paperID
stringlengths
36
36
pwc_id
stringlengths
8
47
arxiv_id
stringlengths
6
16
nips_id
float64
url_abs
stringlengths
18
329
url_pdf
stringlengths
18
742
title
stringlengths
8
325
abstract
stringlengths
1
7.27k
authors
stringlengths
2
7.06k
published
stringlengths
10
10
conference
stringlengths
12
47
conference_url_abs
stringlengths
16
198
conference_url_pdf
stringlengths
27
199
proceeding
stringlengths
6
47
taskID
stringlengths
7
1.44k
areaID
stringclasses
688 values
embedding
stringlengths
9.26k
12.5k
umap_embedding
stringlengths
29
44
09acc494-a429-48bc-9fad-ff60e69000d3
unified-emulation-simulation-training
2304.01244
null
https://arxiv.org/abs/2304.01244v1
https://arxiv.org/pdf/2304.01244v1.pdf
Unified Emulation-Simulation Training Environment for Autonomous Cyber Agents
Autonomous cyber agents may be developed by applying reinforcement and deep reinforcement learning (RL/DRL), where agents are trained in a representative environment. The training environment must simulate with high-fidelity the network Cyber Operations (CyOp) that the agent aims to explore. Given the complexity of net-work CyOps, a good simulator is difficult to achieve. This work presents a systematic solution to automatically generate a high-fidelity simulator in the Cyber Gym for Intelligent Learning (CyGIL). Through representation learning and continuous learning, CyGIL provides a unified CyOp training environment where an emulated CyGIL-E automatically generates a simulated CyGIL-S. The simulator generation is integrated with the agent training process to further reduce the required agent training time. The agent trained in CyGIL-S is transferrable directly to CyGIL-E showing full transferability to the emulated "real" network. Experimental results are presented to demonstrate the CyGIL training performance. Enabling offline RL, the CyGIL solution presents a promising direction towards sim-to-real for leveraging RL agents in real-world cyber networks.
['Thomas Kunz', 'James Hailing Rao', 'Adrian Taylor', 'Jean-Pierre S. El Rami', 'Li Li']
2023-04-03
null
null
null
null
['offline-rl']
['playing-games']
[-2.73265868e-01 7.00822294e-01 1.72952175e-01 1.55207902e-01 -9.35752988e-02 -4.99123484e-01 6.97034419e-01 -1.57877102e-01 -4.26382750e-01 1.11261821e+00 -5.60904205e-01 -4.29658949e-01 -2.94015855e-01 -1.16191673e+00 -8.56384695e-01 -5.40041149e-01 -6.29573703e-01 9.45913196e-01 1.77784041e-01 -6.85358524e-01 -2.67357379e-01 8.26730609e-01 -1.67215562e+00 -1.44369498e-01 5.98737657e-01 5.81744254e-01 6.51287973e-01 1.17634773e+00 4.02479231e-01 1.31670666e+00 -1.04792714e+00 1.93669051e-01 4.84809399e-01 -5.48023760e-01 -7.95412242e-01 -4.80684306e-04 -5.43069541e-01 -4.26262677e-01 -3.37699890e-01 6.72887206e-01 3.75791401e-01 3.03144932e-01 1.69098988e-01 -1.96427345e+00 3.49397659e-01 9.29536164e-01 2.46220857e-01 -1.40318125e-01 6.10229671e-01 8.07886958e-01 4.24279898e-01 3.48848887e-02 9.69023585e-01 1.36449122e+00 4.63574201e-01 4.46922362e-01 -9.83803809e-01 -6.26541018e-01 9.43033770e-02 2.91287988e-01 -1.07599771e+00 3.45068365e-01 5.02896905e-01 -8.00782219e-02 1.12378883e+00 6.37373999e-02 1.22783351e+00 1.52662480e+00 2.09156409e-01 5.85535049e-01 1.27220595e+00 -4.99326378e-01 9.07524526e-01 4.11360115e-01 -3.90995771e-01 7.84227967e-01 1.86215475e-01 9.97268081e-01 8.42493549e-02 1.60420403e-01 1.07212186e+00 -4.98339236e-01 -1.39757721e-02 -3.40044528e-01 -1.14155126e+00 7.11704195e-01 6.40366673e-01 2.70038307e-01 -8.72642517e-01 4.02416855e-01 7.34366298e-01 6.72215760e-01 -5.23614764e-01 9.05281544e-01 -4.16486055e-01 -4.48326111e-01 -1.60062119e-01 4.21609461e-01 1.50917089e+00 1.26951158e+00 7.58689463e-01 9.06819999e-01 5.03251076e-01 8.46443698e-02 2.42672697e-01 3.91196638e-01 3.54418129e-01 -1.32518709e+00 -5.70932291e-02 5.42601764e-01 2.66207784e-01 -4.85319793e-01 -6.85930312e-01 -6.42366290e-01 -4.31059271e-01 1.11438477e+00 7.59252813e-03 -8.69951248e-01 -4.01238590e-01 1.42047727e+00 5.47525823e-01 7.59259880e-01 7.04115391e-01 6.45507693e-01 3.26424837e-01 1.02009535e+00 1.46443948e-01 -9.67824832e-02 1.10031354e+00 -9.30096745e-01 -3.53035480e-01 1.45745367e-01 8.82417142e-01 -6.81762919e-02 6.48569524e-01 6.73198164e-01 -1.01166213e+00 -7.39878476e-01 -1.36616898e+00 1.17173076e+00 -7.69645751e-01 -2.48042941e-01 7.36849487e-01 8.06815207e-01 -1.35766923e+00 7.31467545e-01 -7.32897103e-01 -4.05906588e-01 -1.43104419e-01 7.56351769e-01 -2.36867025e-01 2.78112322e-01 -1.46405685e+00 1.30636275e+00 1.07356060e+00 -1.09174453e-01 -1.88786590e+00 -6.54066920e-01 -8.90384376e-01 -1.47939101e-02 5.32915413e-01 -6.69824719e-01 1.51795745e+00 -1.26008987e+00 -2.40803599e+00 5.80353253e-02 1.00846350e+00 -9.79841650e-01 7.13753045e-01 3.04512650e-01 -6.67935669e-01 5.08639753e-01 -2.71060526e-01 4.75582808e-01 8.00089359e-01 -1.96068633e+00 -7.38183200e-01 5.28459609e-01 6.59452319e-01 2.70273387e-01 2.86427200e-01 -1.90334335e-01 1.72856137e-01 -2.50969142e-01 -8.64447057e-01 -1.01414323e+00 -5.50895870e-01 -6.07266843e-01 1.63171738e-01 -5.18149137e-02 1.08897877e+00 -1.04607940e-01 3.29412133e-01 -1.68674386e+00 -5.34327887e-02 7.12948501e-01 -4.39318158e-02 5.69936812e-01 -6.27263248e-01 1.01992095e+00 -2.00805202e-01 -3.15668285e-01 4.49199677e-01 7.20422789e-02 3.35996240e-01 6.85169101e-01 -1.88148126e-01 2.74862587e-01 1.54759288e-01 6.68645442e-01 -1.37093711e+00 -2.25416556e-01 6.22591853e-01 5.25518596e-01 -5.47189355e-01 6.88347220e-01 -6.56033456e-01 5.09793699e-01 -6.10203445e-01 1.79164812e-01 4.79191929e-01 -5.86040951e-02 5.02865195e-01 1.73093423e-01 -2.30893359e-01 -2.90695596e-02 -1.19440258e+00 1.36138535e+00 -9.69145238e-01 3.92558575e-01 5.11681616e-01 -9.76628959e-01 1.00021160e+00 4.02196825e-01 5.99974990e-01 -8.41052353e-01 5.55918992e-01 2.91552730e-02 3.01198334e-01 -5.33431411e-01 4.23613012e-01 -9.72975865e-02 -1.08619690e-01 7.37886965e-01 4.98364151e-01 -4.84112561e-01 4.96310443e-01 2.12582394e-01 1.38450122e+00 5.17496526e-01 1.65828258e-01 -1.84732363e-01 8.14259946e-01 4.57517117e-01 3.90836447e-01 9.51507568e-01 -2.52856880e-01 -4.74075466e-01 4.69544262e-01 -2.47557864e-01 -1.02131712e+00 -9.82693493e-01 6.76032722e-01 7.80309379e-01 2.26693422e-01 -2.13723928e-01 -1.02682078e+00 -7.79574335e-01 -3.21272403e-01 1.15460420e+00 -4.23548162e-01 -2.01247007e-01 -8.87251019e-01 -1.56380638e-01 7.51688004e-01 1.03015348e-01 6.28348887e-01 -1.63257813e+00 -1.00395596e+00 6.78109288e-01 5.81084371e-01 -1.26405847e+00 3.27825546e-01 3.36456925e-01 -3.84909362e-01 -1.31392801e+00 -7.82171264e-02 -7.53520846e-01 5.26624501e-01 -1.48313120e-02 9.32109058e-01 2.46913537e-01 -2.54375368e-01 8.19675565e-01 -7.94466317e-01 -5.12449265e-01 -1.42967999e+00 -2.18391549e-02 3.54575455e-01 -4.58689600e-01 -3.16920966e-01 -6.32239223e-01 -3.73139471e-01 3.91974181e-01 -8.74038696e-01 -8.73930082e-02 6.75110281e-01 7.81441391e-01 -5.42654395e-02 5.70759714e-01 8.90203595e-01 -5.83169401e-01 6.70048177e-01 -4.36830282e-01 -1.23209190e+00 1.37773141e-01 -5.48128068e-01 1.91570185e-02 1.35656190e+00 -5.64607620e-01 -1.04017234e+00 -2.28511468e-01 -1.61124855e-01 -3.69565934e-01 -4.38714504e-01 4.88083214e-01 4.21229750e-03 -4.47416365e-01 6.69200778e-01 5.14828451e-02 5.23300171e-01 3.15007478e-01 2.44858980e-01 1.67610511e-01 2.45290905e-01 -8.19062352e-01 1.13138604e+00 2.93531101e-02 1.89733475e-01 -7.40679324e-01 -4.42203991e-02 3.62973511e-01 -2.45008305e-01 -8.76052856e-01 5.88518441e-01 -8.22309315e-01 -1.63705993e+00 2.38434896e-01 -9.75857079e-01 -1.23869228e+00 -7.75823712e-01 7.85914540e-01 -1.03120124e+00 -3.28272805e-02 -4.32477921e-01 -7.10368097e-01 -5.71255274e-02 -1.35928535e+00 4.03927833e-01 2.83723503e-01 -5.14346026e-02 -1.35120666e+00 3.83969307e-01 -1.22949086e-01 3.53373915e-01 5.46053231e-01 5.55334091e-01 -6.33557022e-01 -8.04273069e-01 -1.98395833e-01 1.32366106e-01 4.92835194e-01 -3.92553002e-01 1.46826148e-01 -6.52513206e-01 -6.71378791e-01 -3.03894192e-01 -6.49939239e-01 -3.88879567e-01 -4.70581837e-02 6.36979222e-01 -1.65970221e-01 -6.66326731e-02 2.33784676e-01 1.53754687e+00 5.60588479e-01 5.84496140e-01 7.47182906e-01 9.58384126e-02 3.39911908e-01 9.57231224e-01 6.15246773e-01 3.49626124e-01 4.64765996e-01 9.00112510e-01 -2.15049401e-01 -1.26853555e-01 -2.82436520e-01 8.48070264e-01 8.85477364e-01 -1.65535852e-01 -3.57184075e-02 -8.27267349e-01 -2.88107507e-02 -1.72917461e+00 -1.20024550e+00 2.74014235e-01 1.63992119e+00 2.57579565e-01 3.51028651e-01 2.98983306e-01 7.57269189e-02 6.16019666e-01 -2.54861861e-01 -4.10443306e-01 -7.55467832e-01 2.11932674e-01 4.54488993e-01 4.45512295e-01 6.00943565e-01 -5.23481667e-01 9.35743213e-01 6.22968245e+00 6.13856375e-01 -9.62943137e-01 -5.11589609e-02 -1.26045942e-01 4.79462683e-01 1.98664740e-01 2.36429229e-01 -4.97544676e-01 1.21407285e-01 1.66284680e+00 -3.39156210e-01 8.99408996e-01 1.16140831e+00 7.56754756e-01 -1.58631057e-01 -1.02933121e+00 5.88046670e-01 -2.37182453e-01 -1.50145638e+00 -6.16763793e-02 1.25308841e-01 6.66572750e-01 6.19793162e-02 -4.12423462e-01 1.17878687e+00 1.21206057e+00 -8.86543930e-01 6.92523479e-01 4.02066976e-01 3.83948147e-01 -1.09846950e+00 7.41974056e-01 6.28924847e-01 -1.09501648e+00 -4.22717392e-01 9.97057650e-03 -9.23235863e-02 7.92072639e-02 -3.52974325e-01 -1.57241452e+00 9.70059276e-01 2.57792473e-01 4.47126865e-01 -2.97139704e-01 9.67183232e-01 -1.95821241e-01 3.76382262e-01 -1.25884816e-01 -6.23067915e-01 6.55347168e-01 -3.69534105e-01 5.10236204e-01 1.04952168e+00 2.74905890e-01 -8.87349993e-02 5.41512787e-01 6.87756956e-01 2.43619964e-01 -3.62987250e-01 -6.50634766e-01 -1.73575297e-01 5.09252012e-01 1.35758376e+00 -6.08189046e-01 -5.79146862e-01 6.55892119e-02 5.12378871e-01 1.56195268e-01 3.80026847e-01 -1.21511292e+00 -5.23981631e-01 6.65889323e-01 -1.83556005e-01 5.17866276e-02 -3.26155275e-01 3.22503358e-01 -5.93044102e-01 -7.56415486e-01 -1.36783671e+00 1.21109128e-01 -1.00174737e+00 -9.27186012e-01 1.04550254e+00 1.92830190e-01 -1.61089027e+00 -8.99023890e-01 -6.69240117e-01 -6.83545947e-01 5.25651097e-01 -1.49258268e+00 -9.11985278e-01 -7.14925587e-01 8.26891959e-01 4.11505371e-01 -8.95965993e-01 1.13478768e+00 -3.95431034e-02 -6.16588891e-01 2.09975377e-01 -1.97638601e-01 -2.00076461e-01 -1.08092546e-01 -1.21828461e+00 -2.86771823e-02 5.80443978e-01 -4.84165132e-01 -1.53699862e-02 1.02388275e+00 -4.35114235e-01 -1.68471432e+00 -1.19738388e+00 -3.47868711e-01 2.59370238e-01 1.14922440e+00 -2.35345691e-01 -3.87829483e-01 6.29582703e-01 7.69975781e-01 -2.25000575e-01 2.29550883e-01 -4.99686867e-01 6.61967769e-02 -2.10764065e-01 -1.29841542e+00 8.77936244e-01 6.47032440e-01 -2.69442141e-01 -1.69953242e-01 2.84727126e-01 7.69195855e-01 -3.35472435e-01 -1.16351759e+00 1.72641367e-01 -2.26102434e-02 -8.65955651e-01 6.90873742e-01 -4.30412561e-01 -1.74039111e-01 -5.21727681e-01 4.04565334e-01 -1.81978428e+00 5.73166199e-02 -1.17102158e+00 -6.25806898e-02 6.75329030e-01 3.40797529e-02 -1.03284347e+00 8.48028719e-01 -4.07967390e-03 -3.27661663e-01 -1.94670707e-01 -7.52807915e-01 -1.15526211e+00 -2.22202227e-01 -4.59665447e-01 9.76469338e-01 9.23206866e-01 2.50085175e-01 2.35130619e-02 1.52669907e-01 5.42029619e-01 6.73613131e-01 -3.09393436e-01 1.15822709e+00 -9.91398394e-01 -7.92080045e-01 -3.04399014e-01 -4.89026457e-01 -4.43204433e-01 6.35083795e-01 -7.47291565e-01 4.80016507e-02 -1.41377175e+00 -7.68154800e-01 -7.26368785e-01 4.31304201e-02 3.12049687e-01 6.22878730e-01 -4.96751934e-01 3.75883639e-01 -2.45939523e-01 -5.48765957e-01 6.67270601e-01 1.52025676e+00 9.14731175e-02 -3.39071423e-01 3.35406475e-02 8.26784875e-03 4.82990086e-01 1.23447442e+00 -2.62028575e-01 -8.76905978e-01 2.67236471e-01 6.53522369e-03 6.17494524e-01 6.13269627e-01 -1.52188706e+00 2.15925440e-01 -1.92302346e-01 -3.12790908e-02 -2.33100787e-01 5.36934257e-01 -1.21708071e+00 4.08964157e-01 1.08408928e+00 -1.06465511e-01 4.00319993e-01 1.49350196e-01 3.94150585e-01 -1.65221050e-01 -4.56565678e-01 8.58823240e-01 -2.31094077e-01 -9.26486969e-01 -2.90354323e-02 -9.66711879e-01 -2.81141520e-01 1.76406181e+00 -1.58785984e-01 -5.95664382e-01 -5.31502843e-01 -9.18137610e-01 4.99160707e-01 2.02727884e-01 1.75097257e-01 7.46473312e-01 -8.92414212e-01 -4.38223779e-01 2.20620677e-01 -2.84752905e-01 -2.94689238e-01 4.59863618e-02 3.82506818e-01 -1.10739231e+00 -1.90872382e-02 -8.63034070e-01 -2.54893690e-01 -8.02743375e-01 7.26810753e-01 7.95946538e-01 -5.21059453e-01 -7.71285057e-01 1.56662650e-02 -5.60599506e-01 -7.92407095e-01 3.78377587e-01 6.86210673e-03 -1.07104778e-01 -4.33475077e-01 2.85912663e-01 4.24262524e-01 -8.38302299e-02 -3.05385649e-01 4.21732664e-02 -3.13664019e-01 3.73259969e-02 -3.75255734e-01 1.57193756e+00 3.68021160e-01 3.30636464e-02 -6.91146031e-02 7.05972791e-01 -7.19967246e-01 -1.53305304e+00 4.34865206e-01 7.38056302e-02 2.90277936e-02 -3.05117667e-02 -7.32178986e-01 -8.80802274e-01 1.46251693e-01 4.87042576e-01 4.92502719e-01 9.01496351e-01 -5.24210691e-01 2.85474330e-01 7.69985259e-01 1.08074522e+00 -1.50714362e+00 4.76079941e-01 7.70901561e-01 1.01400983e+00 -7.77556777e-01 -6.76651746e-02 -2.20026821e-01 -8.78969491e-01 1.30122125e+00 9.39264178e-01 -9.23931897e-01 6.87809765e-01 7.44387567e-01 4.59801331e-02 -2.16492981e-01 -9.92177188e-01 -3.47687453e-01 -8.51904333e-01 1.32721913e+00 -4.32402611e-01 1.19199894e-01 1.89350739e-01 -4.90447804e-02 -5.16213894e-01 1.61881726e-02 1.25390816e+00 1.06126237e+00 -2.79409289e-01 -1.32849395e+00 -5.75856388e-01 -2.02561855e-01 5.02995491e-01 6.55425906e-01 2.12855451e-02 1.61895645e+00 1.95894502e-02 8.85238528e-01 -1.20210655e-01 -4.35616702e-01 5.50429046e-01 -4.51976031e-01 5.00462592e-01 -4.05660897e-01 -1.33370864e+00 -3.03249151e-01 5.53706825e-01 -6.86494529e-01 -2.54763424e-01 -3.16337168e-01 -1.80580866e+00 -5.34455061e-01 1.96333006e-01 4.81835127e-01 1.01771486e+00 6.85958803e-01 1.52750626e-01 1.09651983e+00 9.91197467e-01 -1.24716818e+00 -6.71093822e-01 -5.72293639e-01 -6.47189140e-01 -3.92393246e-02 1.00816660e-01 -6.16698265e-01 -1.12532370e-01 -3.76933992e-01]
[4.187369346618652, 1.5389838218688965]
d4dfb29a-59b4-4518-96d2-13f5d1ecdd0c
electromyography-signal-classification-using
2305.04006
null
https://arxiv.org/abs/2305.04006v1
https://arxiv.org/pdf/2305.04006v1.pdf
Electromyography Signal Classification Using Deep Learning
We have implemented a deep learning model with L2 regularization and trained it on Electromyography (EMG) data. The data comprises of EMG signals collected from control group, myopathy and ALS patients. Our proposed deep neural network consists of eight layers; five fully connected, two batch normalization and one dropout layers. The data is divided into training and testing sections by subsequently dividing the training data into sub-training and validation sections. Having implemented this model, an accuracy of 99 percent is achieved on the test data set. The model was able to distinguishes the normal cases (control group) from the others at a precision of 100 percent and classify the myopathy and ALS with high accuracy of 97.4 and 98.2 percents, respectively. Thus we believe that, this highly improved classification accuracies will be beneficial for their use in the clinical diagnosis of neuromuscular disorders.
