id
stringlengths
14
16
text
stringlengths
31
2.41k
source
stringlengths
53
121
5d97bfd0cb46-59
return_only_outputs (bool) – boolean for whether to return only outputs in the response. If True, only new keys generated by this chain will be returned. If False, both input keys and new keys generated by this chain will be returned. Defaults to False. callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Callbacks to use for this chain run. If not provided, will use the callbacks provided to the chain. include_run_info (bool) – Whether to include run info in the response. Defaults to False. tags (Optional[List[str]]) – Return type Dict[str, Any] apply(input_list, callbacks=None) Call the chain on all inputs in the list. Parameters input_list (List[Dict[str, Any]]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Return type List[Dict[str, str]] async arun(*args, callbacks=None, tags=None, **kwargs) Run the chain as text in, text out or multiple variables, text out. Parameters args (Any) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – tags (Optional[List[str]]) – kwargs (Any) – Return type str dict(**kwargs) Return dictionary representation of chain. Parameters kwargs (Any) – Return type Dict
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-60
classmethod from_llm(llm, *, qa_prompt=PromptTemplate(input_variables=['context', 'question'], output_parser=None, partial_variables={}, template="You are an assistant that helps to form nice and human understandable answers.\nThe information part contains the provided information that you must use to construct an answer.\nThe provided information is authorative, you must never doubt it or try to use your internal knowledge to correct it.\nMake the answer sound as a response to the question. Do not mention that you based the result on the given information.\nIf the provided information is empty, say that you don't know the answer.\nInformation:\n{context}\n\nQuestion: {question}\nHelpful Answer:", template_format='f-string', validate_template=True), cypher_prompt=PromptTemplate(input_variables=['schema', 'question'], output_parser=None, partial_variables={}, template='Task:Generate Kùzu Cypher statement to query a graph database.\n\nInstructions:\n\nGenerate statement with Kùzu Cypher dialect (rather than standard):\n1. do not use `WHERE EXISTS` clause to check the existence of a property because Kùzu database has a fixed schema.\n2. do not omit relationship pattern. Always use `()-[]->()` instead of `()->()`.\n3. do not include any notes or comments even if the statement does not produce the expected result.\n```\n\nUse only the provided relationship types and properties in the schema.\nDo not use any other relationship types or properties that are not provided.\nSchema:\n{schema}\nNote: Do not include any explanations or apologies in your responses.\nDo not respond to any questions that might ask anything else than for you to construct a Cypher statement.\nDo not include any text except the generated Cypher statement.\n\nThe question is:\n{question}', template_format='f-string', validate_template=True), **kwargs)[source]
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-61
Initialize from LLM. Parameters llm (langchain.base_language.BaseLanguageModel) – qa_prompt (langchain.prompts.base.BasePromptTemplate) – cypher_prompt (langchain.prompts.base.BasePromptTemplate) – kwargs (Any) – Return type langchain.chains.graph_qa.kuzu.KuzuQAChain prep_inputs(inputs) Validate and prep inputs. Parameters inputs (Union[Dict[str, Any], Any]) – Return type Dict[str, str] prep_outputs(inputs, outputs, return_only_outputs=False) Validate and prep outputs. Parameters inputs (Dict[str, str]) – outputs (Dict[str, str]) – return_only_outputs (bool) – Return type Dict[str, str] run(*args, callbacks=None, tags=None, **kwargs) Run the chain as text in, text out or multiple variables, text out. Parameters args (Any) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – tags (Optional[List[str]]) – kwargs (Any) – Return type str save(file_path) Save the chain. Parameters file_path (Union[pathlib.Path, str]) – Path to file to save the chain to. Return type None Example: .. code-block:: python chain.save(file_path=”path/chain.yaml”) to_json() Return type Union[langchain.load.serializable.SerializedConstructor, langchain.load.serializable.SerializedNotImplemented] to_json_not_implemented() Return type langchain.load.serializable.SerializedNotImplemented property lc_attributes: Dict Return a list of attribute names that should be included in the
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-62
Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str] Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str] Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool Return whether or not the class is serializable. class langchain.chains.LLMBashChain(*, memory=None, callbacks=None, callback_manager=None, verbose=None, tags=None, llm_chain, llm=None, input_key='question', output_key='answer', prompt=PromptTemplate(input_variables=['question'], output_parser=BashOutputParser(), partial_variables={}, template='If someone asks you to perform a task, your job is to come up with a series of bash commands that will perform the task. There is no need to put "#!/bin/bash" in your answer. Make sure to reason step by step, using this format:\n\nQuestion: "copy the files in the directory named \'target\' into a new directory at the same level as target called \'myNewDirectory\'"\n\nI need to take the following actions:\n- List all files in the directory\n- Create a new directory\n- Copy the files from the first directory into the second directory\n```bash\nls\nmkdir myNewDirectory\ncp -r target/* myNewDirectory\n```\n\nThat is the format. Begin!\n\nQuestion: {question}', template_format='f-string', validate_template=True), bash_process=None)[source] Bases: langchain.chains.base.Chain Chain that interprets a prompt and executes bash code to perform bash operations.
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-63
Chain that interprets a prompt and executes bash code to perform bash operations. Example from langchain import LLMBashChain, OpenAI llm_bash = LLMBashChain.from_llm(OpenAI()) Parameters memory (Optional[langchain.schema.BaseMemory]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – callback_manager (Optional[langchain.callbacks.base.BaseCallbackManager]) – verbose (bool) – tags (Optional[List[str]]) – llm_chain (langchain.chains.llm.LLMChain) – llm (Optional[langchain.base_language.BaseLanguageModel]) – input_key (str) – output_key (str) – prompt (langchain.prompts.base.BasePromptTemplate) – bash_process (langchain.utilities.bash.BashProcess) – Return type None attribute callback_manager: Optional[BaseCallbackManager] = None Deprecated, use callbacks instead. attribute callbacks: Callbacks = None Optional list of callback handlers (or callback manager). Defaults to None. Callback handlers are called throughout the lifecycle of a call to a chain, starting with on_chain_start, ending with on_chain_end or on_chain_error. Each custom chain can optionally call additional callback methods, see Callback docs for full details. attribute llm: Optional[BaseLanguageModel] = None [Deprecated] LLM wrapper to use. attribute llm_chain: LLMChain [Required] attribute memory: Optional[BaseMemory] = None Optional memory object. Defaults to None. Memory is a class that gets called at the start and at the end of every chain. At the start, memory loads variables and passes
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-64
and at the end of every chain. At the start, memory loads variables and passes them along in the chain. At the end, it saves any returned variables. There are many different types of memory - please see memory docs for the full catalog. attribute prompt: BasePromptTemplate = PromptTemplate(input_variables=['question'], output_parser=BashOutputParser(), partial_variables={}, template='If someone asks you to perform a task, your job is to come up with a series of bash commands that will perform the task. There is no need to put "#!/bin/bash" in your answer. Make sure to reason step by step, using this format:\n\nQuestion: "copy the files in the directory named \'target\' into a new directory at the same level as target called \'myNewDirectory\'"\n\nI need to take the following actions:\n- List all files in the directory\n- Create a new directory\n- Copy the files from the first directory into the second directory\n```bash\nls\nmkdir myNewDirectory\ncp -r target/* myNewDirectory\n```\n\nThat is the format. Begin!\n\nQuestion: {question}', template_format='f-string', validate_template=True) [Deprecated] attribute tags: Optional[List[str]] = None Optional list of tags associated with the chain. Defaults to None These tags will be associated with each call to this chain, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a chain with its use case. attribute verbose: bool [Optional] Whether or not run in verbose mode. In verbose mode, some intermediate logs will be printed to the console. Defaults to langchain.verbose value. async acall(inputs, return_only_outputs=False, callbacks=None, *, tags=None, include_run_info=False)
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-65
Run the logic of this chain and add to output if desired. Parameters inputs (Union[Dict[str, Any], Any]) – Dictionary of inputs, or single input if chain expects only one param. return_only_outputs (bool) – boolean for whether to return only outputs in the response. If True, only new keys generated by this chain will be returned. If False, both input keys and new keys generated by this chain will be returned. Defaults to False. callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Callbacks to use for this chain run. If not provided, will use the callbacks provided to the chain. include_run_info (bool) – Whether to include run info in the response. Defaults to False. tags (Optional[List[str]]) – Return type Dict[str, Any] apply(input_list, callbacks=None) Call the chain on all inputs in the list. Parameters input_list (List[Dict[str, Any]]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Return type List[Dict[str, str]] async arun(*args, callbacks=None, tags=None, **kwargs) Run the chain as text in, text out or multiple variables, text out. Parameters args (Any) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – tags (Optional[List[str]]) – kwargs (Any) – Return type str dict(**kwargs) Return dictionary representation of chain. Parameters kwargs (Any) – Return type Dict
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-66
Parameters kwargs (Any) – Return type Dict classmethod from_llm(llm, prompt=PromptTemplate(input_variables=['question'], output_parser=BashOutputParser(), partial_variables={}, template='If someone asks you to perform a task, your job is to come up with a series of bash commands that will perform the task. There is no need to put "#!/bin/bash" in your answer. Make sure to reason step by step, using this format:\n\nQuestion: "copy the files in the directory named \'target\' into a new directory at the same level as target called \'myNewDirectory\'"\n\nI need to take the following actions:\n- List all files in the directory\n- Create a new directory\n- Copy the files from the first directory into the second directory\n```bash\nls\nmkdir myNewDirectory\ncp -r target/* myNewDirectory\n```\n\nThat is the format. Begin!\n\nQuestion: {question}', template_format='f-string', validate_template=True), **kwargs)[source] Parameters llm (langchain.base_language.BaseLanguageModel) – prompt (langchain.prompts.base.BasePromptTemplate) – kwargs (Any) – Return type langchain.chains.llm_bash.base.LLMBashChain prep_inputs(inputs) Validate and prep inputs. Parameters inputs (Union[Dict[str, Any], Any]) – Return type Dict[str, str] prep_outputs(inputs, outputs, return_only_outputs=False) Validate and prep outputs. Parameters inputs (Dict[str, str]) – outputs (Dict[str, str]) – return_only_outputs (bool) – Return type Dict[str, str] run(*args, callbacks=None, tags=None, **kwargs)
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-67
run(*args, callbacks=None, tags=None, **kwargs) Run the chain as text in, text out or multiple variables, text out. Parameters args (Any) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – tags (Optional[List[str]]) – kwargs (Any) – Return type str save(file_path) Save the chain. Parameters file_path (Union[pathlib.Path, str]) – Path to file to save the chain to. Return type None Example: .. code-block:: python chain.save(file_path=”path/chain.yaml”) to_json() Return type Union[langchain.load.serializable.SerializedConstructor, langchain.load.serializable.SerializedNotImplemented] to_json_not_implemented() Return type langchain.load.serializable.SerializedNotImplemented property lc_attributes: Dict Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str] Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str] Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool Return whether or not the class is serializable. class langchain.chains.LLMChain(*, memory=None, callbacks=None, callback_manager=None, verbose=None, tags=None, prompt, llm, output_key='text', output_parser=None, return_final_only=True, llm_kwargs=None)[source]
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-68
Bases: langchain.chains.base.Chain Chain to run queries against LLMs. Example from langchain import LLMChain, OpenAI, PromptTemplate prompt_template = "Tell me a {adjective} joke" prompt = PromptTemplate( input_variables=["adjective"], template=prompt_template ) llm = LLMChain(llm=OpenAI(), prompt=prompt) Parameters memory (Optional[langchain.schema.BaseMemory]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – callback_manager (Optional[langchain.callbacks.base.BaseCallbackManager]) – verbose (bool) – tags (Optional[List[str]]) – prompt (langchain.prompts.base.BasePromptTemplate) – llm (langchain.base_language.BaseLanguageModel) – output_key (str) – output_parser (langchain.schema.BaseLLMOutputParser) – return_final_only (bool) – llm_kwargs (dict) – Return type None attribute callback_manager: Optional[BaseCallbackManager] = None Deprecated, use callbacks instead. attribute callbacks: Callbacks = None Optional list of callback handlers (or callback manager). Defaults to None. Callback handlers are called throughout the lifecycle of a call to a chain, starting with on_chain_start, ending with on_chain_end or on_chain_error. Each custom chain can optionally call additional callback methods, see Callback docs for full details. attribute llm: BaseLanguageModel [Required] Language model to call. attribute llm_kwargs: dict [Optional] attribute memory: Optional[BaseMemory] = None Optional memory object. Defaults to None. Memory is a class that gets called at the start
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-69
Optional memory object. Defaults to None. Memory is a class that gets called at the start and at the end of every chain. At the start, memory loads variables and passes them along in the chain. At the end, it saves any returned variables. There are many different types of memory - please see memory docs for the full catalog. attribute output_parser: BaseLLMOutputParser [Optional] Output parser to use. Defaults to one that takes the most likely string but does not change it otherwise. attribute prompt: BasePromptTemplate [Required] Prompt object to use. attribute return_final_only: bool = True Whether to return only the final parsed result. Defaults to True. If false, will return a bunch of extra information about the generation. attribute tags: Optional[List[str]] = None Optional list of tags associated with the chain. Defaults to None These tags will be associated with each call to this chain, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a chain with its use case. attribute verbose: bool [Optional] Whether or not run in verbose mode. In verbose mode, some intermediate logs will be printed to the console. Defaults to langchain.verbose value. async aapply(input_list, callbacks=None)[source] Utilize the LLM generate method for speed gains. Parameters input_list (List[Dict[str, Any]]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Return type List[Dict[str, str]] async aapply_and_parse(input_list, callbacks=None)[source] Call apply and then parse the results. Parameters input_list (List[Dict[str, Any]]) –
