modelId
stringlengths
4
112
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
21 values
files
list
publishedBy
stringlengths
2
37
downloads_last_month
int32
0
9.44M
library
stringclasses
15 values
modelCard
large_stringlengths
0
100k
Jitin/manglish
2021-05-20T11:57:45.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
Jitin
13
transformers
Jitin/romanized-malayalam
2021-05-20T11:58:42.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json", "Jitin/romanized_1M/config.json", "Jitin/romanized_1M/merges.txt", "Jitin/romanized_1M/pytorch_model.bin", "Jitin/romanized_1M/special_tokens_map.json", "Jitin/romanized_1M/tokenizer_config.json", "Jitin/romanized_1M/training_args.bin", "Jitin/romanized_1M/vocab.json", "drive/My Drive/Colab Notebooks/malayalam/models/romanized_1M/config.json", "drive/My Drive/Colab Notebooks/malayalam/models/romanized_1M/pytorch_model.bin", "drive/My Drive/Colab Notebooks/malayalam/models/romanized_1M/training_args.bin" ]
Jitin
20
transformers
Jllama/dialoGPT-small-Joshua-test
2021-06-02T06:46:07.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "transformers", "conversational", "text-generation" ]
conversational
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json" ]
Jllama
22
transformers
--- tags: - conversational --- # My Awesome Model
Jodsa/camembert_clf
2021-05-18T14:29:37.000Z
[ "pytorch", "camembert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "added_tokens.json", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json" ]
Jodsa
16
transformers
Jodsa/camembert_mlm
2021-05-17T13:06:25.000Z
[ "pytorch", "camembert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "added_tokens.json", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json" ]
Jodsa
6
transformers
Johnnil/model_name
2021-04-07T08:53:13.000Z
[]
[ ".gitattributes", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt", "results/pytorch_model.bin", "results/training_args.bin" ]
Johnnil
0
Johnnil/prestoBERT
2021-04-13T19:53:50.000Z
[]
[ ".gitattributes", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt", "results/pytorch_model.bin", "results/training_args.bin" ]
Johnnil
0
Jon/model_name
2021-02-05T17:31:03.000Z
[]
[ ".gitattributes" ]
Jon
0
Jon/testRetailModel
2021-02-05T17:37:30.000Z
[]
[ ".gitattributes" ]
Jon
0
JonathanCmitchell/model_name
2021-01-24T07:53:30.000Z
[]
[ ".gitattributes" ]
JonathanCmitchell
0
JorisCos/ConvTasNet_Libri1Mix_enhsingle_16k
2021-01-21T21:04:06.000Z
[ "pytorch", "dataset:Libri1Mix", "dataset:enh_single", "asteroid", "audio", "ConvTasNet", "audio-source-separation", "license:cc-by-sa-3.0" ]
audio-source-separation
[ ".gitattributes", "README.md", "pytorch_model.bin" ]
JorisCos
0
asteroid
--- tags: - asteroid - audio - ConvTasNet - audio-source-separation datasets: - Libri1Mix - enh_single license: cc-by-sa-3.0 inference: false --- ## Asteroid model `JorisCos/ConvTasNet_Libri1Mix_enhsignle_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `enh_single` task of the Libri1Mix dataset. Training config: ```yml data: n_src: 1 sample_rate: 16000 segment: 3 task: enh_single train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 32 n_filters: 512 stride: 16 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 1 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 6 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results: On Libri1Mix min test set : ```yml si_sdr: 14.743051006476085 si_sdr_imp: 11.293269700616385 sdr: 15.300522933671061 sdr_imp: 11.797860134458015 sir: Infinity sir_imp: NaN sar: 15.300522933671061 sar_imp: 11.797860134458015 stoi: 0.9310514162434267 stoi_imp: 0.13513159270288563 ``` License notice: This work "ConvTasNet_Libri1Mix_enhsignle_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "ConvTasNet_Libri1Mix_enhsignle_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
JorisCos/ConvTasNet_Libri2Mix_sepclean_16k
2021-01-21T21:09:50.000Z
[ "pytorch", "dataset:Libri2Mix", "dataset:sep_clean", "asteroid", "audio", "ConvTasNet", "audio-source-separation", "license:cc-by-sa-3.0" ]
audio-source-separation
[ ".gitattributes", "README.md", "pytorch_model.bin" ]
JorisCos
0
asteroid
--- tags: - asteroid - audio - ConvTasNet - audio-source-separation datasets: - Libri2Mix - sep_clean license: cc-by-sa-3.0 inference: false --- ## Asteroid model `JorisCos/ConvTasNet_Libri2Mix_sepclean_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_clean` task of the Libri2Mix dataset. Training config: ```yaml data: n_src: 2 sample_rate: 16000 segment: 3 task: sep_clean train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 32 n_filters: 512 stride: 16 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 6 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results : On Libri2Mix min test set : ```yaml si_sdr: 15.243671356901526 si_sdr_imp: 15.243034178473609 sdr: 15.668108919568112 sdr_imp: 15.578229918028036 sir: 25.295100756629957 sir_imp: 25.205219921301754 sar: 16.307682590197313 sar_imp: -51.64989963759405 stoi: 0.9394951175291422 stoi_imp: 0.22640192740016568 ``` License notice: This work "ConvTasNet_Libri2Mix_sepclean_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/). "ConvTasNet_Libri2Mix_sepclean_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Cosentino Joris.
JorisCos/ConvTasNet_Libri2Mix_sepclean_8k
2021-01-21T21:04:36.000Z
[ "pytorch", "dataset:Libri2Mix", "dataset:sep_clean", "asteroid", "audio", "ConvTasNet", "audio-source-separation", "license:cc-by-sa-3.0" ]
audio-source-separation
[ ".gitattributes", "README.md", "pytorch_model.bin" ]
JorisCos
0
asteroid
--- tags: - asteroid - audio - ConvTasNet - audio-source-separation datasets: - Libri2Mix - sep_clean license: cc-by-sa-3.0 inference: false --- ## Asteroid model `JorisCos/ConvTasNet_Libri2Mix_sepclean_8k` Imported from [Zenodo](https://zenodo.org/record/3873572#.X9M69cLjJH4) Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_clean` task of the Libri2Mix dataset. Training config: ```yaml data: n_src: 2 sample_rate: 8000 segment: 3 task: sep_clean train_dir: data/wav8k/min/train-360 valid_dir: data/wav8k/min/dev filterbank: kernel_size: 16 n_filters: 512 stride: 8 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 24 early_stop: True epochs: 200 half_lr: True num_workers: 2 ``` Results : On Libri2Mix min test set : ```yaml si_sdr: 14.764543634468069 si_sdr_imp: 14.764029375607246 sdr: 15.29337970745095 sdr_imp: 15.114146605113111 sir: 24.092904661115366 sir_imp: 23.913669683141528 sar: 16.06055906916849 sar_imp: -51.980784441287454 stoi: 0.9311142440593033 stoi_imp: 0.21817376142710482 ``` License notice: This work "ConvTasNet_Libri2Mix_sepclean_8k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/). "ConvTasNet_Libri2Mix_sepclean_8k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Cosentino Joris.
JorisCos/ConvTasNet_Libri2Mix_sepnoisy_16k
2021-01-21T21:10:09.000Z
[ "pytorch", "dataset:Libri2Mix", "dataset:sep_noisy", "asteroid", "audio", "ConvTasNet", "audio-source-separation", "license:cc-by-sa-3.0" ]
audio-source-separation
[ ".gitattributes", "README.md", "pytorch_model.bin" ]
JorisCos
0
asteroid
--- tags: - asteroid - audio - ConvTasNet - audio-source-separation datasets: - Libri2Mix - sep_noisy license: cc-by-sa-3.0 inference: false --- ## Asteroid model `JorisCos/ConvTasNet_Libri2Mix_sepnoisy_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_noisy` task of the Libri2Mix dataset. Training config: ```yml data: n_src: 2 sample_rate: 16000 segment: 3 task: sep_noisy train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 32 n_filters: 512 stride: 16 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 2 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 6 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results: On Libri2Mix min test set : ```yml si_sdr: 10.617130949793383 si_sdr_imp: 12.551811412989263 sdr: 11.231867464482065 sdr_imp: 13.059765009747343 sir: 24.461138352988346 sir_imp: 24.371856452307703 sar: 11.5649982725426 sar_imp: 4.662525705768228 stoi: 0.8701085138712695 stoi_imp: 0.2245418019822898 ``` License notice: This work "ConvTasNet_Libri2Mix_sepnoisy_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under[CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "ConvTasNet_Libri2Mix_sepnoisy_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
JorisCos/ConvTasNet_Libri2Mix_sepnoisy_8k
2021-01-21T21:07:13.000Z
[ "pytorch", "dataset:Libri2Mix", "dataset:sep_noisy", "asteroid", "audio", "ConvTasNet", "audio-source-separation", "license:cc-by-sa-3.0" ]
audio-source-separation
[ ".gitattributes", "README.md", "pytorch_model.bin" ]
JorisCos
0
asteroid
--- tags: - asteroid - audio - ConvTasNet - audio-source-separation datasets: - Libri2Mix - sep_noisy license: cc-by-sa-3.0 inference: false --- ## Asteroid model `JorisCos/ConvTasNet_Libri2Mix_sepnoisy_8k` Imported from [Zenodo](https://zenodo.org/record/3874420#.X9I6NcLjJH4) Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_noisy` task of the Libri2Mix dataset. Training config: ```yml data: n_src: 2 sample_rate: 8000 segment: 3 task: sep_noisy train_dir: data/wav8k/min/train-360 valid_dir: data/wav8k/min/dev filterbank: kernel_size: 16 n_filters: 512 stride: 8 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 24 early_stop: True epochs: 200 half_lr: True num_workers: 4 ``` Results: On Libri2Mix min test set : ```yml si_sdr: 9.944424856077259 si_sdr_imp: 11.939395359731192 sdr: 10.701526190782072 sdr_imp: 12.481757547845662 sir: 22.633644975545575 sir_imp: 22.45666740833025 sar: 11.131644100944868 sar_imp: 4.248489589311784 stoi: 0.852048619949357 stoi_imp: 0.2071994899565506 ``` License notice: This work "ConvTasNet_Libri2Mix_sepnoisy_8k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "ConvTasNet_Libri2Mix_sepnoisy_8k" is licensed under A[Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
JorisCos/ConvTasNet_Libri3Mix_sepclean_16k
2021-01-21T21:10:25.000Z
[ "pytorch", "dataset:Libri3Mix", "dataset:sep_clean", "asteroid", "audio", "ConvTasNet", "audio-source-separation", "license:cc-by-sa-3.0" ]
audio-source-separation
[ ".gitattributes", "README.md", "pytorch_model.bin" ]
JorisCos
0
asteroid
--- tags: - asteroid - audio - ConvTasNet - audio-source-separation datasets: - Libri3Mix - sep_clean license: cc-by-sa-3.0 inference: false --- ## Asteroid model `JorisCos/ConvTasNet_Libri3Mix_sepclean_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_clean` task of the Libri3Mix dataset. Training config: ```yaml data: n_src: 3 sample_rate: 16000 segment: 3 task: sep_clean train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 32 n_filters: 512 stride: 16 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 8 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results : On Libri3Mix min test set : ```yaml si_sdr: 8.932601610824145 si_sdr_imp: 12.299341066588594 sdr: 9.557260814240447 sdr_imp: 12.76957128385349 sir: 17.387646884037455 sir_imp: 20.599955591768484 sar: 10.686885056960504 sar_imp: -55.8894643263213 stoi: 0.8481258332025354 stoi_imp: 0.25528367853750356 ``` License notice: This work "ConvTasNet_Libri3Mix_sepclean_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/). "ConvTasNet_Libri3Mix_sepclean_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Cosentino Joris.
