id
stringlengths
14
15
text
stringlengths
35
2.07k
embedding
sequence
source
stringlengths
61
154
00a34504a304-2
chain will be returned. Defaults to False. callbacks – Callbacks to use for this chain run. If not provided, will use the callbacks provided to the chain. include_run_info – Whether to include run info in the response. Defaults to False. async aapply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶ Utilize the LLM generate method for speed gains. async aapply_and_parse(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → Sequence[Union[str, List[str], Dict[str, str]]]¶ Call apply and then parse the results. async acall(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, include_run_info: bool = False) → Dict[str, Any]¶ Run the logic of this chain and add to output if desired. Parameters inputs – Dictionary of inputs, or single input if chain expects only one param. return_only_outputs – boolean for whether to return only outputs in the response. If True, only new keys generated by this chain will be returned. If False, both input keys and new keys generated by this chain will be returned. Defaults to False. callbacks – Callbacks to use for this chain run. If not provided, will use the callbacks provided to the chain. include_run_info – Whether to include run info in the response. Defaults to False. async agenerate(input_list: List[Dict[str, Any]], run_manager: Optional[AsyncCallbackManagerForChainRun] = None) → LLMResult¶
[ 8995, 690, 387, 6052, 13, 37090, 311, 3641, 627, 69411, 1389, 23499, 82, 311, 1005, 369, 420, 8957, 1629, 13, 1442, 539, 3984, 11, 690, 198, 817, 279, 27777, 3984, 311, 279, 8957, 627, 1012, 14334, 3186, 1389, 13440, 311, 2997, 1629, 3630, 304, 279, 2077, 13, 37090, 198, 998, 3641, 627, 7847, 264, 10492, 5498, 2062, 25, 1796, 58, 13755, 17752, 11, 5884, 21128, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 8, 11651, 1796, 58, 13755, 17752, 11, 610, 5163, 55609, 198, 2810, 553, 279, 445, 11237, 7068, 1749, 369, 4732, 20192, 627, 7847, 264, 10492, 8543, 21715, 5498, 2062, 25, 1796, 58, 13755, 17752, 11, 5884, 21128, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 8, 11651, 29971, 58, 33758, 17752, 11, 1796, 17752, 1145, 30226, 17752, 11, 610, 5163, 60, 55609, 198, 7368, 3881, 323, 1243, 4820, 279, 3135, 627, 7847, 1645, 543, 35099, 25, 9323, 58, 13755, 17752, 11, 5884, 1145, 5884, 1145, 471, 18917, 36289, 25, 1845, 284, 3641, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 2997, 14334, 3186, 25, 1845, 284, 3641, 8, 11651, 30226, 17752, 11, 5884, 60, 55609, 198, 6869, 279, 12496, 315, 420, 8957, 323, 923, 311, 2612, 422, 12974, 627, 9905, 198, 25986, 1389, 10685, 315, 11374, 11, 477, 3254, 1988, 422, 8957, 25283, 198, 3323, 832, 1719, 627, 693, 18917, 36289, 1389, 2777, 369, 3508, 311, 471, 1193, 16674, 304, 279, 198, 2376, 13, 1442, 3082, 11, 1193, 502, 7039, 8066, 555, 420, 8957, 690, 387, 198, 78691, 13, 1442, 3641, 11, 2225, 1988, 7039, 323, 502, 7039, 8066, 555, 420, 198, 8995, 690, 387, 6052, 13, 37090, 311, 3641, 627, 69411, 1389, 23499, 82, 311, 1005, 369, 420, 8957, 1629, 13, 1442, 539, 3984, 11, 690, 198, 817, 279, 27777, 3984, 311, 279, 8957, 627, 1012, 14334, 3186, 1389, 13440, 311, 2997, 1629, 3630, 304, 279, 2077, 13, 37090, 198, 998, 3641, 627, 7847, 945, 13523, 5498, 2062, 25, 1796, 58, 13755, 17752, 11, 5884, 21128, 1629, 12418, 25, 12536, 58, 6662, 7646, 2087, 2520, 19368, 6869, 60, 284, 2290, 8, 11651, 445, 11237, 2122, 55609 ]
https://langchain.readthedocs.io/en/latest/experimental/langchain.experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
00a34504a304-3
Generate LLM result from inputs. apply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶ Utilize the LLM generate method for speed gains. apply_and_parse(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → Sequence[Union[str, List[str], Dict[str, str]]]¶ Call apply and then parse the results. async apredict(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Format prompt with kwargs and pass to LLM. Parameters callbacks – Callbacks to pass to LLMChain **kwargs – Keys to pass to prompt template. Returns Completion from LLM. Example completion = llm.predict(adjective="funny") async apredict_and_parse(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[str, List[str], Dict[str, str]]¶ Call apredict and then parse the results. async aprep_prompts(input_list: List[Dict[str, Any]], run_manager: Optional[AsyncCallbackManagerForChainRun] = None) → Tuple[List[PromptValue], Optional[List[str]]]¶ Prepare prompts from inputs. async arun(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, **kwargs: Any) → str¶ Run the chain as text in, text out or multiple variables, text out. create_outputs(llm_result: LLMResult) → List[Dict[str, Any]]¶ Create outputs from response.
[ 32215, 445, 11237, 1121, 505, 11374, 627, 10492, 5498, 2062, 25, 1796, 58, 13755, 17752, 11, 5884, 21128, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 8, 11651, 1796, 58, 13755, 17752, 11, 610, 5163, 55609, 198, 2810, 553, 279, 445, 11237, 7068, 1749, 369, 4732, 20192, 627, 10492, 8543, 21715, 5498, 2062, 25, 1796, 58, 13755, 17752, 11, 5884, 21128, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 8, 11651, 29971, 58, 33758, 17752, 11, 1796, 17752, 1145, 30226, 17752, 11, 610, 5163, 60, 55609, 198, 7368, 3881, 323, 1243, 4820, 279, 3135, 627, 7847, 1469, 9037, 24885, 82, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4152, 10137, 449, 16901, 323, 1522, 311, 445, 11237, 627, 9905, 198, 69411, 1389, 23499, 82, 311, 1522, 311, 445, 11237, 19368, 198, 334, 9872, 1389, 25104, 311, 1522, 311, 10137, 3896, 627, 16851, 198, 34290, 505, 445, 11237, 627, 13617, 198, 44412, 284, 9507, 76, 24706, 44879, 51591, 429, 12158, 3919, 1158, 7847, 1469, 9037, 8543, 21715, 24885, 82, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 9323, 17752, 11, 1796, 17752, 1145, 30226, 17752, 11, 610, 5163, 55609, 198, 7368, 1469, 9037, 323, 1243, 4820, 279, 3135, 627, 7847, 1469, 10200, 48977, 13044, 5498, 2062, 25, 1796, 58, 13755, 17752, 11, 5884, 21128, 1629, 12418, 25, 12536, 58, 6662, 7646, 2087, 2520, 19368, 6869, 60, 284, 2290, 8, 11651, 25645, 53094, 43447, 15091, 1150, 1145, 12536, 53094, 17752, 5163, 60, 55609, 198, 51690, 52032, 505, 11374, 627, 7847, 802, 359, 4163, 2164, 25, 5884, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 6869, 279, 8957, 439, 1495, 304, 11, 1495, 704, 477, 5361, 7482, 11, 1495, 704, 627, 3261, 36289, 36621, 76, 5400, 25, 445, 11237, 2122, 8, 11651, 1796, 58, 13755, 17752, 11, 5884, 5163, 55609, 198, 4110, 16674, 505, 2077, 13 ]
https://langchain.readthedocs.io/en/latest/experimental/langchain.experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
00a34504a304-4
Create outputs from response. dict(**kwargs: Any) → Dict¶ Return dictionary representation of chain. classmethod from_llm(llm: BaseLanguageModel, verbose: bool = True) → LLMChain[source]¶ Get the response parser. classmethod from_string(llm: BaseLanguageModel, template: str) → LLMChain¶ Create LLMChain from LLM and template. generate(input_list: List[Dict[str, Any]], run_manager: Optional[CallbackManagerForChainRun] = None) → LLMResult¶ Generate LLM result from inputs. predict(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Format prompt with kwargs and pass to LLM. Parameters callbacks – Callbacks to pass to LLMChain **kwargs – Keys to pass to prompt template. Returns Completion from LLM. Example completion = llm.predict(adjective="funny") predict_and_parse(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[str, List[str], Dict[str, Any]]¶ Call predict and then parse the results. prep_inputs(inputs: Union[Dict[str, Any], Any]) → Dict[str, str]¶ Validate and prep inputs. prep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) → Dict[str, str]¶ Validate and prep outputs. prep_prompts(input_list: List[Dict[str, Any]], run_manager: Optional[CallbackManagerForChainRun] = None) → Tuple[List[PromptValue], Optional[List[str]]]¶ Prepare prompts from inputs. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used.
[ 4110, 16674, 505, 2077, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 11240, 13340, 315, 8957, 627, 27853, 505, 44095, 76, 36621, 76, 25, 5464, 14126, 1747, 11, 14008, 25, 1845, 284, 3082, 8, 11651, 445, 11237, 19368, 76747, 60, 55609, 198, 1991, 279, 2077, 6871, 627, 27853, 505, 3991, 36621, 76, 25, 5464, 14126, 1747, 11, 3896, 25, 610, 8, 11651, 445, 11237, 19368, 55609, 198, 4110, 445, 11237, 19368, 505, 445, 11237, 323, 3896, 627, 19927, 5498, 2062, 25, 1796, 58, 13755, 17752, 11, 5884, 21128, 1629, 12418, 25, 12536, 58, 7646, 2087, 2520, 19368, 6869, 60, 284, 2290, 8, 11651, 445, 11237, 2122, 55609, 198, 32215, 445, 11237, 1121, 505, 11374, 627, 35798, 24885, 82, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4152, 10137, 449, 16901, 323, 1522, 311, 445, 11237, 627, 9905, 198, 69411, 1389, 23499, 82, 311, 1522, 311, 445, 11237, 19368, 198, 334, 9872, 1389, 25104, 311, 1522, 311, 10137, 3896, 627, 16851, 198, 34290, 505, 445, 11237, 627, 13617, 198, 44412, 284, 9507, 76, 24706, 44879, 51591, 429, 12158, 3919, 1158, 35798, 8543, 21715, 24885, 82, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 9323, 17752, 11, 1796, 17752, 1145, 30226, 17752, 11, 5884, 5163, 55609, 198, 7368, 7168, 323, 1243, 4820, 279, 3135, 627, 72874, 29657, 35099, 25, 9323, 58, 13755, 17752, 11, 5884, 1145, 5884, 2526, 11651, 30226, 17752, 11, 610, 60, 55609, 198, 18409, 323, 22033, 11374, 627, 72874, 36289, 35099, 25, 30226, 17752, 11, 610, 1145, 16674, 25, 30226, 17752, 11, 610, 1145, 471, 18917, 36289, 25, 1845, 284, 3641, 8, 11651, 30226, 17752, 11, 610, 60, 55609, 198, 18409, 323, 22033, 16674, 627, 72874, 48977, 13044, 5498, 2062, 25, 1796, 58, 13755, 17752, 11, 5884, 21128, 1629, 12418, 25, 12536, 58, 7646, 2087, 2520, 19368, 6869, 60, 284, 2290, 8, 11651, 25645, 53094, 43447, 15091, 1150, 1145, 12536, 53094, 17752, 5163, 60, 55609, 198, 51690, 52032, 505, 11374, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 13 ]
https://langchain.readthedocs.io/en/latest/experimental/langchain.experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
00a34504a304-5
Raise deprecation warning if callback_manager is used. run(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, **kwargs: Any) → str¶ Run the chain as text in, text out or multiple variables, text out. save(file_path: Union[Path, str]) → None¶ Save the chain. Parameters file_path – Path to file to save the chain to. Example: .. code-block:: python chain.save(file_path=”path/chain.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config¶ Bases: object Configuration for this pydantic object. arbitrary_types_allowed = True¶ extra = 'forbid'¶
[ 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6236, 4163, 2164, 25, 5884, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 6869, 279, 8957, 439, 1495, 304, 11, 1495, 704, 477, 5361, 7482, 11, 1495, 704, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 8957, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 8957, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344, 198, 8995, 5799, 4971, 2703, 45221, 2398, 14, 8995, 34506, 863, 340, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 277, 88951, 9962, 43255, 284, 3082, 55609, 198, 15824, 284, 364, 2000, 21301, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/experimental/langchain.experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
eff9f6ea64e7-0
langchain.experimental.plan_and_execute.planners.chat_planner.load_chat_planner¶ langchain.experimental.plan_and_execute.planners.chat_planner.load_chat_planner(llm: BaseLanguageModel, system_prompt: str = "Let's first understand the problem and devise a plan to solve the problem. Please output the plan starting with the header 'Plan:' and then followed by a numbered list of steps. Please make the plan the minimum number of steps required to accurately complete the task. If the task is a question, the final step should almost always be 'Given the above steps taken, please respond to the users original question'. At the end of your plan, say '<END_OF_PLAN>'") → LLMPlanner[source]¶ Load a chat planner. :param llm: Language model. :param system_prompt: System prompt. Returns LLMPlanner
[ 5317, 8995, 88547, 46942, 8543, 45429, 8022, 24960, 27215, 6451, 4992, 5214, 36153, 6451, 4992, 55609, 198, 5317, 8995, 88547, 46942, 8543, 45429, 8022, 24960, 27215, 6451, 4992, 5214, 36153, 6451, 4992, 36621, 76, 25, 5464, 14126, 1747, 11, 1887, 62521, 25, 610, 284, 330, 10267, 596, 1176, 3619, 279, 3575, 323, 53165, 264, 3197, 311, 11886, 279, 3575, 13, 5321, 2612, 279, 3197, 6041, 449, 279, 4342, 364, 21119, 4989, 323, 1243, 8272, 555, 264, 49926, 1160, 315, 7504, 13, 5321, 1304, 279, 3197, 279, 8187, 1396, 315, 7504, 2631, 311, 30357, 4686, 279, 3465, 13, 1442, 279, 3465, 374, 264, 3488, 11, 279, 1620, 3094, 1288, 4661, 2744, 387, 364, 22818, 279, 3485, 7504, 4529, 11, 4587, 6013, 311, 279, 3932, 4113, 3488, 4527, 2468, 279, 842, 315, 701, 3197, 11, 2019, 3942, 4794, 14568, 84748, 5709, 909, 11651, 445, 11237, 2169, 4992, 76747, 60, 55609, 198, 6003, 264, 6369, 50811, 627, 68416, 9507, 76, 25, 11688, 1646, 627, 68416, 1887, 62521, 25, 744, 10137, 627, 16851, 198, 4178, 44, 2169, 4992 ]
https://langchain.readthedocs.io/en/latest/experimental/langchain.experimental.plan_and_execute.planners.chat_planner.load_chat_planner.html
a317c8050741-0
langchain.experimental.autonomous_agents.autogpt.prompt.AutoGPTPrompt¶ class langchain.experimental.autonomous_agents.autogpt.prompt.AutoGPTPrompt(*, input_variables: List[str], output_parser: Optional[BaseOutputParser] = None, partial_variables: Mapping[str, Union[str, Callable[[], str]]] = None, ai_name: str, ai_role: str, tools: List[BaseTool], token_counter: Callable[[str], int], send_token_limit: int = 4196)[source]¶ Bases: BaseChatPromptTemplate, BaseModel Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param ai_name: str [Required]¶ param ai_role: str [Required]¶ param input_variables: List[str] [Required]¶ A list of the names of the variables the prompt template expects. param output_parser: Optional[BaseOutputParser] = None¶ How to parse the output of calling an LLM on this formatted prompt. param partial_variables: Mapping[str, Union[str, Callable[[], str]]] [Optional]¶ param send_token_limit: int = 4196¶ param token_counter: Callable[[str], int] [Required]¶ param tools: List[langchain.tools.base.BaseTool] [Required]¶ construct_full_prompt(goals: List[str]) → str[source]¶ dict(**kwargs: Any) → Dict¶ Return dictionary representation of prompt. format(**kwargs: Any) → str¶ Format the prompt with the inputs. Parameters kwargs – Any arguments to be passed to the prompt template. Returns A formatted string. Example: prompt.format(variable1="foo") format_messages(**kwargs: Any) → List[BaseMessage][source]¶
[ 5317, 8995, 88547, 32155, 30946, 77447, 32155, 540, 418, 66499, 6613, 38, 2898, 55715, 55609, 198, 1058, 8859, 8995, 88547, 32155, 30946, 77447, 32155, 540, 418, 66499, 6613, 38, 2898, 55715, 4163, 11, 1988, 29282, 25, 1796, 17752, 1145, 2612, 19024, 25, 12536, 58, 4066, 5207, 6707, 60, 284, 2290, 11, 7276, 29282, 25, 39546, 17752, 11, 9323, 17752, 11, 54223, 58, 13292, 610, 5163, 60, 284, 2290, 11, 16796, 1292, 25, 610, 11, 16796, 20378, 25, 610, 11, 7526, 25, 1796, 58, 4066, 7896, 1145, 4037, 16107, 25, 54223, 15873, 496, 1145, 528, 1145, 3708, 6594, 15106, 25, 528, 284, 220, 19391, 21, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 16047, 55715, 7423, 11, 65705, 198, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 16796, 1292, 25, 610, 510, 8327, 60, 55609, 198, 913, 16796, 20378, 25, 610, 510, 8327, 60, 55609, 198, 913, 1988, 29282, 25, 1796, 17752, 60, 510, 8327, 60, 55609, 198, 32, 1160, 315, 279, 5144, 315, 279, 7482, 279, 10137, 3896, 25283, 627, 913, 2612, 19024, 25, 12536, 58, 4066, 5207, 6707, 60, 284, 2290, 55609, 198, 4438, 311, 4820, 279, 2612, 315, 8260, 459, 445, 11237, 389, 420, 24001, 10137, 627, 913, 7276, 29282, 25, 39546, 17752, 11, 9323, 17752, 11, 54223, 58, 13292, 610, 5163, 60, 510, 15669, 60, 55609, 198, 913, 3708, 6594, 15106, 25, 528, 284, 220, 19391, 21, 55609, 198, 913, 4037, 16107, 25, 54223, 15873, 496, 1145, 528, 60, 510, 8327, 60, 55609, 198, 913, 7526, 25, 1796, 58, 5317, 8995, 24029, 9105, 13316, 7896, 60, 510, 8327, 60, 55609, 198, 7750, 16776, 62521, 48515, 1147, 25, 1796, 17752, 2526, 11651, 610, 76747, 60, 55609, 198, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 11240, 13340, 315, 10137, 627, 2293, 22551, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4152, 279, 10137, 449, 279, 11374, 627, 9905, 198, 9872, 1389, 5884, 6105, 311, 387, 5946, 311, 279, 10137, 3896, 627, 16851, 198, 32, 24001, 925, 627, 13617, 512, 41681, 8180, 46129, 16, 429, 8134, 1158, 2293, 24321, 22551, 9872, 25, 5884, 8, 11651, 1796, 58, 4066, 2097, 1483, 2484, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/experimental/langchain.experimental.autonomous_agents.autogpt.prompt.AutoGPTPrompt.html
a317c8050741-1
format_messages(**kwargs: Any) → List[BaseMessage][source]¶ Format kwargs into a list of messages. format_prompt(**kwargs: Any) → PromptValue¶ Create Chat Messages. partial(**kwargs: Union[str, Callable[[], str]]) → BasePromptTemplate¶ Return a partial of the prompt template. save(file_path: Union[Path, str]) → None¶ Save the prompt. Parameters file_path – Path to directory to save prompt to. Example: .. code-block:: python prompt.save(file_path=”path/prompt.yaml”) to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_variable_names  »  all fields¶ Validate variable names do not include restricted names. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config¶ Bases: object Configuration for this pydantic object. arbitrary_types_allowed = True¶
[ 2293, 24321, 22551, 9872, 25, 5884, 8, 11651, 1796, 58, 4066, 2097, 1483, 2484, 60, 55609, 198, 4152, 16901, 1139, 264, 1160, 315, 6743, 627, 2293, 62521, 22551, 9872, 25, 5884, 8, 11651, 60601, 1150, 55609, 198, 4110, 13149, 27827, 627, 38520, 22551, 9872, 25, 9323, 17752, 11, 54223, 58, 13292, 610, 30716, 11651, 5464, 55715, 7423, 55609, 198, 5715, 264, 7276, 315, 279, 10137, 3896, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 10137, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 6352, 311, 3665, 10137, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344, 198, 41681, 5799, 4971, 2703, 45221, 2398, 4420, 15091, 34506, 863, 340, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 16503, 9788, 14977, 9366, 4194, 8345, 4194, 682, 5151, 55609, 198, 18409, 3977, 5144, 656, 539, 2997, 22486, 5144, 627, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 277, 88951, 9962, 43255, 284, 3082, 55609 ]
https://langchain.readthedocs.io/en/latest/experimental/langchain.experimental.autonomous_agents.autogpt.prompt.AutoGPTPrompt.html
c97056533946-0
langchain.experimental.autonomous_agents.autogpt.output_parser.preprocess_json_input¶ langchain.experimental.autonomous_agents.autogpt.output_parser.preprocess_json_input(input_str: str) → str[source]¶ Preprocesses a string to be parsed as json. Replace single backslashes with double backslashes, while leaving already escaped ones intact. Parameters input_str – String to be preprocessed Returns Preprocessed string
[ 5317, 8995, 88547, 32155, 30946, 77447, 32155, 540, 418, 13718, 19024, 6357, 4734, 9643, 6022, 55609, 198, 5317, 8995, 88547, 32155, 30946, 77447, 32155, 540, 418, 13718, 19024, 6357, 4734, 9643, 6022, 5498, 2966, 25, 610, 8, 11651, 610, 76747, 60, 55609, 198, 4808, 4734, 288, 264, 925, 311, 387, 16051, 439, 3024, 627, 23979, 3254, 1203, 48729, 449, 2033, 1203, 48729, 345, 3556, 9564, 2736, 28883, 6305, 35539, 627, 9905, 198, 1379, 2966, 1389, 935, 311, 387, 864, 35122, 198, 16851, 198, 4808, 35122, 925 ]
https://langchain.readthedocs.io/en/latest/experimental/langchain.experimental.autonomous_agents.autogpt.output_parser.preprocess_json_input.html
32601e5ec605-0
langchain.experimental.plan_and_execute.planners.chat_planner.PlanningOutputParser¶ class langchain.experimental.plan_and_execute.planners.chat_planner.PlanningOutputParser[source]¶ Bases: PlanOutputParser Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. dict(**kwargs: Any) → Dict¶ Return dictionary representation of output parser. get_format_instructions() → str¶ Instructions on how the LLM output should be formatted. parse(text: str) → Plan[source]¶ Parse into a plan. parse_result(result: List[Generation]) → T¶ Parse LLM Result. parse_with_prompt(completion: str, prompt: PromptValue) → Any¶ Optional method to parse the output of an LLM call with a prompt. The prompt is largely provided in the event the OutputParser wants to retry or fix the output in some way, and needs information from the prompt to do so. Parameters completion – output of language model prompt – prompt value Returns structured output to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config¶
[ 5317, 8995, 88547, 46942, 8543, 45429, 8022, 24960, 27215, 6451, 4992, 22079, 6073, 5207, 6707, 55609, 198, 1058, 8859, 8995, 88547, 46942, 8543, 45429, 8022, 24960, 27215, 6451, 4992, 22079, 6073, 5207, 6707, 76747, 60, 55609, 198, 33, 2315, 25, 9878, 5207, 6707, 198, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 11240, 13340, 315, 2612, 6871, 627, 456, 9132, 83527, 368, 11651, 610, 55609, 198, 56391, 389, 1268, 279, 445, 11237, 2612, 1288, 387, 24001, 627, 6534, 7383, 25, 610, 8, 11651, 9878, 76747, 60, 55609, 198, 14802, 1139, 264, 3197, 627, 6534, 5400, 4556, 25, 1796, 58, 38238, 2526, 11651, 350, 55609, 198, 14802, 445, 11237, 5832, 627, 6534, 6753, 62521, 91868, 25, 610, 11, 10137, 25, 60601, 1150, 8, 11651, 5884, 55609, 198, 15669, 1749, 311, 4820, 279, 2612, 315, 459, 445, 11237, 1650, 449, 264, 10137, 627, 791, 10137, 374, 14090, 3984, 304, 279, 1567, 279, 9442, 6707, 6944, 198, 998, 23515, 477, 5155, 279, 2612, 304, 1063, 1648, 11, 323, 3966, 2038, 505, 198, 1820, 10137, 311, 656, 779, 627, 9905, 198, 44412, 1389, 2612, 315, 4221, 1646, 198, 41681, 1389, 10137, 907, 198, 16851, 198, 52243, 2612, 198, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 55609 ]
https://langchain.readthedocs.io/en/latest/experimental/langchain.experimental.plan_and_execute.planners.chat_planner.PlanningOutputParser.html
32601e5ec605-1
Return whether or not the class is serializable. model Config¶ Bases: object extra = 'ignore'¶
[ 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 55609, 198, 33, 2315, 25, 1665, 198, 15824, 284, 364, 13431, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/experimental/langchain.experimental.plan_and_execute.planners.chat_planner.PlanningOutputParser.html
de22498eaff7-0
langchain.experimental.plan_and_execute.executors.agent_executor.load_agent_executor¶ langchain.experimental.plan_and_execute.executors.agent_executor.load_agent_executor(llm: BaseLanguageModel, tools: List[BaseTool], verbose: bool = False, include_task_in_prompt: bool = False) → ChainExecutor[source]¶ Load an agent executor. Parameters llm – BaseLanguageModel tools – List[BaseTool] verbose – bool. Defaults to False. include_task_in_prompt – bool. Defaults to False. Returns ChainExecutor
[ 5317, 8995, 88547, 46942, 8543, 45429, 16153, 9663, 45249, 82307, 5214, 26814, 82307, 55609, 198, 5317, 8995, 88547, 46942, 8543, 45429, 16153, 9663, 45249, 82307, 5214, 26814, 82307, 36621, 76, 25, 5464, 14126, 1747, 11, 7526, 25, 1796, 58, 4066, 7896, 1145, 14008, 25, 1845, 284, 3641, 11, 2997, 12461, 1265, 62521, 25, 1845, 284, 3641, 8, 11651, 29625, 26321, 76747, 60, 55609, 198, 6003, 459, 8479, 32658, 627, 9905, 198, 657, 76, 1389, 5464, 14126, 1747, 198, 16297, 1389, 1796, 58, 4066, 7896, 933, 15228, 1389, 1845, 13, 37090, 311, 3641, 627, 1012, 12461, 1265, 62521, 1389, 1845, 13, 37090, 311, 3641, 627, 16851, 198, 19368, 26321 ]
https://langchain.readthedocs.io/en/latest/experimental/langchain.experimental.plan_and_execute.executors.agent_executor.load_agent_executor.html
89bf87bfc859-0
langchain.experimental.plan_and_execute.schema.ListStepContainer¶ class langchain.experimental.plan_and_execute.schema.ListStepContainer(*, steps: List[Tuple[Step, StepResponse]] = None)[source]¶ Bases: BaseModel Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param steps: List[Tuple[langchain.experimental.plan_and_execute.schema.Step, langchain.experimental.plan_and_execute.schema.StepResponse]] [Optional]¶ add_step(step: Step, step_response: StepResponse) → None[source]¶ get_final_response() → str[source]¶ get_steps() → List[Tuple[Step, StepResponse]][source]¶
[ 5317, 8995, 88547, 46942, 8543, 45429, 31992, 5937, 8468, 4603, 55609, 198, 1058, 8859, 8995, 88547, 46942, 8543, 45429, 31992, 5937, 8468, 4603, 4163, 11, 7504, 25, 1796, 20961, 6189, 58, 8468, 11, 15166, 2647, 5163, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 65705, 198, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 7504, 25, 1796, 20961, 6189, 58, 5317, 8995, 88547, 46942, 8543, 45429, 31992, 69502, 11, 8859, 8995, 88547, 46942, 8543, 45429, 31992, 69502, 2647, 5163, 510, 15669, 60, 55609, 198, 723, 12212, 39536, 25, 15166, 11, 3094, 9852, 25, 15166, 2647, 8, 11651, 2290, 76747, 60, 55609, 198, 456, 21333, 9852, 368, 11651, 610, 76747, 60, 55609, 198, 456, 23566, 368, 11651, 1796, 20961, 6189, 58, 8468, 11, 15166, 2647, 28819, 2484, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/experimental/langchain.experimental.plan_and_execute.schema.ListStepContainer.html
d9c6ac297e3b-0
langchain.experimental.plan_and_execute.schema.PlanOutputParser¶ class langchain.experimental.plan_and_execute.schema.PlanOutputParser[source]¶ Bases: BaseOutputParser Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. dict(**kwargs: Any) → Dict¶ Return dictionary representation of output parser. get_format_instructions() → str¶ Instructions on how the LLM output should be formatted. abstract parse(text: str) → Plan[source]¶ Parse into a plan. parse_result(result: List[Generation]) → T¶ Parse LLM Result. parse_with_prompt(completion: str, prompt: PromptValue) → Any¶ Optional method to parse the output of an LLM call with a prompt. The prompt is largely provided in the event the OutputParser wants to retry or fix the output in some way, and needs information from the prompt to do so. Parameters completion – output of language model prompt – prompt value Returns structured output to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config¶ Bases: object
[ 5317, 8995, 88547, 46942, 8543, 45429, 31992, 1087, 10946, 5207, 6707, 55609, 198, 1058, 8859, 8995, 88547, 46942, 8543, 45429, 31992, 1087, 10946, 5207, 6707, 76747, 60, 55609, 198, 33, 2315, 25, 5464, 5207, 6707, 198, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 11240, 13340, 315, 2612, 6871, 627, 456, 9132, 83527, 368, 11651, 610, 55609, 198, 56391, 389, 1268, 279, 445, 11237, 2612, 1288, 387, 24001, 627, 16647, 4820, 7383, 25, 610, 8, 11651, 9878, 76747, 60, 55609, 198, 14802, 1139, 264, 3197, 627, 6534, 5400, 4556, 25, 1796, 58, 38238, 2526, 11651, 350, 55609, 198, 14802, 445, 11237, 5832, 627, 6534, 6753, 62521, 91868, 25, 610, 11, 10137, 25, 60601, 1150, 8, 11651, 5884, 55609, 198, 15669, 1749, 311, 4820, 279, 2612, 315, 459, 445, 11237, 1650, 449, 264, 10137, 627, 791, 10137, 374, 14090, 3984, 304, 279, 1567, 279, 9442, 6707, 6944, 198, 998, 23515, 477, 5155, 279, 2612, 304, 1063, 1648, 11, 323, 3966, 2038, 505, 198, 1820, 10137, 311, 656, 779, 627, 9905, 198, 44412, 1389, 2612, 315, 4221, 1646, 198, 41681, 1389, 10137, 907, 198, 16851, 198, 52243, 2612, 198, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 55609, 198, 33, 2315, 25, 1665 ]
https://langchain.readthedocs.io/en/latest/experimental/langchain.experimental.plan_and_execute.schema.PlanOutputParser.html
d9c6ac297e3b-1
Return whether or not the class is serializable. model Config¶ Bases: object extra = 'ignore'¶
[ 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 55609, 198, 33, 2315, 25, 1665, 198, 15824, 284, 364, 13431, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/experimental/langchain.experimental.plan_and_execute.schema.PlanOutputParser.html
54e06826c93e-0
langchain.experimental.autonomous_agents.autogpt.prompt_generator.get_prompt¶ langchain.experimental.autonomous_agents.autogpt.prompt_generator.get_prompt(tools: List[BaseTool]) → str[source]¶ This function generates a prompt string. It includes various constraints, commands, resources, and performance evaluations. Returns The generated prompt string. Return type str
[ 5317, 8995, 88547, 32155, 30946, 77447, 32155, 540, 418, 66499, 26898, 673, 62521, 55609, 198, 5317, 8995, 88547, 32155, 30946, 77447, 32155, 540, 418, 66499, 26898, 673, 62521, 12464, 3145, 25, 1796, 58, 4066, 7896, 2526, 11651, 610, 76747, 60, 55609, 198, 2028, 734, 27983, 264, 10137, 925, 627, 2181, 5764, 5370, 17413, 11, 11545, 11, 5070, 11, 323, 5178, 56181, 627, 16851, 198, 791, 8066, 10137, 925, 627, 5715, 955, 198, 496 ]
https://langchain.readthedocs.io/en/latest/experimental/langchain.experimental.autonomous_agents.autogpt.prompt_generator.get_prompt.html
f86d788c9372-0
langchain.experimental.llms.rellm_decoder.RELLM¶ class langchain.experimental.llms.rellm_decoder.RELLM(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, pipeline: Any = None, model_id: str = 'gpt2', model_kwargs: Optional[dict] = None, pipeline_kwargs: Optional[dict] = None, regex: RegexPattern, max_new_tokens: int = 200)[source]¶ Bases: HuggingFacePipeline Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param max_new_tokens: int = 200¶ Maximum number of new tokens to generate. param model_id: str = 'gpt2'¶ Model name to use. param model_kwargs: Optional[dict] = None¶ Key word arguments passed to the model. param pipeline_kwargs: Optional[dict] = None¶ Key word arguments passed to the pipeline. param regex: RegexPattern [Required]¶ The structured format to complete. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶
[ 5317, 8995, 88547, 60098, 1026, 1351, 657, 76, 50943, 15056, 4178, 44, 55609, 198, 1058, 8859, 8995, 88547, 60098, 1026, 1351, 657, 76, 50943, 15056, 4178, 44, 4163, 11, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 15660, 25, 5884, 284, 2290, 11, 1646, 851, 25, 610, 284, 364, 70, 418, 17, 518, 1646, 37335, 25, 12536, 58, 8644, 60, 284, 2290, 11, 15660, 37335, 25, 12536, 58, 8644, 60, 284, 2290, 11, 20791, 25, 27238, 16137, 11, 1973, 6046, 29938, 25, 528, 284, 220, 1049, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 473, 36368, 16680, 35756, 198, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609, 198, 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 913, 1973, 6046, 29938, 25, 528, 284, 220, 1049, 55609, 198, 28409, 1396, 315, 502, 11460, 311, 7068, 627, 913, 1646, 851, 25, 610, 284, 364, 70, 418, 17, 6, 55609, 198, 1747, 836, 311, 1005, 627, 913, 1646, 37335, 25, 12536, 58, 8644, 60, 284, 2290, 55609, 198, 1622, 3492, 6105, 5946, 311, 279, 1646, 627, 913, 15660, 37335, 25, 12536, 58, 8644, 60, 284, 2290, 55609, 198, 1622, 3492, 6105, 5946, 311, 279, 15660, 627, 913, 20791, 25, 27238, 16137, 510, 8327, 60, 55609, 198, 791, 34030, 3645, 311, 4686, 627, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 627, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 627, 565, 6797, 3889, 41681, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609 ]
https://langchain.readthedocs.io/en/latest/experimental/langchain.experimental.llms.rellm_decoder.RELLM.html
f86d788c9372-1
Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. classmethod all_required_field_names() → Set¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator check_rellm_installation  »  all fields[source]¶ dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. classmethod from_model_id(model_id: str, task: str, device: int = - 1, model_kwargs: Optional[dict] = None, pipeline_kwargs: Optional[dict] = None, **kwargs: Any) → LLM¶ Construct the pipeline object from model_id and task. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input.
