id
stringlengths 14
16
| text
stringlengths 31
2.41k
| source
stringlengths 53
121
|
---|---|---|
810c04452234-1 | Returns:
"""
if output_parser == "pydantic":
if not (isinstance(schema, type) and issubclass(schema, BaseModel)):
raise ValueError(
"Must provide a pydantic class for schema when output_parser is "
"'pydantic'."
)
_output_parser: BaseLLMOutputParser = PydanticOutputFunctionsParser(
pydantic_schema=schema
)
elif output_parser == "base":
_output_parser = OutputFunctionsParser()
else:
raise ValueError(
f"Got unexpected output_parser: {output_parser}. "
f"Should be one of `pydantic` or `base`."
)
if isinstance(schema, type) and issubclass(schema, BaseModel):
schema_dict = schema.schema()
else:
schema_dict = schema
function = {
"name": schema_dict["title"],
"description": schema_dict["description"],
"parameters": schema_dict,
}
llm_kwargs = get_llm_kwargs(function)
messages = [
SystemMessage(
content=(
"You are a world class algorithm to answer "
"questions in a specific format."
)
),
HumanMessage(content="Answer question using the following context"),
HumanMessagePromptTemplate.from_template("{context}"),
HumanMessagePromptTemplate.from_template("Question: {question}"),
HumanMessage(content="Tips: Make sure to answer in the correct format"),
]
prompt = prompt or ChatPromptTemplate(messages=messages)
chain = LLMChain(
llm=llm,
prompt=prompt,
llm_kwargs=llm_kwargs,
output_parser=_output_parser,
) | https://api.python.langchain.com/en/latest/_modules/langchain/chains/openai_functions/qa_with_structure.html |
810c04452234-2 | output_parser=_output_parser,
)
return chain
[docs]def create_qa_with_sources_chain(llm: BaseLanguageModel, **kwargs: Any) -> LLMChain:
"""Create a question answering chain that returns an answer with sources.
Args:
llm: Language model to use for the chain.
**kwargs: Keyword arguments to pass to `create_qa_with_structure_chain`.
Returns:
Chain (LLMChain) that can be used to answer questions with citations.
"""
return create_qa_with_structure_chain(llm, AnswerWithSources, **kwargs) | https://api.python.langchain.com/en/latest/_modules/langchain/chains/openai_functions/qa_with_structure.html |
b8678fe13c81-0 | Source code for langchain.chains.openai_functions.citation_fuzzy_match
from typing import Iterator, List
from pydantic import BaseModel, Field
from langchain.base_language import BaseLanguageModel
from langchain.chains.llm import LLMChain
from langchain.chains.openai_functions.utils import get_llm_kwargs
from langchain.output_parsers.openai_functions import (
PydanticOutputFunctionsParser,
)
from langchain.prompts.chat import ChatPromptTemplate, HumanMessagePromptTemplate
from langchain.schema import HumanMessage, SystemMessage
class FactWithEvidence(BaseModel):
"""Class representing single statement.
Each fact has a body and a list of sources.
If there are multiple facts make sure to break them apart
such that each one only uses a set of sources that are relevant to it.
"""
fact: str = Field(..., description="Body of the sentence, as part of a response")
substring_quote: List[str] = Field(
...,
description=(
"Each source should be a direct quote from the context, "
"as a substring of the original content"
),
)
def _get_span(self, quote: str, context: str, errs: int = 100) -> Iterator[str]:
import regex
minor = quote
major = context
errs_ = 0
s = regex.search(f"({minor}){{e<={errs_}}}", major)
while s is None and errs_ <= errs:
errs_ += 1
s = regex.search(f"({minor}){{e<={errs_}}}", major)
if s is not None:
yield from s.spans()
def get_spans(self, context: str) -> Iterator[str]: | https://api.python.langchain.com/en/latest/_modules/langchain/chains/openai_functions/citation_fuzzy_match.html |
b8678fe13c81-1 | def get_spans(self, context: str) -> Iterator[str]:
for quote in self.substring_quote:
yield from self._get_span(quote, context)
class QuestionAnswer(BaseModel):
"""A question and its answer as a list of facts each one should have a source.
each sentence contains a body and a list of sources."""
question: str = Field(..., description="Question that was asked")
answer: List[FactWithEvidence] = Field(
...,
description=(
"Body of the answer, each fact should be "
"its separate object with a body and a list of sources"
),
)
[docs]def create_citation_fuzzy_match_chain(llm: BaseLanguageModel) -> LLMChain:
"""Create a citation fuzzy match chain.
Args:
llm: Language model to use for the chain.
Returns:
Chain (LLMChain) that can be used to answer questions with citations.
"""
output_parser = PydanticOutputFunctionsParser(pydantic_schema=QuestionAnswer)
schema = QuestionAnswer.schema()
function = {
"name": schema["title"],
"description": schema["description"],
"parameters": schema,
}
llm_kwargs = get_llm_kwargs(function)
messages = [
SystemMessage(
content=(
"You are a world class algorithm to answer "
"questions with correct and exact citations."
)
),
HumanMessage(content="Answer question using the following context"),
HumanMessagePromptTemplate.from_template("{context}"),
HumanMessagePromptTemplate.from_template("Question: {question}"),
HumanMessage(
content=(
"Tips: Make sure to cite your sources, " | https://api.python.langchain.com/en/latest/_modules/langchain/chains/openai_functions/citation_fuzzy_match.html |
b8678fe13c81-2 | content=(
"Tips: Make sure to cite your sources, "
"and use the exact words from the context."
)
),
]
prompt = ChatPromptTemplate(messages=messages)
chain = LLMChain(
llm=llm,
prompt=prompt,
llm_kwargs=llm_kwargs,
output_parser=output_parser,
)
return chain | https://api.python.langchain.com/en/latest/_modules/langchain/chains/openai_functions/citation_fuzzy_match.html |
ac91b3d4ddbe-0 | Source code for langchain.chains.openai_functions.tagging
from typing import Any
from langchain.base_language import BaseLanguageModel
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.openai_functions.utils import _convert_schema, get_llm_kwargs
from langchain.output_parsers.openai_functions import (
JsonOutputFunctionsParser,
PydanticOutputFunctionsParser,
)
from langchain.prompts import ChatPromptTemplate
def _get_tagging_function(schema: dict) -> dict:
return {
"name": "information_extraction",
"description": "Extracts the relevant information from the passage.",
"parameters": _convert_schema(schema),
}
_TAGGING_TEMPLATE = """Extract the desired information from the following passage.
Passage:
{input}
"""
[docs]def create_tagging_chain(schema: dict, llm: BaseLanguageModel) -> Chain:
"""Creates a chain that extracts information from a passage.
Args:
schema: The schema of the entities to extract.
llm: The language model to use.
Returns:
Chain (LLMChain) that can be used to extract information from a passage.
"""
function = _get_tagging_function(schema)
prompt = ChatPromptTemplate.from_template(_TAGGING_TEMPLATE)
output_parser = JsonOutputFunctionsParser()
llm_kwargs = get_llm_kwargs(function)
chain = LLMChain(
llm=llm,
prompt=prompt,
llm_kwargs=llm_kwargs,
output_parser=output_parser,
)
return chain
[docs]def create_tagging_chain_pydantic(
pydantic_schema: Any, llm: BaseLanguageModel | https://api.python.langchain.com/en/latest/_modules/langchain/chains/openai_functions/tagging.html |
ac91b3d4ddbe-1 | pydantic_schema: Any, llm: BaseLanguageModel
) -> Chain:
"""Creates a chain that extracts information from a passage.
Args:
pydantic_schema: The pydantic schema of the entities to extract.
llm: The language model to use.
Returns:
Chain (LLMChain) that can be used to extract information from a passage.
"""
openai_schema = pydantic_schema.schema()
function = _get_tagging_function(openai_schema)
prompt = ChatPromptTemplate.from_template(_TAGGING_TEMPLATE)
output_parser = PydanticOutputFunctionsParser(pydantic_schema=pydantic_schema)
llm_kwargs = get_llm_kwargs(function)
chain = LLMChain(
llm=llm,
prompt=prompt,
llm_kwargs=llm_kwargs,
output_parser=output_parser,
)
return chain | https://api.python.langchain.com/en/latest/_modules/langchain/chains/openai_functions/tagging.html |
cd623a55c510-0 | Source code for langchain.chains.openai_functions.extraction
from typing import Any, List
from pydantic import BaseModel
from langchain.base_language import BaseLanguageModel
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.openai_functions.utils import (
_convert_schema,
_resolve_schema_references,
get_llm_kwargs,
)
from langchain.output_parsers.openai_functions import (
JsonKeyOutputFunctionsParser,
PydanticAttrOutputFunctionsParser,
)
from langchain.prompts import ChatPromptTemplate
def _get_extraction_function(entity_schema: dict) -> dict:
return {
"name": "information_extraction",
"description": "Extracts the relevant information from the passage.",
"parameters": {
"type": "object",
"properties": {
"info": {"type": "array", "items": _convert_schema(entity_schema)}
},
"required": ["info"],
},
}
_EXTRACTION_TEMPLATE = """Extract and save the relevant entities mentioned\
in the following passage together with their properties.
Passage:
{input}
"""
[docs]def create_extraction_chain(schema: dict, llm: BaseLanguageModel) -> Chain:
"""Creates a chain that extracts information from a passage.
Args:
schema: The schema of the entities to extract.
llm: The language model to use.
Returns:
Chain that can be used to extract information from a passage.
"""
function = _get_extraction_function(schema)
prompt = ChatPromptTemplate.from_template(_EXTRACTION_TEMPLATE)
output_parser = JsonKeyOutputFunctionsParser(key_name="info") | https://api.python.langchain.com/en/latest/_modules/langchain/chains/openai_functions/extraction.html |
cd623a55c510-1 | output_parser = JsonKeyOutputFunctionsParser(key_name="info")
llm_kwargs = get_llm_kwargs(function)
chain = LLMChain(
llm=llm,
prompt=prompt,
llm_kwargs=llm_kwargs,
output_parser=output_parser,
)
return chain
[docs]def create_extraction_chain_pydantic(
pydantic_schema: Any, llm: BaseLanguageModel
) -> Chain:
"""Creates a chain that extracts information from a passage using pydantic schema.
Args:
pydantic_schema: The pydantic schema of the entities to extract.
llm: The language model to use.
Returns:
Chain that can be used to extract information from a passage.
"""
class PydanticSchema(BaseModel):
info: List[pydantic_schema] # type: ignore
openai_schema = pydantic_schema.schema()
openai_schema = _resolve_schema_references(
openai_schema, openai_schema.get("definitions", {})
)
function = _get_extraction_function(openai_schema)
prompt = ChatPromptTemplate.from_template(_EXTRACTION_TEMPLATE)
output_parser = PydanticAttrOutputFunctionsParser(
pydantic_schema=PydanticSchema, attr_name="info"
)
llm_kwargs = get_llm_kwargs(function)
chain = LLMChain(
llm=llm,
prompt=prompt,
llm_kwargs=llm_kwargs,
output_parser=output_parser,
)
return chain | https://api.python.langchain.com/en/latest/_modules/langchain/chains/openai_functions/extraction.html |
40755c90ee9d-0 | Source code for langchain.chains.llm_checker.base
"""Chain for question-answering with self-verification."""
from __future__ import annotations
import warnings
from typing import Any, Dict, List, Optional
from pydantic import Extra, root_validator
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.llm_checker.prompt import (
CHECK_ASSERTIONS_PROMPT,
CREATE_DRAFT_ANSWER_PROMPT,
LIST_ASSERTIONS_PROMPT,
REVISED_ANSWER_PROMPT,
)
from langchain.chains.sequential import SequentialChain
from langchain.prompts import PromptTemplate
def _load_question_to_checked_assertions_chain(
llm: BaseLanguageModel,
create_draft_answer_prompt: PromptTemplate,
list_assertions_prompt: PromptTemplate,
check_assertions_prompt: PromptTemplate,
revised_answer_prompt: PromptTemplate,
) -> SequentialChain:
create_draft_answer_chain = LLMChain(
llm=llm,
prompt=create_draft_answer_prompt,
output_key="statement",
)
list_assertions_chain = LLMChain(
llm=llm,
prompt=list_assertions_prompt,
output_key="assertions",
)
check_assertions_chain = LLMChain(
llm=llm,
prompt=check_assertions_prompt,
output_key="checked_assertions",
)
revised_answer_chain = LLMChain(
llm=llm,
prompt=revised_answer_prompt,
output_key="revised_statement",
)
chains = [
create_draft_answer_chain, | https://api.python.langchain.com/en/latest/_modules/langchain/chains/llm_checker/base.html |
40755c90ee9d-1 | )
chains = [
create_draft_answer_chain,
list_assertions_chain,
check_assertions_chain,
revised_answer_chain,
]
question_to_checked_assertions_chain = SequentialChain(
chains=chains,
input_variables=["question"],
output_variables=["revised_statement"],
verbose=True,
)
return question_to_checked_assertions_chain
[docs]class LLMCheckerChain(Chain):
"""Chain for question-answering with self-verification.
Example:
.. code-block:: python
from langchain import OpenAI, LLMCheckerChain
llm = OpenAI(temperature=0.7)
checker_chain = LLMCheckerChain.from_llm(llm)
"""
question_to_checked_assertions_chain: SequentialChain
llm: Optional[BaseLanguageModel] = None
"""[Deprecated] LLM wrapper to use."""
create_draft_answer_prompt: PromptTemplate = CREATE_DRAFT_ANSWER_PROMPT
"""[Deprecated]"""
list_assertions_prompt: PromptTemplate = LIST_ASSERTIONS_PROMPT
"""[Deprecated]"""
check_assertions_prompt: PromptTemplate = CHECK_ASSERTIONS_PROMPT
"""[Deprecated]"""
revised_answer_prompt: PromptTemplate = REVISED_ANSWER_PROMPT
"""[Deprecated] Prompt to use when questioning the documents."""
input_key: str = "query" #: :meta private:
output_key: str = "result" #: :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@root_validator(pre=True)
def raise_deprecation(cls, values: Dict) -> Dict:
if "llm" in values: | https://api.python.langchain.com/en/latest/_modules/langchain/chains/llm_checker/base.html |
40755c90ee9d-2 | if "llm" in values:
warnings.warn(
"Directly instantiating an LLMCheckerChain with an llm is deprecated. "
"Please instantiate with question_to_checked_assertions_chain "
"or using the from_llm class method."
)
if (
"question_to_checked_assertions_chain" not in values
and values["llm"] is not None
):
question_to_checked_assertions_chain = (
_load_question_to_checked_assertions_chain(
values["llm"],
values.get(
"create_draft_answer_prompt", CREATE_DRAFT_ANSWER_PROMPT
),
values.get("list_assertions_prompt", LIST_ASSERTIONS_PROMPT),
values.get("check_assertions_prompt", CHECK_ASSERTIONS_PROMPT),
values.get("revised_answer_prompt", REVISED_ANSWER_PROMPT),
)
)
values[
"question_to_checked_assertions_chain"
] = question_to_checked_assertions_chain
return values
@property
def input_keys(self) -> List[str]:
"""Return the singular input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return the singular output key.
