Dataset Viewer
Auto-converted to Parquet
_id
stringlengths
24
24
id
stringlengths
5
121
author
stringlengths
2
42
cardData
stringlengths
2
1.09M
โŒ€
disabled
bool
2 classes
gated
null
lastModified
timestamp[ns]date
2021-02-05 16:03:35
2025-06-06 23:31:27
likes
int64
0
7.86k
trendingScore
float64
0
70
private
bool
1 class
sha
stringlengths
40
40
description
stringlengths
0
6.67k
โŒ€
downloads
int64
0
3.21M
downloadsAllTime
int64
0
142M
tags
sequencelengths
1
7.92k
createdAt
timestamp[ns]date
2022-03-02 23:29:22
2025-06-06 23:28:23
citation
stringlengths
0
10.7k
โŒ€
paperswithcode_id
stringclasses
667 values
683596e3bb729b5955ef0fac
yandex/yambda
yandex
{"license": "apache-2.0", "tags": ["recsys", "retrieval", "dataset"], "pretty_name": "Yambda-5B", "size_categories": ["1B<n<10B"], "configs": [{"config_name": "flat-50m", "data_files": ["flat/50m/multi_event.parquet"]}, {"config_name": "flat-500m", "data_files": ["flat/500m/multi_event.parquet"]}, {"config_name": "flat-5b", "data_files": ["flat/5b/multi_event.parquet"]}]}
false
null
2025-06-06T13:13:37
138
70
false
7ec47287e3a002eab8f9f9b64efaf4bed52ce44f
Yambda-5B โ€” A Large-Scale Multi-modal Dataset for Ranking And Retrieval Industrial-scale music recommendation dataset with organic/recommendation interactions and audio embeddings ๐Ÿ“Œ Overview โ€ข ๐Ÿ”‘ Key Features โ€ข ๐Ÿ“Š Statistics โ€ข ๐Ÿ“ Format โ€ข ๐Ÿ† Benchmark โ€ข โฌ‡๏ธ Download โ€ข โ“ FAQ Overview The Yambda-5B dataset is a large-scale open database comprising 4.79 billion user-item interactions collected from 1 million users and spanning 9.39 million tracks. The dataset includesโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/yandex/yambda.
29,965
29,965
[ "license:apache-2.0", "size_categories:1B<n<10B", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2505.22238", "region:us", "recsys", "retrieval", "dataset" ]
2025-05-27T10:41:39
null
null
6820fb77b82e61bb50999662
open-r1/Mixture-of-Thoughts
open-r1
{"dataset_info": [{"config_name": "all", "features": [{"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "num_tokens", "dtype": "int64"}, {"name": "source", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 7062819826.825458, "num_examples": 349317}], "download_size": 3077653717, "dataset_size": 7062819826.825458}, {"config_name": "code", "features": [{"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "num_tokens", "dtype": "int64"}, {"name": "source", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3872656251.3167396, "num_examples": 83070}], "download_size": 1613338604, "dataset_size": 3872656251.3167396}, {"config_name": "math", "features": [{"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "num_tokens", "dtype": "int64"}, {"name": "source", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1599028646, "num_examples": 93733}], "download_size": 704448153, "dataset_size": 1599028646}, {"config_name": "science", "features": [{"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "num_tokens", "dtype": "int64"}, {"name": "source", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1590765326, "num_examples": 172514}], "download_size": 674333812, "dataset_size": 1590765326}], "configs": [{"config_name": "all", "data_files": [{"split": "train", "path": "all/train-*"}]}, {"config_name": "code", "data_files": [{"split": "train", "path": "code/train-*"}]}, {"config_name": "math", "data_files": [{"split": "train", "path": "math/train-*"}]}, {"config_name": "science", "data_files": [{"split": "train", "path": "science/train-*"}]}], "task_categories": ["text-generation"], "language": ["en"], "pretty_name": "Mixture of Thoughts", "size_categories": ["100K<n<1M"]}
false
null
2025-05-26T15:25:56
197
64
false
e55fa28006c0d0ec60fb3547520f775dd42d02cd
Dataset summary Mixture-of-Thoughts is a curated dataset of 350k verified reasoning traces distilled from DeepSeek-R1. The dataset spans tasks in mathematics, coding, and science, and is designed to teach language models to reason step-by-step. It was used in the Open R1 project to train OpenR1-Distill-7B, an SFT model that replicates the reasoning capabilities of deepseek-ai/DeepSeek-R1-Distill-Qwen-7B from the same base model. To load the dataset, run: from datasets importโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/open-r1/Mixture-of-Thoughts.
