id
int32 0
27.3k
| func
stringlengths 26
142k
| target
bool 2
classes | project
stringclasses 2
values | commit_id
stringlengths 40
40
|
---|---|---|---|---|
5,698 | static QDict *do_info_vnc_client(Monitor *mon, VncState *client)
{
QDict *qdict;
qdict = qdict_new();
if (vnc_qdict_remote_addr(qdict, client->csock) < 0) {
QDECREF(qdict);
return NULL;
}
#ifdef CONFIG_VNC_TLS
if (client->tls.session &&
client->tls.dname) {
qdict_put(qdict, "x509_dname", qstring_from_str(client->tls.dname));
}
#endif
#ifdef CONFIG_VNC_SASL
if (client->sasl.conn &&
client->sasl.username) {
qdict_put(qdict, "sasl_username",
qstring_from_str(client->sasl.username));
}
#endif
return qdict;
}
| false | qemu | 4a80dba3920cf8e0829b9ce4769842ce94748bf4 |
5,699 | static av_cold int vp3_decode_init(AVCodecContext *avctx)
{
Vp3DecodeContext *s = avctx->priv_data;
int i, inter, plane;
int c_width;
int c_height;
int y_fragment_count, c_fragment_count;
if (avctx->codec_tag == MKTAG('V','P','3','0'))
s->version = 0;
else
s->version = 1;
s->avctx = avctx;
s->width = FFALIGN(avctx->width, 16);
s->height = FFALIGN(avctx->height, 16);
if (avctx->pix_fmt == PIX_FMT_NONE)
avctx->pix_fmt = PIX_FMT_YUV420P;
avctx->chroma_sample_location = AVCHROMA_LOC_CENTER;
if(avctx->idct_algo==FF_IDCT_AUTO)
avctx->idct_algo=FF_IDCT_VP3;
ff_dsputil_init(&s->dsp, avctx);
ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
/* initialize to an impossible value which will force a recalculation
* in the first frame decode */
for (i = 0; i < 3; i++)
s->qps[i] = -1;
avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
s->y_superblock_width = (s->width + 31) / 32;
s->y_superblock_height = (s->height + 31) / 32;
s->y_superblock_count = s->y_superblock_width * s->y_superblock_height;
/* work out the dimensions for the C planes */
c_width = s->width >> s->chroma_x_shift;
c_height = s->height >> s->chroma_y_shift;
s->c_superblock_width = (c_width + 31) / 32;
s->c_superblock_height = (c_height + 31) / 32;
s->c_superblock_count = s->c_superblock_width * s->c_superblock_height;
s->superblock_count = s->y_superblock_count + (s->c_superblock_count * 2);
s->u_superblock_start = s->y_superblock_count;
s->v_superblock_start = s->u_superblock_start + s->c_superblock_count;
s->macroblock_width = (s->width + 15) / 16;
s->macroblock_height = (s->height + 15) / 16;
s->macroblock_count = s->macroblock_width * s->macroblock_height;
s->fragment_width[0] = s->width / FRAGMENT_PIXELS;
s->fragment_height[0] = s->height / FRAGMENT_PIXELS;
s->fragment_width[1] = s->fragment_width[0] >> s->chroma_x_shift;
s->fragment_height[1] = s->fragment_height[0] >> s->chroma_y_shift;
/* fragment count covers all 8x8 blocks for all 3 planes */
y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
s->fragment_count = y_fragment_count + 2*c_fragment_count;
s->fragment_start[1] = y_fragment_count;
s->fragment_start[2] = y_fragment_count + c_fragment_count;
if (!s->theora_tables)
{
for (i = 0; i < 64; i++) {
s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
s->base_matrix[0][i] = vp31_intra_y_dequant[i];
s->base_matrix[1][i] = vp31_intra_c_dequant[i];
s->base_matrix[2][i] = vp31_inter_dequant[i];
s->filter_limit_values[i] = vp31_filter_limit_values[i];
}
for(inter=0; inter<2; inter++){
for(plane=0; plane<3; plane++){
s->qr_count[inter][plane]= 1;
s->qr_size [inter][plane][0]= 63;
s->qr_base [inter][plane][0]=
s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter;
}
}
/* init VLC tables */
for (i = 0; i < 16; i++) {
/* DC histograms */
init_vlc(&s->dc_vlc[i], 11, 32,
&dc_bias[i][0][1], 4, 2,
&dc_bias[i][0][0], 4, 2, 0);
/* group 1 AC histograms */
init_vlc(&s->ac_vlc_1[i], 11, 32,
&ac_bias_0[i][0][1], 4, 2,
&ac_bias_0[i][0][0], 4, 2, 0);
/* group 2 AC histograms */
init_vlc(&s->ac_vlc_2[i], 11, 32,
&ac_bias_1[i][0][1], 4, 2,
&ac_bias_1[i][0][0], 4, 2, 0);
/* group 3 AC histograms */
init_vlc(&s->ac_vlc_3[i], 11, 32,
&ac_bias_2[i][0][1], 4, 2,
&ac_bias_2[i][0][0], 4, 2, 0);
/* group 4 AC histograms */
init_vlc(&s->ac_vlc_4[i], 11, 32,
&ac_bias_3[i][0][1], 4, 2,
&ac_bias_3[i][0][0], 4, 2, 0);
}
} else {
for (i = 0; i < 16; i++) {
/* DC histograms */
if (init_vlc(&s->dc_vlc[i], 11, 32,
&s->huffman_table[i][0][1], 8, 4,
&s->huffman_table[i][0][0], 8, 4, 0) < 0)
goto vlc_fail;
/* group 1 AC histograms */
if (init_vlc(&s->ac_vlc_1[i], 11, 32,
&s->huffman_table[i+16][0][1], 8, 4,
&s->huffman_table[i+16][0][0], 8, 4, 0) < 0)
goto vlc_fail;
/* group 2 AC histograms */
if (init_vlc(&s->ac_vlc_2[i], 11, 32,
&s->huffman_table[i+16*2][0][1], 8, 4,
&s->huffman_table[i+16*2][0][0], 8, 4, 0) < 0)
goto vlc_fail;
/* group 3 AC histograms */
if (init_vlc(&s->ac_vlc_3[i], 11, 32,
&s->huffman_table[i+16*3][0][1], 8, 4,
&s->huffman_table[i+16*3][0][0], 8, 4, 0) < 0)
goto vlc_fail;
/* group 4 AC histograms */
if (init_vlc(&s->ac_vlc_4[i], 11, 32,
&s->huffman_table[i+16*4][0][1], 8, 4,
&s->huffman_table[i+16*4][0][0], 8, 4, 0) < 0)
goto vlc_fail;
}
}
init_vlc(&s->superblock_run_length_vlc, 6, 34,
&superblock_run_length_vlc_table[0][1], 4, 2,
&superblock_run_length_vlc_table[0][0], 4, 2, 0);
init_vlc(&s->fragment_run_length_vlc, 5, 30,
&fragment_run_length_vlc_table[0][1], 4, 2,
&fragment_run_length_vlc_table[0][0], 4, 2, 0);
init_vlc(&s->mode_code_vlc, 3, 8,
&mode_code_vlc_table[0][1], 2, 1,
&mode_code_vlc_table[0][0], 2, 1, 0);
init_vlc(&s->motion_vector_vlc, 6, 63,
&motion_vector_vlc_table[0][1], 2, 1,
&motion_vector_vlc_table[0][0], 2, 1, 0);
for (i = 0; i < 3; i++) {
s->current_frame.data[i] = NULL;
s->last_frame.data[i] = NULL;
s->golden_frame.data[i] = NULL;
}
return allocate_tables(avctx);
vlc_fail:
av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n");
return -1;
}
| false | FFmpeg | 28f9ab7029bd1a02f659995919f899f84ee7361b |
5,700 | static void nvdimm_build_fit(Aml *dev)
{
Aml *method, *pkg, *buf, *buf_size, *offset, *call_result;
Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit;
buf = aml_local(0);
buf_size = aml_local(1);
fit = aml_local(2);
aml_append(dev, aml_create_dword_field(aml_buffer(4, NULL),
aml_int(0), NVDIMM_DSM_RFIT_STATUS));
/* build helper function, RFIT. */
method = aml_method("RFIT", 1, AML_SERIALIZED);
aml_append(method, aml_create_dword_field(aml_buffer(4, NULL),
aml_int(0), "OFST"));
/* prepare input package. */
pkg = aml_package(1);
aml_append(method, aml_store(aml_arg(0), aml_name("OFST")));
aml_append(pkg, aml_name("OFST"));
/* call Read_FIT function. */
call_result = aml_call5(NVDIMM_COMMON_DSM,
aml_touuid(NVDIMM_QEMU_RSVD_UUID),
aml_int(1) /* Revision 1 */,
aml_int(0x1) /* Read FIT */,
pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT));
aml_append(method, aml_store(call_result, buf));
/* handle _DSM result. */
aml_append(method, aml_create_dword_field(buf,
aml_int(0) /* offset at byte 0 */, "STAU"));
aml_append(method, aml_store(aml_name("STAU"),
aml_name(NVDIMM_DSM_RFIT_STATUS)));
/* if something is wrong during _DSM. */
ifcond = aml_equal(aml_int(NVDIMM_DSM_RET_STATUS_SUCCESS),
aml_name("STAU"));
ifctx = aml_if(aml_lnot(ifcond));
aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
aml_append(method, ifctx);
aml_append(method, aml_store(aml_sizeof(buf), buf_size));
aml_append(method, aml_subtract(buf_size,
aml_int(4) /* the size of "STAU" */,
buf_size));
/* if we read the end of fit. */
ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
aml_append(method, ifctx);
aml_append(method, aml_create_field(buf,
aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/
aml_shiftleft(buf_size, aml_int(3)), "BUFF"));
aml_append(method, aml_return(aml_name("BUFF")));
aml_append(dev, method);
/* build _FIT. */
method = aml_method("_FIT", 0, AML_SERIALIZED);
offset = aml_local(3);
aml_append(method, aml_store(aml_buffer(0, NULL), fit));
aml_append(method, aml_store(aml_int(0), offset));
whilectx = aml_while(aml_int(1));
aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf));
aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size));
/*
* if fit buffer was changed during RFIT, read from the beginning
* again.
*/
ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS),
aml_int(NVDIMM_DSM_RET_STATUS_FIT_CHANGED)));
aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit));
aml_append(ifctx, aml_store(aml_int(0), offset));
aml_append(whilectx, ifctx);
elsectx = aml_else();
/* finish fit read if no data is read out. */
ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
aml_append(ifctx, aml_return(fit));
aml_append(elsectx, ifctx);
/* update the offset. */
aml_append(elsectx, aml_add(offset, buf_size, offset));
/* append the data we read out to the fit buffer. */
aml_append(elsectx, aml_concatenate(fit, buf, fit));
aml_append(whilectx, elsectx);
aml_append(method, whilectx);
aml_append(dev, method);
}
| false | qemu | aef056c11d082fcde44c5cbd3f91548738c220a8 |
5,701 | PXA2xxLCDState *pxa2xx_lcdc_init(MemoryRegion *sysmem,
hwaddr base, qemu_irq irq)
{
PXA2xxLCDState *s;
DisplaySurface *surface;
s = (PXA2xxLCDState *) g_malloc0(sizeof(PXA2xxLCDState));
s->invalidated = 1;
s->irq = irq;
s->sysmem = sysmem;
pxa2xx_lcdc_orientation(s, graphic_rotate);
memory_region_init_io(&s->iomem, NULL, &pxa2xx_lcdc_ops, s,
"pxa2xx-lcd-controller", 0x00100000);
memory_region_add_subregion(sysmem, base, &s->iomem);
s->con = graphic_console_init(NULL, 0, &pxa2xx_ops, s);
surface = qemu_console_surface(s->con);
switch (surface_bits_per_pixel(surface)) {
case 0:
s->dest_width = 0;
break;
case 8:
s->line_fn[0] = pxa2xx_draw_fn_8;
s->line_fn[1] = pxa2xx_draw_fn_8t;
s->dest_width = 1;
break;
case 15:
s->line_fn[0] = pxa2xx_draw_fn_15;
s->line_fn[1] = pxa2xx_draw_fn_15t;
s->dest_width = 2;
break;
case 16:
s->line_fn[0] = pxa2xx_draw_fn_16;
s->line_fn[1] = pxa2xx_draw_fn_16t;
s->dest_width = 2;
break;
case 24:
s->line_fn[0] = pxa2xx_draw_fn_24;
s->line_fn[1] = pxa2xx_draw_fn_24t;
s->dest_width = 3;
break;
case 32:
s->line_fn[0] = pxa2xx_draw_fn_32;
s->line_fn[1] = pxa2xx_draw_fn_32t;
s->dest_width = 4;
break;
default:
fprintf(stderr, "%s: Bad color depth\n", __FUNCTION__);
exit(1);
}
vmstate_register(NULL, 0, &vmstate_pxa2xx_lcdc, s);
return s;
}
| false | qemu | a89f364ae8740dfc31b321eed9ee454e996dc3c1 |
5,702 | static unsigned int dec_movem_mr(DisasContext *dc)
{
TCGv tmp[16];
TCGv addr;
int i;
int nr = dc->op2 + 1;
DIS(fprintf (logfile, "movem [$r%u%s, $r%u\n", dc->op1,
dc->postinc ? "+]" : "]", dc->op2));
addr = tcg_temp_new(TCG_TYPE_TL);
/* There are probably better ways of doing this. */
cris_flush_cc_state(dc);
for (i = 0; i < (nr >> 1); i++) {
tmp[i] = tcg_temp_new(TCG_TYPE_I64);
tcg_gen_addi_tl(addr, cpu_R[dc->op1], i * 8);
gen_load(dc, tmp[i], addr, 8, 0);
}
if (nr & 1) {
tmp[i] = tcg_temp_new(TCG_TYPE_I32);
tcg_gen_addi_tl(addr, cpu_R[dc->op1], i * 8);
gen_load(dc, tmp[i], addr, 4, 0);
}
tcg_temp_free(addr);
for (i = 0; i < (nr >> 1); i++) {
tcg_gen_trunc_i64_i32(cpu_R[i * 2], tmp[i]);
tcg_gen_shri_i64(tmp[i], tmp[i], 32);
tcg_gen_trunc_i64_i32(cpu_R[i * 2 + 1], tmp[i]);
tcg_temp_free(tmp[i]);
}
if (nr & 1) {
tcg_gen_mov_tl(cpu_R[dc->op2], tmp[i]);
tcg_temp_free(tmp[i]);
}
/* writeback the updated pointer value. */
if (dc->postinc)
tcg_gen_addi_tl(cpu_R[dc->op1], cpu_R[dc->op1], nr * 4);
/* gen_load might want to evaluate the previous insns flags. */
cris_cc_mask(dc, 0);
return 2;
}
| false | qemu | a7812ae412311d7d47f8aa85656faadac9d64b56 |
5,703 | static int xen_pt_msgdata_reg_write(XenPCIPassthroughState *s,
XenPTReg *cfg_entry, uint16_t *val,
uint16_t dev_value, uint16_t valid_mask)
{
XenPTRegInfo *reg = cfg_entry->reg;
XenPTMSI *msi = s->msi;
uint16_t writable_mask = 0;
uint16_t old_data = cfg_entry->data;
uint32_t offset = reg->offset;
/* check the offset whether matches the type or not */
if (!xen_pt_msi_check_type(offset, msi->flags, DATA)) {
/* exit I/O emulator */
XEN_PT_ERR(&s->dev, "the offset does not match the 32/64 bit type!\n");
return -1;
}
/* modify emulate register */
writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask);
/* update the msi_info too */
msi->data = cfg_entry->data;
/* create value for writing to I/O device register */
*val = XEN_PT_MERGE_VALUE(*val, dev_value, 0);
/* update MSI */
if (cfg_entry->data != old_data) {
if (msi->mapped) {
xen_pt_msi_update(s);
}
}
return 0;
}
| false | qemu | e2779de053b64f023de382fd87b3596613d47d1e |
5,704 | void HELPER(cdsg)(CPUS390XState *env, uint64_t addr,
uint32_t r1, uint32_t r3)
{
uintptr_t ra = GETPC();
Int128 cmpv = int128_make128(env->regs[r1 + 1], env->regs[r1]);
Int128 newv = int128_make128(env->regs[r3 + 1], env->regs[r3]);
Int128 oldv;
bool fail;
if (parallel_cpus) {
#ifndef CONFIG_ATOMIC128
cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
#else
int mem_idx = cpu_mmu_index(env, false);
TCGMemOpIdx oi = make_memop_idx(MO_TEQ | MO_ALIGN_16, mem_idx);
oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra);
fail = !int128_eq(oldv, cmpv);
#endif
} else {
uint64_t oldh, oldl;
check_alignment(env, addr, 16, ra);
oldh = cpu_ldq_data_ra(env, addr + 0, ra);
oldl = cpu_ldq_data_ra(env, addr + 8, ra);
oldv = int128_make128(oldl, oldh);
fail = !int128_eq(oldv, cmpv);
if (fail) {
newv = oldv;
}
cpu_stq_data_ra(env, addr + 0, int128_gethi(newv), ra);
cpu_stq_data_ra(env, addr + 8, int128_getlo(newv), ra);
}
env->cc_op = fail;
env->regs[r1] = int128_gethi(oldv);
env->regs[r1 + 1] = int128_getlo(oldv);
}
| false | qemu | 6476615d385eb249105b25873ef30ba4b9c808dc |
5,705 | static int qcow2_do_open(BlockDriverState *bs, QDict *options, int flags,
Error **errp)
{
BDRVQcow2State *s = bs->opaque;
unsigned int len, i;
int ret = 0;
QCowHeader header;
Error *local_err = NULL;
uint64_t ext_end;
uint64_t l1_vm_state_index;
ret = bdrv_pread(bs->file, 0, &header, sizeof(header));
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not read qcow2 header");
goto fail;
}
be32_to_cpus(&header.magic);
be32_to_cpus(&header.version);
be64_to_cpus(&header.backing_file_offset);
be32_to_cpus(&header.backing_file_size);
be64_to_cpus(&header.size);
be32_to_cpus(&header.cluster_bits);
be32_to_cpus(&header.crypt_method);
be64_to_cpus(&header.l1_table_offset);
be32_to_cpus(&header.l1_size);
be64_to_cpus(&header.refcount_table_offset);
be32_to_cpus(&header.refcount_table_clusters);
be64_to_cpus(&header.snapshots_offset);
be32_to_cpus(&header.nb_snapshots);
if (header.magic != QCOW_MAGIC) {
error_setg(errp, "Image is not in qcow2 format");
ret = -EINVAL;
goto fail;
}
if (header.version < 2 || header.version > 3) {
error_setg(errp, "Unsupported qcow2 version %" PRIu32, header.version);
ret = -ENOTSUP;
goto fail;
}
s->qcow_version = header.version;
/* Initialise cluster size */
if (header.cluster_bits < MIN_CLUSTER_BITS ||
header.cluster_bits > MAX_CLUSTER_BITS) {
error_setg(errp, "Unsupported cluster size: 2^%" PRIu32,
header.cluster_bits);
ret = -EINVAL;
goto fail;
}
s->cluster_bits = header.cluster_bits;
s->cluster_size = 1 << s->cluster_bits;
s->cluster_sectors = 1 << (s->cluster_bits - 9);
/* Initialise version 3 header fields */
if (header.version == 2) {
header.incompatible_features = 0;
header.compatible_features = 0;
header.autoclear_features = 0;
header.refcount_order = 4;
header.header_length = 72;
} else {
be64_to_cpus(&header.incompatible_features);
be64_to_cpus(&header.compatible_features);
be64_to_cpus(&header.autoclear_features);
be32_to_cpus(&header.refcount_order);
be32_to_cpus(&header.header_length);
if (header.header_length < 104) {
error_setg(errp, "qcow2 header too short");
ret = -EINVAL;
goto fail;
}
}
if (header.header_length > s->cluster_size) {
error_setg(errp, "qcow2 header exceeds cluster size");
ret = -EINVAL;
goto fail;
}
if (header.header_length > sizeof(header)) {
s->unknown_header_fields_size = header.header_length - sizeof(header);
s->unknown_header_fields = g_malloc(s->unknown_header_fields_size);
ret = bdrv_pread(bs->file, sizeof(header), s->unknown_header_fields,
s->unknown_header_fields_size);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not read unknown qcow2 header "
"fields");
goto fail;
}
}
if (header.backing_file_offset > s->cluster_size) {
error_setg(errp, "Invalid backing file offset");
ret = -EINVAL;
goto fail;
}
if (header.backing_file_offset) {
ext_end = header.backing_file_offset;
} else {
ext_end = 1 << header.cluster_bits;
}
/* Handle feature bits */
s->incompatible_features = header.incompatible_features;
s->compatible_features = header.compatible_features;
s->autoclear_features = header.autoclear_features;
if (s->incompatible_features & ~QCOW2_INCOMPAT_MASK) {
void *feature_table = NULL;
qcow2_read_extensions(bs, header.header_length, ext_end,
&feature_table, NULL);
report_unsupported_feature(errp, feature_table,
s->incompatible_features &
~QCOW2_INCOMPAT_MASK);
ret = -ENOTSUP;
g_free(feature_table);
goto fail;
}
if (s->incompatible_features & QCOW2_INCOMPAT_CORRUPT) {
/* Corrupt images may not be written to unless they are being repaired
*/
if ((flags & BDRV_O_RDWR) && !(flags & BDRV_O_CHECK)) {
error_setg(errp, "qcow2: Image is corrupt; cannot be opened "
"read/write");
ret = -EACCES;
goto fail;
}
}
/* Check support for various header values */
if (header.refcount_order > 6) {
error_setg(errp, "Reference count entry width too large; may not "
"exceed 64 bits");
ret = -EINVAL;
goto fail;
}
s->refcount_order = header.refcount_order;
s->refcount_bits = 1 << s->refcount_order;
s->refcount_max = UINT64_C(1) << (s->refcount_bits - 1);
s->refcount_max += s->refcount_max - 1;
if (header.crypt_method > QCOW_CRYPT_AES) {
error_setg(errp, "Unsupported encryption method: %" PRIu32,
header.crypt_method);
ret = -EINVAL;
goto fail;
}
if (!qcrypto_cipher_supports(QCRYPTO_CIPHER_ALG_AES_128,
QCRYPTO_CIPHER_MODE_CBC)) {
error_setg(errp, "AES cipher not available");
ret = -EINVAL;
goto fail;
}
s->crypt_method_header = header.crypt_method;
if (s->crypt_method_header) {
if (bdrv_uses_whitelist() &&
s->crypt_method_header == QCOW_CRYPT_AES) {
error_setg(errp,
"Use of AES-CBC encrypted qcow2 images is no longer "
"supported in system emulators");
error_append_hint(errp,
"You can use 'qemu-img convert' to convert your "
"image to an alternative supported format, such "
"as unencrypted qcow2, or raw with the LUKS "
"format instead.\n");
ret = -ENOSYS;
goto fail;
}
bs->encrypted = true;
}
s->l2_bits = s->cluster_bits - 3; /* L2 is always one cluster */
s->l2_size = 1 << s->l2_bits;
/* 2^(s->refcount_order - 3) is the refcount width in bytes */
s->refcount_block_bits = s->cluster_bits - (s->refcount_order - 3);
s->refcount_block_size = 1 << s->refcount_block_bits;
bs->total_sectors = header.size / 512;
