Datasets:

Formats:
csv
Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
geolayers / README.md
arjunrao2000's picture
Update README.md
9740175 verified
metadata
pretty_name: Geolayers
language: en
language_creators:
  - found
license: cc-by-4.0
multilinguality: monolingual
size_categories:
  - 10K<n<100K
task_categories:
  - image-classification
  - image-segmentation
citation: |
  @inproceedings{rao2025,
    title={Using Multiple Input Modalities can Improve Data‐Efficiency and O.O.D. Generalization for ML with Satellite Imagery},
    author={Arjun Rao and Esther Rolf},
    year={2025},
    booktitle={Under Review},
  }
source_datasets:
  - SustainBench
  - USAVars
  - BigEarthNetv2.0
  - EnviroAtlas
homepage: https://huggingface.co/datasets/arjunrao2000/geolayers
repository: https://huggingface.co/datasets/arjunrao2000/geolayers
download_size: 25570000000
tags:
  - climate
  - remote-sensing
data_files:
  - huggingface_preview/**/*.jpg
  - metadata.csv
preview:
  path: metadata.csv
  images:
    - rgb
    - osm
    - dem
    - mask
configs:
  - config_name: benchmark
    data_files:
      - split: sustainbench
        path: metadata.csv

Geolayers-Data

This dataset card contains usage instructions and metadata for all data-products released with our paper:
Using Multiple Input Modalities can Improve Data-Efficiency and O.O.D. Generalization for ML with Satellite Imagery. We release 3 modified versions of 3 benchmark datasets spanning land-cover segmentation, tree-cover regression, and multi-label land-cover classification tasks. These datasets are augmented with auxiliary, geographic inputs. A full list of contributed data products is shown in the table below.

Dataset Task Description Multispectral Input Model Additional Data Layers OOD Test Set Present?
SustainBench Farmland boundary delineation Sentinel-2 RGB U-Net OSM rasters, EU-DEM
EnviroAtlas Land-cover segmentation NAIP RGB + NIR FCN Prior, OSM rasters
BigEarthNet v2.0 Land-cover classification Sentinel-2 (10 bands) ViT SatCLIP embeddings
USAVars Tree-cover regression NAIP RGB + NIR ResNet-50 OSM rasters, DEM

📦 Datasets & Georeferenced Auxiliary Layers

SustainBench – Farmland Boundary Delineation

  • Optical input: Sentinel-2 RGB patches (224×224 px, 10 m GSD) covering French cropland in 2017; ≈ 1.6 k training images.
  • Auxiliary layers (all geo-aligned):
    • 19-channel OpenStreetMap (OSM) raster stack (roads, waterways, buildings, biome classes, …)
    • EU-DEM (20 m GSD, down-sampled to 10 m)
  • Why: OSM + DEM give an 8 % Dice boost when labels are scarce; gains appear once the training set drops below ≈ 700 images.

EnviroAtlas – Land-Cover Segmentation

  • Optical input: NAIP 4-band RGB-NIR aerial imagery at 1 m resolution.
  • Auxiliary layers:
    • OSM rasters (roads, waterbodies, waterways)
    • Prior raster – a hand-crafted fusion of NLCD land-cover and OSM layers (PROC-STACK)
  • Splits: Train = Pittsburgh; OOD validation/test = Austin & Durham. Auxiliary layers raise OOD overall accuracy by ~4 pp without extra fine-tuning.

BigEarthNet v2.0 – Multi-Label Land-Cover Classification

  • Optical input: 10-band Sentinel-2 tile pairs; ≈ 550 k patch/label pairs over 19 classes.
  • Auxiliary layer:
    • SatCLIP location embedding (256-D), one per image center, injected as an extra ViT token (TOKEN-FUSE).
  • Splits: Grid-based; val/test tiles lie outside the training footprint (spatial OOD by design). SatCLIP token lifts macro-F1 by ~3 pp across all subset sizes.

USAVars – Tree-Cover Regression

  • Optical input: NAIP RGB-NIR images (1 km² tiles); ≈ 100 k samples with tree-cover % labels.
  • Auxiliary layers:
    • Extended OSM raster stack (roads, buildings, land-use, biome classes, …)
    • Continental Europe Digital Elevation Model (DEM) resampled to 10 m GSD
  • Notes: Stacking the OSM raster boosts R² by 0.16 in the low-data regime (< 250 images); DEM is provided raw for flexibility.

Usage Instructions

  • Download the .h5.gz files in data/<source dataset name>. Our source datasets include SustainBench, USAVars, and BigEarthNet2.0
  • You may use pigz (https://linux.die.net/man/1/pigz) to decompress the archive. This is especially recommended for USAVars' train-split, which is 117 GB when uncompressed. This can be done with pigz -d <.h5.gz>
  • Datasets with auxiliary geographic inputs can be read with H5PY.