Microsoft_Learn / microsoft_learn_scrap_with_google_colab.py
PetraAI's picture
Upload 4 files
b33ad61 verified
# -*- coding: utf-8 -*-
"""Microsoft Learn Scrap with Google Colab.py
# Web Scraping, Processing, and Embedding
## Install necessary libraries
"""
## pip install -q ipywidgets google-colab python-docx pypdf pandas nltk sentence-transformers torch tqdm pyarrow httpx beautifulsoup4 datasets requests
"""## Web scraping and data extraction script
This script crawls a website and extracts text content from each page.
"""
# This script to navigate to the link https://learn.microsoft.com/en-us/ and start web scrapping and data extraction automatically on every page must scrap and extract all data, 100% data
import requests
from bs4 import BeautifulSoup
from urllib.parse import urljoin, urlparse
def is_valid(url):
"""Checks whether `url` is a valid URL."""
try:
result = urlparse(url)
return all([result.scheme, result.netloc])
except:
return False
def get_all_website_links(url):
"""
Returns all URLs that is found on `url` in which it belongs to the same website
"""
urls = set()
domain_name = urlparse(url).netloc
try:
soup = BeautifulSoup(requests.get(url).content, "html.parser")
for a_tag in soup.findAll("a"):
href = a_tag.attrs.get("href")
if href == "" or href is None:
continue
href = urljoin(url, href)
parsed_href = urlparse(href)
href = parsed_href.scheme + "://" + parsed_href.netloc + parsed_href.path
if not is_valid(href):
continue
if parsed_href.netloc == domain_name:
urls.add(href)
except Exception as e:
print(f"Error processing {url}: {e}")
return urls
def scrape_page_data(url):
"""Scrapes all text content from a given URL."""
try:
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
# Extract all text from the page
text = soup.get_text(separator='\n', strip=True)
return text
except Exception as e:
print(f"Error scraping {url}: {e}")
return None
def crawl_website(start_url, max_pages=100):
"""Crawls a website and scrapes data from each page."""
visited_urls = set()
urls_to_visit = {start_url}
scraped_data = {}
while urls_to_visit and len(visited_urls) < max_pages:
current_url = urls_to_visit.pop()
if current_url in visited_urls:
continue
print(f"Visiting: {current_url}")
visited_urls.add(current_url)
# Scrape data
data = scrape_page_data(current_url)
if data:
scraped_data[current_url] = data
# Find new links
new_links = get_all_website_links(current_url)
for link in new_links:
if link not in visited_urls:
urls_to_visit.add(link)
return scraped_data
# Start the crawling process
start_url = "https://learn.microsoft.com/en-us/"
all_scraped_data = crawl_website(start_url)
# You can now process the `all_scraped_data` dictionary
# For example, print the number of pages scraped and the data from one page:
print(f"\nScraped data from {len(all_scraped_data)} pages.")
if all_scraped_data:
first_url = list(all_scraped_data.keys())[0]
print(f"\nData from the first scraped page ({first_url}):")
# print(all_scraped_data[first_url][:500]) # Print first 500 characters
"""## Data processing and embedding script
This script takes the scraped data, chunks it, and creates embeddings using a sentence transformer model.
"""
# This script to convert, format, embed the full scrapped and extracted data to structured, embedded data chunks
import torch
from sentence_transformers import SentenceTransformer # Changed import
from datasets import Dataset
from tqdm.auto import tqdm
# Check for GPU availability
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using device: {device}")
# Load a pre-trained sentence transformer model
model = SentenceTransformer('all-MiniLM-L6-v2').to(device)
def chunk_text(text, chunk_size=500, chunk_overlap=50):
"""Splits text into chunks with overlap."""
words = text.split()
chunks = []
i = 0
while i < len(words):
chunk = words[i:i + chunk_size]
chunks.append(" ".join(chunk))
i += chunk_size - chunk_overlap
if i >= len(words) - chunk_overlap and i < len(words): # Handle the last chunk
chunks.append(" ".join(words[i:]))
break
return chunks
def process_scraped_data(scraped_data, chunk_size=500, chunk_overlap=50):
"""
Converts scraped data into formatted chunks and embeds them.
Returns a list of dictionaries, each containing chunk text, source URL, and embedding.
"""
processed_chunks = []
for url, text in tqdm(scraped_data.items(), desc="Processing scraped data"):
if text:
chunks = chunk_text(text, chunk_size=chunk_size, chunk_overlap=chunk_overlap)
for chunk in chunks:
processed_chunks.append({
'text': chunk,
'source': url,
})
return processed_chunks
def embed_chunks(processed_chunks, model, batch_size=32):
"""Embeds the text chunks using the sentence transformer model."""
# Extract texts for embedding
texts_to_embed = [chunk['text'] for chunk in processed_chunks]
# Create a Hugging Face Dataset
dataset = Dataset.from_dict({'text': texts_to_embed})
# Define a function to apply embeddings
def get_embeddings(batch):
return {'embedding': model.encode(batch['text'], convert_to_tensor=True).tolist()}
# Apply the embedding function in batches
dataset = dataset.map(get_embeddings, batched=True, batch_size=batch_size)
# Update the original processed_chunks list with embeddings
for i, item in enumerate(processed_chunks):
item['embedding'] = dataset[i]['embedding']
return processed_chunks
# --- Main script for processing and embedding ---
# Process the scraped data into chunks
formatted_chunks = process_scraped_data(all_scraped_data)
# Embed the chunks
embedded_data = embed_chunks(formatted_chunks, model)
# `embedded_data` is now a list of dictionaries, where each dictionary
# represents a chunk with its text, source URL, and embedding.
# You can now use this data for similarity search, indexing, etc.
print(f"\nCreated {len(embedded_data)} embedded chunks.")
if embedded_data:
print("\nExample of an embedded chunk:")
embedded_data[0]
"""## Save the embedded dataset to Google Drive
This script saves the processed and embedded data to a JSON file in your Google Drive.
"""
# This script to save all converted, formatted, embedded dataset to the "Output" file on My Drive
import json
from google.colab import drive
# Mount Google Drive
drive.mount('/content/drive')
# Define the output file path
output_file_path = '/content/drive/My Drive/Output/embedded_dataset.json'
# Ensure the output directory exists
import os
output_dir = os.path.dirname(output_file_path)
os.makedirs(output_dir, exist_ok=True)
# Save the embedded data to a JSON file
with open(output_file_path, 'w') as f:
json.dump(embedded_data, f, indent=2)
print(f"\nSaved embedded dataset to: {output_file_path}")