JorisCos/ConvTasNet_Libri3Mix_sepclean_8k
2021-01-21T21:07:34.000Z
[ "pytorch", "dataset:Libri3Mix", "dataset:sep_clean", "asteroid", "audio", "ConvTasNet", "audio-source-separation", "license:cc-by-sa-3.0" ]
audio-source-separation
[ ".gitattributes", "README.md", "pytorch_model.bin" ]
JorisCos
0
asteroid
--- tags: - asteroid - audio - ConvTasNet - audio-source-separation datasets: - Libri3Mix - sep_clean license: cc-by-sa-3.0 inference: false --- ## Asteroid model `JorisCos/ConvTasNet_Libri3Mix_sepclean_8k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_clean` task of the Libri3Mix dataset. Training config: ```yml data: n_src: 3 sample_rate: 8000 segment: 3 task: sep_clean train_dir: data/wav8k/min/train-360 valid_dir: data/wav8k/min/dev filterbank: kernel_size: 16 n_filters: 512 stride: 8 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 24 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results : On Libri3Mix min test set : ```yaml si_sdr: 8.581797049575108 si_sdr_imp: 11.977037288467368 sdr' 9.305885208641385 sdr_imp: 12.3943409734845 sir: 16.42030534048559 sir_imp: 19.508759460400984 sar: 10.641943911079238 sar_imp: -56.4345187842095 stoi: 0.8365148408724333 stoi_imp: 0.24401766199806396 ``` License notice: This work "ConvTasNet_Libri3Mix_sepclean_8k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/). "ConvTasNet_Libri3Mix_sepclean_8k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Cosentino Joris.
JorisCos/ConvTasNet_Libri3Mix_sepnoisy_16k
2021-01-21T21:10:42.000Z
[ "pytorch", "dataset:Libri3Mix", "dataset:sep_noisy", "asteroid", "audio", "ConvTasNet", "audio-source-separation", "license:cc-by-sa-3.0" ]
audio-source-separation
[ ".gitattributes", "README.md", "pytorch_model.bin" ]
JorisCos
0
asteroid
--- tags: - asteroid - audio - ConvTasNet - audio-source-separation datasets: - Libri3Mix - sep_noisy license: cc-by-sa-3.0 inference: false --- ## Asteroid model `JorisCos/ConvTasNet_Libri3Mix_sepnoisy_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_noisy` task of the Libri3Mix dataset. Training config: ```yml data: n_src: 3 sample_rate: 16000 segment: 3 task: sep_noisy train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 32 n_filters: 512 stride: 16 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 8 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results: On Libri3Mix min test set : ```yml si_sdr: 5.926151147554517 si_sdr_imp: 10.282912158535625 sdr: 6.700975236867358 sdr_imp: 10.882972447337504 sir: 15.364110064569388 sir_imp: 18.574476587171688 sar: 7.918866830474568 sar_imp: -0.9638973409971135 stoi: 0.7713777027310713 stoi_imp: 0.2078696167973911 ``` License notice: This work "ConvTasNet_Libri3Mix_sepnoisy_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/). "ConvTasNet_Libri3Mix_sepnoisy_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
JorisCos/ConvTasNet_Libri3Mix_sepnoisy_8k
2021-01-21T21:07:59.000Z
[ "pytorch", "dataset:Libri3Mix", "dataset:sep_noisy", "asteroid", "audio", "ConvTasNet", "audio-source-separation", "license:cc-by-sa-3.0" ]
audio-source-separation
[ ".gitattributes", "README.md", "pytorch_model.bin" ]
JorisCos
0
asteroid
--- tags: - asteroid - audio - ConvTasNet - audio-source-separation datasets: - Libri3Mix - sep_noisy license: cc-by-sa-3.0 inference: false --- ## Asteroid model `JorisCos/ConvTasNet_Libri3Mix_sepnoisy_8k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_noisy` task of the Libri3Mix dataset. Training config: ```yml data: n_src: 3 sample_rate: 8000 segment: 3 task: sep_noisy train_dir: data/wav8k/min/train-360 valid_dir: data/wav8k/min/dev filterbank: kernel_size: 16 n_filters: 512 stride: 8 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 24 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results: On Libri3Mix min test set : ```yml si_sdr: 5.978836560066222 si_sdr_imp: 10.388889689413096 sdr: 6.8651365291740225 sdr_imp: 10.928018056925016 sir: 14.997089638783114 sir_imp: 18.08248357801549 sar: 8.127504792061933 sar_imp: -0.7869320540959925 stoi: 0.7669414686111115 stoi_imp: 0.20416563213078837 ``` License notice: This work "ConvTasNet_Libri3Mix_sepnoisy_8k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "ConvTasNet_Libri3Mix_sepnoisy_8k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
JorisCos/DCCRNet_Libri1Mix_enhsingle_16k
2021-02-23T15:39:25.000Z
[ "pytorch", "dataset:Libri1Mix", "dataset:enh_single", "asteroid", "audio", "DCCRNet", "audio-source-separation", "license:cc-by-sa-3.0" ]
audio-source-separation
[ ".gitattributes", "README.md", "pytorch_model.bin" ]
JorisCos
0
asteroid
--- tags: - asteroid - audio - DCCRNet - audio-source-separation datasets: - Libri1Mix - enh_single license: cc-by-sa-3.0 inference: false --- ## Asteroid model `JorisCos/DCCRNet_Libri1Mix_enhsignle_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `enh_single` task of the Libri1Mix dataset. Training config: ```yml data: n_src: 1 sample_rate: 16000 segment: 3 task: enh_single train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: stft_kernel_size: 400 stft_n_filters: 512 stft_stride: 100 masknet: architecture: DCCRN-CL n_src: 1 optim: lr: 0.001 optimizer: adam weight_decay: 1.0e-05 training: batch_size: 12 early_stop: true epochs: 200 gradient_clipping: 5 half_lr: true num_workers: 4 ``` Results: On Libri1Mix min test set : ```yml si_sdr: 13.329767398333798 si_sdr_imp: 9.879986092474098 sdr: 13.87279932997016 sdr_imp: 10.370136530757103 sir: Infinity sir_imp: NaN sar: 13.87279932997016 sar_imp: 10.370136530757103 stoi: 0.9140907015623948 stoi_imp: 0.11817087802185405 ``` License notice: This work "DCCRNet_Libri1Mix_enhsignle_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "DCCRNet_Libri1Mix_enhsignle_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
JorisCos/DCUNet_Libri1Mix_enhsingle_16k
2021-03-08T09:29:13.000Z
[ "pytorch", "dataset:Libri1Mix", "dataset:enh_single", "asteroid", "audio", "DCUNet", "audio-source-separation", "license:cc-by-sa-3.0" ]
audio-source-separation
[ ".gitattributes", "README.md", "pytorch_model.bin" ]
JorisCos
0
asteroid
--- tags: - asteroid - audio - DCUNet - audio-source-separation datasets: - Libri1Mix - enh_single license: cc-by-sa-3.0 inference: false --- ## Asteroid model `JorisCos/DCUNet_Libri1Mix_enhsignle_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `enh_single` task of the Libri1Mix dataset. Training config: ```yml data: n_src: 1 sample_rate: 16000 segment: 3 task: enh_single train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: stft_n_filters: 1024 stft_kernel_size: 1024 stft_stride: 256 masknet: architecture: Large-DCUNet-20 fix_length_mode: pad n_src: 1 optim: lr: 0.001 optimizer: adam weight_decay: 1.0e-05 training: batch_size: 2 early_stop: true epochs: 200 gradient_clipping: 5 half_lr: true num_workers: 4 ``` Results: On Libri1Mix min test set : ```yml si_sdr: 13.154035391645971 si_sdr_imp: 9.704254085786271 sdr: 13.568058873121435 sdr_imp: 10.065396073908367 sar: 13.568058873121435 sar_imp: 10.065396073908367 stoi: 0.9199373340235417 stoi_imp: 0.12401751048300132 ``` License notice: This work "DCUNet_Libri1Mix_enhsignle_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "DCUNet_Libri1Mix_enhsignle_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
JorisCos/DPRNNTasNet-ks2_Libri1Mix_enhsingle_16k
2021-02-23T15:38:51.000Z
[ "pytorch", "dataset:Libri1Mix", "dataset:enh_single", "asteroid", "audio", "DPRNNTasNet", "audio-source-separation", "license:cc-by-sa-3.0" ]
audio-source-separation
[ ".gitattributes", "README.md", "pytorch_model.bin" ]
JorisCos
0
asteroid
--- tags: - asteroid - audio - DPRNNTasNet - audio-source-separation datasets: - Libri1Mix - enh_single license: cc-by-sa-3.0 inference: false --- ## Asteroid model `JorisCos/DPRNNTasNet_Libri1Mix_enhsignle_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `enh_single` task of the Libri1Mix dataset. Training config: ```yml data: n_src: 1 sample_rate: 16000 segment: 1 task: enh_single train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 2 n_filters: 64 stride: 1 masknet: bidirectional: true bn_chan: 128 chunk_size: 250 dropout: 0 hid_size: 128 hop_size: 125 in_chan: 64 mask_act: sigmoid n_repeats: 6 n_src: 1 out_chan: 64 optim: lr: 0.001 optimizer: adam weight_decay: 1.0e-05 training: batch_size: 2 early_stop: true epochs: 200 gradient_clipping: 5 half_lr: true num_workers: 4 ``` Results: On Libri1Mix min test set : ```yml si_sdr: 14.7228101708889 si_sdr_imp: 11.2730288650292 sdr: 15.35661405197161 sdr_imp: 11.853951252758595 sir: Infinity sir_imp: NaN sar: 15.35661405197161 sar_imp: 11.853951252758595 stoi: 0.9300461826351578 stoi_imp: 0.13412635909461715 ``` License notice: This work "DPRNNTasNet_Libri1Mix_enhsignle_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "DPRNNTasNet_Libri1Mix_enhsignle_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
JorisCos/DPTNet_Libri1Mix_enhsingle_16k
2021-02-23T15:39:43.000Z
[ "pytorch", "dataset:Libri1Mix", "dataset:enh_single", "asteroid", "audio", "DPTNet", "audio-source-separation", "license:cc-by-sa-3.0" ]
audio-source-separation
[ ".gitattributes", "README.md", "pytorch_model.bin" ]
JorisCos
0
asteroid
--- tags: - asteroid - audio - DPTNet - audio-source-separation datasets: - Libri1Mix - enh_single license: cc-by-sa-3.0 inference: false --- ## Asteroid model `JorisCos/DPTNet_Libri1Mix_enhsignle_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `enh_single` task of the Libri1Mix dataset. Training config: ```yml data: n_src: 1 sample_rate: 16000 segment: 3 task: enh_single train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 16 n_filters: 64 stride: 8 masknet: bidirectional: true chunk_size: 100 dropout: 0 ff_activation: relu ff_hid: 256 hop_size: 50 in_chan: 64 mask_act: sigmoid n_repeats: 2 n_src: 1 norm_type: gLN out_chan: 64 optim: lr: 0.001 optimizer: adam weight_decay: 1.0e-05 scheduler: d_model: 64 steps_per_epoch: 10000 training: batch_size: 4 early_stop: true epochs: 200 gradient_clipping: 5 half_lr: true num_workers: 4 ``` Results: On Libri1Mix min test set : ```yml si_sdr: 14.829670037349064 si_sdr_imp: 11.379888731489366 sdr: 15.395712644737149 sdr_imp: 11.893049845524112 sir: Infinity sir_imp: NaN sar: 15.395712644737149 sar_imp: 11.893049845524112 stoi: 0.9301948391058859 stoi_imp: 0.13427501556534832 ``` License notice: This work "DPTNet_Libri1Mix_enhsignle_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "DPTNet_Libri1Mix_enhsignle_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
JosAbc123/Loken
2020-12-13T04:44:53.000Z
[]
[ ".gitattributes" ]
JosAbc123
0
JoshObi94/GPT-Neo
2021-04-09T08:14:23.000Z
[]
[ ".gitattributes" ]
JoshObi94
0
JovenPai/bert_cn_finetunning
2021-05-18T21:15:39.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "eval_results.txt", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
JovenPai
14
transformers
JovenPai/bert_finetunning_test
2021-05-18T21:16:35.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "eval_results.txt", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
JovenPai
16
transformers
JuliusAlphonso/dear-jarvis-monolith-xed-en
2021-06-17T12:46:00.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
JuliusAlphonso
27
transformers
Jung/t5-base
2020-08-09T08:04:13.000Z
[ "pytorch", "tf", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tf_model.h5", "tokenizer_config.json", "training_args.bin" ]
Jung
17
transformers
Jung/t5-large-finetuned
2020-08-31T06:02:42.000Z
[ "pytorch", "t5", "lm-head", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
Jung
12
transformers
Jung/t5-large
2020-08-17T03:12:49.000Z
[ "pytorch", "t5", "lm-head", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "dataset-metadata.json", "eval_results.txt", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json", "training_args.bin" ]
Jung
53
transformers
JunzheJosephZhu/MultiDecoderDPRNN
2021-06-07T15:59:13.000Z
[ "dataset:Wsj0MixVar", "dataset:sep_clean", "arxiv:2011.12022", "asteroid", "audio", "MultiDecoderDPRNN" ]
[ ".gitattributes", "README.md" ]
JunzheJosephZhu
0
asteroid
--- tags: - asteroid - audio - MultiDecoderDPRNN datasets: - Wsj0MixVar - sep_clean inference: false --- ## Asteroid model ## Description: Refer to paper "Multi-Decoder DPRNN: High Accuracy Source Counting and Separation", Junzhe Zhu, Raymond Yeh, Mark Hasegawa-Johnson. https://arxiv.org/abs/2011.12022 Demo Page: https://junzhejosephzhu.github.io/Multi-Decoder-DPRNN/ Original research repo is at https://github.com/JunzheJosephZhu/MultiDecoder-DPRNN This model was trained by Joseph Zhu using the wsj0-mix-var/Multi-Decoder-DPRNN recipe in Asteroid. It was trained on the `sep_clean` task of the Wsj0MixVar dataset. ## Training config: ```yaml filterbank: n_filters: 64 kernel_size: 8 stride: 4 masknet: n_srcs: [2, 3, 4, 5] bn_chan: 128 hid_size: 128 chunk_size: 128 hop_size: 64 n_repeats: 8 mask_act: 'sigmoid' bidirectional: true dropout: 0 use_mulcat: false training: epochs: 200 batch_size: 2 num_workers: 2 half_lr: yes lr_decay: yes early_stop: yes gradient_clipping: 5 optim: optimizer: adam lr: 0.001 weight_decay: 0.00000 data: train_dir: "data/{}speakers/wav8k/min/tr" valid_dir: "data/{}speakers/wav8k/min/cv" task: sep_clean sample_rate: 8000 seglen: 4.0 minlen: 2.0 loss: lambda: 0.05 ``` ## Results: ```yaml tmux attach -t 2 ```