26,663
26,710
[ "task_categories:text-generation", "language:en", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2504.21318", "arxiv:2505.00949", "region:us" ]
2025-05-11T19:33:11
null
null
63990f21cc50af73d29ecfa3
fka/awesome-chatgpt-prompts
fka
{"license": "cc0-1.0", "tags": ["ChatGPT"], "task_categories": ["question-answering"], "size_categories": ["100K<n<1M"]}
false
null
2025-01-06T00:02:53
7,857
47
false
68ba7694e23014788dcc8ab5afe613824f45a05c
๐Ÿง  Awesome ChatGPT Prompts [CSV dataset] This is a Dataset Repository of Awesome ChatGPT Prompts View All Prompts on GitHub License CC-0
20,728
176,305
[ "task_categories:question-answering", "license:cc0-1.0", "size_categories:n<1K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "ChatGPT" ]
2022-12-13T23:47:45
null
null
6837854ff36dbe5068b5d602
open-thoughts/OpenThoughts3-1.2M
open-thoughts
{"dataset_info": {"features": [{"name": "difficulty", "dtype": "int64"}, {"name": "source", "dtype": "string"}, {"name": "domain", "dtype": "string"}, {"name": "conversations", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 59763369750, "num_examples": 1200000}], "download_size": 28188197544, "dataset_size": 59763369750}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
false
null
2025-06-05T16:29:40
39
39
false
27cae0b2bcd671919c3e84be2f8d3e5628777383
paper | dataset | model [!NOTE] We have released a paper for OpenThoughts! See our paper here. OpenThoughts3-1.2M Open-source state-of-the-art reasoning dataset with 1.2M rows. ๐Ÿš€ OpenThoughts3-1.2M is the third iteration in our line of OpenThoughts datasets, building on our previous OpenThoughts-114k and OpenThoughts2-1M. This time around, we scale even further and generate our dataset in a much more systematic way -- OpenThoughts3-1.2M is the result of aโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/open-thoughts/OpenThoughts3-1.2M.
852
852
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2506.04178", "region:us" ]
2025-05-28T21:51:11
null
null
68127daac6370caf375aadd5
Hcompany/WebClick
Hcompany
{"language": ["en"], "license": "apache-2.0", "task_categories": ["text-generation", "image-to-text"], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "instruction", "dtype": "string"}, {"name": "bbox", "sequence": "float64"}, {"name": "bucket", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 334903619, "num_examples": 1639}], "download_size": 334903619, "dataset_size": 334903619}, "configs": [{"config_name": "default", "data_files": [{"split": "test", "path": "test*"}]}]}
false
null
2025-06-04T07:54:53
36
36
false
ed3e50d1c14209461ae58e2f8e236f458ded23bc
WebClick: A Multimodal Localization Benchmark for Web-Navigation Models We introduce WebClick, a high-quality benchmark dataset for evaluating navigation and localization capabilities of multimodal models and agents in Web environments. WebClick features 1,639 English-language web screenshots from over 100 websites paired with precisely annotated natural-language instructions and pixel-level click targets, in the same format as the widely-used screenspot benchmark.โ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/Hcompany/WebClick.
2,076
2,082
[ "task_categories:text-generation", "task_categories:image-to-text", "language:en", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2401.13919", "arxiv:2506.02865", "arxiv:2410.23218", "arxiv:2502.13923", "arxiv:2501.12326", "region:us" ]
2025-04-30T19:44:42
null
null
68328c9f85ebf2e6b1c31d12
MiniMaxAI/SynLogic
MiniMaxAI
{"language": ["en", "zh"], "license": "mit", "tags": ["logical reasoning"], "configs": [{"config_name": "easy", "data_files": [{"split": "train", "path": "synlogic_easy/train.parquet"}, {"split": "validation", "path": "synlogic_easy/validation.parquet"}]}, {"config_name": "hard", "data_files": [{"split": "train", "path": "synlogic_hard/train.parquet"}, {"split": "validation", "path": "synlogic_hard/validation.parquet"}]}]}
false
null
2025-06-05T06:35:33
78
30
false
9ff8dddedc7df8ddfc92b568a0c387b804b6736e
SynLogic Dataset SynLogic is a comprehensive synthetic logical reasoning dataset designed to enhance logical reasoning capabilities in Large Language Models (LLMs) through reinforcement learning with verifiable rewards. Dataset Description SynLogic contains 35 diverse logical reasoning tasks with automatic verification capabilities, making it ideal for reinforcement learning training. Key Features 35 Task Types: Including Sudoku, Game of 24, Cipher, Arrow Mazeโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/MiniMaxAI/SynLogic.
