|
import base64 |
|
from typing import List, Dict, Optional, Tuple |
|
from dataclasses import dataclass |
|
|
|
import torch |
|
|
|
from scripts.sketch_helper import get_high_freq_colors, color_quantization, create_binary_matrix_base64, create_binary_mask |
|
import numpy as np |
|
import cv2 |
|
|
|
from modules import devices, script_callbacks |
|
|
|
import modules.scripts as scripts |
|
import gradio as gr |
|
|
|
from modules.script_callbacks import CFGDenoisedParams, on_cfg_denoised |
|
|
|
from modules.processing import StableDiffusionProcessing |
|
|
|
MAX_COLORS = 12 |
|
switch_values_symbol = '\U000021C5' |
|
|
|
|
|
class ToolButton(gr.Button, gr.components.FormComponent): |
|
"""Small button with single emoji as text, fits inside gradio forms""" |
|
|
|
def __init__(self, **kwargs): |
|
super().__init__(variant="tool", **kwargs) |
|
|
|
def get_block_name(self): |
|
return "button" |
|
|
|
|
|
|
|
from abc import ABC, abstractmethod |
|
|
|
|
|
|
|
|
|
class Filter(ABC): |
|
|
|
@abstractmethod |
|
def create_tensor(self): |
|
pass |
|
|
|
|
|
|
|
@dataclass |
|
class Division: |
|
y: float |
|
x: float |
|
|
|
|
|
@dataclass |
|
class Position: |
|
y: float |
|
x: float |
|
ey: float |
|
ex: float |
|
|
|
|
|
|
|
class RectFilter(Filter): |
|
def __init__(self, division: Division, position: Position, weight: float): |
|
self.division = division |
|
self.position = position |
|
self.weight = weight |
|
|
|
def create_tensor(self, num_channels: int, height_b: int, width_b: int) -> torch.Tensor: |
|
|
|
x = torch.zeros(num_channels, height_b, width_b).to(devices.device) |
|
|
|
division_height = height_b / self.division.y |
|
division_width = width_b / self.division.x |
|
y1 = int(division_height * self.position.y) |
|
y2 = int(division_height * self.position.ey) |
|
x1 = int(division_width * self.position.x) |
|
x2 = int(division_width * self.position.ex) |
|
|
|
x[:, y1:y2, x1:x2] = self.weight |
|
|
|
return x |
|
|
|
|
|
class MaskFilter: |
|
def __init__(self, binary_mask: np.array = None, weight: float = None, float_mask: np.array = None): |
|
if float_mask is None: |
|
self.mask = binary_mask.astype(np.float32) * weight |
|
elif binary_mask is None and weight is None: |
|
self.mask = float_mask |
|
else: |
|
raise ValueError('Either float_mask or binary_mask and weight must be provided') |
|
self.tensor_mask = torch.tensor(self.mask).to(devices.device) |
|
|
|
def create_tensor(self, num_channels: int, height_b: int, width_b: int) -> torch.Tensor: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mask = torch.nn.functional.interpolate(self.tensor_mask.unsqueeze(0).unsqueeze(0), size=(height_b, width_b), mode='nearest-exact').squeeze(0).squeeze(0) |
|
mask = mask.unsqueeze(0).repeat(num_channels, 1, 1) |
|
|
|
return mask |
|
|
|
|
|
class PastePromptTextboxTracker: |
|
def __init__(self): |
|
self.scripts = [] |
|
return |
|
|
|
def set_script(self, script): |
|
self.scripts.append(script) |
|
|
|
def on_after_component_callback(self, component, **_kwargs): |
|
|
|
if not self.scripts: |
|
return |
|
if type(component) is gr.State: |
|
return |
|
|
|
script = None |
|
if type(component) is gr.Textbox and component.elem_id == 'txt2img_prompt': |
|
|
|
script = next(x for x in self.scripts if x.is_txt2img) |
