File size: 26,234 Bytes
3a1d71c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
import base64
from typing import List, Dict, Optional, Tuple
from dataclasses import dataclass

import torch

from scripts.sketch_helper import get_high_freq_colors, color_quantization, create_binary_matrix_base64, create_binary_mask
import numpy as np
import cv2

from modules import devices, script_callbacks

import modules.scripts as scripts
import gradio as gr

from modules.script_callbacks import CFGDenoisedParams, on_cfg_denoised

from modules.processing import StableDiffusionProcessing

MAX_COLORS = 12
switch_values_symbol = '\U000021C5' # ⇅


class ToolButton(gr.Button, gr.components.FormComponent):
    """Small button with single emoji as text, fits inside gradio forms"""

    def __init__(self, **kwargs):
        super().__init__(variant="tool", **kwargs)

    def get_block_name(self):
        return "button"


# abstract base class for filters
from abc import ABC, abstractmethod




class Filter(ABC):

    @abstractmethod
    def create_tensor(self):
        pass



@dataclass
class Division:
    y: float
    x: float


@dataclass
class Position:
    y: float
    x: float
    ey: float
    ex: float



class RectFilter(Filter):
    def __init__(self, division: Division, position: Position, weight: float):
        self.division = division
        self.position = position
        self.weight = weight

    def create_tensor(self, num_channels: int, height_b: int, width_b: int) -> torch.Tensor:

        x = torch.zeros(num_channels, height_b, width_b).to(devices.device)

        division_height = height_b / self.division.y
        division_width = width_b / self.division.x
        y1 = int(division_height * self.position.y)
        y2 = int(division_height * self.position.ey)
        x1 = int(division_width * self.position.x)
        x2 = int(division_width * self.position.ex)

        x[:, y1:y2, x1:x2] = self.weight

        return x


class MaskFilter:
    def __init__(self, binary_mask: np.array = None, weight: float = None, float_mask: np.array = None):
        if float_mask is None:
            self.mask = binary_mask.astype(np.float32) * weight
        elif binary_mask is None and weight is None:
            self.mask = float_mask
        else:
            raise ValueError('Either float_mask or binary_mask and weight must be provided')
        self.tensor_mask = torch.tensor(self.mask).to(devices.device)

    def create_tensor(self, num_channels: int, height_b: int, width_b: int) -> torch.Tensor:


        # x = torch.zeros(num_channels, height_b, width_b).to(devices.device)
        # mask = torch.tensor(self.mask).to(devices.device)
        # downsample mask to x size
        # mask_bicubic = torch.nn.functional.interpolate(mask.unsqueeze(0).unsqueeze(0), size=(height_b, width_b), mode='bicubic').squeeze(0).squeeze(0).cpu().numpy()
        #
        # mask_nearest_exact = torch.nn.functional.interpolate(mask.unsqueeze(0).unsqueeze(0), size=(height_b, width_b), mode='nearest-exact').squeeze(0).squeeze(0).cpu().numpy()
        #
        # mask_nearest = torch.nn.functional.interpolate(mask.unsqueeze(0).unsqueeze(0), size=(height_b, width_b), mode='nearest').squeeze(0).squeeze(0).cpu().numpy()
        #
        # mask_area = torch.nn.functional.interpolate(mask.unsqueeze(0).unsqueeze(0), size=(height_b, width_b), mode='area').squeeze(0).squeeze(0).cpu().numpy()

        mask = torch.nn.functional.interpolate(self.tensor_mask.unsqueeze(0).unsqueeze(0), size=(height_b, width_b), mode='nearest-exact').squeeze(0).squeeze(0)
        mask = mask.unsqueeze(0).repeat(num_channels, 1, 1)

        return mask


class PastePromptTextboxTracker:
    def __init__(self):
        self.scripts = []
        return

    def set_script(self, script):
        self.scripts.append(script)

    def on_after_component_callback(self, component, **_kwargs):

        if not self.scripts:
            return
        if type(component) is gr.State:
            return