906
906
[ "language:en", "language:zh", "license:mit", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2505.19641", "region:us", "logical reasoning" ]
2025-05-25T03:21:03
null
null
683fa649ee7dce90f5aafa46
a-m-team/AM-DeepSeek-R1-0528-Distilled
a-m-team
{"task_categories": ["text-generation"], "language": ["en", "zh"], "tags": ["reasoning"], "size_categories": ["1M<n<10M"]}
false
null
2025-06-05T01:47:09
30
30
false
212a1160146d6e9b965707002c46a5b834d5c59d
๐Ÿ“˜ Dataset Summary This dataset is a high-quality reasoning corpus distilled from DeepSeek-R1-0528, an improved version of the DeepSeek-R1 large language model. Compared to its initial release, DeepSeek-R1-0528 demonstrates significant advances in reasoning, instruction following, and multi-turn dialogue. Motivated by these improvements, we collected and distilled a diverse set of 2.6 million queries across multiple domains, using DeepSeek-R1-0528 as the teacher. A notableโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/a-m-team/AM-DeepSeek-R1-0528-Distilled.
1,192
1,192
[ "task_categories:text-generation", "language:en", "language:zh", "size_categories:1M<n<10M", "region:us", "reasoning" ]
2025-06-04T01:50:01
null
null
67c92e867c6308c49ce2e98c
openbmb/Ultra-FineWeb
openbmb
{"configs": [{"config_name": "default", "data_files": [{"split": "en", "path": "data/ultrafineweb_en/*"}, {"split": "zh", "path": "data/ultrafineweb_zh/*"}], "features": [{"name": "content", "dtype": "string"}, {"name": "score", "dtype": "float"}, {"name": "source", "dtype": "string"}]}], "task_categories": ["text-generation"], "language": ["en", "zh"], "pretty_name": "Ultra-FineWeb", "size_categories": ["n>1T"], "license": "apache-2.0"}
false
null
2025-06-06T07:35:23
147
20
false
57df35e37806c5a5cfa7d1ce93b4b0fa10bb34c9
Ultra-FineWeb ๐Ÿ“œ Technical Report ๐Ÿ“š Introduction Ultra-FineWeb is a large-scale, high-quality, and efficiently-filtered dataset. We use the proposed efficient verification-based high-quality filtering pipeline to the FineWeb and Chinese FineWeb datasets (source data from Chinese FineWeb-edu-v2, which includes IndustryCorpus2, MiChao, WuDao, SkyPile, WanJuan, ChineseWebText, TeleChat, and CCI3), resulting in the creation of higher-quality Ultra-FineWeb-enโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/openbmb/Ultra-FineWeb.
26,558
26,558
[ "task_categories:text-generation", "language:en", "language:zh", "license:apache-2.0", "size_categories:1B<n<10B", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2505.05427", "arxiv:2412.04315", "region:us" ]
2025-03-06T05:11:34
null
null
6835ce29eac05bd2e0fc2803
microsoft/mediflow
microsoft
{"license": "cdla-permissive-2.0", "task_categories": ["text-generation"], "language": ["en"], "tags": ["clinical", "medical"], "size_categories": ["1M<n<10M"]}
false
null
2025-05-30T19:26:32
25
20
false
2464e1fb01adce9466bdaeaf670674862bca6508
MediFlow A large-scale synthetic instruction dataset of 2.5M rows (~700k unique instructions) for clinical natural language processing covering 14 task types and 98 fine-grained input clinical documents. t-SNE 2D Plot of MediFlow Embeddings by Task Types Dataset Splits mediflow: 2.5M instruction data for SFT alignment. mediflow_dpo: ~135k top-quality instructions with GPT-4o generated rejected_output for DPO alignment. Main Columns instruction:โ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/microsoft/mediflow.