['Abdulhamit Subasi', 'Selcuk Cankurt', 'Mekia Shigute Gaso']
2023-05-06
null
null
null
null
['electromyography-emg', 'l2-regularization']
['medical', 'methodology']
[ 3.00598592e-01 2.85540193e-01 -3.32311839e-01 -2.63567597e-01 -6.78174198e-01 2.96222746e-01 -5.49947731e-02 -5.84931135e-01 -8.76715243e-01 1.27888215e+00 -1.11968003e-01 4.54694629e-02 -2.67938673e-01 -3.47975165e-01 -5.59941947e-01 -8.76414001e-01 -4.01523083e-01 6.50853693e-01 3.34320106e-02 1.21675067e-01 1.99463472e-01 3.94415766e-01 -1.36413634e+00 5.02498984e-01 1.05946720e+00 9.03455615e-01 2.34018356e-01 5.54916024e-01 2.09397808e-01 7.05387235e-01 -7.74959862e-01 2.83752173e-01 3.61344635e-01 -2.75563061e-01 -7.53407836e-01 -5.35108633e-02 2.58378685e-01 -3.10252905e-01 -4.56387252e-01 8.48320842e-01 7.99931109e-01 1.66319847e-01 6.36029065e-01 -9.12507176e-01 -3.41643035e-01 5.22450209e-01 -6.25031054e-01 2.51318604e-01 -1.82793543e-01 3.42207700e-01 4.66477603e-01 -2.45846257e-01 8.75406682e-01 8.92772377e-01 9.03018117e-01 1.02311730e+00 -1.20367813e+00 -1.04159558e+00 -4.05347735e-01 5.61294854e-01 -1.00211847e+00 5.49023934e-02 4.09763783e-01 -5.86363196e-01 1.18443656e+00 8.44226107e-02 8.43338788e-01 1.41192102e+00 6.26825631e-01 7.20021129e-01 1.32317662e+00 -1.32855043e-01 2.30759326e-02 -2.95405179e-01 6.24852896e-01 1.55308113e-01 1.17706865e-01 2.37933487e-01 -3.20700347e-01 2.45839238e-01 8.29891205e-01 -1.60931855e-01 -4.00513381e-01 3.40184510e-01 -8.89750123e-01 5.84356725e-01 2.49035582e-01 3.95794511e-01 -8.68015826e-01 1.22823462e-01 7.01108515e-01 5.84772170e-01 2.64659792e-01 2.07995176e-01 -6.73768818e-01 -3.73038322e-01 -7.75852203e-01 3.55164975e-01 4.36143637e-01 4.89240974e-01 5.68227731e-02 2.74311006e-01 1.56409666e-01 1.13923478e+00 -2.22135797e-01 3.04900914e-01 1.01210999e+00 -7.74223804e-01 5.17568111e-01 7.34100163e-01 -3.30385804e-01 -4.85700607e-01 -6.91704035e-01 -5.68692386e-01 -8.02273273e-01 7.49897301e-01 2.90192902e-01 -6.92920208e-01 -1.28212881e+00 1.62890959e+00 -2.27145523e-01 -2.52195686e-01 -7.58396238e-02 1.25590491e+00 5.29728293e-01 3.16628098e-01 4.32178266e-02 -9.87005979e-02 9.97661829e-01 -6.31292403e-01 -9.20809388e-01 8.81430805e-02 6.76224411e-01 -4.45813507e-01 9.70157325e-01 9.51282442e-01 -1.12432981e+00 -6.51329935e-01 -1.04787827e+00 2.42664143e-01 -1.14719957e-01 6.71011269e-01 6.60486341e-01 1.49381250e-01 -6.55987620e-01 1.12992716e+00 -1.18760014e+00 -3.68900716e-01 5.37412047e-01 1.16990256e+00 -7.88561404e-01 5.21858275e-01 -1.08910251e+00 9.25042212e-01 5.55804014e-01 2.49858245e-01 -5.31728864e-01 -2.95355439e-01 -1.96593240e-01 -2.63911843e-01 -3.89264636e-02 -5.06941855e-01 6.62113190e-01 -9.91107643e-01 -1.30553699e+00 9.15093482e-01 2.81336248e-01 -5.76774299e-01 5.90731025e-01 -5.40108800e-01 -4.70523864e-01 2.13995073e-02 -1.41318977e-01 3.48800808e-01 5.12146890e-01 -4.94334280e-01 -7.63693929e-01 -6.89329863e-01 -3.57161492e-01 -3.05640846e-02 -7.86582083e-02 -3.21485512e-02 -2.76880432e-02 -6.25274420e-01 2.46234342e-01 -9.98298407e-01 1.64185598e-01 -2.81343043e-01 -6.39659405e-01 -3.69639188e-01 7.85146296e-01 -1.13652658e+00 9.35240626e-01 -1.97579432e+00 4.79976714e-01 1.67081565e-01 2.40079045e-01 5.11590481e-01 -1.20727301e-01 3.19925815e-01 -5.46049297e-01 -1.89992458e-01 1.11697562e-01 2.02008978e-01 -2.84953684e-01 1.73277900e-01 4.57840830e-01 6.10180140e-01 3.90278667e-01 4.99186486e-01 -2.01092616e-01 -1.51611835e-01 2.84080148e-01 5.29951632e-01 -4.61700529e-01 3.63688201e-01 1.31459564e-01 5.95785856e-01 -1.92870677e-01 5.61309516e-01 3.75412524e-01 2.34612554e-01 2.32486144e-01 -4.21565205e-01 5.94048575e-02 1.40877143e-01 -1.09901118e+00 1.51737165e+00 -1.50893986e-01 9.98394012e-01 3.09420109e-01 -1.18590486e+00 8.20887268e-01 3.84513825e-01 8.12088788e-01 -5.41255295e-01 6.22251868e-01 3.73419017e-01 7.58674502e-01 -1.14898038e+00 -2.21642494e-01 -3.28320712e-01 4.35637981e-01 2.42407799e-01 3.31150919e-01 8.20267498e-01 3.05765480e-01 -3.93289089e-01 1.26074398e+00 2.81261891e-01 -3.41768742e-01 -1.62790000e-01 4.60574120e-01 1.21387169e-01 8.21690142e-01 3.02847743e-01 -2.32624665e-01 4.42260385e-01 5.22508025e-01 -3.12509388e-01 -9.95410442e-01 -9.40667748e-01 -1.75293997e-01 5.60162187e-01 -3.44797462e-01 3.79996188e-02 -8.64464104e-01 -4.48797792e-01 2.08046049e-01 1.66631490e-01 -6.31933331e-01 -4.76356804e-01 -8.72592926e-01 -6.24742270e-01 6.39278531e-01 9.13725078e-01 3.98351192e-01 -1.47515345e+00 -3.37704480e-01 9.69668031e-02 8.44777077e-02 -7.08678365e-01 5.70599809e-02 6.03569150e-01 -1.10283530e+00 -1.62391841e+00 -6.02079332e-01 -1.17987025e+00 5.64357042e-01 -7.09921181e-01 3.66673589e-01 -7.37641752e-02 -6.12093568e-01 -3.07791620e-01 -2.16028050e-01 -2.47828364e-01 -2.97795922e-01 1.98133245e-01 4.56473470e-01 -4.56649601e-01 7.96136141e-01 -8.39730859e-01 -4.96874332e-01 -7.59699801e-03 -4.68683898e-01 4.94519323e-02 1.10662210e+00 1.06885934e+00 6.47851765e-01 -1.10248633e-01 8.19713831e-01 -8.21437299e-01 8.80851626e-01 -3.50092143e-01 6.10187165e-02 -3.05770755e-01 -6.43998682e-01 -2.16457829e-01 5.33340573e-01 -7.03569531e-01 -6.09516025e-01 -1.42114028e-01 -6.10020876e-01 -4.07277822e-01 -3.68622512e-01 2.65045524e-01 1.33828804e-01 -1.02777995e-01 4.92527634e-01 -3.23675834e-02 5.29009938e-01 -9.82380271e-01 -1.72414064e-01 1.22057688e+00 8.10281098e-01 -3.11929882e-01 9.77124795e-02 -9.45700258e-02 -1.07949220e-01 -8.21086586e-01 -4.47946601e-02 -3.93858194e-01 -7.33952820e-01 -4.98634815e-01 9.90146816e-01 -5.71200490e-01 -8.38747025e-01 7.69458175e-01 -7.73170710e-01 -2.65204072e-01 -2.20712587e-01 1.16902661e+00 -6.91637278e-01 2.66684890e-01 -9.80545282e-01 -6.08882189e-01 -8.32071185e-01 -1.16159594e+00 5.03589988e-01 3.16015668e-02 -5.82421362e-01 -7.44509637e-01 8.49698186e-02 6.04961097e-01 1.71161562e-01 5.05084693e-01 1.17167163e+00 -1.09327030e+00 2.28092387e-01 -5.63197672e-01 2.42671482e-02 9.06235158e-01 3.36666793e-01 -2.34294757e-01 -8.16832304e-01 -4.76941794e-01 1.79179236e-01 -7.89245844e-01 7.83438444e-01 5.83382249e-01 1.18474579e+00 1.52286410e-01 -1.98796645e-01 5.83388865e-01 1.35738838e+00 5.75433016e-01 8.04270625e-01 4.58817452e-01 5.55781484e-01 4.91207749e-01 3.92465919e-01 -1.76527813e-01 -4.92768466e-01 4.99321997e-01 3.62596482e-01 -1.79102749e-01 -3.91089380e-01 2.97011971e-01 1.90032735e-01 1.02437675e+00 -6.72788799e-01 1.73098430e-01 -6.03132129e-01 4.29030716e-01 -1.69605017e+00 -8.28977227e-01 -4.99499202e-01 1.93568218e+00 8.99981141e-01 2.02102616e-01 2.81474411e-01 5.68834722e-01 8.30179691e-01 -3.97416979e-01 -8.57429385e-01 -4.86638397e-01 1.38611551e-02 7.62430787e-01 4.15661007e-01 4.97028790e-02 -1.03932500e+00 5.06489098e-01 6.49536324e+00 7.50274062e-01 -1.35884082e+00 -1.56047523e-01 3.37450393e-02 -5.15461445e-01 6.30606413e-01 -6.00544870e-01 -4.37572986e-01 5.98766029e-01 1.12938619e+00 3.85200888e-01 4.05595869e-01 5.67797244e-01 4.91264135e-01 2.83695161e-02 -7.68057942e-01 9.19252157e-01 -2.42808387e-01 -1.09928524e+00 -1.72329322e-01 1.18187562e-01 4.49918747e-01 3.87824357e-01 -4.12852943e-01 4.65235651e-01 -3.72760087e-01 -1.18263364e+00 -9.81127750e-03 7.17549086e-01 8.00962269e-01 -8.11222255e-01 1.22181654e+00 4.62336689e-01 -4.76201385e-01 -2.02437744e-01 -1.92865685e-01 -2.42143735e-01 -4.83805202e-02 4.81787920e-02 -5.71964264e-01 3.63802046e-01 8.08421433e-01 6.17856979e-01 6.67522848e-02 8.56609404e-01 7.52041489e-02 8.57709944e-01 -1.70396030e-01 3.33003066e-02 7.55121261e-02 -4.47874159e-01 5.68740427e-01 9.99660790e-01 -1.11897014e-01 -1.75802454e-01 -1.38545439e-01 9.15494025e-01 -2.56145205e-02 1.77567407e-01 -1.46406621e-01 -3.67836297e-01 1.94074307e-02 9.06785011e-01 -1.91665992e-01 -6.03247061e-02 -1.72303602e-01 7.70185709e-01 3.55650753e-01 1.73949406e-01 -5.83762109e-01 -9.83193696e-01 5.30529141e-01 9.56368074e-03 -2.32183724e-03 1.58987716e-01 -4.49435472e-01 -8.86607587e-01 1.54986903e-01 -1.07020223e+00 2.28647619e-01 -5.45851529e-01 -1.28456366e+00 5.19459605e-01 -3.16383570e-01 -1.07554376e+00 -4.09350157e-01 -1.23066008e+00 -6.86399043e-01 1.14338279e+00 -6.52414143e-01 -8.21988881e-01 -1.84285060e-01 3.97321790e-01 5.16528308e-01 -5.67137182e-01 6.89129651e-01 7.07514822e-01 -8.28637719e-01 4.29727465e-01 3.26038480e-01 4.47303742e-01 5.85293114e-01 -1.31247473e+00 -1.47928342e-01 3.84354860e-01 -5.74953198e-01 8.66885662e-01 4.62888360e-01 -8.22993934e-01 -1.01914608e+00 -9.64275777e-01 5.73611617e-01 3.32358211e-01 6.63792968e-01 1.46578431e-01 -1.04392469e+00 6.53593063e-01 5.94650991e-02 -5.90002298e-01 9.37194884e-01 -3.31608690e-02 4.99465913e-01 -6.10953104e-03 -1.26467967e+00 2.25638956e-01 8.73990238e-01 -1.68214262e-01 -1.02249217e+00 3.79301012e-01 -8.86221603e-02 -4.43084925e-01 -1.38214624e+00 7.38475800e-01 1.05631709e+00 -7.54833817e-01 5.81596196e-01 -1.18907106e+00 4.27257419e-01 1.09639414e-01 2.04573229e-01 -1.17313230e+00 -1.37281314e-01 -8.53063390e-02 -9.69202295e-02 8.46447289e-01 1.58135012e-01 -5.49199104e-01 1.11125660e+00 1.78888917e-01 -4.83919233e-01 -1.38348043e+00 -7.53111064e-01 -7.79309630e-01 3.23900372e-01 -3.72276902e-01 -2.73157209e-01 5.88114977e-01 -4.04081717e-02 8.17417055e-02 -5.51497042e-01 -3.59434128e-01 4.69523847e-01 -1.87168747e-01 4.48713720e-01 -1.40147448e+00 -6.54177070e-02 -1.37717605e-01 -9.65327919e-01 -4.12303805e-01 1.46448180e-01 -9.50079799e-01 -8.71155411e-02 -1.64397955e+00 6.72783554e-02 -1.27163395e-01 -4.98488516e-01 5.92401385e-01 1.06251635e-01 5.91260612e-01 -3.01570386e-01 3.32140714e-01 2.18496487e-01 1.85398206e-01 1.14836693e+00 -1.04792113e-03 -2.48989150e-01 4.66012627e-01 -1.96117908e-01 8.35094869e-01 1.32239783e+00 -4.33291495e-01 -2.19630435e-01 -2.01552317e-01 -6.02394044e-01 -2.57724464e-01 4.75018099e-02 -1.38634491e+00 -1.95735976e-01 -1.47939278e-02 7.46964633e-01 -7.62495816e-01 3.79378051e-01 -6.39901280e-01 2.49850944e-01 9.29203928e-01 -4.91224110e-01 -5.11381686e-01 6.87940791e-02 1.97852343e-01 -6.75726607e-02 -5.74196391e-02 8.67496014e-01 5.10806963e-03 -6.73961282e-01 1.50681138e-01 -4.56814587e-01 -1.16173230e-01 9.94843245e-01 -5.34592211e-01 -6.06571846e-02 1.07138850e-01 -1.51383543e+00 2.90296793e-01 1.34477362e-01 4.20730770e-01 5.63117087e-01 -1.27038538e+00 -5.52989602e-01 3.94445628e-01 -2.68115282e-01 -3.96107882e-01 3.23537499e-01 1.29553545e+00 -7.13409483e-01 4.21134830e-01 -1.11503541e+00 -6.58901572e-01 -1.60020328e+00 -2.08183721e-01 5.64096272e-01 7.75790289e-02 -9.57671404e-01 6.84003532e-01 -5.74633420e-01 -4.23897892e-01 8.06771219e-01 -3.80169272e-01 -4.45065141e-01 -3.68143141e-01 2.61647075e-01 8.47814620e-01 1.21118695e-01 -4.49855208e-01 -1.84675947e-01 6.23915374e-01 -1.41257659e-01 3.33808869e-01 1.52386558e+00 4.72285330e-01 -7.01288953e-02 6.26145482e-01 1.13238204e+00 -2.41101965e-01 -9.42180693e-01 4.35484439e-01 -2.54871286e-02 9.27628949e-02 5.34688905e-02 -1.14143062e+00 -1.30902171e+00 1.02707326e+00 1.38594568e+00 -1.95928648e-01 1.03683722e+00 -2.97832191e-01 1.08213329e+00 4.12648588e-01 2.04098791e-01 -1.46369803e+00 -5.63508630e-01 2.47831985e-01 7.75761008e-01 -9.65143502e-01 -1.17508329e-01 -1.53389238e-02 -4.14599925e-01 1.35678566e+00 8.63936424e-01 -9.33278739e-01 2.32018918e-01 4.31110829e-01 3.14425826e-01 -2.90087938e-01 -7.28347361e-01 -9.34056118e-02 3.99962157e-01 9.00751054e-01 7.15981781e-01 2.37509646e-02 -1.19918370e+00 9.77629125e-01 -3.41729000e-02 5.87037623e-01 3.74793410e-02 8.69353890e-01 -4.42946464e-01 -1.08667350e+00 -6.42143935e-02 1.17622316e+00 -9.35158014e-01 4.28673267e-01 -5.54553807e-01 1.43460083e+00 5.16740978e-01 5.22394300e-01 1.50812477e-01 -1.04305804e+00 5.18105745e-01 2.42065161e-01 5.54718971e-01 -5.92389524e-01 -9.83302236e-01 1.74582303e-01 2.86494106e-01 -6.02477551e-01 -2.21230596e-01 -2.04972297e-01 -1.85535955e+00 -2.77299911e-01 -3.75573128e-01 2.63801962e-01 7.71087885e-01 1.05941176e+00 6.00552484e-02 9.89919841e-01 2.00537756e-01 -7.16888130e-01 -9.56334472e-01 -1.71381664e+00 -9.17533934e-01 5.54614365e-01 1.47964492e-01 -8.47010911e-01 -4.92132097e-01 -3.63496579e-02]
[6.888059616088867, 0.19723524153232574]
4a659a4e-ab71-4236-839f-d45221bbab72
multi-relational-embedding-for-knowledge
null
null
https://ir.soken.ac.jp/?action=pages_view_main&active_action=repository_view_main_item_detail&item_id=6334&item_no=1&page_id=29&block_id=155
https://ir.soken.ac.jp/?action=pages_view_main&active_action=repository_view_main_item_detail&item_id=6334&item_no=1&page_id=29&block_id=155
Multi-Relational Embedding for Knowledge Graph Representation and Analysis
Multi-relational data, such as knowledge graphs, bibliographic data, and information networks are prevalent in real-world datasets. Managing, exploring, and utilizing these large and complex datasets effectively are challenging. In recent years, multi-relational embedding methods have emerged as a new effective approach to model multi-relational data by representing both the entities and the relations as embedding vectors in semantic space. On knowledge graphs, multi-relational embedding methods aim to model the interactions between these embedding vectors to predict the relational link between entities. These knowledge graph embedding methods solve the important inherent task of link prediction for knowledge graph completion, but also provide the embedding representations that have various potential applications. The goal of this thesis is first to study multi-relational embedding on knowledge graphs to propose a new embedding model that explains and improves previous methods, then to study the applications of multi-relational embedding in representation and analysis of knowledge graphs. For the first part of the thesis, we study the theoretical framework of knowledge graph embedding methods to explain and improve them. We review and analyze the popular class of semantic matching knowledge graph embedding methods, with a focus on the state-of-the-art trilinear-product-based models such as ComplEx. Based on our analysis, we identify two fundamental complementary aspects that a knowledge graph embedding model needs to address, that is, computational efficiency and model expressiveness. Previous trilinear-product-based models use specially designed interaction mechanisms to manually provide a trade-off between the two aspects. However, their interaction mechanisms are specially designed and fixed, potentially causing them to be suboptimal or difficult to extend. In this thesis, we propose the multi-partition embedding interaction (MEI) model with block term format to systematically address this problem. MEI divides each embedding into a multi-partition vector to efficiently restrict the interactions. Each local interaction is modeled with the Tucker tensor format and the full interaction is modeled with the block term tensor format, enabling MEI to control the trade-off between expressiveness and computational cost, learn the interaction mechanisms from data automatically. The model combines advanced tensor representation formats and modern deep learning techniques to achieve state-of-the-art performance on the link prediction task. The theoretical framework of the MEI model is then used as a general mechanism of knowledge graph embedding to analyze, explain, and generalize previous models. We also draw the connections to word embeddings and language modeling to provide some new insights and generalizations. For the second part of the thesis, we study how to apply multi-relational embedding in representation and analysis of knowledge graphs. Unlike word embedding, the semantic structures such as similarity and analogy structures in knowledge graph embedding space are not well-studied, and thus not usually utilized for data representation and analysis. To demonstrate the application of multi-relational embedding, we formalize a framework for data representation and analysis by semantic queries on the multi-relational embedding space. We build a knowledge graph from scholarly data and show how various tasks on the original datasets can be approximated by appropriate semantic queries, which are multi-linear algebraic operations on the multi-relational embedding spaces. We also theoretically study the entity analogy reasoning task in multi-relational embedding space, which can be formulated as an open-relational query by examples task, doing relational query on unseen relations. Using the above mathematical connections between knowledge graph embeddings and word embeddings, we analyze the semantic structures in the knowledge graph embedding space and propose potential solution to the above entity analogy reasoning task. The goal of this endeavor is to explore potential applications of recent advancements in multi-relational embedding to data representation and analysis, especially to improve its effectiveness on scholarly data.
