WhiteAiZ commited on
Commit
0665518
·
verified ·
1 Parent(s): e40833f

Upload 868 files

Browse files

uptade forge classic v1.6

This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. README.md +78 -43
  2. extensions-builtin/Lora/extra_networks_lora.py +4 -2
  3. extensions-builtin/Lora/network.py +9 -12
  4. extensions-builtin/Lora/networks.py +11 -2
  5. extensions-builtin/Lora/scripts/lora_script.py +4 -5
  6. extensions-builtin/Lora/ui_edit_user_metadata.py +2 -1
  7. extensions-builtin/Lora/ui_extra_networks_lora.py +1 -7
  8. extensions-builtin/forge_legacy_preprocessors/annotator/depth_anything.py +7 -11
  9. extensions-builtin/forge_legacy_preprocessors/annotator/depth_anything_v2.py +78 -0
  10. extensions-builtin/forge_legacy_preprocessors/annotator/pidinet/model.py +1 -15
  11. extensions-builtin/forge_legacy_preprocessors/install.py +25 -54
  12. extensions-builtin/forge_legacy_preprocessors/legacy_preprocessors/preprocessor.py +40 -71
  13. extensions-builtin/forge_legacy_preprocessors/legacy_preprocessors/preprocessor_compiled.py +14 -29
  14. extensions-builtin/forge_legacy_preprocessors/requirements.txt +4 -1
  15. extensions-builtin/sd_forge_controlnet/lib_controlnet/controlnet_ui/controlnet_ui_group.py +1 -3
  16. extensions-builtin/sd_forge_controlnet/lib_controlnet/enums.py +0 -57
  17. extensions-builtin/sd_forge_controlnet/lib_controlnet/external_code.py +1 -3
  18. extensions-builtin/sd_forge_controlnet/lib_controlnet/global_state.py +7 -17
  19. extensions-builtin/sd_forge_controlnet/preload.py +1 -7
  20. extensions-builtin/sd_forge_controlnet/scripts/controlnet.py +0 -2
  21. extensions-builtin/xyz/lib_xyz/builtins.py +11 -75
  22. extensions-builtin/xyz/scripts/xyz_grid.py +2 -6
  23. html/footer.html +1 -5
  24. javascript/ui.js +1 -1
  25. ldm_patched/k_diffusion/sampling.py +28 -723
  26. ldm_patched/ldm/modules/attention.py +29 -21
  27. ldm_patched/modules/args_parser.py +31 -0
  28. modules/api/api.py +14 -0
  29. modules/api/models.py +8 -0
  30. modules/cmd_args.py +1 -0
  31. modules/esrgan_model.py +24 -20
  32. modules/images.py +32 -5
  33. modules/img2img.py +0 -8
  34. modules/infotext_utils.py +3 -0
  35. modules/launch_utils.py +4 -6
  36. modules/modelloader.py +36 -68
  37. modules/options.py +20 -12
  38. modules/postprocessing.py +0 -24
  39. modules/processing.py +10 -0
  40. modules/processing_scripts/comments.py +2 -2
  41. modules/processing_scripts/mahiro.py +1 -0
  42. modules/processing_scripts/refiner.py +1 -0
  43. modules/processing_scripts/rescale_cfg.py +1 -0
  44. modules/processing_scripts/sampler.py +66 -0
  45. modules/processing_scripts/seed.py +1 -0
  46. modules/scripts_postprocessing.py +0 -1
  47. modules/sd_emphasis.py +8 -4
  48. modules/sd_samplers.py +105 -16
  49. modules/sd_samplers_cfg_denoiser.py +38 -27
  50. modules/sd_samplers_cfgpp.py +264 -0
README.md CHANGED
@@ -18,24 +18,23 @@ The name "Forge" is inspired by "Minecraft Forge". This project aims to become t
18
 
19
  <br>
20
 
21
- ## Features [Apr. 30]
22
  > Most base features of the original [Automatic1111 Webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui) should still function
23
 
24
  #### New Features
25
 
26
- - [X] Support `v-pred` **SDXL** checkpoints *(**eg.** [NoobAI](https://civitai.com/models/833294?modelVersionId=1190596))*
27
  - [X] Support [uv](https://github.com/astral-sh/uv) package manager
28
- - requires **uv**
29
  - drastically speed up installation
30
  - see [Commandline](#by-classic)
31
  - [X] Support [SageAttention](https://github.com/thu-ml/SageAttention)
32
- - requires **manually** installing the [triton](https://github.com/triton-lang/triton) package
33
  - [how to install](#install-triton)
34
  - requires RTX **30** +
35
- - ~10% speed up
36
  - see [Commandline](#by-classic)
37
  - [X] Support [FlashAttention](https://arxiv.org/abs/2205.14135)
38
- - requires **manually** installing the [flash-attn](https://github.com/Dao-AILab/flash-attention) package
39
  - [how to install](#install-flash-attn)
40
  - ~10% speed up
41
  - [X] Support fast `fp16_accumulation`
@@ -43,37 +42,46 @@ The name "Forge" is inspired by "Minecraft Forge". This project aims to become t
43
  - ~25% speed up
44
  - see [Commandline](#by-classic)
45
  - [X] Support fast `cublas` operation *(`CublasLinear`)*
46
- - requires **manually** installing the [cublas_ops](https://github.com/aredden/torch-cublas-hgemm) package
47
  - [how to install](#install-cublas)
48
  - ~25% speed up
49
- - enable in **Settings**
50
  - [X] Support fast `fp8` operation *(`torch._scaled_mm`)*
51
  - requires RTX **40** +
52
  - ~10% speed up; reduce quality
53
- - enable in **Settings**
54
 
55
  > [!Note]
56
- > - The `fp16_accumulation` and `cublas` operation achieve the same speed up; if you already install/update to `torch==2.7.0`, you do not need to go for `cublas_ops`
57
- > - The `fp16_accumulation` and `cublas` operation require `fp16` precision, thus is not compatible with the `fp8` operation
58
 
 
 
 
 
 
59
  - [X] Implement RescaleCFG
60
  - reduce burnt colors; mainly for `v-pred` checkpoints
 
61
  - [X] Implement MaHiRo
62
- - alternative CFG calculation
63
- - [graph](https://www.desmos.com/calculator/wcztf0ktiq)
64
- - [X] Implement `diskcache`
65
  - *(backported from Automatic1111 Webui upstream)*
66
  - [X] Implement `skip_early_cond`
67
  - *(backported from Automatic1111 Webui upstream)*
 
 
 
68
  - [X] Update `spandrel`
69
- - support most modern Upscaler architecture
70
  - [X] Add `pillow-heif` package
71
- - support `.avif` and `.heif` formats
72
- - [X] Automatic row split for `X/Y/Z Plot`
73
- - [X] Add an option to disable **Refiner**
74
- - [X] Add an option to disable ExtraNetworks **Tree View**
75
  - [X] Support [Union](https://huggingface.co/xinsir/controlnet-union-sdxl-1.0) / [ProMax](https://huggingface.co/brad-twinkl/controlnet-union-sdxl-1.0-promax) ControlNet
76
- - I just made them always show up in the dropdown
77
 
78
  #### Removed Features
79
 
@@ -88,9 +96,12 @@ The name "Forge" is inspired by "Minecraft Forge". This project aims to become t
88
  - [X] Textual Inversion Training
89
  - [X] Checkpoint Merging
90
  - [X] LDSR
91
- - [X] Most **built-in** Extensions
92
- - [X] Some **built-in** Scripts
93
- - [X] The `test` scripts
 
 
 
94
  - [X] `Photopea` and `openpose_editor` *(ControlNet)*
95
  - [X] Unix `.sh` launch scripts
96
  - You can still use this WebUI by copying a launch script from another working WebUI; I just don't want to maintain them...
@@ -103,17 +114,19 @@ The name "Forge" is inspired by "Minecraft Forge". This project aims to become t
103
  - [X] Fix memory leak when switching checkpoints
104
  - [X] Clean up the `ldm_patched` *(**ie.** `comfy`)* folder
105
  - [X] Remove unused `cmd_args`
106
- - [X] Remove unused `shared_options`
107
  - [X] Remove unused `args_parser`
 
108
  - [X] Remove legacy codes
109
  - [X] Remove duplicated upscaler codes
110
  - put every upscaler inside the `ESRGAN` folder
 
111
  - [X] Improve color correction
112
- - [X] Improve code logics
113
  - [X] Improve hash caching
114
  - [X] Improve error logs
115
- - no longer prints `TypeError: 'NoneType' object is not iterable`
116
- - [X] Improve setting descriptions
 
 
117
  - [X] Check for Extension updates in parallel
118
  - [X] Moved `embeddings` folder into `models` folder
119
  - [X] ControlNet Rewrite
@@ -121,19 +134,27 @@ The name "Forge" is inspired by "Minecraft Forge". This project aims to become t
121
  - remove multi-inputs, as they are "[misleading](https://github.com/lllyasviel/stable-diffusion-webui-forge/discussions/932)"
122
  - change `visible` toggle to `interactive` toggle; now the UI will no longer jump around
123
  - improved `Presets` application
 
 
 
 
124
  - [X] Run `text encoder` on CPU by default
125
  - [X] Fix `pydantic` Errors
126
  - [X] Fix `Soft Inpainting`
127
- - [X] Lint & Format most of the Python and JavaScript codes
128
- - [X] Update to Pillow 11
129
  - faster image processing
130
  - [X] Update `protobuf`
131
  - faster `insightface` loading
132
  - [X] Update to latest PyTorch
133
  - `torch==2.7.0+cu128`
134
  - `xformers==0.0.30`
 
 
 
 
135
  - [X] No longer install `open-clip` twice
136
- - [X] Update certain packages to newer versions
137
  - [X] Update recommended Python to `3.11.9`
138
  - [X] many more... :tm:
139
 
@@ -181,6 +202,12 @@ The name "Forge" is inspired by "Minecraft Forge". This project aims to become t
181
  > [!Important]
182
  > Using `symlink` means it will directly access the packages from the cache folders; refrain from clearing the cache when setting this option
183
 
 
 
 
 
 
 
184
  - `--fast-fp16`: Enable the `allow_fp16_accumulation` option
185
  - requires PyTorch **2.7.0** +
186
  - `--sage`: Install the `sageattention` package to speed up generation
@@ -188,14 +215,21 @@ The name "Forge" is inspired by "Minecraft Forge". This project aims to become t
188
  - requires RTX **30** +
189
  - only affects **SDXL**
190
 
191
- > [!Tip]
192
- > `--xformers` is still recommended even if you already have `--sage`, as `sageattention` does not speed up **VAE** while `xformers` does
193
 
194
- - `--model-ref`: Points to a central `models` folder that contains all your models
195
- - said folder should contain subfolders like `Stable-diffusion`, `Lora`, `VAE`, `ESRGAN`, etc.
196
 
197
- > [!Important]
198
- > This simply **replaces** the `models` folder, rather than adding on top of it
 
 
 
 
 
 
 
199
 
200
  <br>
201
 
@@ -212,7 +246,7 @@ The name "Forge" is inspired by "Minecraft Forge". This project aims to become t
212
  <details>
213
  <summary>Recommended Method</summary>
214
 
215
- - Install **[uv](https://github.com/astral-sh/uv)**
216
  - Set up **venv**
217
  ```bash
218
  cd sd-webui-forge-classic
@@ -329,7 +363,6 @@ The name "Forge" is inspired by "Minecraft Forge". This project aims to become t
329
  </details>
330
 
331
  ### Install sageattention 2
332
- > If you only use **SDXL**, then `1.x` is already enough; `2.x` simply has partial support for **SD1** checkpoints
333
 
334
  <details>
335
  <summary>Expand</summary>
@@ -363,10 +396,7 @@ The name "Forge" is inspired by "Minecraft Forge". This project aims to become t
363
 
364
  </details>
365
 
366
- <br>
367
-
368
  ### Install older PyTorch
369
- > Read this if your GPU does not support the latest PyTorch
370
 
371
  <details>
372
  <summary>Expand</summary>
@@ -385,7 +415,7 @@ set TORCH_COMMAND=pip install torch==2.1.2 torchvision==0.16.2 --extra-index-url
385
  ## Attention
386
 
387
  > [!Important]
388
- > The `--xformers` and `--sage` args are only responsible for installing the packages, **not** whether its respective attention is used; This also means you can remove them once they are successfully installed
389
 
390
  **Forge Classic** tries to import the packages and automatically choose the first available attention function in the following order:
391
 
@@ -395,8 +425,11 @@ set TORCH_COMMAND=pip install torch==2.1.2 torchvision==0.16.2 --extra-index-url
395
  4. `PyTorch`
396
  5. `Basic`
397
 
 
 
 
398
  > [!Note]
399
- > The VAE only checks for `xformers`
400
 
401
  In my experience, the speed of each attention function for SDXL is ranked in the following order:
402
 
@@ -405,6 +438,8 @@ In my experience, the speed of each attention function for SDXL is ranked in the
405
  > [!Note]
406
  > `SageAttention` is based on quantization, so its quality might be slightly worse than others
407
 
 
 
408
  ## Issues & Requests
409
 
410
  - **Issues** about removed features will simply be ignored
 
18
 
19
  <br>
20
 
21
+ ## Features [May. 21]
22
  > Most base features of the original [Automatic1111 Webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui) should still function
23
 
24
  #### New Features
25
 
 
26
  - [X] Support [uv](https://github.com/astral-sh/uv) package manager
27
+ - requires **manually** installing [uv](https://github.com/astral-sh/uv/releases)
28
  - drastically speed up installation
29
  - see [Commandline](#by-classic)
30
  - [X] Support [SageAttention](https://github.com/thu-ml/SageAttention)
31
+ - requires **manually** installing [triton](https://github.com/triton-lang/triton)
32
  - [how to install](#install-triton)
33
  - requires RTX **30** +
34
+ - ~10% speed up for SDXL
35
  - see [Commandline](#by-classic)
36
  - [X] Support [FlashAttention](https://arxiv.org/abs/2205.14135)
37
+ - requires **manually** installing [flash-attn](https://github.com/Dao-AILab/flash-attention)
38
  - [how to install](#install-flash-attn)
39
  - ~10% speed up
40
  - [X] Support fast `fp16_accumulation`
 
42
  - ~25% speed up
43
  - see [Commandline](#by-classic)
44
  - [X] Support fast `cublas` operation *(`CublasLinear`)*
45
+ - requires **manually** installing [cublas_ops](https://github.com/aredden/torch-cublas-hgemm)
46
  - [how to install](#install-cublas)
47
  - ~25% speed up
48
+ - enable in **Settings/Optimizations**
49
  - [X] Support fast `fp8` operation *(`torch._scaled_mm`)*
50
  - requires RTX **40** +
51
  - ~10% speed up; reduce quality
52
+ - enable in **Settings/Optimizations**
53
 
54
  > [!Note]
55
+ > - Both `fp16_accumulation` and `cublas_ops` achieve the same speed up; if you already install/update to PyTorch **2.7.0**, you do not need to go for `cublas_ops`
56
+ > - The `fp16_accumulation` and `cublas_ops` require `fp16` precision, thus is not compatible with the `fp8` operation
57
 
58
+ - [X] Implement new Samplers
59
+ - *(ported from reForge Webui)*
60
+ - [X] Implement Scheduler Dropdown
61
+ - *(backported from Automatic1111 Webui upstream)*
62
+ - enable in **Settings/UI alternatives**
63
  - [X] Implement RescaleCFG
64
  - reduce burnt colors; mainly for `v-pred` checkpoints
65
+ - enable in **Settings/UI alternatives**
66
  - [X] Implement MaHiRo
67
+ - alternative CFG calculation; improve prompt adherence
68
+ - enable in **Settings/UI alternatives**
69
+ - [X] Implement `diskcache` for hashes
70
  - *(backported from Automatic1111 Webui upstream)*
71
  - [X] Implement `skip_early_cond`
72
  - *(backported from Automatic1111 Webui upstream)*
73
+ - enable in **Settings/Optimizations**
74
+ - [X] Support `v-pred` **SDXL** checkpoints *(**eg.** [NoobAI](https://civitai.com/models/833294?modelVersionId=1190596))*
75
+ - [X] Support new LoRA architectures
76
  - [X] Update `spandrel`
77
+ - support new Upscaler architectures
78
  - [X] Add `pillow-heif` package
79
+ - support `.avif` and `.heif` images
80
+ - [X] Automatically determine the optimal row count for `X/Y/Z Plot`
81
+ - [X] `DepthAnything v2` Preprocessor
82
+ - [X] Support [NoobAI Inpaint](https://civitai.com/models/1376234/noobai-inpainting-controlnet) ControlNet
83
  - [X] Support [Union](https://huggingface.co/xinsir/controlnet-union-sdxl-1.0) / [ProMax](https://huggingface.co/brad-twinkl/controlnet-union-sdxl-1.0-promax) ControlNet
84
+ - they simply always show up in the dropdown
85
 
86
  #### Removed Features
87
 
 
96
  - [X] Textual Inversion Training
97
  - [X] Checkpoint Merging
98
  - [X] LDSR
99
+ - [X] Most built-in Extensions
100
+ - [X] Some built-in Scripts
101
+ - [X] Some Samplers
102
+ - [X] Sampler in RadioGroup
103
+ - [X] `test` scripts
104
+ - [X] Some Preprocessors *(ControlNet)*
105
  - [X] `Photopea` and `openpose_editor` *(ControlNet)*
106
  - [X] Unix `.sh` launch scripts
107
  - You can still use this WebUI by copying a launch script from another working WebUI; I just don't want to maintain them...
 
114
  - [X] Fix memory leak when switching checkpoints
115
  - [X] Clean up the `ldm_patched` *(**ie.** `comfy`)* folder
116
  - [X] Remove unused `cmd_args`
 
117
  - [X] Remove unused `args_parser`
118
+ - [X] Remove unused `shared_options`
119
  - [X] Remove legacy codes
120
  - [X] Remove duplicated upscaler codes
121
  - put every upscaler inside the `ESRGAN` folder
122
+ - optimize upscaler logics
123
  - [X] Improve color correction
 
124
  - [X] Improve hash caching
125
  - [X] Improve error logs
126
+ - no longer just print `TypeError: 'NoneType' object is not iterable`
127
+ - [X] Revamp settings
128
+ - improve formatting
129
+ - update descriptions
130
  - [X] Check for Extension updates in parallel
131
  - [X] Moved `embeddings` folder into `models` folder
132
  - [X] ControlNet Rewrite
 
134
  - remove multi-inputs, as they are "[misleading](https://github.com/lllyasviel/stable-diffusion-webui-forge/discussions/932)"
135
  - change `visible` toggle to `interactive` toggle; now the UI will no longer jump around
136
  - improved `Presets` application
137
+ - [X] Disable Refiner by default
138
+ - enable again in **Settings/UI alternatives**
139
+ - [X] Disable Tree View by default
140
+ - enable again in **Settings/Extra Networks**
141
  - [X] Run `text encoder` on CPU by default
142
  - [X] Fix `pydantic` Errors
143
  - [X] Fix `Soft Inpainting`
144
+ - [X] Lint & Format
145
+ - [X] Update `Pillow`
146
  - faster image processing
147
  - [X] Update `protobuf`
148
  - faster `insightface` loading
149
  - [X] Update to latest PyTorch
150
  - `torch==2.7.0+cu128`
151
  - `xformers==0.0.30`
152
+
153
+ > [!Tip]
154
+ > If your GPU does not support the latest PyTorch, manually [install](#install-older-pytorch) older version of PyTorch
155
+
156
  - [X] No longer install `open-clip` twice
157
+ - [X] Update some packages to newer versions
158
  - [X] Update recommended Python to `3.11.9`
159
  - [X] many more... :tm:
160
 
 
202
  > [!Important]
203
  > Using `symlink` means it will directly access the packages from the cache folders; refrain from clearing the cache when setting this option
204
 
205
+ - `--model-ref`: Points to a central `models` folder that contains all your models
206
+ - said folder should contain subfolders like `Stable-diffusion`, `Lora`, `VAE`, `ESRGAN`, etc.
207
+
208
+ > [!Important]
209
+ > This simply **replaces** the `models` folder, rather than adding on top of it
210
+
211
  - `--fast-fp16`: Enable the `allow_fp16_accumulation` option
212
  - requires PyTorch **2.7.0** +
213
  - `--sage`: Install the `sageattention` package to speed up generation
 
215
  - requires RTX **30** +
216
  - only affects **SDXL**
217
 
218
+ > [!Note]
219
+ > For RTX **50** users, you may need to manually [install](#install-sageattention-2) `sageattention 2` instead
220
 
221
+ <details>
222
+ <summary>with SageAttention 2</summary>
223
 
224
+ - `--sageattn2-api`: Select the function used by **SageAttention 2**
225
+ - **options:**
226
+ - `auto` (default)
227
+ - `triton-fp16`
228
+ - `cuda-fp16`
229
+ - `cuda-fp8`
230
+ - try the `fp16` options if you get `NaN` *(black images)* on `auto`
231
+
232
+ </details>
233
 
234
  <br>
235
 
 
246
  <details>
247
  <summary>Recommended Method</summary>
248
 
249
+ - Install **[uv](https://github.com/astral-sh/uv#installation)**
250
  - Set up **venv**
251
  ```bash
252
  cd sd-webui-forge-classic
 
363
  </details>
364
 
365
  ### Install sageattention 2
 
366
 
367
  <details>
368
  <summary>Expand</summary>
 
396
 
397
  </details>
398
 
 
 
399
  ### Install older PyTorch
 
400
 
401
  <details>
402
  <summary>Expand</summary>
 
415
  ## Attention
416
 
417
  > [!Important]
418
+ > The `--xformers` and `--sage` args are only responsible for installing the packages, **not** whether its respective attention is used *(this also means you can remove them once the packages are successfully installed)*
419
 
420
  **Forge Classic** tries to import the packages and automatically choose the first available attention function in the following order:
421
 
 
425
  4. `PyTorch`
426
  5. `Basic`
427
 
428
+ > [!Tip]
429
+ > To skip a specific attention, add the respective disable arg such as `--disable-sage`
430
+
431
  > [!Note]
432
+ > The **VAE** only checks for `xformers`, so `--xformers` is still recommended even if you already have `--sage`
433
 
434
  In my experience, the speed of each attention function for SDXL is ranked in the following order:
435
 
 
438
  > [!Note]
439
  > `SageAttention` is based on quantization, so its quality might be slightly worse than others
440
 
441
+ <br>
442
+
443
  ## Issues & Requests
444
 
445
  - **Issues** about removed features will simply be ignored
extensions-builtin/Lora/extra_networks_lora.py CHANGED
@@ -26,17 +26,19 @@ class ExtraNetworkLora(extra_networks.ExtraNetwork):
26
  for params in params_list:
27
  assert params.items
28
 
29
- names.append(params.positional[0])
30
-
31
  te_multiplier = float(params.positional[1]) if len(params.positional) > 1 else 1.0
32
  te_multiplier = float(params.named.get("te", te_multiplier))
33
 
34
  unet_multiplier = float(params.positional[2]) if len(params.positional) > 2 else te_multiplier
35
  unet_multiplier = float(params.named.get("unet", unet_multiplier))
36
 
 
 
 
37
  dyn_dim = int(params.positional[3]) if len(params.positional) > 3 else None
38
  dyn_dim = int(params.named["dyn"]) if "dyn" in params.named else dyn_dim
39
 
 
40
  te_multipliers.append(te_multiplier)
41
  unet_multipliers.append(unet_multiplier)
42
  dyn_dims.append(dyn_dim)
 
26
  for params in params_list:
27
  assert params.items
28
 
 
 
29
  te_multiplier = float(params.positional[1]) if len(params.positional) > 1 else 1.0
30
  te_multiplier = float(params.named.get("te", te_multiplier))
31
 
32
  unet_multiplier = float(params.positional[2]) if len(params.positional) > 2 else te_multiplier
33
  unet_multiplier = float(params.named.get("unet", unet_multiplier))
34
 
35
+ if te_multiplier == 0.0 and unet_multiplier == 0.0:
36
+ continue
37
+
38
  dyn_dim = int(params.positional[3]) if len(params.positional) > 3 else None
39
  dyn_dim = int(params.named["dyn"]) if "dyn" in params.named else dyn_dim
40
 
41
+ names.append(params.positional[0])
42
  te_multipliers.append(te_multiplier)
43
  unet_multipliers.append(unet_multiplier)
44
  dyn_dims.append(dyn_dim)
extensions-builtin/Lora/network.py CHANGED
@@ -21,16 +21,15 @@ metadata_tags_order = {
21
  class SDVersion(enum.Enum):
22
  Unknown = -1
23
  SD1 = 1
24
- SD2 = 2
25
  SDXL = 3
26
 
27
 
28
  class NetworkOnDisk:
29
- def __init__(self, name, filename):
30
- self.name = name
31
- self.filename = filename
32
- self.metadata = {}
33
- self.is_safetensors = filename.lower().endswith(".safetensors")
34
 
35
  def read_metadata():
36
  metadata = sd_models.read_metadata_from_safetensors(filename)
@@ -50,19 +49,17 @@ class NetworkOnDisk:
50
 
51
  self.metadata = m
52
 
53
- self.alias = self.metadata.get("ss_output_name", self.name)
54
 
55
- self.hash = None
56
- self.shorthash = None
57
  self.set_hash(self.metadata.get("sshs_model_hash") or hashes.sha256_from_cache(self.filename, "/".join(["lora", self.name]), use_addnet_hash=self.is_safetensors) or "")
58
 