2,264
2,264
[ "task_categories:text-generation", "language:en", "license:cdla-permissive-2.0", "size_categories:1M<n<10M", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "arxiv:2505.10717", "region:us", "clinical", "medical" ]
2025-05-27T14:37:29
null
null
683395e32973b9f8f52c0956
cognitivecomputations/china-refusals
cognitivecomputations
{"license": "apache-2.0"}
false
null
2025-05-25T22:43:32
41
17
false
cc765cf59f276ba30dc2a8a5620e3dca0d6b5929
China Refusals Eric Hartford This is a set of prompts that are refused by Chinese models, and answered freely by non-Chinese models. Some potential use cases: Training a model to comply with Chinese law Activation Steering / Abliteration Evaluation of model alignment etc. Enjoy. Thanks to Nous Research for the Minos-v1 model! https://huggingface.co/NousResearch/Minos-v1
728
728
[ "license:apache-2.0", "size_categories:10K<n<100K", "format:text", "modality:text", "library:datasets", "library:mlcroissant", "region:us" ]
2025-05-25T22:12:51
null
null
67335bb8f014ee49558ef3fe
PleIAs/common_corpus
PleIAs
{"language": ["en", "fr", "de", "it", "es", "la", "nl", "pl"]}
false
null
2025-06-04T12:52:12
276
16
false
5f0d4bc3e8eff087256f213f9529bc15fd1539d1
Common Corpus Full data paper Common Corpus is the largest open and permissible licensed text dataset, comprising 2 trillion tokens (1,998,647,168,282 tokens). It is a diverse dataset, consisting of books, newspapers, scientific articles, government and legal documents, code, and more. Common Corpus has been created by Pleias in association with several partners and contributed in-kind to Current AI initiative. Common Corpus differs from existing open datasets in that it is:โ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/PleIAs/common_corpus.
222,982
442,790
[ "language:en", "language:fr", "language:de", "language:it", "language:es", "language:la", "language:nl", "language:pl", "size_categories:100M<n<1B", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2506.01732", "arxiv:2410.22587", "region:us" ]
2024-11-12T13:44:24
null
null
682ecc8c5a021c03ac3ecf64
Jiahao004/DeepTheorem
Jiahao004
{"license": "mit", "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "source", "dtype": "string"}, {"name": "ori_question", "dtype": "string"}, {"name": "ori_solution", "dtype": "string"}, {"name": "domain", "sequence": "string"}, {"name": "difficulty", "dtype": "float64"}, {"name": "rationale", "dtype": "string"}, {"name": "informal_theorem", "dtype": "string"}, {"name": "informal_theorem_qa", "dtype": "string"}, {"name": "proof", "dtype": "string"}, {"name": "truth_value", "dtype": "bool"}, {"name": "pos", "struct": [{"name": "question", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "truth_value", "dtype": "bool"}]}, {"name": "neg", "struct": [{"name": "question", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "truth_value", "dtype": "bool"}]}], "splits": [{"name": "train", "num_bytes": 1146705612, "num_examples": 120754}], "download_size": 554423240, "dataset_size": 1146705612}}
false
null
2025-06-06T08:59:36
16
14
false
ddac0e09837e227c4e89b35dbe697e98736e734e
DeepTheorem: Advancing LLM Reasoning for Theorem Proving Through Natural Language and Reinforcement Learning ๐Ÿš€ Welcome to the GitHub repository for DeepTheorem ๐ŸŽ‰, a comprehensive framework for enhancing large language model (LLM) mathematical reasoning through informal, natural language-based theorem proving. This project introduces a novel approach to automated theorem proving (ATP) by leveraging the informal reasoning strengths of LLMs, moving beyond traditional formal proofโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/Jiahao004/DeepTheorem.
1,186
1,186
[ "license:mit", "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-05-22T07:04:44
null
null
6532270e829e1dc2f293d6b8
gaia-benchmark/GAIA
gaia-benchmark
{"language": ["en"], "pretty_name": "General AI Assistants Benchmark", "extra_gated_prompt": "To avoid contamination and data leakage, you agree to not reshare this dataset outside of a gated or private repository on the HF hub.", "extra_gated_fields": {"I agree to not reshare the GAIA submissions set according to the above conditions": "checkbox"}}
false
null
2025-02-13T08:36:12
361
13
false
897f2dfbb5c952b5c3c1509e648381f9c7b70316
GAIA dataset GAIA is a benchmark which aims at evaluating next-generation LLMs (LLMs with augmented capabilities due to added tooling, efficient prompting, access to search, etc). We added gating to prevent bots from scraping the dataset. Please do not reshare the validation or test set in a crawlable format. Data and leaderboard GAIA is made of more than 450 non-trivial question with an unambiguous answer, requiring different levels of tooling and autonomy to solve. Itโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/gaia-benchmark/GAIA.
