The dataset viewer is not available for this split.
Error code: StreamingRowsError Exception: CastError Message: Couldn't cast spice: binary __key__: string __url__: string sp: null to {'sp': Value(dtype='binary', id=None), '__key__': Value(dtype='string', id=None), '__url__': Value(dtype='string', id=None)} because column names don't match Traceback: Traceback (most recent call last): File "/src/services/worker/src/worker/utils.py", line 99, in get_rows_or_raise return get_rows( File "/src/libs/libcommon/src/libcommon/utils.py", line 272, in decorator return func(*args, **kwargs) File "/src/services/worker/src/worker/utils.py", line 77, in get_rows rows_plus_one = list(itertools.islice(ds, rows_max_number + 1)) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2270, in __iter__ for key, example in ex_iterable: File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1856, in __iter__ for key, pa_table in self._iter_arrow(): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1888, in _iter_arrow pa_table = cast_table_to_features(pa_table, self.features) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2215, in cast_table_to_features raise CastError( datasets.table.CastError: Couldn't cast spice: binary __key__: string __url__: string sp: null to {'sp': Value(dtype='binary', id=None), '__key__': Value(dtype='string', id=None), '__url__': Value(dtype='string', id=None)} because column names don't match
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Osiris: A Scalable Dataset Generation Pipeline for Machine Learning in Analog Circuit Design
Osiris is an end-to-end analog circuits design pipeline capable of producing, validating, and evaluating layouts for generic analog circuits.
The Osiris GitHub repository hosts the code that implements the randomized pipeline as well as the reinforcement learning-driven baseline methodology discussed in the paper proposed at the NeurIPS 2025 Datasets & Benchmarks Track.
The Osiris 🤗 HuggingFace repository hosts the randomly generated dataset discussed in the paper.
- Curated by: hardware-fab
- License: Open Data Commons License cc-by-4.0
How to Download
The dataset is stored in Osiris_Dataset.tar
.
from huggingface_hub import hf_hub_download
file_path = hf_hub_download(
repo_id="hardware-fab/osiris",
filename="Osiris_Dataset.tar",
repo_type="dataset",
local_dir=<download_path>
)
Note
This repository is protected by copyright and licensed under the Apache-2.0 license file.
© 2025 hardware-fab
- Downloads last month
- 160