File size: 1,692 Bytes
370173c
 
 
 
 
 
 
 
 
 
5a108ee
 
 
 
 
 
 
 
 
 
 
 
 
2247518
 
 
 
69a7c5e
2247518
 
 
 
 
a8f4c75
2247518
 
 
 
 
5a108ee
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
license: apache-2.0
task_categories:
- reinforcement-learning
language:
- en
tags:
- eda
- analog
pretty_name: Osiris Dataset
---
<!-- This dataset card aims to be a base template for new datasets. 
It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1). -->

# Osiris: A Scalable Dataset Generation Pipeline for Machine Learning in Analog Circuit Design

**Osiris** is an end-to-end analog circuits design pipeline capable of producing, validating, and evaluating layouts for generic analog circuits.

The [Osiris GitHub repository](https://github.com/hardware-fab/osiris) hosts the code that implements the randomized pipeline as well as the reinforcement learning-driven baseline methodology discussed 
in the paper proposed at the NeurIPS 2025 Datasets & Benchmarks Track.

The [Osiris 🤗 HuggingFace repository](https://huggingface.co/datasets/hardware-fab/osiris) hosts the randomly generated dataset discussed in the paper.

- **Curated by:** hardware-fab
- **License:** Open Data Commons License [cc-by-4.0](https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/cc-by-4.0.md)

## How to Download
The dataset is stored in `Osiris_Dataset.tar`.
```python 
from huggingface_hub import hf_hub_download

file_path = hf_hub_download(
    repo_id="hardware-fab/osiris",
    filename="Osiris_Dataset.tar",
    repo_type="dataset",
    local_dir=<download_path>
)
```

## Note
This repository is protected by copyright and licensed under the [Apache-2.0 license](https://github.com/hardware-fab/chameleon/blob/main/LICENSE) file.

© 2025 hardware-fab