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-70
Parameters input_list (List[Dict[str, Any]]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Return type Sequence[Union[str, List[str], Dict[str, str]]] async acall(inputs, return_only_outputs=False, callbacks=None, *, tags=None, include_run_info=False) Run the logic of this chain and add to output if desired. Parameters inputs (Union[Dict[str, Any], Any]) – Dictionary of inputs, or single input if chain expects only one param. return_only_outputs (bool) – boolean for whether to return only outputs in the response. If True, only new keys generated by this chain will be returned. If False, both input keys and new keys generated by this chain will be returned. Defaults to False. callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Callbacks to use for this chain run. If not provided, will use the callbacks provided to the chain. include_run_info (bool) – Whether to include run info in the response. Defaults to False. tags (Optional[List[str]]) – Return type Dict[str, Any] async agenerate(input_list, run_manager=None)[source] Generate LLM result from inputs. Parameters input_list (List[Dict[str, Any]]) – run_manager (Optional[langchain.callbacks.manager.AsyncCallbackManagerForChainRun]) – Return type langchain.schema.LLMResult apply(input_list, callbacks=None)[source] Utilize the LLM generate method for speed gains. Parameters input_list (List[Dict[str, Any]]) –
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-71
Parameters input_list (List[Dict[str, Any]]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Return type List[Dict[str, str]] apply_and_parse(input_list, callbacks=None)[source] Call apply and then parse the results. Parameters input_list (List[Dict[str, Any]]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Return type Sequence[Union[str, List[str], Dict[str, str]]] async apredict(callbacks=None, **kwargs)[source] Format prompt with kwargs and pass to LLM. Parameters callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Callbacks to pass to LLMChain **kwargs – Keys to pass to prompt template. kwargs (Any) – Returns Completion from LLM. Return type str Example completion = llm.predict(adjective="funny") async apredict_and_parse(callbacks=None, **kwargs)[source] Call apredict and then parse the results. Parameters callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – kwargs (Any) – Return type Union[str, List[str], Dict[str, str]] async aprep_prompts(input_list, run_manager=None)[source] Prepare prompts from inputs. Parameters input_list (List[Dict[str, Any]]) – run_manager (Optional[langchain.callbacks.manager.AsyncCallbackManagerForChainRun]) – Return type Tuple[List[langchain.schema.PromptValue], Optional[List[str]]]
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-72
Return type Tuple[List[langchain.schema.PromptValue], Optional[List[str]]] async arun(*args, callbacks=None, tags=None, **kwargs) Run the chain as text in, text out or multiple variables, text out. Parameters args (Any) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – tags (Optional[List[str]]) – kwargs (Any) – Return type str create_outputs(llm_result)[source] Create outputs from response. Parameters llm_result (langchain.schema.LLMResult) – Return type List[Dict[str, Any]] dict(**kwargs) Return dictionary representation of chain. Parameters kwargs (Any) – Return type Dict classmethod from_string(llm, template)[source] Create LLMChain from LLM and template. Parameters llm (langchain.base_language.BaseLanguageModel) – template (str) – Return type langchain.chains.llm.LLMChain generate(input_list, run_manager=None)[source] Generate LLM result from inputs. Parameters input_list (List[Dict[str, Any]]) – run_manager (Optional[langchain.callbacks.manager.CallbackManagerForChainRun]) – Return type langchain.schema.LLMResult predict(callbacks=None, **kwargs)[source] Format prompt with kwargs and pass to LLM. Parameters callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Callbacks to pass to LLMChain **kwargs – Keys to pass to prompt template. kwargs (Any) – Returns Completion from LLM. Return type str Example
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-73
Returns Completion from LLM. Return type str Example completion = llm.predict(adjective="funny") predict_and_parse(callbacks=None, **kwargs)[source] Call predict and then parse the results. Parameters callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – kwargs (Any) – Return type Union[str, List[str], Dict[str, Any]] prep_inputs(inputs) Validate and prep inputs. Parameters inputs (Union[Dict[str, Any], Any]) – Return type Dict[str, str] prep_outputs(inputs, outputs, return_only_outputs=False) Validate and prep outputs. Parameters inputs (Dict[str, str]) – outputs (Dict[str, str]) – return_only_outputs (bool) – Return type Dict[str, str] prep_prompts(input_list, run_manager=None)[source] Prepare prompts from inputs. Parameters input_list (List[Dict[str, Any]]) – run_manager (Optional[langchain.callbacks.manager.CallbackManagerForChainRun]) – Return type Tuple[List[langchain.schema.PromptValue], Optional[List[str]]] run(*args, callbacks=None, tags=None, **kwargs) Run the chain as text in, text out or multiple variables, text out. Parameters args (Any) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – tags (Optional[List[str]]) – kwargs (Any) – Return type str save(file_path) Save the chain. Parameters file_path (Union[pathlib.Path, str]) – Path to file to save the chain to. Return type
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-74
Return type None Example: .. code-block:: python chain.save(file_path=”path/chain.yaml”) to_json() Return type Union[langchain.load.serializable.SerializedConstructor, langchain.load.serializable.SerializedNotImplemented] to_json_not_implemented() Return type langchain.load.serializable.SerializedNotImplemented property lc_attributes: Dict Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str] Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str] Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool Return whether or not the class is serializable.
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-75
property lc_serializable: bool Return whether or not the class is serializable. class langchain.chains.LLMCheckerChain(*, memory=None, callbacks=None, callback_manager=None, verbose=None, tags=None, question_to_checked_assertions_chain, llm=None, create_draft_answer_prompt=PromptTemplate(input_variables=['question'], output_parser=None, partial_variables={}, template='{question}\n\n', template_format='f-string', validate_template=True), list_assertions_prompt=PromptTemplate(input_variables=['statement'], output_parser=None, partial_variables={}, template='Here is a statement:\n{statement}\nMake a bullet point list of the assumptions you made when producing the above statement.\n\n', template_format='f-string', validate_template=True), check_assertions_prompt=PromptTemplate(input_variables=['assertions'], output_parser=None, partial_variables={}, template='Here is a bullet point list of assertions:\n{assertions}\nFor each assertion, determine whether it is true or false. If it is false, explain why.\n\n', template_format='f-string', validate_template=True), revised_answer_prompt=PromptTemplate(input_variables=['checked_assertions', 'question'], output_parser=None, partial_variables={}, template="{checked_assertions}\n\nQuestion: In light of the above assertions and checks, how would you answer the question '{question}'?\n\nAnswer:", template_format='f-string', validate_template=True), input_key='query', output_key='result')[source] Bases: langchain.chains.base.Chain Chain for question-answering with self-verification. Example from langchain import OpenAI, LLMCheckerChain llm = OpenAI(temperature=0.7) checker_chain = LLMCheckerChain.from_llm(llm) Parameters memory (Optional[langchain.schema.BaseMemory]) –
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-76
Parameters memory (Optional[langchain.schema.BaseMemory]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – callback_manager (Optional[langchain.callbacks.base.BaseCallbackManager]) – verbose (bool) – tags (Optional[List[str]]) – question_to_checked_assertions_chain (langchain.chains.sequential.SequentialChain) – llm (Optional[langchain.base_language.BaseLanguageModel]) – create_draft_answer_prompt (langchain.prompts.prompt.PromptTemplate) – list_assertions_prompt (langchain.prompts.prompt.PromptTemplate) – check_assertions_prompt (langchain.prompts.prompt.PromptTemplate) – revised_answer_prompt (langchain.prompts.prompt.PromptTemplate) – input_key (str) – output_key (str) – Return type None attribute callback_manager: Optional[BaseCallbackManager] = None Deprecated, use callbacks instead. attribute callbacks: Callbacks = None Optional list of callback handlers (or callback manager). Defaults to None. Callback handlers are called throughout the lifecycle of a call to a chain, starting with on_chain_start, ending with on_chain_end or on_chain_error. Each custom chain can optionally call additional callback methods, see Callback docs for full details. attribute check_assertions_prompt: PromptTemplate = PromptTemplate(input_variables=['assertions'], output_parser=None, partial_variables={}, template='Here is a bullet point list of assertions:\n{assertions}\nFor each assertion, determine whether it is true or false. If it is false, explain why.\n\n', template_format='f-string', validate_template=True) [Deprecated]
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-77
[Deprecated] attribute create_draft_answer_prompt: PromptTemplate = PromptTemplate(input_variables=['question'], output_parser=None, partial_variables={}, template='{question}\n\n', template_format='f-string', validate_template=True) [Deprecated] attribute list_assertions_prompt: PromptTemplate = PromptTemplate(input_variables=['statement'], output_parser=None, partial_variables={}, template='Here is a statement:\n{statement}\nMake a bullet point list of the assumptions you made when producing the above statement.\n\n', template_format='f-string', validate_template=True) [Deprecated] attribute llm: Optional[BaseLanguageModel] = None [Deprecated] LLM wrapper to use. attribute memory: Optional[BaseMemory] = None Optional memory object. Defaults to None. Memory is a class that gets called at the start and at the end of every chain. At the start, memory loads variables and passes them along in the chain. At the end, it saves any returned variables. There are many different types of memory - please see memory docs for the full catalog. attribute question_to_checked_assertions_chain: SequentialChain [Required] attribute revised_answer_prompt: PromptTemplate = PromptTemplate(input_variables=['checked_assertions', 'question'], output_parser=None, partial_variables={}, template="{checked_assertions}\n\nQuestion: In light of the above assertions and checks, how would you answer the question '{question}'?\n\nAnswer:", template_format='f-string', validate_template=True) [Deprecated] Prompt to use when questioning the documents. attribute tags: Optional[List[str]] = None Optional list of tags associated with the chain. Defaults to None These tags will be associated with each call to this chain, and passed as arguments to the handlers defined in callbacks.
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-78
and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a chain with its use case. attribute verbose: bool [Optional] Whether or not run in verbose mode. In verbose mode, some intermediate logs will be printed to the console. Defaults to langchain.verbose value. async acall(inputs, return_only_outputs=False, callbacks=None, *, tags=None, include_run_info=False) Run the logic of this chain and add to output if desired. Parameters inputs (Union[Dict[str, Any], Any]) – Dictionary of inputs, or single input if chain expects only one param. return_only_outputs (bool) – boolean for whether to return only outputs in the response. If True, only new keys generated by this chain will be returned. If False, both input keys and new keys generated by this chain will be returned. Defaults to False. callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Callbacks to use for this chain run. If not provided, will use the callbacks provided to the chain. include_run_info (bool) – Whether to include run info in the response. Defaults to False. tags (Optional[List[str]]) – Return type Dict[str, Any] apply(input_list, callbacks=None) Call the chain on all inputs in the list. Parameters input_list (List[Dict[str, Any]]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Return type List[Dict[str, str]] async arun(*args, callbacks=None, tags=None, **kwargs) Run the chain as text in, text out or multiple variables, text out. Parameters
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-79
Run the chain as text in, text out or multiple variables, text out. Parameters args (Any) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – tags (Optional[List[str]]) – kwargs (Any) – Return type str dict(**kwargs) Return dictionary representation of chain. Parameters kwargs (Any) – Return type Dict classmethod from_llm(llm, create_draft_answer_prompt=PromptTemplate(input_variables=['question'], output_parser=None, partial_variables={}, template='{question}\n\n', template_format='f-string', validate_template=True), list_assertions_prompt=PromptTemplate(input_variables=['statement'], output_parser=None, partial_variables={}, template='Here is a statement:\n{statement}\nMake a bullet point list of the assumptions you made when producing the above statement.\n\n', template_format='f-string', validate_template=True), check_assertions_prompt=PromptTemplate(input_variables=['assertions'], output_parser=None, partial_variables={}, template='Here is a bullet point list of assertions:\n{assertions}\nFor each assertion, determine whether it is true or false. If it is false, explain why.\n\n', template_format='f-string', validate_template=True), revised_answer_prompt=PromptTemplate(input_variables=['checked_assertions', 'question'], output_parser=None, partial_variables={}, template="{checked_assertions}\n\nQuestion: In light of the above assertions and checks, how would you answer the question '{question}'?\n\nAnswer:", template_format='f-string', validate_template=True), **kwargs)[source] Parameters llm (langchain.base_language.BaseLanguageModel) – create_draft_answer_prompt (langchain.prompts.prompt.PromptTemplate) – list_assertions_prompt (langchain.prompts.prompt.PromptTemplate) –
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-80
list_assertions_prompt (langchain.prompts.prompt.PromptTemplate) – check_assertions_prompt (langchain.prompts.prompt.PromptTemplate) – revised_answer_prompt (langchain.prompts.prompt.PromptTemplate) – kwargs (Any) – Return type langchain.chains.llm_checker.base.LLMCheckerChain prep_inputs(inputs) Validate and prep inputs. Parameters inputs (Union[Dict[str, Any], Any]) – Return type Dict[str, str] prep_outputs(inputs, outputs, return_only_outputs=False) Validate and prep outputs. Parameters inputs (Dict[str, str]) – outputs (Dict[str, str]) – return_only_outputs (bool) – Return type Dict[str, str] run(*args, callbacks=None, tags=None, **kwargs) Run the chain as text in, text out or multiple variables, text out. Parameters args (Any) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – tags (Optional[List[str]]) – kwargs (Any) – Return type str save(file_path) Save the chain. Parameters file_path (Union[pathlib.Path, str]) – Path to file to save the chain to. Return type None Example: .. code-block:: python chain.save(file_path=”path/chain.yaml”) to_json() Return type Union[langchain.load.serializable.SerializedConstructor, langchain.load.serializable.SerializedNotImplemented] to_json_not_implemented() Return type langchain.load.serializable.SerializedNotImplemented property lc_attributes: Dict Return a list of attribute names that should be included in the
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-81
Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str] Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str] Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool Return whether or not the class is serializable.
