Upload 4 files
Browse files- Microsoft_Learn_Scrap_with_Google_Colab.ipynb +0 -0
- Scrapping.md +219 -0
- embedded_dataset.json +0 -0
- microsoft_learn_scrap_with_google_colab.py +216 -0
Microsoft_Learn_Scrap_with_Google_Colab.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Scrapping.md
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
"""# %% [markdown]
|
3 |
+
# # Web Scraping, Processing, and Embedding Project
|
4 |
+
#
|
5 |
+
# This notebook demonstrates a workflow for web scraping text data from a website, processing it into manageable chunks, and then creating numerical representations (embeddings) of these chunks using a sentence transformer model. Finally, the embedded data is saved to Google Drive.
|
6 |
+
#
|
7 |
+
# %% [markdown]
|
8 |
+
# # Install necessary libraries
|
9 |
+
# This cell installs all the required Python packages.
|
10 |
+
# %%
|
11 |
+
!pip install -q ipywidgets google-colab python-docx pypdf pandas nltk sentence-transformers torch tqdm pyarrow httpx beautifulsoup4 datasets requests
|
12 |
+
|
13 |
+
# %% [markdown]
|
14 |
+
# # Web scraping and data extraction script
|
15 |
+
# This script crawls a website and extracts text content from each page.
|
16 |
+
#
|
17 |
+
# %%
|
18 |
+
# prompt: write a script to navigate to the link https://learn.microsoft.com/en-us/ and start web scrapping and data extraction automatically on every page must scrap and extract all data, 100% data
|
19 |
+
|
20 |
+
import requests
|
21 |
+
from bs4 import BeautifulSoup
|
22 |
+
from urllib.parse import urljoin, urlparse
|
23 |
+
|
24 |
+
def is_valid(url):
|
25 |
+
'''Checks whether `url` is a valid URL.'''
|
26 |
+
try:
|
27 |
+
result = urlparse(url)
|
28 |
+
return all([result.scheme, result.netloc])
|
29 |
+
except:
|
30 |
+
return False
|
31 |
+
|
32 |
+
def get_all_website_links(url):
|
33 |
+
'''
|
34 |
+
Returns all URLs that is found on `url` in which it belongs to the same website
|
35 |
+
'''
|
36 |
+
urls = set()
|
37 |
+
domain_name = urlparse(url).netloc
|
38 |
+
try:
|
39 |
+
soup = BeautifulSoup(requests.get(url).content, "html.parser")
|
40 |
+
for a_tag in soup.findAll("a"):
|
41 |
+
href = a_tag.attrs.get("href")
|
42 |
+
if href == "" or href is None:
|
43 |
+
continue
|
44 |
+
href = urljoin(url, href)
|
45 |
+
parsed_href = urlparse(href)
|
46 |
+
href = parsed_href.scheme + "://" + parsed_href.netloc + parsed_href.path
|
47 |
+
if not is_valid(href):
|
48 |
+
continue
|
49 |
+
if parsed_href.netloc == domain_name:
|
50 |
+
urls.add(href)
|
51 |
+
except Exception as e:
|
52 |
+
print(f"Error processing {url}: {e}")
|
53 |
+
return urls
|
54 |
+
|
55 |
+
def scrape_page_data(url):
|
56 |
+
'''Scrapes all text content from a given URL.'''
|
57 |
+
try:
|
58 |
+
response = requests.get(url)
|
59 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
60 |
+
# Extract all text from the page
|
61 |
+
text = soup.get_text(separator='\n', strip=True)
|
62 |
+
return text
|
63 |
+
except Exception as e:
|
64 |
+
print(f"Error scraping {url}: {e}")
|
65 |
+
return None
|
66 |
+
|
67 |
+
def crawl_website(start_url, max_pages=100):
|
68 |
+
'''Crawls a website and scrapes data from each page.'''
