|
import os
|
|
|
|
import safetensors.torch
|
|
import torch
|
|
from modules import devices, errors, hashes, shared
|
|
|
|
|
|
class Embedding:
|
|
|
|
def __init__(self, vec, name, step=None):
|
|
self.vec = vec
|
|
self.name = name
|
|
self.step = step
|
|
self.shape = None
|
|
self.vectors = 0
|
|
self.cached_checksum = None
|
|
self.sd_checkpoint = None
|
|
self.sd_checkpoint_name = None
|
|
self.optimizer_state_dict = None
|
|
self.filename = None
|
|
self.hash = None
|
|
self.shorthash = None
|
|
|
|
def save(self, filename):
|
|
raise NotImplementedError("Training is not supported...")
|
|
|
|
def checksum(self):
|
|
if self.cached_checksum is not None:
|
|
return self.cached_checksum
|
|
|
|
def const_hash(a):
|
|
r = 0
|
|
for v in a:
|
|
r = (r * 281 ^ int(v) * 997) & 0xFFFFFFFF
|
|
return r
|
|
|
|
self.cached_checksum = f"{const_hash(self.vec.reshape(-1) * 100) & 0xffff:04x}"
|
|
return self.cached_checksum
|
|
|
|
def set_hash(self, v):
|
|
self.hash = v
|
|
self.shorthash = self.hash[0:12]
|
|
|
|
|
|
class DirWithTextualInversionEmbeddings:
|
|
|
|
def __init__(self, path):
|
|
self.path = path
|
|
self.mtime = None
|
|
|
|
def has_changed(self):
|
|
if not os.path.isdir(self.path):
|
|
return False
|
|
|
|
mt = os.path.getmtime(self.path)
|
|
if self.mtime is None or mt > self.mtime:
|
|
return True
|
|
|
|
def update(self):
|
|
if not os.path.isdir(self.path):
|
|
return
|
|
|
|
self.mtime = os.path.getmtime(self.path)
|
|
|
|
|
|
class EmbeddingDatabase:
|
|
|
|
def __init__(self):
|
|
self.ids_lookup = {}
|
|
self.word_embeddings = {}
|
|
self.skipped_embeddings = {}
|
|
self.expected_shape = -1
|
|
self.embedding_dirs = {}
|
|
self.previously_displayed_embeddings = ()
|
|
|
|
def add_embedding_dir(self, path):
|
|
self.embedding_dirs[path] = DirWithTextualInversionEmbeddings(path)
|
|
|
|
def clear_embedding_dirs(self):
|
|
self.embedding_dirs.clear()
|
|
|
|
def register_embedding(self, embedding, model):
|
|
return self.register_embedding_by_name(embedding, model, embedding.name)
|
|
|
|
def register_embedding_by_name(self, embedding, model, name):
|
|
ids = model.cond_stage_model.tokenize([name])[0]
|
|
first_id = ids[0]
|
|
if first_id not in self.ids_lookup:
|
|
self.ids_lookup[first_id] = []
|
|
if name in self.word_embeddings:
|
|
lookup = [x for x in self.ids_lookup[first_id] if x[1].name != name]
|
|
else:
|
|
lookup = self.ids_lookup[first_id]
|
|
if embedding is not None:
|
|
lookup += [(ids, embedding)]
|
|
self.ids_lookup[first_id] = sorted(lookup, key=lambda x: len(x[0]), reverse=True)
|
|
if embedding is None:
|
|
if name in self.word_embeddings:
|
|
del self.word_embeddings[name]
|
|
if len(self.ids_lookup[first_id]) == 0:
|
|
del self.ids_lookup[first_id]
|
|
return None
|
|
self.word_embeddings[name] = embedding
|
|
return embedding
|
|
|
|
def get_expected_shape(self):
|
|
devices.torch_npu_set_device()
|
|
vec = shared.sd_model.cond_stage_model.encode_embedding_init_text(",", 1)
|
|
return vec.shape[1]
|
|
|
|
def load_from_file(self, path, filename):
|
|
name, ext = os.path.splitext(filename)
|
|
ext = ext.upper()
|
|
|
|
if ext in (".BIN", ".PT"):
|
|
data = torch.load(path, map_location="cpu")
|
|
elif ext in (".SAFETENSORS",):
|
|
data = safetensors.torch.load_file(path, device="cpu")
|
|
else:
|
|
if ext in (".PNG", ".WEBP", ".JXL", ".AVIF"):
|
|
second_ext = os.path.splitext(name)[1]
|
|
if second_ext.upper() != ".PREVIEW":
|
|
raise NotImplementedError("Image-Embedding is not supported...")