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-82
property lc_serializable: bool Return whether or not the class is serializable. class langchain.chains.LLMMathChain(*, memory=None, callbacks=None, callback_manager=None, verbose=None, tags=None, llm_chain, llm=None, prompt=PromptTemplate(input_variables=['question'], output_parser=None, partial_variables={}, template='Translate a math problem into a expression that can be executed using Python\'s numexpr library. Use the output of running this code to answer the question.\n\nQuestion: ${{Question with math problem.}}\n```text\n${{single line mathematical expression that solves the problem}}\n```\n...numexpr.evaluate(text)...\n```output\n${{Output of running the code}}\n```\nAnswer: ${{Answer}}\n\nBegin.\n\nQuestion: What is 37593 * 67?\n```text\n37593 * 67\n```\n...numexpr.evaluate("37593 * 67")...\n```output\n2518731\n```\nAnswer: 2518731\n\nQuestion: 37593^(1/5)\n```text\n37593**(1/5)\n```\n...numexpr.evaluate("37593**(1/5)")...\n```output\n8.222831614237718\n```\nAnswer: 8.222831614237718\n\nQuestion: {question}\n', template_format='f-string', validate_template=True), input_key='question', output_key='answer')[source] Bases: langchain.chains.base.Chain Chain that interprets a prompt and executes python code to do math. Example from langchain import LLMMathChain, OpenAI llm_math = LLMMathChain.from_llm(OpenAI()) Parameters memory (Optional[langchain.schema.BaseMemory]) –
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-83
Parameters memory (Optional[langchain.schema.BaseMemory]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – callback_manager (Optional[langchain.callbacks.base.BaseCallbackManager]) – verbose (bool) – tags (Optional[List[str]]) – llm_chain (langchain.chains.llm.LLMChain) – llm (Optional[langchain.base_language.BaseLanguageModel]) – prompt (langchain.prompts.base.BasePromptTemplate) – input_key (str) – output_key (str) – Return type None attribute callback_manager: Optional[BaseCallbackManager] = None Deprecated, use callbacks instead. attribute callbacks: Callbacks = None Optional list of callback handlers (or callback manager). Defaults to None. Callback handlers are called throughout the lifecycle of a call to a chain, starting with on_chain_start, ending with on_chain_end or on_chain_error. Each custom chain can optionally call additional callback methods, see Callback docs for full details. attribute llm: Optional[BaseLanguageModel] = None [Deprecated] LLM wrapper to use. attribute llm_chain: LLMChain [Required] attribute memory: Optional[BaseMemory] = None Optional memory object. Defaults to None. Memory is a class that gets called at the start and at the end of every chain. At the start, memory loads variables and passes them along in the chain. At the end, it saves any returned variables. There are many different types of memory - please see memory docs for the full catalog.
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-84
There are many different types of memory - please see memory docs for the full catalog. attribute prompt: BasePromptTemplate = PromptTemplate(input_variables=['question'], output_parser=None, partial_variables={}, template='Translate a math problem into a expression that can be executed using Python\'s numexpr library. Use the output of running this code to answer the question.\n\nQuestion: ${{Question with math problem.}}\n```text\n${{single line mathematical expression that solves the problem}}\n```\n...numexpr.evaluate(text)...\n```output\n${{Output of running the code}}\n```\nAnswer: ${{Answer}}\n\nBegin.\n\nQuestion: What is 37593 * 67?\n```text\n37593 * 67\n```\n...numexpr.evaluate("37593 * 67")...\n```output\n2518731\n```\nAnswer: 2518731\n\nQuestion: 37593^(1/5)\n```text\n37593**(1/5)\n```\n...numexpr.evaluate("37593**(1/5)")...\n```output\n8.222831614237718\n```\nAnswer: 8.222831614237718\n\nQuestion: {question}\n', template_format='f-string', validate_template=True) [Deprecated] Prompt to use to translate to python if necessary. attribute tags: Optional[List[str]] = None Optional list of tags associated with the chain. Defaults to None These tags will be associated with each call to this chain, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a chain with its use case. attribute verbose: bool [Optional] Whether or not run in verbose mode. In verbose mode, some intermediate logs
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-85
Whether or not run in verbose mode. In verbose mode, some intermediate logs will be printed to the console. Defaults to langchain.verbose value. async acall(inputs, return_only_outputs=False, callbacks=None, *, tags=None, include_run_info=False) Run the logic of this chain and add to output if desired. Parameters inputs (Union[Dict[str, Any], Any]) – Dictionary of inputs, or single input if chain expects only one param. return_only_outputs (bool) – boolean for whether to return only outputs in the response. If True, only new keys generated by this chain will be returned. If False, both input keys and new keys generated by this chain will be returned. Defaults to False. callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Callbacks to use for this chain run. If not provided, will use the callbacks provided to the chain. include_run_info (bool) – Whether to include run info in the response. Defaults to False. tags (Optional[List[str]]) – Return type Dict[str, Any] apply(input_list, callbacks=None) Call the chain on all inputs in the list. Parameters input_list (List[Dict[str, Any]]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Return type List[Dict[str, str]] async arun(*args, callbacks=None, tags=None, **kwargs) Run the chain as text in, text out or multiple variables, text out. Parameters args (Any) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – tags (Optional[List[str]]) –
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-86
tags (Optional[List[str]]) – kwargs (Any) – Return type str dict(**kwargs) Return dictionary representation of chain. Parameters kwargs (Any) – Return type Dict classmethod from_llm(llm, prompt=PromptTemplate(input_variables=['question'], output_parser=None, partial_variables={}, template='Translate a math problem into a expression that can be executed using Python\'s numexpr library. Use the output of running this code to answer the question.\n\nQuestion: ${{Question with math problem.}}\n```text\n${{single line mathematical expression that solves the problem}}\n```\n...numexpr.evaluate(text)...\n```output\n${{Output of running the code}}\n```\nAnswer: ${{Answer}}\n\nBegin.\n\nQuestion: What is 37593 * 67?\n```text\n37593 * 67\n```\n...numexpr.evaluate("37593 * 67")...\n```output\n2518731\n```\nAnswer: 2518731\n\nQuestion: 37593^(1/5)\n```text\n37593**(1/5)\n```\n...numexpr.evaluate("37593**(1/5)")...\n```output\n8.222831614237718\n```\nAnswer: 8.222831614237718\n\nQuestion: {question}\n', template_format='f-string', validate_template=True), **kwargs)[source] Parameters llm (langchain.base_language.BaseLanguageModel) – prompt (langchain.prompts.base.BasePromptTemplate) – kwargs (Any) – Return type langchain.chains.llm_math.base.LLMMathChain prep_inputs(inputs) Validate and prep inputs. Parameters
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-87
prep_inputs(inputs) Validate and prep inputs. Parameters inputs (Union[Dict[str, Any], Any]) – Return type Dict[str, str] prep_outputs(inputs, outputs, return_only_outputs=False) Validate and prep outputs. Parameters inputs (Dict[str, str]) – outputs (Dict[str, str]) – return_only_outputs (bool) – Return type Dict[str, str] run(*args, callbacks=None, tags=None, **kwargs) Run the chain as text in, text out or multiple variables, text out. Parameters args (Any) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – tags (Optional[List[str]]) – kwargs (Any) – Return type str save(file_path) Save the chain. Parameters file_path (Union[pathlib.Path, str]) – Path to file to save the chain to. Return type None Example: .. code-block:: python chain.save(file_path=”path/chain.yaml”) to_json() Return type Union[langchain.load.serializable.SerializedConstructor, langchain.load.serializable.SerializedNotImplemented] to_json_not_implemented() Return type langchain.load.serializable.SerializedNotImplemented property lc_attributes: Dict Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str] Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str] Return a map of constructor argument names to secret ids.
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-88
Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool Return whether or not the class is serializable. class langchain.chains.LLMRequestsChain(*, memory=None, callbacks=None, callback_manager=None, verbose=None, tags=None, llm_chain, requests_wrapper=None, text_length=8000, requests_key='requests_result', input_key='url', output_key='output')[source] Bases: langchain.chains.base.Chain Chain that hits a URL and then uses an LLM to parse results. Parameters memory (Optional[langchain.schema.BaseMemory]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – callback_manager (Optional[langchain.callbacks.base.BaseCallbackManager]) – verbose (bool) – tags (Optional[List[str]]) – llm_chain (langchain.chains.llm.LLMChain) – requests_wrapper (langchain.requests.TextRequestsWrapper) – text_length (int) – requests_key (str) – input_key (str) – output_key (str) – Return type None attribute callback_manager: Optional[BaseCallbackManager] = None Deprecated, use callbacks instead. attribute callbacks: Callbacks = None Optional list of callback handlers (or callback manager). Defaults to None. Callback handlers are called throughout the lifecycle of a call to a chain, starting with on_chain_start, ending with on_chain_end or on_chain_error. Each custom chain can optionally call additional callback methods, see Callback docs for full details. attribute llm_chain: LLMChain [Required]
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-89
for full details. attribute llm_chain: LLMChain [Required] attribute memory: Optional[BaseMemory] = None Optional memory object. Defaults to None. Memory is a class that gets called at the start and at the end of every chain. At the start, memory loads variables and passes them along in the chain. At the end, it saves any returned variables. There are many different types of memory - please see memory docs for the full catalog. attribute requests_wrapper: TextRequestsWrapper [Optional] attribute tags: Optional[List[str]] = None Optional list of tags associated with the chain. Defaults to None These tags will be associated with each call to this chain, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a chain with its use case. attribute text_length: int = 8000 attribute verbose: bool [Optional] Whether or not run in verbose mode. In verbose mode, some intermediate logs will be printed to the console. Defaults to langchain.verbose value. async acall(inputs, return_only_outputs=False, callbacks=None, *, tags=None, include_run_info=False) Run the logic of this chain and add to output if desired. Parameters inputs (Union[Dict[str, Any], Any]) – Dictionary of inputs, or single input if chain expects only one param. return_only_outputs (bool) – boolean for whether to return only outputs in the response. If True, only new keys generated by this chain will be returned. If False, both input keys and new keys generated by this chain will be returned. Defaults to False.
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-90
chain will be returned. Defaults to False. callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Callbacks to use for this chain run. If not provided, will use the callbacks provided to the chain. include_run_info (bool) – Whether to include run info in the response. Defaults to False. tags (Optional[List[str]]) – Return type Dict[str, Any] apply(input_list, callbacks=None) Call the chain on all inputs in the list. Parameters input_list (List[Dict[str, Any]]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Return type List[Dict[str, str]] async arun(*args, callbacks=None, tags=None, **kwargs) Run the chain as text in, text out or multiple variables, text out. Parameters args (Any) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – tags (Optional[List[str]]) – kwargs (Any) – Return type str dict(**kwargs) Return dictionary representation of chain. Parameters kwargs (Any) – Return type Dict prep_inputs(inputs) Validate and prep inputs. Parameters inputs (Union[Dict[str, Any], Any]) – Return type Dict[str, str] prep_outputs(inputs, outputs, return_only_outputs=False) Validate and prep outputs. Parameters inputs (Dict[str, str]) – outputs (Dict[str, str]) – return_only_outputs (bool) – Return type Dict[str, str]
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-91
return_only_outputs (bool) – Return type Dict[str, str] run(*args, callbacks=None, tags=None, **kwargs) Run the chain as text in, text out or multiple variables, text out. Parameters args (Any) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – tags (Optional[List[str]]) – kwargs (Any) – Return type str save(file_path) Save the chain. Parameters file_path (Union[pathlib.Path, str]) – Path to file to save the chain to. Return type None Example: .. code-block:: python chain.save(file_path=”path/chain.yaml”) to_json() Return type Union[langchain.load.serializable.SerializedConstructor, langchain.load.serializable.SerializedNotImplemented] to_json_not_implemented() Return type langchain.load.serializable.SerializedNotImplemented property lc_attributes: Dict Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str] Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str] Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool Return whether or not the class is serializable. class langchain.chains.LLMRouterChain(*, memory=None, callbacks=None, callback_manager=None, verbose=None, tags=None, llm_chain)[source]
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-92
Bases: langchain.chains.router.base.RouterChain A router chain that uses an LLM chain to perform routing. Parameters memory (Optional[langchain.schema.BaseMemory]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – callback_manager (Optional[langchain.callbacks.base.BaseCallbackManager]) – verbose (bool) – tags (Optional[List[str]]) – llm_chain (langchain.chains.llm.LLMChain) – Return type None attribute callback_manager: Optional[BaseCallbackManager] = None Deprecated, use callbacks instead. attribute callbacks: Callbacks = None Optional list of callback handlers (or callback manager). Defaults to None. Callback handlers are called throughout the lifecycle of a call to a chain, starting with on_chain_start, ending with on_chain_end or on_chain_error. Each custom chain can optionally call additional callback methods, see Callback docs for full details. attribute llm_chain: LLMChain [Required] LLM chain used to perform routing attribute memory: Optional[BaseMemory] = None Optional memory object. Defaults to None. Memory is a class that gets called at the start and at the end of every chain. At the start, memory loads variables and passes them along in the chain. At the end, it saves any returned variables. There are many different types of memory - please see memory docs for the full catalog. attribute tags: Optional[List[str]] = None Optional list of tags associated with the chain. Defaults to None These tags will be associated with each call to this chain, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a chain with its use case.
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-93
You can use these to eg identify a specific instance of a chain with its use case. attribute verbose: bool [Optional] Whether or not run in verbose mode. In verbose mode, some intermediate logs will be printed to the console. Defaults to langchain.verbose value. async acall(inputs, return_only_outputs=False, callbacks=None, *, tags=None, include_run_info=False) Run the logic of this chain and add to output if desired. Parameters inputs (Union[Dict[str, Any], Any]) – Dictionary of inputs, or single input if chain expects only one param. return_only_outputs (bool) – boolean for whether to return only outputs in the response. If True, only new keys generated by this chain will be returned. If False, both input keys and new keys generated by this chain will be returned. Defaults to False. callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Callbacks to use for this chain run. If not provided, will use the callbacks provided to the chain. include_run_info (bool) – Whether to include run info in the response. Defaults to False. tags (Optional[List[str]]) – Return type Dict[str, Any] apply(input_list, callbacks=None) Call the chain on all inputs in the list. Parameters input_list (List[Dict[str, Any]]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Return type List[Dict[str, str]] async aroute(inputs, callbacks=None) Parameters inputs (Dict[str, Any]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Return type
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-94
Return type langchain.chains.router.base.Route async arun(*args, callbacks=None, tags=None, **kwargs) Run the chain as text in, text out or multiple variables, text out. Parameters args (Any) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – tags (Optional[List[str]]) – kwargs (Any) – Return type str dict(**kwargs) Return dictionary representation of chain. Parameters kwargs (Any) – Return type Dict classmethod from_llm(llm, prompt, **kwargs)[source] Convenience constructor. Parameters llm (langchain.base_language.BaseLanguageModel) – prompt (langchain.prompts.base.BasePromptTemplate) – kwargs (Any) – Return type langchain.chains.router.llm_router.LLMRouterChain prep_inputs(inputs) Validate and prep inputs. Parameters inputs (Union[Dict[str, Any], Any]) – Return type Dict[str, str] prep_outputs(inputs, outputs, return_only_outputs=False) Validate and prep outputs. Parameters inputs (Dict[str, str]) – outputs (Dict[str, str]) – return_only_outputs (bool) – Return type Dict[str, str] route(inputs, callbacks=None) Parameters inputs (Dict[str, Any]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Return type langchain.chains.router.base.Route run(*args, callbacks=None, tags=None, **kwargs) Run the chain as text in, text out or multiple variables, text out. Parameters
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-95
Run the chain as text in, text out or multiple variables, text out. Parameters args (Any) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – tags (Optional[List[str]]) – kwargs (Any) – Return type str save(file_path) Save the chain. Parameters file_path (Union[pathlib.Path, str]) – Path to file to save the chain to. Return type None Example: .. code-block:: python chain.save(file_path=”path/chain.yaml”) to_json() Return type Union[langchain.load.serializable.SerializedConstructor, langchain.load.serializable.SerializedNotImplemented] to_json_not_implemented() Return type langchain.load.serializable.SerializedNotImplemented property lc_attributes: Dict Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str] Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str] Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool Return whether or not the class is serializable. property output_keys: List[str] Output keys this chain expects.