[ 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 27853, 682, 19265, 5121, 9366, 368, 11651, 2638, 55609, 198, 7847, 1469, 9037, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 7847, 1469, 9037, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 1817, 1311, 657, 76, 35345, 367, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 627, 27853, 505, 5156, 851, 7790, 851, 25, 610, 11, 3465, 25, 610, 11, 3756, 25, 528, 284, 482, 220, 16, 11, 1646, 37335, 25, 12536, 58, 8644, 60, 284, 2290, 11, 15660, 37335, 25, 12536, 58, 8644, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 55609, 198, 29568, 279, 15660, 1665, 505, 1646, 851, 323, 3465, 627, 19927, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 13 ]
https://langchain.readthedocs.io/en/latest/experimental/langchain.experimental.llms.rellm_decoder.RELLM.html
f86d788c9372-2
Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the message. get_token_ids(text: str) → List[int]¶ Get the token present in the text. predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶
[ 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 19927, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 3118, 304, 279, 1495, 627, 456, 4369, 29938, 5791, 24321, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 304, 279, 1984, 627, 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 60, 55609, 198, 1991, 279, 4037, 3118, 304, 279, 1495, 627, 35798, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 35798, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 445, 11237, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 445, 11237, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344, 198, 657, 76, 5799, 4971, 2703, 45221, 2398, 14, 657, 76, 34506, 863, 340, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/experimental/langchain.experimental.llms.rellm_decoder.RELLM.html
f86d788c9372-3
constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
[ 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 15824, 284, 364, 2000, 21301, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/experimental/langchain.experimental.llms.rellm_decoder.RELLM.html
639c11f5fa09-0
langchain.experimental.autonomous_agents.autogpt.memory.AutoGPTMemory¶ class langchain.experimental.autonomous_agents.autogpt.memory.AutoGPTMemory(*, chat_memory: BaseChatMessageHistory = None, output_key: Optional[str] = None, input_key: Optional[str] = None, return_messages: bool = False, retriever: VectorStoreRetriever)[source]¶ Bases: BaseChatMemory Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param chat_memory: BaseChatMessageHistory [Optional]¶ param input_key: Optional[str] = None¶ param output_key: Optional[str] = None¶ param retriever: langchain.vectorstores.base.VectorStoreRetriever [Required]¶ VectorStoreRetriever object to connect to. param return_messages: bool = False¶ clear() → None¶ Clear memory contents. load_memory_variables(inputs: Dict[str, Any]) → Dict[str, Any][source]¶ Return key-value pairs given the text input to the chain. If None, return all memories save_context(inputs: Dict[str, Any], outputs: Dict[str, str]) → None¶ Save context from this conversation to buffer. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids.
[ 5317, 8995, 88547, 32155, 30946, 77447, 32155, 540, 418, 37711, 6613, 38, 2898, 10869, 55609, 198, 1058, 8859, 8995, 88547, 32155, 30946, 77447, 32155, 540, 418, 37711, 6613, 38, 2898, 10869, 4163, 11, 6369, 19745, 25, 5464, 16047, 2097, 13730, 284, 2290, 11, 2612, 3173, 25, 12536, 17752, 60, 284, 2290, 11, 1988, 3173, 25, 12536, 17752, 60, 284, 2290, 11, 471, 24321, 25, 1845, 284, 3641, 11, 10992, 424, 25, 4290, 6221, 12289, 462, 2099, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 16047, 10869, 198, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 6369, 19745, 25, 5464, 16047, 2097, 13730, 510, 15669, 60, 55609, 198, 913, 1988, 3173, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 2612, 3173, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 10992, 424, 25, 8859, 8995, 48203, 44569, 9105, 14621, 6221, 12289, 462, 2099, 510, 8327, 60, 55609, 198, 3866, 6221, 12289, 462, 2099, 1665, 311, 4667, 311, 627, 913, 471, 24321, 25, 1845, 284, 3641, 55609, 198, 7574, 368, 11651, 2290, 55609, 198, 14335, 5044, 8970, 627, 1096, 19745, 29282, 35099, 25, 30226, 17752, 11, 5884, 2526, 11651, 30226, 17752, 11, 5884, 1483, 2484, 60, 55609, 198, 5715, 1401, 19625, 13840, 2728, 279, 1495, 1988, 311, 279, 8957, 627, 2746, 2290, 11, 471, 682, 19459, 198, 6766, 8634, 35099, 25, 30226, 17752, 11, 5884, 1145, 16674, 25, 30226, 17752, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 2317, 505, 420, 10652, 311, 4240, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 13 ]
https://langchain.readthedocs.io/en/latest/experimental/langchain.experimental.autonomous_agents.autogpt.memory.AutoGPTMemory.html
639c11f5fa09-1
Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. property memory_variables: List[str]¶ Input keys this memory class will load dynamically. model Config¶ Bases: object Configuration for this pydantic object. arbitrary_types_allowed = True¶
[ 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 3784, 5044, 29282, 25, 1796, 17752, 60, 55609, 198, 2566, 7039, 420, 5044, 538, 690, 2865, 43111, 627, 2590, 5649, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 277, 88951, 9962, 43255, 284, 3082, 55609 ]
https://langchain.readthedocs.io/en/latest/experimental/langchain.experimental.autonomous_agents.autogpt.memory.AutoGPTMemory.html
0e550632215f-0
langchain.experimental.llms.jsonformer_decoder.JsonFormer¶ class langchain.experimental.llms.jsonformer_decoder.JsonFormer(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, pipeline: Any = None, model_id: str = 'gpt2', model_kwargs: Optional[dict] = None, pipeline_kwargs: Optional[dict] = None, json_schema: dict, max_new_tokens: int = 200, debug: bool = False)[source]¶ Bases: HuggingFacePipeline Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param debug: bool = False¶ Debug mode. param json_schema: dict [Required]¶ The JSON Schema to complete. param max_new_tokens: int = 200¶ Maximum number of new tokens to generate. param model_id: str = 'gpt2'¶ Model name to use. param model_kwargs: Optional[dict] = None¶ Key word arguments passed to the model. param pipeline_kwargs: Optional[dict] = None¶ Key word arguments passed to the pipeline. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param verbose: bool [Optional]¶ Whether to print out response text.
[ 5317, 8995, 88547, 60098, 1026, 4421, 35627, 50943, 13874, 31945, 55609, 198, 1058, 8859, 8995, 88547, 60098, 1026, 4421, 35627, 50943, 13874, 31945, 4163, 11, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 15660, 25, 5884, 284, 2290, 11, 1646, 851, 25, 610, 284, 364, 70, 418, 17, 518, 1646, 37335, 25, 12536, 58, 8644, 60, 284, 2290, 11, 15660, 37335, 25, 12536, 58, 8644, 60, 284, 2290, 11, 3024, 26443, 25, 6587, 11, 1973, 6046, 29938, 25, 528, 284, 220, 1049, 11, 7542, 25, 1845, 284, 3641, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 473, 36368, 16680, 35756, 198, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 6636, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609, 198, 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 913, 7542, 25, 1845, 284, 3641, 55609, 198, 8098, 3941, 627, 913, 3024, 26443, 25, 6587, 510, 8327, 60, 55609, 198, 791, 4823, 12824, 311, 4686, 627, 913, 1973, 6046, 29938, 25, 528, 284, 220, 1049, 55609, 198, 28409, 1396, 315, 502, 11460, 311, 7068, 627, 913, 1646, 851, 25, 610, 284, 364, 70, 418, 17, 6, 55609, 198, 1747, 836, 311, 1005, 627, 913, 1646, 37335, 25, 12536, 58, 8644, 60, 284, 2290, 55609, 198, 1622, 3492, 6105, 5946, 311, 279, 1646, 627, 913, 15660, 37335, 25, 12536, 58, 8644, 60, 284, 2290, 55609, 198, 1622, 3492, 6105, 5946, 311, 279, 15660, 627, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 16309, 311, 923, 311, 279, 1629, 11917, 627, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 13 ]
https://langchain.readthedocs.io/en/latest/experimental/langchain.experimental.llms.jsonformer_decoder.JsonFormer.html
0e550632215f-1
param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. classmethod all_required_field_names() → Set¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator check_jsonformer_installation  »  all fields[source]¶ dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. classmethod from_model_id(model_id: str, task: str, device: int = - 1, model_kwargs: Optional[dict] = None, pipeline_kwargs: Optional[dict] = None, **kwargs: Any) → LLM¶ Construct the pipeline object from model_id and task.
[ 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 311, 1194, 704, 2077, 1495, 627, 565, 6797, 3889, 41681, 25, 610, 11, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4061, 20044, 323, 1629, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 7847, 945, 13523, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 27853, 682, 19265, 5121, 9366, 368, 11651, 2638, 55609, 198, 7847, 1469, 9037, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 7847, 1469, 9037, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 1817, 9643, 35627, 35345, 367, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 264, 11240, 315, 279, 445, 11237, 627, 27853, 505, 5156, 851, 7790, 851, 25, 610, 11, 3465, 25, 610, 11, 3756, 25, 528, 284, 482, 220, 16, 11, 1646, 37335, 25, 12536, 58, 8644, 60, 284, 2290, 11, 15660, 37335, 25, 12536, 58, 8644, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 55609, 198, 29568, 279, 15660, 1665, 505, 1646, 851, 323, 3465, 13 ]
https://langchain.readthedocs.io/en/latest/experimental/langchain.experimental.llms.jsonformer_decoder.JsonFormer.html
0e550632215f-2
Construct the pipeline object from model_id and task. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Take in a list of prompt values and return an LLMResult. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the message. get_token_ids(text: str) → List[int]¶ Get the token present in the text. predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Predict text from text. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Predict message from messages. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting.
[ 29568, 279, 15660, 1665, 505, 1646, 851, 323, 3465, 627, 19927, 84432, 13044, 25, 1796, 17752, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 6869, 279, 445, 11237, 389, 279, 2728, 10137, 323, 1988, 627, 19927, 62521, 84432, 13044, 25, 1796, 43447, 15091, 1150, 1145, 3009, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 445, 11237, 2122, 55609, 198, 18293, 304, 264, 1160, 315, 10137, 2819, 323, 471, 459, 445, 11237, 2122, 627, 456, 4369, 29938, 7383, 25, 610, 8, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 3118, 304, 279, 1495, 627, 456, 4369, 29938, 5791, 24321, 56805, 25, 1796, 58, 4066, 2097, 2526, 11651, 528, 55609, 198, 1991, 279, 1396, 315, 11460, 304, 279, 1984, 627, 456, 6594, 8237, 7383, 25, 610, 8, 11651, 1796, 19155, 60, 55609, 198, 1991, 279, 4037, 3118, 304, 279, 1495, 627, 35798, 7383, 25, 610, 11, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 54644, 1495, 505, 1495, 627, 35798, 24321, 56805, 25, 1796, 58, 4066, 2097, 1145, 12039, 3009, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 5464, 2097, 55609, 198, 54644, 1984, 505, 6743, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 445, 11237, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 445, 11237, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344, 198, 657, 76, 5799, 4971, 2703, 45221, 2398, 14, 657, 76, 34506, 863, 340, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 13 ]
https://langchain.readthedocs.io/en/latest/experimental/langchain.experimental.llms.jsonformer_decoder.JsonFormer.html
0e550632215f-3
This allows users to pass in None as verbose to access the global setting. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
[ 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 15824, 284, 364, 2000, 21301, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/experimental/langchain.experimental.llms.jsonformer_decoder.JsonFormer.html
d51460764215-0
langchain.experimental.autonomous_agents.autogpt.output_parser.AutoGPTOutputParser¶ class langchain.experimental.autonomous_agents.autogpt.output_parser.AutoGPTOutputParser[source]¶ Bases: BaseAutoGPTOutputParser Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. dict(**kwargs: Any) → Dict¶ Return dictionary representation of output parser. get_format_instructions() → str¶ Instructions on how the LLM output should be formatted. parse(text: str) → AutoGPTAction[source]¶ Return AutoGPTAction parse_result(result: List[Generation]) → T¶ Parse LLM Result. parse_with_prompt(completion: str, prompt: PromptValue) → Any¶ Optional method to parse the output of an LLM call with a prompt. The prompt is largely provided in the event the OutputParser wants to retry or fix the output in some way, and needs information from the prompt to do so. Parameters completion – output of language model prompt – prompt value Returns structured output to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶
[ 5317, 8995, 88547, 32155, 30946, 77447, 32155, 540, 418, 13718, 19024, 6613, 38, 2898, 5207, 6707, 55609, 198, 1058, 8859, 8995, 88547, 32155, 30946, 77447, 32155, 540, 418, 13718, 19024, 6613, 38, 2898, 5207, 6707, 76747, 60, 55609, 198, 33, 2315, 25, 5464, 13556, 38, 2898, 5207, 6707, 198, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 11240, 13340, 315, 2612, 6871, 627, 456, 9132, 83527, 368, 11651, 610, 55609, 198, 56391, 389, 1268, 279, 445, 11237, 2612, 1288, 387, 24001, 627, 6534, 7383, 25, 610, 8, 11651, 9156, 38, 2898, 2573, 76747, 60, 55609, 198, 5715, 9156, 38, 2898, 2573, 198, 6534, 5400, 4556, 25, 1796, 58, 38238, 2526, 11651, 350, 55609, 198, 14802, 445, 11237, 5832, 627, 6534, 6753, 62521, 91868, 25, 610, 11, 10137, 25, 60601, 1150, 8, 11651, 5884, 55609, 198, 15669, 1749, 311, 4820, 279, 2612, 315, 459, 445, 11237, 1650, 449, 264, 10137, 627, 791, 10137, 374, 14090, 3984, 304, 279, 1567, 279, 9442, 6707, 6944, 198, 998, 23515, 477, 5155, 279, 2612, 304, 1063, 1648, 11, 323, 3966, 2038, 505, 198, 1820, 10137, 311, 656, 779, 627, 9905, 198, 44412, 1389, 2612, 315, 4221, 1646, 198, 41681, 1389, 10137, 907, 198, 16851, 198, 52243, 2612, 198, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609 ]
https://langchain.readthedocs.io/en/latest/experimental/langchain.experimental.autonomous_agents.autogpt.output_parser.AutoGPTOutputParser.html
d51460764215-1
property lc_serializable: bool¶ Return whether or not the class is serializable. model Config¶ Bases: object extra = 'ignore'¶
[ 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 55609, 198, 33, 2315, 25, 1665, 198, 15824, 284, 364, 13431, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/experimental/langchain.experimental.autonomous_agents.autogpt.output_parser.AutoGPTOutputParser.html
fc08f9922407-0
langchain.experimental.autonomous_agents.autogpt.output_parser.AutoGPTAction¶ class langchain.experimental.autonomous_agents.autogpt.output_parser.AutoGPTAction(name, args)[source]¶ Bases: NamedTuple Create new instance of AutoGPTAction(name, args) Methods __init__() count(value, /) Return number of occurrences of value. index(value[, start, stop]) Return first index of value. Attributes args Alias for field number 1 name Alias for field number 0 count(value, /)¶ Return number of occurrences of value. index(value, start=0, stop=9223372036854775807, /)¶ Return first index of value. Raises ValueError if the value is not present. args: Dict¶ Alias for field number 1 name: str¶ Alias for field number 0
[ 5317, 8995, 88547, 32155, 30946, 77447, 32155, 540, 418, 13718, 19024, 6613, 38, 2898, 2573, 55609, 198, 1058, 8859, 8995, 88547, 32155, 30946, 77447, 32155, 540, 418, 13718, 19024, 6613, 38, 2898, 2573, 3232, 11, 2897, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 41559, 29781, 198, 4110, 502, 2937, 315, 9156, 38, 2898, 2573, 3232, 11, 2897, 340, 18337, 198, 565, 2381, 33716, 1868, 3764, 11, 4194, 54660, 5715, 1396, 315, 57115, 315, 907, 627, 1275, 3764, 38372, 4194, 2527, 11, 4194, 9684, 2608, 5715, 1176, 1963, 315, 907, 627, 10738, 198, 2164, 198, 23555, 369, 2115, 1396, 220, 16, 198, 609, 198, 23555, 369, 2115, 1396, 220, 15, 198, 1868, 3764, 11, 611, 8, 55609, 198, 5715, 1396, 315, 57115, 315, 907, 627, 1275, 3764, 11, 1212, 28, 15, 11, 3009, 28, 20275, 17609, 9639, 23717, 21144, 18216, 22, 11, 611, 8, 55609, 198, 5715, 1176, 1963, 315, 907, 627, 36120, 15764, 422, 279, 907, 374, 539, 3118, 627, 2164, 25, 30226, 55609, 198, 23555, 369, 2115, 1396, 220, 16, 198, 609, 25, 610, 55609, 198, 23555, 369, 2115, 1396, 220, 15 ]
https://langchain.readthedocs.io/en/latest/experimental/langchain.experimental.autonomous_agents.autogpt.output_parser.AutoGPTAction.html
e9cc7985a7d2-0
langchain.experimental.autonomous_agents.autogpt.output_parser.BaseAutoGPTOutputParser¶ class langchain.experimental.autonomous_agents.autogpt.output_parser.BaseAutoGPTOutputParser[source]¶ Bases: BaseOutputParser Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. dict(**kwargs: Any) → Dict¶ Return dictionary representation of output parser. get_format_instructions() → str¶ Instructions on how the LLM output should be formatted. abstract parse(text: str) → AutoGPTAction[source]¶ Return AutoGPTAction parse_result(result: List[Generation]) → T¶ Parse LLM Result. parse_with_prompt(completion: str, prompt: PromptValue) → Any¶ Optional method to parse the output of an LLM call with a prompt. The prompt is largely provided in the event the OutputParser wants to retry or fix the output in some way, and needs information from the prompt to do so. Parameters completion – output of language model prompt – prompt value Returns structured output to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶
[ 5317, 8995, 88547, 32155, 30946, 77447, 32155, 540, 418, 13718, 19024, 13316, 13556, 38, 2898, 5207, 6707, 55609, 198, 1058, 8859, 8995, 88547, 32155, 30946, 77447, 32155, 540, 418, 13718, 19024, 13316, 13556, 38, 2898, 5207, 6707, 76747, 60, 55609, 198, 33, 2315, 25, 5464, 5207, 6707, 198, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 11240, 13340, 315, 2612, 6871, 627, 456, 9132, 83527, 368, 11651, 610, 55609, 198, 56391, 389, 1268, 279, 445, 11237, 2612, 1288, 387, 24001, 627, 16647, 4820, 7383, 25, 610, 8, 11651, 9156, 38, 2898, 2573, 76747, 60, 55609, 198, 5715, 9156, 38, 2898, 2573, 198, 6534, 5400, 4556, 25, 1796, 58, 38238, 2526, 11651, 350, 55609, 198, 14802, 445, 11237, 5832, 627, 6534, 6753, 62521, 91868, 25, 610, 11, 10137, 25, 60601, 1150, 8, 11651, 5884, 55609, 198, 15669, 1749, 311, 4820, 279, 2612, 315, 459, 445, 11237, 1650, 449, 264, 10137, 627, 791, 10137, 374, 14090, 3984, 304, 279, 1567, 279, 9442, 6707, 6944, 198, 998, 23515, 477, 5155, 279, 2612, 304, 1063, 1648, 11, 323, 3966, 2038, 505, 198, 1820, 10137, 311, 656, 779, 627, 9905, 198, 44412, 1389, 2612, 315, 4221, 1646, 198, 41681, 1389, 10137, 907, 198, 16851, 198, 52243, 2612, 198, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609 ]
https://langchain.readthedocs.io/en/latest/experimental/langchain.experimental.autonomous_agents.autogpt.output_parser.BaseAutoGPTOutputParser.html
e9cc7985a7d2-1
property lc_serializable: bool¶ Return whether or not the class is serializable. model Config¶ Bases: object extra = 'ignore'¶
[ 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 55609, 198, 33, 2315, 25, 1665, 198, 15824, 284, 364, 13431, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/experimental/langchain.experimental.autonomous_agents.autogpt.output_parser.BaseAutoGPTOutputParser.html
676ce98d43ce-0
langchain.experimental.autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain¶ class langchain.experimental.autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain(*, memory: Optional[BaseMemory] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, verbose: bool = None, tags: Optional[List[str]] = None, prompt: BasePromptTemplate, llm: BaseLanguageModel, output_key: str = 'text', output_parser: BaseLLMOutputParser = None, return_final_only: bool = True, llm_kwargs: dict = None)[source]¶ Bases: LLMChain Chain to prioritize tasks. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param callback_manager: Optional[BaseCallbackManager] = None¶ Deprecated, use callbacks instead. param callbacks: Callbacks = None¶ Optional list of callback handlers (or callback manager). Defaults to None. Callback handlers are called throughout the lifecycle of a call to a chain, starting with on_chain_start, ending with on_chain_end or on_chain_error. Each custom chain can optionally call additional callback methods, see Callback docs for full details. param llm: BaseLanguageModel [Required]¶ Language model to call. param llm_kwargs: dict [Optional]¶ param memory: Optional[BaseMemory] = None¶ Optional memory object. Defaults to None. Memory is a class that gets called at the start and at the end of every chain. At the start, memory loads variables and passes them along in the chain. At the end, it saves any returned variables.
