|
import os |
|
import json |
|
import fiftyone as fo |
|
from PIL import Image |
|
from pathlib import Path |
|
|
|
def load_sample_files(subdir): |
|
""" |
|
Load all required files for a single sample. |
|
|
|
Args: |
|
subdir (Path): Path to the sample subdirectory |
|
|
|
Returns: |
|
tuple: (detections_data, questions_data, mask_file_path, source_file_path, img_dimensions) |
|
Returns None if any required files are missing. |
|
""" |
|
subdir_name = subdir.name |
|
|
|
|
|
detection_file = subdir / "detection.json" |
|
question_file = subdir / "question.json" |
|
mask_file = subdir / f"mask_{subdir_name}.png" |
|
source_file = subdir / f"source_{subdir_name}.jpg" |
|
|
|
|
|
if not all(f.exists() for f in [detection_file, question_file, mask_file, source_file]): |
|
return None |
|
|
|
|
|
with open(detection_file, 'r') as f: |
|
detections_data = json.load(f) |
|
|
|
with open(question_file, 'r') as f: |
|
questions_data = json.load(f) |
|
|
|
|
|
with Image.open(source_file) as img: |
|
img_dimensions = img.size |
|
|
|
return detections_data, questions_data, mask_file, source_file, img_dimensions |
|
|
|
def convert_detections_to_relative(detections_data, img_width, img_height): |
|
""" |
|
Convert absolute bounding boxes to relative coordinates for FiftyOne. |
|
|
|
Args: |
|
detections_data (list): List of detection dictionaries |
|
img_width (int): Image width in pixels |
|
img_height (int): Image height in pixels |
|
|
|
Returns: |
|
fo.Detections: FiftyOne Detections object |
|
""" |
|
detections = [] |
|
|
|
for detection_dict in detections_data: |
|
for label, bbox in detection_dict.items(): |
|
x, y, width, height = bbox |
|
|
|
rel_x = x / img_width |
|
rel_y = y / img_height |
|
rel_width = width / img_width |
|
rel_height = height / img_height |
|
|
|
detection = fo.Detection( |
|
label=label, |
|
bounding_box=[rel_x, rel_y, rel_width, rel_height] |
|
) |
|
detections.append(detection) |
|
|
|
return fo.Detections(detections=detections) |
|
|
|
def add_sample_metadata(sample, english_questions): |
|
""" |
|
Add sample-level metadata from questions data. |
|
|
|
Args: |
|
sample (fo.Sample): FiftyOne sample to modify |
|
english_questions (list): List of English question dictionaries |
|
""" |
|
if not english_questions: |
|
return |
|
|
|
|
|
first_question = english_questions[0] |
|
sample['location'] = fo.Classification(label=first_question['location']) |
|
sample['modality'] = fo.Classification(label=first_question['modality']) |
|
sample['base_type'] = fo.Classification(label=first_question['base_type']) |
|
sample['answer_type'] = fo.Classification(label=first_question['answer_type']) |
|
|
|
def add_questions_and_answers(sample, english_questions): |
|
""" |
|
Add individual questions and answers to the sample. |
|
|
|
Args: |
|
sample (fo.Sample): FiftyOne sample to modify |
|
english_questions (list): List of English question dictionaries |
|
""" |
|
for i, q_data in enumerate(english_questions): |
|
sample[f'question_{i}'] = q_data['question'] |
|
sample[f'answer_{i}'] = fo.Classification(label=q_data['answer']) |
|
|
|
def process_single_sample(subdir): |
|
""" |
|
Process a single sample directory into a FiftyOne sample. |
|
|
|
Args: |
|
subdir (Path): Path to the sample subdirectory |