['Hung Nghiep Tran']
2020-09-28
null
null
null
phd-dissertation-the-graduate-university-for
['knowledge-graph-embeddings', 'knowledge-graph-embeddings']
['graphs', 'methodology']
[-2.60561347e-01 3.25738341e-01 -5.48878133e-01 -9.28325951e-03 5.90382982e-03 -4.89967883e-01 5.00784457e-01 2.39097208e-01 1.01226367e-01 5.12054861e-02 2.23748952e-01 -4.54842269e-01 -8.94016445e-01 -1.23959935e+00 -5.29224873e-01 -3.61464351e-01 -3.36346209e-01 5.73655963e-01 1.00638799e-01 -4.18746084e-01 7.71175623e-02 5.09184539e-01 -1.53670025e+00 4.11078751e-01 6.92621350e-01 7.12184787e-01 -3.11997719e-02 4.91090238e-01 -5.97263455e-01 8.11092675e-01 -1.87968582e-01 -7.08431661e-01 8.25336128e-02 -7.24988058e-02 -1.07689214e+00 -1.92079455e-01 1.57732040e-01 1.18326351e-01 -7.69372165e-01 8.62730742e-01 2.88667500e-01 6.99634254e-02 6.72770679e-01 -1.77323401e+00 -1.16686678e+00 8.72852445e-01 -2.71401078e-01 1.77365690e-02 5.23303688e-01 -3.65795374e-01 1.49593794e+00 -9.43990648e-01 7.56878376e-01 1.36560082e+00 8.39274406e-01 2.70448744e-01 -1.17360044e+00 -4.45781976e-01 1.93591312e-01 7.62926459e-01 -1.56782484e+00 1.80689037e-01 9.75461841e-01 -6.98128819e-01 1.20415688e+00 4.04666305e-01 8.47010195e-01 8.07038188e-01 2.00006023e-01 6.52813315e-01 5.34099400e-01 -4.50930476e-01 -2.58978695e-01 3.22620511e-01 5.71554363e-01 9.96852756e-01 3.05257201e-01 -3.96098569e-02 -4.68371630e-01 -3.14348638e-01 7.42796123e-01 2.53135145e-01 -3.22887599e-01 -7.73497760e-01 -1.28479993e+00 1.04227519e+00 7.40492940e-01 6.66440248e-01 -1.91304505e-01 1.98440015e-01 4.77978945e-01 3.53834927e-01 2.28832513e-01 4.49916810e-01 -3.21783423e-01 4.34535481e-02 -4.46888596e-01 1.25385940e-01 9.40825403e-01 9.79637384e-01 9.35835660e-01 -1.22052878e-01 -1.59631342e-01 9.48179483e-01 5.49275935e-01 -3.21837422e-03 5.27023017e-01 -5.36164284e-01 5.95437050e-01 1.31515706e+00 -4.25761163e-01 -1.62454569e+00 -4.74892795e-01 -3.79268557e-01 -8.22283089e-01 -2.82108963e-01 4.53721471e-02 5.33455670e-01 -6.17110312e-01 1.50896859e+00 4.07491326e-01 1.78231150e-01 1.15371436e-01 6.49655223e-01 1.06737912e+00 6.55392289e-01 -6.38929605e-02 6.56010285e-02 1.69763803e+00 -1.03526616e+00 -8.28683376e-01 2.47299165e-01 1.22085869e+00 -4.95283902e-01 1.06742311e+00 -9.70826820e-02 -7.18781888e-01 -4.69706148e-01 -1.01703775e+00 -2.95267820e-01 -1.09495759e+00 1.64328143e-04 1.09211171e+00 4.35467571e-01 -9.80339885e-01 6.38325095e-01 -7.36047745e-01 -3.58451128e-01 1.10902019e-01 4.36277896e-01 -6.81274414e-01 -1.79488972e-01 -1.62386632e+00 9.04942989e-01 6.21506631e-01 1.46527693e-01 -1.46292001e-01 -9.36281681e-01 -1.12683809e+00 4.19390440e-01 3.62235099e-01 -9.32943404e-01 3.46719146e-01 -5.18727601e-01 -1.15449405e+00 5.85204482e-01 1.48927718e-01 -1.20670609e-01 1.03085160e-01 4.99362461e-02 -5.62171698e-01 1.98139716e-02 2.65147518e-02 2.79394269e-01 4.09068525e-01 -1.12532592e+00 -1.45445287e-01 -4.22436774e-01 3.83341879e-01 1.33419752e-01 -8.56140614e-01 -2.22410679e-01 -6.94241166e-01 -5.87559700e-01 1.42936692e-01 -8.65851164e-01 1.35960594e-01 -1.28356844e-01 -3.82438809e-01 -6.33734703e-01 1.01082897e+00 -4.35328066e-01 1.55608594e+00 -2.06034112e+00 7.44633913e-01 3.73769879e-01 6.06448412e-01 1.58913150e-01 -2.92557359e-01 8.14927578e-01 -4.26920354e-01 3.14929366e-01 2.13779695e-02 -1.74136072e-01 1.91184640e-01 5.80738664e-01 -2.11905763e-01 9.60841924e-02 7.62342438e-02 1.07085383e+00 -9.24499154e-01 -5.82856596e-01 1.93105102e-01 8.19292903e-01 -5.10386586e-01 1.37036413e-01 7.52998292e-02 -2.34824911e-01 -4.84155416e-01 6.06693268e-01 4.85358536e-01 -4.76468503e-01 4.38766658e-01 -9.48386967e-01 1.60939157e-01 2.01271884e-02 -1.53133869e+00 1.52583098e+00 -4.13251221e-01 4.03107584e-01 -2.82944262e-01 -1.33892739e+00 8.65608275e-01 3.21389854e-01 8.24749708e-01 -3.43376100e-01 -4.20881920e-02 1.09553680e-01 -5.81128411e-02 -6.20091081e-01 6.45762980e-01 1.35690970e-02 1.47100180e-01 3.97586942e-01 1.77754477e-01 2.37629652e-01 2.77420461e-01 6.12186730e-01 1.21318316e+00 1.39876176e-02 8.74107778e-02 -1.32567227e-01 6.31722450e-01 -1.38129845e-01 3.64555001e-01 3.30001980e-01 2.32850015e-01 1.35918796e-01 7.18942761e-01 -6.54392600e-01 -8.30320716e-01 -8.86707187e-01 -1.15881212e-01 9.67115879e-01 1.27060503e-01 -9.46997464e-01 -3.01954031e-01 -7.81594157e-01 3.92527580e-01 3.59419793e-01 -8.12203586e-01 -3.70519072e-01 -3.48669648e-01 -6.41826332e-01 5.93120456e-01 6.70525074e-01 2.24687353e-01 -7.84857988e-01 1.17159128e-01 1.28486603e-01 -1.35581776e-01 -1.11892045e+00 -2.80131698e-01 2.20578592e-02 -7.30338633e-01 -1.40622997e+00 -2.67814577e-01 -7.48324513e-01 5.63480973e-01 3.33855540e-01 1.10191357e+00 3.79073620e-01 -3.97076607e-01 8.04712832e-01 -5.44143856e-01 6.75062984e-02 -1.28979057e-01 2.02432603e-01 1.07089624e-01 1.12952538e-01 4.18875009e-01 -6.31981015e-01 -2.43748516e-01 2.82727897e-01 -1.41215420e+00 7.96591565e-02 4.79429483e-01 1.02616620e+00 5.71452141e-01 2.35102162e-01 2.96174318e-01 -9.00462627e-01 8.22916687e-01 -6.79267049e-01 -3.18511903e-01 6.35750055e-01 -8.85487676e-01 3.96608055e-01 5.09437263e-01 -5.83664179e-01 -3.66122484e-01 -2.10087687e-01 2.47140259e-01 -7.83995867e-01 5.24640322e-01 1.09285283e+00 -2.66661108e-01 -3.33342969e-01 3.63042325e-01 7.72971287e-02 3.40449996e-03 -4.02104676e-01 8.87304664e-01 4.98692036e-01 3.25684845e-02 -7.68579364e-01 8.37255478e-01 2.38250121e-01 2.88179427e-01 -7.32199550e-01 -6.27027035e-01 -5.64271808e-01 -7.98129916e-01 2.82218270e-02 7.49549866e-01 -6.01429701e-01 -9.90288496e-01 -2.72410572e-01 -1.16820431e+00 6.09068107e-03 -2.49580532e-01 6.03747845e-01 -4.25146878e-01 6.05628014e-01 -6.99810326e-01 -3.89491498e-01 -2.53604650e-01 -1.17124081e+00 8.67451370e-01 -1.22358903e-01 -1.54107690e-01 -1.52784979e+00 1.73851803e-01 5.10237575e-01 3.30727458e-01 7.69399777e-02 1.48142791e+00 -6.98380589e-01 -7.52394438e-01 -2.08055317e-01 -4.98446375e-01 1.40209258e-01 4.71372902e-02 5.26812226e-02 -4.73409593e-01 -1.84365749e-01 -5.68387330e-01 7.23918974e-02 6.96679354e-01 -1.49895489e-01 1.29271221e+00 -3.18630368e-01 -5.71112454e-01 7.79614449e-01 1.51304233e+00 -2.05739409e-01 6.86738253e-01 4.53897566e-01 1.27731824e+00 6.23324156e-01 2.84785390e-01 6.03175834e-02 9.10810113e-01 8.67364109e-01 4.22258258e-01 1.16013765e-01 -8.90749618e-02 -3.77183795e-01 1.55681551e-01 1.32501912e+00 -3.07214439e-01 4.40522060e-02 -1.01485038e+00 6.32923007e-01 -2.15067959e+00 -9.76806760e-01 -2.84852356e-01 1.95425892e+00 7.21324444e-01 -2.15347767e-01 -3.43871415e-02 2.40404665e-01 5.92274070e-01 4.84211519e-02 -3.46458480e-02 -5.45170665e-01 7.01259449e-02 1.34240642e-01 4.26433325e-01 6.59733653e-01 -7.94629216e-01 9.80516732e-01 5.69725323e+00 8.34760487e-01 -8.40435088e-01 1.76756978e-01 -2.33151719e-01 2.78235883e-01 -7.43534863e-01 2.64279008e-01 -7.46854067e-01 1.43995821e-01 8.38362217e-01 -2.10300505e-01 6.15435779e-01 7.68438935e-01 -4.12800640e-01 5.80040574e-01 -1.45543170e+00 1.26088822e+00 6.04325607e-02 -1.62408519e+00 4.96800363e-01 3.40960711e-01 4.32848036e-01 -3.27242434e-01 -1.52705729e-01 6.39638186e-01 1.31280318e-01 -1.10896373e+00 9.69593450e-02 7.69494891e-01 5.06050944e-01 -5.57294369e-01 7.69605517e-01 -5.94211742e-02 -1.67691755e+00 -1.16253138e-01 -4.40165460e-01 5.18929772e-02 5.45499567e-03 5.55479169e-01 -5.37102282e-01 1.32513380e+00 5.74282289e-01 9.65332866e-01 -4.96705592e-01 6.23092949e-01 -1.23939373e-01 1.25174046e-01 -6.92098290e-02 6.52277544e-02 1.33487552e-01 -4.39763427e-01 4.05852377e-01 1.23250353e+00 2.78443575e-01 -3.06862853e-02 2.08694786e-01 1.10695124e+00 -1.16067849e-01 1.84749663e-01 -9.78407860e-01 -3.67932200e-01 4.90484953e-01 1.36012638e+00 -3.68082106e-01 -2.93483853e-01 -6.52672708e-01 7.66798973e-01 6.51058555e-01 4.33405638e-01 -7.73746371e-01 -6.03972077e-01 7.78518796e-01 1.71856672e-01 1.45406678e-01 -3.49193096e-01 -6.87566698e-02 -1.34387410e+00 2.23825663e-01 -6.57501578e-01 6.35394990e-01 -6.69102669e-01 -1.47909367e+00 4.43468928e-01 3.09599787e-01 -1.04106069e+00 -5.02577983e-03 -8.40975523e-01 -2.92376012e-01 7.66075730e-01 -1.59096348e+00 -1.61321139e+00 -3.39751959e-01 7.44550824e-01 -8.73720273e-02 -1.97866172e-01 1.09350765e+00 6.46529913e-01 -7.14732766e-01 7.30108738e-01 4.79048006e-02 3.82950336e-01 3.41028690e-01 -1.19144225e+00 -2.82320175e-02 2.92996228e-01 3.82836729e-01 9.88449931e-01 2.84413397e-01 -5.09685636e-01 -2.02174997e+00 -1.07824016e+00 9.49454188e-01 -5.82261026e-01 1.13302720e+00 -2.41136461e-01 -1.22728693e+00 9.33291554e-01 -2.27652013e-01 3.08764905e-01 9.39137578e-01 6.26616001e-01 -7.16573119e-01 -2.20760316e-01 -7.98222184e-01 5.22550762e-01 1.04059768e+00 -8.55083883e-01 -6.43266916e-01 4.24374640e-01 8.92846346e-01 -1.71408862e-01 -1.68735051e+00 4.72126007e-01 6.07854724e-01 -4.90597099e-01 1.27162814e+00 -9.00075018e-01 4.01763916e-01 -4.16479409e-01 -2.86499798e-01 -1.23037553e+00 -6.70368969e-01 -2.90347368e-01 -7.06845224e-01 1.24144185e+00 2.85851985e-01 -8.04182827e-01 6.46924615e-01 5.34716725e-01 -9.41732749e-02 -1.09371829e+00 -8.33783984e-01 -9.60988283e-01 -2.24450286e-02 -4.21724558e-01 7.69969702e-01 1.55459344e+00 4.27920938e-01 4.41632926e-01 -1.92205101e-01 2.71540463e-01 5.13734877e-01 2.10654616e-01 7.57405162e-01 -1.28484511e+00 -2.69271016e-01 -5.90931356e-01 -1.02034926e+00 -7.65892804e-01 3.46043468e-01 -1.41618633e+00 -8.57451200e-01 -1.97686625e+00 2.52394795e-01 -5.34730017e-01 -4.39698339e-01 7.17872977e-01 -3.75294909e-02 -1.15641989e-01 1.89495862e-01 3.17235112e-01 -3.74262035e-01 7.35476017e-01 1.12782741e+00 -4.66665030e-01 -2.35955238e-01 -4.57404196e-01 -6.49488568e-01 3.24311793e-01 3.59330684e-01 -2.73019046e-01 -6.48710907e-01 -4.81688559e-01 6.92240715e-01 1.75685901e-03 4.32545453e-01 -5.47387481e-01 4.43445504e-01 -8.54936093e-02 -2.11618766e-02 -3.82228434e-01 4.62105513e-01 -1.04201937e+00 3.32752347e-01 2.55987138e-01 -9.26177055e-02 1.77333698e-01 1.56526968e-01 7.40095854e-01 -4.81555641e-01 -6.93193674e-02 2.18937978e-01 8.75493288e-02 -6.95148706e-01 5.06630361e-01 1.71037972e-01 -2.61243045e-01 1.04831624e+00 -3.69092077e-01 -4.61473078e-01 -8.78792070e-03 -9.67757761e-01 3.79788280e-01 8.75146985e-02 7.59479284e-01 7.67372489e-01 -1.87796307e+00 -4.08718079e-01 1.24311745e-01 4.79426563e-01 -2.32434779e-01 2.48355016e-01 9.18357491e-01 -4.29028273e-01 5.41154027e-01 -1.13661408e-01 -4.03541535e-01 -1.27357388e+00 9.52758431e-01 2.85083652e-01 -6.55797601e-01 -6.24405622e-01 5.57700396e-01 5.00621125e-02 -7.12828159e-01 1.65457174e-01 -3.23081493e-01 -4.54571366e-01 1.68582529e-01 2.23475754e-01 4.69125748e-01 4.14072908e-02 -6.67000711e-01 -4.64272350e-01 8.82433534e-01 6.58744527e-03 3.99224579e-01 1.32949305e+00 1.27087146e-01 -5.74102640e-01 4.13852215e-01 1.44691491e+00 -1.81792393e-01 -2.65333533e-01 -3.60932589e-01 -3.16924304e-02 -4.14572895e-01 4.67564054e-02 -3.64451170e-01 -1.05954051e+00 8.68166924e-01 3.21839929e-01 5.67396462e-01 7.16492295e-01 1.38374627e-01 6.23799384e-01 4.01697814e-01 1.64603129e-01 -9.05874133e-01 2.12071985e-01 5.52442074e-01 8.05518150e-01 -9.67671990e-01 2.07742020e-01 -7.87816167e-01 -4.77415204e-01 1.40541840e+00 5.20002663e-01 1.54687241e-01 9.63735104e-01 -2.08965987e-01 -4.45643395e-01 -7.76669621e-01 -5.86882830e-01 -1.91849411e-01 7.76087880e-01 5.48456192e-01 4.85790730e-01 2.81641066e-01 -3.29618394e-01 6.69601738e-01 -1.78370073e-01 -2.70902276e-01 1.97760731e-01 6.42653227e-01 -1.03015594e-01 -1.53438210e+00 -3.49038035e-01 3.92662406e-01 -1.14268690e-01 -4.50144485e-02 -3.37788880e-01 1.03416896e+00 1.85914725e-01 7.55296111e-01 -9.41036865e-02 -7.88180709e-01 5.15328228e-01 1.94577619e-01 3.55394363e-01 -6.56673908e-01 -4.65947807e-01 -5.19844294e-01 -2.42487267e-02 -5.36313891e-01 -3.60009909e-01 -1.25173971e-01 -1.14903975e+00 -6.02846026e-01 -4.88846928e-01 2.84315139e-01 7.66342700e-01 9.14401889e-01 6.93288922e-01 8.38982105e-01 3.59051347e-01 -4.94358629e-01 -3.79408658e-01 -7.98419416e-01 -6.33467793e-01 5.42689502e-01 -1.38516694e-01 -1.00571370e+00 -2.50544071e-01 -2.01374859e-01]
[8.676801681518555, 7.7932634353637695]
b1fe7d3e-abea-46b1-b347-7726aafc8669
easy-guided-decoding-in-providing-suggestions
2211.07093
null
https://arxiv.org/abs/2211.07093v2
https://arxiv.org/pdf/2211.07093v2.pdf
Easy Guided Decoding in Providing Suggestions for Interactive Machine Translation
Machine translation technology has made great progress in recent years, but it cannot guarantee error free results. Human translators perform post editing on machine translations to correct errors in the scene of computer aided translation. In favor of expediting the post editing process, many works have investigated machine translation in interactive modes, in which machines can automatically refine the rest of translations constrained by human's edits. Translation Suggestion (TS), as an interactive mode to assist human translators, requires machines to generate alternatives for specific incorrect words or phrases selected by human translators. In this paper, we utilize the parameterized objective function of neural machine translation (NMT) and propose a novel constrained decoding algorithm, namely Prefix Suffix Guided Decoding (PSGD), to deal with the TS problem without additional training. Compared to the state of the art lexically constrained decoding method, PSGD improves translation quality by an average of $10.87$ BLEU and $8.62$ BLEU on the WeTS and the WMT 2022 Translation Suggestion datasets, respectively, and reduces decoding time overhead by an average of 63.4% tested on the WMT translation datasets. Furthermore, on both of the TS benchmark datasets, it is superior to other supervised learning systems trained with TS annotated data.
['Yuqi Zhang', 'Jiayi Wang', 'Yu Zhao', 'Xin Ge', 'Ke Wang']
2022-11-14
null
null
null
null
['nmt']
['computer-code']
[ 8.88319969e-01 -6.64400980e-02 -3.07653844e-01 -4.23435718e-01 -1.27600300e+00 -5.58377028e-01 3.44757706e-01 -2.23485798e-01 -5.80255389e-01 1.11097491e+00 -2.86533665e-02 -1.05172229e+00 3.47053379e-01 -4.79040504e-01 -8.77246141e-01 -2.98738152e-01 5.89902103e-01 1.00331557e+00 -2.33108595e-01 -4.97315168e-01 4.60579395e-01 -6.13278076e-02 -8.67789745e-01 4.37526256e-01 1.58358145e+00 6.02279305e-01 5.78972518e-01 3.21192473e-01 -3.90413165e-01 -2.27843583e-01 -4.75568324e-01 -8.98558915e-01 2.70546675e-01 -7.45250940e-01 -6.78904653e-01 -2.20925033e-01 2.22520381e-02 -1.98190615e-01 1.39497906e-01 1.13600314e+00 7.23205924e-01 -2.71009713e-01 4.90030885e-01 -8.04176867e-01 -9.64120388e-01 1.05762136e+00 -3.74862313e-01 1.30776465e-02 5.20672262e-01 -7.17763826e-02 8.42906177e-01 -1.54932237e+00 5.61675489e-01 1.17372811e+00 4.55516756e-01 7.55873680e-01 -1.01716280e+00 -8.80877554e-01 -2.07128704e-01 1.51082814e-01 -1.34036028e+00 -5.48803329e-01 2.59814858e-01 -2.55684834e-03 1.45921135e+00 4.98451054e-01 3.29358578e-01 1.11238170e+00 5.49877584e-01 8.19809377e-01 9.54617143e-01 -8.37404013e-01 -6.89267665e-02 4.90452796e-02 -2.48572275e-01 4.76809263e-01 1.64485350e-01 8.17734897e-02 -7.22757161e-01 -5.13301557e-03 3.78603667e-01 -2.99187094e-01 -3.03882360e-01 4.59914118e-01 -1.83003056e+00 6.44762397e-01 -1.57377303e-01 -3.61601412e-02 -3.29519480e-01 -1.76572353e-01 4.15623218e-01 7.31671154e-01 8.08284998e-01 5.76210022e-01 -8.85681152e-01 -5.65855801e-01 -8.23850453e-01 -1.55770808e-01 6.62128568e-01 1.48420572e+00 7.39236236e-01 -1.96115494e-01 -3.16988826e-01 9.38044190e-01 1.89375401e-01 9.67835784e-01 6.42374754e-01 -3.40468764e-01 1.14485526e+00 6.06577277e-01 1.73516363e-01 -4.99195635e-01 2.34778419e-01 -4.65111732e-01 -9.67070878e-01 -5.42593718e-01 2.01200694e-02 -2.69966722e-01 -9.28675175e-01 1.37458861e+00 4.15467173e-02 -3.05203021e-01 -7.04718083e-02 9.38599765e-01 2.44586483e-01 9.34438944e-01 -2.63361692e-01 -6.53273642e-01 9.20968652e-01 -1.25221717e+00 -1.05282223e+00 -3.08015078e-01 9.91973400e-01 -1.49489236e+00 1.47997451e+00 3.31212819e-01 -1.09375942e+00 -3.74216199e-01 -1.00017416e+00 -1.26652226e-01 -2.02072144e-01 5.19829452e-01 4.18789953e-01 6.45693421e-01 -1.00998831e+00 7.35000253e-01 -9.12087858e-01 -3.78157407e-01 6.47998601e-02 6.34641051e-01 -1.46136552e-01 -1.49971709e-01 -1.39310384e+00 1.23602569e+00 1.39023870e-01 3.64298701e-01 -5.20466924e-01 -3.27430367e-01 -5.15496194e-01 -5.06728850e-02 1.68891087e-01 -6.13201618e-01 1.48332727e+00 -1.23750222e+00 -2.06840754e+00 6.16561651e-01 -6.44517899e-01 -1.98048502e-01 8.43556643e-01 -5.13122797e-01 -4.14852023e-01 -3.85467947e-01 2.06247598e-01 6.72154307e-01 6.03767157e-01 -6.18271649e-01 -6.83756351e-01 -1.25413626e-01 -5.08412302e-01 4.59404409e-01 -2.70488083e-01 4.64139462e-01 -7.48171329e-01 -7.90425301e-01 2.62621969e-01 -1.19424176e+00 -2.14639038e-01 -2.99962521e-01 -5.34076571e-01 -2.48382017e-01 5.27757108e-01 -9.59703565e-01 1.43775213e+00 -1.67688918e+00 4.35592175e-01 1.16547786e-01 -5.76525688e-01 4.73449230e-01 -4.10215437e-01 5.93583882e-01 3.03930968e-01 2.79710054e-01 -5.39037824e-01 -6.01701379e-01 8.18455592e-02 3.42048526e-01 -3.37420464e-01 1.39018416e-01 1.84798658e-01 1.18811464e+00 -7.22638845e-01 -4.58209932e-01 -2.35999346e-01 1.05040558e-01 -3.89960527e-01 1.21586181e-01 -2.77050227e-01 5.62852740e-01 -4.33712900e-01 9.63673234e-01 6.01357877e-01 -1.33542791e-01 3.08529794e-01 3.98858458e-01 -3.93337244e-03 8.15641165e-01 -5.15473247e-01 2.12050200e+00 -4.74465668e-01 6.62158489e-01 -3.77092779e-01 -6.91644967e-01 1.11785221e+00 4.22596902e-01 -6.50923774e-02 -9.88330483e-01 1.41897932e-01 9.39528704e-01 -1.14930049e-03 -2.92716682e-01 7.70325541e-01 2.04233482e-01 1.08855277e-01 8.86130214e-01 -3.78755987e-01 1.06601659e-02 3.09867151e-02 -6.67952895e-02 8.82379472e-01 5.36092222e-01 2.12253761e-02 -2.45744735e-01 4.29913104e-01 3.59207273e-01 6.98270798e-01 3.98094773e-01 1.56623960e-01 4.92952228e-01 -1.52382553e-01 -4.26123232e-01 -1.20920289e+00 -6.48622990e-01 1.48241997e-01 1.18507981e+00 2.55884409e-01 -4.16357577e-01 -9.10833359e-01 -7.54778445e-01 -3.76353353e-01 8.87526810e-01 -5.36296815e-02 -1.56308129e-01 -1.13979399e+00 -7.87826180e-01 5.41604400e-01 2.60435969e-01 6.09352469e-01 -9.31970000e-01 -1.19425856e-01 3.47814023e-01 -8.98641407e-01 -1.00490940e+00 -1.22597790e+00 1.10972784e-01 -1.16672730e+00 -4.32196409e-01 -8.01747382e-01 -1.16306567e+00 9.59509432e-01 2.81910181e-01 1.15433466e+00 3.52085173e-01 3.23123872e-01 -5.14581442e-01 -6.83731616e-01 -2.52180040e-01 -7.62429357e-01 5.70693254e-01 3.19710225e-01 -3.16072166e-01 6.33796036e-01 -4.22303081e-01 -3.37634087e-01 9.73749220e-01 -5.03270864e-01 6.58620477e-01 1.00041509e+00 1.03469062e+00 8.28554630e-01 -7.08869576e-01 5.78463554e-01 -8.09110165e-01 8.67661119e-01 -1.73579037e-01 -3.89345944e-01 7.49700665e-01 -1.23876429e+00 9.58955884e-02 6.35021567e-01 -6.14792049e-01 -8.56778026e-01 -7.96245858e-02 -1.61628380e-01 5.30997366e-02 5.15346527e-01 7.44270325e-01 -2.07590729e-01 -3.74668278e-02 6.45479679e-01 6.29471660e-01 -1.79914877e-01 -6.19855285e-01 -4.53036204e-02 1.20648432e+00 6.25333190e-02 -6.09695792e-01 7.25084782e-01 -4.33737695e-01 -3.16947192e-01 -2.99331248e-02 -2.25303829e-01 -2.76254863e-03 -7.04829574e-01 1.88059807e-01 4.17302936e-01 -6.88802600e-01 -2.14529574e-01 2.58638889e-01 -1.49889922e+00 -4.39443469e-01 4.49677497e-01 7.48605132e-01 -5.80180883e-01 4.22473848e-01 -6.62576914e-01 -3.96922588e-01 -1.04206014e+00 -1.51468217e+00 1.10850477e+00 -1.42406762e-01 -4.13250089e-01 -4.45795268e-01 -2.57796228e-01 4.69027102e-01 5.66463411e-01 -4.14369822e-01 1.07719493e+00 -4.87124443e-01 -6.98809624e-01 -1.46148622e-01 -1.48441434e-01 3.27838480e-01 2.84017563e-01 -2.79836178e-01 -1.35568932e-01 -4.10192043e-01 -3.42028052e-01 -5.61559424e-02 4.15462375e-01 -2.60598715e-02 8.71905446e-01 -2.79813558e-01 -4.52686250e-01 6.56615853e-01 9.53338861e-01 5.29213786e-01 6.45816505e-01 4.33636039e-01 3.89151037e-01 1.59513369e-01 1.18278599e+00 -3.34598720e-02 1.15512609e-01 8.57588828e-01 1.04048036e-01 1.20784760e-01 -4.04297374e-02 -4.87413585e-01 7.01952457e-01 1.44466066e+00 -2.49119282e-01 -5.27757168e-01 -9.13334250e-01 1.69314146e-01 -1.93697715e+00 -2.10975483e-01 -7.92596489e-02 2.17328930e+00 1.27917552e+00 1.28885180e-01 -5.91410995e-01 -8.24481994e-02 1.04383278e+00 -5.20703793e-01 -5.68920016e-01 -8.06470156e-01 -6.31442145e-02 3.94140303e-01 7.23585367e-01 6.71938956e-01 -4.97477204e-01 