12,369
63,718
[ "language:en", "arxiv:2311.12983", "region:us" ]
2023-10-20T07:06:54
null
67ea026a0e7c42eb4b4da945
JokerJan/MMR-VBench
JokerJan
{"dataset_info": {"features": [{"name": "video", "dtype": "string"}, {"name": "videoType", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "sequence": "string"}, {"name": "correctAnswer", "dtype": "string"}, {"name": "abilityType_L2", "dtype": "string"}, {"name": "abilityType_L3", "dtype": "string"}, {"name": "question_idx", "dtype": "int64"}], "splits": [{"name": "test", "num_bytes": 1135911, "num_examples": 1257}], "download_size": 586803, "dataset_size": 1135911}, "configs": [{"config_name": "default", "data_files": [{"split": "test", "path": "data/test-*"}]}], "task_categories": ["video-text-to-text"]}
false
null
2025-06-05T02:54:51
14
13
false
fded5eca0a342b7b50cd74218666aaa4af939cdd
MMR-V: Can MLLMs Think with Video? A Benchmark for Multimodal Deep Reasoning in Videos ๐Ÿ“ Paper | ๐Ÿ’ป Code | ๐Ÿ  Homepage ๐Ÿ‘€ MMR-V Data Card ("Think with Video") The sequential structure of videos poses a challenge to the ability of multimodal large language models (MLLMs) to ๐Ÿ•ต๏ธlocate multi-frame evidence and conduct multimodal reasoning. However, existing video benchmarks mainly focus on understanding tasks, which only require models to match framesโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/JokerJan/MMR-VBench.
1,007
1,036
[ "task_categories:video-text-to-text", "size_categories:1K<n<10K", "format:parquet", "modality:text", "modality:video", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2506.04141", "region:us" ]
2025-03-31T02:48:10
null
null
625552d2b339bb03abe3432d
openai/gsm8k
openai
{"annotations_creators": ["crowdsourced"], "language_creators": ["crowdsourced"], "language": ["en"], "license": ["mit"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["text2text-generation"], "task_ids": [], "paperswithcode_id": "gsm8k", "pretty_name": "Grade School Math 8K", "tags": ["math-word-problems"], "dataset_info": [{"config_name": "main", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3963202, "num_examples": 7473}, {"name": "test", "num_bytes": 713732, "num_examples": 1319}], "download_size": 2725633, "dataset_size": 4676934}, {"config_name": "socratic", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5198108, "num_examples": 7473}, {"name": "test", "num_bytes": 936859, "num_examples": 1319}], "download_size": 3164254, "dataset_size": 6134967}], "configs": [{"config_name": "main", "data_files": [{"split": "train", "path": "main/train-*"}, {"split": "test", "path": "main/test-*"}]}, {"config_name": "socratic", "data_files": [{"split": "train", "path": "socratic/train-*"}, {"split": "test", "path": "socratic/test-*"}]}]}
false
null
2024-01-04T12:05:15
755
12
false
e53f048856ff4f594e959d75785d2c2d37b678ee
Dataset Card for GSM8K Dataset Summary GSM8K (Grade School Math 8K) is a dataset of 8.5K high quality linguistically diverse grade school math word problems. The dataset was created to support the task of question answering on basic mathematical problems that require multi-step reasoning. These problems take between 2 and 8 steps to solve. Solutions primarily involve performing a sequence of elementary calculations using basic arithmetic operations (+ โˆ’ ร—รท) to reach theโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/openai/gsm8k.
