Datasets:
metadata
language:
- hi
- ta
- en
license: cc-by-4.0
size_categories:
- 100K<n<1M
task_categories:
- text-to-speech
annotations_creators:
- crowd-sourced
pretty_name: MANGO
dataset_info:
features:
- name: Rater_ID
dtype: int64
- name: FS2_Score
dtype: int64
- name: VITS_Score
dtype: int64
- name: ST2_Score
dtype: int64
- name: ANC_Score
dtype: int64
- name: REF_Score
dtype: int64
- name: FS2_Audio
dtype: string
- name: VITS_Audio
dtype: string
- name: ST2_Audio
dtype: string
- name: ANC_Audio
dtype: string
- name: REF_Audio
dtype: string
splits:
- name: Tamil__MUSHRA_DG_NMR
num_bytes: 421059
num_examples: 2000
- name: Hindi__MUSHRA_DG
num_bytes: 460394
num_examples: 2000
- name: Hindi__MUSHRA_NMR
num_bytes: 2344032
num_examples: 10200
- name: Hindi__MUSHRA_DG_NMR
num_bytes: 459746
num_examples: 2000
- name: Tamil__MUSHRA_NMR
num_bytes: 2034556
num_examples: 9700
- name: Tamil__MUSHRA_DG
num_bytes: 420012
num_examples: 2000
- name: Tamil__MUSHRA
num_bytes: 2098507
num_examples: 10000
- name: Hindi__MUSHRA
num_bytes: 2601302
num_examples: 11300
- name: English__MUSHRA
num_bytes: 170945
num_examples: 900
- name: English__MUSHRA_DG_NMR
num_bytes: 176879
num_examples: 930
download_size: 13395762
dataset_size: 13395762
configs:
- config_name: default
data_files:
- split: Tamil__MUSHRA_DG_NMR
path: csvs/tamil_mushra_dg_nmr.csv
- split: Hindi__MUSHRA_DG
path: csvs/hindi_mushra_dg.csv
- split: Hindi__MUSHRA_NMR
path: csvs/hindi_mushra_nmr.csv
- split: Hindi__MUSHRA_DG_NMR
path: csvs/hindi_mushra_dg_nmr.csv
- split: Tamil__MUSHRA_NMR
path: csvs/tamil_mushra_nmr.csv
- split: Tamil__MUSHRA_DG
path: csvs/tamil_mushra_dg.csv
- split: Tamil__MUSHRA
path: csvs/tamil_mushra.csv
- split: Hindi__MUSHRA
path: csvs/hindi_mushra.csv
- split: English__MUSHRA
path: csvs/english_mushra.csv
- split: English__MUSHRA_DG_NMR
path: csvs/english_mushra_dg_nmr.csv
tags:
- speech
- evaluation
- mushra
- text-to-speech
- human-evaluation
- multilingual
MANGO: A Corpus of Human Ratings for Speech
MANGO (MUSHRA Assessment corpus using Native listeners and Guidelines to understand human Opinions at scale) is the first large-scale dataset designed for evaluating Text-to-Speech (TTS) systems in Indian languages.
Key Features:
- 255,150 human ratings of TTS-generated outputs and ground-truth human speech.
- Covers two major Indian languages: Hindi & Tamil, and English.
- Based on the MUSHRA (Multiple Stimuli with Hidden Reference and Anchor) test methodology.
- Ratings are provided on a continuous scale from 0 to 100, with discrete quality categories:
- 100-80: Excellent
- 80-60: Good
- 60-40: Fair
- 40-20: Poor
- 20-0: Bad
- Includes evaluations involving:
- MUSHRA: with explicitly mentioned high-quality references.
- MUSHRA-NMR: without explicitly mentioned high-quality references.
- MUSHRA-DG: with detailed guidelines across fine-grained dimensions
- MUSHRA-DG-NMR: with detailed guidelines across fine-grained dimensions and without explicitly mentioned high-quality references.
Available Splits
The dataset includes the following splits based on the test type and language.
Split | Number of Ratings |
---|---|
Hindi__MUSHRA | 56500 |
Hindi__MUSHRA_DG | 10000 |
Hindi__MUSHRA_DG_NMR | 10000 |
Hindi__MUSHRA_NMR | 51000 |
Tamil__MUSHRA | 50000 |
Tamil__MUSHRA_DG | 10000 |
Tamil__MUSHRA_DG_NMR | 10000 |
Tamil__MUSHRA_NMR | 48500 |
English__MUSHRA | 4500 |
English__MUSHRA_DG_NMR | 4650 |
Getting Started
import os
from datasets import load_dataset, Audio
from huggingface_hub import snapshot_download
def get_audio_paths(example):
for column in example.keys():
if "Audio" in column and isinstance(example[column], str):
example[column] = os.path.join(download_dir, example[column])
return example
# Download
repo_id = "ai4bharat/MANGO"
download_dir = snapshot_download(repo_id=repo_id, repo_type="dataset")
dataset = load_dataset(download_dir, split='Hindi__MUSHRA')
dataset = dataset.map(get_audio_paths)
# Cast audio columns
for column in dataset.column_names:
if 'Audio' in column:
dataset = dataset.cast_column(column, Audio())
# Explore
print(dataset)
'''
Dataset({
features: ['Rater_ID', 'FS2_Score', 'VITS_Score', 'ST2_Score', 'ANC_Score',
'REF_Score', 'FS2_Audio', 'VITS_Audio', 'ST2_Audio', 'ANC_Audio',
'REF_Audio'],
num_rows: 11300
})
'''
# # Print first instance
print(dataset[0])
'''
{'Rater_ID': 389, 'FS2_Score': 16, 'VITS_Score': 76, 'ST2_Score': 28,
'ANC_Score': 40, 'REF_Score': 100, 'FS2_Audio': {'path': ...
'''
# # Available Splits
dataset = load_dataset(download_dir, split=None)
print("Splits:", dataset.keys())
'''
Splits: dict_keys(['Tamil__MUSHRA_DG_NMR', 'Hindi__MUSHRA_DG',
'Hindi__MUSHRA_NMR', 'Hindi__MUSHRA_DG_NMR', 'Tamil__MUSHRA_NMR',
'Tamil__MUSHRA_DG', 'Tamil__MUSHRA', 'Hindi__MUSHRA',
'English__MUSHRA', 'English_MUSHRA_DG_NMR'])
'''
Why Use MANGO?
- Addresses limitations of traditional MOS and CMOS tests.
- Enables robust benchmarking for:
- Comparative analysis across multiple TTS systems.
- Evaluations in diverse linguistic contexts.
- Large-scale studies with multiple raters.
We believe this dataset is a valuable resource for researchers and practitioners working on speech synthesis evaluation, and related fields.
Quick Overview of TTS Systems
- Dataset: All Indian TTS systems were trained on the IndicTTS dataset. For English, we use models trained on LJSpeech.
- Models: FastSpeech2, VITS, StyleTTS2, XTTS
Citation
@article{ai4bharat2025rethinking,
title={Rethinking MUSHRA: Addressing Modern Challenges in Text-to-Speech Evaluation},
author={Praveen Srinivasa Varadhan and Amogh Gulati and Ashwin Sankar and Srija Anand and Anirudh Gupta and Anirudh Mukherjee and Shiva Kumar Marepally and Ankur Bhatia and Saloni Jaju and Suvrat Bhooshan and Mitesh M. Khapra},
journal={Transactions on Machine Learning Research},
year={2025},
url={https://openreview.net/forum?id=oYmRiWCQ1W},
}
License
This dataset is released under the Creative Commons Attribution 4.0 International License (CC BY 4.0).