1.40960896e+00 6.09012318e+00 1.00098550e+00 -1.12360048e+00 2.20456272e-01 6.33957684e-01 1.21766180e-01 -4.34805691e-01 5.46489507e-02 -9.16837931e-01 6.64032698e-01 1.01958644e+00 -2.20402941e-01 8.82728696e-01 5.58530390e-01 5.57791471e-01 1.53202951e-01 -1.26575708e+00 8.84258389e-01 5.88149354e-02 -1.32413638e+00 4.37391698e-01 1.03396535e-01 8.27819109e-01 9.44308937e-02 1.09821647e-01 4.31080163e-01 -4.64964211e-02 -1.06865501e+00 6.54797733e-01 1.80175900e-01 1.41111720e+00 -7.51612961e-01 8.90669167e-01 7.59804070e-01 -7.08742857e-01 3.97910625e-01 -5.11289656e-01 -2.43317634e-01 1.90234900e-01 3.90968502e-01 -1.10393465e+00 6.22949719e-01 3.85111988e-01 6.13595366e-01 -2.50456572e-01 5.86695850e-01 -6.09347343e-01 9.20958698e-01 -3.19372416e-01 -3.97999614e-01 1.93003252e-01 -4.26062524e-01 4.00964588e-01 1.26745737e+00 9.80423212e-01 -1.52181126e-02 -9.23952907e-02 5.05995214e-01 -4.17840540e-01 5.24741948e-01 -7.17523396e-02 -3.27346087e-01 6.45131111e-01 8.63815963e-01 -4.52328861e-01 -3.45817775e-01 -1.34346653e-02 1.63019085e+00 1.24864392e-01 4.00876641e-01 -9.53984916e-01 -4.47596312e-01 4.78341669e-01 -7.28275105e-02 -2.63828672e-02 -4.28356230e-01 -6.22893572e-01 -1.28168011e+00 4.36333537e-01 -1.35766089e+00 -2.93528676e-01 -7.50574112e-01 -8.34141374e-01 8.52644682e-01 -5.00594735e-01 -1.61330414e+00 -2.95835912e-01 -3.84294152e-01 -3.00049603e-01 1.45376265e+00 -1.39858770e+00 -1.06505525e+00 2.46774793e-01 3.28370392e-01 1.13038003e+00 -2.64694870e-01 1.12430286e+00 5.73028326e-01 -5.61813354e-01 1.15304649e+00 3.48710209e-01 -2.97615714e-02 1.10511816e+00 -7.56104469e-01 1.05283642e+00 9.41573739e-01 2.36157477e-02 9.46318805e-01 6.32260323e-01 -9.94462609e-01 -1.89612722e+00 -1.19534898e+00 1.83790851e+00 -4.31300402e-01 1.66216463e-01 -3.35441351e-01 -6.19334459e-01 7.08046138e-01 4.31210548e-01 -5.40302396e-01 5.79703927e-01 -2.35724244e-02 5.61622232e-02 1.82629555e-01 -9.84365165e-01 7.72471786e-01 1.46499753e+00 -3.36650401e-01 -5.41884482e-01 6.10532224e-01 1.10525250e+00 -7.64541030e-01 -4.91498470e-01 4.89084721e-01 5.04742324e-01 -1.94819421e-01 5.43779612e-01 -4.91207391e-01 5.90470672e-01 -3.19686890e-01 -2.90852427e-01 -1.58465338e+00 -1.00836419e-01 -1.15503848e+00 1.24614939e-01 8.74715030e-01 1.16806555e+00 -7.03896344e-01 6.89892292e-01 3.79610181e-01 -6.41771078e-01 -9.71634805e-01 -1.12131596e+00 -7.27967143e-01 1.11011647e-01 -3.77001703e-01 9.08861279e-01 8.18023443e-01 4.32458520e-02 4.26785737e-01 -6.44792557e-01 -8.80217552e-02 1.70949489e-01 1.24558359e-02 7.90953159e-01 -5.98980963e-01 -3.03912193e-01 -3.81977439e-01 2.51219302e-01 -1.66866875e+00 4.38647717e-03 -1.15014434e+00 2.76834548e-01 -1.55372787e+00 7.88691044e-02 -4.08787847e-01 1.48835294e-02 5.26255310e-01 -4.24854070e-01 3.41887087e-01 -1.57099128e-01 5.82910717e-01 -1.90895587e-01 6.17197514e-01 1.60139000e+00 -3.05461258e-01 -2.66417831e-01 2.16588005e-01 -4.56461668e-01 2.37229630e-01 9.40759063e-01 -6.20370030e-01 -2.62562454e-01 -1.25222445e+00 5.52794099e-01 8.42605382e-02 -4.66904312e-01 -3.83188784e-01 2.79702842e-01 -3.39629084e-01 1.85622811e-01 -8.45085144e-01 1.84138324e-02 -6.53735518e-01 9.87317041e-02 5.10878086e-01 -4.63286400e-01 6.85067892e-01 1.15764789e-01 2.71051884e-01 -1.81791306e-01 -1.00194765e-02 2.75295943e-01 -3.25945728e-02 -2.68806875e-01 2.75258482e-01 -4.88262117e-01 -3.78820360e-01 5.26769161e-01 -3.58155191e-01 -8.08469802e-02 -1.55317500e-01 -2.27306172e-01 3.56606096e-01 3.33382219e-01 5.15395761e-01 6.81353807e-01 -1.23790216e+00 -1.03198278e+00 2.30910629e-01 2.65792310e-02 -2.21226126e-01 -4.15087968e-01 9.92242396e-01 -6.68654799e-01 5.33981919e-01 -4.77608815e-02 -6.35442257e-01 -1.29575467e+00 1.18326403e-01 7.93248862e-02 -2.36904666e-01 -4.07855242e-01 9.27767932e-01 -5.46993732e-01 -7.76592493e-01 1.81197405e-01 -4.18236256e-01 4.44929391e-01 -5.23792982e-01 3.79396200e-01 2.08237499e-01 4.83516663e-01 -3.80023360e-01 -2.29997963e-01 4.71507013e-01 -3.56312454e-01 -3.61036152e-01 9.76623356e-01 -4.71346200e-01 -2.94730008e-01 -4.73481528e-02 8.51707220e-01 -2.01258808e-02 -5.79696774e-01 -5.54302335e-01 2.09648073e-01 -5.74083924e-01 -2.75099307e-01 -1.60300326e+00 -5.66198707e-01 9.16451931e-01 4.02793050e-01 -5.48878431e-01 1.18304121e+00 -5.22223830e-01 1.36410999e+00 8.37647855e-01 7.52296329e-01 -1.21731901e+00 -3.73914212e-01 8.33462715e-01 9.03733671e-01 -1.49462509e+00 -2.95093834e-01 -4.42751348e-01 -4.53884333e-01 1.23940587e+00 4.74027485e-01 4.05549586e-01 -4.81501827e-03 3.42540592e-02 3.05938274e-01 5.53658605e-01 -7.89124131e-01 4.71015573e-01 2.62646258e-01 3.01987559e-01 7.17148185e-01 3.66652906e-01 -1.05332041e+00 4.38619137e-01 -3.39369476e-01 7.79290348e-02 1.26045853e-01 8.17896128e-01 -5.02247751e-01 -1.63546193e+00 -2.94259548e-01 3.23906630e-01 -3.50521445e-01 -7.07905769e-01 -6.10182703e-01 3.20757002e-01 3.84801030e-02 1.23064804e+00 -2.69444376e-01 -6.98084950e-01 1.82683438e-01 2.30860829e-01 3.83612156e-01 -6.64694667e-01 -7.25410223e-01 1.84563220e-01 3.31219077e-01 -3.69157881e-01 -9.26369205e-02 -4.73214746e-01 -1.17376220e+00 -5.46151757e-01 -6.25142038e-01 4.51380491e-01 1.10468149e+00 1.13712537e+00 5.44615984e-01 1.93779036e-01 6.96173429e-01 -7.12320805e-01 -7.31055558e-01 -1.39799118e+00 2.15731233e-01 -1.30112544e-01 -1.87808275e-01 -1.79394484e-01 -1.38094649e-01 3.15997005e-03]
[11.67475414276123, 10.27749252319336]
52e76f88-c452-4470-aaef-750d42e953a1
tail-dependence-structure-and-extreme-risk
2303.11030
null
https://arxiv.org/abs/2303.11030v1
https://arxiv.org/pdf/2303.11030v1.pdf
Tail dependence structure and extreme risk spillover effects between the international agricultural futures and spot markets
This paper combines the Copula-CoVaR approach with the ARMA-GARCH-skewed Student-t model to investigate the tail dependence structure and extreme risk spillover effects between the international agricultural futures and spot markets, taking four main agricultural commodities, namely soybean, maize, wheat, and rice as examples. The empirical results indicate that the tail dependence structures for the four futures-spot pairs are quite different, and each of them exhibits a certain degree of asymmetry. In addition, the futures market for each agricultural commodity has significant and robust extreme downside and upside risk spillover effects on the spot market, and the downside risk spillover effects for both soybeans and maize are significantly stronger than their corresponding upside risk spillover effects, while there is no significant strength difference between the two risk spillover effects for wheat, and rice. This study provides a theoretical basis for strengthening global food cooperation and maintaining global food security, and has practical significance for investors to use agricultural commodities for risk management and portfolio optimization.
['Wei-Xing Zhou', 'Peng-Fei Dai', 'Yun-Shi Dai']
2023-03-20
null
null
null
null
['portfolio-optimization']
['time-series']
[-6.69479072e-01 -1.97964460e-01 -2.42255673e-01 -2.25047588e-01 -8.04301351e-02 -8.71098578e-01 1.71358451e-01 2.36207634e-01 2.35476986e-01 4.92822111e-01 3.03414226e-01 -1.16613185e+00 -4.01299894e-01 -1.16086125e+00 -3.06891590e-01 -1.27386105e+00 -5.02866983e-01 -7.45216310e-02 -9.67425555e-02 -4.58833396e-01 3.00214514e-02 3.10523510e-01 -9.44207311e-01 -3.79955292e-01 9.45851147e-01 1.03855038e+00 7.33750984e-02 1.78523734e-02 -3.03617328e-01 -1.39794007e-01 -7.44675621e-02 -6.31811559e-01 5.12017012e-01 -6.36366010e-02 1.47588953e-01 -5.22273004e-01 -8.79060507e-01 -5.19449115e-01 3.60089809e-01 1.36200988e+00 3.01485628e-01 -3.57238770e-01 9.16977763e-01 -1.35576999e+00 -1.03979504e+00 1.16180897e+00 -1.62196040e+00 1.79064332e-03 -1.96764588e-01 4.28850166e-02 8.11193228e-01 -6.56625152e-01 -2.37299725e-01 1.46289241e+00 6.69883728e-01 -2.94736236e-01 -8.29407752e-01 -9.97039795e-01 3.51850957e-01 -4.32494879e-01 -9.48816061e-01 4.05260623e-01 2.90264845e-01 -4.89631414e-01 5.62849343e-01 2.11140364e-01 6.38794661e-01 5.51431596e-01 1.00354242e+00 4.76697624e-01 1.20813990e+00 -1.79729208e-01 3.06651771e-01 -1.06326170e-01 3.50398183e-01 -5.34345865e-01 9.05300617e-01 8.57942343e-01 4.24080878e-01 -5.16635001e-01 6.60483181e-01 2.61588931e-01 1.41963542e-01 -3.94157656e-02 -8.70829105e-01 1.10490561e+00 3.06085736e-01 1.45557016e-01 -8.98856223e-01 -1.95316434e-01 2.13837817e-01 5.24316907e-01 6.47065222e-01 -2.23905221e-01 -1.00485992e+00 6.09610438e-01 -4.74837273e-01 3.76429796e-01 8.74627233e-01 1.18559742e+00 4.17037278e-01 1.69265285e-01 -1.73016325e-01 -8.46659765e-03 8.62867117e-01 1.64788771e+00 -8.99828225e-02 -6.04572654e-01 5.48175097e-01 -1.02907799e-01 4.73918140e-01 -1.28919482e+00 -4.33059692e-01 -1.89633638e-01 -6.92227185e-01 2.23796234e-01 6.11701906e-01 -7.28439808e-01 -4.29445952e-01 1.65065658e+00 1.45911992e-01 -2.02578947e-01 2.25799635e-01 5.21637738e-01 1.57966971e-01 1.09376311e+00 6.17607057e-01 -6.20195627e-01 1.59026873e+00 -3.47627878e-01 -1.00741243e+00 1.90689236e-01 3.93884420e-01 -9.72394705e-01 4.89821255e-01 2.38680705e-01 -8.83583248e-01 -5.88087812e-02 -5.97402215e-01 9.29307342e-01 -3.13247323e-01 -4.01798338e-01 7.59690702e-01 8.30980122e-01 -4.23399806e-01 3.88332278e-01 -1.01049709e+00 6.24503605e-02 -2.42122129e-01 -2.41487920e-01 2.74156213e-01 2.59158880e-01 -1.48282385e+00 9.09349084e-01 3.54261369e-01 4.46237177e-01 -5.37923157e-01 -9.89244699e-01 -7.33987629e-01 5.23937285e-01 7.41761699e-02 8.84135813e-02 9.67385232e-01 -5.44530272e-01 -1.31300020e+00 -2.43153460e-02 3.91077429e-01 -1.47155061e-01 1.82196543e-01 -3.04702789e-01 -6.79441273e-01 -3.37244958e-01 3.31926346e-01 -9.29092690e-02 2.66672432e-01 -1.06792331e+00 -7.31215835e-01 -9.34849560e-01 -4.68890846e-01 -1.49709746e-01 -8.61593932e-02 8.79432678e-01 9.27525938e-01 -1.13803577e+00 2.46730521e-01 -9.50784326e-01 -6.51424706e-01 -6.12046897e-01 -2.57943302e-01 -2.35847551e-02 4.89291340e-01 -1.00146818e+00 1.22320950e+00 -2.08400536e+00 -6.02487266e-01 5.12945116e-01 -6.67937458e-01 -5.07720001e-02 -9.93911847e-02 7.14604139e-01 -3.35465938e-01 6.72874525e-02 -2.73649752e-01 7.86963105e-01 2.74758488e-01 8.07375461e-02 -9.12622213e-01 4.27182555e-01 5.73348522e-01 6.11665189e-01 -9.45225537e-01 1.97883949e-01 -6.84606135e-02 1.17119253e-01 1.00625060e-01 8.13104659e-02 -2.14910984e-01 1.57161281e-01 -9.82294023e-01 8.65603507e-01 1.77660191e+00 4.08057511e-01 1.57403424e-01 2.72975385e-01 -8.13750327e-01 -2.77812034e-01 -1.04307079e+00 4.90521401e-01 4.02888022e-02 -1.95480406e-01 1.65530398e-01 -7.26882756e-01 1.35114181e+00 4.03587341e-01 1.43933490e-01 -4.01543021e-01 1.23530649e-01 4.46421653e-01 1.41506717e-01 -3.41144860e-01 3.57647032e-01 -5.29731452e-01 -2.27587417e-01 9.04532254e-01 -4.02351946e-01 7.32107908e-02 -1.50077224e-01 -3.95092309e-01 2.42168859e-01 1.59797862e-01 1.46012977e-01 -1.13713193e+00 6.62866533e-02 -4.43213373e-01 9.88934934e-01 5.41230775e-02 -2.13619187e-01 5.76048456e-02 9.94072735e-01 -1.49148673e-01 -4.89676833e-01 -1.38662326e+00 -3.30607593e-01 1.03534460e+00 2.36402258e-01 6.79629445e-01 -3.11628759e-01 -1.99071839e-01 6.63648427e-01 1.26134562e+00 -5.03635466e-01 2.07158923e-01 -1.33904442e-01 -1.49457598e+00 2.57363558e-01 7.51463175e-01 4.47967529e-01 -9.06472087e-01 -7.35448778e-01 1.40726998e-01 1.76702246e-01 -1.32849038e-01 -3.46000582e-01 3.11339229e-01 -9.23527539e-01 -7.52613544e-01 -1.46650159e+00 -3.96057039e-01 4.08760607e-01 5.05838454e-01 9.87872899e-01 -6.60106182e-01 3.74640495e-01 -1.82863012e-01 -2.69167662e-01 -1.34952235e+00 -9.74915996e-02 -5.17786264e-01 -9.86730605e-02 -2.24410743e-01 6.09472156e-01 -2.90477872e-01 -8.88567030e-01 4.43549812e-01 -7.10622430e-01 -7.98240185e-01 3.64234328e-01 5.95373988e-01 2.45615885e-01 4.59833056e-01 1.02497697e+00 -1.26925543e-01 5.48023045e-01 -1.18325090e+00 -1.11772680e+00 6.44830346e-01 -1.05786908e+00 -2.19603121e-01 -8.41018260e-02 -2.68267214e-01 -1.97855377e+00 -2.97686756e-01 4.28614587e-01 3.89694899e-01 -1.11860164e-01 1.19910824e+00 -3.39335859e-01 4.98600990e-01 -1.35426655e-01 -5.66975415e-01 4.38388735e-02 -5.71464896e-01 4.05564427e-01 4.24109489e-01 3.94744098e-01 -4.92690593e-01 9.36219633e-01 2.24124581e-01 4.18217927e-02 -3.56464267e-01 -1.70102596e-01 -7.69519508e-02 -1.90813363e-01 2.47573838e-01 9.30329919e-01 -1.24214947e+00 -5.28415203e-01 9.33423102e-01 -9.87060368e-01 -1.69295639e-01 -2.23696232e-02 1.07218456e+00 -3.19709510e-01 2.30890051e-01 -7.74537981e-01 -1.21431243e+00 -4.83114809e-01 -9.95797873e-01 3.55742276e-01 5.65266371e-01 2.45083764e-01 -1.27205133e+00 2.49184996e-01 -4.10293490e-01 5.97293615e-01 6.03346646e-01 1.29331815e+00 -6.87086463e-01 -2.31597200e-01 -4.70329775e-03 -4.11421657e-01 3.24691422e-02 3.69041532e-01 6.06767476e-01 -5.67730427e-01 -3.62751991e-01 4.18490589e-01 2.54523873e-01 5.48461080e-01 1.09412301e+00 -1.97176100e-03 -8.31948295e-02 -1.97926342e-01 4.35483396e-01 1.34643102e+00 8.46824646e-01 6.05153561e-01 3.90477359e-01 -1.51134878e-01 1.32485139e+00 1.19444728e+00 7.70445049e-01 3.64346623e-01 -1.64440155e-01 4.18383092e-01 -1.57498583e-01 1.08541656e+00 -5.76493442e-02 5.91421366e-01 5.76369524e-01 7.57584050e-02 -7.51646981e-02 -8.60933125e-01 7.38208294e-01 -1.68876326e+00 -9.88898695e-01 -6.66611075e-01 2.25651240e+00 6.04382038e-01 -4.73100275e-01 2.25512803e-01 -3.13687891e-01 8.92698348e-01 6.90781176e-02 -4.31110770e-01 -6.78593576e-01 -3.93203348e-01 -6.18095845e-02 1.20964098e+00 2.51935888e-02 -9.26716745e-01 5.40316164e-01 7.06753302e+00 4.41926271e-01 -9.29745436e-01 -5.87347925e-01 1.06233430e+00 5.44691443e-01 -9.89746153e-01 4.45003539e-01 -6.28500998e-01 4.37143862e-01 1.01066911e+00 -7.64528513e-01 -2.70956993e-01 6.07673287e-01 5.42925775e-01 -2.83634573e-01 -4.30669397e-01 -9.74212065e-02 -9.30604398e-01 -4.01029587e-01 -4.37101215e-01 2.61366218e-01 8.54082584e-01 -1.26267076e-01 5.92333734e-01 -9.74893291e-03 1.01812375e+00 -6.68427110e-01 5.31094491e-01 3.30901295e-01 2.76674092e-01 -1.27278852e+00 1.03228080e+00 1.98826224e-01 -1.28941870e+00 -3.47596407e-01 -7.91141510e-01 -2.58847415e-01 4.55111057e-01 1.00733769e+00 4.21671301e-01 8.51352870e-01 1.08364308e+00 2.11281732e-01 7.49899074e-02 6.14884019e-01 -1.95686802e-01 4.97889817e-01 -2.53051490e-01 2.52953559e-01 4.15400922e-01 -1.04241681e+00 2.93869704e-01 8.00730288e-01 1.17386401e+00 4.50958341e-01 -1.96090624e-01 1.07861102e+00 8.30509365e-01 2.40752414e-01 -7.61243224e-01 9.38658882e-03 6.47011817e-01 9.90730226e-01 -8.90289009e-01 1.87942997e-01 -7.63163924e-01 1.45099116e-02 -9.86927032e-01 6.36548638e-01 -7.18716443e-01 -8.06461930e-01 6.35394990e-01 -4.85720068e-01 5.75563252e-01 -4.00367826e-02 -7.84203053e-01 -9.67366636e-01 -1.89914227e-01 -5.18426836e-01 4.01098698e-01 -4.59738076e-01 -1.59991252e+00 -1.49716824e-01 4.77694541e-01 -9.44884658e-01 -2.21106827e-01 -4.87419277e-01 -1.38399792e+00 1.51888728e+00 -1.83693373e+00 -9.05753613e-01 3.47695649e-01 3.38598549e-01 -3.94431084e-01 -3.00021201e-01 7.82534182e-01 -4.00419623e-01 -4.77874517e-01 5.54305792e-01 7.84326196e-01 -7.01481998e-02 3.78255129e-01 -9.08205271e-01 7.38959134e-01 5.51614583e-01 -8.01053405e-01 7.91354299e-01 6.63952708e-01 -1.25888968e+00 -1.25056362e+00 -9.69016135e-01 8.71155620e-01 -6.50543571e-02 1.22696674e+00 3.60541344e-01 -8.98863435e-01 6.69674516e-01 5.98163605e-01 -6.09825373e-01 9.58146691e-01 1.55591741e-01 -4.44347143e-01 -1.11255541e-01 -1.32069290e+00 4.85555351e-01 -2.87049338e-02 1.52575865e-01 -5.07388234e-01 -6.69067679e-03 1.02984297e+00 3.89953077e-01 -1.39893162e+00 4.77554023e-01 8.93593729e-01 -9.66424048e-01 7.72494137e-01 -4.66268539e-01 1.89464271e-01 1.52218223e-01 -4.00385588e-01 -1.46118546e+00 -6.04351401e-01 -7.13292241e-01 4.99205709e-01 1.73378611e+00 4.96323168e-01 -1.16453922e+00 2.81955481e-01 1.00485766e+00 3.97348434e-01 -2.80591875e-01 -6.88852012e-01 -1.30503178e+00 1.03130138e+00 7.90710002e-02 1.52992404e+00 7.68486381e-01 2.13414267e-01 -3.26104015e-01 -8.69928449e-02 5.90090990e-01 9.63074028e-01 5.36059380e-01 1.75189614e-01 -1.01103938e+00 1.96329132e-01 -4.11688507e-01 4.26822245e-01 -2.47623175e-01 -6.24566935e-02 -3.79569620e-01 -1.78674206e-01 -7.58260369e-01 1.69450641e-01 -5.37728965e-01 -7.01974809e-01 1.47762015e-01 -2.71789968e-01 -8.63020003e-01 3.00852239e-01 -9.94057655e-02 7.51683891e-01 6.34960413e-01 9.36542571e-01 9.70093980e-02 -4.66549754e-01 6.10090971e-01 -1.09422505e+00 8.14017773e-01 7.74061441e-01 -2.83814639e-01 -4.87009227e-01 -5.24484575e-01 5.03005385e-01 7.71613181e-01 3.13463528e-03 -1.46331429e-01 -4.44081217e-01 -1.07206202e+00 9.22836512e-02 -1.10763836e+00 -8.20204020e-01 -1.03445923e+00 6.22981369e-01 8.86551499e-01 -1.57641023e-01 5.60790420e-01 4.00031328e-01 7.35114276e-01 2.11899262e-02 2.98697241e-02 3.43859702e-01 8.20199773e-03 1.35753646e-01 4.15270269e-01 -6.57795727e-01 -2.80114114e-01 1.40426779e+00 3.04090500e-01 -3.41089159e-01 -3.76153857e-01 -4.65189964e-01 9.14716959e-01 2.35989302e-01 4.02465731e-01 2.41779476e-01 -1.61621654e+00 -9.95790243e-01 2.53409088e-01 -2.74374396e-01 -3.83419335e-01 2.87642032e-01 5.97717643e-01 -3.77383232e-01 4.70871329e-01 -6.10738277e-01 -5.83498366e-02 -5.05922019e-01 1.01910627e+00 -1.39826447e-01 -3.07889909e-01 -4.99604307e-02 6.69576585e-01 1.03745818e+00 -1.50715649e-01 -7.04278350e-02 -6.74646139e-01 -3.16438377e-01 5.29734492e-01 7.06596613e-01 8.11845243e-01 -5.38287342e-01 -3.95201564e-01 -3.42427611e-01 5.57536364e-01 1.89961955e-01 -1.53870061e-01 1.55890453e+00 -3.92968059e-01 -5.67001641e-01 4.74337608e-01 6.78764641e-01 -1.67025790e-01 -1.37276340e+00 -1.90583766e-02 7.09273398e-01 -4.19874460e-01 -3.34063441e-01 -7.25500882e-01 -1.51848328e+00 1.07432675e+00 6.36279523e-01 5.19063711e-01 1.19462895e+00 -3.15905303e-01 8.52987051e-01 -1.70265630e-01 4.07849699e-01 -9.57968771e-01 -6.40906811e-01 4.22463387e-01 1.09721994e+00 -9.97022867e-01 -1.01218641e-01 -2.58132637e-01 -6.36382163e-01 1.00748348e+00 8.23941156e-02 -2.91664243e-01 1.54591906e+00 5.37989676e-01 2.52641499e-01 1.48091793e-01 -6.44536436e-01 2.27939740e-01 -2.04583377e-01 1.18621325e+00 5.55922151e-01 8.60460222e-01 -6.34500802e-01 1.24531937e+00 1.12516291e-01 -2.89923251e-01 5.82313597e-01 7.65336931e-01 -3.42584789e-01 -9.75432575e-01 -7.71656334e-01 1.72296703e-01 -8.51026475e-01 -3.65200877e-01 2.14947358e-01 6.31248832e-01 -3.69306743e-01 1.02830076e+00 3.10624480e-01 -3.19884159e-02 2.46942580e-01 -1.01512596e-01 -2.55621850e-01 -9.15485546e-02 -6.42636478e-01 8.28066587e-01 -3.58587354e-01 -1.92490309e-01 -1.09591462e-01 -1.18570888e+00 -1.24082279e+00 -6.75767660e-01 -8.85583639e-01 9.84349623e-02 5.80205619e-01 6.16151571e-01 1.28508851e-01 -3.08908850e-01 1.29235303e+00 -5.70532858e-01 -1.51991010e+00 -7.91355908e-01 -1.40857208e+00 -2.65170395e-01 2.24518120e-01 -6.97111189e-01 -3.68220598e-01 -4.02712554e-01]
[5.218739986419678, 3.9969170093536377]
863c7ece-43b1-485d-94ea-f3d824aa7c04
sceneformer-indoor-scene-generation-with
2012.09793
null
https://arxiv.org/abs/2012.09793v2
https://arxiv.org/pdf/2012.09793v2.pdf
SceneFormer: Indoor Scene Generation with Transformers
We address the task of indoor scene generation by generating a sequence of objects, along with their locations and orientations conditioned on a room layout. Large-scale indoor scene datasets allow us to extract patterns from user-designed indoor scenes, and generate new scenes based on these patterns. Existing methods rely on the 2D or 3D appearance of these scenes in addition to object positions, and make assumptions about the possible relations between objects. In contrast, we do not use any appearance information, and implicitly learn object relations using the self-attention mechanism of transformers. We show that our model design leads to faster scene generation with similar or improved levels of realism compared to previous methods. Our method is also flexible, as it can be conditioned not only on the room layout but also on text descriptions of the room, using only the cross-attention mechanism of transformers. Our user study shows that our generated scenes are preferred to the state-of-the-art FastSynth scenes 53.9% and 56.7% of the time for bedroom and living room scenes, respectively. At the same time, we generate a scene in 1.48 seconds on average, 20% faster than FastSynth.
