File size: 8,223 Bytes
0070fce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import os

import safetensors.torch
import torch
from modules import devices, errors, hashes, shared


class Embedding:

    def __init__(self, vec, name, step=None):
        self.vec = vec
        self.name = name
        self.step = step
        self.shape = None
        self.vectors = 0
        self.cached_checksum = None
        self.sd_checkpoint = None
        self.sd_checkpoint_name = None
        self.optimizer_state_dict = None
        self.filename = None
        self.hash = None
        self.shorthash = None

    def save(self, filename):
        raise NotImplementedError("Training is not supported...")

    def checksum(self):
        if self.cached_checksum is not None:
            return self.cached_checksum

        def const_hash(a):
            r = 0
            for v in a:
                r = (r * 281 ^ int(v) * 997) & 0xFFFFFFFF
            return r

        self.cached_checksum = f"{const_hash(self.vec.reshape(-1) * 100) & 0xffff:04x}"
        return self.cached_checksum

    def set_hash(self, v):
        self.hash = v
        self.shorthash = self.hash[0:12]


class DirWithTextualInversionEmbeddings:

    def __init__(self, path):
        self.path = path
        self.mtime = None

    def has_changed(self):
        if not os.path.isdir(self.path):
            return False

        mt = os.path.getmtime(self.path)
        if self.mtime is None or mt > self.mtime:
            return True

    def update(self):
        if not os.path.isdir(self.path):
            return

        self.mtime = os.path.getmtime(self.path)


class EmbeddingDatabase:

    def __init__(self):
        self.ids_lookup = {}
        self.word_embeddings = {}
        self.skipped_embeddings = {}
        self.expected_shape = -1
        self.embedding_dirs = {}
        self.previously_displayed_embeddings = ()

    def add_embedding_dir(self, path):
        self.embedding_dirs[path] = DirWithTextualInversionEmbeddings(path)

    def clear_embedding_dirs(self):
        self.embedding_dirs.clear()

    def register_embedding(self, embedding, model):
        return self.register_embedding_by_name(embedding, model, embedding.name)

    def register_embedding_by_name(self, embedding, model, name):
        ids = model.cond_stage_model.tokenize([name])[0]
        first_id = ids[0]
        if first_id not in self.ids_lookup:
            self.ids_lookup[first_id] = []
        if name in self.word_embeddings:
            lookup = [x for x in self.ids_lookup[first_id] if x[1].name != name]
        else:
            lookup = self.ids_lookup[first_id]
        if embedding is not None:
            lookup += [(ids, embedding)]
        self.ids_lookup[first_id] = sorted(lookup, key=lambda x: len(x[0]), reverse=True)
        if embedding is None:
            if name in self.word_embeddings:
                del self.word_embeddings[name]
            if len(self.ids_lookup[first_id]) == 0:
                del self.ids_lookup[first_id]
            return None
        self.word_embeddings[name] = embedding
        return embedding

    def get_expected_shape(self):
        devices.torch_npu_set_device()
        vec = shared.sd_model.cond_stage_model.encode_embedding_init_text(",", 1)
        return vec.shape[1]

    def load_from_file(self, path, filename):
        name, ext = os.path.splitext(filename)
        ext = ext.upper()

        if ext in (".BIN", ".PT"):
            data = torch.load(path, map_location="cpu")
        elif ext in (".SAFETENSORS",):
            data = safetensors.torch.load_file(path, device="cpu")
        else:
            if ext in (".PNG", ".WEBP", ".JXL", ".AVIF"):
                second_ext = os.path.splitext(name)[1]
                if second_ext.upper() != ".PREVIEW":
                    raise NotImplementedError("Image-Embedding is not supported...")
            return

        embedding = create_embedding_from_data(data, name, filename=filename, filepath=path)

        if self.expected_shape == -1 or self.expected_shape == embedding.shape:
            self.register_embedding(embedding, shared.sd_model)
        else:
            self.skipped_embeddings[name] = embedding

    def load_from_dir(self, embdir):
        if not os.path.isdir(embdir.path):
            return

        for root, _, fns in os.walk(embdir.path, followlinks=True):
            for fn in fns:
                try:
                    fullfn = os.path.join(root, fn)

                    if os.stat(fullfn).st_size == 0:
                        continue

                    self.load_from_file(fullfn, fn)
                except Exception:
                    errors.report(f"Error loading embedding {fn}", exc_info=True)
                    continue

    def load_textual_inversion_embeddings(self, force_reload=False):
        if not force_reload:
            need_reload = False
            for embdir in self.embedding_dirs.values():
                if embdir.has_changed():
                    need_reload = True
                    break

            if not need_reload:
                return

        self.ids_lookup.clear()
        self.word_embeddings.clear()
        self.skipped_embeddings.clear()
        self.expected_shape = self.get_expected_shape()

        for embdir in self.embedding_dirs.values():
            self.load_from_dir(embdir)
            embdir.update()

        # re-sort word_embeddings because load_from_dir may not load in alphabetic order.
        # using a temporary copy so we don't reinitialize self.word_embeddings in case other objects have a reference to it.
        sorted_word_embeddings = {e.name: e for e in sorted(self.word_embeddings.values(), key=lambda e: e.name.lower())}
        self.word_embeddings.clear()
        self.word_embeddings.update(sorted_word_embeddings)

    def find_embedding_at_position(self, tokens, offset):
        token = tokens[offset]
        possible_matches = self.ids_lookup.get(token, None)

        if possible_matches is None:
            return None, None

        for ids, embedding in possible_matches:
            if tokens[offset : offset + len(ids)] == ids:
                return embedding, len(ids)

        return None, None


def create_embedding_from_data(data, name, filename="unknown embedding file", filepath=None):
    if "string_to_param" in data:  # textual inversion embeddings
        param_dict = data["string_to_param"]
        param_dict = getattr(param_dict, "_parameters", param_dict)  # fix for torch 1.12.1 loading saved file from torch 1.11
        assert len(param_dict) == 1, "embedding file has multiple terms in it"
        emb = next(iter(param_dict.items()))[1]
        vec = emb.detach().to(devices.device, dtype=torch.float32)
        shape = vec.shape[-1]
        vectors = vec.shape[0]

    elif type(data) == dict and "clip_g" in data and "clip_l" in data:  # SDXL embedding
        vec = {k: v.detach().to(devices.device, dtype=torch.float32) for k, v in data.items()}
        shape = data["clip_g"].shape[-1] + data["clip_l"].shape[-1]
        vectors = data["clip_g"].shape[0]

    elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor:  # diffuser concepts
        assert len(data.keys()) == 1, "embedding file has multiple terms in it"
        emb = next(iter(data.values()))
        if len(emb.shape) == 1:
            emb = emb.unsqueeze(0)
        vec = emb.detach().to(devices.device, dtype=torch.float32)
        shape = vec.shape[-1]
        vectors = vec.shape[0]

    else:
        raise LookupError(f"Couldn't identify {filename}...")

    embedding = Embedding(vec, name)
    embedding.step = data.get("step", None)
    embedding.sd_checkpoint = data.get("sd_checkpoint", None)
    embedding.sd_checkpoint_name = data.get("sd_checkpoint_name", None)
    embedding.vectors = vectors
    embedding.shape = shape

    if filepath:
        embedding.filename = filepath
        embedding.set_hash(hashes.sha256(filepath, "/".join(["textual_inversion", name])) or "")

    return embedding