corentinm7 commited on
Commit
4e13c6d
·
verified ·
1 Parent(s): 6d7bddd

Convert dataset to Parquet (#2)

Browse files

- Convert dataset to Parquet (c650355549d47a8a8f51b3ccea68bc002c75ad68)
- Delete loading script (4e8b5f69675fbc1e615e3541cf60932dcb11495f)
- Delete data file (9a333eb1b7625b3337fa2ecb9ed1e8e11e57f2e3)
- Delete data file (1032864a38c150b92458d43a300bd6805b00c202)

MyoQuant-SDH-Data.py DELETED
@@ -1,130 +0,0 @@
1
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- """MyoQuant-SDH-Data: The MyoQuant SDH Model Data."""
15
-
16
-
17
- import csv
18
- import json
19
- import os
20
-
21
- import datasets
22
-
23
-
24
- _CITATION = """\
25
- @InProceedings{Meyer,
26
- title = {MyoQuant SDH Data},
27
- author={Corentin Meyer},
28
- year={2022}
29
- }
30
- """
31
- _NAMES = ["control", "sick"]
32
-
33
- _DESCRIPTION = """\
34
- This dataset is used to train the SDH model of MyoQuant to detect and quantify anomaly in the mitochondria repartition in SDH stained muscle fiber with myopathy disorders.
35
- """
36
-
37
- _HOMEPAGE = "https://huggingface.co/datasets/corentinm7/MyoQuant-SDH-Data"
38
-
39
- _LICENSE = "agpl-3.0"
40
-
41
- _URLS = {
42
- "SDH_16k": "https://huggingface.co/datasets/corentinm7/MyoQuant-SDH-Data/resolve/main/SDH_16k/SDH_16k.zip"
43
- }
44
- _METADATA_URL = {
45
- "SDH_16k_metadata": "https://huggingface.co/datasets/corentinm7/MyoQuant-SDH-Data/resolve/main/SDH_16k/metadata.jsonl"
46
- }
47
-
48
-
49
- class SDH_16k(datasets.GeneratorBasedBuilder):
50
- """This dataset is used to train the SDH model of MyoQuant to detect and quantify anomaly in the mitochondria repartition in SDH stained muscle fiber with myopathy disorders."""
51
-
52
- VERSION = datasets.Version("1.0.0")
53
-
54
- # This is an example of a dataset with multiple configurations.
55
- # If you don't want/need to define several sub-sets in your dataset,
56
- # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
57
-
58
- # If you need to make complex sub-parts in the datasets with configurable options
59
- # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
60
- # BUILDER_CONFIG_CLASS = MyBuilderConfig
61
-
62
- # You will be able to load one or the other configurations in the following list with
63
- # data = datasets.load_dataset('my_dataset', 'first_domain')
64
- # data = datasets.load_dataset('my_dataset', 'second_domain')
65
-
66
- DEFAULT_CONFIG_NAME = "SDH_16k" # It's not mandatory to have a default configuration. Just use one if it make sense.
67
-
68
- def _info(self):
69
- return datasets.DatasetInfo(
70
- description=_DESCRIPTION,
71
- features=datasets.Features(
72
- {
73
- "image": datasets.Image(),
74
- "label": datasets.ClassLabel(num_classes=2, names=_NAMES),
75
- }
76
- ),
77
- supervised_keys=("image", "label"),
78
- homepage=_HOMEPAGE,
79
- citation=_CITATION,
80
- license=_LICENSE,
81
- )
82
-
83
- def _split_generators(self, dl_manager):
84
- archive_path = dl_manager.download(_URLS)
85
- split_metadata_path = dl_manager.download(_METADATA_URL)
86
- files_metadata = {}
87
- with open(split_metadata_path["SDH_16k_metadata"], encoding="utf-8") as f:
88
- for lines in f.read().splitlines():
89
- file_json_metdata = json.loads(lines)
90
- files_metadata.setdefault(file_json_metdata["split"], []).append(
91
- file_json_metdata
92
- )
93
- downloaded_files = dl_manager.download_and_extract(archive_path)
94
- return [
95
- datasets.SplitGenerator(
96
- name=datasets.Split.TRAIN,
97
- gen_kwargs={
98
- "download_path": downloaded_files["SDH_16k"],
99
- "metadata": files_metadata["train"],
100
- },
101
- ),
102
- datasets.SplitGenerator(
103
- name=datasets.Split.VALIDATION,
104
- gen_kwargs={
105
- "download_path": downloaded_files["SDH_16k"],
106
- "metadata": files_metadata["validation"],
107
- },
108
- ),
109
- datasets.SplitGenerator(
110
- name=datasets.Split.TEST,
111
- gen_kwargs={
112
- "download_path": downloaded_files["SDH_16k"],
113
- "metadata": files_metadata["test"],
114
- },
115
- ),
116
- ]
117
-
118
- def _generate_examples(self, download_path, metadata):
119
- """Generate images and labels for splits."""
120
- for i, single_metdata in enumerate(metadata):
121
- img_path = os.path.join(
122
- download_path,
123
- single_metdata["split"],
124
- single_metdata["label"],
125
- single_metdata["file_name"],
126
- )
127
- yield i, {
128
- "image": img_path,
129
- "label": single_metdata["label"],
130
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md CHANGED
@@ -1,5 +1,6 @@
1
  ---
2
  dataset_info:
 
