id
stringlengths 14
16
| text
stringlengths 31
2.41k
| source
stringlengths 53
121
|
---|---|---|
a44a60c1f5be-61 | save(file_path)ο
Save the LLM.
Parameters
file_path (Union[pathlib.Path, str]) β Path to file to save the LLM to.
Return type
None
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns)ο
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) β
Return type
None
property lc_attributes: Dictο
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]ο
Return the namespace of the langchain object.
eg. [βlangchainβ, βllmsβ, βopenaiβ]
property lc_secrets: Dict[str, str]ο
Return a map of constructor argument names to secret ids.
eg. {βopenai_api_keyβ: βOPENAI_API_KEYβ}
property lc_serializable: boolο
Return whether or not the class is serializable.
class langchain.llms.Beam(*, cache=None, verbose=None, callbacks=None, callback_manager=None, tags=None, model_name='', name='', cpu='', memory='', gpu='', python_version='', python_packages=[], max_length='', url='', model_kwargs=None, beam_client_id='', beam_client_secret='', app_id=None)[source]ο
Bases: langchain.llms.base.LLM
Wrapper around Beam API for gpt2 large language model.
To use, you should have the beam-sdk python package installed,
and the environment variable BEAM_CLIENT_ID set with your client id
and BEAM_CLIENT_SECRET set with your client secret. Information on how
to get these is available here: https://docs.beam.cloud/account/api-keys. | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-62 | to get these is available here: https://docs.beam.cloud/account/api-keys.
The wrapper can then be called as follows, where the name, cpu, memory, gpu,
python version, and python packages can be updated accordingly. Once deployed,
the instance can be called.
Example
llm = Beam(model_name="gpt2",
name="langchain-gpt2",
cpu=8,
memory="32Gi",
gpu="A10G",
python_version="python3.8",
python_packages=[
"diffusers[torch]>=0.10",
"transformers",
"torch",
"pillow",
"accelerate",
"safetensors",
"xformers",],
max_length=50)
llm._deploy()
call_result = llm._call(input)
Parameters
cache (Optional[bool]) β
verbose (bool) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
callback_manager (Optional[langchain.callbacks.base.BaseCallbackManager]) β
tags (Optional[List[str]]) β
model_name (str) β
name (str) β
cpu (str) β
memory (str) β
gpu (str) β
python_version (str) β
python_packages (List[str]) β
max_length (str) β
url (str) β
model_kwargs (Dict[str, Any]) β
beam_client_id (str) β
beam_client_secret (str) β
app_id (Optional[str]) β
Return type
None
attribute model_kwargs: Dict[str, Any] [Optional]ο
Holds any model parameters valid for create call not | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-63 | Holds any model parameters valid for create call not
explicitly specified.
attribute tags: Optional[List[str]] = Noneο
Tags to add to the run trace.
attribute url: str = ''ο
model endpoint to use
attribute verbose: bool [Optional]ο
Whether to print out response text.
__call__(prompt, stop=None, callbacks=None, **kwargs)ο
Check Cache and run the LLM on the given prompt and input.
Parameters
prompt (str) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
str
async agenerate(prompts, stop=None, callbacks=None, *, tags=None, **kwargs)ο
Run the LLM on the given prompt and input.
Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
tags (Optional[List[str]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
async agenerate_prompt(prompts, stop=None, callbacks=None, **kwargs)ο
Take in a list of prompt values and return an LLMResult.
Parameters
prompts (List[langchain.schema.PromptValue]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
app_creation()[source]ο
Creates a Python file which will contain your Beam app definition.
Return type
None | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-64 | Creates a Python file which will contain your Beam app definition.
Return type
None
async apredict(text, *, stop=None, **kwargs)ο
Predict text from text.
Parameters
text (str) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
str
async apredict_messages(messages, *, stop=None, **kwargs)ο
Predict message from messages.
Parameters
messages (List[langchain.schema.BaseMessage]) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
langchain.schema.BaseMessage
classmethod construct(_fields_set=None, **values)ο
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) β
values (Any) β
Return type
Model
copy(*, include=None, exclude=None, update=None, deep=False)ο
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) β set to True to make a deep copy of the model
self (Model) β
Returns
new model instance
Return type
Model
dict(**kwargs)ο | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-65 | Returns
new model instance
Return type
Model
dict(**kwargs)ο
Return a dictionary of the LLM.
Parameters
kwargs (Any) β
Return type
Dict
generate(prompts, stop=None, callbacks=None, *, tags=None, **kwargs)ο
Run the LLM on the given prompt and input.
Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
tags (Optional[List[str]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
generate_prompt(prompts, stop=None, callbacks=None, **kwargs)ο
Take in a list of prompt values and return an LLMResult.
Parameters
prompts (List[langchain.schema.PromptValue]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
get_num_tokens(text)ο
Get the number of tokens present in the text.
Parameters
text (str) β
Return type
int
get_num_tokens_from_messages(messages)ο
Get the number of tokens in the message.
Parameters
messages (List[langchain.schema.BaseMessage]) β
Return type
int
get_token_ids(text)ο
Get the token present in the text.
Parameters
text (str) β
Return type
List[int]
json(*, include=None, exclude=None, by_alias=False, skip_defaults=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=None, models_as_dict=True, **dumps_kwargs)ο | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-66 | Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
by_alias (bool) β
skip_defaults (Optional[bool]) β
exclude_unset (bool) β
exclude_defaults (bool) β
exclude_none (bool) β
encoder (Optional[Callable[[Any], Any]]) β
models_as_dict (bool) β
dumps_kwargs (Any) β
Return type
unicode
predict(text, *, stop=None, **kwargs)ο
Predict text from text.
Parameters
text (str) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
str
predict_messages(messages, *, stop=None, **kwargs)ο
Predict message from messages.
Parameters
messages (List[langchain.schema.BaseMessage]) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
langchain.schema.BaseMessage
run_creation()[source]ο
Creates a Python file which will be deployed on beam.
Return type
None
save(file_path)ο
Save the LLM.
Parameters
file_path (Union[pathlib.Path, str]) β Path to file to save the LLM to.
Return type
None
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns)ο
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) β
Return type | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-67 | Parameters
localns (Any) β
Return type
None
property lc_attributes: Dictο
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]ο
Return the namespace of the langchain object.
eg. [βlangchainβ, βllmsβ, βopenaiβ]
property lc_secrets: Dict[str, str]ο
Return a map of constructor argument names to secret ids.
eg. {βopenai_api_keyβ: βOPENAI_API_KEYβ}
property lc_serializable: boolο
Return whether or not the class is serializable.
class langchain.llms.Bedrock(*, cache=None, verbose=None, callbacks=None, callback_manager=None, tags=None, client=None, region_name=None, credentials_profile_name=None, model_id, model_kwargs=None)[source]ο
Bases: langchain.llms.base.LLM
LLM provider to invoke Bedrock models.
To authenticate, the AWS client uses the following methods to
automatically load credentials:
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
If a specific credential profile should be used, you must pass
the name of the profile from the ~/.aws/credentials file that is to be used.
Make sure the credentials / roles used have the required policies to
access the Bedrock service.
Parameters
cache (Optional[bool]) β
verbose (bool) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
callback_manager (Optional[langchain.callbacks.base.BaseCallbackManager]) β
tags (Optional[List[str]]) β
client (Any) β
region_name (Optional[str]) β | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-68 | client (Any) β
region_name (Optional[str]) β
credentials_profile_name (Optional[str]) β
model_id (str) β
model_kwargs (Optional[Dict]) β
Return type
None
attribute credentials_profile_name: Optional[str] = Noneο
The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which
has either access keys or role information specified.
If not specified, the default credential profile or, if on an EC2 instance,
credentials from IMDS will be used.
See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
attribute model_id: str [Required]ο
Id of the model to call, e.g., amazon.titan-tg1-large, this is
equivalent to the modelId property in the list-foundation-models api
attribute model_kwargs: Optional[Dict] = Noneο
Key word arguments to pass to the model.
attribute region_name: Optional[str] = Noneο
The aws region e.g., us-west-2. Fallsback to AWS_DEFAULT_REGION env variable
or region specified in ~/.aws/config in case it is not provided here.
attribute tags: Optional[List[str]] = Noneο
Tags to add to the run trace.
attribute verbose: bool [Optional]ο
Whether to print out response text.
__call__(prompt, stop=None, callbacks=None, **kwargs)ο
Check Cache and run the LLM on the given prompt and input.
Parameters
prompt (str) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
str | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-69 | kwargs (Any) β
Return type
str
async agenerate(prompts, stop=None, callbacks=None, *, tags=None, **kwargs)ο
Run the LLM on the given prompt and input.
Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
tags (Optional[List[str]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
async agenerate_prompt(prompts, stop=None, callbacks=None, **kwargs)ο
Take in a list of prompt values and return an LLMResult.
Parameters
prompts (List[langchain.schema.PromptValue]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
async apredict(text, *, stop=None, **kwargs)ο
Predict text from text.
Parameters
text (str) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
str
async apredict_messages(messages, *, stop=None, **kwargs)ο
Predict message from messages.
Parameters
messages (List[langchain.schema.BaseMessage]) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
langchain.schema.BaseMessage
classmethod construct(_fields_set=None, **values)ο
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed. | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-70 | Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) β
values (Any) β
Return type
Model
copy(*, include=None, exclude=None, update=None, deep=False)ο
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) β set to True to make a deep copy of the model
self (Model) β
Returns
new model instance
Return type
Model
dict(**kwargs)ο
Return a dictionary of the LLM.
Parameters
kwargs (Any) β
Return type
Dict
generate(prompts, stop=None, callbacks=None, *, tags=None, **kwargs)ο
Run the LLM on the given prompt and input.
Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
tags (Optional[List[str]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
generate_prompt(prompts, stop=None, callbacks=None, **kwargs)ο
Take in a list of prompt values and return an LLMResult.
Parameters | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-71 | Take in a list of prompt values and return an LLMResult.
Parameters
prompts (List[langchain.schema.PromptValue]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
get_num_tokens(text)ο
Get the number of tokens present in the text.
Parameters
text (str) β
Return type
int
get_num_tokens_from_messages(messages)ο
Get the number of tokens in the message.
Parameters
messages (List[langchain.schema.BaseMessage]) β
Return type
int
get_token_ids(text)ο
Get the token present in the text.
Parameters
text (str) β
Return type
List[int]
json(*, include=None, exclude=None, by_alias=False, skip_defaults=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=None, models_as_dict=True, **dumps_kwargs)ο
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
by_alias (bool) β
skip_defaults (Optional[bool]) β
exclude_unset (bool) β
exclude_defaults (bool) β
exclude_none (bool) β
encoder (Optional[Callable[[Any], Any]]) β
models_as_dict (bool) β
dumps_kwargs (Any) β
Return type
unicode | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-72 | dumps_kwargs (Any) β
Return type
unicode
predict(text, *, stop=None, **kwargs)ο
Predict text from text.
Parameters
text (str) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
str
predict_messages(messages, *, stop=None, **kwargs)ο
Predict message from messages.
Parameters
messages (List[langchain.schema.BaseMessage]) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
langchain.schema.BaseMessage
save(file_path)ο
Save the LLM.
Parameters
file_path (Union[pathlib.Path, str]) β Path to file to save the LLM to.
Return type
None
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns)ο
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) β
Return type
None
property lc_attributes: Dictο
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]ο
Return the namespace of the langchain object.
eg. [βlangchainβ, βllmsβ, βopenaiβ]
property lc_secrets: Dict[str, str]ο
Return a map of constructor argument names to secret ids.
eg. {βopenai_api_keyβ: βOPENAI_API_KEYβ}
property lc_serializable: boolο
Return whether or not the class is serializable. | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-73 | property lc_serializable: boolο
Return whether or not the class is serializable.
class langchain.llms.CTransformers(*, cache=None, verbose=None, callbacks=None, callback_manager=None, tags=None, client=None, model, model_type=None, model_file=None, config=None, lib=None)[source]ο
Bases: langchain.llms.base.LLM
Wrapper around the C Transformers LLM interface.
To use, you should have the ctransformers python package installed.