59
- self.sd_version = self.detect_version()
60
 
61
  def detect_version(self):
62
  if str(self.metadata.get("ss_base_model_version", "")).startswith("sdxl_"):
63
  return SDVersion.SDXL
64
- elif str(self.metadata.get("ss_v2", "")) == "True":
65
- return SDVersion.SD2
66
  elif len(self.metadata):
67
  return SDVersion.SD1
68
 
 
21
  class SDVersion(enum.Enum):
22
  Unknown = -1
23
  SD1 = 1
 
24
  SDXL = 3
25
 
26
 
27
  class NetworkOnDisk:
28
+ def __init__(self, name: str, filename: str):
29
+ self.name: str = name
30
+ self.filename: str = filename
31
+ self.metadata: dict[str, str] = {}
32
+ self.is_safetensors: bool = filename.lower().endswith(".safetensors")
33
 
34
  def read_metadata():
35
  metadata = sd_models.read_metadata_from_safetensors(filename)
 
49
 
50
  self.metadata = m
51
 
52
+ self.alias: str = self.metadata.get("ss_output_name", self.name)
53
 
54
+ self.hash: str = None
55
+ self.shorthash: str = None
56
  self.set_hash(self.metadata.get("sshs_model_hash") or hashes.sha256_from_cache(self.filename, "/".join(["lora", self.name]), use_addnet_hash=self.is_safetensors) or "")
57
 
58
+ self.sd_version: "SDVersion" = self.detect_version()
59
 
60
  def detect_version(self):
61
  if str(self.metadata.get("ss_base_model_version", "")).startswith("sdxl_"):
62
  return SDVersion.SDXL
 
 
63
  elif len(self.metadata):
64
  return SDVersion.SD1
65
 
extensions-builtin/Lora/networks.py CHANGED
@@ -20,6 +20,16 @@ def load_network(name, network_on_disk):
20
  return net
21
 
22
 
 
 
 
 
 
 
 
 
 
 
23
  def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=None):
24
  global lora_state_dict_cache
25
 
@@ -29,8 +39,7 @@ def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=No
29
 
30
  loaded_networks.clear()
31
 
32
- networks_on_disk = [(available_networks.get(name, None) if name.lower() in forbidden_network_aliases else available_network_aliases.get(name, None)) for name in names]
33
- assert not any(x is None for x in networks_on_disk)
34
 
35
  for network_on_disk, name in zip(networks_on_disk, names):
36
  try:
 
20
  return net
21
 
22
 
23
+ def get_networks_on_desk(names: list[str], *, tried: bool = True) -> list["network.NetworkOnDisk"]:
24
+ networks_on_disk = [(available_networks.get(name, None) if name.lower() in forbidden_network_aliases else available_network_aliases.get(name, None)) for name in names]
25
+
26
+ if tried or all(x is not None for x in networks_on_disk):
27
+ return networks_on_disk
28
+
29
+ list_available_networks()
30
+ return get_networks_on_desk(names, tried=True)
31
+
32
+
33
  def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=None):
34
  global lora_state_dict_cache
35
 
 
39
 
40
  loaded_networks.clear()
41
 
42
+ networks_on_disk = get_networks_on_desk(names, tried=False)
 
43
 
44
  for network_on_disk, name in zip(networks_on_disk, names):
45
  try:
extensions-builtin/Lora/scripts/lora_script.py CHANGED
@@ -14,11 +14,10 @@ shared.options_templates.update(
14
  shared.options_section(
15
  ("extra_networks", "Extra Networks"),
16
  {
17
- "sd_lora": shared.OptionInfo("None", "Add network to prompt", gr.Dropdown, lambda: {"choices": ["None", *networks.available_networks]}, refresh=networks.list_available_networks),
18
- "lora_preferred_name": shared.OptionInfo("Alias from file", "When adding to prompt, refer to Lora by", gr.Radio, {"choices": ["Alias from file", "Filename"]}),
19
- "lora_add_hashes_to_infotext": shared.OptionInfo(True, "Add Lora hashes to infotext"),
20
- "lora_show_all": shared.OptionInfo(False, "Always show all networks on the Lora page").info("otherwise, those detected as for incompatible version of Stable Diffusion will be hidden"),
21
- "lora_hide_unknown_for_versions": shared.OptionInfo([], "Hide networks of unknown versions for model versions", gr.CheckboxGroup, {"choices": ["SD1", "SD2", "SDXL"]}),
22
  },
23
  )
24
  )
 
14
  shared.options_section(
15
  ("extra_networks", "Extra Networks"),
16
  {
17
+ "sd_lora": shared.OptionInfo("None", "Append LoRA to prompt", gr.Dropdown, lambda: {"choices": ["None", *networks.available_networks]}, refresh=networks.list_available_networks),
18
+ "lora_preferred_name": shared.OptionInfo("Alias", "When adding syntax to prompt, refer to LoRA by", gr.Radio, {"choices": ("Alias", "Filename")}),
19
+ "lora_add_hashes_to_infotext": shared.OptionInfo(True, "Append LoRA hashes to infotext"),
20
+ "lora_show_all": shared.OptionInfo(False, "Always show all LoRA cards").info("otherwise, those detected as for incompatible version of Stable Diffusion will be hidden"),
 
21
  },
22
  )
23
  )
extensions-builtin/Lora/ui_edit_user_metadata.py CHANGED
@@ -68,6 +68,7 @@ class LoraUserMetadataEditor(UserMetadataEditor):
68
  user_metadata["notes"] = notes
69
 
70
  self.write_user_metadata(name, user_metadata)
 
71
 
72
  def get_metadata_table(self, name):
73
  table = super().get_metadata_table(name)
@@ -146,7 +147,7 @@ class LoraUserMetadataEditor(UserMetadataEditor):
146
 
147
  def create_extra_default_items_in_left_column(self):
148
  self.select_sd_version = gr.Dropdown(
149
- choices=("SD1", "SD2", "SDXL", "Unknown"),
150
  value="Unknown",
151
  label="Stable Diffusion Version",
152
  interactive=True,
 
68
  user_metadata["notes"] = notes
69
 
70
  self.write_user_metadata(name, user_metadata)
71
+ self.page.refresh()
72
 
73
  def get_metadata_table(self, name):
74
  table = super().get_metadata_table(name)
 
147
 
148
  def create_extra_default_items_in_left_column(self):
149
  self.select_sd_version = gr.Dropdown(
150
+ choices=("SD1", "SDXL", "Unknown"),
151
  value="Unknown",
152
  label="Stable Diffusion Version",
153
  interactive=True,
extensions-builtin/Lora/ui_extra_networks_lora.py CHANGED
@@ -53,13 +53,7 @@ class ExtraNetworksPageLora(ExtraNetworksPage):
53
  sd_version = lora_on_disk.sd_version
54
 
55
  if enable_filter and not shared.opts.lora_show_all:
56
- if sd_version is network.SDVersion.Unknown:
57
- model_version = network.SDVersion.SDXL if shared.sd_model.is_sdxl else network.SDVersion.SD1
58
- if model_version.name in shared.opts.lora_hide_unknown_for_versions:
59
- return None
60
- elif shared.sd_model.is_sdxl and sd_version != network.SDVersion.SDXL:
61
- return None
62
- elif shared.sd_model.is_sd2 and sd_version != network.SDVersion.SD2:
63
  return None
64
  elif shared.sd_model.is_sd1 and sd_version != network.SDVersion.SD1:
65
  return None
 
53
  sd_version = lora_on_disk.sd_version
54
 
55
  if enable_filter and not shared.opts.lora_show_all:
56
+ if shared.sd_model.is_sdxl and sd_version != network.SDVersion.SDXL:
 
 
 
 
 
 
57
  return None
58
  elif shared.sd_model.is_sd1 and sd_version != network.SDVersion.SD1:
59
  return None
extensions-builtin/forge_legacy_preprocessors/annotator/depth_anything.py CHANGED
@@ -1,15 +1,15 @@
1
  import os
2
- import torch
3
  import cv2
4
  import numpy as np
 
5
  import torch.nn.functional as F
 
 
6
  from torchvision.transforms import Compose
7
 
8
- from depth_anything.dpt import DPT_DINOv2
9
- from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
10
- from .util import load_model
11
  from .annotator_path import models_path
12
-
13
 
14
  transform = Compose(
15
  [
@@ -49,9 +49,7 @@ class DepthAnythingDetector:
49
  "CONTROLNET_DEPTH_ANYTHING_MODEL_URL",
50
  "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vitl14.pth",
51
  )
52
- model_path = load_model(
53
- "depth_anything_vitl14.pth", remote_url=remote_url, model_dir=self.model_dir
54
- )
55
  self.model.load_state_dict(torch.load(model_path))
56
 
57
  def __call__(self, image: np.ndarray, colored: bool = True) -> np.ndarray:
@@ -67,9 +65,7 @@ class DepthAnythingDetector:
67
  return model(image)
68
 
69
  depth = predict_depth(self.model, image)
70
- depth = F.interpolate(
71
- depth[None], (h, w), mode="bilinear", align_corners=False
72
- )[0, 0]
73
  depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
74
  depth = depth.cpu().numpy().astype(np.uint8)
75
  if colored:
 
1
  import os
2
+
3
  import cv2
4
  import numpy as np
5
+ import torch
6
  import torch.nn.functional as F
7
+ from depth_anything.dpt import DPT_DINOv2
8
+ from depth_anything.util.transform import NormalizeImage, PrepareForNet, Resize
9
  from torchvision.transforms import Compose
10
 
 
 
 
11
  from .annotator_path import models_path
12
+ from .util import load_model
13
 
14
  transform = Compose(
15
  [
 
49
  "CONTROLNET_DEPTH_ANYTHING_MODEL_URL",
50
  "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vitl14.pth",
51
  )
52
+ model_path = load_model("depth_anything_vitl14.pth", remote_url=remote_url, model_dir=self.model_dir)
 
 
53
  self.model.load_state_dict(torch.load(model_path))
54
 
55
  def __call__(self, image: np.ndarray, colored: bool = True) -> np.ndarray:
 
65
  return model(image)
66
 
67
  depth = predict_depth(self.model, image)
68
+ depth = F.interpolate(depth[None], (h, w), mode="bilinear", align_corners=False)[0, 0]
 
 
69
  depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
70
  depth = depth.cpu().numpy().astype(np.uint8)
71
  if colored:
extensions-builtin/forge_legacy_preprocessors/annotator/depth_anything_v2.py ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import cv2
4
+ import numpy as np
5
+ import torch
6
+ import torch.nn.functional as F
7
+ from depth_anything_v2.dpt import DepthAnythingV2
8
+ from depth_anything_v2.util.transform import NormalizeImage, PrepareForNet, Resize
9
+ from safetensors.torch import load_file
10
+ from torchvision.transforms import Compose
11
+
12
+ from .annotator_path import models_path
13
+ from .util import load_model
14
+
15
+ transform = Compose(
16
+ [
17
+ Resize(
18
+ width=518,
19
+ height=518,
20
+ resize_target=False,
21
+ keep_aspect_ratio=True,
22
+ ensure_multiple_of=14,
23
+ resize_method="lower_bound",
24
+ image_interpolation_method=cv2.INTER_CUBIC,
25
+ ),
26
+ NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
27
+ PrepareForNet(),
28
+ ]
29
+ )
30
+
31
+
32
+ class DepthAnythingV2Detector:
33
+ """https://github.com/MackinationsAi/Upgraded-Depth-Anything-V2"""
34
+
35
+ model_dir = os.path.join(models_path, "depth_anything_v2")
36
+
37
+ def __init__(self, device: torch.device):
38
+ self.device = device
39
+ self.model = (
40
+ DepthAnythingV2(
41
+ encoder="vitl",
42
+ features=256,
43
+ out_channels=[256, 512, 1024, 1024],
44
+ )
45
+ .to(device)
46
+ .eval()
47
+ )
48
+ remote_url = os.environ.get(
49
+ "CONTROLNET_DEPTH_ANYTHING_V2_MODEL_URL",
50
+ "https://huggingface.co/MackinationsAi/Depth-Anything-V2_Safetensors/resolve/main/depth_anything_v2_vitl.safetensors",
51
+ )
52
+ model_path = load_model("depth_anything_v2_vitl.safetensors", remote_url=remote_url, model_dir=self.model_dir)
53
+ self.model.load_state_dict(load_file(model_path))
54
+
55
+ def __call__(self, image: np.ndarray, colored: bool = True) -> np.ndarray:
56
+ self.model.to(self.device)
57
+ h, w = image.shape[:2]
58
+
59
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) / 255.0
60
+ image = transform({"image": image})["image"]
61
+ image = torch.from_numpy(image).unsqueeze(0).to(self.device)
62
+
63
+ @torch.no_grad()
64
+ def predict_depth(model, image):
65
+ return model(image)
66
+
67
+ depth = predict_depth(self.model, image)
68
+ depth = F.interpolate(depth[None], (h, w), mode="bilinear", align_corners=False)[0, 0]
69
+ depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
70
+ depth = depth.cpu().numpy().astype(np.uint8)
71
+ if colored:
72
+ depth_color = cv2.applyColorMap(depth, cv2.COLORMAP_INFERNO)[:, :, ::-1]
73
+ return depth_color
74
+ else:
75
+ return depth
76
+
77
+ def unload_model(self):
78
+ self.model.to("cpu")
extensions-builtin/forge_legacy_preprocessors/annotator/pidinet/model.py CHANGED
@@ -11,7 +11,7 @@ import torch
11
  import torch.nn as nn
12
  import torch.nn.functional as F
13
  from modules import devices
14
- from basicsr.utils import img2tensor
15
 
16
  nets = {
17
  "baseline": {
@@ -739,17 +739,3 @@ def pidinet():
739
  pdcs = config_model("carv4")
740
  dil = 24 # if args.dil else None
741
  return PiDiNet(60, pdcs, dil=dil, sa=True)
742
-
743
-
744
- if __name__ == "__main__":
745
- model = pidinet()
746
- ckp = torch.load("table5_pidinet.pth")["state_dict"]
747
- model.load_state_dict({k.replace("module.", ""): v for k, v in ckp.items()})
748
- im = cv2.imread("examples/test_my/cat_v4.png")
749
- im = img2tensor(im).unsqueeze(0) / 255.0
750
- res = model(im)[-1]
751
- res = res > 0.5
752
- res = res.float()
753
- res = (res[0, 0].cpu().data.numpy() * 255.0).astype(np.uint8)
754
- print(res.shape)
755
- cv2.imwrite("edge.png", res)
 
11
  import torch.nn as nn
12
  import torch.nn.functional as F
13
  from modules import devices
14
+
15
 
16
  nets = {
17
  "baseline": {
 
739
  pdcs = config_model("carv4")
740
  dil = 24 # if args.dil else None
741
  return PiDiNet(60, pdcs, dil=dil, sa=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
extensions-builtin/forge_legacy_preprocessors/install.py CHANGED
@@ -1,8 +1,6 @@
1
  import os
2
  from pathlib import Path
3
- from typing import Optional, Tuple
4
-
5
- import pkg_resources
6
 
7
  import launch
8
 
@@ -10,72 +8,37 @@ repo_root = Path(__file__).parent
10
  main_req_file = repo_root / "requirements.txt"
11
 
12
 
13
- def comparable_version(version: str) -> Tuple:
14
- return tuple(version.split("."))
15
-
16
-
17
- def get_installed_version(package: str) -> Optional[str]:
18
- try:
19
- return pkg_resources.get_distribution(package).version
20
- except Exception:
21
- return None
22
-
23
-
24
- def extract_base_package(package_string: str) -> str:
25
- base_package = package_string.split("@git")[0]
26
- return base_package
27
-
28
-
29
  def install_requirements(req_file):
30
- with open(req_file) as file:
31
- for package in file:
32
  try:
33
  package = package.strip()
34
- if "==" in package:
35
- package_name, package_version = package.split("==")
36
- installed_version = get_installed_version(package_name)
37
- if installed_version != package_version:
38
- launch.run_pip(
39
- f"install -U {package}",
40
- f"forge_legacy_preprocessor requirement: {package_name}=={package_version}",
41
- )
42
- elif ">=" in package:
43
- package_name, package_version = package.split(">=")
44
- installed_version = get_installed_version(package_name)
45
- if not installed_version or comparable_version(installed_version) < comparable_version(package_version):
46
- launch.run_pip(
47
- f"install -U {package}",
48
- f"forge_legacy_preprocessor requirement: {package_name}=={package_version}",
49
- )
50
- elif not launch.is_installed(extract_base_package(package)):
51
  launch.run_pip(
52
  f"install {package}",
53
- f"forge_legacy_preprocessor requirement: {package}",
54
  )
55
  except Exception as e:
56
- print(e)
57
- print(f"Warning: Failed to install {package}, some preprocessors may not work.")
58
 
59
 
60
- def try_install_from_wheel(pkg_name: str, wheel_url: str, version: Optional[str] = None):
61
- current_version = get_installed_version(pkg_name)
62
- if current_version is not None:
63
- if version is None:
64
- return
65
- if comparable_version(current_version) >= comparable_version(version):
66
- return
67
 
68
  try:
69
  launch.run_pip(
70
  f"install -U {wheel_url}",
71
- f"forge_legacy_preprocessor requirement: {pkg_name}",
72
  )
73
  except Exception as e:
74
- print(e)
75
- print(f"Warning: Failed to install {pkg_name}. Some processors will not work.")
76
-
77
 
78
- install_requirements(main_req_file)
79
 
80
  try_install_from_wheel(
81
  "handrefinerportable",
@@ -83,8 +46,8 @@ try_install_from_wheel(
83
  "HANDREFINER_WHEEL",
84
  "https://github.com/huchenlei/HandRefinerPortable/releases/download/v1.0.1/handrefinerportable-2024.2.12.0-py2.py3-none-any.whl",
85
  ),
86
- version="2024.2.12.0",
87
  )
 
88
  try_install_from_wheel(
89
  "depth_anything",
90
  wheel_url=os.environ.get(
@@ -92,3 +55,11 @@ try_install_from_wheel(
92
  "https://github.com/huchenlei/Depth-Anything/releases/download/v1.0.0/depth_anything-2024.1.22.0-py2.py3-none-any.whl",
93
  ),
94
  )
 
 
 
 
 
 
 
 
 
1
  import os
2
  from pathlib import Path
3
+ from modules.errors import display
 
 
4
 
5
  import launch
6
 
 
8
  main_req_file = repo_root / "requirements.txt"
9
 
10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  def install_requirements(req_file):
12
+ with open(req_file, "r") as file:
13
+ for package in file.readlines():
14
  try:
15
  package = package.strip()
16
+ if not launch.is_installed(package):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  launch.run_pip(
18
  f"install {package}",
19
+ f"Legacy Preprocessor Requirement: {package}",
20
  )
21
  except Exception as e:
22
+ display(e, "cnet req")
23
+ print(f"Failed to install {package}, some Preprocessors may not work...")
24
 
25
 
26
+ install_requirements(main_req_file)
27
+
28
+
29
+ def try_install_from_wheel(pkg_name: str, wheel_url: str):
30
+ if launch.is_installed(pkg_name):
31
+ return
 
32
 
33
  try:
34
  launch.run_pip(
35
  f"install -U {wheel_url}",
36
+ f"Legacy Preprocessor Requirement: {pkg_name}",
37
  )
38
  except Exception as e:
39
+ display(e, "cnet req")
40
+ print(f"Failed to install {pkg_name}, some Preprocessors may not work...")
 
41
 
 
42
 
43
  try_install_from_wheel(
44
  "handrefinerportable",
 
46
  "HANDREFINER_WHEEL",
47
  "https://github.com/huchenlei/HandRefinerPortable/releases/download/v1.0.1/handrefinerportable-2024.2.12.0-py2.py3-none-any.whl",
48
  ),
 
49
  )
50
+
51
  try_install_from_wheel(
52
  "depth_anything",
53
  wheel_url=os.environ.get(
 
55
  "https://github.com/huchenlei/Depth-Anything/releases/download/v1.0.0/depth_anything-2024.1.22.0-py2.py3-none-any.whl",
56
  ),
57
  )
58
+
59
+ try_install_from_wheel(
60
+ "depth_anything_v2",
61
+ wheel_url=os.environ.get(
62
+ "DEPTH_ANYTHING_V2_WHEEL",
63
+ "https://github.com/MackinationsAi/UDAV2-ControlNet/releases/download/v1.0.0/depth_anything_v2-2024.7.1.0-py2.py3-none-any.whl",
64
+ ),
65
+ )
extensions-builtin/forge_legacy_preprocessors/legacy_preprocessors/preprocessor.py CHANGED
@@ -168,9 +168,7 @@ def mediapipe_face(img, res=512, thr_a: int = 10, thr_b: float = 0.5, **kwargs):
168
  from annotator.mediapipe_face import apply_mediapipe_face
169
 
170
  model_mediapipe_face = apply_mediapipe_face
171
- result = model_mediapipe_face(
172
- img, max_faces=max_faces, min_confidence=min_confidence
173
- )
174
  return remove_pad(result), True
175
 
176
 
@@ -217,6 +215,26 @@ def unload_depth_anything():
217
  model_depth_anything.unload_model()
218
 
219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
220
  model_midas = None
221
 
222
 
@@ -305,17 +323,20 @@ class OpenposeModel(object):
305
 
306
  self.model_openpose = OpenposeDetector()
307
 
308
- return remove_pad(
309
- self.model_openpose(
310
- img,
311
- include_body=include_body,
312
- include_hand=include_hand,
313
- include_face=include_face,
314
- use_dw_pose=use_dw_pose,
315
- use_animal_pose=use_animal_pose,
316
- json_pose_callback=json_pose_callback,
317
- )
318
- ), True
 
 
 
319
 
320
  def unload(self):
321
  if self.model_openpose is not None:
@@ -566,9 +587,7 @@ def lama_inpaint(img, res=512, **kwargs):
566
  prd_color = cv2.resize(prd_color, (W, H))
567
 
568
  alpha = raw_mask.astype(np.float32) / 255.0
569
- fin_color = prd_color.astype(np.float32) * alpha + raw_color.astype(np.float32) * (
570
- 1 - alpha
571
- )
572
  fin_color = fin_color.clip(0, 255).astype(np.uint8)
573
 
574
  result = np.concatenate([fin_color, raw_mask], axis=2)
@@ -613,46 +632,6 @@ def unload_normal_bae():
613
  pass
614
 
615
 
616
- model_oneformer_coco = None
617
-
618
-
619
- def oneformer_coco(img, res=512, **kwargs):
620
- img, remove_pad = resize_image_with_pad(img, res)
621
- global model_oneformer_coco
622
- if model_oneformer_coco is None:
623
- from annotator.oneformer import OneformerDetector
624
-
625
- model_oneformer_coco = OneformerDetector(OneformerDetector.configs["coco"])
626
- result = model_oneformer_coco(img)
627
- return remove_pad(result), True
628
-
629
-
630
- def unload_oneformer_coco():
631
- global model_oneformer_coco
632
- if model_oneformer_coco is not None:
633
- model_oneformer_coco.unload_model()
634
-
635
-
636
- model_oneformer_ade20k = None
637
-
638
-
639
- def oneformer_ade20k(img, res=512, **kwargs):
640
- img, remove_pad = resize_image_with_pad(img, res)
641
- global model_oneformer_ade20k
642
- if model_oneformer_ade20k is None:
643
- from annotator.oneformer import OneformerDetector
644
-
645
- model_oneformer_ade20k = OneformerDetector(OneformerDetector.configs["ade20k"])
646
- result = model_oneformer_ade20k(img)
647
- return remove_pad(result), True
648
-
649
-
650
- def unload_oneformer_ade20k():
651
- global model_oneformer_ade20k
652
- if model_oneformer_ade20k is not None:
653
- model_oneformer_ade20k.unload_model()
654
-
655
-
656
  model_shuffle = None
657
 
658
 
@@ -808,15 +787,10 @@ class InsightFaceModel:
808
  if not faces:
809
  raise Exception(f"Insightface: No face found in image {i}.")
810
  if len(faces) > 1:
811
- print(
812
- "Insightface: More than one face is detected in the image. "
813
- f"Only the first one will be used {i}."
814
- )
815
  return torch.from_numpy(faces[0].normed_embedding).unsqueeze(0), False
816
 
817
- def run_model_instant_id(
818
- self, img: np.ndarray, res: int = 512, return_keypoints: bool = False, **kwargs
819
- ) -> Tuple[Union[np.ndarray, torch.Tensor], bool]:
820
  """Run the insightface model for instant_id.
821
  Arguments:
822
  - img: Input image in any size.
@@ -877,10 +851,7 @@ class InsightFaceModel:
877
  if not face_info:
878
  raise Exception(f"Insightface: No face found in image.")
879
  if len(face_info) > 1:
880
- print(
881
- "Insightface: More than one face is detected in the image. "
882
- f"Only the biggest one will be used."
883
- )
884
  # only use the maximum face
885
  face_info = sorted(
886
  face_info,
@@ -893,9 +864,7 @@ class InsightFaceModel:
893
 
894
 
895
  g_insight_face_model = InsightFaceModel()
896
- g_insight_face_instant_id_model = InsightFaceModel(
897
- face_analysis_model_name="antelopev2"
898
- )
899
 
900
 
901
  @dataclass
 
168
  from annotator.mediapipe_face import apply_mediapipe_face
169
 
170
  model_mediapipe_face = apply_mediapipe_face
171
+ result = model_mediapipe_face(img, max_faces=max_faces, min_confidence=min_confidence)
 
 
172
  return remove_pad(result), True
173
 
174
 
 
215
  model_depth_anything.unload_model()
216
 
217
 
218
+ model_depth_anything_v2 = None
219
+
220
+
221
+ def depth_anything_v2(img, res: int = 512, colored: bool = True, **kwargs):
222
+ img, remove_pad = resize_image_with_pad(img, res)
223
+ global model_depth_anything_v2
224
+ if model_depth_anything_v2 is None:
225
+ with Extra(torch_handler):
226
+ from annotator.depth_anything_v2 import DepthAnythingV2Detector
227
+
228
+ device = devices.get_device_for("controlnet")
229
+ model_depth_anything_v2 = DepthAnythingV2Detector(device)
230
+ return remove_pad(model_depth_anything_v2(img, colored=colored)), True
231
+
232
+
233
+ def unload_depth_anything_v2():
234
+ if model_depth_anything_v2 is not None:
235
+ model_depth_anything_v2.unload_model()
236
+
237
+
238
  model_midas = None
239
 
240
 
 
323
 
324
  self.model_openpose = OpenposeDetector()
325
 
326
+ return (
327
+ remove_pad(
328
+ self.model_openpose(
329
+ img,
330
+ include_body=include_body,
331
+ include_hand=include_hand,
332
+ include_face=include_face,
333
+ use_dw_pose=use_dw_pose,
334
+ use_animal_pose=use_animal_pose,
335
+ json_pose_callback=json_pose_callback,
336
+ )
337
+ ),
338
+ True,
339
+ )
340
 
341
  def unload(self):
342
  if self.model_openpose is not None:
 
587
  prd_color = cv2.resize(prd_color, (W, H))
588
 
589
  alpha = raw_mask.astype(np.float32) / 255.0
590
+ fin_color = prd_color.astype(np.float32) * alpha + raw_color.astype(np.float32) * (1 - alpha)
 
 
591
  fin_color = fin_color.clip(0, 255).astype(np.uint8)
592
 
593
  result = np.concatenate([fin_color, raw_mask], axis=2)
 
632
  pass
633
 
634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
635
  model_shuffle = None
636
 
637
 
 
787
  if not faces:
788
  raise Exception(f"Insightface: No face found in image {i}.")
789
  if len(faces) > 1:
790
+ print("Insightface: More than one face is detected in the image. " f"Only the first one will be used {i}.")
 