        script = None
        if type(component) is gr.Textbox and component.elem_id == 'txt2img_prompt':
            # select corresponding script
            script = next(x for x in self.scripts if x.is_txt2img)
            self.scripts.remove(script)

        if type(component) is gr.Textbox and component.elem_id == 'img2img_prompt':
            # select corresponding script
            script = next(x for x in self.scripts if x.is_img2img)
            self.scripts.remove(script)

        if script is None:
            return

        script.target_paste_prompt = component


prompt_textbox_tracker = PastePromptTextboxTracker()


class Script(scripts.Script):

    def __init__(self):
        self.ui_root = None
        self.num_batches: int = 0
        self.end_at_step: int = 20
        self.filters: List[Filter] = []
        self.debug: bool = False
        self.selected_twoshot_tab = 0
        self.ndmasks = []
        self.area_colors = []
        self.mask_denoise = False
        prompt_textbox_tracker.set_script(self)
        self.target_paste_prompt = None


    def title(self):
        return "Latent Couple extension"

    def show(self, is_img2img):
        return scripts.AlwaysVisible

    def create_rect_filters_from_ui_params(self, raw_divisions: str, raw_positions: str, raw_weights: str):

        divisions = []
        for division in raw_divisions.split(','):
            y, x = division.split(':')
            divisions.append(Division(float(y), float(x)))

        def start_and_end_position(raw: str):
            nums = [float(num) for num in raw.split('-')]
            if len(nums) == 1:
                return nums[0], nums[0] + 1.0
            else:
                return nums[0], nums[1]

        positions = []
        for position in raw_positions.split(','):
            y, x = position.split(':')
            y1, y2 = start_and_end_position(y)
            x1, x2 = start_and_end_position(x)
            positions.append(Position(y1, x1, y2, x2))

        weights = []
        for w in raw_weights.split(','):
            weights.append(float(w))

        # todo: assert len

        return [RectFilter(division, position, weight) for division, position, weight in zip(divisions, positions, weights)]

    def create_mask_filters_from_ui_params(self, raw_divisions: str, raw_positions: str, raw_weights: str):

        divisions = []
        for division in raw_divisions.split(','):
            y, x = division.split(':')
            divisions.append(Division(float(y), float(x)))

        def start_and_end_position(raw: str):
            nums = [float(num) for num in raw.split('-')]
            if len(nums) == 1:
                return nums[0], nums[0] + 1.0
            else:
                return nums[0], nums[1]

        positions = []
        for position in raw_positions.split(','):
            y, x = position.split(':')
            y1, y2 = start_and_end_position(y)
            x1, x2 = start_and_end_position(x)
            positions.append(Position(y1, x1, y2, x2))

        weights = []
        for w in raw_weights.split(','):
            weights.append(float(w))

        # todo: assert len

        return [Filter(division, position, weight) for division, position, weight in zip(divisions, positions, weights)]

    def do_visualize(self, raw_divisions: str, raw_positions: str, raw_weights: str):

        self.filters = self.create_rect_filters_from_ui_params(raw_divisions, raw_positions, raw_weights)

        return [f.create_tensor(1, 128, 128).squeeze(dim=0).cpu().numpy() for f in self.filters]

    def do_apply(self, extra_generation_params: str):
        #
        # parse "Latent Couple" extra_generation_params
        #
        raw_params = {}

        for assignment in extra_generation_params.split(' '):
            pair = assignment.split('=', 1)
            if len(pair) != 2:
                continue
            raw_params[pair[0]] = pair[1]

        return raw_params.get('divisions', '1:1,1:2,1:2'), raw_params.get('positions', '0:0,0:0,0:1'), raw_params.get('weights', '0.2,0.8,0.8'), int(raw_params.get('step', '20'))

    def ui(self, is_img2img):
        process_script_params = []
        id_part = "img2img" if is_img2img else "txt2img"
        canvas_html = "<div id='canvas-root' style='max-width:400px; margin: 0 auto'></div>"
        # get_js_colors = """
        # async (canvasData) => {
        #   const canvasEl = document.getElementById("canvas-root");
        #   return [canvasEl._data]
        # }
        # """

