id
stringlengths
14
16
text
stringlengths
31
2.41k
source
stringlengths
53
121
bbcbfffaf1e7-4
self, results: List[Dict], docs: List[Document], token_max: int = 3000, callbacks: Callbacks = None, **kwargs: Any, ) -> Tuple[List[Document], dict]: question_result_key = self.llm_chain.output_key result_docs = [ Document(page_content=r[question_result_key], metadata=docs[i].metadata) # This uses metadata from the docs, and the textual results from `results` for i, r in enumerate(results) ] length_func = self.combine_document_chain.prompt_length num_tokens = length_func(result_docs, **kwargs) def _collapse_docs_func(docs: List[Document], **kwargs: Any) -> str: return self._collapse_chain.run( input_documents=docs, callbacks=callbacks, **kwargs ) while num_tokens is not None and num_tokens > token_max: new_result_doc_list = _split_list_of_docs( result_docs, length_func, token_max, **kwargs ) result_docs = [] for docs in new_result_doc_list: new_doc = _collapse_docs(docs, _collapse_docs_func, **kwargs) result_docs.append(new_doc) num_tokens = length_func(result_docs, **kwargs) if self.return_intermediate_steps: _results = [r[self.llm_chain.output_key] for r in results] extra_return_dict = {"intermediate_steps": _results} else: extra_return_dict = {} return result_docs, extra_return_dict def _process_results( self, results: List[Dict], docs: List[Document], token_max: int = 3000,
https://api.python.langchain.com/en/stable/_modules/langchain/chains/combine_documents/map_reduce.html
bbcbfffaf1e7-5
docs: List[Document], token_max: int = 3000, callbacks: Callbacks = None, **kwargs: Any, ) -> Tuple[str, dict]: result_docs, extra_return_dict = self._process_results_common( results, docs, token_max, callbacks=callbacks, **kwargs ) output = self.combine_document_chain.run( input_documents=result_docs, callbacks=callbacks, **kwargs ) return output, extra_return_dict async def _aprocess_results( self, results: List[Dict], docs: List[Document], callbacks: Callbacks = None, **kwargs: Any, ) -> Tuple[str, dict]: result_docs, extra_return_dict = self._process_results_common( results, docs, callbacks=callbacks, **kwargs ) output = await self.combine_document_chain.arun( input_documents=result_docs, callbacks=callbacks, **kwargs ) return output, extra_return_dict @property def _chain_type(self) -> str: return "map_reduce_documents_chain"
https://api.python.langchain.com/en/stable/_modules/langchain/chains/combine_documents/map_reduce.html
abebeaeb9547-0
Source code for langchain.chains.constitutional_ai.base """Chain for applying constitutional principles to the outputs of another chain.""" from typing import Any, Dict, List, Optional from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.chains.base import Chain from langchain.chains.constitutional_ai.models import ConstitutionalPrinciple from langchain.chains.constitutional_ai.principles import PRINCIPLES from langchain.chains.constitutional_ai.prompts import CRITIQUE_PROMPT, REVISION_PROMPT from langchain.chains.llm import LLMChain from langchain.prompts.base import BasePromptTemplate [docs]class ConstitutionalChain(Chain): """Chain for applying constitutional principles. Example: .. code-block:: python from langchain.llms import OpenAI from langchain.chains import LLMChain, ConstitutionalChain from langchain.chains.constitutional_ai.models \ import ConstitutionalPrinciple llm = OpenAI() qa_prompt = PromptTemplate( template="Q: {question} A:", input_variables=["question"], ) qa_chain = LLMChain(llm=llm, prompt=qa_prompt) constitutional_chain = ConstitutionalChain.from_llm( llm=llm, chain=qa_chain, constitutional_principles=[ ConstitutionalPrinciple( critique_request="Tell if this answer is good.", revision_request="Give a better answer.", ) ], ) constitutional_chain.run(question="What is the meaning of life?") """ chain: LLMChain constitutional_principles: List[ConstitutionalPrinciple] critique_chain: LLMChain
https://api.python.langchain.com/en/stable/_modules/langchain/chains/constitutional_ai/base.html
abebeaeb9547-1
critique_chain: LLMChain revision_chain: LLMChain return_intermediate_steps: bool = False [docs] @classmethod def get_principles( cls, names: Optional[List[str]] = None ) -> List[ConstitutionalPrinciple]: if names is None: return list(PRINCIPLES.values()) else: return [PRINCIPLES[name] for name in names] [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, chain: LLMChain, critique_prompt: BasePromptTemplate = CRITIQUE_PROMPT, revision_prompt: BasePromptTemplate = REVISION_PROMPT, **kwargs: Any, ) -> "ConstitutionalChain": """Create a chain from an LLM.""" critique_chain = LLMChain(llm=llm, prompt=critique_prompt) revision_chain = LLMChain(llm=llm, prompt=revision_prompt) return cls( chain=chain, critique_chain=critique_chain, revision_chain=revision_chain, **kwargs, ) @property def input_keys(self) -> List[str]: """Defines the input keys.""" return self.chain.input_keys @property def output_keys(self) -> List[str]: """Defines the output keys.""" if self.return_intermediate_steps: return ["output", "critiques_and_revisions", "initial_output"] return ["output"] def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]:
https://api.python.langchain.com/en/stable/_modules/langchain/chains/constitutional_ai/base.html
abebeaeb9547-2
) -> Dict[str, Any]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() response = self.chain.run( **inputs, callbacks=_run_manager.get_child("original"), ) initial_response = response input_prompt = self.chain.prompt.format(**inputs) _run_manager.on_text( text="Initial response: " + response + "\n\n", verbose=self.verbose, color="yellow", ) critiques_and_revisions = [] for constitutional_principle in self.constitutional_principles: # Do critique raw_critique = self.critique_chain.run( input_prompt=input_prompt, output_from_model=response, critique_request=constitutional_principle.critique_request, callbacks=_run_manager.get_child("critique"), ) critique = self._parse_critique( output_string=raw_critique, ).strip() # if the critique contains "No critique needed", then we're done # in this case, initial_output is the same as output, # but we'll keep it for consistency if "no critique needed" in critique.lower(): critiques_and_revisions.append((critique, "")) continue # Do revision revision = self.revision_chain.run( input_prompt=input_prompt, output_from_model=response, critique_request=constitutional_principle.critique_request, critique=critique, revision_request=constitutional_principle.revision_request, callbacks=_run_manager.get_child("revision"), ).strip() response = revision critiques_and_revisions.append((critique, revision)) _run_manager.on_text(
https://api.python.langchain.com/en/stable/_modules/langchain/chains/constitutional_ai/base.html
abebeaeb9547-3
_run_manager.on_text( text=f"Applying {constitutional_principle.name}..." + "\n\n", verbose=self.verbose, color="green", ) _run_manager.on_text( text="Critique: " + critique + "\n\n", verbose=self.verbose, color="blue", ) _run_manager.on_text( text="Updated response: " + revision + "\n\n", verbose=self.verbose, color="yellow", ) final_output: Dict[str, Any] = {"output": response} if self.return_intermediate_steps: final_output["initial_output"] = initial_response final_output["critiques_and_revisions"] = critiques_and_revisions return final_output @staticmethod def _parse_critique(output_string: str) -> str: if "Revision request:" not in output_string: return output_string output_string = output_string.split("Revision request:")[0] if "\n\n" in output_string: output_string = output_string.split("\n\n")[0] return output_string
https://api.python.langchain.com/en/stable/_modules/langchain/chains/constitutional_ai/base.html
466a010e1730-0
Source code for langchain.chains.pal.base """Implements Program-Aided Language Models. As in https://arxiv.org/pdf/2211.10435.pdf. """ from __future__ import annotations import warnings from typing import Any, Dict, List, Optional from pydantic import Extra, root_validator from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.chains.pal.colored_object_prompt import COLORED_OBJECT_PROMPT from langchain.chains.pal.math_prompt import MATH_PROMPT from langchain.prompts.base import BasePromptTemplate from langchain.utilities import PythonREPL [docs]class PALChain(Chain): """Implements Program-Aided Language Models.""" llm_chain: LLMChain llm: Optional[BaseLanguageModel] = None """[Deprecated]""" prompt: BasePromptTemplate = MATH_PROMPT """[Deprecated]""" stop: str = "\n\n" get_answer_expr: str = "print(solution())" python_globals: Optional[Dict[str, Any]] = None python_locals: Optional[Dict[str, Any]] = None output_key: str = "result" #: :meta private: return_intermediate_steps: bool = False class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @root_validator(pre=True) def raise_deprecation(cls, values: Dict) -> Dict: if "llm" in values: warnings.warn( "Directly instantiating an PALChain with an llm is deprecated. "
https://api.python.langchain.com/en/stable/_modules/langchain/chains/pal/base.html
466a010e1730-1
"Directly instantiating an PALChain with an llm is deprecated. " "Please instantiate with llm_chain argument or using the one of " "the class method constructors from_math_prompt, " "from_colored_object_prompt." ) if "llm_chain" not in values and values["llm"] is not None: values["llm_chain"] = LLMChain(llm=values["llm"], prompt=MATH_PROMPT) return values @property def input_keys(self) -> List[str]: """Return the singular input key. :meta private: """ return self.prompt.input_variables @property def output_keys(self) -> List[str]: """Return the singular output key. :meta private: """ if not self.return_intermediate_steps: return [self.output_key] else: return [self.output_key, "intermediate_steps"] def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() code = self.llm_chain.predict( stop=[self.stop], callbacks=_run_manager.get_child(), **inputs ) _run_manager.on_text(code, color="green", end="\n", verbose=self.verbose) repl = PythonREPL(_globals=self.python_globals, _locals=self.python_locals) res = repl.run(code + f"\n{self.get_answer_expr}") output = {self.output_key: res.strip()} if self.return_intermediate_steps: output["intermediate_steps"] = code
https://api.python.langchain.com/en/stable/_modules/langchain/chains/pal/base.html
466a010e1730-2
if self.return_intermediate_steps: output["intermediate_steps"] = code return output [docs] @classmethod def from_math_prompt(cls, llm: BaseLanguageModel, **kwargs: Any) -> PALChain: """Load PAL from math prompt.""" llm_chain = LLMChain(llm=llm, prompt=MATH_PROMPT) return cls( llm_chain=llm_chain, stop="\n\n", get_answer_expr="print(solution())", **kwargs, ) [docs] @classmethod def from_colored_object_prompt( cls, llm: BaseLanguageModel, **kwargs: Any ) -> PALChain: """Load PAL from colored object prompt.""" llm_chain = LLMChain(llm=llm, prompt=COLORED_OBJECT_PROMPT) return cls( llm_chain=llm_chain, stop="\n\n\n", get_answer_expr="print(answer)", **kwargs, ) @property def _chain_type(self) -> str: return "pal_chain"
https://api.python.langchain.com/en/stable/_modules/langchain/chains/pal/base.html
506ab595a08c-0
Source code for langchain.chains.retrieval_qa.base """Chain for question-answering against a vector database.""" from __future__ import annotations import warnings from abc import abstractmethod from typing import Any, Dict, List, Optional from pydantic import Extra, Field, root_validator from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain.chains.base import Chain from langchain.chains.combine_documents.base import BaseCombineDocumentsChain from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.llm import LLMChain from langchain.chains.question_answering import load_qa_chain from langchain.chains.question_answering.stuff_prompt import PROMPT_SELECTOR from langchain.prompts import PromptTemplate from langchain.schema import BaseRetriever, Document from langchain.vectorstores.base import VectorStore class BaseRetrievalQA(Chain): combine_documents_chain: BaseCombineDocumentsChain """Chain to use to combine the documents.""" input_key: str = "query" #: :meta private: output_key: str = "result" #: :meta private: return_source_documents: bool = False """Return the source documents.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True allow_population_by_field_name = True @property def input_keys(self) -> List[str]: """Return the input keys. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return the output keys.
https://api.python.langchain.com/en/stable/_modules/langchain/chains/retrieval_qa/base.html
506ab595a08c-1
def output_keys(self) -> List[str]: """Return the output keys. :meta private: """ _output_keys = [self.output_key] if self.return_source_documents: _output_keys = _output_keys + ["source_documents"] return _output_keys @classmethod def from_llm( cls, llm: BaseLanguageModel, prompt: Optional[PromptTemplate] = None, **kwargs: Any, ) -> BaseRetrievalQA: """Initialize from LLM.""" _prompt = prompt or PROMPT_SELECTOR.get_prompt(llm) llm_chain = LLMChain(llm=llm, prompt=_prompt) document_prompt = PromptTemplate( input_variables=["page_content"], template="Context:\n{page_content}" ) combine_documents_chain = StuffDocumentsChain( llm_chain=llm_chain, document_variable_name="context", document_prompt=document_prompt, ) return cls(combine_documents_chain=combine_documents_chain, **kwargs) @classmethod def from_chain_type( cls, llm: BaseLanguageModel, chain_type: str = "stuff", chain_type_kwargs: Optional[dict] = None, **kwargs: Any, ) -> BaseRetrievalQA: """Load chain from chain type.""" _chain_type_kwargs = chain_type_kwargs or {} combine_documents_chain = load_qa_chain( llm, chain_type=chain_type, **_chain_type_kwargs ) return cls(combine_documents_chain=combine_documents_chain, **kwargs) @abstractmethod def _get_docs(self, question: str) -> List[Document]:
https://api.python.langchain.com/en/stable/_modules/langchain/chains/retrieval_qa/base.html
506ab595a08c-2
def _get_docs(self, question: str) -> List[Document]: """Get documents to do question answering over.""" def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: """Run get_relevant_text and llm on input query. If chain has 'return_source_documents' as 'True', returns the retrieved documents as well under the key 'source_documents'. Example: .. code-block:: python res = indexqa({'query': 'This is my query'}) answer, docs = res['result'], res['source_documents'] """ _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() question = inputs[self.input_key] docs = self._get_docs(question) answer = self.combine_documents_chain.run( input_documents=docs, question=question, callbacks=_run_manager.get_child() ) if self.return_source_documents: return {self.output_key: answer, "source_documents": docs} else: return {self.output_key: answer} @abstractmethod async def _aget_docs(self, question: str) -> List[Document]: """Get documents to do question answering over.""" async def _acall( self, inputs: Dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, Any]: """Run get_relevant_text and llm on input query. If chain has 'return_source_documents' as 'True', returns the retrieved documents as well under the key 'source_documents'. Example:
https://api.python.langchain.com/en/stable/_modules/langchain/chains/retrieval_qa/base.html
506ab595a08c-3
the retrieved documents as well under the key 'source_documents'. Example: .. code-block:: python res = indexqa({'query': 'This is my query'}) answer, docs = res['result'], res['source_documents'] """ _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() question = inputs[self.input_key] docs = await self._aget_docs(question) answer = await self.combine_documents_chain.arun( input_documents=docs, question=question, callbacks=_run_manager.get_child() ) if self.return_source_documents: return {self.output_key: answer, "source_documents": docs} else: return {self.output_key: answer} [docs]class RetrievalQA(BaseRetrievalQA): """Chain for question-answering against an index. Example: .. code-block:: python from langchain.llms import OpenAI from langchain.chains import RetrievalQA from langchain.faiss import FAISS from langchain.vectorstores.base import VectorStoreRetriever retriever = VectorStoreRetriever(vectorstore=FAISS(...)) retrievalQA = RetrievalQA.from_llm(llm=OpenAI(), retriever=retriever) """ retriever: BaseRetriever = Field(exclude=True) def _get_docs(self, question: str) -> List[Document]: return self.retriever.get_relevant_documents(question) async def _aget_docs(self, question: str) -> List[Document]: return await self.retriever.aget_relevant_documents(question) @property def _chain_type(self) -> str: """Return the chain type."""