|
self.scripts.remove(script) |
|
|
|
if type(component) is gr.Textbox and component.elem_id == 'img2img_prompt': |
|
|
|
script = next(x for x in self.scripts if x.is_img2img) |
|
self.scripts.remove(script) |
|
|
|
if script is None: |
|
return |
|
|
|
script.target_paste_prompt = component |
|
|
|
|
|
prompt_textbox_tracker = PastePromptTextboxTracker() |
|
|
|
|
|
class Script(scripts.Script): |
|
|
|
def __init__(self): |
|
self.ui_root = None |
|
self.num_batches: int = 0 |
|
self.end_at_step: int = 20 |
|
self.filters: List[Filter] = [] |
|
self.debug: bool = False |
|
self.selected_twoshot_tab = 0 |
|
self.ndmasks = [] |
|
self.area_colors = [] |
|
self.mask_denoise = False |
|
prompt_textbox_tracker.set_script(self) |
|
self.target_paste_prompt = None |
|
|
|
|
|
def title(self): |
|
return "Latent Couple extension" |
|
|
|
def show(self, is_img2img): |
|
return scripts.AlwaysVisible |
|
|
|
def create_rect_filters_from_ui_params(self, raw_divisions: str, raw_positions: str, raw_weights: str): |
|
|
|
divisions = [] |
|
for division in raw_divisions.split(','): |
|
y, x = division.split(':') |
|
divisions.append(Division(float(y), float(x))) |
|
|
|
def start_and_end_position(raw: str): |
|
nums = [float(num) for num in raw.split('-')] |
|
if len(nums) == 1: |
|
return nums[0], nums[0] + 1.0 |
|
else: |
|
return nums[0], nums[1] |
|
|
|
positions = [] |
|
for position in raw_positions.split(','): |
|
y, x = position.split(':') |
|
y1, y2 = start_and_end_position(y) |
|
x1, x2 = start_and_end_position(x) |
|
positions.append(Position(y1, x1, y2, x2)) |
|
|
|
weights = [] |
|
for w in raw_weights.split(','): |
|
weights.append(float(w)) |
|
|
|
|
|
|
|
return [RectFilter(division, position, weight) for division, position, weight in zip(divisions, positions, weights)] |
|
|
|
def create_mask_filters_from_ui_params(self, raw_divisions: str, raw_positions: str, raw_weights: str): |
|
|
|
divisions = [] |
|
for division in raw_divisions.split(','): |
|
y, x = division.split(':') |
|
divisions.append(Division(float(y), float(x))) |
|
|
|
def start_and_end_position(raw: str): |
|
nums = [float(num) for num in raw.split('-')] |
|
if len(nums) == 1: |
|
return nums[0], nums[0] + 1.0 |
|
else: |
|
return nums[0], nums[1] |
|
|
|
positions = [] |
|
for position in raw_positions.split(','): |
|
y, x = position.split(':') |
|
y1, y2 = start_and_end_position(y) |
|
x1, x2 = start_and_end_position(x) |
|
positions.append(Position(y1, x1, y2, x2)) |
|
|
|
weights = [] |
|
for w in raw_weights.split(','): |
|
weights.append(float(w)) |
|
|
|
|
|
|
|
return [Filter(division, position, weight) for division, position, weight in zip(divisions, positions, weights)] |
|
|
|
def do_visualize(self, raw_divisions: str, raw_positions: str, raw_weights: str): |
|
|
|
self.filters = self.create_rect_filters_from_ui_params(raw_divisions, raw_positions, raw_weights) |
|
|
|
return [f.create_tensor(1, 128, 128).squeeze(dim=0).cpu().numpy() for f in self.filters] |
|
|
|
def do_apply(self, extra_generation_params: str): |
|
|
|
|
|
|
|
raw_params = {} |
|
|
|
for assignment in extra_generation_params.split(' '): |
|
pair = assignment.split('=', 1) |
|
if len(pair) != 2: |
|
continue |
|
raw_params[pair[0]] = pair[1] |
