,lowercase_ ).prev_sample
return sample
def snake_case__ ( self : Any )-> str:
'''simple docstring'''
A__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() )
A__ = 5_0
A__ = self.dummy_model()
A__ = self.dummy_sample_deter
scheduler.set_timesteps(lowercase_ )
# make sure that the first t is uneven
for i, t in enumerate(scheduler.timesteps[3:] ):
A__ = model(lowercase_,lowercase_ )
A__ = scheduler.step(lowercase_,lowercase_,lowercase_ ).prev_sample
A__ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_mean.item() - 0.2_574 ) < 1E-3
def snake_case__ ( self : Optional[Any] )-> List[Any]:
'''simple docstring'''
for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=lowercase_ )
def snake_case__ ( self : int )-> Optional[Any]:
'''simple docstring'''
A__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() )
A__ = self.full_loop(scheduler=lowercase_ )
A__ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_mean.item() - 0.2_791 ) < 1E-3
A__ = DEISMultistepScheduler.from_config(scheduler.config )
A__ = DPMSolverMultistepScheduler.from_config(scheduler.config )
A__ = UniPCMultistepScheduler.from_config(scheduler.config )
A__ = DPMSolverSinglestepScheduler.from_config(scheduler.config )
A__ = self.full_loop(scheduler=lowercase_ )
A__ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_mean.item() - 0.2_791 ) < 1E-3
def snake_case__ ( self : Tuple )-> Any:
'''simple docstring'''
self.check_over_configs(thresholding=lowercase_ )
for order in [1, 2, 3]:
for solver_type in ["midpoint", "heun"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=lowercase_,prediction_type=lowercase_,sample_max_value=lowercase_,algorithm_type='dpmsolver++',solver_order=lowercase_,solver_type=lowercase_,)
def snake_case__ ( self : List[Any] )-> int:
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowercase_ )
def snake_case__ ( self : Dict )-> List[Any]:
'''simple docstring'''
for algorithm_type in ["dpmsolver", "dpmsolver++"]:
for solver_type in ["midpoint", "heun"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=lowercase_,solver_type=lowercase_,prediction_type=lowercase_,algorithm_type=lowercase_,)
A__ = self.full_loop(
solver_order=lowercase_,solver_type=lowercase_,prediction_type=lowercase_,algorithm_type=lowercase_,)
assert not torch.isnan(lowercase_ ).any(), "Samples have nan numbers"
def snake_case__ ( self : Optional[int] )-> Tuple:
'''simple docstring'''
self.check_over_configs(lower_order_final=lowercase_ )
self.check_over_configs(lower_order_final=lowercase_ )
def snake_case__ ( self : Tuple )-> Optional[int]:
'''simple docstring'''
self.check_over_configs(lambda_min_clipped=-float('inf' ) )
self.check_over_configs(lambda_min_clipped=-5.1 )
def snake_case__ ( self : Optional[Any] )-> Tuple:
'''simple docstring'''
self.check_over_configs(variance_type=lowercase_ )
self.check_over_configs(variance_type='learned_range' )
def snake_case__ ( self : str )-> Any:
'''simple docstring'''
for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]:
self.check_over_forward(num_inference_steps=lowercase_,time_step=0 )
def snake_case__ ( self : Tuple )-> Tuple:
'''simple docstring'''
A__ = self.full_loop()
A__ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_mean.item() - 0.2_791 ) < 1E-3
def snake_case__ ( self : Any )-> Union[str, Any]:
'''simple docstring'''
A__ = self.full_loop(use_karras_sigmas=lowercase_ )
A__ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_mean.item() - 0.2_248 ) < 1E-3
def snake_case__ ( self : Union[str, Any] )-> Tuple:
'''simple docstring'''
A__ = self.full_loop(prediction_type='v_prediction' )
A__ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_mean.item() - 0.1_453 ) < 1E-3
def snake_case__ ( self : Tuple )-> int:
'''simple docstring'''
A__ = self.full_loop(prediction_type='v_prediction',use_karras_sigmas=lowercase_ )
A__ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_mean.item() - 0.0_649 ) < 1E-3
def snake_case__ ( self : List[Any] )-> int:
'''simple docstring'''
A__ = self.scheduler_classes[0]
A__ = self.get_scheduler_config(thresholding=lowercase_,dynamic_thresholding_ratio=0 )
A__ = scheduler_class(**lowercase_ )
A__ = 1_0
A__ = self.dummy_model()
A__ = self.dummy_sample_deter.half()
scheduler.set_timesteps(lowercase_ )
for i, t in enumerate(scheduler.timesteps ):
A__ = model(lowercase_,lowercase_ )
A__ = scheduler.step(lowercase_,lowercase_,lowercase_ ).prev_sample
assert sample.dtype == torch.floataa
| 7 | 0 |
'''simple docstring'''
__snake_case = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100000)]
def a ( __a ) -> int:
'''simple docstring'''
UpperCamelCase__ :List[str] = 0
while number:
