Dataset Viewer
Auto-converted to Parquet
text
stringlengths
0
53
replay_accel_attack.log:
speed up - speed down - accel attack
identify_accel_attack.log:
door 1 open - door 1 close - accel attack (two times)
brute_door_attack.log:
door 1 open - door 1 close - door attack
random_accel_attack.log:
speed up - accel attack
mutate_indicator_attack.log:
left indicator - indicator attack
19B#000000
19B#000001
19B#000002
19B#000003
19B#000004
19B#000005
19B#000006
19B#000007
19B#000008
19B#000009
19B#00000a
19B#00000b
19B#00000c
19B#00000d
19B#00000e
19B#00000f
19B#000010
19B#000011
19B#000012
19B#000013
19B#000014
19B#000015
19B#000016
19B#000017
19B#000018
19B#000019
19B#00001a
19B#00001b
19B#00001c
19B#00001d
19B#00001e
19B#00001f
19B#000020
19B#000021
19B#000022
19B#000023
19B#000024
19B#000025
19B#000026
19B#000027
19B#000028
19B#000029
19B#00002a
19B#00002b
19B#00002c
19B#00002d
19B#00002e
19B#00002f
19B#000030
19B#000031
19B#000032
19B#000033
19B#000034
19B#000035
19B#000036
19B#000037
19B#000038
19B#000039
19B#00003a
19B#00003b
19B#00003c
19B#00003d
19B#00003e
19B#00003f
19B#000040
19B#000041
19B#000042
19B#000043
19B#000044
19B#000045
19B#000046
19B#000047
19B#000048
19B#000049
19B#00004a
19B#00004b
19B#00004c
19B#00004d
19B#00004e
19B#00004f
19B#000050
19B#000051
19B#000052
19B#000053
19B#000054
19B#000055
End of preview. Expand in Data Studio

Dataset Card for Multi-FuzzerCAN

The Controller Area Network (CAN) is crucial for automotive safety, yet remains vulnerable to various fuzzing attacks that can compromise vehicle operations. This paper presents a comprehensive detection framework that identifies both common CAN vulnerabilities (DoS, Spoofing, Replay, and general Fuzzing) and specific fuzzer attack types (identity, replay, random, brute force, and mutation-based) using deep learning-based models. We evaluate four recurrent neural network architectures, including standard RNN, Long Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM), and Gated Recurrent Unit (GRU), across three CAN datasets: the publicly available Hacking Car and OTIDS datasets, along with our proprietary Multi-FuzzerCAN dataset. To address the inherent class imbalance in attack data, we implement targeted random oversampling and random undersampling techniques tailored to each dataset’s distribution characteristics, significantly improving model performance. Our experimental results demonstrate that all four models achieve exceptional accuracy, recall, precision, and F1 scores across all datasets, with LSTM and BiLSTM architectures consistently outperforming other approaches. These findings establish the viability of combining deep learning models with data balancing techniques to enhance the resilience of automotive CAN networks against diverse cyber threats, especially multi-fuzzer attacks.

Data Collection and Processing

Our private dataset is simulated and collected from GearGoat and CarringCaribou for multi-fuzzing types on CAN virtual without physical settings needed. We provide both dataset structures: (1) raw data simulation and collection without labeling data; (2) labeling processing data

Citation

T. -T. -H. Le, Y. Hwang, J. Son and H. Kim, "Leverage Sampling Methods and Deep Neural Networks for Fuzzer CAN Bus Message Detection," in IEEE Access, doi: 10.1109/ACCESS.2025.3572573.

BibTeX:

@ARTICLE{11009200, author={Le, Thi-Thu-Huong and Hwang, Yeonjeong and Son, JunYoung and Kim, Howon}, journal={IEEE Access}, title={Leverage Sampling Methods and Deep Neural Networks for Fuzzer CAN Bus Message Detection}, year={2025}, volume={}, number={}, pages={1-1}, keywords={Fuzzing;Controller area networks;Accuracy;Automotive engineering;Intrusion detection;Computer crime;Deep learning;Electronic mail;Data models;Computer architecture;Anomaly Detection;Automotive Vulnerability;Controller Area Network;Deep Neural Networks;Fuzzy Attack;Sampling Data}, doi={10.1109/ACCESS.2025.3572573}}

Dataset Card Contact

Email: lehuong7885@gmail.com

Downloads last month
1