|
|
|
return raw_params.get('divisions', '1:1,1:2,1:2'), raw_params.get('positions', '0:0,0:0,0:1'), raw_params.get('weights', '0.2,0.8,0.8'), int(raw_params.get('step', '20')) |
|
|
|
def ui(self, is_img2img): |
|
process_script_params = [] |
|
id_part = "img2img" if is_img2img else "txt2img" |
|
canvas_html = "<div id='canvas-root' style='max-width:400px; margin: 0 auto'></div>" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def create_canvas(h, w): |
|
return np.zeros(shape=(h, w, 3), dtype=np.uint8) + 255 |
|
|
|
def process_sketch(img_arr, input_binary_matrixes): |
|
input_binary_matrixes.clear() |
|
|
|
|
|
|
|
im2arr = img_arr |
|
|
|
|
|
sketch_colors, color_counts = np.unique(im2arr.reshape(-1, im2arr.shape[2]), axis=0, return_counts=True) |
|
colors_fixed = [] |
|
|
|
edge_color_correction_arr = [] |
|
for sketch_color_idx, color in enumerate(sketch_colors[:-1]): |
|
if color_counts[sketch_color_idx] < im2arr.shape[0] * im2arr.shape[1] * 0.002: |
|
edge_color_correction_arr.append(sketch_color_idx) |
|
|
|
edge_fix_dict = {} |
|
|
|
|
|
area_colors = np.delete(sketch_colors, edge_color_correction_arr, axis=0) |
|
if self.mask_denoise: |
|
for edge_color_idx in edge_color_correction_arr: |
|
edge_color = sketch_colors[edge_color_idx] |
|
|
|
|
|
color_distances = np.linalg.norm(area_colors - edge_color, axis=1) |
|
nearest_index = np.argmin(color_distances) |
|
nearest_color = area_colors[nearest_index] |
|
edge_fix_dict[edge_color_idx] = nearest_color |
|
|
|
cur_color_mask = np.all(im2arr == edge_color, axis=2) |
|
im2arr[cur_color_mask] = nearest_color |
|
|
|
|
|
sketch_colors, color_counts = np.unique(im2arr.reshape(-1, im2arr.shape[2]), axis=0, return_counts=True) |
|
area_colors = sketch_colors |
|
|
|
|
|
area_color_maps = [] |
|
self.ndmasks = [] |
|
self.area_colors = area_colors |
|
for color in area_colors: |
|
r, g, b = color |
|
mask, binary_matrix = create_binary_matrix_base64(im2arr, color) |
|
self.ndmasks.append(mask) |
|
input_binary_matrixes.append(binary_matrix) |
|
colors_fixed.append(gr.update( |
|
value=f'<div style="display:flex;justify-content:center;max-height: 94px;"><img width="20%" style="object-fit: contain;flex-grow:1;margin-right: 1em;" src="data:image/png;base64,{binary_matrix}" /><div class="color-bg-item" style="background-color: rgb({r},{g},{b});width:10%;height:auto;"></div></div>')) |
|
|
|
|
|
|
|
visibilities = [] |
|
sketch_colors = [] |
|
|
|
for sketch_color_idx in range(MAX_COLORS): |
|
visibilities.append(gr.update(visible=False)) |
|
sketch_colors.append(gr.update(value=f'<div class="color-bg-item" style="background-color: black"></div>')) |
|
for j in range(len(colors_fixed)-1): |
|
visibilities[j] = gr.update(visible=True) |
|
sketch_colors[j] = colors_fixed[j] |
|
|
|
alpha_mask_visibility = gr.update(visible=True) |
|
alpha_mask_html = colors_fixed[-1] |
|
return [gr.update(visible=True), input_binary_matrixes, alpha_mask_visibility, alpha_mask_html, *visibilities, *sketch_colors] |
|
|
|
def update_mask_filters(alpha_blend_val, general_prompt_str, *cur_weights_and_prompts): |
|
cur_weight_slider_vals = cur_weights_and_prompts[:MAX_COLORS] |
|
cur_prompts = cur_weights_and_prompts[MAX_COLORS:] |
|
general_mask = self.ndmasks[-1] |
|