|
69 |
+
visited_urls = set()
|
70 |
+
urls_to_visit = {start_url}
|
71 |
+
scraped_data = {}
|
72 |
+
|
73 |
+
while urls_to_visit and len(visited_urls) < max_pages:
|
74 |
+
current_url = urls_to_visit.pop()
|
75 |
+
if current_url in visited_urls:
|
76 |
+
continue
|
77 |
+
|
78 |
+
print(f"Visiting: {current_url}")
|
79 |
+
visited_urls.add(current_url)
|
80 |
+
|
81 |
+
# Scrape data
|
82 |
+
data = scrape_page_data(current_url)
|
83 |
+
if data:
|
84 |
+
scraped_data[current_url] = data
|
85 |
+
|
86 |
+
# Find new links
|
87 |
+
new_links = get_all_website_links(current_url)
|
88 |
+
for link in new_links:
|
89 |
+
if link not in visited_urls:
|
90 |
+
urls_to_visit.add(link)
|
91 |
+
|
92 |
+
return scraped_data
|
93 |
+
|
94 |
+
# Start the crawling process
|
95 |
+
start_url = "https://learn.microsoft.com/en-us/"
|
96 |
+
all_scraped_data = crawl_website(start_url)
|
97 |
+
|
98 |
+
# You can now process the `all_scraped_data` dictionary
|
99 |
+
# For example, print the number of pages scraped and the data from one page:
|
100 |
+
print(f"\nScraped data from {len(all_scraped_data)} pages.")
|
101 |
+
if all_scraped_data:
|
102 |
+
first_url = list(all_scraped_data.keys())[0]
|
103 |
+
print(f"\nData from the first scraped page ({first_url}):")
|
104 |
+
# print(all_scraped_data[first_url][:500]) # Print first 500 characters
|
105 |
+
|
106 |
+
# %% [markdown]
|
107 |
+
# # Data processing and embedding script
|
108 |
+
# This script takes the scraped data, chunks it, and creates embeddings using a sentence transformer model.
|
109 |
+
# %%
|
110 |
+
# prompt: write a script to convert, format, embed the full scrapped and extracted data to structured, embedded data chunks
|
111 |
+
|
112 |
+
import torch
|
113 |
+
from sentence_transformers import SentenceTransformer
|
114 |
+
from datasets import Dataset
|
115 |
+
from tqdm.auto import tqdm
|
116 |
+
|
117 |
+
# Check for GPU availability
|
118 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
119 |
+
print(f"Using device: {device}")
|
120 |
+
|
121 |
+
# Load a pre-trained sentence transformer model
|
122 |
+
model = SentenceTransformer('all-MiniLM-L6-v2').to(device)
|
123 |
+
|
124 |
+
def chunk_text(text, chunk_size=500, chunk_overlap=50):
|
125 |
+
'''Splits text into chunks with overlap.'''
|
126 |
+
words = text.split()
|
127 |
+
chunks = []
|
128 |
+
i = 0
|
129 |
+
while i < len(words):
|
130 |
+
chunk = words[i:i + chunk_size]
|
131 |
+
chunks.append(" ".join(chunk))
|
132 |
+
i += chunk_size - chunk_overlap
|
133 |
+
if i >= len(words) - chunk_overlap and i < len(words): # Handle the last chunk
|
134 |
+
chunks.append(" ".join(words[i:]))
|
135 |
+
break
|
136 |
+
|
137 |
+
return chunks
|
138 |
+
|
139 |
+
def process_scraped_data(scraped_data, chunk_size=500, chunk_overlap=50):
|
140 |
+
'''
|
141 |
+
Converts scraped data into formatted chunks and embeds them.
|
142 |
+
Returns a list of dictionaries, each containing chunk text, source URL, and embedding.
|
143 |
+
'''
|
144 |
+
processed_chunks = []
|
145 |
+
for url, text in tqdm(scraped_data.items(), desc="Processing scraped data"):
|
146 |
+
if text:
|
147 |
+
chunks = chunk_text(text, chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
148 |
+
for chunk in chunks:
|
149 |
+
processed_chunks.append({
|
150 |
+
'text': chunk,
|
151 |
+
'source': url,
|
152 |
+
})
|
153 |
+
return processed_chunks
|
154 |
+
|
155 |
+
def embed_chunks(processed_chunks, model, batch_size=32):
|
156 |
+
'''Embeds the text chunks using the sentence transformer model.'''