Jzz/FIDIC_BERT--0.1
2021-05-25T02:46:36.000Z
[ "pytorch", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "optimizer.pt", "pytorch_model.bin", "rng_state.pth", "scheduler.pt", "trainer_state.json", "training_args.bin" ]
Jzz
14
transformers
KB/albert-base-swedish-cased-alpha
2020-12-11T21:29:07.000Z
[ "pytorch", "albert", "sv", "transformers" ]
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
KB
102
transformers
--- language: sv --- # Swedish BERT Models The National Library of Sweden / KBLab releases three pretrained language models based on BERT and ALBERT. The models are trained on approximately 15-20GB of text (200M sentences, 3000M tokens) from various sources (books, news, government publications, swedish wikipedia and internet forums) aiming to provide a representative BERT model for Swedish text. A more complete description will be published later on. The following three models are currently available: - **bert-base-swedish-cased** (*v1*) - A BERT trained with the same hyperparameters as first published by Google. - **bert-base-swedish-cased-ner** (*experimental*) - a BERT fine-tuned for NER using SUC 3.0. - **albert-base-swedish-cased-alpha** (*alpha*) - A first attempt at an ALBERT for Swedish. All models are cased and trained with whole word masking. ## Files | **name** | **files** | |---------------------------------|-----------| | bert-base-swedish-cased | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/config.json), [vocab](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/vocab.txt), [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/pytorch_model.bin) | | bert-base-swedish-cased-ner | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/config.json), [vocab](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/vocab.txt) [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/pytorch_model.bin) | | albert-base-swedish-cased-alpha | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/config.json), [sentencepiece model](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/spiece.model), [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/pytorch_model.bin) | TensorFlow model weights will be released soon. ## Usage requirements / installation instructions The examples below require Huggingface Transformers 2.4.1 and Pytorch 1.3.1 or greater. For Transformers<2.4.0 the tokenizer must be instantiated manually and the `do_lower_case` flag parameter set to `False` and `keep_accents` to `True` (for ALBERT). To create an environment where the examples can be run, run the following in an terminal on your OS of choice. ``` # git clone https://github.com/Kungbib/swedish-bert-models # cd swedish-bert-models # python3 -m venv venv # source venv/bin/activate # pip install --upgrade pip # pip install -r requirements.txt ``` ### BERT Base Swedish A standard BERT base for Swedish trained on a variety of sources. Vocabulary size is ~50k. Using Huggingface Transformers the model can be loaded in Python as follows: ```python from transformers import AutoModel,AutoTokenizer tok = AutoTokenizer.from_pretrained('KB/bert-base-swedish-cased') model = AutoModel.from_pretrained('KB/bert-base-swedish-cased') ``` ### BERT base fine-tuned for Swedish NER This model is fine-tuned on the SUC 3.0 dataset. Using the Huggingface pipeline the model can be easily instantiated. For Transformer<2.4.1 it seems the tokenizer must be loaded separately to disable lower-casing of input strings: ```python from transformers import pipeline nlp = pipeline('ner', model='KB/bert-base-swedish-cased-ner', tokenizer='KB/bert-base-swedish-cased-ner') nlp('Idag släpper KB tre språkmodeller.') ``` Running the Python code above should produce in something like the result below. Entity types used are `TME` for time, `PRS` for personal names, `LOC` for locations, `EVN` for events and `ORG` for organisations. These labels are subject to change. ```python [ { 'word': 'Idag', 'score': 0.9998126029968262, 'entity': 'TME' }, { 'word': 'KB', 'score': 0.9814832210540771, 'entity': 'ORG' } ] ``` The BERT tokenizer often splits words into multiple tokens, with the subparts starting with `##`, for example the string `Engelbert kör Volvo till Herrängens fotbollsklubb` gets tokenized as `Engel ##bert kör Volvo till Herr ##ängens fotbolls ##klubb`. To glue parts back together one can use something like this: ```python text = 'Engelbert tar Volvon till Tele2 Arena för att titta på Djurgården IF ' +\ 'som spelar fotboll i VM klockan två på kvällen.' l = [] for token in nlp(text): if token['word'].startswith('##'): l[-1]['word'] += token['word'][2:] else: l += [ token ] print(l) ``` Which should result in the following (though less cleanly formatted): ```python [ { 'word': 'Engelbert', 'score': 0.99..., 'entity': 'PRS'}, { 'word': 'Volvon', 'score': 0.99..., 'entity': 'OBJ'}, { 'word': 'Tele2', 'score': 0.99..., 'entity': 'LOC'}, { 'word': 'Arena', 'score': 0.99..., 'entity': 'LOC'}, { 'word': 'Djurgården', 'score': 0.99..., 'entity': 'ORG'}, { 'word': 'IF', 'score': 0.99..., 'entity': 'ORG'}, { 'word': 'VM', 'score': 0.99..., 'entity': 'EVN'}, { 'word': 'klockan', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'två', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'på', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'kvällen', 'score': 0.54..., 'entity': 'TME'} ] ``` ### ALBERT base The easiest way to do this is, again, using Huggingface Transformers: ```python from transformers import AutoModel,AutoTokenizer tok = AutoTokenizer.from_pretrained('KB/albert-base-swedish-cased-alpha'), model = AutoModel.from_pretrained('KB/albert-base-swedish-cased-alpha') ``` ## Acknowledgements ❤️ - Resources from Stockholms University, Umeå University and Swedish Language Bank at Gothenburg University were used when fine-tuning BERT for NER. - Model pretraining was made partly in-house at the KBLab and partly (for material without active copyright) with the support of Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). - Models are hosted on S3 by Huggingface 🤗
KB/bert-base-swedish-cased-alpha
2021-05-18T21:17:41.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "added_tokens.json", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
KB
87
transformers
KB/bert-base-swedish-cased-ner
2021-05-18T21:18:54.000Z
[ "pytorch", "tf", "jax", "bert", "token-classification", "sv", "transformers" ]
token-classification
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "eval_results.txt", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
KB
1,576
transformers
--- language: sv --- # Swedish BERT Models The National Library of Sweden / KBLab releases three pretrained language models based on BERT and ALBERT. The models are trained on approximately 15-20GB of text (200M sentences, 3000M tokens) from various sources (books, news, government publications, swedish wikipedia and internet forums) aiming to provide a representative BERT model for Swedish text. A more complete description will be published later on. The following three models are currently available: - **bert-base-swedish-cased** (*v1*) - A BERT trained with the same hyperparameters as first published by Google. - **bert-base-swedish-cased-ner** (*experimental*) - a BERT fine-tuned for NER using SUC 3.0. - **albert-base-swedish-cased-alpha** (*alpha*) - A first attempt at an ALBERT for Swedish. All models are cased and trained with whole word masking. ## Files | **name** | **files** | |---------------------------------|-----------| | bert-base-swedish-cased | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/config.json), [vocab](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/vocab.txt), [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/pytorch_model.bin) | | bert-base-swedish-cased-ner | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/config.json), [vocab](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/vocab.txt) [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/pytorch_model.bin) | | albert-base-swedish-cased-alpha | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/config.json), [sentencepiece model](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/spiece.model), [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/pytorch_model.bin) | TensorFlow model weights will be released soon. ## Usage requirements / installation instructions The examples below require Huggingface Transformers 2.4.1 and Pytorch 1.3.1 or greater. For Transformers<2.4.0 the tokenizer must be instantiated manually and the `do_lower_case` flag parameter set to `False` and `keep_accents` to `True` (for ALBERT). To create an environment where the examples can be run, run the following in an terminal on your OS of choice. ``` # git clone https://github.com/Kungbib/swedish-bert-models # cd swedish-bert-models # python3 -m venv venv # source venv/bin/activate # pip install --upgrade pip # pip install -r requirements.txt ``` ### BERT Base Swedish A standard BERT base for Swedish trained on a variety of sources. Vocabulary size is ~50k. Using Huggingface Transformers the model can be loaded in Python as follows: ```python from transformers import AutoModel,AutoTokenizer tok = AutoTokenizer.from_pretrained('KB/bert-base-swedish-cased') model = AutoModel.from_pretrained('KB/bert-base-swedish-cased') ``` ### BERT base fine-tuned for Swedish NER This model is fine-tuned on the SUC 3.0 dataset. Using the Huggingface pipeline the model can be easily instantiated. For Transformer<2.4.1 it seems the tokenizer must be loaded separately to disable lower-casing of input strings: ```python from transformers import pipeline nlp = pipeline('ner', model='KB/bert-base-swedish-cased-ner', tokenizer='KB/bert-base-swedish-cased-ner') nlp('Idag släpper KB tre språkmodeller.') ``` Running the Python code above should produce in something like the result below. Entity types used are `TME` for time, `PRS` for personal names, `LOC` for locations, `EVN` for events and `ORG` for organisations. These labels are subject to change. ```python [ { 'word': 'Idag', 'score': 0.9998126029968262, 'entity': 'TME' }, { 'word': 'KB', 'score': 0.9814832210540771, 'entity': 'ORG' } ] ``` The BERT tokenizer often splits words into multiple tokens, with the subparts starting with `##`, for example the string `Engelbert kör Volvo till Herrängens fotbollsklubb` gets tokenized as `Engel ##bert kör Volvo till Herr ##ängens fotbolls ##klubb`. To glue parts back together one can use something like this: ```python text = 'Engelbert tar Volvon till Tele2 Arena för att titta på Djurgården IF ' +\ 'som spelar fotboll i VM klockan två på kvällen.' l = [] for token in nlp(text): if token['word'].startswith('##'): l[-1]['word'] += token['word'][2:] else: l += [ token ] print(l) ``` Which should result in the following (though less cleanly formatted): ```python [ { 'word': 'Engelbert', 'score': 0.99..., 'entity': 'PRS'}, { 'word': 'Volvon', 'score': 0.99..., 'entity': 'OBJ'}, { 'word': 'Tele2', 'score': 0.99..., 'entity': 'LOC'}, { 'word': 'Arena', 'score': 0.99..., 'entity': 'LOC'}, { 'word': 'Djurgården', 'score': 0.99..., 'entity': 'ORG'}, { 'word': 'IF', 'score': 0.99..., 'entity': 'ORG'}, { 'word': 'VM', 'score': 0.99..., 'entity': 'EVN'}, { 'word': 'klockan', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'två', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'på', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'kvällen', 'score': 0.54..., 'entity': 'TME'} ] ``` ### ALBERT base The easiest way to do this is, again, using Huggingface Transformers: ```python from transformers import AutoModel,AutoTokenizer tok = AutoTokenizer.from_pretrained('KB/albert-base-swedish-cased-alpha'), model = AutoModel.from_pretrained('KB/albert-base-swedish-cased-alpha') ``` ## Acknowledgements ❤️ - Resources from Stockholms University, Umeå University and Swedish Language Bank at Gothenburg University were used when fine-tuning BERT for NER. - Model pretraining was made partly in-house at the KBLab and partly (for material without active copyright) with the support of Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). - Models are hosted on S3 by Huggingface 🤗
KB/bert-base-swedish-cased-neriob
2021-05-18T21:20:00.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "config.json", "eval_results.txt", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
KB
29
transformers
KB/bert-base-swedish-cased-pos
2021-05-18T21:20:59.000Z
[ "pytorch", "tf", "jax", "bert", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "config.json", "eval_results.txt", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