[ 5317, 8995, 88547, 32155, 30946, 77447, 960, 6243, 21233, 72, 15384, 59882, 275, 2065, 29358, 50571, 275, 2065, 19368, 55609, 198, 1058, 8859, 8995, 88547, 32155, 30946, 77447, 960, 6243, 21233, 72, 15384, 59882, 275, 2065, 29358, 50571, 275, 2065, 19368, 4163, 11, 5044, 25, 12536, 58, 4066, 10869, 60, 284, 2290, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 11, 14008, 25, 1845, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 10137, 25, 5464, 55715, 7423, 11, 9507, 76, 25, 5464, 14126, 1747, 11, 2612, 3173, 25, 610, 284, 364, 1342, 518, 2612, 19024, 25, 5464, 4178, 44, 5207, 6707, 284, 2290, 11, 471, 21333, 18917, 25, 1845, 284, 3082, 11, 9507, 76, 37335, 25, 6587, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 445, 11237, 19368, 198, 19368, 311, 63652, 9256, 627, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 4927, 12418, 25, 12536, 58, 4066, 7646, 2087, 60, 284, 2290, 55609, 198, 52444, 11, 1005, 27777, 4619, 627, 913, 27777, 25, 23499, 82, 284, 2290, 55609, 198, 15669, 1160, 315, 4927, 25050, 320, 269, 4927, 6783, 570, 37090, 311, 2290, 627, 7646, 25050, 527, 2663, 6957, 279, 48608, 315, 264, 1650, 311, 264, 8957, 345, 40389, 449, 389, 31683, 5011, 11, 13696, 449, 389, 31683, 6345, 477, 389, 31683, 4188, 627, 4959, 2587, 8957, 649, 46624, 1650, 5217, 4927, 5528, 11, 1518, 23499, 27437, 198, 2000, 2539, 3649, 627, 913, 9507, 76, 25, 5464, 14126, 1747, 510, 8327, 60, 55609, 198, 14126, 1646, 311, 1650, 627, 913, 9507, 76, 37335, 25, 6587, 510, 15669, 60, 55609, 198, 913, 5044, 25, 12536, 58, 4066, 10869, 60, 284, 2290, 55609, 198, 15669, 5044, 1665, 13, 37090, 311, 2290, 627, 10869, 374, 264, 538, 430, 5334, 2663, 520, 279, 1212, 198, 438, 520, 279, 842, 315, 1475, 8957, 13, 2468, 279, 1212, 11, 5044, 21577, 7482, 323, 16609, 198, 49818, 3235, 304, 279, 8957, 13, 2468, 279, 842, 11, 433, 27024, 904, 6052, 7482, 13 ]
https://langchain.readthedocs.io/en/latest/experimental/langchain.experimental.autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain.html
676ce98d43ce-1
them along in the chain. At the end, it saves any returned variables. There are many different types of memory - please see memory docs for the full catalog. param output_key: str = 'text'¶ param output_parser: BaseLLMOutputParser [Optional]¶ Output parser to use. Defaults to one that takes the most likely string but does not change it otherwise. param prompt: BasePromptTemplate [Required]¶ Prompt object to use. param return_final_only: bool = True¶ Whether to return only the final parsed result. Defaults to True. If false, will return a bunch of extra information about the generation. param tags: Optional[List[str]] = None¶ Optional list of tags associated with the chain. Defaults to None These tags will be associated with each call to this chain, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a chain with its use case. param verbose: bool [Optional]¶ Whether or not run in verbose mode. In verbose mode, some intermediate logs will be printed to the console. Defaults to langchain.verbose value. __call__(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, include_run_info: bool = False) → Dict[str, Any]¶ Run the logic of this chain and add to output if desired. Parameters inputs – Dictionary of inputs, or single input if chain expects only one param. return_only_outputs – boolean for whether to return only outputs in the response. If True, only new keys generated by this chain will be returned. If False, both input keys and new keys generated by this
[ 49818, 3235, 304, 279, 8957, 13, 2468, 279, 842, 11, 433, 27024, 904, 6052, 7482, 627, 3947, 527, 1690, 2204, 4595, 315, 5044, 482, 4587, 1518, 5044, 27437, 198, 2000, 279, 2539, 16808, 627, 913, 2612, 3173, 25, 610, 284, 364, 1342, 6, 55609, 198, 913, 2612, 19024, 25, 5464, 4178, 44, 5207, 6707, 510, 15669, 60, 55609, 198, 5207, 6871, 311, 1005, 627, 16672, 311, 832, 430, 5097, 279, 1455, 4461, 925, 719, 1587, 539, 2349, 433, 198, 61036, 627, 913, 10137, 25, 5464, 55715, 7423, 510, 8327, 60, 55609, 198, 55715, 1665, 311, 1005, 627, 913, 471, 21333, 18917, 25, 1845, 284, 3082, 55609, 198, 25729, 311, 471, 1193, 279, 1620, 16051, 1121, 13, 37090, 311, 3082, 627, 2746, 905, 11, 690, 471, 264, 15860, 315, 5066, 2038, 922, 279, 9659, 627, 913, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 15669, 1160, 315, 9681, 5938, 449, 279, 8957, 13, 37090, 311, 2290, 198, 9673, 9681, 690, 387, 5938, 449, 1855, 1650, 311, 420, 8957, 345, 438, 5946, 439, 6105, 311, 279, 25050, 4613, 304, 27777, 627, 2675, 649, 1005, 1521, 311, 8866, 10765, 264, 3230, 2937, 315, 264, 8957, 449, 1202, 1005, 1162, 627, 913, 14008, 25, 1845, 510, 15669, 60, 55609, 198, 25729, 477, 539, 1629, 304, 14008, 3941, 13, 763, 14008, 3941, 11, 1063, 29539, 18929, 198, 14724, 387, 17124, 311, 279, 2393, 13, 37090, 311, 8859, 8995, 45749, 907, 627, 565, 6797, 3889, 25986, 25, 9323, 58, 13755, 17752, 11, 5884, 1145, 5884, 1145, 471, 18917, 36289, 25, 1845, 284, 3641, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 2997, 14334, 3186, 25, 1845, 284, 3641, 8, 11651, 30226, 17752, 11, 5884, 60, 55609, 198, 6869, 279, 12496, 315, 420, 8957, 323, 923, 311, 2612, 422, 12974, 627, 9905, 198, 25986, 1389, 10685, 315, 11374, 11, 477, 3254, 1988, 422, 8957, 25283, 198, 3323, 832, 1719, 627, 693, 18917, 36289, 1389, 2777, 369, 3508, 311, 471, 1193, 16674, 304, 279, 198, 2376, 13, 1442, 3082, 11, 1193, 502, 7039, 8066, 555, 420, 8957, 690, 387, 198, 78691, 13, 1442, 3641, 11, 2225, 1988, 7039, 323, 502, 7039, 8066, 555, 420 ]
https://langchain.readthedocs.io/en/latest/experimental/langchain.experimental.autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain.html
676ce98d43ce-2
returned. If False, both input keys and new keys generated by this chain will be returned. Defaults to False. callbacks – Callbacks to use for this chain run. If not provided, will use the callbacks provided to the chain. include_run_info – Whether to include run info in the response. Defaults to False. async aapply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶ Utilize the LLM generate method for speed gains. async aapply_and_parse(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → Sequence[Union[str, List[str], Dict[str, str]]]¶ Call apply and then parse the results. async acall(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, include_run_info: bool = False) → Dict[str, Any]¶ Run the logic of this chain and add to output if desired. Parameters inputs – Dictionary of inputs, or single input if chain expects only one param. return_only_outputs – boolean for whether to return only outputs in the response. If True, only new keys generated by this chain will be returned. If False, both input keys and new keys generated by this chain will be returned. Defaults to False. callbacks – Callbacks to use for this chain run. If not provided, will use the callbacks provided to the chain. include_run_info – Whether to include run info in the response. Defaults to False.
[ 78691, 13, 1442, 3641, 11, 2225, 1988, 7039, 323, 502, 7039, 8066, 555, 420, 198, 8995, 690, 387, 6052, 13, 37090, 311, 3641, 627, 69411, 1389, 23499, 82, 311, 1005, 369, 420, 8957, 1629, 13, 1442, 539, 3984, 11, 690, 198, 817, 279, 27777, 3984, 311, 279, 8957, 627, 1012, 14334, 3186, 1389, 13440, 311, 2997, 1629, 3630, 304, 279, 2077, 13, 37090, 198, 998, 3641, 627, 7847, 264, 10492, 5498, 2062, 25, 1796, 58, 13755, 17752, 11, 5884, 21128, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 8, 11651, 1796, 58, 13755, 17752, 11, 610, 5163, 55609, 198, 2810, 553, 279, 445, 11237, 7068, 1749, 369, 4732, 20192, 627, 7847, 264, 10492, 8543, 21715, 5498, 2062, 25, 1796, 58, 13755, 17752, 11, 5884, 21128, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 8, 11651, 29971, 58, 33758, 17752, 11, 1796, 17752, 1145, 30226, 17752, 11, 610, 5163, 60, 55609, 198, 7368, 3881, 323, 1243, 4820, 279, 3135, 627, 7847, 1645, 543, 35099, 25, 9323, 58, 13755, 17752, 11, 5884, 1145, 5884, 1145, 471, 18917, 36289, 25, 1845, 284, 3641, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 12039, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 2997, 14334, 3186, 25, 1845, 284, 3641, 8, 11651, 30226, 17752, 11, 5884, 60, 55609, 198, 6869, 279, 12496, 315, 420, 8957, 323, 923, 311, 2612, 422, 12974, 627, 9905, 198, 25986, 1389, 10685, 315, 11374, 11, 477, 3254, 1988, 422, 8957, 25283, 198, 3323, 832, 1719, 627, 693, 18917, 36289, 1389, 2777, 369, 3508, 311, 471, 1193, 16674, 304, 279, 198, 2376, 13, 1442, 3082, 11, 1193, 502, 7039, 8066, 555, 420, 8957, 690, 387, 198, 78691, 13, 1442, 3641, 11, 2225, 1988, 7039, 323, 502, 7039, 8066, 555, 420, 198, 8995, 690, 387, 6052, 13, 37090, 311, 3641, 627, 69411, 1389, 23499, 82, 311, 1005, 369, 420, 8957, 1629, 13, 1442, 539, 3984, 11, 690, 198, 817, 279, 27777, 3984, 311, 279, 8957, 627, 1012, 14334, 3186, 1389, 13440, 311, 2997, 1629, 3630, 304, 279, 2077, 13, 37090, 198, 998, 3641, 13 ]
https://langchain.readthedocs.io/en/latest/experimental/langchain.experimental.autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain.html
676ce98d43ce-3
include_run_info – Whether to include run info in the response. Defaults to False. async agenerate(input_list: List[Dict[str, Any]], run_manager: Optional[AsyncCallbackManagerForChainRun] = None) → LLMResult¶ Generate LLM result from inputs. apply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶ Utilize the LLM generate method for speed gains. apply_and_parse(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → Sequence[Union[str, List[str], Dict[str, str]]]¶ Call apply and then parse the results. async apredict(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Format prompt with kwargs and pass to LLM. Parameters callbacks – Callbacks to pass to LLMChain **kwargs – Keys to pass to prompt template. Returns Completion from LLM. Example completion = llm.predict(adjective="funny") async apredict_and_parse(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[str, List[str], Dict[str, str]]¶ Call apredict and then parse the results. async aprep_prompts(input_list: List[Dict[str, Any]], run_manager: Optional[AsyncCallbackManagerForChainRun] = None) → Tuple[List[PromptValue], Optional[List[str]]]¶ Prepare prompts from inputs.
[ 1012, 14334, 3186, 1389, 13440, 311, 2997, 1629, 3630, 304, 279, 2077, 13, 37090, 198, 998, 3641, 627, 7847, 945, 13523, 5498, 2062, 25, 1796, 58, 13755, 17752, 11, 5884, 21128, 1629, 12418, 25, 12536, 58, 6662, 7646, 2087, 2520, 19368, 6869, 60, 284, 2290, 8, 11651, 445, 11237, 2122, 55609, 198, 32215, 445, 11237, 1121, 505, 11374, 627, 10492, 5498, 2062, 25, 1796, 58, 13755, 17752, 11, 5884, 21128, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 8, 11651, 1796, 58, 13755, 17752, 11, 610, 5163, 55609, 198, 2810, 553, 279, 445, 11237, 7068, 1749, 369, 4732, 20192, 627, 10492, 8543, 21715, 5498, 2062, 25, 1796, 58, 13755, 17752, 11, 5884, 21128, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 8, 11651, 29971, 58, 33758, 17752, 11, 1796, 17752, 1145, 30226, 17752, 11, 610, 5163, 60, 55609, 198, 7368, 3881, 323, 1243, 4820, 279, 3135, 627, 7847, 1469, 9037, 24885, 82, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4152, 10137, 449, 16901, 323, 1522, 311, 445, 11237, 627, 9905, 198, 69411, 1389, 23499, 82, 311, 1522, 311, 445, 11237, 19368, 198, 334, 9872, 1389, 25104, 311, 1522, 311, 10137, 3896, 627, 16851, 198, 34290, 505, 445, 11237, 627, 13617, 198, 44412, 284, 9507, 76, 24706, 44879, 51591, 429, 12158, 3919, 1158, 7847, 1469, 9037, 8543, 21715, 24885, 82, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 9323, 17752, 11, 1796, 17752, 1145, 30226, 17752, 11, 610, 5163, 55609, 198, 7368, 1469, 9037, 323, 1243, 4820, 279, 3135, 627, 7847, 1469, 10200, 48977, 13044, 5498, 2062, 25, 1796, 58, 13755, 17752, 11, 5884, 21128, 1629, 12418, 25, 12536, 58, 6662, 7646, 2087, 2520, 19368, 6869, 60, 284, 2290, 8, 11651, 25645, 53094, 43447, 15091, 1150, 1145, 12536, 53094, 17752, 5163, 60, 55609, 198, 51690, 52032, 505, 11374, 13 ]
https://langchain.readthedocs.io/en/latest/experimental/langchain.experimental.autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain.html
676ce98d43ce-4
Prepare prompts from inputs. async arun(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, **kwargs: Any) → str¶ Run the chain as text in, text out or multiple variables, text out. create_outputs(llm_result: LLMResult) → List[Dict[str, Any]]¶ Create outputs from response. dict(**kwargs: Any) → Dict¶ Return dictionary representation of chain. classmethod from_llm(llm: BaseLanguageModel, verbose: bool = True) → LLMChain[source]¶ Get the response parser. classmethod from_string(llm: BaseLanguageModel, template: str) → LLMChain¶ Create LLMChain from LLM and template. generate(input_list: List[Dict[str, Any]], run_manager: Optional[CallbackManagerForChainRun] = None) → LLMResult¶ Generate LLM result from inputs. predict(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Format prompt with kwargs and pass to LLM. Parameters callbacks – Callbacks to pass to LLMChain **kwargs – Keys to pass to prompt template. Returns Completion from LLM. Example completion = llm.predict(adjective="funny") predict_and_parse(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[str, List[str], Dict[str, Any]]¶ Call predict and then parse the results. prep_inputs(inputs: Union[Dict[str, Any], Any]) → Dict[str, str]¶ Validate and prep inputs.
[ 51690, 52032, 505, 11374, 627, 7847, 802, 359, 4163, 2164, 25, 5884, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 6869, 279, 8957, 439, 1495, 304, 11, 1495, 704, 477, 5361, 7482, 11, 1495, 704, 627, 3261, 36289, 36621, 76, 5400, 25, 445, 11237, 2122, 8, 11651, 1796, 58, 13755, 17752, 11, 5884, 5163, 55609, 198, 4110, 16674, 505, 2077, 627, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 11240, 13340, 315, 8957, 627, 27853, 505, 44095, 76, 36621, 76, 25, 5464, 14126, 1747, 11, 14008, 25, 1845, 284, 3082, 8, 11651, 445, 11237, 19368, 76747, 60, 55609, 198, 1991, 279, 2077, 6871, 627, 27853, 505, 3991, 36621, 76, 25, 5464, 14126, 1747, 11, 3896, 25, 610, 8, 11651, 445, 11237, 19368, 55609, 198, 4110, 445, 11237, 19368, 505, 445, 11237, 323, 3896, 627, 19927, 5498, 2062, 25, 1796, 58, 13755, 17752, 11, 5884, 21128, 1629, 12418, 25, 12536, 58, 7646, 2087, 2520, 19368, 6869, 60, 284, 2290, 8, 11651, 445, 11237, 2122, 55609, 198, 32215, 445, 11237, 1121, 505, 11374, 627, 35798, 24885, 82, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 4152, 10137, 449, 16901, 323, 1522, 311, 445, 11237, 627, 9905, 198, 69411, 1389, 23499, 82, 311, 1522, 311, 445, 11237, 19368, 198, 334, 9872, 1389, 25104, 311, 1522, 311, 10137, 3896, 627, 16851, 198, 34290, 505, 445, 11237, 627, 13617, 198, 44412, 284, 9507, 76, 24706, 44879, 51591, 429, 12158, 3919, 1158, 35798, 8543, 21715, 24885, 82, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 9323, 17752, 11, 1796, 17752, 1145, 30226, 17752, 11, 5884, 5163, 55609, 198, 7368, 7168, 323, 1243, 4820, 279, 3135, 627, 72874, 29657, 35099, 25, 9323, 58, 13755, 17752, 11, 5884, 1145, 5884, 2526, 11651, 30226, 17752, 11, 610, 60, 55609, 198, 18409, 323, 22033, 11374, 13 ]
https://langchain.readthedocs.io/en/latest/experimental/langchain.experimental.autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain.html
676ce98d43ce-5
Validate and prep inputs. prep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) → Dict[str, str]¶ Validate and prep outputs. prep_prompts(input_list: List[Dict[str, Any]], run_manager: Optional[CallbackManagerForChainRun] = None) → Tuple[List[PromptValue], Optional[List[str]]]¶ Prepare prompts from inputs. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. run(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, **kwargs: Any) → str¶ Run the chain as text in, text out or multiple variables, text out. save(file_path: Union[Path, str]) → None¶ Save the chain. Parameters file_path – Path to file to save the chain to. Example: .. code-block:: python chain.save(file_path=”path/chain.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”}
[ 18409, 323, 22033, 11374, 627, 72874, 36289, 35099, 25, 30226, 17752, 11, 610, 1145, 16674, 25, 30226, 17752, 11, 610, 1145, 471, 18917, 36289, 25, 1845, 284, 3641, 8, 11651, 30226, 17752, 11, 610, 60, 55609, 198, 18409, 323, 22033, 16674, 627, 72874, 48977, 13044, 5498, 2062, 25, 1796, 58, 13755, 17752, 11, 5884, 21128, 1629, 12418, 25, 12536, 58, 7646, 2087, 2520, 19368, 6869, 60, 284, 2290, 8, 11651, 25645, 53094, 43447, 15091, 1150, 1145, 12536, 53094, 17752, 5163, 60, 55609, 198, 51690, 52032, 505, 11374, 627, 16503, 4933, 2310, 70693, 4194, 8345, 4194, 682, 5151, 55609, 198, 94201, 409, 70693, 10163, 422, 4927, 12418, 374, 1511, 627, 6236, 4163, 2164, 25, 5884, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 11, 9681, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 610, 55609, 198, 6869, 279, 8957, 439, 1495, 304, 11, 1495, 704, 477, 5361, 7482, 11, 1495, 704, 627, 6766, 4971, 2703, 25, 9323, 58, 1858, 11, 610, 2526, 11651, 2290, 55609, 198, 8960, 279, 8957, 627, 9905, 198, 1213, 2703, 1389, 8092, 311, 1052, 311, 3665, 279, 8957, 311, 627, 13617, 512, 497, 2082, 9612, 487, 10344, 198, 8995, 5799, 4971, 2703, 45221, 2398, 14, 8995, 34506, 863, 340, 16503, 743, 69021, 4194, 8345, 4194, 14008, 55609, 198, 2746, 14008, 374, 2290, 11, 743, 433, 627, 2028, 6276, 3932, 311, 1522, 304, 2290, 439, 14008, 311, 2680, 279, 3728, 6376, 627, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 92 ]
https://langchain.readthedocs.io/en/latest/experimental/langchain.experimental.autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain.html
676ce98d43ce-6
eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config¶ Bases: object Configuration for this pydantic object. arbitrary_types_allowed = True¶ extra = 'forbid'¶
[ 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 277, 88951, 9962, 43255, 284, 3082, 55609, 198, 15824, 284, 364, 2000, 21301, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/experimental/langchain.experimental.autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain.html
9d70fb1a1a56-0
langchain.retrievers.kendra.QueryResultItem¶ class langchain.retrievers.kendra.QueryResultItem(*, DocumentId: str, DocumentTitle: TextWithHighLights, DocumentURI: Optional[str] = None, FeedbackToken: Optional[str] = None, Format: Optional[str] = None, Id: Optional[str] = None, Type: Optional[str] = None, AdditionalAttributes: Optional[List[AdditionalResultAttribute]] = [], DocumentExcerpt: Optional[TextWithHighLights] = None, **extra_data: Any)[source]¶ Bases: BaseModel Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param AdditionalAttributes: Optional[List[langchain.retrievers.kendra.AdditionalResultAttribute]] = []¶ param DocumentExcerpt: Optional[langchain.retrievers.kendra.TextWithHighLights] = None¶ param DocumentId: str [Required]¶ param DocumentTitle: langchain.retrievers.kendra.TextWithHighLights [Required]¶ param DocumentURI: Optional[str] = None¶ param FeedbackToken: Optional[str] = None¶ param Format: Optional[str] = None¶ param Id: Optional[str] = None¶ param Type: Optional[str] = None¶ get_attribute_value() → str[source]¶ get_excerpt() → str[source]¶ to_doc() → Document[source]¶
[ 5317, 8995, 1351, 9104, 3078, 5314, 61799, 16060, 2122, 1256, 55609, 198, 1058, 8859, 8995, 1351, 9104, 3078, 5314, 61799, 16060, 2122, 1256, 4163, 11, 12051, 769, 25, 610, 11, 12051, 3936, 25, 2991, 2409, 12243, 75584, 11, 12051, 10514, 25, 12536, 17752, 60, 284, 2290, 11, 37957, 3404, 25, 12536, 17752, 60, 284, 2290, 11, 15392, 25, 12536, 17752, 60, 284, 2290, 11, 5336, 25, 12536, 17752, 60, 284, 2290, 11, 4078, 25, 12536, 17752, 60, 284, 2290, 11, 24086, 10738, 25, 12536, 53094, 58, 30119, 2122, 3994, 5163, 284, 10277, 12051, 849, 35128, 25, 12536, 58, 1199, 2409, 12243, 75584, 60, 284, 2290, 11, 3146, 15824, 1807, 25, 5884, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 65705, 198, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 24086, 10738, 25, 12536, 53094, 58, 5317, 8995, 1351, 9104, 3078, 5314, 61799, 1943, 3079, 2122, 3994, 5163, 284, 3132, 55609, 198, 913, 12051, 849, 35128, 25, 12536, 58, 5317, 8995, 1351, 9104, 3078, 5314, 61799, 2021, 2409, 12243, 75584, 60, 284, 2290, 55609, 198, 913, 12051, 769, 25, 610, 510, 8327, 60, 55609, 198, 913, 12051, 3936, 25, 8859, 8995, 1351, 9104, 3078, 5314, 61799, 2021, 2409, 12243, 75584, 510, 8327, 60, 55609, 198, 913, 12051, 10514, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 37957, 3404, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 15392, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 5336, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 4078, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 456, 17209, 3220, 368, 11651, 610, 76747, 60, 55609, 198, 456, 68047, 368, 11651, 610, 76747, 60, 55609, 198, 998, 19401, 368, 11651, 12051, 76747, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.kendra.QueryResultItem.html
ab2b2743926a-0
langchain.retrievers.arxiv.ArxivRetriever¶ class langchain.retrievers.arxiv.ArxivRetriever(*, arxiv_search: Any = None, arxiv_exceptions: Any = None, top_k_results: int = 3, load_max_docs: int = 100, load_all_available_meta: bool = False, doc_content_chars_max: Optional[int] = 4000, ARXIV_MAX_QUERY_LENGTH: int = 300)[source]¶ Bases: BaseRetriever, ArxivAPIWrapper It is effectively a wrapper for ArxivAPIWrapper. It wraps load() to get_relevant_documents(). It uses all ArxivAPIWrapper arguments without any change. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param arxiv_exceptions: Any = None¶ param doc_content_chars_max: Optional[int] = 4000¶ param load_all_available_meta: bool = False¶ param load_max_docs: int = 100¶ param top_k_results: int = 3¶ async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents get_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents load(query: str) → List[Document]¶
[ 5317, 8995, 1351, 9104, 3078, 17126, 89833, 885, 12940, 344, 12289, 462, 2099, 55609, 198, 1058, 8859, 8995, 1351, 9104, 3078, 17126, 89833, 885, 12940, 344, 12289, 462, 2099, 4163, 11, 802, 89833, 10947, 25, 5884, 284, 2290, 11, 802, 89833, 81136, 25, 5884, 284, 2290, 11, 1948, 4803, 13888, 25, 528, 284, 220, 18, 11, 2865, 6479, 50792, 25, 528, 284, 220, 1041, 11, 2865, 5823, 28060, 13686, 25, 1845, 284, 3641, 11, 4733, 7647, 38518, 6479, 25, 12536, 19155, 60, 284, 220, 3443, 15, 11, 6395, 55, 3166, 6949, 32685, 15373, 25, 528, 284, 220, 3101, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 12289, 462, 2099, 11, 1676, 89833, 7227, 11803, 198, 2181, 374, 13750, 264, 13564, 369, 1676, 89833, 7227, 11803, 627, 2181, 40809, 2865, 368, 311, 636, 1311, 8532, 77027, 26914, 2181, 5829, 682, 1676, 89833, 7227, 11803, 6105, 2085, 904, 2349, 627, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 802, 89833, 81136, 25, 5884, 284, 2290, 55609, 198, 913, 4733, 7647, 38518, 6479, 25, 12536, 19155, 60, 284, 220, 3443, 15, 55609, 198, 913, 2865, 5823, 28060, 13686, 25, 1845, 284, 3641, 55609, 198, 913, 2865, 6479, 50792, 25, 528, 284, 220, 1041, 55609, 198, 913, 1948, 4803, 13888, 25, 528, 284, 220, 18, 55609, 198, 7847, 264, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 2170, 55294, 636, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 88765, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 1096, 10974, 25, 610, 8, 11651, 1796, 58, 7676, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.arxiv.ArxivRetriever.html
ab2b2743926a-1
Returns List of relevant documents load(query: str) → List[Document]¶ Run Arxiv search and get the article texts plus the article meta information. See https://lukasschwab.me/arxiv.py/index.html#Search Returns: a list of documents with the document.page_content in text format run(query: str) → str¶ Run Arxiv search and get the article meta information. See https://lukasschwab.me/arxiv.py/index.html#Search See https://lukasschwab.me/arxiv.py/index.html#Result It uses only the most informative fields of article meta information. validator validate_environment  »  all fields¶ Validate that the python package exists in environment. model Config¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
[ 16851, 198, 861, 315, 9959, 9477, 198, 1096, 10974, 25, 610, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 6869, 1676, 89833, 2778, 323, 636, 279, 4652, 22755, 5636, 279, 4652, 8999, 2038, 627, 10031, 3788, 1129, 75, 3178, 395, 66945, 370, 17777, 96520, 89833, 7345, 9199, 2628, 2, 6014, 198, 16851, 25, 264, 1160, 315, 9477, 449, 279, 2246, 10678, 7647, 304, 1495, 3645, 198, 6236, 10974, 25, 610, 8, 11651, 610, 55609, 198, 6869, 1676, 89833, 2778, 323, 636, 279, 4652, 8999, 2038, 627, 10031, 3788, 1129, 75, 3178, 395, 66945, 370, 17777, 96520, 89833, 7345, 9199, 2628, 2, 6014, 198, 10031, 3788, 1129, 75, 3178, 395, 66945, 370, 17777, 96520, 89833, 7345, 9199, 2628, 2, 2122, 198, 2181, 5829, 1193, 279, 1455, 39319, 5151, 315, 4652, 8999, 2038, 627, 16503, 9788, 52874, 4194, 8345, 4194, 682, 5151, 55609, 198, 18409, 430, 279, 10344, 6462, 6866, 304, 4676, 627, 2590, 5649, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 15824, 284, 364, 2000, 21301, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.arxiv.ArxivRetriever.html
aa1c6163bd1b-0
langchain.retrievers.svm.SVMRetriever¶ class langchain.retrievers.svm.SVMRetriever(*, embeddings: Embeddings, index: Any = None, texts: List[str], k: int = 4, relevancy_threshold: Optional[float] = None)[source]¶ Bases: BaseRetriever, BaseModel SVM Retriever. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param embeddings: langchain.embeddings.base.Embeddings [Required]¶ param index: Any = None¶ param k: int = 4¶ param relevancy_threshold: Optional[float] = None¶ param texts: List[str] [Required]¶ async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents classmethod from_texts(texts: List[str], embeddings: Embeddings, **kwargs: Any) → SVMRetriever[source]¶ get_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents model Config[source]¶ Bases: object Configuration for this pydantic object. arbitrary_types_allowed = True¶
[ 5317, 8995, 1351, 9104, 3078, 516, 7488, 815, 11435, 12289, 462, 2099, 55609, 198, 1058, 8859, 8995, 1351, 9104, 3078, 516, 7488, 815, 11435, 12289, 462, 2099, 4163, 11, 71647, 25, 38168, 25624, 11, 1963, 25, 5884, 284, 2290, 11, 22755, 25, 1796, 17752, 1145, 597, 25, 528, 284, 220, 19, 11, 79415, 6709, 22616, 25, 12536, 96481, 60, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 12289, 462, 2099, 11, 65705, 198, 50, 11435, 10608, 462, 2099, 627, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 71647, 25, 8859, 8995, 41541, 25624, 9105, 58955, 25624, 510, 8327, 60, 55609, 198, 913, 1963, 25, 5884, 284, 2290, 55609, 198, 913, 597, 25, 528, 284, 220, 19, 55609, 198, 913, 79415, 6709, 22616, 25, 12536, 96481, 60, 284, 2290, 55609, 198, 913, 22755, 25, 1796, 17752, 60, 510, 8327, 60, 55609, 198, 7847, 264, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 2170, 55294, 636, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 27853, 505, 80746, 7383, 82, 25, 1796, 17752, 1145, 71647, 25, 38168, 25624, 11, 3146, 9872, 25, 5884, 8, 11651, 91109, 12289, 462, 2099, 76747, 60, 55609, 198, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 88765, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 277, 88951, 9962, 43255, 284, 3082, 55609 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.svm.SVMRetriever.html
c25352af8ecc-0
langchain.retrievers.self_query.pinecone.PineconeTranslator¶ class langchain.retrievers.self_query.pinecone.PineconeTranslator[source]¶ Bases: Visitor Logic for converting internal query language elements to valid filters. Methods __init__() visit_comparison(comparison) Translate a Comparison. visit_operation(operation) Translate an Operation. visit_structured_query(structured_query) Translate a StructuredQuery. Attributes allowed_comparators allowed_operators Subset of allowed logical operators. visit_comparison(comparison: Comparison) → Dict[source]¶ Translate a Comparison. visit_operation(operation: Operation) → Dict[source]¶ Translate an Operation. visit_structured_query(structured_query: StructuredQuery) → Tuple[str, dict][source]¶ Translate a StructuredQuery. allowed_comparators: Optional[Sequence[Comparator]] = None¶ allowed_operators: Optional[Sequence[Operator]] = [<Operator.AND: 'and'>, <Operator.OR: 'or'>]¶ Subset of allowed logical operators.