:meta private:
"""
return [self.output_key]
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
question = inputs[self.input_key]
output = self.question_to_checked_assertions_chain( | https://api.python.langchain.com/en/latest/_modules/langchain/chains/llm_checker/base.html |
40755c90ee9d-3 | output = self.question_to_checked_assertions_chain(
{"question": question}, callbacks=_run_manager.get_child()
)
return {self.output_key: output["revised_statement"]}
@property
def _chain_type(self) -> str:
return "llm_checker_chain"
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
create_draft_answer_prompt: PromptTemplate = CREATE_DRAFT_ANSWER_PROMPT,
list_assertions_prompt: PromptTemplate = LIST_ASSERTIONS_PROMPT,
check_assertions_prompt: PromptTemplate = CHECK_ASSERTIONS_PROMPT,
revised_answer_prompt: PromptTemplate = REVISED_ANSWER_PROMPT,
**kwargs: Any,
) -> LLMCheckerChain:
question_to_checked_assertions_chain = (
_load_question_to_checked_assertions_chain(
llm,
create_draft_answer_prompt,
list_assertions_prompt,
check_assertions_prompt,
revised_answer_prompt,
)
)
return cls(
question_to_checked_assertions_chain=question_to_checked_assertions_chain,
**kwargs,
) | https://api.python.langchain.com/en/latest/_modules/langchain/chains/llm_checker/base.html |
96fa3bf0a236-0 | Source code for langchain.chains.combine_documents.stuff
"""Chain that combines documents by stuffing into context."""
from typing import Any, Dict, List, Optional, Tuple
from pydantic import Extra, Field, root_validator
from langchain.callbacks.manager import Callbacks
from langchain.chains.combine_documents.base import (
BaseCombineDocumentsChain,
format_document,
)
from langchain.chains.llm import LLMChain
from langchain.docstore.document import Document
from langchain.prompts.base import BasePromptTemplate
from langchain.prompts.prompt import PromptTemplate
def _get_default_document_prompt() -> PromptTemplate:
return PromptTemplate(input_variables=["page_content"], template="{page_content}")
[docs]class StuffDocumentsChain(BaseCombineDocumentsChain):
"""Chain that combines documents by stuffing into context."""
llm_chain: LLMChain
"""LLM wrapper to use after formatting documents."""
document_prompt: BasePromptTemplate = Field(
default_factory=_get_default_document_prompt
)
"""Prompt to use to format each document."""
document_variable_name: str
"""The variable name in the llm_chain to put the documents in.
If only one variable in the llm_chain, this need not be provided."""
document_separator: str = "\n\n"
"""The string with which to join the formatted documents"""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@root_validator(pre=True)
def get_default_document_variable_name(cls, values: Dict) -> Dict:
"""Get default document variable name, if not provided."""
llm_chain_variables = values["llm_chain"].prompt.input_variables
if "document_variable_name" not in values: | https://api.python.langchain.com/en/latest/_modules/langchain/chains/combine_documents/stuff.html |
96fa3bf0a236-1 | if "document_variable_name" not in values:
if len(llm_chain_variables) == 1:
values["document_variable_name"] = llm_chain_variables[0]
else:
raise ValueError(
"document_variable_name must be provided if there are "
"multiple llm_chain_variables"
)
else:
if values["document_variable_name"] not in llm_chain_variables:
raise ValueError(
f"document_variable_name {values['document_variable_name']} was "
f"not found in llm_chain input_variables: {llm_chain_variables}"
)
return values
def _get_inputs(self, docs: List[Document], **kwargs: Any) -> dict:
# Format each document according to the prompt
doc_strings = [format_document(doc, self.document_prompt) for doc in docs]
# Join the documents together to put them in the prompt.
inputs = {
k: v
for k, v in kwargs.items()
if k in self.llm_chain.prompt.input_variables
}
inputs[self.document_variable_name] = self.document_separator.join(doc_strings)
return inputs
[docs] def prompt_length(self, docs: List[Document], **kwargs: Any) -> Optional[int]:
"""Get the prompt length by formatting the prompt."""
inputs = self._get_inputs(docs, **kwargs)
prompt = self.llm_chain.prompt.format(**inputs)
return self.llm_chain.llm.get_num_tokens(prompt)
[docs] def combine_docs(
self, docs: List[Document], callbacks: Callbacks = None, **kwargs: Any
) -> Tuple[str, dict]:
"""Stuff all documents into one prompt and pass to LLM.""" | https://api.python.langchain.com/en/latest/_modules/langchain/chains/combine_documents/stuff.html |
96fa3bf0a236-2 | """Stuff all documents into one prompt and pass to LLM."""
inputs = self._get_inputs(docs, **kwargs)
# Call predict on the LLM.
return self.llm_chain.predict(callbacks=callbacks, **inputs), {}
[docs] async def acombine_docs(
self, docs: List[Document], callbacks: Callbacks = None, **kwargs: Any
) -> Tuple[str, dict]:
"""Stuff all documents into one prompt and pass to LLM."""
inputs = self._get_inputs(docs, **kwargs)
# Call predict on the LLM.
return await self.llm_chain.apredict(callbacks=callbacks, **inputs), {}
@property
def _chain_type(self) -> str:
return "stuff_documents_chain" | https://api.python.langchain.com/en/latest/_modules/langchain/chains/combine_documents/stuff.html |
164b672cc53e-0 | Source code for langchain.chains.combine_documents.refine
"""Combining documents by doing a first pass and then refining on more documents."""
from __future__ import annotations
from typing import Any, Dict, List, Tuple
from pydantic import Extra, Field, root_validator
from langchain.callbacks.manager import Callbacks
from langchain.chains.combine_documents.base import (
BaseCombineDocumentsChain,
format_document,
)
from langchain.chains.llm import LLMChain
from langchain.docstore.document import Document
from langchain.prompts.base import BasePromptTemplate
from langchain.prompts.prompt import PromptTemplate
def _get_default_document_prompt() -> PromptTemplate:
return PromptTemplate(input_variables=["page_content"], template="{page_content}")
[docs]class RefineDocumentsChain(BaseCombineDocumentsChain):
"""Combine documents by doing a first pass and then refining on more documents."""
initial_llm_chain: LLMChain
"""LLM chain to use on initial document."""
refine_llm_chain: LLMChain
"""LLM chain to use when refining."""
document_variable_name: str
"""The variable name in the initial_llm_chain to put the documents in.
If only one variable in the initial_llm_chain, this need not be provided."""
initial_response_name: str
"""The variable name to format the initial response in when refining."""
document_prompt: BasePromptTemplate = Field(
default_factory=_get_default_document_prompt
)
"""Prompt to use to format each document."""
return_intermediate_steps: bool = False
"""Return the results of the refine steps in the output."""
@property
def output_keys(self) -> List[str]:
"""Expect input key.
:meta private:
""" | https://api.python.langchain.com/en/latest/_modules/langchain/chains/combine_documents/refine.html |
164b672cc53e-1 | """Expect input key.
:meta private:
"""
_output_keys = super().output_keys
if self.return_intermediate_steps:
_output_keys = _output_keys + ["intermediate_steps"]
return _output_keys
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@root_validator(pre=True)
def get_return_intermediate_steps(cls, values: Dict) -> Dict:
"""For backwards compatibility."""
if "return_refine_steps" in values:
values["return_intermediate_steps"] = values["return_refine_steps"]
del values["return_refine_steps"]
return values
@root_validator(pre=True)
def get_default_document_variable_name(cls, values: Dict) -> Dict:
"""Get default document variable name, if not provided."""
if "document_variable_name" not in values:
llm_chain_variables = values["initial_llm_chain"].prompt.input_variables
if len(llm_chain_variables) == 1:
values["document_variable_name"] = llm_chain_variables[0]
else:
raise ValueError(
"document_variable_name must be provided if there are "
"multiple llm_chain input_variables"
)
else:
llm_chain_variables = values["initial_llm_chain"].prompt.input_variables
if values["document_variable_name"] not in llm_chain_variables:
raise ValueError(
f"document_variable_name {values['document_variable_name']} was "
f"not found in llm_chain input_variables: {llm_chain_variables}"
)
return values
[docs] def combine_docs( | https://api.python.langchain.com/en/latest/_modules/langchain/chains/combine_documents/refine.html |
164b672cc53e-2 | )
return values
[docs] def combine_docs(
self, docs: List[Document], callbacks: Callbacks = None, **kwargs: Any
) -> Tuple[str, dict]:
"""Combine by mapping first chain over all, then stuffing into final chain."""
inputs = self._construct_initial_inputs(docs, **kwargs)
res = self.initial_llm_chain.predict(callbacks=callbacks, **inputs)
refine_steps = [res]
for doc in docs[1:]:
base_inputs = self._construct_refine_inputs(doc, res)
inputs = {**base_inputs, **kwargs}
res = self.refine_llm_chain.predict(callbacks=callbacks, **inputs)
refine_steps.append(res)
return self._construct_result(refine_steps, res)
[docs] async def acombine_docs(
self, docs: List[Document], callbacks: Callbacks = None, **kwargs: Any
) -> Tuple[str, dict]:
"""Combine by mapping first chain over all, then stuffing into final chain."""
inputs = self._construct_initial_inputs(docs, **kwargs)
res = await self.initial_llm_chain.apredict(callbacks=callbacks, **inputs)
refine_steps = [res]
for doc in docs[1:]:
base_inputs = self._construct_refine_inputs(doc, res)
inputs = {**base_inputs, **kwargs}
res = await self.refine_llm_chain.apredict(callbacks=callbacks, **inputs)
refine_steps.append(res)
return self._construct_result(refine_steps, res)
def _construct_result(self, refine_steps: List[str], res: str) -> Tuple[str, dict]:
if self.return_intermediate_steps: | https://api.python.langchain.com/en/latest/_modules/langchain/chains/combine_documents/refine.html |
164b672cc53e-3 | if self.return_intermediate_steps:
extra_return_dict = {"intermediate_steps": refine_steps}
else:
extra_return_dict = {}
return res, extra_return_dict
def _construct_refine_inputs(self, doc: Document, res: str) -> Dict[str, Any]:
return {
self.document_variable_name: format_document(doc, self.document_prompt),
self.initial_response_name: res,
}
def _construct_initial_inputs(
self, docs: List[Document], **kwargs: Any
) -> Dict[str, Any]:
base_info = {"page_content": docs[0].page_content}
base_info.update(docs[0].metadata)
document_info = {k: base_info[k] for k in self.document_prompt.input_variables}
base_inputs: dict = {
self.document_variable_name: self.document_prompt.format(**document_info)
}
inputs = {**base_inputs, **kwargs}
return inputs
@property
def _chain_type(self) -> str:
return "refine_documents_chain" | https://api.python.langchain.com/en/latest/_modules/langchain/chains/combine_documents/refine.html |
9fcb0e00f25f-0 | Source code for langchain.chains.combine_documents.map_rerank
"""Combining documents by mapping a chain over them first, then reranking results."""
from __future__ import annotations
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union, cast
from pydantic import Extra, root_validator
from langchain.callbacks.manager import Callbacks
from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
from langchain.chains.llm import LLMChain
from langchain.docstore.document import Document
from langchain.output_parsers.regex import RegexParser
[docs]class MapRerankDocumentsChain(BaseCombineDocumentsChain):
"""Combining documents by mapping a chain over them, then reranking results."""
llm_chain: LLMChain
"""Chain to apply to each document individually."""
document_variable_name: str
"""The variable name in the llm_chain to put the documents in.
If only one variable in the llm_chain, this need not be provided."""
rank_key: str
"""Key in output of llm_chain to rank on."""
answer_key: str
"""Key in output of llm_chain to return as answer."""
metadata_keys: Optional[List[str]] = None
return_intermediate_steps: bool = False
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def output_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
_output_keys = super().output_keys
if self.return_intermediate_steps:
_output_keys = _output_keys + ["intermediate_steps"]
if self.metadata_keys is not None:
_output_keys += self.metadata_keys
return _output_keys | https://api.python.langchain.com/en/latest/_modules/langchain/chains/combine_documents/map_rerank.html |
9fcb0e00f25f-1 | _output_keys += self.metadata_keys
return _output_keys
@root_validator()
def validate_llm_output(cls, values: Dict) -> Dict:
"""Validate that the combine chain outputs a dictionary."""
output_parser = values["llm_chain"].prompt.output_parser
if not isinstance(output_parser, RegexParser):
raise ValueError(
"Output parser of llm_chain should be a RegexParser,"
f" got {output_parser}"
)
output_keys = output_parser.output_keys
if values["rank_key"] not in output_keys:
raise ValueError(
f"Got {values['rank_key']} as key to rank on, but did not find "
f"it in the llm_chain output keys ({output_keys})"
)
if values["answer_key"] not in output_keys:
raise ValueError(
f"Got {values['answer_key']} as key to return, but did not find "
f"it in the llm_chain output keys ({output_keys})"
)
return values
@root_validator(pre=True)
def get_default_document_variable_name(cls, values: Dict) -> Dict:
"""Get default document variable name, if not provided."""
if "document_variable_name" not in values:
llm_chain_variables = values["llm_chain"].prompt.input_variables
if len(llm_chain_variables) == 1:
values["document_variable_name"] = llm_chain_variables[0]
else:
raise ValueError(
"document_variable_name must be provided if there are "
"multiple llm_chain input_variables"
)
else:
llm_chain_variables = values["llm_chain"].prompt.input_variables | https://api.python.langchain.com/en/latest/_modules/langchain/chains/combine_documents/map_rerank.html |
9fcb0e00f25f-2 | else:
llm_chain_variables = values["llm_chain"].prompt.input_variables
if values["document_variable_name"] not in llm_chain_variables:
raise ValueError(
f"document_variable_name {values['document_variable_name']} was "
f"not found in llm_chain input_variables: {llm_chain_variables}"
)
return values
[docs] def combine_docs(
self, docs: List[Document], callbacks: Callbacks = None, **kwargs: Any
) -> Tuple[str, dict]:
"""Combine documents in a map rerank manner.
Combine by mapping first chain over all documents, then reranking the results.
"""
results = self.llm_chain.apply_and_parse(
# FYI - this is parallelized and so it is fast.
[{**{self.document_variable_name: d.page_content}, **kwargs} for d in docs],
callbacks=callbacks,
)
return self._process_results(docs, results)
[docs] async def acombine_docs(
self, docs: List[Document], callbacks: Callbacks = None, **kwargs: Any
) -> Tuple[str, dict]:
"""Combine documents in a map rerank manner.
Combine by mapping first chain over all documents, then reranking the results.
"""
results = await self.llm_chain.aapply_and_parse(
# FYI - this is parallelized and so it is fast.
[{**{self.document_variable_name: d.page_content}, **kwargs} for d in docs],
callbacks=callbacks,
)
return self._process_results(docs, results)
def _process_results(
self,
docs: List[Document], | https://api.python.langchain.com/en/latest/_modules/langchain/chains/combine_documents/map_rerank.html |
9fcb0e00f25f-3 | def _process_results(
self,
docs: List[Document],
results: Sequence[Union[str, List[str], Dict[str, str]]],
) -> Tuple[str, dict]:
typed_results = cast(List[dict], results)
sorted_res = sorted(
zip(typed_results, docs), key=lambda x: -int(x[0][self.rank_key])
)
output, document = sorted_res[0]
extra_info = {}
if self.metadata_keys is not None:
for key in self.metadata_keys:
extra_info[key] = document.metadata[key]
if self.return_intermediate_steps:
extra_info["intermediate_steps"] = results
return output[self.answer_key], extra_info
@property
def _chain_type(self) -> str:
return "map_rerank_documents_chain" | https://api.python.langchain.com/en/latest/_modules/langchain/chains/combine_documents/map_rerank.html |
a02be9c1074f-0 | Source code for langchain.chains.combine_documents.base
"""Base interface for chains combining documents."""
from abc import ABC, abstractmethod
from typing import Any, Dict, List, Optional, Tuple
from pydantic import Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForChainRun,
CallbackManagerForChainRun,
)
from langchain.chains.base import Chain
from langchain.docstore.document import Document
from langchain.prompts.base import BasePromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter
def format_document(doc: Document, prompt: BasePromptTemplate) -> str:
"""Format a document into a string based on a prompt template."""
base_info = {"page_content": doc.page_content}
base_info.update(doc.metadata)
missing_metadata = set(prompt.input_variables).difference(base_info)
if len(missing_metadata) > 0:
required_metadata = [
iv for iv in prompt.input_variables if iv != "page_content"
]
raise ValueError(
f"Document prompt requires documents to have metadata variables: "
f"{required_metadata}. Received document with missing metadata: "
f"{list(missing_metadata)}."