KB
30
transformers
KB/bert-base-swedish-cased-squad-experimental
2021-05-18T21:21:57.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "config.json", "flax_model.msgpack", "nbest_predictions_.json", "null_odds_.json", "predictions_.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
KB
198
transformers
KB/bert-base-swedish-cased
2021-05-18T21:23:28.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "sv", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
KB
21,016
transformers
--- language: sv --- # Swedish BERT Models The National Library of Sweden / KBLab releases three pretrained language models based on BERT and ALBERT. The models are trained on aproximately 15-20GB of text (200M sentences, 3000M tokens) from various sources (books, news, government publications, swedish wikipedia and internet forums) aiming to provide a representative BERT model for Swedish text. A more complete description will be published later on. The following three models are currently available: - **bert-base-swedish-cased** (*v1*) - A BERT trained with the same hyperparameters as first published by Google. - **bert-base-swedish-cased-ner** (*experimental*) - a BERT fine-tuned for NER using SUC 3.0. - **albert-base-swedish-cased-alpha** (*alpha*) - A first attempt at an ALBERT for Swedish. All models are cased and trained with whole word masking. ## Files | **name** | **files** | |---------------------------------|-----------| | bert-base-swedish-cased | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/config.json), [vocab](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/vocab.txt), [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/pytorch_model.bin) | | bert-base-swedish-cased-ner | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/config.json), [vocab](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/vocab.txt) [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/pytorch_model.bin) | | albert-base-swedish-cased-alpha | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/config.json), [sentencepiece model](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/spiece.model), [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/pytorch_model.bin) | TensorFlow model weights will be released soon. ## Usage requirements / installation instructions The examples below require Huggingface Transformers 2.4.1 and Pytorch 1.3.1 or greater. For Transformers<2.4.0 the tokenizer must be instantiated manually and the `do_lower_case` flag parameter set to `False` and `keep_accents` to `True` (for ALBERT). To create an environment where the examples can be run, run the following in an terminal on your OS of choice. ``` # git clone https://github.com/Kungbib/swedish-bert-models # cd swedish-bert-models # python3 -m venv venv # source venv/bin/activate # pip install --upgrade pip # pip install -r requirements.txt ``` ### BERT Base Swedish A standard BERT base for Swedish trained on a variety of sources. Vocabulary size is ~50k. Using Huggingface Transformers the model can be loaded in Python as follows: ```python from transformers import AutoModel,AutoTokenizer tok = AutoTokenizer.from_pretrained('KB/bert-base-swedish-cased') model = AutoModel.from_pretrained('KB/bert-base-swedish-cased') ``` ### BERT base fine-tuned for Swedish NER This model is fine-tuned on the SUC 3.0 dataset. Using the Huggingface pipeline the model can be easily instantiated. For Transformer<2.4.1 it seems the tokenizer must be loaded separately to disable lower-casing of input strings: ```python from transformers import pipeline nlp = pipeline('ner', model='KB/bert-base-swedish-cased-ner', tokenizer='KB/bert-base-swedish-cased-ner') nlp('Idag släpper KB tre språkmodeller.') ``` Running the Python code above should produce in something like the result below. Entity types used are `TME` for time, `PRS` for personal names, `LOC` for locations, `EVN` for events and `ORG` for organisations. These labels are subject to change. ```python [ { 'word': 'Idag', 'score': 0.9998126029968262, 'entity': 'TME' }, { 'word': 'KB', 'score': 0.9814832210540771, 'entity': 'ORG' } ] ``` The BERT tokenizer often splits words into multiple tokens, with the subparts starting with `##`, for example the string `Engelbert kör Volvo till Herrängens fotbollsklubb` gets tokenized as `Engel ##bert kör Volvo till Herr ##ängens fotbolls ##klubb`. To glue parts back together one can use something like this: ```python text = 'Engelbert tar Volvon till Tele2 Arena för att titta på Djurgården IF ' +\ 'som spelar fotboll i VM klockan två på kvällen.' l = [] for token in nlp(text): if token['word'].startswith('##'): l[-1]['word'] += token['word'][2:] else: l += [ token ] print(l) ``` Which should result in the following (though less cleanly formated): ```python [ { 'word': 'Engelbert', 'score': 0.99..., 'entity': 'PRS'}, { 'word': 'Volvon', 'score': 0.99..., 'entity': 'OBJ'}, { 'word': 'Tele2', 'score': 0.99..., 'entity': 'LOC'}, { 'word': 'Arena', 'score': 0.99..., 'entity': 'LOC'}, { 'word': 'Djurgården', 'score': 0.99..., 'entity': 'ORG'}, { 'word': 'IF', 'score': 0.99..., 'entity': 'ORG'}, { 'word': 'VM', 'score': 0.99..., 'entity': 'EVN'}, { 'word': 'klockan', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'två', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'på', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'kvällen', 'score': 0.54..., 'entity': 'TME'} ] ``` ### ALBERT base The easisest way to do this is, again, using Huggingface Transformers: ```python from transformers import AutoModel,AutoTokenizer tok = AutoTokenizer.from_pretrained('KB/albert-base-swedish-cased-alpha'), model = AutoModel.from_pretrained('KB/albert-base-swedish-cased-alpha') ``` ## Acknowledgements ❤️ - Resources from Stockholms University, Umeå University and Swedish Language Bank at Gothenburg University were used when fine-tuning BERT for NER. - Model pretraining was made partly in-house at the KBLab and partly (for material without active copyright) with the support of Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). - Models are hosted on S3 by Huggingface 🤗
KB/electra-base-swedish-cased-discriminator
2021-01-20T13:15:09.000Z
[ "pytorch", "tf", "electra", "pretraining", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
KB
76
transformers
KB/electra-base-swedish-cased-generator
2021-01-20T13:17:06.000Z
[ "pytorch", "tf", "electra", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
KB
13
transformers
KB/electra-small-swedish-cased-discriminator
2020-10-21T08:17:53.000Z
[ "pytorch", "tf", "electra", "pretraining", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
KB
16
transformers
KB/electra-small-swedish-cased-generator
2020-10-21T08:17:40.000Z
[ "pytorch", "tf", "electra", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
KB
59
transformers
KBLab/wav2vec2-base-voxpopuli-sv-swedish
2021-05-07T07:25:31.000Z
[ "pytorch", "wav2vec2", "sv-SE", "dataset:common_voice", "dataset:NST Swedish ASR Database", "transformers", "audio", "automatic-speech-recognition", "speech", "voxpopuli", "license:cc-by-nc-4.0" ]
automatic-speech-recognition
[ ".gitattributes", "README.md", "config.json", "preprocessor_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
KBLab
12
transformers
--- language: sv-SE datasets: - common_voice - NST Swedish ASR Database metrics: - wer #- cer tags: - audio - automatic-speech-recognition - speech - voxpopuli license: cc-by-nc-4.0 model-index: - name: Wav2vec 2.0 base VoxPopuli-sv swedish results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: NST Swedish ASR Database metrics: - name: Test WER type: wer value: 5.619804368919309 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice type: common_voice args: sv-SE metrics: - name: Test WER type: wer value: 19.145252414798616 --- # Wav2vec 2.0 base-voxpopuli-sv-swedish Finetuned version of Facebooks [VoxPopuli-sv base](https://huggingface.co/facebook/wav2vec2-base-sv-voxpopuli) model using NST and Common Voice data. Evalutation without a language model gives the following: WER for NST + Common Voice test set (2% of total sentences) is **5.62%**, WER for Common Voice test set is **19.15%**. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "sv-SE", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("KBLab/wav2vec2-base-voxpopuli-sv-swedish") model = Wav2Vec2ForCTC.from_pretrained("KBLab/wav2vec2-base-voxpopuli-sv-swedish") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ```
KBLab/wav2vec2-large-voxpopuli-sv-swedish
2021-05-23T16:27:39.000Z
[ "pytorch", "wav2vec2", "sv-SE", "dataset:common_voice", "dataset:NST Swedish ASR Database", "transformers", "audio", "automatic-speech-recognition", "speech", "voxpopuli", "license:cc-by-nc-4.0" ]
automatic-speech-recognition
[ ".gitattributes", "README.md", "config.json", "preprocessor_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
KBLab
354
transformers
--- language: sv-SE datasets: - common_voice - NST Swedish ASR Database metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - voxpopuli license: cc-by-nc-4.0 model-index: - name: Wav2vec 2.0 large VoxPopuli-sv swedish results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice type: common_voice args: sv-SE metrics: - name: Test WER type: wer value: 10.994764 - name: Test CER type: cer value: 3.946846 --- # Wav2vec 2.0 large-voxpopuli-sv-swedish Additionally pretrained and finetuned version of Facebooks [VoxPopuli-sv large](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) model using Swedish radio broadcasts, NST and Common Voice data. Evalutation without a language model gives the following: WER for NST + Common Voice test set (2% of total sentences) is **3.95%**. WER for Common Voice test set is **10.99%** directly and **7.82%** with a 4-gram language model. When using this model, make sure that your speech input is sampled at 16kHz. ## Training This model has additionally pretrained on 1000h of Swedish local radio broadcasts, fine-tuned for 120000 updates on NST + CommonVoice and then for an additional 20000 updates on CommonVoice only. The additional fine-tuning on CommonVoice hurts performance on the NST+CommonVoice test set somewhat and, unsurprisingly, improves it on the CommonVoice test set. It seems to perform generally better though [citation needed]. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "sv-SE", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("KBLab/wav2vec2-large-voxpopuli-sv-swedish") model = Wav2Vec2ForCTC.from_pretrained("KBLab/wav2vec2-large-voxpopuli-sv-swedish") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ```
KBLab/wav2vec2-large-xlsr-53-swedish
2021-04-13T09:07:25.000Z
[ "pytorch", "wav2vec2", "sv-SE", "dataset:common_voice", "dataset:NST Swedish ASR Database", "transformers", "audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week", "license:apache-2.0" ]
automatic-speech-recognition
[ ".gitattributes", "README.md", "config.json", "preprocessor_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
KBLab
223
transformers
--- language: sv-SE datasets: - common_voice - NST Swedish ASR Database metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Swedish by KBLab results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice sv-SE type: common_voice args: sv-SE metrics: - name: Test WER type: wer value: 14.298610 - name: Test CER type: cer value: 4.925294 --- # Wav2Vec2-Large-XLSR-53-Swedish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Swedish using the [NST Swedish Dictation](https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-17/). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "sv-SE", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("KBLab/wav2vec2-large-xlsr-53-swedish") model = Wav2Vec2ForCTC.from_pretrained("KBLab/wav2vec2-large-xlsr-53-swedish") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Swedish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "sv-SE", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("KBLab/wav2vec2-large-xlsr-53-swedish") model = Wav2Vec2ForCTC.from_pretrained("KBLab/wav2vec2-large-xlsr-53-swedish") model.to("cuda") chars_to_ignore_regex = '[,?.!\\-;:"“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) print("CER: {:2f}".format(100 * wer.compute(predictions=[" ".join(list(entry)) for entry in result["pred_strings"]], references=[" ".join(list(entry)) for entry in result["sentence"]]))) ``` **WER**: 14.298610% **CER**: 4.925294% ## Training First the XLSR model was further pre-trained for 50 epochs with a corpus consisting of 1000 hours spoken Swedish from various radio stations. Secondly [NST Swedish Dictation](https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-17/) was used for fine tuning as well as [Common Voice](https://commonvoice.mozilla.org/en/datasets). Lastly only Common Voice dataset was used for final finetuning. The [Fairseq](https://github.com/fairseq) scripts were used.