s->csize_shift = (62 - (s->cluster_bits - 8));
s->csize_mask = (1 << (s->cluster_bits - 8)) - 1;
s->cluster_offset_mask = (1LL << s->csize_shift) - 1;
s->refcount_table_offset = header.refcount_table_offset;
s->refcount_table_size =
header.refcount_table_clusters << (s->cluster_bits - 3);
if (header.refcount_table_clusters > qcow2_max_refcount_clusters(s)) {
error_setg(errp, "Reference count table too large");
ret = -EINVAL;
goto fail;
}
ret = validate_table_offset(bs, s->refcount_table_offset,
s->refcount_table_size, sizeof(uint64_t));
if (ret < 0) {
error_setg(errp, "Invalid reference count table offset");
goto fail;
}
/* Snapshot table offset/length */
if (header.nb_snapshots > QCOW_MAX_SNAPSHOTS) {
error_setg(errp, "Too many snapshots");
ret = -EINVAL;
goto fail;
}
ret = validate_table_offset(bs, header.snapshots_offset,
header.nb_snapshots,
sizeof(QCowSnapshotHeader));
if (ret < 0) {
error_setg(errp, "Invalid snapshot table offset");
goto fail;
}
/* read the level 1 table */
if (header.l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
error_setg(errp, "Active L1 table too large");
ret = -EFBIG;
goto fail;
}
s->l1_size = header.l1_size;
l1_vm_state_index = size_to_l1(s, header.size);
if (l1_vm_state_index > INT_MAX) {
error_setg(errp, "Image is too big");
ret = -EFBIG;
goto fail;
}
s->l1_vm_state_index = l1_vm_state_index;
/* the L1 table must contain at least enough entries to put
header.size bytes */
if (s->l1_size < s->l1_vm_state_index) {
error_setg(errp, "L1 table is too small");
ret = -EINVAL;
goto fail;
}
ret = validate_table_offset(bs, header.l1_table_offset,
header.l1_size, sizeof(uint64_t));
if (ret < 0) {
error_setg(errp, "Invalid L1 table offset");
goto fail;
}
s->l1_table_offset = header.l1_table_offset;
if (s->l1_size > 0) {
s->l1_table = qemu_try_blockalign(bs->file->bs,
align_offset(s->l1_size * sizeof(uint64_t), 512));
if (s->l1_table == NULL) {
error_setg(errp, "Could not allocate L1 table");
ret = -ENOMEM;
goto fail;
}
ret = bdrv_pread(bs->file, s->l1_table_offset, s->l1_table,
s->l1_size * sizeof(uint64_t));
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not read L1 table");
goto fail;
}
for(i = 0;i < s->l1_size; i++) {
be64_to_cpus(&s->l1_table[i]);
}
}
/* Parse driver-specific options */
ret = qcow2_update_options(bs, options, flags, errp);
if (ret < 0) {
goto fail;
}
s->cluster_cache = g_malloc(s->cluster_size);
/* one more sector for decompressed data alignment */
s->cluster_data = qemu_try_blockalign(bs->file->bs, QCOW_MAX_CRYPT_CLUSTERS
* s->cluster_size + 512);
if (s->cluster_data == NULL) {
error_setg(errp, "Could not allocate temporary cluster buffer");
ret = -ENOMEM;
goto fail;
}
s->cluster_cache_offset = -1;
s->flags = flags;
ret = qcow2_refcount_init(bs);
if (ret != 0) {
error_setg_errno(errp, -ret, "Could not initialize refcount handling");
goto fail;
}
QLIST_INIT(&s->cluster_allocs);
QTAILQ_INIT(&s->discards);
/* read qcow2 extensions */
if (qcow2_read_extensions(bs, header.header_length, ext_end, NULL,
&local_err)) {
error_propagate(errp, local_err);
ret = -EINVAL;
goto fail;
}
/* read the backing file name */
if (header.backing_file_offset != 0) {
len = header.backing_file_size;
if (len > MIN(1023, s->cluster_size - header.backing_file_offset) ||
len >= sizeof(bs->backing_file)) {
error_setg(errp, "Backing file name too long");
ret = -EINVAL;
goto fail;
}
ret = bdrv_pread(bs->file, header.backing_file_offset,
bs->backing_file, len);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not read backing file name");
goto fail;
}
bs->backing_file[len] = '\0';
s->image_backing_file = g_strdup(bs->backing_file);
}
/* Internal snapshots */
s->snapshots_offset = header.snapshots_offset;
s->nb_snapshots = header.nb_snapshots;
ret = qcow2_read_snapshots(bs);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not read snapshots");
goto fail;
}
/* Clear unknown autoclear feature bits */
if (!bs->read_only && !(flags & BDRV_O_INACTIVE) && s->autoclear_features) {
s->autoclear_features = 0;
ret = qcow2_update_header(bs);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not update qcow2 header");
goto fail;
}
}
/* Initialise locks */
qemu_co_mutex_init(&s->lock);
bs->supported_zero_flags = BDRV_REQ_MAY_UNMAP;
/* Repair image if dirty */
if (!(flags & (BDRV_O_CHECK | BDRV_O_INACTIVE)) && !bs->read_only &&
(s->incompatible_features & QCOW2_INCOMPAT_DIRTY)) {
BdrvCheckResult result = {0};
ret = qcow2_check(bs, &result, BDRV_FIX_ERRORS | BDRV_FIX_LEAKS);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not repair dirty image");
goto fail;
}
}
#ifdef DEBUG_ALLOC
{
BdrvCheckResult result = {0};
qcow2_check_refcounts(bs, &result, 0);
}
#endif
return ret;
fail:
g_free(s->unknown_header_fields);
cleanup_unknown_header_ext(bs);
qcow2_free_snapshots(bs);
qcow2_refcount_close(bs);
qemu_vfree(s->l1_table);
/* else pre-write overlap checks in cache_destroy may crash */
s->l1_table = NULL;
cache_clean_timer_del(bs);
if (s->l2_table_cache) {
qcow2_cache_destroy(bs, s->l2_table_cache);
}
if (s->refcount_block_cache) {
qcow2_cache_destroy(bs, s->refcount_block_cache);
}
g_free(s->cluster_cache);
qemu_vfree(s->cluster_data);
return ret;
}
| false | qemu | b25b387fa5928e516cb2c9e7fde68e958bd7e50a |
5,706 | static XHCIEPContext *xhci_alloc_epctx(XHCIState *xhci,
unsigned int slotid,
unsigned int epid)
{
XHCIEPContext *epctx;
int i;
epctx = g_new0(XHCIEPContext, 1);
epctx->xhci = xhci;
epctx->slotid = slotid;
epctx->epid = epid;
for (i = 0; i < ARRAY_SIZE(epctx->transfers); i++) {
epctx->transfers[i].xhci = xhci;
epctx->transfers[i].slotid = slotid;
epctx->transfers[i].epid = epid;
usb_packet_init(&epctx->transfers[i].packet);
}
epctx->kick_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, xhci_ep_kick_timer, epctx);
return epctx;
}
| false | qemu | 94b037f2a451b3dc855f9f2c346e5049a361bd55 |
5,708 | static uint16_t phys_map_node_alloc(void)
{
unsigned i;
uint16_t ret;
ret = next_map.nodes_nb++;
assert(ret != PHYS_MAP_NODE_NIL);
assert(ret != next_map.nodes_nb_alloc);
for (i = 0; i < L2_SIZE; ++i) {
next_map.nodes[ret][i].is_leaf = 0;
next_map.nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
}
return ret;
}
| false | qemu | 03f4995781a64e106e6f73864a1e9c4163dac53b |
5,709 | bool qemu_peer_has_vnet_hdr_len(NetClientState *nc, int len)
{
if (!nc->peer || !nc->peer->info->has_vnet_hdr_len) {
return false;
}
return nc->peer->info->has_vnet_hdr_len(nc->peer, len);
}
| false | qemu | d6085e3ace20bc9b0fa625d8d79b22668710e217 |
5,710 | static void avc_luma_midh_qrt_16w_msa(const uint8_t *src, int32_t src_stride,
uint8_t *dst, int32_t dst_stride,
int32_t height, uint8_t horiz_offset)
{
uint32_t multiple8_cnt;
for (multiple8_cnt = 4; multiple8_cnt--;) {
avc_luma_midh_qrt_4w_msa(src, src_stride, dst, dst_stride, height,
horiz_offset);
src += 4;
dst += 4;
}
}
| false | FFmpeg | e549933a270dd2cfc36f2cf9bb6b29acf3dc6d08 |
5,711 | static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
{
uint8_t *Y;
int ys, us, vs;
DSPContext *dsp = &v->s.dsp;
if(v->rangeredfrm) {
int i, j, k;
for(k = 0; k < 6; k++)
for(j = 0; j < 8; j++)
for(i = 0; i < 8; i++)
block[k][i + j*8] = (block[k][i + j*8] - 64) << 1;
}
ys = v->s.current_picture.linesize[0];
us = v->s.current_picture.linesize[1];
vs = v->s.current_picture.linesize[2];
Y = v->s.dest[0];
dsp->put_pixels_clamped(block[0], Y, ys);
dsp->put_pixels_clamped(block[1], Y + 8, ys);
Y += ys * 8;
dsp->put_pixels_clamped(block[2], Y, ys);
dsp->put_pixels_clamped(block[3], Y + 8, ys);
if(!(v->s.flags & CODEC_FLAG_GRAY)) {
dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
}
}
| false | FFmpeg | 713f490467e0d4b64e4d2e8f5ee98034235d2010 |
5,712 | static int decode_frame(AVCodecContext *avctx,
void *data, int *data_size,
AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
H264Context *h = avctx->priv_data;
MpegEncContext *s = &h->s;
AVFrame *pict = data;
int buf_index;
s->flags= avctx->flags;
s->flags2= avctx->flags2;
/* end of stream, output what is still in the buffers */
out:
if (buf_size == 0) {
Picture *out;
int i, out_idx;
s->current_picture_ptr = NULL;
//FIXME factorize this with the output code below
out = h->delayed_pic[0];
out_idx = 0;
for(i=1; h->delayed_pic[i] && !h->delayed_pic[i]->key_frame && !h->delayed_pic[i]->mmco_reset; i++)
if(h->delayed_pic[i]->poc < out->poc){
out = h->delayed_pic[i];
out_idx = i;
}
for(i=out_idx; h->delayed_pic[i]; i++)
h->delayed_pic[i] = h->delayed_pic[i+1];
if(out){
*data_size = sizeof(AVFrame);
*pict= *(AVFrame*)out;
}
return 0;
}
buf_index=decode_nal_units(h, buf, buf_size);
if(buf_index < 0)
return -1;
if (!s->current_picture_ptr && h->nal_unit_type == NAL_END_SEQUENCE) {
buf_size = 0;
goto out;
}
if(!(s->flags2 & CODEC_FLAG2_CHUNKS) && !s->current_picture_ptr){
if (avctx->skip_frame >= AVDISCARD_NONREF)
return 0;
av_log(avctx, AV_LOG_ERROR, "no frame!\n");
return -1;
}
if(!(s->flags2 & CODEC_FLAG2_CHUNKS) || (s->mb_y >= s->mb_height && s->mb_height)){
if(s->flags2 & CODEC_FLAG2_CHUNKS) decode_postinit(h);
field_end(h, 0);
if (!h->next_output_pic) {
/* Wait for second field. */
*data_size = 0;
} else {
*data_size = sizeof(AVFrame);
*pict = *(AVFrame*)h->next_output_pic;
}
}
assert(pict->data[0] || !*data_size);
ff_print_debug_info(s, pict);
//printf("out %d\n", (int)pict->data[0]);
return get_consumed_bytes(s, buf_index, buf_size);
}
| true | FFmpeg | 0424e052f83adc422d8a746e3cdc5ab6bc28679e |
5,714 | void kvm_remove_all_breakpoints(CPUState *cpu)
{
struct kvm_sw_breakpoint *bp, *next;
KVMState *s = cpu->kvm_state;
QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
/* Try harder to find a CPU that currently sees the breakpoint. */
CPU_FOREACH(cpu) {
if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) {
break;
}
}
}
QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
g_free(bp);
}
kvm_arch_remove_all_hw_breakpoints();
CPU_FOREACH(cpu) {
kvm_update_guest_debug(cpu, 0);
}
}
| true | qemu | dc54e2525389e903cee2b847cf761b5d857f75cb |
5,716 | static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
GetBitContext *gb, int id_aac)
{
unsigned int cnt = get_bits_count(gb);
if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
read_sbr_single_channel_element(ac, sbr, gb);
} else if (id_aac == TYPE_CPE) {
read_sbr_channel_pair_element(ac, sbr, gb);
} else {
av_log(ac->avccontext, AV_LOG_ERROR,
"Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
sbr->start = 0;
return get_bits_count(gb) - cnt;
}
if (get_bits1(gb)) { // bs_extended_data
int num_bits_left = get_bits(gb, 4); // bs_extension_size
if (num_bits_left == 15)
num_bits_left += get_bits(gb, 8); // bs_esc_count
num_bits_left <<= 3;
while (num_bits_left > 7) {
num_bits_left -= 2;
read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
}
}
return get_bits_count(gb) - cnt;
}
| true | FFmpeg | 58b1cba0c9173741cf769117a735b429356d83c0 |
5,717 | ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
MemoryRegion *mr)
{
RAMBlock *new_block;
size = TARGET_PAGE_ALIGN(size);
new_block = g_malloc0(sizeof(*new_block));
new_block->mr = mr;
new_block->offset = find_ram_offset(size);
if (host) {
new_block->host = host;
new_block->flags |= RAM_PREALLOC_MASK;
} else {
if (mem_path) {
#if defined (__linux__) && !defined(TARGET_S390X)
new_block->host = file_ram_alloc(new_block, size, mem_path);
if (!new_block->host) {
new_block->host = qemu_vmalloc(size);
qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
}
#else
fprintf(stderr, "-mem-path option unsupported\n");
exit(1);
#endif
} else {
if (xen_enabled()) {
xen_ram_alloc(new_block->offset, size, mr);
} else if (kvm_enabled()) {
/* some s390/kvm configurations have special constraints */
new_block->host = kvm_vmalloc(size);
} else {
new_block->host = qemu_vmalloc(size);
}
qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
}
}
new_block->length = size;
QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
last_ram_offset() >> TARGET_PAGE_BITS);
cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
if (kvm_enabled())
kvm_setup_guest_memory(new_block->host, size);
return new_block->offset;
} | true | qemu | 5fda043f9c8b8ab18da2704de8e77b7c86fa9435 |
5,719 | static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp;
tmp = mr->ops->read(mr->opaque, addr, size);
if (mr->subpage) {
trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
} else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
}
*value |= (tmp & mask) << shift;
return MEMTX_OK;
} | true | qemu | f2d089425d43735b5369f70f3a36b712440578e5 |
5,720 | static void unmanageable_intercept(S390CPU *cpu, const char *str, int pswoffset)
{
CPUState *cs = CPU(cpu);
error_report("Unmanageable %s! CPU%i new PSW: 0x%016lx:%016lx",
str, cs->cpu_index, ldq_phys(cs->as, cpu->env.psa + pswoffset),
ldq_phys(cs->as, cpu->env.psa + pswoffset + 8));
s390_cpu_halt(cpu);
guest_panicked();
}
| true | qemu | 5f5b5942d56a138baad0ae01458d5d0e62d5be68 |
5,721 | static int cook_decode_init(AVCodecContext *avctx)
{
COOKextradata *e = (COOKextradata *)avctx->extradata;
COOKContext *q = avctx->priv_data;
/* Take care of the codec specific extradata. */
if (avctx->extradata_size <= 0) {
av_log(avctx,AV_LOG_ERROR,"Necessary extradata missing!\n");
return -1;
} else {
/* 8 for mono, 16 for stereo, ? for multichannel
Swap to right endianness so we don't need to care later on. */
av_log(avctx,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
if (avctx->extradata_size >= 8){
e->cookversion = be2me_32(e->cookversion);
e->samples_per_frame = be2me_16(e->samples_per_frame);
e->subbands = be2me_16(e->subbands);
}
if (avctx->extradata_size >= 16){
e->js_subband_start = be2me_16(e->js_subband_start);
e->js_vlc_bits = be2me_16(e->js_vlc_bits);
}
}
/* Take data from the AVCodecContext (RM container). */
q->sample_rate = avctx->sample_rate;
q->nb_channels = avctx->channels;
q->bit_rate = avctx->bit_rate;
/* Initialize state. */
q->random_state = 1;
/* Initialize extradata related variables. */
q->samples_per_channel = e->samples_per_frame / q->nb_channels;
q->samples_per_frame = e->samples_per_frame;
q->subbands = e->subbands;
q->bits_per_subpacket = avctx->block_align * 8;
/* Initialize default data states. */
q->js_subband_start = 0;
q->log2_numvector_size = 5;
q->total_subbands = q->subbands;
/* Initialize version-dependent variables */
av_log(NULL,AV_LOG_DEBUG,"e->cookversion=%x\n",e->cookversion);
q->joint_stereo = 0;
switch (e->cookversion) {
case MONO:
if (q->nb_channels != 1) {
av_log(avctx,AV_LOG_ERROR,"Container channels != 1, report sample!\n");
return -1;
}
av_log(avctx,AV_LOG_DEBUG,"MONO\n");
break;
case STEREO:
if (q->nb_channels != 1) {
q->bits_per_subpacket = q->bits_per_subpacket/2;
}
av_log(avctx,AV_LOG_DEBUG,"STEREO\n");
break;
case JOINT_STEREO:
if (q->nb_channels != 2) {
av_log(avctx,AV_LOG_ERROR,"Container channels != 2, report sample!\n");
return -1;
}
av_log(avctx,AV_LOG_DEBUG,"JOINT_STEREO\n");
if (avctx->extradata_size >= 16){
q->total_subbands = q->subbands + e->js_subband_start;
q->js_subband_start = e->js_subband_start;
q->joint_stereo = 1;
q->js_vlc_bits = e->js_vlc_bits;
}
if (q->samples_per_channel > 256) {
q->log2_numvector_size = 6;
}
if (q->samples_per_channel > 512) {
q->log2_numvector_size = 7;
}
break;
case MC_COOK:
av_log(avctx,AV_LOG_ERROR,"MC_COOK not supported!\n");
return -1;
break;
default:
av_log(avctx,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");
return -1;
break;
}
/* Initialize variable relations */
q->mlt_size = q->samples_per_channel;
q->numvector_size = (1 << q->log2_numvector_size);
/* Generate tables */
init_rootpow2table(q);
init_pow2table(q);
init_gain_table(q);
if (init_cook_vlc_tables(q) != 0)
return -1;
if(avctx->block_align >= UINT_MAX/2)
return -1;
/* Pad the databuffer with:
DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
if (q->nb_channels==2 && q->joint_stereo==0) {
q->decoded_bytes_buffer =
av_mallocz(avctx->block_align/2
+ DECODE_BYTES_PAD2(avctx->block_align/2)
+ FF_INPUT_BUFFER_PADDING_SIZE);
} else {
q->decoded_bytes_buffer =
av_mallocz(avctx->block_align
+ DECODE_BYTES_PAD1(avctx->block_align)
+ FF_INPUT_BUFFER_PADDING_SIZE);
}
if (q->decoded_bytes_buffer == NULL)
return -1;
q->gain_ptr1[0] = &q->gain_1;
q->gain_ptr1[1] = &q->gain_2;
q->gain_ptr2[0] = &q->gain_3;
q->gain_ptr2[1] = &q->gain_4;
/* Initialize transform. */
if ( init_cook_mlt(q) == 0 )
return -1;
/* Try to catch some obviously faulty streams, othervise it might be exploitable */
if (q->total_subbands > 53) {
av_log(avctx,AV_LOG_ERROR,"total_subbands > 53, report sample!\n");
return -1;
}
if (q->subbands > 50) {
av_log(avctx,AV_LOG_ERROR,"subbands > 50, report sample!\n");
return -1;
}
if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) {
} else {
av_log(avctx,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q->samples_per_channel);
return -1;
}
#ifdef COOKDEBUG
dump_cook_context(q,e);
#endif
return 0;
}
| false | FFmpeg | 862be28b192185d094d96bbc24d9be43e2b22106 |
5,722 | static void decode_clnpass(Jpeg2000DecoderContext *s, Jpeg2000T1Context *t1,
int width, int height, int bpno, int bandno,
int seg_symbols, int vert_causal_ctx_csty_symbol)
{
int mask = 3 << (bpno - 1), y0, x, y, runlen, dec;
for (y0 = 0; y0 < height; y0 += 4) {
for (x = 0; x < width; x++) {
int flags_mask = -1;
if (vert_causal_ctx_csty_symbol)
flags_mask &= ~(JPEG2000_T1_SIG_S | JPEG2000_T1_SIG_SW | JPEG2000_T1_SIG_SE | JPEG2000_T1_SGN_S);
if (y0 + 3 < height &&
!((t1->flags[y0 + 1][x + 1] & (JPEG2000_T1_SIG_NB | JPEG2000_T1_VIS | JPEG2000_T1_SIG)) ||
(t1->flags[y0 + 2][x + 1] & (JPEG2000_T1_SIG_NB | JPEG2000_T1_VIS | JPEG2000_T1_SIG)) ||
(t1->flags[y0 + 3][x + 1] & (JPEG2000_T1_SIG_NB | JPEG2000_T1_VIS | JPEG2000_T1_SIG)) ||
(t1->flags[y0 + 4][x + 1] & (JPEG2000_T1_SIG_NB | JPEG2000_T1_VIS | JPEG2000_T1_SIG) & flags_mask))) {
if (!ff_mqc_decode(&t1->mqc, t1->mqc.cx_states + MQC_CX_RL))
continue;
runlen = ff_mqc_decode(&t1->mqc,
t1->mqc.cx_states + MQC_CX_UNI);
runlen = (runlen << 1) | ff_mqc_decode(&t1->mqc,
t1->mqc.cx_states +
MQC_CX_UNI);
dec = 1;
} else {
runlen = 0;
dec = 0;
}
for (y = y0 + runlen; y < y0 + 4 && y < height; y++) {
int flags_mask = -1;
if (vert_causal_ctx_csty_symbol && y == y0 + 3)
flags_mask &= ~(JPEG2000_T1_SIG_S | JPEG2000_T1_SIG_SW | JPEG2000_T1_SIG_SE | JPEG2000_T1_SGN_S);
if (!dec) {
if (!(t1->flags[y+1][x+1] & (JPEG2000_T1_SIG | JPEG2000_T1_VIS))) {
dec = ff_mqc_decode(&t1->mqc, t1->mqc.cx_states + ff_jpeg2000_getsigctxno(t1->flags[y+1][x+1] & flags_mask,
bandno));
}
}
if (dec) {
int xorbit;
int ctxno = ff_jpeg2000_getsgnctxno(t1->flags[y + 1][x + 1] & flags_mask,