)
document_info = {k: base_info[k] for k in prompt.input_variables}
return prompt.format(**document_info)
class BaseCombineDocumentsChain(Chain, ABC):
"""Base interface for chains combining documents."""
input_key: str = "input_documents" #: :meta private:
output_key: str = "output_text" #: :meta private:
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.input_key]
@property | https://api.python.langchain.com/en/latest/_modules/langchain/chains/combine_documents/base.html |
a02be9c1074f-1 | """
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return output key.
:meta private:
"""
return [self.output_key]
def prompt_length(self, docs: List[Document], **kwargs: Any) -> Optional[int]:
"""Return the prompt length given the documents passed in.
Returns None if the method does not depend on the prompt length.
"""
return None
@abstractmethod
def combine_docs(self, docs: List[Document], **kwargs: Any) -> Tuple[str, dict]:
"""Combine documents into a single string."""
@abstractmethod
async def acombine_docs(
self, docs: List[Document], **kwargs: Any
) -> Tuple[str, dict]:
"""Combine documents into a single string asynchronously."""
def _call(
self,
inputs: Dict[str, List[Document]],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
docs = inputs[self.input_key]
# Other keys are assumed to be needed for LLM prediction
other_keys = {k: v for k, v in inputs.items() if k != self.input_key}
output, extra_return_dict = self.combine_docs(
docs, callbacks=_run_manager.get_child(), **other_keys
)
extra_return_dict[self.output_key] = output
return extra_return_dict
async def _acall(
self,
inputs: Dict[str, List[Document]],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, str]: | https://api.python.langchain.com/en/latest/_modules/langchain/chains/combine_documents/base.html |
a02be9c1074f-2 | ) -> Dict[str, str]:
_run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager()
docs = inputs[self.input_key]
# Other keys are assumed to be needed for LLM prediction
other_keys = {k: v for k, v in inputs.items() if k != self.input_key}
output, extra_return_dict = await self.acombine_docs(
docs, callbacks=_run_manager.get_child(), **other_keys
)
extra_return_dict[self.output_key] = output
return extra_return_dict
[docs]class AnalyzeDocumentChain(Chain):
"""Chain that splits documents, then analyzes it in pieces."""
input_key: str = "input_document" #: :meta private:
text_splitter: TextSplitter = Field(default_factory=RecursiveCharacterTextSplitter)
combine_docs_chain: BaseCombineDocumentsChain
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return output key.
:meta private:
"""
return self.combine_docs_chain.output_keys
def _call(
self,
inputs: Dict[str, str],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
document = inputs[self.input_key]
docs = self.text_splitter.create_documents([document])
# Other keys are assumed to be needed for LLM prediction
other_keys: Dict = {k: v for k, v in inputs.items() if k != self.input_key} | https://api.python.langchain.com/en/latest/_modules/langchain/chains/combine_documents/base.html |
a02be9c1074f-3 | other_keys[self.combine_docs_chain.input_key] = docs
return self.combine_docs_chain(
other_keys, return_only_outputs=True, callbacks=_run_manager.get_child()
) | https://api.python.langchain.com/en/latest/_modules/langchain/chains/combine_documents/base.html |
734c5fe808aa-0 | Source code for langchain.chains.combine_documents.map_reduce
"""Combining documents by mapping a chain over them first, then combining results."""
from __future__ import annotations
from typing import Any, Callable, Dict, List, Optional, Protocol, Tuple
from pydantic import Extra, root_validator
from langchain.callbacks.manager import Callbacks
from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
from langchain.chains.llm import LLMChain
from langchain.docstore.document import Document
class CombineDocsProtocol(Protocol):
"""Interface for the combine_docs method."""
def __call__(self, docs: List[Document], **kwargs: Any) -> str:
"""Interface for the combine_docs method."""
def _split_list_of_docs(
docs: List[Document], length_func: Callable, token_max: int, **kwargs: Any
) -> List[List[Document]]:
new_result_doc_list = []
_sub_result_docs = []
for doc in docs:
_sub_result_docs.append(doc)
_num_tokens = length_func(_sub_result_docs, **kwargs)
if _num_tokens > token_max:
if len(_sub_result_docs) == 1:
raise ValueError(
"A single document was longer than the context length,"
" we cannot handle this."
)
if len(_sub_result_docs) == 2:
raise ValueError(
"A single document was so long it could not be combined "
"with another document, we cannot handle this."
)
new_result_doc_list.append(_sub_result_docs[:-1])
_sub_result_docs = _sub_result_docs[-1:]
new_result_doc_list.append(_sub_result_docs)
return new_result_doc_list
def _collapse_docs( | https://api.python.langchain.com/en/latest/_modules/langchain/chains/combine_documents/map_reduce.html |
734c5fe808aa-1 | return new_result_doc_list
def _collapse_docs(
docs: List[Document],
combine_document_func: CombineDocsProtocol,
**kwargs: Any,
) -> Document:
result = combine_document_func(docs, **kwargs)
combined_metadata = {k: str(v) for k, v in docs[0].metadata.items()}
for doc in docs[1:]:
for k, v in doc.metadata.items():
if k in combined_metadata:
combined_metadata[k] += f", {v}"
else:
combined_metadata[k] = str(v)
return Document(page_content=result, metadata=combined_metadata)
[docs]class MapReduceDocumentsChain(BaseCombineDocumentsChain):
"""Combining documents by mapping a chain over them, then combining results."""
llm_chain: LLMChain
"""Chain to apply to each document individually."""
combine_document_chain: BaseCombineDocumentsChain
"""Chain to use to combine results of applying llm_chain to documents."""
collapse_document_chain: Optional[BaseCombineDocumentsChain] = None
"""Chain to use to collapse intermediary results if needed.
If None, will use the combine_document_chain."""
document_variable_name: str
"""The variable name in the llm_chain to put the documents in.
If only one variable in the llm_chain, this need not be provided."""
return_intermediate_steps: bool = False
"""Return the results of the map steps in the output."""
@property
def output_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
_output_keys = super().output_keys
if self.return_intermediate_steps:
_output_keys = _output_keys + ["intermediate_steps"] | https://api.python.langchain.com/en/latest/_modules/langchain/chains/combine_documents/map_reduce.html |
734c5fe808aa-2 | _output_keys = _output_keys + ["intermediate_steps"]
return _output_keys
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@root_validator(pre=True)
def get_return_intermediate_steps(cls, values: Dict) -> Dict:
"""For backwards compatibility."""
if "return_map_steps" in values:
values["return_intermediate_steps"] = values["return_map_steps"]
del values["return_map_steps"]
return values
@root_validator(pre=True)
def get_default_document_variable_name(cls, values: Dict) -> Dict:
"""Get default document variable name, if not provided."""
if "document_variable_name" not in values:
llm_chain_variables = values["llm_chain"].prompt.input_variables
if len(llm_chain_variables) == 1:
values["document_variable_name"] = llm_chain_variables[0]
else:
raise ValueError(
"document_variable_name must be provided if there are "
"multiple llm_chain input_variables"
)
else:
llm_chain_variables = values["llm_chain"].prompt.input_variables
if values["document_variable_name"] not in llm_chain_variables:
raise ValueError(
f"document_variable_name {values['document_variable_name']} was "
f"not found in llm_chain input_variables: {llm_chain_variables}"
)
return values
@property
def _collapse_chain(self) -> BaseCombineDocumentsChain:
if self.collapse_document_chain is not None:
return self.collapse_document_chain
else:
return self.combine_document_chain
[docs] def combine_docs(
self, | https://api.python.langchain.com/en/latest/_modules/langchain/chains/combine_documents/map_reduce.html |
734c5fe808aa-3 | return self.combine_document_chain
[docs] def combine_docs(
self,
docs: List[Document],
token_max: int = 3000,
callbacks: Callbacks = None,
**kwargs: Any,
) -> Tuple[str, dict]:
"""Combine documents in a map reduce manner.
Combine by mapping first chain over all documents, then reducing the results.
This reducing can be done recursively if needed (if there are many documents).
"""
results = self.llm_chain.apply(
# FYI - this is parallelized and so it is fast.
[{self.document_variable_name: d.page_content, **kwargs} for d in docs],
callbacks=callbacks,
)
return self._process_results(
results, docs, token_max, callbacks=callbacks, **kwargs
)
[docs] async def acombine_docs(
self, docs: List[Document], callbacks: Callbacks = None, **kwargs: Any
) -> Tuple[str, dict]:
"""Combine documents in a map reduce manner.
Combine by mapping first chain over all documents, then reducing the results.
This reducing can be done recursively if needed (if there are many documents).
"""
results = await self.llm_chain.aapply(
# FYI - this is parallelized and so it is fast.
[{**{self.document_variable_name: d.page_content}, **kwargs} for d in docs],
callbacks=callbacks,
)
return await self._aprocess_results(
results, docs, callbacks=callbacks, **kwargs
)
def _process_results_common(
self,
results: List[Dict],
docs: List[Document], | https://api.python.langchain.com/en/latest/_modules/langchain/chains/combine_documents/map_reduce.html |
734c5fe808aa-4 | self,
results: List[Dict],
docs: List[Document],
token_max: int = 3000,
callbacks: Callbacks = None,
**kwargs: Any,
) -> Tuple[List[Document], dict]:
question_result_key = self.llm_chain.output_key
result_docs = [
Document(page_content=r[question_result_key], metadata=docs[i].metadata)
# This uses metadata from the docs, and the textual results from `results`
for i, r in enumerate(results)
]
length_func = self.combine_document_chain.prompt_length
num_tokens = length_func(result_docs, **kwargs)
def _collapse_docs_func(docs: List[Document], **kwargs: Any) -> str:
return self._collapse_chain.run(
input_documents=docs, callbacks=callbacks, **kwargs
)
while num_tokens is not None and num_tokens > token_max:
new_result_doc_list = _split_list_of_docs(
result_docs, length_func, token_max, **kwargs
)
result_docs = []
for docs in new_result_doc_list:
new_doc = _collapse_docs(docs, _collapse_docs_func, **kwargs)
result_docs.append(new_doc)
num_tokens = length_func(result_docs, **kwargs)
if self.return_intermediate_steps:
_results = [r[self.llm_chain.output_key] for r in results]
extra_return_dict = {"intermediate_steps": _results}
else:
extra_return_dict = {}
return result_docs, extra_return_dict
def _process_results(
self,
results: List[Dict],
docs: List[Document],
token_max: int = 3000, | https://api.python.langchain.com/en/latest/_modules/langchain/chains/combine_documents/map_reduce.html |
734c5fe808aa-5 | docs: List[Document],
token_max: int = 3000,
callbacks: Callbacks = None,
**kwargs: Any,
) -> Tuple[str, dict]:
result_docs, extra_return_dict = self._process_results_common(
results, docs, token_max, callbacks=callbacks, **kwargs
)
output = self.combine_document_chain.run(
input_documents=result_docs, callbacks=callbacks, **kwargs
)
return output, extra_return_dict
async def _aprocess_results(
self,
results: List[Dict],
docs: List[Document],
callbacks: Callbacks = None,
**kwargs: Any,
) -> Tuple[str, dict]:
result_docs, extra_return_dict = self._process_results_common(
results, docs, callbacks=callbacks, **kwargs
)
output = await self.combine_document_chain.arun(
input_documents=result_docs, callbacks=callbacks, **kwargs
)
return output, extra_return_dict
@property
def _chain_type(self) -> str:
return "map_reduce_documents_chain" | https://api.python.langchain.com/en/latest/_modules/langchain/chains/combine_documents/map_reduce.html |
19bccd66272b-0 | Source code for langchain.chains.constitutional_ai.base
"""Chain for applying constitutional principles to the outputs of another chain."""
from typing import Any, Dict, List, Optional
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
from langchain.chains.constitutional_ai.models import ConstitutionalPrinciple
from langchain.chains.constitutional_ai.principles import PRINCIPLES
from langchain.chains.constitutional_ai.prompts import CRITIQUE_PROMPT, REVISION_PROMPT
from langchain.chains.llm import LLMChain
from langchain.prompts.base import BasePromptTemplate
[docs]class ConstitutionalChain(Chain):
"""Chain for applying constitutional principles.
Example:
.. code-block:: python
from langchain.llms import OpenAI
from langchain.chains import LLMChain, ConstitutionalChain
from langchain.chains.constitutional_ai.models \
import ConstitutionalPrinciple
llm = OpenAI()
qa_prompt = PromptTemplate(
template="Q: {question} A:",
input_variables=["question"],
)
qa_chain = LLMChain(llm=llm, prompt=qa_prompt)
constitutional_chain = ConstitutionalChain.from_llm(
llm=llm,
chain=qa_chain,
constitutional_principles=[
ConstitutionalPrinciple(
critique_request="Tell if this answer is good.",
revision_request="Give a better answer.",
)
],
)
constitutional_chain.run(question="What is the meaning of life?")
