Datasets:
metadata
configs:
- config_name: default
data_files:
- split: train
path: activitynet_captions_train.json
- split: val1
path: activitynet_captions_val1.json
- split: val2
path: activitynet_captions_val2.json
task_categories:
- text-to-video
- text-retrieval
- video-classification
language:
- en
size_categories:
- 10K<n<100K
ActivityNet Captions contains 20K long-form videos (180s as average length) from YouTube and 100K captions. Most of the videos contain over 3 annotated events. We follow the existing works to concatenate multiple short temporal descriptions into long sentences and evaluate ‘paragraph-to-video’ retrieval on this benchmark.
We adopt the official split:
- Train: 10,009 videos, 10,009 captions (concatenate from 37,421 short captions)
- Test (Val1): 4,917 videos, 4,917 captions (concatenate from 17,505 short captions)
- Val2: 4,885 videos, 4,885 captions (concatenate from 17,031 short captions)
ActivityNet Official Release: ActivityNet Download
🌟 Citation
@inproceedings{caba2015activitynet,
title={Activitynet: A large-scale video benchmark for human activity understanding},
author={Caba Heilbron, Fabian and Escorcia, Victor and Ghanem, Bernard and Carlos Niebles, Juan},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2015}
}