&xorbit);
t1->data[y][x] = (ff_mqc_decode(&t1->mqc,
t1->mqc.cx_states + ctxno) ^
xorbit)
? -mask : mask;
ff_jpeg2000_set_significance(t1, x, y, t1->data[y][x] < 0);
}
dec = 0;
t1->flags[y + 1][x + 1] &= ~JPEG2000_T1_VIS;
}
}
}
if (seg_symbols) {
int val;
val = ff_mqc_decode(&t1->mqc, t1->mqc.cx_states + MQC_CX_UNI);
val = (val << 1) + ff_mqc_decode(&t1->mqc, t1->mqc.cx_states + MQC_CX_UNI);
val = (val << 1) + ff_mqc_decode(&t1->mqc, t1->mqc.cx_states + MQC_CX_UNI);
val = (val << 1) + ff_mqc_decode(&t1->mqc, t1->mqc.cx_states + MQC_CX_UNI);
if (val != 0xa)
av_log(s->avctx, AV_LOG_ERROR,
"Segmentation symbol value incorrect\n");
}
}
| false | FFmpeg | f1e173049ecc9de03817385ba8962d14cba779db |
5,723 | static int hls_write_packet(AVFormatContext *s, AVPacket *pkt)
{
HLSContext *hls = s->priv_data;
AVFormatContext *oc = NULL;
AVStream *st = s->streams[pkt->stream_index];
int64_t end_pts = 0;
int is_ref_pkt = 1;
int ret = 0, can_split = 1, i, j;
int stream_index = 0;
int range_length = 0;
uint8_t *buffer = NULL;
VariantStream *vs = NULL;
for (i = 0; i < hls->nb_varstreams; i++) {
vs = &hls->var_streams[i];
for (j = 0; j < vs->nb_streams; j++) {
if (vs->streams[j] == st) {
if( st->codecpar->codec_type == AVMEDIA_TYPE_SUBTITLE ) {
oc = vs->vtt_avf;
stream_index = 0;
} else {
oc = vs->avf;
stream_index = j;
}
break;
}
}
if (oc)
break;
}
if (!oc) {
av_log(s, AV_LOG_ERROR, "Unable to find mapping variant stream\n");
return AVERROR(ENOMEM);
}
end_pts = hls->recording_time * vs->number;
if (vs->sequence - vs->nb_entries > hls->start_sequence && hls->init_time > 0) {
/* reset end_pts, hls->recording_time at end of the init hls list */
int init_list_dur = hls->init_time * vs->nb_entries * AV_TIME_BASE;
int after_init_list_dur = (vs->sequence - vs->nb_entries ) * hls->time * AV_TIME_BASE;
hls->recording_time = hls->time * AV_TIME_BASE;
end_pts = init_list_dur + after_init_list_dur ;
}
if (vs->start_pts == AV_NOPTS_VALUE) {
vs->start_pts = pkt->pts;
vs->end_pts = pkt->pts;
}
if (vs->has_video) {
can_split = st->codecpar->codec_type == AVMEDIA_TYPE_VIDEO &&
((pkt->flags & AV_PKT_FLAG_KEY) || (hls->flags & HLS_SPLIT_BY_TIME));
is_ref_pkt = st->codecpar->codec_type == AVMEDIA_TYPE_VIDEO;
}
if (pkt->pts == AV_NOPTS_VALUE)
is_ref_pkt = can_split = 0;
if (is_ref_pkt) {
if (vs->new_start) {
vs->new_start = 0;
vs->duration = (double)(pkt->pts - vs->end_pts)
* st->time_base.num / st->time_base.den;
vs->dpp = (double)(pkt->duration) * st->time_base.num / st->time_base.den;
} else {
if (pkt->duration) {
vs->duration += (double)(pkt->duration) * st->time_base.num / st->time_base.den;
} else {
av_log(s, AV_LOG_WARNING, "pkt->duration = 0, maybe the hls segment duration will not precise\n");
vs->duration = (double)(pkt->pts - vs->end_pts) * st->time_base.num / st->time_base.den;
}
}
}
if (vs->packets_written && can_split && av_compare_ts(pkt->pts - vs->start_pts, st->time_base,
end_pts, AV_TIME_BASE_Q) >= 0) {
int64_t new_start_pos;
char *old_filename = av_strdup(vs->avf->filename);
int byterange_mode = (hls->flags & HLS_SINGLE_FILE) || (hls->max_seg_size > 0);
if (!old_filename) {
return AVERROR(ENOMEM);
}
av_write_frame(vs->avf, NULL); /* Flush any buffered data */
new_start_pos = avio_tell(vs->avf->pb);
vs->size = new_start_pos - vs->start_pos;
if (!byterange_mode) {
if (hls->segment_type == SEGMENT_TYPE_FMP4 && !vs->init_range_length) {
avio_flush(oc->pb);
range_length = avio_close_dyn_buf(oc->pb, &buffer);
avio_write(vs->out, buffer, range_length);
vs->init_range_length = range_length;
avio_open_dyn_buf(&oc->pb);
vs->packets_written = 0;
ff_format_io_close(s, &vs->out);
} else {
ff_format_io_close(s, &oc->pb);
}
if (vs->vtt_avf) {
ff_format_io_close(s, &vs->vtt_avf->pb);
}
}
if ((hls->flags & HLS_TEMP_FILE) && oc->filename[0]) {
if (!(hls->flags & HLS_SINGLE_FILE) || (hls->max_seg_size <= 0))
if ((vs->avf->oformat->priv_class && vs->avf->priv_data) && hls->segment_type != SEGMENT_TYPE_FMP4)
av_opt_set(vs->avf->priv_data, "mpegts_flags", "resend_headers", 0);
hls_rename_temp_file(s, oc);
}
if (vs->fmp4_init_mode) {
vs->number--;
}
if (!vs->fmp4_init_mode || byterange_mode)
ret = hls_append_segment(s, hls, vs, vs->duration, vs->start_pos, vs->size);
vs->start_pos = new_start_pos;
if (ret < 0) {
av_free(old_filename);
return ret;
}
vs->end_pts = pkt->pts;
vs->duration = 0;
vs->fmp4_init_mode = 0;
if (hls->flags & HLS_SINGLE_FILE) {
vs->number++;
} else if (hls->max_seg_size > 0) {
if (vs->start_pos >= hls->max_seg_size) {
vs->sequence++;
sls_flag_file_rename(hls, vs, old_filename);
ret = hls_start(s, vs);
vs->start_pos = 0;
/* When split segment by byte, the duration is short than hls_time,
* so it is not enough one segment duration as hls_time, */
vs->number--;
}
vs->number++;
} else {
sls_flag_file_rename(hls, vs, old_filename);
ret = hls_start(s, vs);
}
av_free(old_filename);
if (ret < 0) {
return ret;
}
if (!vs->fmp4_init_mode || byterange_mode)
if ((ret = hls_window(s, 0, vs)) < 0) {
return ret;
}
}
vs->packets_written++;
ret = ff_write_chained(oc, stream_index, pkt, s, 0);
return ret;
}
| true | FFmpeg | d5d2632e3a0f1709290834fd35457cd05cf48bc8 |
5,724 | void sample_dump(int fnum, int32_t *tab, int n)
{
static FILE *files[16], *f;
char buf[512];
int i;
int32_t v;
f = files[fnum];
if (!f) {
snprintf(buf, sizeof(buf), "/tmp/out%d.%s.pcm",
fnum,
#ifdef USE_HIGHPRECISION
"hp"
#else
"lp"
#endif
);
f = fopen(buf, "w");
if (!f)
return;
files[fnum] = f;
}
if (fnum == 0) {
static int pos = 0;
printf("pos=%d\n", pos);
for(i=0;i<n;i++) {
printf(" %0.4f", (double)tab[i] / FRAC_ONE);
if ((i % 18) == 17)
printf("\n");
}
pos += n;
}
for(i=0;i<n;i++) {
/* normalize to 23 frac bits */
v = tab[i] << (23 - FRAC_BITS);
fwrite(&v, 1, sizeof(int32_t), f);
}
}
| true | FFmpeg | 84af4a7ee6f938c6466c8d795ead0e6ee8ed486d |
5,725 | int ff_vdpau_mpeg_end_frame(AVCodecContext *avctx)
{
AVVDPAUContext *hwctx = avctx->hwaccel_context;
MpegEncContext *s = avctx->priv_data;
Picture *pic = s->current_picture_ptr;
struct vdpau_picture_context *pic_ctx = pic->hwaccel_picture_private;
VdpVideoSurface surf = ff_vdpau_get_surface_id(&pic->f);
hwctx->render(hwctx->decoder, surf, (void *)&pic_ctx->info,
pic_ctx->bitstream_buffers_used, pic_ctx->bitstream_buffers);
ff_mpeg_draw_horiz_band(s, 0, s->avctx->height);
av_freep(&pic_ctx->bitstream_buffers);
return 0;
}
| true | FFmpeg | f6774f905fb3cfdc319523ac640be30b14c1bc55 |
5,726 | static void skip_data_stream_element(GetBitContext *gb)
{
int byte_align = get_bits1(gb);
int count = get_bits(gb, 8);
if (count == 255)
count += get_bits(gb, 8);
if (byte_align)
align_get_bits(gb);
skip_bits_long(gb, 8 * count);
}
| true | FFmpeg | 8d637124864dcf8bf367ab96e572d6c7cf043675 |
5,727 | NetQueue *qemu_new_net_queue(void *opaque)
{
NetQueue *queue;
queue = g_malloc0(sizeof(NetQueue));
queue->opaque = opaque;
QTAILQ_INIT(&queue->packets);
queue->delivering = 0;
return queue;
} | true | qemu | 7d91ddd25e3a4e5008a2ac16127d51a34fd56bf1 |
5,728 | static void gen_dmfc0(DisasContext *ctx, TCGv arg, int reg, int sel)
{
const char *rn = "invalid";
if (sel != 0)
check_insn(ctx, ISA_MIPS64);
switch (reg) {
case 0:
switch (sel) {
case 0:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Index));
rn = "Index";
case 1:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mfc0_mvpcontrol(arg, cpu_env);
rn = "MVPControl";
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mfc0_mvpconf0(arg, cpu_env);
rn = "MVPConf0";
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mfc0_mvpconf1(arg, cpu_env);
rn = "MVPConf1";
CP0_CHECK(ctx->vp);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_VPControl));
rn = "VPControl";
default:
goto cp0_unimplemented;
}
case 1:
switch (sel) {
case 0:
CP0_CHECK(!(ctx->insn_flags & ISA_MIPS32R6));
gen_helper_mfc0_random(arg, cpu_env);
rn = "Random";
case 1:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_VPEControl));
rn = "VPEControl";
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_VPEConf0));
rn = "VPEConf0";
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_VPEConf1));
rn = "VPEConf1";
CP0_CHECK(ctx->insn_flags & ASE_MT);
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_YQMask));
rn = "YQMask";
case 5:
CP0_CHECK(ctx->insn_flags & ASE_MT);
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_VPESchedule));
rn = "VPESchedule";
case 6:
CP0_CHECK(ctx->insn_flags & ASE_MT);
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_VPEScheFBack));
rn = "VPEScheFBack";
case 7:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_VPEOpt));
rn = "VPEOpt";
default:
goto cp0_unimplemented;
}
switch (sel) {
case 0:
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_EntryLo0));
rn = "EntryLo0";
case 1:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mfc0_tcstatus(arg, cpu_env);
rn = "TCStatus";
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_mfc0_tcbind(arg, cpu_env);
rn = "TCBind";
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_dmfc0_tcrestart(arg, cpu_env);
rn = "TCRestart";
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_dmfc0_tchalt(arg, cpu_env);
rn = "TCHalt";
case 5:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_dmfc0_tccontext(arg, cpu_env);
rn = "TCContext";
case 6:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_dmfc0_tcschedule(arg, cpu_env);
rn = "TCSchedule";
case 7:
CP0_CHECK(ctx->insn_flags & ASE_MT);
gen_helper_dmfc0_tcschefback(arg, cpu_env);
rn = "TCScheFBack";
default:
goto cp0_unimplemented;
}
switch (sel) {
case 0:
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_EntryLo1));
rn = "EntryLo1";
case 1:
CP0_CHECK(ctx->vp);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_GlobalNumber));
rn = "GlobalNumber";
default:
goto cp0_unimplemented;
}
switch (sel) {
case 0:
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_Context));
rn = "Context";
case 1:
// gen_helper_dmfc0_contextconfig(arg); /* SmartMIPS ASE */
rn = "ContextConfig";
goto cp0_unimplemented;
CP0_CHECK(ctx->ulri);
tcg_gen_ld_tl(arg, cpu_env,
offsetof(CPUMIPSState, active_tc.CP0_UserLocal));
rn = "UserLocal";
default:
goto cp0_unimplemented;
}
case 5:
switch (sel) {
case 0:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_PageMask));
rn = "PageMask";
case 1:
check_insn(ctx, ISA_MIPS32R2);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_PageGrain));
rn = "PageGrain";
default:
goto cp0_unimplemented;
}
case 6:
switch (sel) {
case 0:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Wired));
rn = "Wired";
case 1:
check_insn(ctx, ISA_MIPS32R2);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SRSConf0));
rn = "SRSConf0";
check_insn(ctx, ISA_MIPS32R2);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SRSConf1));
rn = "SRSConf1";
check_insn(ctx, ISA_MIPS32R2);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SRSConf2));
rn = "SRSConf2";
check_insn(ctx, ISA_MIPS32R2);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SRSConf3));
rn = "SRSConf3";
case 5:
check_insn(ctx, ISA_MIPS32R2);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SRSConf4));
rn = "SRSConf4";
default:
goto cp0_unimplemented;
}
case 7:
switch (sel) {
case 0:
check_insn(ctx, ISA_MIPS32R2);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_HWREna));
rn = "HWREna";
default:
goto cp0_unimplemented;
}
case 8:
switch (sel) {
case 0:
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_BadVAddr));
rn = "BadVAddr";
case 1:
CP0_CHECK(ctx->bi);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_BadInstr));
rn = "BadInstr";
CP0_CHECK(ctx->bp);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_BadInstrP));
rn = "BadInstrP";
default:
goto cp0_unimplemented;
}
case 9:
switch (sel) {
case 0:
/* Mark as an IO operation because we read the time. */
if (ctx->tb->cflags & CF_USE_ICOUNT) {
gen_io_start();
}
gen_helper_mfc0_count(arg, cpu_env);
if (ctx->tb->cflags & CF_USE_ICOUNT) {
gen_io_end();
}
/* Break the TB to be able to take timer interrupts immediately
after reading count. */
ctx->bstate = BS_STOP;
rn = "Count";
/* 6,7 are implementation dependent */
default:
goto cp0_unimplemented;
}
case 10:
switch (sel) {
case 0:
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_EntryHi));
rn = "EntryHi";
default:
goto cp0_unimplemented;
}
case 11:
switch (sel) {
case 0:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Compare));
rn = "Compare";
/* 6,7 are implementation dependent */
default:
goto cp0_unimplemented;
}
case 12:
switch (sel) {
case 0:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Status));
rn = "Status";
case 1:
check_insn(ctx, ISA_MIPS32R2);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_IntCtl));
rn = "IntCtl";
check_insn(ctx, ISA_MIPS32R2);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SRSCtl));
rn = "SRSCtl";
check_insn(ctx, ISA_MIPS32R2);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SRSMap));
rn = "SRSMap";
default:
goto cp0_unimplemented;
}
case 13:
switch (sel) {
case 0:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Cause));
rn = "Cause";
default:
goto cp0_unimplemented;
}
case 14:
switch (sel) {
case 0:
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_EPC));
rn = "EPC";
default:
goto cp0_unimplemented;
}
case 15:
switch (sel) {
case 0:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_PRid));
rn = "PRid";
case 1:
check_insn(ctx, ISA_MIPS32R2);
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_EBase));
rn = "EBase";
check_insn(ctx, ISA_MIPS32R2);
CP0_CHECK(ctx->cmgcr);
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_CMGCRBase));
rn = "CMGCRBase";
default:
goto cp0_unimplemented;
}
case 16:
switch (sel) {
case 0:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config0));
rn = "Config";
case 1:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config1));
rn = "Config1";
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config2));
rn = "Config2";
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config3));
rn = "Config3";
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config4));
rn = "Config4";
case 5:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config5));
rn = "Config5";
/* 6,7 are implementation dependent */
case 6:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config6));
rn = "Config6";
case 7:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config7));
rn = "Config7";
default:
goto cp0_unimplemented;
}
case 17:
switch (sel) {
case 0:
gen_helper_dmfc0_lladdr(arg, cpu_env);
rn = "LLAddr";
case 1:
CP0_CHECK(ctx->mrp);
gen_helper_dmfc0_maar(arg, cpu_env);
rn = "MAAR";
CP0_CHECK(ctx->mrp);
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_MAARI));
rn = "MAARI";
default:
goto cp0_unimplemented;
}
case 18:
switch (sel) {
case 0 ... 7:
gen_helper_1e0i(dmfc0_watchlo, arg, sel);
rn = "WatchLo";
default:
goto cp0_unimplemented;
}
case 19:
switch (sel) {
case 0 ... 7:
gen_helper_1e0i(mfc0_watchhi, arg, sel);
rn = "WatchHi";
default:
goto cp0_unimplemented;
}
case 20:
switch (sel) {
case 0:
check_insn(ctx, ISA_MIPS3);
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_XContext));
rn = "XContext";
default:
goto cp0_unimplemented;
}
case 21:
/* Officially reserved, but sel 0 is used for R1x000 framemask */
CP0_CHECK(!(ctx->insn_flags & ISA_MIPS32R6));
switch (sel) {
case 0:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Framemask));
rn = "Framemask";
default:
goto cp0_unimplemented;
}
case 22:
tcg_gen_movi_tl(arg, 0); /* unimplemented */
rn = "'Diagnostic"; /* implementation dependent */
case 23:
switch (sel) {
case 0:
gen_helper_mfc0_debug(arg, cpu_env); /* EJTAG support */
rn = "Debug";
case 1:
// gen_helper_dmfc0_tracecontrol(arg, cpu_env); /* PDtrace support */
rn = "TraceControl";
goto cp0_unimplemented;
// gen_helper_dmfc0_tracecontrol2(arg, cpu_env); /* PDtrace support */
rn = "TraceControl2";
goto cp0_unimplemented;
// gen_helper_dmfc0_usertracedata(arg, cpu_env); /* PDtrace support */
rn = "UserTraceData";
goto cp0_unimplemented;
// gen_helper_dmfc0_tracebpc(arg, cpu_env); /* PDtrace support */
rn = "TraceBPC";
goto cp0_unimplemented;
default:
goto cp0_unimplemented;
}
case 24:
switch (sel) {
case 0:
/* EJTAG support */
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_DEPC));
rn = "DEPC";
default:
goto cp0_unimplemented;
}
case 25:
switch (sel) {
case 0:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Performance0));
rn = "Performance0";
case 1:
// gen_helper_dmfc0_performance1(arg);
rn = "Performance1";
goto cp0_unimplemented;
// gen_helper_dmfc0_performance2(arg);
rn = "Performance2";
goto cp0_unimplemented;
// gen_helper_dmfc0_performance3(arg);
rn = "Performance3";
goto cp0_unimplemented;
// gen_helper_dmfc0_performance4(arg);
rn = "Performance4";
goto cp0_unimplemented;
case 5:
// gen_helper_dmfc0_performance5(arg);
rn = "Performance5";
goto cp0_unimplemented;
case 6:
// gen_helper_dmfc0_performance6(arg);
rn = "Performance6";
goto cp0_unimplemented;
case 7:
// gen_helper_dmfc0_performance7(arg);
rn = "Performance7";
goto cp0_unimplemented;
default:
goto cp0_unimplemented;
}
case 26:
switch (sel) {
case 0:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_ErrCtl));
rn = "ErrCtl";
default:
goto cp0_unimplemented;
}
case 27:
switch (sel) {
/* ignored */
case 0 ... 3:
tcg_gen_movi_tl(arg, 0); /* unimplemented */
rn = "CacheErr";
default:
goto cp0_unimplemented;
}
case 28:
switch (sel) {
case 0:
case 6:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_TagLo));
rn = "TagLo";
case 1:
case 5:
case 7:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_DataLo));
rn = "DataLo";
default:
goto cp0_unimplemented;
}
case 29:
switch (sel) {
case 0:
case 6:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_TagHi));
rn = "TagHi";
case 1:
case 5:
case 7:
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_DataHi));
rn = "DataHi";
default:
goto cp0_unimplemented;
}
case 30:
switch (sel) {
case 0:
tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_ErrorEPC));
rn = "ErrorEPC";
default:
goto cp0_unimplemented;
}
case 31:
switch (sel) {
case 0:
/* EJTAG support */
gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_DESAVE));
rn = "DESAVE";
case 2 ... 7:
CP0_CHECK(ctx->kscrexist & (1 << sel));
tcg_gen_ld_tl(arg, cpu_env,
offsetof(CPUMIPSState, CP0_KScratch[sel-2]));
rn = "KScratch";
default:
goto cp0_unimplemented;
}
default:
goto cp0_unimplemented;
}
trace_mips_translate_c0("dmfc0", rn, reg, sel);
return;
cp0_unimplemented:
qemu_log_mask(LOG_UNIMP, "dmfc0 %s (reg %d sel %d)\n", rn, reg, sel);
gen_mfc0_unimplemented(ctx, arg);
} | true | qemu | cec56a733dd2c3fa81dbedbecf03922258747f7d |