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-96
class langchain.chains.LLMSummarizationCheckerChain(*, memory=None, callbacks=None, callback_manager=None, verbose=None, tags=None, sequential_chain, llm=None, create_assertions_prompt=PromptTemplate(input_variables=['summary'], output_parser=None, partial_variables={}, template='Given some text, extract a list of facts from the text.\n\nFormat your output as a bulleted list.\n\nText:\n"""\n{summary}\n"""\n\nFacts:', template_format='f-string', validate_template=True), check_assertions_prompt=PromptTemplate(input_variables=['assertions'], output_parser=None, partial_variables={}, template='You are an expert fact checker. You have been hired by a major news organization to fact check a very important story.\n\nHere is a bullet point list of facts:\n"""\n{assertions}\n"""\n\nFor each fact, determine whether it is true or false about the subject. If you are unable to determine whether the fact is true or false, output "Undetermined".\nIf the fact is false, explain why.\n\n', template_format='f-string', validate_template=True), revised_summary_prompt=PromptTemplate(input_variables=['checked_assertions', 'summary'], output_parser=None, partial_variables={}, template='Below are some assertions that have been fact checked and are labeled as true or false. If the answer is false, a suggestion is given for a correction.\n\nChecked Assertions:\n"""\n{checked_assertions}\n"""\n\nOriginal Summary:\n"""\n{summary}\n"""\n\nUsing these checked assertions, rewrite the original summary to be completely true.\n\nThe output should have the same structure and formatting as the original summary.\n\nSummary:', template_format='f-string', validate_template=True), are_all_true_prompt=PromptTemplate(input_variables=['checked_assertions'], output_parser=None, partial_variables={}, template='Below are
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-97
output_parser=None, partial_variables={}, template='Below are some assertions that have been fact checked and are labeled as true or false.\n\nIf all of the assertions are true, return "True". If any of the assertions are false, return "False".\n\nHere are some examples:\n===\n\nChecked Assertions: """\n- The sky is red: False\n- Water is made of lava: False\n- The sun is a star: True\n"""\nResult: False\n\n===\n\nChecked Assertions: """\n- The sky is blue: True\n- Water is wet: True\n- The sun is a star: True\n"""\nResult: True\n\n===\n\nChecked Assertions: """\n- The sky is blue - True\n- Water is made of lava- False\n- The sun is a star - True\n"""\nResult: False\n\n===\n\nChecked Assertions:"""\n{checked_assertions}\n"""\nResult:', template_format='f-string', validate_template=True), input_key='query', output_key='result', max_checks=2)[source]
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-98
Bases: langchain.chains.base.Chain Chain for question-answering with self-verification. Example from langchain import OpenAI, LLMSummarizationCheckerChain llm = OpenAI(temperature=0.0) checker_chain = LLMSummarizationCheckerChain.from_llm(llm) Parameters memory (Optional[langchain.schema.BaseMemory]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – callback_manager (Optional[langchain.callbacks.base.BaseCallbackManager]) – verbose (bool) – tags (Optional[List[str]]) – sequential_chain (langchain.chains.sequential.SequentialChain) – llm (Optional[langchain.base_language.BaseLanguageModel]) – create_assertions_prompt (langchain.prompts.prompt.PromptTemplate) – check_assertions_prompt (langchain.prompts.prompt.PromptTemplate) – revised_summary_prompt (langchain.prompts.prompt.PromptTemplate) – are_all_true_prompt (langchain.prompts.prompt.PromptTemplate) – input_key (str) – output_key (str) – max_checks (int) – Return type None
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-99
max_checks (int) – Return type None attribute are_all_true_prompt: PromptTemplate = PromptTemplate(input_variables=['checked_assertions'], output_parser=None, partial_variables={}, template='Below are some assertions that have been fact checked and are labeled as true or false.\n\nIf all of the assertions are true, return "True". If any of the assertions are false, return "False".\n\nHere are some examples:\n===\n\nChecked Assertions: """\n- The sky is red: False\n- Water is made of lava: False\n- The sun is a star: True\n"""\nResult: False\n\n===\n\nChecked Assertions: """\n- The sky is blue: True\n- Water is wet: True\n- The sun is a star: True\n"""\nResult: True\n\n===\n\nChecked Assertions: """\n- The sky is blue - True\n- Water is made of lava- False\n- The sun is a star - True\n"""\nResult: False\n\n===\n\nChecked Assertions:"""\n{checked_assertions}\n"""\nResult:', template_format='f-string', validate_template=True) [Deprecated] attribute callback_manager: Optional[BaseCallbackManager] = None Deprecated, use callbacks instead. attribute callbacks: Callbacks = None Optional list of callback handlers (or callback manager). Defaults to None. Callback handlers are called throughout the lifecycle of a call to a chain, starting with on_chain_start, ending with on_chain_end or on_chain_error. Each custom chain can optionally call additional callback methods, see Callback docs for full details.
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-100
Each custom chain can optionally call additional callback methods, see Callback docs for full details. attribute check_assertions_prompt: PromptTemplate = PromptTemplate(input_variables=['assertions'], output_parser=None, partial_variables={}, template='You are an expert fact checker. You have been hired by a major news organization to fact check a very important story.\n\nHere is a bullet point list of facts:\n"""\n{assertions}\n"""\n\nFor each fact, determine whether it is true or false about the subject. If you are unable to determine whether the fact is true or false, output "Undetermined".\nIf the fact is false, explain why.\n\n', template_format='f-string', validate_template=True) [Deprecated] attribute create_assertions_prompt: PromptTemplate = PromptTemplate(input_variables=['summary'], output_parser=None, partial_variables={}, template='Given some text, extract a list of facts from the text.\n\nFormat your output as a bulleted list.\n\nText:\n"""\n{summary}\n"""\n\nFacts:', template_format='f-string', validate_template=True) [Deprecated] attribute llm: Optional[BaseLanguageModel] = None [Deprecated] LLM wrapper to use. attribute max_checks: int = 2 Maximum number of times to check the assertions. Default to double-checking. attribute memory: Optional[BaseMemory] = None Optional memory object. Defaults to None. Memory is a class that gets called at the start and at the end of every chain. At the start, memory loads variables and passes them along in the chain. At the end, it saves any returned variables. There are many different types of memory - please see memory docs for the full catalog.
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-101
There are many different types of memory - please see memory docs for the full catalog. attribute revised_summary_prompt: PromptTemplate = PromptTemplate(input_variables=['checked_assertions', 'summary'], output_parser=None, partial_variables={}, template='Below are some assertions that have been fact checked and are labeled as true or false. If the answer is false, a suggestion is given for a correction.\n\nChecked Assertions:\n"""\n{checked_assertions}\n"""\n\nOriginal Summary:\n"""\n{summary}\n"""\n\nUsing these checked assertions, rewrite the original summary to be completely true.\n\nThe output should have the same structure and formatting as the original summary.\n\nSummary:', template_format='f-string', validate_template=True) [Deprecated] attribute sequential_chain: SequentialChain [Required] attribute tags: Optional[List[str]] = None Optional list of tags associated with the chain. Defaults to None These tags will be associated with each call to this chain, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a chain with its use case. attribute verbose: bool [Optional] Whether or not run in verbose mode. In verbose mode, some intermediate logs will be printed to the console. Defaults to langchain.verbose value. async acall(inputs, return_only_outputs=False, callbacks=None, *, tags=None, include_run_info=False) Run the logic of this chain and add to output if desired. Parameters inputs (Union[Dict[str, Any], Any]) – Dictionary of inputs, or single input if chain expects only one param. return_only_outputs (bool) – boolean for whether to return only outputs in the response. If True, only new keys generated by this chain will be
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-102
response. If True, only new keys generated by this chain will be returned. If False, both input keys and new keys generated by this chain will be returned. Defaults to False. callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Callbacks to use for this chain run. If not provided, will use the callbacks provided to the chain. include_run_info (bool) – Whether to include run info in the response. Defaults to False. tags (Optional[List[str]]) – Return type Dict[str, Any] apply(input_list, callbacks=None) Call the chain on all inputs in the list. Parameters input_list (List[Dict[str, Any]]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Return type List[Dict[str, str]] async arun(*args, callbacks=None, tags=None, **kwargs) Run the chain as text in, text out or multiple variables, text out. Parameters args (Any) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – tags (Optional[List[str]]) – kwargs (Any) – Return type str dict(**kwargs) Return dictionary representation of chain. Parameters kwargs (Any) – Return type Dict
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-103
classmethod from_llm(llm, create_assertions_prompt=PromptTemplate(input_variables=['summary'], output_parser=None, partial_variables={}, template='Given some text, extract a list of facts from the text.\n\nFormat your output as a bulleted list.\n\nText:\n"""\n{summary}\n"""\n\nFacts:', template_format='f-string', validate_template=True), check_assertions_prompt=PromptTemplate(input_variables=['assertions'], output_parser=None, partial_variables={}, template='You are an expert fact checker. You have been hired by a major news organization to fact check a very important story.\n\nHere is a bullet point list of facts:\n"""\n{assertions}\n"""\n\nFor each fact, determine whether it is true or false about the subject. If you are unable to determine whether the fact is true or false, output "Undetermined".\nIf the fact is false, explain why.\n\n', template_format='f-string', validate_template=True), revised_summary_prompt=PromptTemplate(input_variables=['checked_assertions', 'summary'], output_parser=None, partial_variables={}, template='Below are some assertions that have been fact checked and are labeled as true or false. If the answer is false, a suggestion is given for a correction.\n\nChecked Assertions:\n"""\n{checked_assertions}\n"""\n\nOriginal Summary:\n"""\n{summary}\n"""\n\nUsing these checked assertions, rewrite the original summary to be completely true.\n\nThe output should have the same structure and formatting as the original summary.\n\nSummary:', template_format='f-string', validate_template=True), are_all_true_prompt=PromptTemplate(input_variables=['checked_assertions'], output_parser=None, partial_variables={}, template='Below are some assertions that have been fact checked and are labeled as true or false.\n\nIf all of the assertions are true, return "True". If any
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-104
true or false.\n\nIf all of the assertions are true, return "True". If any of the assertions are false, return "False".\n\nHere are some examples:\n===\n\nChecked Assertions: """\n- The sky is red: False\n- Water is made of lava: False\n- The sun is a star: True\n"""\nResult: False\n\n===\n\nChecked Assertions: """\n- The sky is blue: True\n- Water is wet: True\n- The sun is a star: True\n"""\nResult: True\n\n===\n\nChecked Assertions: """\n- The sky is blue - True\n- Water is made of lava- False\n- The sun is a star - True\n"""\nResult: False\n\n===\n\nChecked Assertions:"""\n{checked_assertions}\n"""\nResult:', template_format='f-string', validate_template=True), verbose=False, **kwargs)[source]
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-105
Parameters llm (langchain.base_language.BaseLanguageModel) – create_assertions_prompt (langchain.prompts.prompt.PromptTemplate) – check_assertions_prompt (langchain.prompts.prompt.PromptTemplate) – revised_summary_prompt (langchain.prompts.prompt.PromptTemplate) – are_all_true_prompt (langchain.prompts.prompt.PromptTemplate) – verbose (bool) – kwargs (Any) – Return type langchain.chains.llm_summarization_checker.base.LLMSummarizationCheckerChain prep_inputs(inputs) Validate and prep inputs. Parameters inputs (Union[Dict[str, Any], Any]) – Return type Dict[str, str] prep_outputs(inputs, outputs, return_only_outputs=False) Validate and prep outputs. Parameters inputs (Dict[str, str]) – outputs (Dict[str, str]) – return_only_outputs (bool) – Return type Dict[str, str] run(*args, callbacks=None, tags=None, **kwargs) Run the chain as text in, text out or multiple variables, text out. Parameters args (Any) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – tags (Optional[List[str]]) – kwargs (Any) – Return type str save(file_path) Save the chain. Parameters file_path (Union[pathlib.Path, str]) – Path to file to save the chain to. Return type None Example: .. code-block:: python chain.save(file_path=”path/chain.yaml”) to_json() Return type Union[langchain.load.serializable.SerializedConstructor, langchain.load.serializable.SerializedNotImplemented]
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-106
to_json_not_implemented() Return type langchain.load.serializable.SerializedNotImplemented property lc_attributes: Dict Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str] Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str] Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool Return whether or not the class is serializable. class langchain.chains.MapReduceChain(*, memory=None, callbacks=None, callback_manager=None, verbose=None, tags=None, combine_documents_chain, text_splitter, input_key='input_text', output_key='output_text')[source] Bases: langchain.chains.base.Chain Map-reduce chain. Parameters memory (Optional[langchain.schema.BaseMemory]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – callback_manager (Optional[langchain.callbacks.base.BaseCallbackManager]) – verbose (bool) – tags (Optional[List[str]]) – combine_documents_chain (langchain.chains.combine_documents.base.BaseCombineDocumentsChain) – text_splitter (langchain.text_splitter.TextSplitter) – input_key (str) – output_key (str) – Return type None attribute callback_manager: Optional[BaseCallbackManager] = None Deprecated, use callbacks instead. attribute callbacks: Callbacks = None Optional list of callback handlers (or callback manager). Defaults to None.