"""
chain: LLMChain
constitutional_principles: List[ConstitutionalPrinciple]
critique_chain: LLMChain | https://api.python.langchain.com/en/latest/_modules/langchain/chains/constitutional_ai/base.html |
19bccd66272b-1 | critique_chain: LLMChain
revision_chain: LLMChain
return_intermediate_steps: bool = False
[docs] @classmethod
def get_principles(
cls, names: Optional[List[str]] = None
) -> List[ConstitutionalPrinciple]:
if names is None:
return list(PRINCIPLES.values())
else:
return [PRINCIPLES[name] for name in names]
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
chain: LLMChain,
critique_prompt: BasePromptTemplate = CRITIQUE_PROMPT,
revision_prompt: BasePromptTemplate = REVISION_PROMPT,
**kwargs: Any,
) -> "ConstitutionalChain":
"""Create a chain from an LLM."""
critique_chain = LLMChain(llm=llm, prompt=critique_prompt)
revision_chain = LLMChain(llm=llm, prompt=revision_prompt)
return cls(
chain=chain,
critique_chain=critique_chain,
revision_chain=revision_chain,
**kwargs,
)
@property
def input_keys(self) -> List[str]:
"""Defines the input keys."""
return self.chain.input_keys
@property
def output_keys(self) -> List[str]:
"""Defines the output keys."""
if self.return_intermediate_steps:
return ["output", "critiques_and_revisions", "initial_output"]
return ["output"]
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]: | https://api.python.langchain.com/en/latest/_modules/langchain/chains/constitutional_ai/base.html |
19bccd66272b-2 | ) -> Dict[str, Any]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
response = self.chain.run(
**inputs,
callbacks=_run_manager.get_child("original"),
)
initial_response = response
input_prompt = self.chain.prompt.format(**inputs)
_run_manager.on_text(
text="Initial response: " + response + "\n\n",
verbose=self.verbose,
color="yellow",
)
critiques_and_revisions = []
for constitutional_principle in self.constitutional_principles:
# Do critique
raw_critique = self.critique_chain.run(
input_prompt=input_prompt,
output_from_model=response,
critique_request=constitutional_principle.critique_request,
callbacks=_run_manager.get_child("critique"),
)
critique = self._parse_critique(
output_string=raw_critique,
).strip()
# if the critique contains "No critique needed", then we're done
# in this case, initial_output is the same as output,
# but we'll keep it for consistency
if "no critique needed" in critique.lower():
critiques_and_revisions.append((critique, ""))
continue
# Do revision
revision = self.revision_chain.run(
input_prompt=input_prompt,
output_from_model=response,
critique_request=constitutional_principle.critique_request,
critique=critique,
revision_request=constitutional_principle.revision_request,
callbacks=_run_manager.get_child("revision"),
).strip()
response = revision
critiques_and_revisions.append((critique, revision))
_run_manager.on_text( | https://api.python.langchain.com/en/latest/_modules/langchain/chains/constitutional_ai/base.html |
19bccd66272b-3 | _run_manager.on_text(
text=f"Applying {constitutional_principle.name}..." + "\n\n",
verbose=self.verbose,
color="green",
)
_run_manager.on_text(
text="Critique: " + critique + "\n\n",
verbose=self.verbose,
color="blue",
)
_run_manager.on_text(
text="Updated response: " + revision + "\n\n",
verbose=self.verbose,
color="yellow",
)
final_output: Dict[str, Any] = {"output": response}
if self.return_intermediate_steps:
final_output["initial_output"] = initial_response
final_output["critiques_and_revisions"] = critiques_and_revisions
return final_output
@staticmethod
def _parse_critique(output_string: str) -> str:
if "Revision request:" not in output_string:
return output_string
output_string = output_string.split("Revision request:")[0]
if "\n\n" in output_string:
output_string = output_string.split("\n\n")[0]
return output_string | https://api.python.langchain.com/en/latest/_modules/langchain/chains/constitutional_ai/base.html |
91ec7c5588d7-0 | Source code for langchain.chains.pal.base
"""Implements Program-Aided Language Models.
As in https://arxiv.org/pdf/2211.10435.pdf.
"""
from __future__ import annotations
import warnings
from typing import Any, Dict, List, Optional
from pydantic import Extra, root_validator
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.pal.colored_object_prompt import COLORED_OBJECT_PROMPT
from langchain.chains.pal.math_prompt import MATH_PROMPT
from langchain.prompts.base import BasePromptTemplate
from langchain.utilities import PythonREPL
[docs]class PALChain(Chain):
"""Implements Program-Aided Language Models."""
llm_chain: LLMChain
llm: Optional[BaseLanguageModel] = None
"""[Deprecated]"""
prompt: BasePromptTemplate = MATH_PROMPT
"""[Deprecated]"""
stop: str = "\n\n"
get_answer_expr: str = "print(solution())"
python_globals: Optional[Dict[str, Any]] = None
python_locals: Optional[Dict[str, Any]] = None
output_key: str = "result" #: :meta private:
return_intermediate_steps: bool = False
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@root_validator(pre=True)
def raise_deprecation(cls, values: Dict) -> Dict:
if "llm" in values:
warnings.warn(
"Directly instantiating an PALChain with an llm is deprecated. " | https://api.python.langchain.com/en/latest/_modules/langchain/chains/pal/base.html |
91ec7c5588d7-1 | "Directly instantiating an PALChain with an llm is deprecated. "
"Please instantiate with llm_chain argument or using the one of "
"the class method constructors from_math_prompt, "
"from_colored_object_prompt."
)
if "llm_chain" not in values and values["llm"] is not None:
values["llm_chain"] = LLMChain(llm=values["llm"], prompt=MATH_PROMPT)
return values
@property
def input_keys(self) -> List[str]:
"""Return the singular input key.
:meta private:
"""
return self.prompt.input_variables
@property
def output_keys(self) -> List[str]:
"""Return the singular output key.
:meta private:
"""
if not self.return_intermediate_steps:
return [self.output_key]
else:
return [self.output_key, "intermediate_steps"]
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
code = self.llm_chain.predict(
stop=[self.stop], callbacks=_run_manager.get_child(), **inputs
)
_run_manager.on_text(code, color="green", end="\n", verbose=self.verbose)
repl = PythonREPL(_globals=self.python_globals, _locals=self.python_locals)
res = repl.run(code + f"\n{self.get_answer_expr}")
output = {self.output_key: res.strip()}
if self.return_intermediate_steps:
output["intermediate_steps"] = code | https://api.python.langchain.com/en/latest/_modules/langchain/chains/pal/base.html |
91ec7c5588d7-2 | if self.return_intermediate_steps:
output["intermediate_steps"] = code
return output
[docs] @classmethod
def from_math_prompt(cls, llm: BaseLanguageModel, **kwargs: Any) -> PALChain:
"""Load PAL from math prompt."""
llm_chain = LLMChain(llm=llm, prompt=MATH_PROMPT)
return cls(
llm_chain=llm_chain,
stop="\n\n",
get_answer_expr="print(solution())",
**kwargs,
)
[docs] @classmethod
def from_colored_object_prompt(
cls, llm: BaseLanguageModel, **kwargs: Any
) -> PALChain:
"""Load PAL from colored object prompt."""
llm_chain = LLMChain(llm=llm, prompt=COLORED_OBJECT_PROMPT)
return cls(
llm_chain=llm_chain,
stop="\n\n\n",
get_answer_expr="print(answer)",
**kwargs,
)
@property
def _chain_type(self) -> str:
return "pal_chain" | https://api.python.langchain.com/en/latest/_modules/langchain/chains/pal/base.html |
b6a6fe0ce24b-0 | Source code for langchain.chains.retrieval_qa.base
"""Chain for question-answering against a vector database."""
from __future__ import annotations
import warnings
from abc import abstractmethod
from typing import Any, Dict, List, Optional
from pydantic import Extra, Field, root_validator
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import (
AsyncCallbackManagerForChainRun,
CallbackManagerForChainRun,
)
from langchain.chains.base import Chain
from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.llm import LLMChain
from langchain.chains.question_answering import load_qa_chain
from langchain.chains.question_answering.stuff_prompt import PROMPT_SELECTOR
from langchain.prompts import PromptTemplate
from langchain.schema import BaseRetriever, Document
from langchain.vectorstores.base import VectorStore
class BaseRetrievalQA(Chain):
combine_documents_chain: BaseCombineDocumentsChain
"""Chain to use to combine the documents."""
input_key: str = "query" #: :meta private:
output_key: str = "result" #: :meta private:
return_source_documents: bool = False
"""Return the source documents."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
allow_population_by_field_name = True
@property
def input_keys(self) -> List[str]:
"""Return the input keys.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return the output keys. | https://api.python.langchain.com/en/latest/_modules/langchain/chains/retrieval_qa/base.html |
b6a6fe0ce24b-1 | def output_keys(self) -> List[str]:
"""Return the output keys.
:meta private:
"""
_output_keys = [self.output_key]
if self.return_source_documents:
_output_keys = _output_keys + ["source_documents"]
return _output_keys
@classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
prompt: Optional[PromptTemplate] = None,
**kwargs: Any,
) -> BaseRetrievalQA:
"""Initialize from LLM."""
_prompt = prompt or PROMPT_SELECTOR.get_prompt(llm)
llm_chain = LLMChain(llm=llm, prompt=_prompt)
document_prompt = PromptTemplate(
input_variables=["page_content"], template="Context:\n{page_content}"
)
combine_documents_chain = StuffDocumentsChain(
llm_chain=llm_chain,
document_variable_name="context",
document_prompt=document_prompt,
)
return cls(combine_documents_chain=combine_documents_chain, **kwargs)
@classmethod
def from_chain_type(
cls,
llm: BaseLanguageModel,
chain_type: str = "stuff",
chain_type_kwargs: Optional[dict] = None,
**kwargs: Any,
) -> BaseRetrievalQA:
"""Load chain from chain type."""
_chain_type_kwargs = chain_type_kwargs or {}
combine_documents_chain = load_qa_chain(
llm, chain_type=chain_type, **_chain_type_kwargs
)
return cls(combine_documents_chain=combine_documents_chain, **kwargs)
@abstractmethod
def _get_docs(self, question: str) -> List[Document]: | https://api.python.langchain.com/en/latest/_modules/langchain/chains/retrieval_qa/base.html |
b6a6fe0ce24b-2 | def _get_docs(self, question: str) -> List[Document]:
"""Get documents to do question answering over."""
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
"""Run get_relevant_text and llm on input query.
If chain has 'return_source_documents' as 'True', returns
the retrieved documents as well under the key 'source_documents'.
Example:
.. code-block:: python
res = indexqa({'query': 'This is my query'})
answer, docs = res['result'], res['source_documents']
"""
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
question = inputs[self.input_key]
docs = self._get_docs(question)
answer = self.combine_documents_chain.run(
input_documents=docs, question=question, callbacks=_run_manager.get_child()
)
if self.return_source_documents:
return {self.output_key: answer, "source_documents": docs}
else:
return {self.output_key: answer}
@abstractmethod
async def _aget_docs(self, question: str) -> List[Document]:
"""Get documents to do question answering over."""
async def _acall(
self,
inputs: Dict[str, Any],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
"""Run get_relevant_text and llm on input query.
If chain has 'return_source_documents' as 'True', returns
the retrieved documents as well under the key 'source_documents'.
Example: | https://api.python.langchain.com/en/latest/_modules/langchain/chains/retrieval_qa/base.html |
b6a6fe0ce24b-3 | the retrieved documents as well under the key 'source_documents'.
Example:
.. code-block:: python
res = indexqa({'query': 'This is my query'})
answer, docs = res['result'], res['source_documents']
"""
_run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager()
question = inputs[self.input_key]
docs = await self._aget_docs(question)
answer = await self.combine_documents_chain.arun(
input_documents=docs, question=question, callbacks=_run_manager.get_child()
)
if self.return_source_documents:
return {self.output_key: answer, "source_documents": docs}
else:
return {self.output_key: answer}
[docs]class RetrievalQA(BaseRetrievalQA):
"""Chain for question-answering against an index.
Example:
.. code-block:: python
from langchain.llms import OpenAI
from langchain.chains import RetrievalQA
from langchain.faiss import FAISS
from langchain.vectorstores.base import VectorStoreRetriever
retriever = VectorStoreRetriever(vectorstore=FAISS(...))
retrievalQA = RetrievalQA.from_llm(llm=OpenAI(), retriever=retriever)
"""
retriever: BaseRetriever = Field(exclude=True)
def _get_docs(self, question: str) -> List[Document]:
return self.retriever.get_relevant_documents(question)
async def _aget_docs(self, question: str) -> List[Document]:
return await self.retriever.aget_relevant_documents(question)
@property
def _chain_type(self) -> str:
"""Return the chain type.""" | https://api.python.langchain.com/en/latest/_modules/langchain/chains/retrieval_qa/base.html |
b6a6fe0ce24b-4 | def _chain_type(self) -> str:
"""Return the chain type."""
return "retrieval_qa"
[docs]class VectorDBQA(BaseRetrievalQA):
"""Chain for question-answering against a vector database."""
vectorstore: VectorStore = Field(exclude=True, alias="vectorstore")
"""Vector Database to connect to."""
k: int = 4
"""Number of documents to query for."""
search_type: str = "similarity"
"""Search type to use over vectorstore. `similarity` or `mmr`."""
search_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Extra search args."""
@root_validator()
def raise_deprecation(cls, values: Dict) -> Dict:
warnings.warn(
"`VectorDBQA` is deprecated - "
"please use `from langchain.chains import RetrievalQA`"
)
return values
@root_validator()
def validate_search_type(cls, values: Dict) -> Dict:
"""Validate search type."""
if "search_type" in values:
search_type = values["search_type"]
if search_type not in ("similarity", "mmr"):
raise ValueError(f"search_type of {search_type} not allowed.")
return values
def _get_docs(self, question: str) -> List[Document]:
if self.search_type == "similarity":
docs = self.vectorstore.similarity_search(
question, k=self.k, **self.search_kwargs
)
elif self.search_type == "mmr":
docs = self.vectorstore.max_marginal_relevance_search(
question, k=self.k, **self.search_kwargs
) | https://api.python.langchain.com/en/latest/_modules/langchain/chains/retrieval_qa/base.html |
b6a6fe0ce24b-5 | question, k=self.k, **self.search_kwargs
)
else:
raise ValueError(f"search_type of {self.search_type} not allowed.")
return docs
async def _aget_docs(self, question: str) -> List[Document]:
raise NotImplementedError("VectorDBQA does not support async")
@property
def _chain_type(self) -> str:
"""Return the chain type."""
return "vector_db_qa" | https://api.python.langchain.com/en/latest/_modules/langchain/chains/retrieval_qa/base.html |
fbcb60bc62e2-0 | Source code for langchain.chains.llm_summarization_checker.base
"""Chain for summarization with self-verification."""
from __future__ import annotations
import warnings
from pathlib import Path
from typing import Any, Dict, List, Optional
from pydantic import Extra, root_validator
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.sequential import SequentialChain
from langchain.prompts.prompt import PromptTemplate
PROMPTS_DIR = Path(__file__).parent / "prompts"
CREATE_ASSERTIONS_PROMPT = PromptTemplate.from_file(
PROMPTS_DIR / "create_facts.txt", ["summary"]
)
CHECK_ASSERTIONS_PROMPT = PromptTemplate.from_file(
PROMPTS_DIR / "check_facts.txt", ["assertions"]
)
REVISED_SUMMARY_PROMPT = PromptTemplate.from_file(
PROMPTS_DIR / "revise_summary.txt", ["checked_assertions", "summary"]
)
ARE_ALL_TRUE_PROMPT = PromptTemplate.from_file(
PROMPTS_DIR / "are_all_true_prompt.txt", ["checked_assertions"]
)
def _load_sequential_chain(
llm: BaseLanguageModel,
create_assertions_prompt: PromptTemplate,
check_assertions_prompt: PromptTemplate,
revised_summary_prompt: PromptTemplate,
are_all_true_prompt: PromptTemplate,
verbose: bool = False,
) -> SequentialChain:
chain = SequentialChain(
chains=[
LLMChain(
llm=llm,
prompt=create_assertions_prompt,
output_key="assertions",
verbose=verbose,
),
LLMChain( | https://api.python.langchain.com/en/latest/_modules/langchain/chains/llm_summarization_checker/base.html |
fbcb60bc62e2-1 | verbose=verbose,
),
LLMChain(
llm=llm,
prompt=check_assertions_prompt,
output_key="checked_assertions",
verbose=verbose,
),
LLMChain(
llm=llm,
prompt=revised_summary_prompt,
output_key="revised_summary",
verbose=verbose,
),
LLMChain(
llm=llm,
output_key="all_true",
prompt=are_all_true_prompt,
verbose=verbose,
),
],
input_variables=["summary"],
output_variables=["all_true", "revised_summary"],
verbose=verbose,
)
return chain
[docs]class LLMSummarizationCheckerChain(Chain):
"""Chain for question-answering with self-verification.