535,715
5,428,593
[ "task_categories:text2text-generation", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:mit", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2110.14168", "region:us", "math-word-problems" ]
2022-04-12T10:22:10
null
gsm8k
682f3c7f855225dd954bf66b
snorkelai/Multi-Turn-Insurance-Underwriting
snorkelai
{"language": ["en"], "size_categories": ["n<1K"], "license": "apache-2.0", "tags": ["legal"]}
false
null
2025-05-29T14:58:57
19
12
false
03b973c183f43a51e050a555e9365034fe381543
Dataset Card for Multi-Turn-Insurance-Underwriting Dataset Summary This dataset includes traces and associated metadata from multi-turn interactions between a commercial underwriter and AI assistant. We built the system in langgraph with model context protocol and ReAct agents. In each sample, the underwriter has a specific task to solve related to a recent application for insurance by a small business. We created a diverse sample dataset covering 6 distinct types ofโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/snorkelai/Multi-Turn-Insurance-Underwriting.
1,477
1,477
[ "language:en", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "legal" ]
2025-05-22T15:02:23
null
null
683a35c76d1a968a658e4c15
allenai/reward-bench-2
allenai
{"language": ["en"], "license": "odc-by", "size_categories": ["1K<n<10K"], "task_categories": ["question-answering"], "dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "chosen", "sequence": "string"}, {"name": "rejected", "sequence": "string"}, {"name": "num_correct", "dtype": "int64"}, {"name": "num_incorrect", "dtype": "int64"}, {"name": "total_completions", "dtype": "int64"}, {"name": "models", "sequence": "string"}, {"name": "subset", "dtype": "string"}, {"name": "additional_metadata", "struct": [{"name": "category", "dtype": "string"}, {"name": "correct", "dtype": "string"}, {"name": "index", "dtype": "float64"}, {"name": "instruction_id_list", "sequence": "string"}, {"name": "label", "dtype": "string"}, {"name": "method", "dtype": "string"}, {"name": "models", "sequence": "string"}, {"name": "prompt_norm", "dtype": "string"}, {"name": "subcategory", "dtype": "string"}, {"name": "valid", "dtype": "float64"}]}], "splits": [{"name": "test", "num_bytes": 13772499, "num_examples": 1865}], "download_size": 6973189, "dataset_size": 13772499}, "configs": [{"config_name": "default", "data_files": [{"split": "test", "path": "data/test-*"}]}]}
false
null
2025-06-04T08:53:38
12
12
false
7ff08853b0d5686e79b13fda8677024f566a104a
Code | Leaderboard | Results | Paper RewardBench 2 Evaluation Dataset Card The RewardBench 2 evaluation dataset is the new version of RewardBench that is based on unseen human data and designed to be substantially more difficult! RewardBench 2 evaluates capabilities of reward models over the following categories: Factuality (NEW!): Tests the ability of RMs to detect hallucinations and other basic errors in completions. Precise Instruction Following (NEW!): Tests the ability of RMsโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/allenai/reward-bench-2.
511
511
[ "task_categories:question-answering", "language:en", "license:odc-by", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2506.01937", "region:us" ]
2025-05-30T22:48:39
null
null
6842c81fe9598a4b0d5de03e
DeepMount00/italian_conversations
DeepMount00
{"language": ["it"]}
false
null
2025-06-06T18:33:04
11
11
false
06044577023f2c13978609823591d5e7b3e770da
๐Ÿ“Š Panoramica del Dataset Nome: Dataset Conversazioni Italiane Strutturate Versione: 2.0 Lingua: Italiano ๐Ÿ‡ฎ๐Ÿ‡น Licenza: [Creative Commons Attribution 4.0 International License (CC BY 4.0)] ๐ŸŽฏ Finalitร  d'Uso Questo dataset รจ progettato per addestrare modelli linguistici a sostenere conversazioni approfondite e strutturate in italiano, con focus su argomentazioni complesse, analisi critica e discussioni multi-turno su tematiche di rilevanza sociale, politica, culturale ed economica. Includeโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/DeepMount00/italian_conversations.
0
0
[ "language:it", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-06-06T10:51:11
null
null
End of preview. Expand in Data Studio

NEW Changes Feb 27th

  • Added new fields on the models split: downloadsAllTime, safetensors, gguf

  • Added new field on the datasets split: downloadsAllTime

  • Added new split: papers which is all of the Daily Papers

Updated Daily

Downloads last month
2,621

Data Sourcing report

powered
by Spawning.ai

No elements in this dataset have been identified as either opted-out, or opted-in, by their creator.

Spaces using cfahlgren1/hub-stats 14