|
157 |
+
# Extract texts for embedding
|
158 |
+
texts_to_embed = [chunk['text'] for chunk in processed_chunks]
|
159 |
+
|
160 |
+
# Create a Hugging Face Dataset
|
161 |
+
dataset = Dataset.from_dict({'text': texts_to_embed})
|
162 |
+
|
163 |
+
# Define a function to apply embeddings
|
164 |
+
def get_embeddings(batch):
|
165 |
+
return {'embedding': model.encode(batch['text'], convert_to_tensor=True).tolist()}
|
166 |
+
|
167 |
+
# Apply the embedding function in batches
|
168 |
+
dataset = dataset.map(get_embeddings, batched=True, batch_size=batch_size)
|
169 |
+
|
170 |
+
# Update the original processed_chunks list with embeddings
|
171 |
+
for i, item in enumerate(processed_chunks):
|
172 |
+
item['embedding'] = dataset[i]['embedding']
|
173 |
+
|
174 |
+
return processed_chunks
|
175 |
+
|
176 |
+
# --- Main script for processing and embedding ---
|
177 |
+
|
178 |
+
# Process the scraped data into chunks
|
179 |
+
formatted_chunks = process_scraped_data(all_scraped_data)
|
180 |
+
|
181 |
+
# Embed the chunks
|
182 |
+
embedded_data = embed_chunks(formatted_chunks, model)
|
183 |
+
|
184 |
+
# `embedded_data` is now a list of dictionaries, where each dictionary
|
185 |
+
# represents a chunk with its text, source URL, and embedding.
|
186 |
+
# You can now use this data for similarity search, indexing, etc.
|
187 |
+
|
188 |
+
print(f"\nCreated {len(embedded_data)} embedded chunks.")
|
189 |
+
if embedded_data:
|
190 |
+
print("\nExample of an embedded chunk:")
|
191 |
+
embedded_data[0]
|
192 |
+
|
193 |
+
# %% [markdown]
|
194 |
+
# # Save the embedded dataset to Google Drive
|
195 |
+
# This script saves the processed and embedded data to a JSON file in your Google Drive.
|
196 |
+
#
|
197 |
+
# %%
|
198 |
+
# prompt: write a script to save all converted, formatted, embedded dataset to the "Output" file on My Drive
|
199 |
+
|
200 |
+
import json
|
201 |
+
from google.colab import drive
|
202 |
+
|
203 |
+
# Mount Google Drive
|
204 |
+
drive.mount('/content/drive')
|
205 |
+
|
206 |
+
# Define the output file path
|
207 |
+
output_file_path = '/content/drive/My Drive/Output/embedded_dataset.json'
|
208 |
+
|
209 |
+
# Ensure the output directory exists
|
210 |
+
import os
|
211 |
+
output_dir = os.path.dirname(output_file_path)
|
212 |
+
os.makedirs(output_dir, exist_ok=True)
|
213 |
+
|
214 |
+
# Save the embedded data to a JSON file
|
215 |
+
with open(output_file_path, 'w') as f:
|
216 |
+
json.dump(embedded_data, f, indent=2)
|
217 |
+
|
218 |
+
print(f"\nSaved embedded dataset to: {output_file_path}")
|
219 |
+
"""
|
embedded_dataset.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
microsoft_learn_scrap_with_google_colab.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Microsoft Learn Scrap with Google Colab.py
|
3 |
+
|
4 |
+
# Web Scraping, Processing, and Embedding
|
5 |
+
|
6 |
+
## Install necessary libraries
|
7 |
+
"""
|
8 |
+
|
9 |
+
## pip install -q ipywidgets google-colab python-docx pypdf pandas nltk sentence-transformers torch tqdm pyarrow httpx beautifulsoup4 datasets requests
|
10 |
+
|
11 |
+
"""## Web scraping and data extraction script
|
12 |
+
This script crawls a website and extracts text content from each page.
|
13 |
+
|
14 |
+
"""
|
15 |
+
|
16 |
+
# This script to navigate to the link https://learn.microsoft.com/en-us/ and start web scrapping and data extraction automatically on every page must scrap and extract all data, 100% data
|
17 |
+
|
18 |
+
import requests
|
19 |
+
from bs4 import BeautifulSoup
|
20 |
+
from urllib.parse import urljoin, urlparse
|
21 |
+
|
22 |
+
def is_valid(url):
|
23 |
+
"""Checks whether `url` is a valid URL."""