KETI-AIR/ke-t5-base-ko
2021-05-27T14:38:56.000Z
[ "pytorch", "tf", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tf_model.h5", "tokenizer_config.json" ]
KETI-AIR
27
transformers
KETI-AIR/ke-t5-base-newslike
2021-05-27T14:39:09.000Z
[ "pytorch", "tf", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tf_model.h5", "tokenizer_config.json" ]
KETI-AIR
13
transformers
KETI-AIR/ke-t5-base
2021-05-27T14:38:14.000Z
[ "pytorch", "tf", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tf_model.h5", "tokenizer_config.json" ]
KETI-AIR
1,915
transformers
KETI-AIR/ke-t5-large-ko
2021-05-27T14:39:24.000Z
[ "pytorch", "tf", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tf_model.h5", "tokenizer_config.json" ]
KETI-AIR
34
transformers
KETI-AIR/ke-t5-large-newslike
2021-05-27T14:39:39.000Z
[ "pytorch", "tf", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tf_model.h5", "tokenizer_config.json" ]
KETI-AIR
194
transformers
KETI-AIR/ke-t5-large
2021-05-27T14:39:51.000Z
[ "pytorch", "tf", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tf_model.h5", "tokenizer_config.json" ]
KETI-AIR
36
transformers
KETI-AIR/ke-t5-small-ko
2021-05-27T14:40:05.000Z
[ "pytorch", "tf", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tf_model.h5", "tokenizer_config.json" ]
KETI-AIR
6
transformers
KETI-AIR/ke-t5-small-newslike
2021-05-27T14:40:18.000Z
[ "pytorch", "tf", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tf_model.h5", "tokenizer_config.json" ]
KETI-AIR
11
transformers
KETI-AIR/ke-t5-small
2021-05-27T14:40:31.000Z
[ "pytorch", "tf", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tf_model.h5", "tokenizer_config.json" ]
KETI-AIR
1,225
transformers
KK/DialoGPT-small-Rick
2021-06-11T03:07:42.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json" ]
KK
13
transformers
KY/KY_test_model
2021-06-15T08:08:44.000Z
[ "pytorch", "distilbert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
KY
7
transformers
KY/modeling_test_II
2021-06-17T02:18:08.000Z
[ "pytorch", "distilbert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
KY
0
transformers
Kal/Damen
2021-03-01T20:05:23.000Z
[]
[ ".gitattributes", "README.md" ]
Kal
0
Kalindu/SinBerto
2021-06-17T16:37:19.000Z
[ "pytorch", "roberta", "masked-lm", "si", "arxiv:1907.11692", "transformers", "SinBERTo", "Sinhala", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "training_args.bin", "vocab.json" ]
Kalindu
17
transformers
Kap/test-model
2021-06-12T13:13:41.000Z
[]
[ ".gitattributes" ]
Kap
0
Kapil/model_name
2021-02-19T06:02:17.000Z
[]
[ ".gitattributes" ]
Kapil
0
Karen/test_model
2021-02-10T22:33:44.000Z
[]
[ ".gitattributes" ]
Karen
0
Karimfayed/pegasus_SAMSum
2021-05-09T20:50:32.000Z
[ "pytorch", "pegasus", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin", "scheduler.pt", "special_tokens_map.json", "spiece.model", "tokenizer_config.json", "trainer_state.json", "training_args.bin" ]
Karimfayed
32
transformers
Kerui/CS412-Project
2021-04-20T01:18:26.000Z
[]
[ ".gitattributes" ]
Kerui
0
Khu1998/clog-assessment-model
2021-05-19T11:18:26.000Z
[ "tf", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
Khu1998
12
transformers
# CLOG Assessment generator model
Khu1998/clog-clo-model
2021-06-13T17:22:02.000Z
[ "pytorch", "jax", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
Khu1998
8
transformers
KoichiYasuoka/bert-large-japanese-char-extended
2021-06-13T13:44:57.000Z
[ "pytorch", "bert", "masked-lm", "ja", "transformers", "japanese", "wikipedia", "license:cc-by-sa-3.0", "fill-mask", "pipeline_tag:fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
KoichiYasuoka
201
transformers
--- language: - "ja" tags: - "japanese" - "masked-lm" - "wikipedia" license: "cc-by-sa-3.0" pipeline_tag: "fill-mask" mask_token: "[MASK]" widget: - text: "酸素ボンベを充[MASK]する。" --- # bert-large-japanese-char-extended ## Model Description This is a BERT model pre-trained on Japanese Wikipedia texts, derived from [bert-large-japanese-char](https://huggingface.co/cl-tohoku/bert-large-japanese-char). Character-embeddings are enhanced to include all 常用漢字/人名用漢字 characters. You can fine-tune `bert-large-japanese-char-extended` for downstream tasks, such as POS-tagging, dependency-parsing, and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-large-japanese-char-extended") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/bert-large-japanese-char-extended") ```
KoichiYasuoka/roberta-classical-chinese-base-char
2021-06-13T13:42:26.000Z
[ "pytorch", "roberta", "masked-lm", "lzh", "transformers", "classical chinese", "literary chinese", "ancient chinese", "license:apache-2.0", "fill-mask", "pipeline_tag:fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
KoichiYasuoka
797
transformers
--- language: - "lzh" tags: - "classical chinese" - "literary chinese" - "ancient chinese" - "masked-lm" license: "apache-2.0" pipeline_tag: "fill-mask" mask_token: "[MASK]" widget: - text: "孟子[MASK]梁惠王" --- # roberta-classical-chinese-base-char ## Model Description This is a RoBERTa model pre-trained on Classical Chinese texts, derived from [GuwenBERT-base](https://huggingface.co/ethanyt/guwenbert-base). Character-embeddings are enhanced into traditional/simplified characters. You can fine-tune `roberta-classical-chinese-base-char` for downstream tasks, such as sentencization, POS-tagging, dependency-parsing, and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-classical-chinese-base-char") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-classical-chinese-base-char") ``` ## See Also [SuPar-Kanbun](https://github.com/KoichiYasuoka/SuPar-Kanbun): Tokenizer POS-tagger and Dependency-parser for Classical Chinese
KoichiYasuoka/roberta-classical-chinese-large-char
2021-06-13T13:43:00.000Z
[ "pytorch", "roberta", "masked-lm", "lzh", "transformers", "classical chinese", "literary chinese", "ancient chinese", "license:apache-2.0", "fill-mask", "pipeline_tag:fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
KoichiYasuoka
698
transformers
--- language: - "lzh" tags: - "classical chinese" - "literary chinese" - "ancient chinese" - "masked-lm" license: "apache-2.0" pipeline_tag: "fill-mask" mask_token: "[MASK]" widget: - text: "孟子[MASK]梁惠王" --- # roberta-classical-chinese-large-char ## Model Description This is a RoBERTa model pre-trained on Classical Chinese texts, derived from [GuwenBERT-large](https://huggingface.co/ethanyt/guwenbert-large). Character-embeddings are enhanced into traditional/simplified characters. You can fine-tune `roberta-classical-chinese-large-char` for downstream tasks, such as sentencization, POS-tagging, dependency-parsing, and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-classical-chinese-large-char") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-classical-chinese-large-char") ``` ## See Also [SuPar-Kanbun](https://github.com/KoichiYasuoka/SuPar-Kanbun): Tokenizer POS-tagger and Dependency-parser for Classical Chinese
Konstantinos/BERTaTweetGR
2021-05-20T12:02:31.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "el", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "training_args.bin", "vocab.json" ]
Konstantinos
24
transformers
--- language: el widget: - text: "μπαινω στο <mask> και τι να δω." --- # Α lite RoBERTa fill mask model trained mostly in greek tweets The training dataset of this model consists of 23 million tweets in Greek, of approximately 5000 users in total, spanning from 2008 to 2018. The model has been trained to support the work for the paper [Multimodal Hate Speech Detection in Greek Social Media (preprint v1)](https://www.preprints.org/manuscript/202103.0390/v1 ) ## Load the pretrained model ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Konstantinos/BERTaTweetGR") model = AutoModel.from_pretrained("Konstantinos/BERTaTweetGR") ```
Koraiem/test_1
2021-03-24T01:57:45.000Z
[]
[ ".gitattributes" ]
Koraiem
0
Kyuyoung11/haremotions-v1
2021-06-14T07:09:20.000Z
[]
[ ".gitattributes", "README.md" ]
Kyuyoung11
425
Kyuyoung11/haremotions-v2
2021-06-14T07:09:14.000Z
[ "pytorch", "electra", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
Kyuyoung11
172
transformers
Kyuyoung11/haremotions-v3
2021-06-14T18:43:46.000Z
[ "pytorch", "electra", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
Kyuyoung11
48
transformers
LIAMF-USP/aristo-roberta
2021-05-20T12:04:27.000Z
[ "pytorch", "tf", "jax", "roberta", "multiple-choice", "english", "dataset:race", "dataset:ai2_arc", "dataset:openbookqa", "transformers", "license:mit" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
LIAMF-USP
33
transformers
--- language: "english" license: "mit" datasets: - race - ai2_arc - openbookqa metrics: - accuracy --- # Roberta Large Fine Tuned on RACE ## Model description This model follows the implementation by Allen AI team about [Aristo Roberta V7 Model](https://leaderboard.allenai.org/arc/submission/blcotvl7rrltlue6bsv0) given in [ARC Challenge](https://leaderboard.allenai.org/arc/submissions/public) #### How to use ```python import datasets from transformers import RobertaTokenizer from transformers import RobertaForMultipleChoice tokenizer = RobertaTokenizer.from_pretrained( "LIAMF-USP/aristo-roberta") model = RobertaForMultipleChoice.from_pretrained( "LIAMF-USP/aristo-roberta") dataset = datasets.load_dataset( "arc",, split=["train", "validation", "test"], ) training_examples = dataset[0] evaluation_examples = dataset[1] test_examples = dataset[2] example=training_examples[0] example_id = example["example_id"] question = example["question"] label_example = example["answer"] options = example["options"] if label_example in ["A", "B", "C", "D", "E"]: label_map = {label: i for i, label in enumerate( ["A", "B", "C", "D", "E"])} elif label_example in ["1", "2", "3", "4", "5"]: label_map = {label: i for i, label in enumerate( ["1", "2", "3", "4", "5"])} else: print(f"{label_example} not found") while len(options) < 5: empty_option = {} empty_option['option_context'] = '' empty_option['option_text'] = '' options.append(empty_option) choices_inputs = [] for ending_idx, option in enumerate(options): ending = option["option_text"] context = option["option_context"] if question.find("_") != -1: # fill in the banks questions question_option = question.replace("_", ending) else: question_option = question + " " + ending inputs = tokenizer( context, question_option, add_special_tokens=True, max_length=MAX_SEQ_LENGTH, padding="max_length", truncation=True, return_overflowing_tokens=False, ) if "num_truncated_tokens" in inputs and inputs["num_truncated_tokens"] > 0: logging.warning(f"Question: {example_id} with option {ending_idx} was truncated") choices_inputs.append(inputs) label = label_map[label_example] input_ids = [x["input_ids"] for x in choices_inputs] attention_mask = ( [x["attention_mask"] for x in choices_inputs] # as the senteces follow the same structure, just one of them is # necessary to check if "attention_mask" in choices_inputs[0] else None ) example_encoded = { "example_id": example_id, "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, "label": label } output = model(**example_encoded) ``` ## Training data the Training data was the same as proposed [here](https://leaderboard.allenai.org/arc/submission/blcotvl7rrltlue6bsv0) The only diferrence was the hypeparameters of RACE fine tuned model, which were reported [here](https://huggingface.co/LIAMF-USP/roberta-large-finetuned-race#eval-results) ## Training procedure It was necessary to preprocess the data with a method that is exemplified for a single instance in the _How to use_ section. The used hyperparameters were the following: | Hyperparameter | Value | |:----:|:----:| | adam_beta1 | 0.9 | | adam_beta2 | 0.98 | | adam_epsilon | 1.000e-8 | | eval_batch_size | 16 | | train_batch_size | 4 | | fp16 | True | | gradient_accumulation_steps | 4 | | learning_rate | 0.00001 | | warmup_steps | 0.06 | | max_length | 256 | | epochs | 4 | The other parameters were the default ones from [Trainer](https://huggingface.co/transformers/main_classes/trainer.html) and [Trainer Arguments](https://huggingface.co/transformers/main_classes/trainer.html#trainingarguments) ## Eval results: | Dataset Acc | Challenge Test | |:----:|:----:| | | 65.358 | **The model was trained with a TITAN RTX**