https://api.python.langchain.com/en/stable/_modules/langchain/chains/retrieval_qa/base.html
506ab595a08c-4
def _chain_type(self) -> str: """Return the chain type.""" return "retrieval_qa" [docs]class VectorDBQA(BaseRetrievalQA): """Chain for question-answering against a vector database.""" vectorstore: VectorStore = Field(exclude=True, alias="vectorstore") """Vector Database to connect to.""" k: int = 4 """Number of documents to query for.""" search_type: str = "similarity" """Search type to use over vectorstore. `similarity` or `mmr`.""" search_kwargs: Dict[str, Any] = Field(default_factory=dict) """Extra search args.""" @root_validator() def raise_deprecation(cls, values: Dict) -> Dict: warnings.warn( "`VectorDBQA` is deprecated - " "please use `from langchain.chains import RetrievalQA`" ) return values @root_validator() def validate_search_type(cls, values: Dict) -> Dict: """Validate search type.""" if "search_type" in values: search_type = values["search_type"] if search_type not in ("similarity", "mmr"): raise ValueError(f"search_type of {search_type} not allowed.") return values def _get_docs(self, question: str) -> List[Document]: if self.search_type == "similarity": docs = self.vectorstore.similarity_search( question, k=self.k, **self.search_kwargs ) elif self.search_type == "mmr": docs = self.vectorstore.max_marginal_relevance_search( question, k=self.k, **self.search_kwargs )
https://api.python.langchain.com/en/stable/_modules/langchain/chains/retrieval_qa/base.html
506ab595a08c-5
question, k=self.k, **self.search_kwargs ) else: raise ValueError(f"search_type of {self.search_type} not allowed.") return docs async def _aget_docs(self, question: str) -> List[Document]: raise NotImplementedError("VectorDBQA does not support async") @property def _chain_type(self) -> str: """Return the chain type.""" return "vector_db_qa"
https://api.python.langchain.com/en/stable/_modules/langchain/chains/retrieval_qa/base.html
a6306c2366bb-0
Source code for langchain.chains.llm_summarization_checker.base """Chain for summarization with self-verification.""" from __future__ import annotations import warnings from pathlib import Path from typing import Any, Dict, List, Optional from pydantic import Extra, root_validator from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.chains.sequential import SequentialChain from langchain.prompts.prompt import PromptTemplate PROMPTS_DIR = Path(__file__).parent / "prompts" CREATE_ASSERTIONS_PROMPT = PromptTemplate.from_file( PROMPTS_DIR / "create_facts.txt", ["summary"] ) CHECK_ASSERTIONS_PROMPT = PromptTemplate.from_file( PROMPTS_DIR / "check_facts.txt", ["assertions"] ) REVISED_SUMMARY_PROMPT = PromptTemplate.from_file( PROMPTS_DIR / "revise_summary.txt", ["checked_assertions", "summary"] ) ARE_ALL_TRUE_PROMPT = PromptTemplate.from_file( PROMPTS_DIR / "are_all_true_prompt.txt", ["checked_assertions"] ) def _load_sequential_chain( llm: BaseLanguageModel, create_assertions_prompt: PromptTemplate, check_assertions_prompt: PromptTemplate, revised_summary_prompt: PromptTemplate, are_all_true_prompt: PromptTemplate, verbose: bool = False, ) -> SequentialChain: chain = SequentialChain( chains=[ LLMChain( llm=llm, prompt=create_assertions_prompt, output_key="assertions", verbose=verbose, ), LLMChain(
https://api.python.langchain.com/en/stable/_modules/langchain/chains/llm_summarization_checker/base.html
a6306c2366bb-1
verbose=verbose, ), LLMChain( llm=llm, prompt=check_assertions_prompt, output_key="checked_assertions", verbose=verbose, ), LLMChain( llm=llm, prompt=revised_summary_prompt, output_key="revised_summary", verbose=verbose, ), LLMChain( llm=llm, output_key="all_true", prompt=are_all_true_prompt, verbose=verbose, ), ], input_variables=["summary"], output_variables=["all_true", "revised_summary"], verbose=verbose, ) return chain [docs]class LLMSummarizationCheckerChain(Chain): """Chain for question-answering with self-verification. Example: .. code-block:: python from langchain import OpenAI, LLMSummarizationCheckerChain llm = OpenAI(temperature=0.0) checker_chain = LLMSummarizationCheckerChain.from_llm(llm) """ sequential_chain: SequentialChain llm: Optional[BaseLanguageModel] = None """[Deprecated] LLM wrapper to use.""" create_assertions_prompt: PromptTemplate = CREATE_ASSERTIONS_PROMPT """[Deprecated]""" check_assertions_prompt: PromptTemplate = CHECK_ASSERTIONS_PROMPT """[Deprecated]""" revised_summary_prompt: PromptTemplate = REVISED_SUMMARY_PROMPT """[Deprecated]""" are_all_true_prompt: PromptTemplate = ARE_ALL_TRUE_PROMPT """[Deprecated]""" input_key: str = "query" #: :meta private:
https://api.python.langchain.com/en/stable/_modules/langchain/chains/llm_summarization_checker/base.html
a6306c2366bb-2
input_key: str = "query" #: :meta private: output_key: str = "result" #: :meta private: max_checks: int = 2 """Maximum number of times to check the assertions. Default to double-checking.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @root_validator(pre=True) def raise_deprecation(cls, values: Dict) -> Dict: if "llm" in values: warnings.warn( "Directly instantiating an LLMSummarizationCheckerChain with an llm is " "deprecated. Please instantiate with" " sequential_chain argument or using the from_llm class method." ) if "sequential_chain" not in values and values["llm"] is not None: values["sequential_chain"] = _load_sequential_chain( values["llm"], values.get("create_assertions_prompt", CREATE_ASSERTIONS_PROMPT), values.get("check_assertions_prompt", CHECK_ASSERTIONS_PROMPT), values.get("revised_summary_prompt", REVISED_SUMMARY_PROMPT), values.get("are_all_true_prompt", ARE_ALL_TRUE_PROMPT), verbose=values.get("verbose", False), ) return values @property def input_keys(self) -> List[str]: """Return the singular input key. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return the singular output key. :meta private: """ return [self.output_key] def _call( self, inputs: Dict[str, Any],
https://api.python.langchain.com/en/stable/_modules/langchain/chains/llm_summarization_checker/base.html
a6306c2366bb-3
def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() all_true = False count = 0 output = None original_input = inputs[self.input_key] chain_input = original_input while not all_true and count < self.max_checks: output = self.sequential_chain( {"summary": chain_input}, callbacks=_run_manager.get_child() ) count += 1 if output["all_true"].strip() == "True": break if self.verbose: print(output["revised_summary"]) chain_input = output["revised_summary"] if not output: raise ValueError("No output from chain") return {self.output_key: output["revised_summary"].strip()} @property def _chain_type(self) -> str: return "llm_summarization_checker_chain" [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, create_assertions_prompt: PromptTemplate = CREATE_ASSERTIONS_PROMPT, check_assertions_prompt: PromptTemplate = CHECK_ASSERTIONS_PROMPT, revised_summary_prompt: PromptTemplate = REVISED_SUMMARY_PROMPT, are_all_true_prompt: PromptTemplate = ARE_ALL_TRUE_PROMPT, verbose: bool = False, **kwargs: Any, ) -> LLMSummarizationCheckerChain: chain = _load_sequential_chain( llm, create_assertions_prompt, check_assertions_prompt, revised_summary_prompt,
https://api.python.langchain.com/en/stable/_modules/langchain/chains/llm_summarization_checker/base.html
a6306c2366bb-4
create_assertions_prompt, check_assertions_prompt, revised_summary_prompt, are_all_true_prompt, verbose=verbose, ) return cls(sequential_chain=chain, verbose=verbose, **kwargs)
https://api.python.langchain.com/en/stable/_modules/langchain/chains/llm_summarization_checker/base.html
d4fc79b3ee79-0
Source code for langchain.chains.api.base """Chain that makes API calls and summarizes the responses to answer a question.""" from __future__ import annotations from typing import Any, Dict, List, Optional from pydantic import Field, root_validator from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain.chains.api.prompt import API_RESPONSE_PROMPT, API_URL_PROMPT from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.prompts import BasePromptTemplate from langchain.requests import TextRequestsWrapper [docs]class APIChain(Chain): """Chain that makes API calls and summarizes the responses to answer a question.""" api_request_chain: LLMChain api_answer_chain: LLMChain requests_wrapper: TextRequestsWrapper = Field(exclude=True) api_docs: str question_key: str = "question" #: :meta private: output_key: str = "output" #: :meta private: @property def input_keys(self) -> List[str]: """Expect input key. :meta private: """ return [self.question_key] @property def output_keys(self) -> List[str]: """Expect output key. :meta private: """ return [self.output_key] @root_validator(pre=True) def validate_api_request_prompt(cls, values: Dict) -> Dict: """Check that api request prompt expects the right variables.""" input_vars = values["api_request_chain"].prompt.input_variables expected_vars = {"question", "api_docs"} if set(input_vars) != expected_vars:
https://api.python.langchain.com/en/stable/_modules/langchain/chains/api/base.html
d4fc79b3ee79-1
if set(input_vars) != expected_vars: raise ValueError( f"Input variables should be {expected_vars}, got {input_vars}" ) return values @root_validator(pre=True) def validate_api_answer_prompt(cls, values: Dict) -> Dict: """Check that api answer prompt expects the right variables.""" input_vars = values["api_answer_chain"].prompt.input_variables expected_vars = {"question", "api_docs", "api_url", "api_response"} if set(input_vars) != expected_vars: raise ValueError( f"Input variables should be {expected_vars}, got {input_vars}" ) return values def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() question = inputs[self.question_key] api_url = self.api_request_chain.predict( question=question, api_docs=self.api_docs, callbacks=_run_manager.get_child(), ) _run_manager.on_text(api_url, color="green", end="\n", verbose=self.verbose) api_url = api_url.strip() api_response = self.requests_wrapper.get(api_url) _run_manager.on_text( api_response, color="yellow", end="\n", verbose=self.verbose ) answer = self.api_answer_chain.predict( question=question, api_docs=self.api_docs, api_url=api_url, api_response=api_response, callbacks=_run_manager.get_child(), ) return {self.output_key: answer} async def _acall(
https://api.python.langchain.com/en/stable/_modules/langchain/chains/api/base.html
d4fc79b3ee79-2
return {self.output_key: answer} async def _acall( self, inputs: Dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() question = inputs[self.question_key] api_url = await self.api_request_chain.apredict( question=question, api_docs=self.api_docs, callbacks=_run_manager.get_child(), ) await _run_manager.on_text( api_url, color="green", end="\n", verbose=self.verbose ) api_url = api_url.strip() api_response = await self.requests_wrapper.aget(api_url) await _run_manager.on_text( api_response, color="yellow", end="\n", verbose=self.verbose ) answer = await self.api_answer_chain.apredict( question=question, api_docs=self.api_docs, api_url=api_url, api_response=api_response, callbacks=_run_manager.get_child(), ) return {self.output_key: answer} [docs] @classmethod def from_llm_and_api_docs( cls, llm: BaseLanguageModel, api_docs: str, headers: Optional[dict] = None, api_url_prompt: BasePromptTemplate = API_URL_PROMPT, api_response_prompt: BasePromptTemplate = API_RESPONSE_PROMPT, **kwargs: Any, ) -> APIChain: """Load chain from just an LLM and the api docs.""" get_request_chain = LLMChain(llm=llm, prompt=api_url_prompt)
https://api.python.langchain.com/en/stable/_modules/langchain/chains/api/base.html
d4fc79b3ee79-3
requests_wrapper = TextRequestsWrapper(headers=headers) get_answer_chain = LLMChain(llm=llm, prompt=api_response_prompt) return cls( api_request_chain=get_request_chain, api_answer_chain=get_answer_chain, requests_wrapper=requests_wrapper, api_docs=api_docs, **kwargs, ) @property def _chain_type(self) -> str: return "api_chain"
https://api.python.langchain.com/en/stable/_modules/langchain/chains/api/base.html
1de54db1df87-0
Source code for langchain.chains.api.openapi.chain """Chain that makes API calls and summarizes the responses to answer a question.""" from __future__ import annotations import json from typing import Any, Dict, List, NamedTuple, Optional, cast from pydantic import BaseModel, Field from requests import Response from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import CallbackManagerForChainRun, Callbacks from langchain.chains.api.openapi.requests_chain import APIRequesterChain from langchain.chains.api.openapi.response_chain import APIResponderChain from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.requests import Requests from langchain.tools.openapi.utils.api_models import APIOperation class _ParamMapping(NamedTuple): """Mapping from parameter name to parameter value.""" query_params: List[str] body_params: List[str] path_params: List[str] [docs]class OpenAPIEndpointChain(Chain, BaseModel): """Chain interacts with an OpenAPI endpoint using natural language.""" api_request_chain: LLMChain api_response_chain: Optional[LLMChain] api_operation: APIOperation requests: Requests = Field(exclude=True, default_factory=Requests) param_mapping: _ParamMapping = Field(alias="param_mapping") return_intermediate_steps: bool = False instructions_key: str = "instructions" #: :meta private: output_key: str = "output" #: :meta private: max_text_length: Optional[int] = Field(ge=0) #: :meta private: @property def input_keys(self) -> List[str]: """Expect input key. :meta private: """ return [self.instructions_key] @property