 
 
791
  return torch.from_numpy(faces[0].normed_embedding).unsqueeze(0), False
792
 
793
+ def run_model_instant_id(self, img: np.ndarray, res: int = 512, return_keypoints: bool = False, **kwargs) -> Tuple[Union[np.ndarray, torch.Tensor], bool]:
 
 
794
  """Run the insightface model for instant_id.
795
  Arguments:
796
  - img: Input image in any size.
 
851
  if not face_info:
852
  raise Exception(f"Insightface: No face found in image.")
853
  if len(face_info) > 1:
854
+ print("Insightface: More than one face is detected in the image. " f"Only the biggest one will be used.")
 
 
 
855
  # only use the maximum face
856
  face_info = sorted(
857
  face_info,
 
864
 
865
 
866
  g_insight_face_model = InsightFaceModel()
867
+ g_insight_face_instant_id_model = InsightFaceModel(face_analysis_model_name="antelopev2")
 
 
868
 
869
 
870
  @dataclass
extensions-builtin/forge_legacy_preprocessors/legacy_preprocessors/preprocessor_compiled.py CHANGED
@@ -115,6 +115,19 @@ legacy_preprocessors = {
115
  "priority": 0,
116
  "tags": ["Depth"],
117
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
118
  "depth_hand_refiner": {
119
  "label": "depth_hand_refiner",
120
  "call_function": g_hand_refiner_model.run_model,
@@ -250,9 +263,7 @@ legacy_preprocessors = {
250
  },
251
  "instant_id_face_keypoints": {
252
  "label": "instant_id_face_keypoints",
253
- "call_function": functools.partial(
254
- g_insight_face_instant_id_model.run_model_instant_id, return_keypoints=True
255
- ),
256
  "unload_function": None,
257
  "managed_model": "unknown",
258
  "model_free": False,
@@ -594,32 +605,6 @@ legacy_preprocessors = {
594
  "priority": 0,
595
  "tags": ["Segmentation"],
596
  },
597
- "seg_ofade20k": {
598
- "label": "seg_ofade20k",
599
- "call_function": oneformer_ade20k,
600
- "unload_function": unload_oneformer_ade20k,
601
- "managed_model": "model_oneformer_ade20k",
602
- "model_free": False,
603
- "no_control_mode": False,
604
- "resolution": None,
605
- "slider_1": None,
606
- "slider_2": None,
607
- "priority": 100,
608
- "tags": ["Segmentation"],
609
- },
610
- "seg_ofcoco": {
611
- "label": "seg_ofcoco",
612
- "call_function": oneformer_coco,
613
- "unload_function": unload_oneformer_coco,
614
- "managed_model": "model_oneformer_coco",
615
- "model_free": False,
616
- "no_control_mode": False,
617
- "resolution": None,
618
- "slider_1": None,
619
- "slider_2": None,
620
- "priority": 0,
621
- "tags": ["Segmentation"],
622
- },
623
  "seg_ufade20k": {
624
  "label": "seg_ufade20k",
625
  "call_function": uniformer,
 
115
  "priority": 0,
116
  "tags": ["Depth"],
117
  },
118
+ "depth_anything_v2": {
119
+ "label": "depth_anything_v2",
120
+ "call_function": functools.partial(depth_anything_v2, colored=False),
121
+ "unload_function": unload_depth_anything_v2,
122
+ "managed_model": "model_depth_anything_v2",
123
+ "model_free": False,
124
+ "no_control_mode": False,
125
+ "resolution": None,
126
+ "slider_1": None,
127
+ "slider_2": None,
128
+ "priority": 0,
129
+ "tags": ["Depth"],
130
+ },
131
  "depth_hand_refiner": {
132
  "label": "depth_hand_refiner",
133
  "call_function": g_hand_refiner_model.run_model,
 
263
  },
264
  "instant_id_face_keypoints": {
265
  "label": "instant_id_face_keypoints",
266
+ "call_function": functools.partial(g_insight_face_instant_id_model.run_model_instant_id, return_keypoints=True),
 
 
267
  "unload_function": None,
268
  "managed_model": "unknown",
269
  "model_free": False,
 
605
  "priority": 0,
606
  "tags": ["Segmentation"],
607
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
608
  "seg_ufade20k": {
609
  "label": "seg_ufade20k",
610
  "call_function": uniformer,
extensions-builtin/forge_legacy_preprocessors/requirements.txt CHANGED
@@ -1,5 +1,8 @@
 
1
  fvcore
2
  mediapipe
 
3
  onnxruntime
4
- opencv-python>=4.8.0
5
  svglib
 
 
1
+ addict
2
  fvcore
3
  mediapipe
4
+ onnx
5
  onnxruntime
6
+ opencv-python
7
  svglib
8
+ yapf
extensions-builtin/sd_forge_controlnet/lib_controlnet/controlnet_ui/controlnet_ui_group.py CHANGED
@@ -14,7 +14,7 @@ from lib_controlnet.controlnet_ui.tool_button import ToolButton
14
  from lib_controlnet.controlnet_ui.openpose_editor import OpenposeEditor
15
  from lib_controlnet.controlnet_ui.preset import ControlNetPresetUI, NEW_PRESET
16
  from lib_controlnet.utils import svg_preprocess, judge_image_type
17
- from lib_controlnet.enums import InputMode, HiResFixOption
18
  from lib_controlnet.external_code import UiControlNetUnit
19
  from lib_controlnet import global_state, external_code
20
 
@@ -187,7 +187,6 @@ class ControlNetUiGroup:
187
  self.upload_independent_img_in_img2img = None
188
  self.image_upload_panel = None
189
  self.save_detected_map = None
190
- self.input_mode = gr.State(InputMode.SIMPLE)
191
  self.hr_option = None
192
 
193
  self.dummy_update_trigger = None
@@ -504,7 +503,6 @@ class ControlNetUiGroup:
504
  self.preset_panel = ControlNetPresetUI(f"{elem_id_tabname}_{tabname}_")
505
 
506
  unit_args = [
507
- self.input_mode,
508
  self.use_preview_as_input,
509
  self.generated_image,
510
  self.mask_image,
 
14
  from lib_controlnet.controlnet_ui.openpose_editor import OpenposeEditor
15
  from lib_controlnet.controlnet_ui.preset import ControlNetPresetUI, NEW_PRESET
16
  from lib_controlnet.utils import svg_preprocess, judge_image_type
17
+ from lib_controlnet.enums import HiResFixOption
18
  from lib_controlnet.external_code import UiControlNetUnit
19
  from lib_controlnet import global_state, external_code
20
 
 
187
  self.upload_independent_img_in_img2img = None
188
  self.image_upload_panel = None
189
  self.save_detected_map = None
 
190
  self.hr_option = None
191
 
192
  self.dummy_update_trigger = None
 
503
  self.preset_panel = ControlNetPresetUI(f"{elem_id_tabname}_{tabname}_")
504
 
505
  unit_args = [
 
506
  self.use_preview_as_input,
507
  self.generated_image,
508
  self.mask_image,
extensions-builtin/sd_forge_controlnet/lib_controlnet/enums.py CHANGED
@@ -26,60 +26,3 @@ class HiResFixOption(Enum):
26
  @property
27
  def high_res_enabled(self) -> bool:
28
  return self in (HiResFixOption.BOTH, HiResFixOption.HIGH_RES_ONLY)
29
-
30
-
31
- class StableDiffusionVersion(Enum):
32
- """The version family of stable diffusion model."""
33
-
34
- UNKNOWN = 0
35
- SD1x = 1
36
- SD2x = 2
37
- SDXL = 3
38
-
39
- @staticmethod
40
- def detect_from_model_name(model_name: str) -> "StableDiffusionVersion":
41
- """
42
- Based on the model name provided, guess what stable diffusion version it is.
43
- This might not be accurate without actually inspect the file content.
44
- """
45
- if any(f"sd{v}" in model_name.lower() for v in ("14", "15", "16")):
46
- return StableDiffusionVersion.SD1x
47
-
48
- if "sd21" in model_name or "2.1" in model_name:
49
- return StableDiffusionVersion.SD2x
50
-
51
- if "xl" in model_name.lower():
52
- return StableDiffusionVersion.SDXL
53
-
54
- return StableDiffusionVersion.UNKNOWN
55
-
56
- def encoder_block_num(self) -> int:
57
- if self in (
58
- StableDiffusionVersion.SD1x,
59
- StableDiffusionVersion.SD2x,
60
- StableDiffusionVersion.UNKNOWN,
61
- ):
62
- return 12
63
- else:
64
- return 9 # SDXL
65
-
66
- def controlnet_layer_num(self) -> int:
67
- return self.encoder_block_num() + 1
68
-
69
- def is_compatible_with(self, other: "StableDiffusionVersion") -> bool:
70
- """Incompatible only when one of version is SDXL and other is not"""
71
- return (
72
- any(v == StableDiffusionVersion.UNKNOWN for v in [self, other])
73
- or sum(v == StableDiffusionVersion.SDXL for v in [self, other]) != 1
74
- )
75
-
76
-
77
- class InputMode(Enum):
78
- # Single image to a single ControlNet unit.
79
- SIMPLE = "simple"
80
- # Input is a directory. N generations. Each generation takes 1 input image
81
- # from the directory.
82
- BATCH = "batch"
83
- # Input is a directory. 1 generation. Each generation takes N input image
84
- # from the directory.
85
- MERGE = "merge"
 
26
  @property
27
  def high_res_enabled(self) -> bool:
28
  return self in (HiResFixOption.BOTH, HiResFixOption.HIGH_RES_ONLY)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
extensions-builtin/sd_forge_controlnet/lib_controlnet/external_code.py CHANGED
@@ -6,7 +6,7 @@ from enum import Enum
6
  import numpy as np
7
 
8
  from lib_controlnet.logging import logger
9
- from lib_controlnet.enums import InputMode, HiResFixOption
10
 
11
 
12
  class ControlMode(Enum):
@@ -159,8 +159,6 @@ class ControlNetUnit:
159
  """
160
 
161
  # ====== UI-only Fields ======
162
- # Specifies the input mode for the unit, defaulting to a simple mode.
163
- input_mode: InputMode = InputMode.SIMPLE
164
  # Determines whether to use the preview image as input; defaults to False.
165
  use_preview_as_input: bool = False
166
  # Holds the preview image as a NumPy array; defaults to None.
 
6
  import numpy as np
7
 
8
  from lib_controlnet.logging import logger
9
+ from lib_controlnet.enums import HiResFixOption
10
 
11
 
12
  class ControlMode(Enum):
 
159
  """
160
 
161
  # ====== UI-only Fields ======
 
 
162
  # Determines whether to use the preview image as input; defaults to False.
163
  use_preview_as_input: bool = False
164
  # Holds the preview image as a NumPy array; defaults to None.
extensions-builtin/sd_forge_controlnet/lib_controlnet/global_state.py CHANGED
@@ -2,6 +2,7 @@ from modules_forge.shared import controlnet_dir, supported_preprocessors
2
  from modules import shared
3
 
4
  from collections import OrderedDict
 
5
  import glob
6
  import os
7
 
@@ -44,17 +45,13 @@ def update_controlnet_filenames():
44
  shared.opts.data.get("control_net_models_path", None),
45
  getattr(shared.cmd_opts, "controlnet_dir", None),
46
  )
47
- extra_paths = (
48
- extra_path
49
- for extra_path in ext_dirs
50
- if extra_path is not None and os.path.exists(extra_path)
51
- )
52
 
53
  for path in [controlnet_dir, *extra_paths]:
54
  found = get_all_models(path, "name")
55
  controlnet_filename_dict.update(found)
56
 
57
- controlnet_names = list(controlnet_filename_dict.keys())
58
 
59
 
60
  def get_all_controlnet_names() -> list[str]:
@@ -72,11 +69,7 @@ def get_filtered_controlnet_names(tag: str) -> list[str]:
72
  for p in filtered_preprocessors.values():
73
  filename_filters.extend(p.model_filename_filters)
74
 
75
- return [
76
- cnet
77
- for cnet in controlnet_names
78
- if cnet == "None" or any(f.lower() in cnet.lower() for f in filename_filters)
79
- ]
80
 
81
 
82
  def get_all_preprocessor_tags() -> list[str]:
@@ -91,10 +84,11 @@ def get_preprocessor(name: str):
91
  return supported_preprocessors[name]
92
 
93
 
 
94
  def get_sorted_preprocessors() -> dict:
95
  results = OrderedDict({"None": supported_preprocessors["None"]})
96
  preprocessors = [p for (k, p) in supported_preprocessors.items() if k != "None"]
97
- preprocessors = sorted(preprocessors, key=lambda x: x.name, reverse=True)
98
  for p in preprocessors:
99
  results[p.name] = p
100
  return results
@@ -111,8 +105,4 @@ def get_filtered_preprocessor_names(tag: str) -> list[str]:
111
  def get_filtered_preprocessors(tag: str) -> dict:
112
  if tag == "All":
113
  return supported_preprocessors
114
- return {
115
- k: v
116
- for (k, v) in get_sorted_preprocessors().items()
117
- if tag in v.tags or k == "None"
118
- }
 
2
  from modules import shared
3
 
4
  from collections import OrderedDict
5
+ from functools import lru_cache
6
  import glob
7
  import os
8
 
 
45
  shared.opts.data.get("control_net_models_path", None),
46
  getattr(shared.cmd_opts, "controlnet_dir", None),
47
  )
48
+ extra_paths = (extra_path for extra_path in ext_dirs if extra_path is not None and os.path.exists(extra_path))
 
 
 
 
49
 
50
  for path in [controlnet_dir, *extra_paths]:
51
  found = get_all_models(path, "name")
52
  controlnet_filename_dict.update(found)
53
 
54
+ controlnet_names = sorted(controlnet_filename_dict.keys(), key=lambda mdl: mdl)
55
 
56
 
57
  def get_all_controlnet_names() -> list[str]:
 
69
  for p in filtered_preprocessors.values():
70
  filename_filters.extend(p.model_filename_filters)
71
 
72
+ return [cnet for cnet in controlnet_names if cnet == "None" or any(f.lower() in cnet.lower() for f in filename_filters)]
 
 
 
 
73
 
74
 
75
  def get_all_preprocessor_tags() -> list[str]:
 
84
  return supported_preprocessors[name]
85
 
86
 
87
+ @lru_cache(maxsize=1, typed=False)
88
  def get_sorted_preprocessors() -> dict:
89
  results = OrderedDict({"None": supported_preprocessors["None"]})
90
  preprocessors = [p for (k, p) in supported_preprocessors.items() if k != "None"]
91
+ preprocessors = sorted(preprocessors, key=lambda mdl: mdl.name)
92
  for p in preprocessors:
93
  results[p.name] = p
94
  return results
 
105
  def get_filtered_preprocessors(tag: str) -> dict:
106
  if tag == "All":
107
  return supported_preprocessors
108
+ return {k: v for (k, v) in get_sorted_preprocessors().items() if tag in v.tags or k == "None"}
 
 
 
 
extensions-builtin/sd_forge_controlnet/preload.py CHANGED
@@ -2,12 +2,6 @@ def preload(parser):
2
  parser.add_argument(
3
  "--controlnet-loglevel",
4
  default="INFO",
5
- choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
6
  help="Set the log level (DEBUG, INFO, WARNING, ERROR, CRITICAL)",
7
  )
8
- parser.add_argument(
9
- "--controlnet-tracemalloc",
10
- default=None,
11
- action="store_true",
12
- help="Enable memory tracing.",
13
- )
 
2
  parser.add_argument(
3
  "--controlnet-loglevel",
4
  default="INFO",
5
+ choices=("DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"),
6
  help="Set the log level (DEBUG, INFO, WARNING, ERROR, CRITICAL)",
7
  )
 
 
 
 
 
 
extensions-builtin/sd_forge_controlnet/scripts/controlnet.py CHANGED
@@ -151,11 +151,9 @@ class ControlNetForForgeOfficial(scripts.Script):
151
  return input_image
152
 
153
  def get_input_data(self, p, unit, preprocessor, h, w):
154
- logger.info(f"ControlNet Input Mode: {unit.input_mode}")
155
  resize_mode = external_code.resize_mode_from_value(unit.resize_mode)
156
  image_list = []
157
 
158
- assert unit.input_mode == external_code.InputMode.SIMPLE
159
  assert unit.use_preview_as_input is False
160
 
161
  a1111_i2i_image = getattr(p, "init_images", [None])[0]
 
151
  return input_image
152
 
153
  def get_input_data(self, p, unit, preprocessor, h, w):
 
154
  resize_mode = external_code.resize_mode_from_value(unit.resize_mode)
155
  image_list = []
156
 
 
157
  assert unit.use_preview_as_input is False
158
 
159
  a1111_i2i_image = getattr(p, "init_images", [None])[0]
extensions-builtin/xyz/lib_xyz/builtins.py CHANGED
@@ -1,4 +1,4 @@
1
- from modules import sd_models, sd_samplers, sd_samplers_kdiffusion, sd_vae, shared
2
 
3
  from .axis_application import (
4
  apply_checkpoint,
@@ -38,49 +38,16 @@ builtin_options = [
38
  AxisOptionImg2Img("Image CFG Scale", float, apply_field("image_cfg_scale")),
39
  AxisOption("Prompt S/R", str, apply_prompt, format_value=format_value),
40
  AxisOption("Prompt order", str_permutations, apply_order, format_value=format_value_join_list),
41
- AxisOptionTxt2Img(
42
- "Sampler",
43
- str,
44
- apply_field("sampler_name"),
45
- format_value=format_value,
46
- confirm=confirm_samplers,
47
- choices=sd_samplers.visible_sampler_names,
48
- ),
49
- AxisOptionTxt2Img(
50
- "Hires sampler",
51
- str,
52
- apply_field("hr_sampler_name"),
53
- confirm=confirm_samplers,
54
- choices=sd_samplers.visible_sampler_names,
55
- ),
56
- AxisOptionImg2Img(
57
- "Sampler",
58
- str,
59
- apply_field("sampler_name"),
60
- format_value=format_value,
61
- confirm=confirm_samplers,
62
- choices=sd_samplers.visible_sampler_names,
63
- ),
64
- AxisOption(
65
- "Checkpoint name",
66
- str,
67
- apply_checkpoint,
68
- format_value=format_remove_path,
69
- confirm=confirm_checkpoints,
70
- cost=1.0,
71
- choices=lambda: sorted(sd_models.checkpoints_list, key=str.casefold),
72
- ),
73
  AxisOption("Negative Guidance minimum sigma", float, apply_field("s_min_uncond")),
74
  AxisOption("Sigma Churn", float, apply_field("s_churn")),
75
  AxisOption("Sigma min", float, apply_field("s_tmin")),
76
  AxisOption("Sigma max", float, apply_field("s_tmax")),
77
  AxisOption("Sigma noise", float, apply_field("s_noise")),
78
- AxisOption(
79
- "Schedule type",
80
- str,
81
- apply_override("k_sched_type"),
82
- choices=lambda: list(sd_samplers_kdiffusion.k_diffusion_scheduler),
83
- ),
84
  AxisOption("Schedule min sigma", float, apply_override("sigma_min")),
85
  AxisOption("Schedule max sigma", float, apply_override("sigma_max")),
86
  AxisOption("Schedule rho", float, apply_override("rho")),
@@ -89,15 +56,7 @@ builtin_options = [
89
  AxisOption("Denoising", float, apply_field("denoising_strength")),
90
  AxisOption("Initial noise multiplier", float, apply_field("initial_noise_multiplier")),
91
  AxisOption("Extra noise", float, apply_override("img2img_extra_noise")),
92
- AxisOptionTxt2Img(
93
- "Hires upscaler",
94
- str,
95
- apply_field("hr_upscaler"),
96
- choices=lambda: [
97
- *shared.latent_upscale_modes,
98
- *[x.name for x in shared.sd_upscalers],
99
- ],
100
- ),
101
  AxisOptionImg2Img("Cond. Image Mask Weight", float, apply_field("inpainting_mask_weight")),
102
  AxisOption("VAE", str, apply_vae, cost=0.7, choices=lambda: ["None"] + list(sd_vae.vae_dict)),
103
  AxisOption("Styles", str, apply_styles, choices=lambda: list(shared.prompt_styles.styles)),
@@ -105,32 +64,9 @@ builtin_options = [
105
  AxisOption("Face restore", str, apply_face_restore, format_value=format_value),
106
  AxisOption("Token merging ratio", float, apply_override("token_merging_ratio")),
107
  AxisOption("Token merging ratio high-res", float, apply_override("token_merging_ratio_hr")),
108
- AxisOption(
109
- "Always discard next-to-last sigma",
110
- str,
111
- apply_override("always_discard_next_to_last_sigma", boolean=True),
112
- choices=boolean_choice(reverse=True),
113
- ),
114
- AxisOption(
115
- "SGM noise multiplier",
116
- str,
117
- apply_override("sgm_noise_multiplier", boolean=True),
118
- choices=boolean_choice(reverse=True),
119
- ),
120
- AxisOption(
121
- "Refiner checkpoint",
122
- str,
123
- apply_field("refiner_checkpoint"),
124
- format_value=format_remove_path,
125
- confirm=confirm_checkpoints_or_none,
126
- cost=1.0,
127
- choices=lambda: ["None"] + sorted(sd_models.checkpoints_list, key=str.casefold),
128
- ),
129
  AxisOption("Refiner switch at", float, apply_field("refiner_switch_at")),
130
- AxisOption(
131
- "RNG source",
132
- str,
133
- apply_override("randn_source"),
134
- choices=lambda: ["GPU", "CPU", "NV"],
135
- ),
136
  ]
 
1
+ from modules import sd_models, sd_samplers, sd_schedulers, sd_vae, shared
2
 
3
  from .axis_application import (
4
  apply_checkpoint,
 
38
  AxisOptionImg2Img("Image CFG Scale", float, apply_field("image_cfg_scale")),
39
  AxisOption("Prompt S/R", str, apply_prompt, format_value=format_value),
40
  AxisOption("Prompt order", str_permutations, apply_order, format_value=format_value_join_list),
41
+ AxisOptionTxt2Img("Sampler", str, apply_field("sampler_name"), format_value=format_value, confirm=confirm_samplers, choices=sd_samplers.visible_sampler_names),
42
+ AxisOptionTxt2Img("Hires sampler", str, apply_field("hr_sampler_name"), confirm=confirm_samplers, choices=sd_samplers.visible_sampler_names),
43
+ AxisOptionImg2Img("Sampler", str, apply_field("sampler_name"), format_value=format_value, confirm=confirm_samplers, choices=sd_samplers.visible_sampler_names),
44
+ AxisOption("Checkpoint name", str, apply_checkpoint, format_value=format_remove_path, confirm=confirm_checkpoints, cost=1.0, choices=lambda: sorted(sd_models.checkpoints_list, key=str.casefold)),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
  AxisOption("Negative Guidance minimum sigma", float, apply_field("s_min_uncond")),
46
  AxisOption("Sigma Churn", float, apply_field("s_churn")),
47
  AxisOption("Sigma min", float, apply_field("s_tmin")),
48
  AxisOption("Sigma max", float, apply_field("s_tmax")),
49
  AxisOption("Sigma noise", float, apply_field("s_noise")),
50
+ AxisOption("Schedule type", str, apply_field("scheduler"), choices=lambda: [x.label for x in sd_schedulers.schedulers]),
 
 
 
 
 
51
  AxisOption("Schedule min sigma", float, apply_override("sigma_min")),
52
  AxisOption("Schedule max sigma", float, apply_override("sigma_max")),
53
  AxisOption("Schedule rho", float, apply_override("rho")),
 