final_filter_list = [] |
|
for m in range(len(self.ndmasks) - 1): |
|
cur_float_mask = self.ndmasks[m].astype(np.float32) * float(cur_weight_slider_vals[m]) * float(1.0-alpha_blend_val) |
|
mask_filter = MaskFilter(float_mask=cur_float_mask) |
|
final_filter_list.append(mask_filter) |
|
|
|
initial_general_mask = np.ones(shape=general_mask.shape, dtype=np.float32) |
|
alpha_blend_mask = initial_general_mask.astype(np.float32) - np.sum([f.mask for f in final_filter_list], axis=0) |
|
alpha_blend_filter = MaskFilter(float_mask=alpha_blend_mask) |
|
final_filter_list.insert(0, alpha_blend_filter) |
|
self.filters = final_filter_list |
|
|
|
|
|
sketch_colors = [] |
|
colors_fixed = [] |
|
for area_idx, color in enumerate(self.area_colors): |
|
r, g, b = color |
|
final_list_idx = area_idx + 1 |
|
if final_list_idx == len(final_filter_list): |
|
final_list_idx = 0 |
|
|
|
height_b, width_b = final_filter_list[final_list_idx].mask.shape |
|
current_mask = torch.nn.functional.interpolate(final_filter_list[final_list_idx].tensor_mask.unsqueeze(0).unsqueeze(0), |
|
size=(int(height_b/8), int(width_b/8)), mode='nearest-exact').squeeze(0).squeeze(0).cpu().numpy() |
|
adjusted_mask = current_mask * 255 |
|
_, adjusted_mask_arr = cv2.imencode('.png', adjusted_mask) |
|
|
|
adjusted_mask_b64 = base64.b64encode(adjusted_mask_arr.tobytes()).decode('ascii') |
|
colors_fixed.append(gr.update( |
|
value=f'<div style="display:flex;justify-content:center;max-height: 94px;"><img width="20%" style="object-fit: contain;flex-grow:1;margin-right: 1em;" src="data:image/png;base64,{adjusted_mask_b64}" /><div class="color-bg-item" style="background-color: rgb({r},{g},{b});width:10%;height:auto;"></div></div>')) |
|
for sketch_color_idx in range(MAX_COLORS): |
|
|
|
sketch_colors.append( |
|
gr.update(value=f'<div class="color-bg-item" style="background-color: black"></div>')) |
|
for j in range(len(colors_fixed)-1): |
|
|
|
sketch_colors[j] = colors_fixed[j] |
|
alpha_mask_visibility = gr.update(visible=True) |
|
alpha_mask_html = colors_fixed[-1] |
|
final_prompt_update = gr.update(value='\nAND '.join([general_prompt_str, *cur_prompts[:len(colors_fixed)-1]])) |
|
return [final_prompt_update, alpha_mask_visibility, alpha_mask_html, *sketch_colors] |
|
|
|
|
|
|
|
cur_weight_sliders = [] |
|
|
|
with gr.Group() as group_two_shot_root: |
|
binary_matrixes = gr.State([]) |
|
with gr.Accordion("Latent Couple", open=False): |
|
enabled = gr.Checkbox(value=False, label="Enabled") |
|
with gr.Tabs(elem_id="script_twoshot_tabs") as twoshot_tabs: |
|
|
|
with gr.TabItem("Mask", elem_id="tab_twoshot_mask") as twoshot_tab_mask: |
|
|
|
canvas_data = gr.JSON(value={}, visible=False) |
|
|
|
|
|
|
|
mask_denoise_checkbox = gr.Checkbox(value=False, label="Denoise Mask") |
|
|
|
def update_mask_denoise_flag(flag): |
|
self.mask_denoise = flag |
|
|
|
mask_denoise_checkbox.change(fn=update_mask_denoise_flag, inputs=[mask_denoise_checkbox], outputs=None) |
|
canvas_image = gr.Image(source='upload', mirror_webcam=False, type='numpy', tool='color-sketch', |
|
elem_id='twoshot_canvas_sketch', interactive=True).style(height=480) |
|
|
|
|
|
button_run = gr.Button("I've finished my sketch", elem_id="main_button", interactive=True) |
|
|
|
prompts = [] |
|