https://api.python.langchain.com/en/stable/_modules/langchain/chains/api/openapi/chain.html
1de54db1df87-1
""" return [self.instructions_key] @property def output_keys(self) -> List[str]: """Expect output key. :meta private: """ if not self.return_intermediate_steps: return [self.output_key] else: return [self.output_key, "intermediate_steps"] def _construct_path(self, args: Dict[str, str]) -> str: """Construct the path from the deserialized input.""" path = self.api_operation.base_url + self.api_operation.path for param in self.param_mapping.path_params: path = path.replace(f"{{{param}}}", str(args.pop(param, ""))) return path def _extract_query_params(self, args: Dict[str, str]) -> Dict[str, str]: """Extract the query params from the deserialized input.""" query_params = {} for param in self.param_mapping.query_params: if param in args: query_params[param] = args.pop(param) return query_params def _extract_body_params(self, args: Dict[str, str]) -> Optional[Dict[str, str]]: """Extract the request body params from the deserialized input.""" body_params = None if self.param_mapping.body_params: body_params = {} for param in self.param_mapping.body_params: if param in args: body_params[param] = args.pop(param) return body_params [docs] def deserialize_json_input(self, serialized_args: str) -> dict: """Use the serialized typescript dictionary. Resolve the path, query params dict, and optional requestBody dict. """ args: dict = json.loads(serialized_args) path = self._construct_path(args)
https://api.python.langchain.com/en/stable/_modules/langchain/chains/api/openapi/chain.html
1de54db1df87-2
path = self._construct_path(args) body_params = self._extract_body_params(args) query_params = self._extract_query_params(args) return { "url": path, "data": body_params, "params": query_params, } def _get_output(self, output: str, intermediate_steps: dict) -> dict: """Return the output from the API call.""" if self.return_intermediate_steps: return { self.output_key: output, "intermediate_steps": intermediate_steps, } else: return {self.output_key: output} def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() intermediate_steps = {} instructions = inputs[self.instructions_key] instructions = instructions[: self.max_text_length] _api_arguments = self.api_request_chain.predict_and_parse( instructions=instructions, callbacks=_run_manager.get_child() ) api_arguments = cast(str, _api_arguments) intermediate_steps["request_args"] = api_arguments _run_manager.on_text( api_arguments, color="green", end="\n", verbose=self.verbose ) if api_arguments.startswith("ERROR"): return self._get_output(api_arguments, intermediate_steps) elif api_arguments.startswith("MESSAGE:"): return self._get_output( api_arguments[len("MESSAGE:") :], intermediate_steps ) try: request_args = self.deserialize_json_input(api_arguments) method = getattr(self.requests, self.api_operation.method.value)
https://api.python.langchain.com/en/stable/_modules/langchain/chains/api/openapi/chain.html
1de54db1df87-3
method = getattr(self.requests, self.api_operation.method.value) api_response: Response = method(**request_args) if api_response.status_code != 200: method_str = str(self.api_operation.method.value) response_text = ( f"{api_response.status_code}: {api_response.reason}" + f"\nFor {method_str.upper()} {request_args['url']}\n" + f"Called with args: {request_args['params']}" ) else: response_text = api_response.text except Exception as e: response_text = f"Error with message {str(e)}" response_text = response_text[: self.max_text_length] intermediate_steps["response_text"] = response_text _run_manager.on_text( response_text, color="blue", end="\n", verbose=self.verbose ) if self.api_response_chain is not None: _answer = self.api_response_chain.predict_and_parse( response=response_text, instructions=instructions, callbacks=_run_manager.get_child(), ) answer = cast(str, _answer) _run_manager.on_text(answer, color="yellow", end="\n", verbose=self.verbose) return self._get_output(answer, intermediate_steps) else: return self._get_output(response_text, intermediate_steps) [docs] @classmethod def from_url_and_method( cls, spec_url: str, path: str, method: str, llm: BaseLanguageModel, requests: Optional[Requests] = None, return_intermediate_steps: bool = False, **kwargs: Any # TODO: Handle async ) -> "OpenAPIEndpointChain":
https://api.python.langchain.com/en/stable/_modules/langchain/chains/api/openapi/chain.html
1de54db1df87-4
# TODO: Handle async ) -> "OpenAPIEndpointChain": """Create an OpenAPIEndpoint from a spec at the specified url.""" operation = APIOperation.from_openapi_url(spec_url, path, method) return cls.from_api_operation( operation, requests=requests, llm=llm, return_intermediate_steps=return_intermediate_steps, **kwargs, ) [docs] @classmethod def from_api_operation( cls, operation: APIOperation, llm: BaseLanguageModel, requests: Optional[Requests] = None, verbose: bool = False, return_intermediate_steps: bool = False, raw_response: bool = False, callbacks: Callbacks = None, **kwargs: Any # TODO: Handle async ) -> "OpenAPIEndpointChain": """Create an OpenAPIEndpointChain from an operation and a spec.""" param_mapping = _ParamMapping( query_params=operation.query_params, body_params=operation.body_params, path_params=operation.path_params, ) requests_chain = APIRequesterChain.from_llm_and_typescript( llm, typescript_definition=operation.to_typescript(), verbose=verbose, callbacks=callbacks, ) if raw_response: response_chain = None else: response_chain = APIResponderChain.from_llm( llm, verbose=verbose, callbacks=callbacks ) _requests = requests or Requests() return cls( api_request_chain=requests_chain, api_response_chain=response_chain, api_operation=operation, requests=_requests, param_mapping=param_mapping,
https://api.python.langchain.com/en/stable/_modules/langchain/chains/api/openapi/chain.html
1de54db1df87-5
requests=_requests, param_mapping=param_mapping, verbose=verbose, return_intermediate_steps=return_intermediate_steps, callbacks=callbacks, **kwargs, )
https://api.python.langchain.com/en/stable/_modules/langchain/chains/api/openapi/chain.html
d5dfc89381de-0
Source code for langchain.chat_models.google_palm """Wrapper around Google's PaLM Chat API.""" from __future__ import annotations import logging from typing import TYPE_CHECKING, Any, Callable, Dict, List, Mapping, Optional from pydantic import BaseModel, root_validator from tenacity import ( before_sleep_log, retry, retry_if_exception_type, stop_after_attempt, wait_exponential, ) from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.chat_models.base import BaseChatModel from langchain.schema import ( AIMessage, BaseMessage, ChatGeneration, ChatMessage, ChatResult, HumanMessage, SystemMessage, ) from langchain.utils import get_from_dict_or_env if TYPE_CHECKING: import google.generativeai as genai logger = logging.getLogger(__name__) class ChatGooglePalmError(Exception): """Error raised when there is an issue with the Google PaLM API.""" pass def _truncate_at_stop_tokens( text: str, stop: Optional[List[str]], ) -> str: """Truncates text at the earliest stop token found.""" if stop is None: return text for stop_token in stop: stop_token_idx = text.find(stop_token) if stop_token_idx != -1: text = text[:stop_token_idx] return text def _response_to_result( response: genai.types.ChatResponse, stop: Optional[List[str]], ) -> ChatResult: """Converts a PaLM API response into a LangChain ChatResult.""" if not response.candidates:
https://api.python.langchain.com/en/stable/_modules/langchain/chat_models/google_palm.html
d5dfc89381de-1
if not response.candidates: raise ChatGooglePalmError("ChatResponse must have at least one candidate.") generations: List[ChatGeneration] = [] for candidate in response.candidates: author = candidate.get("author") if author is None: raise ChatGooglePalmError(f"ChatResponse must have an author: {candidate}") content = _truncate_at_stop_tokens(candidate.get("content", ""), stop) if content is None: raise ChatGooglePalmError(f"ChatResponse must have a content: {candidate}") if author == "ai": generations.append( ChatGeneration(text=content, message=AIMessage(content=content)) ) elif author == "human": generations.append( ChatGeneration( text=content, message=HumanMessage(content=content), ) ) else: generations.append( ChatGeneration( text=content, message=ChatMessage(role=author, content=content), ) ) return ChatResult(generations=generations) def _messages_to_prompt_dict( input_messages: List[BaseMessage], ) -> genai.types.MessagePromptDict: """Converts a list of LangChain messages into a PaLM API MessagePrompt structure.""" import google.generativeai as genai context: str = "" examples: List[genai.types.MessageDict] = [] messages: List[genai.types.MessageDict] = [] remaining = list(enumerate(input_messages)) while remaining: index, input_message = remaining.pop(0) if isinstance(input_message, SystemMessage): if index != 0:
https://api.python.langchain.com/en/stable/_modules/langchain/chat_models/google_palm.html
d5dfc89381de-2
if isinstance(input_message, SystemMessage): if index != 0: raise ChatGooglePalmError("System message must be first input message.") context = input_message.content elif isinstance(input_message, HumanMessage) and input_message.example: if messages: raise ChatGooglePalmError( "Message examples must come before other messages." ) _, next_input_message = remaining.pop(0) if isinstance(next_input_message, AIMessage) and next_input_message.example: examples.extend( [ genai.types.MessageDict( author="human", content=input_message.content ), genai.types.MessageDict( author="ai", content=next_input_message.content ), ] ) else: raise ChatGooglePalmError( "Human example message must be immediately followed by an " " AI example response." ) elif isinstance(input_message, AIMessage) and input_message.example: raise ChatGooglePalmError( "AI example message must be immediately preceded by a Human " "example message." ) elif isinstance(input_message, AIMessage): messages.append( genai.types.MessageDict(author="ai", content=input_message.content) ) elif isinstance(input_message, HumanMessage): messages.append( genai.types.MessageDict(author="human", content=input_message.content) ) elif isinstance(input_message, ChatMessage): messages.append( genai.types.MessageDict( author=input_message.role, content=input_message.content ) ) else: raise ChatGooglePalmError( "Messages without an explicit role not supported by PaLM API." )
https://api.python.langchain.com/en/stable/_modules/langchain/chat_models/google_palm.html
d5dfc89381de-3
"Messages without an explicit role not supported by PaLM API." ) return genai.types.MessagePromptDict( context=context, examples=examples, messages=messages, ) def _create_retry_decorator() -> Callable[[Any], Any]: """Returns a tenacity retry decorator, preconfigured to handle PaLM exceptions""" import google.api_core.exceptions multiplier = 2 min_seconds = 1 max_seconds = 60 max_retries = 10 return retry( reraise=True, stop=stop_after_attempt(max_retries), wait=wait_exponential(multiplier=multiplier, min=min_seconds, max=max_seconds), retry=( retry_if_exception_type(google.api_core.exceptions.ResourceExhausted) | retry_if_exception_type(google.api_core.exceptions.ServiceUnavailable) | retry_if_exception_type(google.api_core.exceptions.GoogleAPIError) ), before_sleep=before_sleep_log(logger, logging.WARNING), ) def chat_with_retry(llm: ChatGooglePalm, **kwargs: Any) -> Any: """Use tenacity to retry the completion call.""" retry_decorator = _create_retry_decorator() @retry_decorator def _chat_with_retry(**kwargs: Any) -> Any: return llm.client.chat(**kwargs) return _chat_with_retry(**kwargs) async def achat_with_retry(llm: ChatGooglePalm, **kwargs: Any) -> Any: """Use tenacity to retry the async completion call.""" retry_decorator = _create_retry_decorator() @retry_decorator async def _achat_with_retry(**kwargs: Any) -> Any:
https://api.python.langchain.com/en/stable/_modules/langchain/chat_models/google_palm.html
d5dfc89381de-4
async def _achat_with_retry(**kwargs: Any) -> Any: # Use OpenAI's async api https://github.com/openai/openai-python#async-api return await llm.client.chat_async(**kwargs) return await _achat_with_retry(**kwargs) [docs]class ChatGooglePalm(BaseChatModel, BaseModel): """Wrapper around Google's PaLM Chat API. To use you must have the google.generativeai Python package installed and either: 1. The ``GOOGLE_API_KEY``` environment varaible set with your API key, or 2. Pass your API key using the google_api_key kwarg to the ChatGoogle constructor. Example: .. code-block:: python from langchain.chat_models import ChatGooglePalm chat = ChatGooglePalm() """ client: Any #: :meta private: model_name: str = "models/chat-bison-001" """Model name to use.""" google_api_key: Optional[str] = None temperature: Optional[float] = None """Run inference with this temperature. Must by in the closed interval [0.0, 1.0].""" top_p: Optional[float] = None """Decode using nucleus sampling: consider the smallest set of tokens whose probability sum is at least top_p. Must be in the closed interval [0.0, 1.0].""" top_k: Optional[int] = None """Decode using top-k sampling: consider the set of top_k most probable tokens. Must be positive.""" n: int = 1 """Number of chat completions to generate for each prompt. Note that the API may not return the full n completions if duplicates are generated."""