# Increased Speed Slightly by checking every 5 digits together.
sum_of_digits_squared += DIGITS_SQUARED[number % 100000]
number //= 100000
return sum_of_digits_squared
# There are 2 Chains made,
# One ends with 89 with the chain member 58 being the one which when declared first,
# there will be the least number of iterations for all the members to be checked.
# The other one ends with 1 and has only one element 1.
# So 58 and 1 are chosen to be declared at the starting.
# Changed dictionary to an array to quicken the solution
__snake_case = [None] * 10000000
__snake_case = True
__snake_case = False
def a ( __a ) -> bool:
'''simple docstring'''
if CHAINS[number - 1] is not None:
return CHAINS[number - 1] # type: ignore
UpperCamelCase__ :Dict = chain(next_number(__a ) )
UpperCamelCase__ :int = number_chain
while number < 10000000:
UpperCamelCase__ :Optional[int] = number_chain
number *= 10
return number_chain
def a ( __a = 10000000 ) -> int:
'''simple docstring'''
for i in range(1 , __a ):
if CHAINS[i] is None:
chain(i + 1 )
return CHAINS[:number].count(__a )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F"""{solution() = }""") | 97 |
class A :
"""simple docstring"""
def __init__( self : Any,lowercase_ : Tuple,lowercase_ : Any,lowercase_ : List[str] )-> List[Any]:
'''simple docstring'''
A__ = name
A__ = value
A__ = weight
def __repr__( self : int )-> Tuple:
'''simple docstring'''
return F'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})'
def snake_case__ ( self : Any )-> str:
'''simple docstring'''
return self.value
def snake_case__ ( self : Any )-> Tuple:
'''simple docstring'''
return self.name
def snake_case__ ( self : Any )-> Dict:
'''simple docstring'''
return self.weight
def snake_case__ ( self : Union[str, Any] )-> Optional[Any]:
'''simple docstring'''
return self.value / self.weight
def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]:
'''simple docstring'''
A__ = []
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
menu.append(Things(name[i] , value[i] , weight[i] ) )
return menu
def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Any:
'''simple docstring'''
A__ = sorted(SCREAMING_SNAKE_CASE__ , key=SCREAMING_SNAKE_CASE__ , reverse=SCREAMING_SNAKE_CASE__ )
A__ = []
A__ , A__ = 0.0, 0.0
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
if (total_cost + items_copy[i].get_weight()) <= max_cost:
result.append(items_copy[i] )
total_cost += items_copy[i].get_weight()
total_value += items_copy[i].get_value()
return (result, total_value)
def _snake_case( ) -> Any:
'''simple docstring'''
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 | 0 |
"""simple docstring"""
import copy
import inspect
import unittest
from transformers import PretrainedConfig, SwiftFormerConfig
from transformers.testing_utils import (
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwiftFormerForImageClassification, SwiftFormerModel
from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class snake_case :
"""simple docstring"""
def __init__( self : List[Any] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Optional[Any]=13 ,lowerCamelCase__ : Optional[Any]=3 ,lowerCamelCase__ : int=True ,lowerCamelCase__ : Union[str, Any]=True ,lowerCamelCase__ : Union[str, Any]=0.1 ,lowerCamelCase__ : List[Any]=0.1 ,lowerCamelCase__ : Dict=224 ,lowerCamelCase__ : List[str]=1_000 ,lowerCamelCase__ : List[Any]=[3, 3, 6, 4] ,lowerCamelCase__ : int=[48, 56, 112, 220] ,):
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = is_training
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = num_labels
UpperCAmelCase__ = image_size
UpperCAmelCase__ = layer_depths
UpperCAmelCase__ = embed_dims
def __lowerCAmelCase ( self : Optional[Any] ):
UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase__ = None
if self.use_labels:
UpperCAmelCase__ = ids_tensor([self.batch_size] ,self.num_labels )
UpperCAmelCase__ = self.get_config()
return config, pixel_values, labels
def __lowerCAmelCase ( self : Optional[Any] ):
return SwiftFormerConfig(
depths=self.layer_depths ,embed_dims=self.embed_dims ,mlp_ratio=4 ,downsamples=[True, True, True, True] ,hidden_act='gelu' ,num_labels=self.num_labels ,down_patch_size=3 ,down_stride=2 ,down_pad=1 ,drop_rate=0.0 ,drop_path_rate=0.0 ,use_layer_scale=lowerCamelCase__ ,layer_scale_init_value=1e-5 ,)