3
  features:
4
  - name: image
5
  dtype: image
@@ -7,46 +8,55 @@ dataset_info:
7
  dtype:
8
  class_label:
9
  names:
10
- 0: control
11
- 1: sick
12
- config_name: SDH_16k
13
  splits:
14
- - name: test
15
- num_bytes: 683067
16
- num_examples: 3358
17
  - name: train
18
- num_bytes: 2466024
19
  num_examples: 12085
20
  - name: validation
21
- num_bytes: 281243
22
  num_examples: 1344
23
- download_size: 2257836789
24
- dataset_size: 3430334
 
 
 
25
  annotations_creators:
26
- - expert-generated
27
  language: []
28
  language_creators:
29
- - expert-generated
30
  license:
31
- - agpl-3.0
32
  multilinguality: []
33
  pretty_name: SDH staining muscle fiber histology images used to train MyoQuant model.
34
  size_categories:
35
- - 10K<n<100K
36
  source_datasets:
37
- - original
38
  tags:
39
- - myology
40
- - biology
41
- - histology
42
- - muscle
43
- - cells
44
- - fibers
45
- - myopathy
46
- - SDH
47
- - myoquant
48
  task_categories:
49
- - image-classification
 
 
 
 
 
 
 
 
 
 
50
  ---
51
 
52
  # Dataset Card for MyoQuant SDH Data
 
1
  ---
2
  dataset_info:
3
+ config_name: SDH_16k
4
  features:
5
  - name: image
6
  dtype: image
 
8
  dtype:
9
  class_label:
10
  names:
11
+ '0': control
12
+ '1': sick
 
13
  splits:
 
 
 
14
  - name: train
15
+ num_bytes: 1400462101.57
16
  num_examples: 12085
17
  - name: validation
18
+ num_bytes: 161799668.032
19
  num_examples: 1344
20
+ - name: test
21
+ num_bytes: 411212294.084
22
+ num_examples: 3358
23
+ download_size: 1411281481
24
+ dataset_size: 1973474063.6859999
25
  annotations_creators:
26
+ - expert-generated
27
  language: []
28
  language_creators:
29
+ - expert-generated
30
  license:
31
+ - agpl-3.0
32
  multilinguality: []
33
  pretty_name: SDH staining muscle fiber histology images used to train MyoQuant model.
34
  size_categories:
35
+ - 10K<n<100K
36
  source_datasets:
37
+ - original
38
  tags:
39
+ - myology
40
+ - biology
41
+ - histology
42
+ - muscle
43
+ - cells
44
+ - fibers
45
+ - myopathy
46
+ - SDH
47
+ - myoquant
48
  task_categories:
49
+ - image-classification
50
+ configs:
51
+ - config_name: SDH_16k
52
+ data_files:
53
+ - split: train
54
+ path: SDH_16k/train-*
55
+ - split: validation
56
+ path: SDH_16k/validation-*
57
+ - split: test
58
+ path: SDH_16k/test-*
59
+ default: true
60
  ---
61
 
62
  # Dataset Card for MyoQuant SDH Data
SDH_16k/metadata.jsonl DELETED
The diff for this file is too large to render. See raw diff
 
SDH_16k/{SDH_16k.zip → test-00000-of-00001.parquet} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9bfb509b717c6847c58e3b01ad0891f8568a31c11290e69ac95e2300ef129f9f
3
- size 1125988525
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d87c02a0b62d71682605870bc4feb337c639f901f1eb2d4c75e80fe3d42c26ed
3
+ size 281330348
SDH_16k/train-00000-of-00003.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e5690ada20952202da39381d690965c2006e7167f83813065f7e1005883c324
3
+ size 336464906
SDH_16k/train-00001-of-00003.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfd4745ed4c677c60ccbb7ebc116b5bc786ee2681fbd38e3fbf24691952fc3dd
3
+ size 340970471
SDH_16k/train-00002-of-00003.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a38fd18c2e749c5d5eb8c1d9d0854536bc5a9c6e4b1f9e1ad5fa8a5bd10bc58d
3
+ size 339377396
SDH_16k/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55e9f37c91aca86463308252d4f1cb037f585ba9844ef437c8d7344946ea0f0a
3
+ size 113138360