corentinm7 commited on
Commit
4e8b5f6
·
verified ·
1 Parent(s): c650355

Delete loading script

Browse files
Files changed (1) hide show
  1. MyoQuant-SDH-Data.py +0 -130
MyoQuant-SDH-Data.py DELETED
@@ -1,130 +0,0 @@
1
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- """MyoQuant-SDH-Data: The MyoQuant SDH Model Data."""
15
-
16
-
17
- import csv
18
- import json
19
- import os
20
-
21
- import datasets
22
-
23
-
24
- _CITATION = """\
25
- @InProceedings{Meyer,
26
- title = {MyoQuant SDH Data},
27
- author={Corentin Meyer},
28
- year={2022}
29
- }
30
- """
31
- _NAMES = ["control", "sick"]
32
-
33
- _DESCRIPTION = """\
34
- This dataset is used to train the SDH model of MyoQuant to detect and quantify anomaly in the mitochondria repartition in SDH stained muscle fiber with myopathy disorders.
35
- """
36
-
37
- _HOMEPAGE = "https://huggingface.co/datasets/corentinm7/MyoQuant-SDH-Data"
38
-
39
- _LICENSE = "agpl-3.0"
40
-
41
- _URLS = {
42
- "SDH_16k": "https://huggingface.co/datasets/corentinm7/MyoQuant-SDH-Data/resolve/main/SDH_16k/SDH_16k.zip"
43
- }
44
- _METADATA_URL = {
45
- "SDH_16k_metadata": "https://huggingface.co/datasets/corentinm7/MyoQuant-SDH-Data/resolve/main/SDH_16k/metadata.jsonl"
46
- }
47
-
48
-
49
- class SDH_16k(datasets.GeneratorBasedBuilder):
50
- """This dataset is used to train the SDH model of MyoQuant to detect and quantify anomaly in the mitochondria repartition in SDH stained muscle fiber with myopathy disorders."""
51
-
52
- VERSION = datasets.Version("1.0.0")
53
-
54
- # This is an example of a dataset with multiple configurations.
55
- # If you don't want/need to define several sub-sets in your dataset,
56
- # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
57
-
58
- # If you need to make complex sub-parts in the datasets with configurable options
59
- # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
60
- # BUILDER_CONFIG_CLASS = MyBuilderConfig
61
-
62
- # You will be able to load one or the other configurations in the following list with
63
- # data = datasets.load_dataset('my_dataset', 'first_domain')
64
- # data = datasets.load_dataset('my_dataset', 'second_domain')
65
-
66
- DEFAULT_CONFIG_NAME = "SDH_16k" # It's not mandatory to have a default configuration. Just use one if it make sense.
67
-
68
- def _info(self):
69
- return datasets.DatasetInfo(
70
- description=_DESCRIPTION,
71
- features=datasets.Features(
72
- {
73
- "image": datasets.Image(),
74
- "label": datasets.ClassLabel(num_classes=2, names=_NAMES),
75
- }
76
- ),
77
- supervised_keys=("image", "label"),
78
- homepage=_HOMEPAGE,
79
- citation=_CITATION,
80
- license=_LICENSE,
81
- )
82
-
83
- def _split_generators(self, dl_manager):
84
- archive_path = dl_manager.download(_URLS)
85
- split_metadata_path = dl_manager.download(_METADATA_URL)
86
- files_metadata = {}
87
- with open(split_metadata_path["SDH_16k_metadata"], encoding="utf-8") as f:
88
- for lines in f.read().splitlines():
89
- file_json_metdata = json.loads(lines)
90
- files_metadata.setdefault(file_json_metdata["split"], []).append(
91
- file_json_metdata
92
- )
93
- downloaded_files = dl_manager.download_and_extract(archive_path)
94
- return [
95
- datasets.SplitGenerator(
96
- name=datasets.Split.TRAIN,
97
- gen_kwargs={
98
- "download_path": downloaded_files["SDH_16k"],
99
- "metadata": files_metadata["train"],
100
- },
101
- ),
102
- datasets.SplitGenerator(
103
- name=datasets.Split.VALIDATION,
104
- gen_kwargs={
105
- "download_path": downloaded_files["SDH_16k"],
106
- "metadata": files_metadata["validation"],
107
- },
108
- ),
109
- datasets.SplitGenerator(
110
- name=datasets.Split.TEST,
111
- gen_kwargs={
112
- "download_path": downloaded_files["SDH_16k"],
113
- "metadata": files_metadata["test"],
114
- },
115
- ),
116
- ]
117
-
118
- def _generate_examples(self, download_path, metadata):
119
- """Generate images and labels for splits."""
120
- for i, single_metdata in enumerate(metadata):
121
- img_path = os.path.join(
122
- download_path,
123
- single_metdata["split"],
124
- single_metdata["label"],
125
- single_metdata["file_name"],
126
- )
127
- yield i, {
128
- "image": img_path,
129
- "label": single_metdata["label"],
130
- }