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-107
Optional list of callback handlers (or callback manager). Defaults to None. Callback handlers are called throughout the lifecycle of a call to a chain, starting with on_chain_start, ending with on_chain_end or on_chain_error. Each custom chain can optionally call additional callback methods, see Callback docs for full details. attribute combine_documents_chain: BaseCombineDocumentsChain [Required] Chain to use to combine documents. attribute memory: Optional[BaseMemory] = None Optional memory object. Defaults to None. Memory is a class that gets called at the start and at the end of every chain. At the start, memory loads variables and passes them along in the chain. At the end, it saves any returned variables. There are many different types of memory - please see memory docs for the full catalog. attribute tags: Optional[List[str]] = None Optional list of tags associated with the chain. Defaults to None These tags will be associated with each call to this chain, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a chain with its use case. attribute text_splitter: TextSplitter [Required] Text splitter to use. attribute verbose: bool [Optional] Whether or not run in verbose mode. In verbose mode, some intermediate logs will be printed to the console. Defaults to langchain.verbose value. async acall(inputs, return_only_outputs=False, callbacks=None, *, tags=None, include_run_info=False) Run the logic of this chain and add to output if desired. Parameters inputs (Union[Dict[str, Any], Any]) – Dictionary of inputs, or single input if chain expects only one param. return_only_outputs (bool) – boolean for whether to return only outputs in the
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-108
return_only_outputs (bool) – boolean for whether to return only outputs in the response. If True, only new keys generated by this chain will be returned. If False, both input keys and new keys generated by this chain will be returned. Defaults to False. callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Callbacks to use for this chain run. If not provided, will use the callbacks provided to the chain. include_run_info (bool) – Whether to include run info in the response. Defaults to False. tags (Optional[List[str]]) – Return type Dict[str, Any] apply(input_list, callbacks=None) Call the chain on all inputs in the list. Parameters input_list (List[Dict[str, Any]]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Return type List[Dict[str, str]] async arun(*args, callbacks=None, tags=None, **kwargs) Run the chain as text in, text out or multiple variables, text out. Parameters args (Any) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – tags (Optional[List[str]]) – kwargs (Any) – Return type str dict(**kwargs) Return dictionary representation of chain. Parameters kwargs (Any) – Return type Dict classmethod from_params(llm, prompt, text_splitter, callbacks=None, combine_chain_kwargs=None, reduce_chain_kwargs=None, **kwargs)[source] Construct a map-reduce chain that uses the chain for map and reduce. Parameters
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-109
Construct a map-reduce chain that uses the chain for map and reduce. Parameters llm (langchain.base_language.BaseLanguageModel) – prompt (langchain.prompts.base.BasePromptTemplate) – text_splitter (langchain.text_splitter.TextSplitter) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – combine_chain_kwargs (Optional[Mapping[str, Any]]) – reduce_chain_kwargs (Optional[Mapping[str, Any]]) – kwargs (Any) – Return type langchain.chains.mapreduce.MapReduceChain prep_inputs(inputs) Validate and prep inputs. Parameters inputs (Union[Dict[str, Any], Any]) – Return type Dict[str, str] prep_outputs(inputs, outputs, return_only_outputs=False) Validate and prep outputs. Parameters inputs (Dict[str, str]) – outputs (Dict[str, str]) – return_only_outputs (bool) – Return type Dict[str, str] run(*args, callbacks=None, tags=None, **kwargs) Run the chain as text in, text out or multiple variables, text out. Parameters args (Any) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – tags (Optional[List[str]]) – kwargs (Any) – Return type str save(file_path) Save the chain. Parameters file_path (Union[pathlib.Path, str]) – Path to file to save the chain to. Return type None Example: .. code-block:: python chain.save(file_path=”path/chain.yaml”) to_json() Return type
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-110
chain.save(file_path=”path/chain.yaml”) to_json() Return type Union[langchain.load.serializable.SerializedConstructor, langchain.load.serializable.SerializedNotImplemented] to_json_not_implemented() Return type langchain.load.serializable.SerializedNotImplemented property lc_attributes: Dict Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str] Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str] Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool Return whether or not the class is serializable. class langchain.chains.MultiPromptChain(*, memory=None, callbacks=None, callback_manager=None, verbose=None, tags=None, router_chain, destination_chains, default_chain, silent_errors=False)[source] Bases: langchain.chains.router.base.MultiRouteChain A multi-route chain that uses an LLM router chain to choose amongst prompts. Parameters memory (Optional[langchain.schema.BaseMemory]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – callback_manager (Optional[langchain.callbacks.base.BaseCallbackManager]) – verbose (bool) – tags (Optional[List[str]]) – router_chain (langchain.chains.router.base.RouterChain) – destination_chains (Mapping[str, langchain.chains.llm.LLMChain]) – default_chain (langchain.chains.llm.LLMChain) –
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-111
default_chain (langchain.chains.llm.LLMChain) – silent_errors (bool) – Return type None attribute callback_manager: Optional[BaseCallbackManager] = None Deprecated, use callbacks instead. attribute callbacks: Callbacks = None Optional list of callback handlers (or callback manager). Defaults to None. Callback handlers are called throughout the lifecycle of a call to a chain, starting with on_chain_start, ending with on_chain_end or on_chain_error. Each custom chain can optionally call additional callback methods, see Callback docs for full details. attribute default_chain: LLMChain [Required] Default chain to use when router doesn’t map input to one of the destinations. attribute destination_chains: Mapping[str, LLMChain] [Required] Map of name to candidate chains that inputs can be routed to. attribute memory: Optional[BaseMemory] = None Optional memory object. Defaults to None. Memory is a class that gets called at the start and at the end of every chain. At the start, memory loads variables and passes them along in the chain. At the end, it saves any returned variables. There are many different types of memory - please see memory docs for the full catalog. attribute router_chain: RouterChain [Required] Chain for deciding a destination chain and the input to it. attribute silent_errors: bool = False If True, use default_chain when an invalid destination name is provided. Defaults to False. attribute tags: Optional[List[str]] = None Optional list of tags associated with the chain. Defaults to None These tags will be associated with each call to this chain, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a chain with its use case.
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-112
You can use these to eg identify a specific instance of a chain with its use case. attribute verbose: bool [Optional] Whether or not run in verbose mode. In verbose mode, some intermediate logs will be printed to the console. Defaults to langchain.verbose value. async acall(inputs, return_only_outputs=False, callbacks=None, *, tags=None, include_run_info=False) Run the logic of this chain and add to output if desired. Parameters inputs (Union[Dict[str, Any], Any]) – Dictionary of inputs, or single input if chain expects only one param. return_only_outputs (bool) – boolean for whether to return only outputs in the response. If True, only new keys generated by this chain will be returned. If False, both input keys and new keys generated by this chain will be returned. Defaults to False. callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Callbacks to use for this chain run. If not provided, will use the callbacks provided to the chain. include_run_info (bool) – Whether to include run info in the response. Defaults to False. tags (Optional[List[str]]) – Return type Dict[str, Any] apply(input_list, callbacks=None) Call the chain on all inputs in the list. Parameters input_list (List[Dict[str, Any]]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Return type List[Dict[str, str]] async arun(*args, callbacks=None, tags=None, **kwargs) Run the chain as text in, text out or multiple variables, text out. Parameters args (Any) –
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-113
Parameters args (Any) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – tags (Optional[List[str]]) – kwargs (Any) – Return type str dict(**kwargs) Return dictionary representation of chain. Parameters kwargs (Any) – Return type Dict classmethod from_prompts(llm, prompt_infos, default_chain=None, **kwargs)[source] Convenience constructor for instantiating from destination prompts. Parameters llm (langchain.base_language.BaseLanguageModel) – prompt_infos (List[Dict[str, str]]) – default_chain (Optional[langchain.chains.llm.LLMChain]) – kwargs (Any) – Return type langchain.chains.router.multi_prompt.MultiPromptChain prep_inputs(inputs) Validate and prep inputs. Parameters inputs (Union[Dict[str, Any], Any]) – Return type Dict[str, str] prep_outputs(inputs, outputs, return_only_outputs=False) Validate and prep outputs. Parameters inputs (Dict[str, str]) – outputs (Dict[str, str]) – return_only_outputs (bool) – Return type Dict[str, str] run(*args, callbacks=None, tags=None, **kwargs) Run the chain as text in, text out or multiple variables, text out. Parameters args (Any) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – tags (Optional[List[str]]) – kwargs (Any) – Return type str save(file_path) Save the chain. Parameters
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-114
Return type str save(file_path) Save the chain. Parameters file_path (Union[pathlib.Path, str]) – Path to file to save the chain to. Return type None Example: .. code-block:: python chain.save(file_path=”path/chain.yaml”) to_json() Return type Union[langchain.load.serializable.SerializedConstructor, langchain.load.serializable.SerializedNotImplemented] to_json_not_implemented() Return type langchain.load.serializable.SerializedNotImplemented property lc_attributes: Dict Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str] Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str] Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool Return whether or not the class is serializable. class langchain.chains.MultiRetrievalQAChain(*, memory=None, callbacks=None, callback_manager=None, verbose=None, tags=None, router_chain, destination_chains, default_chain, silent_errors=False)[source] Bases: langchain.chains.router.base.MultiRouteChain A multi-route chain that uses an LLM router chain to choose amongst retrieval qa chains. Parameters memory (Optional[langchain.schema.BaseMemory]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – callback_manager (Optional[langchain.callbacks.base.BaseCallbackManager]) – verbose (bool) –
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-115
verbose (bool) – tags (Optional[List[str]]) – router_chain (langchain.chains.router.llm_router.LLMRouterChain) – destination_chains (Mapping[str, langchain.chains.retrieval_qa.base.BaseRetrievalQA]) – default_chain (langchain.chains.base.Chain) – silent_errors (bool) – Return type None attribute callback_manager: Optional[BaseCallbackManager] = None Deprecated, use callbacks instead. attribute callbacks: Callbacks = None Optional list of callback handlers (or callback manager). Defaults to None. Callback handlers are called throughout the lifecycle of a call to a chain, starting with on_chain_start, ending with on_chain_end or on_chain_error. Each custom chain can optionally call additional callback methods, see Callback docs for full details. attribute default_chain: Chain [Required] Default chain to use when router doesn’t map input to one of the destinations. attribute destination_chains: Mapping[str, BaseRetrievalQA] [Required] Map of name to candidate chains that inputs can be routed to. attribute memory: Optional[BaseMemory] = None Optional memory object. Defaults to None. Memory is a class that gets called at the start and at the end of every chain. At the start, memory loads variables and passes them along in the chain. At the end, it saves any returned variables. There are many different types of memory - please see memory docs for the full catalog. attribute router_chain: LLMRouterChain [Required] Chain for deciding a destination chain and the input to it. attribute silent_errors: bool = False If True, use default_chain when an invalid destination name is provided. Defaults to False.
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-116
If True, use default_chain when an invalid destination name is provided. Defaults to False. attribute tags: Optional[List[str]] = None Optional list of tags associated with the chain. Defaults to None These tags will be associated with each call to this chain, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a chain with its use case. attribute verbose: bool [Optional] Whether or not run in verbose mode. In verbose mode, some intermediate logs will be printed to the console. Defaults to langchain.verbose value. async acall(inputs, return_only_outputs=False, callbacks=None, *, tags=None, include_run_info=False) Run the logic of this chain and add to output if desired. Parameters inputs (Union[Dict[str, Any], Any]) – Dictionary of inputs, or single input if chain expects only one param. return_only_outputs (bool) – boolean for whether to return only outputs in the response. If True, only new keys generated by this chain will be returned. If False, both input keys and new keys generated by this chain will be returned. Defaults to False. callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Callbacks to use for this chain run. If not provided, will use the callbacks provided to the chain. include_run_info (bool) – Whether to include run info in the response. Defaults to False. tags (Optional[List[str]]) – Return type Dict[str, Any] apply(input_list, callbacks=None) Call the chain on all inputs in the list. Parameters input_list (List[Dict[str, Any]]) –
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-117
Parameters input_list (List[Dict[str, Any]]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Return type List[Dict[str, str]] async arun(*args, callbacks=None, tags=None, **kwargs) Run the chain as text in, text out or multiple variables, text out. Parameters args (Any) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – tags (Optional[List[str]]) – kwargs (Any) – Return type str dict(**kwargs) Return dictionary representation of chain. Parameters kwargs (Any) – Return type Dict classmethod from_retrievers(llm, retriever_infos, default_retriever=None, default_prompt=None, default_chain=None, **kwargs)[source] Parameters llm (langchain.base_language.BaseLanguageModel) – retriever_infos (List[Dict[str, Any]]) – default_retriever (Optional[langchain.schema.BaseRetriever]) – default_prompt (Optional[langchain.prompts.prompt.PromptTemplate]) – default_chain (Optional[langchain.chains.base.Chain]) – kwargs (Any) – Return type langchain.chains.router.multi_retrieval_qa.MultiRetrievalQAChain prep_inputs(inputs) Validate and prep inputs. Parameters inputs (Union[Dict[str, Any], Any]) – Return type Dict[str, str] prep_outputs(inputs, outputs, return_only_outputs=False) Validate and prep outputs. Parameters inputs (Dict[str, str]) – outputs (Dict[str, str]) –
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-118
inputs (Dict[str, str]) – outputs (Dict[str, str]) – return_only_outputs (bool) – Return type Dict[str, str] run(*args, callbacks=None, tags=None, **kwargs) Run the chain as text in, text out or multiple variables, text out. Parameters args (Any) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – tags (Optional[List[str]]) – kwargs (Any) – Return type str save(file_path) Save the chain. Parameters file_path (Union[pathlib.Path, str]) – Path to file to save the chain to. Return type None Example: .. code-block:: python chain.save(file_path=”path/chain.yaml”) to_json() Return type Union[langchain.load.serializable.SerializedConstructor, langchain.load.serializable.SerializedNotImplemented] to_json_not_implemented() Return type langchain.load.serializable.SerializedNotImplemented property lc_attributes: Dict Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str] Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str] Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool Return whether or not the class is serializable.