See https://github.com/marella/ctransformers
Example
from langchain.llms import CTransformers
llm = CTransformers(model="/path/to/ggml-gpt-2.bin", model_type="gpt2")
Parameters
cache (Optional[bool]) β
verbose (bool) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
callback_manager (Optional[langchain.callbacks.base.BaseCallbackManager]) β
tags (Optional[List[str]]) β
client (Any) β
model (str) β
model_type (Optional[str]) β
model_file (Optional[str]) β
config (Optional[Dict[str, Any]]) β
lib (Optional[str]) β
Return type
None
attribute config: Optional[Dict[str, Any]] = Noneο
The config parameters.
See https://github.com/marella/ctransformers#config
attribute lib: Optional[str] = Noneο
The path to a shared library or one of avx2, avx, basic.
attribute model: str [Required]ο
The path to a model file or directory or the name of a Hugging Face Hub
model repo.
attribute model_file: Optional[str] = Noneο | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-74 | model repo.
attribute model_file: Optional[str] = Noneο
The name of the model file in repo or directory.
attribute model_type: Optional[str] = Noneο
The model type.
attribute tags: Optional[List[str]] = Noneο
Tags to add to the run trace.
attribute verbose: bool [Optional]ο
Whether to print out response text.
__call__(prompt, stop=None, callbacks=None, **kwargs)ο
Check Cache and run the LLM on the given prompt and input.
Parameters
prompt (str) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
str
async agenerate(prompts, stop=None, callbacks=None, *, tags=None, **kwargs)ο
Run the LLM on the given prompt and input.
Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
tags (Optional[List[str]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
async agenerate_prompt(prompts, stop=None, callbacks=None, **kwargs)ο
Take in a list of prompt values and return an LLMResult.
Parameters
prompts (List[langchain.schema.PromptValue]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
async apredict(text, *, stop=None, **kwargs)ο | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-75 | async apredict(text, *, stop=None, **kwargs)ο
Predict text from text.
Parameters
text (str) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
str
async apredict_messages(messages, *, stop=None, **kwargs)ο
Predict message from messages.
Parameters
messages (List[langchain.schema.BaseMessage]) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
langchain.schema.BaseMessage
classmethod construct(_fields_set=None, **values)ο
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) β
values (Any) β
Return type
Model
copy(*, include=None, exclude=None, update=None, deep=False)ο
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) β set to True to make a deep copy of the model
self (Model) β
Returns
new model instance
Return type
Model
dict(**kwargs)ο
Return a dictionary of the LLM.
Parameters
kwargs (Any) β | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-76 | Return a dictionary of the LLM.
Parameters
kwargs (Any) β
Return type
Dict
generate(prompts, stop=None, callbacks=None, *, tags=None, **kwargs)ο
Run the LLM on the given prompt and input.
Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
tags (Optional[List[str]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
generate_prompt(prompts, stop=None, callbacks=None, **kwargs)ο
Take in a list of prompt values and return an LLMResult.
Parameters
prompts (List[langchain.schema.PromptValue]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
get_num_tokens(text)ο
Get the number of tokens present in the text.
Parameters
text (str) β
Return type
int
get_num_tokens_from_messages(messages)ο
Get the number of tokens in the message.
Parameters
messages (List[langchain.schema.BaseMessage]) β
Return type
int
get_token_ids(text)ο
Get the token present in the text.
Parameters
text (str) β
Return type
List[int]
json(*, include=None, exclude=None, by_alias=False, skip_defaults=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=None, models_as_dict=True, **dumps_kwargs)ο
Generate a JSON representation of the model, include and exclude arguments as per dict(). | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-77 | Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
by_alias (bool) β
skip_defaults (Optional[bool]) β
exclude_unset (bool) β
exclude_defaults (bool) β
exclude_none (bool) β
encoder (Optional[Callable[[Any], Any]]) β
models_as_dict (bool) β
dumps_kwargs (Any) β
Return type
unicode
predict(text, *, stop=None, **kwargs)ο
Predict text from text.
Parameters
text (str) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
str
predict_messages(messages, *, stop=None, **kwargs)ο
Predict message from messages.
Parameters
messages (List[langchain.schema.BaseMessage]) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
langchain.schema.BaseMessage
save(file_path)ο
Save the LLM.
Parameters
file_path (Union[pathlib.Path, str]) β Path to file to save the LLM to.
Return type
None
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns)ο
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) β
Return type
None
property lc_attributes: Dictο
Return a list of attribute names that should be included in the | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-78 | Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]ο
Return the namespace of the langchain object.
eg. [βlangchainβ, βllmsβ, βopenaiβ]
property lc_secrets: Dict[str, str]ο
Return a map of constructor argument names to secret ids.
eg. {βopenai_api_keyβ: βOPENAI_API_KEYβ}
property lc_serializable: boolο
Return whether or not the class is serializable.
class langchain.llms.CerebriumAI(*, cache=None, verbose=None, callbacks=None, callback_manager=None, tags=None, endpoint_url='', model_kwargs=None, cerebriumai_api_key=None)[source]ο
Bases: langchain.llms.base.LLM
Wrapper around CerebriumAI large language models.
To use, you should have the cerebrium python package installed, and the
environment variable CEREBRIUMAI_API_KEY set with your API key.
Any parameters that are valid to be passed to the call can be passed
in, even if not explicitly saved on this class.
Example
from langchain.llms import CerebriumAI
cerebrium = CerebriumAI(endpoint_url="")
Parameters
cache (Optional[bool]) β
verbose (bool) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
callback_manager (Optional[langchain.callbacks.base.BaseCallbackManager]) β
tags (Optional[List[str]]) β
endpoint_url (str) β
model_kwargs (Dict[str, Any]) β
cerebriumai_api_key (Optional[str]) β
Return type
None | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-79 | cerebriumai_api_key (Optional[str]) β
Return type
None
attribute endpoint_url: str = ''ο
model endpoint to use
attribute model_kwargs: Dict[str, Any] [Optional]ο
Holds any model parameters valid for create call not
explicitly specified.
attribute tags: Optional[List[str]] = Noneο
Tags to add to the run trace.
attribute verbose: bool [Optional]ο
Whether to print out response text.
__call__(prompt, stop=None, callbacks=None, **kwargs)ο
Check Cache and run the LLM on the given prompt and input.
Parameters
prompt (str) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
str
async agenerate(prompts, stop=None, callbacks=None, *, tags=None, **kwargs)ο
Run the LLM on the given prompt and input.
Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
tags (Optional[List[str]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
async agenerate_prompt(prompts, stop=None, callbacks=None, **kwargs)ο
Take in a list of prompt values and return an LLMResult.
Parameters
prompts (List[langchain.schema.PromptValue]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-80 | kwargs (Any) β
Return type
langchain.schema.LLMResult
async apredict(text, *, stop=None, **kwargs)ο
Predict text from text.
Parameters
text (str) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
str
async apredict_messages(messages, *, stop=None, **kwargs)ο
Predict message from messages.
Parameters
messages (List[langchain.schema.BaseMessage]) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
langchain.schema.BaseMessage
classmethod construct(_fields_set=None, **values)ο
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) β
values (Any) β
Return type
Model
copy(*, include=None, exclude=None, update=None, deep=False)ο
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) β set to True to make a deep copy of the model
self (Model) β
Returns
new model instance
Return type
Model
dict(**kwargs)ο | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-81 | Returns
new model instance
Return type
Model
dict(**kwargs)ο
Return a dictionary of the LLM.
Parameters
kwargs (Any) β
Return type
Dict
generate(prompts, stop=None, callbacks=None, *, tags=None, **kwargs)ο
Run the LLM on the given prompt and input.
Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
tags (Optional[List[str]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
generate_prompt(prompts, stop=None, callbacks=None, **kwargs)ο
Take in a list of prompt values and return an LLMResult.
Parameters
prompts (List[langchain.schema.PromptValue]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
get_num_tokens(text)ο
Get the number of tokens present in the text.
Parameters
text (str) β
Return type
int
get_num_tokens_from_messages(messages)ο
Get the number of tokens in the message.
Parameters
messages (List[langchain.schema.BaseMessage]) β
Return type
int
get_token_ids(text)ο
Get the token present in the text.
Parameters
text (str) β
Return type
List[int]
json(*, include=None, exclude=None, by_alias=False, skip_defaults=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=None, models_as_dict=True, **dumps_kwargs)ο | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-82 | Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
by_alias (bool) β
skip_defaults (Optional[bool]) β
exclude_unset (bool) β
exclude_defaults (bool) β
exclude_none (bool) β
encoder (Optional[Callable[[Any], Any]]) β
models_as_dict (bool) β
dumps_kwargs (Any) β
Return type
unicode
predict(text, *, stop=None, **kwargs)ο
Predict text from text.
Parameters
text (str) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
str
predict_messages(messages, *, stop=None, **kwargs)ο
Predict message from messages.
Parameters
messages (List[langchain.schema.BaseMessage]) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
langchain.schema.BaseMessage
save(file_path)ο
Save the LLM.
Parameters
file_path (Union[pathlib.Path, str]) β Path to file to save the LLM to.
Return type
None
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns)ο
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) β
Return type
None
property lc_attributes: Dictο
Return a list of attribute names that should be included in the | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-83 | Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]ο
Return the namespace of the langchain object.
eg. [βlangchainβ, βllmsβ, βopenaiβ]
property lc_secrets: Dict[str, str]ο
Return a map of constructor argument names to secret ids.
eg. {βopenai_api_keyβ: βOPENAI_API_KEYβ}
property lc_serializable: boolο
Return whether or not the class is serializable.
class langchain.llms.Clarifai(*, cache=None, verbose=None, callbacks=None, callback_manager=None, tags=None, stub=None, metadata=None, userDataObject=None, model_id=None, model_version_id=None, app_id=None, user_id=None, clarifai_pat_key=None, api_base='https://api.clarifai.com', stop=None)[source]ο
Bases: langchain.llms.base.LLM
Wrapper around Clarifaiβs large language models.
To use, you should have an account on the Clarifai platform,
the clarifai python package installed, and the
environment variable CLARIFAI_PAT_KEY set with your PAT key,
or pass it as a named parameter to the constructor.
Example
from langchain.llms import Clarifai
clarifai_llm = Clarifai(clarifai_pat_key=CLARIFAI_PAT_KEY, user_id=USER_ID, app_id=APP_ID, model_id=MODEL_ID)
Parameters
cache (Optional[bool]) β
verbose (bool) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
callback_manager (Optional[langchain.callbacks.base.BaseCallbackManager]) β | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-84 | callback_manager (Optional[langchain.callbacks.base.BaseCallbackManager]) β
tags (Optional[List[str]]) β
stub (Any) β
metadata (Any) β
userDataObject (Any) β
model_id (Optional[str]) β
model_version_id (Optional[str]) β
app_id (Optional[str]) β
user_id (Optional[str]) β
clarifai_pat_key (Optional[str]) β
api_base (str) β
stop (Optional[List[str]]) β
Return type
None
attribute app_id: Optional[str] = Noneο
Clarifai application id to use.
attribute model_id: Optional[str] = Noneο
Model id to use.
attribute model_version_id: Optional[str] = Noneο
Model version id to use.
attribute tags: Optional[List[str]] = Noneο
Tags to add to the run trace.
attribute user_id: Optional[str] = Noneο
Clarifai user id to use.
attribute verbose: bool [Optional]ο
Whether to print out response text.
__call__(prompt, stop=None, callbacks=None, **kwargs)ο
Check Cache and run the LLM on the given prompt and input.
Parameters
prompt (str) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
str
async agenerate(prompts, stop=None, callbacks=None, *, tags=None, **kwargs)ο
Run the LLM on the given prompt and input.
Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-85 | Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
tags (Optional[List[str]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
async agenerate_prompt(prompts, stop=None, callbacks=None, **kwargs)ο
Take in a list of prompt values and return an LLMResult.
Parameters
prompts (List[langchain.schema.PromptValue]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
async apredict(text, *, stop=None, **kwargs)ο
Predict text from text.
Parameters
text (str) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
str
async apredict_messages(messages, *, stop=None, **kwargs)ο
Predict message from messages.
Parameters
messages (List[langchain.schema.BaseMessage]) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
langchain.schema.BaseMessage
classmethod construct(_fields_set=None, **values)ο
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) β
values (Any) β
Return type
Model
copy(*, include=None, exclude=None, update=None, deep=False)ο | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-86 | Model
copy(*, include=None, exclude=None, update=None, deep=False)ο
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) β set to True to make a deep copy of the model
self (Model) β
Returns
new model instance
Return type
Model
dict(**kwargs)ο
Return a dictionary of the LLM.