Example:
.. code-block:: python
from langchain import OpenAI, LLMSummarizationCheckerChain
llm = OpenAI(temperature=0.0)
checker_chain = LLMSummarizationCheckerChain.from_llm(llm)
"""
sequential_chain: SequentialChain
llm: Optional[BaseLanguageModel] = None
"""[Deprecated] LLM wrapper to use."""
create_assertions_prompt: PromptTemplate = CREATE_ASSERTIONS_PROMPT
"""[Deprecated]"""
check_assertions_prompt: PromptTemplate = CHECK_ASSERTIONS_PROMPT
"""[Deprecated]"""
revised_summary_prompt: PromptTemplate = REVISED_SUMMARY_PROMPT
"""[Deprecated]"""
are_all_true_prompt: PromptTemplate = ARE_ALL_TRUE_PROMPT
"""[Deprecated]"""
input_key: str = "query" #: :meta private: | https://api.python.langchain.com/en/latest/_modules/langchain/chains/llm_summarization_checker/base.html |
fbcb60bc62e2-2 | input_key: str = "query" #: :meta private:
output_key: str = "result" #: :meta private:
max_checks: int = 2
"""Maximum number of times to check the assertions. Default to double-checking."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@root_validator(pre=True)
def raise_deprecation(cls, values: Dict) -> Dict:
if "llm" in values:
warnings.warn(
"Directly instantiating an LLMSummarizationCheckerChain with an llm is "
"deprecated. Please instantiate with"
" sequential_chain argument or using the from_llm class method."
)
if "sequential_chain" not in values and values["llm"] is not None:
values["sequential_chain"] = _load_sequential_chain(
values["llm"],
values.get("create_assertions_prompt", CREATE_ASSERTIONS_PROMPT),
values.get("check_assertions_prompt", CHECK_ASSERTIONS_PROMPT),
values.get("revised_summary_prompt", REVISED_SUMMARY_PROMPT),
values.get("are_all_true_prompt", ARE_ALL_TRUE_PROMPT),
verbose=values.get("verbose", False),
)
return values
@property
def input_keys(self) -> List[str]:
"""Return the singular input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return the singular output key.
:meta private:
"""
return [self.output_key]
def _call(
self,
inputs: Dict[str, Any], | https://api.python.langchain.com/en/latest/_modules/langchain/chains/llm_summarization_checker/base.html |
fbcb60bc62e2-3 | def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
all_true = False
count = 0
output = None
original_input = inputs[self.input_key]
chain_input = original_input
while not all_true and count < self.max_checks:
output = self.sequential_chain(
{"summary": chain_input}, callbacks=_run_manager.get_child()
)
count += 1
if output["all_true"].strip() == "True":
break
if self.verbose:
print(output["revised_summary"])
chain_input = output["revised_summary"]
if not output:
raise ValueError("No output from chain")
return {self.output_key: output["revised_summary"].strip()}
@property
def _chain_type(self) -> str:
return "llm_summarization_checker_chain"
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
create_assertions_prompt: PromptTemplate = CREATE_ASSERTIONS_PROMPT,
check_assertions_prompt: PromptTemplate = CHECK_ASSERTIONS_PROMPT,
revised_summary_prompt: PromptTemplate = REVISED_SUMMARY_PROMPT,
are_all_true_prompt: PromptTemplate = ARE_ALL_TRUE_PROMPT,
verbose: bool = False,
**kwargs: Any,
) -> LLMSummarizationCheckerChain:
chain = _load_sequential_chain(
llm,
create_assertions_prompt,
check_assertions_prompt,
revised_summary_prompt, | https://api.python.langchain.com/en/latest/_modules/langchain/chains/llm_summarization_checker/base.html |
fbcb60bc62e2-4 | create_assertions_prompt,
check_assertions_prompt,
revised_summary_prompt,
are_all_true_prompt,
verbose=verbose,
)
return cls(sequential_chain=chain, verbose=verbose, **kwargs) | https://api.python.langchain.com/en/latest/_modules/langchain/chains/llm_summarization_checker/base.html |
10ca50994435-0 | Source code for langchain.chains.api.base
"""Chain that makes API calls and summarizes the responses to answer a question."""
from __future__ import annotations
from typing import Any, Dict, List, Optional
from pydantic import Field, root_validator
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import (
AsyncCallbackManagerForChainRun,
CallbackManagerForChainRun,
)
from langchain.chains.api.prompt import API_RESPONSE_PROMPT, API_URL_PROMPT
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.prompts import BasePromptTemplate
from langchain.requests import TextRequestsWrapper
[docs]class APIChain(Chain):
"""Chain that makes API calls and summarizes the responses to answer a question."""
api_request_chain: LLMChain
api_answer_chain: LLMChain
requests_wrapper: TextRequestsWrapper = Field(exclude=True)
api_docs: str
question_key: str = "question" #: :meta private:
output_key: str = "output" #: :meta private:
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.question_key]
@property
def output_keys(self) -> List[str]:
"""Expect output key.
:meta private:
"""
return [self.output_key]
@root_validator(pre=True)
def validate_api_request_prompt(cls, values: Dict) -> Dict:
"""Check that api request prompt expects the right variables."""
input_vars = values["api_request_chain"].prompt.input_variables
expected_vars = {"question", "api_docs"}
if set(input_vars) != expected_vars: | https://api.python.langchain.com/en/latest/_modules/langchain/chains/api/base.html |
10ca50994435-1 | if set(input_vars) != expected_vars:
raise ValueError(
f"Input variables should be {expected_vars}, got {input_vars}"
)
return values
@root_validator(pre=True)
def validate_api_answer_prompt(cls, values: Dict) -> Dict:
"""Check that api answer prompt expects the right variables."""
input_vars = values["api_answer_chain"].prompt.input_variables
expected_vars = {"question", "api_docs", "api_url", "api_response"}
if set(input_vars) != expected_vars:
raise ValueError(
f"Input variables should be {expected_vars}, got {input_vars}"
)
return values
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
question = inputs[self.question_key]
api_url = self.api_request_chain.predict(
question=question,
api_docs=self.api_docs,
callbacks=_run_manager.get_child(),
)
_run_manager.on_text(api_url, color="green", end="\n", verbose=self.verbose)
api_url = api_url.strip()
api_response = self.requests_wrapper.get(api_url)
_run_manager.on_text(
api_response, color="yellow", end="\n", verbose=self.verbose
)
answer = self.api_answer_chain.predict(
question=question,
api_docs=self.api_docs,
api_url=api_url,
api_response=api_response,
callbacks=_run_manager.get_child(),
)
return {self.output_key: answer}
async def _acall( | https://api.python.langchain.com/en/latest/_modules/langchain/chains/api/base.html |
10ca50994435-2 | return {self.output_key: answer}
async def _acall(
self,
inputs: Dict[str, Any],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, str]:
_run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager()
question = inputs[self.question_key]
api_url = await self.api_request_chain.apredict(
question=question,
api_docs=self.api_docs,
callbacks=_run_manager.get_child(),
)
await _run_manager.on_text(
api_url, color="green", end="\n", verbose=self.verbose
)
api_url = api_url.strip()
api_response = await self.requests_wrapper.aget(api_url)
await _run_manager.on_text(
api_response, color="yellow", end="\n", verbose=self.verbose
)
answer = await self.api_answer_chain.apredict(
question=question,
api_docs=self.api_docs,
api_url=api_url,
api_response=api_response,
callbacks=_run_manager.get_child(),
)
return {self.output_key: answer}
[docs] @classmethod
def from_llm_and_api_docs(
cls,
llm: BaseLanguageModel,
api_docs: str,
headers: Optional[dict] = None,
api_url_prompt: BasePromptTemplate = API_URL_PROMPT,
api_response_prompt: BasePromptTemplate = API_RESPONSE_PROMPT,
**kwargs: Any,
) -> APIChain:
"""Load chain from just an LLM and the api docs."""
get_request_chain = LLMChain(llm=llm, prompt=api_url_prompt) | https://api.python.langchain.com/en/latest/_modules/langchain/chains/api/base.html |
10ca50994435-3 | requests_wrapper = TextRequestsWrapper(headers=headers)
get_answer_chain = LLMChain(llm=llm, prompt=api_response_prompt)
return cls(
api_request_chain=get_request_chain,
api_answer_chain=get_answer_chain,
requests_wrapper=requests_wrapper,
api_docs=api_docs,
**kwargs,
)
@property
def _chain_type(self) -> str:
return "api_chain" | https://api.python.langchain.com/en/latest/_modules/langchain/chains/api/base.html |
10e24b43e84b-0 | Source code for langchain.chains.api.openapi.chain
"""Chain that makes API calls and summarizes the responses to answer a question."""
from __future__ import annotations
import json
from typing import Any, Dict, List, NamedTuple, Optional, cast
from pydantic import BaseModel, Field
from requests import Response
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import CallbackManagerForChainRun, Callbacks
from langchain.chains.api.openapi.requests_chain import APIRequesterChain
from langchain.chains.api.openapi.response_chain import APIResponderChain
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.requests import Requests
from langchain.tools.openapi.utils.api_models import APIOperation
class _ParamMapping(NamedTuple):
"""Mapping from parameter name to parameter value."""
query_params: List[str]
body_params: List[str]
path_params: List[str]
[docs]class OpenAPIEndpointChain(Chain, BaseModel):
"""Chain interacts with an OpenAPI endpoint using natural language."""
api_request_chain: LLMChain
api_response_chain: Optional[LLMChain]
api_operation: APIOperation
requests: Requests = Field(exclude=True, default_factory=Requests)
param_mapping: _ParamMapping = Field(alias="param_mapping")
return_intermediate_steps: bool = False
instructions_key: str = "instructions" #: :meta private:
output_key: str = "output" #: :meta private:
max_text_length: Optional[int] = Field(ge=0) #: :meta private:
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.instructions_key]
@property | https://api.python.langchain.com/en/latest/_modules/langchain/chains/api/openapi/chain.html |
10e24b43e84b-1 | """
return [self.instructions_key]
@property
def output_keys(self) -> List[str]:
"""Expect output key.
:meta private:
"""
if not self.return_intermediate_steps:
return [self.output_key]
else:
return [self.output_key, "intermediate_steps"]
def _construct_path(self, args: Dict[str, str]) -> str:
"""Construct the path from the deserialized input."""
path = self.api_operation.base_url + self.api_operation.path
for param in self.param_mapping.path_params:
path = path.replace(f"{{{param}}}", str(args.pop(param, "")))
return path
def _extract_query_params(self, args: Dict[str, str]) -> Dict[str, str]:
"""Extract the query params from the deserialized input."""
query_params = {}
for param in self.param_mapping.query_params:
if param in args:
query_params[param] = args.pop(param)
return query_params
def _extract_body_params(self, args: Dict[str, str]) -> Optional[Dict[str, str]]:
"""Extract the request body params from the deserialized input."""
body_params = None
if self.param_mapping.body_params:
body_params = {}
for param in self.param_mapping.body_params:
if param in args:
body_params[param] = args.pop(param)
return body_params
[docs] def deserialize_json_input(self, serialized_args: str) -> dict:
"""Use the serialized typescript dictionary.
Resolve the path, query params dict, and optional requestBody dict.
"""
args: dict = json.loads(serialized_args)
path = self._construct_path(args) | https://api.python.langchain.com/en/latest/_modules/langchain/chains/api/openapi/chain.html |
10e24b43e84b-2 | path = self._construct_path(args)
body_params = self._extract_body_params(args)
query_params = self._extract_query_params(args)
return {
"url": path,
"data": body_params,
"params": query_params,
}
def _get_output(self, output: str, intermediate_steps: dict) -> dict:
"""Return the output from the API call."""
if self.return_intermediate_steps:
return {
self.output_key: output,
"intermediate_steps": intermediate_steps,
}
else:
return {self.output_key: output}
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
intermediate_steps = {}
instructions = inputs[self.instructions_key]
instructions = instructions[: self.max_text_length]
_api_arguments = self.api_request_chain.predict_and_parse(
instructions=instructions, callbacks=_run_manager.get_child()
)
api_arguments = cast(str, _api_arguments)
intermediate_steps["request_args"] = api_arguments
_run_manager.on_text(
api_arguments, color="green", end="\n", verbose=self.verbose
)
if api_arguments.startswith("ERROR"):
return self._get_output(api_arguments, intermediate_steps)
elif api_arguments.startswith("MESSAGE:"):
return self._get_output(
api_arguments[len("MESSAGE:") :], intermediate_steps
)
try:
request_args = self.deserialize_json_input(api_arguments)
method = getattr(self.requests, self.api_operation.method.value) | https://api.python.langchain.com/en/latest/_modules/langchain/chains/api/openapi/chain.html |
10e24b43e84b-3 | method = getattr(self.requests, self.api_operation.method.value)
api_response: Response = method(**request_args)
if api_response.status_code != 200:
method_str = str(self.api_operation.method.value)
response_text = (
f"{api_response.status_code}: {api_response.reason}"
+ f"\nFor {method_str.upper()} {request_args['url']}\n"
+ f"Called with args: {request_args['params']}"
)
else:
response_text = api_response.text
except Exception as e:
response_text = f"Error with message {str(e)}"
response_text = response_text[: self.max_text_length]
intermediate_steps["response_text"] = response_text
_run_manager.on_text(
response_text, color="blue", end="\n", verbose=self.verbose
)
if self.api_response_chain is not None:
_answer = self.api_response_chain.predict_and_parse(
response=response_text,
instructions=instructions,
callbacks=_run_manager.get_child(),
)
answer = cast(str, _answer)
_run_manager.on_text(answer, color="yellow", end="\n", verbose=self.verbose)
return self._get_output(answer, intermediate_steps)
else:
return self._get_output(response_text, intermediate_steps)
[docs] @classmethod
def from_url_and_method(
cls,
spec_url: str,
path: str,
method: str,
llm: BaseLanguageModel,
requests: Optional[Requests] = None,
return_intermediate_steps: bool = False,
**kwargs: Any
# TODO: Handle async
) -> "OpenAPIEndpointChain": | https://api.python.langchain.com/en/latest/_modules/langchain/chains/api/openapi/chain.html |
10e24b43e84b-4 | # TODO: Handle async
) -> "OpenAPIEndpointChain":
"""Create an OpenAPIEndpoint from a spec at the specified url."""
operation = APIOperation.from_openapi_url(spec_url, path, method)
return cls.from_api_operation(
operation,
requests=requests,
llm=llm,
return_intermediate_steps=return_intermediate_steps,
**kwargs,
)
[docs] @classmethod
def from_api_operation(
cls,
operation: APIOperation,
llm: BaseLanguageModel,
requests: Optional[Requests] = None,
verbose: bool = False,
return_intermediate_steps: bool = False,
raw_response: bool = False,
callbacks: Callbacks = None,
**kwargs: Any
# TODO: Handle async
) -> "OpenAPIEndpointChain":
"""Create an OpenAPIEndpointChain from an operation and a spec."""
param_mapping = _ParamMapping(
query_params=operation.query_params,
body_params=operation.body_params,
path_params=operation.path_params,
)
requests_chain = APIRequesterChain.from_llm_and_typescript(
llm,
typescript_definition=operation.to_typescript(),
verbose=verbose,
callbacks=callbacks,
)
if raw_response:
response_chain = None
else:
response_chain = APIResponderChain.from_llm(
llm, verbose=verbose, callbacks=callbacks
)
_requests = requests or Requests()
return cls(
api_request_chain=requests_chain,
api_response_chain=response_chain,
api_operation=operation,
requests=_requests,
param_mapping=param_mapping, | https://api.python.langchain.com/en/latest/_modules/langchain/chains/api/openapi/chain.html |
10e24b43e84b-5 | requests=_requests,
param_mapping=param_mapping,
verbose=verbose,
return_intermediate_steps=return_intermediate_steps,
callbacks=callbacks,
**kwargs,
) | https://api.python.langchain.com/en/latest/_modules/langchain/chains/api/openapi/chain.html |
1427fd0581e1-0 | Source code for langchain.chat_models.google_palm
"""Wrapper around Google's PaLM Chat API."""