[ 5317, 8995, 1351, 9104, 3078, 28248, 5857, 558, 483, 59182, 1087, 483, 59182, 52753, 55609, 198, 1058, 8859, 8995, 1351, 9104, 3078, 28248, 5857, 558, 483, 59182, 1087, 483, 59182, 52753, 76747, 60, 55609, 198, 33, 2315, 25, 56982, 198, 27849, 369, 34537, 5419, 3319, 4221, 5540, 311, 2764, 13711, 627, 18337, 198, 565, 2381, 33716, 28560, 91897, 14426, 36642, 340, 28573, 264, 43551, 627, 28560, 33665, 53447, 340, 28573, 459, 17145, 627, 28560, 15477, 3149, 5857, 6294, 3149, 5857, 340, 28573, 264, 16531, 3149, 2929, 627, 10738, 198, 21642, 3038, 1768, 3046, 198, 21642, 26716, 3046, 198, 71684, 315, 5535, 20406, 20197, 627, 28560, 91897, 14426, 36642, 25, 43551, 8, 11651, 30226, 76747, 60, 55609, 198, 28573, 264, 43551, 627, 28560, 33665, 53447, 25, 17145, 8, 11651, 30226, 76747, 60, 55609, 198, 28573, 459, 17145, 627, 28560, 15477, 3149, 5857, 6294, 3149, 5857, 25, 16531, 3149, 2929, 8, 11651, 25645, 17752, 11, 6587, 1483, 2484, 60, 55609, 198, 28573, 264, 16531, 3149, 2929, 627, 21642, 3038, 1768, 3046, 25, 12536, 58, 14405, 58, 39758, 5163, 284, 2290, 55609, 198, 21642, 26716, 3046, 25, 12536, 58, 14405, 58, 18968, 5163, 284, 68326, 18968, 885, 8225, 25, 364, 438, 6404, 11, 366, 18968, 78997, 25, 364, 269, 6404, 60, 55609, 198, 71684, 315, 5535, 20406, 20197, 13 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.self_query.pinecone.PineconeTranslator.html
e9a37d6c8851-0
langchain.retrievers.multi_query.LineListOutputParser¶ class langchain.retrievers.multi_query.LineListOutputParser[source]¶ Bases: PydanticOutputParser Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param pydantic_object: Type[langchain.output_parsers.pydantic.T] [Required]¶ dict(**kwargs: Any) → Dict¶ Return dictionary representation of output parser. get_format_instructions() → str¶ Instructions on how the LLM output should be formatted. parse(text: str) → LineList[source]¶ Parse the output of an LLM call. A method which takes in a string (assumed output of a language model ) and parses it into some structure. Parameters text – output of language model Returns structured output parse_result(result: List[Generation]) → T¶ Parse LLM Result. parse_with_prompt(completion: str, prompt: PromptValue) → Any¶ Optional method to parse the output of an LLM call with a prompt. The prompt is largely provided in the event the OutputParser wants to retry or fix the output in some way, and needs information from the prompt to do so. Parameters completion – output of language model prompt – prompt value Returns structured output to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”]
[ 5317, 8995, 1351, 9104, 3078, 52251, 5857, 16825, 861, 5207, 6707, 55609, 198, 1058, 8859, 8995, 1351, 9104, 3078, 52251, 5857, 16825, 861, 5207, 6707, 76747, 60, 55609, 198, 33, 2315, 25, 5468, 67, 8322, 5207, 6707, 198, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 4611, 67, 8322, 5427, 25, 4078, 58, 5317, 8995, 13718, 623, 41588, 7345, 67, 8322, 844, 60, 510, 8327, 60, 55609, 198, 8644, 22551, 9872, 25, 5884, 8, 11651, 30226, 55609, 198, 5715, 11240, 13340, 315, 2612, 6871, 627, 456, 9132, 83527, 368, 11651, 610, 55609, 198, 56391, 389, 1268, 279, 445, 11237, 2612, 1288, 387, 24001, 627, 6534, 7383, 25, 610, 8, 11651, 7228, 861, 76747, 60, 55609, 198, 14802, 279, 2612, 315, 459, 445, 11237, 1650, 627, 32, 1749, 902, 5097, 304, 264, 925, 320, 395, 39255, 2612, 315, 264, 4221, 1646, 1763, 438, 71935, 433, 1139, 1063, 6070, 627, 9905, 198, 1342, 1389, 2612, 315, 4221, 1646, 198, 16851, 198, 52243, 2612, 198, 6534, 5400, 4556, 25, 1796, 58, 38238, 2526, 11651, 350, 55609, 198, 14802, 445, 11237, 5832, 627, 6534, 6753, 62521, 91868, 25, 610, 11, 10137, 25, 60601, 1150, 8, 11651, 5884, 55609, 198, 15669, 1749, 311, 4820, 279, 2612, 315, 459, 445, 11237, 1650, 449, 264, 10137, 627, 791, 10137, 374, 14090, 3984, 304, 279, 1567, 279, 9442, 6707, 6944, 198, 998, 23515, 477, 5155, 279, 2612, 304, 1063, 1648, 11, 323, 3966, 2038, 505, 198, 1820, 10137, 311, 656, 779, 627, 9905, 198, 44412, 1389, 2612, 315, 4221, 1646, 198, 41681, 1389, 10137, 907, 198, 16851, 198, 52243, 2612, 198, 998, 9643, 368, 11651, 9323, 58, 78621, 13591, 11, 92572, 2688, 18804, 60, 55609, 198, 998, 9643, 8072, 18377, 14565, 368, 11651, 92572, 2688, 18804, 55609, 198, 3784, 37313, 18741, 25, 30226, 55609, 198, 5715, 264, 1160, 315, 7180, 5144, 430, 1288, 387, 5343, 304, 279, 198, 76377, 16901, 13, 4314, 8365, 2011, 387, 11928, 555, 279, 198, 22602, 627, 3784, 37313, 42671, 25, 1796, 17752, 60, 55609, 198, 5715, 279, 4573, 315, 279, 8859, 8995, 1665, 627, 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 60 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.multi_query.LineListOutputParser.html
e9a37d6c8851-1
eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config¶ Bases: object extra = 'ignore'¶
[ 797, 13, 510, 2118, 5317, 8995, 9520, 1054, 657, 1026, 9520, 1054, 2569, 2192, 863, 933, 3784, 37313, 3537, 53810, 25, 30226, 17752, 11, 610, 60, 55609, 198, 5715, 264, 2472, 315, 4797, 5811, 5144, 311, 6367, 14483, 627, 797, 13, 314, 2118, 2569, 2192, 11959, 3173, 57633, 1054, 32033, 15836, 11669, 6738, 863, 534, 3784, 37313, 26684, 8499, 25, 1845, 55609, 198, 5715, 3508, 477, 539, 279, 538, 374, 6275, 8499, 627, 2590, 5649, 55609, 198, 33, 2315, 25, 1665, 198, 15824, 284, 364, 13431, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.multi_query.LineListOutputParser.html
a179da48f6e5-0
langchain.retrievers.kendra.QueryResult¶ class langchain.retrievers.kendra.QueryResult(*, ResultItems: List[QueryResultItem], **extra_data: Any)[source]¶ Bases: BaseModel Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param ResultItems: List[langchain.retrievers.kendra.QueryResultItem] [Required]¶ get_top_k_docs(top_n: int) → List[Document][source]¶
[ 5317, 8995, 1351, 9104, 3078, 5314, 61799, 16060, 2122, 55609, 198, 1058, 8859, 8995, 1351, 9104, 3078, 5314, 61799, 16060, 2122, 4163, 11, 5832, 4451, 25, 1796, 58, 2929, 2122, 1256, 1145, 3146, 15824, 1807, 25, 5884, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 65705, 198, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 5832, 4451, 25, 1796, 58, 5317, 8995, 1351, 9104, 3078, 5314, 61799, 16060, 2122, 1256, 60, 510, 8327, 60, 55609, 198, 456, 10643, 4803, 50792, 18100, 1107, 25, 528, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.kendra.QueryResult.html
18ad11e000a0-0
langchain.retrievers.time_weighted_retriever.TimeWeightedVectorStoreRetriever¶ class langchain.retrievers.time_weighted_retriever.TimeWeightedVectorStoreRetriever(*, vectorstore: VectorStore, search_kwargs: dict = None, memory_stream: List[Document] = None, decay_rate: float = 0.01, k: int = 4, other_score_keys: List[str] = [], default_salience: Optional[float] = None)[source]¶ Bases: BaseRetriever, BaseModel Retriever combining embedding similarity with recency. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param decay_rate: float = 0.01¶ The exponential decay factor used as (1.0-decay_rate)**(hrs_passed). param default_salience: Optional[float] = None¶ The salience to assign memories not retrieved from the vector store. None assigns no salience to documents not fetched from the vector store. param k: int = 4¶ The maximum number of documents to retrieve in a given call. param memory_stream: List[langchain.schema.Document] [Optional]¶ The memory_stream of documents to search through. param other_score_keys: List[str] = []¶ Other keys in the metadata to factor into the score, e.g. ‘importance’. param search_kwargs: dict [Optional]¶ Keyword arguments to pass to the vectorstore similarity search. param vectorstore: langchain.vectorstores.base.VectorStore [Required]¶ The vectorstore to store documents and determine salience. async aadd_documents(documents: List[Document], **kwargs: Any) → List[str][source]¶ Add documents to vectorstore.
[ 5317, 8995, 1351, 9104, 3078, 6512, 16255, 291, 1311, 9104, 424, 16698, 8459, 291, 3866, 6221, 12289, 462, 2099, 55609, 198, 1058, 8859, 8995, 1351, 9104, 3078, 6512, 16255, 291, 1311, 9104, 424, 16698, 8459, 291, 3866, 6221, 12289, 462, 2099, 4163, 11, 4724, 4412, 25, 4290, 6221, 11, 2778, 37335, 25, 6587, 284, 2290, 11, 5044, 12962, 25, 1796, 58, 7676, 60, 284, 2290, 11, 31815, 9430, 25, 2273, 284, 220, 15, 13, 1721, 11, 597, 25, 528, 284, 220, 19, 11, 1023, 10622, 12919, 25, 1796, 17752, 60, 284, 10277, 1670, 63591, 1873, 25, 12536, 96481, 60, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 12289, 462, 2099, 11, 65705, 198, 12289, 462, 2099, 35271, 40188, 38723, 449, 1421, 2301, 627, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 31815, 9430, 25, 2273, 284, 220, 15, 13, 1721, 55609, 198, 791, 59855, 31815, 8331, 1511, 439, 320, 16, 13, 15, 6953, 66, 352, 9430, 33395, 7, 66362, 88505, 4390, 913, 1670, 63591, 1873, 25, 12536, 96481, 60, 284, 2290, 55609, 198, 791, 4371, 1873, 311, 9993, 19459, 539, 31503, 505, 279, 4724, 3637, 627, 4155, 51012, 912, 4371, 1873, 311, 9477, 539, 42542, 505, 279, 4724, 3637, 627, 913, 597, 25, 528, 284, 220, 19, 55609, 198, 791, 7340, 1396, 315, 9477, 311, 17622, 304, 264, 2728, 1650, 627, 913, 5044, 12962, 25, 1796, 58, 5317, 8995, 31992, 27352, 60, 510, 15669, 60, 55609, 198, 791, 5044, 12962, 315, 9477, 311, 2778, 1555, 627, 913, 1023, 10622, 12919, 25, 1796, 17752, 60, 284, 3132, 55609, 198, 11663, 7039, 304, 279, 11408, 311, 8331, 1139, 279, 5573, 11, 384, 1326, 13, 3451, 475, 685, 529, 627, 913, 2778, 37335, 25, 6587, 510, 15669, 60, 55609, 198, 35581, 6105, 311, 1522, 311, 279, 4724, 4412, 38723, 2778, 627, 913, 4724, 4412, 25, 8859, 8995, 48203, 44569, 9105, 14621, 6221, 510, 8327, 60, 55609, 198, 791, 4724, 4412, 311, 3637, 9477, 323, 8417, 4371, 1873, 627, 7847, 264, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 1483, 2484, 60, 55609, 198, 2261, 9477, 311, 4724, 4412, 13 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.time_weighted_retriever.TimeWeightedVectorStoreRetriever.html
18ad11e000a0-1
Add documents to vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str][source]¶ Add documents to vectorstore. async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents get_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents get_salient_docs(query: str) → Dict[int, Tuple[Document, float]][source]¶ Return documents that are salient to the query. model Config[source]¶ Bases: object Configuration for this pydantic object. arbitrary_types_allowed = True¶
[ 2261, 9477, 311, 4724, 4412, 627, 723, 77027, 19702, 2901, 25, 1796, 58, 7676, 1145, 3146, 9872, 25, 5884, 8, 11651, 1796, 17752, 1483, 2484, 60, 55609, 198, 2261, 9477, 311, 4724, 4412, 627, 7847, 264, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 2170, 55294, 636, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 88765, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 456, 63591, 1188, 50792, 10974, 25, 610, 8, 11651, 30226, 19155, 11, 25645, 58, 7676, 11, 2273, 28819, 2484, 60, 55609, 198, 5715, 9477, 430, 527, 4371, 1188, 311, 279, 3319, 627, 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 277, 88951, 9962, 43255, 284, 3082, 55609 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.time_weighted_retriever.TimeWeightedVectorStoreRetriever.html
46d493f673d9-0
langchain.retrievers.llama_index.LlamaIndexGraphRetriever¶ class langchain.retrievers.llama_index.LlamaIndexGraphRetriever(*, graph: Any = None, query_configs: List[Dict] = None)[source]¶ Bases: BaseRetriever, BaseModel Question-answering with sources over an LlamaIndex graph data structure. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param graph: Any = None¶ param query_configs: List[Dict] [Optional]¶ async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents get_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents
[ 5317, 8995, 1351, 9104, 3078, 60098, 3105, 3644, 1236, 81101, 1581, 11461, 12289, 462, 2099, 55609, 198, 1058, 8859, 8995, 1351, 9104, 3078, 60098, 3105, 3644, 1236, 81101, 1581, 11461, 12289, 462, 2099, 4163, 11, 4876, 25, 5884, 284, 2290, 11, 3319, 60250, 25, 1796, 58, 13755, 60, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 12289, 462, 2099, 11, 65705, 198, 14924, 12, 598, 86, 4776, 449, 8336, 927, 459, 445, 81101, 1581, 4876, 828, 6070, 627, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 4876, 25, 5884, 284, 2290, 55609, 198, 913, 3319, 60250, 25, 1796, 58, 13755, 60, 510, 15669, 60, 55609, 198, 7847, 264, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 2170, 55294, 636, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 88765, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.llama_index.LlamaIndexGraphRetriever.html
d366de163668-0
langchain.retrievers.vespa_retriever.VespaRetriever¶ class langchain.retrievers.vespa_retriever.VespaRetriever(app: Vespa, body: Dict, content_field: str, metadata_fields: Optional[Sequence[str]] = None)[source]¶ Bases: BaseRetriever Retriever that uses the Vespa. Parameters app – Vespa client. body – query body. content_field – result field with document contents. metadata_fields – result fields to include in document metadata. Methods __init__(app, body, content_field[, ...]) param app Vespa client. aget_relevant_documents(query, *[, callbacks]) Asynchronously get documents relevant to a query. from_params(url, content_field, *[, k, ...]) Instantiate retriever from params. get_relevant_documents(query, *[, callbacks]) Retrieve documents relevant to a query. get_relevant_documents_with_filter(query, *) async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents classmethod from_params(url: str, content_field: str, *, k: Optional[int] = None, metadata_fields: Union[Sequence[str], Literal['*']] = (), sources: Optional[Union[Sequence[str], Literal['*']]] = None, _filter: Optional[str] = None, yql: Optional[str] = None, **kwargs: Any) → VespaRetriever[source]¶ Instantiate retriever from params. Parameters
[ 5317, 8995, 1351, 9104, 3078, 13, 2396, 6733, 1311, 9104, 424, 5168, 288, 6733, 12289, 462, 2099, 55609, 198, 1058, 8859, 8995, 1351, 9104, 3078, 13, 2396, 6733, 1311, 9104, 424, 5168, 288, 6733, 12289, 462, 2099, 11718, 25, 79562, 6733, 11, 2547, 25, 30226, 11, 2262, 5121, 25, 610, 11, 11408, 12406, 25, 12536, 58, 14405, 17752, 5163, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 12289, 462, 2099, 198, 12289, 462, 2099, 430, 5829, 279, 79562, 6733, 627, 9905, 198, 680, 1389, 79562, 6733, 3016, 627, 2664, 1389, 3319, 2547, 627, 1834, 5121, 1389, 1121, 2115, 449, 2246, 8970, 627, 18103, 12406, 1389, 1121, 5151, 311, 2997, 304, 2246, 11408, 627, 18337, 198, 565, 2381, 3889, 680, 11, 4194, 2664, 11, 4194, 1834, 5121, 38372, 4194, 1131, 2608, 913, 917, 198, 53, 288, 6733, 3016, 627, 85163, 1311, 8532, 77027, 10974, 11, 4194, 9, 38372, 4194, 69411, 2608, 2170, 55294, 636, 9477, 9959, 311, 264, 3319, 627, 1527, 6887, 6659, 11, 4194, 1834, 5121, 11, 4194, 9, 38372, 4194, 74, 11, 4194, 1131, 2608, 81651, 10992, 424, 505, 3712, 627, 456, 1311, 8532, 77027, 10974, 11, 4194, 9, 38372, 4194, 69411, 2608, 88765, 9477, 9959, 311, 264, 3319, 627, 456, 1311, 8532, 77027, 6753, 8901, 10974, 11, 4194, 39060, 7847, 264, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 2170, 55294, 636, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 27853, 505, 6887, 6659, 25, 610, 11, 2262, 5121, 25, 610, 11, 12039, 597, 25, 12536, 19155, 60, 284, 2290, 11, 11408, 12406, 25, 9323, 58, 14405, 17752, 1145, 50774, 681, 9, 31940, 284, 39204, 8336, 25, 12536, 58, 33758, 58, 14405, 17752, 1145, 50774, 681, 9, 663, 5163, 284, 2290, 11, 721, 5428, 25, 12536, 17752, 60, 284, 2290, 11, 379, 1498, 25, 12536, 17752, 60, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 79562, 6733, 12289, 462, 2099, 76747, 60, 55609, 198, 81651, 10992, 424, 505, 3712, 627, 9905 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.vespa_retriever.VespaRetriever.html
d366de163668-1
Instantiate retriever from params. Parameters url (str) – Vespa app URL. content_field (str) – Field in results to return as Document page_content. k (Optional[int]) – Number of Documents to return. Defaults to None. metadata_fields (Sequence[str] or "*") – Fields in results to include in document metadata. Defaults to empty tuple (). sources (Sequence[str] or "*" or None) – Sources to retrieve from. Defaults to None. _filter (Optional[str]) – Document filter condition expressed in YQL. Defaults to None. yql (Optional[str]) – Full YQL query to be used. Should not be specified if _filter or sources are specified. Defaults to None. kwargs (Any) – Keyword arguments added to query body. get_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents get_relevant_documents_with_filter(query: str, *, _filter: Optional[str] = None) → List[Document][source]¶
[ 81651, 10992, 424, 505, 3712, 627, 9905, 198, 1103, 320, 496, 8, 1389, 79562, 6733, 917, 5665, 627, 1834, 5121, 320, 496, 8, 1389, 8771, 304, 3135, 311, 471, 439, 12051, 2199, 7647, 627, 74, 320, 15669, 19155, 2526, 1389, 5742, 315, 45890, 311, 471, 13, 37090, 311, 2290, 627, 18103, 12406, 320, 14405, 17752, 60, 477, 16004, 909, 1389, 25599, 304, 3135, 311, 2997, 304, 198, 6190, 11408, 13, 37090, 311, 4384, 14743, 320, 4390, 40751, 320, 14405, 17752, 60, 477, 66993, 477, 2290, 8, 1389, 48132, 311, 17622, 198, 1527, 13, 37090, 311, 2290, 627, 8901, 320, 15669, 17752, 2526, 1389, 12051, 4141, 3044, 13605, 304, 816, 3672, 627, 16672, 311, 2290, 627, 88, 1498, 320, 15669, 17752, 2526, 1389, 8797, 816, 3672, 3319, 311, 387, 1511, 13, 12540, 539, 387, 5300, 198, 333, 721, 5428, 477, 8336, 527, 5300, 13, 37090, 311, 2290, 627, 9872, 320, 8780, 8, 1389, 50070, 6105, 3779, 311, 3319, 2547, 627, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 88765, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 456, 1311, 8532, 77027, 6753, 8901, 10974, 25, 610, 11, 12039, 721, 5428, 25, 12536, 17752, 60, 284, 2290, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.vespa_retriever.VespaRetriever.html
d4f45d51489d-0
langchain.retrievers.pubmed.PubMedRetriever¶ class langchain.retrievers.pubmed.PubMedRetriever(*, top_k_results: int = 3, load_max_docs: int = 25, doc_content_chars_max: int = 2000, load_all_available_meta: bool = False, email: str = 'your_email@example.com', base_url_esearch: str = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?', base_url_efetch: str = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?', max_retry: int = 5, sleep_time: float = 0.2, ARXIV_MAX_QUERY_LENGTH: int = 300)[source]¶ Bases: BaseRetriever, PubMedAPIWrapper It is effectively a wrapper for PubMedAPIWrapper. It wraps load() to get_relevant_documents(). It uses all PubMedAPIWrapper arguments without any change. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param doc_content_chars_max: int = 2000¶ param email: str = 'your_email@example.com'¶ param load_all_available_meta: bool = False¶ param load_max_docs: int = 25¶ param top_k_results: int = 3¶ async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents get_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶
[ 5317, 8995, 1351, 9104, 3078, 48873, 2106, 1087, 392, 13613, 12289, 462, 2099, 55609, 198, 1058, 8859, 8995, 1351, 9104, 3078, 48873, 2106, 1087, 392, 13613, 12289, 462, 2099, 4163, 11, 1948, 4803, 13888, 25, 528, 284, 220, 18, 11, 2865, 6479, 50792, 25, 528, 284, 220, 914, 11, 4733, 7647, 38518, 6479, 25, 528, 284, 220, 1049, 15, 11, 2865, 5823, 28060, 13686, 25, 1845, 284, 3641, 11, 2613, 25, 610, 284, 364, 22479, 9351, 36587, 916, 518, 2385, 2975, 34841, 2974, 25, 610, 284, 364, 2485, 1129, 68, 6159, 99916, 89488, 70521, 14489, 14, 306, 23577, 16954, 6159, 39528, 2974, 41239, 8376, 50734, 2385, 2975, 80510, 3068, 25, 610, 284, 364, 2485, 1129, 68, 6159, 99916, 89488, 70521, 14489, 14, 306, 23577, 16954, 6159, 14, 830, 3068, 41239, 8376, 50734, 1973, 63845, 25, 528, 284, 220, 20, 11, 6212, 3084, 25, 2273, 284, 220, 15, 13, 17, 11, 6395, 55, 3166, 6949, 32685, 15373, 25, 528, 284, 220, 3101, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 12289, 462, 2099, 11, 53768, 7227, 11803, 198, 2181, 374, 13750, 264, 13564, 369, 53768, 7227, 11803, 627, 2181, 40809, 2865, 368, 311, 636, 1311, 8532, 77027, 26914, 2181, 5829, 682, 53768, 7227, 11803, 6105, 2085, 904, 2349, 627, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 4733, 7647, 38518, 6479, 25, 528, 284, 220, 1049, 15, 55609, 198, 913, 2613, 25, 610, 284, 364, 22479, 9351, 36587, 916, 6, 55609, 198, 913, 2865, 5823, 28060, 13686, 25, 1845, 284, 3641, 55609, 198, 913, 2865, 6479, 50792, 25, 528, 284, 220, 914, 55609, 198, 913, 1948, 4803, 13888, 25, 528, 284, 220, 18, 55609, 198, 7847, 264, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 2170, 55294, 636, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.pubmed.PubMedRetriever.html
d4f45d51489d-1
Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents load(query: str) → List[dict]¶ Search PubMed for documents matching the query. Return a list of dictionaries containing the document metadata. load_docs(query: str) → List[Document]¶ retrieve_article(uid: str, webenv: str) → dict¶ run(query: str) → str¶ Run PubMed search and get the article meta information. See https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.ESearch It uses only the most informative fields of article meta information. model Config¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
[ 88765, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 1096, 10974, 25, 610, 8, 11651, 1796, 58, 8644, 60, 55609, 198, 6014, 53768, 369, 9477, 12864, 279, 3319, 627, 5715, 264, 1160, 315, 58614, 8649, 279, 2246, 11408, 627, 1096, 50792, 10974, 25, 610, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 56627, 38421, 38148, 25, 610, 11, 3566, 3239, 25, 610, 8, 11651, 6587, 55609, 198, 6236, 10974, 25, 610, 8, 11651, 610, 55609, 198, 6869, 53768, 2778, 323, 636, 279, 4652, 8999, 2038, 627, 10031, 3788, 1129, 2185, 99916, 89488, 70521, 14489, 72363, 20906, 89407, 12375, 1484, 27657, 41326, 19, 13, 1600, 2974, 198, 2181, 5829, 1193, 279, 1455, 39319, 5151, 315, 4652, 8999, 2038, 627, 2590, 5649, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 15824, 284, 364, 2000, 21301, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.pubmed.PubMedRetriever.html
04049477889d-0
langchain.retrievers.kendra.AdditionalResultAttributeValue¶ class langchain.retrievers.kendra.AdditionalResultAttributeValue(*, TextWithHighlightsValue: TextWithHighLights, **extra_data: Any)[source]¶ Bases: BaseModel Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param TextWithHighlightsValue: langchain.retrievers.kendra.TextWithHighLights [Required]¶
[ 5317, 8995, 1351, 9104, 3078, 5314, 61799, 1943, 3079, 2122, 79654, 55609, 198, 1058, 8859, 8995, 1351, 9104, 3078, 5314, 61799, 1943, 3079, 2122, 79654, 4163, 11, 2991, 2409, 97406, 1150, 25, 2991, 2409, 12243, 75584, 11, 3146, 15824, 1807, 25, 5884, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 65705, 198, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 2991, 2409, 97406, 1150, 25, 8859, 8995, 1351, 9104, 3078, 5314, 61799, 2021, 2409, 12243, 75584, 510, 8327, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.kendra.AdditionalResultAttributeValue.html
b587e46db177-0
langchain.retrievers.llama_index.LlamaIndexRetriever¶ class langchain.retrievers.llama_index.LlamaIndexRetriever(*, index: Any = None, query_kwargs: Dict = None)[source]¶ Bases: BaseRetriever, BaseModel Question-answering with sources over an LlamaIndex data structure. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param index: Any = None¶ param query_kwargs: Dict [Optional]¶ async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents get_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents
[ 5317, 8995, 1351, 9104, 3078, 60098, 3105, 3644, 1236, 81101, 1581, 12289, 462, 2099, 55609, 198, 1058, 8859, 8995, 1351, 9104, 3078, 60098, 3105, 3644, 1236, 81101, 1581, 12289, 462, 2099, 4163, 11, 1963, 25, 5884, 284, 2290, 11, 3319, 37335, 25, 30226, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 12289, 462, 2099, 11, 65705, 198, 14924, 12, 598, 86, 4776, 449, 8336, 927, 459, 445, 81101, 1581, 828, 6070, 627, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 1963, 25, 5884, 284, 2290, 55609, 198, 913, 3319, 37335, 25, 30226, 510, 15669, 60, 55609, 198, 7847, 264, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 2170, 55294, 636, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 88765, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.llama_index.LlamaIndexRetriever.html
f632a681b84d-0
langchain.retrievers.contextual_compression.ContextualCompressionRetriever¶ class langchain.retrievers.contextual_compression.ContextualCompressionRetriever(*, base_compressor: BaseDocumentCompressor, base_retriever: BaseRetriever)[source]¶ Bases: BaseRetriever, BaseModel Retriever that wraps a base retriever and compresses the results. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param base_compressor: langchain.retrievers.document_compressors.base.BaseDocumentCompressor [Required]¶ Compressor for compressing retrieved documents. param base_retriever: langchain.schema.BaseRetriever [Required]¶ Base Retriever to use for getting relevant documents. async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents get_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents model Config[source]¶ Bases: object Configuration for this pydantic object. arbitrary_types_allowed = True¶ extra = 'forbid'¶
[ 5317, 8995, 1351, 9104, 3078, 8852, 940, 3038, 4099, 9512, 940, 82511, 12289, 462, 2099, 55609, 198, 1058, 8859, 8995, 1351, 9104, 3078, 8852, 940, 3038, 4099, 9512, 940, 82511, 12289, 462, 2099, 4163, 11, 2385, 3038, 57320, 25, 5464, 7676, 1110, 57320, 11, 2385, 1311, 9104, 424, 25, 5464, 12289, 462, 2099, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 12289, 462, 2099, 11, 65705, 198, 12289, 462, 2099, 430, 40809, 264, 2385, 10992, 424, 323, 25633, 288, 279, 3135, 627, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 2385, 3038, 57320, 25, 8859, 8995, 1351, 9104, 3078, 17926, 88945, 1105, 9105, 13316, 7676, 1110, 57320, 510, 8327, 60, 55609, 198, 1110, 57320, 369, 25633, 287, 31503, 9477, 627, 913, 2385, 1311, 9104, 424, 25, 8859, 8995, 31992, 13316, 12289, 462, 2099, 510, 8327, 60, 55609, 198, 4066, 10608, 462, 2099, 311, 1005, 369, 3794, 9959, 9477, 627, 7847, 264, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 2170, 55294, 636, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 88765, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 277, 88951, 9962, 43255, 284, 3082, 55609, 198, 15824, 284, 364, 2000, 21301, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.contextual_compression.ContextualCompressionRetriever.html
1d56b84af1f4-0
langchain.retrievers.kendra.AdditionalResultAttribute¶ class langchain.retrievers.kendra.AdditionalResultAttribute(*, Key: str, ValueType: Literal['TEXT_WITH_HIGHLIGHTS_VALUE'], Value: AdditionalResultAttributeValue, **extra_data: Any)[source]¶ Bases: BaseModel Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param Key: str [Required]¶ param Value: langchain.retrievers.kendra.AdditionalResultAttributeValue [Required]¶ param ValueType: Literal['TEXT_WITH_HIGHLIGHTS_VALUE'] [Required]¶ get_value_text() → str[source]¶