56
  AxisOption("Denoising", float, apply_field("denoising_strength")),
57
  AxisOption("Initial noise multiplier", float, apply_field("initial_noise_multiplier")),
58
  AxisOption("Extra noise", float, apply_override("img2img_extra_noise")),
59
+ AxisOptionTxt2Img("Hires upscaler", str, apply_field("hr_upscaler"), choices=lambda: [*shared.latent_upscale_modes, *[x.name for x in shared.sd_upscalers]]),
 
 
 
 
 
 
 
 
60
  AxisOptionImg2Img("Cond. Image Mask Weight", float, apply_field("inpainting_mask_weight")),
61
  AxisOption("VAE", str, apply_vae, cost=0.7, choices=lambda: ["None"] + list(sd_vae.vae_dict)),
62
  AxisOption("Styles", str, apply_styles, choices=lambda: list(shared.prompt_styles.styles)),
 
64
  AxisOption("Face restore", str, apply_face_restore, format_value=format_value),
65
  AxisOption("Token merging ratio", float, apply_override("token_merging_ratio")),
66
  AxisOption("Token merging ratio high-res", float, apply_override("token_merging_ratio_hr")),
67
+ AxisOption("Always discard next-to-last sigma", str, apply_override("always_discard_next_to_last_sigma", boolean=True), choices=boolean_choice(reverse=True)),
68
+ AxisOption("SGM noise multiplier", str, apply_override("sgm_noise_multiplier", boolean=True), choices=boolean_choice(reverse=True)),
69
+ AxisOption("Refiner checkpoint", str, apply_field("refiner_checkpoint"), format_value=format_remove_path, confirm=confirm_checkpoints_or_none, cost=1.0, choices=lambda: ["None"] + sorted(sd_models.checkpoints_list, key=str.casefold)),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
  AxisOption("Refiner switch at", float, apply_field("refiner_switch_at")),
71
+ AxisOption("RNG source", str, apply_override("randn_source"), choices=lambda: ["GPU", "CPU", "NV"]),
 
 
 
 
 
72
  ]
extensions-builtin/xyz/scripts/xyz_grid.py CHANGED
@@ -540,15 +540,11 @@ class XYZ(scripts.Script):
540
  # this could be moved to common code, but unlikely to be ever triggered anywhere else
541
  Image.MAX_IMAGE_PIXELS = None # disable check in Pillow and rely on check below to allow large custom image sizes
542
  grid_mp = round(len(xs) * len(ys) * len(zs) * p.width * p.height / 1000000)
543
- assert (
544
- grid_mp < opts.img_max_size_mp
545
- ), f"Error: Resulting grid would be too large ({grid_mp} MPixels) (max configured size is {opts.img_max_size_mp} MPixels)"
546
 
547
  def fix_axis_seeds(axis_opt, axis_list):
548
  if axis_opt.label in ["Seed", "Var. seed"]:
549
- return [
550
- (int(random.randrange(4294967294)) if val is None or val == "" or val == -1 else val) for val in axis_list
551
- ]
552
  else:
553
  return axis_list
554
 
 
540
  # this could be moved to common code, but unlikely to be ever triggered anywhere else
541
  Image.MAX_IMAGE_PIXELS = None # disable check in Pillow and rely on check below to allow large custom image sizes
542
  grid_mp = round(len(xs) * len(ys) * len(zs) * p.width * p.height / 1000000)
543
+ assert grid_mp < opts.img_max_size_mp, f"Error: Resulting grid would be too large ({grid_mp} MPixels) (max configured size is {opts.img_max_size_mp} MPixels)"
 
 
544
 
545
  def fix_axis_seeds(axis_opt, axis_list):
546
  if axis_opt.label in ["Seed", "Var. seed"]:
547
+ return [(int(random.randrange(4294967294)) if val is None or val == "" or val == -1 else val) for val in axis_list]
 
 
548
  else:
549
  return axis_list
550
 
html/footer.html CHANGED
@@ -1,11 +1,7 @@
1
  <div>
2
  <a href="{api_docs}">API</a>
3
   • 
4
- <a href="https://github.com/AUTOMATIC1111/stable-diffusion-webui">Github</a>
5
-  • 
6
- <a href="https://gradio.app">Gradio</a>
7
-  • 
8
- <a href="#" onclick="showProfile('./internal/profile-startup'); return false;">Startup profile</a>
9
   • 
10
  <a href="/" onclick="javascript:gradioApp().getElementById('settings_restart_gradio').click(); return false">Reload UI</a>
11
  </div>
 
1
  <div>
2
  <a href="{api_docs}">API</a>
3
   • 
4
+ <a href="#" onclick="showProfile('./internal/profile-startup'); return false;">Startup Profile</a>
 
 
 
 
5
   • 
6
  <a href="/" onclick="javascript:gradioApp().getElementById('settings_restart_gradio').click(); return false">Reload UI</a>
7
  </div>
javascript/ui.js CHANGED
@@ -329,7 +329,7 @@ onOptionsChanged(function () {
329
  if (elem && elem.textContent != shorthash) {
330
  elem.textContent = shorthash;
331
  elem.title = sd_checkpoint_hash;
332
- elem.href = "https://google.com/search?q=" + sd_checkpoint_hash;
333
  }
334
  });
335
 
 
329
  if (elem && elem.textContent != shorthash) {
330
  elem.textContent = shorthash;
331
  elem.title = sd_checkpoint_hash;
332
+ elem.href = "https://civitai.com/search/models?query=" + sd_checkpoint_hash;
333
  }
334
  });
335
 
ldm_patched/k_diffusion/sampling.py CHANGED
@@ -6,7 +6,7 @@ import torch
6
  import torchsde
7
  from scipy import integrate
8
  from torch import nn
9
- from tqdm.auto import tqdm, trange
10
 
11
  from . import utils
12
 
@@ -26,12 +26,7 @@ def get_sigmas_karras(n, sigma_min, sigma_max, rho=7.0, device="cpu"):
26
 
27
  def get_sigmas_exponential(n, sigma_min, sigma_max, device="cpu"):
28
  """Constructs an exponential noise schedule"""
29
- sigmas = torch.linspace(
30
- math.log(sigma_max),
31
- math.log(sigma_min),
32
- n,
33
- device=device,
34
- ).exp()
35
  return append_zero(sigmas)
36
 
37
 
@@ -42,32 +37,24 @@ def get_sigmas_polyexponential(n, sigma_min, sigma_max, rho=1.0, device="cpu"):
42
  return append_zero(sigmas)
43
 
44
 
45
- def get_sigmas_vp(n, beta_d=19.9, beta_min=0.1, eps_s=1e-3, device="cpu"):
46
- """Constructs a continuous VP noise schedule"""
47
- t = torch.linspace(1, eps_s, n, device=device)
48
- sigmas = torch.sqrt((beta_d * t**2 / 2 + beta_min * t).expm1())
49
- return append_zero(sigmas)
50
-
51
-
52
  def to_d(x, sigma, denoised):
53
  """Converts a denoiser output to a Karras ODE derivative"""
54
  return (x - denoised) / utils.append_dims(sigma, x.ndim)
55
 
56
 
57
  def get_ancestral_step(sigma_from, sigma_to, eta=1.0):
58
- """Calculates the noise level (sigma_down) to step down to and the amount
59
- of noise to add (sigma_up) when doing an ancestral sampling step"""
 
 
60
  if not eta:
61
  return sigma_to, 0.0
62
- sigma_up = min(
63
- sigma_to,
64
- eta * (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5,
65
- )
66
  sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
67
  return sigma_down, sigma_up
68
 
69
 
70
- def default_noise_sampler(x):
71
  return lambda sigma, sigma_next: torch.randn_like(x)
72
 
73
 
@@ -140,18 +127,7 @@ class BrownianTreeNoiseSampler:
140
 
141
 
142
  @torch.no_grad()
143
- def sample_euler(
144
- model,
145
- x,
146
- sigmas,
147
- extra_args=None,
148
- callback=None,
149
- disable=None,
150
- s_churn=0.0,
151
- s_tmin=0.0,
152
- s_tmax=float("inf"),
153
- s_noise=1.0,
154
- ):
155
  """Implements Algorithm 2 (Euler steps) from Karras et al. (2022)"""
156
  extra_args = {} if extra_args is None else extra_args
157
  s_in = x.new_ones([x.shape[0]])
@@ -164,33 +140,14 @@ def sample_euler(
164
  denoised = model(x, sigma_hat * s_in, **extra_args)
165
  d = to_d(x, sigma_hat, denoised)
166
  if callback is not None:
167
- callback(
168
- {
169
- "x": x,
170
- "i": i,
171
- "sigma": sigmas[i],
172
- "sigma_hat": sigma_hat,
173
- "denoised": denoised,
174
- }
175
- )
176
  dt = sigmas[i + 1] - sigma_hat
177
- # Euler method
178
  x = x + d * dt
179
  return x
180
 
181
 
182
  @torch.no_grad()
183
- def sample_euler_ancestral(
184
- model,
185
- x,
186
- sigmas,
187
- extra_args=None,
188
- callback=None,
189
- disable=None,
190
- eta=1.0,
191
- s_noise=1.0,
192
- noise_sampler=None,
193
- ):
194
  """Ancestral sampling with Euler method steps"""
195
  extra_args = {} if extra_args is None else extra_args
196
  noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
@@ -199,17 +156,8 @@ def sample_euler_ancestral(
199
  denoised = model(x, sigmas[i] * s_in, **extra_args)
200
  sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
201
  if callback is not None:
202
- callback(
203
- {
204
- "x": x,
205
- "i": i,
206
- "sigma": sigmas[i],
207
- "sigma_hat": sigmas[i],
208
- "denoised": denoised,
209
- }
210
- )
211
  d = to_d(x, sigmas[i], denoised)
212
- # Euler method
213
  dt = sigma_down - sigmas[i]
214
  x = x + d * dt
215
  if sigmas[i + 1] > 0:
@@ -218,18 +166,7 @@ def sample_euler_ancestral(
218
 
219
 
220
  @torch.no_grad()
221
- def sample_heun(
222
- model,
223
- x,
224
- sigmas,
225
- extra_args=None,
226
- callback=None,
227
- disable=None,
228
- s_churn=0.0,
229
- s_tmin=0.0,
230
- s_tmax=float("inf"),
231
- s_noise=1.0,
232
- ):
233
  """Implements Algorithm 2 (Heun steps) from Karras et al. (2022)"""
234
  extra_args = {} if extra_args is None else extra_args
235
  s_in = x.new_ones([x.shape[0]])
@@ -242,21 +179,11 @@ def sample_heun(
242
  denoised = model(x, sigma_hat * s_in, **extra_args)
243
  d = to_d(x, sigma_hat, denoised)
244
  if callback is not None:
245
- callback(
246
- {
247
- "x": x,
248
- "i": i,
249
- "sigma": sigmas[i],
250
- "sigma_hat": sigma_hat,
251
- "denoised": denoised,
252
- }
253
- )
254
  dt = sigmas[i + 1] - sigma_hat
255
  if sigmas[i + 1] == 0:
256
- # Euler method
257
  x = x + d * dt
258
  else:
259
- # Heun's method
260
  x_2 = x + d * dt
261
  denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
262
  d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
@@ -266,18 +193,7 @@ def sample_heun(
266
 
267
 
268
  @torch.no_grad()
269
- def sample_dpm_2(
270
- model,
271
- x,
272
- sigmas,
273
- extra_args=None,
274
- callback=None,
275
- disable=None,
276
- s_churn=0.0,
277
- s_tmin=0.0,
278
- s_tmax=float("inf"),
279
- s_noise=1.0,
280
- ):
281
  """A sampler inspired by DPM-Solver-2 and Algorithm 2 from Karras et al. (2022)"""
282
  extra_args = {} if extra_args is None else extra_args
283
  s_in = x.new_ones([x.shape[0]])
@@ -290,21 +206,11 @@ def sample_dpm_2(
290
  denoised = model(x, sigma_hat * s_in, **extra_args)
291
  d = to_d(x, sigma_hat, denoised)
292
  if callback is not None:
293
- callback(
294
- {
295
- "x": x,
296
- "i": i,
297
- "sigma": sigmas[i],
298
- "sigma_hat": sigma_hat,
299
- "denoised": denoised,
300
- }
301
- )
302
  if sigmas[i + 1] == 0:
303
- # Euler method
304
  dt = sigmas[i + 1] - sigma_hat
305
  x = x + d * dt
306
  else:
307
- # DPM-Solver-2
308
  sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
309
  dt_1 = sigma_mid - sigma_hat
310
  dt_2 = sigmas[i + 1] - sigma_hat
@@ -315,54 +221,7 @@ def sample_dpm_2(
315
  return x
316
 
317
 
318
- @torch.no_grad()
319
- def sample_dpm_2_ancestral(
320
- model,
321
- x,
322
- sigmas,
323
- extra_args=None,
324
- callback=None,
325
- disable=None,
326
- eta=1.0,
327
- s_noise=1.0,
328
- noise_sampler=None,
329
- ):
330
- """Ancestral sampling with DPM-Solver second-order steps"""
331
- extra_args = {} if extra_args is None else extra_args
332
- noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
333
- s_in = x.new_ones([x.shape[0]])
334
- for i in trange(len(sigmas) - 1, disable=disable):
335
- denoised = model(x, sigmas[i] * s_in, **extra_args)
336
- sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
337
- if callback is not None:
338
- callback(
339
- {
340
- "x": x,
341
- "i": i,
342
- "sigma": sigmas[i],
343
- "sigma_hat": sigmas[i],
344
- "denoised": denoised,
345
- }
346
- )
347
- d = to_d(x, sigmas[i], denoised)
348
- if sigma_down == 0:
349
- # Euler method
350
- dt = sigma_down - sigmas[i]
351
- x = x + d * dt
352
- else:
353
- # DPM-Solver-2
354
- sigma_mid = sigmas[i].log().lerp(sigma_down.log(), 0.5).exp()
355
- dt_1 = sigma_mid - sigmas[i]
356
- dt_2 = sigma_down - sigmas[i]
357
- x_2 = x + d * dt_1
358
- denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
359
- d_2 = to_d(x_2, sigma_mid, denoised_2)
360
- x = x + d_2 * dt_2
361
- x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
362
- return x
363
-
364
-
365
- def linear_multistep_coeff(order, t, i, j):
366
  if order - 1 > i:
367
  raise ValueError(f"Order {order} too high for step {i}")
368
 
@@ -390,17 +249,9 @@ def sample_lms(model, x, sigmas, extra_args=None, callback=None, disable=None, o
390
  if len(ds) > order:
391
  ds.pop(0)
392
  if callback is not None:
393
- callback(
394
- {
395
- "x": x,
396
- "i": i,
397
- "sigma": sigmas[i],
398
- "sigma_hat": sigmas[i],
399
- "denoised": denoised,
400
- }
401
- )
402
  cur_order = min(i + 1, order)
403
- coeffs = [linear_multistep_coeff(cur_order, sigmas_cpu, i, j) for j in range(cur_order)]
404
  x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))
405
  return x
406
 
@@ -490,285 +341,9 @@ class DPMSolver(nn.Module):
490
  x_3 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / r2 * (h.expm1() / h - 1) * (eps_r2 - eps)
491
  return x_3, eps_cache
492
 
493
- def dpm_solver_fast(self, x, t_start, t_end, nfe, eta=0.0, s_noise=1.0, noise_sampler=None):
494
- noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
495
- if not t_end > t_start and eta:
496
- raise ValueError("eta must be 0 for reverse sampling")
497
-
498
- m = math.floor(nfe / 3) + 1
499
- ts = torch.linspace(t_start, t_end, m + 1, device=x.device)
500
-
501
- if nfe % 3 == 0:
502
- orders = [3] * (m - 2) + [2, 1]
503
- else:
504
- orders = [3] * (m - 1) + [nfe % 3]
505
-
506
- for i in range(len(orders)):
507
- eps_cache = {}
508
- t, t_next = ts[i], ts[i + 1]
509
- if eta:
510
- sd, su = get_ancestral_step(self.sigma(t), self.sigma(t_next), eta)
511
- t_next_ = torch.minimum(t_end, self.t(sd))
512
- su = (self.sigma(t_next) ** 2 - self.sigma(t_next_) ** 2) ** 0.5
513
- else:
514
- t_next_, su = t_next, 0.0
515
-
516
- eps, eps_cache = self.eps(eps_cache, "eps", x, t)
517
- denoised = x - self.sigma(t) * eps
518
- if self.info_callback is not None:
519
- self.info_callback({"x": x, "i": i, "t": ts[i], "t_up": t, "denoised": denoised})
520
-
521
- if orders[i] == 1:
522
- x, eps_cache = self.dpm_solver_1_step(x, t, t_next_, eps_cache=eps_cache)
523
- elif orders[i] == 2:
524
- x, eps_cache = self.dpm_solver_2_step(x, t, t_next_, eps_cache=eps_cache)
525
- else:
526
- x, eps_cache = self.dpm_solver_3_step(x, t, t_next_, eps_cache=eps_cache)
527
-
528
- x = x + su * s_noise * noise_sampler(self.sigma(t), self.sigma(t_next))
529
-
530
- return x
531
-
532
- def dpm_solver_adaptive(
533
- self,
534
- x,
535
- t_start,
536
- t_end,
537
- order=3,
538
- rtol=0.05,
539
- atol=0.0078,
540
- h_init=0.05,
541
- pcoeff=0.0,
542
- icoeff=1.0,
543
- dcoeff=0.0,
544
- accept_safety=0.81,
545
- eta=0.0,
546
- s_noise=1.0,
547
- noise_sampler=None,
548
- ):
549
- noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
550
- if order not in {2, 3}:
551
- raise ValueError("order should be 2 or 3")
552
- forward = t_end > t_start
553
- if not forward and eta:
554
- raise ValueError("eta must be 0 for reverse sampling")
555
- h_init = abs(h_init) * (1 if forward else -1)
556
- atol = torch.tensor(atol)
557
- rtol = torch.tensor(rtol)
558
- s = t_start
559
- x_prev = x
560
- accept = True
561
- pid = PIDStepSizeController(h_init, pcoeff, icoeff, dcoeff, 1.5 if eta else order, accept_safety)
562
- info = {"steps": 0, "nfe": 0, "n_accept": 0, "n_reject": 0}
563
-
564
- while s < t_end - 1e-5 if forward else s > t_end + 1e-5:
565
- eps_cache = {}
566
- t = torch.minimum(t_end, s + pid.h) if forward else torch.maximum(t_end, s + pid.h)
567
- if eta:
568
- sd, su = get_ancestral_step(self.sigma(s), self.sigma(t), eta)
569
- t_ = torch.minimum(t_end, self.t(sd))
570
- su = (self.sigma(t) ** 2 - self.sigma(t_) ** 2) ** 0.5
571
- else:
572
- t_, su = t, 0.0
573
-
574
- eps, eps_cache = self.eps(eps_cache, "eps", x, s)
575
- denoised = x - self.sigma(s) * eps
576
-
577
- if order == 2:
578
- x_low, eps_cache = self.dpm_solver_1_step(x, s, t_, eps_cache=eps_cache)
579
- x_high, eps_cache = self.dpm_solver_2_step(x, s, t_, eps_cache=eps_cache)
580
- else:
581
- x_low, eps_cache = self.dpm_solver_2_step(x, s, t_, r1=1 / 3, eps_cache=eps_cache)
582
- x_high, eps_cache = self.dpm_solver_3_step(x, s, t_, eps_cache=eps_cache)
583
- delta = torch.maximum(atol, rtol * torch.maximum(x_low.abs(), x_prev.abs()))
584
- error = torch.linalg.norm((x_low - x_high) / delta) / x.numel() ** 0.5
585
- accept = pid.propose_step(error)
586
- if accept:
587
- x_prev = x_low
588
- x = x_high + su * s_noise * noise_sampler(self.sigma(s), self.sigma(t))
589
- s = t
590
- info["n_accept"] += 1
591
- else:
592
- info["n_reject"] += 1
593
- info["nfe"] += order
594
- info["steps"] += 1
595
-
596
- if self.info_callback is not None:
597
- self.info_callback(
598
- {
599
- "x": x,
600
- "i": info["steps"] - 1,
601
- "t": s,
602
- "t_up": s,
603
- "denoised": denoised,
604
- "error": error,
605
- "h": pid.h,
606
- **info,
607
- }
608
- )
609
-
610
- return x, info
611
-
612
-
613
- @torch.no_grad()
614
- def sample_dpm_fast(
615
- model,
616
- x,
617
- sigma_min,
618
- sigma_max,
619
- n,
620
- extra_args=None,
621
- callback=None,
622
- disable=None,
623
- eta=0.0,
624
- s_noise=1.0,
625
- noise_sampler=None,
626
- ):
627
- """DPM-Solver-Fast (fixed step size). See https://arxiv.org/abs/2206.00927"""
628
- if sigma_min <= 0 or sigma_max <= 0:
629
- raise ValueError("sigma_min and sigma_max must not be 0")
630
- with tqdm(total=n, disable=disable) as pbar:
631
- dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update)
632
- if callback is not None:
633
- dpm_solver.info_callback = lambda info: callback(
634
- {
635
- "sigma": dpm_solver.sigma(info["t"]),
636
- "sigma_hat": dpm_solver.sigma(info["t_up"]),
637
- **info,
638
- }
639
- )
640
- return dpm_solver.dpm_solver_fast(
641
- x,
642
- dpm_solver.t(torch.tensor(sigma_max)),
643
- dpm_solver.t(torch.tensor(sigma_min)),
644
- n,
645
- eta,
646
- s_noise,
647
- noise_sampler,
648
- )
649
-
650
-
651
- @torch.no_grad()
652
- def sample_dpm_adaptive(
653
- model,
654
- x,
655
- sigma_min,
656
- sigma_max,
657
- extra_args=None,
658
- callback=None,
659
- disable=None,
660
- order=3,
661
- rtol=0.05,
662
- atol=0.0078,
663
- h_init=0.05,
664
- pcoeff=0.0,
665
- icoeff=1.0,
666
- dcoeff=0.0,
667
- accept_safety=0.81,
668
- eta=0.0,
669
- s_noise=1.0,
670
- noise_sampler=None,
671
- return_info=False,
672
- ):
673
- """DPM-Solver-12 and 23 (adaptive step size). See https://arxiv.org/abs/2206.00927"""
674
- if sigma_min <= 0 or sigma_max <= 0:
675
- raise ValueError("sigma_min and sigma_max must not be 0")
676
- with tqdm(disable=disable) as pbar:
677
- dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update)
678
- if callback is not None:
679
- dpm_solver.info_callback = lambda info: callback(
680
- {
681
- "sigma": dpm_solver.sigma(info["t"]),
682
- "sigma_hat": dpm_solver.sigma(info["t_up"]),
683
- **info,
684
- }
685
- )
686
- x, info = dpm_solver.dpm_solver_adaptive(
687
- x,
688
- dpm_solver.t(torch.tensor(sigma_max)),
689
- dpm_solver.t(torch.tensor(sigma_min)),
690
- order,
691
- rtol,
692
- atol,
693
- h_init,
694
- pcoeff,
695
- icoeff,
696
- dcoeff,
697
- accept_safety,
698
- eta,
699
- s_noise,
700
- noise_sampler,
701
- )
702
- if return_info:
703
- return x, info
704
- return x
705
-
706
-
707
- @torch.no_grad()
708
- def sample_dpmpp_2s_ancestral(
709
- model,
710
- x,
711
- sigmas,
712
- extra_args=None,
713
- callback=None,
714
- disable=None,
715
- eta=1.0,
716
- s_noise=1.0,
717
- noise_sampler=None,
718
- ):
719
- """Ancestral sampling with DPM-Solver++(2S) second-order steps"""
720
- extra_args = {} if extra_args is None else extra_args
721
- noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
722
- s_in = x.new_ones([x.shape[0]])
723
- sigma_fn = lambda t: t.neg().exp()
724
- t_fn = lambda sigma: sigma.log().neg()
725
-
726
- for i in trange(len(sigmas) - 1, disable=disable):
727
- denoised = model(x, sigmas[i] * s_in, **extra_args)
728
- sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
729
- if callback is not None:
730
- callback(
731
- {
732
- "x": x,
733
- "i": i,
734
- "sigma": sigmas[i],
735
- "sigma_hat": sigmas[i],
736
- "denoised": denoised,
737
- }
738
- )
739
- if sigma_down == 0:
740
- # Euler method
741
- d = to_d(x, sigmas[i], denoised)
742
- dt = sigma_down - sigmas[i]
743
- x = x + d * dt
744
- else:
745
- # DPM-Solver++(2S)
746
- t, t_next = t_fn(sigmas[i]), t_fn(sigma_down)
747
- r = 1 / 2
748
- h = t_next - t
749
- s = t + r * h
750
- x_2 = (sigma_fn(s) / sigma_fn(t)) * x - (-h * r).expm1() * denoised
751
- denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
752
- x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_2
753
- # Noise addition
754
- if sigmas[i + 1] > 0:
755
- x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
756
- return x
757
-
758
 
759
  @torch.no_grad()
760
- def sample_dpmpp_sde(
761
- model,
762
- x,
763
- sigmas,
764
- extra_args=None,
765
- callback=None,
766
- disable=None,
767
- eta=1.0,
768
- s_noise=1.0,
769
- noise_sampler=None,
770
- r=1 / 2,
771
- ):
772
  """DPM-Solver++ (stochastic)"""
773
  sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
774
  seed = extra_args.get("seed", None)
@@ -781,35 +356,23 @@ def sample_dpmpp_sde(
781
  for i in trange(len(sigmas) - 1, disable=disable):
782
  denoised = model(x, sigmas[i] * s_in, **extra_args)
783
  if callback is not None:
784
- callback(
785
- {
786
- "x": x,
787
- "i": i,
788
- "sigma": sigmas[i],
789
- "sigma_hat": sigmas[i],
790
- "denoised": denoised,
791
- }
792
- )
793
  if sigmas[i + 1] == 0:
794
- # Euler method
795
  d = to_d(x, sigmas[i], denoised)
796
  dt = sigmas[i + 1] - sigmas[i]
797
  x = x + d * dt
798
  else:
799
- # DPM-Solver++
800
  t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
801
  h = t_next - t
802
  s = t + h * r
803
  fac = 1 / (2 * r)
804
 