def __lowerCAmelCase ( self : Optional[int] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Optional[Any] ):
UpperCAmelCase__ = SwiftFormerModel(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
UpperCAmelCase__ = model(lowerCamelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.embed_dims[-1], 7, 7) )
def __lowerCAmelCase ( self : Optional[int] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : Dict ):
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = SwiftFormerForImageClassification(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
UpperCAmelCase__ = model(lowerCamelCase__ ,labels=lowerCamelCase__ )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
UpperCAmelCase__ = SwiftFormerForImageClassification(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase__ = model(lowerCamelCase__ )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def __lowerCAmelCase ( self : Union[str, Any] ):
((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) = self.prepare_config_and_inputs()
UpperCAmelCase__ = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class snake_case ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
snake_case__ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else ()
snake_case__ = (
{"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification}
if is_torch_available()
else {}
)
snake_case__ = False
snake_case__ = False
snake_case__ = False
snake_case__ = False
snake_case__ = False
def __lowerCAmelCase ( self : Tuple ):
UpperCAmelCase__ = SwiftFormerModelTester(self )
UpperCAmelCase__ = ConfigTester(
self ,config_class=lowerCamelCase__ ,has_text_modality=lowerCamelCase__ ,hidden_size=37 ,num_attention_heads=12 ,num_hidden_layers=12 ,)
def __lowerCAmelCase ( self : int ):
self.config_tester.run_common_tests()
@unittest.skip(reason='SwiftFormer does not use inputs_embeds' )
def __lowerCAmelCase ( self : Optional[Any] ):
pass
def __lowerCAmelCase ( self : int ):
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(lowerCamelCase__ )
UpperCAmelCase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowerCamelCase__ ,nn.Linear ) )
def __lowerCAmelCase ( self : Union[str, Any] ):
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(lowerCamelCase__ )
UpperCAmelCase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase__ = [*signature.parameters.keys()]
UpperCAmelCase__ = ['pixel_values']
self.assertListEqual(arg_names[:1] ,lowerCamelCase__ )
def __lowerCAmelCase ( self : Optional[int] ):
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase__ )
def __lowerCAmelCase ( self : Dict ):
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ )
@slow
def __lowerCAmelCase ( self : str ):
for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ = SwiftFormerModel.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
@unittest.skip(reason='SwiftFormer does not output attentions' )
def __lowerCAmelCase ( self : Tuple ):
pass
def __lowerCAmelCase ( self : str ):
def check_hidden_states_output(lowerCamelCase__ : str ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : str ):
UpperCAmelCase__ = model_class(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) )
UpperCAmelCase__ = outputs.hidden_states
UpperCAmelCase__ = 8
self.assertEqual(len(lowerCamelCase__ ) ,lowerCamelCase__ ) # TODO
# SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width)
# with the width and height being successively divided by 2, after every 2 blocks
for i in range(len(lowerCamelCase__ ) ):
self.assertEqual(
hidden_states[i].shape ,torch.Size(
[
self.model_tester.batch_size,
self.model_tester.embed_dims[i // 2],
(self.model_tester.image_size // 4) // 2 ** (i // 2),
(self.model_tester.image_size // 4) // 2 ** (i // 2),
] ) ,)
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
check_hidden_states_output(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase__ = True
check_hidden_states_output(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ )
def __lowerCAmelCase ( self : str ):
def _config_zero_init(lowerCamelCase__ : Dict ):
UpperCAmelCase__ = copy.deepcopy(lowerCamelCase__ )
for key in configs_no_init.__dict__.keys():
if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
setattr(lowerCamelCase__ ,lowerCamelCase__ ,1e-10 )
if isinstance(getattr(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) ,lowerCamelCase__ ):