        def create_canvas(h, w):
            return np.zeros(shape=(h, w, 3), dtype=np.uint8) + 255

        def process_sketch(img_arr, input_binary_matrixes):
            input_binary_matrixes.clear()
            # base64_img = canvas_data['image']
            # image_data = base64.b64decode(base64_img.split(',')[1])
            # image = Image.open(BytesIO(image_data)).convert("RGB")
            im2arr = img_arr
            # colors = [tuple(map(int, rgb[4:-1].split(','))) for rgb in
            #           ['colors']]
            sketch_colors, color_counts = np.unique(im2arr.reshape(-1, im2arr.shape[2]), axis=0, return_counts=True)
            colors_fixed = []
            # if color count is less than 0.001 of total pixel count, collect it for edge color correction
            edge_color_correction_arr = []
            for sketch_color_idx, color in enumerate(sketch_colors[:-1]):  # exclude white
                if color_counts[sketch_color_idx] < im2arr.shape[0] * im2arr.shape[1] * 0.002:
                    edge_color_correction_arr.append(sketch_color_idx)

            edge_fix_dict = {}
            # TODO:for every non area color pixel in img_arr, find the nearest area color pixel and replace it with that color

            area_colors = np.delete(sketch_colors, edge_color_correction_arr, axis=0)
            if self.mask_denoise:
                for edge_color_idx in edge_color_correction_arr:
                    edge_color = sketch_colors[edge_color_idx]
                    # find the nearest area_color

                    color_distances = np.linalg.norm(area_colors - edge_color, axis=1)
                    nearest_index = np.argmin(color_distances)
                    nearest_color = area_colors[nearest_index]
                    edge_fix_dict[edge_color_idx] = nearest_color
                    # replace edge color with the nearest area_color
                    cur_color_mask = np.all(im2arr == edge_color, axis=2)
                    im2arr[cur_color_mask] = nearest_color

                # recalculate area colors
                sketch_colors, color_counts = np.unique(im2arr.reshape(-1, im2arr.shape[2]), axis=0, return_counts=True)
                area_colors = sketch_colors

            # create binary matrix for each area_color
            area_color_maps = []
            self.ndmasks = []
            self.area_colors = area_colors
            for color in area_colors:
                r, g, b = color
                mask, binary_matrix = create_binary_matrix_base64(im2arr, color)
                self.ndmasks.append(mask)
                input_binary_matrixes.append(binary_matrix)
                colors_fixed.append(gr.update(
                    value=f'<div style="display:flex;justify-content:center;max-height: 94px;"><img width="20%" style="object-fit: contain;flex-grow:1;margin-right: 1em;" src="data:image/png;base64,{binary_matrix}" /><div class="color-bg-item" style="background-color: rgb({r},{g},{b});width:10%;height:auto;"></div></div>'))



            visibilities = []
            sketch_colors = []

            for sketch_color_idx in range(MAX_COLORS):
                visibilities.append(gr.update(visible=False))
                sketch_colors.append(gr.update(value=f'<div class="color-bg-item" style="background-color: black"></div>'))
            for j in range(len(colors_fixed)-1):
                visibilities[j] = gr.update(visible=True)
                sketch_colors[j] = colors_fixed[j]

            alpha_mask_visibility = gr.update(visible=True)
            alpha_mask_html = colors_fixed[-1]
            return [gr.update(visible=True), input_binary_matrixes, alpha_mask_visibility, alpha_mask_html, *visibilities, *sketch_colors]