https://api.python.langchain.com/en/stable/_modules/langchain/chat_models/google_palm.html
d5dfc89381de-5
not return the full n completions if duplicates are generated.""" @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate api key, python package exists, temperature, top_p, and top_k.""" google_api_key = get_from_dict_or_env( values, "google_api_key", "GOOGLE_API_KEY" ) try: import google.generativeai as genai genai.configure(api_key=google_api_key) except ImportError: raise ChatGooglePalmError( "Could not import google.generativeai python package. " "Please install it with `pip install google-generativeai`" ) values["client"] = genai if values["temperature"] is not None and not 0 <= values["temperature"] <= 1: raise ValueError("temperature must be in the range [0.0, 1.0]") if values["top_p"] is not None and not 0 <= values["top_p"] <= 1: raise ValueError("top_p must be in the range [0.0, 1.0]") if values["top_k"] is not None and values["top_k"] <= 0: raise ValueError("top_k must be positive") return values def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: prompt = _messages_to_prompt_dict(messages) response: genai.types.ChatResponse = chat_with_retry( self, model=self.model_name, prompt=prompt,
https://api.python.langchain.com/en/stable/_modules/langchain/chat_models/google_palm.html
d5dfc89381de-6
self, model=self.model_name, prompt=prompt, temperature=self.temperature, top_p=self.top_p, top_k=self.top_k, candidate_count=self.n, **kwargs, ) return _response_to_result(response, stop) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: prompt = _messages_to_prompt_dict(messages) response: genai.types.ChatResponse = await achat_with_retry( self, model=self.model_name, prompt=prompt, temperature=self.temperature, top_p=self.top_p, top_k=self.top_k, candidate_count=self.n, ) return _response_to_result(response, stop) @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { "model_name": self.model_name, "temperature": self.temperature, "top_p": self.top_p, "top_k": self.top_k, "n": self.n, } @property def _llm_type(self) -> str: return "google-palm-chat"
https://api.python.langchain.com/en/stable/_modules/langchain/chat_models/google_palm.html
15e76d5959af-0
Source code for langchain.chat_models.azure_openai """Azure OpenAI chat wrapper.""" from __future__ import annotations import logging from typing import Any, Dict, Mapping from pydantic import root_validator from langchain.chat_models.openai import ChatOpenAI from langchain.schema import ChatResult from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) [docs]class AzureChatOpenAI(ChatOpenAI): """Wrapper around Azure OpenAI Chat Completion API. To use this class you must have a deployed model on Azure OpenAI. Use `deployment_name` in the constructor to refer to the "Model deployment name" in the Azure portal. In addition, you should have the ``openai`` python package installed, and the following environment variables set or passed in constructor in lower case: - ``OPENAI_API_TYPE`` (default: ``azure``) - ``OPENAI_API_KEY`` - ``OPENAI_API_BASE`` - ``OPENAI_API_VERSION`` - ``OPENAI_PROXY`` For exmaple, if you have `gpt-35-turbo` deployed, with the deployment name `35-turbo-dev`, the constructor should look like: .. code-block:: python AzureChatOpenAI( deployment_name="35-turbo-dev", openai_api_version="2023-03-15-preview", ) Be aware the API version may change. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. """ deployment_name: str = "" openai_api_type: str = "azure" openai_api_base: str = ""
https://api.python.langchain.com/en/stable/_modules/langchain/chat_models/azure_openai.html
15e76d5959af-1
openai_api_base: str = "" openai_api_version: str = "" openai_api_key: str = "" openai_organization: str = "" openai_proxy: str = "" @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" values["openai_api_key"] = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY", ) values["openai_api_base"] = get_from_dict_or_env( values, "openai_api_base", "OPENAI_API_BASE", ) values["openai_api_version"] = get_from_dict_or_env( values, "openai_api_version", "OPENAI_API_VERSION", ) values["openai_api_type"] = get_from_dict_or_env( values, "openai_api_type", "OPENAI_API_TYPE", ) values["openai_organization"] = get_from_dict_or_env( values, "openai_organization", "OPENAI_ORGANIZATION", default="", ) values["openai_proxy"] = get_from_dict_or_env( values, "openai_proxy", "OPENAI_PROXY", default="", ) try: import openai except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) try: values["client"] = openai.ChatCompletion except AttributeError: raise ValueError(
https://api.python.langchain.com/en/stable/_modules/langchain/chat_models/azure_openai.html
15e76d5959af-2
except AttributeError: raise ValueError( "`openai` has no `ChatCompletion` attribute, this is likely " "due to an old version of the openai package. Try upgrading it " "with `pip install --upgrade openai`." ) if values["n"] < 1: raise ValueError("n must be at least 1.") if values["n"] > 1 and values["streaming"]: raise ValueError("n must be 1 when streaming.") return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling OpenAI API.""" return { **super()._default_params, "engine": self.deployment_name, } @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {**self._default_params} @property def _invocation_params(self) -> Mapping[str, Any]: openai_creds = { "api_type": self.openai_api_type, "api_version": self.openai_api_version, } return {**openai_creds, **super()._invocation_params} @property def _llm_type(self) -> str: return "azure-openai-chat" def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult: for res in response["choices"]: if res.get("finish_reason", None) == "content_filter": raise ValueError( "Azure has not provided the response due to a content" " filter being triggered" ) return super()._create_chat_result(response)
https://api.python.langchain.com/en/stable/_modules/langchain/chat_models/azure_openai.html
fbd17fa10e3c-0
Source code for langchain.chat_models.fake """Fake ChatModel for testing purposes.""" from typing import Any, List, Mapping, Optional from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.chat_models.base import SimpleChatModel from langchain.schema import BaseMessage [docs]class FakeListChatModel(SimpleChatModel): """Fake ChatModel for testing purposes.""" responses: List i: int = 0 @property def _llm_type(self) -> str: return "fake-list-chat-model" def _call( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """First try to lookup in queries, else return 'foo' or 'bar'.""" response = self.responses[self.i] self.i += 1 return response @property def _identifying_params(self) -> Mapping[str, Any]: return {"responses": self.responses}
https://api.python.langchain.com/en/stable/_modules/langchain/chat_models/fake.html
1df0f073692d-0
Source code for langchain.chat_models.promptlayer_openai """PromptLayer wrapper.""" import datetime from typing import Any, List, Mapping, Optional from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.chat_models import ChatOpenAI from langchain.schema import BaseMessage, ChatResult [docs]class PromptLayerChatOpenAI(ChatOpenAI): """Wrapper around OpenAI Chat large language models and PromptLayer. To use, you should have the ``openai`` and ``promptlayer`` python package installed, and the environment variable ``OPENAI_API_KEY`` and ``PROMPTLAYER_API_KEY`` set with your openAI API key and promptlayer key respectively. All parameters that can be passed to the OpenAI LLM can also be passed here. The PromptLayerChatOpenAI adds to optional parameters: ``pl_tags``: List of strings to tag the request with. ``return_pl_id``: If True, the PromptLayer request ID will be returned in the ``generation_info`` field of the ``Generation`` object. Example: .. code-block:: python from langchain.chat_models import PromptLayerChatOpenAI openai = PromptLayerChatOpenAI(model_name="gpt-3.5-turbo") """ pl_tags: Optional[List[str]] return_pl_id: Optional[bool] = False def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any ) -> ChatResult:
https://api.python.langchain.com/en/stable/_modules/langchain/chat_models/promptlayer_openai.html
1df0f073692d-1
**kwargs: Any ) -> ChatResult: """Call ChatOpenAI generate and then call PromptLayer API to log the request.""" from promptlayer.utils import get_api_key, promptlayer_api_request request_start_time = datetime.datetime.now().timestamp() generated_responses = super()._generate(messages, stop, run_manager) request_end_time = datetime.datetime.now().timestamp() message_dicts, params = super()._create_message_dicts(messages, stop) for i, generation in enumerate(generated_responses.generations): response_dict, params = super()._create_message_dicts( [generation.message], stop ) params = {**params, **kwargs} pl_request_id = promptlayer_api_request( "langchain.PromptLayerChatOpenAI", "langchain", message_dicts, params, self.pl_tags, response_dict, request_start_time, request_end_time, get_api_key(), return_pl_id=self.return_pl_id, ) if self.return_pl_id: if generation.generation_info is None or not isinstance( generation.generation_info, dict ): generation.generation_info = {} generation.generation_info["pl_request_id"] = pl_request_id return generated_responses async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any ) -> ChatResult: """Call ChatOpenAI agenerate and then call PromptLayer to log.""" from promptlayer.utils import get_api_key, promptlayer_api_request_async request_start_time = datetime.datetime.now().timestamp()
https://api.python.langchain.com/en/stable/_modules/langchain/chat_models/promptlayer_openai.html
1df0f073692d-2
request_start_time = datetime.datetime.now().timestamp() generated_responses = await super()._agenerate(messages, stop, run_manager) request_end_time = datetime.datetime.now().timestamp() message_dicts, params = super()._create_message_dicts(messages, stop) for i, generation in enumerate(generated_responses.generations): response_dict, params = super()._create_message_dicts( [generation.message], stop ) params = {**params, **kwargs} pl_request_id = await promptlayer_api_request_async( "langchain.PromptLayerChatOpenAI.async", "langchain", message_dicts, params, self.pl_tags, response_dict, request_start_time, request_end_time, get_api_key(), return_pl_id=self.return_pl_id, ) if self.return_pl_id: if generation.generation_info is None or not isinstance( generation.generation_info, dict ): generation.generation_info = {} generation.generation_info["pl_request_id"] = pl_request_id return generated_responses @property def _llm_type(self) -> str: return "promptlayer-openai-chat" @property def _identifying_params(self) -> Mapping[str, Any]: return { **super()._identifying_params, "pl_tags": self.pl_tags, "return_pl_id": self.return_pl_id, }
https://api.python.langchain.com/en/stable/_modules/langchain/chat_models/promptlayer_openai.html
f6fb605d19b8-0
Source code for langchain.chat_models.vertexai """Wrapper around Google VertexAI chat-based models.""" from dataclasses import dataclass, field from typing import Any, Dict, List, Optional from pydantic import root_validator from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.chat_models.base import BaseChatModel from langchain.llms.vertexai import _VertexAICommon, is_codey_model from langchain.schema import ( AIMessage, BaseMessage, ChatGeneration, ChatResult, HumanMessage, SystemMessage, ) from langchain.utilities.vertexai import raise_vertex_import_error @dataclass class _MessagePair: """InputOutputTextPair represents a pair of input and output texts.""" question: HumanMessage answer: AIMessage @dataclass class _ChatHistory: """InputOutputTextPair represents a pair of input and output texts.""" history: List[_MessagePair] = field(default_factory=list) system_message: Optional[SystemMessage] = None def _parse_chat_history(history: List[BaseMessage]) -> _ChatHistory: """Parse a sequence of messages into history. A sequence should be either (SystemMessage, HumanMessage, AIMessage, HumanMessage, AIMessage, ...) or (HumanMessage, AIMessage, HumanMessage, AIMessage, ...). CodeChat does not support SystemMessage. Args: history: The list of messages to re-create the history of the chat. Returns: A parsed chat history. Raises: ValueError: If a sequence of message is odd, or a human message is not followed
https://api.python.langchain.com/en/stable/_modules/langchain/chat_models/vertexai.html
f6fb605d19b8-1
ValueError: If a sequence of message is odd, or a human message is not followed by a message from AI (e.g., Human, Human, AI or AI, AI, Human). """ if not history: return _ChatHistory() first_message = history[0] system_message = first_message if isinstance(first_message, SystemMessage) else None chat_history = _ChatHistory(system_message=system_message) messages_left = history[1:] if system_message else history if len(messages_left) % 2 != 0: raise ValueError( f"Amount of messages in history should be even, got {len(messages_left)}!" ) for question, answer in zip(messages_left[::2], messages_left[1::2]): if not isinstance(question, HumanMessage) or not isinstance(answer, AIMessage): raise ValueError( "A human message should follow a bot one, " f"got {question.type}, {answer.type}." ) chat_history.history.append(_MessagePair(question=question, answer=answer)) return chat_history [docs]class ChatVertexAI(_VertexAICommon, BaseChatModel): """Wrapper around Vertex AI large language models.""" model_name: str = "chat-bison" @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that the python package exists in environment.""" cls._try_init_vertexai(values) try: if is_codey_model(values["model_name"]): from vertexai.preview.language_models import CodeChatModel values["client"] = CodeChatModel.from_pretrained(values["model_name"]) else: from vertexai.preview.language_models import ChatModel
https://api.python.langchain.com/en/stable/_modules/langchain/chat_models/vertexai.html
f6fb605d19b8-2
else: from vertexai.preview.language_models import ChatModel values["client"] = ChatModel.from_pretrained(values["model_name"]) except ImportError: raise_vertex_import_error() return values def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: """Generate next turn in the conversation. Args: messages: The history of the conversation as a list of messages. Code chat does not support context. stop: The list of stop words (optional). run_manager: The CallbackManager for LLM run, it's not used at the moment. Returns: The ChatResult that contains outputs generated by the model. Raises: ValueError: if the last message in the list is not from human. """ if not messages: raise ValueError( "You should provide at least one message to start the chat!" ) question = messages[-1] if not isinstance(question, HumanMessage): raise ValueError( f"Last message in the list should be from human, got {question.type}." ) history = _parse_chat_history(messages[:-1]) context = history.system_message.content if history.system_message else None params = {**self._default_params, **kwargs} if not self.is_codey_model: chat = self.client.start_chat(context=context, **params) else: chat = self.client.start_chat(**params) for pair in history.history: chat._history.append((pair.question.content, pair.answer.content))
https://api.python.langchain.com/en/stable/_modules/langchain/chat_models/vertexai.html
f6fb605d19b8-3
chat._history.append((pair.question.content, pair.answer.content)) response = chat.send_message(question.content, **params) text = self._enforce_stop_words(response.text, stop) return ChatResult(generations=[ChatGeneration(message=AIMessage(content=text))]) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: raise NotImplementedError( """Vertex AI doesn't support async requests at the moment.""" )
https://api.python.langchain.com/en/stable/_modules/langchain/chat_models/vertexai.html
4ffe70409c56-0
Source code for langchain.chat_models.anthropic from typing import Any, Dict, List, Optional from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.chat_models.base import BaseChatModel from langchain.llms.anthropic import _AnthropicCommon from langchain.schema import ( AIMessage, BaseMessage, ChatGeneration, ChatMessage, ChatResult, HumanMessage, SystemMessage, ) [docs]class ChatAnthropic(BaseChatModel, _AnthropicCommon): r"""Wrapper around Anthropic's large language model. To use, you should have the ``anthropic`` python package installed, and the environment variable ``ANTHROPIC_API_KEY`` set with your API key, or pass it as a named parameter to the constructor. Example: .. code-block:: python import anthropic from langchain.llms import Anthropic model = ChatAnthropic(model="<model_name>", anthropic_api_key="my-api-key") """ @property def _llm_type(self) -> str: """Return type of chat model.""" return "anthropic-chat" @property def lc_serializable(self) -> bool: return True def _convert_one_message_to_text(self, message: BaseMessage) -> str: if isinstance(message, ChatMessage): message_text = f"\n\n{message.role.capitalize()}: {message.content}" elif isinstance(message, HumanMessage): message_text = f"{self.HUMAN_PROMPT} {message.content}" elif isinstance(message, AIMessage): message_text = f"{self.AI_PROMPT} {message.content}"
https://api.python.langchain.com/en/stable/_modules/langchain/chat_models/anthropic.html
4ffe70409c56-1