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-119
property lc_serializable: bool Return whether or not the class is serializable. class langchain.chains.MultiRouteChain(*, memory=None, callbacks=None, callback_manager=None, verbose=None, tags=None, router_chain, destination_chains, default_chain, silent_errors=False)[source] Bases: langchain.chains.base.Chain Use a single chain to route an input to one of multiple candidate chains. Parameters memory (Optional[langchain.schema.BaseMemory]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – callback_manager (Optional[langchain.callbacks.base.BaseCallbackManager]) – verbose (bool) – tags (Optional[List[str]]) – router_chain (langchain.chains.router.base.RouterChain) – destination_chains (Mapping[str, langchain.chains.base.Chain]) – default_chain (langchain.chains.base.Chain) – silent_errors (bool) – Return type None attribute callback_manager: Optional[BaseCallbackManager] = None Deprecated, use callbacks instead. attribute callbacks: Callbacks = None Optional list of callback handlers (or callback manager). Defaults to None. Callback handlers are called throughout the lifecycle of a call to a chain, starting with on_chain_start, ending with on_chain_end or on_chain_error. Each custom chain can optionally call additional callback methods, see Callback docs for full details. attribute default_chain: Chain [Required] Default chain to use when none of the destination chains are suitable. attribute destination_chains: Mapping[str, Chain] [Required] Chains that return final answer to inputs. attribute memory: Optional[BaseMemory] = None Optional memory object. Defaults to None.
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-120
Optional memory object. Defaults to None. Memory is a class that gets called at the start and at the end of every chain. At the start, memory loads variables and passes them along in the chain. At the end, it saves any returned variables. There are many different types of memory - please see memory docs for the full catalog. attribute router_chain: RouterChain [Required] Chain that routes inputs to destination chains. attribute silent_errors: bool = False If True, use default_chain when an invalid destination name is provided. Defaults to False. attribute tags: Optional[List[str]] = None Optional list of tags associated with the chain. Defaults to None These tags will be associated with each call to this chain, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a chain with its use case. attribute verbose: bool [Optional] Whether or not run in verbose mode. In verbose mode, some intermediate logs will be printed to the console. Defaults to langchain.verbose value. async acall(inputs, return_only_outputs=False, callbacks=None, *, tags=None, include_run_info=False) Run the logic of this chain and add to output if desired. Parameters inputs (Union[Dict[str, Any], Any]) – Dictionary of inputs, or single input if chain expects only one param. return_only_outputs (bool) – boolean for whether to return only outputs in the response. If True, only new keys generated by this chain will be returned. If False, both input keys and new keys generated by this chain will be returned. Defaults to False. callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Callbacks to use for this chain run. If not provided, will
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-121
use the callbacks provided to the chain. include_run_info (bool) – Whether to include run info in the response. Defaults to False. tags (Optional[List[str]]) – Return type Dict[str, Any] apply(input_list, callbacks=None) Call the chain on all inputs in the list. Parameters input_list (List[Dict[str, Any]]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Return type List[Dict[str, str]] async arun(*args, callbacks=None, tags=None, **kwargs) Run the chain as text in, text out or multiple variables, text out. Parameters args (Any) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – tags (Optional[List[str]]) – kwargs (Any) – Return type str dict(**kwargs) Return dictionary representation of chain. Parameters kwargs (Any) – Return type Dict prep_inputs(inputs) Validate and prep inputs. Parameters inputs (Union[Dict[str, Any], Any]) – Return type Dict[str, str] prep_outputs(inputs, outputs, return_only_outputs=False) Validate and prep outputs. Parameters inputs (Dict[str, str]) – outputs (Dict[str, str]) – return_only_outputs (bool) – Return type Dict[str, str] run(*args, callbacks=None, tags=None, **kwargs) Run the chain as text in, text out or multiple variables, text out. Parameters args (Any) –
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-122
Parameters args (Any) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – tags (Optional[List[str]]) – kwargs (Any) – Return type str save(file_path) Save the chain. Parameters file_path (Union[pathlib.Path, str]) – Path to file to save the chain to. Return type None Example: .. code-block:: python chain.save(file_path=”path/chain.yaml”) to_json() Return type Union[langchain.load.serializable.SerializedConstructor, langchain.load.serializable.SerializedNotImplemented] to_json_not_implemented() Return type langchain.load.serializable.SerializedNotImplemented property lc_attributes: Dict Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str] Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str] Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool Return whether or not the class is serializable. class langchain.chains.NatBotChain(*, memory=None, callbacks=None, callback_manager=None, verbose=None, tags=None, llm_chain, objective, llm=None, input_url_key='url', input_browser_content_key='browser_content', previous_command='', output_key='command')[source] Bases: langchain.chains.base.Chain Implement an LLM driven browser. Example from langchain import NatBotChain
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-123
Implement an LLM driven browser. Example from langchain import NatBotChain natbot = NatBotChain.from_default("Buy me a new hat.") Parameters memory (Optional[langchain.schema.BaseMemory]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – callback_manager (Optional[langchain.callbacks.base.BaseCallbackManager]) – verbose (bool) – tags (Optional[List[str]]) – llm_chain (langchain.chains.llm.LLMChain) – objective (str) – llm (Optional[langchain.base_language.BaseLanguageModel]) – input_url_key (str) – input_browser_content_key (str) – previous_command (str) – output_key (str) – Return type None attribute callback_manager: Optional[BaseCallbackManager] = None Deprecated, use callbacks instead. attribute callbacks: Callbacks = None Optional list of callback handlers (or callback manager). Defaults to None. Callback handlers are called throughout the lifecycle of a call to a chain, starting with on_chain_start, ending with on_chain_end or on_chain_error. Each custom chain can optionally call additional callback methods, see Callback docs for full details. attribute llm: Optional[BaseLanguageModel] = None [Deprecated] LLM wrapper to use. attribute llm_chain: LLMChain [Required] attribute memory: Optional[BaseMemory] = None Optional memory object. Defaults to None. Memory is a class that gets called at the start and at the end of every chain. At the start, memory loads variables and passes them along in the chain. At the end, it saves any returned variables.
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-124
them along in the chain. At the end, it saves any returned variables. There are many different types of memory - please see memory docs for the full catalog. attribute objective: str [Required] Objective that NatBot is tasked with completing. attribute tags: Optional[List[str]] = None Optional list of tags associated with the chain. Defaults to None These tags will be associated with each call to this chain, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a chain with its use case. attribute verbose: bool [Optional] Whether or not run in verbose mode. In verbose mode, some intermediate logs will be printed to the console. Defaults to langchain.verbose value. async acall(inputs, return_only_outputs=False, callbacks=None, *, tags=None, include_run_info=False) Run the logic of this chain and add to output if desired. Parameters inputs (Union[Dict[str, Any], Any]) – Dictionary of inputs, or single input if chain expects only one param. return_only_outputs (bool) – boolean for whether to return only outputs in the response. If True, only new keys generated by this chain will be returned. If False, both input keys and new keys generated by this chain will be returned. Defaults to False. callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Callbacks to use for this chain run. If not provided, will use the callbacks provided to the chain. include_run_info (bool) – Whether to include run info in the response. Defaults to False. tags (Optional[List[str]]) – Return type Dict[str, Any] apply(input_list, callbacks=None)
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-125
Return type Dict[str, Any] apply(input_list, callbacks=None) Call the chain on all inputs in the list. Parameters input_list (List[Dict[str, Any]]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Return type List[Dict[str, str]] async arun(*args, callbacks=None, tags=None, **kwargs) Run the chain as text in, text out or multiple variables, text out. Parameters args (Any) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – tags (Optional[List[str]]) – kwargs (Any) – Return type str dict(**kwargs) Return dictionary representation of chain. Parameters kwargs (Any) – Return type Dict execute(url, browser_content)[source] Figure out next browser command to run. Parameters url (str) – URL of the site currently on. browser_content (str) – Content of the page as currently displayed by the browser. Returns Next browser command to run. Return type str Example browser_content = "...." llm_command = natbot.run("www.google.com", browser_content) classmethod from_default(objective, **kwargs)[source] Load with default LLMChain. Parameters objective (str) – kwargs (Any) – Return type langchain.chains.natbot.base.NatBotChain classmethod from_llm(llm, objective, **kwargs)[source] Load from LLM. Parameters llm (langchain.base_language.BaseLanguageModel) – objective (str) – kwargs (Any) –
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-126
objective (str) – kwargs (Any) – Return type langchain.chains.natbot.base.NatBotChain prep_inputs(inputs) Validate and prep inputs. Parameters inputs (Union[Dict[str, Any], Any]) – Return type Dict[str, str] prep_outputs(inputs, outputs, return_only_outputs=False) Validate and prep outputs. Parameters inputs (Dict[str, str]) – outputs (Dict[str, str]) – return_only_outputs (bool) – Return type Dict[str, str] run(*args, callbacks=None, tags=None, **kwargs) Run the chain as text in, text out or multiple variables, text out. Parameters args (Any) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – tags (Optional[List[str]]) – kwargs (Any) – Return type str save(file_path) Save the chain. Parameters file_path (Union[pathlib.Path, str]) – Path to file to save the chain to. Return type None Example: .. code-block:: python chain.save(file_path=”path/chain.yaml”) to_json() Return type Union[langchain.load.serializable.SerializedConstructor, langchain.load.serializable.SerializedNotImplemented] to_json_not_implemented() Return type langchain.load.serializable.SerializedNotImplemented property lc_attributes: Dict Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str] Return the namespace of the langchain object.
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-127
property lc_namespace: List[str] Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str] Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool Return whether or not the class is serializable. class langchain.chains.NebulaGraphQAChain(*, memory=None, callbacks=None, callback_manager=None, verbose=None, tags=None, graph, ngql_generation_chain, qa_chain, input_key='query', output_key='result')[source] Bases: langchain.chains.base.Chain Chain for question-answering against a graph by generating nGQL statements. Parameters memory (Optional[langchain.schema.BaseMemory]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – callback_manager (Optional[langchain.callbacks.base.BaseCallbackManager]) – verbose (bool) – tags (Optional[List[str]]) – graph (langchain.graphs.nebula_graph.NebulaGraph) – ngql_generation_chain (langchain.chains.llm.LLMChain) – qa_chain (langchain.chains.llm.LLMChain) – input_key (str) – output_key (str) – Return type None attribute callback_manager: Optional[BaseCallbackManager] = None Deprecated, use callbacks instead. attribute callbacks: Callbacks = None Optional list of callback handlers (or callback manager). Defaults to None. Callback handlers are called throughout the lifecycle of a call to a chain,
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-128
Callback handlers are called throughout the lifecycle of a call to a chain, starting with on_chain_start, ending with on_chain_end or on_chain_error. Each custom chain can optionally call additional callback methods, see Callback docs for full details. attribute graph: NebulaGraph [Required] attribute memory: Optional[BaseMemory] = None Optional memory object. Defaults to None. Memory is a class that gets called at the start and at the end of every chain. At the start, memory loads variables and passes them along in the chain. At the end, it saves any returned variables. There are many different types of memory - please see memory docs for the full catalog. attribute ngql_generation_chain: LLMChain [Required] attribute qa_chain: LLMChain [Required] attribute tags: Optional[List[str]] = None Optional list of tags associated with the chain. Defaults to None These tags will be associated with each call to this chain, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a chain with its use case. attribute verbose: bool [Optional] Whether or not run in verbose mode. In verbose mode, some intermediate logs will be printed to the console. Defaults to langchain.verbose value. async acall(inputs, return_only_outputs=False, callbacks=None, *, tags=None, include_run_info=False) Run the logic of this chain and add to output if desired. Parameters inputs (Union[Dict[str, Any], Any]) – Dictionary of inputs, or single input if chain expects only one param. return_only_outputs (bool) – boolean for whether to return only outputs in the response. If True, only new keys generated by this chain will be
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-129
response. If True, only new keys generated by this chain will be returned. If False, both input keys and new keys generated by this chain will be returned. Defaults to False. callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Callbacks to use for this chain run. If not provided, will use the callbacks provided to the chain. include_run_info (bool) – Whether to include run info in the response. Defaults to False. tags (Optional[List[str]]) – Return type Dict[str, Any] apply(input_list, callbacks=None) Call the chain on all inputs in the list. Parameters input_list (List[Dict[str, Any]]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Return type List[Dict[str, str]] async arun(*args, callbacks=None, tags=None, **kwargs) Run the chain as text in, text out or multiple variables, text out. Parameters args (Any) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – tags (Optional[List[str]]) – kwargs (Any) – Return type str dict(**kwargs) Return dictionary representation of chain. Parameters kwargs (Any) – Return type Dict
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-130