['Matthias Nießner', 'Chandan Yeshwanth', 'Xinpeng Wang']
2020-12-17
null
null
null
null
['scene-generation']
['computer-vision']
[ 1.96711138e-01 2.37911865e-01 7.47902572e-01 -4.38510269e-01 -2.91688293e-01 -7.40974665e-01 7.15464830e-01 7.16673657e-02 -1.84438676e-01 5.56330442e-01 5.38022459e-01 -1.55740499e-01 2.01695442e-01 -9.69070971e-01 -9.17054713e-01 -2.87033409e-01 2.24486411e-01 4.34888065e-01 1.74908414e-01 -3.44664127e-01 4.83322628e-02 4.81314719e-01 -1.83477271e+00 4.69825953e-01 7.92345285e-01 7.02407420e-01 8.33656728e-01 1.11497808e+00 -1.31784514e-01 8.26070428e-01 -7.83074081e-01 2.51379069e-02 2.70038158e-01 -5.02566159e-01 -7.69518435e-01 4.94710088e-01 6.80038393e-01 -4.80097204e-01 -3.48592490e-01 5.19774258e-01 5.80237806e-01 4.04566199e-01 3.13042611e-01 -8.40378404e-01 -8.05318892e-01 3.68261725e-01 -1.39581174e-01 -3.19378287e-01 9.00411248e-01 2.94913739e-01 7.62286425e-01 -8.57020497e-01 5.87517142e-01 1.16052401e+00 2.77450383e-01 5.65271974e-01 -1.42220545e+00 -4.00230706e-01 6.19981229e-01 -4.42939922e-02 -1.45065582e+00 -6.57436907e-01 7.37037659e-01 -3.30952823e-01 9.40807104e-01 6.30231798e-01 1.02301049e+00 1.12220156e+00 -2.40756255e-02 5.68707645e-01 9.77270663e-01 -5.59289396e-01 4.11833435e-01 2.57987291e-01 -2.08399609e-01 7.26481497e-01 4.43914011e-02 -2.55794704e-01 -2.15016335e-01 1.05824344e-01 1.23495078e+00 1.56037167e-01 -4.13993388e-01 -6.61678493e-01 -1.47304940e+00 3.39062184e-01 6.64336503e-01 1.87316671e-01 -2.50689387e-01 1.05377585e-01 -2.17609540e-01 -3.40193570e-01 2.86059082e-01 1.02776504e+00 -2.91961282e-01 -6.21553743e-03 -5.97033679e-01 4.78733450e-01 6.04711473e-01 1.53118408e+00 7.47245133e-01 -1.06735498e-01 -4.41921651e-01 6.73363030e-01 1.97819933e-01 6.46194458e-01 1.55310154e-01 -1.12894511e+00 4.96425062e-01 3.77142966e-01 4.72803116e-01 -9.95983124e-01 -4.71264094e-01 -1.73526481e-01 -6.86258972e-01 5.77985644e-02 3.70391518e-01 -1.37897059e-01 -1.20483565e+00 1.68505096e+00 2.89711505e-01 3.24508436e-02 -2.19751135e-01 7.34221876e-01 8.44967902e-01 8.34018290e-01 -2.19153941e-01 1.63104922e-01 1.17661083e+00 -1.09763682e+00 -8.24666083e-01 -4.02833194e-01 3.94986838e-01 -8.02091360e-01 1.52814734e+00 2.67721057e-01 -1.19302809e+00 -9.26852405e-01 -8.44407022e-01 -1.83051601e-01 -4.06643838e-01 1.70685738e-01 6.94532633e-01 5.82646787e-01 -1.26728845e+00 4.30150032e-01 -7.55364776e-01 -4.94459420e-01 1.87638894e-01 2.63725370e-01 -1.59320325e-01 -2.04978973e-01 -4.75650251e-01 7.04825640e-01 1.01196960e-01 1.70153350e-01 -6.48852944e-01 -6.87240601e-01 -1.31035614e+00 9.80721042e-02 2.40318358e-01 -1.03496504e+00 1.47182417e+00 -8.31420779e-01 -1.54805183e+00 5.45345545e-01 -4.01028723e-01 6.93139210e-02 3.95234674e-01 -5.17934620e-01 -1.22883253e-01 -1.31174311e-01 9.11968425e-02 8.46236289e-01 2.49731407e-01 -1.76899087e+00 -3.34828556e-01 -8.37206990e-02 6.00254297e-01 5.40356278e-01 3.70414257e-02 -3.51470381e-01 -7.88495481e-01 -4.09424782e-01 1.37794271e-01 -9.37090874e-01 -6.54485345e-01 2.44072944e-01 -8.95787537e-01 4.10751462e-01 6.95809603e-01 -5.69203496e-01 9.30890620e-01 -2.08537626e+00 -2.07275506e-02 1.85224250e-01 1.03002355e-01 -2.09652409e-01 -1.84598997e-01 3.51672024e-01 -1.11628056e-01 1.02894276e-01 6.31325170e-02 -9.23405826e-01 -4.99091297e-02 1.56014547e-01 -2.96748281e-01 1.07451461e-01 -1.55473933e-01 7.19880939e-01 -1.11922753e+00 -2.81312019e-01 7.38123357e-01 6.15893245e-01 -8.74403119e-01 5.12233555e-01 -3.54658902e-01 7.11262524e-01 -2.61401832e-01 2.28103384e-01 6.00491345e-01 -4.08552617e-01 3.47564846e-01 -3.18157881e-01 -1.91016927e-01 5.89776099e-01 -1.29217553e+00 2.11333394e+00 -1.03938603e+00 5.97242534e-01 -3.12687904e-01 -4.94965948e-02 7.19340146e-01 2.13183671e-01 1.72659650e-01 -8.42963278e-01 -4.92793433e-02 -2.61980355e-01 -1.54741839e-01 -4.38241184e-01 6.96287870e-01 1.98295519e-01 -3.84984463e-02 3.58614594e-01 -3.21692497e-01 -5.31080961e-01 2.53674895e-01 4.14005786e-01 9.57002878e-01 5.33550918e-01 2.68881917e-01 -1.94022194e-01 -6.83073997e-02 -3.00615311e-01 1.65866986e-01 9.92704570e-01 6.40218854e-01 1.19285309e+00 1.71651542e-01 -6.40395224e-01 -1.24954462e+00 -1.25134552e+00 2.10713729e-01 6.83784485e-01 4.06823546e-01 -8.18024576e-01 -7.64074445e-01 -3.73130828e-01 -4.51354295e-01 1.17620718e+00 -7.79853463e-01 8.11285973e-02 -6.27575278e-01 -4.75332946e-01 -1.65921435e-01 7.49983191e-01 4.86209184e-01 -1.15858269e+00 -1.04327357e+00 1.90663338e-01 -2.93633044e-01 -1.30081487e+00 -6.14275515e-01 -8.32314789e-02 -6.12354815e-01 -8.84365499e-01 -4.42663640e-01 -5.39475143e-01 1.40876901e+00 3.67511302e-01 1.41658986e+00 3.55143324e-02 -4.68730748e-01 5.54024100e-01 -3.38834822e-01 -2.26198167e-01 -1.77515879e-01 -2.40625635e-01 -3.04415729e-02 -7.76848793e-02 -3.98442000e-01 -6.30707026e-01 -6.77808821e-01 2.86059290e-01 -6.68495834e-01 1.13626611e+00 3.35291475e-01 4.57925916e-01 5.21827996e-01 7.18678534e-02 -3.14961284e-01 -1.06292963e+00 1.26176387e-01 -6.44796109e-03 -4.92851347e-01 9.18374136e-02 -3.40722688e-02 1.15358688e-01 8.58908057e-01 -3.98664862e-01 -1.39960814e+00 4.06899244e-01 -3.11180837e-02 -2.42989868e-01 -5.27927101e-01 -2.79990017e-01 -5.91637552e-01 4.03648019e-01 5.81762671e-01 5.74580356e-02 -6.84101760e-01 -4.05398577e-01 5.53349197e-01 1.66431680e-01 3.17469865e-01 -8.29436898e-01 9.75696683e-01 5.43440521e-01 -3.31147313e-01 -7.02108681e-01 -8.75525177e-01 -9.69325453e-02 -8.22246313e-01 -5.66148050e-02 9.85151708e-01 -7.25072980e-01 -6.48301542e-01 3.43086869e-01 -1.49355733e+00 -9.30243075e-01 -5.28261423e-01 2.41529524e-01 -5.54937482e-01 -2.64987767e-01 -4.23725784e-01 -9.55243528e-01 2.37125307e-01 -1.14553154e+00 1.35294354e+00 2.75365300e-02 -4.75194812e-01 -8.44563186e-01 -2.27667972e-01 2.32777506e-01 4.46434855e-01 3.75260621e-01 7.68168390e-01 6.81593344e-02 -1.02363348e+00 7.68043697e-02 -1.10102303e-01 -1.30188599e-01 7.69478679e-01 -1.28160417e-02 -1.21349001e+00 -3.22424956e-02 -3.71040285e-01 1.64844826e-01 3.00154626e-01 3.92078698e-01 1.62166095e+00 -5.53059697e-01 -3.86140525e-01 6.60277784e-01 1.40966666e+00 4.84409213e-01 8.96867990e-01 1.57773942e-01 1.18182778e+00 7.01528609e-01 2.95867175e-01 6.00642741e-01 6.88193023e-01 9.73798335e-01 4.33309376e-01 -5.20545483e-01 -3.20660055e-01 -7.30286419e-01 -2.15088904e-01 3.87971491e-01 -2.40184948e-01 -4.15531218e-01 -8.28948438e-01 4.36415464e-01 -1.69343042e+00 -9.56671655e-01 -8.75381976e-02 2.40520453e+00 6.48326039e-01 4.51803468e-02 -5.92688099e-02 -1.45802321e-02 2.96345025e-01 1.34275258e-01 -2.48939544e-01 -2.32499585e-01 1.00784019e-01 1.88751221e-01 3.50254625e-01 7.79477715e-01 -9.22343254e-01 9.04474139e-01 6.70644093e+00 1.54544979e-01 -8.70458841e-01 -3.30392510e-01 9.03726399e-01 -3.69204491e-01 -5.73264956e-01 -1.07108831e-01 -6.78600371e-01 3.26189250e-01 5.02398729e-01 2.17081323e-01 6.82551742e-01 8.58407676e-01 4.30489212e-01 -1.41604096e-01 -1.36338115e+00 1.00812411e+00 2.37058803e-01 -1.32380426e+00 1.19681554e-02 8.26371163e-02 7.66445518e-01 -5.67274153e-01 -1.48132127e-02 1.39699370e-01 6.82052612e-01 -1.12936127e+00 1.09759903e+00 4.76298422e-01 7.28197634e-01 -5.81296980e-01 3.98733258e-01 2.68719167e-01 -1.33432722e+00 3.32460180e-02 -5.78790195e-02 -3.99796844e-01 2.95052409e-01 4.57928836e-01 -1.08508766e+00 3.27763110e-01 9.50868070e-01 4.19172674e-01 -7.59325683e-01 9.69715834e-01 -4.29682851e-01 2.56111592e-01 -4.23241138e-01 -3.15788835e-02 -2.23436520e-01 9.77212265e-02 6.33951724e-02 1.04033077e+00 4.98302430e-01 1.65893301e-01 3.18641603e-01 1.11042893e+00 8.82234722e-02 3.19134966e-02 -8.45437467e-01 5.07882535e-01 3.92535388e-01 1.15788090e+00 -7.64412284e-01 -5.00139892e-01 -1.25436142e-01 1.34699094e+00 2.30405137e-01 6.50878370e-01 -9.19320941e-01 -2.97273606e-01 5.64693034e-01 5.31366229e-01 3.36516827e-01 -4.88924533e-01 -3.88840228e-01 -1.11472487e+00 9.89872664e-02 -7.24317253e-01 -3.37803960e-01 -1.46517766e+00 -7.55669653e-01 9.63099420e-01 2.05000490e-01 -1.09873152e+00 -1.39674231e-01 -4.53200161e-01 -6.58037543e-01 7.78249383e-01 -1.08687854e+00 -1.24951351e+00 -7.41474092e-01 4.18455005e-01 8.01547825e-01 5.80837250e-01 1.17235041e+00 2.21374631e-02 -3.95188063e-01 2.46133029e-01 -3.84576887e-01 2.72492841e-02 4.06927854e-01 -1.50156021e+00 8.48339438e-01 8.75299096e-01 3.04091096e-01 7.91265845e-01 9.22322452e-01 -4.76528049e-01 -1.21045363e+00 -1.05121839e+00 7.53802240e-01 -8.35674345e-01 -2.25490332e-02 -1.19457352e+00 -5.59576154e-01 8.45047891e-01 2.37018839e-01 1.01015456e-01 5.48631549e-01 2.55119622e-01 -2.65192300e-01 -1.25523373e-01 -1.01203609e+00 1.26186931e+00 1.55803132e+00 -1.74081966e-01 -1.67994574e-01 4.16021079e-01 1.05563796e+00 -9.59782660e-01 -2.81424403e-01 1.00745492e-01 4.68128711e-01 -1.25040388e+00 1.17591512e+00 -1.88159630e-01 4.65105027e-01 -5.48698783e-01 -2.49737784e-01 -1.40582061e+00 -7.91912079e-01 -4.88477856e-01 4.14374731e-02 9.95406747e-01 5.05492568e-01 -2.76935875e-01 6.62914634e-01 1.09685922e+00 -3.49308163e-01 -5.61337709e-01 -3.95801842e-01 -4.31170791e-01 -6.01856589e-01 -5.25705040e-01 8.61798167e-01 5.95439494e-01 -2.94316292e-01 4.60117459e-01 -3.63419861e-01 3.99547398e-01 4.53805417e-01 2.80030608e-01 1.23914695e+00 -9.24902141e-01 -6.29694343e-01 -1.22061558e-01 -8.66221711e-02 -1.51484227e+00 -1.20519750e-01 -1.81262165e-01 3.84042054e-01 -2.09724879e+00 4.23039980e-02 -6.97029769e-01 1.36966407e-01 5.55952430e-01 -2.31032714e-01 1.71433046e-01 3.62994850e-01 -2.60878533e-01 -6.27477407e-01 7.01980472e-01 1.53147495e+00 -5.98987155e-02 -5.53905547e-01 -7.52228126e-02 -7.64489293e-01 8.74210596e-01 7.05614626e-01 5.06078005e-02 -8.16781104e-01 -7.87887156e-01 2.53346772e-03 -2.15878174e-01 4.94651914e-01 -1.28647089e+00 -2.46679466e-02 -3.60433906e-01 9.77284193e-01 -4.63833928e-01 9.62757230e-01 -9.64672446e-01 4.12293762e-01 1.96061164e-01 -2.23784596e-01 2.36028001e-01 4.83948380e-01 3.25756192e-01 4.32372212e-01 2.64097869e-01 4.11055982e-01 -5.52397668e-01 -5.75732648e-01 1.27308339e-01 -3.45346451e-01 -4.20190305e-01 9.19255555e-01 -5.16458690e-01 -1.33819252e-01 -6.39815032e-01 -5.76865554e-01 -3.60232331e-02 7.28051424e-01 6.20095313e-01 7.83034384e-01 -1.32442260e+00 -4.04044807e-01 4.89503831e-01 1.09775357e-01 6.52899563e-01 4.74272162e-01 1.59574926e-01 -5.56137919e-01 3.07769716e-01 5.37317581e-02 -5.88934660e-01 -1.26422822e+00 7.44032145e-01 3.09866726e-01 -1.16555922e-01 -8.47685754e-01 7.07445562e-01 9.08979595e-01 -5.57118952e-01 2.20095478e-02 -7.18050361e-01 4.66215499e-02 -5.88147461e-01 5.19235671e-01 -7.20245987e-02 -1.40501112e-01 -4.59107339e-01 -1.97041512e-01 6.98512137e-01 1.26697063e-01 -3.11344266e-01 1.11929071e+00 -9.39850658e-02 2.55682826e-01 5.40132642e-01 6.82678342e-01 5.36703646e-01 -1.46417642e+00 -1.60668846e-02 -6.81909680e-01 -8.76995623e-01 -3.41601223e-01 -1.00739169e+00 -7.12117732e-01 5.56680322e-01 3.32611024e-01 -3.67478095e-02 1.04894829e+00 -1.99297033e-02 5.57863116e-01 3.37697834e-01 8.50658834e-01 -7.32534230e-01 4.32368279e-01 2.56889939e-01 1.17429101e+00 -9.38056946e-01 -7.26760104e-02 -7.36124992e-01 -4.71274763e-01 7.53853738e-01 1.04115558e+00 6.50437996e-02 2.97805190e-01 4.40912306e-01 -1.79995352e-03 6.26947954e-02 -6.58989847e-01 -4.11639735e-02 2.53191203e-01 8.59210730e-01 5.97520709e-01 1.23984464e-01 6.05292201e-01 1.60674870e-01 -6.46863103e-01 -4.31567788e-01 5.24236977e-01 8.97680581e-01 -2.37460300e-01 -1.04812884e+00 -5.52321374e-01 2.15159863e-01 1.93941906e-01 -3.07001173e-01 -9.17219594e-02 6.62397683e-01 3.57910931e-01 1.02058148e+00 3.33081573e-01 -3.44201982e-01 7.15451419e-01 -3.70195121e-01 6.80605292e-01 -1.11464858e+00 -2.80516952e-01 -1.65087506e-02 2.36687750e-01 -7.45209455e-01 -1.42976701e-01 -4.21641648e-01 -1.15602851e+00 -2.01642990e-01 -1.09794408e-01 4.21222113e-02 6.75014138e-01 6.16191924e-01 5.92075706e-01 1.01674950e+00 5.64280808e-01 -1.45411944e+00 3.20135802e-01 -7.48795211e-01 -1.85399562e-01 5.76442897e-01 3.32101285e-01 -4.77927953e-01 1.43412745e-03 3.65203679e-01]
[9.243432998657227, -3.0228514671325684]
32241292-91d0-42e5-9e36-0f47f35147f4
cross-task-knowledge-transfer-for-visually
null
null
https://openreview.net/forum?id=ByGq7hRqKX
https://openreview.net/pdf?id=ByGq7hRqKX
Cross-Task Knowledge Transfer for Visually-Grounded Navigation
Recent efforts on training visual navigation agents conditioned on language using deep reinforcement learning have been successful in learning policies for two different tasks: learning to follow navigational instructions and embodied question answering. In this paper, we aim to learn a multitask model capable of jointly learning both tasks, and transferring knowledge of words and their grounding in visual objects across tasks. The proposed model uses a novel Dual-Attention unit to disentangle the knowledge of words in the textual representations and visual objects in the visual representations, and align them with each other. This disentangled task-invariant alignment of representations facilitates grounding and knowledge transfer across both tasks. We show that the proposed model outperforms a range of baselines on both tasks in simulated 3D environments. We also show that this disentanglement of representations makes our model modular, interpretable, and allows for zero-shot transfer to instructions containing new words by leveraging object detectors.