805
- # Step 1
806
  sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(s), eta)
807
  s_ = t_fn(sd)
808
  x_2 = (sigma_fn(s_) / sigma_fn(t)) * x - (t - s_).expm1() * denoised
809
  x_2 = x_2 + noise_sampler(sigma_fn(t), sigma_fn(s)) * s_noise * su
810
  denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
811
 
812
- # Step 2
813
  sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(t_next), eta)
814
  t_next_ = t_fn(sd)
815
  denoised_d = (1 - fac) * denoised + fac * denoised_2
@@ -830,15 +393,7 @@ def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=No
830
  for i in trange(len(sigmas) - 1, disable=disable):
831
  denoised = model(x, sigmas[i] * s_in, **extra_args)
832
  if callback is not None:
833
- callback(
834
- {
835
- "x": x,
836
- "i": i,
837
- "sigma": sigmas[i],
838
- "sigma_hat": sigmas[i],
839
- "denoised": denoised,
840
- }
841
- )
842
  t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
843
  h = t_next - t
844
  if old_denoised is None or sigmas[i + 1] == 0:
@@ -853,83 +408,7 @@ def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=No
853
 
854
 
855
  @torch.no_grad()
856
- def sample_dpmpp_2m_sde(
857
- model,
858
- x,
859
- sigmas,
860
- extra_args=None,
861
- callback=None,
862
- disable=None,
863
- eta=1.0,
864
- s_noise=1.0,
865
- noise_sampler=None,
866
- solver_type="midpoint",
867
- ):
868
- """DPM-Solver++(2M) SDE"""
869
-
870
- if solver_type not in {"heun", "midpoint"}:
871
- raise ValueError("solver_type must be 'heun' or 'midpoint'")
872
-
873
- seed = extra_args.get("seed", None)
874
- sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
875
- noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
876
- extra_args = {} if extra_args is None else extra_args
877
- s_in = x.new_ones([x.shape[0]])
878
-
879
- old_denoised = None
880
- h_last = None
881
- h = None
882
-
883
- for i in trange(len(sigmas) - 1, disable=disable):
884
- denoised = model(x, sigmas[i] * s_in, **extra_args)
885
- if callback is not None:
886
- callback(
887
- {
888
- "x": x,
889
- "i": i,
890
- "sigma": sigmas[i],
891
- "sigma_hat": sigmas[i],
892
- "denoised": denoised,
893
- }
894
- )
895
- if sigmas[i + 1] == 0:
896
- # Denoising step
897
- x = denoised
898
- else:
899
- # DPM-Solver++(2M) SDE
900
- t, s = -sigmas[i].log(), -sigmas[i + 1].log()
901
- h = s - t
902
- eta_h = eta * h
903
-
904
- x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised
905
-
906
- if old_denoised is not None:
907
- r = h_last / h
908
- if solver_type == "heun":
909
- x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * (1 / r) * (denoised - old_denoised)
910
- elif solver_type == "midpoint":
911
- x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised)
912
-
913
- if eta:
914
- x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise
915
-
916
- old_denoised = denoised
917
- h_last = h
918
- return x
919
-
920
-
921
- @torch.no_grad()
922
- def sample_dpmpp_3m_sde(
923
- model,
924
- x,
925
- sigmas,
926
- extra_args=None,
927
- callback=None,
928
- disable=None,
929
- eta=1.0,
930
- s_noise=1.0,
931
- noise_sampler=None,
932
- ):
933
  """DPM-Solver++(3M) SDE"""
934
 
935
  seed = extra_args.get("seed", None)
@@ -944,17 +423,8 @@ def sample_dpmpp_3m_sde(
944
  for i in trange(len(sigmas) - 1, disable=disable):
945
  denoised = model(x, sigmas[i] * s_in, **extra_args)
946
  if callback is not None:
947
- callback(
948
- {
949
- "x": x,
950
- "i": i,
951
- "sigma": sigmas[i],
952
- "sigma_hat": sigmas[i],
953
- "denoised": denoised,
954
- }
955
- )
956
  if sigmas[i + 1] == 0:
957
- # Denoising step
958
  x = denoised
959
  else:
960
  t, s = -sigmas[i].log(), -sigmas[i + 1].log()
@@ -988,17 +458,7 @@ def sample_dpmpp_3m_sde(
988
 
989
 
990
  @torch.no_grad()
991
- def sample_dpmpp_3m_sde_gpu(
992
- model,
993
- x,
994
- sigmas,
995
- extra_args=None,
996
- callback=None,
997
- disable=None,
998
- eta=1.0,
999
- s_noise=1.0,
1000
- noise_sampler=None,
1001
- ):
1002
  sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
1003
  noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
1004
  return sample_dpmpp_3m_sde(
@@ -1015,47 +475,7 @@ def sample_dpmpp_3m_sde_gpu(
1015
 
1016
 
1017
  @torch.no_grad()
1018
- def sample_dpmpp_2m_sde_gpu(
1019
- model,
1020
- x,
1021
- sigmas,
1022
- extra_args=None,
1023
- callback=None,
1024
- disable=None,
1025
- eta=1.0,
1026
- s_noise=1.0,
1027
- noise_sampler=None,
1028
- solver_type="midpoint",
1029
- ):
1030
- sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
1031
- noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
1032
- return sample_dpmpp_2m_sde(
1033
- model,
1034
- x,
1035
- sigmas,
1036
- extra_args=extra_args,
1037
- callback=callback,
1038
- disable=disable,
1039
- eta=eta,
1040
- s_noise=s_noise,
1041
- noise_sampler=noise_sampler,
1042
- solver_type=solver_type,
1043
- )
1044
-
1045
-
1046
- @torch.no_grad()
1047
- def sample_dpmpp_sde_gpu(
1048
- model,
1049
- x,
1050
- sigmas,
1051
- extra_args=None,
1052
- callback=None,
1053
- disable=None,
1054
- eta=1.0,
1055
- s_noise=1.0,
1056
- noise_sampler=None,
1057
- r=1 / 2,
1058
- ):
1059
  sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
1060
  noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
1061
  return sample_dpmpp_sde(
@@ -1083,16 +503,7 @@ def DDPMSampler_step(x, sigma, sigma_prev, noise, noise_sampler):
1083
  return mu
1084
 
1085
 
1086
- def generic_step_sampler(
1087
- model,
1088
- x,
1089
- sigmas,
1090
- extra_args=None,
1091
- callback=None,
1092
- disable=None,
1093
- noise_sampler=None,
1094
- step_function=None,
1095
- ):
1096
  extra_args = {} if extra_args is None else extra_args
1097
  noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
1098
  s_in = x.new_ones([x.shape[0]])
@@ -1100,15 +511,7 @@ def generic_step_sampler(
1100
  for i in trange(len(sigmas) - 1, disable=disable):
1101
  denoised = model(x, sigmas[i] * s_in, **extra_args)
1102
  if callback is not None:
1103
- callback(
1104
- {
1105
- "x": x,
1106
- "i": i,
1107
- "sigma": sigmas[i],
1108
- "sigma_hat": sigmas[i],
1109
- "denoised": denoised,
1110
- }
1111
- )
1112
  x = step_function(
1113
  x / torch.sqrt(1.0 + sigmas[i] ** 2.0),
1114
  sigmas[i],
@@ -1124,101 +527,3 @@ def generic_step_sampler(
1124
  @torch.no_grad()
1125
  def sample_ddpm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
1126
  return generic_step_sampler(model, x, sigmas, extra_args, callback, disable, noise_sampler, DDPMSampler_step)
1127
-
1128
-
1129
- @torch.no_grad()
1130
- def sample_lcm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
1131
- extra_args = {} if extra_args is None else extra_args
1132
- noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
1133
- s_in = x.new_ones([x.shape[0]])
1134
- for i in trange(len(sigmas) - 1, disable=disable):
1135
- denoised = model(x, sigmas[i] * s_in, **extra_args)
1136
- if callback is not None:
1137
- callback(
1138
- {
1139
- "x": x,
1140
- "i": i,
1141
- "sigma": sigmas[i],
1142
- "sigma_hat": sigmas[i],
1143
- "denoised": denoised,
1144
- }
1145
- )
1146
-
1147
- x = denoised
1148
- if sigmas[i + 1] > 0:
1149
- x += sigmas[i + 1] * noise_sampler(sigmas[i], sigmas[i + 1])
1150
- return x
1151
-
1152
-
1153
- @torch.no_grad()
1154
- def sample_heunpp2(
1155
- model,
1156
- x,
1157
- sigmas,
1158
- extra_args=None,
1159
- callback=None,
1160
- disable=None,
1161
- s_churn=0.0,
1162
- s_tmin=0.0,
1163
- s_tmax=float("inf"),
1164
- s_noise=1.0,
1165
- ):
1166
- # From MIT licensed: https://github.com/Carzit/sd-webui-samplers-scheduler/
1167
- extra_args = {} if extra_args is None else extra_args
1168
- s_in = x.new_ones([x.shape[0]])
1169
- s_end = sigmas[-1]
1170
- for i in trange(len(sigmas) - 1, disable=disable):
1171
- gamma = min(s_churn / (len(sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.0
1172
- eps = torch.randn_like(x) * s_noise
1173
- sigma_hat = sigmas[i] * (gamma + 1)
1174
- if gamma > 0:
1175
- x = x + eps * (sigma_hat**2 - sigmas[i] ** 2) ** 0.5
1176
- denoised = model(x, sigma_hat * s_in, **extra_args)
1177
- d = to_d(x, sigma_hat, denoised)
1178
- if callback is not None:
1179
- callback(
1180
- {
1181
- "x": x,
1182
- "i": i,
1183
- "sigma": sigmas[i],
1184
- "sigma_hat": sigma_hat,
1185
- "denoised": denoised,
1186
- }
1187
- )
1188
- dt = sigmas[i + 1] - sigma_hat
1189
- if sigmas[i + 1] == s_end:
1190
- # Euler method
1191
- x = x + d * dt
1192
- elif sigmas[i + 2] == s_end:
1193
- # Heun's method
1194
- x_2 = x + d * dt
1195
- denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
1196
- d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
1197
-
1198
- w = 2 * sigmas[0]
1199
- w2 = sigmas[i + 1] / w
1200
- w1 = 1 - w2
1201
-
1202
- d_prime = d * w1 + d_2 * w2
1203
-
1204
- x = x + d_prime * dt
1205
-
1206
- else:
1207
- # Heun++
1208
- x_2 = x + d * dt
1209
- denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
1210
- d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
1211
- dt_2 = sigmas[i + 2] - sigmas[i + 1]
1212
-
1213
- x_3 = x_2 + d_2 * dt_2
1214
- denoised_3 = model(x_3, sigmas[i + 2] * s_in, **extra_args)
1215
- d_3 = to_d(x_3, sigmas[i + 2], denoised_3)
1216
-
1217
- w = 3 * sigmas[0]
1218
- w2 = sigmas[i + 1] / w
1219
- w3 = sigmas[i + 2] / w
1220
- w1 = 1 - w2 - w3
1221
-
1222
- d_prime = w1 * d + w2 * d_2 + w3 * d_3
1223
- x = x + d_prime * dt
1224
- return x
 
6
  import torchsde
7
  from scipy import integrate
8
  from torch import nn
9
+ from tqdm.auto import trange
10
 
11
  from . import utils
12
 
 
26
 
27
  def get_sigmas_exponential(n, sigma_min, sigma_max, device="cpu"):
28
  """Constructs an exponential noise schedule"""
29
+ sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), n, device=device).exp()
 
 
 
 
 
30
  return append_zero(sigmas)
31
 
32
 
 
37
  return append_zero(sigmas)
38
 
39
 
 
 
 
 
 
 
 
40
  def to_d(x, sigma, denoised):
41
  """Converts a denoiser output to a Karras ODE derivative"""
42
  return (x - denoised) / utils.append_dims(sigma, x.ndim)
43
 
44
 
45
  def get_ancestral_step(sigma_from, sigma_to, eta=1.0):
46
+ """
47
+ Calculates the noise level (sigma_down) to step down to and the
48
+ amount of noise to add (sigma_up) when doing an ancestral sampling step
49
+ """
50
  if not eta:
51
  return sigma_to, 0.0
52
+ sigma_up = min(eta * (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5, sigma_to)
 
 
 
53
  sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
54
  return sigma_down, sigma_up
55
 
56
 
57
+ def default_noise_sampler(x, seed=None):
58
  return lambda sigma, sigma_next: torch.randn_like(x)
59
 
60
 
 
127
 
128
 
129
  @torch.no_grad()
130
+ def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0.0, s_tmin=0.0, s_tmax=float("inf"), s_noise=1.0):
 
 
 
 
 
 
 
 
 
 
 
131
  """Implements Algorithm 2 (Euler steps) from Karras et al. (2022)"""
132
  extra_args = {} if extra_args is None else extra_args
133
  s_in = x.new_ones([x.shape[0]])
 
140
  denoised = model(x, sigma_hat * s_in, **extra_args)
141
  d = to_d(x, sigma_hat, denoised)
142
  if callback is not None:
143
+ callback({"x": x, "i": i, "sigma": sigmas[i], "sigma_hat": sigma_hat, "denoised": denoised})
 
 
 
 
 
 
 
 
144
  dt = sigmas[i + 1] - sigma_hat
 
145
  x = x + d * dt
146
  return x
147
 
148
 
149
  @torch.no_grad()
150
+ def sample_euler_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1.0, s_noise=1.0, noise_sampler=None):
 
 
 
 
 
 
 
 
 
 
151
  """Ancestral sampling with Euler method steps"""
152
  extra_args = {} if extra_args is None else extra_args
153
  noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
 
156
  denoised = model(x, sigmas[i] * s_in, **extra_args)
157
  sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
158
  if callback is not None:
159
+ callback({"x": x, "i": i, "sigma": sigmas[i], "sigma_hat": sigmas[i], "denoised": denoised})
 
 
 
 
 
 
 
 
160
  d = to_d(x, sigmas[i], denoised)
 
161
  dt = sigma_down - sigmas[i]
162
  x = x + d * dt
163
  if sigmas[i + 1] > 0:
 
166
 
167
 
168
  @torch.no_grad()
169
+ def sample_heun(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0.0, s_tmin=0.0, s_tmax=float("inf"), s_noise=1.0):
 
 
 
 
 
 
 
 
 
 
 
170
  """Implements Algorithm 2 (Heun steps) from Karras et al. (2022)"""
171
  extra_args = {} if extra_args is None else extra_args
172
  s_in = x.new_ones([x.shape[0]])
 
179
  denoised = model(x, sigma_hat * s_in, **extra_args)
180
  d = to_d(x, sigma_hat, denoised)
181
  if callback is not None:
182
+ callback({"x": x, "i": i, "sigma": sigmas[i], "sigma_hat": sigma_hat, "denoised": denoised})
 
 
 
 
 
 
 
 
183
  dt = sigmas[i + 1] - sigma_hat
184
  if sigmas[i + 1] == 0:
 
185
  x = x + d * dt
186
  else:
 
187
  x_2 = x + d * dt
188
  denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
189
  d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
 
193
 
194
 
195
  @torch.no_grad()
196
+ def sample_dpm_2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0.0, s_tmin=0.0, s_tmax=float("inf"), s_noise=1.0):
 
 
 
 
 
 
 
 
 
 
 
197
  """A sampler inspired by DPM-Solver-2 and Algorithm 2 from Karras et al. (2022)"""
198
  extra_args = {} if extra_args is None else extra_args
199
  s_in = x.new_ones([x.shape[0]])
 
206
  denoised = model(x, sigma_hat * s_in, **extra_args)
207
  d = to_d(x, sigma_hat, denoised)
208
  if callback is not None:
209
+ callback({"x": x, "i": i, "sigma": sigmas[i], "sigma_hat": sigma_hat, "denoised": denoised})
 
 
 
 
 
 
 
 
210
  if sigmas[i + 1] == 0:
 
211
  dt = sigmas[i + 1] - sigma_hat
212
  x = x + d * dt
213
  else:
 
214
  sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
215
  dt_1 = sigma_mid - sigma_hat
216
  dt_2 = sigmas[i + 1] - sigma_hat
 
221
  return x
222
 
223
 
224
+ def _linear_multistep_coeff(order, t, i, j):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
225
  if order - 1 > i:
226
  raise ValueError(f"Order {order} too high for step {i}")
227
 
 
249
  if len(ds) > order:
250
  ds.pop(0)
251
  if callback is not None:
252
+ callback({"x": x, "i": i, "sigma": sigmas[i], "sigma_hat": sigmas[i], "denoised": denoised})
 
 
 
 
 
 
 
 
253
  cur_order = min(i + 1, order)
254
+ coeffs = [_linear_multistep_coeff(cur_order, sigmas_cpu, i, j) for j in range(cur_order)]
255
  x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))
256
  return x
257
 
 
341
  x_3 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / r2 * (h.expm1() / h - 1) * (eps_r2 - eps)
342
  return x_3, eps_cache
343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
344
 
345
  @torch.no_grad()
346
+ def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1.0, s_noise=1.0, noise_sampler=None, r=0.5):
 
 
 
 
 
 
 
 
 
 
 
347
  """DPM-Solver++ (stochastic)"""
348
  sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
349
  seed = extra_args.get("seed", None)
 
356
  for i in trange(len(sigmas) - 1, disable=disable):
357
  denoised = model(x, sigmas[i] * s_in, **extra_args)
358
  if callback is not None:
359
+ callback({"x": x, "i": i, "sigma": sigmas[i], "sigma_hat": sigmas[i], "denoised": denoised})
 
 
 
 
 
 
 
 
360
  if sigmas[i + 1] == 0:
 
361
  d = to_d(x, sigmas[i], denoised)
362
  dt = sigmas[i + 1] - sigmas[i]
363
  x = x + d * dt
364
  else:
 
365
  t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
366
  h = t_next - t
367
  s = t + h * r
368
  fac = 1 / (2 * r)
369
 
 
370
  sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(s), eta)
371
  s_ = t_fn(sd)
372
  x_2 = (sigma_fn(s_) / sigma_fn(t)) * x - (t - s_).expm1() * denoised
373
  x_2 = x_2 + noise_sampler(sigma_fn(t), sigma_fn(s)) * s_noise * su
374
  denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
375
 
 
376
  sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(t_next), eta)
377
  t_next_ = t_fn(sd)
378
  denoised_d = (1 - fac) * denoised + fac * denoised_2
 
393
  for i in trange(len(sigmas) - 1, disable=disable):
394
  denoised = model(x, sigmas[i] * s_in, **extra_args)
395
  if callback is not None:
396
+ callback({"x": x, "i": i, "sigma": sigmas[i], "sigma_hat": sigmas[i], "denoised": denoised})
 
 
 
 
 
 
 
 
397
  t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
398
  h = t_next - t
399
  if old_denoised is None or sigmas[i + 1] == 0:
 
408
 
409
 
410
  @torch.no_grad()
411
+ def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1.0, s_noise=1.0, noise_sampler=None):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
412
  """DPM-Solver++(3M) SDE"""
413
 
414
  seed = extra_args.get("seed", None)
 
423
  for i in trange(len(sigmas) - 1, disable=disable):
424
  denoised = model(x, sigmas[i] * s_in, **extra_args)
425
  if callback is not None:
426
+ callback({"x": x, "i": i, "sigma": sigmas[i], "sigma_hat": sigmas[i], "denoised": denoised})
 
 
 
 
 
 
 
 
427
  if sigmas[i + 1] == 0:
 
428
  x = denoised
429
  else:
430
  t, s = -sigmas[i].log(), -sigmas[i + 1].log()
 
458
 
459
 
460
  @torch.no_grad()
461
+ def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1.0, s_noise=1.0, noise_sampler=None):
 
 
 
 
 
 
 
 
 
 
462
  sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
463
  noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
464
  return sample_dpmpp_3m_sde(
 
475
 
476
 
477
  @torch.no_grad()
478
+ def sample_dpmpp_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1.0, s_noise=1.0, noise_sampler=None, r=0.5):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
479
  sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
480
  noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
481
  return sample_dpmpp_sde(
 
503
  return mu
504
 
505
 
506
+ def generic_step_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None, step_function=None):
 
 
 
 
 
 
 
 
 
507
  extra_args = {} if extra_args is None else extra_args
508
  noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
509
  s_in = x.new_ones([x.shape[0]])
 
511
  for i in trange(len(sigmas) - 1, disable=disable):
512
  denoised = model(x, sigmas[i] * s_in, **extra_args)
513
  if callback is not None:
514
+ callback({"x": x, "i": i, "sigma": sigmas[i], "sigma_hat": sigmas[i], "denoised": denoised})
 
 
 
 
 
 
 
 
515
  x = step_function(
516
  x / torch.sqrt(1.0 + sigmas[i] ** 2.0),
517
  sigmas[i],
 
527
  @torch.no_grad()
528
  def sample_ddpm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
529
  return generic_step_sampler(model, x, sigmas, extra_args, callback, disable, noise_sampler, DDPMSampler_step)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm_patched/ldm/modules/attention.py CHANGED
@@ -16,6 +16,7 @@ from torch import einsum, nn
16
 
17
  from .diffusionmodules.util import AlphaBlender, checkpoint, timestep_embedding
18
 
 
19
  if model_management.sage_enabled():
20
  import importlib.metadata
21
  from sageattention import sageattn
@@ -30,9 +31,7 @@ if model_management.flash_enabled():
30
  from flash_attn import flash_attn_func
31
 
32
  @torch.library.custom_op("flash_attention::flash_attn", mutates_args=())
33
- def flash_attn_wrapper(
34
- q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, dropout_p: float = 0.0, causal: bool = False
35
- ) -> torch.Tensor:
36
  return flash_attn_func(q, k, v, dropout_p=dropout_p, causal=causal)
37
 
38
  @flash_attn_wrapper.register_fake
@@ -41,7 +40,7 @@ if model_management.flash_enabled():
41
 
42
 
43
  import ldm_patched.modules.ops
44
- from ldm_patched.modules.args_parser import args
45
 
46
  ops = ldm_patched.modules.ops.disable_weight_init
47
 
@@ -104,11 +103,7 @@ class FeedForward(nn.Module):
104
  super().__init__()
105
  inner_dim = int(dim * mult)
106
  dim_out = default(dim_out, dim)
107
- project_in = (
108
- nn.Sequential(operations.Linear(dim, inner_dim, dtype=dtype, device=device), nn.GELU())
109
- if not glu
110
- else GEGLU(dim, inner_dim, dtype=dtype, device=device, operations=operations)
111
- )
112
 
113
  self.net = nn.Sequential(
114
  project_in,
@@ -138,11 +133,7 @@ def attention_basic(q, k, v, heads, mask=None):
138
 
139
  h = heads
140
  q, k, v = map(
141
- lambda t: t.unsqueeze(3)
142
- .reshape(b, -1, heads, dim_head)
143
- .permute(0, 2, 1, 3)
144
- .reshape(b * heads, -1, dim_head)
145
- .contiguous(),
146
  (q, k, v),
147
  )
148
 
@@ -214,6 +205,18 @@ def attention_xformers(q, k, v, heads, mask=None):
214
  return out.unsqueeze(0).reshape(b, heads, -1, dim_head).transpose(1, 2).reshape(b, -1, heads * dim_head)
215
 
216
 
 
 
 
 
 
 
 
 
 
 
 
 
217
  def attention_sage(q, k, v, heads, mask=None):
218
  """
219
  Reference: https://github.com/comfyanonymous/ComfyUI/blob/v0.3.13/comfy/ldm/modules/attention.py#L472
@@ -234,13 +237,9 @@ def attention_sage(q, k, v, heads, mask=None):
234
  (q, k, v),
235
  )
236
 
237
- if mask is not None:
238
- if mask.ndim == 2:
239
- mask = mask.unsqueeze(0)
240
- if mask.ndim == 3:
241
- mask = mask.unsqueeze(1)
242
 
243
- out = sageattn(q, k, v, attn_mask=mask, is_causal=False, tensor_layout="NHD")
244
  return out.reshape(b, -1, heads * dim_head)
245
 
246
 
@@ -285,7 +284,16 @@ def attention_flash(q, k, v, heads, mask=None, attn_precision=None, skip_reshape
285
 
286
 
287
  if model_management.sage_enabled():
288
- print("Using sage attention")
 
 
 
 
 
 
 
 
 
289
  optimized_attention = attention_sage
290
  elif model_management.flash_enabled():
291
  print("Using flash attention")
 
16
 
17
  from .diffusionmodules.util import AlphaBlender, checkpoint, timestep_embedding
18
 
19
+ isSage2 = False
20
  if model_management.sage_enabled():
21
  import importlib.metadata
22
  from sageattention import sageattn
 
31
  from flash_attn import flash_attn_func
32
 
33
  @torch.library.custom_op("flash_attention::flash_attn", mutates_args=())
34
+ def flash_attn_wrapper(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, dropout_p: float = 0.0, causal: bool = False) -> torch.Tensor:
 
 
35
  return flash_attn_func(q, k, v, dropout_p=dropout_p, causal=causal)
36
 
37
  @flash_attn_wrapper.register_fake
 
40
 
41
 
42
  import ldm_patched.modules.ops
43
+ from ldm_patched.modules.args_parser import args, SageAttentionAPIs
44
 