message_text = f"{self.AI_PROMPT} {message.content}" elif isinstance(message, SystemMessage): message_text = f"{self.HUMAN_PROMPT} <admin>{message.content}</admin>" else: raise ValueError(f"Got unknown type {message}") return message_text def _convert_messages_to_text(self, messages: List[BaseMessage]) -> str: """Format a list of strings into a single string with necessary newlines. Args: messages (List[BaseMessage]): List of BaseMessage to combine. Returns: str: Combined string with necessary newlines. """ return "".join( self._convert_one_message_to_text(message) for message in messages ) def _convert_messages_to_prompt(self, messages: List[BaseMessage]) -> str: """Format a list of messages into a full prompt for the Anthropic model Args: messages (List[BaseMessage]): List of BaseMessage to combine. Returns: str: Combined string with necessary HUMAN_PROMPT and AI_PROMPT tags. """ messages = messages.copy() # don't mutate the original list if not self.AI_PROMPT: raise NameError("Please ensure the anthropic package is loaded") if not isinstance(messages[-1], AIMessage): messages.append(AIMessage(content="")) text = self._convert_messages_to_text(messages) return ( text.rstrip() ) # trim off the trailing ' ' that might come from the "Assistant: " def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None,
https://api.python.langchain.com/en/stable/_modules/langchain/chat_models/anthropic.html
4ffe70409c56-2
run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: prompt = self._convert_messages_to_prompt(messages) params: Dict[str, Any] = {"prompt": prompt, **self._default_params, **kwargs} if stop: params["stop_sequences"] = stop if self.streaming: completion = "" stream_resp = self.client.completion_stream(**params) for data in stream_resp: delta = data["completion"][len(completion) :] completion = data["completion"] if run_manager: run_manager.on_llm_new_token( delta, ) else: response = self.client.completion(**params) completion = response["completion"] message = AIMessage(content=completion) return ChatResult(generations=[ChatGeneration(message=message)]) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: prompt = self._convert_messages_to_prompt(messages) params: Dict[str, Any] = {"prompt": prompt, **self._default_params, **kwargs} if stop: params["stop_sequences"] = stop if self.streaming: completion = "" stream_resp = await self.client.acompletion_stream(**params) async for data in stream_resp: delta = data["completion"][len(completion) :] completion = data["completion"] if run_manager: await run_manager.on_llm_new_token( delta, ) else:
https://api.python.langchain.com/en/stable/_modules/langchain/chat_models/anthropic.html
4ffe70409c56-3
delta, ) else: response = await self.client.acompletion(**params) completion = response["completion"] message = AIMessage(content=completion) return ChatResult(generations=[ChatGeneration(message=message)]) [docs] def get_num_tokens(self, text: str) -> int: """Calculate number of tokens.""" if not self.count_tokens: raise NameError("Please ensure the anthropic package is loaded") return self.count_tokens(text)
https://api.python.langchain.com/en/stable/_modules/langchain/chat_models/anthropic.html
a3d7b831cc99-0
Source code for langchain.chat_models.openai """OpenAI chat wrapper.""" from __future__ import annotations import logging import sys from typing import ( TYPE_CHECKING, Any, Callable, Dict, List, Mapping, Optional, Tuple, Union, ) from pydantic import Field, root_validator from tenacity import ( before_sleep_log, retry, retry_if_exception_type, stop_after_attempt, wait_exponential, ) from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.chat_models.base import BaseChatModel from langchain.schema import ( AIMessage, BaseMessage, ChatGeneration, ChatMessage, ChatResult, FunctionMessage, HumanMessage, SystemMessage, ) from langchain.utils import get_from_dict_or_env if TYPE_CHECKING: import tiktoken logger = logging.getLogger(__name__) def _import_tiktoken() -> Any: try: import tiktoken except ImportError: raise ValueError( "Could not import tiktoken python package. " "This is needed in order to calculate get_token_ids. " "Please install it with `pip install tiktoken`." ) return tiktoken def _create_retry_decorator(llm: ChatOpenAI) -> Callable[[Any], Any]: import openai min_seconds = 1 max_seconds = 60 # Wait 2^x * 1 second between each retry starting with # 4 seconds, then up to 10 seconds, then 10 seconds afterwards return retry(
https://api.python.langchain.com/en/stable/_modules/langchain/chat_models/openai.html
a3d7b831cc99-1
return retry( reraise=True, stop=stop_after_attempt(llm.max_retries), wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds), retry=( retry_if_exception_type(openai.error.Timeout) | retry_if_exception_type(openai.error.APIError) | retry_if_exception_type(openai.error.APIConnectionError) | retry_if_exception_type(openai.error.RateLimitError) | retry_if_exception_type(openai.error.ServiceUnavailableError) ), before_sleep=before_sleep_log(logger, logging.WARNING), ) async def acompletion_with_retry(llm: ChatOpenAI, **kwargs: Any) -> Any: """Use tenacity to retry the async completion call.""" retry_decorator = _create_retry_decorator(llm) @retry_decorator async def _completion_with_retry(**kwargs: Any) -> Any: # Use OpenAI's async api https://github.com/openai/openai-python#async-api return await llm.client.acreate(**kwargs) return await _completion_with_retry(**kwargs) def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage: role = _dict["role"] if role == "user": return HumanMessage(content=_dict["content"]) elif role == "assistant": content = _dict["content"] or "" # OpenAI returns None for tool invocations if _dict.get("function_call"): additional_kwargs = {"function_call": dict(_dict["function_call"])} else: additional_kwargs = {} return AIMessage(content=content, additional_kwargs=additional_kwargs) elif role == "system": return SystemMessage(content=_dict["content"])
https://api.python.langchain.com/en/stable/_modules/langchain/chat_models/openai.html
a3d7b831cc99-2
elif role == "system": return SystemMessage(content=_dict["content"]) elif role == "function": return FunctionMessage(content=_dict["content"], name=_dict["name"]) else: return ChatMessage(content=_dict["content"], role=role) def _convert_message_to_dict(message: BaseMessage) -> dict: if isinstance(message, ChatMessage): message_dict = {"role": message.role, "content": message.content} elif isinstance(message, HumanMessage): message_dict = {"role": "user", "content": message.content} elif isinstance(message, AIMessage): message_dict = {"role": "assistant", "content": message.content} if "function_call" in message.additional_kwargs: message_dict["function_call"] = message.additional_kwargs["function_call"] elif isinstance(message, SystemMessage): message_dict = {"role": "system", "content": message.content} elif isinstance(message, FunctionMessage): message_dict = { "role": "function", "content": message.content, "name": message.name, } else: raise ValueError(f"Got unknown type {message}") if "name" in message.additional_kwargs: message_dict["name"] = message.additional_kwargs["name"] return message_dict [docs]class ChatOpenAI(BaseChatModel): """Wrapper around OpenAI Chat large language models. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python
https://api.python.langchain.com/en/stable/_modules/langchain/chat_models/openai.html
a3d7b831cc99-3
Example: .. code-block:: python from langchain.chat_models import ChatOpenAI openai = ChatOpenAI(model_name="gpt-3.5-turbo") """ @property def lc_secrets(self) -> Dict[str, str]: return {"openai_api_key": "OPENAI_API_KEY"} @property def lc_serializable(self) -> bool: return True client: Any #: :meta private: model_name: str = Field(default="gpt-3.5-turbo", alias="model") """Model name to use.""" temperature: float = 0.7 """What sampling temperature to use.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" openai_api_key: Optional[str] = None """Base URL path for API requests, leave blank if not using a proxy or service emulator.""" openai_api_base: Optional[str] = None openai_organization: Optional[str] = None # to support explicit proxy for OpenAI openai_proxy: Optional[str] = None request_timeout: Optional[Union[float, Tuple[float, float]]] = None """Timeout for requests to OpenAI completion API. Default is 600 seconds.""" max_retries: int = 6 """Maximum number of retries to make when generating.""" streaming: bool = False """Whether to stream the results or not.""" n: int = 1 """Number of chat completions to generate for each prompt.""" max_tokens: Optional[int] = None """Maximum number of tokens to generate."""
https://api.python.langchain.com/en/stable/_modules/langchain/chat_models/openai.html
a3d7b831cc99-4
max_tokens: Optional[int] = None """Maximum number of tokens to generate.""" tiktoken_model_name: Optional[str] = None """The model name to pass to tiktoken when using this class. Tiktoken is used to count the number of tokens in documents to constrain them to be under a certain limit. By default, when set to None, this will be the same as the embedding model name. However, there are some cases where you may want to use this Embedding class with a model name not supported by tiktoken. This can include when using Azure embeddings or when using one of the many model providers that expose an OpenAI-like API but with different models. In those cases, in order to avoid erroring when tiktoken is called, you can specify a model name to use here.""" class Config: """Configuration for this pydantic object.""" allow_population_by_field_name = True @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = cls.all_required_field_names() extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") if field_name not in all_required_field_names: logger.warning( f"""WARNING! {field_name} is not default parameter. {field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name)
https://api.python.langchain.com/en/stable/_modules/langchain/chat_models/openai.html
a3d7b831cc99-5
) extra[field_name] = values.pop(field_name) invalid_model_kwargs = all_required_field_names.intersection(extra.keys()) if invalid_model_kwargs: raise ValueError( f"Parameters {invalid_model_kwargs} should be specified explicitly. " f"Instead they were passed in as part of `model_kwargs` parameter." ) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" values["openai_api_key"] = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY" ) values["openai_organization"] = get_from_dict_or_env( values, "openai_organization", "OPENAI_ORGANIZATION", default="", ) values["openai_api_base"] = get_from_dict_or_env( values, "openai_api_base", "OPENAI_API_BASE", default="", ) values["openai_proxy"] = get_from_dict_or_env( values, "openai_proxy", "OPENAI_PROXY", default="", ) try: import openai except ImportError: raise ValueError( "Could not import openai python package. " "Please install it with `pip install openai`." ) try: values["client"] = openai.ChatCompletion except AttributeError: raise ValueError( "`openai` has no `ChatCompletion` attribute, this is likely " "due to an old version of the openai package. Try upgrading it "
https://api.python.langchain.com/en/stable/_modules/langchain/chat_models/openai.html
a3d7b831cc99-6
"due to an old version of the openai package. Try upgrading it " "with `pip install --upgrade openai`." ) if values["n"] < 1: raise ValueError("n must be at least 1.") if values["n"] > 1 and values["streaming"]: raise ValueError("n must be 1 when streaming.") return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling OpenAI API.""" return { "model": self.model_name, "request_timeout": self.request_timeout, "max_tokens": self.max_tokens, "stream": self.streaming, "n": self.n, "temperature": self.temperature, **self.model_kwargs, } def _create_retry_decorator(self) -> Callable[[Any], Any]: import openai min_seconds = 1 max_seconds = 60 # Wait 2^x * 1 second between each retry starting with # 4 seconds, then up to 10 seconds, then 10 seconds afterwards return retry( reraise=True, stop=stop_after_attempt(self.max_retries), wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds), retry=( retry_if_exception_type(openai.error.Timeout) | retry_if_exception_type(openai.error.APIError) | retry_if_exception_type(openai.error.APIConnectionError) | retry_if_exception_type(openai.error.RateLimitError) | retry_if_exception_type(openai.error.ServiceUnavailableError) ), before_sleep=before_sleep_log(logger, logging.WARNING), )
https://api.python.langchain.com/en/stable/_modules/langchain/chat_models/openai.html
a3d7b831cc99-7
), before_sleep=before_sleep_log(logger, logging.WARNING), ) [docs] def completion_with_retry(self, **kwargs: Any) -> Any: """Use tenacity to retry the completion call.""" retry_decorator = self._create_retry_decorator() @retry_decorator def _completion_with_retry(**kwargs: Any) -> Any: return self.client.create(**kwargs) return _completion_with_retry(**kwargs) def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict: overall_token_usage: dict = {} for output in llm_outputs: if output is None: # Happens in streaming continue token_usage = output["token_usage"] for k, v in token_usage.items(): if k in overall_token_usage: overall_token_usage[k] += v else: overall_token_usage[k] = v return {"token_usage": overall_token_usage, "model_name": self.model_name} def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: message_dicts, params = self._create_message_dicts(messages, stop) params = {**params, **kwargs} if self.streaming: inner_completion = "" role = "assistant" params["stream"] = True function_call: Optional[dict] = None for stream_resp in self.completion_with_retry( messages=message_dicts, **params ): role = stream_resp["choices"][0]["delta"].get("role", role)
https://api.python.langchain.com/en/stable/_modules/langchain/chat_models/openai.html
a3d7b831cc99-8
role = stream_resp["choices"][0]["delta"].get("role", role) token = stream_resp["choices"][0]["delta"].get("content") or "" inner_completion += token _function_call = stream_resp["choices"][0]["delta"].get("function_call") if _function_call: if function_call is None: function_call = _function_call else: function_call["arguments"] += _function_call["arguments"] if run_manager: run_manager.on_llm_new_token(token) message = _convert_dict_to_message( { "content": inner_completion, "role": role, "function_call": function_call, } ) return ChatResult(generations=[ChatGeneration(message=message)]) response = self.completion_with_retry(messages=message_dicts, **params) return self._create_chat_result(response) def _create_message_dicts( self, messages: List[BaseMessage], stop: Optional[List[str]] ) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]: params = dict(self._invocation_params) if stop is not None: if "stop" in params: raise ValueError("`stop` found in both the input and default params.") params["stop"] = stop message_dicts = [_convert_message_to_dict(m) for m in messages] return message_dicts, params def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult: generations = [] for res in response["choices"]: message = _convert_dict_to_message(res["message"]) gen = ChatGeneration(message=message) generations.append(gen)
https://api.python.langchain.com/en/stable/_modules/langchain/chat_models/openai.html
a3d7b831cc99-9
gen = ChatGeneration(message=message) generations.append(gen) llm_output = {"token_usage": response["usage"], "model_name": self.model_name} return ChatResult(generations=generations, llm_output=llm_output) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: message_dicts, params = self._create_message_dicts(messages, stop) params = {**params, **kwargs} if self.streaming: inner_completion = "" role = "assistant" params["stream"] = True function_call: Optional[dict] = None async for stream_resp in await acompletion_with_retry( self, messages=message_dicts, **params ): role = stream_resp["choices"][0]["delta"].get("role", role) token = stream_resp["choices"][0]["delta"].get("content", "") inner_completion += token or "" _function_call = stream_resp["choices"][0]["delta"].get("function_call") if _function_call: if function_call is None: function_call = _function_call else: function_call["arguments"] += _function_call["arguments"] if run_manager: await run_manager.on_llm_new_token(token) message = _convert_dict_to_message( { "content": inner_completion, "role": role, "function_call": function_call, } ) return ChatResult(generations=[ChatGeneration(message=message)]) else:
https://api.python.langchain.com/en/stable/_modules/langchain/chat_models/openai.html
a3d7b831cc99-10
return ChatResult(generations=[ChatGeneration(message=message)]) else: response = await acompletion_with_retry( self, messages=message_dicts, **params ) return self._create_chat_result(response) @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {**{"model_name": self.model_name}, **self._default_params} @property def _invocation_params(self) -> Mapping[str, Any]: """Get the parameters used to invoke the model.""" openai_creds: Dict[str, Any] = { "api_key": self.openai_api_key, "api_base": self.openai_api_base, "organization": self.openai_organization, "model": self.model_name, } if self.openai_proxy: import openai openai.proxy = {"http": self.openai_proxy, "https": self.openai_proxy} # type: ignore[assignment] # noqa: E501 return {**openai_creds, **self._default_params} @property def _llm_type(self) -> str: """Return type of chat model.""" return "openai-chat" def _get_encoding_model(self) -> Tuple[str, tiktoken.Encoding]: tiktoken_ = _import_tiktoken() if self.tiktoken_model_name is not None: model = self.tiktoken_model_name else: model = self.model_name if model == "gpt-3.5-turbo": # gpt-3.5-turbo may change over time.