['Lisa Lee', 'Ruslan Salakhutdinov', 'Dhruv Batra', 'Devendra Singh Chaplot', 'Devi Parikh']
2019-05-01
null
null
null
iclr-2019-5
['embodied-question-answering']
['computer-vision']
[-9.92803648e-03 2.45683402e-01 1.09384447e-01 -2.21183285e-01 -5.57420850e-01 -8.22399199e-01 1.07647395e+00 4.16528322e-02 -7.47320592e-01 5.37107229e-01 5.58535635e-01 -4.69310820e-01 1.00735486e-01 -6.20482922e-01 -1.17171240e+00 -5.58189392e-01 -2.32914895e-01 6.19652867e-01 1.32130712e-01 -3.29657316e-01 3.74469012e-01 2.95836031e-01 -1.53122294e+00 5.64646900e-01 5.37532449e-01 4.49456930e-01 8.08108270e-01 8.52982819e-01 -1.64222568e-01 1.11095166e+00 -4.28925037e-01 6.13791719e-02 2.89590567e-01 -2.94725686e-01 -1.02213585e+00 -1.11528292e-01 7.35303283e-01 -7.87507176e-01 -5.85643768e-01 7.07371175e-01 1.39518395e-01 5.27108610e-01 9.60456133e-01 -1.21160138e+00 -1.50430548e+00 4.19921666e-01 -4.28137630e-01 2.62068361e-01 3.87595922e-01 4.63454455e-01 1.37450683e+00 -9.16521847e-01 6.22008204e-01 1.36153066e+00 6.52950332e-02 8.52963686e-01 -1.27471042e+00 -6.46384001e-01 7.34140515e-01 3.10347527e-01 -9.31338131e-01 -4.18218017e-01 3.68991792e-01 -7.10226119e-01 1.58465183e+00 -3.31205159e-01 5.87878942e-01 1.51935935e+00 3.34177911e-01 7.67868936e-01 1.28617013e+00 -5.07498145e-01 1.56030476e-01 1.94130223e-02 5.46224155e-02 1.27608967e+00 4.26571369e-01 4.91865605e-01 -9.62039649e-01 2.45566234e-01 1.16477847e+00 5.33006191e-02 -1.89001903e-01 -9.07935500e-01 -1.47379208e+00 8.57744277e-01 8.03797781e-01 1.97026700e-01 -3.67977530e-01 7.45797813e-01 6.71680793e-02 1.08296968e-01 2.11388059e-02 5.79438806e-01 -3.69116873e-01 4.79142547e-01 -2.01749593e-01 2.40034863e-01 4.20300066e-01 1.09365082e+00 8.52902889e-01 1.50514469e-01 -4.94703650e-01 2.64255524e-01 8.67524981e-01 8.41182113e-01 5.58278203e-01 -8.94537807e-01 6.51754677e-01 2.11171985e-01 2.69679338e-01 -7.37693489e-01 -5.77269018e-01 -1.90374449e-01 -1.75211743e-01 8.10746312e-01 4.18784082e-01 -4.97344024e-02 -1.40225363e+00 2.22753263e+00 -6.65152967e-02 5.90720661e-02 3.30847621e-01 9.25986767e-01 8.94786716e-01 6.01957858e-01 5.42369604e-01 5.40452361e-01 1.56945884e+00 -1.30834222e+00 -6.32302046e-01 -8.38641346e-01 5.78201234e-01 -2.14921519e-01 1.36866796e+00 -1.36924878e-01 -9.19437766e-01 -7.43463457e-01 -1.30961835e+00 -6.81065023e-01 -6.21164978e-01 -6.95787221e-02 5.60002029e-01 9.02306885e-02 -1.33000457e+00 1.05449125e-01 -8.72813940e-01 -5.40507734e-01 7.47903109e-01 3.24535906e-01 -4.24907058e-01 1.04517929e-01 -9.36621368e-01 1.39317870e+00 2.54581660e-01 -1.34227216e-01 -1.67200112e+00 -3.64179879e-01 -1.21224344e+00 1.49473652e-01 3.04709494e-01 -1.37148774e+00 1.42872560e+00 -7.66220093e-01 -1.52871847e+00 1.09940672e+00 -1.82104126e-01 -4.17052746e-01 5.14589101e-02 -5.93377888e-01 7.86803067e-02 1.10150568e-01 3.07934552e-01 1.09367514e+00 8.63408387e-01 -1.61378419e+00 -4.82929766e-01 -5.62284768e-01 4.18008000e-01 6.22204959e-01 5.81696965e-02 -6.29427552e-01 -8.70198160e-02 -4.21144605e-01 -2.24529445e-01 -7.30709791e-01 -1.53169870e-01 2.57793367e-01 -1.54809684e-01 3.53304222e-02 4.32373375e-01 -6.07169390e-01 2.83933431e-01 -1.83584857e+00 5.91324151e-01 -1.54756695e-01 4.18852448e-01 -1.27346441e-01 -6.38320446e-01 4.10007894e-01 1.47305101e-01 -1.27784684e-01 9.13078189e-02 -5.43360114e-01 2.39158317e-01 5.42570770e-01 -6.49538338e-01 3.64835203e-01 2.42525682e-01 1.54249740e+00 -1.07822478e+00 5.49488179e-02 1.73719808e-01 4.45598841e-01 -5.43048501e-01 5.73337793e-01 -5.98760366e-01 6.96068287e-01 -3.06650490e-01 1.14670604e-01 1.61472186e-01 -3.84491622e-01 2.75203496e-01 -5.81470430e-02 7.03783631e-02 5.14039993e-01 -6.83401287e-01 2.21592712e+00 -8.42639506e-01 7.84994364e-01 3.55323553e-02 -8.60784531e-01 6.43126607e-01 2.23344535e-01 -3.27245027e-01 -1.24428761e+00 1.23957142e-01 -1.46164149e-01 1.09681621e-01 -7.39764392e-01 3.76078695e-01 -2.57009387e-01 -1.77336335e-02 8.49465132e-01 6.61297977e-01 -6.93130866e-02 -1.71701401e-01 3.45472693e-01 7.60672152e-01 7.24101186e-01 3.95652235e-01 -2.30126366e-01 1.63105980e-01 -1.33665934e-01 -3.38369697e-01 1.02935803e+00 -1.17330723e-01 2.38701075e-01 1.37244344e-01 -3.59172553e-01 -1.02774632e+00 -1.43729401e+00 5.45968831e-01 1.72882175e+00 2.60005802e-01 -3.68351080e-02 -2.86165982e-01 -6.82424188e-01 1.15230471e-01 1.05416882e+00 -1.11072707e+00 -3.74240190e-01 -5.10805905e-01 3.43952590e-04 4.06246215e-01 8.18238437e-01 1.69752359e-01 -1.34629166e+00 -1.14518929e+00 -1.29857287e-01 8.69348720e-02 -1.12174749e+00 -3.14674050e-01 4.15313184e-01 -5.92032194e-01 -1.12375665e+00 -7.12096989e-01 -1.15800261e+00 8.27501237e-01 6.40519559e-01 1.36471200e+00 1.18995579e-02 -4.46453970e-03 1.07724166e+00 -8.08444321e-02 -3.82778913e-01 -2.77012229e-01 4.51764800e-02 -1.33091822e-01 -1.27577916e-01 1.88974246e-01 -4.90323424e-01 -5.95739543e-01 -4.68624048e-02 -8.36909831e-01 3.64046067e-01 7.25105345e-01 8.28627050e-01 2.77413189e-01 -1.15701962e+00 4.11314458e-01 -7.23961651e-01 8.00501049e-01 -5.06727815e-01 -6.84403718e-01 4.05375481e-01 -2.38288105e-01 7.89612472e-01 2.57184207e-01 -2.61692494e-01 -1.10576725e+00 -9.69582200e-02 4.11843099e-02 -1.39694706e-01 -4.53742206e-01 3.37885499e-01 7.83246476e-03 9.69900265e-02 6.69895291e-01 1.97362006e-01 1.45580396e-02 -1.29248440e-01 1.28026783e+00 -2.04219520e-02 5.22583902e-01 -6.89158201e-01 7.22426772e-01 7.20065355e-01 -9.45789963e-02 -5.00274241e-01 -8.18898439e-01 -1.75643995e-01 -7.82884538e-01 7.15121627e-02 1.43406773e+00 -1.09175456e+00 -9.88964856e-01 6.88821450e-02 -1.39606786e+00 -9.04736280e-01 -3.57531369e-01 3.83333504e-01 -9.15771246e-01 -3.87424827e-02 -3.08802933e-01 -5.10039091e-01 1.06259085e-01 -1.18351603e+00 1.12385738e+00 2.30542600e-01 -3.03634793e-01 -1.21652281e+00 3.55953723e-01 9.32431072e-02 3.92384082e-01 -1.02573894e-01 1.23295867e+00 -7.03060687e-01 -9.42200422e-01 3.92065287e-01 -3.74590665e-01 -2.70669222e-01 1.62151024e-01 -5.02874613e-01 -1.06116211e+00 -3.68813336e-01 -1.98761880e-01 -8.88980627e-01 1.25768828e+00 2.46073350e-01 7.68956423e-01 -2.43023381e-01 -4.85810637e-01 6.12393737e-01 1.21989107e+00 2.07387626e-01 3.30849618e-01 5.07099032e-01 7.76193202e-01 6.95581913e-01 2.89139729e-02 -7.06079006e-02 8.28209400e-01 5.51964641e-01 8.52682352e-01 -1.15779705e-01 -3.05758536e-01 -3.95740777e-01 4.49575752e-01 4.25374717e-01 1.31903253e-02 -1.86791614e-01 -1.04490101e+00 5.48627913e-01 -1.87097597e+00 -9.16703165e-01 3.93968552e-01 1.80957687e+00 6.27455711e-01 5.72649613e-02 -1.38973251e-01 -8.86630118e-01 1.92885682e-01 4.50475425e-01 -7.19587207e-01 -3.73670697e-01 1.09669037e-01 3.96758378e-01 2.11936995e-01 9.37639177e-01 -9.43330824e-01 1.10980070e+00 6.49832296e+00 -1.06642820e-01 -8.30792606e-01 3.07026058e-01 1.23161405e-01 -1.33396655e-01 -4.72629160e-01 -1.26084611e-01 -6.85352743e-01 -4.37998027e-01 6.89071238e-01 -2.74807010e-02 4.86106664e-01 4.63994205e-01 -2.41649181e-01 -8.97860229e-02 -1.52763653e+00 6.99067652e-01 5.07450521e-01 -1.44995248e+00 3.89912933e-01 -6.93914220e-02 7.36929357e-01 2.28349820e-01 6.04697466e-01 6.05022609e-01 9.25513446e-01 -1.47213995e+00 9.61519957e-01 6.32417262e-01 5.71757734e-01 -1.78227097e-01 2.12896585e-01 3.15420598e-01 -9.29704368e-01 -2.06423923e-01 -2.19371282e-02 -3.90850425e-01 2.56815165e-01 -6.84700727e-01 -8.53853583e-01 2.91260570e-01 3.99312019e-01 6.34031057e-01 -5.04360020e-01 6.14257336e-01 -6.83828890e-01 3.55385654e-02 3.32968265e-01 -2.20963374e-01 4.29686964e-01 -2.79148370e-02 2.56160200e-01 9.45082307e-01 1.13052145e-01 1.29403755e-01 2.39103958e-01 1.09509706e+00 -5.04960753e-02 -2.14377210e-01 -9.01500702e-01 4.47150245e-02 1.36929810e-01 8.44801068e-01 -5.88263035e-01 -4.03801978e-01 -6.76823199e-01 1.13009334e+00 1.00748634e+00 9.32598412e-01 -7.33688414e-01 -7.06608742e-02 1.04594016e+00 -2.99547493e-01 6.45137787e-01 -9.14476454e-01 -3.34568858e-01 -1.14525843e+00 -3.98109645e-01 -5.80788434e-01 1.17061779e-01 -1.14160872e+00 -1.07866347e+00 8.61256480e-01 -4.70751487e-02 -7.99937844e-01 -2.71091104e-01 -1.25494325e+00 -3.34808081e-01 1.13480198e+00 -1.74910140e+00 -1.50547826e+00 -3.31869632e-01 7.34711647e-01 6.84354067e-01 -2.22313941e-01 1.13236225e+00 -3.54380965e-01 -1.30861625e-01 3.13874096e-01 -1.40151218e-01 1.34584084e-01 6.74609601e-01 -1.30932307e+00 6.28447890e-01 5.98856211e-01 8.43679667e-01 8.74913692e-01 6.31540656e-01 -4.64615017e-01 -1.36237884e+00 -8.24999750e-01 2.23467246e-01 -1.02880979e+00 5.68452895e-01 -9.11303341e-01 -1.02059114e+00 1.21612537e+00 9.06642497e-01 -9.35001299e-02 7.76981950e-01 2.71616995e-01 -1.12004781e+00 3.68461728e-01 -4.65165645e-01 8.89012456e-01 1.14345336e+00 -1.08068013e+00 -1.15633500e+00 3.95976424e-01 8.70359182e-01 -5.04418015e-01 4.70959470e-02 -1.86609969e-01 6.11362576e-01 -8.93057406e-01 1.06025267e+00 -1.34989643e+00 3.92628074e-01 -2.74428993e-01 -2.17992127e-01 -1.50938714e+00 -5.68812013e-01 -3.57852578e-02 -2.68953651e-01 5.79732776e-01 5.28550446e-01 -5.03001928e-01 4.30755705e-01 2.24387467e-01 -1.58925146e-01 -3.65068763e-01 -8.15228820e-01 -4.26506042e-01 3.27034295e-01 -1.24594949e-01 1.62293866e-01 6.60276234e-01 -4.51516174e-02 1.02014649e+00 -2.45963395e-01 4.29018140e-01 3.28157037e-01 2.62572497e-01 7.08925486e-01 -8.87404799e-01 -4.90177333e-01 -5.18523932e-01 5.57302572e-02 -1.54112029e+00 5.47450781e-01 -1.31861269e+00 3.50725472e-01 -2.15792751e+00 1.39426947e-01 2.50919983e-02 -2.37728000e-01 7.04024374e-01 -1.31040663e-01 -6.44144192e-02 4.01961535e-01 1.57921053e-02 -7.16422975e-01 7.69863546e-01 1.42829370e+00 -3.47120732e-01 1.37186851e-02 -6.68602169e-01 -7.43991077e-01 6.41759872e-01 5.48507214e-01 -2.55700856e-01 -6.33923233e-01 -1.24546647e+00 2.83228368e-01 -3.55079502e-01 7.66775012e-01 -7.03592300e-01 2.45271310e-01 -1.16621643e-01 5.64261794e-01 -2.51814336e-01 4.77170080e-01 -8.43921363e-01 -5.91447413e-01 6.59478605e-01 -6.97107017e-01 3.51332843e-01 6.45904779e-01 9.38970566e-01 2.50736564e-01 5.84767200e-02 4.68240589e-01 -4.53032047e-01 -1.17818522e+00 9.08026546e-02 -6.79749131e-01 1.18150517e-01 1.04630756e+00 -7.72603322e-03 -7.44571865e-01 -4.91758496e-01 -9.96151626e-01 4.43993151e-01 1.78897262e-01 6.58490956e-01 8.23044717e-01 -1.22605193e+00 -5.45865417e-01 2.44687557e-01 2.48665795e-01 -2.73906380e-01 1.78673878e-01 3.02057147e-01 -4.54597175e-01 7.09779799e-01 -7.45779335e-01 -5.35610020e-01 -7.89659142e-01 8.87320399e-01 4.96722311e-01 -8.38642120e-02 -4.10705090e-01 1.14304614e+00 8.75552714e-01 -6.52070165e-01 3.10356587e-01 -4.72736120e-01 -4.20210481e-01 -1.75368004e-02 5.13926208e-01 -2.13034734e-01 -2.40477115e-01 -6.44036591e-01 -2.23019689e-01 6.73814595e-01 -3.21946859e-01 -5.47418296e-01 1.16339934e+00 -3.09239686e-01 1.82275906e-01 7.10093796e-01 9.79742527e-01 -1.88156560e-01 -1.62484527e+00 -3.23721290e-01 -1.09197222e-01 -1.97563887e-01 -3.08277130e-01 -9.42968130e-01 -5.26538372e-01 1.30416882e+00 5.31897247e-01 -8.53700563e-02 5.89554965e-01 4.51165378e-01 2.41076872e-01 7.78081894e-01 3.07043254e-01 -5.27653515e-01 9.52053070e-01 8.94196868e-01 1.27889562e+00 -1.32520664e+00 -2.78288007e-01 5.02630845e-02 -7.04455614e-01 9.57719624e-01 1.06696868e+00 -3.71740997e-01 3.16560477e-01 -1.59835801e-01 2.71930665e-01 -3.79335523e-01 -9.87247407e-01 -6.60398781e-01 4.71141875e-01 1.10958862e+00 1.91500172e-01 -1.99294806e-01 3.90080333e-01 4.01788205e-01 5.47198020e-02 -6.05241239e-01 3.29736531e-01 9.84894037e-01 -6.94447219e-01 -7.07891643e-01 -1.14025041e-01 -2.16530934e-02 1.53594464e-01 -3.24788213e-01 -2.77335018e-01 8.46304357e-01 -1.73174683e-02 5.18854797e-01 2.71996558e-01 -4.58151773e-02 3.88686985e-01 2.74906546e-01 8.99186730e-01 -1.01577425e+00 -3.09870124e-01 -2.99297243e-01 -1.58348069e-01 -5.65879703e-01 -3.93522859e-01 -3.78751546e-01 -1.53391957e+00 4.66685116e-01 5.63016012e-02 -1.02962747e-01 5.53664982e-01 1.16652036e+00 5.27466536e-01 9.56695139e-01 -9.62878987e-02 -1.02709091e+00 -6.29133999e-01 -6.84463024e-01 -2.01927230e-01 3.92354190e-01 7.44224489e-01 -1.12976158e+00 1.86896231e-02 1.05368488e-01]
[4.55482816696167, 0.5253642201423645]
0945ddd0-7d44-45fb-a18f-1b16ce7e7667
selective-experience-replay-compression-using
2302.11510
null
https://arxiv.org/abs/2302.11510v4
https://arxiv.org/pdf/2302.11510v4.pdf
Selective experience replay compression using coresets for lifelong deep reinforcement learning in medical imaging
Selective experience replay is a popular strategy for integrating lifelong learning with deep reinforcement learning. Selective experience replay aims to recount selected experiences from previous tasks to avoid catastrophic forgetting. Furthermore, selective experience replay based techniques are model agnostic and allow experiences to be shared across different models. However, storing experiences from all previous tasks make lifelong learning using selective experience replay computationally very expensive and impractical as the number of tasks increase. To that end, we propose a reward distribution-preserving coreset compression technique for compressing experience replay buffers stored for selective experience replay. We evaluated the coreset compression technique on the brain tumor segmentation (BRATS) dataset for the task of ventricle localization and on the whole-body MRI for localization of left knee cap, left kidney, right trochanter, left lung, and spleen. The coreset lifelong learning models trained on a sequence of 10 different brain MR imaging environments demonstrated excellent performance localizing the ventricle with a mean pixel error distance of 12.93 for the compression ratio of 10x. In comparison, the conventional lifelong learning model localized the ventricle with a mean pixel distance of 10.87. Similarly, the coreset lifelong learning models trained on whole-body MRI demonstrated no significant difference (p=0.28) between the 10x compressed coreset lifelong learning models and conventional lifelong learning models for all the landmarks. The mean pixel distance for the 10x compressed models across all the landmarks was 25.30, compared to 19.24 for the conventional lifelong learning models. Our results demonstrate that the potential of the coreset-based ERB compression method for compressing experiences without a significant drop in performance.