|
24 |
+
try:
|
25 |
+
result = urlparse(url)
|
26 |
+
return all([result.scheme, result.netloc])
|
27 |
+
except:
|
28 |
+
return False
|
29 |
+
|
30 |
+
def get_all_website_links(url):
|
31 |
+
"""
|
32 |
+
Returns all URLs that is found on `url` in which it belongs to the same website
|
33 |
+
"""
|
34 |
+
urls = set()
|
35 |
+
domain_name = urlparse(url).netloc
|
36 |
+
try:
|
37 |
+
soup = BeautifulSoup(requests.get(url).content, "html.parser")
|
38 |
+
for a_tag in soup.findAll("a"):
|
39 |
+
href = a_tag.attrs.get("href")
|
40 |
+
if href == "" or href is None:
|
41 |
+
continue
|
42 |
+
href = urljoin(url, href)
|
43 |
+
parsed_href = urlparse(href)
|
44 |
+
href = parsed_href.scheme + "://" + parsed_href.netloc + parsed_href.path
|
45 |
+
if not is_valid(href):
|
46 |
+
continue
|
47 |
+
if parsed_href.netloc == domain_name:
|
48 |
+
urls.add(href)
|
49 |
+
except Exception as e:
|
50 |
+
print(f"Error processing {url}: {e}")
|
51 |
+
return urls
|
52 |
+
|
53 |
+
def scrape_page_data(url):
|
54 |
+
"""Scrapes all text content from a given URL."""
|
55 |
+
try:
|
56 |
+
response = requests.get(url)
|
57 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
58 |
+
# Extract all text from the page
|
59 |
+
text = soup.get_text(separator='\n', strip=True)
|
60 |
+
return text
|
61 |
+
except Exception as e:
|
62 |
+
print(f"Error scraping {url}: {e}")
|
63 |
+
return None
|
64 |
+
|
65 |
+
def crawl_website(start_url, max_pages=100):
|
66 |
+
"""Crawls a website and scrapes data from each page."""
|
67 |
+
visited_urls = set()
|
68 |
+
urls_to_visit = {start_url}
|
69 |
+
scraped_data = {}
|
70 |
+
|
71 |
+
while urls_to_visit and len(visited_urls) < max_pages:
|
72 |
+
current_url = urls_to_visit.pop()
|
73 |
+
if current_url in visited_urls:
|
74 |
+
continue
|
75 |
+
|
76 |
+
print(f"Visiting: {current_url}")
|
77 |
+
visited_urls.add(current_url)
|
78 |
+
|
79 |
+
# Scrape data
|
80 |
+
data = scrape_page_data(current_url)
|
81 |
+
if data:
|
82 |
+
scraped_data[current_url] = data
|
83 |
+
|
84 |
+
# Find new links
|
85 |
+
new_links = get_all_website_links(current_url)
|
86 |
+
for link in new_links:
|
87 |
+
if link not in visited_urls:
|
88 |
+
urls_to_visit.add(link)
|
89 |
+
|
90 |
+
return scraped_data
|
91 |
+
|
92 |
+
# Start the crawling process
|
93 |
+
start_url = "https://learn.microsoft.com/en-us/"
|
94 |
+
all_scraped_data = crawl_website(start_url)
|
95 |
+
|
96 |
+
# You can now process the `all_scraped_data` dictionary
|
97 |
+
# For example, print the number of pages scraped and the data from one page:
|
98 |
+
print(f"\nScraped data from {len(all_scraped_data)} pages.")
|
99 |
+
if all_scraped_data:
|
100 |
+
first_url = list(all_scraped_data.keys())[0]
|
101 |
+
print(f"\nData from the first scraped page ({first_url}):")
|
102 |
+
# print(all_scraped_data[first_url][:500]) # Print first 500 characters
|
103 |
+
|
104 |
+
"""## Data processing and embedding script
|
105 |
+
This script takes the scraped data, chunks it, and creates embeddings using a sentence transformer model.
|
106 |
+
"""
|
107 |
+
|
108 |
+
# This script to convert, format, embed the full scrapped and extracted data to structured, embedded data chunks
|
109 |
+
|
110 |
+
import torch
|
111 |
+
from sentence_transformers import SentenceTransformer # Changed import
|
112 |
+
from datasets import Dataset
|
113 |
+
from tqdm.auto import tqdm
|
114 |
+
|
115 |
+
# Check for GPU availability
|
116 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
117 |
+
print(f"Using device: {device}")
|
118 |
+
|
119 |
+
# Load a pre-trained sentence transformer model
|
120 |
+
model = SentenceTransformer('all-MiniLM-L6-v2').to(device)
|
121 |
+
|
122 |
+
def chunk_text(text, chunk_size=500, chunk_overlap=50):
|
123 |
+
"""Splits text into chunks with overlap."""
