from model_inference import * from config import dataset_files, cot_files from result_parser import find_option_number_for_cot from tqdm import tqdm import json import os models = [gemma2b] tasks = ["urban_region_function_recognition", "trajectory_region", "trajectory_trajectory", "trajectory_classification"] if not os.path.exists("./logs"): os.mkdir("./logs") for fun in models: model = fun() for task in tasks: error_writer = open("./logs/cot_{}.log".format(task), 'a') error_writer.write(model.model_path+'\n') context_samples = open(cot_files[task]) prompt = "" for _i, sample in enumerate(context_samples.readlines()): sample = json.loads(sample) prompt += "{}{}\n".format(sample['Question'], sample['Answer']) for dataset_path in dataset_files[task]: dataset = open(dataset_path, 'r') dataset = dataset.readlines() correct = 0 total = 0 exception = 0 for i, item in tqdm(enumerate(dataset), total=len(dataset)): item = json.loads(item) # remove the guidance from data samples for cot-prompting if task=="urban_region_function_recognition": question = item['Question'].replace("Please just answer the number of your option with no other texts. Answer: Option (", "") elif task=="trajectory_trajectory": question = item['Question'].replace(" with no other texts. Answer: Option (", ".") elif task=="trajectory_region": question = item['Question'].replace(" with no other texts. Answer: Option ", ".") elif task=="trajectory_classification": question = item['Question'].replace("Answer: The trajectory is most likely to be generated by", "") response = model.generate(prompt+question, 100) score = find_option_number_for_cot(response, item["Answer"], error_writer) total +=1 if score is None: exception += 1 else: correct += score if i%100==0: print("Dataset: {}\nTotal: {}, correct:{}, exception:{}, accuracy:{}\n\n".format(dataset_path, total, correct, exception, correct/total)) error_writer.write("Dataset: {}\nTotal: {}, correct:{}, exception:{}, accuracy:{}\n\n".format(dataset_path, total, correct, exception, correct/total)) error_writer.flush() error_writer.write("\n") error_writer.close()