45
  ops = ldm_patched.modules.ops.disable_weight_init
46
 
 
103
  super().__init__()
104
  inner_dim = int(dim * mult)
105
  dim_out = default(dim_out, dim)
106
+ project_in = nn.Sequential(operations.Linear(dim, inner_dim, dtype=dtype, device=device), nn.GELU()) if not glu else GEGLU(dim, inner_dim, dtype=dtype, device=device, operations=operations)
 
 
 
 
107
 
108
  self.net = nn.Sequential(
109
  project_in,
 
133
 
134
  h = heads
135
  q, k, v = map(
136
+ lambda t: t.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head).contiguous(),
 
 
 
 
137
  (q, k, v),
138
  )
139
 
 
205
  return out.unsqueeze(0).reshape(b, heads, -1, dim_head).transpose(1, 2).reshape(b, -1, heads * dim_head)
206
 
207
 
208
+ if isSage2 and args.sageattn2_api is not SageAttentionAPIs.Automatic:
209
+ from functools import partial
210
+ from sageattention import sageattn_qk_int8_pv_fp16_triton, sageattn_qk_int8_pv_fp16_cuda, sageattn_qk_int8_pv_fp8_cuda
211
+
212
+ if args.sageattn2_api is SageAttentionAPIs.Triton16:
213
+ sageattn = sageattn_qk_int8_pv_fp16_triton
214
+ if args.sageattn2_api is SageAttentionAPIs.CUDA16:
215
+ sageattn = partial(sageattn_qk_int8_pv_fp16_cuda, qk_quant_gran="per_warp", pv_accum_dtype="fp16+fp32")
216
+ if args.sageattn2_api is SageAttentionAPIs.CUDA8:
217
+ sageattn = partial(sageattn_qk_int8_pv_fp8_cuda, qk_quant_gran="per_warp", pv_accum_dtype="fp16+fp32")
218
+
219
+
220
  def attention_sage(q, k, v, heads, mask=None):
221
  """
222
  Reference: https://github.com/comfyanonymous/ComfyUI/blob/v0.3.13/comfy/ldm/modules/attention.py#L472
 
237
  (q, k, v),
238
  )
239
 
240
+ assert mask is None
 
 
 
 
241
 
242
+ out = sageattn(q, k, v, is_causal=False, tensor_layout="NHD")
243
  return out.reshape(b, -1, heads * dim_head)
244
 
245
 
 
284
 
285
 
286
  if model_management.sage_enabled():
287
+ match args.sageattn2_api:
288
+ case SageAttentionAPIs.Automatic:
289
+ print("Using sage attention")
290
+ case SageAttentionAPIs.Triton16:
291
+ print("Using sage attention (Triton fp16)")
292
+ case SageAttentionAPIs.CUDA16:
293
+ print("Using sage attention (CUDA fp16)")
294
+ case SageAttentionAPIs.CUDA8:
295
+ print("Using sage attention (CUDA fp8)")
296
+
297
  optimized_attention = attention_sage
298
  elif model_management.flash_enabled():
299
  print("Using flash attention")
ldm_patched/modules/args_parser.py CHANGED
@@ -2,6 +2,26 @@
2
 
3
 
4
  import argparse
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
 
7
  parser = argparse.ArgumentParser()
@@ -58,4 +78,15 @@ parser.add_argument("--pin-shared-memory", action="store_true")
58
 
59
  parser.add_argument("--fast-fp16", action="store_true")
60
 
 
 
 
 
 
 
 
 
 
 
 
61
  args = parser.parse_args([])
 
2
 
3
 
4
  import argparse
5
+ import enum
6
+
7
+
8
+ class EnumAction(argparse.Action):
9
+ """Argparse `action` for handling Enum"""
10
+
11
+ def __init__(self, **kwargs):
12
+ enum_type = kwargs.pop("type", None)
13
+ assert issubclass(enum_type, enum.Enum)
14
+
15
+ choices = tuple(e.value for e in enum_type)
16
+ kwargs.setdefault("choices", choices)
17
+ kwargs.setdefault("metavar", f"[{','.join(list(choices))}]")
18
+
19
+ super(EnumAction, self).__init__(**kwargs)
20
+ self._enum = enum_type
21
+
22
+ def __call__(self, parser, namespace, values, option_string=None):
23
+ value = self._enum(values)
24
+ setattr(namespace, self.dest, value)
25
 
26
 
27
  parser = argparse.ArgumentParser()
 
78
 
79
  parser.add_argument("--fast-fp16", action="store_true")
80
 
81
+
82
+ class SageAttentionAPIs(enum.Enum):
83
+ Automatic = "auto"
84
+ Triton16 = "triton-fp16"
85
+ CUDA16 = "cuda-fp16"
86
+ CUDA8 = "cuda-fp8"
87
+
88
+
89
+ parser.add_argument("--sageattn2-api", type=SageAttentionAPIs, default=SageAttentionAPIs.Automatic, action=EnumAction)
90
+
91
+
92
  args = parser.parse_args([])
modules/api/api.py CHANGED
@@ -34,6 +34,7 @@ from modules import (
34
  sd_hijack,
35
  sd_models,
36
  sd_samplers,
 
37
  shared_items,
38
  ui,
39
  )
@@ -246,6 +247,7 @@ class Api:
246
  self.add_api_route("/sdapi/v1/options", self.set_config, methods=["POST"])
247
  self.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=models.FlagsModel)
248
  self.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=list[models.SamplerItem])
 
249
  self.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=list[models.UpscalerItem])
250
  self.add_api_route("/sdapi/v1/latent-upscale-modes", self.get_latent_upscale_modes, methods=["GET"], response_model=list[models.LatentUpscalerModeItem])
251
  self.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=list[models.SDModelItem])
@@ -684,6 +686,18 @@ class Api:
684
  def get_samplers(self):
685
  return [{"name": sampler[0], "aliases": sampler[2], "options": sampler[3]} for sampler in sd_samplers.all_samplers]
686
 
 
 
 
 
 
 
 
 
 
 
 
 
687
  def get_upscalers(self):
688
  return [
689
  {
 
34
  sd_hijack,
35
  sd_models,
36
  sd_samplers,
37
+ sd_schedulers,
38
  shared_items,
39
  ui,
40
  )
 
247
  self.add_api_route("/sdapi/v1/options", self.set_config, methods=["POST"])
248
  self.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=models.FlagsModel)
249
  self.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=list[models.SamplerItem])
250
+ self.add_api_route("/sdapi/v1/schedulers", self.get_schedulers, methods=["GET"], response_model=list[models.SchedulerItem])
251
  self.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=list[models.UpscalerItem])
252
  self.add_api_route("/sdapi/v1/latent-upscale-modes", self.get_latent_upscale_modes, methods=["GET"], response_model=list[models.LatentUpscalerModeItem])
253
  self.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=list[models.SDModelItem])
 
686
  def get_samplers(self):
687
  return [{"name": sampler[0], "aliases": sampler[2], "options": sampler[3]} for sampler in sd_samplers.all_samplers]
688
 
689
+ def get_schedulers(self):
690
+ return [
691
+ {
692
+ "name": scheduler.name,
693
+ "label": scheduler.label,
694
+ "aliases": scheduler.aliases,
695
+ "default_rho": scheduler.default_rho,
696
+ "need_inner_model": scheduler.need_inner_model,
697
+ }
698
+ for scheduler in sd_schedulers.schedulers
699
+ ]
700
+
701
  def get_upscalers(self):
702
  return [
703
  {
modules/api/models.py CHANGED
@@ -290,6 +290,14 @@ class SamplerItem(BaseModel):
290
  options: dict[str, str] = Field(title="Options")
291
 
292
 
 
 
 
 
 
 
 
 
293
  class UpscalerItem(BaseModel):
294
  name: str = Field(title="Name")
295
  model_name: Optional[str] = Field(title="Model Name")
 
290
  options: dict[str, str] = Field(title="Options")
291
 
292
 
293
+ class SchedulerItem(BaseModel):
294
+ name: str = Field(title="Name")
295
+ label: str = Field(title="Label")
296
+ aliases: Optional[list[str]] = Field(title="Aliases")
297
+ default_rho: Optional[float] = Field(title="Default Rho")
298
+ need_inner_model: Optional[bool] = Field(title="Needs Inner Model")
299
+
300
+
301
  class UpscalerItem(BaseModel):
302
  name: str = Field(title="Name")
303
  model_name: Optional[str] = Field(title="Model Name")
modules/cmd_args.py CHANGED
@@ -95,6 +95,7 @@ parser.add_argument("--disable-extra-extensions", action="store_true", help="pre
95
  parser.add_argument("--forge-ref-a1111-home", type=Path, help="Look for models in an existing A1111 checkout's path", default=None)
96
  parser.add_argument("--controlnet-dir", type=Path, help="Path to directory with ControlNet models", default=None)
97
  parser.add_argument("--controlnet-preprocessor-models-dir", type=Path, help="Path to directory with annotator model directories", default=None)
 
98
  parser.add_argument("--fps", type=int, default=30, help="refresh rate for threads")
99
 
100
  pkm = parser.add_mutually_exclusive_group()
 
95
  parser.add_argument("--forge-ref-a1111-home", type=Path, help="Look for models in an existing A1111 checkout's path", default=None)
96
  parser.add_argument("--controlnet-dir", type=Path, help="Path to directory with ControlNet models", default=None)
97
  parser.add_argument("--controlnet-preprocessor-models-dir", type=Path, help="Path to directory with annotator model directories", default=None)
98
+ parser.add_argument("--adv-samplers", action="store_true", help='show the "sampler parameters" advanced settings')
99
  parser.add_argument("--fps", type=int, default=30, help="refresh rate for threads")
100
 
101
  pkm = parser.add_mutually_exclusive_group()
modules/esrgan_model.py CHANGED
@@ -1,38 +1,46 @@
1
- from modules import modelloader, devices, errors
 
 
 
 
 
2
  from modules.shared import opts
3
  from modules.upscaler import Upscaler, UpscalerData
4
  from modules.upscaler_utils import upscale_with_model
5
  from modules_forge.forge_util import prepare_free_memory
6
- from functools import lru_cache
7
-
8
-
9
- URL = "https://github.com/cszn/KAIR/releases/download/v1.0/ESRGAN.pth"
10
 
11
 
12
  class UpscalerESRGAN(Upscaler):
13
-
14
  def __init__(self, dirname: str):
 
 
 
 
15
  self.name = "ESRGAN"
16
- self.model_url = URL
17
  self.model_name = "ESRGAN"
18
  self.scalers = []
19
- self.user_path = dirname
20
- super().__init__()
21
  model_paths = self.find_models(ext_filter=[".pt", ".pth", ".safetensors"])
22
- scalers = []
23
  if len(model_paths) == 0:
24
  scaler_data = UpscalerData(self.model_name, self.model_url, self, 4)
25
- scalers.append(scaler_data)
 
26
  for file in model_paths:
27
  if file.startswith("http"):
28
  name = self.model_name
29
  else:
30
  name = modelloader.friendly_name(file)
31
 
32
- scaler_data = UpscalerData(name, file, self, 4)
 
 
 
 
 
33
  self.scalers.append(scaler_data)
34
 
35
- def do_upscale(self, img, selected_model):
36
  prepare_free_memory()
37
  try:
38
  model = self.load_model(selected_model)
@@ -40,8 +48,8 @@ class UpscalerESRGAN(Upscaler):
40
  errors.report(f"Unable to load {selected_model}", exc_info=True)
41
  return img
42
  return upscale_with_model(
43
- model,
44
- img,
45
  tile_size=opts.ESRGAN_tile,
46
  tile_overlap=opts.ESRGAN_tile_overlap,
47
  )
@@ -57,10 +65,6 @@ class UpscalerESRGAN(Upscaler):
57
  file_name=path.rsplit("/", 1)[-1],
58
  )
59
 
60
- model = modelloader.load_spandrel_model(
61
- filename,
62
- device=("cpu" if devices.device_esrgan.type == "mps" else None),
63
- expected_architecture="ESRGAN",
64
- )
65
  model.to(devices.device_esrgan)
66
  return model
 
1
+ import re
2
+ from functools import lru_cache
3
+
4
+ from PIL import Image
5
+
6
+ from modules import devices, errors, modelloader
7
  from modules.shared import opts
8
  from modules.upscaler import Upscaler, UpscalerData
9
  from modules.upscaler_utils import upscale_with_model
10
  from modules_forge.forge_util import prepare_free_memory
 
 
 
 
11
 
12
 
13
  class UpscalerESRGAN(Upscaler):
 
14
  def __init__(self, dirname: str):
15
+ self.user_path = dirname
16
+ self.model_path = dirname
17
+ super().__init__(True)
18
+
19
  self.name = "ESRGAN"
20
+ self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/ESRGAN.pth"
21
  self.model_name = "ESRGAN"
22
  self.scalers = []
23
+
 
24
  model_paths = self.find_models(ext_filter=[".pt", ".pth", ".safetensors"])
 
25
  if len(model_paths) == 0:
26
  scaler_data = UpscalerData(self.model_name, self.model_url, self, 4)
27
+ self.scalers.append(scaler_data)
28
+
29
  for file in model_paths:
30
  if file.startswith("http"):
31
  name = self.model_name
32
  else:
33
  name = modelloader.friendly_name(file)
34
 
35
+ if match := re.search(r"(\d)[xX]|[xX](\d)", name):
36
+ scale = int(match.group(1) or match.group(2))
37
+ else:
38
+ scale = 4
39
+
40
+ scaler_data = UpscalerData(name, file, self, scale)
41
  self.scalers.append(scaler_data)
42
 
43
+ def do_upscale(self, img: Image.Image, selected_model: str):
44
  prepare_free_memory()
45
  try:
46
  model = self.load_model(selected_model)
 
48
  errors.report(f"Unable to load {selected_model}", exc_info=True)
49
  return img
50
  return upscale_with_model(
51
+ model=model,
52
+ img=img,
53
  tile_size=opts.ESRGAN_tile,
54
  tile_overlap=opts.ESRGAN_tile_overlap,
55
  )
 
65
  file_name=path.rsplit("/", 1)[-1],
66
  )
67
 
68
+ model = modelloader.load_spandrel_model(filename, device="cpu")
 
 
 
 
69
  model.to(devices.device_esrgan)
70
  return model
modules/images.py CHANGED
@@ -1,6 +1,7 @@
1
  from __future__ import annotations
2
 
3
  import datetime
 
4
 
5
  import pytz
6
  import io
@@ -22,14 +23,12 @@ from modules import sd_samplers, shared, script_callbacks, errors
22
  from modules.paths_internal import roboto_ttf_file
23
  from modules.shared import opts
24
 
25
- LANCZOS = getattr(Image, "LANCZOS", Image.Resampling.LANCZOS)
 
26
 
27
 
28
  def get_font(fontsize: int):
29
- try:
30
- return ImageFont.truetype(opts.font or roboto_ttf_file, fontsize)
31
- except Exception:
32
- return ImageFont.truetype(roboto_ttf_file, fontsize)
33
 
34
 
35
  def image_grid(imgs, batch_size=1, rows=None):
@@ -347,6 +346,32 @@ def sanitize_filename_part(text, replace_spaces=True):
347
  return text
348
 
349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
350
  class FilenameGenerator:
351
  replacements = {
352
  "seed": lambda self: self.seed if self.seed is not None else "",
@@ -358,6 +383,8 @@ class FilenameGenerator:
358
  "height": lambda self: self.image.height,
359
  "styles": lambda self: self.p and sanitize_filename_part(", ".join([style for style in self.p.styles if not style == "None"]) or "None", replace_spaces=False),
360
  "sampler": lambda self: self.p and sanitize_filename_part(self.p.sampler_name, replace_spaces=False),
 
 
361
  "model_hash": lambda self: getattr(self.p, "sd_model_hash", shared.sd_model.sd_model_hash),
362
  "model_name": lambda self: sanitize_filename_part(shared.sd_model.sd_checkpoint_info.name_for_extra, replace_spaces=False),
363
  "date": lambda self: datetime.datetime.now().strftime("%Y-%m-%d"),
 
1
  from __future__ import annotations
2
 
3
  import datetime
4
+ import functools
5
 
6
  import pytz
7
  import io
 
23
  from modules.paths_internal import roboto_ttf_file
24
  from modules.shared import opts
25
 
26
+ LANCZOS = Image.LANCZOS if hasattr(Image, "LANCZOS") else Image.Resampling.LANCZOS
27
+ NEAREST = Image.LANCZOS if hasattr(Image, "NEAREST") else Image.Resampling.NEAREST
28
 
29
 
30
  def get_font(fontsize: int):
31
+ return ImageFont.truetype(roboto_ttf_file, fontsize)
 
 
 
32
 
33
 
34
  def image_grid(imgs, batch_size=1, rows=None):
 
346
  return text
347
 
348
 
349
+ @functools.lru_cache(maxsize=10, typed=False)
350
+ def get_scheduler_str(sampler_name: str, scheduler_name: str):
351
+ """Returns {Scheduler} if the scheduler is applicable to the sampler"""
352
+ if scheduler_name == "Automatic":
353
+ config = sd_samplers.find_sampler_config(sampler_name)
354
+ scheduler_name = config.options.get("scheduler", "Automatic")
355
+ return scheduler_name.capitalize()
356
+
357
+
358
+ @functools.lru_cache(maxsize=10, typed=False)
359
+ def get_sampler_scheduler_str(sampler_name: str, scheduler_name: str):
360
+ """Returns the '{Sampler} {Scheduler}' if the scheduler is applicable to the sampler"""
361
+ return f"{sampler_name} {get_scheduler_str(sampler_name, scheduler_name)}"
362
+
363
+
364
+ def get_sampler_scheduler(p, sampler: str):
365
+ """Returns '{Sampler} {Scheduler}' / '{Scheduler}' / 'NOTHING_AND_SKIP_PREVIOUS_TEXT'"""
366
+ if hasattr(p, "scheduler") and hasattr(p, "sampler_name"):
367
+ if sampler:
368
+ sampler_scheduler = get_sampler_scheduler_str(p.sampler_name, p.scheduler)
369
+ else:
370
+ sampler_scheduler = get_scheduler_str(p.sampler_name, p.scheduler)
371
+ return sanitize_filename_part(sampler_scheduler, replace_spaces=False)
372
+ return NOTHING_AND_SKIP_PREVIOUS_TEXT
373
+
374
+
375
  class FilenameGenerator:
376
  replacements = {
377
  "seed": lambda self: self.seed if self.seed is not None else "",
 
383
  "height": lambda self: self.image.height,
384
  "styles": lambda self: self.p and sanitize_filename_part(", ".join([style for style in self.p.styles if not style == "None"]) or "None", replace_spaces=False),
385
  "sampler": lambda self: self.p and sanitize_filename_part(self.p.sampler_name, replace_spaces=False),
386
+ "sampler_scheduler": lambda self: self.p and get_sampler_scheduler(self.p, True),
387
+ "scheduler": lambda self: self.p and get_sampler_scheduler(self.p, False),
388
  "model_hash": lambda self: getattr(self.p, "sd_model_hash", shared.sd_model.sd_model_hash),
389
  "model_name": lambda self: sanitize_filename_part(shared.sd_model.sd_checkpoint_info.name_for_extra, replace_spaces=False),
390
  "date": lambda self: datetime.datetime.now().strftime("%Y-%m-%d"),
modules/img2img.py CHANGED
@@ -160,8 +160,6 @@ def img2img_function(
160
  inpaint_color_sketch_orig,
161
  init_img_inpaint,
162
  init_mask_inpaint,
163
- steps: int,
164
- sampler_name: str,
165
  mask_blur: int,
166
  mask_alpha: float,
167
  inpainting_fill: int,
@@ -235,10 +233,8 @@ def img2img_function(
235
  prompt=prompt,
236
  negative_prompt=negative_prompt,
237
  styles=prompt_styles,
238
- sampler_name=sampler_name,
239
  batch_size=batch_size,
240
  n_iter=n_iter,
241
- steps=steps,
242
  cfg_scale=cfg_scale,
243
  width=width,
244
  height=height,
@@ -300,8 +296,6 @@ def img2img(
300
  inpaint_color_sketch_orig,
301
  init_img_inpaint,
302
  init_mask_inpaint,
303
- steps: int,
304
- sampler_name: str,
305
  mask_blur: int,
306
  mask_alpha: float,
307
  inpainting_fill: int,
@@ -342,8 +336,6 @@ def img2img(
342
  inpaint_color_sketch_orig,
343
  init_img_inpaint,
344
  init_mask_inpaint,
345
- steps,
346
- sampler_name,
347
  mask_blur,
348
  mask_alpha,
349
  inpainting_fill,
 
160
  inpaint_color_sketch_orig,
161
  init_img_inpaint,
162
  init_mask_inpaint,
 
 
163
  mask_blur: int,
164
  mask_alpha: float,
165
  inpainting_fill: int,
 
233
  prompt=prompt,
234
  negative_prompt=negative_prompt,
235
  styles=prompt_styles,
 
236
  batch_size=batch_size,
237
  n_iter=n_iter,
 
238
  cfg_scale=cfg_scale,
239
  width=width,
240
  height=height,
 
296
  inpaint_color_sketch_orig,
297
  init_img_inpaint,
298
  init_mask_inpaint,
 
 
299
  mask_blur: int,
300
  mask_alpha: float,
301
  inpainting_fill: int,
 
336
  inpaint_color_sketch_orig,
337
  init_img_inpaint,
338
  init_mask_inpaint,
 
 
339
  mask_blur,
340
  mask_alpha,
341
  inpainting_fill,
modules/infotext_utils.py CHANGED
@@ -299,6 +299,9 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
299
  if "Hires sampler" not in res:
300
  res["Hires sampler"] = "Use same sampler"
301
 
 
 
 
302
  if "Hires checkpoint" not in res:
303
  res["Hires checkpoint"] = "Use same checkpoint"
304
 
 
299
  if "Hires sampler" not in res:
300
  res["Hires sampler"] = "Use same sampler"
301
 
302
+ if "Hires schedule type" not in res:
303
+ res["Hires schedule type"] = "Use same scheduler"
304
+
305
  if "Hires checkpoint" not in res:
306
  res["Hires checkpoint"] = "Use same checkpoint"
307
 
modules/launch_utils.py CHANGED
@@ -336,12 +336,10 @@ def prepare_environment():
336
  startup_timer.record("install requirements")
337
 
338
  if not is_installed("insightface"):
339
- run(
340
- f'"{python}" -m pip install {insightface_package} --no-deps',
341
- desc="Installing insightface",
342
- errdesc="Failed to install insightface; please manually install C++ build tools first",
343
- live=False,
344
- )
345
 
346
  if not args.skip_install:
347
  run_extensions_installers(settings_file=args.ui_settings_file)
 
336
  startup_timer.record("install requirements")
337
 
338
  if not is_installed("insightface"):
339
+ try:
340
+ run_pip(f"install --no-deps {insightface_package}", "insightface")
341
+ except RuntimeError:
342
+ print("Failed to install insightface; please manually install C++ build tools first")
 
 
343
 
344
  if not args.skip_install:
345
  run_extensions_installers(settings_file=args.ui_settings_file)
modules/modelloader.py CHANGED
@@ -1,29 +1,23 @@
1
  from __future__ import annotations
2
 
3
- import importlib
4
  import logging
5
  import os
 
6
  from urllib.parse import urlparse
7
 
8
- import torch
9
  import spandrel
10
  import spandrel_extra_arches
 
11
 
12
  from modules import shared
13
- from modules.upscaler import Upscaler, UpscalerLanczos, UpscalerNearest, UpscalerNone
14
-
15
 
16
  spandrel_extra_arches.install()
17
  logger = logging.getLogger(__name__)
18
 
19
 
20
- def load_file_from_url(
21
- url: str,
22
- *,
23
- model_dir: str,
24
- progress: bool = True,
25
- file_name: str | None = None,
26
- ) -> str:
27
  """
28
  Download a file from `url` into `model_dir`, using the file present if possible.
29
  Returns the path to the downloaded file.
@@ -36,6 +30,7 @@ def load_file_from_url(
36
  if not os.path.exists(cached_file):
37
  print(f'Downloading: "{url}" to {cached_file}\n')
38
  from torch.hub import download_url_to_file
 
39
  download_url_to_file(url, cached_file, progress=progress)
40
  return cached_file
41
 
@@ -59,44 +54,40 @@ def load_models(
59
 
60
  @return: A list of paths containing the desired model(s)
61
  """
62
- output = []
63
 
64
  try:
65
- places = []
66
-
67
- if command_path is not None and command_path != model_path:
68
- pretrained_path = os.path.join(command_path, "experiments", "pretrained_models")
69
- if os.path.exists(pretrained_path):
70
- print(f"Appending path: {pretrained_path}")
71
- places.append(pretrained_path)
72
- elif os.path.exists(command_path):
73
- places.append(command_path)
74
 
75
- places.append(model_path)
 
 
 
 
76
 
77
- for place in places:
78
  for full_path in shared.walk_files(place, allowed_extensions=ext_filter):
79
  if os.path.islink(full_path) and not os.path.exists(full_path):
80
  print(f"Skipping broken symlink: {full_path}")
81
  continue
82
  if ext_blacklist is not None and any(full_path.endswith(x) for x in ext_blacklist):
83
  continue
84
- if full_path not in output:
85
- output.append(full_path)
86
 
87
  if model_url is not None and len(output) == 0:
88
  if download_name is not None:
89
- output.append(load_file_from_url(model_url, model_dir=places[0], file_name=download_name))
90
  else:
91
- output.append(model_url)
92
 
93
- except Exception:
94
- pass
95
 
96
- return output
97
 
98
 
99
- def friendly_name(file: str):
100
  if file.startswith("http"):
101
  file = urlparse(file).path
102
 
@@ -106,39 +97,19 @@ def friendly_name(file: str):
106
 
107
 
108
  def load_upscalers():
109
- # We can only do this 'magic' method to dynamically load upscalers if they are referenced,
110
- # so we'll try to import the esrgan_model.py file before looking in __subclasses__
111
- importlib.import_module("modules.esrgan_model")
112
- all_upscalers = []
113
- commandline_options = vars(shared.cmd_opts)
114
-
115
- # some of upscaler classes will not go away after reloading their modules, and we'll end
116
- # up with two copies of those classes. The newest copy will always be the last in the list,
117
- # so we go from end to beginning and ignore duplicates
118
- used_classes = {}
119
- for cls in reversed(Upscaler.__subclasses__()):
120
- classname = str(cls)
121
- if classname not in used_classes:
122
- used_classes[classname] = cls
123
-
124
- for cls in reversed(used_classes.values()):
125
- name = cls.__name__
126
- cmd_name = f"{name.lower().replace('upscaler', '')}_models_path"
127
- commandline_model_path = commandline_options.get(cmd_name, None)
128
- scaler = cls(commandline_model_path)
129
- scaler.user_path = commandline_model_path
130
- scaler.model_download_path = commandline_model_path or scaler.model_path
131
- all_upscalers += scaler.scalers
132
-
133
- shared.sd_upscalers = sorted(
134
- all_upscalers,
135
- # Special case for UpscalerNone keeps it at the beginning of the list.
136
- key=lambda x: (
137
- ""
138
- if isinstance(x.scaler, (UpscalerNone, UpscalerLanczos, UpscalerNearest))
139
- else x.name.lower()
140
- ),
141
- )
142
 
143
 
144
  def load_spandrel_model(
@@ -164,10 +135,7 @@ def load_spandrel_model(
164
  if dtype:
165
  model_descriptor.model.to(dtype=dtype)
166
 
167
- logger.debug(
168
- "Loaded %s from %s (device=%s, half=%s, dtype=%s)",
169
- arch, path, device, half, dtype,
170
- )
171
 
172
  model_descriptor.model.eval()
173
  return model_descriptor
 
1
  from __future__ import annotations
2
 
 
3
  import logging
4
  import os
5
+ import os.path
6
  from urllib.parse import urlparse
7
 
 
8
  import spandrel
9
  import spandrel_extra_arches
10
+ import torch
11
 
12
  from modules import shared
13
+ from modules.errors import display
14
+ from modules.upscaler import UpscalerLanczos, UpscalerNearest, UpscalerNone
15
 
16
  spandrel_extra_arches.install()
17
  logger = logging.getLogger(__name__)
18
 
19
 
20
+ def load_file_from_url(url: str, *, model_dir: str, progress: bool = True, file_name: str | None = None) -> str:
 
 
 
 
 
 
21
  """
22
  Download a file from `url` into `model_dir`, using the file present if possible.
23
  Returns the path to the downloaded file.
 