|
|
|
Returns: |
|
fo.Sample or None: FiftyOne sample, or None if processing failed |
|
""" |
|
subdir_name = subdir.name |
|
|
|
|
|
file_data = load_sample_files(subdir) |
|
if file_data is None: |
|
print(f"Warning: Missing files in {subdir_name}, skipping...") |
|
return None |
|
|
|
detections_data, questions_data, mask_file, source_file, (img_width, img_height) = file_data |
|
|
|
|
|
sample = fo.Sample(filepath=str(source_file.absolute())) |
|
|
|
|
|
sample['detections'] = convert_detections_to_relative(detections_data, img_width, img_height) |
|
|
|
|
|
sample['segmentation'] = fo.Segmentation(mask_path=str(mask_file.absolute())) |
|
|
|
|
|
english_questions = [q for q in questions_data if q.get('q_lang') == 'en'] |
|
|
|
|
|
add_sample_metadata(sample, english_questions) |
|
|
|
|
|
add_questions_and_answers(sample, english_questions) |
|
|
|
return sample |
|
|
|
def parse_slake_dataset(data_root="SLAKE/imgs", dataset_name="SLAKE"): |
|
""" |
|
Parse SLAKE dataset into FiftyOne format. |
|
|
|
Args: |
|
data_root (str): Path to the SLAKE/imgs directory |
|
dataset_name (str): Name for the FiftyOne dataset |
|
|
|
Returns: |
|
fo.Dataset: FiftyOne dataset with parsed samples |
|
""" |
|
dataset = fo.Dataset(dataset_name, overwrite=True) |
|
|
|
data_root = Path(data_root) |
|
samples = [] |
|
|
|
|
|
for subdir in data_root.iterdir(): |
|
if not subdir.is_dir(): |
|
continue |
|
|
|
print(f"Processing {subdir.name}...") |
|
sample = process_single_sample(subdir) |
|
|
|
if sample is not None: |
|
samples.append(sample) |
|
|
|
|
|
dataset.add_samples(samples) |
|
dataset.compute_metadata() |
|
|
|
return dataset |
|
|
|
import fiftyone as fo |
|
from pathlib import Path |
|
|
|
def load_mask_targets_from_file(mask_targets_file): |
|
""" |
|
Load mask targets mapping from file. |
|
|
|
Args: |
|
mask_targets_file (str): Path to the mask targets file |
|
|
|
Returns: |
|
dict: Mapping of pixel values to organ labels |
|
""" |
|
mask_targets = {} |
|
|
|
with open(mask_targets_file, 'r') as f: |
|
for line in f: |
|
line = line.strip() |
|
if ':' in line: |
|
pixel_value, label = line.split(':', 1) |
|
mask_targets[int(pixel_value)] = label |
|
|
|
return mask_targets |
|
|
|
def set_dataset_mask_targets(dataset_name, mask_targets_file, segmentation_field="segmentation"): |
|
""" |
|
Set mask targets for an existing FiftyOne dataset. |
|
|
|
Args: |
|
dataset_name (str): Name of the FiftyOne dataset |
|
mask_targets_file (str): Path to the mask targets mapping file |
|
segmentation_field (str): Name of the segmentation field (default: "segmentation") |
|
""" |
|
|
|
dataset = fo.load_dataset(dataset_name) |
|
|
|
|
|
mask_targets = load_mask_targets_from_file(mask_targets_file) |
|
|
|
|
|
dataset.mask_targets = {segmentation_field: mask_targets} |
|
dataset.save() |
|
|
|
for i, (pixel_val, label) in enumerate(list(mask_targets.items())[:5]): |
|
print(f" {pixel_val}: {label}") |
|
if len(mask_targets) > 5: |
|
print(f" ... and {len(mask_targets) - 5} more") |
|
|
|
|
|
|
|
dataset = parse_slake_dataset("SLAKE/imgs", "SLAKE") |
|
|
|
set_dataset_mask_targets( |
|
dataset_name="SLAKE", |
|
mask_targets_file="SLAKE/mask.txt", |
|
segmentation_field="segmentation" |
|
) |