|
|
|
"""Microsoft Learn Scrap with Google Colab.py |
|
|
|
# Web Scraping, Processing, and Embedding |
|
|
|
## Install necessary libraries |
|
""" |
|
|
|
|
|
|
|
"""## Web scraping and data extraction script |
|
This script crawls a website and extracts text content from each page. |
|
|
|
""" |
|
|
|
|
|
|
|
import requests |
|
from bs4 import BeautifulSoup |
|
from urllib.parse import urljoin, urlparse |
|
|
|
def is_valid(url): |
|
"""Checks whether `url` is a valid URL.""" |
|
try: |
|
result = urlparse(url) |
|
return all([result.scheme, result.netloc]) |
|
except: |
|
return False |
|
|
|
def get_all_website_links(url): |
|
""" |
|
Returns all URLs that is found on `url` in which it belongs to the same website |
|
""" |
|
urls = set() |
|
domain_name = urlparse(url).netloc |
|
try: |
|
soup = BeautifulSoup(requests.get(url).content, "html.parser") |
|
for a_tag in soup.findAll("a"): |
|
href = a_tag.attrs.get("href") |
|
if href == "" or href is None: |
|
continue |
|
href = urljoin(url, href) |
|
parsed_href = urlparse(href) |
|
href = parsed_href.scheme + "://" + parsed_href.netloc + parsed_href.path |
|
if not is_valid(href): |
|
continue |
|
if parsed_href.netloc == domain_name: |
|
urls.add(href) |
|
except Exception as e: |
|
print(f"Error processing {url}: {e}") |
|
return urls |
|
|
|
def scrape_page_data(url): |
|
"""Scrapes all text content from a given URL.""" |
|
try: |
|
response = requests.get(url) |
|
soup = BeautifulSoup(response.content, 'html.parser') |
|
|
|
text = soup.get_text(separator='\n', strip=True) |
|
return text |
|
except Exception as e: |
|
print(f"Error scraping {url}: {e}") |
|
return None |
|
|
|
def crawl_website(start_url, max_pages=100): |
|
"""Crawls a website and scrapes data from each page.""" |
|
visited_urls = set() |
|
urls_to_visit = {start_url} |
|
scraped_data = {} |
|
|
|
while urls_to_visit and len(visited_urls) < max_pages: |
|
current_url = urls_to_visit.pop() |
|
if current_url in visited_urls: |
|
continue |
|
|
|
print(f"Visiting: {current_url}") |
|
visited_urls.add(current_url) |
|
|
|
|
|
data = scrape_page_data(current_url) |
|
if data: |
|
scraped_data[current_url] = data |
|
|
|
|
|
new_links = get_all_website_links(current_url) |
|
for link in new_links: |
|
if link not in visited_urls: |
|
urls_to_visit.add(link) |
|
|
|
return scraped_data |
|
|
|
|
|
start_url = "https://learn.microsoft.com/en-us/" |
|
all_scraped_data = crawl_website(start_url) |
|
|
|
|
|
|
|
print(f"\nScraped data from {len(all_scraped_data)} pages.") |
|
if all_scraped_data: |
|
first_url = list(all_scraped_data.keys())[0] |
|
print(f"\nData from the first scraped page ({first_url}):") |
|
|
|
|
|
"""## Data processing and embedding script |
|
This script takes the scraped data, chunks it, and creates embeddings using a sentence transformer model. |
|
""" |
|
|
|
|
|
|
|
import torch |
|
from sentence_transformers import SentenceTransformer |
|
from datasets import Dataset |
|
from tqdm.auto import tqdm |
|
|
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
print(f"Using device: {device}") |
|
|
|
|
|
model = SentenceTransformer('all-MiniLM-L6-v2').to(device) |
|
|
|
def chunk_text(text, chunk_size=500, chunk_overlap=50): |
|
"""Splits text into chunks with overlap.""" |
|
words = text.split() |
|
chunks = [] |
|
i = 0 |
|
while i < len(words): |
|
chunk = words[i:i + chunk_size] |
|
chunks.append(" ".join(chunk)) |
|
i += chunk_size - chunk_overlap |
|
if i >= len(words) - chunk_overlap and i < len(words): |
|
chunks.append(" ".join(words[i:])) |
|
break |
|
|
|
return chunks |
|
|
|
def process_scraped_data(scraped_data, chunk_size=500, chunk_overlap=50): |
|
""" |
|
Converts scraped data into formatted chunks and embeds them. |
|
Returns a list of dictionaries, each containing chunk text, source URL, and embedding. |
|
""" |
|
processed_chunks = [] |
|
for url, text in tqdm(scraped_data.items(), desc="Processing scraped data"): |
|
if text: |
|
chunks = chunk_text(text, chunk_size=chunk_size, chunk_overlap=chunk_overlap) |
|
for chunk in chunks: |
|
processed_chunks.append({ |
|
'text': chunk, |
|
'source': url, |
|
}) |
|
return processed_chunks |
|
|
|
def embed_chunks(processed_chunks, model, batch_size=32): |
|
"""Embeds the text chunks using the sentence transformer model.""" |
|
|
|
texts_to_embed = [chunk['text'] for chunk in processed_chunks] |
|
|
|
|
|
dataset = Dataset.from_dict({'text': texts_to_embed}) |
|
|
|
|
|
def get_embeddings(batch): |
|
return {'embedding': model.encode(batch['text'], convert_to_tensor=True).tolist()} |
|
|
|
|
|
dataset = dataset.map(get_embeddings, batched=True, batch_size=batch_size) |
|
|
|
|
|
for i, item in enumerate(processed_chunks): |
|
item['embedding'] = dataset[i]['embedding'] |
|
|
|
return processed_chunks |
|
|
|
|
|
|
|
|
|
formatted_chunks = process_scraped_data(all_scraped_data) |
|
|
|
|
|
embedded_data = embed_chunks(formatted_chunks, model) |
|
|
|
|
|
|
|
|
|
|
|
print(f"\nCreated {len(embedded_data)} embedded chunks.") |
|
if embedded_data: |
|
print("\nExample of an embedded chunk:") |
|
embedded_data[0] |
|
|
|
"""## Save the embedded dataset to Google Drive |
|
This script saves the processed and embedded data to a JSON file in your Google Drive. |
|
|
|
""" |
|
|
|
|
|
|
|
import json |
|
from google.colab import drive |
|
|
|
|
|
drive.mount('/content/drive') |
|
|
|
|
|
output_file_path = '/content/drive/My Drive/Output/embedded_dataset.json' |
|
|
|
|
|
import os |
|
output_dir = os.path.dirname(output_file_path) |
|
os.makedirs(output_dir, exist_ok=True) |
|
|
|
|
|
with open(output_file_path, 'w') as f: |
|
json.dump(embedded_data, f, indent=2) |
|
|
|
print(f"\nSaved embedded dataset to: {output_file_path}") |