from __future__ import annotations
import logging
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Mapping, Optional
from pydantic import BaseModel, root_validator
from tenacity import (
before_sleep_log,
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from langchain.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain.chat_models.base import BaseChatModel
from langchain.schema import (
AIMessage,
BaseMessage,
ChatGeneration,
ChatMessage,
ChatResult,
HumanMessage,
SystemMessage,
)
from langchain.utils import get_from_dict_or_env
if TYPE_CHECKING:
import google.generativeai as genai
logger = logging.getLogger(__name__)
class ChatGooglePalmError(Exception):
"""Error raised when there is an issue with the Google PaLM API."""
pass
def _truncate_at_stop_tokens(
text: str,
stop: Optional[List[str]],
) -> str:
"""Truncates text at the earliest stop token found."""
if stop is None:
return text
for stop_token in stop:
stop_token_idx = text.find(stop_token)
if stop_token_idx != -1:
text = text[:stop_token_idx]
return text
def _response_to_result(
response: genai.types.ChatResponse,
stop: Optional[List[str]],
) -> ChatResult:
"""Converts a PaLM API response into a LangChain ChatResult."""
if not response.candidates: | https://api.python.langchain.com/en/latest/_modules/langchain/chat_models/google_palm.html |
1427fd0581e1-1 | if not response.candidates:
raise ChatGooglePalmError("ChatResponse must have at least one candidate.")
generations: List[ChatGeneration] = []
for candidate in response.candidates:
author = candidate.get("author")
if author is None:
raise ChatGooglePalmError(f"ChatResponse must have an author: {candidate}")
content = _truncate_at_stop_tokens(candidate.get("content", ""), stop)
if content is None:
raise ChatGooglePalmError(f"ChatResponse must have a content: {candidate}")
if author == "ai":
generations.append(
ChatGeneration(text=content, message=AIMessage(content=content))
)
elif author == "human":
generations.append(
ChatGeneration(
text=content,
message=HumanMessage(content=content),
)
)
else:
generations.append(
ChatGeneration(
text=content,
message=ChatMessage(role=author, content=content),
)
)
return ChatResult(generations=generations)
def _messages_to_prompt_dict(
input_messages: List[BaseMessage],
) -> genai.types.MessagePromptDict:
"""Converts a list of LangChain messages into a PaLM API MessagePrompt structure."""
import google.generativeai as genai
context: str = ""
examples: List[genai.types.MessageDict] = []
messages: List[genai.types.MessageDict] = []
remaining = list(enumerate(input_messages))
while remaining:
index, input_message = remaining.pop(0)
if isinstance(input_message, SystemMessage):
if index != 0: | https://api.python.langchain.com/en/latest/_modules/langchain/chat_models/google_palm.html |
1427fd0581e1-2 | if isinstance(input_message, SystemMessage):
if index != 0:
raise ChatGooglePalmError("System message must be first input message.")
context = input_message.content
elif isinstance(input_message, HumanMessage) and input_message.example:
if messages:
raise ChatGooglePalmError(
"Message examples must come before other messages."
)
_, next_input_message = remaining.pop(0)
if isinstance(next_input_message, AIMessage) and next_input_message.example:
examples.extend(
[
genai.types.MessageDict(
author="human", content=input_message.content
),
genai.types.MessageDict(
author="ai", content=next_input_message.content
),
]
)
else:
raise ChatGooglePalmError(
"Human example message must be immediately followed by an "
" AI example response."
)
elif isinstance(input_message, AIMessage) and input_message.example:
raise ChatGooglePalmError(
"AI example message must be immediately preceded by a Human "
"example message."
)
elif isinstance(input_message, AIMessage):
messages.append(
genai.types.MessageDict(author="ai", content=input_message.content)
)
elif isinstance(input_message, HumanMessage):
messages.append(
genai.types.MessageDict(author="human", content=input_message.content)
)
elif isinstance(input_message, ChatMessage):
messages.append(
genai.types.MessageDict(
author=input_message.role, content=input_message.content
)
)
else:
raise ChatGooglePalmError(
"Messages without an explicit role not supported by PaLM API."
) | https://api.python.langchain.com/en/latest/_modules/langchain/chat_models/google_palm.html |
1427fd0581e1-3 | "Messages without an explicit role not supported by PaLM API."
)
return genai.types.MessagePromptDict(
context=context,
examples=examples,
messages=messages,
)
def _create_retry_decorator() -> Callable[[Any], Any]:
"""Returns a tenacity retry decorator, preconfigured to handle PaLM exceptions"""
import google.api_core.exceptions
multiplier = 2
min_seconds = 1
max_seconds = 60
max_retries = 10
return retry(
reraise=True,
stop=stop_after_attempt(max_retries),
wait=wait_exponential(multiplier=multiplier, min=min_seconds, max=max_seconds),
retry=(
retry_if_exception_type(google.api_core.exceptions.ResourceExhausted)
| retry_if_exception_type(google.api_core.exceptions.ServiceUnavailable)
| retry_if_exception_type(google.api_core.exceptions.GoogleAPIError)
),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
def chat_with_retry(llm: ChatGooglePalm, **kwargs: Any) -> Any:
"""Use tenacity to retry the completion call."""
retry_decorator = _create_retry_decorator()
@retry_decorator
def _chat_with_retry(**kwargs: Any) -> Any:
return llm.client.chat(**kwargs)
return _chat_with_retry(**kwargs)
async def achat_with_retry(llm: ChatGooglePalm, **kwargs: Any) -> Any:
"""Use tenacity to retry the async completion call."""
retry_decorator = _create_retry_decorator()
@retry_decorator
async def _achat_with_retry(**kwargs: Any) -> Any: | https://api.python.langchain.com/en/latest/_modules/langchain/chat_models/google_palm.html |
1427fd0581e1-4 | async def _achat_with_retry(**kwargs: Any) -> Any:
# Use OpenAI's async api https://github.com/openai/openai-python#async-api
return await llm.client.chat_async(**kwargs)
return await _achat_with_retry(**kwargs)
[docs]class ChatGooglePalm(BaseChatModel, BaseModel):
"""Wrapper around Google's PaLM Chat API.
To use you must have the google.generativeai Python package installed and
either:
1. The ``GOOGLE_API_KEY``` environment varaible set with your API key, or
2. Pass your API key using the google_api_key kwarg to the ChatGoogle
constructor.
Example:
.. code-block:: python
from langchain.chat_models import ChatGooglePalm
chat = ChatGooglePalm()
"""
client: Any #: :meta private:
model_name: str = "models/chat-bison-001"
"""Model name to use."""
google_api_key: Optional[str] = None
temperature: Optional[float] = None
"""Run inference with this temperature. Must by in the closed
interval [0.0, 1.0]."""
top_p: Optional[float] = None
"""Decode using nucleus sampling: consider the smallest set of tokens whose
probability sum is at least top_p. Must be in the closed interval [0.0, 1.0]."""
top_k: Optional[int] = None
"""Decode using top-k sampling: consider the set of top_k most probable tokens.
Must be positive."""
n: int = 1
"""Number of chat completions to generate for each prompt. Note that the API may
not return the full n completions if duplicates are generated.""" | https://api.python.langchain.com/en/latest/_modules/langchain/chat_models/google_palm.html |
1427fd0581e1-5 | not return the full n completions if duplicates are generated."""
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate api key, python package exists, temperature, top_p, and top_k."""
google_api_key = get_from_dict_or_env(
values, "google_api_key", "GOOGLE_API_KEY"
)
try:
import google.generativeai as genai
genai.configure(api_key=google_api_key)
except ImportError:
raise ChatGooglePalmError(
"Could not import google.generativeai python package. "
"Please install it with `pip install google-generativeai`"
)
values["client"] = genai
if values["temperature"] is not None and not 0 <= values["temperature"] <= 1:
raise ValueError("temperature must be in the range [0.0, 1.0]")
if values["top_p"] is not None and not 0 <= values["top_p"] <= 1:
raise ValueError("top_p must be in the range [0.0, 1.0]")
if values["top_k"] is not None and values["top_k"] <= 0:
raise ValueError("top_k must be positive")
return values
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
prompt = _messages_to_prompt_dict(messages)
response: genai.types.ChatResponse = chat_with_retry(
self,
model=self.model_name,
prompt=prompt, | https://api.python.langchain.com/en/latest/_modules/langchain/chat_models/google_palm.html |
1427fd0581e1-6 | self,
model=self.model_name,
prompt=prompt,
temperature=self.temperature,
top_p=self.top_p,
top_k=self.top_k,
candidate_count=self.n,
**kwargs,
)
return _response_to_result(response, stop)
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
prompt = _messages_to_prompt_dict(messages)
response: genai.types.ChatResponse = await achat_with_retry(
self,
model=self.model_name,
prompt=prompt,
temperature=self.temperature,
top_p=self.top_p,
top_k=self.top_k,
candidate_count=self.n,
)
return _response_to_result(response, stop)
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
"model_name": self.model_name,
"temperature": self.temperature,
"top_p": self.top_p,
"top_k": self.top_k,
"n": self.n,
}
@property
def _llm_type(self) -> str:
return "google-palm-chat" | https://api.python.langchain.com/en/latest/_modules/langchain/chat_models/google_palm.html |
4a5533d8c84c-0 | Source code for langchain.chat_models.azure_openai
"""Azure OpenAI chat wrapper."""
from __future__ import annotations
import logging
from typing import Any, Dict, Mapping
from pydantic import root_validator
from langchain.chat_models.openai import ChatOpenAI
from langchain.schema import ChatResult
from langchain.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
[docs]class AzureChatOpenAI(ChatOpenAI):
"""Wrapper around Azure OpenAI Chat Completion API. To use this class you
must have a deployed model on Azure OpenAI. Use `deployment_name` in the
constructor to refer to the "Model deployment name" in the Azure portal.
In addition, you should have the ``openai`` python package installed, and the
following environment variables set or passed in constructor in lower case:
- ``OPENAI_API_TYPE`` (default: ``azure``)
- ``OPENAI_API_KEY``
- ``OPENAI_API_BASE``
- ``OPENAI_API_VERSION``
- ``OPENAI_PROXY``
For exmaple, if you have `gpt-35-turbo` deployed, with the deployment name
`35-turbo-dev`, the constructor should look like:
.. code-block:: python
AzureChatOpenAI(
deployment_name="35-turbo-dev",
openai_api_version="2023-03-15-preview",
)
Be aware the API version may change.
Any parameters that are valid to be passed to the openai.create call can be passed
in, even if not explicitly saved on this class.
"""
deployment_name: str = ""
openai_api_type: str = "azure"
openai_api_base: str = "" | https://api.python.langchain.com/en/latest/_modules/langchain/chat_models/azure_openai.html |
4a5533d8c84c-1 | openai_api_base: str = ""
openai_api_version: str = ""
openai_api_key: str = ""
openai_organization: str = ""
openai_proxy: str = ""
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["openai_api_key"] = get_from_dict_or_env(
values,
"openai_api_key",
"OPENAI_API_KEY",
)
values["openai_api_base"] = get_from_dict_or_env(
values,
"openai_api_base",
"OPENAI_API_BASE",
)
values["openai_api_version"] = get_from_dict_or_env(
values,
"openai_api_version",
"OPENAI_API_VERSION",
)
values["openai_api_type"] = get_from_dict_or_env(
values,
"openai_api_type",
"OPENAI_API_TYPE",
)
values["openai_organization"] = get_from_dict_or_env(
values,
"openai_organization",
"OPENAI_ORGANIZATION",
default="",
)
values["openai_proxy"] = get_from_dict_or_env(
values,
"openai_proxy",
"OPENAI_PROXY",
default="",
)
try:
import openai
except ImportError:
raise ImportError(
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
try:
values["client"] = openai.ChatCompletion
except AttributeError:
raise ValueError( | https://api.python.langchain.com/en/latest/_modules/langchain/chat_models/azure_openai.html |
4a5533d8c84c-2 | except AttributeError:
raise ValueError(
"`openai` has no `ChatCompletion` attribute, this is likely "
"due to an old version of the openai package. Try upgrading it "
"with `pip install --upgrade openai`."
)
if values["n"] < 1:
raise ValueError("n must be at least 1.")
if values["n"] > 1 and values["streaming"]:
raise ValueError("n must be 1 when streaming.")
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling OpenAI API."""
return {
**super()._default_params,
"engine": self.deployment_name,
}
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {**self._default_params}
@property
def _invocation_params(self) -> Mapping[str, Any]:
openai_creds = {
"api_type": self.openai_api_type,
"api_version": self.openai_api_version,
}
return {**openai_creds, **super()._invocation_params}
@property
def _llm_type(self) -> str:
return "azure-openai-chat"
def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult:
for res in response["choices"]:
if res.get("finish_reason", None) == "content_filter":
raise ValueError(
"Azure has not provided the response due to a content"
" filter being triggered"
)
return super()._create_chat_result(response) | https://api.python.langchain.com/en/latest/_modules/langchain/chat_models/azure_openai.html |
b3f7380b9c5e-0 | Source code for langchain.chat_models.fake
"""Fake ChatModel for testing purposes."""
from typing import Any, List, Mapping, Optional
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.chat_models.base import SimpleChatModel
from langchain.schema import BaseMessage
[docs]class FakeListChatModel(SimpleChatModel):
"""Fake ChatModel for testing purposes."""
responses: List
i: int = 0
@property
def _llm_type(self) -> str:
return "fake-list-chat-model"
def _call(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""First try to lookup in queries, else return 'foo' or 'bar'."""
response = self.responses[self.i]
self.i += 1
return response
@property
def _identifying_params(self) -> Mapping[str, Any]:
return {"responses": self.responses} | https://api.python.langchain.com/en/latest/_modules/langchain/chat_models/fake.html |
78621d32da49-0 | Source code for langchain.chat_models.promptlayer_openai
"""PromptLayer wrapper."""
import datetime
from typing import Any, List, Mapping, Optional
from langchain.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain.chat_models import ChatOpenAI
from langchain.schema import BaseMessage, ChatResult
[docs]class PromptLayerChatOpenAI(ChatOpenAI):
"""Wrapper around OpenAI Chat large language models and PromptLayer.
To use, you should have the ``openai`` and ``promptlayer`` python
package installed, and the environment variable ``OPENAI_API_KEY``
and ``PROMPTLAYER_API_KEY`` set with your openAI API key and
promptlayer key respectively.
All parameters that can be passed to the OpenAI LLM can also
be passed here. The PromptLayerChatOpenAI adds to optional
parameters:
``pl_tags``: List of strings to tag the request with.
``return_pl_id``: If True, the PromptLayer request ID will be
returned in the ``generation_info`` field of the
``Generation`` object.