UpperCAmelCase__ = _config_zero_init(getattr(lowerCamelCase__ ,lowerCamelCase__ ) )
setattr(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ )
return configs_no_init
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = _config_zero_init(lowerCamelCase__ )
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(config=lowerCamelCase__ )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9) / 1e9).round().item() ,[0.0, 1.0] ,msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' ,)
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def __lowerCAmelCase ( self : Dict ):
pass
def a_ ( ):
UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class snake_case ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def __lowerCAmelCase ( self : str ):
return ViTImageProcessor.from_pretrained('MBZUAI/swiftformer-xs' ) if is_vision_available() else None
@slow
def __lowerCAmelCase ( self : Optional[int] ):
UpperCAmelCase__ = SwiftFormerForImageClassification.from_pretrained('MBZUAI/swiftformer-xs' ).to(lowerCamelCase__ )
UpperCAmelCase__ = self.default_image_processor
UpperCAmelCase__ = prepare_img()
UpperCAmelCase__ = image_processor(images=lowerCamelCase__ ,return_tensors='pt' ).to(lowerCamelCase__ )
# forward pass
with torch.no_grad():
UpperCAmelCase__ = model(**lowerCamelCase__ )
# verify the logits
UpperCAmelCase__ = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape ,lowerCamelCase__ )
UpperCAmelCase__ = torch.tensor([[-2.1703e00, 2.1107e00, -2.0811e00]] ).to(lowerCamelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase__ ,atol=1e-4 ) )
| 98 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json",
}
class A ( _UpperCAmelCase , _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase = 'resnet'
lowerCamelCase = ['basic', 'bottleneck']
def __init__( self : Optional[Any],lowercase_ : int=3,lowercase_ : List[str]=6_4,lowercase_ : int=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8],lowercase_ : Tuple=[3, 4, 6, 3],lowercase_ : Union[str, Any]="bottleneck",lowercase_ : List[str]="relu",lowercase_ : Tuple=False,lowercase_ : List[str]=None,lowercase_ : List[Any]=None,**lowercase_ : str,)-> Optional[Any]:
'''simple docstring'''
super().__init__(**lowercase_ )
if layer_type not in self.layer_types:
raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' )
A__ = num_channels
A__ = embedding_size
A__ = hidden_sizes
A__ = depths
A__ = layer_type
A__ = hidden_act
A__ = downsample_in_first_stage
A__ = ['stem'] + [F'stage{idx}' for idx in range(1,len(lowercase_ ) + 1 )]
A__ , A__ = get_aligned_output_features_output_indices(
out_features=lowercase_,out_indices=lowercase_,stage_names=self.stage_names )
class A ( _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase = version.parse('1.11' )
@property
def snake_case__ ( self : List[Any] )-> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def snake_case__ ( self : Any )-> float:
'''simple docstring'''
return 1E-3
| 7 | 0 |
from argparse import ArgumentParser
from datasets.commands.convert import ConvertCommand
from datasets.commands.dummy_data import DummyDataCommand
from datasets.commands.env import EnvironmentCommand
from datasets.commands.run_beam import RunBeamCommand
from datasets.commands.test import TestCommand
from datasets.utils.logging import set_verbosity_info
def A_ ( A__ ) -> Any:
return {key.lstrip('-' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )}
def A_ ( ) -> Optional[int]:
a__ : Optional[Any] = ArgumentParser(
'HuggingFace Datasets CLI tool' , usage='datasets-cli <command> [<args>]' , allow_abbrev=A__ )
a__ : str = parser.add_subparsers(help='datasets-cli command helpers' )
set_verbosity_info()
# Register commands
ConvertCommand.register_subcommand(A__ )
EnvironmentCommand.register_subcommand(A__ )
TestCommand.register_subcommand(A__ )
RunBeamCommand.register_subcommand(A__ )
DummyDataCommand.register_subcommand(A__ )
# Parse args
a__ , a__ : int = parser.parse_known_args()
if not hasattr(A__ , 'func' ):
parser.print_help()
exit(1 )
a__ : Tuple = parse_unknown_args(A__ )
# Run
a__ : Union[str, Any] = args.func(A__ , **A__ )
service.run()
if __name__ == "__main__":
main()
| 99 |
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"t5-small": "https://huggingface.co/t5-small/resolve/main/config.json",
"t5-base": "https://huggingface.co/t5-base/resolve/main/config.json",