LIAMF-USP/roberta-large-finetuned-race
2021-05-20T12:08:36.000Z
[ "pytorch", "tf", "jax", "roberta", "multiple-choice", "english", "dataset:race", "transformers", "license:mit" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
LIAMF-USP
1,410
transformers
--- language: "english" license: "mit" datasets: - race metrics: - accuracy --- # Roberta Large Fine Tuned on RACE ## Model description This model is a fine-tuned model of Roberta-large applied on RACE #### How to use ```python import datasets from transformers import RobertaTokenizer from transformers import RobertaForMultipleChoice tokenizer = RobertaTokenizer.from_pretrained( "LIAMF-USP/roberta-large-finetuned-race") model = RobertaForMultipleChoice.from_pretrained( "LIAMF-USP/roberta-large-finetuned-race") dataset = datasets.load_dataset( "race", "all", split=["train", "validation", "test"], )training_examples = dataset[0] evaluation_examples = dataset[1] test_examples = dataset[2] example=training_examples[0] example_id = example["example_id"] question = example["question"] context = example["article"] options = example["options"] label_example = example["answer"] label_map = {label: i for i, label in enumerate(["A", "B", "C", "D"])} choices_inputs = [] for ending_idx, (_, ending) in enumerate( zip(context, options)): if question.find("_") != -1: # fill in the banks questions question_option = question.replace("_", ending) else: question_option = question + " " + ending inputs = tokenizer( context, question_option, add_special_tokens=True, max_length=MAX_SEQ_LENGTH, padding="max_length", truncation=True, return_overflowing_tokens=False, ) label = label_map[label_example] input_ids = [x["input_ids"] for x in choices_inputs] attention_mask = ( [x["attention_mask"] for x in choices_inputs] # as the senteces follow the same structure, #just one of them is necessary to check if "attention_mask" in choices_inputs[0] else None ) example_encoded = { "example_id": example_id, "input_ids": input_ids, "attention_mask": attention_mask, "label": label, } output = model(**example_encoded) ``` ## Training data The initial model was [roberta large model](https://huggingface.co/roberta-large) which was then fine-tuned on [RACE dataset](https://www.cs.cmu.edu/~glai1/data/race/) ## Training procedure It was necessary to preprocess the data with a method that is exemplified for a single instance in the _How to use_ section. The used hyperparameters were the following: | Hyperparameter | Value | |:----:|:----:| | adam_beta1 | 0.9 | | adam_beta2 | 0.98 | | adam_epsilon | 1.000e-8 | | eval_batch_size | 32 | | train_batch_size | 1 | | fp16 | True | | gradient_accumulation_steps | 16 | | learning_rate | 0.00001 | | warmup_steps | 1000 | | max_length | 512 | | epochs | 4 | ## Eval results: | Dataset Acc | Eval | All Test |High School Test |Middle School Test | |:----:|:----:|:----:|:----:|:----:| | | 85.2 | 84.9|83.5|88.0| **The model was trained with a Tesla V100-PCIE-16GB**
LTNguyen/stsb_vn
2020-11-19T06:32:28.000Z
[]
[ ".gitattributes" ]
LTNguyen
0
LTNguyen/stsb_vv
2020-11-19T06:47:19.000Z
[]
[ ".gitattributes" ]
LTNguyen
0
Laeyoung/BTS-comments-generator
2021-06-08T07:59:07.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "handler.py", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "MAR-INF/MANIFEST.json" ]
Laeyoung
50
transformers
### Model information * Fine tuning dataset: https://www.kaggle.com/seungguini/bts-youtube-comments * Base model: GPT2 Small * Epoch: 5 * API page: [Ainize](https://ainize.ai/teachable-ainize/gpt2-train?branch=train/cv695m9g40av0cdabuqp) * Demo page: [End-point](https://kubecon-tabtab-ainize-team.endpoint.ainize.ai/?modelUrl=https://train-cv695m9g40av0cdabuqp-gpt2-train-teachable-ainize.endpoint.ainize.ai/predictions/gpt-2-en-small-finetune) ### ===Teachable NLP=== ### To train a GPT-2 model, write code and require GPU resources, but can easily fine-tune and get an API to use the model here for free. * Teachable NLP: [Teachable NLP](https://ainize.ai/teachable-nlp) * Tutorial: [Tutorial](https://forum.ainetwork.ai/t/teachable-nlp-how-to-use-teachable-nlp/65?utm_source=community&utm_medium=huggingface&utm_campaign=model&utm_content=teachable%20nlp)
LeBenchmark/wav2vec2-FR-M-base
2021-05-03T15:07:13.000Z
[ "pytorch", "wav2vec2", "fr", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "checkpoint_best.pt", "config.json", "preprocessor_config.json", "pytorch_model.bin" ]
LeBenchmark
201
transformers
--- language: "fr" thumbnail: tags: - wav2vec2 license: "apache-2.0" --- # LeBenchmark: wav2vec2 large model trained on 3K hours of French speech LeBenchmark provides an ensemble of pretrained wav2vec2 models on different French dataset containing spontaneous, read and broadcasted speech. For more information on the different benchmark that can be used to evaluate the wav2vec2 models, please refer to our paper at: [Not Available yet]() ## wav2vec2-FR-M-Large: model and data descriptions We release four different models that can be found under our HuggingFace organisation. Two different wav2vec2 architectures *Base* and *Large* are coupled with our small (*S*) and medium (*M*) corpus. A larger one shoud come later. In short: - [wav2vec2-FR-M-Large](#): Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown). - [wav2vec2-FR-M-Base](https://huggingface.co/LeBenchmark/wav2vec2-FR-M-base): Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown). - [wav2vec2-FR-S-Large](https://huggingface.co/LeBenchmark/wav2vec2-FR-S-large): Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females). - [wav2vec2-FR-S-Base](https://huggingface.co/LeBenchmark/wav2vec2-FR-S-base): Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females). ## Intended uses & limitations Pretrained wav2vec2 models are distributed under the apache-2.0 licence. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpus that are not completely open-sourced. ## Fine-tune with Fairseq for ASR with CTC As our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in [this blogpost](https://huggingface.co/blog/fine-tune-wav2vec2-english). Please note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part. ## Integrate to SpeechBrain for ASR, Speaker, Source Separation ... Pretrained wav2vec models recently gained in popularity. At the same time [SpeechBrain toolkit](https://speechbrain.github.io) came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies. While it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models! 1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ... 2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer. **If interested, simply follow this [tutorial](https://colab.research.google.com/drive/17Hu1pxqhfMisjkSgmM2CnZxfqDyn2hSY?usp=sharing)** ## Referencing LeBenchmark ``` Reference to come ```
LeBenchmark/wav2vec2-FR-M-large
2021-05-03T14:30:27.000Z
[ "pytorch", "wav2vec2", "fr", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "checkpoint_best.pt", "config.json", "preprocessor_config.json", "pytorch_model.bin" ]
LeBenchmark
210
transformers
--- language: "fr" thumbnail: tags: - wav2vec2 license: "apache-2.0" --- # LeBenchmark: wav2vec2 large model trained on 3K hours of French speech LeBenchmark provides an ensemble of pretrained wav2vec2 models on different French dataset containing spontaneous, read and broadcasted speech. For more information on the different benchmark that can be used to evaluate the wav2vec2 models, please refer to our paper at: [Not Available yet]() ## wav2vec2-FR-M-Large: model and data descriptions We release four different models that can be found under our HuggingFace organisation. Two different wav2vec2 architectures *Base* and *Large* are coupled with our small (*S*) and medium (*M*) corpus. A larger one shoud come later. In short: - [wav2vec2-FR-M-Large](#): Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown). - [wav2vec2-FR-M-Base](https://huggingface.co/LeBenchmark/wav2vec2-FR-M-base): Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown). - [wav2vec2-FR-S-Large](https://huggingface.co/LeBenchmark/wav2vec2-FR-S-large): Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females). - [wav2vec2-FR-S-Base](https://huggingface.co/LeBenchmark/wav2vec2-FR-S-base): Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females). ## Intended uses & limitations Pretrained wav2vec2 models are distributed under the apache-2.0 licence. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpus that are not completely open-sourced. ## Fine-tune with Fairseq for ASR with CTC As our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in [this blogpost](https://huggingface.co/blog/fine-tune-wav2vec2-english). Please note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part. ## Integrate to SpeechBrain for ASR, Speaker, Source Separation ... Pretrained wav2vec models recently gained in popularity. At the same time [SpeechBrain toolkit](https://speechbrain.github.io) came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies. While it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models! 1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ... 2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer. **If interested, simply follow this [tutorial](https://colab.research.google.com/drive/17Hu1pxqhfMisjkSgmM2CnZxfqDyn2hSY?usp=sharing)** ## Referencing LeBenchmark ``` Reference to come ```
LeBenchmark/wav2vec2-FR-S-base
2021-05-03T15:08:01.000Z
[ "pytorch", "wav2vec2", "fr", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "checkpoint_best.pt", "config.json", "preprocessor_config.json", "pytorch_model.bin" ]
LeBenchmark
9
transformers
--- language: "fr" thumbnail: tags: - wav2vec2 license: "apache-2.0" --- # LeBenchmark: wav2vec2 large model trained on 3K hours of French speech LeBenchmark provides an ensemble of pretrained wav2vec2 models on different French dataset containing spontaneous, read and broadcasted speech. For more information on the different benchmark that can be used to evaluate the wav2vec2 models, please refer to our paper at: [Not Available yet]() ## wav2vec2-FR-M-Large: model and data descriptions We release four different models that can be found under our HuggingFace organisation. Two different wav2vec2 architectures *Base* and *Large* are coupled with our small (*S*) and medium (*M*) corpus. A larger one shoud come later. In short: - [wav2vec2-FR-M-Large](#): Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown). - [wav2vec2-FR-M-Base](https://huggingface.co/LeBenchmark/wav2vec2-FR-M-base): Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown). - [wav2vec2-FR-S-Large](https://huggingface.co/LeBenchmark/wav2vec2-FR-S-large): Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females). - [wav2vec2-FR-S-Base](https://huggingface.co/LeBenchmark/wav2vec2-FR-S-base): Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females). ## Intended uses & limitations Pretrained wav2vec2 models are distributed under the apache-2.0 licence. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpus that are not completely open-sourced. ## Fine-tune with Fairseq for ASR with CTC As our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in [this blogpost](https://huggingface.co/blog/fine-tune-wav2vec2-english). Please note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part. ## Integrate to SpeechBrain for ASR, Speaker, Source Separation ... Pretrained wav2vec models recently gained in popularity. At the same time [SpeechBrain toolkit](https://speechbrain.github.io) came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies. While it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models! 1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ... 2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer. **If interested, simply follow this [tutorial](https://colab.research.google.com/drive/17Hu1pxqhfMisjkSgmM2CnZxfqDyn2hSY?usp=sharing)** ## Referencing LeBenchmark ``` Reference to come ```