Parameters
kwargs (Any) β
Return type
Dict
generate(prompts, stop=None, callbacks=None, *, tags=None, **kwargs)ο
Run the LLM on the given prompt and input.
Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
tags (Optional[List[str]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
generate_prompt(prompts, stop=None, callbacks=None, **kwargs)ο
Take in a list of prompt values and return an LLMResult.
Parameters
prompts (List[langchain.schema.PromptValue]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-87 | kwargs (Any) β
Return type
langchain.schema.LLMResult
get_num_tokens(text)ο
Get the number of tokens present in the text.
Parameters
text (str) β
Return type
int
get_num_tokens_from_messages(messages)ο
Get the number of tokens in the message.
Parameters
messages (List[langchain.schema.BaseMessage]) β
Return type
int
get_token_ids(text)ο
Get the token present in the text.
Parameters
text (str) β
Return type
List[int]
json(*, include=None, exclude=None, by_alias=False, skip_defaults=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=None, models_as_dict=True, **dumps_kwargs)ο
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
by_alias (bool) β
skip_defaults (Optional[bool]) β
exclude_unset (bool) β
exclude_defaults (bool) β
exclude_none (bool) β
encoder (Optional[Callable[[Any], Any]]) β
models_as_dict (bool) β
dumps_kwargs (Any) β
Return type
unicode
predict(text, *, stop=None, **kwargs)ο
Predict text from text.
Parameters
text (str) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
str
predict_messages(messages, *, stop=None, **kwargs)ο
Predict message from messages.
Parameters | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-88 | Predict message from messages.
Parameters
messages (List[langchain.schema.BaseMessage]) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
langchain.schema.BaseMessage
save(file_path)ο
Save the LLM.
Parameters
file_path (Union[pathlib.Path, str]) β Path to file to save the LLM to.
Return type
None
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns)ο
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) β
Return type
None
property lc_attributes: Dictο
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]ο
Return the namespace of the langchain object.
eg. [βlangchainβ, βllmsβ, βopenaiβ]
property lc_secrets: Dict[str, str]ο
Return a map of constructor argument names to secret ids.
eg. {βopenai_api_keyβ: βOPENAI_API_KEYβ}
property lc_serializable: boolο
Return whether or not the class is serializable.
class langchain.llms.Cohere(*, cache=None, verbose=None, callbacks=None, callback_manager=None, tags=None, client=None, model=None, max_tokens=256, temperature=0.75, k=0, p=1, frequency_penalty=0.0, presence_penalty=0.0, truncate=None, max_retries=10, cohere_api_key=None, stop=None)[source]ο
Bases: langchain.llms.base.LLM
Wrapper around Cohere large language models. | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-89 | Bases: langchain.llms.base.LLM
Wrapper around Cohere large language models.
To use, you should have the cohere python package installed, and the
environment variable COHERE_API_KEY set with your API key, or pass
it as a named parameter to the constructor.
Example
from langchain.llms import Cohere
cohere = Cohere(model="gptd-instruct-tft", cohere_api_key="my-api-key")
Parameters
cache (Optional[bool]) β
verbose (bool) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
callback_manager (Optional[langchain.callbacks.base.BaseCallbackManager]) β
tags (Optional[List[str]]) β
client (Any) β
model (Optional[str]) β
max_tokens (int) β
temperature (float) β
k (int) β
p (int) β
frequency_penalty (float) β
presence_penalty (float) β
truncate (Optional[str]) β
max_retries (int) β
cohere_api_key (Optional[str]) β
stop (Optional[List[str]]) β
Return type
None
attribute frequency_penalty: float = 0.0ο
Penalizes repeated tokens according to frequency. Between 0 and 1.
attribute k: int = 0ο
Number of most likely tokens to consider at each step.
attribute max_retries: int = 10ο
Maximum number of retries to make when generating.
attribute max_tokens: int = 256ο
Denotes the number of tokens to predict per generation.
attribute model: Optional[str] = Noneο
Model name to use.
attribute p: int = 1ο | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-90 | Model name to use.
attribute p: int = 1ο
Total probability mass of tokens to consider at each step.
attribute presence_penalty: float = 0.0ο
Penalizes repeated tokens. Between 0 and 1.
attribute tags: Optional[List[str]] = Noneο
Tags to add to the run trace.
attribute temperature: float = 0.75ο
A non-negative float that tunes the degree of randomness in generation.
attribute truncate: Optional[str] = Noneο
Specify how the client handles inputs longer than the maximum token
length: Truncate from START, END or NONE
attribute verbose: bool [Optional]ο
Whether to print out response text.
__call__(prompt, stop=None, callbacks=None, **kwargs)ο
Check Cache and run the LLM on the given prompt and input.
Parameters
prompt (str) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
str
async agenerate(prompts, stop=None, callbacks=None, *, tags=None, **kwargs)ο
Run the LLM on the given prompt and input.
Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
tags (Optional[List[str]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
async agenerate_prompt(prompts, stop=None, callbacks=None, **kwargs)ο
Take in a list of prompt values and return an LLMResult.
Parameters
prompts (List[langchain.schema.PromptValue]) β | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-91 | Parameters
prompts (List[langchain.schema.PromptValue]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
async apredict(text, *, stop=None, **kwargs)ο
Predict text from text.
Parameters
text (str) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
str
async apredict_messages(messages, *, stop=None, **kwargs)ο
Predict message from messages.
Parameters
messages (List[langchain.schema.BaseMessage]) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
langchain.schema.BaseMessage
classmethod construct(_fields_set=None, **values)ο
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) β
values (Any) β
Return type
Model
copy(*, include=None, exclude=None, update=None, deep=False)ο
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) β values to change/add in the new model. Note: the data is not validated before creating | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-92 | the new model: you should trust this data
deep (bool) β set to True to make a deep copy of the model
self (Model) β
Returns
new model instance
Return type
Model
dict(**kwargs)ο
Return a dictionary of the LLM.
Parameters
kwargs (Any) β
Return type
Dict
generate(prompts, stop=None, callbacks=None, *, tags=None, **kwargs)ο
Run the LLM on the given prompt and input.
Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
tags (Optional[List[str]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
generate_prompt(prompts, stop=None, callbacks=None, **kwargs)ο
Take in a list of prompt values and return an LLMResult.
Parameters
prompts (List[langchain.schema.PromptValue]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
get_num_tokens(text)ο
Get the number of tokens present in the text.
Parameters
text (str) β
Return type
int
get_num_tokens_from_messages(messages)ο
Get the number of tokens in the message.
Parameters
messages (List[langchain.schema.BaseMessage]) β
Return type
int
get_token_ids(text)ο
Get the token present in the text.
Parameters
text (str) β
Return type
List[int] | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-93 | Parameters
text (str) β
Return type
List[int]
json(*, include=None, exclude=None, by_alias=False, skip_defaults=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=None, models_as_dict=True, **dumps_kwargs)ο
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
by_alias (bool) β
skip_defaults (Optional[bool]) β
exclude_unset (bool) β
exclude_defaults (bool) β
exclude_none (bool) β
encoder (Optional[Callable[[Any], Any]]) β
models_as_dict (bool) β
dumps_kwargs (Any) β
Return type
unicode
predict(text, *, stop=None, **kwargs)ο
Predict text from text.
Parameters
text (str) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
str
predict_messages(messages, *, stop=None, **kwargs)ο
Predict message from messages.
Parameters
messages (List[langchain.schema.BaseMessage]) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
langchain.schema.BaseMessage
save(file_path)ο
Save the LLM.
Parameters
file_path (Union[pathlib.Path, str]) β Path to file to save the LLM to.
Return type
None
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ) | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-94 | .. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns)ο
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) β
Return type
None
property lc_attributes: Dictο
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]ο
Return the namespace of the langchain object.
eg. [βlangchainβ, βllmsβ, βopenaiβ]
property lc_secrets: Dict[str, str]ο
Return a map of constructor argument names to secret ids.
eg. {βopenai_api_keyβ: βOPENAI_API_KEYβ}
property lc_serializable: boolο
Return whether or not the class is serializable.
class langchain.llms.Databricks(*, cache=None, verbose=None, callbacks=None, callback_manager=None, tags=None, host=None, api_token=None, endpoint_name=None, cluster_id=None, cluster_driver_port=None, model_kwargs=None, transform_input_fn=None, transform_output_fn=None)[source]ο
Bases: langchain.llms.base.LLM
LLM wrapper around a Databricks serving endpoint or a cluster driver proxy app.
It supports two endpoint types:
Serving endpoint (recommended for both production and development).
We assume that an LLM was registered and deployed to a serving endpoint.
To wrap it as an LLM you must have βCan Queryβ permission to the endpoint.
Set endpoint_name accordingly and do not set cluster_id and
cluster_driver_port.
The expected model signature is:
inputs:
[{"name": "prompt", "type": "string"}, | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-95 | inputs:
[{"name": "prompt", "type": "string"},
{"name": "stop", "type": "list[string]"}]
outputs: [{"type": "string"}]
Cluster driver proxy app (recommended for interactive development).
One can load an LLM on a Databricks interactive cluster and start a local HTTP
server on the driver node to serve the model at / using HTTP POST method
with JSON input/output.
Please use a port number between [3000, 8000] and let the server listen to
the driver IP address or simply 0.0.0.0 instead of localhost only.
To wrap it as an LLM you must have βCan Attach Toβ permission to the cluster.
Set cluster_id and cluster_driver_port and do not set endpoint_name.
The expected server schema (using JSON schema) is:
inputs:
{"type": "object",
"properties": {
"prompt": {"type": "string"},
"stop": {"type": "array", "items": {"type": "string"}}},
"required": ["prompt"]}`
outputs: {"type": "string"}
If the endpoint model signature is different or you want to set extra params,
you can use transform_input_fn and transform_output_fn to apply necessary
transformations before and after the query.
Parameters
cache (Optional[bool]) β
verbose (bool) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
callback_manager (Optional[langchain.callbacks.base.BaseCallbackManager]) β
tags (Optional[List[str]]) β
host (str) β
api_token (str) β
endpoint_name (Optional[str]) β
cluster_id (Optional[str]) β
cluster_driver_port (Optional[str]) β | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-96 | cluster_id (Optional[str]) β
cluster_driver_port (Optional[str]) β
model_kwargs (Optional[Dict[str, Any]]) β
transform_input_fn (Optional[Callable]) β
transform_output_fn (Optional[Callable[[...], str]]) β
Return type
None
attribute api_token: str [Optional]ο
Databricks personal access token.
If not provided, the default value is determined by
the DATABRICKS_TOKEN environment variable if present, or
an automatically generated temporary token if running inside a Databricks
notebook attached to an interactive cluster in βsingle userβ or
βno isolation sharedβ mode.
attribute cluster_driver_port: Optional[str] = Noneο
The port number used by the HTTP server running on the cluster driver node.
The server should listen on the driver IP address or simply 0.0.0.0 to connect.
We recommend the server using a port number between [3000, 8000].
attribute cluster_id: Optional[str] = Noneο
ID of the cluster if connecting to a cluster driver proxy app.
If neither endpoint_name nor cluster_id is not provided and the code runs
inside a Databricks notebook attached to an interactive cluster in βsingle userβ
or βno isolation sharedβ mode, the current cluster ID is used as default.
You must not set both endpoint_name and cluster_id.
attribute endpoint_name: Optional[str] = Noneο
Name of the model serving endpont.
You must specify the endpoint name to connect to a model serving endpoint.
You must not set both endpoint_name and cluster_id.
attribute host: str [Optional]ο
Databricks workspace hostname.
If not provided, the default value is determined by
the DATABRICKS_HOST environment variable if present, or | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-97 | the DATABRICKS_HOST environment variable if present, or
the hostname of the current Databricks workspace if running inside
a Databricks notebook attached to an interactive cluster in βsingle userβ
or βno isolation sharedβ mode.
attribute model_kwargs: Optional[Dict[str, Any]] = Noneο
Extra parameters to pass to the endpoint.
attribute tags: Optional[List[str]] = Noneο
Tags to add to the run trace.
attribute transform_input_fn: Optional[Callable] = Noneο
A function that transforms {prompt, stop, **kwargs} into a JSON-compatible
request object that the endpoint accepts.
For example, you can apply a prompt template to the input prompt.
attribute transform_output_fn: Optional[Callable[[...], str]] = Noneο
A function that transforms the output from the endpoint to the generated text.
attribute verbose: bool [Optional]ο
Whether to print out response text.