classmethod from_llm(llm, *, qa_prompt=PromptTemplate(input_variables=['context', 'question'], output_parser=None, partial_variables={}, template="You are an assistant that helps to form nice and human understandable answers.\nThe information part contains the provided information that you must use to construct an answer.\nThe provided information is authorative, you must never doubt it or try to use your internal knowledge to correct it.\nMake the answer sound as a response to the question. Do not mention that you based the result on the given information.\nIf the provided information is empty, say that you don't know the answer.\nInformation:\n{context}\n\nQuestion: {question}\nHelpful Answer:", template_format='f-string', validate_template=True), ngql_prompt=PromptTemplate(input_variables=['schema', 'question'], output_parser=None, partial_variables={}, template="Task:Generate NebulaGraph Cypher statement to query a graph database.\n\nInstructions:\n\nFirst, generate cypher then convert it to NebulaGraph Cypher dialect(rather than standard):\n1. it requires explicit label specification when referring to node properties: v.`Foo`.name\n2. it uses double equals sign for comparison: `==` rather than `=`\nFor instance:\n```diff\n< MATCH (p:person)-[:directed]->(m:movie) WHERE m.name = 'The Godfather II'\n< RETURN p.name;\n---\n> MATCH (p:`person`)-[:directed]->(m:`movie`) WHERE m.`movie`.`name` == 'The Godfather II'\n> RETURN p.`person`.`name`;\n```\n\nUse only the provided relationship types and properties in the schema.\nDo not use any other relationship types or properties that are not provided.\nSchema:\n{schema}\nNote: Do not include any explanations or apologies in your responses.\nDo not respond to
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-131
Do not include any explanations or apologies in your responses.\nDo not respond to any questions that might ask anything else than for you to construct a Cypher statement.\nDo not include any text except the generated Cypher statement.\n\nThe question is:\n{question}", template_format='f-string', validate_template=True), **kwargs)[source]
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-132
Initialize from LLM. Parameters llm (langchain.base_language.BaseLanguageModel) – qa_prompt (langchain.prompts.base.BasePromptTemplate) – ngql_prompt (langchain.prompts.base.BasePromptTemplate) – kwargs (Any) – Return type langchain.chains.graph_qa.nebulagraph.NebulaGraphQAChain prep_inputs(inputs) Validate and prep inputs. Parameters inputs (Union[Dict[str, Any], Any]) – Return type Dict[str, str] prep_outputs(inputs, outputs, return_only_outputs=False) Validate and prep outputs. Parameters inputs (Dict[str, str]) – outputs (Dict[str, str]) – return_only_outputs (bool) – Return type Dict[str, str] run(*args, callbacks=None, tags=None, **kwargs) Run the chain as text in, text out or multiple variables, text out. Parameters args (Any) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – tags (Optional[List[str]]) – kwargs (Any) – Return type str save(file_path) Save the chain. Parameters file_path (Union[pathlib.Path, str]) – Path to file to save the chain to. Return type None Example: .. code-block:: python chain.save(file_path=”path/chain.yaml”) to_json() Return type Union[langchain.load.serializable.SerializedConstructor, langchain.load.serializable.SerializedNotImplemented] to_json_not_implemented() Return type langchain.load.serializable.SerializedNotImplemented property lc_attributes: Dict
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-133
langchain.load.serializable.SerializedNotImplemented property lc_attributes: Dict Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str] Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str] Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool Return whether or not the class is serializable. class langchain.chains.OpenAIModerationChain(*, memory=None, callbacks=None, callback_manager=None, verbose=None, tags=None, client=None, model_name=None, error=False, input_key='input', output_key='output', openai_api_key=None, openai_organization=None)[source] Bases: langchain.chains.base.Chain Pass input through a moderation endpoint. To use, you should have the openai python package installed, and the environment variable OPENAI_API_KEY set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example from langchain.chains import OpenAIModerationChain moderation = OpenAIModerationChain() Parameters memory (Optional[langchain.schema.BaseMemory]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – callback_manager (Optional[langchain.callbacks.base.BaseCallbackManager]) – verbose (bool) – tags (Optional[List[str]]) – client (Any) – model_name (Optional[str]) –
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-134
client (Any) – model_name (Optional[str]) – error (bool) – input_key (str) – output_key (str) – openai_api_key (Optional[str]) – openai_organization (Optional[str]) – Return type None attribute callback_manager: Optional[BaseCallbackManager] = None Deprecated, use callbacks instead. attribute callbacks: Callbacks = None Optional list of callback handlers (or callback manager). Defaults to None. Callback handlers are called throughout the lifecycle of a call to a chain, starting with on_chain_start, ending with on_chain_end or on_chain_error. Each custom chain can optionally call additional callback methods, see Callback docs for full details. attribute error: bool = False Whether or not to error if bad content was found. attribute memory: Optional[BaseMemory] = None Optional memory object. Defaults to None. Memory is a class that gets called at the start and at the end of every chain. At the start, memory loads variables and passes them along in the chain. At the end, it saves any returned variables. There are many different types of memory - please see memory docs for the full catalog. attribute model_name: Optional[str] = None Moderation model name to use. attribute openai_api_key: Optional[str] = None attribute openai_organization: Optional[str] = None attribute tags: Optional[List[str]] = None Optional list of tags associated with the chain. Defaults to None These tags will be associated with each call to this chain, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a chain with its use case. attribute verbose: bool [Optional]
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-135
attribute verbose: bool [Optional] Whether or not run in verbose mode. In verbose mode, some intermediate logs will be printed to the console. Defaults to langchain.verbose value. async acall(inputs, return_only_outputs=False, callbacks=None, *, tags=None, include_run_info=False) Run the logic of this chain and add to output if desired. Parameters inputs (Union[Dict[str, Any], Any]) – Dictionary of inputs, or single input if chain expects only one param. return_only_outputs (bool) – boolean for whether to return only outputs in the response. If True, only new keys generated by this chain will be returned. If False, both input keys and new keys generated by this chain will be returned. Defaults to False. callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Callbacks to use for this chain run. If not provided, will use the callbacks provided to the chain. include_run_info (bool) – Whether to include run info in the response. Defaults to False. tags (Optional[List[str]]) – Return type Dict[str, Any] apply(input_list, callbacks=None) Call the chain on all inputs in the list. Parameters input_list (List[Dict[str, Any]]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Return type List[Dict[str, str]] async arun(*args, callbacks=None, tags=None, **kwargs) Run the chain as text in, text out or multiple variables, text out. Parameters args (Any) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) –
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-136
tags (Optional[List[str]]) – kwargs (Any) – Return type str dict(**kwargs) Return dictionary representation of chain. Parameters kwargs (Any) – Return type Dict prep_inputs(inputs) Validate and prep inputs. Parameters inputs (Union[Dict[str, Any], Any]) – Return type Dict[str, str] prep_outputs(inputs, outputs, return_only_outputs=False) Validate and prep outputs. Parameters inputs (Dict[str, str]) – outputs (Dict[str, str]) – return_only_outputs (bool) – Return type Dict[str, str] run(*args, callbacks=None, tags=None, **kwargs) Run the chain as text in, text out or multiple variables, text out. Parameters args (Any) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – tags (Optional[List[str]]) – kwargs (Any) – Return type str save(file_path) Save the chain. Parameters file_path (Union[pathlib.Path, str]) – Path to file to save the chain to. Return type None Example: .. code-block:: python chain.save(file_path=”path/chain.yaml”) to_json() Return type Union[langchain.load.serializable.SerializedConstructor, langchain.load.serializable.SerializedNotImplemented] to_json_not_implemented() Return type langchain.load.serializable.SerializedNotImplemented property lc_attributes: Dict Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-137
constructor. property lc_namespace: List[str] Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str] Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool Return whether or not the class is serializable. class langchain.chains.OpenAPIEndpointChain(*, memory=None, callbacks=None, callback_manager=None, verbose=None, tags=None, api_request_chain, api_response_chain=None, api_operation, requests=None, param_mapping, return_intermediate_steps=False, instructions_key='instructions', output_key='output', max_text_length=None)[source] Bases: langchain.chains.base.Chain, pydantic.main.BaseModel Chain interacts with an OpenAPI endpoint using natural language. Parameters memory (Optional[langchain.schema.BaseMemory]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – callback_manager (Optional[langchain.callbacks.base.BaseCallbackManager]) – verbose (bool) – tags (Optional[List[str]]) – api_request_chain (langchain.chains.llm.LLMChain) – api_response_chain (Optional[langchain.chains.llm.LLMChain]) – api_operation (langchain.tools.openapi.utils.api_models.APIOperation) – requests (langchain.requests.Requests) – param_mapping (langchain.chains.api.openapi.chain._ParamMapping) – return_intermediate_steps (bool) – instructions_key (str) – output_key (str) – max_text_length (Optional[int]) – Return type None
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-138
max_text_length (Optional[int]) – Return type None attribute api_operation: APIOperation [Required] attribute api_request_chain: LLMChain [Required] attribute api_response_chain: Optional[LLMChain] = None attribute callback_manager: Optional[BaseCallbackManager] = None Deprecated, use callbacks instead. attribute callbacks: Callbacks = None Optional list of callback handlers (or callback manager). Defaults to None. Callback handlers are called throughout the lifecycle of a call to a chain, starting with on_chain_start, ending with on_chain_end or on_chain_error. Each custom chain can optionally call additional callback methods, see Callback docs for full details. attribute memory: Optional[BaseMemory] = None Optional memory object. Defaults to None. Memory is a class that gets called at the start and at the end of every chain. At the start, memory loads variables and passes them along in the chain. At the end, it saves any returned variables. There are many different types of memory - please see memory docs for the full catalog. attribute param_mapping: _ParamMapping [Required] attribute requests: Requests [Optional] attribute return_intermediate_steps: bool = False attribute tags: Optional[List[str]] = None Optional list of tags associated with the chain. Defaults to None These tags will be associated with each call to this chain, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a chain with its use case. attribute verbose: bool [Optional] Whether or not run in verbose mode. In verbose mode, some intermediate logs will be printed to the console. Defaults to langchain.verbose value.
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-139
will be printed to the console. Defaults to langchain.verbose value. async acall(inputs, return_only_outputs=False, callbacks=None, *, tags=None, include_run_info=False) Run the logic of this chain and add to output if desired. Parameters inputs (Union[Dict[str, Any], Any]) – Dictionary of inputs, or single input if chain expects only one param. return_only_outputs (bool) – boolean for whether to return only outputs in the response. If True, only new keys generated by this chain will be returned. If False, both input keys and new keys generated by this chain will be returned. Defaults to False. callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Callbacks to use for this chain run. If not provided, will use the callbacks provided to the chain. include_run_info (bool) – Whether to include run info in the response. Defaults to False. tags (Optional[List[str]]) – Return type Dict[str, Any] apply(input_list, callbacks=None) Call the chain on all inputs in the list. Parameters input_list (List[Dict[str, Any]]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Return type List[Dict[str, str]] async arun(*args, callbacks=None, tags=None, **kwargs) Run the chain as text in, text out or multiple variables, text out. Parameters args (Any) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – tags (Optional[List[str]]) – kwargs (Any) – Return type str
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-140
kwargs (Any) – Return type str deserialize_json_input(serialized_args)[source] Use the serialized typescript dictionary. Resolve the path, query params dict, and optional requestBody dict. Parameters serialized_args (str) – Return type dict dict(**kwargs) Return dictionary representation of chain. Parameters kwargs (Any) – Return type Dict classmethod from_api_operation(operation, llm, requests=None, verbose=False, return_intermediate_steps=False, raw_response=False, callbacks=None, **kwargs)[source] Create an OpenAPIEndpointChain from an operation and a spec. Parameters operation (langchain.tools.openapi.utils.api_models.APIOperation) – llm (langchain.base_language.BaseLanguageModel) – requests (Optional[langchain.requests.Requests]) – verbose (bool) – return_intermediate_steps (bool) – raw_response (bool) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – kwargs (Any) – Return type langchain.chains.api.openapi.chain.OpenAPIEndpointChain classmethod from_url_and_method(spec_url, path, method, llm, requests=None, return_intermediate_steps=False, **kwargs)[source] Create an OpenAPIEndpoint from a spec at the specified url. Parameters spec_url (str) – path (str) – method (str) – llm (langchain.base_language.BaseLanguageModel) – requests (Optional[langchain.requests.Requests]) – return_intermediate_steps (bool) – kwargs (Any) – Return type langchain.chains.api.openapi.chain.OpenAPIEndpointChain prep_inputs(inputs) Validate and prep inputs. Parameters
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-141
prep_inputs(inputs) Validate and prep inputs. Parameters inputs (Union[Dict[str, Any], Any]) – Return type Dict[str, str] prep_outputs(inputs, outputs, return_only_outputs=False) Validate and prep outputs. Parameters inputs (Dict[str, str]) – outputs (Dict[str, str]) – return_only_outputs (bool) – Return type Dict[str, str] run(*args, callbacks=None, tags=None, **kwargs) Run the chain as text in, text out or multiple variables, text out. Parameters args (Any) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – tags (Optional[List[str]]) – kwargs (Any) – Return type str save(file_path) Save the chain. Parameters file_path (Union[pathlib.Path, str]) – Path to file to save the chain to. Return type None Example: .. code-block:: python chain.save(file_path=”path/chain.yaml”) to_json() Return type Union[langchain.load.serializable.SerializedConstructor, langchain.load.serializable.SerializedNotImplemented] to_json_not_implemented() Return type langchain.load.serializable.SerializedNotImplemented property lc_attributes: Dict Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str] Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str] Return a map of constructor argument names to secret ids.
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-142
Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool Return whether or not the class is serializable.