LeBenchmark/wav2vec2-FR-S-large
2021-05-03T15:03:44.000Z
[ "pytorch", "wav2vec2", "fr", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "checkpoint_best.pt", "config.json", "preprocessor_config.json", "pytorch_model.bin" ]
LeBenchmark
11
transformers
--- language: "fr" thumbnail: tags: - wav2vec2 license: "apache-2.0" --- # LeBenchmark: wav2vec2 large model trained on 3K hours of French speech LeBenchmark provides an ensemble of pretrained wav2vec2 models on different French dataset containing spontaneous, read and broadcasted speech. For more information on the different benchmark that can be used to evaluate the wav2vec2 models, please refer to our paper at: [Not Available yet]() ## wav2vec2-FR-M-Large: model and data descriptions We release four different models that can be found under our HuggingFace organisation. Two different wav2vec2 architectures *Base* and *Large* are coupled with our small (*S*) and medium (*M*) corpus. A larger one shoud come later. In short: - [wav2vec2-FR-M-Large](#): Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown). - [wav2vec2-FR-M-Base](https://huggingface.co/LeBenchmark/wav2vec2-FR-M-base): Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown). - [wav2vec2-FR-S-Large](https://huggingface.co/LeBenchmark/wav2vec2-FR-S-large): Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females). - [wav2vec2-FR-S-Base](https://huggingface.co/LeBenchmark/wav2vec2-FR-S-base): Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females). ## Intended uses & limitations Pretrained wav2vec2 models are distributed under the apache-2.0 licence. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpus that are not completely open-sourced. ## Fine-tune with Fairseq for ASR with CTC As our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in [this blogpost](https://huggingface.co/blog/fine-tune-wav2vec2-english). Please note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part. ## Integrate to SpeechBrain for ASR, Speaker, Source Separation ... Pretrained wav2vec models recently gained in popularity. At the same time [SpeechBrain toolkit](https://speechbrain.github.io) came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies. While it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models! 1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ... 2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer. **If interested, simply follow this [tutorial](https://colab.research.google.com/drive/17Hu1pxqhfMisjkSgmM2CnZxfqDyn2hSY?usp=sharing)** ## Referencing LeBenchmark ``` Reference to come ```
LeBoogle/CibaBot
2021-06-03T01:20:43.000Z
[]
[ ".gitattributes", "README.md" ]
LeBoogle
0
Legendarysoren/Twitter
2021-02-24T05:28:59.000Z
[]
[ ".gitattributes", "README.md" ]
Legendarysoren
0
LeoCordoba/beto2beto-ccnews-titles-es
2021-05-17T23:00:00.000Z
[ "pytorch", "encoder-decoder", "seq2seq", "es", "dataset:ccnews-titles-es", "transformers", "summarization", "spanish", "beto2beto", "license:apache-2.0", "text2text-generation" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "training_args.bin" ]
LeoCordoba
41
transformers
--- language: es tags: - summarization - spanish - beto2beto - encoder-decoder license: apache-2.0 datasets: - ccnews-titles-es model-index: - name: beto2beto-ccnews-titles-es results: - task: name: Abstractive Text Summarization type: abstractive-text-summarization dataset: name: "CCNEWS-titles (Spanish)" widget: - text: | La chocotorta, el tradicional y práctico antojo dulce de los argentinos, fue elegida como el mejor postre del mundo por críticos de restaurants internacionales, a casi 40 años de su creación. El ránking Taste Atlas ubicó primero en su lista al postre insignia local de galletitas, queso crema y dulce de leche, por delante del helado de pistacho italiano y la tarta alemana de manzana. “Este postre argentino sin hornear fue influenciado por la cocina italiana y se inspiró en el famoso tiramisú italiano. Está elaborado con tres ingredientes básicos argentinos: galletas de chocolate, dulce de leche y queso crema”, explica la página web que exhorta a los turistas de todo el mundo a que prueben la chocotorta. En la votación, superó también a los waffles belgas y el zserbó húngaro. A nivel local le sigue el alfajor, con 4,2 puntos contra los 4,7 de la torta. En el texto que acompaña al listón dorado de “postre número uno“, los expertos enseñan además cómo se hacen las chocotortas, paso por paso. “Las galletas se ablandan en leche y se cubren con una combinación de queso crema y dulce de leche. Las formas de la chocotorta pueden variar, mientras que las galletas se pueden remojar con leche con chocolate, café o incluso licor de café”, detallan. Por último, adjudican su creación a una “campaña de márketing” diseñada para promover las galletitas icónicas que le dan su nombre. La chocotorta, infaltable en los cumpleaños argentinos, fue creada en 1982 por una creativa de las agencias más importantes del país, Marité Mabragaña. --- ## Hyperparameters { "num_train_epochs": 3, "seed": 7, "summary_column": "output_text", "text_column": "text", "encoder_max_length" : 512, "decoder_max_length" :36, "batch_size" : 256 } ## Usage ## Results | key | value | | --- | ----- | | eval loss | 4.539857387542725| | eval_rouge1 |23.7478 | | eval_rouge2 |7.3616 | | eval_rougeL |20.6615 | | eval_rougeLsum |20.7371 | | eval_gen_len| 16.1806| |test loss | 4.515065670013428| | test_rouge1 | 23.7415| | test_rouge2 | 7.3548| | test_rougeL | 20.746| | test_rougeLsum | 20.8149| | test_gen_len| 16.1926|
LeoCordoba/beto2beto-mlsum
2021-04-19T13:56:18.000Z
[ "pytorch", "encoder-decoder", "seq2seq", "es", "dataset:mlsum - es", "transformers", "summarization", "spanish", "beto", "license:apache-2.0", "text2text-generation" ]
summarization
[ ".gitattributes", "README.md", "config.json", "eval_data.json", "pytorch_model.bin", "special_tokens_map.json", "test_data.json", "tokenizer.json", "tokenizer_config.json", "trainer_state.json", "training_args.bin" ]
LeoCordoba
113
transformers
--- language: es tags: - summarization - spanish - encoder-decoder - beto license: apache-2.0 datasets: - mlsum - es model-index: - name: beto2beto-mlsum results: - task: name: Abstractive Text Summarization type: abstractive-text-summarization dataset: name: "MLSUM: MultiLingual SUMmarization dataset (Spanish)" type: mlsum metrics: - name: Validation ROGUE-1 type: rogue-1 value: 26.1256 - name: Validation ROGUE-2 type: rogue-2 value: 9.2552 - name: Validation ROGUE-L type: rogue-l value: 21.4899 - name: Validation ROGUE-Lsum type: rogue-lsum value: 21.8194 - name: Test ROGUE-1 type: rogue-1 value: 25.8639 - name: Test ROGUE-2 type: rogue-2 value: 8.911 - name: Test ROGUE-L type: rogue-l value: 21.2426 - name: Test ROGUE-Lsum type: rogue-lsum value: 21.5859 widget: - text: | La chocotorta, el tradicional y práctico antojo dulce de los argentinos, fue elegida como el mejor postre del mundo por críticos de restaurants internacionales, a casi 40 años de su creación. El ránking Taste Atlas ubicó primero en su lista al postre insignia local de galletitas, queso crema y dulce de leche, por delante del helado de pistacho italiano y la tarta alemana de manzana. “Este postre argentino sin hornear fue influenciado por la cocina italiana y se inspiró en el famoso tiramisú italiano. Está elaborado con tres ingredientes básicos argentinos: galletas de chocolate, dulce de leche y queso crema”, explica la página web que exhorta a los turistas de todo el mundo a que prueben la chocotorta. En la votación, superó también a los waffles belgas y el zserbó húngaro. A nivel local le sigue el alfajor, con 4,2 puntos contra los 4,7 de la torta. En el texto que acompaña al listón dorado de “postre número uno", los expertos enseñan además cómo se hacen las chocotortas, paso por paso. “Las galletas se ablandan en leche y se cubren con una combinación de queso crema y dulce de leche. Las formas de la chocotorta pueden variar, mientras que las galletas se pueden remojar con leche con chocolate, café o incluso licor de café”, detallan. Por último, adjudican su creación a una “campaña de márketing” diseñada para promover las galletitas icónicas que le dan su nombre. La chocotorta, infaltable en los cumpleaños argentinos, fue creada en 1982 por una creativa de las agencias más importantes del país, Marité Mabragaña. --- ## beto2beto-mlsum This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container. For more information look at: - [🤗 Transformers Documentation: Amazon SageMaker](https://huggingface.co/transformers/sagemaker.html) - [Example Notebooks](https://github.com/huggingface/notebooks/tree/master/sagemaker) - [Amazon SageMaker documentation for Hugging Face](https://docs.aws.amazon.com/sagemaker/latest/dg/hugging-face.html) - [Python SDK SageMaker documentation for Hugging Face](https://sagemaker.readthedocs.io/en/stable/frameworks/huggingface/index.html) - [Deep Learning Container](https://github.com/aws/deep-learning-containers/blob/master/available_images.md#huggingface-training-containers) ## Hyperparameters { "dataset_config": "es", "dataset_name": "mlsum", "do_eval": true, "do_predict": true, "do_train": true, "fp16": true, "max_target_length": 64, "num_train_epochs": 10, "per_device_eval_batch_size": 4, "per_device_train_batch_size": 4, "predict_with_generate": true, "sagemaker_container_log_level": 20, "sagemaker_program": "run_summarization.py", "seed": 7, "summary_column": "summary", "text_column": "text" } ## Usage ## Results | key | value | | --- | ----- | | validation_loss | 2.5021677017211914 | | validation_rouge1 | 26.1256 | | validation_rouge2 | 9.2552 | | validation_rougeL | 21.4899 | | validation_rougeLsum | 21.8194 | | test_loss | 2.57672381401062 | | test_rouge1 | 25.8639 | | test_rouge2 | 8.911 | | test_rougeL | 21.2426 | | test_rougeLsum | 21.5859 |
LeoCordoba/beto2beto
2021-05-10T00:57:42.000Z
[ "pytorch", "encoder-decoder", "seq2seq", "es", "dataset:cc-news-es", "transformers", "text-generation", "spanish", "beto", "license:apache-2.0", "text2text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "optimizer.pt", "pytorch_model.bin", "scheduler.pt", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "trainer_state.json", "training_args.bin", "vocab.txt", ".ipynb_checkpoints/README-checkpoint.md" ]
LeoCordoba
88
transformers
--- language: es tags: - text-generation - spanish - encoder-decoder - beto license: apache-2.0 datasets: - cc-news-es model-index: - name: beto2beto results: widget: - text: | La chocotorta, el tradicional y práctico antojo dulce de los argentinos, fue elegida como el mejor postre del mundo por críticos de restaurants internacionales, a casi 40 años de su creación. --- ## beto2beto Add description. Entrenado por 3 epochs sobre CC-NEWS-ES (2019), aproximadamente 68.000 steps. Encoder max length: 40•Decoder max length: 128 ## Hyperparameters ## Usage ## Results | key | value | | --- | ----- | | test_loss | 2.65148806571960452 |
LeoCordoba/mt5-small-ccnews-titles-es
2021-05-10T01:31:40.000Z
[ "pytorch", "mt5", "seq2seq", "es", "dataset:ccnews-titles-es", "transformers", "summarization", "spanish", "license:apache-2.0", "text2text-generation" ]
summarization
[ ".gitattributes", "README.md", "config.json", "optimizer.pt", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json", "training_args.bin" ]
LeoCordoba
63
transformers