__call__(prompt, stop=None, callbacks=None, **kwargs)ο
Check Cache and run the LLM on the given prompt and input.
Parameters
prompt (str) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
str
async agenerate(prompts, stop=None, callbacks=None, *, tags=None, **kwargs)ο
Run the LLM on the given prompt and input.
Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
tags (Optional[List[str]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-98 | kwargs (Any) β
Return type
langchain.schema.LLMResult
async agenerate_prompt(prompts, stop=None, callbacks=None, **kwargs)ο
Take in a list of prompt values and return an LLMResult.
Parameters
prompts (List[langchain.schema.PromptValue]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
async apredict(text, *, stop=None, **kwargs)ο
Predict text from text.
Parameters
text (str) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
str
async apredict_messages(messages, *, stop=None, **kwargs)ο
Predict message from messages.
Parameters
messages (List[langchain.schema.BaseMessage]) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
langchain.schema.BaseMessage
classmethod construct(_fields_set=None, **values)ο
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) β
values (Any) β
Return type
Model
copy(*, include=None, exclude=None, update=None, deep=False)ο
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to include in new model | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-99 | exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) β set to True to make a deep copy of the model
self (Model) β
Returns
new model instance
Return type
Model
dict(**kwargs)ο
Return a dictionary of the LLM.
Parameters
kwargs (Any) β
Return type
Dict
generate(prompts, stop=None, callbacks=None, *, tags=None, **kwargs)ο
Run the LLM on the given prompt and input.
Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
tags (Optional[List[str]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
generate_prompt(prompts, stop=None, callbacks=None, **kwargs)ο
Take in a list of prompt values and return an LLMResult.
Parameters
prompts (List[langchain.schema.PromptValue]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
get_num_tokens(text)ο
Get the number of tokens present in the text.
Parameters
text (str) β
Return type
int
get_num_tokens_from_messages(messages)ο
Get the number of tokens in the message.
Parameters | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-100 | Get the number of tokens in the message.
Parameters
messages (List[langchain.schema.BaseMessage]) β
Return type
int
get_token_ids(text)ο
Get the token present in the text.
Parameters
text (str) β
Return type
List[int]
json(*, include=None, exclude=None, by_alias=False, skip_defaults=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=None, models_as_dict=True, **dumps_kwargs)ο
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
by_alias (bool) β
skip_defaults (Optional[bool]) β
exclude_unset (bool) β
exclude_defaults (bool) β
exclude_none (bool) β
encoder (Optional[Callable[[Any], Any]]) β
models_as_dict (bool) β
dumps_kwargs (Any) β
Return type
unicode
predict(text, *, stop=None, **kwargs)ο
Predict text from text.
Parameters
text (str) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
str
predict_messages(messages, *, stop=None, **kwargs)ο
Predict message from messages.
Parameters
messages (List[langchain.schema.BaseMessage]) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
langchain.schema.BaseMessage
save(file_path)ο
Save the LLM.
Parameters | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-101 | save(file_path)ο
Save the LLM.
Parameters
file_path (Union[pathlib.Path, str]) β Path to file to save the LLM to.
Return type
None
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns)ο
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) β
Return type
None
property lc_attributes: Dictο
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]ο
Return the namespace of the langchain object.
eg. [βlangchainβ, βllmsβ, βopenaiβ]
property lc_secrets: Dict[str, str]ο
Return a map of constructor argument names to secret ids.
eg. {βopenai_api_keyβ: βOPENAI_API_KEYβ}
property lc_serializable: boolο
Return whether or not the class is serializable.
class langchain.llms.DeepInfra(*, cache=None, verbose=None, callbacks=None, callback_manager=None, tags=None, model_id='google/flan-t5-xl', model_kwargs=None, deepinfra_api_token=None)[source]ο
Bases: langchain.llms.base.LLM
Wrapper around DeepInfra deployed models.
To use, you should have the requests python package installed, and the
environment variable DEEPINFRA_API_TOKEN set with your API token, or pass
it as a named parameter to the constructor.
Only supports text-generation and text2text-generation for now.
Example
from langchain.llms import DeepInfra
di = DeepInfra(model_id="google/flan-t5-xl", | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-102 | di = DeepInfra(model_id="google/flan-t5-xl",
deepinfra_api_token="my-api-key")
Parameters
cache (Optional[bool]) β
verbose (bool) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
callback_manager (Optional[langchain.callbacks.base.BaseCallbackManager]) β
tags (Optional[List[str]]) β
model_id (str) β
model_kwargs (Optional[dict]) β
deepinfra_api_token (Optional[str]) β
Return type
None
attribute tags: Optional[List[str]] = Noneο
Tags to add to the run trace.
attribute verbose: bool [Optional]ο
Whether to print out response text.
__call__(prompt, stop=None, callbacks=None, **kwargs)ο
Check Cache and run the LLM on the given prompt and input.
Parameters
prompt (str) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
str
async agenerate(prompts, stop=None, callbacks=None, *, tags=None, **kwargs)ο
Run the LLM on the given prompt and input.
Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
tags (Optional[List[str]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
async agenerate_prompt(prompts, stop=None, callbacks=None, **kwargs)ο
Take in a list of prompt values and return an LLMResult.
Parameters | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-103 | Take in a list of prompt values and return an LLMResult.
Parameters
prompts (List[langchain.schema.PromptValue]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
async apredict(text, *, stop=None, **kwargs)ο
Predict text from text.
Parameters
text (str) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
str
async apredict_messages(messages, *, stop=None, **kwargs)ο
Predict message from messages.
Parameters
messages (List[langchain.schema.BaseMessage]) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
langchain.schema.BaseMessage
classmethod construct(_fields_set=None, **values)ο
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) β
values (Any) β
Return type
Model
copy(*, include=None, exclude=None, update=None, deep=False)ο
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to exclude from new model, as with values this takes precedence over include | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-104 | update (Optional[DictStrAny]) β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) β set to True to make a deep copy of the model
self (Model) β
Returns
new model instance
Return type
Model
dict(**kwargs)ο
Return a dictionary of the LLM.
Parameters
kwargs (Any) β
Return type
Dict
generate(prompts, stop=None, callbacks=None, *, tags=None, **kwargs)ο
Run the LLM on the given prompt and input.
Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
tags (Optional[List[str]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
generate_prompt(prompts, stop=None, callbacks=None, **kwargs)ο
Take in a list of prompt values and return an LLMResult.
Parameters
prompts (List[langchain.schema.PromptValue]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
get_num_tokens(text)ο
Get the number of tokens present in the text.
Parameters
text (str) β
Return type
int
get_num_tokens_from_messages(messages)ο
Get the number of tokens in the message.
Parameters
messages (List[langchain.schema.BaseMessage]) β
Return type
int
get_token_ids(text)ο
Get the token present in the text.
Parameters | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-105 | get_token_ids(text)ο
Get the token present in the text.
Parameters
text (str) β
Return type
List[int]
json(*, include=None, exclude=None, by_alias=False, skip_defaults=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=None, models_as_dict=True, **dumps_kwargs)ο
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
by_alias (bool) β
skip_defaults (Optional[bool]) β
exclude_unset (bool) β
exclude_defaults (bool) β
exclude_none (bool) β
encoder (Optional[Callable[[Any], Any]]) β
models_as_dict (bool) β
dumps_kwargs (Any) β
Return type
unicode
predict(text, *, stop=None, **kwargs)ο
Predict text from text.
Parameters
text (str) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
str
predict_messages(messages, *, stop=None, **kwargs)ο
Predict message from messages.
Parameters
messages (List[langchain.schema.BaseMessage]) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
langchain.schema.BaseMessage
save(file_path)ο
Save the LLM.
Parameters
file_path (Union[pathlib.Path, str]) β Path to file to save the LLM to.
Return type
None
Example:
.. code-block:: python | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-106 | Return type
None
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns)ο
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) β
Return type
None
property lc_attributes: Dictο
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]ο
Return the namespace of the langchain object.
eg. [βlangchainβ, βllmsβ, βopenaiβ]
property lc_secrets: Dict[str, str]ο
Return a map of constructor argument names to secret ids.
eg. {βopenai_api_keyβ: βOPENAI_API_KEYβ}
property lc_serializable: boolο
Return whether or not the class is serializable.
class langchain.llms.FakeListLLM(*, cache=None, verbose=None, callbacks=None, callback_manager=None, tags=None, responses, i=0)[source]ο
Bases: langchain.llms.base.LLM
Fake LLM wrapper for testing purposes.
Parameters
cache (Optional[bool]) β
verbose (bool) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
callback_manager (Optional[langchain.callbacks.base.BaseCallbackManager]) β
tags (Optional[List[str]]) β
responses (List) β
i (int) β
Return type
None
attribute tags: Optional[List[str]] = Noneο
Tags to add to the run trace.
attribute verbose: bool [Optional]ο
Whether to print out response text. | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-107 | attribute verbose: bool [Optional]ο
Whether to print out response text.
__call__(prompt, stop=None, callbacks=None, **kwargs)ο
Check Cache and run the LLM on the given prompt and input.
Parameters
prompt (str) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
str
async agenerate(prompts, stop=None, callbacks=None, *, tags=None, **kwargs)ο
Run the LLM on the given prompt and input.
Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
tags (Optional[List[str]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
async agenerate_prompt(prompts, stop=None, callbacks=None, **kwargs)ο
Take in a list of prompt values and return an LLMResult.
Parameters
prompts (List[langchain.schema.PromptValue]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
async apredict(text, *, stop=None, **kwargs)ο
Predict text from text.
Parameters
text (str) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
str
async apredict_messages(messages, *, stop=None, **kwargs)ο
Predict message from messages.
Parameters | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-108 | Predict message from messages.
Parameters
messages (List[langchain.schema.BaseMessage]) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
langchain.schema.BaseMessage
classmethod construct(_fields_set=None, **values)ο
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) β
values (Any) β
Return type
Model
copy(*, include=None, exclude=None, update=None, deep=False)ο
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) β set to True to make a deep copy of the model
self (Model) β
Returns
new model instance
Return type
Model
dict(**kwargs)ο
Return a dictionary of the LLM.
Parameters
kwargs (Any) β
Return type
Dict
generate(prompts, stop=None, callbacks=None, *, tags=None, **kwargs)ο
Run the LLM on the given prompt and input.
Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-109 | Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
tags (Optional[List[str]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
generate_prompt(prompts, stop=None, callbacks=None, **kwargs)ο
Take in a list of prompt values and return an LLMResult.
Parameters
prompts (List[langchain.schema.PromptValue]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
get_num_tokens(text)ο
Get the number of tokens present in the text.
Parameters
text (str) β
Return type
int
get_num_tokens_from_messages(messages)ο
Get the number of tokens in the message.
Parameters
messages (List[langchain.schema.BaseMessage]) β
Return type
int
get_token_ids(text)ο
Get the token present in the text.
Parameters
text (str) β
Return type
List[int]
json(*, include=None, exclude=None, by_alias=False, skip_defaults=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=None, models_as_dict=True, **dumps_kwargs)ο
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-110 | include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
by_alias (bool) β
skip_defaults (Optional[bool]) β
exclude_unset (bool) β
exclude_defaults (bool) β
exclude_none (bool) β
encoder (Optional[Callable[[Any], Any]]) β
models_as_dict (bool) β
dumps_kwargs (Any) β
Return type
unicode
predict(text, *, stop=None, **kwargs)ο
Predict text from text.
Parameters
text (str) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
str
predict_messages(messages, *, stop=None, **kwargs)ο
Predict message from messages.
Parameters
messages (List[langchain.schema.BaseMessage]) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
langchain.schema.BaseMessage
save(file_path)ο
Save the LLM.
Parameters
file_path (Union[pathlib.Path, str]) β Path to file to save the LLM to.
Return type
None
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns)ο
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) β
Return type
None
property lc_attributes: Dictο
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]ο
Return the namespace of the langchain object. | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-111 | property lc_namespace: List[str]ο
Return the namespace of the langchain object.
eg. [βlangchainβ, βllmsβ, βopenaiβ]
property lc_secrets: Dict[str, str]ο
Return a map of constructor argument names to secret ids.
eg. {βopenai_api_keyβ: βOPENAI_API_KEYβ}
property lc_serializable: boolο
Return whether or not the class is serializable.
class langchain.llms.ForefrontAI(*, cache=None, verbose=None, callbacks=None, callback_manager=None, tags=None, endpoint_url='', temperature=0.7, length=256, top_p=1.0, top_k=40, repetition_penalty=1, forefrontai_api_key=None, base_url=None)[source]ο
Bases: langchain.llms.base.LLM
Wrapper around ForefrontAI large language models.