https://api.python.langchain.com/en/stable/_modules/langchain/chat_models/openai.html
a3d7b831cc99-11
# gpt-3.5-turbo may change over time. # Returning num tokens assuming gpt-3.5-turbo-0301. model = "gpt-3.5-turbo-0301" elif model == "gpt-4": # gpt-4 may change over time. # Returning num tokens assuming gpt-4-0314. model = "gpt-4-0314" # Returns the number of tokens used by a list of messages. try: encoding = tiktoken_.encoding_for_model(model) except KeyError: logger.warning("Warning: model not found. Using cl100k_base encoding.") model = "cl100k_base" encoding = tiktoken_.get_encoding(model) return model, encoding [docs] def get_token_ids(self, text: str) -> List[int]: """Get the tokens present in the text with tiktoken package.""" # tiktoken NOT supported for Python 3.7 or below if sys.version_info[1] <= 7: return super().get_token_ids(text) _, encoding_model = self._get_encoding_model() return encoding_model.encode(text) [docs] def get_num_tokens_from_messages(self, messages: List[BaseMessage]) -> int: """Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package. Official documentation: https://github.com/openai/openai-cookbook/blob/ main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb""" if sys.version_info[1] <= 7: return super().get_num_tokens_from_messages(messages)
https://api.python.langchain.com/en/stable/_modules/langchain/chat_models/openai.html
a3d7b831cc99-12
return super().get_num_tokens_from_messages(messages) model, encoding = self._get_encoding_model() if model.startswith("gpt-3.5-turbo"): # every message follows <im_start>{role/name}\n{content}<im_end>\n tokens_per_message = 4 # if there's a name, the role is omitted tokens_per_name = -1 elif model.startswith("gpt-4"): tokens_per_message = 3 tokens_per_name = 1 else: raise NotImplementedError( f"get_num_tokens_from_messages() is not presently implemented " f"for model {model}." "See https://github.com/openai/openai-python/blob/main/chatml.md for " "information on how messages are converted to tokens." ) num_tokens = 0 messages_dict = [_convert_message_to_dict(m) for m in messages] for message in messages_dict: num_tokens += tokens_per_message for key, value in message.items(): num_tokens += len(encoding.encode(value)) if key == "name": num_tokens += tokens_per_name # every reply is primed with <im_start>assistant num_tokens += 3 return num_tokens
https://api.python.langchain.com/en/stable/_modules/langchain/chat_models/openai.html
e30dc82348cb-0
Source code for langchain.memory.simple from typing import Any, Dict, List from langchain.schema import BaseMemory [docs]class SimpleMemory(BaseMemory): """Simple memory for storing context or other bits of information that shouldn't ever change between prompts. """ memories: Dict[str, Any] = dict() @property def memory_variables(self) -> List[str]: return list(self.memories.keys()) [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]: return self.memories [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Nothing should be saved or changed, my memory is set in stone.""" pass [docs] def clear(self) -> None: """Nothing to clear, got a memory like a vault.""" pass
https://api.python.langchain.com/en/stable/_modules/langchain/memory/simple.html
b4604a7c34b2-0
Source code for langchain.memory.buffer from typing import Any, Dict, List, Optional from pydantic import root_validator from langchain.memory.chat_memory import BaseChatMemory, BaseMemory from langchain.memory.utils import get_prompt_input_key from langchain.schema import get_buffer_string [docs]class ConversationBufferMemory(BaseChatMemory): """Buffer for storing conversation memory.""" human_prefix: str = "Human" ai_prefix: str = "AI" memory_key: str = "history" #: :meta private: @property def buffer(self) -> Any: """String buffer of memory.""" if self.return_messages: return self.chat_memory.messages else: return get_buffer_string( self.chat_memory.messages, human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """Return history buffer.""" return {self.memory_key: self.buffer} [docs]class ConversationStringBufferMemory(BaseMemory): """Buffer for storing conversation memory.""" human_prefix: str = "Human" ai_prefix: str = "AI" """Prefix to use for AI generated responses.""" buffer: str = "" output_key: Optional[str] = None input_key: Optional[str] = None memory_key: str = "history" #: :meta private: @root_validator() def validate_chains(cls, values: Dict) -> Dict:
https://api.python.langchain.com/en/stable/_modules/langchain/memory/buffer.html
b4604a7c34b2-1
def validate_chains(cls, values: Dict) -> Dict: """Validate that return messages is not True.""" if values.get("return_messages", False): raise ValueError( "return_messages must be False for ConversationStringBufferMemory" ) return values @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]: """Return history buffer.""" return {self.memory_key: self.buffer} [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this conversation to buffer.""" if self.input_key is None: prompt_input_key = get_prompt_input_key(inputs, self.memory_variables) else: prompt_input_key = self.input_key if self.output_key is None: if len(outputs) != 1: raise ValueError(f"One output key expected, got {outputs.keys()}") output_key = list(outputs.keys())[0] else: output_key = self.output_key human = f"{self.human_prefix}: " + inputs[prompt_input_key] ai = f"{self.ai_prefix}: " + outputs[output_key] self.buffer += "\n" + "\n".join([human, ai]) [docs] def clear(self) -> None: """Clear memory contents.""" self.buffer = ""
https://api.python.langchain.com/en/stable/_modules/langchain/memory/buffer.html
7f565b90bd4b-0
Source code for langchain.memory.summary from __future__ import annotations from typing import Any, Dict, List, Type from pydantic import BaseModel, root_validator from langchain.base_language import BaseLanguageModel from langchain.chains.llm import LLMChain from langchain.memory.chat_memory import BaseChatMemory from langchain.memory.prompt import SUMMARY_PROMPT from langchain.prompts.base import BasePromptTemplate from langchain.schema import ( BaseChatMessageHistory, BaseMessage, SystemMessage, get_buffer_string, ) class SummarizerMixin(BaseModel): human_prefix: str = "Human" ai_prefix: str = "AI" llm: BaseLanguageModel prompt: BasePromptTemplate = SUMMARY_PROMPT summary_message_cls: Type[BaseMessage] = SystemMessage def predict_new_summary( self, messages: List[BaseMessage], existing_summary: str ) -> str: new_lines = get_buffer_string( messages, human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) chain = LLMChain(llm=self.llm, prompt=self.prompt) return chain.predict(summary=existing_summary, new_lines=new_lines) [docs]class ConversationSummaryMemory(BaseChatMemory, SummarizerMixin): """Conversation summarizer to memory.""" buffer: str = "" memory_key: str = "history" #: :meta private: [docs] @classmethod def from_messages( cls, llm: BaseLanguageModel, chat_memory: BaseChatMessageHistory, *, summarize_step: int = 2, **kwargs: Any, ) -> ConversationSummaryMemory:
https://api.python.langchain.com/en/stable/_modules/langchain/memory/summary.html
7f565b90bd4b-1
**kwargs: Any, ) -> ConversationSummaryMemory: obj = cls(llm=llm, chat_memory=chat_memory, **kwargs) for i in range(0, len(obj.chat_memory.messages), summarize_step): obj.buffer = obj.predict_new_summary( obj.chat_memory.messages[i : i + summarize_step], obj.buffer ) return obj @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """Return history buffer.""" if self.return_messages: buffer: Any = [self.summary_message_cls(content=self.buffer)] else: buffer = self.buffer return {self.memory_key: buffer} @root_validator() def validate_prompt_input_variables(cls, values: Dict) -> Dict: """Validate that prompt input variables are consistent.""" prompt_variables = values["prompt"].input_variables expected_keys = {"summary", "new_lines"} if expected_keys != set(prompt_variables): raise ValueError( "Got unexpected prompt input variables. The prompt expects " f"{prompt_variables}, but it should have {expected_keys}." ) return values [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this conversation to buffer.""" super().save_context(inputs, outputs) self.buffer = self.predict_new_summary( self.chat_memory.messages[-2:], self.buffer ) [docs] def clear(self) -> None: """Clear memory contents."""
https://api.python.langchain.com/en/stable/_modules/langchain/memory/summary.html
7f565b90bd4b-2
[docs] def clear(self) -> None: """Clear memory contents.""" super().clear() self.buffer = ""
https://api.python.langchain.com/en/stable/_modules/langchain/memory/summary.html
4f5059af0a7f-0
Source code for langchain.memory.readonly from typing import Any, Dict, List from langchain.schema import BaseMemory [docs]class ReadOnlySharedMemory(BaseMemory): """A memory wrapper that is read-only and cannot be changed.""" memory: BaseMemory @property def memory_variables(self) -> List[str]: """Return memory variables.""" return self.memory.memory_variables [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]: """Load memory variables from memory.""" return self.memory.load_memory_variables(inputs) [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Nothing should be saved or changed""" pass [docs] def clear(self) -> None: """Nothing to clear, got a memory like a vault.""" pass
https://api.python.langchain.com/en/stable/_modules/langchain/memory/readonly.html
fe4bb7c23a14-0
Source code for langchain.memory.motorhead_memory from typing import Any, Dict, List, Optional import requests from langchain.memory.chat_memory import BaseChatMemory from langchain.schema import get_buffer_string MANAGED_URL = "https://api.getmetal.io/v1/motorhead" # LOCAL_URL = "http://localhost:8080" [docs]class MotorheadMemory(BaseChatMemory): url: str = MANAGED_URL timeout = 3000 memory_key = "history" session_id: str context: Optional[str] = None # Managed Params api_key: Optional[str] = None client_id: Optional[str] = None def __get_headers(self) -> Dict[str, str]: is_managed = self.url == MANAGED_URL headers = { "Content-Type": "application/json", } if is_managed and not (self.api_key and self.client_id): raise ValueError( """ You must provide an API key or a client ID to use the managed version of Motorhead. Visit https://getmetal.io for more information. """ ) if is_managed and self.api_key and self.client_id: headers["x-metal-api-key"] = self.api_key headers["x-metal-client-id"] = self.client_id return headers [docs] async def init(self) -> None: res = requests.get( f"{self.url}/sessions/{self.session_id}/memory", timeout=self.timeout, headers=self.__get_headers(), ) res_data = res.json() res_data = res_data.get("data", res_data) # Handle Managed Version messages = res_data.get("messages", [])
https://api.python.langchain.com/en/stable/_modules/langchain/memory/motorhead_memory.html
fe4bb7c23a14-1
messages = res_data.get("messages", []) context = res_data.get("context", "NONE") for message in reversed(messages): if message["role"] == "AI": self.chat_memory.add_ai_message(message["content"]) else: self.chat_memory.add_user_message(message["content"]) if context and context != "NONE": self.context = context [docs] def load_memory_variables(self, values: Dict[str, Any]) -> Dict[str, Any]: if self.return_messages: return {self.memory_key: self.chat_memory.messages} else: return {self.memory_key: get_buffer_string(self.chat_memory.messages)} @property def memory_variables(self) -> List[str]: return [self.memory_key] [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: input_str, output_str = self._get_input_output(inputs, outputs) requests.post( f"{self.url}/sessions/{self.session_id}/memory", timeout=self.timeout, json={ "messages": [ {"role": "Human", "content": f"{input_str}"}, {"role": "AI", "content": f"{output_str}"}, ] }, headers=self.__get_headers(), ) super().save_context(inputs, outputs) [docs] def delete_session(self) -> None: """Delete a session""" requests.delete(f"{self.url}/sessions/{self.session_id}/memory")
https://api.python.langchain.com/en/stable/_modules/langchain/memory/motorhead_memory.html
baa40126511f-0
Source code for langchain.memory.vectorstore """Class for a VectorStore-backed memory object.""" from typing import Any, Dict, List, Optional, Union from pydantic import Field from langchain.memory.chat_memory import BaseMemory from langchain.memory.utils import get_prompt_input_key from langchain.schema import Document from langchain.vectorstores.base import VectorStoreRetriever [docs]class VectorStoreRetrieverMemory(BaseMemory): """Class for a VectorStore-backed memory object.""" retriever: VectorStoreRetriever = Field(exclude=True) """VectorStoreRetriever object to connect to.""" memory_key: str = "history" #: :meta private: """Key name to locate the memories in the result of load_memory_variables.""" input_key: Optional[str] = None """Key name to index the inputs to load_memory_variables.""" return_docs: bool = False """Whether or not to return the result of querying the database directly.""" @property def memory_variables(self) -> List[str]: """The list of keys emitted from the load_memory_variables method.""" return [self.memory_key] def _get_prompt_input_key(self, inputs: Dict[str, Any]) -> str: """Get the input key for the prompt.""" if self.input_key is None: return get_prompt_input_key(inputs, self.memory_variables) return self.input_key [docs] def load_memory_variables( self, inputs: Dict[str, Any] ) -> Dict[str, Union[List[Document], str]]: """Return history buffer.""" input_key = self._get_prompt_input_key(inputs) query = inputs[input_key] docs = self.retriever.get_relevant_documents(query)
https://api.python.langchain.com/en/stable/_modules/langchain/memory/vectorstore.html
baa40126511f-1
docs = self.retriever.get_relevant_documents(query) result: Union[List[Document], str] if not self.return_docs: result = "\n".join([doc.page_content for doc in docs]) else: result = docs return {self.memory_key: result} def _form_documents( self, inputs: Dict[str, Any], outputs: Dict[str, str] ) -> List[Document]: """Format context from this conversation to buffer.""" # Each document should only include the current turn, not the chat history filtered_inputs = {k: v for k, v in inputs.items() if k != self.memory_key} texts = [ f"{k}: {v}" for k, v in list(filtered_inputs.items()) + list(outputs.items()) ] page_content = "\n".join(texts) return [Document(page_content=page_content)] [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this conversation to buffer.""" documents = self._form_documents(inputs, outputs) self.retriever.add_documents(documents) [docs] def clear(self) -> None: """Nothing to clear."""