Example:
.. code-block:: python
from langchain.chat_models import PromptLayerChatOpenAI
openai = PromptLayerChatOpenAI(model_name="gpt-3.5-turbo")
"""
pl_tags: Optional[List[str]]
return_pl_id: Optional[bool] = False
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any
) -> ChatResult: | https://api.python.langchain.com/en/latest/_modules/langchain/chat_models/promptlayer_openai.html |
78621d32da49-1 | **kwargs: Any
) -> ChatResult:
"""Call ChatOpenAI generate and then call PromptLayer API to log the request."""
from promptlayer.utils import get_api_key, promptlayer_api_request
request_start_time = datetime.datetime.now().timestamp()
generated_responses = super()._generate(messages, stop, run_manager)
request_end_time = datetime.datetime.now().timestamp()
message_dicts, params = super()._create_message_dicts(messages, stop)
for i, generation in enumerate(generated_responses.generations):
response_dict, params = super()._create_message_dicts(
[generation.message], stop
)
params = {**params, **kwargs}
pl_request_id = promptlayer_api_request(
"langchain.PromptLayerChatOpenAI",
"langchain",
message_dicts,
params,
self.pl_tags,
response_dict,
request_start_time,
request_end_time,
get_api_key(),
return_pl_id=self.return_pl_id,
)
if self.return_pl_id:
if generation.generation_info is None or not isinstance(
generation.generation_info, dict
):
generation.generation_info = {}
generation.generation_info["pl_request_id"] = pl_request_id
return generated_responses
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any
) -> ChatResult:
"""Call ChatOpenAI agenerate and then call PromptLayer to log."""
from promptlayer.utils import get_api_key, promptlayer_api_request_async
request_start_time = datetime.datetime.now().timestamp() | https://api.python.langchain.com/en/latest/_modules/langchain/chat_models/promptlayer_openai.html |
78621d32da49-2 | request_start_time = datetime.datetime.now().timestamp()
generated_responses = await super()._agenerate(messages, stop, run_manager)
request_end_time = datetime.datetime.now().timestamp()
message_dicts, params = super()._create_message_dicts(messages, stop)
for i, generation in enumerate(generated_responses.generations):
response_dict, params = super()._create_message_dicts(
[generation.message], stop
)
params = {**params, **kwargs}
pl_request_id = await promptlayer_api_request_async(
"langchain.PromptLayerChatOpenAI.async",
"langchain",
message_dicts,
params,
self.pl_tags,
response_dict,
request_start_time,
request_end_time,
get_api_key(),
return_pl_id=self.return_pl_id,
)
if self.return_pl_id:
if generation.generation_info is None or not isinstance(
generation.generation_info, dict
):
generation.generation_info = {}
generation.generation_info["pl_request_id"] = pl_request_id
return generated_responses
@property
def _llm_type(self) -> str:
return "promptlayer-openai-chat"
@property
def _identifying_params(self) -> Mapping[str, Any]:
return {
**super()._identifying_params,
"pl_tags": self.pl_tags,
"return_pl_id": self.return_pl_id,
} | https://api.python.langchain.com/en/latest/_modules/langchain/chat_models/promptlayer_openai.html |
c3077bb50a24-0 | Source code for langchain.chat_models.vertexai
"""Wrapper around Google VertexAI chat-based models."""
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional
from pydantic import root_validator
from langchain.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain.chat_models.base import BaseChatModel
from langchain.llms.vertexai import _VertexAICommon, is_codey_model
from langchain.schema import (
AIMessage,
BaseMessage,
ChatGeneration,
ChatResult,
HumanMessage,
SystemMessage,
)
from langchain.utilities.vertexai import raise_vertex_import_error
@dataclass
class _MessagePair:
"""InputOutputTextPair represents a pair of input and output texts."""
question: HumanMessage
answer: AIMessage
@dataclass
class _ChatHistory:
"""InputOutputTextPair represents a pair of input and output texts."""
history: List[_MessagePair] = field(default_factory=list)
system_message: Optional[SystemMessage] = None
def _parse_chat_history(history: List[BaseMessage]) -> _ChatHistory:
"""Parse a sequence of messages into history.
A sequence should be either (SystemMessage, HumanMessage, AIMessage,
HumanMessage, AIMessage, ...) or (HumanMessage, AIMessage, HumanMessage,
AIMessage, ...). CodeChat does not support SystemMessage.
Args:
history: The list of messages to re-create the history of the chat.
Returns:
A parsed chat history.
Raises:
ValueError: If a sequence of message is odd, or a human message is not followed | https://api.python.langchain.com/en/latest/_modules/langchain/chat_models/vertexai.html |
c3077bb50a24-1 | ValueError: If a sequence of message is odd, or a human message is not followed
by a message from AI (e.g., Human, Human, AI or AI, AI, Human).
"""
if not history:
return _ChatHistory()
first_message = history[0]
system_message = first_message if isinstance(first_message, SystemMessage) else None
chat_history = _ChatHistory(system_message=system_message)
messages_left = history[1:] if system_message else history
if len(messages_left) % 2 != 0:
raise ValueError(
f"Amount of messages in history should be even, got {len(messages_left)}!"
)
for question, answer in zip(messages_left[::2], messages_left[1::2]):
if not isinstance(question, HumanMessage) or not isinstance(answer, AIMessage):
raise ValueError(
"A human message should follow a bot one, "
f"got {question.type}, {answer.type}."
)
chat_history.history.append(_MessagePair(question=question, answer=answer))
return chat_history
[docs]class ChatVertexAI(_VertexAICommon, BaseChatModel):
"""Wrapper around Vertex AI large language models."""
model_name: str = "chat-bison"
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that the python package exists in environment."""
cls._try_init_vertexai(values)
try:
if is_codey_model(values["model_name"]):
from vertexai.preview.language_models import CodeChatModel
values["client"] = CodeChatModel.from_pretrained(values["model_name"])
else:
from vertexai.preview.language_models import ChatModel | https://api.python.langchain.com/en/latest/_modules/langchain/chat_models/vertexai.html |
c3077bb50a24-2 | else:
from vertexai.preview.language_models import ChatModel
values["client"] = ChatModel.from_pretrained(values["model_name"])
except ImportError:
raise_vertex_import_error()
return values
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
"""Generate next turn in the conversation.
Args:
messages: The history of the conversation as a list of messages. Code chat
does not support context.
stop: The list of stop words (optional).
run_manager: The CallbackManager for LLM run, it's not used at the moment.
Returns:
The ChatResult that contains outputs generated by the model.
Raises:
ValueError: if the last message in the list is not from human.
"""
if not messages:
raise ValueError(
"You should provide at least one message to start the chat!"
)
question = messages[-1]
if not isinstance(question, HumanMessage):
raise ValueError(
f"Last message in the list should be from human, got {question.type}."
)
history = _parse_chat_history(messages[:-1])
context = history.system_message.content if history.system_message else None
params = {**self._default_params, **kwargs}
if not self.is_codey_model:
chat = self.client.start_chat(context=context, **params)
else:
chat = self.client.start_chat(**params)
for pair in history.history:
chat._history.append((pair.question.content, pair.answer.content)) | https://api.python.langchain.com/en/latest/_modules/langchain/chat_models/vertexai.html |
c3077bb50a24-3 | chat._history.append((pair.question.content, pair.answer.content))
response = chat.send_message(question.content, **params)
text = self._enforce_stop_words(response.text, stop)
return ChatResult(generations=[ChatGeneration(message=AIMessage(content=text))])
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
raise NotImplementedError(
"""Vertex AI doesn't support async requests at the moment."""
) | https://api.python.langchain.com/en/latest/_modules/langchain/chat_models/vertexai.html |
0b60ce3f167b-0 | Source code for langchain.chat_models.anthropic
from typing import Any, Dict, List, Optional
from langchain.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain.chat_models.base import BaseChatModel
from langchain.llms.anthropic import _AnthropicCommon
from langchain.schema import (
AIMessage,
BaseMessage,
ChatGeneration,
ChatMessage,
ChatResult,
HumanMessage,
SystemMessage,
)
[docs]class ChatAnthropic(BaseChatModel, _AnthropicCommon):
r"""Wrapper around Anthropic's large language model.
To use, you should have the ``anthropic`` python package installed, and the
environment variable ``ANTHROPIC_API_KEY`` set with your API key, or pass
it as a named parameter to the constructor.
Example:
.. code-block:: python
import anthropic
from langchain.llms import Anthropic
model = ChatAnthropic(model="<model_name>", anthropic_api_key="my-api-key")
"""
@property
def _llm_type(self) -> str:
"""Return type of chat model."""
return "anthropic-chat"
@property
def lc_serializable(self) -> bool:
return True
def _convert_one_message_to_text(self, message: BaseMessage) -> str:
if isinstance(message, ChatMessage):
message_text = f"\n\n{message.role.capitalize()}: {message.content}"
elif isinstance(message, HumanMessage):
message_text = f"{self.HUMAN_PROMPT} {message.content}"
elif isinstance(message, AIMessage):
message_text = f"{self.AI_PROMPT} {message.content}" | https://api.python.langchain.com/en/latest/_modules/langchain/chat_models/anthropic.html |
0b60ce3f167b-1 | message_text = f"{self.AI_PROMPT} {message.content}"
elif isinstance(message, SystemMessage):
message_text = f"{self.HUMAN_PROMPT} <admin>{message.content}</admin>"
else:
raise ValueError(f"Got unknown type {message}")
return message_text
def _convert_messages_to_text(self, messages: List[BaseMessage]) -> str:
"""Format a list of strings into a single string with necessary newlines.
Args:
messages (List[BaseMessage]): List of BaseMessage to combine.
Returns:
str: Combined string with necessary newlines.
"""
return "".join(
self._convert_one_message_to_text(message) for message in messages
)
def _convert_messages_to_prompt(self, messages: List[BaseMessage]) -> str:
"""Format a list of messages into a full prompt for the Anthropic model
Args:
messages (List[BaseMessage]): List of BaseMessage to combine.
Returns:
str: Combined string with necessary HUMAN_PROMPT and AI_PROMPT tags.
"""
messages = messages.copy() # don't mutate the original list
if not self.AI_PROMPT:
raise NameError("Please ensure the anthropic package is loaded")
if not isinstance(messages[-1], AIMessage):
messages.append(AIMessage(content=""))
text = self._convert_messages_to_text(messages)
return (
text.rstrip()
) # trim off the trailing ' ' that might come from the "Assistant: "
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None, | https://api.python.langchain.com/en/latest/_modules/langchain/chat_models/anthropic.html |
0b60ce3f167b-2 | run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
prompt = self._convert_messages_to_prompt(messages)
params: Dict[str, Any] = {"prompt": prompt, **self._default_params, **kwargs}
if stop:
params["stop_sequences"] = stop
if self.streaming:
completion = ""
stream_resp = self.client.completion_stream(**params)
for data in stream_resp:
delta = data["completion"][len(completion) :]
completion = data["completion"]
if run_manager:
run_manager.on_llm_new_token(
delta,
)
else:
response = self.client.completion(**params)
completion = response["completion"]
message = AIMessage(content=completion)
return ChatResult(generations=[ChatGeneration(message=message)])
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
prompt = self._convert_messages_to_prompt(messages)
params: Dict[str, Any] = {"prompt": prompt, **self._default_params, **kwargs}
if stop:
params["stop_sequences"] = stop
if self.streaming:
completion = ""
stream_resp = await self.client.acompletion_stream(**params)
async for data in stream_resp:
delta = data["completion"][len(completion) :]
completion = data["completion"]
if run_manager:
await run_manager.on_llm_new_token(
delta,
)
else: | https://api.python.langchain.com/en/latest/_modules/langchain/chat_models/anthropic.html |
0b60ce3f167b-3 | delta,
)
else:
response = await self.client.acompletion(**params)
completion = response["completion"]
message = AIMessage(content=completion)
return ChatResult(generations=[ChatGeneration(message=message)])
[docs] def get_num_tokens(self, text: str) -> int:
"""Calculate number of tokens."""
if not self.count_tokens:
raise NameError("Please ensure the anthropic package is loaded")
return self.count_tokens(text) | https://api.python.langchain.com/en/latest/_modules/langchain/chat_models/anthropic.html |
4dc84ea39083-0 | Source code for langchain.chat_models.openai
"""OpenAI chat wrapper."""
from __future__ import annotations
import logging
import sys
from typing import (
TYPE_CHECKING,
Any,
Callable,
Dict,
List,
Mapping,
Optional,
Tuple,
Union,
)
from pydantic import Field, root_validator
from tenacity import (
before_sleep_log,
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from langchain.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain.chat_models.base import BaseChatModel
from langchain.schema import (
AIMessage,
BaseMessage,
ChatGeneration,
ChatMessage,
ChatResult,
FunctionMessage,
HumanMessage,
SystemMessage,
)
from langchain.utils import get_from_dict_or_env
if TYPE_CHECKING:
import tiktoken
logger = logging.getLogger(__name__)
def _import_tiktoken() -> Any:
try:
import tiktoken
except ImportError:
raise ValueError(
"Could not import tiktoken python package. "
"This is needed in order to calculate get_token_ids. "
"Please install it with `pip install tiktoken`."
)
return tiktoken
def _create_retry_decorator(llm: ChatOpenAI) -> Callable[[Any], Any]:
import openai
min_seconds = 1
max_seconds = 60
# Wait 2^x * 1 second between each retry starting with
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
return retry( | https://api.python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html |
4dc84ea39083-1 | return retry(
reraise=True,
stop=stop_after_attempt(llm.max_retries),
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
retry=(
retry_if_exception_type(openai.error.Timeout)
| retry_if_exception_type(openai.error.APIError)
| retry_if_exception_type(openai.error.APIConnectionError)
| retry_if_exception_type(openai.error.RateLimitError)
| retry_if_exception_type(openai.error.ServiceUnavailableError)
),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
async def acompletion_with_retry(llm: ChatOpenAI, **kwargs: Any) -> Any:
"""Use tenacity to retry the async completion call."""
retry_decorator = _create_retry_decorator(llm)
@retry_decorator
async def _completion_with_retry(**kwargs: Any) -> Any:
# Use OpenAI's async api https://github.com/openai/openai-python#async-api
return await llm.client.acreate(**kwargs)
return await _completion_with_retry(**kwargs)
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
role = _dict["role"]
if role == "user":
return HumanMessage(content=_dict["content"])
elif role == "assistant":
content = _dict["content"] or "" # OpenAI returns None for tool invocations
if _dict.get("function_call"):
additional_kwargs = {"function_call": dict(_dict["function_call"])}
else:
additional_kwargs = {}
return AIMessage(content=content, additional_kwargs=additional_kwargs)
elif role == "system":
return SystemMessage(content=_dict["content"]) | https://api.python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html |
4dc84ea39083-2 | elif role == "system":
return SystemMessage(content=_dict["content"])
elif role == "function":
return FunctionMessage(content=_dict["content"], name=_dict["name"])
else:
return ChatMessage(content=_dict["content"], role=role)
def _convert_message_to_dict(message: BaseMessage) -> dict:
if isinstance(message, ChatMessage):
message_dict = {"role": message.role, "content": message.content}
elif isinstance(message, HumanMessage):
message_dict = {"role": "user", "content": message.content}
elif isinstance(message, AIMessage):
message_dict = {"role": "assistant", "content": message.content}
if "function_call" in message.additional_kwargs:
message_dict["function_call"] = message.additional_kwargs["function_call"]
elif isinstance(message, SystemMessage):
message_dict = {"role": "system", "content": message.content}
elif isinstance(message, FunctionMessage):
message_dict = {
"role": "function",
"content": message.content,
"name": message.name,
}
else:
raise ValueError(f"Got unknown type {message}")
if "name" in message.additional_kwargs:
message_dict["name"] = message.additional_kwargs["name"]
return message_dict
[docs]class ChatOpenAI(BaseChatModel):
"""Wrapper around OpenAI Chat large language models.