To use, you should have the environment variable FOREFRONTAI_API_KEY
set with your API key.
Example
from langchain.llms import ForefrontAI
forefrontai = ForefrontAI(endpoint_url="")
Parameters
cache (Optional[bool]) β
verbose (bool) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
callback_manager (Optional[langchain.callbacks.base.BaseCallbackManager]) β
tags (Optional[List[str]]) β
endpoint_url (str) β
temperature (float) β
length (int) β
top_p (float) β
top_k (int) β
repetition_penalty (int) β
forefrontai_api_key (Optional[str]) β
base_url (Optional[str]) β
Return type
None
attribute base_url: Optional[str] = Noneο | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-112 | Return type
None
attribute base_url: Optional[str] = Noneο
Base url to use, if None decides based on model name.
attribute endpoint_url: str = ''ο
Model name to use.
attribute length: int = 256ο
The maximum number of tokens to generate in the completion.
attribute repetition_penalty: int = 1ο
Penalizes repeated tokens according to frequency.
attribute tags: Optional[List[str]] = Noneο
Tags to add to the run trace.
attribute temperature: float = 0.7ο
What sampling temperature to use.
attribute top_k: int = 40ο
The number of highest probability vocabulary tokens to
keep for top-k-filtering.
attribute top_p: float = 1.0ο
Total probability mass of tokens to consider at each step.
attribute verbose: bool [Optional]ο
Whether to print out response text.
__call__(prompt, stop=None, callbacks=None, **kwargs)ο
Check Cache and run the LLM on the given prompt and input.
Parameters
prompt (str) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
str
async agenerate(prompts, stop=None, callbacks=None, *, tags=None, **kwargs)ο
Run the LLM on the given prompt and input.
Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
tags (Optional[List[str]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-113 | kwargs (Any) β
Return type
langchain.schema.LLMResult
async agenerate_prompt(prompts, stop=None, callbacks=None, **kwargs)ο
Take in a list of prompt values and return an LLMResult.
Parameters
prompts (List[langchain.schema.PromptValue]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
async apredict(text, *, stop=None, **kwargs)ο
Predict text from text.
Parameters
text (str) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
str
async apredict_messages(messages, *, stop=None, **kwargs)ο
Predict message from messages.
Parameters
messages (List[langchain.schema.BaseMessage]) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
langchain.schema.BaseMessage
classmethod construct(_fields_set=None, **values)ο
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) β
values (Any) β
Return type
Model
copy(*, include=None, exclude=None, update=None, deep=False)ο
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to include in new model | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-114 | exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) β set to True to make a deep copy of the model
self (Model) β
Returns
new model instance
Return type
Model
dict(**kwargs)ο
Return a dictionary of the LLM.
Parameters
kwargs (Any) β
Return type
Dict
generate(prompts, stop=None, callbacks=None, *, tags=None, **kwargs)ο
Run the LLM on the given prompt and input.
Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
tags (Optional[List[str]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
generate_prompt(prompts, stop=None, callbacks=None, **kwargs)ο
Take in a list of prompt values and return an LLMResult.
Parameters
prompts (List[langchain.schema.PromptValue]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
get_num_tokens(text)ο
Get the number of tokens present in the text.
Parameters
text (str) β
Return type
int
get_num_tokens_from_messages(messages)ο
Get the number of tokens in the message.
Parameters | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-115 | Get the number of tokens in the message.
Parameters
messages (List[langchain.schema.BaseMessage]) β
Return type
int
get_token_ids(text)ο
Get the token present in the text.
Parameters
text (str) β
Return type
List[int]
json(*, include=None, exclude=None, by_alias=False, skip_defaults=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=None, models_as_dict=True, **dumps_kwargs)ο
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
by_alias (bool) β
skip_defaults (Optional[bool]) β
exclude_unset (bool) β
exclude_defaults (bool) β
exclude_none (bool) β
encoder (Optional[Callable[[Any], Any]]) β
models_as_dict (bool) β
dumps_kwargs (Any) β
Return type
unicode
predict(text, *, stop=None, **kwargs)ο
Predict text from text.
Parameters
text (str) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
str
predict_messages(messages, *, stop=None, **kwargs)ο
Predict message from messages.
Parameters
messages (List[langchain.schema.BaseMessage]) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
langchain.schema.BaseMessage
save(file_path)ο
Save the LLM.
Parameters | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-116 | save(file_path)ο
Save the LLM.
Parameters
file_path (Union[pathlib.Path, str]) β Path to file to save the LLM to.
Return type
None
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns)ο
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) β
Return type
None
property lc_attributes: Dictο
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]ο
Return the namespace of the langchain object.
eg. [βlangchainβ, βllmsβ, βopenaiβ]
property lc_secrets: Dict[str, str]ο
Return a map of constructor argument names to secret ids.
eg. {βopenai_api_keyβ: βOPENAI_API_KEYβ}
property lc_serializable: boolο
Return whether or not the class is serializable.
class langchain.llms.GPT4All(*, cache=None, verbose=None, callbacks=None, callback_manager=None, tags=None, model, backend=None, n_ctx=512, n_parts=- 1, seed=0, f16_kv=False, logits_all=False, vocab_only=False, use_mlock=False, embedding=False, n_threads=4, n_predict=256, temp=0.8, top_p=0.95, top_k=40, echo=False, stop=[], repeat_last_n=64, repeat_penalty=1.3, n_batch=1, streaming=False, context_erase=0.5, allow_download=False, client=None)[source]ο
Bases: langchain.llms.base.LLM | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-117 | Bases: langchain.llms.base.LLM
Wrapper around GPT4All language models.
To use, you should have the gpt4all python package installed, the
pre-trained model file, and the modelβs config information.
Example
from langchain.llms import GPT4All
model = GPT4All(model="./models/gpt4all-model.bin", n_ctx=512, n_threads=8)
# Simplest invocation
response = model("Once upon a time, ")
Parameters
cache (Optional[bool]) β
verbose (bool) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
callback_manager (Optional[langchain.callbacks.base.BaseCallbackManager]) β
tags (Optional[List[str]]) β
model (str) β
backend (Optional[str]) β
n_ctx (int) β
n_parts (int) β
seed (int) β
f16_kv (bool) β
logits_all (bool) β
vocab_only (bool) β
use_mlock (bool) β
embedding (bool) β
n_threads (Optional[int]) β
n_predict (Optional[int]) β
temp (Optional[float]) β
top_p (Optional[float]) β
top_k (Optional[int]) β
echo (Optional[bool]) β
stop (Optional[List[str]]) β
repeat_last_n (Optional[int]) β
repeat_penalty (Optional[float]) β
n_batch (int) β
streaming (bool) β
context_erase (float) β
allow_download (bool) β
client (Any) β
Return type
None
attribute allow_download: bool = Falseο | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-118 | Return type
None
attribute allow_download: bool = Falseο
If model does not exist in ~/.cache/gpt4all/, download it.
attribute context_erase: float = 0.5ο
Leave (n_ctx * context_erase) tokens
starting from beginning if the context has run out.
attribute echo: Optional[bool] = Falseο
Whether to echo the prompt.
attribute embedding: bool = Falseο
Use embedding mode only.
attribute f16_kv: bool = Falseο
Use half-precision for key/value cache.
attribute logits_all: bool = Falseο
Return logits for all tokens, not just the last token.
attribute model: str [Required]ο
Path to the pre-trained GPT4All model file.
attribute n_batch: int = 1ο
Batch size for prompt processing.
attribute n_ctx: int = 512ο
Token context window.
attribute n_parts: int = -1ο
Number of parts to split the model into.
If -1, the number of parts is automatically determined.
attribute n_predict: Optional[int] = 256ο
The maximum number of tokens to generate.
attribute n_threads: Optional[int] = 4ο
Number of threads to use.
attribute repeat_last_n: Optional[int] = 64ο
Last n tokens to penalize
attribute repeat_penalty: Optional[float] = 1.3ο
The penalty to apply to repeated tokens.
attribute seed: int = 0ο
Seed. If -1, a random seed is used.
attribute stop: Optional[List[str]] = []ο
A list of strings to stop generation when encountered.
attribute streaming: bool = Falseο
Whether to stream the results or not.
attribute tags: Optional[List[str]] = Noneο | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-119 | attribute tags: Optional[List[str]] = Noneο
Tags to add to the run trace.
attribute temp: Optional[float] = 0.8ο
The temperature to use for sampling.
attribute top_k: Optional[int] = 40ο
The top-k value to use for sampling.
attribute top_p: Optional[float] = 0.95ο
The top-p value to use for sampling.
attribute use_mlock: bool = Falseο
Force system to keep model in RAM.
attribute verbose: bool [Optional]ο
Whether to print out response text.
attribute vocab_only: bool = Falseο
Only load the vocabulary, no weights.
__call__(prompt, stop=None, callbacks=None, **kwargs)ο
Check Cache and run the LLM on the given prompt and input.
Parameters
prompt (str) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
str
async agenerate(prompts, stop=None, callbacks=None, *, tags=None, **kwargs)ο
Run the LLM on the given prompt and input.
Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
tags (Optional[List[str]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
async agenerate_prompt(prompts, stop=None, callbacks=None, **kwargs)ο
Take in a list of prompt values and return an LLMResult.
Parameters
prompts (List[langchain.schema.PromptValue]) β | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-120 | Parameters
prompts (List[langchain.schema.PromptValue]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
async apredict(text, *, stop=None, **kwargs)ο
Predict text from text.
Parameters
text (str) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
str
async apredict_messages(messages, *, stop=None, **kwargs)ο
Predict message from messages.
Parameters
messages (List[langchain.schema.BaseMessage]) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
langchain.schema.BaseMessage
classmethod construct(_fields_set=None, **values)ο
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) β
values (Any) β
Return type
Model
copy(*, include=None, exclude=None, update=None, deep=False)ο
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) β values to change/add in the new model. Note: the data is not validated before creating | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-121 | the new model: you should trust this data
deep (bool) β set to True to make a deep copy of the model
self (Model) β
Returns
new model instance
Return type
Model
dict(**kwargs)ο
Return a dictionary of the LLM.
Parameters
kwargs (Any) β
Return type
Dict
generate(prompts, stop=None, callbacks=None, *, tags=None, **kwargs)ο
Run the LLM on the given prompt and input.
Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
tags (Optional[List[str]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
generate_prompt(prompts, stop=None, callbacks=None, **kwargs)ο
Take in a list of prompt values and return an LLMResult.
Parameters
prompts (List[langchain.schema.PromptValue]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
get_num_tokens(text)ο
Get the number of tokens present in the text.
Parameters
text (str) β
Return type
int
get_num_tokens_from_messages(messages)ο
Get the number of tokens in the message.
Parameters
messages (List[langchain.schema.BaseMessage]) β
Return type
int
get_token_ids(text)ο
Get the token present in the text.
Parameters
text (str) β
Return type
List[int] | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-122 | Parameters
text (str) β
Return type
List[int]
json(*, include=None, exclude=None, by_alias=False, skip_defaults=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=None, models_as_dict=True, **dumps_kwargs)ο
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
by_alias (bool) β
skip_defaults (Optional[bool]) β
exclude_unset (bool) β
exclude_defaults (bool) β
exclude_none (bool) β
encoder (Optional[Callable[[Any], Any]]) β
models_as_dict (bool) β
dumps_kwargs (Any) β
Return type
unicode
predict(text, *, stop=None, **kwargs)ο
Predict text from text.
Parameters
text (str) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
str
predict_messages(messages, *, stop=None, **kwargs)ο
Predict message from messages.
Parameters
messages (List[langchain.schema.BaseMessage]) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
langchain.schema.BaseMessage
save(file_path)ο
Save the LLM.
Parameters
file_path (Union[pathlib.Path, str]) β Path to file to save the LLM to.
