Datasets:
metadata
license: mit
tags:
- img2latex
- latex-ocr
- handwritten mathematical expressions
- printed mathematical expressions
size_categories:
- 1M<n<10M
dataset_info:
config_name: default
features:
- name: __key__
dtype: string
- name: .png
dtype: image
- name: .tex
dtype: string
splits:
- name: train
num_bytes: <INSERT_TOTAL_DATASET_SIZE_IN_BYTES>
num_examples: 3200000
TeXtract_dataset (WebDataset Format)
This repository contains approximately 3.2 million pairs of mathematical expression images and their corresponding LaTeX source code, packaged in WebDataset format for large-scale training.
The dataset is based on and derived from the original hoang-quoc-trung/fusion-image-to-latex-datasets, transformed for more efficient access.
π Dataset Structure
Each WebDataset shard (.tar
) contains multiple samples. Each sample groups files sharing a common identifier (__key__
):
__key__
(string): Unique sample ID (e.g.,sample_000000123
).- Image file (
.png
,.jpg
, etc.): Binary data of the mathematical expression. .tex
: UTF-8 text file with the corresponding LaTeX code.__url__
(string): URL or path to the source shard (automatically added).
shard-000000.tar
βββ sample_000000000.png
βββ sample_000000000.tex
βββ sample_000000001.png
βββ sample_000000001.tex
βββ ...
Note: When browsing in Hugging Face Data Studio:
- Image metadata (dimensions) may be shown instead of the actual content.
.tex
files may appear Base64-encoded. This is only a preview; the underlying data is UTF-8.
π How to Use
1. Using the datasets
library (recommended)
from datasets import load_dataset
from PIL import Image
import io
DATASET_ID = "ToniDO/TeXtract_dataset"
try:
ds = load_dataset(DATASET_ID, split="train", trust_remote_code=True)
except ValueError:
ds = load_dataset(DATASET_ID, trust_remote_code=True)
for i, sample in enumerate(ds):
print(f"Sample {i}: {sample['__key__']}")
# Load image
for ext in ['.png', '.jpg', '.jpeg']:
if ext in sample:
img_data = sample[ext]
img = (
img_data
if isinstance(img_data, Image.Image)
else Image.open(io.BytesIO(img_data if isinstance(img_data, bytes) else img_data['bytes']))
)
print(f"Image ({ext}), size: {img.size}")
break
# Decode LaTeX
tex_bytes = sample.get('.tex')
if isinstance(tex_bytes, (bytes, bytearray)):
latex = tex_bytes.decode('utf-8')
print(latex[:100])
if i >= 2:
break
2. Using the webdataset
library
import webdataset as wds
from PIL import Image
import io
urls = "path/to/shards/math_dataset-{000000..000349}.tar"
dataset = (
wds.WebDataset(urls)
.decode(
wds.handle_extension("pil", "png"),
wds.handle_extension("pil", "jpg"),
handler=wds.ignore_and_continue
)
)
for i, sample in enumerate(dataset):
print(f"Sample {i}: {sample['__key__']}")
# Image
img = None
for ext in ["png", "jpg", "jpeg"]:
if ext in sample and isinstance(sample[ext], Image.Image):
img = sample[ext]
break
if img:
print(f"Size: {img.size}")
# LaTeX
tex = sample.get('.tex')
if isinstance(tex, (bytes, bytearray)):
print(tex.decode('utf-8')[:100])
if i >= 2:
break
Training tips:
- Decode LaTeX from UTF-8.
- Preprocess images (resize, normalize, augment).
- Tokenize LaTeX code according to your vocabulary.
- Shuffle shards and samples for effective training.
File Types
.bmp
.dvi
.jpg
.png
π Citation
If you use this dataset, please cite the original work:
@misc{hoang2024fusion,
author = {Hoang, Quoc Trung},
title = {Fusion Image-to-LaTeX Datasets},
year = {2024},
publisher = {Hugging Face},
url = {https://huggingface.co/datasets/hoang-quoc-trung/fusion-image-to-latex-datasets}
}
And to reference this WebDataset version:
@misc{ToniDO_TeXtract_webdataset_2025,
author = {ToniDO},
title = {{TeXtract_dataset (WebDataset Format)}},
year = {2025},
publisher = {Hugging Face},
version = {1.0.0},
url = {https://huggingface.co/datasets/ToniDO/TeXtract_dataset}
}
π Authors
- ToniDO
π License
This project is licensed under the MIT License. See the LICENSE file for details.