|
from model_inference import * |
|
from config import dataset_files, cot_files |
|
from result_parser import find_option_number_for_cot |
|
from tqdm import tqdm |
|
import json |
|
import os |
|
|
|
models = [gemma2b] |
|
tasks = ["urban_region_function_recognition", "trajectory_region", "trajectory_trajectory", "trajectory_classification"] |
|
|
|
if not os.path.exists("./logs"): |
|
os.mkdir("./logs") |
|
|
|
for fun in models: |
|
model = fun() |
|
for task in tasks: |
|
error_writer = open("./logs/cot_{}.log".format(task), 'a') |
|
error_writer.write(model.model_path+'\n') |
|
|
|
context_samples = open(cot_files[task]) |
|
prompt = "" |
|
for _i, sample in enumerate(context_samples.readlines()): |
|
sample = json.loads(sample) |
|
prompt += "{}{}\n".format(sample['Question'], sample['Answer']) |
|
|
|
for dataset_path in dataset_files[task]: |
|
dataset = open(dataset_path, 'r') |
|
dataset = dataset.readlines() |
|
|
|
correct = 0 |
|
total = 0 |
|
exception = 0 |
|
|
|
for i, item in tqdm(enumerate(dataset), total=len(dataset)): |
|
item = json.loads(item) |
|
|
|
|
|
if task=="urban_region_function_recognition": |
|
question = item['Question'].replace("Please just answer the number of your option with no other texts. Answer: Option (", "") |
|
elif task=="trajectory_trajectory": |
|
question = item['Question'].replace(" with no other texts. Answer: Option (", ".") |
|
elif task=="trajectory_region": |
|
question = item['Question'].replace(" with no other texts. Answer: Option ", ".") |
|
elif task=="trajectory_classification": |
|
question = item['Question'].replace("Answer: The trajectory is most likely to be generated by", "") |
|
|
|
response = model.generate(prompt+question, 100) |
|
score = find_option_number_for_cot(response, item["Answer"], error_writer) |
|
|
|
total +=1 |
|
if score is None: |
|
exception += 1 |
|
else: |
|
correct += score |
|
|
|
if i%100==0: |
|
print("Dataset: {}\nTotal: {}, correct:{}, exception:{}, accuracy:{}\n\n".format(dataset_path, total, correct, exception, correct/total)) |
|
|
|
error_writer.write("Dataset: {}\nTotal: {}, correct:{}, exception:{}, accuracy:{}\n\n".format(dataset_path, total, correct, exception, correct/total)) |
|
error_writer.flush() |
|
error_writer.write("\n") |
|
error_writer.close() |
|
|