Return type
None
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ) | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-123 | .. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns)ο
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) β
Return type
None
property lc_attributes: Dictο
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]ο
Return the namespace of the langchain object.
eg. [βlangchainβ, βllmsβ, βopenaiβ]
property lc_secrets: Dict[str, str]ο
Return a map of constructor argument names to secret ids.
eg. {βopenai_api_keyβ: βOPENAI_API_KEYβ}
property lc_serializable: boolο
Return whether or not the class is serializable.
class langchain.llms.GooglePalm(*, cache=None, verbose=None, callbacks=None, callback_manager=None, tags=None, client=None, google_api_key=None, model_name='models/text-bison-001', temperature=0.7, top_p=None, top_k=None, max_output_tokens=None, n=1)[source]ο
Bases: langchain.llms.base.BaseLLM, pydantic.main.BaseModel
Parameters
cache (Optional[bool]) β
verbose (bool) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
callback_manager (Optional[langchain.callbacks.base.BaseCallbackManager]) β
tags (Optional[List[str]]) β
client (Any) β
google_api_key (Optional[str]) β
model_name (str) β
temperature (float) β
top_p (Optional[float]) β | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-124 | temperature (float) β
top_p (Optional[float]) β
top_k (Optional[int]) β
max_output_tokens (Optional[int]) β
n (int) β
Return type
None
attribute max_output_tokens: Optional[int] = Noneο
Maximum number of tokens to include in a candidate. Must be greater than zero.
If unset, will default to 64.
attribute model_name: str = 'models/text-bison-001'ο
Model name to use.
attribute n: int = 1ο
Number of chat completions to generate for each prompt. Note that the API may
not return the full n completions if duplicates are generated.
attribute tags: Optional[List[str]] = Noneο
Tags to add to the run trace.
attribute temperature: float = 0.7ο
Run inference with this temperature. Must by in the closed interval
[0.0, 1.0].
attribute top_k: Optional[int] = Noneο
Decode using top-k sampling: consider the set of top_k most probable tokens.
Must be positive.
attribute top_p: Optional[float] = Noneο
Decode using nucleus sampling: consider the smallest set of tokens whose
probability sum is at least top_p. Must be in the closed interval [0.0, 1.0].
attribute verbose: bool [Optional]ο
Whether to print out response text.
__call__(prompt, stop=None, callbacks=None, **kwargs)ο
Check Cache and run the LLM on the given prompt and input.
Parameters
prompt (str) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
str | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-125 | kwargs (Any) β
Return type
str
async agenerate(prompts, stop=None, callbacks=None, *, tags=None, **kwargs)ο
Run the LLM on the given prompt and input.
Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
tags (Optional[List[str]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
async agenerate_prompt(prompts, stop=None, callbacks=None, **kwargs)ο
Take in a list of prompt values and return an LLMResult.
Parameters
prompts (List[langchain.schema.PromptValue]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
async apredict(text, *, stop=None, **kwargs)ο
Predict text from text.
Parameters
text (str) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
str
async apredict_messages(messages, *, stop=None, **kwargs)ο
Predict message from messages.
Parameters
messages (List[langchain.schema.BaseMessage]) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
langchain.schema.BaseMessage
classmethod construct(_fields_set=None, **values)ο
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed. | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-126 | Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) β
values (Any) β
Return type
Model
copy(*, include=None, exclude=None, update=None, deep=False)ο
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) β set to True to make a deep copy of the model
self (Model) β
Returns
new model instance
Return type
Model
dict(**kwargs)ο
Return a dictionary of the LLM.
Parameters
kwargs (Any) β
Return type
Dict
generate(prompts, stop=None, callbacks=None, *, tags=None, **kwargs)ο
Run the LLM on the given prompt and input.
Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
tags (Optional[List[str]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
generate_prompt(prompts, stop=None, callbacks=None, **kwargs)ο
Take in a list of prompt values and return an LLMResult.
Parameters | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-127 | Take in a list of prompt values and return an LLMResult.
Parameters
prompts (List[langchain.schema.PromptValue]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
get_num_tokens(text)ο
Get the number of tokens present in the text.
Parameters
text (str) β
Return type
int
get_num_tokens_from_messages(messages)ο
Get the number of tokens in the message.
Parameters
messages (List[langchain.schema.BaseMessage]) β
Return type
int
get_token_ids(text)ο
Get the token present in the text.
Parameters
text (str) β
Return type
List[int]
json(*, include=None, exclude=None, by_alias=False, skip_defaults=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=None, models_as_dict=True, **dumps_kwargs)ο
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
by_alias (bool) β
skip_defaults (Optional[bool]) β
exclude_unset (bool) β
exclude_defaults (bool) β
exclude_none (bool) β
encoder (Optional[Callable[[Any], Any]]) β
models_as_dict (bool) β
dumps_kwargs (Any) β
Return type
unicode | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-128 | dumps_kwargs (Any) β
Return type
unicode
predict(text, *, stop=None, **kwargs)ο
Predict text from text.
Parameters
text (str) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
str
predict_messages(messages, *, stop=None, **kwargs)ο
Predict message from messages.
Parameters
messages (List[langchain.schema.BaseMessage]) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
langchain.schema.BaseMessage
save(file_path)ο
Save the LLM.
Parameters
file_path (Union[pathlib.Path, str]) β Path to file to save the LLM to.
Return type
None
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns)ο
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) β
Return type
None
property lc_attributes: Dictο
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]ο
Return the namespace of the langchain object.
eg. [βlangchainβ, βllmsβ, βopenaiβ]
property lc_secrets: Dict[str, str]ο
Return a map of constructor argument names to secret ids.
eg. {βopenai_api_keyβ: βOPENAI_API_KEYβ}
property lc_serializable: boolο
Return whether or not the class is serializable. | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-129 | property lc_serializable: boolο
Return whether or not the class is serializable.
class langchain.llms.GooseAI(*, cache=None, verbose=None, callbacks=None, callback_manager=None, tags=None, client=None, model_name='gpt-neo-20b', temperature=0.7, max_tokens=256, top_p=1, min_tokens=1, frequency_penalty=0, presence_penalty=0, n=1, model_kwargs=None, logit_bias=None, gooseai_api_key=None)[source]ο
Bases: langchain.llms.base.LLM
Wrapper around OpenAI large language models.
To use, you should have the openai python package installed, and the
environment variable GOOSEAI_API_KEY set with your API key.
Any parameters that are valid to be passed to the openai.create call can be passed
in, even if not explicitly saved on this class.
Example
from langchain.llms import GooseAI
gooseai = GooseAI(model_name="gpt-neo-20b")
Parameters
cache (Optional[bool]) β
verbose (bool) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
callback_manager (Optional[langchain.callbacks.base.BaseCallbackManager]) β
tags (Optional[List[str]]) β
client (Any) β
model_name (str) β
temperature (float) β
max_tokens (int) β
top_p (float) β
min_tokens (int) β
frequency_penalty (float) β
presence_penalty (float) β
n (int) β
model_kwargs (Dict[str, Any]) β
logit_bias (Optional[Dict[str, float]]) β
gooseai_api_key (Optional[str]) β | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-130 | gooseai_api_key (Optional[str]) β
Return type
None
attribute frequency_penalty: float = 0ο
Penalizes repeated tokens according to frequency.
attribute logit_bias: Optional[Dict[str, float]] [Optional]ο
Adjust the probability of specific tokens being generated.
attribute max_tokens: int = 256ο
The maximum number of tokens to generate in the completion.
-1 returns as many tokens as possible given the prompt and
the models maximal context size.
attribute min_tokens: int = 1ο
The minimum number of tokens to generate in the completion.
attribute model_kwargs: Dict[str, Any] [Optional]ο
Holds any model parameters valid for create call not explicitly specified.
attribute model_name: str = 'gpt-neo-20b'ο
Model name to use
attribute n: int = 1ο
How many completions to generate for each prompt.
attribute presence_penalty: float = 0ο
Penalizes repeated tokens.
attribute tags: Optional[List[str]] = Noneο
Tags to add to the run trace.
attribute temperature: float = 0.7ο
What sampling temperature to use
attribute top_p: float = 1ο
Total probability mass of tokens to consider at each step.
attribute verbose: bool [Optional]ο
Whether to print out response text.
__call__(prompt, stop=None, callbacks=None, **kwargs)ο
Check Cache and run the LLM on the given prompt and input.
Parameters
prompt (str) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
str | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-131 | kwargs (Any) β
Return type
str
async agenerate(prompts, stop=None, callbacks=None, *, tags=None, **kwargs)ο
Run the LLM on the given prompt and input.
Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
tags (Optional[List[str]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
async agenerate_prompt(prompts, stop=None, callbacks=None, **kwargs)ο
Take in a list of prompt values and return an LLMResult.
Parameters
prompts (List[langchain.schema.PromptValue]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
async apredict(text, *, stop=None, **kwargs)ο
Predict text from text.
Parameters
text (str) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
str
async apredict_messages(messages, *, stop=None, **kwargs)ο
Predict message from messages.
Parameters
messages (List[langchain.schema.BaseMessage]) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
langchain.schema.BaseMessage
classmethod construct(_fields_set=None, **values)ο
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed. | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-132 | Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) β
values (Any) β
Return type
Model
copy(*, include=None, exclude=None, update=None, deep=False)ο
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) β set to True to make a deep copy of the model
self (Model) β
Returns
new model instance
Return type
Model
dict(**kwargs)ο
Return a dictionary of the LLM.
Parameters
kwargs (Any) β
Return type
Dict
generate(prompts, stop=None, callbacks=None, *, tags=None, **kwargs)ο
Run the LLM on the given prompt and input.
Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
tags (Optional[List[str]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
generate_prompt(prompts, stop=None, callbacks=None, **kwargs)ο
Take in a list of prompt values and return an LLMResult.
Parameters | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-133 | Take in a list of prompt values and return an LLMResult.
Parameters
prompts (List[langchain.schema.PromptValue]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
get_num_tokens(text)ο
Get the number of tokens present in the text.
Parameters
text (str) β
Return type
int
get_num_tokens_from_messages(messages)ο
Get the number of tokens in the message.
Parameters
messages (List[langchain.schema.BaseMessage]) β
Return type
int
get_token_ids(text)ο
Get the token present in the text.
Parameters
text (str) β
Return type
List[int]
json(*, include=None, exclude=None, by_alias=False, skip_defaults=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=None, models_as_dict=True, **dumps_kwargs)ο
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
by_alias (bool) β
skip_defaults (Optional[bool]) β
exclude_unset (bool) β
exclude_defaults (bool) β
exclude_none (bool) β
encoder (Optional[Callable[[Any], Any]]) β
models_as_dict (bool) β
dumps_kwargs (Any) β
Return type
unicode | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-134 | dumps_kwargs (Any) β
Return type
unicode
predict(text, *, stop=None, **kwargs)ο
Predict text from text.
Parameters
text (str) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
str
predict_messages(messages, *, stop=None, **kwargs)ο
Predict message from messages.
Parameters
messages (List[langchain.schema.BaseMessage]) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
langchain.schema.BaseMessage
save(file_path)ο
Save the LLM.
Parameters
file_path (Union[pathlib.Path, str]) β Path to file to save the LLM to.
Return type
None
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns)ο
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) β
Return type
None
property lc_attributes: Dictο
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]ο
Return the namespace of the langchain object.
eg. [βlangchainβ, βllmsβ, βopenaiβ]
property lc_secrets: Dict[str, str]ο
Return a map of constructor argument names to secret ids.
eg. {βopenai_api_keyβ: βOPENAI_API_KEYβ}
property lc_serializable: boolο
Return whether or not the class is serializable. | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-135 | property lc_serializable: boolο
Return whether or not the class is serializable.
class langchain.llms.HuggingFaceEndpoint(*, cache=None, verbose=None, callbacks=None, callback_manager=None, tags=None, endpoint_url='', task=None, model_kwargs=None, huggingfacehub_api_token=None)[source]ο
Bases: langchain.llms.base.LLM
Wrapper around HuggingFaceHub Inference Endpoints.
To use, you should have the huggingface_hub python package installed, and the
environment variable HUGGINGFACEHUB_API_TOKEN set with your API token, or pass
it as a named parameter to the constructor.
Only supports text-generation and text2text-generation for now.