"t5-large": "https://huggingface.co/t5-large/resolve/main/config.json",
"t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json",
"t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json",
}
class A ( _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase = 't5'
lowerCamelCase = ['past_key_values']
lowerCamelCase = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'}
def __init__( self : Union[str, Any],lowercase_ : int=3_2_1_2_8,lowercase_ : int=5_1_2,lowercase_ : List[str]=6_4,lowercase_ : Tuple=2_0_4_8,lowercase_ : Any=6,lowercase_ : List[str]=None,lowercase_ : Union[str, Any]=8,lowercase_ : int=3_2,lowercase_ : Dict=1_2_8,lowercase_ : Optional[int]=0.1,lowercase_ : List[str]=1E-6,lowercase_ : Tuple=1.0,lowercase_ : Any="relu",lowercase_ : Union[str, Any]=True,lowercase_ : Optional[Any]=True,lowercase_ : int=0,lowercase_ : str=1,**lowercase_ : str,)-> Any:
'''simple docstring'''
A__ = vocab_size
A__ = d_model
A__ = d_kv
A__ = d_ff
A__ = num_layers
A__ = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
A__ = num_heads
A__ = relative_attention_num_buckets
A__ = relative_attention_max_distance
A__ = dropout_rate
A__ = layer_norm_epsilon
A__ = initializer_factor
A__ = feed_forward_proj
A__ = use_cache
A__ = self.feed_forward_proj.split('-' )
A__ = act_info[-1]
A__ = act_info[0] == 'gated'
if len(lowercase_ ) > 1 and act_info[0] != "gated" or len(lowercase_ ) > 2:
raise ValueError(
F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.'
'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '
'\'gated-gelu\' or \'relu\'' )
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
A__ = 'gelu_new'
super().__init__(
pad_token_id=lowercase_,eos_token_id=lowercase_,is_encoder_decoder=lowercase_,**lowercase_,)
class A ( _UpperCAmelCase ):
"""simple docstring"""
@property
def snake_case__ ( self : Tuple )-> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
A__ = {
'input_ids': {0: 'batch', 1: 'encoder_sequence'},
'attention_mask': {0: 'batch', 1: 'encoder_sequence'},
}
if self.use_past:
A__ = 'past_encoder_sequence + sequence'
A__ = {0: 'batch'}
A__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'}
else:
A__ = {0: 'batch', 1: 'decoder_sequence'}
A__ = {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(lowercase_,direction='inputs' )
return common_inputs
@property
def snake_case__ ( self : Any )-> int:
'''simple docstring'''
return 1_3
| 7 | 0 |
"""simple docstring"""
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
__magic_name__ = logging.getLogger(__name__)
def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ):
return (preds == labels).mean()
@dataclass
class SCREAMING_SNAKE_CASE_ :
"""simple docstring"""
__lowercase : str = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
__lowercase : Optional[str] = field(
default=__a , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
__lowercase : Optional[str] = field(
default=__a , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
__lowercase : Optional[str] = field(
default=__a , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
@dataclass
class SCREAMING_SNAKE_CASE_ :
"""simple docstring"""
__lowercase : str = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(processors.keys() )} )
__lowercase : str = field(metadata={'''help''': '''Should contain the data files for the task.'''} )
__lowercase : int = field(
default=128 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
__lowercase : bool = field(
default=__a , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
def _lowerCAmelCase ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use"
""" --overwrite_output_dir to overcome.""" )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
"""Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("""Training/evaluation parameters %s""" , UpperCamelCase_ )
# Set seed
set_seed(training_args.seed )
try:
__SCREAMING_SNAKE_CASE = processors[data_args.task_name]()
__SCREAMING_SNAKE_CASE = processor.get_labels()
__SCREAMING_SNAKE_CASE = len(UpperCamelCase_ )
except KeyError:
raise ValueError("""Task not found: %s""" % (data_args.task_name) )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCamelCase_ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , )
__SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__SCREAMING_SNAKE_CASE = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCamelCase_ , cache_dir=model_args.cache_dir , )
# Get datasets
__SCREAMING_SNAKE_CASE = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=UpperCamelCase_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
__SCREAMING_SNAKE_CASE = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=UpperCamelCase_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def compute_metrics(UpperCamelCase_ ) -> Dict:
__SCREAMING_SNAKE_CASE = np.argmax(p.predictions , axis=1 )
return {"acc": simple_accuracy(UpperCamelCase_ , p.label_ids )}
# Data collator
__SCREAMING_SNAKE_CASE = DataCollatorWithPadding(UpperCamelCase_ , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
__SCREAMING_SNAKE_CASE = Trainer(
model=UpperCamelCase_ , args=UpperCamelCase_ , train_dataset=UpperCamelCase_ , eval_dataset=UpperCamelCase_ , compute_metrics=UpperCamelCase_ , data_collator=UpperCamelCase_ , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
__SCREAMING_SNAKE_CASE = {}
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
__SCREAMING_SNAKE_CASE = trainer.evaluate()
__SCREAMING_SNAKE_CASE = os.path.join(training_args.output_dir , """eval_results.txt""" )
if trainer.is_world_master():
with open(UpperCamelCase_ , """w""" ) as writer:
logger.info("""***** Eval results *****""" )
for key, value in result.items():
logger.info(""" %s = %s""" , UpperCamelCase_ , UpperCamelCase_ )
writer.write("""%s = %s\n""" % (key, value) )
results.update(UpperCamelCase_ )
return results
def _lowerCAmelCase ( UpperCamelCase_ ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 100 |
def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]:
'''simple docstring'''
global f # a global dp table for knapsack
if f[i][j] < 0:
if j < wt[i - 1]:
A__ = mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
A__ = max(
mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , j - wt[i - 1] ) + val[i - 1] , )
A__ = val
return f[i][j]
def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Tuple:
'''simple docstring'''
A__ = [[0] * (w + 1) for _ in range(n + 1 )]
for i in range(1 , n + 1 ):
for w_ in range(1 , w + 1 ):
if wt[i - 1] <= w_:
A__ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] )
else:
A__ = dp[i - 1][w_]
return dp[n][w_], dp
def _snake_case( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : list ) -> Union[str, Any]:
'''simple docstring'''
if not (isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) )):
raise ValueError(
'Both the weights and values vectors must be either lists or tuples' )
A__ = len(SCREAMING_SNAKE_CASE__ )
if num_items != len(SCREAMING_SNAKE_CASE__ ):
A__ = (
'The number of weights must be the same as the number of values.\n'
f'But got {num_items} weights and {len(SCREAMING_SNAKE_CASE__ )} values'
)
raise ValueError(SCREAMING_SNAKE_CASE__ )
for i in range(SCREAMING_SNAKE_CASE__ ):
if not isinstance(wt[i] , SCREAMING_SNAKE_CASE__ ):
A__ = (
'All weights must be integers but got weight of '
f'type {type(wt[i] )} at index {i}'
)
raise TypeError(SCREAMING_SNAKE_CASE__ )
A__ , A__ = knapsack(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A__ = set()
_construct_solution(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return optimal_val, example_optional_set
def _snake_case( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : set ) -> Optional[int]:
'''simple docstring'''
if i > 0 and j > 0:
if dp[i - 1][j] == dp[i][j]:
_construct_solution(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
optimal_set.add(SCREAMING_SNAKE_CASE__ )
_construct_solution(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , i - 1 , j - wt[i - 1] , SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
lowercase_ = [3, 2, 4, 4]
lowercase_ = [4, 3, 2, 3]
lowercase_ = 4
lowercase_ = 6
lowercase_ = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)]
lowercase_ , lowercase_ = knapsack(w, wt, val, n)
print(optimal_solution)
print(mf_knapsack(n, wt, val, w)) # switched the n and w
# testing the dynamic programming problem with example
# the optimal subset for the above example are items 3 and 4
lowercase_ , lowercase_ = knapsack_with_example_solution(w, wt, val)
assert optimal_solution == 8
assert optimal_subset == {3, 4}
print("optimal_value = ", optimal_solution)
print("An optimal subset corresponding to the optimal value", optimal_subset)
| 7 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.