|
from __future__ import annotations |
|
|
|
import logging |
|
import os |
|
import os.path |
|
from urllib.parse import urlparse |
|
|
|
import spandrel |
|
import spandrel_extra_arches |
|
import torch |
|
|
|
from modules import shared |
|
from modules.errors import display |
|
from modules.upscaler import UpscalerLanczos, UpscalerNearest, UpscalerNone |
|
|
|
spandrel_extra_arches.install() |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def load_file_from_url(url: str, *, model_dir: str, progress: bool = True, file_name: str | None = None) -> str: |
|
""" |
|
Download a file from `url` into `model_dir`, using the file present if possible. |
|
Returns the path to the downloaded file. |
|
""" |
|
os.makedirs(model_dir, exist_ok=True) |
|
if not file_name: |
|
parts = urlparse(url) |
|
file_name = os.path.basename(parts.path) |
|
cached_file = os.path.abspath(os.path.join(model_dir, file_name)) |
|
if not os.path.exists(cached_file): |
|
print(f'Downloading: "{url}" to {cached_file}\n') |
|
from torch.hub import download_url_to_file |
|
|
|
download_url_to_file(url, cached_file, progress=progress) |
|
return cached_file |
|
|
|
|
|
def load_models( |
|
model_path: str, |
|
model_url: str = None, |
|
command_path: str = None, |
|
ext_filter=None, |
|
download_name=None, |
|
ext_blacklist=None, |
|
) -> list: |
|
""" |
|
A one-and-done loader to try finding the desired models in specified directories. |
|
|
|
- download_name: Specify to download from model_url immediately. |
|
- model_url: If no other models are found, this will be downloaded on upscale. |
|
- model_path: The location to store/find models in. |
|
- command_path: A command-line argument to search for models in first. |
|
- ext_filter: An optional list of filename extensions to filter by |
|
|
|
@return: A list of paths containing the desired model(s) |
|
""" |
|
output: set[str] = set() |
|
|
|
try: |
|
folders = [model_path] |
|
|
|
if command_path != model_path and command_path is not None: |
|
if os.path.isdir(command_path): |
|
folders.append(command_path) |
|
elif os.path.isfile(command_path): |
|
output.add(command_path) |
|
|
|
for place in folders: |
|
for full_path in shared.walk_files(place, allowed_extensions=ext_filter): |
|
if os.path.islink(full_path) and not os.path.exists(full_path): |
|
print(f"Skipping broken symlink: {full_path}") |
|
continue |
|
if ext_blacklist is not None and any(full_path.endswith(x) for x in ext_blacklist): |
|
continue |
|
if os.path.isfile(full_path): |
|
output.add(full_path) |
|
|
|
if model_url is not None and len(output) == 0: |
|
if download_name is not None: |
|
output.add(load_file_from_url(model_url, model_dir=folders[0], file_name=download_name)) |
|
else: |
|
output.add(model_url) |
|
|
|
except Exception as e: |
|
display(e, "load_models") |
|
|
|
return sorted(output, key=lambda mdl: mdl.lower()) |
|
|
|
|
|
def friendly_name(file: str) -> str: |
|
if file.startswith("http"): |
|
file = urlparse(file).path |
|
|
|
file = os.path.basename(file) |
|
model_name, _ = os.path.splitext(file) |
|
return model_name |
|
|
|
|
|
def load_upscalers(): |
|
from modules.esrgan_model import UpscalerESRGAN |
|
|
|
commandline_model_path = shared.cmd_opts.esrgan_models_path |
|
upscaler = UpscalerESRGAN(commandline_model_path) |
|
upscaler.user_path = commandline_model_path |
|
upscaler.model_download_path = commandline_model_path or upscaler.model_path |
|
|
|
shared.sd_upscalers = [ |
|
*UpscalerNone().scalers, |
|
*UpscalerLanczos().scalers, |
|
*UpscalerNearest().scalers, |
|
*sorted(upscaler.scalers, key=lambda s: s.name.lower()), |
|
] |
|
|
|
|
|
def load_spandrel_model( |
|
path: str | os.PathLike, |
|
*, |
|
device: str | torch.device | None, |
|
prefer_half: bool = False, |
|
dtype: str | torch.dtype | None = None, |
|
expected_architecture: str | None = None, |
|
) -> spandrel.ModelDescriptor: |
|
model_descriptor = spandrel.ModelLoader(device=device).load_from_file(str(path)) |
|
arch = model_descriptor.architecture |
|
logger.info(f'Loaded {arch.name} Model: "{os.path.basename(path)}"') |
|
|
|
half = False |
|
if prefer_half: |
|
if model_descriptor.supports_half: |
|
model_descriptor.model.half() |
|
half = True |
|
else: |
|
logger.warning(f"Model {path} does not support half precision...") |
|
|
|
if dtype: |
|
model_descriptor.model.to(dtype=dtype) |
|
|
|
logger.debug("Loaded %s from %s (device=%s, half=%s, dtype=%s)", arch, path, device, half, dtype) |
|
|
|
model_descriptor.model.eval() |
|
return model_descriptor |
|
|