colors = [] |
|
color_row = [None] * MAX_COLORS |
|
with gr.Column(visible=False) as post_sketch: |
|
with gr.Row(visible=False) as alpha_mask_row: |
|
|
|
|
|
|
|
with gr.Box(elem_id="alpha_mask"): |
|
alpha_color = gr.HTML( |
|
'<div class="alpha-mask-item" style="background-color: black"></div>') |
|
general_prompt = gr.Textbox(label="General Prompt") |
|
alpha_blend = gr.Slider(label="Alpha Blend", minimum=0.0, maximum=1.0, value=0.2, step=0.01, interactive=True) |
|
|
|
for n in range(MAX_COLORS): |
|
with gr.Row(visible=False) as color_row[n]: |
|
|
|
with gr.Box(elem_id="color-bg"): |
|
colors.append(gr.HTML( |
|
'<div class="color-bg-item" style="background-color: black"></div>')) |
|
with gr.Column(): |
|
with gr.Row(): |
|
prompts.append(gr.Textbox(label="Prompt for this mask")) |
|
|
|
with gr.Row(): |
|
weight_slider = gr.Slider(label=f"Area {n+1} Weight", minimum=0.0, maximum=1.0, |
|
value=1.0, step=0.01, interactive=True, elem_id=f"weight_{n+1}_slider") |
|
cur_weight_sliders.append(weight_slider) |
|
|
|
button_update = gr.Button("Prompt Info Update", elem_id="update_button", interactive=True) |
|
final_prompt = gr.Textbox(label="Final Prompt", interactive=False) |
|
|
|
button_run.click(process_sketch, inputs=[canvas_image, binary_matrixes], |
|
outputs=[post_sketch, binary_matrixes, alpha_mask_row, alpha_color, *color_row, *colors], |
|
queue=False) |
|
|
|
button_update.click(fn=update_mask_filters, inputs=[alpha_blend, general_prompt, *cur_weight_sliders, *prompts], outputs=[final_prompt, alpha_mask_row, alpha_color, *colors]) |
|
|
|
def paste_prompt(*input_prompts): |
|
final_prompts = input_prompts[:len(self.area_colors)] |
|
final_prompt_str = '\nAND '.join(final_prompts) |
|
return final_prompt_str |
|
source_prompts = [general_prompt, *prompts] |
|
button_update.click(fn=paste_prompt, inputs=source_prompts, |
|
outputs=self.target_paste_prompt) |
|
|
|
|
|
|
|
with gr.Column(): |
|
canvas_width = gr.Slider(label="Canvas Width", minimum=256, maximum=1024, value=512, step=64) |
|
canvas_height = gr.Slider(label="Canvas Height", minimum=256, maximum=1024, value=512, step=64) |
|
|
|
|
|
canvas_swap_res = ToolButton(value=switch_values_symbol) |
|
canvas_swap_res.click(lambda w, h: (h, w), inputs=[canvas_width, canvas_height], |
|
outputs=[canvas_width, canvas_height]) |
|
create_button = gr.Button(value="Create blank canvas") |
|
create_button.click(fn=create_canvas, inputs=[canvas_height, canvas_width], outputs=[canvas_image]) |
|
|
|
with gr.TabItem("Rectangular", elem_id="tab_twoshot_rect") as twoshot_tab_rect: |
|
with gr.Row(): |
|
divisions = gr.Textbox(label="Divisions", elem_id=f"cd_{id_part}_divisions", value="1:1,1:2,1:2") |
|
positions = gr.Textbox(label="Positions", elem_id=f"cd_{id_part}_positions", value="0:0,0:0,0:1") |
|
with gr.Row(): |
|
weights = gr.Textbox(label="Weights", elem_id=f"cd_{id_part}_weights", value="0.2,0.8,0.8") |
|
end_at_step = gr.Slider(minimum=0, maximum=150, step=1, label="end at this step", elem_id=f"cd_{id_part}_end_at_this_step", value=150) |
|
|
|
visualize_button = gr.Button(value="Visualize") |
|
visual_regions = gr.Gallery(label="Regions").style(grid=(4, 4, 4, 8), height="auto") |
|
|
|
visualize_button.click(fn=self.do_visualize, inputs=[divisions, positions, weights], outputs=[visual_regions]) |