        def update_mask_filters(alpha_blend_val, general_prompt_str, *cur_weights_and_prompts):
            cur_weight_slider_vals = cur_weights_and_prompts[:MAX_COLORS]
            cur_prompts = cur_weights_and_prompts[MAX_COLORS:]
            general_mask = self.ndmasks[-1]
            final_filter_list = []
            for m in range(len(self.ndmasks) - 1):
                cur_float_mask = self.ndmasks[m].astype(np.float32) * float(cur_weight_slider_vals[m]) * float(1.0-alpha_blend_val)
                mask_filter = MaskFilter(float_mask=cur_float_mask)
                final_filter_list.append(mask_filter)
            # subtract the sum of all masks from the general mask to get the alpha blend mask
            initial_general_mask = np.ones(shape=general_mask.shape, dtype=np.float32)
            alpha_blend_mask = initial_general_mask.astype(np.float32) - np.sum([f.mask for f in final_filter_list], axis=0)
            alpha_blend_filter = MaskFilter(float_mask=alpha_blend_mask)
            final_filter_list.insert(0, alpha_blend_filter)
            self.filters = final_filter_list


            sketch_colors = []
            colors_fixed = []
            for area_idx, color in enumerate(self.area_colors):
                r, g, b = color
                final_list_idx = area_idx + 1
                if final_list_idx == len(final_filter_list):
                    final_list_idx = 0
                # get shape of current mask
                height_b, width_b = final_filter_list[final_list_idx].mask.shape
                current_mask = torch.nn.functional.interpolate(final_filter_list[final_list_idx].tensor_mask.unsqueeze(0).unsqueeze(0),
                                                       size=(int(height_b/8), int(width_b/8)), mode='nearest-exact').squeeze(0).squeeze(0).cpu().numpy()
                adjusted_mask = current_mask * 255
                _, adjusted_mask_arr = cv2.imencode('.png', adjusted_mask)

                adjusted_mask_b64 = base64.b64encode(adjusted_mask_arr.tobytes()).decode('ascii')
                colors_fixed.append(gr.update(
                    value=f'<div style="display:flex;justify-content:center;max-height: 94px;"><img width="20%" style="object-fit: contain;flex-grow:1;margin-right: 1em;" src="data:image/png;base64,{adjusted_mask_b64}" /><div class="color-bg-item" style="background-color: rgb({r},{g},{b});width:10%;height:auto;"></div></div>'))
            for sketch_color_idx in range(MAX_COLORS):

                sketch_colors.append(
                    gr.update(value=f'<div class="color-bg-item" style="background-color: black"></div>'))
            for j in range(len(colors_fixed)-1):

                sketch_colors[j] = colors_fixed[j]
            alpha_mask_visibility = gr.update(visible=True)
            alpha_mask_html = colors_fixed[-1]
            final_prompt_update = gr.update(value='\nAND '.join([general_prompt_str, *cur_prompts[:len(colors_fixed)-1]]))
            return [final_prompt_update, alpha_mask_visibility, alpha_mask_html, *sketch_colors]



        cur_weight_sliders = []

        with gr.Group() as group_two_shot_root:
            binary_matrixes = gr.State([])
            with gr.Accordion("Latent Couple", open=False):
                enabled = gr.Checkbox(value=False, label="Enabled")
                with gr.Tabs(elem_id="script_twoshot_tabs") as twoshot_tabs:

                    with gr.TabItem("Mask", elem_id="tab_twoshot_mask") as twoshot_tab_mask:

                        canvas_data = gr.JSON(value={}, visible=False)
                        # model = gr.Textbox(label="The id of any Hugging Face model in the diffusers format",
                        #                    value="stabilityai/stable-diffusion-2-1-base",
                        #                    visible=False if is_shared_ui else True)
                        mask_denoise_checkbox = gr.Checkbox(value=False, label="Denoise Mask")

                        def update_mask_denoise_flag(flag):
                            self.mask_denoise = flag

                        mask_denoise_checkbox.change(fn=update_mask_denoise_flag, inputs=[mask_denoise_checkbox], outputs=None)
                        canvas_image = gr.Image(source='upload', mirror_webcam=False, type='numpy', tool='color-sketch',
                                                elem_id='twoshot_canvas_sketch', interactive=True).style(height=480)
                        # aspect = gr.Radio(["square", "horizontal", "vertical"], value="square", label="Aspect Ratio",
                        #                   visible=False if is_shared_ui else True)
                        button_run = gr.Button("I've finished my sketch", elem_id="main_button", interactive=True)