To use, you should have the ``openai`` python package installed, and the
environment variable ``OPENAI_API_KEY`` set with your API key.
Any parameters that are valid to be passed to the openai.create call can be passed
in, even if not explicitly saved on this class.
Example:
.. code-block:: python | https://api.python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html |
4dc84ea39083-3 | Example:
.. code-block:: python
from langchain.chat_models import ChatOpenAI
openai = ChatOpenAI(model_name="gpt-3.5-turbo")
"""
@property
def lc_secrets(self) -> Dict[str, str]:
return {"openai_api_key": "OPENAI_API_KEY"}
@property
def lc_serializable(self) -> bool:
return True
client: Any #: :meta private:
model_name: str = Field(default="gpt-3.5-turbo", alias="model")
"""Model name to use."""
temperature: float = 0.7
"""What sampling temperature to use."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `create` call not explicitly specified."""
openai_api_key: Optional[str] = None
"""Base URL path for API requests,
leave blank if not using a proxy or service emulator."""
openai_api_base: Optional[str] = None
openai_organization: Optional[str] = None
# to support explicit proxy for OpenAI
openai_proxy: Optional[str] = None
request_timeout: Optional[Union[float, Tuple[float, float]]] = None
"""Timeout for requests to OpenAI completion API. Default is 600 seconds."""
max_retries: int = 6
"""Maximum number of retries to make when generating."""
streaming: bool = False
"""Whether to stream the results or not."""
n: int = 1
"""Number of chat completions to generate for each prompt."""
max_tokens: Optional[int] = None
"""Maximum number of tokens to generate.""" | https://api.python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html |
4dc84ea39083-4 | max_tokens: Optional[int] = None
"""Maximum number of tokens to generate."""
tiktoken_model_name: Optional[str] = None
"""The model name to pass to tiktoken when using this class.
Tiktoken is used to count the number of tokens in documents to constrain
them to be under a certain limit. By default, when set to None, this will
be the same as the embedding model name. However, there are some cases
where you may want to use this Embedding class with a model name not
supported by tiktoken. This can include when using Azure embeddings or
when using one of the many model providers that expose an OpenAI-like
API but with different models. In those cases, in order to avoid erroring
when tiktoken is called, you can specify a model name to use here."""
class Config:
"""Configuration for this pydantic object."""
allow_population_by_field_name = True
@root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = cls.all_required_field_names()
extra = values.get("model_kwargs", {})
for field_name in list(values):
if field_name in extra:
raise ValueError(f"Found {field_name} supplied twice.")
if field_name not in all_required_field_names:
logger.warning(
f"""WARNING! {field_name} is not default parameter.
{field_name} was transferred to model_kwargs.
Please confirm that {field_name} is what you intended."""
)
extra[field_name] = values.pop(field_name) | https://api.python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html |
4dc84ea39083-5 | )
extra[field_name] = values.pop(field_name)
invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
if invalid_model_kwargs:
raise ValueError(
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
f"Instead they were passed in as part of `model_kwargs` parameter."
)
values["model_kwargs"] = extra
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["openai_api_key"] = get_from_dict_or_env(
values, "openai_api_key", "OPENAI_API_KEY"
)
values["openai_organization"] = get_from_dict_or_env(
values,
"openai_organization",
"OPENAI_ORGANIZATION",
default="",
)
values["openai_api_base"] = get_from_dict_or_env(
values,
"openai_api_base",
"OPENAI_API_BASE",
default="",
)
values["openai_proxy"] = get_from_dict_or_env(
values,
"openai_proxy",
"OPENAI_PROXY",
default="",
)
try:
import openai
except ImportError:
raise ValueError(
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
try:
values["client"] = openai.ChatCompletion
except AttributeError:
raise ValueError(
"`openai` has no `ChatCompletion` attribute, this is likely "
"due to an old version of the openai package. Try upgrading it " | https://api.python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html |
4dc84ea39083-6 | "due to an old version of the openai package. Try upgrading it "
"with `pip install --upgrade openai`."
)
if values["n"] < 1:
raise ValueError("n must be at least 1.")
if values["n"] > 1 and values["streaming"]:
raise ValueError("n must be 1 when streaming.")
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling OpenAI API."""
return {
"model": self.model_name,
"request_timeout": self.request_timeout,
"max_tokens": self.max_tokens,
"stream": self.streaming,
"n": self.n,
"temperature": self.temperature,
**self.model_kwargs,
}
def _create_retry_decorator(self) -> Callable[[Any], Any]:
import openai
min_seconds = 1
max_seconds = 60
# Wait 2^x * 1 second between each retry starting with
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
return retry(
reraise=True,
stop=stop_after_attempt(self.max_retries),
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
retry=(
retry_if_exception_type(openai.error.Timeout)
| retry_if_exception_type(openai.error.APIError)
| retry_if_exception_type(openai.error.APIConnectionError)
| retry_if_exception_type(openai.error.RateLimitError)
| retry_if_exception_type(openai.error.ServiceUnavailableError)
),
before_sleep=before_sleep_log(logger, logging.WARNING),
) | https://api.python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html |
4dc84ea39083-7 | ),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
[docs] def completion_with_retry(self, **kwargs: Any) -> Any:
"""Use tenacity to retry the completion call."""
retry_decorator = self._create_retry_decorator()
@retry_decorator
def _completion_with_retry(**kwargs: Any) -> Any:
return self.client.create(**kwargs)
return _completion_with_retry(**kwargs)
def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict:
overall_token_usage: dict = {}
for output in llm_outputs:
if output is None:
# Happens in streaming
continue
token_usage = output["token_usage"]
for k, v in token_usage.items():
if k in overall_token_usage:
overall_token_usage[k] += v
else:
overall_token_usage[k] = v
return {"token_usage": overall_token_usage, "model_name": self.model_name}
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
message_dicts, params = self._create_message_dicts(messages, stop)
params = {**params, **kwargs}
if self.streaming:
inner_completion = ""
role = "assistant"
params["stream"] = True
function_call: Optional[dict] = None
for stream_resp in self.completion_with_retry(
messages=message_dicts, **params
):
role = stream_resp["choices"][0]["delta"].get("role", role) | https://api.python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html |
4dc84ea39083-8 | role = stream_resp["choices"][0]["delta"].get("role", role)
token = stream_resp["choices"][0]["delta"].get("content") or ""
inner_completion += token
_function_call = stream_resp["choices"][0]["delta"].get("function_call")
if _function_call:
if function_call is None:
function_call = _function_call
else:
function_call["arguments"] += _function_call["arguments"]
if run_manager:
run_manager.on_llm_new_token(token)
message = _convert_dict_to_message(
{
"content": inner_completion,
"role": role,
"function_call": function_call,
}
)
return ChatResult(generations=[ChatGeneration(message=message)])
response = self.completion_with_retry(messages=message_dicts, **params)
return self._create_chat_result(response)
def _create_message_dicts(
self, messages: List[BaseMessage], stop: Optional[List[str]]
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
params = dict(self._invocation_params)
if stop is not None:
if "stop" in params:
raise ValueError("`stop` found in both the input and default params.")
params["stop"] = stop
message_dicts = [_convert_message_to_dict(m) for m in messages]
return message_dicts, params
def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult:
generations = []
for res in response["choices"]:
message = _convert_dict_to_message(res["message"])
gen = ChatGeneration(message=message)
generations.append(gen) | https://api.python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html |
4dc84ea39083-9 | gen = ChatGeneration(message=message)
generations.append(gen)
llm_output = {"token_usage": response["usage"], "model_name": self.model_name}
return ChatResult(generations=generations, llm_output=llm_output)
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
message_dicts, params = self._create_message_dicts(messages, stop)
params = {**params, **kwargs}
if self.streaming:
inner_completion = ""
role = "assistant"
params["stream"] = True
function_call: Optional[dict] = None
async for stream_resp in await acompletion_with_retry(
self, messages=message_dicts, **params
):
role = stream_resp["choices"][0]["delta"].get("role", role)
token = stream_resp["choices"][0]["delta"].get("content", "")
inner_completion += token or ""
_function_call = stream_resp["choices"][0]["delta"].get("function_call")
if _function_call:
if function_call is None:
function_call = _function_call
else:
function_call["arguments"] += _function_call["arguments"]
if run_manager:
await run_manager.on_llm_new_token(token)
message = _convert_dict_to_message(
{
"content": inner_completion,
"role": role,
"function_call": function_call,
}
)
return ChatResult(generations=[ChatGeneration(message=message)])
else: | https://api.python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html |
4dc84ea39083-10 | return ChatResult(generations=[ChatGeneration(message=message)])
else:
response = await acompletion_with_retry(
self, messages=message_dicts, **params
)
return self._create_chat_result(response)
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {**{"model_name": self.model_name}, **self._default_params}
@property
def _invocation_params(self) -> Mapping[str, Any]:
"""Get the parameters used to invoke the model."""
openai_creds: Dict[str, Any] = {
"api_key": self.openai_api_key,
"api_base": self.openai_api_base,
"organization": self.openai_organization,
"model": self.model_name,
}
if self.openai_proxy:
import openai
openai.proxy = {"http": self.openai_proxy, "https": self.openai_proxy} # type: ignore[assignment] # noqa: E501
return {**openai_creds, **self._default_params}
@property
def _llm_type(self) -> str:
"""Return type of chat model."""
return "openai-chat"
def _get_encoding_model(self) -> Tuple[str, tiktoken.Encoding]:
tiktoken_ = _import_tiktoken()
if self.tiktoken_model_name is not None:
model = self.tiktoken_model_name
else:
model = self.model_name
if model == "gpt-3.5-turbo":
# gpt-3.5-turbo may change over time. | https://api.python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html |
4dc84ea39083-11 | # gpt-3.5-turbo may change over time.
# Returning num tokens assuming gpt-3.5-turbo-0301.
model = "gpt-3.5-turbo-0301"
elif model == "gpt-4":
# gpt-4 may change over time.
# Returning num tokens assuming gpt-4-0314.
model = "gpt-4-0314"
# Returns the number of tokens used by a list of messages.
try:
encoding = tiktoken_.encoding_for_model(model)
except KeyError:
logger.warning("Warning: model not found. Using cl100k_base encoding.")
model = "cl100k_base"
encoding = tiktoken_.get_encoding(model)
return model, encoding
[docs] def get_token_ids(self, text: str) -> List[int]:
"""Get the tokens present in the text with tiktoken package."""
# tiktoken NOT supported for Python 3.7 or below
if sys.version_info[1] <= 7:
return super().get_token_ids(text)
_, encoding_model = self._get_encoding_model()
return encoding_model.encode(text)
[docs] def get_num_tokens_from_messages(self, messages: List[BaseMessage]) -> int:
"""Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package.
Official documentation: https://github.com/openai/openai-cookbook/blob/
main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb"""
if sys.version_info[1] <= 7:
return super().get_num_tokens_from_messages(messages) | https://api.python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html |
4dc84ea39083-12 | return super().get_num_tokens_from_messages(messages)
model, encoding = self._get_encoding_model()
if model.startswith("gpt-3.5-turbo"):
# every message follows <im_start>{role/name}\n{content}<im_end>\n
tokens_per_message = 4
# if there's a name, the role is omitted
tokens_per_name = -1
elif model.startswith("gpt-4"):
tokens_per_message = 3
tokens_per_name = 1
else:
raise NotImplementedError(
f"get_num_tokens_from_messages() is not presently implemented "
f"for model {model}."
"See https://github.com/openai/openai-python/blob/main/chatml.md for "
"information on how messages are converted to tokens."
)
num_tokens = 0
messages_dict = [_convert_message_to_dict(m) for m in messages]
for message in messages_dict:
num_tokens += tokens_per_message
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name":
num_tokens += tokens_per_name
# every reply is primed with <im_start>assistant
num_tokens += 3
return num_tokens | https://api.python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html |
72ccde5bcf8a-0 | Source code for langchain.memory.simple
from typing import Any, Dict, List
from langchain.schema import BaseMemory
[docs]class SimpleMemory(BaseMemory):
"""Simple memory for storing context or other bits of information that shouldn't
ever change between prompts.
"""
memories: Dict[str, Any] = dict()
@property
def memory_variables(self) -> List[str]:
return list(self.memories.keys())
[docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]:
return self.memories
[docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None:
"""Nothing should be saved or changed, my memory is set in stone."""
pass
[docs] def clear(self) -> None:
"""Nothing to clear, got a memory like a vault."""
pass | https://api.python.langchain.com/en/latest/_modules/langchain/memory/simple.html |
358d94aed74b-0 | Source code for langchain.memory.buffer
from typing import Any, Dict, List, Optional
from pydantic import root_validator
from langchain.memory.chat_memory import BaseChatMemory, BaseMemory
from langchain.memory.utils import get_prompt_input_key
from langchain.schema import get_buffer_string
[docs]class ConversationBufferMemory(BaseChatMemory):
"""Buffer for storing conversation memory."""
human_prefix: str = "Human"
ai_prefix: str = "AI"
memory_key: str = "history" #: :meta private:
@property
def buffer(self) -> Any:
"""String buffer of memory."""
if self.return_messages:
return self.chat_memory.messages
else:
return get_buffer_string(
self.chat_memory.messages,
human_prefix=self.human_prefix,
ai_prefix=self.ai_prefix,
)
@property
def memory_variables(self) -> List[str]:
"""Will always return list of memory variables.
:meta private:
"""
return [self.memory_key]
[docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
"""Return history buffer."""
return {self.memory_key: self.buffer}
[docs]class ConversationStringBufferMemory(BaseMemory):
"""Buffer for storing conversation memory."""
human_prefix: str = "Human"
ai_prefix: str = "AI"
"""Prefix to use for AI generated responses."""
buffer: str = ""
output_key: Optional[str] = None
input_key: Optional[str] = None
memory_key: str = "history" #: :meta private:
@root_validator()
def validate_chains(cls, values: Dict) -> Dict: | https://api.python.langchain.com/en/latest/_modules/langchain/memory/buffer.html |
358d94aed74b-1 | def validate_chains(cls, values: Dict) -> Dict:
"""Validate that return messages is not True."""
if values.get("return_messages", False):
raise ValueError(
"return_messages must be False for ConversationStringBufferMemory"
)
return values
@property
def memory_variables(self) -> List[str]:
"""Will always return list of memory variables.
:meta private:
"""
return [self.memory_key]
[docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]:
"""Return history buffer."""
return {self.memory_key: self.buffer}
[docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None:
"""Save context from this conversation to buffer."""
if self.input_key is None:
prompt_input_key = get_prompt_input_key(inputs, self.memory_variables)
else:
prompt_input_key = self.input_key
if self.output_key is None:
if len(outputs) != 1:
raise ValueError(f"One output key expected, got {outputs.keys()}")
output_key = list(outputs.keys())[0]
else:
output_key = self.output_key
human = f"{self.human_prefix}: " + inputs[prompt_input_key]
ai = f"{self.ai_prefix}: " + outputs[output_key]
self.buffer += "\n" + "\n".join([human, ai])
[docs] def clear(self) -> None:
"""Clear memory contents."""
self.buffer = "" | https://api.python.langchain.com/en/latest/_modules/langchain/memory/buffer.html |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.