harpreetsahota commited on
Commit
bc093d5
·
verified ·
1 Parent(s): 94364c8

Create parsing_code.py

Browse files
Files changed (1) hide show
  1. parsing_code.py +233 -0
parsing_code.py ADDED
@@ -0,0 +1,233 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import fiftyone as fo
4
+ from PIL import Image
5
+ from pathlib import Path
6
+
7
+ def load_sample_files(subdir):
8
+ """
9
+ Load all required files for a single sample.
10
+
11
+ Args:
12
+ subdir (Path): Path to the sample subdirectory
13
+
14
+ Returns:
15
+ tuple: (detections_data, questions_data, mask_file_path, source_file_path, img_dimensions)
16
+ Returns None if any required files are missing.
17
+ """
18
+ subdir_name = subdir.name
19
+
20
+ # Define file paths
21
+ detection_file = subdir / "detection.json"
22
+ question_file = subdir / "question.json"
23
+ mask_file = subdir / f"mask_{subdir_name}.png"
24
+ source_file = subdir / f"source_{subdir_name}.jpg"
25
+
26
+ # Check all files exist
27
+ if not all(f.exists() for f in [detection_file, question_file, mask_file, source_file]):
28
+ return None
29
+
30
+ # Load JSON data
31
+ with open(detection_file, 'r') as f:
32
+ detections_data = json.load(f)
33
+
34
+ with open(question_file, 'r') as f:
35
+ questions_data = json.load(f)
36
+
37
+ # Get image dimensions
38
+ with Image.open(source_file) as img:
39
+ img_dimensions = img.size
40
+
41
+ return detections_data, questions_data, mask_file, source_file, img_dimensions
42
+
43
+ def convert_detections_to_relative(detections_data, img_width, img_height):
44
+ """
45
+ Convert absolute bounding boxes to relative coordinates for FiftyOne.
46
+
47
+ Args:
48
+ detections_data (list): List of detection dictionaries
49
+ img_width (int): Image width in pixels
50
+ img_height (int): Image height in pixels
51
+
52
+ Returns:
53
+ fo.Detections: FiftyOne Detections object
54
+ """
55
+ detections = []
56
+
57
+ for detection_dict in detections_data:
58
+ for label, bbox in detection_dict.items():
59
+ x, y, width, height = bbox
60
+ # Convert to relative coordinates
61
+ rel_x = x / img_width
62
+ rel_y = y / img_height
63
+ rel_width = width / img_width
64
+ rel_height = height / img_height
65
+
66
+ detection = fo.Detection(
67
+ label=label,
68
+ bounding_box=[rel_x, rel_y, rel_width, rel_height]
69
+ )
70
+ detections.append(detection)
71
+
72
+ return fo.Detections(detections=detections)
73
+
74
+ def add_sample_metadata(sample, english_questions):
75
+ """
76
+ Add sample-level metadata from questions data.
77
+
78
+ Args:
79
+ sample (fo.Sample): FiftyOne sample to modify
80
+ english_questions (list): List of English question dictionaries
81
+ """
82
+ if not english_questions:
83
+ return
84
+
85
+ # Sample-level metadata (same for all questions in a sample)
86
+ first_question = english_questions[0]
87
+ sample['location'] = fo.Classification(label=first_question['location'])
88
+ sample['modality'] = fo.Classification(label=first_question['modality'])
89
+ sample['base_type'] = fo.Classification(label=first_question['base_type'])
90
+ sample['answer_type'] = fo.Classification(label=first_question['answer_type'])
91
+
92
+ def add_questions_and_answers(sample, english_questions):
93
+ """
94
+ Add individual questions and answers to the sample.
95
+
96
+ Args:
97
+ sample (fo.Sample): FiftyOne sample to modify
98
+ english_questions (list): List of English question dictionaries
99
+ """
100
+ for i, q_data in enumerate(english_questions):
101
+ sample[f'question_{i}'] = q_data['question']
102
+ sample[f'answer_{i}'] = fo.Classification(label=q_data['answer'])
103
+
104
+ def process_single_sample(subdir):
105
+ """
106
+ Process a single sample directory into a FiftyOne sample.
107
+
108
+ Args:
109
+ subdir (Path): Path to the sample subdirectory
110
+
111
+ Returns:
112
+ fo.Sample or None: FiftyOne sample, or None if processing failed
113
+ """
114
+ subdir_name = subdir.name
115
+
116
+ # Load all files for this sample
117
+ file_data = load_sample_files(subdir)
118
+ if file_data is None:
119
+ print(f"Warning: Missing files in {subdir_name}, skipping...")