5,730 | static inline uint16_t mipsdsp_trunc16_sat16_round(int32_t a,
CPUMIPSState *env)
{
int64_t temp;
temp = (int32_t)a + 0x00008000;
if (a > (int)0x7fff8000) {
temp = 0x7FFFFFFF;
set_DSPControl_overflow_flag(1, 22, env);
}
return (temp >> 16) & 0xFFFF;
}
| true | qemu | d36c231f4b7386bd8230aa17d362b925aa419b2f |
5,732 | static void celt_pvq_search(float *X, int *y, int K, int N)
{
int i;
float res = 0.0f, y_norm = 0.0f, xy_norm = 0.0f;
for (i = 0; i < N; i++)
res += FFABS(X[i]);
res = K/res;
for (i = 0; i < N; i++) {
y[i] = lrintf(res*X[i]);
y_norm += y[i]*y[i];
xy_norm += y[i]*X[i];
K -= FFABS(y[i]);
}
while (K) {
int max_idx = 0, phase = FFSIGN(K);
float max_den = 1.0f, max_num = 0.0f;
y_norm += 1.0f;
for (i = 0; i < N; i++) {
float xy_new = xy_norm + 1*phase*FFABS(X[i]);
float y_new = y_norm + 2*phase*FFABS(y[i]);
xy_new = xy_new * xy_new;
/* FIXME: the y[i] check makes the search slightly worse at Ks below 5 */
if (y[i] && (max_den*xy_new) > (y_new*max_num)) {
max_den = y_new;
max_num = xy_new;
max_idx = i;
}
}
K -= phase;
phase *= FFSIGN(X[max_idx]);
xy_norm += 1*phase*X[max_idx];
y_norm += 2*phase*y[max_idx];
y[max_idx] += phase;
}
}
| false | FFmpeg | 22b8ada7b5e0a1ef58b21cf8e481e0c2b28ce94e |
5,733 | static int rtsp_read_seek(AVFormatContext *s, int stream_index,
int64_t timestamp, int flags)
{
RTSPState *rt = s->priv_data;
rt->seek_timestamp = av_rescale_q(timestamp, s->streams[stream_index]->time_base, AV_TIME_BASE_Q);
switch(rt->state) {
default:
case RTSP_STATE_IDLE:
break;
case RTSP_STATE_PLAYING:
if (rtsp_read_pause(s) != 0)
return -1;
rt->state = RTSP_STATE_SEEKING;
if (rtsp_read_play(s) != 0)
return -1;
break;
case RTSP_STATE_PAUSED:
rt->state = RTSP_STATE_IDLE;
break;
}
return 0;
}
| false | FFmpeg | c89658008705d949c319df3fa6f400c481ad73e1 |
5,734 | static inline void RENAME(yuy2ToY)(uint8_t *dst, const uint8_t *src, long width, uint32_t *unused)
{
#if COMPILE_TEMPLATE_MMX
__asm__ volatile(
"movq "MANGLE(bm01010101)", %%mm2 \n\t"
"mov %0, %%"REG_a" \n\t"
"1: \n\t"
"movq (%1, %%"REG_a",2), %%mm0 \n\t"
"movq 8(%1, %%"REG_a",2), %%mm1 \n\t"
"pand %%mm2, %%mm0 \n\t"
"pand %%mm2, %%mm1 \n\t"
"packuswb %%mm1, %%mm0 \n\t"
"movq %%mm0, (%2, %%"REG_a") \n\t"
"add $8, %%"REG_a" \n\t"
" js 1b \n\t"
: : "g" ((x86_reg)-width), "r" (src+width*2), "r" (dst+width)
: "%"REG_a
);
#else
int i;
for (i=0; i<width; i++)
dst[i]= src[2*i];
#endif
}
| false | FFmpeg | d1adad3cca407f493c3637e20ecd4f7124e69212 |
5,735 | static int load_input_picture(MpegEncContext *s, AVFrame *pic_arg){
AVFrame *pic=NULL;
int64_t pts;
int i;
const int encoding_delay= s->max_b_frames;
int direct=1;
if(pic_arg){
pts= pic_arg->pts;
pic_arg->display_picture_number= s->input_picture_number++;
if(pts != AV_NOPTS_VALUE){
if(s->user_specified_pts != AV_NOPTS_VALUE){
int64_t time= pts;
int64_t last= s->user_specified_pts;
if(time <= last){
av_log(s->avctx, AV_LOG_ERROR, "Error, Invalid timestamp=%"PRId64", last=%"PRId64"\n", pts, s->user_specified_pts);
return -1;
}
}
s->user_specified_pts= pts;
}else{
if(s->user_specified_pts != AV_NOPTS_VALUE){
s->user_specified_pts=
pts= s->user_specified_pts + 1;
av_log(s->avctx, AV_LOG_INFO, "Warning: AVFrame.pts=? trying to guess (%"PRId64")\n", pts);
}else{
pts= pic_arg->display_picture_number;
}
}
}
if(pic_arg){
if(encoding_delay && !(s->flags&CODEC_FLAG_INPUT_PRESERVED)) direct=0;
if(pic_arg->linesize[0] != s->linesize) direct=0;
if(pic_arg->linesize[1] != s->uvlinesize) direct=0;
if(pic_arg->linesize[2] != s->uvlinesize) direct=0;
// av_log(AV_LOG_DEBUG, "%d %d %d %d\n",pic_arg->linesize[0], pic_arg->linesize[1], s->linesize, s->uvlinesize);
if(direct){
i= ff_find_unused_picture(s, 1);
pic= (AVFrame*)&s->picture[i];
pic->reference= 3;
for(i=0; i<4; i++){
pic->data[i]= pic_arg->data[i];
pic->linesize[i]= pic_arg->linesize[i];
}
ff_alloc_picture(s, (Picture*)pic, 1);
}else{
i= ff_find_unused_picture(s, 0);
pic= (AVFrame*)&s->picture[i];
pic->reference= 3;
ff_alloc_picture(s, (Picture*)pic, 0);
if( pic->data[0] + INPLACE_OFFSET == pic_arg->data[0]
&& pic->data[1] + INPLACE_OFFSET == pic_arg->data[1]
&& pic->data[2] + INPLACE_OFFSET == pic_arg->data[2]){
// empty
}else{
int h_chroma_shift, v_chroma_shift;
avcodec_get_chroma_sub_sample(s->avctx->pix_fmt, &h_chroma_shift, &v_chroma_shift);
for(i=0; i<3; i++){
int src_stride= pic_arg->linesize[i];
int dst_stride= i ? s->uvlinesize : s->linesize;
int h_shift= i ? h_chroma_shift : 0;
int v_shift= i ? v_chroma_shift : 0;
int w= s->width >>h_shift;
int h= s->height>>v_shift;
uint8_t *src= pic_arg->data[i];
uint8_t *dst= pic->data[i];
if(!s->avctx->rc_buffer_size)
dst +=INPLACE_OFFSET;
if(src_stride==dst_stride)
memcpy(dst, src, src_stride*h);
else{
while(h--){
memcpy(dst, src, w);
dst += dst_stride;
src += src_stride;
}
}
}
}
}
copy_picture_attributes(s, pic, pic_arg);
pic->pts= pts; //we set this here to avoid modifiying pic_arg
}
/* shift buffer entries */
for(i=1; i<MAX_PICTURE_COUNT /*s->encoding_delay+1*/; i++)
s->input_picture[i-1]= s->input_picture[i];
s->input_picture[encoding_delay]= (Picture*)pic;
return 0;
}
| false | FFmpeg | be548816dc05c7e7a07659d499f1005fc0bc1d55 |
5,736 | static inline void MPV_motion_lowres(MpegEncContext *s,
uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
int dir, uint8_t **ref_picture,
h264_chroma_mc_func *pix_op)
{
int mx, my;
int mb_x, mb_y, i;
const int lowres= s->avctx->lowres;
const int block_s= 8>>lowres;
mb_x = s->mb_x;
mb_y = s->mb_y;
switch(s->mv_type) {
case MV_TYPE_16X16:
mpeg_motion_lowres(s, dest_y, dest_cb, dest_cr,
0, 0, 0,
ref_picture, pix_op,
s->mv[dir][0][0], s->mv[dir][0][1], 2*block_s);
break;
case MV_TYPE_8X8:
mx = 0;
my = 0;
for(i=0;i<4;i++) {
hpel_motion_lowres(s, dest_y + ((i & 1) + (i >> 1) * s->linesize)*block_s,
ref_picture[0], 0, 0,
(2*mb_x + (i & 1))*block_s, (2*mb_y + (i >>1))*block_s,
s->width, s->height, s->linesize,
s->h_edge_pos >> lowres, s->v_edge_pos >> lowres,
block_s, block_s, pix_op,
s->mv[dir][i][0], s->mv[dir][i][1]);
mx += s->mv[dir][i][0];
my += s->mv[dir][i][1];
}
if(!(s->flags&CODEC_FLAG_GRAY))
chroma_4mv_motion_lowres(s, dest_cb, dest_cr, ref_picture, pix_op, mx, my);
break;
case MV_TYPE_FIELD:
if (s->picture_structure == PICT_FRAME) {
/* top field */
mpeg_motion_lowres(s, dest_y, dest_cb, dest_cr,
1, 0, s->field_select[dir][0],
ref_picture, pix_op,
s->mv[dir][0][0], s->mv[dir][0][1], block_s);
/* bottom field */
mpeg_motion_lowres(s, dest_y, dest_cb, dest_cr,
1, 1, s->field_select[dir][1],
ref_picture, pix_op,
s->mv[dir][1][0], s->mv[dir][1][1], block_s);
} else {
if(s->picture_structure != s->field_select[dir][0] + 1 && s->pict_type != B_TYPE && !s->first_field){
ref_picture= s->current_picture_ptr->data;
}
mpeg_motion_lowres(s, dest_y, dest_cb, dest_cr,
0, 0, s->field_select[dir][0],
ref_picture, pix_op,
s->mv[dir][0][0], s->mv[dir][0][1], 2*block_s);
}
break;
case MV_TYPE_16X8:
for(i=0; i<2; i++){
uint8_t ** ref2picture;
if(s->picture_structure == s->field_select[dir][i] + 1 || s->pict_type == B_TYPE || s->first_field){
ref2picture= ref_picture;
}else{
ref2picture= s->current_picture_ptr->data;
}
mpeg_motion_lowres(s, dest_y, dest_cb, dest_cr,
0, 0, s->field_select[dir][i],
ref2picture, pix_op,
s->mv[dir][i][0], s->mv[dir][i][1] + 2*block_s*i, block_s);
dest_y += 2*block_s*s->linesize;
dest_cb+= (2*block_s>>s->chroma_y_shift)*s->uvlinesize;
dest_cr+= (2*block_s>>s->chroma_y_shift)*s->uvlinesize;
}
break;
case MV_TYPE_DMV:
if(s->picture_structure == PICT_FRAME){
for(i=0; i<2; i++){
int j;
for(j=0; j<2; j++){
mpeg_motion_lowres(s, dest_y, dest_cb, dest_cr,
1, j, j^i,
ref_picture, pix_op,
s->mv[dir][2*i + j][0], s->mv[dir][2*i + j][1], block_s);
}
pix_op = s->dsp.avg_h264_chroma_pixels_tab;
}
}else{
for(i=0; i<2; i++){
mpeg_motion_lowres(s, dest_y, dest_cb, dest_cr,
0, 0, s->picture_structure != i+1,
ref_picture, pix_op,
s->mv[dir][2*i][0],s->mv[dir][2*i][1],2*block_s);
// after put we make avg of the same block
pix_op = s->dsp.avg_h264_chroma_pixels_tab;
//opposite parity is always in the same frame if this is second field
if(!s->first_field){
ref_picture = s->current_picture_ptr->data;
}
}
}
break;
default: assert(0);
}
}
| false | FFmpeg | cde9e7800128f5466d97279918e1d20fc250a33b |
5,737 | static int jpeg2000_decode_packets(Jpeg2000DecoderContext *s, Jpeg2000Tile *tile)
{
int ret, i;
int tp_index = 0;
s->bit_index = 8;
if (tile->poc.nb_poc) {
for (i=0; i<tile->poc.nb_poc; i++) {
Jpeg2000POCEntry *e = &tile->poc.poc[i];
ret = jpeg2000_decode_packets_po_iteration(s, tile,
e->RSpoc, e->CSpoc,
e->LYEpoc, e->REpoc, e->CEpoc,
e->Ppoc, &tp_index
);
if (ret < 0)
return ret;
}
} else {
ret = jpeg2000_decode_packets_po_iteration(s, tile,
0, 0,
tile->codsty[0].nlayers,
33,
s->ncomponents,
tile->codsty[0].prog_order,
&tp_index
);
}
/* EOC marker reached */
bytestream2_skip(&s->g, 2);
return ret;
}
| false | FFmpeg | 8672c0a6436c9fc9d107617cf28cafe09ad3d9a5 |
5,738 | static int blk_prw(BlockBackend *blk, int64_t offset, uint8_t *buf,
int64_t bytes, CoroutineEntry co_entry,
BdrvRequestFlags flags)
{
AioContext *aio_context;
QEMUIOVector qiov;
struct iovec iov;
Coroutine *co;
BlkRwCo rwco;
iov = (struct iovec) {
.iov_base = buf,
.iov_len = bytes,
};
qemu_iovec_init_external(&qiov, &iov, 1);
rwco = (BlkRwCo) {
.blk = blk,
.offset = offset,
.qiov = &qiov,
.flags = flags,
.ret = NOT_DONE,
};
co = qemu_coroutine_create(co_entry);
qemu_coroutine_enter(co, &rwco);
aio_context = blk_get_aio_context(blk);
while (rwco.ret == NOT_DONE) {
aio_poll(aio_context, true);
}
return rwco.ret;
}
| true | qemu | 0b8b8753e4d94901627b3e86431230f2319215c4 |
5,739 | static void gen_spr_thrm (CPUPPCState *env)
{
/* Thermal management */
/* XXX : not implemented */
spr_register(env, SPR_THRM1, "THRM1",
SPR_NOACCESS, SPR_NOACCESS,
&spr_read_generic, &spr_write_generic,
0x00000000);
/* XXX : not implemented */
spr_register(env, SPR_THRM2, "THRM2",
SPR_NOACCESS, SPR_NOACCESS,
&spr_read_generic, &spr_write_generic,
0x00000000);
/* XXX : not implemented */
spr_register(env, SPR_THRM3, "THRM3",
SPR_NOACCESS, SPR_NOACCESS,
&spr_read_generic, &spr_write_generic,
0x00000000);
}
| true | qemu | f0278900d38b2d8d9531c484bd088d9a7d5d4ea2 |
5,740 | static int pix_sum_altivec(uint8_t *pix, int line_size)
{
int i, s;
const vector unsigned int zero =
(const vector unsigned int) vec_splat_u32(0);
vector unsigned int sad = (vector unsigned int) vec_splat_u32(0);
vector signed int sumdiffs;
for (i = 0; i < 16; i++) {
/* Read the potentially unaligned 16 pixels into t1. */
//vector unsigned char pixl = vec_ld(0, pix);
//vector unsigned char pixr = vec_ld(15, pix);
//vector unsigned char t1 = vec_perm(pixl, pixr, perm);
vector unsigned char t1 = vec_vsx_ld(0, pix);
/* Add each 4 pixel group together and put 4 results into sad. */
sad = vec_sum4s(t1, sad);
pix += line_size;
}
/* Sum up the four partial sums, and put the result into s. */
sumdiffs = vec_sums((vector signed int) sad, (vector signed int) zero);
sumdiffs = vec_splat(sumdiffs, 3);
vec_vsx_st(sumdiffs, 0, &s);
return s;
}
| true | FFmpeg | 840c3c05316a59c70a7470ed27aaa9c2f3ba410a |
5,742 | static void mb_cpu_initfn(Object *obj)
{
CPUState *cs = CPU(obj);
MicroBlazeCPU *cpu = MICROBLAZE_CPU(obj);
CPUMBState *env = &cpu->env;
static bool tcg_initialized;
cs->env_ptr = env;
cpu_exec_init(cs, &error_abort);
set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
#ifndef CONFIG_USER_ONLY
/* Inbound IRQ and FIR lines */
qdev_init_gpio_in(DEVICE(cpu), microblaze_cpu_set_irq, 2);
#endif
if (tcg_enabled() && !tcg_initialized) {
tcg_initialized = true;
mb_tcg_init();
}
}
| true | qemu | ce5b1bbf624b977a55ff7f85bb3871682d03baff |
5,743 | int bdrv_create(BlockDriver *drv, const char* filename,
QemuOpts *opts, Error **errp)
{
int ret;
Coroutine *co;
CreateCo cco = {
.drv = drv,
.filename = g_strdup(filename),
.opts = opts,
.ret = NOT_DONE,
.err = NULL,
};
if (!drv->bdrv_create) {
error_setg(errp, "Driver '%s' does not support image creation", drv->format_name);
ret = -ENOTSUP;
goto out;
}
if (qemu_in_coroutine()) {
/* Fast-path if already in coroutine context */
bdrv_create_co_entry(&cco);
} else {
co = qemu_coroutine_create(bdrv_create_co_entry);
qemu_coroutine_enter(co, &cco);
while (cco.ret == NOT_DONE) {
aio_poll(qemu_get_aio_context(), true);
}
}
ret = cco.ret;
if (ret < 0) {
if (cco.err) {
error_propagate(errp, cco.err);
} else {
error_setg_errno(errp, -ret, "Could not create image");
}
}
out:
g_free(cco.filename);
return ret;
}
| true | qemu | 0b8b8753e4d94901627b3e86431230f2319215c4 |
5,744 | ssize_t qsb_get_buffer(const QEMUSizedBuffer *qsb, off_t start,
size_t count, uint8_t *buffer)
{
const struct iovec *iov;
size_t to_copy, all_copy;
ssize_t index;
off_t s_off;
off_t d_off = 0;
char *s;
if (start > qsb->used) {
return 0;
}
all_copy = qsb->used - start;
if (all_copy > count) {
all_copy = count;
} else {
count = all_copy;
}
index = qsb_get_iovec(qsb, start, &s_off);
if (index < 0) {
return 0;
}
while (all_copy > 0) {
iov = &qsb->iov[index];
s = iov->iov_base;
to_copy = iov->iov_len - s_off;
if (to_copy > all_copy) {
to_copy = all_copy;
}
memcpy(&buffer[d_off], &s[s_off], to_copy);
d_off += to_copy;
all_copy -= to_copy;
s_off = 0;
index++;
}
return count;
}
| true | qemu | 60fe637bf0e4d7989e21e50f52526444765c63b4 |
5,745 | static void vfio_probe_ati_bar4_quirk(VFIOPCIDevice *vdev, int nr)
{
VFIOQuirk *quirk;
VFIOConfigWindowQuirk *window;
/* This windows doesn't seem to be used except by legacy VGA code */
if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
!vdev->has_vga || nr != 4) {
return;
}
quirk = g_malloc0(sizeof(*quirk));
quirk->mem = g_malloc0(sizeof(MemoryRegion) * 2);
quirk->nr_mem = 2;
window = quirk->data = g_malloc0(sizeof(*window) +
sizeof(VFIOConfigWindowMatch));
window->vdev = vdev;
window->address_offset = 0;
window->data_offset = 4;
window->nr_matches = 1;
window->matches[0].match = 0x4000;
window->matches[0].mask = PCIE_CONFIG_SPACE_SIZE - 1;
window->bar = nr;
window->addr_mem = &quirk->mem[0];
window->data_mem = &quirk->mem[1];
memory_region_init_io(window->addr_mem, OBJECT(vdev),
&vfio_generic_window_address_quirk, window,
"vfio-ati-bar4-window-address-quirk", 4);
memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
window->address_offset,
window->addr_mem, 1);
memory_region_init_io(window->data_mem, OBJECT(vdev),
&vfio_generic_window_data_quirk, window,
"vfio-ati-bar4-window-data-quirk", 4);
memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
window->data_offset,
window->data_mem, 1);
QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
trace_vfio_quirk_ati_bar4_probe(vdev->vbasedev.name);
}
| true | qemu | bdd81addf4033ce26e6cd180b060f63095f3ded9 |
5,746 | static void scsi_read_data(SCSIDevice *d, uint32_t tag)
{
SCSIDiskState *s = DO_UPCAST(SCSIDiskState, qdev, d);
SCSIDiskReq *r;
r = scsi_find_request(s, tag);
if (!r) {
BADF("Bad read tag 0x%x\n", tag);
/* ??? This is the wrong error. */
scsi_command_complete(r, CHECK_CONDITION, HARDWARE_ERROR);
return;
}
scsi_read_request(r);
}
| true | qemu | 5c6c0e513600ba57c3e73b7151d3c0664438f7b5 |
5,747 | static inline void mix_3f_1r_to_dolby(AC3DecodeContext *ctx)
{
int i;
float (*output)[256] = ctx->audio_block.block_output;
for (i = 0; i < 256; i++) {
output[1][i] += (output[2][i] - output[4][i]);
output[2][i] += (output[3][i] + output[4][i]);
}
memset(output[3], 0, sizeof(output[3]));
memset(output[4], 0, sizeof(output[4]));
}
| false | FFmpeg | 486637af8ef29ec215e0e0b7ecd3b5470f0e04e5 |
5,748 | static int has_codec_parameters(AVCodecContext *enc)
{
int val;
switch(enc->codec_type) {
case CODEC_TYPE_AUDIO:
val = enc->sample_rate;
break;
case CODEC_TYPE_VIDEO:
val = enc->width && enc->pix_fmt != PIX_FMT_NONE;
break;
default:
val = 1;
break;
}
return (val != 0);
}
| false | FFmpeg | 3303926c2f06841270281e7f5210c0c94292e089 |
5,749 | static int test_vector_fmul_scalar(AVFloatDSPContext *fdsp, AVFloatDSPContext *cdsp,
const float *v1, float scale)
{
LOCAL_ALIGNED(32, float, cdst, [LEN]);
LOCAL_ALIGNED(32, float, odst, [LEN]);
int ret;
cdsp->vector_fmul_scalar(cdst, v1, scale, LEN);
fdsp->vector_fmul_scalar(odst, v1, scale, LEN);
if (ret = compare_floats(cdst, odst, LEN, FLT_EPSILON))
av_log(NULL, AV_LOG_ERROR, "vector_fmul_scalar failed\n");
return ret;
}
| false | FFmpeg | e53c9065ca08a9153ecc73a6a8940bcc6d667e58 |
5,750 | static void smp_parse(QemuOpts *opts)
{
if (opts) {
unsigned cpus = qemu_opt_get_number(opts, "cpus", 0);
unsigned sockets = qemu_opt_get_number(opts, "sockets", 0);
unsigned cores = qemu_opt_get_number(opts, "cores", 0);
unsigned threads = qemu_opt_get_number(opts, "threads", 0);
/* compute missing values, prefer sockets over cores over threads */
if (cpus == 0 || sockets == 0) {
sockets = sockets > 0 ? sockets : 1;
cores = cores > 0 ? cores : 1;
threads = threads > 0 ? threads : 1;
if (cpus == 0) {
cpus = cores * threads * sockets;
}
} else if (cores == 0) {
threads = threads > 0 ? threads : 1;
cores = cpus / (sockets * threads);
} else if (threads == 0) {
threads = cpus / (cores * sockets);
} else if (sockets * cores * threads < cpus) {
fprintf(stderr, "cpu topology: error: "
"sockets (%u) * cores (%u) * threads (%u) < "
"smp_cpus (%u)\n",
sockets, cores, threads, cpus);
exit(1);
}
max_cpus = qemu_opt_get_number(opts, "maxcpus", 0);
smp_cpus = cpus;
smp_cores = cores > 0 ? cores : 1;
smp_threads = threads > 0 ? threads : 1;
}
if (max_cpus == 0) {
max_cpus = smp_cpus;
}
if (max_cpus > MAX_CPUMASK_BITS) {
fprintf(stderr, "Unsupported number of maxcpus\n");
exit(1);
}
if (max_cpus < smp_cpus) {
fprintf(stderr, "maxcpus must be equal to or greater than smp\n");
exit(1);
}
}
| true | qemu | a32ef3bfc12c8d0588f43f74dcc5280885bbdb30 |
5,751 | static void interface_set_client_capabilities(QXLInstance *sin,
uint8_t client_present,
uint8_t caps[58])
{
PCIQXLDevice *qxl = container_of(sin, PCIQXLDevice, ssd.qxl);
qxl->shadow_rom.client_present = client_present;
memcpy(qxl->shadow_rom.client_capabilities, caps, sizeof(caps));
qxl->rom->client_present = client_present;
memcpy(qxl->rom->client_capabilities, caps, sizeof(caps));
qxl_rom_set_dirty(qxl);
qxl_send_events(qxl, QXL_INTERRUPT_CLIENT); | true | qemu | ab902981cf4d46834d82eb095f2b9ab159e017bf |
5,752 | AUXReply aux_request(AUXBus *bus, AUXCommand cmd, uint32_t address,
uint8_t len, uint8_t *data)
{
AUXReply ret = AUX_NACK;
I2CBus *i2c_bus = aux_get_i2c_bus(bus);
size_t i;
bool is_write = false;
DPRINTF("request at address 0x%" PRIX32 ", command %u, len %u\n", address,
cmd, len);
switch (cmd) {
/*
* Forward the request on the AUX bus..
