Datasets:
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: JobManagerCrashedError
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
image
image | label
class label |
---|---|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
|
0gt_cd_mask
|
SynRS3D: A Synthetic Dataset for Global 3D Semantic Understanding from Monocular Remote Sensing Imagery
Authors:
Jian Song1,2, Hongruixuan Chen1, Weihao Xuan1,2, Junshi Xia2, Naoto Yokoya1,2
1 The University of Tokyo
2 RIKEN AIP
Conference: Neural Information Processing Systems (Spotlight), 2024
For more details, please refer to our paper and visit our GitHub repository.
Overview
TL;DR:
SynRS3D is a comprehensive synthetic remote sensing dataset designed to improve global 3D semantic understanding from monocular high-resolution imagery. It includes data for three key tasks:
- Height estimation
- Land cover mapping
- Building change detection
Additionally, we introduce RS3DAda, a novel multi-task domain adaptation method to enhance performance across these tasks. Learn more about RS3DAda in our repository.
Dataset Structure
The dataset consists of 17 folders and includes a total of 69,667 images at a resolution of 512x512. After downloading and extracting the files, ensure the directory structure follows this format:
${DATASET_ROOT} # Example: /home/username/project/SynRS3D/data/grid_g05_mid_v1
βββ opt # RGB images (.tif), also used as post-event images for building change detection
βββ pre_opt # RGB images (.tif), used as pre-event images for building change detection
βββ gt_nDSM # Normalized Digital Surface Model (nDSM) images (.tif)
βββ gt_ss_mask # Land cover mapping labels (.tif)
βββ gt_cd_mask # Building change detection masks (.tif, 0 = no change, 255 = change area)
βββ train.txt # List of training data filenames
Class Mapping for gt_ss_mask
The land cover mapping labels (gt_ss_mask
) are mapped to the following categories:
- Bareland: 1
- Rangeland: 2
- Developed Space: 3
- Road: 4
- Trees: 5
- Water: 6
- Agriculture land: 7
- Buildings: 8
Image Breakdown by Folder
The dataset is organized into grid-like and irregular terrain. It includes a range of ground sampling distances (GSDs) and variations in building heights. The folder naming convention indicates these characteristics:
grid
= grid-like terrainterrain
= irregular terraing005
,g05
,g1
= GSD ranges (0.05mβ0.3m, 0.3mβ0.6m, and 0.6mβ1m, respectively)low
,mid
,high
= building height variations
The dataset includes the following image counts:
- 1,430 images β
terrain_g05_mid_v1
- 10,000 images β
grid_g05_mid_v2
- 2,354 images β
terrain_g05_low_v1
- 3,707 images β
terrain_g05_high_v1
- 880 images β
terrain_g005_mid_v1
- 2,127 images β
terrain_g005_low_v1
- 11,325 images β
grid_g005_mid_v2
- 1,212 images β
terrain_g005_high_v1
- 348 images β
terrain_g1_mid_v1
- 4,285 images β
terrain_g1_low_v1
- 904 images β
terrain_g1_high_v1
- 3,000 images β
grid_g005_mid_v1
- 2,997 images β
grid_g005_low_v1
- 4,000 images β
grid_g005_high_v1
- 7,000 images β
grid_g05_mid_v1
- 7,098 images β
grid_g05_low_v1
- 7,000 images β
grid_g05_high_v1
Citation
If you find SynRS3D useful in your research, please consider citing:
@article{song2024synrs3d,
title={SynRS3D: A Synthetic Dataset for Global 3D Semantic Understanding from Monocular Remote Sensing Imagery},
author={Song, Jian and Chen, Hongruixuan and Xuan, Weihao and Xia, Junshi and Yokoya, Naoto},
journal={arXiv preprint arXiv:2406.18151},
year={2024}
}
Contact
For any questions or feedback, feel free to reach out via email: song@ms.k.u-tokyo.ac.jp.
Enjoy using SynRS3D!
- Downloads last month
- 21