|
|
|
extra_generation_params = gr.Textbox(label="Extra generation params") |
|
apply_button = gr.Button(value="Apply") |
|
|
|
apply_button.click(fn=self.do_apply, inputs=[extra_generation_params], outputs=[divisions, positions, weights, end_at_step]) |
|
|
|
def select_twosoht_tab(tab_id): |
|
self.selected_twoshot_tab = tab_id |
|
for i, elem in enumerate( |
|
[twoshot_tab_mask, twoshot_tab_rect]): |
|
elem.select( |
|
fn=lambda tab=i: select_twosoht_tab(tab), |
|
inputs=[], |
|
outputs=[], |
|
) |
|
|
|
self.ui_root = group_two_shot_root |
|
|
|
self.infotext_fields = [ |
|
(extra_generation_params, "Latent Couple") |
|
] |
|
process_script_params.append(enabled) |
|
process_script_params.append(divisions) |
|
process_script_params.append(positions) |
|
process_script_params.append(weights) |
|
process_script_params.append(end_at_step) |
|
process_script_params.append(alpha_blend) |
|
process_script_params.extend(cur_weight_sliders) |
|
return process_script_params |
|
|
|
def denoised_callback(self, params: CFGDenoisedParams): |
|
|
|
if self.enabled and params.sampling_step < self.end_at_step: |
|
|
|
x = params.x |
|
|
|
|
|
num_batches = self.num_batches |
|
num_prompts = x.shape[0] // num_batches |
|
|
|
|
|
|
|
if self.debug: |
|
print(f"### Latent couple ###") |
|
print(f"denoised_callback x.shape={x.shape} num_batches={num_batches} num_prompts={num_prompts}") |
|
|
|
filters = [ |
|
f.create_tensor(x.shape[1], x.shape[2], x.shape[3]) for f in self.filters |
|
] |
|
neg_filters = [1.0 - f for f in filters] |
|
|
|
""" |
|
batch #1 |
|
subprompt #1 |
|
subprompt #2 |
|
subprompt #3 |
|
batch #2 |
|
subprompt #1 |
|
subprompt #2 |
|
subprompt #3 |
|
uncond |
|
batch #1 |
|
batch #2 |
|
""" |
|
|
|
tensor_off = 0 |
|
uncond_off = num_batches * num_prompts - num_batches |
|
for b in range(num_batches): |
|
uncond = x[uncond_off, :, :, :] |
|
|
|
for p in range(num_prompts - 1): |
|
if self.debug: |
|
print(f"b={b} p={p}") |
|
if p < len(filters): |
|
tensor = x[tensor_off, :, :, :] |
|
x[tensor_off, :, :, :] = tensor * filters[p] + uncond * neg_filters[p] |
|
|
|
tensor_off += 1 |
|
|
|
uncond_off += 1 |
|
|
|
def process(self, p: StableDiffusionProcessing, *args, **kwargs): |
|
|
|
enabled, raw_divisions, raw_positions, raw_weights, raw_end_at_step, alpha_blend, *cur_weight_sliders = args |
|
|
|
self.enabled = enabled |
|
|
|
if not self.enabled: |
|
return |
|
|
|
self.num_batches = p.batch_size |
|
|
|
if self.selected_twoshot_tab == 0: |
|
pass |
|
elif self.selected_twoshot_tab == 1: |
|
self.filters = self.create_rect_filters_from_ui_params(raw_divisions, raw_positions, raw_weights) |
|
else: |
|
raise ValueError(f"Unknown filter mode") |
|
|
|
self.end_at_step = raw_end_at_step |
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.debug: |
|
print(f"### Latent couple ###") |
|
print(f"process num_batches={self.num_batches} end_at_step={self.end_at_step}") |
|
|
|
if not hasattr(self, 'callbacks_added'): |
|
on_cfg_denoised(self.denoised_callback) |
|
self.callbacks_added = True |
|
|
|
return |
|
|
|
def postprocess(self, *args): |
|
return |
|
|
|
|
|
script_callbacks.on_after_component(prompt_textbox_tracker.on_after_component_callback) |