|
124 |
+
words = text.split()
|
125 |
+
chunks = []
|
126 |
+
i = 0
|
127 |
+
while i < len(words):
|
128 |
+
chunk = words[i:i + chunk_size]
|
129 |
+
chunks.append(" ".join(chunk))
|
130 |
+
i += chunk_size - chunk_overlap
|
131 |
+
if i >= len(words) - chunk_overlap and i < len(words): # Handle the last chunk
|
132 |
+
chunks.append(" ".join(words[i:]))
|
133 |
+
break
|
134 |
+
|
135 |
+
return chunks
|
136 |
+
|
137 |
+
def process_scraped_data(scraped_data, chunk_size=500, chunk_overlap=50):
|
138 |
+
"""
|
139 |
+
Converts scraped data into formatted chunks and embeds them.
|
140 |
+
Returns a list of dictionaries, each containing chunk text, source URL, and embedding.
|
141 |
+
"""
|
142 |
+
processed_chunks = []
|
143 |
+
for url, text in tqdm(scraped_data.items(), desc="Processing scraped data"):
|
144 |
+
if text:
|
145 |
+
chunks = chunk_text(text, chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
146 |
+
for chunk in chunks:
|
147 |
+
processed_chunks.append({
|
148 |
+
'text': chunk,
|
149 |
+
'source': url,
|
150 |
+
})
|
151 |
+
return processed_chunks
|
152 |
+
|
153 |
+
def embed_chunks(processed_chunks, model, batch_size=32):
|
154 |
+
"""Embeds the text chunks using the sentence transformer model."""
|
155 |
+
# Extract texts for embedding
|
156 |
+
texts_to_embed = [chunk['text'] for chunk in processed_chunks]
|
157 |
+
|
158 |
+
# Create a Hugging Face Dataset
|
159 |
+
dataset = Dataset.from_dict({'text': texts_to_embed})
|
160 |
+
|
161 |
+
# Define a function to apply embeddings
|
162 |
+
def get_embeddings(batch):
|
163 |
+
return {'embedding': model.encode(batch['text'], convert_to_tensor=True).tolist()}
|
164 |
+
|
165 |
+
# Apply the embedding function in batches
|
166 |
+
dataset = dataset.map(get_embeddings, batched=True, batch_size=batch_size)
|
167 |
+
|
168 |
+
# Update the original processed_chunks list with embeddings
|
169 |
+
for i, item in enumerate(processed_chunks):
|
170 |
+
item['embedding'] = dataset[i]['embedding']
|
171 |
+
|
172 |
+
return processed_chunks
|
173 |
+
|
174 |
+
# --- Main script for processing and embedding ---
|
175 |
+
|
176 |
+
# Process the scraped data into chunks
|
177 |
+
formatted_chunks = process_scraped_data(all_scraped_data)
|
178 |
+
|
179 |
+
# Embed the chunks
|
180 |
+
embedded_data = embed_chunks(formatted_chunks, model)
|
181 |
+
|
182 |
+
# `embedded_data` is now a list of dictionaries, where each dictionary
|
183 |
+
# represents a chunk with its text, source URL, and embedding.
|
184 |
+
# You can now use this data for similarity search, indexing, etc.
|
185 |
+
|
186 |
+
print(f"\nCreated {len(embedded_data)} embedded chunks.")
|
187 |
+
if embedded_data:
|
188 |
+
print("\nExample of an embedded chunk:")
|
189 |
+
embedded_data[0]
|
190 |
+
|
191 |
+
"""## Save the embedded dataset to Google Drive
|
192 |
+
This script saves the processed and embedded data to a JSON file in your Google Drive.
|
193 |
+
|
194 |
+
"""
|
195 |
+
|
196 |
+
# This script to save all converted, formatted, embedded dataset to the "Output" file on My Drive
|
197 |
+
|
198 |
+
import json
|
199 |
+
from google.colab import drive
|
200 |
+
|
201 |
+
# Mount Google Drive
|
202 |
+
drive.mount('/content/drive')
|
203 |
+
|
204 |
+
# Define the output file path
|
205 |
+
output_file_path = '/content/drive/My Drive/Output/embedded_dataset.json'
|
206 |
+
|
207 |
+
# Ensure the output directory exists
|
208 |
+
import os
|
209 |
+
output_dir = os.path.dirname(output_file_path)
|
210 |
+
os.makedirs(output_dir, exist_ok=True)
|
211 |
+
|
212 |
+
# Save the embedded data to a JSON file
|
213 |
+
with open(output_file_path, 'w') as f:
|
214 |
+
json.dump(embedded_data, f, indent=2)
|
215 |
+
|
216 |
+
print(f"\nSaved embedded dataset to: {output_file_path}")
|