*/
case WRITE_AUX:
case READ_AUX:
is_write = cmd == READ_AUX ? false : true;
for (i = 0; i < len; i++) {
if (!address_space_rw(&bus->aux_addr_space, address++,
MEMTXATTRS_UNSPECIFIED, data++, 1,
is_write)) {
ret = AUX_I2C_ACK;
} else {
ret = AUX_NACK;
break;
}
}
break;
/*
* Classic I2C transactions..
*/
case READ_I2C:
case WRITE_I2C:
is_write = cmd == READ_I2C ? false : true;
if (i2c_bus_busy(i2c_bus)) {
i2c_end_transfer(i2c_bus);
}
if (i2c_start_transfer(i2c_bus, address, is_write)) {
ret = AUX_I2C_NACK;
break;
}
ret = AUX_I2C_ACK;
while (len > 0) {
if (i2c_send_recv(i2c_bus, data++, is_write) < 0) {
ret = AUX_I2C_NACK;
break;
}
len--;
}
i2c_end_transfer(i2c_bus);
break;
/*
* I2C MOT transactions.
*
* Here we send a start when:
* - We didn't start transaction yet.
* - We had a READ and we do a WRITE.
* - We changed the address.
*/
case WRITE_I2C_MOT:
case READ_I2C_MOT:
is_write = cmd == READ_I2C_MOT ? false : true;
ret = AUX_I2C_NACK;
if (!i2c_bus_busy(i2c_bus)) {
/*
* No transactions started..
*/
if (i2c_start_transfer(i2c_bus, address, is_write)) {
break;
}
} else if ((address != bus->last_i2c_address) ||
(bus->last_transaction != cmd)) {
/*
* Transaction started but we need to restart..
*/
i2c_end_transfer(i2c_bus);
if (i2c_start_transfer(i2c_bus, address, is_write)) {
break;
}
}
bus->last_transaction = cmd;
bus->last_i2c_address = address;
while (len > 0) {
if (i2c_send_recv(i2c_bus, data++, is_write) < 0) {
i2c_end_transfer(i2c_bus);
break;
}
len--;
}
if (len == 0) {
ret = AUX_I2C_ACK;
}
break;
default:
DPRINTF("Not implemented!\n");
return AUX_NACK;
}
DPRINTF("reply: %u\n", ret);
return ret;
}
| true | qemu | e0dadc1e9ef1f35208e5d2af9c7740c18a0b769f |
5,753 | static sd_rsp_type_t sd_app_command(SDState *sd,
SDRequest req)
{
DPRINTF("ACMD%d 0x%08x\n", req.cmd, req.arg);
switch (req.cmd) {
case 6: /* ACMD6: SET_BUS_WIDTH */
switch (sd->state) {
case sd_transfer_state:
sd->sd_status[0] &= 0x3f;
sd->sd_status[0] |= (req.arg & 0x03) << 6;
return sd_r1;
default:
break;
}
break;
case 13: /* ACMD13: SD_STATUS */
switch (sd->state) {
case sd_transfer_state:
sd->state = sd_sendingdata_state;
sd->data_start = 0;
sd->data_offset = 0;
return sd_r1;
default:
break;
}
break;
case 22: /* ACMD22: SEND_NUM_WR_BLOCKS */
switch (sd->state) {
case sd_transfer_state:
*(uint32_t *) sd->data = sd->blk_written;
sd->state = sd_sendingdata_state;
sd->data_start = 0;
sd->data_offset = 0;
return sd_r1;
default:
break;
}
break;
case 23: /* ACMD23: SET_WR_BLK_ERASE_COUNT */
switch (sd->state) {
case sd_transfer_state:
return sd_r1;
default:
break;
}
break;
case 41: /* ACMD41: SD_APP_OP_COND */
if (sd->spi) {
/* SEND_OP_CMD */
sd->state = sd_transfer_state;
return sd_r1;
}
switch (sd->state) {
case sd_idle_state:
/* We accept any voltage. 10000 V is nothing. */
if (req.arg)
sd->state = sd_ready_state;
return sd_r3;
default:
break;
}
break;
case 42: /* ACMD42: SET_CLR_CARD_DETECT */
switch (sd->state) {
case sd_transfer_state:
/* Bringing in the 50KOhm pull-up resistor... Done. */
return sd_r1;
default:
break;
}
break;
case 51: /* ACMD51: SEND_SCR */
switch (sd->state) {
case sd_transfer_state:
sd->state = sd_sendingdata_state;
sd->data_start = 0;
sd->data_offset = 0;
return sd_r1;
default:
break;
}
break;
default:
/* Fall back to standard commands. */
sd->card_status &= ~APP_CMD;
return sd_normal_command(sd, req);
}
fprintf(stderr, "SD: ACMD%i in a wrong state\n", req.cmd);
return sd_illegal;
}
| true | qemu | 1d06cb7ab93f879ac25c9f5ef1d1ac8d97a42dfc |
5,756 | static int smc91c111_can_receive(NetClientState *nc)
{
smc91c111_state *s = qemu_get_nic_opaque(nc);
if ((s->rcr & RCR_RXEN) == 0 || (s->rcr & RCR_SOFT_RST))
return 1;
if (s->allocated == (1 << NUM_PACKETS) - 1)
return 0;
return 1;
}
| true | qemu | 8d06b149271cbd5b19bed5bde8da5ecef40ecbc6 |
5,758 | static ssize_t mp_dacl_listxattr(FsContext *ctx, const char *path,
char *name, void *value, size_t osize)
{
ssize_t len = sizeof(ACL_DEFAULT);
if (!value) {
return len;
}
if (osize < len) {
errno = ERANGE;
return -1;
}
/* len includes the trailing NUL */
memcpy(value, ACL_ACCESS, len);
return 0;
}
| true | qemu | 9005c3b3efb7eb1b140d2ad0385efff6a3af59c4 |
5,759 | static int vc1_decode_p_mb(VC1Context *v, DCTELEM block[6][64])
{
MpegEncContext *s = &v->s;
GetBitContext *gb = &s->gb;
int i, j;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
int cbp; /* cbp decoding stuff */
int mqdiff, mquant; /* MB quantization */
int ttmb = v->ttfrm; /* MB Transform type */
int status;
static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
offset_table[6] = { 0, 1, 3, 7, 15, 31 };
int mb_has_coeffs = 1; /* last_flag */
int dmv_x, dmv_y; /* Differential MV components */
int index, index1; /* LUT indices */
int val, sign; /* temp values */
int first_block = 1;
int dst_idx, off;
int skipped, fourmv;
mquant = v->pq; /* Loosy initialization */
if (v->mv_type_is_raw)
fourmv = get_bits1(gb);
else
fourmv = v->mv_type_mb_plane[mb_pos];
if (v->skip_is_raw)
skipped = get_bits1(gb);
else
skipped = v->s.mbskip_table[mb_pos];
s->dsp.clear_blocks(s->block[0]);
if (!fourmv) /* 1MV mode */
{
if (!skipped)
{
GET_MVDATA(dmv_x, dmv_y);
s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
/* FIXME Set DC val for inter block ? */
if (s->mb_intra && !mb_has_coeffs)
{
GET_MQUANT();
s->ac_pred = get_bits(gb, 1);
cbp = 0;
}
else if (mb_has_coeffs)
{
if (s->mb_intra) s->ac_pred = get_bits(gb, 1);
cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
GET_MQUANT();
}
else
{
mquant = v->pq;
cbp = 0;
}
s->current_picture.qscale_table[mb_pos] = mquant;
if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table,
VC1_TTMB_VLC_BITS, 2);
if(!s->mb_intra) vc1_mc_1mv(v);
dst_idx = 0;
for (i=0; i<6; i++)
{
s->dc_val[0][s->block_index[i]] = 0;
dst_idx += i >> 2;
val = ((cbp >> (5 - i)) & 1);
off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
v->mb_type[0][s->block_index[i]] = s->mb_intra;
if(s->mb_intra) {
/* check if prediction blocks A and C are available */
v->a_avail = v->c_avail = 0;
if(i == 2 || i == 3 || s->mb_y)
v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
if(i == 1 || i == 3 || s->mb_x)
v->c_avail = v->mb_type[0][s->block_index[i] - 1];
vc1_decode_intra_block(v, block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
vc1_inv_trans(block[i], 8, 8);
for(j = 0; j < 64; j++) block[i][j] += 128;
s->dsp.put_pixels_clamped(block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
/* TODO: proper loop filtering */
if(v->pq >= 9 && v->overlap) {
if(v->a_avail)
s->dsp.h263_v_loop_filter(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), s->y_dc_scale);
if(v->c_avail)
s->dsp.h263_h_loop_filter(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), s->y_dc_scale);
}
} else if(val) {
vc1_decode_p_block(v, block[i], i, mquant, ttmb, first_block);
if(!v->ttmbf && ttmb < 8) ttmb = -1;
first_block = 0;
s->dsp.add_pixels_clamped(block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
}
}
}
else //Skipped
{
s->mb_intra = 0;
for(i = 0; i < 6; i++) v->mb_type[0][s->block_index[i]] = 0;
s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
s->current_picture.qscale_table[mb_pos] = 0;
vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
vc1_mc_1mv(v);
return 0;
}
} //1MV mode
else //4MV mode
{
if (!skipped /* unskipped MB */)
{
int intra_count = 0, coded_inter = 0;
int is_intra[6], is_coded[6];
/* Get CBPCY */
cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
for (i=0; i<6; i++)
{
val = ((cbp >> (5 - i)) & 1);
s->dc_val[0][s->block_index[i]] = 0;
s->mb_intra = 0;
if(i < 4) {
dmv_x = dmv_y = 0;
s->mb_intra = 0;
mb_has_coeffs = 0;
if(val) {
GET_MVDATA(dmv_x, dmv_y);
}
vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
intra_count += s->mb_intra;
is_intra[i] = s->mb_intra;
is_coded[i] = mb_has_coeffs;
}
if(i&4){
is_intra[i] = (intra_count >= 3);
is_coded[i] = val;
}
if(i == 4) vc1_mc_4mv_chroma(v);
v->mb_type[0][s->block_index[i]] = is_intra[i];
if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
}
dst_idx = 0;
GET_MQUANT();
s->current_picture.qscale_table[mb_pos] = mquant;
/* test if block is intra and has pred */
{
int intrapred = 0;
for(i=0; i<6; i++)
if(is_intra[i]) {
if(((s->mb_y || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
|| ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
intrapred = 1;
break;
}
}
if(intrapred)s->ac_pred = get_bits(gb, 1);
else s->ac_pred = 0;
}
if (!v->ttmbf && coded_inter)
ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 12);
for (i=0; i<6; i++)
{
dst_idx += i >> 2;
off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
s->mb_intra = is_intra[i];
if (is_intra[i]) {
/* check if prediction blocks A and C are available */
v->a_avail = v->c_avail = 0;
if(i == 2 || i == 3 || s->mb_y)
v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
if(i == 1 || i == 3 || s->mb_x)
v->c_avail = v->mb_type[0][s->block_index[i] - 1];
vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
vc1_inv_trans(block[i], 8, 8);
for(j = 0; j < 64; j++) block[i][j] += 128;
s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
/* TODO: proper loop filtering */
if(v->pq >= 9 && v->overlap) {
if(v->a_avail)
s->dsp.h263_v_loop_filter(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), s->y_dc_scale);
if(v->c_avail)
s->dsp.h263_h_loop_filter(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), s->y_dc_scale);
}
} else if(is_coded[i]) {
status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
if(!v->ttmbf && ttmb < 8) ttmb = -1;
first_block = 0;
s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
}
}
return status;
}
else //Skipped MB
{
s->mb_intra = 0;
for (i=0; i<6; i++) v->mb_type[0][s->block_index[i]] = 0;
for (i=0; i<4; i++)
{
vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
vc1_mc_4mv_luma(v, i);
}
vc1_mc_4mv_chroma(v);
s->current_picture.qscale_table[mb_pos] = 0;
return 0;
}
}
/* Should never happen */
return -1;
}
| false | FFmpeg | d2779ecd8b1fb9dc8a8f37a75ff8c3b077f3143e |
5,760 | int avfilter_parse_graph(AVFilterGraph *graph, const char *filters,
AVFilterInOut *open_inputs,
AVFilterInOut *open_outputs, AVClass *log_ctx)
{
int index = 0;
char chr = 0;
AVFilterInOut *curr_inputs = NULL;
do {
AVFilterContext *filter;
filters += consume_whitespace(filters);
if(parse_inputs(&filters, &curr_inputs, &open_outputs, log_ctx) < 0)
goto fail;
filter = parse_filter(&filters, graph, index, log_ctx);
if(!filter)
goto fail;
if(filter->input_count == 1 && !curr_inputs && !index) {
/* First input can be omitted if it is "[in]" */
const char *tmp = "[in]";
if(parse_inputs(&tmp, &curr_inputs, &open_outputs, log_ctx) < 0)
goto fail;
}
if(link_filter_inouts(filter, &curr_inputs, &open_inputs, log_ctx) < 0)
goto fail;
if(parse_outputs(&filters, &curr_inputs, &open_inputs, &open_outputs,
log_ctx) < 0)
goto fail;
filters += consume_whitespace(filters);
chr = *filters++;
if(chr == ';' && curr_inputs) {
av_log(log_ctx, AV_LOG_ERROR,
"Could not find a output to link when parsing \"%s\"\n",
filters - 1);
goto fail;
}
index++;
} while(chr == ',' || chr == ';');
if (*filters) {
av_log(log_ctx, AV_LOG_ERROR,
"Unable to parse graph description substring: \"%s\"\n",
filters - 1);
goto fail;
}
if(open_inputs && !strcmp(open_inputs->name, "out") && curr_inputs) {
/* Last output can be omitted if it is "[out]" */
const char *tmp = "[out]";
if(parse_outputs(&tmp, &curr_inputs, &open_inputs,
&open_outputs, log_ctx) < 0)
goto fail;
}
return 0;
fail:
avfilter_destroy_graph(graph);
free_inout(open_inputs);
free_inout(open_outputs);
free_inout(curr_inputs);
return -1;
}
| false | FFmpeg | fd51ff1643329dc294412bc5b146c08b19fa73e2 |
5,763 | int ff_mpv_frame_size_alloc(MpegEncContext *s, int linesize)
{
int alloc_size = FFALIGN(FFABS(linesize) + 64, 32);
// edge emu needs blocksize + filter length - 1
// (= 17x17 for halfpel / 21x21 for h264)
// VC1 computes luma and chroma simultaneously and needs 19X19 + 9x9
// at uvlinesize. It supports only YUV420 so 24x24 is enough
// linesize * interlaced * MBsize
FF_ALLOCZ_OR_GOTO(s->avctx, s->edge_emu_buffer, alloc_size * 4 * 24,
fail);
FF_ALLOCZ_OR_GOTO(s->avctx, s->me.scratchpad, alloc_size * 2 * 16 * 2,
fail)
s->me.temp = s->me.scratchpad;
s->rd_scratchpad = s->me.scratchpad;
s->b_scratchpad = s->me.scratchpad;
s->obmc_scratchpad = s->me.scratchpad + 16;
return 0;
fail:
av_freep(&s->edge_emu_buffer);
return AVERROR(ENOMEM);
}
| false | FFmpeg | 73db0bf1b06084022db5f42377b3b7960b3d3f5e |
5,764 | static av_cold int cook_decode_init(AVCodecContext *avctx)
{
COOKContext *q = avctx->priv_data;
const uint8_t *edata_ptr = avctx->extradata;
const uint8_t *edata_ptr_end = edata_ptr + avctx->extradata_size;
int extradata_size = avctx->extradata_size;
int s = 0;
unsigned int channel_mask = 0;
q->avctx = avctx;
/* Take care of the codec specific extradata. */
if (extradata_size <= 0) {
av_log(avctx,AV_LOG_ERROR,"Necessary extradata missing!\n");
return -1;
}
av_log(avctx,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
/* Take data from the AVCodecContext (RM container). */
q->sample_rate = avctx->sample_rate;
q->nb_channels = avctx->channels;
q->bit_rate = avctx->bit_rate;
/* Initialize RNG. */
av_lfg_init(&q->random_state, 0);
while(edata_ptr < edata_ptr_end){
/* 8 for mono, 16 for stereo, ? for multichannel
Swap to right endianness so we don't need to care later on. */
if (extradata_size >= 8){
q->subpacket[s].cookversion = bytestream_get_be32(&edata_ptr);
q->subpacket[s].samples_per_frame = bytestream_get_be16(&edata_ptr);
q->subpacket[s].subbands = bytestream_get_be16(&edata_ptr);
extradata_size -= 8;
}
if (avctx->extradata_size >= 8){
bytestream_get_be32(&edata_ptr); //Unknown unused
q->subpacket[s].js_subband_start = bytestream_get_be16(&edata_ptr);
q->subpacket[s].js_vlc_bits = bytestream_get_be16(&edata_ptr);
extradata_size -= 8;
}
/* Initialize extradata related variables. */
q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame / q->nb_channels;
q->subpacket[s].bits_per_subpacket = avctx->block_align * 8;
/* Initialize default data states. */
q->subpacket[s].log2_numvector_size = 5;
q->subpacket[s].total_subbands = q->subpacket[s].subbands;
q->subpacket[s].num_channels = 1;
/* Initialize version-dependent variables */
av_log(avctx,AV_LOG_DEBUG,"subpacket[%i].cookversion=%x\n",s,q->subpacket[s].cookversion);
q->subpacket[s].joint_stereo = 0;
switch (q->subpacket[s].cookversion) {
case MONO:
if (q->nb_channels != 1) {
av_log_ask_for_sample(avctx, "Container channels != 1.\n");
return -1;
}
av_log(avctx,AV_LOG_DEBUG,"MONO\n");
break;
case STEREO:
if (q->nb_channels != 1) {
q->subpacket[s].bits_per_subpdiv = 1;
q->subpacket[s].num_channels = 2;
}
av_log(avctx,AV_LOG_DEBUG,"STEREO\n");
break;
case JOINT_STEREO:
if (q->nb_channels != 2) {
av_log_ask_for_sample(avctx, "Container channels != 2.\n");
return -1;
}
av_log(avctx,AV_LOG_DEBUG,"JOINT_STEREO\n");
if (avctx->extradata_size >= 16){
q->subpacket[s].total_subbands = q->subpacket[s].subbands + q->subpacket[s].js_subband_start;
q->subpacket[s].joint_stereo = 1;
q->subpacket[s].num_channels = 2;
}
if (q->subpacket[s].samples_per_channel > 256) {
q->subpacket[s].log2_numvector_size = 6;
}
if (q->subpacket[s].samples_per_channel > 512) {
q->subpacket[s].log2_numvector_size = 7;
}
break;
case MC_COOK:
av_log(avctx,AV_LOG_DEBUG,"MULTI_CHANNEL\n");
if(extradata_size >= 4)
channel_mask |= q->subpacket[s].channel_mask = bytestream_get_be32(&edata_ptr);
if(cook_count_channels(q->subpacket[s].channel_mask) > 1){
q->subpacket[s].total_subbands = q->subpacket[s].subbands + q->subpacket[s].js_subband_start;
q->subpacket[s].joint_stereo = 1;
q->subpacket[s].num_channels = 2;
q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame >> 1;
if (q->subpacket[s].samples_per_channel > 256) {
q->subpacket[s].log2_numvector_size = 6;
}
if (q->subpacket[s].samples_per_channel > 512) {
q->subpacket[s].log2_numvector_size = 7;
}
}else
q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame;
break;
default:
av_log_ask_for_sample(avctx, "Unknown Cook version.\n");
return -1;
}
if(s > 1 && q->subpacket[s].samples_per_channel != q->samples_per_channel) {
av_log(avctx,AV_LOG_ERROR,"different number of samples per channel!\n");
return -1;
} else
q->samples_per_channel = q->subpacket[0].samples_per_channel;
/* Initialize variable relations */
q->subpacket[s].numvector_size = (1 << q->subpacket[s].log2_numvector_size);
/* Try to catch some obviously faulty streams, othervise it might be exploitable */
if (q->subpacket[s].total_subbands > 53) {
av_log_ask_for_sample(avctx, "total_subbands > 53\n");
return -1;
}
if ((q->subpacket[s].js_vlc_bits > 6) || (q->subpacket[s].js_vlc_bits < 0)) {
av_log(avctx,AV_LOG_ERROR,"js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q->subpacket[s].js_vlc_bits);
return -1;
}
if (q->subpacket[s].subbands > 50) {
av_log_ask_for_sample(avctx, "subbands > 50\n");
return -1;
}
q->subpacket[s].gains1.now = q->subpacket[s].gain_1;
q->subpacket[s].gains1.previous = q->subpacket[s].gain_2;
q->subpacket[s].gains2.now = q->subpacket[s].gain_3;
q->subpacket[s].gains2.previous = q->subpacket[s].gain_4;
q->num_subpackets++;
s++;
if (s > MAX_SUBPACKETS) {
av_log_ask_for_sample(avctx, "Too many subpackets > 5\n");
return -1;
}
}
/* Generate tables */
init_pow2table();
init_gain_table(q);
init_cplscales_table(q);
if (init_cook_vlc_tables(q) != 0)
return -1;
if(avctx->block_align >= UINT_MAX/2)
return -1;
/* Pad the databuffer with:
DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
q->decoded_bytes_buffer =
av_mallocz(avctx->block_align
+ DECODE_BYTES_PAD1(avctx->block_align)
+ FF_INPUT_BUFFER_PADDING_SIZE);
if (q->decoded_bytes_buffer == NULL)
return -1;
/* Initialize transform. */
if ( init_cook_mlt(q) != 0 )
return -1;
/* Initialize COOK signal arithmetic handling */
if (1) {
q->scalar_dequant = scalar_dequant_float;
q->decouple = decouple_float;
q->imlt_window = imlt_window_float;
q->interpolate = interpolate_float;
q->saturate_output = saturate_output_float;
}
/* Try to catch some obviously faulty streams, othervise it might be exploitable */
if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) {
} else {
av_log_ask_for_sample(avctx,
"unknown amount of samples_per_channel = %d\n",
q->samples_per_channel);
return -1;
}
avctx->sample_fmt = AV_SAMPLE_FMT_S16;
if (channel_mask)
avctx->channel_layout = channel_mask;
else
avctx->channel_layout = (avctx->channels==2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO;
#ifdef DEBUG
dump_cook_context(q);
#endif
return 0;
}
| false | FFmpeg | 352c878de6fca57a3f2a6369e27ca442fa5f9518 |
5,765 | static int http_read(URLContext *h, uint8_t *buf, int size)
{
HTTPContext *s = h->priv_data;
int size1, len;
size1 = size;
while (size > 0) {
/* read bytes from input buffer first */
len = s->buf_end - s->buf_ptr;
if (len > 0) {
if (len > size)
len = size;
memcpy(buf, s->buf_ptr, len);
s->buf_ptr += len;
} else {
len = url_read (s->hd, buf, size);
if (len < 0) {
return len;
} else if (len == 0) {
break;
}
}
size -= len;
buf += len;
}
return size1 - size;
}
| false | FFmpeg | 9eef2b77b29189606148e1fdf5d6c8d7b52b08b0 |
5,766 | static void dump_json_image_info_list(ImageInfoList *list)
{
Error *local_err = NULL;
QString *str;
QmpOutputVisitor *ov = qmp_output_visitor_new();
QObject *obj;
visit_type_ImageInfoList(qmp_output_get_visitor(ov), NULL, &list,
&local_err);
obj = qmp_output_get_qobject(ov);
str = qobject_to_json_pretty(obj);
assert(str != NULL);
printf("%s\n", qstring_get_str(str));
qobject_decref(obj);
qmp_output_visitor_cleanup(ov);
QDECREF(str);
}
| true | qemu | 911ee36d411ee9b3540855642b53219b6a974992 |
5,769 | static void setup_frame(int sig, struct target_sigaction *ka,
target_sigset_t *set, CPUS390XState *env)
{
sigframe *frame;
abi_ulong frame_addr;
frame_addr = get_sigframe(ka, env, sizeof(*frame));
qemu_log("%s: frame_addr 0x%llx\n", __FUNCTION__,
(unsigned long long)frame_addr);
if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) {
goto give_sigsegv;
}
qemu_log("%s: 1\n", __FUNCTION__);
if (__put_user(set->sig[0], &frame->sc.oldmask[0])) {
goto give_sigsegv;
}
save_sigregs(env, &frame->sregs);
__put_user((abi_ulong)(unsigned long)&frame->sregs,
(abi_ulong *)&frame->sc.sregs);
/* Set up to return from userspace. If provided, use a stub
already in userspace. */
if (ka->sa_flags & TARGET_SA_RESTORER) {
env->regs[14] = (unsigned long)
ka->sa_restorer | PSW_ADDR_AMODE;
} else {
env->regs[14] = (unsigned long)
frame->retcode | PSW_ADDR_AMODE;
if (__put_user(S390_SYSCALL_OPCODE | TARGET_NR_sigreturn,
(uint16_t *)(frame->retcode)))
goto give_sigsegv;
}
/* Set up backchain. */
if (__put_user(env->regs[15], (abi_ulong *) frame)) {
goto give_sigsegv;
}
/* Set up registers for signal handler */
env->regs[15] = frame_addr;
env->psw.addr = (target_ulong) ka->_sa_handler | PSW_ADDR_AMODE;
env->regs[2] = sig; //map_signal(sig);
env->regs[3] = frame_addr += offsetof(typeof(*frame), sc);
/* We forgot to include these in the sigcontext.