30
  if not os.path.exists(cached_file):
31
  print(f'Downloading: "{url}" to {cached_file}\n')
32
  from torch.hub import download_url_to_file
33
+
34
  download_url_to_file(url, cached_file, progress=progress)
35
  return cached_file
36
 
 
54
 
55
  @return: A list of paths containing the desired model(s)
56
  """
57
+ output: set[str] = set()
58
 
59
  try:
60
+ folders = [model_path]
 
 
 
 
 
 
 
 
61
 
62
+ if command_path != model_path and command_path is not None:
63
+ if os.path.isdir(command_path):
64
+ folders.append(command_path)
65
+ elif os.path.isfile(command_path):
66
+ output.add(command_path)
67
 
68
+ for place in folders:
69
  for full_path in shared.walk_files(place, allowed_extensions=ext_filter):
70
  if os.path.islink(full_path) and not os.path.exists(full_path):
71
  print(f"Skipping broken symlink: {full_path}")
72
  continue
73
  if ext_blacklist is not None and any(full_path.endswith(x) for x in ext_blacklist):
74
  continue
75
+ if os.path.isfile(full_path):
76
+ output.add(full_path)
77
 
78
  if model_url is not None and len(output) == 0:
79
  if download_name is not None:
80
+ output.add(load_file_from_url(model_url, model_dir=folders[0], file_name=download_name))
81
  else:
82
+ output.add(model_url)
83
 
84
+ except Exception as e:
85
+ display(e, "load_models")
86
 
87
+ return sorted(output, key=lambda mdl: mdl.lower())
88
 
89
 
90
+ def friendly_name(file: str) -> str:
91
  if file.startswith("http"):
92
  file = urlparse(file).path
93
 
 
97
 
98
 
99
  def load_upscalers():
100
+ from modules.esrgan_model import UpscalerESRGAN
101
+
102
+ commandline_model_path = shared.cmd_opts.esrgan_models_path
103
+ upscaler = UpscalerESRGAN(commandline_model_path)
104
+ upscaler.user_path = commandline_model_path
105
+ upscaler.model_download_path = commandline_model_path or upscaler.model_path
106
+
107
+ shared.sd_upscalers = [
108
+ *UpscalerNone().scalers,
109
+ *UpscalerLanczos().scalers,
110
+ *UpscalerNearest().scalers,
111
+ *sorted(upscaler.scalers, key=lambda s: s.name.lower()),
112
+ ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113
 
114
 
115
  def load_spandrel_model(
 
135
  if dtype:
136
  model_descriptor.model.to(dtype=dtype)
137
 
138
+ logger.debug("Loaded %s from %s (device=%s, half=%s, dtype=%s)", arch, path, device, half, dtype)
 
 
 
139
 
140
  model_descriptor.model.eval()
141
  return model_descriptor
modules/options.py CHANGED
@@ -11,7 +11,7 @@ from modules.paths_internal import script_path
11
 
12
 
13
  class OptionInfo:
14
- def __init__(self, default=None, label="", component=None, component_args=None, onchange=None, section=None, refresh=None, comment_before='', comment_after='', infotext=None, restrict_api=False, category_id=None):
15
  self.default = default
16
  self.label = label
17
  self.component = component
@@ -60,7 +60,14 @@ class OptionInfo:
60
 
61
  class OptionHTML(OptionInfo):
62
  def __init__(self, text):
63
- super().__init__(str(text).strip(), label='', component=lambda **kwargs: gr.HTML(elem_classes="settings-info", **kwargs))
 
 
 
 
 
 
 
64
 
65
  self.do_not_save = True
66
 
@@ -104,19 +111,19 @@ class Options:
104
 
105
  # Restrict component arguments
106
  comp_args = info.component_args if info else None
107
- if isinstance(comp_args, dict) and comp_args.get('visible', True) is False:
108
  raise RuntimeError(f"not possible to set '{key}' because it is restricted")
109
 
110
  # Check that this section isn't frozen
111
  if cmd_opts.freeze_settings_in_sections is not None:
112
- frozen_sections = list(map(str.strip, cmd_opts.freeze_settings_in_sections.split(','))) # Trim whitespace from section names
113
  section_key = info.section[0]
114
  section_name = info.section[1]
115
  assert section_key not in frozen_sections, f"not possible to set '{key}' because settings in section '{section_name}' ({section_key}) are frozen with --freeze-settings-in-sections"
116
 
117
  # Check that this section of the settings isn't frozen
118
  if cmd_opts.freeze_specific_settings is not None:
119
- frozen_keys = list(map(str.strip, cmd_opts.freeze_specific_settings.split(','))) # Trim whitespace from setting keys
120
  assert key not in frozen_keys, f"not possible to set '{key}' because this setting is frozen with --freeze-specific-settings"
121
 
122
  # Check shorthand option which disables editing options in "saving-paths"
@@ -201,20 +208,20 @@ class Options:
201
  except FileNotFoundError:
202
  self.data = {}
203
  except Exception:
204
- errors.report(f'\nCould not load settings\nThe config file "{filename}" is likely corrupted\nIt has been moved to the "tmp/config.json"\nReverting config to default\n\n''', exc_info=True)
205
  os.replace(filename, os.path.join(script_path, "tmp", "config.json"))
206
  self.data = {}
207
  # 1.6.0 VAE defaults
208
- if self.data.get('sd_vae_as_default') is not None and self.data.get('sd_vae_overrides_per_model_preferences') is None:
209
- self.data['sd_vae_overrides_per_model_preferences'] = not self.data.get('sd_vae_as_default')
210
 
211
  # 1.1.1 quicksettings list migration
212
- if self.data.get('quicksettings') is not None and self.data.get('quicksettings_list') is None:
213
- self.data['quicksettings_list'] = [i.strip() for i in self.data.get('quicksettings').split(',')]
214
 
215
  # 1.4.0 ui_reorder
216
- if isinstance(self.data.get('ui_reorder'), str) and self.data.get('ui_reorder') and "ui_reorder_list" not in self.data:
217
- self.data['ui_reorder_list'] = [i.strip() for i in self.data.get('ui_reorder').split(',')]
218
 
219
  bad_settings = 0
220
  for k, v in self.data.items():
@@ -319,6 +326,7 @@ class OptionsCategory:
319
  id: str
320
  label: str
321
 
 
322
  class OptionsCategories:
323
  def __init__(self):
324
  self.mapping = {}
 
11
 
12
 
13
  class OptionInfo:
14
+ def __init__(self, default=None, label="", component=None, component_args=None, onchange=None, section=None, refresh=None, comment_before="", comment_after="", infotext=None, restrict_api=False, category_id=None):
15
  self.default = default
16
  self.label = label
17
  self.component = component
 
60
 
61
  class OptionHTML(OptionInfo):
62
  def __init__(self, text):
63
+ super().__init__(str(text).strip(), label="", component=lambda **kwargs: gr.HTML(elem_classes="settings-info", **kwargs))
64
+
65
+ self.do_not_save = True
66
+
67
+
68
+ class OptionDiv(OptionInfo):
69
+ def __init__(self):
70
+ super().__init__("", label="", component=lambda **kwargs: gr.HTML(elem_classes="settings-div", **kwargs))
71
 
72
  self.do_not_save = True
73
 
 
111
 
112
  # Restrict component arguments
113
  comp_args = info.component_args if info else None
114
+ if isinstance(comp_args, dict) and comp_args.get("visible", True) is False:
115
  raise RuntimeError(f"not possible to set '{key}' because it is restricted")
116
 
117
  # Check that this section isn't frozen
118
  if cmd_opts.freeze_settings_in_sections is not None:
119
+ frozen_sections = list(map(str.strip, cmd_opts.freeze_settings_in_sections.split(","))) # Trim whitespace from section names
120
  section_key = info.section[0]
121
  section_name = info.section[1]
122
  assert section_key not in frozen_sections, f"not possible to set '{key}' because settings in section '{section_name}' ({section_key}) are frozen with --freeze-settings-in-sections"
123
 
124
  # Check that this section of the settings isn't frozen
125
  if cmd_opts.freeze_specific_settings is not None:
126
+ frozen_keys = list(map(str.strip, cmd_opts.freeze_specific_settings.split(","))) # Trim whitespace from setting keys
127
  assert key not in frozen_keys, f"not possible to set '{key}' because this setting is frozen with --freeze-specific-settings"
128
 
129
  # Check shorthand option which disables editing options in "saving-paths"
 
208
  except FileNotFoundError:
209
  self.data = {}
210
  except Exception:
211
+ errors.report(f'\nCould not load settings\nThe config file "{filename}" is likely corrupted\nIt has been moved to the "tmp/config.json"\nReverting config to default\n\n' "", exc_info=True)
212
  os.replace(filename, os.path.join(script_path, "tmp", "config.json"))
213
  self.data = {}
214
  # 1.6.0 VAE defaults
215
+ if self.data.get("sd_vae_as_default") is not None and self.data.get("sd_vae_overrides_per_model_preferences") is None:
216
+ self.data["sd_vae_overrides_per_model_preferences"] = not self.data.get("sd_vae_as_default")
217
 
218
  # 1.1.1 quicksettings list migration
219
+ if self.data.get("quicksettings") is not None and self.data.get("quicksettings_list") is None:
220
+ self.data["quicksettings_list"] = [i.strip() for i in self.data.get("quicksettings").split(",")]
221
 
222
  # 1.4.0 ui_reorder
223
+ if isinstance(self.data.get("ui_reorder"), str) and self.data.get("ui_reorder") and "ui_reorder_list" not in self.data:
224
+ self.data["ui_reorder_list"] = [i.strip() for i in self.data.get("ui_reorder").split(",")]
225
 
226
  bad_settings = 0
227
  for k, v in self.data.items():
 
326
  id: str
327
  label: str
328
 
329
+
330
  class OptionsCategories:
331
  def __init__(self):
332
  self.mapping = {}
modules/postprocessing.py CHANGED
@@ -95,30 +95,6 @@ def run_postprocessing(extras_mode, image, image_folder, input_dir, output_dir,
95
  if save_output:
96
  fullfn, _ = images.save_image(pp.image, path=outpath, basename=basename, extension=opts.samples_format, info=infotext, short_filename=True, no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=forced_filename, suffix=suffix)
97
 
98
- if pp.caption:
99
- caption_filename = os.path.splitext(fullfn)[0] + ".txt"
100
- existing_caption = ""
101
- try:
102
- with open(caption_filename, encoding="utf8") as file:
103
- existing_caption = file.read().strip()
104
- except FileNotFoundError:
105
- pass
106
-
107
- action = shared.opts.postprocessing_existing_caption_action
108
- if action == 'Prepend' and existing_caption:
109
- caption = f"{existing_caption} {pp.caption}"
110
- elif action == 'Append' and existing_caption:
111
- caption = f"{pp.caption} {existing_caption}"
112
- elif action == 'Keep' and existing_caption:
113
- caption = existing_caption
114
- else:
115
- caption = pp.caption
116
-
117
- caption = caption.strip()
118
- if caption:
119
- with open(caption_filename, "w", encoding="utf8") as file:
120
- file.write(caption)
121
-
122
  if extras_mode != 2 or show_extras_results:
123
  outputs.append(pp.image)
124
 
 
95
  if save_output:
96
  fullfn, _ = images.save_image(pp.image, path=outpath, basename=basename, extension=opts.samples_format, info=infotext, short_filename=True, no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=forced_filename, suffix=suffix)
97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98
  if extras_mode != 2 or show_extras_results:
99
  outputs.append(pp.image)
100
 
modules/processing.py CHANGED
@@ -147,6 +147,7 @@ class StableDiffusionProcessing:
147
  seed_resize_from_w: int = -1
148
  seed_enable_extras: bool = True
149
  sampler_name: str = None
 
150
  batch_size: int = 1
151
  n_iter: int = 1
152
  steps: int = 50
@@ -660,6 +661,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
660
  generation_params = {
661
  "Steps": p.steps,
662
  "Sampler": p.sampler_name,
 
663
  "CFG scale": p.cfg_scale,
664
  "Image CFG scale": getattr(p, 'image_cfg_scale', None),
665
  "Seed": p.all_seeds[0] if use_main_prompt else all_seeds[index],
@@ -728,6 +730,8 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
728
  if k == 'sd_vae':
729
  sd_vae.reload_vae_weights()
730
 
 
 
731
  res = process_images_inner(p)
732
 
733
  finally:
@@ -1049,6 +1053,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
1049
  hr_resize_y: int = 0
1050
  hr_checkpoint_name: str = None
1051
  hr_sampler_name: str = None
 
1052
  hr_prompt: str = ''
1053
  hr_negative_prompt: str = ''
1054
  force_task_id: str = None
@@ -1140,6 +1145,11 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
1140
  if self.hr_sampler_name is not None and self.hr_sampler_name != self.sampler_name:
1141
  self.extra_generation_params["Hires sampler"] = self.hr_sampler_name
1142
 
 
 
 
 
 
1143
  if tuple(self.hr_prompt) != tuple(self.prompt):
1144
  self.extra_generation_params["Hires prompt"] = self.hr_prompt
1145
 
 
147
  seed_resize_from_w: int = -1
148
  seed_enable_extras: bool = True
149
  sampler_name: str = None
150
+ scheduler: str = None
151
  batch_size: int = 1
152
  n_iter: int = 1
153
  steps: int = 50
 
661
  generation_params = {
662
  "Steps": p.steps,
663
  "Sampler": p.sampler_name,
664
+ "Schedule type": p.scheduler,
665
  "CFG scale": p.cfg_scale,
666
  "Image CFG scale": getattr(p, 'image_cfg_scale', None),
667
  "Seed": p.all_seeds[0] if use_main_prompt else all_seeds[index],
 
730
  if k == 'sd_vae':
731
  sd_vae.reload_vae_weights()
732
 
733
+ sd_samplers.fix_p_invalid_sampler_and_scheduler(p)
734
+
735
  res = process_images_inner(p)
736
 
737
  finally:
 
1053
  hr_resize_y: int = 0
1054
  hr_checkpoint_name: str = None
1055
  hr_sampler_name: str = None
1056
+ hr_scheduler: str = None
1057
  hr_prompt: str = ''
1058
  hr_negative_prompt: str = ''
1059
  force_task_id: str = None
 
1145
  if self.hr_sampler_name is not None and self.hr_sampler_name != self.sampler_name:
1146
  self.extra_generation_params["Hires sampler"] = self.hr_sampler_name
1147
 
1148
+ self.extra_generation_params["Hires schedule type"] = None # to be set in sd_samplers_kdiffusion.py
1149
+
1150
+ if self.hr_scheduler is None:
1151
+ self.hr_scheduler = self.scheduler
1152
+
1153
  if tuple(self.hr_prompt) != tuple(self.prompt):
1154
  self.extra_generation_params["Hires prompt"] = self.hr_prompt
1155
 
modules/processing_scripts/comments.py CHANGED
@@ -40,7 +40,7 @@ script_callbacks.on_before_token_counter(before_token_counter)
40
 
41
  shared.options_templates.update(
42
  shared.options_section(
43
- ("sd", "Stable Diffusion", "sd"),
44
- {"enable_prompt_comments": shared.OptionInfo(True, "Enable comments").info("Use # anywhere in the prompt to hide the text between # and the end of the line from the generation.")},
45
  )
46
  )
 
40
 
41
  shared.options_templates.update(
42
  shared.options_section(
43
+ ("ui_alternatives", "UI Alternatives", "ui"),
44
+ {"enable_prompt_comments": shared.OptionInfo(True, "Enable Comments").info("Ignore the texts between # and the end of the line from the prompts")},
45
  )
46
  )
modules/processing_scripts/mahiro.py CHANGED
@@ -6,6 +6,7 @@ https://github.com/comfyanonymous/ComfyUI/blob/v0.3.26/comfy_extras/nodes_mahiro
6
  import gradio as gr
7
  import torch
8
  import torch.nn.functional as F
 
9
  from modules import scripts
10
  from modules.infotext_utils import PasteField
11
  from modules.shared import opts
 
6
  import gradio as gr
7
  import torch
8
  import torch.nn.functional as F
9
+
10
  from modules import scripts
11
  from modules.infotext_utils import PasteField
12
  from modules.shared import opts
modules/processing_scripts/refiner.py CHANGED
@@ -1,4 +1,5 @@
1
  import gradio as gr
 
2
  from modules import scripts, sd_models
3
  from modules.infotext_utils import PasteField
4
  from modules.shared import opts
 
1
  import gradio as gr
2
+
3
  from modules import scripts, sd_models
4
  from modules.infotext_utils import PasteField
5
  from modules.shared import opts
modules/processing_scripts/rescale_cfg.py CHANGED
@@ -5,6 +5,7 @@ https://github.com/comfyanonymous/ComfyUI/blob/v0.3.7/comfy_extras/nodes_model_a
5
 
6
  import gradio as gr
7
  import torch
 
8
  from modules import scripts
9
  from modules.infotext_utils import PasteField
10
  from modules.shared import opts
 
5
 
6
  import gradio as gr
7
  import torch
8
+
9
  from modules import scripts
10
  from modules.infotext_utils import PasteField
11
  from modules.shared import opts
modules/processing_scripts/sampler.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ from modules import scripts, sd_samplers, sd_schedulers, shared
4
+ from modules.infotext_utils import PasteField
5
+ from modules.ui_components import FormRow
6
+
7
+
8
+ class ScriptSampler(scripts.ScriptBuiltinUI):
9
+ create_group = False
10
+ section = "sampler"
11
+
12
+ def __init__(self):
13
+ self.steps = None
14
+ self.sampler_name = None
15
+ self.scheduler = None
16
+
17
+ def title(self):
18
+ return "Sampler"
19
+
20
+ def show(self, is_img2img):
21
+ return scripts.AlwaysVisible
22
+
23
+ def ui(self, is_img2img):
24
+ sampler_names: list[str] = sd_samplers.visible_sampler_names()
25
+ scheduler_names: list[str] = [x.label for x in sd_schedulers.schedulers]
26
+
27
+ with FormRow(elem_id=f"sampler_selection_{self.tabname}"):
28
+ self.sampler_name = gr.Dropdown(
29
+ label="Sampling method",
30
+ elem_id=f"{self.tabname}_sampling",
31
+ choices=sampler_names,
32
+ value=sampler_names[0],
33
+ )
34
+ if shared.opts.show_scheduler:
35
+ self.scheduler = gr.Dropdown(
36
+ label="Schedule type",
37
+ elem_id=f"{self.tabname}_scheduler",
38
+ choices=scheduler_names,
39
+ value=scheduler_names[0],
40
+ )
41
+ else:
42
+ self.scheduler = gr.State(value="Automatic")
43
+ self.scheduler.do_not_save_to_config = True
44
+ self.steps = gr.Slider(
45
+ minimum=1,
46
+ maximum=150,
47
+ step=1,
48
+ elem_id=f"{self.tabname}_steps",
49
+ label="Sampling steps",
50
+ value=20,
51
+ )
52
+
53
+ self.infotext_fields = [
54
+ PasteField(self.steps, "Steps", api="steps"),
55
+ PasteField(self.sampler_name, sd_samplers.get_sampler_from_infotext, api="sampler_name"),
56
+ ]
57
+
58
+ if shared.opts.show_scheduler:
59
+ self.infotext_fields.append(PasteField(self.scheduler, sd_samplers.get_scheduler_from_infotext, api="scheduler"))
60
+
61
+ return self.steps, self.sampler_name, self.scheduler
62
+
63
+ def setup(self, p, steps, sampler_name, scheduler):
64
+ p.steps = steps
65
+ p.sampler_name = sampler_name
66
+ p.scheduler = scheduler
modules/processing_scripts/seed.py CHANGED
@@ -1,6 +1,7 @@
1
  import json
2
 
3
  import gradio as gr
 
4
  from modules import errors, infotext_utils, scripts, ui
5
  from modules.infotext_utils import PasteField
6
  from modules.shared import cmd_opts
 
1
  import json
2
 
3
  import gradio as gr
4
+
5
  from modules import errors, infotext_utils, scripts, ui
6
  from modules.infotext_utils import PasteField
7
  from modules.shared import cmd_opts
modules/scripts_postprocessing.py CHANGED
@@ -19,7 +19,6 @@ class PostprocessedImage:
19
  self.extra_images = []
20
  self.nametags = []
21
  self.disable_processing = False
22
- self.caption = None
23
 
24
  def get_suffix(self, used_suffixes=None):
25
  used_suffixes = {} if used_suffixes is None else used_suffixes
 
19
  self.extra_images = []
20
  self.nametags = []
21
  self.disable_processing = False
 
22
 
23
  def get_suffix(self, used_suffixes=None):
24
  used_suffixes = {} if used_suffixes is None else used_suffixes
modules/sd_emphasis.py CHANGED
@@ -25,12 +25,12 @@ class Emphasis:
25
 
26
  class EmphasisNone(Emphasis):
27
  name = "None"
28
- description = "disable the mechanism entirely and treat (:.1.1) as literal characters"
29
 
30
 
31
  class EmphasisIgnore(Emphasis):
32
  name = "Ignore"
33
- description = "treat all empasised words as if they have no emphasis"
34
 
35
 
36
  class EmphasisOriginal(Emphasis):
@@ -48,7 +48,7 @@ class EmphasisOriginal(Emphasis):
48
 
49
  class EmphasisOriginalNoNorm(EmphasisOriginal):
50
  name = "No norm"
51
- description = "same as original, but without normalization (seems to work better for SDXL)"
52
 
53
  def after_transformers(self):
54
  self.z = self.z * self.multipliers.reshape(self.multipliers.shape + (1,)).expand(self.z.shape)
@@ -59,7 +59,11 @@ def get_current_option(emphasis_option_name):
59
 
60
 
61
  def get_options_descriptions():
62
- return ", ".join(f"{x.name}: {x.description}" for x in options)
 
 
 
 
63
 
64
 
65
  options = [
 
25
 
26
  class EmphasisNone(Emphasis):
27
  name = "None"
28
+ description = "disable Emphasis entirely and treat (:1.2) as literal characters"
29
 
30
 
31
  class EmphasisIgnore(Emphasis):
32
  name = "Ignore"
33
+ description = "treat all words as if they have no emphasis"
34
 
35
 
36
  class EmphasisOriginal(Emphasis):
 
48
 
49
  class EmphasisOriginalNoNorm(EmphasisOriginal):
50
  name = "No norm"
51
+ description = "implementation without normalization (fix certain issues for SDXL)"
52
 
53
  def after_transformers(self):
54
  self.z = self.z * self.multipliers.reshape(self.multipliers.shape + (1,)).expand(self.z.shape)
 