--- language: es tags: - summarization - mt5 - spanish license: apache-2.0 datasets: - ccnews-titles-es model-index: - name: mt5-small-ccnesews-titles-es results: - task: name: Abstractive Text Summarization type: abstractive-text-summarization dataset: name: "CCNEWS-titles (Spanish)" widget: - text: "La chocotorta, el tradicional y práctico antojo dulce de los argentinos, fue elegida como el mejor postre del mundo por críticos de restaurants internacionales, a casi 40 años de su creación. El ránking Taste Atlas ubicó primero en su lista al postre insignia local de galletitas, queso crema y dulce de leche, por delante del helado de pistacho italiano y la tarta alemana de manzana. “Este postre argentino sin hornear fue influenciado por la cocina italiana y se inspiró en el famoso tiramisú italiano. Está elaborado con tres ingredientes básicos argentinos: galletas de chocolate, dulce de leche y queso crema”, explica la página web que exhorta a los turistas de todo el mundo a que prueben la chocotorta. En la votación, superó también a los waffles belgas y el zserbó húngaro. A nivel local le sigue el alfajor, con 4,2 puntos contra los 4,7 de la torta. En el texto que acompaña al listón dorado de “postre número uno“, los expertos enseñan además cómo se hacen las chocotortas, paso por paso. “Las galletas se ablandan en leche y se cubren con una combinación de queso crema y dulce de leche. Las formas de la chocotorta pueden variar, mientras que las galletas se pueden remojar con leche con chocolate, café o incluso licor de café”, detallan. Por último, adjudican su creación a una “campaña de márketing” diseñada para promover las galletitas icónicas que le dan su nombre. La chocotorta, infaltable en los cumpleaños argentinos, fue creada en 1982 por una creativa de las agencias más importantes del país, Marité Mabragaña." --- ## Hyperparameters { "max_target_length": 64, "model_name_or_path": "google/mt5-small", "num_train_epochs": 3, "seed": 7, "summary_column": "output_text", "text_column": "text", "encoder_max_length" : 512, "decoder_max_length" :36, "batch_size" : 128 } ## Usage ``` article = """ La chocotorta, el tradicional y práctico antojo dulce de los argentinos, fue elegida como el mejor postre del mundo por críticos de restaurants internacionales, a casi 40 años de su creación. El ránking Taste Atlas ubicó primero en su lista al postre insignia local de galletitas, queso crema y dulce de leche, por delante del helado de pistacho italiano y la tarta alemana de manzana. “Este postre argentino sin hornear fue influenciado por la cocina italiana y se inspiró en el famoso tiramisú italiano. Está elaborado con tres ingredientes básicos argentinos: galletas de chocolate, dulce de leche y queso crema”, explica la página web que exhorta a los turistas de todo el mundo a que prueben la chocotorta. En la votación, superó también a los waffles belgas y el zserbó húngaro. A nivel local le sigue el alfajor, con 4,2 puntos contra los 4,7 de la torta. En el texto que acompaña al listón dorado de “postre número uno", los expertos enseñan además cómo se hacen las chocotortas, paso por paso. “Las galletas se ablandan en leche y se cubren con una combinación de queso crema y dulce de leche. Las formas de la chocotorta pueden variar, mientras que las galletas se pueden remojar con leche con chocolate, café o incluso licor de café”, detallan. Por último, adjudican su creación a una “campaña de márketing” diseñada para promover las galletitas icónicas que le dan su nombre. La chocotorta, infaltable en los cumpleaños argentinos, fue creada en 1982 por una creativa de las agencias más importantes del país, Marité Mabragaña. """ from transformers import pipeline summarizer = pipeline("summarization", model="LeoCordoba/mt5-small-ccnews-titles-es") summarizer(article, min_length=5, max_length=64) ``` ## Results | metric | score | | --- | ----- | | eval_loss | 2.879085063934326 | | eval_rouge1 | 22.6623 | | eval_rouge2 | 7.7894 | | eval_rougeL | 19.8015, | | eval_rougeLsum | 19.8092 | | eval_gen_len | 17.1839 | | test_loss | 2.878429412841797 | | test_rouge1 | 22.9263 | | test_rouge2 | 7.9146 | | test_rougeL | 20.0272 | | test_rougeLsum | 20.0387 | | test_gen_len | 17.1696 |
LeoCordoba/mt5-small-mlsum
2021-04-13T12:53:38.000Z
[ "pytorch", "mt5", "seq2seq", "es", "dataset:mlsum - es", "transformers", "summarization", "sagemaker", "spanish", "license:apache-2.0", "text2text-generation" ]
summarization
[ ".gitattributes", "README.md", "all_results.json", "config.json", "eval_results.json", "metadata.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "test_generations.txt", "test_results.json", "tokenizer_config.json", "train_results.json", "trainer_state.json", "training_args.bin" ]
LeoCordoba
223
transformers
--- language: es tags: - summarization - sagemaker - mt5 - spanish license: apache-2.0 datasets: - mlsum - es model-index: - name: mt5-small-mlsum results: - task: name: Abstractive Text Summarization type: abstractive-text-summarization dataset: name: "MLSUM: MultiLingual SUMmarization dataset (Spanish)" type: mlsum metrics: - name: Validation ROGUE-1 type: rogue-1 value: 26.4352 - name: Validation ROGUE-2 type: rogue-2 value: 8.9293 - name: Validation ROGUE-L type: rogue-l value: 21.2622 - name: Validation ROGUE-LSUM type: rogue-lsum value: 21.5518 - name: Test ROGUE-1 type: rogue-1 value: 26.0756 - name: Test ROGUE-2 type: rogue-2 value: 8.4669 - name: Test ROGUE-L type: rogue-l value: 20.8167 - name: Validation ROGUE-LSUM type: rogue-lsum value: 21.0822 widget: - text: "La chocotorta, el tradicional y práctico antojo dulce de los argentinos, fue elegida como el mejor postre del mundo por críticos de restaurants internacionales, a casi 40 años de su creación. El ránking Taste Atlas ubicó primero en su lista al postre insignia local de galletitas, queso crema y dulce de leche, por delante del helado de pistacho italiano y la tarta alemana de manzana. “Este postre argentino sin hornear fue influenciado por la cocina italiana y se inspiró en el famoso tiramisú italiano. Está elaborado con tres ingredientes básicos argentinos: galletas de chocolate, dulce de leche y queso crema”, explica la página web que exhorta a los turistas de todo el mundo a que prueben la chocotorta. En la votación, superó también a los waffles belgas y el zserbó húngaro. A nivel local le sigue el alfajor, con 4,2 puntos contra los 4,7 de la torta. En el texto que acompaña al listón dorado de “postre número uno“, los expertos enseñan además cómo se hacen las chocotortas, paso por paso. “Las galletas se ablandan en leche y se cubren con una combinación de queso crema y dulce de leche. Las formas de la chocotorta pueden variar, mientras que las galletas se pueden remojar con leche con chocolate, café o incluso licor de café”, detallan. Por último, adjudican su creación a una “campaña de márketing” diseñada para promover las galletitas icónicas que le dan su nombre. La chocotorta, infaltable en los cumpleaños argentinos, fue creada en 1982 por una creativa de las agencias más importantes del país, Marité Mabragaña." --- ## mt5-small-mlsum This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container. For more information look at: - [🤗 Transformers Documentation: Amazon SageMaker](https://huggingface.co/transformers/sagemaker.html) - [Example Notebooks](https://github.com/huggingface/notebooks/tree/master/sagemaker) - [Amazon SageMaker documentation for Hugging Face](https://docs.aws.amazon.com/sagemaker/latest/dg/hugging-face.html) - [Python SDK SageMaker documentation for Hugging Face](https://sagemaker.readthedocs.io/en/stable/frameworks/huggingface/index.html) - [Deep Learning Container](https://github.com/aws/deep-learning-containers/blob/master/available_images.md#huggingface-training-containers) ## Hyperparameters { "dataset_config": "es", "dataset_name": "mlsum", "do_eval": true, "do_predict": true, "do_train": true, "fp16": true, "max_target_length": 64, "model_name_or_path": "google/mt5-small", "num_train_epochs": 10, "output_dir": "/opt/ml/checkpoints", "per_device_eval_batch_size": 4, "per_device_train_batch_size": 4, "predict_with_generate": true, "sagemaker_container_log_level": 20, "sagemaker_program": "run_summarization.py", "save_strategy": "epoch", "seed": 7, "summary_column": "summary", "text_column": "text" } ## Usage ``` article = """ La chocotorta, el tradicional y práctico antojo dulce de los argentinos, fue elegida como el mejor postre del mundo por críticos de restaurants internacionales, a casi 40 años de su creación. El ránking Taste Atlas ubicó primero en su lista al postre insignia local de galletitas, queso crema y dulce de leche, por delante del helado de pistacho italiano y la tarta alemana de manzana. “Este postre argentino sin hornear fue influenciado por la cocina italiana y se inspiró en el famoso tiramisú italiano. Está elaborado con tres ingredientes básicos argentinos: galletas de chocolate, dulce de leche y queso crema”, explica la página web que exhorta a los turistas de todo el mundo a que prueben la chocotorta. En la votación, superó también a los waffles belgas y el zserbó húngaro. A nivel local le sigue el alfajor, con 4,2 puntos contra los 4,7 de la torta. En el texto que acompaña al listón dorado de “postre número uno", los expertos enseñan además cómo se hacen las chocotortas, paso por paso. “Las galletas se ablandan en leche y se cubren con una combinación de queso crema y dulce de leche. Las formas de la chocotorta pueden variar, mientras que las galletas se pueden remojar con leche con chocolate, café o incluso licor de café”, detallan. Por último, adjudican su creación a una “campaña de márketing” diseñada para promover las galletitas icónicas que le dan su nombre. La chocotorta, infaltable en los cumpleaños argentinos, fue creada en 1982 por una creativa de las agencias más importantes del país, Marité Mabragaña. """ from transformers import pipeline summarizer = pipeline("summarization", model="LeoCordoba/mt5-small-mlsum") summarizer(article, min_length=5, max_length=64) ``` result: [{'summary_text': 'El ránking Taste Atlas ubicó primero en su lista al postre insignia local de galletitas, queso crema y dulce de leche'}] ## Results | metric | score | | --- | ----- | | eval_rouge1 | 26.4352 | | eval_rouge2 | 8.9293 | | eval_rougeL | 21.2622 | | eval_rougeLsum | 21.5518 | | test_rouge1 | 26.0756 | | test_rouge2 | 8.4669 | | test_rougeL | 20.8167 | | test_rougeLsum | 21.0822 |
Liam/NRL-full
2021-05-19T11:18:42.000Z
[ "tf", "bert", "transformers" ]
[ ".gitattributes", "config.json", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
Liam
12
transformers
Liam/NRL
2021-05-19T11:19:08.000Z
[ "tf", "bert", "transformers" ]
[ ".gitattributes", "config.json", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
Liam
18
transformers
LilaBoualili/bert-pre-doc
2021-05-20T09:58:43.000Z
[ "pytorch", "tf", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "added_tokens.json", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
LilaBoualili
6
transformers
LilaBoualili/bert-pre-pair
2021-05-20T09:59:45.000Z
[ "pytorch", "tf", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "added_tokens.json", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
LilaBoualili
11
transformers
LilaBoualili/bert-sim-doc
2021-05-20T09:57:43.000Z
[ "pytorch", "tf", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
LilaBoualili
6
transformers
LilaBoualili/bert-sim-pair
2021-05-18T21:26:27.000Z
[ "pytorch", "tf", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
LilaBoualili
36
transformers
At its core it uses an BERT-Base model (bert-base-uncased) fine-tuned on the MS MARCO passage classification task using the Sim-Pair marking strategy that highlights exact term matches between the query and the passage via marker tokens (#). It can be loaded using the TF/AutoModelForSequenceClassification classes. Refer to our [github repository](https://github.com/BOUALILILila/ExactMatchMarking) for a usage example for ad hoc ranking.
LilaBoualili/bert-vanilla
2021-05-18T21:27:42.000Z
[ "pytorch", "tf", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
LilaBoualili
19
transformers
At its core it uses a BERT-Base model (bert-base-uncased) fine-tuned on the MS MARCO passage classification task. It can be loaded using the TF/AutoModelForSequenceClassification classes. Refer to our [github repository](https://github.com/BOUALILILila/ExactMatchMarking) for a usage example for ad hoc ranking.
LilaBoualili/electra-pre-doc
2021-05-18T15:04:09.000Z
[ "pytorch", "tf", "electra", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
LilaBoualili
6
transformers