Example
from langchain.llms import HuggingFaceEndpoint
endpoint_url = (
"https://abcdefghijklmnop.us-east-1.aws.endpoints.huggingface.cloud"
)
hf = HuggingFaceEndpoint(
endpoint_url=endpoint_url,
huggingfacehub_api_token="my-api-key"
)
Parameters
cache (Optional[bool]) β
verbose (bool) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
callback_manager (Optional[langchain.callbacks.base.BaseCallbackManager]) β
tags (Optional[List[str]]) β
endpoint_url (str) β
task (Optional[str]) β
model_kwargs (Optional[dict]) β
huggingfacehub_api_token (Optional[str]) β
Return type
None
attribute endpoint_url: str = ''ο
Endpoint URL to use.
attribute model_kwargs: Optional[dict] = Noneο
Key word arguments to pass to the model.
attribute tags: Optional[List[str]] = Noneο
Tags to add to the run trace. | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-136 | Tags to add to the run trace.
attribute task: Optional[str] = Noneο
Task to call the model with.
Should be a task that returns generated_text or summary_text.
attribute verbose: bool [Optional]ο
Whether to print out response text.
__call__(prompt, stop=None, callbacks=None, **kwargs)ο
Check Cache and run the LLM on the given prompt and input.
Parameters
prompt (str) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
str
async agenerate(prompts, stop=None, callbacks=None, *, tags=None, **kwargs)ο
Run the LLM on the given prompt and input.
Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
tags (Optional[List[str]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
async agenerate_prompt(prompts, stop=None, callbacks=None, **kwargs)ο
Take in a list of prompt values and return an LLMResult.
Parameters
prompts (List[langchain.schema.PromptValue]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
async apredict(text, *, stop=None, **kwargs)ο
Predict text from text.
Parameters
text (str) β
stop (Optional[Sequence[str]]) β | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-137 | Parameters
text (str) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
str
async apredict_messages(messages, *, stop=None, **kwargs)ο
Predict message from messages.
Parameters
messages (List[langchain.schema.BaseMessage]) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
langchain.schema.BaseMessage
classmethod construct(_fields_set=None, **values)ο
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) β
values (Any) β
Return type
Model
copy(*, include=None, exclude=None, update=None, deep=False)ο
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) β set to True to make a deep copy of the model
self (Model) β
Returns
new model instance
Return type
Model
dict(**kwargs)ο
Return a dictionary of the LLM.
Parameters
kwargs (Any) β
Return type
Dict | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-138 | Parameters
kwargs (Any) β
Return type
Dict
generate(prompts, stop=None, callbacks=None, *, tags=None, **kwargs)ο
Run the LLM on the given prompt and input.
Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
tags (Optional[List[str]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
generate_prompt(prompts, stop=None, callbacks=None, **kwargs)ο
Take in a list of prompt values and return an LLMResult.
Parameters
prompts (List[langchain.schema.PromptValue]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
get_num_tokens(text)ο
Get the number of tokens present in the text.
Parameters
text (str) β
Return type
int
get_num_tokens_from_messages(messages)ο
Get the number of tokens in the message.
Parameters
messages (List[langchain.schema.BaseMessage]) β
Return type
int
get_token_ids(text)ο
Get the token present in the text.
Parameters
text (str) β
Return type
List[int]
json(*, include=None, exclude=None, by_alias=False, skip_defaults=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=None, models_as_dict=True, **dumps_kwargs)ο
Generate a JSON representation of the model, include and exclude arguments as per dict(). | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-139 | Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
by_alias (bool) β
skip_defaults (Optional[bool]) β
exclude_unset (bool) β
exclude_defaults (bool) β
exclude_none (bool) β
encoder (Optional[Callable[[Any], Any]]) β
models_as_dict (bool) β
dumps_kwargs (Any) β
Return type
unicode
predict(text, *, stop=None, **kwargs)ο
Predict text from text.
Parameters
text (str) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
str
predict_messages(messages, *, stop=None, **kwargs)ο
Predict message from messages.
Parameters
messages (List[langchain.schema.BaseMessage]) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
langchain.schema.BaseMessage
save(file_path)ο
Save the LLM.
Parameters
file_path (Union[pathlib.Path, str]) β Path to file to save the LLM to.
Return type
None
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns)ο
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) β
Return type
None
property lc_attributes: Dictο
Return a list of attribute names that should be included in the | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-140 | Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]ο
Return the namespace of the langchain object.
eg. [βlangchainβ, βllmsβ, βopenaiβ]
property lc_secrets: Dict[str, str]ο
Return a map of constructor argument names to secret ids.
eg. {βopenai_api_keyβ: βOPENAI_API_KEYβ}
property lc_serializable: boolο
Return whether or not the class is serializable.
class langchain.llms.HuggingFaceHub(*, cache=None, verbose=None, callbacks=None, callback_manager=None, tags=None, client=None, repo_id='gpt2', task=None, model_kwargs=None, huggingfacehub_api_token=None)[source]ο
Bases: langchain.llms.base.LLM
Wrapper around HuggingFaceHub models.
To use, you should have the huggingface_hub python package installed, and the
environment variable HUGGINGFACEHUB_API_TOKEN set with your API token, or pass
it as a named parameter to the constructor.
Only supports text-generation, text2text-generation and summarization for now.
Example
from langchain.llms import HuggingFaceHub
hf = HuggingFaceHub(repo_id="gpt2", huggingfacehub_api_token="my-api-key")
Parameters
cache (Optional[bool]) β
verbose (bool) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
callback_manager (Optional[langchain.callbacks.base.BaseCallbackManager]) β
tags (Optional[List[str]]) β
client (Any) β
repo_id (str) β
task (Optional[str]) β | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-141 | repo_id (str) β
task (Optional[str]) β
model_kwargs (Optional[dict]) β
huggingfacehub_api_token (Optional[str]) β
Return type
None
attribute model_kwargs: Optional[dict] = Noneο
Key word arguments to pass to the model.
attribute repo_id: str = 'gpt2'ο
Model name to use.
attribute tags: Optional[List[str]] = Noneο
Tags to add to the run trace.
attribute task: Optional[str] = Noneο
Task to call the model with.
Should be a task that returns generated_text or summary_text.
attribute verbose: bool [Optional]ο
Whether to print out response text.
__call__(prompt, stop=None, callbacks=None, **kwargs)ο
Check Cache and run the LLM on the given prompt and input.
Parameters
prompt (str) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
str
async agenerate(prompts, stop=None, callbacks=None, *, tags=None, **kwargs)ο
Run the LLM on the given prompt and input.
Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
tags (Optional[List[str]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
async agenerate_prompt(prompts, stop=None, callbacks=None, **kwargs)ο
Take in a list of prompt values and return an LLMResult.
Parameters | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-142 | Take in a list of prompt values and return an LLMResult.
Parameters
prompts (List[langchain.schema.PromptValue]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
async apredict(text, *, stop=None, **kwargs)ο
Predict text from text.
Parameters
text (str) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
str
async apredict_messages(messages, *, stop=None, **kwargs)ο
Predict message from messages.
Parameters
messages (List[langchain.schema.BaseMessage]) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
langchain.schema.BaseMessage
classmethod construct(_fields_set=None, **values)ο
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) β
values (Any) β
Return type
Model
copy(*, include=None, exclude=None, update=None, deep=False)ο
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to exclude from new model, as with values this takes precedence over include | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-143 | update (Optional[DictStrAny]) β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) β set to True to make a deep copy of the model
self (Model) β
Returns
new model instance
Return type
Model
dict(**kwargs)ο
Return a dictionary of the LLM.
Parameters
kwargs (Any) β
Return type
Dict
generate(prompts, stop=None, callbacks=None, *, tags=None, **kwargs)ο
Run the LLM on the given prompt and input.
Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
tags (Optional[List[str]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
generate_prompt(prompts, stop=None, callbacks=None, **kwargs)ο
Take in a list of prompt values and return an LLMResult.
Parameters
prompts (List[langchain.schema.PromptValue]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
get_num_tokens(text)ο
Get the number of tokens present in the text.
Parameters
text (str) β
Return type
int
get_num_tokens_from_messages(messages)ο
Get the number of tokens in the message.
Parameters
messages (List[langchain.schema.BaseMessage]) β
Return type
int
get_token_ids(text)ο
Get the token present in the text.
Parameters | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-144 | get_token_ids(text)ο
Get the token present in the text.
Parameters
text (str) β
Return type
List[int]
json(*, include=None, exclude=None, by_alias=False, skip_defaults=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=None, models_as_dict=True, **dumps_kwargs)ο
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
by_alias (bool) β
skip_defaults (Optional[bool]) β
exclude_unset (bool) β
exclude_defaults (bool) β
exclude_none (bool) β
encoder (Optional[Callable[[Any], Any]]) β
models_as_dict (bool) β
dumps_kwargs (Any) β
Return type
unicode
predict(text, *, stop=None, **kwargs)ο
Predict text from text.
Parameters
text (str) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
str
predict_messages(messages, *, stop=None, **kwargs)ο
Predict message from messages.
Parameters
messages (List[langchain.schema.BaseMessage]) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
langchain.schema.BaseMessage
save(file_path)ο
Save the LLM.
Parameters
file_path (Union[pathlib.Path, str]) β Path to file to save the LLM to.
Return type
None
Example:
.. code-block:: python | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-145 | Return type
None
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns)ο
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) β
Return type
None
property lc_attributes: Dictο
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]ο
Return the namespace of the langchain object.
eg. [βlangchainβ, βllmsβ, βopenaiβ]
property lc_secrets: Dict[str, str]ο
Return a map of constructor argument names to secret ids.
eg. {βopenai_api_keyβ: βOPENAI_API_KEYβ}
property lc_serializable: boolο
Return whether or not the class is serializable.
class langchain.llms.HuggingFacePipeline(*, cache=None, verbose=None, callbacks=None, callback_manager=None, tags=None, pipeline=None, model_id='gpt2', model_kwargs=None, pipeline_kwargs=None)[source]ο
Bases: langchain.llms.base.LLM
Wrapper around HuggingFace Pipeline API.
To use, you should have the transformers python package installed.
Only supports text-generation, text2text-generation and summarization for now.
Example using from_model_id:from langchain.llms import HuggingFacePipeline
hf = HuggingFacePipeline.from_model_id(
model_id="gpt2",
task="text-generation",
pipeline_kwargs={"max_new_tokens": 10},
)
Example passing pipeline in directly:from langchain.llms import HuggingFacePipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-146 | from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_id = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
pipe = pipeline(
"text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10
)
hf = HuggingFacePipeline(pipeline=pipe)
Parameters
cache (Optional[bool]) β
verbose (bool) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
callback_manager (Optional[langchain.callbacks.base.BaseCallbackManager]) β
tags (Optional[List[str]]) β
pipeline (Any) β
model_id (str) β
model_kwargs (Optional[dict]) β
pipeline_kwargs (Optional[dict]) β
Return type
None
attribute model_id: str = 'gpt2'ο
Model name to use.
attribute model_kwargs: Optional[dict] = Noneο
Key word arguments passed to the model.
attribute pipeline_kwargs: Optional[dict] = Noneο
Key word arguments passed to the pipeline.
attribute tags: Optional[List[str]] = Noneο
Tags to add to the run trace.
attribute verbose: bool [Optional]ο
Whether to print out response text.
__call__(prompt, stop=None, callbacks=None, **kwargs)ο
Check Cache and run the LLM on the given prompt and input.
Parameters
prompt (str) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
str | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-147 | kwargs (Any) β
Return type
str
async agenerate(prompts, stop=None, callbacks=None, *, tags=None, **kwargs)ο
Run the LLM on the given prompt and input.
Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
tags (Optional[List[str]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
async agenerate_prompt(prompts, stop=None, callbacks=None, **kwargs)ο
Take in a list of prompt values and return an LLMResult.
Parameters
prompts (List[langchain.schema.PromptValue]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
async apredict(text, *, stop=None, **kwargs)ο
Predict text from text.
Parameters
text (str) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
str
async apredict_messages(messages, *, stop=None, **kwargs)ο
Predict message from messages.
Parameters
messages (List[langchain.schema.BaseMessage]) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
langchain.schema.BaseMessage
classmethod construct(_fields_set=None, **values)ο
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed. | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-148 | Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) β
values (Any) β
Return type
Model
copy(*, include=None, exclude=None, update=None, deep=False)ο
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) β set to True to make a deep copy of the model
self (Model) β
Returns
new model instance
Return type
Model
dict(**kwargs)ο
Return a dictionary of the LLM.
Parameters
kwargs (Any) β
Return type
Dict
classmethod from_model_id(model_id, task, device=- 1, model_kwargs=None, pipeline_kwargs=None, **kwargs)[source]ο
Construct the pipeline object from model_id and task.