[ 5317, 8995, 1351, 9104, 3078, 5314, 61799, 1943, 3079, 2122, 3994, 55609, 198, 1058, 8859, 8995, 1351, 9104, 3078, 5314, 61799, 1943, 3079, 2122, 3994, 4163, 11, 5422, 25, 610, 11, 56645, 25, 50774, 681, 12998, 24880, 2083, 91131, 50, 7628, 4181, 5273, 25, 24086, 2122, 79654, 11, 3146, 15824, 1807, 25, 5884, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 65705, 198, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 5422, 25, 610, 510, 8327, 60, 55609, 198, 913, 5273, 25, 8859, 8995, 1351, 9104, 3078, 5314, 61799, 1943, 3079, 2122, 79654, 510, 8327, 60, 55609, 198, 913, 56645, 25, 50774, 681, 12998, 24880, 2083, 91131, 50, 7628, 663, 510, 8327, 60, 55609, 198, 456, 3220, 4424, 368, 11651, 610, 76747, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.kendra.AdditionalResultAttribute.html
8e3beba95209-0
langchain.retrievers.merger_retriever.MergerRetriever¶ class langchain.retrievers.merger_retriever.MergerRetriever(retrievers: List[BaseRetriever])[source]¶ Bases: BaseRetriever This class merges the results of multiple retrievers. Parameters retrievers – A list of retrievers to merge. Initialize the MergerRetriever class. Parameters retrievers – A list of retrievers to merge. Methods __init__(retrievers) Initialize the MergerRetriever class. aget_relevant_documents(query, *[, callbacks]) Asynchronously get documents relevant to a query. amerge_documents(query, run_manager) Asynchronously merge the results of the retrievers. get_relevant_documents(query, *[, callbacks]) Retrieve documents relevant to a query. merge_documents(query, run_manager) Merge the results of the retrievers. async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents async amerge_documents(query: str, run_manager: AsyncCallbackManagerForRetrieverRun) → List[Document][source]¶ Asynchronously merge the results of the retrievers. Parameters query – The query to search for. Returns A list of merged documents. get_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks
[ 5317, 8995, 1351, 9104, 3078, 749, 261, 1414, 1311, 9104, 424, 1345, 261, 1414, 12289, 462, 2099, 55609, 198, 1058, 8859, 8995, 1351, 9104, 3078, 749, 261, 1414, 1311, 9104, 424, 1345, 261, 1414, 12289, 462, 2099, 5921, 9104, 3078, 25, 1796, 58, 4066, 12289, 462, 2099, 41105, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 12289, 462, 2099, 198, 2028, 538, 82053, 279, 3135, 315, 5361, 10992, 3078, 627, 9905, 198, 265, 9104, 3078, 1389, 362, 1160, 315, 10992, 3078, 311, 11117, 627, 10130, 279, 8930, 1414, 12289, 462, 2099, 538, 627, 9905, 198, 265, 9104, 3078, 1389, 362, 1160, 315, 10992, 3078, 311, 11117, 627, 18337, 198, 565, 2381, 3889, 265, 9104, 3078, 340, 10130, 279, 8930, 1414, 12289, 462, 2099, 538, 627, 85163, 1311, 8532, 77027, 10974, 11, 4194, 9, 38372, 4194, 69411, 2608, 2170, 55294, 636, 9477, 9959, 311, 264, 3319, 627, 309, 10286, 77027, 10974, 11, 4194, 6236, 12418, 340, 2170, 55294, 11117, 279, 3135, 315, 279, 10992, 3078, 627, 456, 1311, 8532, 77027, 10974, 11, 4194, 9, 38372, 4194, 69411, 2608, 88765, 9477, 9959, 311, 264, 3319, 627, 19590, 77027, 10974, 11, 4194, 6236, 12418, 340, 53196, 279, 3135, 315, 279, 10992, 3078, 627, 7847, 264, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 2170, 55294, 636, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 7847, 1097, 10286, 77027, 10974, 25, 610, 11, 1629, 12418, 25, 92536, 2087, 2520, 12289, 462, 2099, 6869, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 2170, 55294, 11117, 279, 3135, 315, 279, 10992, 3078, 627, 9905, 198, 1663, 1389, 578, 3319, 311, 2778, 369, 627, 16851, 198, 32, 1160, 315, 27092, 9477, 627, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 88765, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.merger_retriever.MergerRetriever.html
8e3beba95209-1
:param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents merge_documents(query: str, run_manager: CallbackManagerForRetrieverRun) → List[Document][source]¶ Merge the results of the retrievers. Parameters query – The query to search for. Returns A list of merged documents.
[ 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 19590, 77027, 10974, 25, 610, 11, 1629, 12418, 25, 23499, 2087, 2520, 12289, 462, 2099, 6869, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 53196, 279, 3135, 315, 279, 10992, 3078, 627, 9905, 198, 1663, 1389, 578, 3319, 311, 2778, 369, 627, 16851, 198, 32, 1160, 315, 27092, 9477, 13 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.merger_retriever.MergerRetriever.html
f33f07ad44a0-0
langchain.retrievers.svm.create_index¶ langchain.retrievers.svm.create_index(contexts: List[str], embeddings: Embeddings) → ndarray[source]¶ Create an index of embeddings for a list of contexts. :param contexts: List of contexts to embed. :param embeddings: Embeddings model to use. Returns Index of embeddings.
[ 5317, 8995, 1351, 9104, 3078, 516, 7488, 2581, 3644, 55609, 198, 5317, 8995, 1351, 9104, 3078, 516, 7488, 2581, 3644, 5491, 82, 25, 1796, 17752, 1145, 71647, 25, 38168, 25624, 8, 11651, 67983, 76747, 60, 55609, 198, 4110, 459, 1963, 315, 71647, 369, 264, 1160, 315, 38697, 627, 68416, 38697, 25, 1796, 315, 38697, 311, 11840, 627, 68416, 71647, 25, 38168, 25624, 1646, 311, 1005, 627, 16851, 198, 1581, 315, 71647, 13 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.svm.create_index.html
4f87431296de-0
langchain.retrievers.metal.MetalRetriever¶ class langchain.retrievers.metal.MetalRetriever(client: Any, params: Optional[dict] = None)[source]¶ Bases: BaseRetriever Retriever that uses the Metal API. Methods __init__(client[, params]) aget_relevant_documents(query, *[, callbacks]) Asynchronously get documents relevant to a query. get_relevant_documents(query, *[, callbacks]) Retrieve documents relevant to a query. async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents get_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents
[ 5317, 8995, 1351, 9104, 3078, 749, 22029, 1345, 22029, 12289, 462, 2099, 55609, 198, 1058, 8859, 8995, 1351, 9104, 3078, 749, 22029, 1345, 22029, 12289, 462, 2099, 13097, 25, 5884, 11, 3712, 25, 12536, 58, 8644, 60, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 12289, 462, 2099, 198, 12289, 462, 2099, 430, 5829, 279, 19757, 5446, 627, 18337, 198, 565, 2381, 3889, 3045, 38372, 4194, 3603, 2608, 85163, 1311, 8532, 77027, 10974, 11, 4194, 9, 38372, 4194, 69411, 2608, 2170, 55294, 636, 9477, 9959, 311, 264, 3319, 627, 456, 1311, 8532, 77027, 10974, 11, 4194, 9, 38372, 4194, 69411, 2608, 88765, 9477, 9959, 311, 264, 3319, 627, 7847, 264, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 2170, 55294, 636, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 88765, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.metal.MetalRetriever.html
0428b99c7fa5-0
langchain.retrievers.self_query.weaviate.WeaviateTranslator¶ class langchain.retrievers.self_query.weaviate.WeaviateTranslator[source]¶ Bases: Visitor Logic for converting internal query language elements to valid filters. Methods __init__() visit_comparison(comparison) Translate a Comparison. visit_operation(operation) Translate an Operation. visit_structured_query(structured_query) Translate a StructuredQuery. Attributes allowed_comparators allowed_operators Subset of allowed logical operators. visit_comparison(comparison: Comparison) → Dict[source]¶ Translate a Comparison. visit_operation(operation: Operation) → Dict[source]¶ Translate an Operation. visit_structured_query(structured_query: StructuredQuery) → Tuple[str, dict][source]¶ Translate a StructuredQuery. allowed_comparators: Optional[Sequence[Comparator]] = [<Comparator.EQ: 'eq'>]¶ allowed_operators: Optional[Sequence[Operator]] = [<Operator.AND: 'and'>, <Operator.OR: 'or'>]¶ Subset of allowed logical operators.
[ 5317, 8995, 1351, 9104, 3078, 28248, 5857, 31339, 6321, 349, 23210, 6321, 349, 52753, 55609, 198, 1058, 8859, 8995, 1351, 9104, 3078, 28248, 5857, 31339, 6321, 349, 23210, 6321, 349, 52753, 76747, 60, 55609, 198, 33, 2315, 25, 56982, 198, 27849, 369, 34537, 5419, 3319, 4221, 5540, 311, 2764, 13711, 627, 18337, 198, 565, 2381, 33716, 28560, 91897, 14426, 36642, 340, 28573, 264, 43551, 627, 28560, 33665, 53447, 340, 28573, 459, 17145, 627, 28560, 15477, 3149, 5857, 6294, 3149, 5857, 340, 28573, 264, 16531, 3149, 2929, 627, 10738, 198, 21642, 3038, 1768, 3046, 198, 21642, 26716, 3046, 198, 71684, 315, 5535, 20406, 20197, 627, 28560, 91897, 14426, 36642, 25, 43551, 8, 11651, 30226, 76747, 60, 55609, 198, 28573, 264, 43551, 627, 28560, 33665, 53447, 25, 17145, 8, 11651, 30226, 76747, 60, 55609, 198, 28573, 459, 17145, 627, 28560, 15477, 3149, 5857, 6294, 3149, 5857, 25, 16531, 3149, 2929, 8, 11651, 25645, 17752, 11, 6587, 1483, 2484, 60, 55609, 198, 28573, 264, 16531, 3149, 2929, 627, 21642, 3038, 1768, 3046, 25, 12536, 58, 14405, 58, 39758, 5163, 284, 68326, 39758, 5253, 48, 25, 364, 11251, 6404, 60, 55609, 198, 21642, 26716, 3046, 25, 12536, 58, 14405, 58, 18968, 5163, 284, 68326, 18968, 885, 8225, 25, 364, 438, 6404, 11, 366, 18968, 78997, 25, 364, 269, 6404, 60, 55609, 198, 71684, 315, 5535, 20406, 20197, 13 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.self_query.weaviate.WeaviateTranslator.html
d3d54033aa50-0
langchain.retrievers.kendra.combined_text¶ langchain.retrievers.kendra.combined_text(title: str, excerpt: str) → str[source]¶
[ 5317, 8995, 1351, 9104, 3078, 5314, 61799, 916, 65, 1619, 4424, 55609, 198, 5317, 8995, 1351, 9104, 3078, 5314, 61799, 916, 65, 1619, 4424, 12787, 25, 610, 11, 50565, 25, 610, 8, 11651, 610, 76747, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.kendra.combined_text.html
18ab95a214f2-0
langchain.retrievers.azure_cognitive_search.AzureCognitiveSearchRetriever¶ class langchain.retrievers.azure_cognitive_search.AzureCognitiveSearchRetriever(*, service_name: str = '', index_name: str = '', api_key: str = '', api_version: str = '2020-06-30', aiosession: Optional[ClientSession] = None, content_key: str = 'content')[source]¶ Bases: BaseRetriever, BaseModel Wrapper around Azure Cognitive Search. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param aiosession: Optional[aiohttp.client.ClientSession] = None¶ ClientSession, in case we want to reuse connection for better performance. param api_key: str = ''¶ API Key. Both Admin and Query keys work, but for reading data it’s recommended to use a Query key. param api_version: str = '2020-06-30'¶ API version param content_key: str = 'content'¶ Key in a retrieved result to set as the Document page_content. param index_name: str = ''¶ Name of Index inside Azure Cognitive Search service param service_name: str = ''¶ Name of Azure Cognitive Search service async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents get_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Retrieve documents relevant to a query. :param query: string to find relevant documents for
[ 5317, 8995, 1351, 9104, 3078, 71340, 669, 51549, 10947, 58927, 34, 51549, 6014, 12289, 462, 2099, 55609, 198, 1058, 8859, 8995, 1351, 9104, 3078, 71340, 669, 51549, 10947, 58927, 34, 51549, 6014, 12289, 462, 2099, 4163, 11, 2532, 1292, 25, 610, 284, 9158, 1963, 1292, 25, 610, 284, 9158, 6464, 3173, 25, 610, 284, 9158, 6464, 9625, 25, 610, 284, 364, 2366, 15, 12, 2705, 12, 966, 518, 264, 3614, 1362, 25, 12536, 58, 3032, 5396, 60, 284, 2290, 11, 2262, 3173, 25, 610, 284, 364, 1834, 13588, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 12289, 462, 2099, 11, 65705, 198, 11803, 2212, 35219, 73235, 7694, 627, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 264, 3614, 1362, 25, 12536, 15848, 822, 1277, 6718, 11978, 5396, 60, 284, 2290, 55609, 198, 3032, 5396, 11, 304, 1162, 584, 1390, 311, 27068, 3717, 369, 2731, 5178, 627, 913, 6464, 3173, 25, 610, 284, 3436, 55609, 198, 7227, 5422, 13, 11995, 7735, 323, 11615, 7039, 990, 11, 719, 369, 5403, 828, 433, 753, 198, 86447, 311, 1005, 264, 11615, 1401, 627, 913, 6464, 9625, 25, 610, 284, 364, 2366, 15, 12, 2705, 12, 966, 6, 55609, 198, 7227, 2373, 198, 913, 2262, 3173, 25, 610, 284, 364, 1834, 6, 55609, 198, 1622, 304, 264, 31503, 1121, 311, 743, 439, 279, 12051, 2199, 7647, 627, 913, 1963, 1292, 25, 610, 284, 3436, 55609, 198, 678, 315, 8167, 4871, 35219, 73235, 7694, 2532, 198, 913, 2532, 1292, 25, 610, 284, 3436, 55609, 198, 678, 315, 35219, 73235, 7694, 2532, 198, 7847, 264, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 2170, 55294, 636, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 88765, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.azure_cognitive_search.AzureCognitiveSearchRetriever.html
18ab95a214f2-1
Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents validator validate_environment  »  all fields[source]¶ Validate that service name, index name and api key exists in environment. model Config[source]¶ Bases: object arbitrary_types_allowed = True¶ extra = 'forbid'¶
[ 88765, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 16503, 9788, 52874, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 18409, 430, 2532, 836, 11, 1963, 836, 323, 6464, 1401, 6866, 304, 4676, 627, 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 277, 88951, 9962, 43255, 284, 3082, 55609, 198, 15824, 284, 364, 2000, 21301, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.azure_cognitive_search.AzureCognitiveSearchRetriever.html
ace72548ef18-0
langchain.retrievers.kendra.clean_excerpt¶ langchain.retrievers.kendra.clean_excerpt(excerpt: str) → str[source]¶
[ 5317, 8995, 1351, 9104, 3078, 5314, 61799, 26303, 68047, 55609, 198, 5317, 8995, 1351, 9104, 3078, 5314, 61799, 26303, 68047, 5580, 35128, 25, 610, 8, 11651, 610, 76747, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.kendra.clean_excerpt.html
2d49e08b0bca-0
langchain.retrievers.kendra.DocumentAttribute¶ class langchain.retrievers.kendra.DocumentAttribute(*, Key: str, Value: DocumentAttributeValue, **extra_data: Any)[source]¶ Bases: BaseModel Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param Key: str [Required]¶ param Value: langchain.retrievers.kendra.DocumentAttributeValue [Required]¶
[ 5317, 8995, 1351, 9104, 3078, 5314, 61799, 27352, 3994, 55609, 198, 1058, 8859, 8995, 1351, 9104, 3078, 5314, 61799, 27352, 3994, 4163, 11, 5422, 25, 610, 11, 5273, 25, 12051, 79654, 11, 3146, 15824, 1807, 25, 5884, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 65705, 198, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 5422, 25, 610, 510, 8327, 60, 55609, 198, 913, 5273, 25, 8859, 8995, 1351, 9104, 3078, 5314, 61799, 27352, 79654, 510, 8327, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.kendra.DocumentAttribute.html
17096035929e-0
langchain.retrievers.kendra.DocumentAttributeValue¶ class langchain.retrievers.kendra.DocumentAttributeValue(*, DateValue: Optional[str] = None, LongValue: Optional[int] = None, StringListValue: Optional[List[str]] = None, StringValue: Optional[str] = None, **extra_data: Any)[source]¶ Bases: BaseModel Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param DateValue: Optional[str] = None¶ param LongValue: Optional[int] = None¶ param StringListValue: Optional[List[str]] = None¶ param StringValue: Optional[str] = None¶
[ 5317, 8995, 1351, 9104, 3078, 5314, 61799, 27352, 79654, 55609, 198, 1058, 8859, 8995, 1351, 9104, 3078, 5314, 61799, 27352, 79654, 4163, 11, 2696, 1150, 25, 12536, 17752, 60, 284, 2290, 11, 5843, 1150, 25, 12536, 19155, 60, 284, 2290, 11, 935, 861, 1150, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 935, 1150, 25, 12536, 17752, 60, 284, 2290, 11, 3146, 15824, 1807, 25, 5884, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 65705, 198, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 2696, 1150, 25, 12536, 17752, 60, 284, 2290, 55609, 198, 913, 5843, 1150, 25, 12536, 19155, 60, 284, 2290, 55609, 198, 913, 935, 861, 1150, 25, 12536, 53094, 17752, 5163, 284, 2290, 55609, 198, 913, 935, 1150, 25, 12536, 17752, 60, 284, 2290, 55609 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.kendra.DocumentAttributeValue.html
459a16fa74a5-0
langchain.retrievers.multi_query.MultiQueryRetriever¶ class langchain.retrievers.multi_query.MultiQueryRetriever(retriever: BaseRetriever, llm_chain: LLMChain, verbose: bool = True, parser_key: str = 'lines')[source]¶ Bases: BaseRetriever Given a user query, use an LLM to write a set of queries. Retrieve docs for each query. Rake the unique union of all retrieved docs. Initialize MultiQueryRetriever. Parameters retriever – retriever to query documents from llm_chain – llm_chain for query generation verbose – show the queries that we generated to the user parser_key – attribute name for the parsed output Returns MultiQueryRetriever Methods __init__(retriever, llm_chain[, verbose, ...]) Initialize MultiQueryRetriever. aget_relevant_documents(query, *[, callbacks]) Asynchronously get documents relevant to a query. from_llm(retriever, llm[, prompt, parser_key]) Initialize from llm using default template. generate_queries(question, run_manager) Generate queries based upon user input. get_relevant_documents(query, *[, callbacks]) Retrieve documents relevant to a query. retrieve_documents(queries, run_manager) Run all LLM generated queries. unique_union(documents) Get uniqe Documents. async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents
[ 5317, 8995, 1351, 9104, 3078, 52251, 5857, 58806, 2929, 12289, 462, 2099, 55609, 198, 1058, 8859, 8995, 1351, 9104, 3078, 52251, 5857, 58806, 2929, 12289, 462, 2099, 5921, 9104, 424, 25, 5464, 12289, 462, 2099, 11, 9507, 76, 31683, 25, 445, 11237, 19368, 11, 14008, 25, 1845, 284, 3082, 11, 6871, 3173, 25, 610, 284, 364, 8128, 13588, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 12289, 462, 2099, 198, 22818, 264, 1217, 3319, 11, 1005, 459, 445, 11237, 311, 3350, 264, 743, 315, 20126, 627, 88765, 27437, 369, 1855, 3319, 13, 432, 731, 279, 5016, 11552, 315, 682, 31503, 27437, 627, 10130, 17896, 2929, 12289, 462, 2099, 627, 9905, 198, 265, 9104, 424, 1389, 10992, 424, 311, 3319, 9477, 505, 198, 657, 76, 31683, 1389, 9507, 76, 31683, 369, 3319, 9659, 198, 15228, 1389, 1501, 279, 20126, 430, 584, 8066, 311, 279, 1217, 198, 9854, 3173, 1389, 7180, 836, 369, 279, 16051, 2612, 198, 16851, 198, 20981, 2929, 12289, 462, 2099, 198, 18337, 198, 565, 2381, 3889, 265, 9104, 424, 11, 4194, 657, 76, 31683, 38372, 4194, 15228, 11, 4194, 1131, 2608, 10130, 17896, 2929, 12289, 462, 2099, 627, 85163, 1311, 8532, 77027, 10974, 11, 4194, 9, 38372, 4194, 69411, 2608, 2170, 55294, 636, 9477, 9959, 311, 264, 3319, 627, 1527, 44095, 76, 5921, 9104, 424, 11, 4194, 657, 76, 38372, 4194, 41681, 11, 4194, 9854, 3173, 2608, 10130, 505, 9507, 76, 1701, 1670, 3896, 627, 19927, 66688, 41157, 11, 4194, 6236, 12418, 340, 32215, 20126, 3196, 5304, 1217, 1988, 627, 456, 1311, 8532, 77027, 10974, 11, 4194, 9, 38372, 4194, 69411, 2608, 88765, 9477, 9959, 311, 264, 3319, 627, 56627, 77027, 7, 43935, 11, 4194, 6236, 12418, 340, 6869, 682, 445, 11237, 8066, 20126, 627, 9782, 52721, 19702, 2901, 340, 1991, 55252, 68, 45890, 627, 7847, 264, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 2170, 55294, 636, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.multi_query.MultiQueryRetriever.html
459a16fa74a5-1
:param callbacks: Callback manager or list of callbacks Returns List of relevant documents classmethod from_llm(retriever: BaseRetriever, llm: BaseLLM, prompt: PromptTemplate = PromptTemplate(input_variables=['question'], output_parser=None, partial_variables={}, template='You are an AI language model assistant. Your task is \n    to generate 3 different versions of the given user \n    question to retrieve relevant documents from a vector  database. \n    By generating multiple perspectives on the user question, \n    your goal is to help the user overcome some of the limitations \n    of distance-based similarity search. Provide these alternative \n    questions seperated by newlines. Original question: {question}', template_format='f-string', validate_template=True), parser_key: str = 'lines') → MultiQueryRetriever[source]¶ Initialize from llm using default template. Parameters retriever – retriever to query documents from llm – llm for query generation using DEFAULT_QUERY_PROMPT Returns MultiQueryRetriever generate_queries(question: str, run_manager: CallbackManagerForRetrieverRun) → List[str][source]¶ Generate queries based upon user input. Parameters question – user query Returns List of LLM generated queries that are similar to the user input get_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents retrieve_documents(queries: List[str], run_manager: CallbackManagerForRetrieverRun) → List[Document][source]¶ Run all LLM generated queries. Parameters queries – query list Returns List of retrived Documents
[ 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 27853, 505, 44095, 76, 5921, 9104, 424, 25, 5464, 12289, 462, 2099, 11, 9507, 76, 25, 5464, 4178, 44, 11, 10137, 25, 60601, 7423, 284, 60601, 7423, 5498, 29282, 14314, 7998, 4181, 2612, 19024, 5980, 11, 7276, 29282, 68525, 3896, 1151, 2675, 527, 459, 15592, 4221, 1646, 18328, 13, 4718, 3465, 374, 1144, 77, 46493, 311, 7068, 220, 18, 2204, 11028, 315, 279, 2728, 1217, 1144, 77, 46493, 3488, 311, 17622, 9959, 9477, 505, 264, 4724, 4194, 4729, 13, 1144, 77, 46493, 3296, 24038, 5361, 39555, 389, 279, 1217, 3488, 11, 1144, 77, 46493, 701, 5915, 374, 311, 1520, 279, 1217, 23075, 1063, 315, 279, 9669, 1144, 77, 46493, 315, 6138, 6108, 38723, 2778, 13, 40665, 1521, 10778, 1144, 77, 46493, 4860, 49454, 660, 555, 502, 8128, 13, 17674, 3488, 25, 314, 7998, 17266, 3896, 9132, 1151, 69, 31981, 518, 9788, 8864, 3702, 705, 6871, 3173, 25, 610, 284, 364, 8128, 873, 11651, 17896, 2929, 12289, 462, 2099, 76747, 60, 55609, 198, 10130, 505, 9507, 76, 1701, 1670, 3896, 627, 9905, 198, 265, 9104, 424, 1389, 10992, 424, 311, 3319, 9477, 505, 198, 657, 76, 1389, 9507, 76, 369, 3319, 9659, 1701, 12221, 32685, 72446, 2898, 198, 16851, 198, 20981, 2929, 12289, 462, 2099, 198, 19927, 66688, 41157, 25, 610, 11, 1629, 12418, 25, 23499, 2087, 2520, 12289, 462, 2099, 6869, 8, 11651, 1796, 17752, 1483, 2484, 60, 55609, 198, 32215, 20126, 3196, 5304, 1217, 1988, 627, 9905, 198, 7998, 1389, 1217, 3319, 198, 16851, 198, 861, 315, 445, 11237, 8066, 20126, 430, 527, 4528, 311, 279, 1217, 1988, 198, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 88765, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 56627, 77027, 7, 43935, 25, 1796, 17752, 1145, 1629, 12418, 25, 23499, 2087, 2520, 12289, 462, 2099, 6869, 8, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 6869, 682, 445, 11237, 8066, 20126, 627, 9905, 198, 43935, 1389, 3319, 1160, 198, 16851, 198, 861, 315, 38831, 2270, 45890 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.multi_query.MultiQueryRetriever.html
459a16fa74a5-2
Parameters queries – query list Returns List of retrived Documents unique_union(documents: List[Document]) → List[Document][source]¶ Get uniqe Documents. Parameters documents – List of retrived Documents Returns List of unique retrived Documents
[ 9905, 198, 43935, 1389, 3319, 1160, 198, 16851, 198, 861, 315, 38831, 2270, 45890, 198, 9782, 52721, 19702, 2901, 25, 1796, 58, 7676, 2526, 11651, 1796, 58, 7676, 1483, 2484, 60, 55609, 198, 1991, 55252, 68, 45890, 627, 9905, 198, 51878, 1389, 1796, 315, 38831, 2270, 45890, 198, 16851, 198, 861, 315, 5016, 38831, 2270, 45890 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.multi_query.MultiQueryRetriever.html
c82b6df80bb8-0
langchain.retrievers.pinecone_hybrid_search.PineconeHybridSearchRetriever¶ class langchain.retrievers.pinecone_hybrid_search.PineconeHybridSearchRetriever(*, embeddings: Embeddings, sparse_encoder: Any = None, index: Any = None, top_k: int = 4, alpha: float = 0.5)[source]¶ Bases: BaseRetriever, BaseModel Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param alpha: float = 0.5¶ param embeddings: langchain.embeddings.base.Embeddings [Required]¶ description param index: Any = None¶ param sparse_encoder: Any = None¶ param top_k: int = 4¶ add_texts(texts: List[str], ids: Optional[List[str]] = None, metadatas: Optional[List[dict]] = None) → None[source]¶ async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents get_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents validator validate_environment  »  all fields[source]¶ Validate that api key and python package exists in environment. model Config[source]¶ Bases: object Configuration for this pydantic object. arbitrary_types_allowed = True¶
[ 5317, 8995, 1351, 9104, 3078, 558, 483, 59182, 1552, 94490, 10947, 1087, 483, 59182, 31916, 16621, 6014, 12289, 462, 2099, 55609, 198, 1058, 8859, 8995, 1351, 9104, 3078, 558, 483, 59182, 1552, 94490, 10947, 1087, 483, 59182, 31916, 16621, 6014, 12289, 462, 2099, 4163, 11, 71647, 25, 38168, 25624, 11, 34544, 40168, 25, 5884, 284, 2290, 11, 1963, 25, 5884, 284, 2290, 11, 1948, 4803, 25, 528, 284, 220, 19, 11, 8451, 25, 2273, 284, 220, 15, 13, 20, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 12289, 462, 2099, 11, 65705, 198, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 8451, 25, 2273, 284, 220, 15, 13, 20, 55609, 198, 913, 71647, 25, 8859, 8995, 41541, 25624, 9105, 58955, 25624, 510, 8327, 60, 55609, 198, 4789, 198, 913, 1963, 25, 5884, 284, 2290, 55609, 198, 913, 34544, 40168, 25, 5884, 284, 2290, 55609, 198, 913, 1948, 4803, 25, 528, 284, 220, 19, 55609, 198, 723, 80746, 7383, 82, 25, 1796, 17752, 1145, 14483, 25, 12536, 53094, 17752, 5163, 284, 2290, 11, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 8, 11651, 2290, 76747, 60, 55609, 198, 7847, 264, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 2170, 55294, 636, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 88765, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 16503, 9788, 52874, 4194, 8345, 4194, 682, 5151, 76747, 60, 55609, 198, 18409, 430, 6464, 1401, 323, 10344, 6462, 6866, 304, 4676, 627, 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 277, 88951, 9962, 43255, 284, 3082, 55609 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.pinecone_hybrid_search.PineconeHybridSearchRetriever.html
c82b6df80bb8-1
Configuration for this pydantic object. arbitrary_types_allowed = True¶ extra = 'forbid'¶
[ 7843, 369, 420, 4611, 67, 8322, 1665, 627, 277, 88951, 9962, 43255, 284, 3082, 55609, 198, 15824, 284, 364, 2000, 21301, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.pinecone_hybrid_search.PineconeHybridSearchRetriever.html
020b4e689eb0-0
langchain.retrievers.elastic_search_bm25.ElasticSearchBM25Retriever¶ class langchain.retrievers.elastic_search_bm25.ElasticSearchBM25Retriever(client: Any, index_name: str)[source]¶ Bases: BaseRetriever Wrapper around Elasticsearch using BM25 as a retrieval method. To connect to an Elasticsearch instance that requires login credentials, including Elastic Cloud, use the Elasticsearch URL format https://username:password@es_host:9243. For example, to connect to Elastic Cloud, create the Elasticsearch URL with the required authentication details and pass it to the ElasticVectorSearch constructor as the named parameter elasticsearch_url. You can obtain your Elastic Cloud URL and login credentials by logging in to the Elastic Cloud console at https://cloud.elastic.co, selecting your deployment, and navigating to the “Deployments” page. To obtain your Elastic Cloud password for the default “elastic” user: Log in to the Elastic Cloud console at https://cloud.elastic.co Go to “Security” > “Users” Locate the “elastic” user and click “Edit” Click “Reset password” Follow the prompts to reset the password The format for Elastic Cloud URLs is https://username:password@cluster_id.region_id.gcp.cloud.es.io:9243. Methods __init__(client, index_name) add_texts(texts[, refresh_indices]) Run more texts through the embeddings and add to the retriever. aget_relevant_documents(query, *[, callbacks]) Asynchronously get documents relevant to a query. create(elasticsearch_url, index_name[, k1, b]) get_relevant_documents(query, *[, callbacks]) Retrieve documents relevant to a query.