To avoid breaking binary compatibility, they are passed as args. */
env->regs[4] = 0; // FIXME: no clue... current->thread.trap_no;
env->regs[5] = 0; // FIXME: no clue... current->thread.prot_addr;
/* Place signal number on stack to allow backtrace from handler. */
if (__put_user(env->regs[2], (int *) &frame->signo)) {
goto give_sigsegv;
}
unlock_user_struct(frame, frame_addr, 1);
return;
give_sigsegv:
qemu_log("%s: give_sigsegv\n", __FUNCTION__);
unlock_user_struct(frame, frame_addr, 1);
force_sig(TARGET_SIGSEGV);
}
| true | qemu | 0188fadb7fe460d8c4c743372b1f7b25773e183e |
5,770 | av_cold void ff_vc2enc_free_transforms(VC2TransformContext *s)
{
av_freep(&s->buffer);
}
| true | FFmpeg | 3228ac730c11eca49d5680d5550128e397061c85 |
5,771 | static int find_snapshot_by_id_or_name(BlockDriverState *bs, const char *name)
{
BDRVQcowState *s = bs->opaque;
int i, ret;
ret = find_snapshot_by_id(bs, name);
if (ret >= 0)
return ret;
for(i = 0; i < s->nb_snapshots; i++) {
if (!strcmp(s->snapshots[i].name, name))
return i;
}
return -1;
}
| true | qemu | a89d89d3e65800fa4a8e00de7af0ea8272bef779 |
5,772 | void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector, int nr_sectors)
{
BdrvDirtyBitmap *bitmap;
QLIST_FOREACH(bitmap, &bs->dirty_bitmaps, list) {
hbitmap_reset(bitmap->bitmap, cur_sector, nr_sectors);
}
}
| true | qemu | c4237dfa635900e4d1cdc6038d5efe3507f45f0c |
5,773 | static av_cold int v410_encode_init(AVCodecContext *avctx)
{
if (avctx->width & 1) {
av_log(avctx, AV_LOG_ERROR, "v410 requires even width.\n");
return AVERROR_INVALIDDATA;
}
avctx->coded_frame = av_frame_alloc();
if (!avctx->coded_frame) {
av_log(avctx, AV_LOG_ERROR, "Could not allocate frame.\n");
return AVERROR(ENOMEM);
}
return 0;
}
| false | FFmpeg | d6604b29ef544793479d7fb4e05ef6622bb3e534 |
5,774 | static inline int svq3_decode_block(GetBitContext *gb, DCTELEM *block,
int index, const int type)
{
static const uint8_t *const scan_patterns[4] =
{ luma_dc_zigzag_scan, zigzag_scan, svq3_scan, chroma_dc_scan };
int run, level, sign, vlc, limit;
const int intra = (3 * type) >> 2;
const uint8_t *const scan = scan_patterns[type];
for (limit = (16 >> intra); index < 16; index = limit, limit += 8) {
for (; (vlc = svq3_get_ue_golomb(gb)) != 0; index++) {
if (vlc == INVALID_VLC)
return -1;
sign = (vlc & 0x1) - 1;
vlc = (vlc + 1) >> 1;
if (type == 3) {
if (vlc < 3) {
run = 0;
level = vlc;
} else if (vlc < 4) {
run = 1;
level = 1;
} else {
run = (vlc & 0x3);
level = ((vlc + 9) >> 2) - run;
}
} else {
if (vlc < 16) {
run = svq3_dct_tables[intra][vlc].run;
level = svq3_dct_tables[intra][vlc].level;
} else if (intra) {
run = (vlc & 0x7);
level = (vlc >> 3) + ((run == 0) ? 8 : ((run < 2) ? 2 : ((run < 5) ? 0 : -1)));
} else {
run = (vlc & 0xF);
level = (vlc >> 4) + ((run == 0) ? 4 : ((run < 3) ? 2 : ((run < 10) ? 1 : 0)));
}
}
if ((index += run) >= limit)
return -1;
block[scan[index]] = (level ^ sign) - sign;
}
if (type != 2) {
break;
}
}
return 0;
}
| false | FFmpeg | 979bea13003ef489d95d2538ac2fb1c26c6f103b |
5,775 | static void pci_device_class_init(ObjectClass *klass, void *data)
{
DeviceClass *k = DEVICE_CLASS(klass);
k->init = pci_qdev_init;
k->exit = pci_unregister_device;
k->bus_type = TYPE_PCI_BUS;
k->props = pci_props;
}
| true | qemu | 133e9b228df16d11de01529c217417e78d1d9370 |
5,776 | CharDriverState *qemu_chr_open(const char *label, const char *filename, void (*init)(struct CharDriverState *s))
{
const char *p;
CharDriverState *chr;
QemuOpts *opts;
if (strstart(filename, "chardev:", &p)) {
return qemu_chr_find(p);
}
opts = qemu_chr_parse_compat(label, filename);
if (!opts)
return NULL;
chr = qemu_chr_open_opts(opts, init);
if (chr && qemu_opt_get_bool(opts, "mux", 0)) {
monitor_init(chr, MONITOR_USE_READLINE);
}
return chr;
} | true | qemu | 363f8cb9bcd308bd03d28e04ea5f5557dea5d5e8 |
5,777 | static int print_drive(DeviceState *dev, Property *prop, char *dest, size_t len)
{
DriveInfo **ptr = qdev_get_prop_ptr(dev, prop);
return snprintf(dest, len, "%s", (*ptr)->id);
}
| true | qemu | 41b5e892b7dbf553b356b51004a6966233e71a6d |
5,778 | static int find_headers_search_validate(FLACParseContext *fpc, int offset)
{
FLACFrameInfo fi;
uint8_t *header_buf;
int size = 0;
header_buf = flac_fifo_read_wrap(fpc, offset,
MAX_FRAME_HEADER_SIZE,
&fpc->wrap_buf,
&fpc->wrap_buf_allocated_size);
if (frame_header_is_valid(fpc->avctx, header_buf, &fi)) {
FLACHeaderMarker **end_handle = &fpc->headers;
int i;
size = 0;
while (*end_handle) {
end_handle = &(*end_handle)->next;
size++;
*end_handle = av_mallocz(sizeof(**end_handle));
if (!*end_handle) {
av_log(fpc->avctx, AV_LOG_ERROR,
"couldn't allocate FLACHeaderMarker\n");
(*end_handle)->fi = fi;
(*end_handle)->offset = offset;
(*end_handle)->link_penalty = av_malloc(sizeof(int) *
FLAC_MAX_SEQUENTIAL_HEADERS);
for (i = 0; i < FLAC_MAX_SEQUENTIAL_HEADERS; i++)
(*end_handle)->link_penalty[i] = FLAC_HEADER_NOT_PENALIZED_YET;
fpc->nb_headers_found++;
size++;
return size; | true | FFmpeg | 6c3cb02a742f0ce32a85e86738a18e3d6d711d59 |
5,779 | void ppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr, Error **errp)
{
const CompatInfo *compat = compat_by_pvr(compat_pvr);
CPUPPCState *env = &cpu->env;
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
uint64_t pcr;
if (!compat_pvr) {
pcr = 0;
} else if (!compat) {
error_setg(errp, "Unknown compatibility PVR 0x%08"PRIx32, compat_pvr);
} else {
pcr = compat->pcr;
}
cpu->compat_pvr = compat_pvr;
env->spr[SPR_PCR] = pcr & pcc->pcr_mask;
if (kvm_enabled()) {
int ret = kvmppc_set_compat(cpu, cpu->compat_pvr);
if (ret < 0) {
error_setg_errno(errp, -ret,
"Unable to set CPU compatibility mode in KVM");
}
}
} | true | qemu | 9d2179d6f960aef1b8aab4d014fd8385f0a187e5 |
5,780 | static int mxf_timestamp_to_str(uint64_t timestamp, char **str)
{
struct tm time = { 0 };
time.tm_year = (timestamp >> 48) - 1900;
time.tm_mon = (timestamp >> 40 & 0xFF) - 1;
time.tm_mday = (timestamp >> 32 & 0xFF);
time.tm_hour = (timestamp >> 24 & 0xFF);
time.tm_min = (timestamp >> 16 & 0xFF);
time.tm_sec = (timestamp >> 8 & 0xFF);
*str = av_mallocz(32);
if (!*str)
return AVERROR(ENOMEM);
strftime(*str, 32, "%Y-%m-%d %H:%M:%S", &time);
return 0;
} | true | FFmpeg | 8cafeb8bca5d079041739dbd72ccec0ead138eaf |
5,782 | static int check_pkt(AVFormatContext *s, AVPacket *pkt)
{
MOVMuxContext *mov = s->priv_data;
MOVTrack *trk = &mov->tracks[pkt->stream_index];
if (trk->entry) {
int64_t duration = pkt->dts - trk->cluster[trk->entry - 1].dts;
if (duration < 0 || duration > INT_MAX) {
av_log(s, AV_LOG_ERROR, "Application provided duration: %"PRId64" / timestamp: %"PRId64" is out of range for mov/mp4 format\n",
duration, pkt->dts
);
pkt->dts = trk->cluster[trk->entry - 1].dts + 1;
pkt->pts = AV_NOPTS_VALUE;
}
} else if (pkt->dts <= INT_MIN || pkt->dts >= INT_MAX) {
av_log(s, AV_LOG_ERROR, "Application provided initial timestamp: %"PRId64" is out of range for mov/mp4 format\n",
pkt->dts
);
pkt->dts = 0;
pkt->pts = AV_NOPTS_VALUE;
}
if (pkt->duration < 0 || pkt->duration > INT_MAX) {
av_log(s, AV_LOG_ERROR, "Application provided duration: %"PRId64" is invalid\n", pkt->duration);
return AVERROR(EINVAL);
}
return 0;
}
| false | FFmpeg | 51000b994514e64a6c5039e179f20c9e24f87c45 |
5,783 | static int get_siz(Jpeg2000DecoderContext *s)
{
int i;
if (bytestream2_get_bytes_left(&s->g) < 36)
return AVERROR(EINVAL);
s->avctx->profile = bytestream2_get_be16u(&s->g); // Rsiz
s->width = bytestream2_get_be32u(&s->g); // Width
s->height = bytestream2_get_be32u(&s->g); // Height
s->image_offset_x = bytestream2_get_be32u(&s->g); // X0Siz
s->image_offset_y = bytestream2_get_be32u(&s->g); // Y0Siz
s->tile_width = bytestream2_get_be32u(&s->g); // XTSiz
s->tile_height = bytestream2_get_be32u(&s->g); // YTSiz
s->tile_offset_x = bytestream2_get_be32u(&s->g); // XT0Siz
s->tile_offset_y = bytestream2_get_be32u(&s->g); // YT0Siz
s->ncomponents = bytestream2_get_be16u(&s->g); // CSiz
if (s->ncomponents <= 0 || s->ncomponents > 4) {
av_log(s->avctx, AV_LOG_ERROR, "unsupported/invalid ncomponents: %d\n", s->ncomponents);
return AVERROR(EINVAL);
}
if (s->tile_width<=0 || s->tile_height<=0)
return AVERROR(EINVAL);
if (bytestream2_get_bytes_left(&s->g) < 3 * s->ncomponents)
return AVERROR(EINVAL);
for (i = 0; i < s->ncomponents; i++) { // Ssiz_i XRsiz_i, YRsiz_i
uint8_t x = bytestream2_get_byteu(&s->g);
s->cbps[i] = (x & 0x7f) + 1;
s->precision = FFMAX(s->cbps[i], s->precision);
s->sgnd[i] = !!(x & 0x80);
s->cdx[i] = bytestream2_get_byteu(&s->g);
s->cdy[i] = bytestream2_get_byteu(&s->g);
if (s->cdx[i] != 1 || s->cdy[i] != 1) {
av_log(s->avctx, AV_LOG_ERROR, "unsupported/ CDxy values %d %d for component %d\n", s->cdx[i], s->cdy[i], i);
if (!s->cdx[i] || !s->cdy[i])
return AVERROR_INVALIDDATA;
}
}
s->numXtiles = ff_jpeg2000_ceildiv(s->width - s->tile_offset_x, s->tile_width);
s->numYtiles = ff_jpeg2000_ceildiv(s->height - s->tile_offset_y, s->tile_height);
if (s->numXtiles * (uint64_t)s->numYtiles > INT_MAX/sizeof(Jpeg2000Tile))
return AVERROR(EINVAL);
s->tile = av_mallocz(s->numXtiles * s->numYtiles * sizeof(*s->tile));
if (!s->tile)
return AVERROR(ENOMEM);
for (i = 0; i < s->numXtiles * s->numYtiles; i++) {
Jpeg2000Tile *tile = s->tile + i;
tile->comp = av_mallocz(s->ncomponents * sizeof(*tile->comp));
if (!tile->comp)
return AVERROR(ENOMEM);
}
/* compute image size with reduction factor */
s->avctx->width = ff_jpeg2000_ceildivpow2(s->width - s->image_offset_x,
s->reduction_factor);
s->avctx->height = ff_jpeg2000_ceildivpow2(s->height - s->image_offset_y,
s->reduction_factor);
switch(s->ncomponents) {
case 1:
if (s->precision > 8)
s->avctx->pix_fmt = AV_PIX_FMT_GRAY16;
else
s->avctx->pix_fmt = AV_PIX_FMT_GRAY8;
break;
case 3:
switch (s->avctx->profile) {
case FF_PROFILE_JPEG2000_DCINEMA_2K:
case FF_PROFILE_JPEG2000_DCINEMA_4K:
/* XYZ color-space for digital cinema profiles */
s->avctx->pix_fmt = AV_PIX_FMT_XYZ12;
break;
default:
if (s->precision > 8)
s->avctx->pix_fmt = AV_PIX_FMT_RGB48;
else
s->avctx->pix_fmt = AV_PIX_FMT_RGB24;
break;
}
break;
case 4:
s->avctx->pix_fmt = AV_PIX_FMT_RGBA;
break;
default:
/* pixel format can not be identified */
s->avctx->pix_fmt = AV_PIX_FMT_NONE;
break;
}
return 0;
}
| false | FFmpeg | 129edcb50facad324d80a1e28b6d4be05ce70ab7 |
5,784 | void qemu_start_incoming_migration(const char *uri, Error **errp)
{
const char *p;
if (strstart(uri, "tcp:", &p))
tcp_start_incoming_migration(p, errp);
#ifdef CONFIG_RDMA
else if (strstart(uri, "rdma:", &p))
rdma_start_incoming_migration(p, errp);
#endif
#if !defined(WIN32)
else if (strstart(uri, "exec:", &p))
exec_start_incoming_migration(p, errp);
else if (strstart(uri, "unix:", &p))
unix_start_incoming_migration(p, errp);
else if (strstart(uri, "fd:", &p))
fd_start_incoming_migration(p, errp);
#endif
else {
error_setg(errp, "unknown migration protocol: %s", uri);
}
}
| true | qemu | 60fe637bf0e4d7989e21e50f52526444765c63b4 |
5,785 | static int decode_frame_mp3on4(AVCodecContext *avctx, void *data,
int *got_frame_ptr, AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
MP3On4DecodeContext *s = avctx->priv_data;
MPADecodeContext *m;
int fsize, len = buf_size, out_size = 0;
uint32_t header;
OUT_INT *out_samples;
OUT_INT *outptr, *bp;
int fr, j, n, ch, ret;
/* get output buffer */
s->frame->nb_samples = MPA_FRAME_SIZE;
if ((ret = avctx->get_buffer(avctx, s->frame)) < 0) {
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
return ret;
out_samples = (OUT_INT *)s->frame->data[0];
// Discard too short frames
if (buf_size < HEADER_SIZE)
// If only one decoder interleave is not needed
outptr = s->frames == 1 ? out_samples : s->decoded_buf;
avctx->bit_rate = 0;
ch = 0;
for (fr = 0; fr < s->frames; fr++) {
fsize = AV_RB16(buf) >> 4;
fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
m = s->mp3decctx[fr];
assert(m != NULL);
header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header
if (ff_mpa_check_header(header) < 0) // Bad header, discard block
break;
avpriv_mpegaudio_decode_header((MPADecodeHeader *)m, header);
if (ch + m->nb_channels > avctx->channels) {
av_log(avctx, AV_LOG_ERROR, "frame channel count exceeds codec "
"channel count\n");
ch += m->nb_channels;
out_size += mp_decode_frame(m, outptr, buf, fsize);
buf += fsize;
len -= fsize;
if (s->frames > 1) {
n = m->avctx->frame_size*m->nb_channels;
/* interleave output data */
bp = out_samples + s->coff[fr];
if (m->nb_channels == 1) {
for (j = 0; j < n; j++) {
*bp = s->decoded_buf[j];
bp += avctx->channels;
} else {
for (j = 0; j < n; j++) {
bp[0] = s->decoded_buf[j++];
bp[1] = s->decoded_buf[j];
bp += avctx->channels;
avctx->bit_rate += m->bit_rate;
/* update codec info */
avctx->sample_rate = s->mp3decctx[0]->sample_rate;
s->frame->nb_samples = out_size / (avctx->channels * sizeof(OUT_INT));
*got_frame_ptr = 1;
*(AVFrame *)data = *s->frame;
return buf_size;
| true | FFmpeg | 3e13005cac6e076053276b515f5fcf59a3f4b65d |
5,786 | void OPPROTO op_subfo (void)
{
do_subfo();
RETURN();
}
| true | qemu | d9bce9d99f4656ae0b0127f7472db9067b8f84ab |
5,787 | static void ehci_port_test(struct qhc *hc, int port, uint32_t expect)
{
void *addr = hc->base + 0x64 + 4 * port;
uint32_t value = qpci_io_readl(hc->dev, addr);
uint16_t mask = ~(PORTSC_CSC | PORTSC_PEDC | PORTSC_OCC);
#if 0
fprintf(stderr, "%s: %d, have 0x%08x, want 0x%08x\n",
__func__, port, value & mask, expect & mask);
#endif
g_assert((value & mask) == (expect & mask));
}
| true | qemu | b4ba67d9a702507793c2724e56f98e9b0f7be02b |
5,788 | static int read_dcs(AVCodecContext *avctx, GetBitContext *gb, Bundle *b,
int start_bits, int has_sign)
{
int i, j, len, len2, bsize, sign, v, v2;
int16_t *dst = (int16_t*)b->cur_dec;
CHECK_READ_VAL(gb, b, len);
v = get_bits(gb, start_bits - has_sign);
if (v && has_sign) {
sign = -get_bits1(gb);
v = (v ^ sign) - sign;
}
*dst++ = v;
len--;
for (i = 0; i < len; i += 8) {
len2 = FFMIN(len - i, 8);
bsize = get_bits(gb, 4);
if (bsize) {
for (j = 0; j < len2; j++) {
v2 = get_bits(gb, bsize);
if (v2) {
sign = -get_bits1(gb);
v2 = (v2 ^ sign) - sign;
}
v += v2;
*dst++ = v;
if (v < -32768 || v > 32767) {
av_log(avctx, AV_LOG_ERROR, "DC value went out of bounds: %d\n", v);
return -1;
}
}
} else {
for (j = 0; j < len2; j++)
*dst++ = v;
}
}
b->cur_dec = (uint8_t*)dst;
return 0;
}
| true | FFmpeg | a00676e48e49a3d794d6d2063ceca539e945a4a4 |
5,791 | static void opt_output_file(void *optctx, const char *filename)
{
OptionsContext *o = optctx;
AVFormatContext *oc;
int i, err;
AVOutputFormat *file_oformat;
OutputStream *ost;
InputStream *ist;
if (!strcmp(filename, "-"))
filename = "pipe:";
err = avformat_alloc_output_context2(&oc, NULL, o->format, filename);
if (!oc) {
print_error(filename, err);