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-143
class langchain.chains.PALChain(*, memory=None, callbacks=None, callback_manager=None, verbose=None, tags=None, llm_chain, llm=None, prompt=PromptTemplate(input_variables=['question'], output_parser=None, partial_variables={}, template='Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?\n\n# solution in Python:\n\n\ndef solution():\n    """Olivia has $23. She bought five bagels for $3 each. How much money does she have left?"""\n    money_initial = 23\n    bagels = 5\n    bagel_cost = 3\n    money_spent = bagels * bagel_cost\n    money_left = money_initial - money_spent\n    result = money_left\n    return result\n\n\n\n\n\nQ: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many golf balls did he have at the end of wednesday?\n\n# solution in Python:\n\n\ndef solution():\n    """Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many golf balls did he have at the end of wednesday?"""\n    golf_balls_initial = 58\n    golf_balls_lost_tuesday = 23\n    golf_balls_lost_wednesday = 2\n    golf_balls_left = golf_balls_initial - golf_balls_lost_tuesday - golf_balls_lost_wednesday\n    result = golf_balls_left\n    return result\n\n\n\n\n\nQ: There were nine computers in the server room. Five more computers were installed each day, from monday to thursday. How many computers are now in the server
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-144
computers were installed each day, from monday to thursday. How many computers are now in the server room?\n\n# solution in Python:\n\n\ndef solution():\n    """There were nine computers in the server room. Five more computers were installed each day, from monday to thursday. How many computers are now in the server room?"""\n    computers_initial = 9\n    computers_per_day = 5\n    num_days = 4  # 4 days between monday and thursday\n    computers_added = computers_per_day * num_days\n    computers_total = computers_initial + computers_added\n    result = computers_total\n    return result\n\n\n\n\n\nQ: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?\n\n# solution in Python:\n\n\ndef solution():\n    """Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?"""\n    toys_initial = 5\n    mom_toys = 2\n    dad_toys = 2\n    total_received = mom_toys + dad_toys\n    total_toys = toys_initial + total_received\n    result = total_toys\n    return result\n\n\n\n\n\nQ: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops did Jason give to Denny?\n\n# solution in Python:\n\n\ndef solution():\n    """Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops did Jason give to Denny?"""\n    jason_lollipops_initial =
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-145
did Jason give to Denny?"""\n    jason_lollipops_initial = 20\n    jason_lollipops_after = 12\n    denny_lollipops = jason_lollipops_initial - jason_lollipops_after\n    result = denny_lollipops\n    return result\n\n\n\n\n\nQ: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?\n\n# solution in Python:\n\n\ndef solution():\n    """Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?"""\n    leah_chocolates = 32\n    sister_chocolates = 42\n    total_chocolates = leah_chocolates + sister_chocolates\n    chocolates_eaten = 35\n    chocolates_left = total_chocolates - chocolates_eaten\n    result = chocolates_left\n    return result\n\n\n\n\n\nQ: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?\n\n# solution in Python:\n\n\ndef solution():\n    """If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?"""\n    cars_initial = 3\n    cars_arrived = 2\n    total_cars = cars_initial + cars_arrived\n    result = total_cars\n    return result\n\n\n\n\n\nQ: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there will be 21 trees. How many trees did the grove workers plant today?\n\n# solution in
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-146
21 trees. How many trees did the grove workers plant today?\n\n# solution in Python:\n\n\ndef solution():\n    """There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there will be 21 trees. How many trees did the grove workers plant today?"""\n    trees_initial = 15\n    trees_after = 21\n    trees_added = trees_after - trees_initial\n    result = trees_added\n    return result\n\n\n\n\n\nQ: {question}\n\n# solution in Python:\n\n\n', template_format='f-string', validate_template=True), stop='\n\n', get_answer_expr='print(solution())', python_globals=None, python_locals=None, output_key='result', return_intermediate_steps=False)[source]
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-147
Bases: langchain.chains.base.Chain Implements Program-Aided Language Models. Parameters memory (Optional[langchain.schema.BaseMemory]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – callback_manager (Optional[langchain.callbacks.base.BaseCallbackManager]) – verbose (bool) – tags (Optional[List[str]]) – llm_chain (langchain.chains.llm.LLMChain) – llm (Optional[langchain.base_language.BaseLanguageModel]) – prompt (langchain.prompts.base.BasePromptTemplate) – stop (str) – get_answer_expr (str) – python_globals (Optional[Dict[str, Any]]) – python_locals (Optional[Dict[str, Any]]) – output_key (str) – return_intermediate_steps (bool) – Return type None attribute callback_manager: Optional[BaseCallbackManager] = None Deprecated, use callbacks instead. attribute callbacks: Callbacks = None Optional list of callback handlers (or callback manager). Defaults to None. Callback handlers are called throughout the lifecycle of a call to a chain, starting with on_chain_start, ending with on_chain_end or on_chain_error. Each custom chain can optionally call additional callback methods, see Callback docs for full details. attribute get_answer_expr: str = 'print(solution())' attribute llm: Optional[BaseLanguageModel] = None [Deprecated] attribute llm_chain: LLMChain [Required] attribute memory: Optional[BaseMemory] = None Optional memory object. Defaults to None. Memory is a class that gets called at the start
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-148
Optional memory object. Defaults to None. Memory is a class that gets called at the start and at the end of every chain. At the start, memory loads variables and passes them along in the chain. At the end, it saves any returned variables. There are many different types of memory - please see memory docs for the full catalog.
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-149
attribute prompt: BasePromptTemplate = PromptTemplate(input_variables=['question'], output_parser=None, partial_variables={}, template='Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?\n\n# solution in Python:\n\n\ndef solution():\n    """Olivia has $23. She bought five bagels for $3 each. How much money does she have left?"""\n    money_initial = 23\n    bagels = 5\n    bagel_cost = 3\n    money_spent = bagels * bagel_cost\n    money_left = money_initial - money_spent\n    result = money_left\n    return result\n\n\n\n\n\nQ: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many golf balls did he have at the end of wednesday?\n\n# solution in Python:\n\n\ndef solution():\n    """Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many golf balls did he have at the end of wednesday?"""\n    golf_balls_initial = 58\n    golf_balls_lost_tuesday = 23\n    golf_balls_lost_wednesday = 2\n    golf_balls_left = golf_balls_initial - golf_balls_lost_tuesday - golf_balls_lost_wednesday\n    result = golf_balls_left\n    return result\n\n\n\n\n\nQ: There were nine computers in the server room. Five more computers were installed each day, from monday to thursday. How many computers are now in the server room?\n\n# solution in Python:\n\n\ndef solution():\n    """There were nine computers in the server room. Five more computers were installed
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-150
solution():\n    """There were nine computers in the server room. Five more computers were installed each day, from monday to thursday. How many computers are now in the server room?"""\n    computers_initial = 9\n    computers_per_day = 5\n    num_days = 4  # 4 days between monday and thursday\n    computers_added = computers_per_day * num_days\n    computers_total = computers_initial + computers_added\n    result = computers_total\n    return result\n\n\n\n\n\nQ: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?\n\n# solution in Python:\n\n\ndef solution():\n    """Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?"""\n    toys_initial = 5\n    mom_toys = 2\n    dad_toys = 2\n    total_received = mom_toys + dad_toys\n    total_toys = toys_initial + total_received\n    result = total_toys\n    return result\n\n\n\n\n\nQ: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops did Jason give to Denny?\n\n# solution in Python:\n\n\ndef solution():\n    """Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops did Jason give to Denny?"""\n    jason_lollipops_initial = 20\n    jason_lollipops_after = 12\n    denny_lollipops = jason_lollipops_initial -
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-151
= 12\n    denny_lollipops = jason_lollipops_initial - jason_lollipops_after\n    result = denny_lollipops\n    return result\n\n\n\n\n\nQ: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?\n\n# solution in Python:\n\n\ndef solution():\n    """Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?"""\n    leah_chocolates = 32\n    sister_chocolates = 42\n    total_chocolates = leah_chocolates + sister_chocolates\n    chocolates_eaten = 35\n    chocolates_left = total_chocolates - chocolates_eaten\n    result = chocolates_left\n    return result\n\n\n\n\n\nQ: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?\n\n# solution in Python:\n\n\ndef solution():\n    """If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?"""\n    cars_initial = 3\n    cars_arrived = 2\n    total_cars = cars_initial + cars_arrived\n    result = total_cars\n    return result\n\n\n\n\n\nQ: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there will be 21 trees. How many trees did the grove workers plant today?\n\n# solution in Python:\n\n\ndef solution():\n    """There are 15 trees in the grove. Grove workers will plant trees in the grove today. After
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-152
15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there will be 21 trees. How many trees did the grove workers plant today?"""\n    trees_initial = 15\n    trees_after = 21\n    trees_added = trees_after - trees_initial\n    result = trees_added\n    return result\n\n\n\n\n\nQ: {question}\n\n# solution in Python:\n\n\n', template_format='f-string', validate_template=True)
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-153
[Deprecated] attribute python_globals: Optional[Dict[str, Any]] = None attribute python_locals: Optional[Dict[str, Any]] = None attribute return_intermediate_steps: bool = False attribute stop: str = '\n\n' attribute tags: Optional[List[str]] = None Optional list of tags associated with the chain. Defaults to None These tags will be associated with each call to this chain, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a chain with its use case. attribute verbose: bool [Optional] Whether or not run in verbose mode. In verbose mode, some intermediate logs will be printed to the console. Defaults to langchain.verbose value. async acall(inputs, return_only_outputs=False, callbacks=None, *, tags=None, include_run_info=False) Run the logic of this chain and add to output if desired. Parameters inputs (Union[Dict[str, Any], Any]) – Dictionary of inputs, or single input if chain expects only one param. return_only_outputs (bool) – boolean for whether to return only outputs in the response. If True, only new keys generated by this chain will be returned. If False, both input keys and new keys generated by this chain will be returned. Defaults to False. callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Callbacks to use for this chain run. If not provided, will use the callbacks provided to the chain. include_run_info (bool) – Whether to include run info in the response. Defaults to False. tags (Optional[List[str]]) – Return type Dict[str, Any] apply(input_list, callbacks=None)
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-154
Return type Dict[str, Any] apply(input_list, callbacks=None) Call the chain on all inputs in the list. Parameters input_list (List[Dict[str, Any]]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Return type List[Dict[str, str]] async arun(*args, callbacks=None, tags=None, **kwargs) Run the chain as text in, text out or multiple variables, text out. Parameters args (Any) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – tags (Optional[List[str]]) – kwargs (Any) – Return type str dict(**kwargs) Return dictionary representation of chain. Parameters kwargs (Any) – Return type Dict classmethod from_colored_object_prompt(llm, **kwargs)[source] Load PAL from colored object prompt. Parameters llm (langchain.base_language.BaseLanguageModel) – kwargs (Any) – Return type langchain.chains.pal.base.PALChain classmethod from_math_prompt(llm, **kwargs)[source] Load PAL from math prompt. Parameters llm (langchain.base_language.BaseLanguageModel) – kwargs (Any) – Return type langchain.chains.pal.base.PALChain prep_inputs(inputs) Validate and prep inputs. Parameters inputs (Union[Dict[str, Any], Any]) – Return type Dict[str, str] prep_outputs(inputs, outputs, return_only_outputs=False) Validate and prep outputs. Parameters inputs (Dict[str, str]) –
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-155
Validate and prep outputs. Parameters inputs (Dict[str, str]) – outputs (Dict[str, str]) – return_only_outputs (bool) – Return type Dict[str, str] run(*args, callbacks=None, tags=None, **kwargs) Run the chain as text in, text out or multiple variables, text out. Parameters args (Any) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – tags (Optional[List[str]]) – kwargs (Any) – Return type str save(file_path) Save the chain. Parameters file_path (Union[pathlib.Path, str]) – Path to file to save the chain to. Return type None Example: .. code-block:: python chain.save(file_path=”path/chain.yaml”) to_json() Return type Union[langchain.load.serializable.SerializedConstructor, langchain.load.serializable.SerializedNotImplemented] to_json_not_implemented() Return type langchain.load.serializable.SerializedNotImplemented property lc_attributes: Dict Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str] Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str] Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool Return whether or not the class is serializable.
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-156
property lc_serializable: bool Return whether or not the class is serializable. class langchain.chains.QAGenerationChain(*, memory=None, callbacks=None, callback_manager=None, verbose=None, tags=None, llm_chain, text_splitter=<langchain.text_splitter.RecursiveCharacterTextSplitter object>, input_key='text', output_key='questions', k=None)[source] Bases: langchain.chains.base.Chain Parameters memory (Optional[langchain.schema.BaseMemory]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – callback_manager (Optional[langchain.callbacks.base.BaseCallbackManager]) – verbose (bool) – tags (Optional[List[str]]) – llm_chain (langchain.chains.llm.LLMChain) – text_splitter (langchain.text_splitter.TextSplitter) – input_key (str) – output_key (str) – k (Optional[int]) – Return type None attribute callback_manager: Optional[BaseCallbackManager] = None Deprecated, use callbacks instead. attribute callbacks: Callbacks = None Optional list of callback handlers (or callback manager). Defaults to None. Callback handlers are called throughout the lifecycle of a call to a chain, starting with on_chain_start, ending with on_chain_end or on_chain_error. Each custom chain can optionally call additional callback methods, see Callback docs for full details. attribute input_key: str = 'text' attribute k: Optional[int] = None attribute llm_chain: LLMChain [Required] attribute memory: Optional[BaseMemory] = None Optional memory object. Defaults to None. Memory is a class that gets called at the start
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-157
Optional memory object. Defaults to None. Memory is a class that gets called at the start and at the end of every chain. At the start, memory loads variables and passes them along in the chain. At the end, it saves any returned variables. There are many different types of memory - please see memory docs for the full catalog. attribute output_key: str = 'questions' attribute tags: Optional[List[str]] = None Optional list of tags associated with the chain. Defaults to None These tags will be associated with each call to this chain, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a chain with its use case. attribute text_splitter: TextSplitter = <langchain.text_splitter.RecursiveCharacterTextSplitter object> attribute verbose: bool [Optional] Whether or not run in verbose mode. In verbose mode, some intermediate logs will be printed to the console. Defaults to langchain.verbose value. async acall(inputs, return_only_outputs=False, callbacks=None, *, tags=None, include_run_info=False) Run the logic of this chain and add to output if desired. Parameters inputs (Union[Dict[str, Any], Any]) – Dictionary of inputs, or single input if chain expects only one param. return_only_outputs (bool) – boolean for whether to return only outputs in the response. If True, only new keys generated by this chain will be returned. If False, both input keys and new keys generated by this chain will be returned. Defaults to False. callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Callbacks to use for this chain run. If not provided, will use the callbacks provided to the chain.
https://api.python.langchain.com/en/stable/modules/chains.html
5d97bfd0cb46-158
use the callbacks provided to the chain. include_run_info (bool) – Whether to include run info in the response. Defaults to False. tags (Optional[List[str]]) – Return type Dict[str, Any] apply(input_list, callbacks=None) Call the chain on all inputs in the list. Parameters input_list (List[Dict[str, Any]]) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – Return type List[Dict[str, str]] async arun(*args, callbacks=None, tags=None, **kwargs) Run the chain as text in, text out or multiple variables, text out. Parameters args (Any) – callbacks (Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]]) – tags (Optional[List[str]]) – kwargs (Any) – Return type str dict(**kwargs) Return dictionary representation of chain. Parameters kwargs (Any) – Return type Dict classmethod from_llm(llm, prompt=None, **kwargs)[source] Parameters llm (langchain.base_language.BaseLanguageModel) – prompt (Optional[langchain.prompts.base.BasePromptTemplate]) – kwargs (Any) – Return type langchain.chains.qa_generation.base.QAGenerationChain prep_inputs(inputs) Validate and prep inputs. Parameters inputs (Union[Dict[str, Any], Any]) – Return type Dict[str, str] prep_outputs(inputs, outputs, return_only_outputs=False) Validate and prep outputs. Parameters inputs (Dict[str, str]) – outputs (Dict[str, str]) –
https://api.python.langchain.com/en/stable/modules/chains.html