[ 5317, 8995, 1351, 9104, 3078, 16230, 5174, 10947, 93022, 914, 5253, 52279, 6014, 30042, 914, 12289, 462, 2099, 55609, 198, 1058, 8859, 8995, 1351, 9104, 3078, 16230, 5174, 10947, 93022, 914, 5253, 52279, 6014, 30042, 914, 12289, 462, 2099, 13097, 25, 5884, 11, 1963, 1292, 25, 610, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 12289, 462, 2099, 198, 11803, 2212, 59987, 1701, 20387, 914, 439, 264, 57470, 1749, 627, 1271, 4667, 311, 459, 59987, 2937, 430, 7612, 5982, 16792, 345, 16564, 53010, 15161, 11, 1005, 279, 59987, 5665, 3645, 198, 2485, 1129, 5223, 25, 3918, 31, 288, 13144, 25, 23890, 18, 13, 1789, 3187, 11, 311, 4667, 311, 53010, 198, 16440, 11, 1893, 279, 59987, 5665, 449, 279, 2631, 17066, 3649, 323, 198, 6519, 433, 311, 279, 53010, 3866, 6014, 4797, 439, 279, 7086, 5852, 198, 301, 28891, 2975, 627, 2675, 649, 6994, 701, 53010, 15161, 5665, 323, 5982, 16792, 555, 8558, 304, 311, 279, 198, 36, 52279, 15161, 2393, 520, 3788, 1129, 12641, 16230, 5174, 6973, 11, 27397, 701, 24047, 11, 323, 198, 77, 3030, 1113, 311, 279, 1054, 70564, 1392, 863, 2199, 627, 1271, 6994, 701, 53010, 15161, 3636, 369, 279, 1670, 1054, 63064, 863, 1217, 512, 2250, 304, 311, 279, 53010, 15161, 2393, 520, 3788, 1129, 12641, 16230, 5174, 6973, 198, 11087, 311, 1054, 15712, 863, 871, 1054, 7283, 89874, 9330, 349, 279, 1054, 63064, 863, 1217, 323, 4299, 1054, 4126, 89874, 2677, 1054, 15172, 3636, 89874, 12763, 279, 52032, 311, 7738, 279, 3636, 198, 791, 3645, 369, 53010, 15161, 36106, 374, 198, 2485, 1129, 5223, 25, 3918, 31, 19386, 851, 44076, 851, 1326, 4777, 17365, 19060, 4340, 25, 23890, 18, 627, 18337, 198, 565, 2381, 3889, 3045, 11, 4194, 1275, 1292, 340, 723, 80746, 7383, 82, 38372, 4194, 17611, 18839, 2608, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 10992, 424, 627, 85163, 1311, 8532, 77027, 10974, 11, 4194, 9, 38372, 4194, 69411, 2608, 2170, 55294, 636, 9477, 9959, 311, 264, 3319, 627, 3261, 19096, 28891, 2975, 11, 4194, 1275, 1292, 38372, 4194, 74, 16, 11, 4194, 65, 2608, 456, 1311, 8532, 77027, 10974, 11, 4194, 9, 38372, 4194, 69411, 2608, 88765, 9477, 9959, 311, 264, 3319, 13 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.elastic_search_bm25.ElasticSearchBM25Retriever.html
020b4e689eb0-1
Retrieve documents relevant to a query. add_texts(texts: Iterable[str], refresh_indices: bool = True) → List[str][source]¶ Run more texts through the embeddings and add to the retriever. Parameters texts – Iterable of strings to add to the retriever. refresh_indices – bool to refresh ElasticSearch indices Returns List of ids from adding the texts into the retriever. async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents classmethod create(elasticsearch_url: str, index_name: str, k1: float = 2.0, b: float = 0.75) → ElasticSearchBM25Retriever[source]¶ get_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents
[ 88765, 9477, 9959, 311, 264, 3319, 627, 723, 80746, 7383, 82, 25, 39116, 17752, 1145, 10625, 18839, 25, 1845, 284, 3082, 8, 11651, 1796, 17752, 1483, 2484, 60, 55609, 198, 6869, 810, 22755, 1555, 279, 71647, 323, 923, 311, 279, 10992, 424, 627, 9905, 198, 87042, 1389, 39116, 315, 9246, 311, 923, 311, 279, 10992, 424, 627, 17611, 18839, 1389, 1845, 311, 10625, 53010, 6014, 15285, 198, 16851, 198, 861, 315, 14483, 505, 7999, 279, 22755, 1139, 279, 10992, 424, 627, 7847, 264, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 2170, 55294, 636, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 27853, 1893, 19096, 28891, 2975, 25, 610, 11, 1963, 1292, 25, 610, 11, 597, 16, 25, 2273, 284, 220, 17, 13, 15, 11, 293, 25, 2273, 284, 220, 15, 13, 2075, 8, 11651, 53010, 6014, 30042, 914, 12289, 462, 2099, 76747, 60, 55609, 198, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 88765, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.elastic_search_bm25.ElasticSearchBM25Retriever.html
ce773adc8274-0
langchain.retrievers.docarray.SearchType¶ class langchain.retrievers.docarray.SearchType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)[source]¶ Bases: str, Enum Enumerator of the types of search to perform. Methods __init__(*args, **kwds) capitalize() Return a capitalized version of the string. casefold() Return a version of the string suitable for caseless comparisons. center(width[, fillchar]) Return a centered string of length width. count(sub[, start[, end]]) Return the number of non-overlapping occurrences of substring sub in string S[start:end]. encode([encoding, errors]) Encode the string using the codec registered for encoding. endswith(suffix[, start[, end]]) Return True if S ends with the specified suffix, False otherwise. expandtabs([tabsize]) Return a copy where all tab characters are expanded using spaces. find(sub[, start[, end]]) Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. format(*args, **kwargs) Return a formatted version of S, using substitutions from args and kwargs. format_map(mapping) Return a formatted version of S, using substitutions from mapping. index(sub[, start[, end]]) Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. isalnum() Return True if the string is an alpha-numeric string, False otherwise. isalpha() Return True if the string is an alphabetic string, False otherwise. isascii() Return True if all characters in the string are ASCII, False otherwise. isdecimal()
[ 5317, 8995, 1351, 9104, 3078, 24595, 1686, 33003, 941, 55609, 198, 1058, 8859, 8995, 1351, 9104, 3078, 24595, 1686, 33003, 941, 3764, 11, 5144, 5980, 11, 12039, 4793, 5980, 11, 5965, 609, 5980, 11, 955, 5980, 11, 1212, 28, 16, 11, 19254, 5980, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 610, 11, 14416, 198, 10679, 315, 279, 4595, 315, 2778, 311, 2804, 627, 18337, 198, 565, 2381, 69106, 2164, 11, 4194, 334, 29700, 5469, 340, 82441, 746, 5715, 264, 98421, 2373, 315, 279, 925, 627, 5756, 20557, 746, 5715, 264, 2373, 315, 279, 925, 14791, 369, 1162, 1752, 36595, 627, 3133, 16830, 38372, 4194, 7712, 1799, 2608, 5715, 264, 31288, 925, 315, 3160, 2430, 627, 1868, 10849, 38372, 4194, 2527, 38372, 4194, 408, 27829, 5715, 279, 1396, 315, 2536, 29352, 91719, 57115, 315, 39549, 1207, 304, 925, 328, 29563, 26874, 27218, 6311, 2625, 17600, 11, 4194, 7805, 2608, 33635, 279, 925, 1701, 279, 35747, 9879, 369, 11418, 627, 1438, 4291, 97566, 38372, 4194, 2527, 38372, 4194, 408, 27829, 5715, 3082, 422, 328, 10548, 449, 279, 5300, 21166, 11, 3641, 6062, 627, 33417, 32093, 2625, 6323, 2190, 2608, 5715, 264, 3048, 1405, 682, 5769, 5885, 527, 17626, 1701, 12908, 627, 3990, 10849, 38372, 4194, 2527, 38372, 4194, 408, 27829, 5715, 279, 15821, 1963, 304, 328, 1405, 39549, 1207, 374, 1766, 11, 1778, 430, 1207, 374, 13282, 2949, 328, 29563, 26874, 27218, 2293, 4163, 2164, 11, 4194, 334, 9872, 340, 5715, 264, 24001, 2373, 315, 328, 11, 1701, 94750, 505, 2897, 323, 16901, 627, 2293, 5489, 82157, 340, 5715, 264, 24001, 2373, 315, 328, 11, 1701, 94750, 505, 13021, 627, 1275, 10849, 38372, 4194, 2527, 38372, 4194, 408, 27829, 5715, 279, 15821, 1963, 304, 328, 1405, 39549, 1207, 374, 1766, 11, 1778, 430, 1207, 374, 13282, 2949, 328, 29563, 26874, 27218, 285, 94462, 746, 5715, 3082, 422, 279, 925, 374, 459, 8451, 12, 20173, 925, 11, 3641, 6062, 627, 285, 7288, 746, 5715, 3082, 422, 279, 925, 374, 459, 65695, 45938, 925, 11, 3641, 6062, 627, 285, 24207, 746, 5715, 3082, 422, 682, 5885, 304, 279, 925, 527, 40416, 11, 3641, 6062, 627, 285, 24170, 368 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.docarray.SearchType.html
ce773adc8274-1
Return True if all characters in the string are ASCII, False otherwise. isdecimal() Return True if the string is a decimal string, False otherwise. isdigit() Return True if the string is a digit string, False otherwise. isidentifier() Return True if the string is a valid Python identifier, False otherwise. islower() Return True if the string is a lowercase string, False otherwise. isnumeric() Return True if the string is a numeric string, False otherwise. isprintable() Return True if the string is printable, False otherwise. isspace() Return True if the string is a whitespace string, False otherwise. istitle() Return True if the string is a title-cased string, False otherwise. isupper() Return True if the string is an uppercase string, False otherwise. join(iterable, /) Concatenate any number of strings. ljust(width[, fillchar]) Return a left-justified string of length width. lower() Return a copy of the string converted to lowercase. lstrip([chars]) Return a copy of the string with leading whitespace removed. maketrans Return a translation table usable for str.translate(). partition(sep, /) Partition the string into three parts using the given separator. removeprefix(prefix, /) Return a str with the given prefix string removed if present. removesuffix(suffix, /) Return a str with the given suffix string removed if present. replace(old, new[, count]) Return a copy with all occurrences of substring old replaced by new. rfind(sub[, start[, end]]) Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. rindex(sub[, start[, end]])
[ 5715, 3082, 422, 682, 5885, 304, 279, 925, 527, 40416, 11, 3641, 6062, 627, 285, 24170, 746, 5715, 3082, 422, 279, 925, 374, 264, 12395, 925, 11, 3641, 6062, 627, 70929, 746, 5715, 3082, 422, 279, 925, 374, 264, 16099, 925, 11, 3641, 6062, 627, 285, 16288, 746, 5715, 3082, 422, 279, 925, 374, 264, 2764, 13325, 13110, 11, 3641, 6062, 627, 285, 15115, 746, 5715, 3082, 422, 279, 925, 374, 264, 43147, 925, 11, 3641, 6062, 627, 285, 20173, 746, 5715, 3082, 422, 279, 925, 374, 264, 25031, 925, 11, 3641, 6062, 627, 285, 1374, 481, 746, 5715, 3082, 422, 279, 925, 374, 43095, 11, 3641, 6062, 627, 82870, 746, 5715, 3082, 422, 279, 925, 374, 264, 37472, 925, 11, 3641, 6062, 627, 380, 1017, 746, 5715, 3082, 422, 279, 925, 374, 264, 2316, 1824, 1503, 925, 11, 3641, 6062, 627, 285, 13886, 746, 5715, 3082, 422, 279, 925, 374, 459, 40582, 925, 11, 3641, 6062, 627, 6115, 28169, 481, 11, 4194, 54660, 79540, 32223, 904, 1396, 315, 9246, 627, 75, 4345, 16830, 38372, 4194, 7712, 1799, 2608, 5715, 264, 2163, 12, 4345, 1908, 925, 315, 3160, 2430, 627, 15115, 746, 5715, 264, 3048, 315, 279, 925, 16489, 311, 43147, 627, 75, 13406, 2625, 19811, 2608, 5715, 264, 3048, 315, 279, 925, 449, 6522, 37472, 7108, 627, 49662, 17820, 598, 198, 5715, 264, 14807, 2007, 41030, 369, 610, 26998, 26914, 42098, 10698, 79, 11, 4194, 54660, 51078, 279, 925, 1139, 2380, 5596, 1701, 279, 2728, 25829, 627, 5514, 12113, 30018, 11, 4194, 54660, 5715, 264, 610, 449, 279, 2728, 9436, 925, 7108, 422, 3118, 627, 1864, 10296, 13866, 97566, 11, 4194, 54660, 5715, 264, 610, 449, 279, 2728, 21166, 925, 7108, 422, 3118, 627, 8319, 22739, 11, 4194, 943, 38372, 4194, 1868, 2608, 5715, 264, 3048, 449, 682, 57115, 315, 39549, 2362, 12860, 555, 502, 627, 81, 3990, 10849, 38372, 4194, 2527, 38372, 4194, 408, 27829, 5715, 279, 8592, 1963, 304, 328, 1405, 39549, 1207, 374, 1766, 11, 1778, 430, 1207, 374, 13282, 2949, 328, 29563, 26874, 27218, 81, 1275, 10849, 38372, 4194, 2527, 38372, 4194, 408, 30716 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.docarray.SearchType.html
ce773adc8274-2
rindex(sub[, start[, end]]) Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. rjust(width[, fillchar]) Return a right-justified string of length width. rpartition(sep, /) Partition the string into three parts using the given separator. rsplit([sep, maxsplit]) Return a list of the substrings in the string, using sep as the separator string. rstrip([chars]) Return a copy of the string with trailing whitespace removed. split([sep, maxsplit]) Return a list of the substrings in the string, using sep as the separator string. splitlines([keepends]) Return a list of the lines in the string, breaking at line boundaries. startswith(prefix[, start[, end]]) Return True if S starts with the specified prefix, False otherwise. strip([chars]) Return a copy of the string with leading and trailing whitespace removed. swapcase() Convert uppercase characters to lowercase and lowercase characters to uppercase. title() Return a version of the string where each word is titlecased. translate(table, /) Replace each character in the string using the given translation table. upper() Return a copy of the string converted to uppercase. zfill(width, /) Pad a numeric string with zeros on the left, to fill a field of the given width. Attributes similarity mmr capitalize()¶ Return a capitalized version of the string. More specifically, make the first character have upper case and the rest lower case. casefold()¶ Return a version of the string suitable for caseless comparisons. center(width, fillchar=' ', /)¶ Return a centered string of length width. Padding is done using the specified fill character (default is a space).
[ 81, 1275, 10849, 38372, 4194, 2527, 38372, 4194, 408, 27829, 5715, 279, 8592, 1963, 304, 328, 1405, 39549, 1207, 374, 1766, 11, 1778, 430, 1207, 374, 13282, 2949, 328, 29563, 26874, 27218, 81, 4345, 16830, 38372, 4194, 7712, 1799, 2608, 5715, 264, 1314, 12, 4345, 1908, 925, 315, 3160, 2430, 627, 81, 42098, 10698, 79, 11, 4194, 54660, 51078, 279, 925, 1139, 2380, 5596, 1701, 279, 2728, 25829, 627, 5544, 2344, 2625, 29136, 11, 4194, 2880, 7105, 2608, 5715, 264, 1160, 315, 279, 16146, 826, 304, 279, 925, 11, 1701, 21693, 439, 279, 25829, 925, 627, 71498, 2625, 19811, 2608, 5715, 264, 3048, 315, 279, 925, 449, 28848, 37472, 7108, 627, 7105, 2625, 29136, 11, 4194, 2880, 7105, 2608, 5715, 264, 1160, 315, 279, 16146, 826, 304, 279, 925, 11, 1701, 21693, 439, 279, 25829, 925, 627, 7105, 8128, 2625, 13397, 1438, 2608, 5715, 264, 1160, 315, 279, 5238, 304, 279, 925, 11, 15061, 520, 1584, 23546, 627, 70425, 30018, 38372, 4194, 2527, 38372, 4194, 408, 27829, 5715, 3082, 422, 328, 8638, 449, 279, 5300, 9436, 11, 3641, 6062, 627, 13406, 2625, 19811, 2608, 5715, 264, 3048, 315, 279, 925, 449, 6522, 323, 28848, 37472, 7108, 627, 26825, 5756, 746, 12281, 40582, 5885, 311, 43147, 323, 43147, 5885, 311, 40582, 627, 2150, 746, 5715, 264, 2373, 315, 279, 925, 1405, 1855, 3492, 374, 2316, 92226, 627, 14372, 16138, 11, 4194, 54660, 23979, 1855, 3752, 304, 279, 925, 1701, 279, 2728, 14807, 2007, 627, 13886, 746, 5715, 264, 3048, 315, 279, 925, 16489, 311, 40582, 627, 89, 7712, 16830, 11, 4194, 54660, 14047, 264, 25031, 925, 449, 17975, 389, 279, 2163, 11, 311, 5266, 264, 2115, 315, 279, 2728, 2430, 627, 10738, 198, 15124, 49325, 198, 3906, 81, 198, 82441, 368, 55609, 198, 5715, 264, 98421, 2373, 315, 279, 925, 627, 7816, 11951, 11, 1304, 279, 1176, 3752, 617, 8582, 1162, 323, 279, 2800, 4827, 198, 5756, 627, 5756, 20557, 368, 55609, 198, 5715, 264, 2373, 315, 279, 925, 14791, 369, 1162, 1752, 36595, 627, 3133, 16830, 11, 5266, 1799, 1151, 6752, 611, 8, 55609, 198, 5715, 264, 31288, 925, 315, 3160, 2430, 627, 22344, 374, 2884, 1701, 279, 5300, 5266, 3752, 320, 2309, 374, 264, 3634, 570 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.docarray.SearchType.html
ce773adc8274-3
Padding is done using the specified fill character (default is a space). count(sub[, start[, end]]) → int¶ Return the number of non-overlapping occurrences of substring sub in string S[start:end]. Optional arguments start and end are interpreted as in slice notation. encode(encoding='utf-8', errors='strict')¶ Encode the string using the codec registered for encoding. encodingThe encoding in which to encode the string. errorsThe error handling scheme to use for encoding errors. The default is ‘strict’ meaning that encoding errors raise a UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and ‘xmlcharrefreplace’ as well as any other name registered with codecs.register_error that can handle UnicodeEncodeErrors. endswith(suffix[, start[, end]]) → bool¶ Return True if S ends with the specified suffix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. suffix can also be a tuple of strings to try. expandtabs(tabsize=8)¶ Return a copy where all tab characters are expanded using spaces. If tabsize is not given, a tab size of 8 characters is assumed. find(sub[, start[, end]]) → int¶ Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on failure. format(*args, **kwargs) → str¶ Return a formatted version of S, using substitutions from args and kwargs. The substitutions are identified by braces (‘{’ and ‘}’). format_map(mapping) → str¶ Return a formatted version of S, using substitutions from mapping. The substitutions are identified by braces (‘{’ and ‘}’).