|
|
return
|
|
|
|
embedding = create_embedding_from_data(data, name, filename=filename, filepath=path)
|
|
|
|
if self.expected_shape == -1 or self.expected_shape == embedding.shape:
|
|
self.register_embedding(embedding, shared.sd_model)
|
|
else:
|
|
self.skipped_embeddings[name] = embedding
|
|
|
|
def load_from_dir(self, embdir):
|
|
if not os.path.isdir(embdir.path):
|
|
return
|
|
|
|
for root, _, fns in os.walk(embdir.path, followlinks=True):
|
|
for fn in fns:
|
|
try:
|
|
fullfn = os.path.join(root, fn)
|
|
|
|
if os.stat(fullfn).st_size == 0:
|
|
continue
|
|
|
|
self.load_from_file(fullfn, fn)
|
|
except Exception:
|
|
errors.report(f"Error loading embedding {fn}", exc_info=True)
|
|
continue
|
|
|
|
def load_textual_inversion_embeddings(self, force_reload=False):
|
|
if not force_reload:
|
|
need_reload = False
|
|
for embdir in self.embedding_dirs.values():
|
|
if embdir.has_changed():
|
|
need_reload = True
|
|
break
|
|
|
|
if not need_reload:
|
|
return
|
|
|
|
self.ids_lookup.clear()
|
|
self.word_embeddings.clear()
|
|
self.skipped_embeddings.clear()
|
|
self.expected_shape = self.get_expected_shape()
|
|
|
|
for embdir in self.embedding_dirs.values():
|
|
self.load_from_dir(embdir)
|
|
embdir.update()
|
|
|
|
|
|
|
|
sorted_word_embeddings = {e.name: e for e in sorted(self.word_embeddings.values(), key=lambda e: e.name.lower())}
|
|
self.word_embeddings.clear()
|
|
self.word_embeddings.update(sorted_word_embeddings)
|
|
|
|
def find_embedding_at_position(self, tokens, offset):
|
|
token = tokens[offset]
|
|
possible_matches = self.ids_lookup.get(token, None)
|
|
|
|
if possible_matches is None:
|
|
return None, None
|
|
|
|
for ids, embedding in possible_matches:
|
|
if tokens[offset : offset + len(ids)] == ids:
|
|
return embedding, len(ids)
|
|
|
|
return None, None
|
|
|
|
|
|
def create_embedding_from_data(data, name, filename="unknown embedding file", filepath=None):
|
|
if "string_to_param" in data:
|
|
param_dict = data["string_to_param"]
|
|
param_dict = getattr(param_dict, "_parameters", param_dict)
|
|
assert len(param_dict) == 1, "embedding file has multiple terms in it"
|
|
emb = next(iter(param_dict.items()))[1]
|
|
vec = emb.detach().to(devices.device, dtype=torch.float32)
|
|
shape = vec.shape[-1]
|
|
vectors = vec.shape[0]
|
|
|
|
elif type(data) == dict and "clip_g" in data and "clip_l" in data:
|
|
vec = {k: v.detach().to(devices.device, dtype=torch.float32) for k, v in data.items()}
|
|
shape = data["clip_g"].shape[-1] + data["clip_l"].shape[-1]
|
|
vectors = data["clip_g"].shape[0]
|
|
|
|
elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor:
|
|
assert len(data.keys()) == 1, "embedding file has multiple terms in it"
|
|
emb = next(iter(data.values()))
|
|
if len(emb.shape) == 1:
|
|
emb = emb.unsqueeze(0)
|
|
vec = emb.detach().to(devices.device, dtype=torch.float32)
|
|
shape = vec.shape[-1]
|
|
vectors = vec.shape[0]
|
|
|
|
else:
|
|
raise LookupError(f"Couldn't identify {filename}...")
|
|
|
|
embedding = Embedding(vec, name)
|
|
embedding.step = data.get("step", None)
|
|
embedding.sd_checkpoint = data.get("sd_checkpoint", None)
|
|
embedding.sd_checkpoint_name = data.get("sd_checkpoint_name", None)
|
|
embedding.vectors = vectors
|
|
embedding.shape = shape
|
|
|
|
if filepath:
|
|
embedding.filename = filepath
|
|
embedding.set_hash(hashes.sha256(filepath, "/".join(["textual_inversion", name])) or "")
|
|
|
|
return embedding
|
|
|