                        prompts = []
                        colors = []
                        color_row = [None] * MAX_COLORS
                        with gr.Column(visible=False) as post_sketch:
                            with gr.Row(visible=False) as alpha_mask_row:
                                # general_mask_label_span = gr.HTML(
                                #     '<span class="text-gray-500 text-[0.855rem] mb-2 block dark:text-gray-200 relative z-40">General Mask</span>',
                                #     elem_id='general_mask_label_span')
                                with gr.Box(elem_id="alpha_mask"):
                                    alpha_color = gr.HTML(
                                        '<div class="alpha-mask-item" style="background-color: black"></div>')
                            general_prompt = gr.Textbox(label="General Prompt")
                            alpha_blend = gr.Slider(label="Alpha Blend", minimum=0.0, maximum=1.0, value=0.2, step=0.01, interactive=True)

                            for n in range(MAX_COLORS):
                                with gr.Row(visible=False) as color_row[n]:

                                    with gr.Box(elem_id="color-bg"):
                                        colors.append(gr.HTML(
                                            '<div class="color-bg-item" style="background-color: black"></div>'))
                                    with gr.Column():
                                        with gr.Row():
                                            prompts.append(gr.Textbox(label="Prompt for this mask"))

                                        with gr.Row():
                                            weight_slider = gr.Slider(label=f"Area {n+1} Weight", minimum=0.0, maximum=1.0,
                                                                    value=1.0, step=0.01, interactive=True, elem_id=f"weight_{n+1}_slider")
                                            cur_weight_sliders.append(weight_slider)

                            button_update = gr.Button("Prompt Info Update", elem_id="update_button", interactive=True)
                            final_prompt = gr.Textbox(label="Final Prompt", interactive=False)

                        button_run.click(process_sketch, inputs=[canvas_image, binary_matrixes],
                                         outputs=[post_sketch, binary_matrixes, alpha_mask_row, alpha_color, *color_row, *colors],
                                         queue=False)

                        button_update.click(fn=update_mask_filters, inputs=[alpha_blend, general_prompt, *cur_weight_sliders, *prompts], outputs=[final_prompt, alpha_mask_row, alpha_color, *colors])

                        def paste_prompt(*input_prompts):
                            final_prompts = input_prompts[:len(self.area_colors)]
                            final_prompt_str = '\nAND '.join(final_prompts)
                            return final_prompt_str
                        source_prompts = [general_prompt, *prompts]
                        button_update.click(fn=paste_prompt, inputs=source_prompts,
                                            outputs=self.target_paste_prompt)



                        with gr.Column():
                            canvas_width = gr.Slider(label="Canvas Width", minimum=256, maximum=1024, value=512, step=64)
                            canvas_height = gr.Slider(label="Canvas Height", minimum=256, maximum=1024, value=512, step=64)


                            canvas_swap_res = ToolButton(value=switch_values_symbol)
                            canvas_swap_res.click(lambda w, h: (h, w), inputs=[canvas_width, canvas_height],
                                                  outputs=[canvas_width, canvas_height])
                        create_button = gr.Button(value="Create blank canvas")
                        create_button.click(fn=create_canvas, inputs=[canvas_height, canvas_width], outputs=[canvas_image])

                    with gr.TabItem("Rectangular", elem_id="tab_twoshot_rect") as twoshot_tab_rect:
                        with gr.Row():
                            divisions = gr.Textbox(label="Divisions", elem_id=f"cd_{id_part}_divisions", value="1:1,1:2,1:2")
                            positions = gr.Textbox(label="Positions", elem_id=f"cd_{id_part}_positions", value="0:0,0:0,0:1")
                        with gr.Row():
                            weights = gr.Textbox(label="Weights", elem_id=f"cd_{id_part}_weights", value="0.2,0.8,0.8")
                            end_at_step = gr.Slider(minimum=0, maximum=150, step=1, label="end at this step", elem_id=f"cd_{id_part}_end_at_this_step", value=150)

