WhiteAiZ's picture
Upload 868 files
0665518 verified
from __future__ import annotations
import logging
import os
import os.path
from urllib.parse import urlparse
import spandrel
import spandrel_extra_arches
import torch
from modules import shared
from modules.errors import display
from modules.upscaler import UpscalerLanczos, UpscalerNearest, UpscalerNone
spandrel_extra_arches.install()
logger = logging.getLogger(__name__)
def load_file_from_url(url: str, *, model_dir: str, progress: bool = True, file_name: str | None = None) -> str:
"""
Download a file from `url` into `model_dir`, using the file present if possible.
Returns the path to the downloaded file.
"""
os.makedirs(model_dir, exist_ok=True)
if not file_name:
parts = urlparse(url)
file_name = os.path.basename(parts.path)
cached_file = os.path.abspath(os.path.join(model_dir, file_name))
if not os.path.exists(cached_file):
print(f'Downloading: "{url}" to {cached_file}\n')
from torch.hub import download_url_to_file
download_url_to_file(url, cached_file, progress=progress)
return cached_file
def load_models(
model_path: str,
model_url: str = None,
command_path: str = None,
ext_filter=None,
download_name=None,
ext_blacklist=None,
) -> list:
"""
A one-and-done loader to try finding the desired models in specified directories.
- download_name: Specify to download from model_url immediately.
- model_url: If no other models are found, this will be downloaded on upscale.
- model_path: The location to store/find models in.
- command_path: A command-line argument to search for models in first.
- ext_filter: An optional list of filename extensions to filter by
@return: A list of paths containing the desired model(s)
"""
output: set[str] = set()
try:
folders = [model_path]
if command_path != model_path and command_path is not None:
if os.path.isdir(command_path):
folders.append(command_path)
elif os.path.isfile(command_path):
output.add(command_path)
for place in folders:
for full_path in shared.walk_files(place, allowed_extensions=ext_filter):
if os.path.islink(full_path) and not os.path.exists(full_path):
print(f"Skipping broken symlink: {full_path}")
continue
if ext_blacklist is not None and any(full_path.endswith(x) for x in ext_blacklist):
continue
if os.path.isfile(full_path):
output.add(full_path)
if model_url is not None and len(output) == 0:
if download_name is not None:
output.add(load_file_from_url(model_url, model_dir=folders[0], file_name=download_name))
else:
output.add(model_url)
except Exception as e:
display(e, "load_models")
return sorted(output, key=lambda mdl: mdl.lower())
def friendly_name(file: str) -> str:
if file.startswith("http"):
file = urlparse(file).path
file = os.path.basename(file)
model_name, _ = os.path.splitext(file)
return model_name
def load_upscalers():
from modules.esrgan_model import UpscalerESRGAN
commandline_model_path = shared.cmd_opts.esrgan_models_path
upscaler = UpscalerESRGAN(commandline_model_path)
upscaler.user_path = commandline_model_path
upscaler.model_download_path = commandline_model_path or upscaler.model_path
shared.sd_upscalers = [
*UpscalerNone().scalers,
*UpscalerLanczos().scalers,
*UpscalerNearest().scalers,
*sorted(upscaler.scalers, key=lambda s: s.name.lower()),
]
def load_spandrel_model(
path: str | os.PathLike,
*,
device: str | torch.device | None,
prefer_half: bool = False,
dtype: str | torch.dtype | None = None,
expected_architecture: str | None = None,
) -> spandrel.ModelDescriptor:
model_descriptor = spandrel.ModelLoader(device=device).load_from_file(str(path))
arch = model_descriptor.architecture
logger.info(f'Loaded {arch.name} Model: "{os.path.basename(path)}"')
half = False
if prefer_half:
if model_descriptor.supports_half:
model_descriptor.model.half()
half = True
else:
logger.warning(f"Model {path} does not support half precision...")
if dtype:
model_descriptor.model.to(dtype=dtype)
logger.debug("Loaded %s from %s (device=%s, half=%s, dtype=%s)", arch, path, device, half, dtype)
model_descriptor.model.eval()
return model_descriptor