[ 22344, 374, 2884, 1701, 279, 5300, 5266, 3752, 320, 2309, 374, 264, 3634, 4390, 1868, 10849, 38372, 1212, 38372, 842, 30716, 11651, 528, 55609, 198, 5715, 279, 1396, 315, 2536, 29352, 91719, 57115, 315, 39549, 1207, 304, 198, 928, 328, 29563, 26874, 948, 220, 12536, 6105, 1212, 323, 842, 527, 198, 94561, 439, 304, 16363, 45297, 627, 6311, 86963, 1151, 4867, 12, 23, 518, 6103, 1151, 6765, 873, 55609, 198, 33635, 279, 925, 1701, 279, 35747, 9879, 369, 11418, 627, 17600, 791, 11418, 304, 902, 311, 16559, 279, 925, 627, 7805, 791, 1493, 11850, 13155, 311, 1005, 369, 11418, 6103, 627, 791, 1670, 374, 3451, 6765, 529, 7438, 430, 11418, 6103, 4933, 264, 198, 35020, 33635, 1480, 13, 220, 7089, 3284, 2819, 527, 3451, 13431, 20182, 3451, 8319, 529, 323, 198, 14336, 6591, 1799, 1116, 8319, 529, 439, 1664, 439, 904, 1023, 836, 9879, 449, 198, 1889, 4942, 10131, 4188, 430, 649, 3790, 36997, 33635, 14199, 627, 1438, 4291, 97566, 38372, 1212, 38372, 842, 30716, 11651, 1845, 55609, 198, 5715, 3082, 422, 328, 10548, 449, 279, 5300, 21166, 11, 3641, 6062, 627, 2409, 10309, 1212, 11, 1296, 328, 7314, 520, 430, 2361, 627, 2409, 10309, 842, 11, 3009, 27393, 328, 520, 430, 2361, 627, 27884, 649, 1101, 387, 264, 14743, 315, 9246, 311, 1456, 627, 33417, 32093, 28945, 2190, 28, 23, 8, 55609, 198, 5715, 264, 3048, 1405, 682, 5769, 5885, 527, 17626, 1701, 12908, 627, 2746, 5769, 2190, 374, 539, 2728, 11, 264, 5769, 1404, 315, 220, 23, 5885, 374, 19655, 627, 3990, 10849, 38372, 1212, 38372, 842, 30716, 11651, 528, 55609, 198, 5715, 279, 15821, 1963, 304, 328, 1405, 39549, 1207, 374, 1766, 345, 21470, 430, 1207, 374, 13282, 2949, 328, 29563, 26874, 948, 220, 12536, 198, 16774, 1212, 323, 842, 527, 33398, 439, 304, 16363, 45297, 627, 5715, 482, 16, 389, 8060, 627, 2293, 4163, 2164, 11, 3146, 9872, 8, 11651, 610, 55609, 198, 5715, 264, 24001, 2373, 315, 328, 11, 1701, 94750, 505, 2897, 323, 16901, 627, 791, 94750, 527, 11054, 555, 60291, 320, 14336, 90, 529, 323, 3451, 92, 529, 4390, 2293, 5489, 82157, 8, 11651, 610, 55609, 198, 5715, 264, 24001, 2373, 315, 328, 11, 1701, 94750, 505, 13021, 627, 791, 94750, 527, 11054, 555, 60291, 320, 14336, 90, 529, 323, 3451, 92, 529, 570 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.docarray.SearchType.html
ce773adc8274-4
The substitutions are identified by braces (‘{’ and ‘}’). index(sub[, start[, end]]) → int¶ Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation. Raises ValueError when the substring is not found. isalnum()¶ Return True if the string is an alpha-numeric string, False otherwise. A string is alpha-numeric if all characters in the string are alpha-numeric and there is at least one character in the string. isalpha()¶ Return True if the string is an alphabetic string, False otherwise. A string is alphabetic if all characters in the string are alphabetic and there is at least one character in the string. isascii()¶ Return True if all characters in the string are ASCII, False otherwise. ASCII characters have code points in the range U+0000-U+007F. Empty string is ASCII too. isdecimal()¶ Return True if the string is a decimal string, False otherwise. A string is a decimal string if all characters in the string are decimal and there is at least one character in the string. isdigit()¶ Return True if the string is a digit string, False otherwise. A string is a digit string if all characters in the string are digits and there is at least one character in the string. isidentifier()¶ Return True if the string is a valid Python identifier, False otherwise. Call keyword.iskeyword(s) to test whether string s is a reserved identifier, such as “def” or “class”. islower()¶ Return True if the string is a lowercase string, False otherwise. A string is lowercase if all cased characters in the string are lowercase and
[ 791, 94750, 527, 11054, 555, 60291, 320, 14336, 90, 529, 323, 3451, 92, 529, 4390, 1275, 10849, 38372, 1212, 38372, 842, 30716, 11651, 528, 55609, 198, 5715, 279, 15821, 1963, 304, 328, 1405, 39549, 1207, 374, 1766, 345, 21470, 430, 1207, 374, 13282, 2949, 328, 29563, 26874, 948, 220, 12536, 198, 16774, 1212, 323, 842, 527, 33398, 439, 304, 16363, 45297, 627, 36120, 15764, 994, 279, 39549, 374, 539, 1766, 627, 285, 94462, 368, 55609, 198, 5715, 3082, 422, 279, 925, 374, 459, 8451, 12, 20173, 925, 11, 3641, 6062, 627, 32, 925, 374, 8451, 12, 20173, 422, 682, 5885, 304, 279, 925, 527, 8451, 12, 20173, 323, 198, 19041, 374, 520, 3325, 832, 3752, 304, 279, 925, 627, 285, 7288, 368, 55609, 198, 5715, 3082, 422, 279, 925, 374, 459, 65695, 45938, 925, 11, 3641, 6062, 627, 32, 925, 374, 65695, 45938, 422, 682, 5885, 304, 279, 925, 527, 65695, 45938, 323, 1070, 198, 285, 520, 3325, 832, 3752, 304, 279, 925, 627, 285, 24207, 368, 55609, 198, 5715, 3082, 422, 682, 5885, 304, 279, 925, 527, 40416, 11, 3641, 6062, 627, 57550, 5885, 617, 2082, 3585, 304, 279, 2134, 549, 10, 931, 15, 35681, 10, 11194, 37, 627, 3606, 925, 374, 40416, 2288, 627, 285, 24170, 368, 55609, 198, 5715, 3082, 422, 279, 925, 374, 264, 12395, 925, 11, 3641, 6062, 627, 32, 925, 374, 264, 12395, 925, 422, 682, 5885, 304, 279, 925, 527, 12395, 323, 198, 19041, 374, 520, 3325, 832, 3752, 304, 279, 925, 627, 70929, 368, 55609, 198, 5715, 3082, 422, 279, 925, 374, 264, 16099, 925, 11, 3641, 6062, 627, 32, 925, 374, 264, 16099, 925, 422, 682, 5885, 304, 279, 925, 527, 19016, 323, 1070, 198, 285, 520, 3325, 832, 3752, 304, 279, 925, 627, 285, 16288, 368, 55609, 198, 5715, 3082, 422, 279, 925, 374, 264, 2764, 13325, 13110, 11, 3641, 6062, 627, 7368, 16570, 2124, 20454, 1161, 8, 311, 1296, 3508, 925, 274, 374, 264, 4694, 13110, 345, 21470, 439, 1054, 755, 863, 477, 1054, 1058, 863, 627, 285, 15115, 368, 55609, 198, 5715, 3082, 422, 279, 925, 374, 264, 43147, 925, 11, 3641, 6062, 627, 32, 925, 374, 43147, 422, 682, 272, 1503, 5885, 304, 279, 925, 527, 43147, 323 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.docarray.SearchType.html
ce773adc8274-5
A string is lowercase if all cased characters in the string are lowercase and there is at least one cased character in the string. isnumeric()¶ Return True if the string is a numeric string, False otherwise. A string is numeric if all characters in the string are numeric and there is at least one character in the string. isprintable()¶ Return True if the string is printable, False otherwise. A string is printable if all of its characters are considered printable in repr() or if it is empty. isspace()¶ Return True if the string is a whitespace string, False otherwise. A string is whitespace if all characters in the string are whitespace and there is at least one character in the string. istitle()¶ Return True if the string is a title-cased string, False otherwise. In a title-cased string, upper- and title-case characters may only follow uncased characters and lowercase characters only cased ones. isupper()¶ Return True if the string is an uppercase string, False otherwise. A string is uppercase if all cased characters in the string are uppercase and there is at least one cased character in the string. join(iterable, /)¶ Concatenate any number of strings. The string whose method is called is inserted in between each given string. The result is returned as a new string. Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’ ljust(width, fillchar=' ', /)¶ Return a left-justified string of length width. Padding is done using the specified fill character (default is a space). lower()¶ Return a copy of the string converted to lowercase. lstrip(chars=None, /)¶ Return a copy of the string with leading whitespace removed.
[ 32, 925, 374, 43147, 422, 682, 272, 1503, 5885, 304, 279, 925, 527, 43147, 323, 198, 19041, 374, 520, 3325, 832, 272, 1503, 3752, 304, 279, 925, 627, 285, 20173, 368, 55609, 198, 5715, 3082, 422, 279, 925, 374, 264, 25031, 925, 11, 3641, 6062, 627, 32, 925, 374, 25031, 422, 682, 5885, 304, 279, 925, 527, 25031, 323, 1070, 374, 520, 198, 56371, 832, 3752, 304, 279, 925, 627, 285, 1374, 481, 368, 55609, 198, 5715, 3082, 422, 279, 925, 374, 43095, 11, 3641, 6062, 627, 32, 925, 374, 43095, 422, 682, 315, 1202, 5885, 527, 6646, 43095, 304, 198, 31937, 368, 477, 422, 433, 374, 4384, 627, 82870, 368, 55609, 198, 5715, 3082, 422, 279, 925, 374, 264, 37472, 925, 11, 3641, 6062, 627, 32, 925, 374, 37472, 422, 682, 5885, 304, 279, 925, 527, 37472, 323, 1070, 198, 285, 520, 3325, 832, 3752, 304, 279, 925, 627, 380, 1017, 368, 55609, 198, 5715, 3082, 422, 279, 925, 374, 264, 2316, 1824, 1503, 925, 11, 3641, 6062, 627, 644, 264, 2316, 1824, 1503, 925, 11, 8582, 12, 323, 2316, 39585, 5885, 1253, 1193, 198, 19070, 21482, 1503, 5885, 323, 43147, 5885, 1193, 272, 1503, 6305, 627, 285, 13886, 368, 55609, 198, 5715, 3082, 422, 279, 925, 374, 459, 40582, 925, 11, 3641, 6062, 627, 32, 925, 374, 40582, 422, 682, 272, 1503, 5885, 304, 279, 925, 527, 40582, 323, 198, 19041, 374, 520, 3325, 832, 272, 1503, 3752, 304, 279, 925, 627, 6115, 28169, 481, 11, 611, 8, 55609, 198, 79540, 32223, 904, 1396, 315, 9246, 627, 791, 925, 6832, 1749, 374, 2663, 374, 22306, 304, 1990, 1855, 2728, 925, 627, 791, 1121, 374, 6052, 439, 264, 502, 925, 627, 13617, 25, 3451, 14639, 13, 6115, 2625, 14336, 370, 20182, 3451, 65116, 20182, 3451, 5544, 529, 2526, 1492, 3451, 370, 558, 80, 26721, 529, 198, 75, 4345, 16830, 11, 5266, 1799, 1151, 6752, 611, 8, 55609, 198, 5715, 264, 2163, 12, 4345, 1908, 925, 315, 3160, 2430, 627, 22344, 374, 2884, 1701, 279, 5300, 5266, 3752, 320, 2309, 374, 264, 3634, 4390, 15115, 368, 55609, 198, 5715, 264, 3048, 315, 279, 925, 16489, 311, 43147, 627, 75, 13406, 77306, 5980, 11, 611, 8, 55609, 198, 5715, 264, 3048, 315, 279, 925, 449, 6522, 37472, 7108, 13 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.docarray.SearchType.html
ce773adc8274-6
Return a copy of the string with leading whitespace removed. If chars is given and not None, remove characters in chars instead. static maketrans()¶ Return a translation table usable for str.translate(). If there is only one argument, it must be a dictionary mapping Unicode ordinals (integers) or characters to Unicode ordinals, strings or None. Character keys will be then converted to ordinals. If there are two arguments, they must be strings of equal length, and in the resulting dictionary, each character in x will be mapped to the character at the same position in y. If there is a third argument, it must be a string, whose characters will be mapped to None in the result. partition(sep, /)¶ Partition the string into three parts using the given separator. This will search for the separator in the string. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it. If the separator is not found, returns a 3-tuple containing the original string and two empty strings. removeprefix(prefix, /)¶ Return a str with the given prefix string removed if present. If the string starts with the prefix string, return string[len(prefix):]. Otherwise, return a copy of the original string. removesuffix(suffix, /)¶ Return a str with the given suffix string removed if present. If the string ends with the suffix string and that suffix is not empty, return string[:-len(suffix)]. Otherwise, return a copy of the original string. replace(old, new, count=- 1, /)¶ Return a copy with all occurrences of substring old replaced by new. countMaximum number of occurrences to replace. -1 (the default value) means replace all occurrences.
[ 5715, 264, 3048, 315, 279, 925, 449, 6522, 37472, 7108, 627, 2746, 23861, 374, 2728, 323, 539, 2290, 11, 4148, 5885, 304, 23861, 4619, 627, 2020, 52016, 17820, 598, 368, 55609, 198, 5715, 264, 14807, 2007, 41030, 369, 610, 26998, 26914, 2746, 1070, 374, 1193, 832, 5811, 11, 433, 2011, 387, 264, 11240, 13021, 36997, 198, 541, 24624, 320, 396, 68692, 8, 477, 5885, 311, 36997, 6141, 24624, 11, 9246, 477, 2290, 627, 12686, 7039, 690, 387, 1243, 16489, 311, 6141, 24624, 627, 2746, 1070, 527, 1403, 6105, 11, 814, 2011, 387, 9246, 315, 6273, 3160, 11, 323, 198, 258, 279, 13239, 11240, 11, 1855, 3752, 304, 865, 690, 387, 24784, 311, 279, 198, 19740, 520, 279, 1890, 2361, 304, 379, 13, 1442, 1070, 374, 264, 4948, 5811, 11, 433, 198, 25849, 387, 264, 925, 11, 6832, 5885, 690, 387, 24784, 311, 2290, 304, 279, 1121, 627, 42098, 10698, 79, 11, 611, 8, 55609, 198, 51078, 279, 925, 1139, 2380, 5596, 1701, 279, 2728, 25829, 627, 2028, 690, 2778, 369, 279, 25829, 304, 279, 925, 13, 220, 1442, 279, 25829, 374, 1766, 345, 4310, 264, 220, 18, 2442, 6189, 8649, 279, 961, 1603, 279, 25829, 11, 279, 25829, 198, 275, 726, 11, 323, 279, 961, 1306, 433, 627, 2746, 279, 25829, 374, 539, 1766, 11, 4780, 264, 220, 18, 2442, 6189, 8649, 279, 4113, 925, 198, 438, 1403, 4384, 9246, 627, 5514, 12113, 30018, 11, 611, 8, 55609, 198, 5715, 264, 610, 449, 279, 2728, 9436, 925, 7108, 422, 3118, 627, 2746, 279, 925, 8638, 449, 279, 9436, 925, 11, 471, 925, 25721, 30018, 1680, 27218, 81556, 11, 471, 264, 3048, 315, 279, 4113, 925, 627, 1864, 10296, 13866, 97566, 11, 611, 8, 55609, 198, 5715, 264, 610, 449, 279, 2728, 21166, 925, 7108, 422, 3118, 627, 2746, 279, 925, 10548, 449, 279, 21166, 925, 323, 430, 21166, 374, 539, 4384, 345, 693, 925, 27141, 2963, 97566, 27261, 18715, 11, 471, 264, 3048, 315, 279, 4113, 198, 928, 627, 8319, 22739, 11, 502, 11, 1797, 11065, 220, 16, 11, 611, 8, 55609, 198, 5715, 264, 3048, 449, 682, 57115, 315, 39549, 2362, 12860, 555, 502, 627, 1868, 28409, 1396, 315, 57115, 311, 8454, 627, 12, 16, 320, 1820, 1670, 907, 8, 3445, 8454, 682, 57115, 13 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.docarray.SearchType.html
ce773adc8274-7
-1 (the default value) means replace all occurrences. If the optional argument count is given, only the first count occurrences are replaced. rfind(sub[, start[, end]]) → int¶ Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on failure. rindex(sub[, start[, end]]) → int¶ Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation. Raises ValueError when the substring is not found. rjust(width, fillchar=' ', /)¶ Return a right-justified string of length width. Padding is done using the specified fill character (default is a space). rpartition(sep, /)¶ Partition the string into three parts using the given separator. This will search for the separator in the string, starting at the end. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it. If the separator is not found, returns a 3-tuple containing two empty strings and the original string. rsplit(sep=None, maxsplit=- 1)¶ Return a list of the substrings in the string, using sep as the separator string. sepThe separator used to split the string. When set to None (the default value), will split on any whitespace character (including \n \r \t \f and spaces) and will discard empty strings from the result. maxsplitMaximum number of splits (starting from the left). -1 (the default value) means no limit.
[ 12, 16, 320, 1820, 1670, 907, 8, 3445, 8454, 682, 57115, 627, 2746, 279, 10309, 5811, 1797, 374, 2728, 11, 1193, 279, 1176, 1797, 57115, 527, 198, 265, 37469, 627, 81, 3990, 10849, 38372, 1212, 38372, 842, 30716, 11651, 528, 55609, 198, 5715, 279, 8592, 1963, 304, 328, 1405, 39549, 1207, 374, 1766, 345, 21470, 430, 1207, 374, 13282, 2949, 328, 29563, 26874, 948, 220, 12536, 198, 16774, 1212, 323, 842, 527, 33398, 439, 304, 16363, 45297, 627, 5715, 482, 16, 389, 8060, 627, 81, 1275, 10849, 38372, 1212, 38372, 842, 30716, 11651, 528, 55609, 198, 5715, 279, 8592, 1963, 304, 328, 1405, 39549, 1207, 374, 1766, 345, 21470, 430, 1207, 374, 13282, 2949, 328, 29563, 26874, 948, 220, 12536, 198, 16774, 1212, 323, 842, 527, 33398, 439, 304, 16363, 45297, 627, 36120, 15764, 994, 279, 39549, 374, 539, 1766, 627, 81, 4345, 16830, 11, 5266, 1799, 1151, 6752, 611, 8, 55609, 198, 5715, 264, 1314, 12, 4345, 1908, 925, 315, 3160, 2430, 627, 22344, 374, 2884, 1701, 279, 5300, 5266, 3752, 320, 2309, 374, 264, 3634, 4390, 81, 42098, 10698, 79, 11, 611, 8, 55609, 198, 51078, 279, 925, 1139, 2380, 5596, 1701, 279, 2728, 25829, 627, 2028, 690, 2778, 369, 279, 25829, 304, 279, 925, 11, 6041, 520, 279, 842, 13, 1442, 198, 1820, 25829, 374, 1766, 11, 4780, 264, 220, 18, 2442, 6189, 8649, 279, 961, 1603, 279, 198, 41220, 11, 279, 25829, 5196, 11, 323, 279, 961, 1306, 433, 627, 2746, 279, 25829, 374, 539, 1766, 11, 4780, 264, 220, 18, 2442, 6189, 8649, 1403, 4384, 9246, 198, 438, 279, 4113, 925, 627, 5544, 2344, 10698, 79, 5980, 11, 1973, 7105, 11065, 220, 16, 8, 55609, 198, 5715, 264, 1160, 315, 279, 16146, 826, 304, 279, 925, 11, 1701, 21693, 439, 279, 25829, 925, 627, 29136, 791, 25829, 1511, 311, 6859, 279, 925, 627, 4599, 743, 311, 2290, 320, 1820, 1670, 907, 705, 690, 6859, 389, 904, 37472, 198, 19740, 320, 16564, 1144, 77, 1144, 81, 1144, 83, 1144, 69, 323, 12908, 8, 323, 690, 38967, 198, 3274, 9246, 505, 279, 1121, 627, 2880, 7105, 28409, 1396, 315, 41567, 320, 40389, 505, 279, 2163, 4390, 12, 16, 320, 1820, 1670, 907, 8, 3445, 912, 4017, 13 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.docarray.SearchType.html
ce773adc8274-8
-1 (the default value) means no limit. Splitting starts at the end of the string and works to the front. rstrip(chars=None, /)¶ Return a copy of the string with trailing whitespace removed. If chars is given and not None, remove characters in chars instead. split(sep=None, maxsplit=- 1)¶ Return a list of the substrings in the string, using sep as the separator string. sepThe separator used to split the string. When set to None (the default value), will split on any whitespace character (including \n \r \t \f and spaces) and will discard empty strings from the result. maxsplitMaximum number of splits (starting from the left). -1 (the default value) means no limit. Note, str.split() is mainly useful for data that has been intentionally delimited. With natural text that includes punctuation, consider using the regular expression module. splitlines(keepends=False)¶ Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting list unless keepends is given and true. startswith(prefix[, start[, end]]) → bool¶ Return True if S starts with the specified prefix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. prefix can also be a tuple of strings to try. strip(chars=None, /)¶ Return a copy of the string with leading and trailing whitespace removed. If chars is given and not None, remove characters in chars instead. swapcase()¶ Convert uppercase characters to lowercase and lowercase characters to uppercase. title()¶ Return a version of the string where each word is titlecased. More specifically, words start with uppercased characters and all remaining
[ 12, 16, 320, 1820, 1670, 907, 8, 3445, 912, 4017, 627, 20805, 1303, 8638, 520, 279, 842, 315, 279, 925, 323, 4375, 311, 279, 4156, 627, 71498, 77306, 5980, 11, 611, 8, 55609, 198, 5715, 264, 3048, 315, 279, 925, 449, 28848, 37472, 7108, 627, 2746, 23861, 374, 2728, 323, 539, 2290, 11, 4148, 5885, 304, 23861, 4619, 627, 7105, 10698, 79, 5980, 11, 1973, 7105, 11065, 220, 16, 8, 55609, 198, 5715, 264, 1160, 315, 279, 16146, 826, 304, 279, 925, 11, 1701, 21693, 439, 279, 25829, 925, 627, 29136, 791, 25829, 1511, 311, 6859, 279, 925, 627, 4599, 743, 311, 2290, 320, 1820, 1670, 907, 705, 690, 6859, 389, 904, 37472, 198, 19740, 320, 16564, 1144, 77, 1144, 81, 1144, 83, 1144, 69, 323, 12908, 8, 323, 690, 38967, 198, 3274, 9246, 505, 279, 1121, 627, 2880, 7105, 28409, 1396, 315, 41567, 320, 40389, 505, 279, 2163, 4390, 12, 16, 320, 1820, 1670, 907, 8, 3445, 912, 4017, 627, 9290, 11, 610, 5402, 368, 374, 14918, 5505, 369, 828, 430, 706, 1027, 37304, 198, 9783, 32611, 13, 220, 3161, 5933, 1495, 430, 5764, 62603, 11, 2980, 1701, 198, 1820, 5912, 7645, 4793, 627, 7105, 8128, 7, 13397, 1438, 5725, 8, 55609, 198, 5715, 264, 1160, 315, 279, 5238, 304, 279, 925, 11, 15061, 520, 1584, 23546, 627, 2519, 18808, 527, 539, 5343, 304, 279, 13239, 1160, 7389, 2567, 1438, 374, 2728, 323, 198, 1904, 627, 70425, 30018, 38372, 1212, 38372, 842, 30716, 11651, 1845, 55609, 198, 5715, 3082, 422, 328, 8638, 449, 279, 5300, 9436, 11, 3641, 6062, 627, 2409, 10309, 1212, 11, 1296, 328, 7314, 520, 430, 2361, 627, 2409, 10309, 842, 11, 3009, 27393, 328, 520, 430, 2361, 627, 12113, 649, 1101, 387, 264, 14743, 315, 9246, 311, 1456, 627, 13406, 77306, 5980, 11, 611, 8, 55609, 198, 5715, 264, 3048, 315, 279, 925, 449, 6522, 323, 28848, 37472, 7108, 627, 2746, 23861, 374, 2728, 323, 539, 2290, 11, 4148, 5885, 304, 23861, 4619, 627, 26825, 5756, 368, 55609, 198, 12281, 40582, 5885, 311, 43147, 323, 43147, 5885, 311, 40582, 627, 2150, 368, 55609, 198, 5715, 264, 2373, 315, 279, 925, 1405, 1855, 3492, 374, 2316, 92226, 627, 7816, 11951, 11, 4339, 1212, 449, 8582, 92226, 5885, 323, 682, 9861 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.docarray.SearchType.html
ce773adc8274-9
More specifically, words start with uppercased characters and all remaining cased characters have lower case. translate(table, /)¶ Replace each character in the string using the given translation table. tableTranslation table, which must be a mapping of Unicode ordinals to Unicode ordinals, strings, or None. The table must implement lookup/indexing via __getitem__, for instance a dictionary or list. If this operation raises LookupError, the character is left untouched. Characters mapped to None are deleted. upper()¶ Return a copy of the string converted to uppercase. zfill(width, /)¶ Pad a numeric string with zeros on the left, to fill a field of the given width. The string is never truncated. mmr = 'mmr'¶ similarity = 'similarity'¶
[ 7816, 11951, 11, 4339, 1212, 449, 8582, 92226, 5885, 323, 682, 9861, 198, 92226, 5885, 617, 4827, 1162, 627, 14372, 16138, 11, 611, 8, 55609, 198, 23979, 1855, 3752, 304, 279, 925, 1701, 279, 2728, 14807, 2007, 627, 2048, 25416, 2007, 11, 902, 2011, 387, 264, 13021, 315, 36997, 6141, 24624, 311, 198, 35020, 6141, 24624, 11, 9246, 11, 477, 2290, 627, 791, 2007, 2011, 4305, 19128, 9199, 287, 4669, 1328, 61012, 10662, 369, 2937, 264, 198, 36771, 477, 1160, 13, 220, 1442, 420, 5784, 25930, 51411, 1480, 11, 279, 3752, 374, 198, 2414, 68622, 13, 220, 45616, 24784, 311, 2290, 527, 11309, 627, 13886, 368, 55609, 198, 5715, 264, 3048, 315, 279, 925, 16489, 311, 40582, 627, 89, 7712, 16830, 11, 611, 8, 55609, 198, 14047, 264, 25031, 925, 449, 17975, 389, 279, 2163, 11, 311, 5266, 264, 2115, 315, 279, 2728, 2430, 627, 791, 925, 374, 2646, 60856, 627, 3906, 81, 284, 364, 3906, 81, 6, 55609, 198, 15124, 49325, 284, 364, 15124, 49325, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.docarray.SearchType.html
7be70e67891c-0
langchain.retrievers.milvus.MilvusRetriever¶ class langchain.retrievers.milvus.MilvusRetriever(embedding_function: Embeddings, collection_name: str = 'LangChainCollection', connection_args: Optional[Dict[str, Any]] = None, consistency_level: str = 'Session', search_params: Optional[dict] = None)[source]¶ Bases: BaseRetriever Retriever that uses the Milvus API. Methods __init__(embedding_function[, ...]) add_texts(texts[, metadatas]) Add text to the Milvus store aget_relevant_documents(query, *[, callbacks]) Asynchronously get documents relevant to a query. get_relevant_documents(query, *[, callbacks]) Retrieve documents relevant to a query. add_texts(texts: List[str], metadatas: Optional[List[dict]] = None) → None[source]¶ Add text to the Milvus store Parameters texts (List[str]) – The text metadatas (List[dict]) – Metadata dicts, must line up with existing store async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents get_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents
[ 5317, 8995, 1351, 9104, 3078, 749, 321, 85, 355, 1345, 321, 85, 355, 12289, 462, 2099, 55609, 198, 1058, 8859, 8995, 1351, 9104, 3078, 749, 321, 85, 355, 1345, 321, 85, 355, 12289, 462, 2099, 50825, 7113, 9353, 25, 38168, 25624, 11, 4526, 1292, 25, 610, 284, 364, 27317, 19368, 6618, 518, 3717, 8550, 25, 12536, 58, 13755, 17752, 11, 5884, 5163, 284, 2290, 11, 29237, 8438, 25, 610, 284, 364, 5396, 518, 2778, 6887, 25, 12536, 58, 8644, 60, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 12289, 462, 2099, 198, 12289, 462, 2099, 430, 5829, 279, 10357, 85, 355, 5446, 627, 18337, 198, 565, 2381, 3889, 95711, 9353, 38372, 4194, 1131, 2608, 723, 80746, 7383, 82, 38372, 4194, 4150, 329, 19907, 2608, 2261, 1495, 311, 279, 10357, 85, 355, 3637, 198, 85163, 1311, 8532, 77027, 10974, 11, 4194, 9, 38372, 4194, 69411, 2608, 2170, 55294, 636, 9477, 9959, 311, 264, 3319, 627, 456, 1311, 8532, 77027, 10974, 11, 4194, 9, 38372, 4194, 69411, 2608, 88765, 9477, 9959, 311, 264, 3319, 627, 723, 80746, 7383, 82, 25, 1796, 17752, 1145, 2322, 329, 19907, 25, 12536, 53094, 58, 8644, 5163, 284, 2290, 8, 11651, 2290, 76747, 60, 55609, 198, 2261, 1495, 311, 279, 10357, 85, 355, 3637, 198, 9905, 198, 87042, 320, 861, 17752, 2526, 1389, 578, 1495, 198, 4150, 329, 19907, 320, 861, 58, 8644, 2526, 1389, 34689, 98699, 11, 2011, 1584, 709, 449, 6484, 3637, 198, 7847, 264, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 2170, 55294, 636, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 88765, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.milvus.MilvusRetriever.html
a54a821d8be7-0
langchain.retrievers.document_compressors.base.DocumentCompressorPipeline¶ class langchain.retrievers.document_compressors.base.DocumentCompressorPipeline(*, transformers: List[Union[BaseDocumentTransformer, BaseDocumentCompressor]])[source]¶ Bases: BaseDocumentCompressor Document compressor that uses a pipeline of transformers. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param transformers: List[Union[langchain.schema.BaseDocumentTransformer, langchain.retrievers.document_compressors.base.BaseDocumentCompressor]] [Required]¶ List of document filters that are chained together and run in sequence. async acompress_documents(documents: Sequence[Document], query: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → Sequence[Document][source]¶ Compress retrieved documents given the query context. compress_documents(documents: Sequence[Document], query: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → Sequence[Document][source]¶ Transform a list of documents. model Config[source]¶ Bases: object Configuration for this pydantic object. arbitrary_types_allowed = True¶
[ 5317, 8995, 1351, 9104, 3078, 17926, 88945, 1105, 9105, 27352, 1110, 57320, 35756, 55609, 198, 1058, 8859, 8995, 1351, 9104, 3078, 17926, 88945, 1105, 9105, 27352, 1110, 57320, 35756, 4163, 11, 87970, 25, 1796, 58, 33758, 58, 4066, 7676, 47458, 11, 5464, 7676, 1110, 57320, 30716, 58, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 7676, 1110, 57320, 198, 7676, 59977, 430, 5829, 264, 15660, 315, 87970, 627, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 87970, 25, 1796, 58, 33758, 58, 5317, 8995, 31992, 13316, 7676, 47458, 11, 8859, 8995, 1351, 9104, 3078, 17926, 88945, 1105, 9105, 13316, 7676, 1110, 57320, 5163, 510, 8327, 60, 55609, 198, 861, 315, 2246, 13711, 430, 527, 68069, 3871, 323, 1629, 304, 8668, 627, 7847, 264, 39460, 77027, 19702, 2901, 25, 29971, 58, 7676, 1145, 3319, 25, 610, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 8, 11651, 29971, 58, 7676, 1483, 2484, 60, 55609, 198, 1110, 1911, 31503, 9477, 2728, 279, 3319, 2317, 627, 39460, 77027, 19702, 2901, 25, 29971, 58, 7676, 1145, 3319, 25, 610, 11, 27777, 25, 12536, 58, 33758, 53094, 58, 4066, 7646, 3126, 1145, 5464, 7646, 2087, 5163, 284, 2290, 8, 11651, 29971, 58, 7676, 1483, 2484, 60, 55609, 198, 9140, 264, 1160, 315, 9477, 627, 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 277, 88951, 9962, 43255, 284, 3082, 55609 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.document_compressors.base.DocumentCompressorPipeline.html
b834362e2d3d-0
langchain.retrievers.zilliz.ZillizRetreiver¶ langchain.retrievers.zilliz.ZillizRetreiver(*args: Any, **kwargs: Any) → ZillizRetriever[source]¶ Deprecated ZillizRetreiver. Please use ZillizRetriever (‘i’ before ‘e’) instead. :param *args: :param **kwargs: Returns ZillizRetriever
[ 5317, 8995, 1351, 9104, 3078, 4025, 484, 450, 13784, 484, 450, 12289, 265, 1553, 55609, 198, 5317, 8995, 1351, 9104, 3078, 4025, 484, 450, 13784, 484, 450, 12289, 265, 1553, 4163, 2164, 25, 5884, 11, 3146, 9872, 25, 5884, 8, 11651, 1901, 484, 450, 12289, 462, 2099, 76747, 60, 55609, 198, 52444, 1901, 484, 450, 12289, 265, 1553, 13, 5321, 1005, 1901, 484, 450, 12289, 462, 2099, 320, 14336, 72, 529, 1603, 3451, 68, 96206, 4619, 627, 68416, 353, 2164, 512, 68416, 3146, 9872, 512, 16851, 198, 57, 484, 450, 12289, 462, 2099 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.zilliz.ZillizRetreiver.html
3e11e771ce48-0
langchain.retrievers.document_compressors.chain_extract.default_get_input¶ langchain.retrievers.document_compressors.chain_extract.default_get_input(query: str, doc: Document) → Dict[str, Any][source]¶ Return the compression chain input.