                        visualize_button = gr.Button(value="Visualize")
                        visual_regions = gr.Gallery(label="Regions").style(grid=(4, 4, 4, 8), height="auto")

                        visualize_button.click(fn=self.do_visualize, inputs=[divisions, positions, weights], outputs=[visual_regions])

                        extra_generation_params = gr.Textbox(label="Extra generation params")
                        apply_button = gr.Button(value="Apply")

                        apply_button.click(fn=self.do_apply, inputs=[extra_generation_params], outputs=[divisions, positions, weights, end_at_step])

                    def select_twosoht_tab(tab_id):
                        self.selected_twoshot_tab = tab_id
                    for i, elem in enumerate(
                            [twoshot_tab_mask, twoshot_tab_rect]):
                        elem.select(
                            fn=lambda tab=i: select_twosoht_tab(tab),
                            inputs=[],
                            outputs=[],
                    )

        self.ui_root = group_two_shot_root

        self.infotext_fields = [
            (extra_generation_params, "Latent Couple")
        ]
        process_script_params.append(enabled)
        process_script_params.append(divisions)
        process_script_params.append(positions)
        process_script_params.append(weights)
        process_script_params.append(end_at_step)
        process_script_params.append(alpha_blend)
        process_script_params.extend(cur_weight_sliders)
        return process_script_params

    def denoised_callback(self, params: CFGDenoisedParams):

        if self.enabled and params.sampling_step < self.end_at_step:

            x = params.x
            # x.shape = [batch_size, C, H // 8, W // 8]

            num_batches = self.num_batches
            num_prompts = x.shape[0] // num_batches
            # ex. num_batches = 3
            # ex. num_prompts = 3 (tensor) + 1 (uncond)

            if self.debug:
                print(f"### Latent couple ###")
                print(f"denoised_callback x.shape={x.shape} num_batches={num_batches} num_prompts={num_prompts}")

            filters = [
                f.create_tensor(x.shape[1], x.shape[2], x.shape[3]) for f in self.filters
            ]
            neg_filters = [1.0 - f for f in filters]

            """
            batch #1
              subprompt #1
              subprompt #2
              subprompt #3
            batch #2
              subprompt #1
              subprompt #2
              subprompt #3
            uncond
              batch #1
              batch #2
            """

            tensor_off = 0
            uncond_off = num_batches * num_prompts - num_batches
            for b in range(num_batches):
                uncond = x[uncond_off, :, :, :]

                for p in range(num_prompts - 1):
                    if self.debug:
                        print(f"b={b} p={p}")
                    if p < len(filters):
                        tensor = x[tensor_off, :, :, :]
                        x[tensor_off, :, :, :] = tensor * filters[p] + uncond * neg_filters[p]

                    tensor_off += 1

                uncond_off += 1

    def process(self, p: StableDiffusionProcessing, *args, **kwargs):

        enabled, raw_divisions, raw_positions, raw_weights, raw_end_at_step, alpha_blend, *cur_weight_sliders = args

        self.enabled = enabled

        if not self.enabled:
            return

        self.num_batches = p.batch_size

        if self.selected_twoshot_tab == 0:
            pass
        elif self.selected_twoshot_tab == 1:
            self.filters = self.create_rect_filters_from_ui_params(raw_divisions, raw_positions, raw_weights)
        else:
            raise ValueError(f"Unknown filter mode")

        self.end_at_step = raw_end_at_step

        # TODO: handle different cases for generation info: 'mask' and 'rect'
        # if self.end_at_step != 0:
        #     p.extra_generation_params["Latent Couple"] = f"divisions={raw_divisions} positions={raw_positions} weights={raw_weights} end at step={raw_end_at_step}"


        if self.debug:
            print(f"### Latent couple ###")
            print(f"process num_batches={self.num_batches} end_at_step={self.end_at_step}")

        if not hasattr(self, 'callbacks_added'):
            on_cfg_denoised(self.denoised_callback)
            self.callbacks_added = True

        return

    def postprocess(self, *args):
        return


script_callbacks.on_after_component(prompt_textbox_tracker.on_after_component_callback)