120
+ return None
121
+
122
+ detections_data, questions_data, mask_file, source_file, (img_width, img_height) = file_data
123
+
124
+ # Create FiftyOne sample
125
+ sample = fo.Sample(filepath=str(source_file.absolute()))
126
+
127
+ # Add detections
128
+ sample['detections'] = convert_detections_to_relative(detections_data, img_width, img_height)
129
+
130
+ # Add segmentation mask
131
+ sample['segmentation'] = fo.Segmentation(mask_path=str(mask_file.absolute()))
132
+
133
+ # Filter to English questions only and preserve order
134
+ english_questions = [q for q in questions_data if q.get('q_lang') == 'en']
135
+
136
+ # Add sample-level metadata
137
+ add_sample_metadata(sample, english_questions)
138
+
139
+ # Add individual questions and answers
140
+ add_questions_and_answers(sample, english_questions)
141
+
142
+ return sample
143
+
144
+ def parse_slake_dataset(data_root="SLAKE/imgs", dataset_name="SLAKE"):
145
+ """
146
+ Parse SLAKE dataset into FiftyOne format.
147
+
148
+ Args:
149
+ data_root (str): Path to the SLAKE/imgs directory
150
+ dataset_name (str): Name for the FiftyOne dataset
151
+
152
+ Returns:
153
+ fo.Dataset: FiftyOne dataset with parsed samples
154
+ """
155
+ dataset = fo.Dataset(dataset_name, overwrite=True)
156
+
157
+ data_root = Path(data_root)
158
+ samples = []
159
+
160
+ # Process each subdirectory
161
+ for subdir in data_root.iterdir():
162
+ if not subdir.is_dir():
163
+ continue
164
+
165
+ print(f"Processing {subdir.name}...")
166
+ sample = process_single_sample(subdir)
167
+
168
+ if sample is not None:
169
+ samples.append(sample)
170
+
171
+ # Add all samples to dataset efficiently
172
+ dataset.add_samples(samples)
173
+ dataset.compute_metadata()
174
+
175
+ return dataset
176
+
177
+ import fiftyone as fo
178
+ from pathlib import Path
179
+
180
+ def load_mask_targets_from_file(mask_targets_file):
181
+ """
182
+ Load mask targets mapping from file.
183
+
184
+ Args:
185
+ mask_targets_file (str): Path to the mask targets file
186
+
187
+ Returns:
188
+ dict: Mapping of pixel values to organ labels
189
+ """
190
+ mask_targets = {}
191
+
192
+ with open(mask_targets_file, 'r') as f:
193
+ for line in f:
194
+ line = line.strip()
195
+ if ':' in line:
196
+ pixel_value, label = line.split(':', 1)
197
+ mask_targets[int(pixel_value)] = label
198
+
199
+ return mask_targets
200
+
201
+ def set_dataset_mask_targets(dataset_name, mask_targets_file, segmentation_field="segmentation"):
202
+ """
203
+ Set mask targets for an existing FiftyOne dataset.
204
+
205
+ Args:
206
+ dataset_name (str): Name of the FiftyOne dataset
207
+ mask_targets_file (str): Path to the mask targets mapping file
208
+ segmentation_field (str): Name of the segmentation field (default: "segmentation")
209
+ """
210
+ # Load dataset
211
+ dataset = fo.load_dataset(dataset_name)
212
+
213
+ # Load mask targets from file
214
+ mask_targets = load_mask_targets_from_file(mask_targets_file)
215
+
216
+ # Set mask targets
217
+ dataset.mask_targets = {segmentation_field: mask_targets}
218
+ dataset.save() # Must save after setting mask targets
219
+
220
+ for i, (pixel_val, label) in enumerate(list(mask_targets.items())[:5]):
221
+ print(f" {pixel_val}: {label}")
222
+ if len(mask_targets) > 5:
223
+ print(f" ... and {len(mask_targets) - 5} more")
224
+
225
+
226
+
227
+ dataset = parse_slake_dataset("SLAKE/imgs", "SLAKE")
228
+
229
+ set_dataset_mask_targets(
230
+ dataset_name="SLAKE", # Your dataset name
231
+ mask_targets_file="SLAKE/mask.txt", # Your mapping file
232
+ segmentation_field="segmentation"
233
+ )