exit_program(1);
}
file_oformat= oc->oformat;
oc->interrupt_callback = int_cb;
if (!strcmp(file_oformat->name, "ffm") &&
av_strstart(filename, "http:", NULL)) {
int j;
/* special case for files sent to ffserver: we get the stream
parameters from ffserver */
int err = read_ffserver_streams(o, oc, filename);
if (err < 0) {
print_error(filename, err);
exit_program(1);
}
for(j = nb_output_streams - oc->nb_streams; j < nb_output_streams; j++) {
ost = &output_streams[j];
for (i = 0; i < nb_input_streams; i++) {
ist = &input_streams[i];
if(ist->st->codec->codec_type == ost->st->codec->codec_type){
ost->sync_ist= ist;
ost->source_index= i;
ist->discard = 0;
break;
}
}
if(!ost->sync_ist){
av_log(NULL, AV_LOG_FATAL, "Missing %s stream which is required by this ffm\n", av_get_media_type_string(ost->st->codec->codec_type));
exit_program(1);
}
}
} else if (!o->nb_stream_maps) {
/* pick the "best" stream of each type */
#define NEW_STREAM(type, index)\
if (index >= 0) {\
ost = new_ ## type ## _stream(o, oc);\
ost->source_index = index;\
ost->sync_ist = &input_streams[index];\
input_streams[index].discard = 0;\
}
/* video: highest resolution */
if (!o->video_disable && oc->oformat->video_codec != CODEC_ID_NONE) {
int area = 0, idx = -1;
for (i = 0; i < nb_input_streams; i++) {
ist = &input_streams[i];
if (ist->st->codec->codec_type == AVMEDIA_TYPE_VIDEO &&
ist->st->codec->width * ist->st->codec->height > area) {
area = ist->st->codec->width * ist->st->codec->height;
idx = i;
}
}
NEW_STREAM(video, idx);
}
/* audio: most channels */
if (!o->audio_disable && oc->oformat->audio_codec != CODEC_ID_NONE) {
int channels = 0, idx = -1;
for (i = 0; i < nb_input_streams; i++) {
ist = &input_streams[i];
if (ist->st->codec->codec_type == AVMEDIA_TYPE_AUDIO &&
ist->st->codec->channels > channels) {
channels = ist->st->codec->channels;
idx = i;
}
}
NEW_STREAM(audio, idx);
}
/* subtitles: pick first */
if (!o->subtitle_disable && (oc->oformat->subtitle_codec != CODEC_ID_NONE || subtitle_codec_name)) {
for (i = 0; i < nb_input_streams; i++)
if (input_streams[i].st->codec->codec_type == AVMEDIA_TYPE_SUBTITLE) {
NEW_STREAM(subtitle, i);
break;
}
}
/* do something with data? */
} else {
for (i = 0; i < o->nb_stream_maps; i++) {
StreamMap *map = &o->stream_maps[i];
if (map->disabled)
continue;
ist = &input_streams[input_files[map->file_index].ist_index + map->stream_index];
if(o->subtitle_disable && ist->st->codec->codec_type == AVMEDIA_TYPE_SUBTITLE)
continue;
if(o-> audio_disable && ist->st->codec->codec_type == AVMEDIA_TYPE_AUDIO)
continue;
if(o-> video_disable && ist->st->codec->codec_type == AVMEDIA_TYPE_VIDEO)
continue;
if(o-> data_disable && ist->st->codec->codec_type == AVMEDIA_TYPE_DATA)
continue;
switch (ist->st->codec->codec_type) {
case AVMEDIA_TYPE_VIDEO: ost = new_video_stream(o, oc); break;
case AVMEDIA_TYPE_AUDIO: ost = new_audio_stream(o, oc); break;
case AVMEDIA_TYPE_SUBTITLE: ost = new_subtitle_stream(o, oc); break;
case AVMEDIA_TYPE_DATA: ost = new_data_stream(o, oc); break;
case AVMEDIA_TYPE_ATTACHMENT: ost = new_attachment_stream(o, oc); break;
default:
av_log(NULL, AV_LOG_FATAL, "Cannot map stream #%d:%d - unsupported type.\n",
map->file_index, map->stream_index);
exit_program(1);
}
ost->source_index = input_files[map->file_index].ist_index + map->stream_index;
ost->sync_ist = &input_streams[input_files[map->sync_file_index].ist_index +
map->sync_stream_index];
ist->discard = 0;
}
}
/* handle attached files */
for (i = 0; i < o->nb_attachments; i++) {
AVIOContext *pb;
uint8_t *attachment;
const char *p;
int64_t len;
if ((err = avio_open2(&pb, o->attachments[i], AVIO_FLAG_READ, &int_cb, NULL)) < 0) {
av_log(NULL, AV_LOG_FATAL, "Could not open attachment file %s.\n",
o->attachments[i]);
exit_program(1);
}
if ((len = avio_size(pb)) <= 0) {
av_log(NULL, AV_LOG_FATAL, "Could not get size of the attachment %s.\n",
o->attachments[i]);
exit_program(1);
}
if (!(attachment = av_malloc(len))) {
av_log(NULL, AV_LOG_FATAL, "Attachment %s too large to fit into memory.\n",
o->attachments[i]);
exit_program(1);
}
avio_read(pb, attachment, len);
ost = new_attachment_stream(o, oc);
ost->stream_copy = 0;
ost->source_index = -1;
ost->attachment_filename = o->attachments[i];
ost->st->codec->extradata = attachment;
ost->st->codec->extradata_size = len;
p = strrchr(o->attachments[i], '/');
av_dict_set(&ost->st->metadata, "filename", (p && *p) ? p + 1 : o->attachments[i], AV_DICT_DONT_OVERWRITE);
avio_close(pb);
}
output_files = grow_array(output_files, sizeof(*output_files), &nb_output_files, nb_output_files + 1);
output_files[nb_output_files - 1].ctx = oc;
output_files[nb_output_files - 1].ost_index = nb_output_streams - oc->nb_streams;
output_files[nb_output_files - 1].recording_time = o->recording_time;
output_files[nb_output_files - 1].start_time = o->start_time;
output_files[nb_output_files - 1].limit_filesize = o->limit_filesize;
av_dict_copy(&output_files[nb_output_files - 1].opts, format_opts, 0);
/* check filename in case of an image number is expected */
if (oc->oformat->flags & AVFMT_NEEDNUMBER) {
if (!av_filename_number_test(oc->filename)) {
print_error(oc->filename, AVERROR(EINVAL));
exit_program(1);
}
}
if (!(oc->oformat->flags & AVFMT_NOFILE)) {
/* test if it already exists to avoid losing precious files */
assert_file_overwrite(filename);
/* open the file */
if ((err = avio_open2(&oc->pb, filename, AVIO_FLAG_WRITE,
&oc->interrupt_callback,
&output_files[nb_output_files - 1].opts)) < 0) {
print_error(filename, err);
exit_program(1);
}
}
if (o->mux_preload) {
uint8_t buf[64];
snprintf(buf, sizeof(buf), "%d", (int)(o->mux_preload*AV_TIME_BASE));
av_dict_set(&output_files[nb_output_files - 1].opts, "preload", buf, 0);
}
oc->max_delay = (int)(o->mux_max_delay * AV_TIME_BASE);
if (loop_output >= 0) {
av_log(NULL, AV_LOG_WARNING, "-loop_output is deprecated, use -loop\n");
oc->loop_output = loop_output;
}
/* copy metadata */
for (i = 0; i < o->nb_metadata_map; i++) {
char *p;
int in_file_index = strtol(o->metadata_map[i].u.str, &p, 0);
if (in_file_index < 0)
continue;
if (in_file_index >= nb_input_files) {
av_log(NULL, AV_LOG_FATAL, "Invalid input file index %d while processing metadata maps\n", in_file_index);
exit_program(1);
}
copy_metadata(o->metadata_map[i].specifier, *p ? p + 1 : p, oc, input_files[in_file_index].ctx, o);
}
/* copy chapters */
if (o->chapters_input_file >= nb_input_files) {
if (o->chapters_input_file == INT_MAX) {
/* copy chapters from the first input file that has them*/
o->chapters_input_file = -1;
for (i = 0; i < nb_input_files; i++)
if (input_files[i].ctx->nb_chapters) {
o->chapters_input_file = i;
break;
}
} else {
av_log(NULL, AV_LOG_FATAL, "Invalid input file index %d in chapter mapping.\n",
o->chapters_input_file);
exit_program(1);
}
}
if (o->chapters_input_file >= 0)
copy_chapters(&input_files[o->chapters_input_file], &output_files[nb_output_files - 1],
!o->metadata_chapters_manual);
/* copy global metadata by default */
if (!o->metadata_global_manual && nb_input_files){
av_dict_copy(&oc->metadata, input_files[0].ctx->metadata,
AV_DICT_DONT_OVERWRITE);
if(o->recording_time != INT64_MAX)
av_dict_set(&oc->metadata, "duration", NULL, 0);
}
if (!o->metadata_streams_manual)
for (i = output_files[nb_output_files - 1].ost_index; i < nb_output_streams; i++) {
InputStream *ist;
if (output_streams[i].source_index < 0) /* this is true e.g. for attached files */
continue;
ist = &input_streams[output_streams[i].source_index];
av_dict_copy(&output_streams[i].st->metadata, ist->st->metadata, AV_DICT_DONT_OVERWRITE);
}
/* process manually set metadata */
for (i = 0; i < o->nb_metadata; i++) {
AVDictionary **m;
char type, *val;
const char *stream_spec;
int index = 0, j, ret;
val = strchr(o->metadata[i].u.str, '=');
if (!val) {
av_log(NULL, AV_LOG_FATAL, "No '=' character in metadata string %s.\n",
o->metadata[i].u.str);
exit_program(1);
}
*val++ = 0;
parse_meta_type(o->metadata[i].specifier, &type, &index, &stream_spec);
if (type == 's') {
for (j = 0; j < oc->nb_streams; j++) {
if ((ret = check_stream_specifier(oc, oc->streams[j], stream_spec)) > 0) {
av_dict_set(&oc->streams[j]->metadata, o->metadata[i].u.str, *val ? val : NULL, 0);
} else if (ret < 0)
exit_program(1);
}
printf("ret %d, stream_spec %s\n", ret, stream_spec);
}
else {
switch (type) {
case 'g':
m = &oc->metadata;
break;
case 'c':
if (index < 0 || index >= oc->nb_chapters) {
av_log(NULL, AV_LOG_FATAL, "Invalid chapter index %d in metadata specifier.\n", index);
exit_program(1);
}
m = &oc->chapters[index]->metadata;
break;
default:
av_log(NULL, AV_LOG_FATAL, "Invalid metadata specifier %s.\n", o->metadata[i].specifier);
exit_program(1);
}
av_dict_set(m, o->metadata[i].u.str, *val ? val : NULL, 0);
}
}
reset_options(o, 0);
}
| true | FFmpeg | 12bdc7b15e4f5a24842b34ba79f59ca869f8f33a |
5,792 | static int hdcd_integrate(HDCDContext *ctx, hdcd_state_t *state, int *flag, const int32_t *samples, int count, int stride)
{
uint32_t bits = 0;
int result = FFMIN(state->readahead, count);
int i;
*flag = 0;
for (i = result - 1; i >= 0; i--) {
bits |= (*samples & 1) << i; /* might be better as a conditional? */
samples += stride;
}
state->window = (state->window << result) | bits;
state->readahead -= result;
if (state->readahead > 0)
return result;
bits = (state->window ^ state->window >> 5 ^ state->window >> 23);
if (state->arg) {
if ((bits & 0x0fa00500) == 0x0fa00500) {
/* A: 8-bit code */
if ((bits & 0xc8) == 0) {
/* [..pt gggg]
* 0x0fa005[..] -> 0b[00.. 0...], gain part doubled */
state->control = (bits & 255) + (bits & 7);
*flag = 1;
state->code_counterA++;
} else {
/* one of bits 3, 6, or 7 was not 0 */
state->code_counterA_almost++;
av_log(ctx->fctx, AV_LOG_VERBOSE,
"hdcd error: Control A almost: 0x%02x near %d\n", bits & 0xff, ctx->sample_count);
}
} else if ((bits & 0xa0060000) == 0xa0060000) {
/* B: 8-bit code, 8-bit XOR check */
if (((bits ^ (~bits >> 8 & 255)) & 0xffff00ff) == 0xa0060000) {
/* check: [..pt gggg ~(..pt gggg)]
* 0xa006[....] -> 0b[.... .... .... .... ] */
state->control = bits >> 8 & 255;
*flag = 1;
state->code_counterB++;
} else {
/* XOR check failed */
state->code_counterB_checkfails++;
av_log(ctx->fctx, AV_LOG_VERBOSE,
"hdcd error: Control B check failed: 0x%04x (0x%02x vs 0x%02x) near %d\n", bits & 0xffff, (bits & 0xff00) >> 8, ~bits & 0xff, ctx->sample_count);
}
} else {
/* told to look for a code, but didn't match one */
state->code_counterC_unmatched++;
av_log(ctx->fctx, AV_LOG_VERBOSE,
"hdcd error: Unmatched code: 0x%08x near %d\n", bits, ctx->sample_count);
}
if (*flag) hdcd_update_info(state);
state->arg = 0;
}
if (bits == 0x7e0fa005 || bits == 0x7e0fa006) {
state->readahead = (bits & 3) * 8;
state->arg = 1;
state->code_counterC++;
} else {
if (bits)
state->readahead = readaheadtab[bits & 0xff];
else
state->readahead = 31; /* ffwd over digisilence */
}
return result;
}
| false | FFmpeg | 12759cc0345cec5a418d8caec5435297d1ec04b2 |
5,793 | static void gen_mtspr(DisasContext *ctx)
{
void (*write_cb)(DisasContext *ctx, int sprn, int gprn);
uint32_t sprn = SPR(ctx->opcode);
#if defined(CONFIG_USER_ONLY)
write_cb = ctx->spr_cb[sprn].uea_write;
#else
if (ctx->pr) {
write_cb = ctx->spr_cb[sprn].uea_write;
} else if (ctx->hv) {
write_cb = ctx->spr_cb[sprn].hea_write;
} else {
write_cb = ctx->spr_cb[sprn].oea_write;
}
#endif
if (likely(write_cb != NULL)) {
if (likely(write_cb != SPR_NOACCESS)) {
(*write_cb)(ctx, sprn, rS(ctx->opcode));
} else {
/* Privilege exception */
fprintf(stderr, "Trying to write privileged spr %d (0x%03x) at "
TARGET_FMT_lx "\n", sprn, sprn, ctx->nip - 4);
if (qemu_log_separate()) {
qemu_log("Trying to write privileged spr %d (0x%03x) at "
TARGET_FMT_lx "\n", sprn, sprn, ctx->nip - 4);
}
gen_inval_exception(ctx, POWERPC_EXCP_PRIV_REG);
}
} else {
/* Not defined */
if (qemu_log_separate()) {
qemu_log("Trying to write invalid spr %d (0x%03x) at "
TARGET_FMT_lx "\n", sprn, sprn, ctx->nip - 4);
}
fprintf(stderr, "Trying to write invalid spr %d (0x%03x) at "
TARGET_FMT_lx "\n", sprn, sprn, ctx->nip - 4);
gen_inval_exception(ctx, POWERPC_EXCP_INVAL_SPR);
}
}
| true | qemu | 4d6a0680fa425230748a2d91d81be9afe050eeb3 |
5,794 | static void usage(const char *cmd)
{
printf(
"Usage: %s [-m <method> -p <path>] [<options>]\n"
"QEMU Guest Agent %s\n"
"\n"
" -m, --method transport method: one of unix-listen, virtio-serial, or\n"
" isa-serial (virtio-serial is the default)\n"
" -p, --path device/socket path (the default for virtio-serial is:\n"
" %s)\n"
" -l, --logfile set logfile path, logs to stderr by default\n"
" -f, --pidfile specify pidfile (default is %s)\n"
" -v, --verbose log extra debugging information\n"
" -V, --version print version information and exit\n"
" -d, --daemonize become a daemon\n"
#ifdef _WIN32
" -s, --service service commands: install, uninstall\n"
#endif
" -b, --blacklist comma-separated list of RPCs to disable (no spaces, \"?\"\n"
" to list available RPCs)\n"
" -h, --help display this help and exit\n"
"\n"
"Report bugs to <mdroth@linux.vnet.ibm.com>\n"
, cmd, QGA_VERSION, QGA_VIRTIO_PATH_DEFAULT, QGA_PIDFILE_DEFAULT);
}
| true | qemu | f789aa7baff33e74c549a249aba3ae7a364d7642 |
5,795 | static void await_reference_mb_row(const H264Context *const h, H264Picture *ref,
int mb_y)
{
int ref_field = ref->reference - 1;
int ref_field_picture = ref->field_picture;
int ref_height = 16 * h->mb_height >> ref_field_picture;
if (!HAVE_THREADS || !(h->avctx->active_thread_type & FF_THREAD_FRAME))
return;
/* FIXME: It can be safe to access mb stuff
* even if pixels aren't deblocked yet. */
ff_thread_await_progress(&ref->tf,
FFMIN(16 * mb_y >> ref_field_picture,
ref_height - 1),
ref_field_picture && ref_field);
}
| true | FFmpeg | 04763c6f87690b31cfcd0d324cf36a451531dcd0 |
5,796 | static int gxf_packet(AVFormatContext *s, AVPacket *pkt) {
ByteIOContext *pb = s->pb;
pkt_type_t pkt_type;
int pkt_len;
while (!url_feof(pb)) {
int track_type, track_id, ret;
int field_nr;
if (!parse_packet_header(pb, &pkt_type, &pkt_len)) {
if (!url_feof(pb))
av_log(s, AV_LOG_ERROR, "GXF: sync lost\n");
return -1;
}
if (pkt_type == PKT_FLT) {
gxf_read_index(s, pkt_len);
continue;
}
if (pkt_type != PKT_MEDIA) {
url_fskip(pb, pkt_len);
continue;
}
if (pkt_len < 16) {
av_log(s, AV_LOG_ERROR, "GXF: invalid media packet length\n");
continue;
}
pkt_len -= 16;
track_type = get_byte(pb);
track_id = get_byte(pb);
field_nr = get_be32(pb);
get_be32(pb); // field information
get_be32(pb); // "timeline" field number
get_byte(pb); // flags
get_byte(pb); // reserved
// NOTE: there is also data length information in the
// field information, it might be better to take this into account
// as well.