https://api.python.langchain.com/en/stable/_modules/langchain/memory/vectorstore.html
1bc9f4984769-0
Source code for langchain.memory.summary_buffer from typing import Any, Dict, List from pydantic import root_validator from langchain.memory.chat_memory import BaseChatMemory from langchain.memory.summary import SummarizerMixin from langchain.schema import BaseMessage, get_buffer_string [docs]class ConversationSummaryBufferMemory(BaseChatMemory, SummarizerMixin): """Buffer with summarizer for storing conversation memory.""" max_token_limit: int = 2000 moving_summary_buffer: str = "" memory_key: str = "history" @property def buffer(self) -> List[BaseMessage]: return self.chat_memory.messages @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """Return history buffer.""" buffer = self.buffer if self.moving_summary_buffer != "": first_messages: List[BaseMessage] = [ self.summary_message_cls(content=self.moving_summary_buffer) ] buffer = first_messages + buffer if self.return_messages: final_buffer: Any = buffer else: final_buffer = get_buffer_string( buffer, human_prefix=self.human_prefix, ai_prefix=self.ai_prefix ) return {self.memory_key: final_buffer} @root_validator() def validate_prompt_input_variables(cls, values: Dict) -> Dict: """Validate that prompt input variables are consistent.""" prompt_variables = values["prompt"].input_variables expected_keys = {"summary", "new_lines"} if expected_keys != set(prompt_variables): raise ValueError(
https://api.python.langchain.com/en/stable/_modules/langchain/memory/summary_buffer.html
1bc9f4984769-1
if expected_keys != set(prompt_variables): raise ValueError( "Got unexpected prompt input variables. The prompt expects " f"{prompt_variables}, but it should have {expected_keys}." ) return values [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this conversation to buffer.""" super().save_context(inputs, outputs) self.prune() [docs] def prune(self) -> None: """Prune buffer if it exceeds max token limit""" buffer = self.chat_memory.messages curr_buffer_length = self.llm.get_num_tokens_from_messages(buffer) if curr_buffer_length > self.max_token_limit: pruned_memory = [] while curr_buffer_length > self.max_token_limit: pruned_memory.append(buffer.pop(0)) curr_buffer_length = self.llm.get_num_tokens_from_messages(buffer) self.moving_summary_buffer = self.predict_new_summary( pruned_memory, self.moving_summary_buffer ) [docs] def clear(self) -> None: """Clear memory contents.""" super().clear() self.moving_summary_buffer = ""
https://api.python.langchain.com/en/stable/_modules/langchain/memory/summary_buffer.html
59f9cf905eb9-0
Source code for langchain.memory.token_buffer from typing import Any, Dict, List from langchain.base_language import BaseLanguageModel from langchain.memory.chat_memory import BaseChatMemory from langchain.schema import BaseMessage, get_buffer_string [docs]class ConversationTokenBufferMemory(BaseChatMemory): """Buffer for storing conversation memory.""" human_prefix: str = "Human" ai_prefix: str = "AI" llm: BaseLanguageModel memory_key: str = "history" max_token_limit: int = 2000 @property def buffer(self) -> List[BaseMessage]: """String buffer of memory.""" return self.chat_memory.messages @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """Return history buffer.""" buffer: Any = self.buffer if self.return_messages: final_buffer: Any = buffer else: final_buffer = get_buffer_string( buffer, human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) return {self.memory_key: final_buffer} [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this conversation to buffer. Pruned.""" super().save_context(inputs, outputs) # Prune buffer if it exceeds max token limit buffer = self.chat_memory.messages curr_buffer_length = self.llm.get_num_tokens_from_messages(buffer) if curr_buffer_length > self.max_token_limit:
https://api.python.langchain.com/en/stable/_modules/langchain/memory/token_buffer.html
59f9cf905eb9-1
if curr_buffer_length > self.max_token_limit: pruned_memory = [] while curr_buffer_length > self.max_token_limit: pruned_memory.append(buffer.pop(0)) curr_buffer_length = self.llm.get_num_tokens_from_messages(buffer)
https://api.python.langchain.com/en/stable/_modules/langchain/memory/token_buffer.html
ad86213f3204-0
Source code for langchain.memory.entity import logging from abc import ABC, abstractmethod from itertools import islice from typing import Any, Dict, Iterable, List, Optional from pydantic import BaseModel, Field from langchain.base_language import BaseLanguageModel from langchain.chains.llm import LLMChain from langchain.memory.chat_memory import BaseChatMemory from langchain.memory.prompt import ( ENTITY_EXTRACTION_PROMPT, ENTITY_SUMMARIZATION_PROMPT, ) from langchain.memory.utils import get_prompt_input_key from langchain.prompts.base import BasePromptTemplate from langchain.schema import BaseMessage, get_buffer_string logger = logging.getLogger(__name__) class BaseEntityStore(BaseModel, ABC): @abstractmethod def get(self, key: str, default: Optional[str] = None) -> Optional[str]: """Get entity value from store.""" pass @abstractmethod def set(self, key: str, value: Optional[str]) -> None: """Set entity value in store.""" pass @abstractmethod def delete(self, key: str) -> None: """Delete entity value from store.""" pass @abstractmethod def exists(self, key: str) -> bool: """Check if entity exists in store.""" pass @abstractmethod def clear(self) -> None: """Delete all entities from store.""" pass [docs]class InMemoryEntityStore(BaseEntityStore): """Basic in-memory entity store.""" store: Dict[str, Optional[str]] = {} [docs] def get(self, key: str, default: Optional[str] = None) -> Optional[str]: return self.store.get(key, default)
https://api.python.langchain.com/en/stable/_modules/langchain/memory/entity.html
ad86213f3204-1
return self.store.get(key, default) [docs] def set(self, key: str, value: Optional[str]) -> None: self.store[key] = value [docs] def delete(self, key: str) -> None: del self.store[key] [docs] def exists(self, key: str) -> bool: return key in self.store [docs] def clear(self) -> None: return self.store.clear() [docs]class RedisEntityStore(BaseEntityStore): """Redis-backed Entity store. Entities get a TTL of 1 day by default, and that TTL is extended by 3 days every time the entity is read back. """ redis_client: Any session_id: str = "default" key_prefix: str = "memory_store" ttl: Optional[int] = 60 * 60 * 24 recall_ttl: Optional[int] = 60 * 60 * 24 * 3 def __init__( self, session_id: str = "default", url: str = "redis://localhost:6379/0", key_prefix: str = "memory_store", ttl: Optional[int] = 60 * 60 * 24, recall_ttl: Optional[int] = 60 * 60 * 24 * 3, *args: Any, **kwargs: Any, ): try: import redis except ImportError: raise ImportError( "Could not import redis python package. " "Please install it with `pip install redis`." ) super().__init__(*args, **kwargs) try: self.redis_client = redis.Redis.from_url(url=url, decode_responses=True)
https://api.python.langchain.com/en/stable/_modules/langchain/memory/entity.html
ad86213f3204-2
self.redis_client = redis.Redis.from_url(url=url, decode_responses=True) except redis.exceptions.ConnectionError as error: logger.error(error) self.session_id = session_id self.key_prefix = key_prefix self.ttl = ttl self.recall_ttl = recall_ttl or ttl @property def full_key_prefix(self) -> str: return f"{self.key_prefix}:{self.session_id}" [docs] def get(self, key: str, default: Optional[str] = None) -> Optional[str]: res = ( self.redis_client.getex(f"{self.full_key_prefix}:{key}", ex=self.recall_ttl) or default or "" ) logger.debug(f"REDIS MEM get '{self.full_key_prefix}:{key}': '{res}'") return res [docs] def set(self, key: str, value: Optional[str]) -> None: if not value: return self.delete(key) self.redis_client.set(f"{self.full_key_prefix}:{key}", value, ex=self.ttl) logger.debug( f"REDIS MEM set '{self.full_key_prefix}:{key}': '{value}' EX {self.ttl}" ) [docs] def delete(self, key: str) -> None: self.redis_client.delete(f"{self.full_key_prefix}:{key}") [docs] def exists(self, key: str) -> bool: return self.redis_client.exists(f"{self.full_key_prefix}:{key}") == 1 [docs] def clear(self) -> None: # iterate a list in batches of size batch_size def batched(iterable: Iterable[Any], batch_size: int) -> Iterable[Any]: iterator = iter(iterable)
https://api.python.langchain.com/en/stable/_modules/langchain/memory/entity.html
ad86213f3204-3
iterator = iter(iterable) while batch := list(islice(iterator, batch_size)): yield batch for keybatch in batched( self.redis_client.scan_iter(f"{self.full_key_prefix}:*"), 500 ): self.redis_client.delete(*keybatch) [docs]class SQLiteEntityStore(BaseEntityStore): """SQLite-backed Entity store""" session_id: str = "default" table_name: str = "memory_store" def __init__( self, session_id: str = "default", db_file: str = "entities.db", table_name: str = "memory_store", *args: Any, **kwargs: Any, ): try: import sqlite3 except ImportError: raise ImportError( "Could not import sqlite3 python package. " "Please install it with `pip install sqlite3`." ) super().__init__(*args, **kwargs) self.conn = sqlite3.connect(db_file) self.session_id = session_id self.table_name = table_name self._create_table_if_not_exists() @property def full_table_name(self) -> str: return f"{self.table_name}_{self.session_id}" def _create_table_if_not_exists(self) -> None: create_table_query = f""" CREATE TABLE IF NOT EXISTS {self.full_table_name} ( key TEXT PRIMARY KEY, value TEXT ) """ with self.conn: self.conn.execute(create_table_query) [docs] def get(self, key: str, default: Optional[str] = None) -> Optional[str]: query = f""" SELECT value
https://api.python.langchain.com/en/stable/_modules/langchain/memory/entity.html
ad86213f3204-4
query = f""" SELECT value FROM {self.full_table_name} WHERE key = ? """ cursor = self.conn.execute(query, (key,)) result = cursor.fetchone() if result is not None: value = result[0] return value return default [docs] def set(self, key: str, value: Optional[str]) -> None: if not value: return self.delete(key) query = f""" INSERT OR REPLACE INTO {self.full_table_name} (key, value) VALUES (?, ?) """ with self.conn: self.conn.execute(query, (key, value)) [docs] def delete(self, key: str) -> None: query = f""" DELETE FROM {self.full_table_name} WHERE key = ? """ with self.conn: self.conn.execute(query, (key,)) [docs] def exists(self, key: str) -> bool: query = f""" SELECT 1 FROM {self.full_table_name} WHERE key = ? LIMIT 1 """ cursor = self.conn.execute(query, (key,)) result = cursor.fetchone() return result is not None [docs] def clear(self) -> None: query = f""" DELETE FROM {self.full_table_name} """ with self.conn: self.conn.execute(query) [docs]class ConversationEntityMemory(BaseChatMemory): """Entity extractor & summarizer memory. Extracts named entities from the recent chat history and generates summaries. With a swapable entity store, persisting entities across conversations.