Parameters
model_id (str) β
task (str) β
device (int) β
model_kwargs (Optional[dict]) β
pipeline_kwargs (Optional[dict]) β
kwargs (Any) β
Return type
langchain.llms.base.LLM
generate(prompts, stop=None, callbacks=None, *, tags=None, **kwargs)ο
Run the LLM on the given prompt and input.
Parameters
prompts (List[str]) β | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-149 | Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
tags (Optional[List[str]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
generate_prompt(prompts, stop=None, callbacks=None, **kwargs)ο
Take in a list of prompt values and return an LLMResult.
Parameters
prompts (List[langchain.schema.PromptValue]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
get_num_tokens(text)ο
Get the number of tokens present in the text.
Parameters
text (str) β
Return type
int
get_num_tokens_from_messages(messages)ο
Get the number of tokens in the message.
Parameters
messages (List[langchain.schema.BaseMessage]) β
Return type
int
get_token_ids(text)ο
Get the token present in the text.
Parameters
text (str) β
Return type
List[int]
json(*, include=None, exclude=None, by_alias=False, skip_defaults=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=None, models_as_dict=True, **dumps_kwargs)ο
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-150 | include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
by_alias (bool) β
skip_defaults (Optional[bool]) β
exclude_unset (bool) β
exclude_defaults (bool) β
exclude_none (bool) β
encoder (Optional[Callable[[Any], Any]]) β
models_as_dict (bool) β
dumps_kwargs (Any) β
Return type
unicode
predict(text, *, stop=None, **kwargs)ο
Predict text from text.
Parameters
text (str) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
str
predict_messages(messages, *, stop=None, **kwargs)ο
Predict message from messages.
Parameters
messages (List[langchain.schema.BaseMessage]) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
langchain.schema.BaseMessage
save(file_path)ο
Save the LLM.
Parameters
file_path (Union[pathlib.Path, str]) β Path to file to save the LLM to.
Return type
None
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns)ο
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) β
Return type
None
property lc_attributes: Dictο
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]ο
Return the namespace of the langchain object. | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-151 | property lc_namespace: List[str]ο
Return the namespace of the langchain object.
eg. [βlangchainβ, βllmsβ, βopenaiβ]
property lc_secrets: Dict[str, str]ο
Return a map of constructor argument names to secret ids.
eg. {βopenai_api_keyβ: βOPENAI_API_KEYβ}
property lc_serializable: boolο
Return whether or not the class is serializable.
class langchain.llms.HuggingFaceTextGenInference(*, cache=None, verbose=None, callbacks=None, callback_manager=None, tags=None, max_new_tokens=512, top_k=None, top_p=0.95, typical_p=0.95, temperature=0.8, repetition_penalty=None, stop_sequences=None, seed=None, inference_server_url='', timeout=120, server_kwargs=None, stream=False, client=None, async_client=None)[source]ο
Bases: langchain.llms.base.LLM
HuggingFace text generation inference API.
This class is a wrapper around the HuggingFace text generation inference API.
It is used to generate text from a given prompt.
Attributes:
- max_new_tokens: The maximum number of tokens to generate.
- top_k: The number of top-k tokens to consider when generating text.
- top_p: The cumulative probability threshold for generating text.
- typical_p: The typical probability threshold for generating text.
- temperature: The temperature to use when generating text.
- repetition_penalty: The repetition penalty to use when generating text.
- stop_sequences: A list of stop sequences to use when generating text.
- seed: The seed to use when generating text.
- inference_server_url: The URL of the inference server to use.
- timeout: The timeout value in seconds to use while connecting to inference server. | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-152 | - timeout: The timeout value in seconds to use while connecting to inference server.
- server_kwargs: The keyword arguments to pass to the inference server.
- client: The client object used to communicate with the inference server.
- async_client: The async client object used to communicate with the server.
Methods:
- _call: Generates text based on a given prompt and stop sequences.
- _acall: Async generates text based on a given prompt and stop sequences.
- _llm_type: Returns the type of LLM.
Parameters
cache (Optional[bool]) β
verbose (bool) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
callback_manager (Optional[langchain.callbacks.base.BaseCallbackManager]) β
tags (Optional[List[str]]) β
max_new_tokens (int) β
top_k (Optional[int]) β
top_p (Optional[float]) β
typical_p (Optional[float]) β
temperature (float) β
repetition_penalty (Optional[float]) β
stop_sequences (List[str]) β
seed (Optional[int]) β
inference_server_url (str) β
timeout (int) β
server_kwargs (Dict[str, Any]) β
stream (bool) β
client (Any) β
async_client (Any) β
Return type
None
attribute tags: Optional[List[str]] = Noneο
Tags to add to the run trace.
attribute verbose: bool [Optional]ο
Whether to print out response text.
__call__(prompt, stop=None, callbacks=None, **kwargs)ο
Check Cache and run the LLM on the given prompt and input.
Parameters
prompt (str) β
stop (Optional[List[str]]) β | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-153 | Parameters
prompt (str) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
str
async agenerate(prompts, stop=None, callbacks=None, *, tags=None, **kwargs)ο
Run the LLM on the given prompt and input.
Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
tags (Optional[List[str]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
async agenerate_prompt(prompts, stop=None, callbacks=None, **kwargs)ο
Take in a list of prompt values and return an LLMResult.
Parameters
prompts (List[langchain.schema.PromptValue]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
async apredict(text, *, stop=None, **kwargs)ο
Predict text from text.
Parameters
text (str) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
str
async apredict_messages(messages, *, stop=None, **kwargs)ο
Predict message from messages.
Parameters
messages (List[langchain.schema.BaseMessage]) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
langchain.schema.BaseMessage
classmethod construct(_fields_set=None, **values)ο | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-154 | langchain.schema.BaseMessage
classmethod construct(_fields_set=None, **values)ο
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) β
values (Any) β
Return type
Model
copy(*, include=None, exclude=None, update=None, deep=False)ο
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) β set to True to make a deep copy of the model
self (Model) β
Returns
new model instance
Return type
Model
dict(**kwargs)ο
Return a dictionary of the LLM.
Parameters
kwargs (Any) β
Return type
Dict
generate(prompts, stop=None, callbacks=None, *, tags=None, **kwargs)ο
Run the LLM on the given prompt and input.
Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
tags (Optional[List[str]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-155 | kwargs (Any) β
Return type
langchain.schema.LLMResult
generate_prompt(prompts, stop=None, callbacks=None, **kwargs)ο
Take in a list of prompt values and return an LLMResult.
Parameters
prompts (List[langchain.schema.PromptValue]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
get_num_tokens(text)ο
Get the number of tokens present in the text.
Parameters
text (str) β
Return type
int
get_num_tokens_from_messages(messages)ο
Get the number of tokens in the message.
Parameters
messages (List[langchain.schema.BaseMessage]) β
Return type
int
get_token_ids(text)ο
Get the token present in the text.
Parameters
text (str) β
Return type
List[int]
json(*, include=None, exclude=None, by_alias=False, skip_defaults=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=None, models_as_dict=True, **dumps_kwargs)ο
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
by_alias (bool) β
skip_defaults (Optional[bool]) β
exclude_unset (bool) β
exclude_defaults (bool) β
exclude_none (bool) β | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-156 | exclude_defaults (bool) β
exclude_none (bool) β
encoder (Optional[Callable[[Any], Any]]) β
models_as_dict (bool) β
dumps_kwargs (Any) β
Return type
unicode
predict(text, *, stop=None, **kwargs)ο
Predict text from text.
Parameters
text (str) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
str
predict_messages(messages, *, stop=None, **kwargs)ο
Predict message from messages.
Parameters
messages (List[langchain.schema.BaseMessage]) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
langchain.schema.BaseMessage
save(file_path)ο
Save the LLM.
Parameters
file_path (Union[pathlib.Path, str]) β Path to file to save the LLM to.
Return type
None
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns)ο
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) β
Return type
None
property lc_attributes: Dictο
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]ο
Return the namespace of the langchain object.
eg. [βlangchainβ, βllmsβ, βopenaiβ]
property lc_secrets: Dict[str, str]ο
Return a map of constructor argument names to secret ids.
eg. {βopenai_api_keyβ: βOPENAI_API_KEYβ}
property lc_serializable: boolο | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-157 | property lc_serializable: boolο
Return whether or not the class is serializable.
class langchain.llms.HumanInputLLM(*, cache=None, verbose=None, callbacks=None, callback_manager=None, tags=None, input_func=None, prompt_func=None, separator='\n', input_kwargs={}, prompt_kwargs={})[source]ο
Bases: langchain.llms.base.LLM
A LLM wrapper which returns user input as the response.
Parameters
cache (Optional[bool]) β
verbose (bool) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
callback_manager (Optional[langchain.callbacks.base.BaseCallbackManager]) β
tags (Optional[List[str]]) β
input_func (Callable) β
prompt_func (Callable[[str], None]) β
separator (str) β
input_kwargs (Mapping[str, Any]) β
prompt_kwargs (Mapping[str, Any]) β
Return type
None
attribute tags: Optional[List[str]] = Noneο
Tags to add to the run trace.
attribute verbose: bool [Optional]ο
Whether to print out response text.
__call__(prompt, stop=None, callbacks=None, **kwargs)ο
Check Cache and run the LLM on the given prompt and input.
Parameters
prompt (str) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
str
async agenerate(prompts, stop=None, callbacks=None, *, tags=None, **kwargs)ο
Run the LLM on the given prompt and input.
Parameters
prompts (List[str]) β | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-158 | Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
tags (Optional[List[str]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
async agenerate_prompt(prompts, stop=None, callbacks=None, **kwargs)ο
Take in a list of prompt values and return an LLMResult.
Parameters
prompts (List[langchain.schema.PromptValue]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
async apredict(text, *, stop=None, **kwargs)ο
Predict text from text.
Parameters
text (str) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
str
async apredict_messages(messages, *, stop=None, **kwargs)ο
Predict message from messages.
Parameters
messages (List[langchain.schema.BaseMessage]) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
langchain.schema.BaseMessage
classmethod construct(_fields_set=None, **values)ο
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) β
values (Any) β
Return type
Model
copy(*, include=None, exclude=None, update=None, deep=False)ο | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-159 | Model
copy(*, include=None, exclude=None, update=None, deep=False)ο
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) β set to True to make a deep copy of the model
self (Model) β
Returns
new model instance
Return type
Model
dict(**kwargs)ο
Return a dictionary of the LLM.
Parameters
kwargs (Any) β
Return type
Dict
generate(prompts, stop=None, callbacks=None, *, tags=None, **kwargs)ο
Run the LLM on the given prompt and input.
Parameters
prompts (List[str]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
tags (Optional[List[str]]) β
kwargs (Any) β
Return type
langchain.schema.LLMResult
generate_prompt(prompts, stop=None, callbacks=None, **kwargs)ο
Take in a list of prompt values and return an LLMResult.
Parameters
prompts (List[langchain.schema.PromptValue]) β
stop (Optional[List[str]]) β
callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) β
kwargs (Any) β
Return type | https://api.python.langchain.com/en/stable/modules/llms.html |
a44a60c1f5be-160 | kwargs (Any) β
Return type
langchain.schema.LLMResult
get_num_tokens(text)ο
Get the number of tokens present in the text.
Parameters
text (str) β
Return type
int
get_num_tokens_from_messages(messages)ο
Get the number of tokens in the message.
Parameters
messages (List[langchain.schema.BaseMessage]) β
Return type
int
get_token_ids(text)ο
Get the token present in the text.
Parameters
text (str) β
Return type
List[int]
json(*, include=None, exclude=None, by_alias=False, skip_defaults=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=None, models_as_dict=True, **dumps_kwargs)ο
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) β
by_alias (bool) β
skip_defaults (Optional[bool]) β
exclude_unset (bool) β
exclude_defaults (bool) β
exclude_none (bool) β
encoder (Optional[Callable[[Any], Any]]) β
models_as_dict (bool) β
dumps_kwargs (Any) β
Return type
unicode
predict(text, *, stop=None, **kwargs)ο
Predict text from text.
Parameters
text (str) β
stop (Optional[Sequence[str]]) β
kwargs (Any) β
Return type
str
predict_messages(messages, *, stop=None, **kwargs)ο
Predict message from messages.
Parameters | https://api.python.langchain.com/en/stable/modules/llms.html |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.