ret = av_get_packet(pb, pkt, pkt_len);
pkt->stream_index = get_sindex(s, track_id, track_type);
pkt->dts = field_nr;
return ret;
}
return AVERROR(EIO);
}
| true | FFmpeg | 6c10281c3a3c5fe0ce9c5943ed94c73ebd0a5209 |
5,798 | void hmp_drive_add(Monitor *mon, const QDict *qdict)
{
DriveInfo *dinfo = NULL;
const char *opts = qdict_get_str(qdict, "opts");
dinfo = add_init_drive(opts);
if (!dinfo) {
goto err;
}
if (dinfo->devaddr) {
monitor_printf(mon, "Parameter addr not supported\n");
goto err;
}
switch (dinfo->type) {
case IF_NONE:
monitor_printf(mon, "OK\n");
break;
default:
if (pci_drive_hot_add(mon, qdict, dinfo)) {
goto err;
}
}
return;
err:
if (dinfo) {
blk_unref(blk_by_legacy_dinfo(dinfo));
}
}
| true | qemu | f51074cdc6e750daa3b6df727d83449a7e42b391 |
5,799 | char *ff_AMediaCodecList_getCodecNameByType(const char *mime, int width, int height, void *log_ctx)
{
int ret;
char *name = NULL;
char *supported_type = NULL;
int attached = 0;
JNIEnv *env = NULL;
struct JNIAMediaCodecListFields jfields = { 0 };
jobject format = NULL;
jobject codec = NULL;
jstring tmp = NULL;
jobject info = NULL;
jobject type = NULL;
jobjectArray types = NULL;
JNI_ATTACH_ENV_OR_RETURN(env, &attached, log_ctx, NULL);
if ((ret = ff_jni_init_jfields(env, &jfields, jni_amediacodeclist_mapping, 0, log_ctx)) < 0) {
goto done;
}
if (jfields.init_id && jfields.find_decoder_for_format_id) {
tmp = ff_jni_utf_chars_to_jstring(env, mime, log_ctx);
if (!tmp) {
goto done;
}
format = (*env)->CallStaticObjectMethod(env, jfields.mediaformat_class, jfields.create_video_format_id, tmp, width, height);
if (ff_jni_exception_check(env, 1, log_ctx) < 0) {
goto done;
}
(*env)->DeleteLocalRef(env, tmp);
tmp = NULL;
codec = (*env)->NewObject(env, jfields.mediacodec_list_class, jfields.init_id, 0);
if (ff_jni_exception_check(env, 1, log_ctx) < 0) {
goto done;
}
tmp = (*env)->CallObjectMethod(env, codec, jfields.find_decoder_for_format_id, format);
if (ff_jni_exception_check(env, 1, log_ctx) < 0) {
goto done;
}
if (!tmp) {
av_log(NULL, AV_LOG_ERROR, "Could not find decoder in media codec list "
"for format { mime=%s width=%d height=%d }\n", mime, width, height);
goto done;
}
name = ff_jni_jstring_to_utf_chars(env, tmp, log_ctx);
if (!name) {
goto done;
}
} else {
int i;
int codec_count;
codec_count = (*env)->CallStaticIntMethod(env, jfields.mediacodec_list_class, jfields.get_codec_count_id);
if (ff_jni_exception_check(env, 1, log_ctx) < 0) {
goto done;
}
for(i = 0; i < codec_count; i++) {
int j;
int type_count;
int is_encoder;
info = (*env)->CallStaticObjectMethod(env, jfields.mediacodec_list_class, jfields.get_codec_info_at_id, i);
if (ff_jni_exception_check(env, 1, log_ctx) < 0) {
goto done;
}
types = (*env)->CallObjectMethod(env, info, jfields.get_supported_types_id);
if (ff_jni_exception_check(env, 1, log_ctx) < 0) {
goto done;
}
is_encoder = (*env)->CallBooleanMethod(env, info, jfields.is_encoder_id);
if (ff_jni_exception_check(env, 1, log_ctx) < 0) {
goto done;
}
if (is_encoder) {
continue;
}
type_count = (*env)->GetArrayLength(env, types);
for (j = 0; j < type_count; j++) {
type = (*env)->GetObjectArrayElement(env, types, j);
if (ff_jni_exception_check(env, 1, log_ctx) < 0) {
goto done;
}
supported_type = ff_jni_jstring_to_utf_chars(env, type, log_ctx);
if (!supported_type) {
goto done;
}
if (!av_strcasecmp(supported_type, mime)) {
jobject codec_name;
codec_name = (*env)->CallObjectMethod(env, info, jfields.get_name_id);
if (ff_jni_exception_check(env, 1, log_ctx) < 0) {
goto done;
}
name = ff_jni_jstring_to_utf_chars(env, codec_name, log_ctx);
if (!name) {
goto done;
}
if (strstr(name, "OMX.google")) {
av_freep(&name);
continue;
}
}
av_freep(&supported_type);
}
(*env)->DeleteLocalRef(env, info);
info = NULL;
(*env)->DeleteLocalRef(env, types);
types = NULL;
if (name)
break;
}
}
done:
if (format) {
(*env)->DeleteLocalRef(env, format);
}
if (codec) {
(*env)->DeleteLocalRef(env, codec);
}
if (tmp) {
(*env)->DeleteLocalRef(env, tmp);
}
if (info) {
(*env)->DeleteLocalRef(env, info);
}
if (type) {
(*env)->DeleteLocalRef(env, type);
}
if (types) {
(*env)->DeleteLocalRef(env, types);
}
av_freep(&supported_type);
ff_jni_reset_jfields(env, &jfields, jni_amediacodeclist_mapping, 0, log_ctx);
JNI_DETACH_ENV(attached, log_ctx);
return name;
}
| false | FFmpeg | 93f4d1646e9441b89e19073d6ad8e187bd705640 |
5,800 | static void cchip_write(void *opaque, target_phys_addr_t addr,
uint64_t v32, unsigned size)
{
TyphoonState *s = opaque;
uint64_t val, oldval, newval;
if (addr & 4) {
val = v32 << 32 | s->latch_tmp;
addr ^= 4;
} else {
s->latch_tmp = v32;
return;
}
switch (addr) {
case 0x0000:
/* CSC: Cchip System Configuration Register. */
/* All sorts of data here; nothing relevant RW. */
break;
case 0x0040:
/* MTR: Memory Timing Register. */
/* All sorts of stuff related to real DRAM. */
break;
case 0x0080:
/* MISC: Miscellaneous Register. */
newval = oldval = s->cchip.misc;
newval &= ~(val & 0x10000ff0); /* W1C fields */
if (val & 0x100000) {
newval &= ~0xff0000ull; /* ACL clears ABT and ABW */
} else {
newval |= val & 0x00f00000; /* ABT field is W1S */
if ((newval & 0xf0000) == 0) {
newval |= val & 0xf0000; /* ABW field is W1S iff zero */
}
}
newval |= (val & 0xf000) >> 4; /* IPREQ field sets IPINTR. */
newval &= ~0xf0000000000ull; /* WO and RW fields */
newval |= val & 0xf0000000000ull;
s->cchip.misc = newval;
/* Pass on changes to IPI and ITI state. */
if ((newval ^ oldval) & 0xff0) {
int i;
for (i = 0; i < 4; ++i) {
CPUAlphaState *env = s->cchip.cpu[i];
if (env) {
/* IPI can be either cleared or set by the write. */
if (newval & (1 << (i + 8))) {
cpu_interrupt(env, CPU_INTERRUPT_SMP);
} else {
cpu_reset_interrupt(env, CPU_INTERRUPT_SMP);
}
/* ITI can only be cleared by the write. */
if ((newval & (1 << (i + 4))) == 0) {
cpu_reset_interrupt(env, CPU_INTERRUPT_TIMER);
}
}
}
}
break;
case 0x00c0:
/* MPD: Memory Presence Detect Register. */
break;
case 0x0100: /* AAR0 */
case 0x0140: /* AAR1 */
case 0x0180: /* AAR2 */
case 0x01c0: /* AAR3 */
/* AAR: Array Address Register. */
/* All sorts of information about DRAM. */
break;
case 0x0200: /* DIM0 */
/* DIM: Device Interrupt Mask Register, CPU0. */
s->cchip.dim[0] = val;
cpu_irq_change(s->cchip.cpu[0], val & s->cchip.drir);
break;
case 0x0240: /* DIM1 */
/* DIM: Device Interrupt Mask Register, CPU1. */
s->cchip.dim[0] = val;
cpu_irq_change(s->cchip.cpu[1], val & s->cchip.drir);
break;
case 0x0280: /* DIR0 (RO) */
case 0x02c0: /* DIR1 (RO) */
case 0x0300: /* DRIR (RO) */
break;
case 0x0340:
/* PRBEN: Probe Enable Register. */
break;
case 0x0380: /* IIC0 */
s->cchip.iic[0] = val & 0xffffff;
break;
case 0x03c0: /* IIC1 */
s->cchip.iic[1] = val & 0xffffff;
break;
case 0x0400: /* MPR0 */
case 0x0440: /* MPR1 */
case 0x0480: /* MPR2 */
case 0x04c0: /* MPR3 */
/* MPR: Memory Programming Register. */
break;
case 0x0580:
/* TTR: TIGbus Timing Register. */
/* All sorts of stuff related to interrupt delivery timings. */
break;
case 0x05c0:
/* TDR: TIGbug Device Timing Register. */
break;
case 0x0600:
/* DIM2: Device Interrupt Mask Register, CPU2. */
s->cchip.dim[2] = val;
cpu_irq_change(s->cchip.cpu[2], val & s->cchip.drir);
break;
case 0x0640:
/* DIM3: Device Interrupt Mask Register, CPU3. */
s->cchip.dim[3] = val;
cpu_irq_change(s->cchip.cpu[3], val & s->cchip.drir);
break;
case 0x0680: /* DIR2 (RO) */
case 0x06c0: /* DIR3 (RO) */
break;
case 0x0700: /* IIC2 */
s->cchip.iic[2] = val & 0xffffff;
break;
case 0x0740: /* IIC3 */
s->cchip.iic[3] = val & 0xffffff;
break;
case 0x0780:
/* PWR: Power Management Control. */
break;
case 0x0c00: /* CMONCTLA */
case 0x0c40: /* CMONCTLB */
case 0x0c80: /* CMONCNT01 */
case 0x0cc0: /* CMONCNT23 */
break;
default:
cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size);
return;
}
}
| false | qemu | a8170e5e97ad17ca169c64ba87ae2f53850dab4c |
5,801 | static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
TCGMemOpIdx oi, uintptr_t retaddr)
{
size_t mmu_idx = get_mmuidx(oi);
size_t index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
CPUTLBEntry *tlbe = &env->tlb_table[mmu_idx][index];
target_ulong tlb_addr = tlbe->addr_write;
TCGMemOp mop = get_memop(oi);
int a_bits = get_alignment_bits(mop);
int s_bits = mop & MO_SIZE;
/* Adjust the given return address. */
retaddr -= GETPC_ADJ;
/* Enforce guest required alignment. */
if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
/* ??? Maybe indicate atomic op to cpu_unaligned_access */
cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
mmu_idx, retaddr);
}
/* Enforce qemu required alignment. */
if (unlikely(addr & ((1 << s_bits) - 1))) {
/* We get here if guest alignment was not requested,
or was not enforced by cpu_unaligned_access above.
We might widen the access and emulate, but for now
mark an exception and exit the cpu loop. */
goto stop_the_world;
}
/* Check TLB entry and enforce page permissions. */
if ((addr & TARGET_PAGE_MASK)
!= (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
if (!VICTIM_TLB_HIT(addr_write, addr)) {
tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
}
tlb_addr = tlbe->addr_write;
}
/* Check notdirty */
if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
tlb_set_dirty(ENV_GET_CPU(env), addr);
tlb_addr = tlb_addr & ~TLB_NOTDIRTY;
}
/* Notice an IO access */
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
/* There's really nothing that can be done to
support this apart from stop-the-world. */
goto stop_the_world;
}
/* Let the guest notice RMW on a write-only page. */
if (unlikely(tlbe->addr_read != tlb_addr)) {
tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_LOAD, mmu_idx, retaddr);
/* Since we don't support reads and writes to different addresses,
and we do have the proper page loaded for write, this shouldn't
ever return. But just in case, handle via stop-the-world. */
goto stop_the_world;
}
return (void *)((uintptr_t)addr + tlbe->addend);
stop_the_world:
cpu_loop_exit_atomic(ENV_GET_CPU(env), retaddr);
}
| false | qemu | f52bfb12143e29d7c8bd827bdb751aee47a9694e |
5,802 | BlockAIOCB *dma_bdrv_read(BlockDriverState *bs,
QEMUSGList *sg, uint64_t sector,
void (*cb)(void *opaque, int ret), void *opaque)
{
return dma_bdrv_io(bs, sg, sector, bdrv_aio_readv, cb, opaque,
DMA_DIRECTION_FROM_DEVICE);
}
| false | qemu | 4be746345f13e99e468c60acbd3a355e8183e3ce |
5,803 | TCGv_i32 tcg_global_reg_new_i32(int reg, const char *name)
{
int idx;
idx = tcg_global_reg_new_internal(TCG_TYPE_I32, reg, name);
return MAKE_TCGV_I32(idx);
}
| false | qemu | b3a62939561e07bc34493444fa926b6137cba4e8 |
5,804 | static void check_pred8x8l(H264PredContext *h, uint8_t *buf0, uint8_t *buf1,
int codec, int chroma_format, int bit_depth)
{
if (chroma_format == 1 && codec_ids[codec] == AV_CODEC_ID_H264) {
int pred_mode;
for (pred_mode = 0; pred_mode < 12; pred_mode++) {
if (check_pred_func(h->pred8x8l[pred_mode], "8x8l", pred4x4_modes[codec][pred_mode])) {
int neighbors;
for (neighbors = 0; neighbors <= 0xc000; neighbors += 0x4000) {
int has_topleft = neighbors & 0x8000;
int has_topright = neighbors & 0x4000;
if ((pred_mode == DIAG_DOWN_RIGHT_PRED || pred_mode == VERT_RIGHT_PRED) && !has_topleft)
continue; /* Those aren't allowed according to the spec */
randomize_buffers();
call_ref(src0, has_topleft, has_topright, (ptrdiff_t)24*SIZEOF_PIXEL);
call_new(src1, has_topleft, has_topright, (ptrdiff_t)24*SIZEOF_PIXEL);
if (memcmp(buf0, buf1, BUF_SIZE))
fail();
bench_new(src1, has_topleft, has_topright, (ptrdiff_t)24*SIZEOF_PIXEL);
}
}
}
}
}
| false | FFmpeg | 515b69f8f8e9a24cfaee95d8c1f63f265d8582fe |
5,805 | opts_next_list(Visitor *v, GenericList **list, Error **errp)
{
OptsVisitor *ov = DO_UPCAST(OptsVisitor, visitor, v);
GenericList **link;
if (ov->repeated_opts_first) {
ov->repeated_opts_first = false;
link = list;
} else {
const QemuOpt *opt;
opt = g_queue_pop_head(ov->repeated_opts);
if (g_queue_is_empty(ov->repeated_opts)) {
g_hash_table_remove(ov->unprocessed_opts, opt->name);
return NULL;
}
link = &(*list)->next;
}
*link = g_malloc0(sizeof **link);
return *link;
}
| false | qemu | d95704341280fc521dc2b16bbbc5858f6647e2c3 |
5,806 | static inline int gen_neon_add(int size, TCGv t0, TCGv t1)
{
switch (size) {
case 0: gen_helper_neon_add_u8(t0, t0, t1); break;
case 1: gen_helper_neon_add_u16(t0, t0, t1); break;
case 2: tcg_gen_add_i32(t0, t0, t1); break;
default: return 1;
}
return 0;
}
| false | qemu | 62698be3bac2e4c969205f3849c48922e0e76e88 |
5,807 | static void bt_l2cap_sdp_sdu_in(void *opaque, const uint8_t *data, int len)
{
struct bt_l2cap_sdp_state_s *sdp = opaque;
enum bt_sdp_cmd pdu_id;
uint8_t rsp[MAX_PDU_OUT_SIZE - PDU_HEADER_SIZE], *sdu_out;
int transaction_id, plen;
int err = 0;
int rsp_len = 0;
if (len < 5) {
fprintf(stderr, "%s: short SDP PDU (%iB).\n", __func__, len);
return;
}
pdu_id = *data ++;
transaction_id = (data[0] << 8) | data[1];
plen = (data[2] << 8) | data[3];
data += 4;
len -= 5;
if (len != plen) {
fprintf(stderr, "%s: wrong SDP PDU length (%iB != %iB).\n",
__func__, plen, len);
err = SDP_INVALID_PDU_SIZE;
goto respond;
}
switch (pdu_id) {
case SDP_SVC_SEARCH_REQ:
rsp_len = sdp_svc_search(sdp, rsp, data, len);
pdu_id = SDP_SVC_SEARCH_RSP;
break;
case SDP_SVC_ATTR_REQ:
rsp_len = sdp_attr_get(sdp, rsp, data, len);
pdu_id = SDP_SVC_ATTR_RSP;
break;
case SDP_SVC_SEARCH_ATTR_REQ:
rsp_len = sdp_svc_search_attr_get(sdp, rsp, data, len);
pdu_id = SDP_SVC_SEARCH_ATTR_RSP;
break;
case SDP_ERROR_RSP:
case SDP_SVC_ATTR_RSP:
case SDP_SVC_SEARCH_RSP:
case SDP_SVC_SEARCH_ATTR_RSP:
default:
fprintf(stderr, "%s: unexpected SDP PDU ID %02x.\n",
__func__, pdu_id);
err = SDP_INVALID_SYNTAX;
break;
}
if (rsp_len < 0) {
err = -rsp_len;
rsp_len = 0;
}
respond:
if (err) {
pdu_id = SDP_ERROR_RSP;
rsp[rsp_len ++] = err >> 8;
rsp[rsp_len ++] = err & 0xff;
}
sdu_out = sdp->channel->sdu_out(sdp->channel, rsp_len + PDU_HEADER_SIZE);
sdu_out[0] = pdu_id;
sdu_out[1] = transaction_id >> 8;
sdu_out[2] = transaction_id & 0xff;
sdu_out[3] = rsp_len >> 8;
sdu_out[4] = rsp_len & 0xff;
memcpy(sdu_out + PDU_HEADER_SIZE, rsp, rsp_len);
sdp->channel->sdu_submit(sdp->channel);
}
| false | qemu | bf937a7965c1d1a6dce4f615d0ead2e2ab505004 |
5,808 | static inline void memcpy_tofs(void * to, const void * from, unsigned long n)
{
memcpy(to, from, n);
}
| false | qemu | edf779ffccc836661a7b654d320571a6c220caea |
5,809 | static IOMMUTLBEntry s390_translate_iommu(MemoryRegion *iommu, hwaddr addr,
bool is_write)
{
uint64_t pte;
uint32_t flags;
S390PCIBusDevice *pbdev = container_of(iommu, S390PCIBusDevice, mr);
S390pciState *s;
IOMMUTLBEntry ret = {
.target_as = &address_space_memory,
.iova = 0,
.translated_addr = 0,
.addr_mask = ~(hwaddr)0,
.perm = IOMMU_NONE,
};
if (!pbdev->configured || !pbdev->pdev) {
return ret;
}
DPRINTF("iommu trans addr 0x%" PRIx64 "\n", addr);
s = S390_PCI_HOST_BRIDGE(pci_device_root_bus(pbdev->pdev)->qbus.parent);
/* s390 does not have an APIC mapped to main storage so we use
* a separate AddressSpace only for msix notifications
*/
if (addr == ZPCI_MSI_ADDR) {
ret.target_as = &s->msix_notify_as;
ret.iova = addr;
ret.translated_addr = addr;
ret.addr_mask = 0xfff;
ret.perm = IOMMU_RW;
return ret;
}
if (!pbdev->g_iota) {
pbdev->error_state = true;
pbdev->lgstg_blocked = true;
s390_pci_generate_error_event(ERR_EVENT_INVALAS, pbdev->fh, pbdev->fid,
addr, 0);
return ret;
}
if (addr < pbdev->pba || addr > pbdev->pal) {
pbdev->error_state = true;
pbdev->lgstg_blocked = true;
s390_pci_generate_error_event(ERR_EVENT_OORANGE, pbdev->fh, pbdev->fid,
addr, 0);
return ret;
}
pte = s390_guest_io_table_walk(s390_pci_get_table_origin(pbdev->g_iota),
addr);
if (!pte) {
pbdev->error_state = true;
pbdev->lgstg_blocked = true;
s390_pci_generate_error_event(ERR_EVENT_SERR, pbdev->fh, pbdev->fid,
addr, ERR_EVENT_Q_BIT);
return ret;
}
flags = pte & ZPCI_PTE_FLAG_MASK;
ret.iova = addr;
ret.translated_addr = pte & ZPCI_PTE_ADDR_MASK;
ret.addr_mask = 0xfff;
if (flags & ZPCI_PTE_INVALID) {
ret.perm = IOMMU_NONE;
} else {
ret.perm = IOMMU_RW;
}
return ret;
}
| false | qemu | f0a399dbae6a2d0e2e15eb7ce0783286bbd9fe04 |
5,811 | static GenericList *qmp_output_next_list(Visitor *v, GenericList **listp,
size_t size)
{
GenericList *list = *listp;
QmpOutputVisitor *qov = to_qov(v);
QStackEntry *e = QTAILQ_FIRST(&qov->stack);
assert(e);
if (e->is_list_head) {
e->is_list_head = false;
return list;
}
return list ? list->next : NULL;
}
| false | qemu | d9f62dde1303286b24ac8ce88be27e2b9b9c5f46 |
5,812 | static CharDriverState *qemu_chr_open_win_path(const char *filename,
Error **errp)
{
CharDriverState *chr;
WinCharState *s;
chr = qemu_chr_alloc();
s = g_new0(WinCharState, 1);
chr->opaque = s;
chr->chr_write = win_chr_write;
chr->chr_close = win_chr_close;
if (win_chr_init(chr, filename, errp) < 0) {
g_free(s);
g_free(chr);
return NULL;
}
return chr;
}
| false | qemu | d0d7708ba29cbcc343364a46bff981e0ff88366f |
5,813 | void smbios_add_field(int type, int offset, const void *data, size_t len)
{
struct smbios_field *field;
smbios_check_collision(type, SMBIOS_FIELD_ENTRY);
if (!smbios_entries) {
smbios_entries_len = sizeof(uint16_t);
smbios_entries = g_malloc0(smbios_entries_len);
}
smbios_entries = g_realloc(smbios_entries, smbios_entries_len +
sizeof(*field) + len);
field = (struct smbios_field *)(smbios_entries + smbios_entries_len);
field->header.type = SMBIOS_FIELD_ENTRY;
field->header.length = cpu_to_le16(sizeof(*field) + len);
field->type = type;
field->offset = cpu_to_le16(offset);
memcpy(field->data, data, len);
smbios_entries_len += sizeof(*field) + len;
(*(uint16_t *)smbios_entries) =
cpu_to_le16(le16_to_cpu(*(uint16_t *)smbios_entries) + 1);
}
| false | qemu | fc3b32958a80bca13309e2695de07b43dd788421 |
5,814 | Visitor *qmp_output_visitor_new(QObject **result)
{
QmpOutputVisitor *v;
v = g_malloc0(sizeof(*v));
v->visitor.type = VISITOR_OUTPUT;
v->visitor.start_struct = qmp_output_start_struct;
v->visitor.end_struct = qmp_output_end_struct;
v->visitor.start_list = qmp_output_start_list;
v->visitor.next_list = qmp_output_next_list;
v->visitor.end_list = qmp_output_end_list;
v->visitor.type_int64 = qmp_output_type_int64;
v->visitor.type_uint64 = qmp_output_type_uint64;
v->visitor.type_bool = qmp_output_type_bool;
v->visitor.type_str = qmp_output_type_str;
v->visitor.type_number = qmp_output_type_number;
v->visitor.type_any = qmp_output_type_any;
v->visitor.type_null = qmp_output_type_null;
v->visitor.complete = qmp_output_complete;
v->visitor.free = qmp_output_free;
*result = NULL;
v->result = result;
return &v->visitor;
}
| false | qemu | 7d5e199ade76c53ec316ab6779800581bb47c50a |
5,817 | static int ast2500_rambits(AspeedSDMCState *s)
{
switch (s->ram_size >> 20) {
case 128:
return ASPEED_SDMC_AST2500_128MB;
case 256:
return ASPEED_SDMC_AST2500_256MB;
case 512:
return ASPEED_SDMC_AST2500_512MB;
case 1024:
return ASPEED_SDMC_AST2500_1024MB;
default:
break;
}
/* use a common default */
error_report("warning: Invalid RAM size 0x%" PRIx64
". Using default 512M", s->ram_size);
s->ram_size = 512 << 20;
return ASPEED_SDMC_AST2500_512MB;
}
| false | qemu | 3dc6f8693694a649a9c83f1e2746565b47683923 |
5,818 | void helper_lswx(CPUPPCState *env, target_ulong addr, uint32_t reg,
uint32_t ra, uint32_t rb)
{
if (likely(xer_bc != 0)) {
int num_used_regs = (xer_bc + 3) / 4;
if (unlikely((ra != 0 && reg < ra && (reg + num_used_regs) > ra) ||
(reg < rb && (reg + num_used_regs) > rb))) {
helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
POWERPC_EXCP_INVAL |
POWERPC_EXCP_INVAL_LSWX);
} else {
helper_lsw(env, addr, xer_bc, reg);
}
}
}
| false | qemu | 537d3e8e6beea9a0fbd6469eb38450e718244dad |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.