https://api.python.langchain.com/en/stable/_modules/langchain/memory/entity.html
ad86213f3204-5
With a swapable entity store, persisting entities across conversations. Defaults to an in-memory entity store, and can be swapped out for a Redis, SQLite, or other entity store. """ human_prefix: str = "Human" ai_prefix: str = "AI" llm: BaseLanguageModel entity_extraction_prompt: BasePromptTemplate = ENTITY_EXTRACTION_PROMPT entity_summarization_prompt: BasePromptTemplate = ENTITY_SUMMARIZATION_PROMPT # Cache of recently detected entity names, if any # It is updated when load_memory_variables is called: entity_cache: List[str] = [] # Number of recent message pairs to consider when updating entities: k: int = 3 chat_history_key: str = "history" # Store to manage entity-related data: entity_store: BaseEntityStore = Field(default_factory=InMemoryEntityStore) @property def buffer(self) -> List[BaseMessage]: """Access chat memory messages.""" return self.chat_memory.messages @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return ["entities", self.chat_history_key] [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """ Returns chat history and all generated entities with summaries if available, and updates or clears the recent entity cache. New entity name can be found when calling this method, before the entity summaries are generated, so the entity cache values may be empty if no entity descriptions are generated yet. """ # Create an LLMChain for predicting entity names from the recent chat history:
https://api.python.langchain.com/en/stable/_modules/langchain/memory/entity.html
ad86213f3204-6
# Create an LLMChain for predicting entity names from the recent chat history: chain = LLMChain(llm=self.llm, prompt=self.entity_extraction_prompt) if self.input_key is None: prompt_input_key = get_prompt_input_key(inputs, self.memory_variables) else: prompt_input_key = self.input_key # Extract an arbitrary window of the last message pairs from # the chat history, where the hyperparameter k is the # number of message pairs: buffer_string = get_buffer_string( self.buffer[-self.k * 2 :], human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) # Generates a comma-separated list of named entities, # e.g. "Jane, White House, UFO" # or "NONE" if no named entities are extracted: output = chain.predict( history=buffer_string, input=inputs[prompt_input_key], ) # If no named entities are extracted, assigns an empty list. if output.strip() == "NONE": entities = [] else: # Make a list of the extracted entities: entities = [w.strip() for w in output.split(",")] # Make a dictionary of entities with summary if exists: entity_summaries = {} for entity in entities: entity_summaries[entity] = self.entity_store.get(entity, "") # Replaces the entity name cache with the most recently discussed entities, # or if no entities were extracted, clears the cache: self.entity_cache = entities # Should we return as message objects or as a string? if self.return_messages: # Get last `k` pair of chat messages:
https://api.python.langchain.com/en/stable/_modules/langchain/memory/entity.html
ad86213f3204-7
if self.return_messages: # Get last `k` pair of chat messages: buffer: Any = self.buffer[-self.k * 2 :] else: # Reuse the string we made earlier: buffer = buffer_string return { self.chat_history_key: buffer, "entities": entity_summaries, } [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """ Save context from this conversation history to the entity store. Generates a summary for each entity in the entity cache by prompting the model, and saves these summaries to the entity store. """ super().save_context(inputs, outputs) if self.input_key is None: prompt_input_key = get_prompt_input_key(inputs, self.memory_variables) else: prompt_input_key = self.input_key # Extract an arbitrary window of the last message pairs from # the chat history, where the hyperparameter k is the # number of message pairs: buffer_string = get_buffer_string( self.buffer[-self.k * 2 :], human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) input_data = inputs[prompt_input_key] # Create an LLMChain for predicting entity summarization from the context chain = LLMChain(llm=self.llm, prompt=self.entity_summarization_prompt) # Generate new summaries for entities and save them in the entity store for entity in self.entity_cache: # Get existing summary if it exists existing_summary = self.entity_store.get(entity, "") output = chain.predict( summary=existing_summary, entity=entity, history=buffer_string,
https://api.python.langchain.com/en/stable/_modules/langchain/memory/entity.html
ad86213f3204-8
summary=existing_summary, entity=entity, history=buffer_string, input=input_data, ) # Save the updated summary to the entity store self.entity_store.set(entity, output.strip()) [docs] def clear(self) -> None: """Clear memory contents.""" self.chat_memory.clear() self.entity_cache.clear() self.entity_store.clear()
https://api.python.langchain.com/en/stable/_modules/langchain/memory/entity.html
2bb6466836d3-0
Source code for langchain.memory.combined import warnings from typing import Any, Dict, List, Set from pydantic import validator from langchain.memory.chat_memory import BaseChatMemory from langchain.schema import BaseMemory [docs]class CombinedMemory(BaseMemory): """Class for combining multiple memories' data together.""" memories: List[BaseMemory] """For tracking all the memories that should be accessed.""" @validator("memories") def check_repeated_memory_variable( cls, value: List[BaseMemory] ) -> List[BaseMemory]: all_variables: Set[str] = set() for val in value: overlap = all_variables.intersection(val.memory_variables) if overlap: raise ValueError( f"The same variables {overlap} are found in multiple" "memory object, which is not allowed by CombinedMemory." ) all_variables |= set(val.memory_variables) return value @validator("memories") def check_input_key(cls, value: List[BaseMemory]) -> List[BaseMemory]: """Check that if memories are of type BaseChatMemory that input keys exist.""" for val in value: if isinstance(val, BaseChatMemory): if val.input_key is None: warnings.warn( "When using CombinedMemory, " "input keys should be so the input is known. " f" Was not set on {val}" ) return value @property def memory_variables(self) -> List[str]: """All the memory variables that this instance provides.""" """Collected from the all the linked memories.""" memory_variables = [] for memory in self.memories: memory_variables.extend(memory.memory_variables)
https://api.python.langchain.com/en/stable/_modules/langchain/memory/combined.html
2bb6466836d3-1
for memory in self.memories: memory_variables.extend(memory.memory_variables) return memory_variables [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]: """Load all vars from sub-memories.""" memory_data: Dict[str, Any] = {} # Collect vars from all sub-memories for memory in self.memories: data = memory.load_memory_variables(inputs) memory_data = { **memory_data, **data, } return memory_data [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this session for every memory.""" # Save context for all sub-memories for memory in self.memories: memory.save_context(inputs, outputs) [docs] def clear(self) -> None: """Clear context from this session for every memory.""" for memory in self.memories: memory.clear()
https://api.python.langchain.com/en/stable/_modules/langchain/memory/combined.html
eab0b74ebf0a-0
Source code for langchain.memory.buffer_window from typing import Any, Dict, List from langchain.memory.chat_memory import BaseChatMemory from langchain.schema import BaseMessage, get_buffer_string [docs]class ConversationBufferWindowMemory(BaseChatMemory): """Buffer for storing conversation memory.""" human_prefix: str = "Human" ai_prefix: str = "AI" memory_key: str = "history" #: :meta private: k: int = 5 @property def buffer(self) -> List[BaseMessage]: """String buffer of memory.""" return self.chat_memory.messages @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]: """Return history buffer.""" buffer: Any = self.buffer[-self.k * 2 :] if self.k > 0 else [] if not self.return_messages: buffer = get_buffer_string( buffer, human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) return {self.memory_key: buffer}
https://api.python.langchain.com/en/stable/_modules/langchain/memory/buffer_window.html
b457ff529d4d-0
Source code for langchain.memory.kg from typing import Any, Dict, List, Type, Union from pydantic import Field from langchain.base_language import BaseLanguageModel from langchain.chains.llm import LLMChain from langchain.graphs import NetworkxEntityGraph from langchain.graphs.networkx_graph import KnowledgeTriple, get_entities, parse_triples from langchain.memory.chat_memory import BaseChatMemory from langchain.memory.prompt import ( ENTITY_EXTRACTION_PROMPT, KNOWLEDGE_TRIPLE_EXTRACTION_PROMPT, ) from langchain.memory.utils import get_prompt_input_key from langchain.prompts.base import BasePromptTemplate from langchain.schema import ( BaseMessage, SystemMessage, get_buffer_string, ) [docs]class ConversationKGMemory(BaseChatMemory): """Knowledge graph memory for storing conversation memory. Integrates with external knowledge graph to store and retrieve information about knowledge triples in the conversation. """ k: int = 2 human_prefix: str = "Human" ai_prefix: str = "AI" kg: NetworkxEntityGraph = Field(default_factory=NetworkxEntityGraph) knowledge_extraction_prompt: BasePromptTemplate = KNOWLEDGE_TRIPLE_EXTRACTION_PROMPT entity_extraction_prompt: BasePromptTemplate = ENTITY_EXTRACTION_PROMPT llm: BaseLanguageModel summary_message_cls: Type[BaseMessage] = SystemMessage """Number of previous utterances to include in the context.""" memory_key: str = "history" #: :meta private: [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """Return history buffer.""" entities = self._get_current_entities(inputs) summary_strings = []
https://api.python.langchain.com/en/stable/_modules/langchain/memory/kg.html
b457ff529d4d-1
entities = self._get_current_entities(inputs) summary_strings = [] for entity in entities: knowledge = self.kg.get_entity_knowledge(entity) if knowledge: summary = f"On {entity}: {'. '.join(knowledge)}." summary_strings.append(summary) context: Union[str, List] if not summary_strings: context = [] if self.return_messages else "" elif self.return_messages: context = [ self.summary_message_cls(content=text) for text in summary_strings ] else: context = "\n".join(summary_strings) return {self.memory_key: context} @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] def _get_prompt_input_key(self, inputs: Dict[str, Any]) -> str: """Get the input key for the prompt.""" if self.input_key is None: return get_prompt_input_key(inputs, self.memory_variables) return self.input_key def _get_prompt_output_key(self, outputs: Dict[str, Any]) -> str: """Get the output key for the prompt.""" if self.output_key is None: if len(outputs) != 1: raise ValueError(f"One output key expected, got {outputs.keys()}") return list(outputs.keys())[0] return self.output_key [docs] def get_current_entities(self, input_string: str) -> List[str]: chain = LLMChain(llm=self.llm, prompt=self.entity_extraction_prompt) buffer_string = get_buffer_string( self.chat_memory.messages[-self.k * 2 :], human_prefix=self.human_prefix,
https://api.python.langchain.com/en/stable/_modules/langchain/memory/kg.html
b457ff529d4d-2
human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) output = chain.predict( history=buffer_string, input=input_string, ) return get_entities(output) def _get_current_entities(self, inputs: Dict[str, Any]) -> List[str]: """Get the current entities in the conversation.""" prompt_input_key = self._get_prompt_input_key(inputs) return self.get_current_entities(inputs[prompt_input_key]) [docs] def get_knowledge_triplets(self, input_string: str) -> List[KnowledgeTriple]: chain = LLMChain(llm=self.llm, prompt=self.knowledge_extraction_prompt) buffer_string = get_buffer_string( self.chat_memory.messages[-self.k * 2 :], human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) output = chain.predict( history=buffer_string, input=input_string, verbose=True, ) knowledge = parse_triples(output) return knowledge def _get_and_update_kg(self, inputs: Dict[str, Any]) -> None: """Get and update knowledge graph from the conversation history.""" prompt_input_key = self._get_prompt_input_key(inputs) knowledge = self.get_knowledge_triplets(inputs[prompt_input_key]) for triple in knowledge: self.kg.add_triple(triple) [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this conversation to buffer.""" super().save_context(inputs, outputs) self._get_and_update_kg(inputs) [docs] def clear(self) -> None: """Clear memory contents."""
https://api.python.langchain.com/en/stable/_modules/langchain/memory/kg.html
b457ff529d4d-3
[docs] def clear(self) -> None: """Clear memory contents.""" super().clear() self.kg.clear()
https://api.python.langchain.com/en/stable/_modules/langchain/memory/kg.html
6bd49ab98f86-0
Source code for langchain.memory.chat_message_histories.file import json import logging from pathlib import Path from typing import List from langchain.schema import ( BaseChatMessageHistory, BaseMessage, messages_from_dict, messages_to_dict, ) logger = logging.getLogger(__name__) [docs]class FileChatMessageHistory(BaseChatMessageHistory): """ Chat message history that stores history in a local file. Args: file_path: path of the local file to store the messages. """ def __init__(self, file_path: str): self.file_path = Path(file_path) if not self.file_path.exists(): self.file_path.touch() self.file_path.write_text(json.dumps([])) @property def messages(self) -> List[BaseMessage]: # type: ignore """Retrieve the messages from the local file""" items = json.loads(self.file_path.read_text()) messages = messages_from_dict(items) return messages [docs] def add_message(self, message: BaseMessage) -> None: """Append the message to the record in the local file""" messages = messages_to_dict(self.messages) messages.append(messages_to_dict([message])[0]) self.file_path.write_text(json.dumps(messages)) [docs] def clear(self) -> None: """Clear session memory from the local file""" self.file_path.write_text(json.dumps([]))
https://api.python.langchain.com/en/stable/_modules/langchain/memory/chat_message_histories/file.html
df187fd6ef46-0
Source code for langchain.memory.chat_message_histories.cassandra import json import logging from typing import List from langchain.schema import ( BaseChatMessageHistory, BaseMessage, _message_to_dict, messages_from_dict, ) logger = logging.getLogger(__name__) DEFAULT_KEYSPACE_NAME = "chat_history" DEFAULT_TABLE_NAME = "message_store" DEFAULT_USERNAME = "cassandra" DEFAULT_PASSWORD = "cassandra" DEFAULT_PORT = 9042 [docs]class CassandraChatMessageHistory(BaseChatMessageHistory): """Chat message history that stores history in Cassandra. Args: contact_points: list of ips to connect to Cassandra cluster session_id: arbitrary key that is used to store the messages of a single chat session. port: port to connect to Cassandra cluster username: username to connect to Cassandra cluster password: password to connect to Cassandra cluster keyspace_name: name of the keyspace to use table_name: name of the table to use """ def __init__( self, contact_points: List[str], session_id: str, port: int = DEFAULT_PORT, username: str = DEFAULT_USERNAME, password: str = DEFAULT_PASSWORD, keyspace_name: str = DEFAULT_KEYSPACE_NAME, table_name: str = DEFAULT_TABLE_NAME, ): self.contact_points = contact_points self.session_id = session_id self.port = port self.username = username self.password = password self.keyspace_name = keyspace_name self.table_name = table_name try: from cassandra import ( AuthenticationFailed, OperationTimedOut, UnresolvableContactPoints, )
https://api.python.langchain.com/en/stable/_modules/langchain/memory/chat_message_histories/cassandra.html
df187fd6ef46-1
OperationTimedOut, UnresolvableContactPoints, ) from cassandra.cluster import Cluster, PlainTextAuthProvider except ImportError: raise ValueError( "Could not import cassandra-driver python package. " "Please install it with `pip install cassandra-driver`." ) self.cluster: Cluster = Cluster( contact_points, port=port, auth_provider=PlainTextAuthProvider( username=self.username, password=self.password ), ) try: self.session = self.cluster.connect() except ( AuthenticationFailed, UnresolvableContactPoints, OperationTimedOut, ) as error: logger.error( "Unable to establish connection with \ cassandra chat message history database" ) raise error self._prepare_cassandra() def _prepare_cassandra(self) -> None: """Create the keyspace and table if they don't exist yet""" from cassandra import OperationTimedOut, Unavailable try: self.session.execute( f"""CREATE KEYSPACE IF NOT EXISTS {self.keyspace_name} WITH REPLICATION = {{ 'class' : 'SimpleStrategy', 'replication_factor' : 1 }};""" ) except (OperationTimedOut, Unavailable) as error: logger.error( f"Unable to create cassandra \ chat message history keyspace: {self.keyspace_name}." ) raise error self.session.set_keyspace(self.keyspace_name) try: self.session.execute( f"""CREATE TABLE IF NOT EXISTS {self.table_name} (id UUID, session_id varchar,
https://api.python.langchain.com/en/stable/_modules/langchain/memory/chat_message_histories/cassandra.html
df187fd6ef46-2
{self.table_name} (id UUID, session_id varchar, history text, PRIMARY KEY ((session_id), id) );""" ) except (OperationTimedOut, Unavailable) as error: logger.error( f"Unable to create cassandra \ chat message history table: {self.table_name}" ) raise error @property def messages(self) -> List[BaseMessage]: # type: ignore """Retrieve the messages from Cassandra""" from cassandra import ReadFailure, ReadTimeout, Unavailable try: rows = self.session.execute( f"""SELECT * FROM {self.table_name} WHERE session_id = '{self.session_id}' ;""" ) except (Unavailable, ReadTimeout, ReadFailure) as error: logger.error("Unable to Retreive chat history messages from cassadra") raise error if rows: items = [json.loads(row.history) for row in rows] else: items = [] messages = messages_from_dict(items) return messages [docs] def add_message(self, message: BaseMessage) -> None: """Append the message to the record in Cassandra""" import uuid from cassandra import Unavailable, WriteFailure, WriteTimeout try: self.session.execute( """INSERT INTO message_store (id, session_id, history) VALUES (%s, %s, %s);""", (uuid.uuid4(), self.session_id, json.dumps(_message_to_dict(message))), ) except (Unavailable, WriteTimeout, WriteFailure) as error: logger.error("Unable to write chat history messages to cassandra") raise error
https://api.python.langchain.com/en/stable/_modules/langchain/memory/chat_message_histories/cassandra.html