[ 5317, 8995, 1351, 9104, 3078, 17926, 88945, 1105, 53141, 40223, 8939, 3138, 6022, 55609, 198, 5317, 8995, 1351, 9104, 3078, 17926, 88945, 1105, 53141, 40223, 8939, 3138, 6022, 10974, 25, 610, 11, 4733, 25, 12051, 8, 11651, 30226, 17752, 11, 5884, 1483, 2484, 60, 55609, 198, 5715, 279, 26168, 8957, 1988, 13 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.document_compressors.chain_extract.default_get_input.html
77b1992a8557-0
langchain.retrievers.kendra.Highlight¶ class langchain.retrievers.kendra.Highlight(*, BeginOffset: int, EndOffset: int, TopAnswer: Optional[bool] = None, Type: Optional[str] = None, **extra_data: Any)[source]¶ Bases: BaseModel Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param BeginOffset: int [Required]¶ param EndOffset: int [Required]¶ param TopAnswer: Optional[bool] = None¶ param Type: Optional[str] = None¶
[ 5317, 8995, 1351, 9104, 3078, 5314, 61799, 71284, 55609, 198, 1058, 8859, 8995, 1351, 9104, 3078, 5314, 61799, 71284, 4163, 11, 19110, 6582, 25, 528, 11, 4060, 6582, 25, 528, 11, 7054, 16533, 25, 12536, 58, 2707, 60, 284, 2290, 11, 4078, 25, 12536, 17752, 60, 284, 2290, 11, 3146, 15824, 1807, 25, 5884, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 65705, 198, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 19110, 6582, 25, 528, 510, 8327, 60, 55609, 198, 913, 4060, 6582, 25, 528, 510, 8327, 60, 55609, 198, 913, 7054, 16533, 25, 12536, 58, 2707, 60, 284, 2290, 55609, 198, 913, 4078, 25, 12536, 17752, 60, 284, 2290, 55609 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.kendra.Highlight.html
3146a150b8fe-0
langchain.retrievers.self_query.chroma.ChromaTranslator¶ class langchain.retrievers.self_query.chroma.ChromaTranslator[source]¶ Bases: Visitor Logic for converting internal query language elements to valid filters. Methods __init__() visit_comparison(comparison) Translate a Comparison. visit_operation(operation) Translate an Operation. visit_structured_query(structured_query) Translate a StructuredQuery. Attributes allowed_comparators allowed_operators Subset of allowed logical operators. visit_comparison(comparison: Comparison) → Dict[source]¶ Translate a Comparison. visit_operation(operation: Operation) → Dict[source]¶ Translate an Operation. visit_structured_query(structured_query: StructuredQuery) → Tuple[str, dict][source]¶ Translate a StructuredQuery. allowed_comparators: Optional[Sequence[Comparator]] = None¶ allowed_operators: Optional[Sequence[Operator]] = [<Operator.AND: 'and'>, <Operator.OR: 'or'>]¶ Subset of allowed logical operators.
[ 5317, 8995, 1351, 9104, 3078, 28248, 5857, 5442, 58084, 6487, 58084, 52753, 55609, 198, 1058, 8859, 8995, 1351, 9104, 3078, 28248, 5857, 5442, 58084, 6487, 58084, 52753, 76747, 60, 55609, 198, 33, 2315, 25, 56982, 198, 27849, 369, 34537, 5419, 3319, 4221, 5540, 311, 2764, 13711, 627, 18337, 198, 565, 2381, 33716, 28560, 91897, 14426, 36642, 340, 28573, 264, 43551, 627, 28560, 33665, 53447, 340, 28573, 459, 17145, 627, 28560, 15477, 3149, 5857, 6294, 3149, 5857, 340, 28573, 264, 16531, 3149, 2929, 627, 10738, 198, 21642, 3038, 1768, 3046, 198, 21642, 26716, 3046, 198, 71684, 315, 5535, 20406, 20197, 627, 28560, 91897, 14426, 36642, 25, 43551, 8, 11651, 30226, 76747, 60, 55609, 198, 28573, 264, 43551, 627, 28560, 33665, 53447, 25, 17145, 8, 11651, 30226, 76747, 60, 55609, 198, 28573, 459, 17145, 627, 28560, 15477, 3149, 5857, 6294, 3149, 5857, 25, 16531, 3149, 2929, 8, 11651, 25645, 17752, 11, 6587, 1483, 2484, 60, 55609, 198, 28573, 264, 16531, 3149, 2929, 627, 21642, 3038, 1768, 3046, 25, 12536, 58, 14405, 58, 39758, 5163, 284, 2290, 55609, 198, 21642, 26716, 3046, 25, 12536, 58, 14405, 58, 18968, 5163, 284, 68326, 18968, 885, 8225, 25, 364, 438, 6404, 11, 366, 18968, 78997, 25, 364, 269, 6404, 60, 55609, 198, 71684, 315, 5535, 20406, 20197, 13 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.self_query.chroma.ChromaTranslator.html
d74189b145f8-0
langchain.retrievers.tfidf.TFIDFRetriever¶ class langchain.retrievers.tfidf.TFIDFRetriever(*, vectorizer: Any = None, docs: List[Document], tfidf_array: Any = None, k: int = 4)[source]¶ Bases: BaseRetriever, BaseModel Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param docs: List[langchain.schema.Document] [Required]¶ param k: int = 4¶ param tfidf_array: Any = None¶ param vectorizer: Any = None¶ async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents classmethod from_documents(documents: Iterable[Document], *, tfidf_params: Optional[Dict[str, Any]] = None, **kwargs: Any) → TFIDFRetriever[source]¶ classmethod from_texts(texts: Iterable[str], metadatas: Optional[Iterable[dict]] = None, tfidf_params: Optional[Dict[str, Any]] = None, **kwargs: Any) → TFIDFRetriever[source]¶ get_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents model Config[source]¶ Bases: object Configuration for this pydantic object. arbitrary_types_allowed = True¶
[ 5317, 8995, 1351, 9104, 3078, 739, 82054, 844, 37, 926, 10725, 94223, 2099, 55609, 198, 1058, 8859, 8995, 1351, 9104, 3078, 739, 82054, 844, 37, 926, 10725, 94223, 2099, 4163, 11, 4724, 3213, 25, 5884, 284, 2290, 11, 27437, 25, 1796, 58, 7676, 1145, 6543, 78104, 3943, 25, 5884, 284, 2290, 11, 597, 25, 528, 284, 220, 19, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 12289, 462, 2099, 11, 65705, 198, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 27437, 25, 1796, 58, 5317, 8995, 31992, 27352, 60, 510, 8327, 60, 55609, 198, 913, 597, 25, 528, 284, 220, 19, 55609, 198, 913, 6543, 78104, 3943, 25, 5884, 284, 2290, 55609, 198, 913, 4724, 3213, 25, 5884, 284, 2290, 55609, 198, 7847, 264, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 2170, 55294, 636, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 27853, 505, 77027, 19702, 2901, 25, 39116, 58, 7676, 1145, 12039, 6543, 78104, 6887, 25, 12536, 58, 13755, 17752, 11, 5884, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 30245, 926, 10725, 94223, 2099, 76747, 60, 55609, 198, 27853, 505, 80746, 7383, 82, 25, 39116, 17752, 1145, 2322, 329, 19907, 25, 12536, 58, 51735, 58, 8644, 5163, 284, 2290, 11, 6543, 78104, 6887, 25, 12536, 58, 13755, 17752, 11, 5884, 5163, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 30245, 926, 10725, 94223, 2099, 76747, 60, 55609, 198, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 88765, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 2590, 5649, 76747, 60, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 277, 88951, 9962, 43255, 284, 3082, 55609 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.tfidf.TFIDFRetriever.html
d74189b145f8-1
Configuration for this pydantic object. arbitrary_types_allowed = True¶
[ 7843, 369, 420, 4611, 67, 8322, 1665, 627, 277, 88951, 9962, 43255, 284, 3082, 55609 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.tfidf.TFIDFRetriever.html
2e659c9015be-0
langchain.retrievers.remote_retriever.RemoteLangChainRetriever¶ class langchain.retrievers.remote_retriever.RemoteLangChainRetriever(*, url: str, headers: Optional[dict] = None, input_key: str = 'message', response_key: str = 'response', page_content_key: str = 'page_content', metadata_key: str = 'metadata')[source]¶ Bases: BaseRetriever, BaseModel Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param headers: Optional[dict] = None¶ param input_key: str = 'message'¶ param metadata_key: str = 'metadata'¶ param page_content_key: str = 'page_content'¶ param response_key: str = 'response'¶ param url: str [Required]¶ async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents get_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents
[ 5317, 8995, 1351, 9104, 3078, 35193, 1311, 9104, 424, 52534, 27317, 19368, 12289, 462, 2099, 55609, 198, 1058, 8859, 8995, 1351, 9104, 3078, 35193, 1311, 9104, 424, 52534, 27317, 19368, 12289, 462, 2099, 4163, 11, 2576, 25, 610, 11, 7247, 25, 12536, 58, 8644, 60, 284, 2290, 11, 1988, 3173, 25, 610, 284, 364, 2037, 518, 2077, 3173, 25, 610, 284, 364, 2376, 518, 2199, 7647, 3173, 25, 610, 284, 364, 2964, 7647, 518, 11408, 3173, 25, 610, 284, 364, 18103, 13588, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 12289, 462, 2099, 11, 65705, 198, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 7247, 25, 12536, 58, 8644, 60, 284, 2290, 55609, 198, 913, 1988, 3173, 25, 610, 284, 364, 2037, 6, 55609, 198, 913, 11408, 3173, 25, 610, 284, 364, 18103, 6, 55609, 198, 913, 2199, 7647, 3173, 25, 610, 284, 364, 2964, 7647, 6, 55609, 198, 913, 2077, 3173, 25, 610, 284, 364, 2376, 6, 55609, 198, 913, 2576, 25, 610, 510, 8327, 60, 55609, 198, 7847, 264, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 2170, 55294, 636, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 88765, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.remote_retriever.RemoteLangChainRetriever.html
f93068b7dd3c-0
langchain.retrievers.document_compressors.chain_filter.default_get_input¶ langchain.retrievers.document_compressors.chain_filter.default_get_input(query: str, doc: Document) → Dict[str, Any][source]¶ Return the compression chain input.
[ 5317, 8995, 1351, 9104, 3078, 17926, 88945, 1105, 53141, 8901, 8939, 3138, 6022, 55609, 198, 5317, 8995, 1351, 9104, 3078, 17926, 88945, 1105, 53141, 8901, 8939, 3138, 6022, 10974, 25, 610, 11, 4733, 25, 12051, 8, 11651, 30226, 17752, 11, 5884, 1483, 2484, 60, 55609, 198, 5715, 279, 26168, 8957, 1988, 13 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.document_compressors.chain_filter.default_get_input.html
4cfdb0df0ceb-0
langchain.retrievers.zep.ZepRetriever¶ class langchain.retrievers.zep.ZepRetriever(session_id: str, url: str, api_key: Optional[str] = None, top_k: Optional[int] = None)[source]¶ Bases: BaseRetriever A Retriever implementation for the Zep long-term memory store. Search your user’s long-term chat history with Zep. Note: You will need to provide the user’s session_id to use this retriever. More on Zep: Zep provides long-term conversation storage for LLM apps. The server stores, summarizes, embeds, indexes, and enriches conversational AI chat histories, and exposes them via simple, low-latency APIs. For server installation instructions, see: https://docs.getzep.com/deployment/quickstart/ Methods __init__(session_id, url[, api_key, top_k]) aget_relevant_documents(query, *[, callbacks]) Asynchronously get documents relevant to a query. get_relevant_documents(query, *[, callbacks]) Retrieve documents relevant to a query. async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents get_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents
[ 5317, 8995, 1351, 9104, 3078, 4025, 752, 13784, 752, 12289, 462, 2099, 55609, 198, 1058, 8859, 8995, 1351, 9104, 3078, 4025, 752, 13784, 752, 12289, 462, 2099, 16663, 851, 25, 610, 11, 2576, 25, 610, 11, 6464, 3173, 25, 12536, 17752, 60, 284, 2290, 11, 1948, 4803, 25, 12536, 19155, 60, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 12289, 462, 2099, 198, 32, 10608, 462, 2099, 8292, 369, 279, 1901, 752, 1317, 9860, 5044, 3637, 13, 7694, 701, 198, 882, 753, 1317, 9860, 6369, 3925, 449, 1901, 752, 627, 9290, 25, 1472, 690, 1205, 311, 3493, 279, 1217, 753, 3882, 851, 311, 1005, 420, 10992, 424, 627, 7816, 389, 1901, 752, 512, 57, 752, 5825, 1317, 9860, 10652, 5942, 369, 445, 11237, 10721, 13, 578, 3622, 10756, 345, 1264, 5730, 4861, 11, 11840, 82, 11, 25998, 11, 323, 31518, 288, 7669, 1697, 15592, 6369, 198, 21843, 2490, 11, 323, 59381, 1124, 4669, 4382, 11, 3428, 99514, 2301, 34456, 627, 2520, 3622, 14028, 11470, 11, 1518, 512, 2485, 1129, 14452, 673, 89, 752, 916, 23365, 53899, 14, 28863, 2527, 6018, 18337, 198, 565, 2381, 3889, 6045, 851, 11, 4194, 1103, 38372, 4194, 2113, 3173, 11, 4194, 3565, 4803, 2608, 85163, 1311, 8532, 77027, 10974, 11, 4194, 9, 38372, 4194, 69411, 2608, 2170, 55294, 636, 9477, 9959, 311, 264, 3319, 627, 456, 1311, 8532, 77027, 10974, 11, 4194, 9, 38372, 4194, 69411, 2608, 88765, 9477, 9959, 311, 264, 3319, 627, 7847, 264, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 2170, 55294, 636, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 88765, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.zep.ZepRetriever.html
e9f7b33c7780-0
langchain.retrievers.self_query.myscale.FUNCTION_COMPOSER¶ langchain.retrievers.self_query.myscale.FUNCTION_COMPOSER(op_name: str) → Callable[source]¶ Composer for functions. :param op_name: Name of the function. Returns Callable that takes a list of arguments and returns a string.
[ 5317, 8995, 1351, 9104, 3078, 28248, 5857, 749, 84009, 1006, 9260, 7021, 17914, 643, 55609, 198, 5317, 8995, 1351, 9104, 3078, 28248, 5857, 749, 84009, 1006, 9260, 7021, 17914, 643, 17534, 1292, 25, 610, 8, 11651, 54223, 76747, 60, 55609, 198, 91167, 369, 5865, 627, 68416, 1200, 1292, 25, 4076, 315, 279, 734, 627, 16851, 198, 41510, 430, 5097, 264, 1160, 315, 6105, 323, 4780, 264, 925, 13 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.self_query.myscale.FUNCTION_COMPOSER.html
58d60f5bcc0b-0
langchain.retrievers.wikipedia.WikipediaRetriever¶ class langchain.retrievers.wikipedia.WikipediaRetriever(*, wiki_client: Any = None, top_k_results: int = 3, lang: str = 'en', load_all_available_meta: bool = False, doc_content_chars_max: int = 4000)[source]¶ Bases: BaseRetriever, WikipediaAPIWrapper It is effectively a wrapper for WikipediaAPIWrapper. It wraps load() to get_relevant_documents(). It uses all WikipediaAPIWrapper arguments without any change. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param doc_content_chars_max: int = 4000¶ param lang: str = 'en'¶ param load_all_available_meta: bool = False¶ param top_k_results: int = 3¶ async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents get_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents load(query: str) → List[Document]¶ Run Wikipedia search and get the article text plus the meta information. See Returns: a list of documents. run(query: str) → str¶ Run Wikipedia search and get page summaries. validator validate_environment  »  all fields¶
[ 5317, 8995, 1351, 9104, 3078, 34466, 1196, 15288, 12289, 462, 2099, 55609, 198, 1058, 8859, 8995, 1351, 9104, 3078, 34466, 1196, 15288, 12289, 462, 2099, 4163, 11, 29709, 8342, 25, 5884, 284, 2290, 11, 1948, 4803, 13888, 25, 528, 284, 220, 18, 11, 8859, 25, 610, 284, 364, 268, 518, 2865, 5823, 28060, 13686, 25, 1845, 284, 3641, 11, 4733, 7647, 38518, 6479, 25, 528, 284, 220, 3443, 15, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 12289, 462, 2099, 11, 27685, 7227, 11803, 198, 2181, 374, 13750, 264, 13564, 369, 27685, 7227, 11803, 627, 2181, 40809, 2865, 368, 311, 636, 1311, 8532, 77027, 26914, 2181, 5829, 682, 27685, 7227, 11803, 6105, 2085, 904, 2349, 627, 4110, 264, 502, 1646, 555, 23115, 323, 69772, 1988, 828, 505, 16570, 6105, 627, 36120, 54129, 422, 279, 1988, 828, 4250, 387, 16051, 311, 1376, 264, 2764, 1646, 627, 913, 4733, 7647, 38518, 6479, 25, 528, 284, 220, 3443, 15, 55609, 198, 913, 8859, 25, 610, 284, 364, 268, 6, 55609, 198, 913, 2865, 5823, 28060, 13686, 25, 1845, 284, 3641, 55609, 198, 913, 1948, 4803, 13888, 25, 528, 284, 220, 18, 55609, 198, 7847, 264, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 2170, 55294, 636, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 88765, 9477, 9959, 311, 264, 3319, 627, 68416, 3319, 25, 925, 311, 1505, 9959, 9477, 369, 198, 68416, 27777, 25, 23499, 6783, 477, 1160, 315, 27777, 198, 16851, 198, 861, 315, 9959, 9477, 198, 1096, 10974, 25, 610, 8, 11651, 1796, 58, 7676, 60, 55609, 198, 6869, 27685, 2778, 323, 636, 279, 4652, 1495, 5636, 279, 8999, 2038, 627, 10031, 198, 16851, 25, 264, 1160, 315, 9477, 627, 6236, 10974, 25, 610, 8, 11651, 610, 55609, 198, 6869, 27685, 2778, 323, 636, 2199, 70022, 627, 16503, 9788, 52874, 4194, 8345, 4194, 682, 5151, 55609 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.wikipedia.WikipediaRetriever.html
58d60f5bcc0b-1
Run Wikipedia search and get page summaries. validator validate_environment  »  all fields¶ Validate that the python package exists in environment. model Config¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
[ 6869, 27685, 2778, 323, 636, 2199, 70022, 627, 16503, 9788, 52874, 4194, 8345, 4194, 682, 5151, 55609, 198, 18409, 430, 279, 10344, 6462, 6866, 304, 4676, 627, 2590, 5649, 55609, 198, 33, 2315, 25, 1665, 198, 7843, 369, 420, 4611, 67, 8322, 1665, 627, 15824, 284, 364, 2000, 21301, 6, 55609 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.wikipedia.WikipediaRetriever.html
440e90aeefcb-0
langchain.retrievers.knn.create_index¶ langchain.retrievers.knn.create_index(contexts: List[str], embeddings: Embeddings) → ndarray[source]¶ Create an index of embeddings for a list of contexts. Parameters contexts – List of contexts to embed. embeddings – Embeddings model to use. Returns Index of embeddings.
[ 5317, 8995, 1351, 9104, 3078, 5314, 7521, 2581, 3644, 55609, 198, 5317, 8995, 1351, 9104, 3078, 5314, 7521, 2581, 3644, 5491, 82, 25, 1796, 17752, 1145, 71647, 25, 38168, 25624, 8, 11651, 67983, 76747, 60, 55609, 198, 4110, 459, 1963, 315, 71647, 369, 264, 1160, 315, 38697, 627, 9905, 198, 73027, 1389, 1796, 315, 38697, 311, 11840, 627, 12529, 25624, 1389, 38168, 25624, 1646, 311, 1005, 627, 16851, 198, 1581, 315, 71647, 13 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.knn.create_index.html
7c53389c6f0e-0
langchain.retrievers.kendra.AmazonKendraRetriever¶ class langchain.retrievers.kendra.AmazonKendraRetriever(index_id: str, region_name: Optional[str] = None, credentials_profile_name: Optional[str] = None, top_k: int = 3, attribute_filter: Optional[Dict] = None, client: Optional[Any] = None)[source]¶ Bases: BaseRetriever Retriever class to query documents from Amazon Kendra Index. Parameters index_id – Kendra index id region_name – The aws region e.g., us-west-2. Fallsback to AWS_DEFAULT_REGION env variable or region specified in ~/.aws/config. credentials_profile_name – The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which has either access keys or role information specified. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. top_k – No of results to return attribute_filter – Additional filtering of results based on metadata See: https://docs.aws.amazon.com/kendra/latest/APIReference client – boto3 client for Kendra Example retriever = AmazonKendraRetriever( index_id="c0806df7-e76b-4bce-9b5c-d5582f6b1a03" ) Methods __init__(index_id[, region_name, ...]) aget_relevant_documents(query, *[, callbacks]) Asynchronously get documents relevant to a query. get_relevant_documents(query, *[, callbacks]) Retrieve documents relevant to a query. async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶
[ 5317, 8995, 1351, 9104, 3078, 5314, 61799, 885, 76, 5639, 42, 61799, 12289, 462, 2099, 55609, 198, 1058, 8859, 8995, 1351, 9104, 3078, 5314, 61799, 885, 76, 5639, 42, 61799, 12289, 462, 2099, 7343, 851, 25, 610, 11, 5654, 1292, 25, 12536, 17752, 60, 284, 2290, 11, 16792, 14108, 1292, 25, 12536, 17752, 60, 284, 2290, 11, 1948, 4803, 25, 528, 284, 220, 18, 11, 7180, 8901, 25, 12536, 58, 13755, 60, 284, 2290, 11, 3016, 25, 12536, 71401, 60, 284, 2290, 6758, 2484, 60, 55609, 198, 33, 2315, 25, 5464, 12289, 462, 2099, 198, 12289, 462, 2099, 538, 311, 3319, 9477, 505, 8339, 39217, 969, 8167, 627, 9905, 198, 1275, 851, 1389, 39217, 969, 1963, 887, 198, 4030, 1292, 1389, 578, 32621, 5654, 384, 1326, 2637, 603, 38702, 12, 17, 627, 37, 5700, 1445, 311, 24124, 14131, 40279, 6233, 3977, 198, 269, 5654, 5300, 304, 41058, 8805, 15072, 627, 33453, 14108, 1292, 1389, 578, 836, 315, 279, 5643, 304, 279, 41058, 8805, 14, 33453, 198, 269, 41058, 8805, 15072, 3626, 11, 902, 706, 3060, 2680, 7039, 477, 3560, 2038, 198, 54534, 13, 1442, 539, 5300, 11, 279, 1670, 41307, 5643, 477, 11, 422, 389, 459, 198, 7650, 17, 2937, 11, 16792, 505, 6654, 6061, 690, 387, 1511, 627, 3565, 4803, 1389, 2360, 315, 3135, 311, 471, 198, 9294, 8901, 1389, 24086, 30770, 315, 3135, 3196, 389, 11408, 198, 10031, 25, 3788, 1129, 14452, 36266, 18771, 916, 14441, 61799, 34249, 73130, 9032, 198, 3045, 1389, 61879, 18, 3016, 369, 39217, 969, 198, 13617, 198, 265, 9104, 424, 284, 8339, 42, 61799, 12289, 462, 2099, 1021, 262, 1963, 851, 429, 66, 13837, 21, 3013, 22, 5773, 4767, 65, 12, 19, 65, 346, 12, 24, 65, 20, 66, 1773, 22895, 17, 69, 21, 65, 16, 64, 2839, 702, 340, 18337, 198, 565, 2381, 3889, 1275, 851, 38372, 4194, 4030, 1292, 11, 4194, 1131, 2608, 85163, 1311, 8532, 77027, 10974, 11, 4194, 9, 38372, 4194, 69411, 2608, 2170, 55294, 636, 9477, 9959, 311, 264, 3319, 627, 456, 1311, 8532, 77027, 10974, 11, 4194, 9, 38372, 4194, 69411, 2608, 88765, 9477, 9959, 311, 264, 3319, 627, 7847, 264, 456, 1311, 8532, 77027, 10974, 25, 610, 11, 12039, 27777, 25, 23499, 82, 284, 2290, 11, 3146, 9872, 25, 5884, 8, 11651, 1796, 58, 7676, 60, 55609 ]
https://langchain.readthedocs.io/en/latest/retrievers/langchain.retrievers.kendra.AmazonKendraRetriever.html