59
 
60
 
61
  def get_options_descriptions():
62
+ return f"""
63
+ <ul style='margin-left: 1.5em'><li>
64
+ {"</li><li>".join(f"<b>{x.name}</b>: {x.description}" for x in options)}
65
+ </li></ul>
66
+ """
67
 
68
 
69
  options = [
modules/sd_samplers.py CHANGED
@@ -1,21 +1,43 @@
1
- from modules import sd_samplers_kdiffusion, sd_samplers_timesteps, sd_samplers_lcm, shared
2
-
3
- # imports for functions that previously were here and are used by other modules
4
- from modules.sd_samplers_common import samples_to_image_grid, sample_to_image # noqa: F401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  from modules_forge import forge_alter_samplers
6
 
7
  all_samplers = [
8
  *sd_samplers_kdiffusion.samplers_data_k_diffusion,
9
  *sd_samplers_timesteps.samplers_data_timesteps,
10
  *sd_samplers_lcm.samplers_data_lcm,
11
- *forge_alter_samplers.samplers_data_alter
12
  ]
13
  all_samplers_map = {x.name: x for x in all_samplers}
14
 
15
- samplers = []
16
- samplers_for_img2img = []
17
- samplers_map = {}
18
- samplers_hidden = {}
 
 
 
 
 
 
 
 
19
 
20
 
21
  def find_sampler_config(name):
@@ -30,7 +52,7 @@ def find_sampler_config(name):
30
  def create_sampler(name, model):
31
  config = find_sampler_config(name)
32
 
33
- assert config is not None, f'bad sampler name: {name}'
34
 
35
  if model.is_sdxl and config.options.get("no_sdxl", False):
36
  raise Exception(f"Sampler {config.name} is not supported for SDXL")
@@ -44,10 +66,15 @@ def create_sampler(name, model):
44
  def set_samplers():
45
  global samplers, samplers_for_img2img, samplers_hidden
46
 
47
- samplers_hidden = set(shared.opts.hide_samplers)
48
  samplers = all_samplers
49
  samplers_for_img2img = all_samplers
50
 
 
 
 
 
 
 
51
  samplers_map.clear()
52
  for sampler in all_samplers:
53
  samplers_map[sampler.name.lower()] = sampler.name
@@ -55,11 +82,73 @@ def set_samplers():
55
  samplers_map[alias.lower()] = sampler.name
56
 
57
 
58
- def visible_sampler_names():
59
- if shared.opts.hide_samplers_invert:
60
- return [x.name for x in samplers if x.name in samplers_hidden]
61
- else:
62
- return [x.name for x in samplers if x.name not in samplers_hidden]
 
63
 
64
 
65
  set_samplers()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import functools
2
+ import logging
3
+ from typing import TYPE_CHECKING
4
+
5
+ if TYPE_CHECKING:
6
+ from modules.sd_samplers_common import SamplerData
7
+
8
+ from modules import (
9
+ sd_samplers_kdiffusion,
10
+ sd_samplers_lcm,
11
+ sd_samplers_timesteps,
12
+ sd_schedulers,
13
+ shared,
14
+ )
15
+ from modules.sd_samplers_common import ( # noqa: F401
16
+ sample_to_image,
17
+ samples_to_image_grid,
18
+ )
19
  from modules_forge import forge_alter_samplers
20
 
21
  all_samplers = [
22
  *sd_samplers_kdiffusion.samplers_data_k_diffusion,
23
  *sd_samplers_timesteps.samplers_data_timesteps,
24
  *sd_samplers_lcm.samplers_data_lcm,
25
+ *forge_alter_samplers.samplers_data_alter,
26
  ]
27
  all_samplers_map = {x.name: x for x in all_samplers}
28
 
29
+ samplers: list["SamplerData"] = []
30
+ samplers_for_img2img: list["SamplerData"] = []
31
+ samplers_map: dict[str, str] = {}
32
+ samplers_hidden: set[str] = {}
33
+
34
+
35
+ def get_sampler_from_infotext(d: dict):
36
+ return get_sampler_and_scheduler(d.get("Sampler"), d.get("Schedule type"))[0]
37
+
38
+
39
+ def get_scheduler_from_infotext(d: dict):
40
+ return get_sampler_and_scheduler(d.get("Sampler"), d.get("Schedule type"))[1]
41
 
42
 
43
  def find_sampler_config(name):
 
52
  def create_sampler(name, model):
53
  config = find_sampler_config(name)
54
 
55
+ assert config is not None, f"bad sampler name: {name}"
56
 
57
  if model.is_sdxl and config.options.get("no_sdxl", False):
58
  raise Exception(f"Sampler {config.name} is not supported for SDXL")
 
66
  def set_samplers():
67
  global samplers, samplers_for_img2img, samplers_hidden
68
 
 
69
  samplers = all_samplers
70
  samplers_for_img2img = all_samplers
71
 
72
+ _samplers_hidden = set(shared.opts.hide_samplers)
73
+ if shared.opts.hide_samplers_invert:
74
+ samplers_hidden = set(x.name for x in samplers if x.name not in _samplers_hidden)
75
+ else:
76
+ samplers_hidden = _samplers_hidden
77
+
78
  samplers_map.clear()
79
  for sampler in all_samplers:
80
  samplers_map[sampler.name.lower()] = sampler.name
 
82
  samplers_map[alias.lower()] = sampler.name
83
 
84
 
85
+ def visible_samplers() -> list["SamplerData"]:
86
+ return [x for x in samplers if x.name not in samplers_hidden]
87
+
88
+
89
+ def visible_sampler_names() -> list[str]:
90
+ return [x.name for x in samplers if x.name not in samplers_hidden]
91
 
92
 
93
  set_samplers()
94
+
95
+
96
+ def get_hr_sampler_and_scheduler(d: dict):
97
+ hr_sampler = d.get("Hires sampler", "Use same sampler")
98
+ sampler = d.get("Sampler") if hr_sampler == "Use same sampler" else hr_sampler
99
+
100
+ hr_scheduler = d.get("Hires schedule type", "Use same scheduler")
101
+ scheduler = d.get("Schedule type") if hr_scheduler == "Use same scheduler" else hr_scheduler
102
+
103
+ sampler, scheduler = get_sampler_and_scheduler(sampler, scheduler)
104
+
105
+ sampler = sampler if sampler != d.get("Sampler") else "Use same sampler"
106
+ scheduler = scheduler if scheduler != d.get("Schedule type") else "Use same scheduler"
107
+
108
+ return sampler, scheduler
109
+
110
+
111
+ def get_hr_sampler_from_infotext(d: dict):
112
+ return get_hr_sampler_and_scheduler(d)[0]
113
+
114
+
115
+ def get_hr_scheduler_from_infotext(d: dict):
116
+ return get_hr_sampler_and_scheduler(d)[1]
117
+
118
+
119
+ @functools.lru_cache(maxsize=10, typed=False)
120
+ def get_sampler_and_scheduler(sampler_name: str, scheduler_name: str, *, status: bool = False):
121
+ default_sampler = samplers[0]
122
+ found_scheduler = sd_schedulers.schedulers_map.get(scheduler_name, sd_schedulers.schedulers[0])
123
+
124
+ name = sampler_name or default_sampler.name
125
+
126
+ for scheduler in sd_schedulers.schedulers:
127
+ name_options = [scheduler.label, scheduler.name, *(scheduler.aliases or [])]
128
+
129
+ for name_option in name_options:
130
+ if name.endswith(" " + name_option):
131
+ found_scheduler = scheduler
132
+ name = name[0 : -(len(name_option) + 1)]
133
+ break
134
+
135
+ sampler = all_samplers_map.get(name, default_sampler)
136
+
137
+ _automatic = False
138
+ if sampler.options.get("scheduler", None) == found_scheduler.name:
139
+ found_scheduler = sd_schedulers.schedulers[0]
140
+ _automatic = True
141
+
142
+ if not status:
143
+ return sampler.name, found_scheduler.label
144
+ else:
145
+ return sampler.name, found_scheduler.label, _automatic
146
+
147
+
148
+ def fix_p_invalid_sampler_and_scheduler(p):
149
+ i_sampler_name, i_scheduler = p.sampler_name, p.scheduler
150
+ p.sampler_name, p.scheduler, _automatic = get_sampler_and_scheduler(p.sampler_name, p.scheduler, status=True)
151
+ if i_sampler_name != p.sampler_name:
152
+ logging.warning(f'Sampler Correction: "{i_sampler_name}" -> "{p.sampler_name}"')
153
+ if i_scheduler != p.scheduler and not _automatic:
154
+ logging.warning(f'Scheduler Correction: "{i_scheduler}" -> "{p.scheduler}"')
modules/sd_samplers_cfg_denoiser.py CHANGED
@@ -1,14 +1,14 @@
1
  import torch
2
  from modules import prompt_parser, sd_samplers_common
3
-
 
 
 
 
 
4
  from modules.shared import opts, state
5
  from modules_forge import forge_sampler
6
 
7
- from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback
8
- from modules.script_callbacks import AfterCFGCallbackParams, cfg_after_cfg_callback
9
-
10
- # from modules.script_callbacks import CFGDenoisedParams, cfg_denoised_callback
11
-
12
 
13
  def catenate_conds(conds):
14
  if not isinstance(conds[0], dict):
@@ -53,37 +53,29 @@ class CFGDenoiser(torch.nn.Module):
53
  """expected number of calls to denoiser calculated from self.steps and specifics of the selected sampler"""
54
 
55
  self.step = 0
56
- self.image_cfg_scale = None
57
- self.padded_cond_uncond = False
58
  self.padded_cond_uncond_v0 = False
59
  self.sampler = sampler
60
  self.model_wrap = None
61
  self.p = None
62
 
63
- # Backward Compatibility
64
  self.mask_before_denoising = False
65
-
66
  self.classic_ddim_eps_estimation = False
67
 
68
  @property
69
  def inner_model(self):
70
- raise NotImplementedError()
71
-
72
- def combine_denoised(self, x_out, conds_list, uncond, cond_scale, timestep, x_in, cond):
73
- denoised_uncond = x_out[-uncond.shape[0] :]
74
- denoised = torch.clone(denoised_uncond)
75
-
76
- for i, conds in enumerate(conds_list):
77
- for cond_index, weight in conds:
78
- denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale)
79
 
80
- return denoised
 
 
 
81
 
82
- def combine_denoised_for_edit_model(self, x_out, cond_scale):
83
- out_cond, out_img_cond, out_uncond = x_out.chunk(3)
84
- denoised = out_uncond + cond_scale * (out_cond - out_img_cond) + self.image_cfg_scale * (out_img_cond - out_uncond)
85
-
86
- return denoised
87
 
88
  def get_pred_x0(self, x_in, x_out, sigma):
89
  return x_out
@@ -95,7 +87,7 @@ class CFGDenoiser(torch.nn.Module):
95
  self.sampler.sampler_extra_args["cond"] = c
96
  self.sampler.sampler_extra_args["uncond"] = uc
97
 
98
- def forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond):
99
  if state.interrupted or state.skipped:
100
  raise sd_samplers_common.InterruptedException
101
 
@@ -148,7 +140,16 @@ class CFGDenoiser(torch.nn.Module):
148
  ] * torch.randn_like(self.init_latent)
149
  x = apply_blend(x, noisy_initial_latent.to(self.init_latent))
150
 
151
- denoiser_params = CFGDenoiserParams(x, image_cond, sigma, state.sampling_step, state.sampling_steps, cond, uncond, self)
 
 
 
 
 
 
 
 
 
152
  cfg_denoiser_callback(denoiser_params)
153
 
154
  if 0.0 <= self.step / self.total_steps <= opts.skip_early_cond:
@@ -156,13 +157,23 @@ class CFGDenoiser(torch.nn.Module):
156
  if 0.0 <= sigma[0] <= s_min_uncond:
157
  cond_scale = 1.0
158
 
 
 
 
159
  denoised = forge_sampler.forge_sample(
160
  self,
161
  denoiser_params=denoiser_params,
162
  cond_scale=cond_scale,
163
  cond_composition=cond_composition,
 
 
164
  )
165
 
 
 
 
 
 
166
  if not self.mask_before_denoising and self.mask is not None:
167
  denoised = apply_blend(denoised)
168
 
 
1
  import torch
2
  from modules import prompt_parser, sd_samplers_common
3
+ from modules.script_callbacks import (
4
+ AfterCFGCallbackParams,
5
+ CFGDenoiserParams,
6
+ cfg_after_cfg_callback,
7
+ cfg_denoiser_callback,
8
+ )
9
  from modules.shared import opts, state
10
  from modules_forge import forge_sampler
11
 
 
 
 
 
 
12
 
13
  def catenate_conds(conds):
14
  if not isinstance(conds[0], dict):
 
53
  """expected number of calls to denoiser calculated from self.steps and specifics of the selected sampler"""
54
 
55
  self.step = 0
56
+ self.image_cfg_scale = 1.0
57
+ self.padded_cond_uncond = True
58
  self.padded_cond_uncond_v0 = False
59
  self.sampler = sampler
60
  self.model_wrap = None
61
  self.p = None
62
 
 
63
  self.mask_before_denoising = False
 
64
  self.classic_ddim_eps_estimation = False
65
 
66
  @property
67
  def inner_model(self):
68
+ raise NotImplementedError
 
 
 
 
 
 
 
 
69
 
70
+ # def combine_denoised(self, x_out, conds_list, uncond, cond_scale):
71
+ # denoised_uncond = x_out[-uncond.shape[0] :]
72
+ # denoised = torch.clone(denoised_uncond)
73
+ # return denoised
74
 
75
+ # def combine_denoised_for_edit_model(self, x_out, cond_scale):
76
+ # out_cond, out_img_cond, out_uncond = x_out.chunk(3)
77
+ # denoised = out_uncond + cond_scale * (out_cond - out_img_cond) + self.image_cfg_scale * (out_img_cond - out_uncond)
78
+ # return denoised
 
79
 
80
  def get_pred_x0(self, x_in, x_out, sigma):
81
  return x_out
 
87
  self.sampler.sampler_extra_args["cond"] = c
88
  self.sampler.sampler_extra_args["uncond"] = uc
89
 
90
+ def forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond, **kwargs):
91
  if state.interrupted or state.skipped:
92
  raise sd_samplers_common.InterruptedException
93
 
 
140
  ] * torch.randn_like(self.init_latent)
141
  x = apply_blend(x, noisy_initial_latent.to(self.init_latent))
142
 
143
+ denoiser_params = CFGDenoiserParams(
144
+ x,
145
+ image_cond,
146
+ sigma,
147
+ state.sampling_step,
148
+ state.sampling_steps,
149
+ cond,
150
+ uncond,
151
+ self,
152
+ )
153
  cfg_denoiser_callback(denoiser_params)
154
 
155
  if 0.0 <= self.step / self.total_steps <= opts.skip_early_cond:
 
157
  if 0.0 <= sigma[0] <= s_min_uncond:
158
  cond_scale = 1.0
159
 
160
+ skip_uncond: bool = abs(cond_scale - 1.0) < 10**-6
161
+ self.padded_cond_uncond = not skip_uncond
162
+
163
  denoised = forge_sampler.forge_sample(
164
  self,
165
  denoiser_params=denoiser_params,
166
  cond_scale=cond_scale,
167
  cond_composition=cond_composition,
168
+ skip_uncond=skip_uncond,
169
+ options=kwargs.get("model_options", None),
170
  )
171
 
172
+ # if getattr(self.p.sd_model, "cond_stage_key", None) == "edit" and getattr(self, "image_cfg_scale", 1.0) != 1.0:
173
+ # denoised = self.combine_denoised_for_edit_model(denoised, cond_scale)
174
+ # elif not skip_uncond:
175
+ # denoised = self.combine_denoised(denoised, cond_composition, uncond, cond_scale)
176
+
177
  if not self.mask_before_denoising and self.mask is not None:
178
  denoised = apply_blend(denoised)
179
 
modules/sd_samplers_cfgpp.py ADDED
@@ -0,0 +1,264 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from k_diffusion.sampling import (
3
+ BrownianTreeNoiseSampler,
4
+ default_noise_sampler,
5
+ get_ancestral_step,
6
+ to_d,
7
+ )
8
+ from tqdm.auto import trange
9
+
10
+
11
+ def _set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=False):
12
+ model_options["sampler_post_cfg_function"] = model_options.get("sampler_post_cfg_function", []) + [post_cfg_function]
13
+ if disable_cfg1_optimization:
14
+ model_options["disable_cfg1_optimization"] = True
15
+ return model_options
16
+
17
+
18
+ def _sigma_fn(t):
19
+ return t.neg().exp()
20
+
21
+
22
+ def _t_fn(sigma):
23
+ return sigma.log().neg()
24
+
25
+
26
+ @torch.no_grad()
27
+ def sample_euler_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None):
28
+ extra_args = {} if extra_args is None else extra_args
29
+
30
+ temp = [0]
31
+
32
+ def post_cfg_function(args):
33
+ temp[0] = args["uncond_denoised"]
34
+ return args["denoised"]
35
+
36
+ model_options = extra_args.get("model_options", {}).copy()
37
+ extra_args["model_options"] = _set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
38
+
39
+ s_in = x.new_ones([x.shape[0]])
40
+ for i in trange(len(sigmas) - 1, disable=disable):
41
+ sigma_hat = sigmas[i]
42
+ denoised = model(x, sigma_hat * s_in, **extra_args)
43
+ d = to_d(x, sigma_hat, temp[0])
44
+ if callback is not None:
45
+ callback(
46
+ {
47
+ "x": x,
48
+ "i": i,
49
+ "sigma": sigmas[i],
50
+ "sigma_hat": sigma_hat,
51
+ "denoised": denoised,
52
+ }
53
+ )
54
+ x = denoised + d * sigmas[i + 1]
55
+ return x
56
+
57
+
58
+ @torch.no_grad()
59
+ def sample_euler_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
60
+ eta = 1.0
61
+ s_noise = 1.0
62
+ extra_args = {} if extra_args is None else extra_args
63
+ seed = extra_args.get("seed", None)
64
+ noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
65
+
66
+ temp = [0]
67
+
68
+ def post_cfg_function(args):
69
+ temp[0] = args["uncond_denoised"]
70
+ return args["denoised"]
71
+
72
+ model_options = extra_args.get("model_options", {}).copy()
73
+ extra_args["model_options"] = _set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
74
+
75
+ s_in = x.new_ones([x.shape[0]])
76
+ for i in trange(len(sigmas) - 1, disable=disable):
77
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
78
+ sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
79
+ if callback is not None:
80
+ callback(
81
+ {
82
+ "x": x,
83
+ "i": i,
84
+ "sigma": sigmas[i],
85
+ "sigma_hat": sigmas[i],
86
+ "denoised": denoised,
87
+ }
88
+ )
89
+ d = to_d(x, sigmas[i], temp[0])
90
+ x = denoised + d * sigma_down
91
+ if sigmas[i + 1] > 0:
92
+ x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
93
+ return x
94
+
95
+
96
+ @torch.no_grad()
97
+ def sample_dpmpp_sde_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
98
+ eta = 1.0
99
+ s_noise = 1.0
100
+ r = 0.5
101
+
102
+ if len(sigmas) <= 1:
103
+ return x
104
+
105
+ sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
106
+ noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=True) if noise_sampler is None else noise_sampler
107
+ extra_args = {} if extra_args is None else extra_args
108
+
109
+ temp = [0]
110
+
111
+ def post_cfg_function(args):
112
+ temp[0] = args["uncond_denoised"]
113
+ return args["denoised"]
114
+
115
+ model_options = extra_args.get("model_options", {}).copy()
116
+ extra_args["model_options"] = _set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
117
+
118
+ s_in = x.new_ones([x.shape[0]])
119
+
120
+ for i in trange(len(sigmas) - 1, disable=disable):
121
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
122
+ if callback is not None:
123
+ callback(
124
+ {
125
+ "x": x,
126
+ "i": i,
127
+ "sigma": sigmas[i],
128
+ "sigma_hat": sigmas[i],
129
+ "denoised": denoised,
130
+ }
131
+ )
132
+
133
+ if sigmas[i + 1] == 0:
134
+ d = to_d(x, sigmas[i], temp[0])
135
+ x = denoised + d * sigmas[i + 1]
136
+ else:
137
+ t, t_next = _t_fn(sigmas[i]), _t_fn(sigmas[i + 1])
138
+ h = t_next - t
139
+ s = t + h * r
140
+ fac = 1 / (2 * r)
141
+
142
+ sd, su = get_ancestral_step(_sigma_fn(t), _sigma_fn(s), eta)
143
+ s_ = _t_fn(sd)
144
+ x_2 = (_sigma_fn(s_) / _sigma_fn(t)) * x - (t - s_).expm1() * denoised
145
+ x_2 = x_2 + noise_sampler(_sigma_fn(t), _sigma_fn(s)) * s_noise * su
146
+ denoised_2 = model(x_2, _sigma_fn(s) * s_in, **extra_args)
147
+
148
+ sd, su = get_ancestral_step(_sigma_fn(t), _sigma_fn(t_next), eta)
149
+ denoised_d = (1 - fac) * temp[0] + fac * temp[0]
150
+ x = denoised_2 + to_d(x, sigmas[i], denoised_d) * sd
151
+ x = x + noise_sampler(_sigma_fn(t), _sigma_fn(t_next)) * s_noise * su
152
+ return x
153
+
154
+
155
+ @torch.no_grad()
156
+ def sample_dpmpp_2m_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None):
157
+ extra_args = {} if extra_args is None else extra_args
158
+ s_in = x.new_ones([x.shape[0]])
159
+
160
+ old_uncond_denoised = None
161
+ uncond_denoised = None
162
+
163
+ def post_cfg_function(args):
164
+ nonlocal uncond_denoised
165
+ uncond_denoised = args["uncond_denoised"]
166
+ return args["denoised"]
167
+
168
+ model_options = extra_args.get("model_options", {}).copy()
169
+ extra_args["model_options"] = _set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
170
+
171
+ for i in trange(len(sigmas) - 1, disable=disable):
172
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
173
+ if callback is not None:
174
+ callback(
175
+ {
176
+ "x": x,
177
+ "i": i,
178
+ "sigma": sigmas[i],
179
+ "sigma_hat": sigmas[i],
180
+ "denoised": denoised,
181
+ }
182
+ )
183
+ t, t_next = _t_fn(sigmas[i]), _t_fn(sigmas[i + 1])
184
+ h = t_next - t
185
+ if old_uncond_denoised is None or sigmas[i + 1] == 0:
186
+ denoised_mix = -torch.exp(-h) * uncond_denoised
187
+ else:
188
+ h_last = t - _t_fn(sigmas[i - 1])
189
+ r = h_last / h
190
+ denoised_mix = -torch.exp(-h) * uncond_denoised - torch.expm1(-h) * (1 / (2 * r)) * (denoised - old_uncond_denoised)
191
+ x = denoised + denoised_mix + torch.exp(-h) * x
192
+ old_uncond_denoised = uncond_denoised
193
+ return x
194
+
195
+
196
+ @torch.no_grad()
197
+ def sample_dpmpp_3m_sde_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=None, s_noise=None, noise_sampler=None):
198
+ eta = 1.0 if eta is None else eta
199
+ s_noise = 1.0 if s_noise is None else s_noise
200
+
201
+ if len(sigmas) <= 1:
202
+ return x
203
+
204
+ seed = extra_args.get("seed", None)
205
+ sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
206
+ noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
207
+ extra_args = {} if extra_args is None else extra_args
208
+ s_in = x.new_ones([x.shape[0]])
209
+
210
+ denoised_1, denoised_2 = None, None
211
+ h, h_1, h_2 = None, None, None
212
+
213
+ temp = [0]
214
+
215
+ def post_cfg_function(args):
216
+ temp[0] = args["uncond_denoised"]
217
+ return args["denoised"]
218
+
219
+ model_options = extra_args.get("model_options", {}).copy()
220
+ extra_args["model_options"] = _set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
221
+
222
+ for i in trange(len(sigmas) - 1, disable=disable):
223
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
224
+ if callback is not None:
225
+ callback(
226
+ {
227
+ "x": x,
228
+ "i": i,
229
+ "sigma": sigmas[i],
230
+ "sigma_hat": sigmas[i],
231
+ "denoised": denoised,
232
+ }
233
+ )
234
+ if sigmas[i + 1] == 0:
235
+ x = denoised
236
+ else:
237
+ t, s = -sigmas[i].log(), -sigmas[i + 1].log()
238
+ h = s - t
239
+ h_eta = h * (eta + 1)
240
+
241
+ x = torch.exp(-h_eta) * (x + (denoised - temp[0])) + (-h_eta).expm1().neg() * denoised
242
+
243
+ if h_2 is not None:
244
+ r0 = h_1 / h
245
+ r1 = h_2 / h
246
+ d1_0 = (denoised - denoised_1) / r0
247
+ d1_1 = (denoised_1 - denoised_2) / r1
248
+ d1 = d1_0 + (d1_0 - d1_1) * r0 / (r0 + r1)
249
+ d2 = (d1_0 - d1_1) / (r0 + r1)
250
+ phi_2 = h_eta.neg().expm1() / h_eta + 1
251
+ phi_3 = phi_2 / h_eta - 0.5
252
+ x = x + phi_2 * d1 - phi_3 * d2
253
+ elif h_1 is not None:
254
+ r = h_1 / h
255
+ d = (denoised - denoised_1) / r
256
+ phi_2 = h_eta.neg().expm1() / h_eta + 1
257
+ x = x + phi_2 * d
258
+
259
+ if eta:
260
+ x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * h * eta).expm1().neg().sqrt() * s_noise
261
+
262
+ denoised_1, denoised_2 = denoised, denoised_1
263
+ h_1, h_2 = h, h_1
264
+ return x