Mirali33's picture
Upload README.md with huggingface_hub
b9ef50c verified
metadata
annotations_creators:
  - expert-generated
language_creators:
  - found
language:
  - en
license:
  - cc-by-4.0
multilinguality:
  - monolingual
size_categories:
  - 10K<n<100K
source_datasets:
  - original
task_categories:
  - image-segmentation
task_ids:
  - semantic-segmentation
pretty_name: mb-crater_binary_seg

mb-crater_binary_seg

A segmentation dataset for planetary science applications.

Dataset Metadata

  • License: CC-BY-4.0 (Creative Commons Attribution 4.0 International)
  • Version: 1.0
  • Date Published: 2025-05-15
  • Cite As: TBD

Classes

This dataset contains the following classes:

  • 0: Background
  • 1: Crater

Directory Structure

The dataset follows this structure:

dataset/
  ├── train/
  │   ├── images/  # Image files
  │   └── masks/   # Segmentation masks
  ├── val/
  │   ├── images/  # Image files
  │   └── masks/   # Segmentation masks
  ├── test/
  │   ├── images/  # Image files
  │   └── masks/   # Segmentation masks

Statistics

  • train: 3600 images
  • val: 900 images
  • test: 900 images
  • partition_train_0.01x_partition: 36 images
  • partition_train_0.02x_partition: 72 images
  • partition_train_0.50x_partition: 1800 images
  • partition_train_0.20x_partition: 720 images
  • partition_train_0.05x_partition: 180 images
  • partition_train_0.10x_partition: 360 images
  • partition_train_0.25x_partition: 900 images

Usage

from datasets import load_dataset

dataset = load_dataset("Mirali33/mb-crater_binary_seg")

Format

Each example in the dataset has the following format:

{
  'image': Image(...),      # PIL image
  'mask': Image(...),       # PIL image of the segmentation mask
  'width': int,             # Width of the image
  'height': int,            # Height of the image
  'class_labels': [str,...] # List of class names present in the mask
}