['Vishwa S. Parekh', 'Michael A. Jacobs', 'Vladimir Braverman', 'Samson Zhou', 'Guangyao Zheng']
2023-02-22
null
null
null
null
['tumor-segmentation', 'brain-tumor-segmentation']
['computer-vision', 'medical']
[-1.43500581e-01 -1.52205080e-02 -4.45030332e-01 -1.80735931e-01 -1.07541883e+00 -6.80662170e-02 2.29429096e-01 5.11952937e-01 -9.76886094e-01 8.80705893e-01 3.30074906e-01 8.00618008e-02 -1.74468845e-01 -3.42504233e-01 -7.34195948e-01 -9.08718765e-01 -7.62611032e-01 3.20671856e-01 1.32636994e-01 4.36609179e-01 1.64690480e-01 2.49008790e-01 -1.11225355e+00 4.37340438e-01 6.96473956e-01 7.78201282e-01 8.21886539e-01 8.19297612e-01 2.56135911e-01 1.07494736e+00 -4.45977271e-01 -3.85631174e-02 -1.39965238e-02 -4.33843493e-01 -8.31692219e-01 -2.63464302e-01 3.76484931e-01 -6.78849459e-01 -7.05539286e-01 7.84206331e-01 9.44114327e-01 2.58052796e-01 2.72251308e-01 -1.04674804e+00 -1.19444616e-01 7.31682003e-01 -3.52386206e-01 7.03086197e-01 -1.92801580e-02 2.04515070e-01 2.15388954e-01 -8.28227282e-01 8.92585099e-01 4.68382716e-01 9.82853889e-01 6.78609371e-01 -8.75063539e-01 -4.79954958e-01 -1.79094940e-01 3.71972173e-01 -1.10526943e+00 -1.94938824e-01 2.34841496e-01 5.50644146e-03 1.40552557e+00 1.32451996e-01 1.29291880e+00 9.55676854e-01 1.25491679e+00 8.83757889e-01 1.17803252e+00 -2.06718653e-01 8.52768898e-01 -7.05493838e-02 1.44724578e-01 7.22130716e-01 1.16777323e-01 3.68497014e-01 -8.97181153e-01 -1.84900925e-01 6.80258453e-01 5.64192176e-01 -8.80419016e-02 -2.58782417e-01 -1.17229486e+00 6.06965721e-01 6.60189748e-01 2.26610497e-01 -7.02316940e-01 7.06140518e-01 9.10291553e-01 5.65337360e-01 3.68526012e-01 4.23403174e-01 -4.93520439e-01 -4.84470665e-01 -1.35501158e+00 2.89387703e-01 5.34896731e-01 8.05618048e-01 3.26765984e-01 1.93722948e-01 -3.47445041e-01 6.48043633e-01 -1.66351736e-01 2.18058884e-01 1.33354747e+00 -1.15650761e+00 -7.37176836e-02 -1.46008715e-01 -4.08476889e-01 -3.94752294e-01 -6.74378276e-01 -1.09647286e+00 -7.06796706e-01 1.33684546e-01 9.84294564e-02 -2.70317674e-01 -1.17249703e+00 1.70970213e+00 8.34468752e-02 5.26618123e-01 2.27201760e-01 6.82084441e-01 7.60422707e-01 5.39391339e-01 5.33419430e-01 -6.03123486e-01 1.18273139e+00 -1.33974302e+00 -4.88530546e-01 -3.81641209e-01 9.80892479e-01 -4.79894012e-01 1.27802336e+00 4.72280413e-01 -1.41201270e+00 -2.71045595e-01 -1.10160339e+00 2.31197119e-01 6.94789216e-02 -2.38668531e-01 8.14961910e-01 2.81008244e-01 -1.23659551e+00 8.56385529e-01 -1.33976007e+00 -7.12880194e-02 4.97465342e-01 1.62078440e-01 -3.11245948e-01 -4.01682884e-01 -8.43316674e-01 8.87290776e-01 5.61005294e-01 -6.80168688e-01 -1.43219817e+00 -1.37555838e+00 -7.48498678e-01 3.53437752e-01 2.06286430e-01 -7.48104334e-01 1.54783118e+00 -8.52344751e-01 -9.57994223e-01 9.01389897e-01 1.62889346e-01 -1.16530824e+00 3.42841864e-01 -3.82371694e-01 -2.11008042e-01 6.96516395e-01 1.04611024e-01 1.02025664e+00 7.68142283e-01 -6.73727930e-01 -2.62576610e-01 -2.58775502e-01 -3.07545215e-01 6.08825028e-01 -1.67182520e-01 -4.66425568e-01 -2.35645577e-01 -8.51883590e-01 2.31762990e-01 -1.12402952e+00 -4.75277364e-01 3.28035593e-01 4.29473788e-01 2.95579135e-01 6.48674250e-01 -7.13388324e-01 8.27677429e-01 -2.32587075e+00 -2.24419430e-01 -1.82538003e-01 2.67798364e-01 5.81720732e-02 -7.51139373e-02 1.26713784e-02 -6.38956428e-02 -4.01833892e-01 -2.02037066e-01 -3.67587298e-01 -4.11169320e-01 3.79552215e-01 -4.26156223e-02 3.78993541e-01 -4.83161807e-01 1.04440117e+00 -1.25451982e+00 -6.56711817e-01 5.29309288e-02 4.84770656e-01 -8.48423600e-01 2.83064246e-02 -7.42627308e-02 6.96659386e-02 3.08297854e-02 4.67234671e-01 5.18592894e-01 -3.92410994e-01 1.18824027e-01 2.61740416e-01 4.47758645e-01 9.31629315e-02 -5.84163547e-01 2.51990938e+00 -5.20654917e-01 4.00779307e-01 -2.20735565e-01 -4.16627318e-01 4.84203249e-01 5.89147329e-01 8.88100207e-01 -1.02937222e+00 -1.75392851e-01 3.35068017e-01 -8.71168971e-02 -2.86428124e-01 5.54432392e-01 -5.34991920e-01 -1.50970086e-01 7.05946386e-01 4.77947950e-01 -1.94004521e-01 -2.78425124e-02 5.74093521e-01 1.37134659e+00 -1.52242318e-01 2.01128647e-01 -2.04475701e-01 -1.60638690e-01 1.43181413e-01 7.11606264e-01 1.02024806e+00 -6.29274368e-01 7.25556850e-01 1.15391016e-01 -6.74228251e-01 -9.30185616e-01 -1.47519195e+00 -4.50374559e-03 9.35142696e-01 -3.55491117e-02 -5.20017087e-01 -8.17747056e-01 -6.73496664e-01 -2.79132664e-01 7.49645710e-01 -3.26217890e-01 -5.88693857e-01 -4.80070621e-01 -6.78318799e-01 4.04549569e-01 7.72043288e-01 8.16215456e-01 -1.46750355e+00 -1.50147986e+00 3.69221091e-01 -2.36119688e-01 -6.97919905e-01 -6.06547058e-01 5.60518920e-01 -1.58372426e+00 -5.76604247e-01 -1.20323646e+00 -9.08216536e-01 5.02971053e-01 2.35429332e-01 1.24462235e+00 1.09160818e-01 -5.00743806e-01 6.63092196e-01 -2.51436353e-01 -2.19128877e-01 -1.11058488e-01 2.33477186e-02 1.08760417e-01 -1.10446441e+00 1.59638748e-01 -6.09460294e-01 -1.02137923e+00 -2.25435123e-01 -8.51183593e-01 7.70522952e-02 7.25338101e-01 1.16410184e+00 1.01796865e+00 -1.41842082e-01 8.04601431e-01 -7.07845688e-01 5.49065351e-01 -7.41688132e-01 2.11553738e-01 5.67590669e-02 -9.70476151e-01 -6.65544942e-02 4.48630869e-01 -6.26740992e-01 -9.31197882e-01 -5.66390604e-02 -2.76500527e-02 -6.47557139e-01 1.74207285e-01 7.49800861e-01 6.88669145e-01 2.07685009e-01 7.55425155e-01 6.18175089e-01 1.84807539e-01 -7.59415701e-02 2.60360450e-01 7.57222101e-02 8.03769886e-01 -2.72351682e-01 -2.74960607e-01 3.40434909e-01 -2.45897979e-01 -5.50145388e-01 -3.36411417e-01 -3.45489353e-01 -3.24013853e-03 -3.23978931e-01 5.54255009e-01 -1.05479896e+00 -2.78654695e-01 4.75450367e-01 -5.71960568e-01 -8.71012151e-01 -1.07348716e+00 1.12074459e+00 -1.25060260e+00 1.99353844e-01 -1.27473521e+00 -1.71482474e-01 -8.99005234e-01 -1.08425927e+00 5.12956440e-01 2.88980931e-01 -4.44778442e-01 -9.38401759e-01 2.08842218e-01 -1.08012848e-01 5.46056211e-01 1.43976789e-02 9.87451553e-01 -3.68579596e-01 -3.64855319e-01 -9.21938643e-02 2.11360052e-01 1.12066522e-01 -3.71831328e-01 -1.07223320e+00 -6.81232095e-01 -8.60459864e-01 3.83852512e-01 -8.30564141e-01 9.90233839e-01 8.78520548e-01 1.18779600e+00 -1.88052095e-02 -1.47225633e-01 7.79289603e-01 1.48382401e+00 3.41383606e-01 8.35026383e-01 2.75095195e-01 5.81023358e-02 1.52067645e-02 7.24147737e-01 5.99543750e-01 -3.50220129e-02 4.00951318e-02 2.96885550e-01 6.79111704e-02 -5.07498980e-01 -3.12263548e-01 4.31035161e-01 1.19687903e+00 2.83254713e-01 3.07397187e-01 -7.07605958e-01 7.86197543e-01 -1.51956332e+00 -9.17132258e-01 7.02351511e-01 2.10439920e+00 9.40966189e-01 1.88465416e-01 -2.45799601e-01 -2.17795804e-01 1.34500980e-01 8.42309743e-02 -1.03910506e+00 -7.56129742e-01 2.02268645e-01 4.26553667e-01 5.26358843e-01 2.31537163e-01 -6.56980634e-01 6.75307035e-01 6.42995119e+00 9.44014370e-01 -1.28906989e+00 6.11035466e-01 8.35690141e-01 -7.43679821e-01 -3.57320867e-02 -5.45057580e-02 -3.01707000e-01 5.40036142e-01 1.23722410e+00 -4.33115393e-01 3.40698332e-01 1.18761671e+00 -2.72380817e-03 -6.56884491e-01 -8.64443898e-01 1.38048649e+00 2.94972837e-01 -1.52989364e+00 -4.35895085e-01 -2.30824709e-01 9.29194033e-01 4.10977811e-01 2.38228321e-01 6.92641377e-01 5.59211336e-02 -9.12337244e-01 5.95417798e-01 6.32800519e-01 1.06082726e+00 -9.81223345e-01 5.41109443e-01 3.92456770e-01 -8.16876292e-01 -8.79011154e-02 -5.21703660e-01 1.16287075e-01 6.51860088e-02 5.62848151e-01 -1.12738621e+00 -4.68061380e-02 8.98090422e-01 4.82503861e-01 -3.85815799e-01 1.27844501e+00 1.80694357e-01 7.28909194e-01 -1.90598726e-01 2.12362200e-01 3.17625612e-01 5.51235497e-01 5.42559803e-01 1.23260117e+00 4.89113867e-01 -1.15597792e-01 1.32603515e-02 4.68060076e-01 -1.49112239e-01 2.31263619e-02 -5.48245370e-01 2.83955425e-01 4.48783398e-01 1.05387163e+00 -9.72647130e-01 -5.18747151e-01 -1.45075589e-01 1.24330533e+00 2.44981870e-01 2.44769365e-01 -7.72370458e-01 -1.88612252e-01 1.30938202e-01 1.62591785e-01 1.31038144e-01 -2.78123379e-01 -3.79088730e-01 -9.65942562e-01 -1.35417908e-01 -6.98494196e-01 6.88531399e-01 -9.96592402e-01 -9.10024703e-01 6.14959061e-01 1.45898595e-01 -1.07933509e+00 -4.94255632e-01 4.74475510e-02 -7.03902900e-01 3.82292032e-01 -1.16820431e+00 -6.78147316e-01 -3.65647227e-01 7.24707723e-01 1.04975867e+00 -2.92944133e-01 1.04646134e+00 1.40592828e-01 1.73015103e-01 7.33503699e-01 2.01256096e-01 -5.04539073e-01 7.30500460e-01 -1.06851757e+00 1.61829162e-02 5.93247592e-01 -1.23486586e-01 6.40735805e-01 4.83764410e-01 -9.00065064e-01 -1.23760068e+00 -1.12954330e+00 6.93180203e-01 5.34899473e-01 -2.50163209e-02 1.63021430e-01 -8.60015392e-01 6.57168627e-01 3.63641202e-01 1.55860856e-01 6.52884305e-01 -2.79582232e-01 6.97377697e-02 -2.54663676e-02 -1.63487875e+00 6.34182811e-01 8.03066730e-01 -4.45452064e-01 -5.37044764e-01 4.20693755e-01 7.98440158e-01 -5.97465932e-01 -1.00069177e+00 8.56215060e-02 5.85128725e-01 -6.87948823e-01 9.45484877e-01 -1.77190766e-01 5.79665720e-01 3.19190025e-01 -9.36055183e-02 -1.40188551e+00 -1.68474466e-01 -3.65154117e-01 -4.38854992e-01 3.27301890e-01 3.91672850e-02 -3.95467401e-01 1.21235681e+00 6.45010948e-01 -5.30832708e-01 -1.13927221e+00 -1.09626842e+00 -7.73840129e-01 1.74939618e-01 -5.20761192e-01 1.91656679e-01 7.89591074e-01 2.97849625e-01 -1.65978536e-01 -3.79129708e-01 -4.59228188e-01 7.41448522e-01 -1.43392548e-01 5.30878603e-02 -4.49897915e-01 -7.32881427e-01 9.07706171e-02 -2.19204903e-01 -7.90929556e-01 -1.04549393e-01 -1.46588624e+00 -1.58399835e-01 -1.43828475e+00 7.80218840e-01 -6.76822245e-01 -6.90121531e-01 5.03874004e-01 8.37888867e-02 1.78839117e-01 4.47797298e-01 3.23637694e-01 -6.32963359e-01 5.40719330e-01 1.43363965e+00 -1.12959161e-01 -2.50146627e-01 -3.34664166e-01 -4.83683527e-01 6.79094553e-01 1.06290627e+00 -7.44488776e-01 -1.02912223e+00 -2.75263667e-01 3.74101177e-02 5.24724185e-01 3.73933643e-01 -1.46582890e+00 6.10724449e-01 1.88292742e-01 6.50558889e-01 -7.85074115e-01 3.35185260e-01 -5.12988925e-01 6.01142608e-02 1.20658767e+00 -4.73607123e-01 3.43488306e-01 4.19378906e-01 4.96075571e-01 -4.04313765e-02 -4.64080036e-01 8.79635096e-01 -5.70181906e-01 -1.05058396e+00 3.72210741e-01 -7.37635732e-01 1.65962011e-01 1.19331145e+00 -2.30791554e-01 -1.23898618e-01 -4.05363023e-01 -1.40366411e+00 4.56732959e-02 3.53452802e-01 -4.75481758e-03 1.46028757e+00 -1.26615763e+00 -5.18100083e-01 4.16531652e-01 -2.65048265e-01 -1.26318008e-01 7.65949488e-01 1.02628338e+00 -8.31647158e-01 1.09803632e-01 -6.86774135e-01 -7.30868518e-01 -1.27663434e+00 4.83451992e-01 3.57518137e-01 -7.09994793e-01 -1.08409584e+00 7.34026909e-01 -1.15633920e-01 -1.46189973e-01 4.01585162e-01 -3.06495160e-01 3.94358248e-01 -3.79159391e-01 7.06354558e-01 6.18371248e-01 2.02348307e-01 1.58267677e-01 -2.26252317e-01 -5.25163785e-02 -6.02589309e-01 -4.20772612e-01 1.55404067e+00 -1.27235092e-02 3.20463002e-01 3.77148926e-01 1.32352877e+00 -6.87791288e-01 -1.43867385e+00 -3.18525732e-01 -3.50076228e-01 -3.62412661e-01 5.90727746e-01 -1.07249141e+00 -1.16030645e+00 6.82434440e-01 1.26220000e+00 -7.57954717e-01 1.37632060e+00 -9.35254395e-02 1.31227636e+00 1.91456527e-01 8.60927880e-01 -1.31137025e+00 6.05184376e-01 4.79636908e-01 8.42567265e-01 -7.86825299e-01 1.67479202e-01 2.77683645e-01 -1.07530785e+00 8.04499924e-01 4.81228918e-01 -3.69575083e-01 7.09707856e-01 5.32446384e-01 -1.72557995e-01 -2.74276644e-01 -1.05743635e+00 4.47902054e-01 -3.22369069e-01 5.45188844e-01 3.12588274e-01 2.03530014e-01 -4.96943265e-01 3.60256106e-01 -5.04708849e-02 5.28226674e-01 4.77575988e-01 1.41189778e+00 -4.65499192e-01 -6.69572473e-01 3.06018423e-02 7.73666978e-01 -5.42816401e-01 -3.72520179e-01 5.41820109e-01 4.72545713e-01 -8.90021474e-05 3.49829048e-01 3.08416009e-01 -3.17036398e-02 -1.30141884e-01 1.73560917e-01 8.41260970e-01 -4.99687850e-01 -7.81694710e-01 1.14476763e-01 -3.38528723e-01 -6.97672307e-01 -1.09569632e-01 -7.41057813e-01 -1.88653398e+00 -3.54908079e-01 1.24888308e-01 6.03768751e-02 6.13635480e-01 4.74854589e-01 3.45546395e-01 6.20697618e-01 2.03837022e-01 -5.92847288e-01 -7.03358948e-01 -7.19330132e-01 -9.83992338e-01 3.98850918e-01 1.75429508e-01 -3.31383675e-01 1.78717989e-02 9.75503679e-03]
[13.55036735534668, -2.3724308013916016]
3b53b1aa-1602-4ce5-bf31-0ed7d3bbe79d
weakly-supervised-text-instance-segmentation
2303.10848
null
https://arxiv.org/abs/2303.10848v2
https://arxiv.org/pdf/2303.10848v2.pdf
Weakly-Supervised Text Instance Segmentation
Text segmentation is a challenging vision task with many downstream applications. Current text segmentation methods require pixel-level annotations, which are expensive in the cost of human labor and limited in application scenarios. In this paper, we take the first attempt to perform weakly-supervised text instance segmentation by bridging text recognition and text segmentation. The insight is that text recognition methods provide precise attention position of each text instance, and the attention location can feed to both a text adaptive refinement head (TAR) and a text segmentation head. Specifically, the proposed TAR generates pseudo labels by performing two-stage iterative refinement operations on the attention location to fit the accurate boundaries of the corresponding text instance. Meanwhile, the text segmentation head takes the rough attention location to predict segmentation masks which are supervised by the aforementioned pseudo labels. In addition, we design a mask-augmented contrastive learning by treating our segmentation result as an augmented version of the input text image, thus improving the visual representation and further enhancing the performance of both recognition and segmentation. The experimental results demonstrate that the proposed method significantly outperforms weakly-supervised instance segmentation methods on ICDAR13-FST (18.95$\%$ improvement) and TextSeg (17.80$\%$ improvement) benchmarks.
['xiangyang xue', 'Bin Li', 'Haiyang Yu', 'Xinyan Zu']
2023-03-20
null
null
null
null
['weakly-supervised-instance-segmentation']
['computer-vision']
[ 7.75448143e-01 2.11075664e-01 -2.71864623e-01 -5.35651386e-01 -8.83205056e-01 -3.08387071e-01 4.18704391e-01 -5.93288708e-03 -5.29650748e-01 3.67178261e-01 -8.70694891e-02 -2.30865628e-01 3.72732043e-01 -4.53765631e-01 -7.51205564e-01 -7.95120776e-01 7.20850587e-01 7.11505532e-01 4.13817376e-01 3.23298007e-01 3.95908743e-01 7.68013224e-02 -1.19024420e+00 3.01049471e-01 1.24643803e+00 1.19208586e+00 4.07534838e-01 5.70870221e-01 -5.90564549e-01 5.95865488e-01 -5.27800620e-01 -3.62883300e-01 1.39704004e-01 -4.53603625e-01 -8.67585778e-01 7.64432907e-01 5.34184515e-01 -2.56377012e-01 -6.88520893e-02 1.10119128e+00 2.06274897e-01 1.38293192e-01 6.62629783e-01 -8.26829433e-01 -4.80221659e-01 7.82530367e-01 -1.25802433e+00 9.12582129e-02 -2.52477139e-01 1.43561363e-01 1.07296610e+00 -1.06739819e+00 2.76838869e-01 8.40083182e-01 4.61409181e-01 3.63567591e-01 -8.43321145e-01 -5.84034979e-01 6.97334409e-01 6.23859800e-02 -1.35242260e+00 -4.55412149e-01 7.39000440e-01 -4.19108301e-01 6.72096133e-01 2.64685810e-01 4.59209979e-01 5.58556199e-01 -1.66749060e-01 1.32600105e+00 8.20475578e-01 -4.64540750e-01 1.37897074e-01 1.06716245e-01 4.45444167e-01 8.49779010e-01 1.03846237e-01 -5.77259958e-01 -2.67966032e-01 3.86954933e-01 8.40718329e-01 1.78229064e-01 -4.06570375e-01 4.24601249e-02 -1.05907857e+00 4.68525141e-01 4.98614728e-01 2.76290715e-01 -3.32193851e-01 5.15971258e-02 2.59544224e-01 -4.06840414e-01 6.67304039e-01 6.86773956e-02 -4.29626703e-01 9.71127450e-02 -1.52511537e+00 -3.54323596e-01 3.46019268e-01 9.98387277e-01 8.17002535e-01 1.65422838e-02 -3.90754908e-01 9.41694677e-01 4.41217065e-01 2.98101515e-01 4.29443985e-01 -4.63746965e-01 9.74739850e-01 9.72597957e-01 -5.74818440e-02 -5.89341104e-01 -2.78383583e-01 -4.48156297e-01 -8.37118208e-01 -3.01793277e-01 6.22382224e-01 -1.52142420e-01 -1.50043869e+00 1.00484169e+00 3.47604483e-01 2.73044169e-01 -1.50336012e-01 9.18318450e-01 6.85842037e-01 8.98710251e-01 1.48536161e-01 -2.37922236e-01 1.41503036e+00 -1.40077722e+00 -7.58643270e-01 -6.56368375e-01 7.62356102e-01 -8.50739419e-01 1.17476439e+00 2.39706770e-01 -1.09457266e+00 -5.57475984e-01 -8.40969086e-01 -2.50836730e-01 -8.62680525e-02 7.10649133e-01 3.45831811e-01 4.82704073e-01 -7.07147837e-01 4.23201285e-02 -9.75105166e-01 -2.33750656e-01 7.90890813e-01 3.95939380e-01 2.55048931e-01 -4.29818779e-02 -6.82816744e-01 2.04359993e-01 4.22026068e-01 5.22467375e-01 -3.85712922e-01 -3.99757951e-01 -7.62207806e-01 1.19944774e-01 6.88673079e-01 -2.36564785e-01 1.04110694e+00 -1.19033957e+00 -1.26943040e+00 1.03881979e+00 -4.59333241e-01 -4.22842532e-01 7.00419188e-01 -1.76157311e-01 4.78146896e-02 2.28847533e-01 2.20776960e-01 9.51903045e-01 1.14068997e+00 -1.35570538e+00 -1.15358520e+00 -7.14968801e-01 -3.80023181e-01 5.99070191e-01 -2.16754735e-01 -3.26266944e-01 -1.28207636e+00 -7.55103827e-01 5.03750682e-01 -6.14885330e-01 -2.35085994e-01 -2.00833082e-02 -8.33295703e-01 -2.40651190e-01 1.21398687e+00 -8.45211387e-01 1.21375084e+00 -2.06693339e+00 2.73406357e-02 8.76704305e-02 2.29646012e-01 2.81089306e-01 1.92169771e-01 -2.62572378e-01 2.10808679e-01 2.51050144e-01 -5.01718223e-01 -7.97991693e-01 -1.27810434e-01 7.15970472e-02 -3.63798022e-01 4.58226800e-01 1.26672387e-02 1.13328445e+00 -3.19929630e-01 -8.80197585e-01 4.29832727e-01 1.67185336e-01 -3.52281958e-01 1.30916357e-01 -5.69806814e-01 3.16778511e-01 -7.56192803e-01 8.24654341e-01 6.40760303e-01 -4.77550924e-01 2.86326036e-02 -3.06127608e-01 -8.26670080e-02 -1.39492214e-01 -1.13977075e+00 1.43326664e+00 -1.48382619e-01 7.36559689e-01 2.45449424e-01 -1.24474370e+00 9.43032205e-01 -1.09642567e-02 4.12421554e-01 -7.52587676e-01 4.04306084e-01 -2.34330501e-02 -2.71930158e-01 -5.11886299e-01 5.81630588e-01 4.48253080e-02 -5.24040945e-02 3.84574890e-01 -2.69836426e-01 -1.75434127e-01 1.33068621e-01 5.17788157e-02 4.44694251e-01 2.15319470e-01 -6.96039945e-02 -4.07659635e-02 6.48507714e-01 1.45329952e-01 5.02670825e-01 7.42571652e-01 -1.16801754e-01 7.75007367e-01 4.30408686e-01 -1.88610569e-01 -8.70320082e-01 -4.48445261e-01 -2.18924001e-01 1.23431051e+00 3.91147554e-01 2.42357720e-02 -1.19232118e+00 -9.52119052e-01 -3.98438603e-01 6.81620240e-01 -5.39836884e-01 2.14883253e-01 -6.40090644e-01 -7.89718807e-01 5.27940273e-01 8.39739382e-01 8.45793545e-01 -1.16807854e+00 -3.80040318e-01 2.60677608e-03 -2.86929637e-01 -1.35040259e+00 -1.06429863e+00 4.09580857e-01 -9.73788202e-01 -9.03951526e-01 -9.65100408e-01 -1.24011505e+00 1.09068346e+00 1.76657617e-01 5.64453721e-01 2.87038505e-01 -2.62620389e-01 6.46651909e-02 -2.80185491e-01 -8.49550217e-02 1.18734971e-01 2.06760883e-01 -5.28163970e-01 4.29595500e-01 2.96653450e-01 1.43108875e-01 -6.05625987e-01 4.23844188e-01 -8.32018137e-01 4.71070856e-01 7.13151693e-01 9.19016838e-01 1.08430886e+00 1.99698389e-01 2.13209823e-01 -1.21854961e+00 1.83206365e-01 8.51069205e-03 -7.76162565e-01 2.37399429e-01 -5.32872736e-01 -1.71239942e-01 7.22846150e-01 -1.87177151e-01 -1.27282596e+00 4.98082072e-01 -1.06024384e-01 -3.02288920e-01 -4.21068430e-01 4.01583761e-01 -3.37024719e-01 2.59686500e-01 2.06503138e-01 5.73185265e-01 -4.48914707e-01 -2.93991476e-01 2.76729405e-01 8.97658527e-01 5.35106897e-01 -4.28835571e-01 4.70915377e-01 5.04772723e-01 -3.94487709e-01 -9.58803296e-01 -1.05132556e+00 -5.63133359e-01 -8.90708387e-01 -1.00720376e-01 1.18108392e+00 -6.80532277e-01 -4.07007754e-01 7.42807627e-01 -8.41595590e-01 -7.07274675e-01 -1.79782361e-01 1.59006342e-01 -4.05260444e-01 5.57185888e-01 -5.89700997e-01 -7.40350664e-01 -5.33606350e-01 -1.37708652e+00 1.52440012e+00 4.78235036e-01 2.18927890e-01 -8.92560601e-01 -6.23316050e-01 9.60575402e-01 -2.31389612e-01 -1.27887323e-01 7.91822910e-01 -6.89336598e-01 -7.94249892e-01 -2.52306342e-01 -7.41546392e-01 8.95274729e-02 -5.19122323e-03 -2.22136769e-02 -9.74596620e-01 -3.46006416e-02 -1.98317468e-01 -1.48009136e-01 1.17304134e+00 8.16331446e-01 1.45744729e+00 -1.73120469e-01 -5.19112289e-01 7.92151451e-01 1.19353938e+00 4.83462185e-01 5.49431741e-01 3.14319469e-02 1.31363690e+00 6.57679200e-01 8.43369901e-01 2.25470662e-01 2.50121444e-01 5.64187884e-01 1.85971245e-01 -5.61758816e-01 -1.45002291e-01 -2.61651486e-01 2.32361071e-02 4.04267192e-01 2.39583194e-01 -6.38308406e-01 -1.04095602e+00 5.47012210e-01 -2.02837420e+00 -4.63344306e-01 -3.78675878e-01 1.94322002e+00 8.05836380e-01 4.21759367e-01 -1.61130708e-02 2.26730317e-01 1.14703417e+00 6.77015930e-02 -8.83940220e-01 -7.20576271e-02 1.02564842e-01 2.21256092e-01 4.59931403e-01 5.58260381e-01 -1.26211488e+00 1.36650240e+00 4.64139318e+00 1.04310262e+00 -1.05321479e+00 -1.79384157e-01 1.23826492e+00 1.80692017e-01 1.26576737e-01 -1.53014451e-01 -1.02861381e+00 4.81364012e-01 3.11216235e-01 2.57071435e-01 3.81574258e-02 6.45965397e-01 4.13485199e-01 -3.39788407e-01 -9.77195978e-01 9.07835066e-01 9.54363123e-02 -1.25620794e+00 2.27344528e-01 -1.67889930e-02 8.52109492e-01 -3.90110552e-01 1.74080417e-01 1.15511909e-01 -1.80118680e-01 -9.80394125e-01 7.64519215e-01 3.28638703e-01 8.56484473e-01 -7.75301278e-01 7.22503006e-01 4.82046515e-01 -1.37067854e+00 4.69798259e-02 -1.57379836e-01 3.32247436e-01 7.84728006e-02 4.38611656e-01 -8.76239657e-01 1.54760838e-01 6.09984756e-01 8.09994102e-01 -4.68983352e-01 8.84069562e-01 -3.15015525e-01 9.35793281e-01 -1.68025106e-01 1.50676649e-02 5.34240246e-01 -3.28437269e-01 2.31019825e-01 1.25608516e+00 -3.60856391e-02 2.58112311e-01 5.25417447e-01 9.63037312e-01 -3.77596647e-01 2.29803845e-01 8.16402435e-02 -5.58390133e-02 2.27650613e-01 1.23695922e+00 -1.45789313e+00 -4.54229116e-01 -2.87905246e-01 1.30245733e+00 7.80356303e-02 5.76606214e-01 -8.84436250e-01 -4.94218588e-01 2.57890206e-02 1.22480765e-01 5.71737409e-01 5.38589023e-02 -1.03442252e+00 -9.80246484e-01 1.41508728e-01 -5.16282022e-01 3.96556795e-01 -8.79186809e-01 -7.42865443e-01 2.83282191e-01 -4.76969093e-01 -8.66920233e-01 1.68816328e-01 -5.13996363e-01 -6.75645590e-01 9.35378075e-01 -1.39451814e+00 -1.30696523e+00 -5.26092350e-01 3.49443942e-01 1.27028990e+00 2.07135588e-01 1.24039732e-01 1.27973363e-01 -1.15016556e+00 8.07288766e-01 -6.26936704e-02 3.93504858e-01 5.13355613e-01 -1.24223113e+00 2.96128154e-01 1.01741576e+00 1.02099806e-01 2.01734975e-01 2.68495500e-01 -8.46230447e-01 -1.08732629e+00 -1.35204589e+00 4.50819433e-01 -1.57445371e-01 3.78142804e-01 -4.24152732e-01 -1.11325407e+00 7.32371092e-01 -4.46753250e-03 -1.40158564e-01 1.91433430e-01 -2.93072343e-01 1.65742785e-01 1.00595348e-01 -1.03954124e+00 7.53615260e-01 7.56010294e-01 -2.17819557e-01 -4.35352772e-01 2.96829313e-01 6.00344181e-01 -6.48784816e-01 -3.95991534e-01 2.43501797e-01 2.40163565e-01 -6.31835461e-01 6.90472662e-01 -4.33724897e-04 4.28807169e-01 -4.11586344e-01 1.90896899e-01 -5.49019635e-01 5.91947176e-02 -2.72242248e-01 1.66829988e-01 1.51968026e+00 5.38988650e-01 -2.22577170e-01 1.22080171e+00 6.73210740e-01 -4.45206434e-01 -9.93786991e-01 -7.30036676e-01 1.28719686e-02 -5.24568371e-02 -5.33682585e-01 2.10132301e-01 8.74644637e-01 -2.01385513e-01 3.85907680e-01 -1.25986412e-01 2.32275784e-01 5.88950694e-01 2.17505574e-01 4.91121411e-01 -9.16933954e-01 -1.08854271e-01 -7.18597949e-01 8.73246342e-02 -1.69885540e+00 1.11857198e-01 -6.98541820e-01 4.98323977e-01 -1.71057248e+00 2.72068352e-01 -4.90896344e-01 6.82871416e-02 5.65653741e-01 -6.17099643e-01 3.77337813e-01 -1.14397086e-01 2.75679469e-01 -7.48572111e-01 3.66715163e-01 1.42271340e+00 -5.16054451e-01 -4.56075191e-01 2.90099055e-01 -6.92455947e-01 9.05981839e-01 6.67601943e-01 -1.75793633e-01 -3.59242946e-01 -5.42771459e-01 -2.65215963e-01 1.19758099e-01 2.08587423e-01 -5.98793566e-01 5.86386383e-01 -7.43520558e-02 6.78874254e-01 -1.06981421e+00 1.27000570e-01 -8.04216743e-01 -5.03037751e-01 1.51198685e-01 -4.51443791e-01 -5.19964814e-01 1.33789286e-01 6.89010859e-01 -5.00576422e-02 -4.93017286e-01 9.18720722e-01 -4.08324860e-02 -7.71365404e-01 4.27972198e-01 -2.04546839e-01 1.68809026e-01 1.03130496e+00 -7.42417276e-01 -1.50265589e-01 -5.86847402e-02 -6.49203300e-01 6.14136994e-01 3.71260971e-01 1.01557568e-01 6.91599786e-01 -5.79879582e-01 -4.40406591e-01 2.66007870e-01 6.60091117e-02 6.54029548e-01 2.27099493e-01 9.08517241e-01 -4.25160468e-01 4.59575772e-01 3.53687495e-01 -8.87767553e-01 -1.24126852e+00 2.77552158e-01 4.60038900e-01 -2.20986590e-01 -7.88381875e-01 1.04824984e+00 6.59461141e-01 -6.83625340e-02 6.20847762e-01 -5.01605749e-01 -2.88857549e-01 1.26277238e-01 3.15387547e-01 2.74018914e-01 -2.86821648e-03 -6.57433212e-01 -1.66334361e-01 9.25863266e-01 -5.14755905e-01 -1.12010017e-02 9.01825130e-01 -3.70009869e-01 9.30413455e-02 1.85413077e-01 7.94952989e-01 -2.05295444e-01 -1.57516217e+00 -3.03699523e-01 2.35089287e-02 -2.92796195e-01 3.22862744e-01 -8.57160568e-01 -1.33982372e+00 1.03285706e+00 5.05058050e-01 4.17047963e-02 1.20650446e+00 8.65260586e-02 1.00036001e+00 1.99688286e-01 -1.22055128e-01 -1.29760599e+00 1.55912831e-01 4.70587313e-01 3.43807876e-01 -1.19094455e+00 -8.60768035e-02 -6.21567845e-01 -8.28547716e-01 9.39356208e-01 1.04106164e+00 1.70362309e-01 1.66426197e-01 2.82482326e-01 7.84339756e-02 -1.78996310e-01 -2.66383171e-01 -3.59168351e-01 5.14532030e-01 3.34929198e-01 5.27547836e-01 -1.07642077e-01 -2.99661189e-01 7.42665470e-01 2.43194923e-01 -4.10027593e-01 2.78472215e-01 6.72448695e-01 -7.31974602e-01 -7.64389217e-01 -4.87143129e-01 8.70656729e-01 -5.78065217e-01 -2.60863602e-01 -6.06379747e-01 5.97601593e-01 1.72590345e-01 8.95643115e-01 3.21417302e-01 -7.16437027e-02 2.41855875e-01 2.18780056e-01 9.93616804e-02 -7.85627365e-01 -5.19398570e-01 7.08948314e-01 -2.75998682e-01 -6.65554553e-02 -1.67981908e-01 -6.31522775e-01 -1.95449674e+00 1.18235834e-01 -7.06737638e-01 1.18514374e-01 5.26919961e-01 1.22618461e+00 7.78844301e-03 7.74621069e-01 5.41303694e-01 -9.05028820e-01 9.28641856e-02 -8.60532761e-01 -5.46053827e-01 2.05958694e-01 1.30229443e-01 -2.71306336e-01 -1.95501789e-01 5.97817361e-01]
[12.093706130981445, 2.323106050491333]
2621839e-a33d-458b-88d9-98309a501697
neurosymbolic-ai-why-what-and-how
2305.00813
null
https://arxiv.org/abs/2305.00813v1
https://arxiv.org/pdf/2305.00813v1.pdf
Neurosymbolic AI - Why, What, and How
Humans interact with the environment using a combination of perception - transforming sensory inputs from their environment into symbols, and cognition - mapping symbols to knowledge about the environment for supporting abstraction, reasoning by analogy, and long-term planning. Human perception-inspired machine perception, in the context of AI, refers to large-scale pattern recognition from raw data using neural networks trained using self-supervised learning objectives such as next-word prediction or object recognition. On the other hand, machine cognition encompasses more complex computations, such as using knowledge of the environment to guide reasoning, analogy, and long-term planning. Humans can also control and explain their cognitive functions. This seems to require the retention of symbolic mappings from perception outputs to knowledge about their environment. For example, humans can follow and explain the guidelines and safety constraints driving their decision-making in safety-critical applications such as healthcare, criminal justice, and autonomous driving. This article introduces the rapidly emerging paradigm of Neurosymbolic AI combines neural networks and knowledge-guided symbolic approaches to create more capable and flexible AI systems. These systems have immense potential to advance both algorithm-level (e.g., abstraction, analogy, reasoning) and application-level (e.g., explainable and safety-constrained decision-making) capabilities of AI systems.
['Manas Gaur', 'Kaushik Roy', 'Amit Sheth']
2023-05-01
null
null
null
null
['object-recognition']
['computer-vision']
[ 6.27300799e-01 5.68442464e-01 -7.92162959e-03 -4.26336110e-01 2.66098291e-01 -4.87745851e-01 8.81728590e-01 5.39560974e-01 -1.83274835e-01 6.11354411e-01 8.87597650e-02 -4.95432407e-01 -3.47212106e-01 -1.08844233e+00 -7.51923025e-01 -8.93904045e-02 -1.14095584e-02 5.58458567e-01 1.36122197e-01 -6.65053010e-01 5.66043079e-01 8.99380088e-01 -2.01862884e+00 4.52480048e-01 8.73666346e-01 1.00827503e+00 2.78056383e-01 6.14491403e-01 -2.66451776e-01 1.09246480e+00 -1.57176092e-01 6.91866055e-02 -1.34978890e-01 -5.66062093e-01 -8.75412285e-01 -3.38291109e-01 -2.59010881e-01 1.70120951e-02 -1.47984266e-01 9.54322696e-01 -3.48738521e-01 3.49259794e-01 5.05574286e-01 -1.29547882e+00 -1.13808787e+00 4.01354283e-01 5.97629070e-01 -2.17414066e-01 6.11092210e-01 5.65887690e-01 4.60885465e-01 -5.68215907e-01 3.99971902e-01 1.49477446e+00 4.47975963e-01 6.54239893e-01 -1.35323608e+00 -3.00808609e-01 1.57326907e-01 5.86298823e-01 -1.24252093e+00 -3.31575483e-01 5.58164299e-01 -7.20586538e-01 1.51500106e+00 2.66191959e-01 1.09218156e+00 7.45257258e-01 7.40374327e-01 2.16179311e-01 9.83493388e-01 -6.38584614e-01 7.93480098e-01 2.07142681e-01 -5.31187393e-02 6.33543015e-01 2.63191313e-01 8.00190449e-01 -7.87212849e-01 4.39312197e-02 8.62325370e-01 1.61511183e-01 1.62606820e-01 -1.70242831e-01 -1.51303279e+00 5.48802912e-01 8.12701881e-01 3.79547060e-01 -7.73830295e-01 4.45075601e-01 2.22157389e-01 2.52774775e-01 -4.61135000e-01 1.17734504e+00 -2.88116932e-01 2.45618690e-02 -5.44011593e-01 2.55181551e-01 8.08218300e-01 9.93288457e-01 8.91367376e-01 3.51750880e-01 -5.98781630e-02 1.28743336e-01 3.69430959e-01 6.48247242e-01 5.09082675e-01 -1.33509529e+00 -1.31073937e-01 7.72161365e-01 1.49408594e-01 -9.42127764e-01 -5.35890102e-01 -2.28758380e-01 -6.29859805e-01 6.68157935e-01 -9.01518911e-02 2.05601871e-01 -1.04430103e+00 1.77879429e+00 2.85408851e-02 8.53578735e-04 5.46121716e-01 1.01591659e+00 3.90155762e-01 6.58168256e-01 4.26233172e-01 4.97837737e-02 1.36494648e+00 -7.36236155e-01 -5.67651272e-01 -8.01266015e-01 3.81590754e-01 -4.64389324e-02 9.16361630e-01 5.25974512e-01 -1.15922213e+00 -9.41638112e-01 -1.23025692e+00 -2.66125202e-01 -8.67807090e-01 -5.22836149e-01 1.02180958e+00 -3.03758252e-02 -1.02829540e+00 6.49035454e-01 -6.59757078e-01 -5.02664268e-01 3.50624919e-01 3.78626764e-01 -2.23242223e-01 9.08328593e-02 -1.39898825e+00 1.47503018e+00 8.57068419e-01 1.51485488e-01 -8.84587884e-01 -3.99765879e-01 -1.08538818e+00 2.99191803e-01 3.11848432e-01 -1.08388662e+00 1.21550250e+00 -9.92045343e-01 -1.42060888e+00 6.69234216e-01 -2.05599412e-01 -8.60463023e-01 -2.60158092e-01 -1.89309195e-01 -4.30686921e-01 2.17240793e-03 -3.55736725e-02 1.02797031e+00 4.08873707e-01 -1.13374698e+00 -5.15240550e-01 -3.15509886e-01 2.47797787e-01 1.69791847e-01 2.57607847e-01 -3.80770624e-01 1.65410772e-01 -1.37035146e-01 4.60406095e-01 -9.59479332e-01 -4.54703867e-01 2.26680249e-01 -8.05841610e-02 -5.61900958e-02 2.54707277e-01 -4.64835376e-01 8.37823927e-01 -2.06644917e+00 4.59926218e-01 4.73842412e-01 1.63390592e-01 1.31012425e-01 -1.27919363e-02 5.56817949e-01 -7.00583309e-03 -5.68792000e-02 -2.26978958e-01 3.81704539e-01 2.26332664e-01 5.58571637e-01 -6.06567562e-01 -2.53043979e-01 3.67762327e-01 1.25966632e+00 -1.15648925e+00 -1.04002811e-01 4.56916183e-01 2.65626162e-01 -5.01999319e-01 2.88329512e-01 -6.08811855e-01 5.03936410e-01 -5.42512417e-01 3.88333261e-01 -1.68478712e-01 -4.64493968e-02 9.00602192e-02 1.80925921e-01 -1.99795336e-01 2.76398748e-01 -7.32560217e-01 1.88059962e+00 -7.65398502e-01 7.62425363e-01 -3.22648436e-01 -9.37470853e-01 1.04832828e+00 2.90100515e-01 -1.63202092e-01 -1.03324306e+00 1.84468836e-01 3.14472407e-01 4.61124569e-01 -6.79482520e-01 2.69171000e-01 -4.51285630e-01 -1.18435010e-01 3.39371264e-01 -3.67506176e-01 -7.83907235e-01 -6.56783432e-02 5.97114787e-02 8.36369216e-01 4.35023457e-01 6.55665457e-01 -1.93672150e-01 5.62136233e-01 6.00935638e-01 2.34439582e-01 7.05835700e-01 -4.39013913e-02 9.70293675e-03 1.01643503e-02 -9.00241494e-01 -9.38318372e-01 -1.25900495e+00 1.56817526e-01 1.09292555e+00 2.89453834e-01 1.20253470e-02 -7.90507853e-01 2.41864368e-01 1.39789954e-01 1.67989457e+00 -5.93001187e-01 -8.05347562e-01 -3.82616431e-01 2.77197480e-01 3.31136018e-01 7.08361149e-01 2.42641985e-01 -1.94649065e+00 -1.43911862e+00 4.86751199e-01 1.38487890e-01 -1.08426690e+00 1.86329618e-01 4.14662451e-01 -7.45667100e-01 -7.56097317e-01 2.80487299e-01 -6.53495073e-01 7.82482982e-01 -2.87372191e-02 9.27378893e-01 3.44273478e-01 -2.54633993e-01 4.51905102e-01 -1.55224815e-01 -8.20118845e-01 -6.80354476e-01 -5.11421740e-01 2.53130078e-01 -3.47212881e-01 3.26727092e-01 -8.45353305e-01 -3.02676380e-01 2.31763795e-02 -9.27783608e-01 5.42691290e-01 7.90344059e-01 6.57026410e-01 7.64200687e-01 -1.39443770e-01 6.06692672e-01 -3.32949758e-01 9.03951824e-01 -3.95666182e-01 -2.71848768e-01 4.39998925e-01 -6.91149473e-01 3.72238159e-01 7.47932613e-01 -5.91697156e-01 -9.05733645e-01 1.36667034e-02 2.88682848e-01 -2.62451887e-01 -5.78627169e-01 6.79067373e-01 -2.84077358e-02 1.01337366e-01 1.02141428e+00 7.11560428e-01 1.07726373e-01 1.73702791e-01 6.40152931e-01 4.86525416e-01 1.00216746e+00 -8.04427803e-01 5.77126682e-01 2.16662213e-01 3.42898548e-01 -4.47509497e-01 -5.79860210e-01 2.97565728e-01 -6.03239238e-01 -7.50541165e-02 1.15830970e+00 -4.36375409e-01 -1.03281748e+00 -8.70747566e-02 -1.33303738e+00 -4.27346706e-01 -7.21494138e-01 4.61902946e-01 -1.15099812e+00 -2.56630510e-01 -1.05533466e-01 -9.77128446e-01 -1.93785146e-01 -1.02264452e+00 7.07718313e-01 2.51585215e-01 -1.00664508e+00 -5.93733668e-01 -3.01234990e-01 1.12699471e-01 6.15144908e-01 3.86186212e-01 1.14776826e+00 -7.31240273e-01 -6.63162768e-01 -1.09221548e-01 -9.62901786e-02 1.14069112e-01 2.41941703e-03 -4.54852313e-01 -7.70145178e-01 2.95701832e-01 -1.31966695e-01 -4.06597346e-01 2.40541801e-01 4.89054136e-02 1.18300736e+00 -3.07932347e-01 -4.40901935e-01 3.39813411e-01 9.47757483e-01 9.72781837e-01 6.87869847e-01 3.19679260e-01 2.57097185e-01 1.00715327e+00 6.95839345e-01 4.61525880e-02 5.37497103e-01 4.84978676e-01 3.56396824e-01 2.06867322e-01 -6.65865913e-02 -3.97709399e-01 3.94952372e-02 2.92333215e-01 -2.65392989e-01 3.83663535e-01 -1.32046163e+00 3.73675585e-01 -2.03588486e+00 -1.08214009e+00 2.84922808e-01 1.94716227e+00 7.44154513e-01 4.21768397e-01 -5.23698688e-01 2.31670439e-01 3.55512291e-01 -7.14748979e-01 -1.08223093e+00 -1.23620558e+00 2.90492266e-01 1.33915946e-01 -1.23497583e-01 7.01547801e-01 -3.25899452e-01 1.28323352e+00 6.31166983e+00 2.85911024e-01 -1.17201710e+00 -2.03865871e-01 3.23301703e-01 1.07312568e-01 -3.12446743e-01 5.48507040e-03 -2.04793960e-01 1.03271775e-01 1.22390628e+00 -3.68454158e-01 1.18426120e+00 8.35237443e-01 2.57405072e-01 -2.35955656e-01 -1.76765192e+00 8.93222749e-01 -1.56514049e-01 -1.59005511e+00 2.13489175e-01 -2.16220722e-01 3.29764485e-01 -4.42904115e-01 -1.14122920e-01 4.71005857e-01 2.34836936e-01 -1.44015574e+00 1.22643852e+00 1.22454286e+00 5.97898722e-01 -5.10352850e-01 4.12779778e-01 6.77497149e-01 -9.58099663e-01 -5.06172836e-01 -9.79935378e-02 -7.91362584e-01 1.09166667e-01 1.35313109e-01 -7.75551140e-01 2.25062311e-01 4.26440060e-01 2.92007476e-01 -8.04994777e-02 5.64121664e-01 -5.15064001e-01 -1.28344474e-02 -1.59002632e-01 -4.84544307e-01 6.72191307e-02 -1.32693410e-01 3.93734127e-01 9.25409079e-01 2.05731571e-01 7.35495031e-01 3.01618315e-02 1.43375444e+00 7.39764452e-01 -4.36550558e-01 -8.08482528e-01 -1.63621515e-01 6.86777234e-01 5.67146838e-01 -5.66215754e-01 -6.83501959e-01 5.32256486e-03 6.03571951e-01 1.90157935e-01 5.03887177e-01 -6.84113443e-01 -3.47524941e-01 8.50556612e-01 1.14749931e-01 -5.13746291e-02 -4.95898604e-01 -8.22168827e-01 -5.26853859e-01 -1.67125329e-01 -8.69770885e-01 -2.06538647e-01 -1.36099422e+00 -6.80582106e-01 8.09189677e-01 2.43024901e-01 -8.47083807e-01 -7.65645087e-01 -6.53181732e-01 -5.91229260e-01 1.09469092e+00 -1.21834898e+00 -1.24544954e+00 -2.91984320e-01 4.97132987e-01 3.72435421e-01 -2.69867867e-01 1.20114851e+00 -5.99799395e-01 1.06746495e-01 -7.71905333e-02 -5.39013326e-01 -3.27837378e-01 -1.14182584e-01 -7.86075413e-01 4.38859135e-01 4.54160303e-01 -1.05246402e-01 9.75617111e-01 8.23959053e-01 -6.20768428e-01 -1.54131126e+00 -8.96232843e-01 8.98026228e-01 -4.66154546e-01 4.52629924e-01 -3.07444692e-01 -1.00780571e+00 7.22688198e-01 -1.18171245e-01 -2.00788975e-01 5.56619287e-01 -9.86008532e-03 -3.87766361e-01 -1.52827010e-01 -1.35473752e+00 9.41231608e-01 1.28156078e+00 -7.82742321e-01 -1.30598235e+00 1.33701235e-01 9.92759049e-01 -3.29266638e-01 -5.65016806e-01 1.31590068e-01 7.64620662e-01 -8.53221774e-01 1.09622657e+00 -1.00668240e+00 5.31171918e-01 -5.84890544e-01 -3.57309908e-01 -1.13553798e+00 -7.99832702e-01 -3.78365099e-01 -1.83538303e-01 4.73854542e-01 4.61643606e-01 -9.49868679e-01 2.55276978e-01 1.20870483e+00 -5.99877357e-01 -8.35731566e-01 -7.09465921e-01 -7.04781711e-01 -1.71687528e-01 -7.41499305e-01 1.00711715e+00 7.42310464e-01 5.65537035e-01 1.72119111e-01 3.06866586e-01 3.08314830e-01 3.25029522e-01 2.50181824e-01 3.69251400e-01 -1.32789099e+00 -1.81491643e-01 -5.89226604e-01 -6.41753137e-01 -6.00900948e-01 3.12876165e-01 -1.00029993e+00 3.08486283e-01 -1.98980641e+00 -2.52248645e-01 -2.74532080e-01 -2.37823457e-01 8.96215558e-01 3.41427684e-01 -2.89511621e-01 4.38596398e-01 1.33677170e-01 -2.51867294e-01 3.88863593e-01 1.45914972e+00 -9.16433036e-02 -3.68777514e-01 -5.00804663e-01 -9.51021552e-01 8.82801771e-01 8.69075894e-01 -1.98995516e-01 -6.75650001e-01 -4.43223685e-01 4.31224316e-01 2.74200052e-01 7.36164570e-01 -1.40797293e+00 6.20697916e-01 -8.74581337e-01 4.60321844e-01 -1.76919270e-02 6.30042911e-01 -1.09732366e+00 2.81702459e-01 1.11064565e+00 -6.08338714e-01 1.23292850e-02 5.52111983e-01 4.07649934e-01 -1.06194027e-01 9.47550312e-02 5.32077253e-01 -2.34014347e-01 -1.28383398e+00 -3.92686367e-01 -8.01629424e-01 -3.82357538e-01 1.29955828e+00 -6.39706373e-01 -2.48660535e-01 -2.94646531e-01 -1.16051447e+00 3.17278296e-01 1.83656499e-01 6.01955652e-01 9.82312918e-01 -1.13893032e+00 -3.90440077e-01 4.51255232e-01 1.64755806e-01 7.21393228e-02 -1.42828017e-01 3.31797451e-01 -4.53663915e-01 8.35237443e-01 -7.72935987e-01 -3.77100676e-01 -5.42087138e-01 7.27956712e-01 4.76948529e-01 3.14273000e-01 -4.20783550e-01 6.00393891e-01 3.07733446e-01 -4.09548372e-01 -1.62394401e-02 -7.59649336e-01 -7.06021562e-02 -6.80594146e-01 5.85048616e-01 9.52681303e-02 -3.31265956e-01 -2.65112698e-01 -5.04716277e-01 3.80834073e-01 4.82599050e-01 -2.14853674e-01 1.01439941e+00 1.33647457e-01 -2.07642362e-01 5.43102503e-01 2.98843026e-01 -7.90807724e-01 -9.19797242e-01 -4.33313437e-02 6.94952533e-02 -3.76014411e-02 -5.99130318e-02 -1.28640437e+00 -1.10640816e-01 1.03486967e+00 2.79084891e-01 2.30475709e-01 1.12123477e+00 4.27731685e-02 5.00064433e-01 1.02523315e+00 8.27514887e-01 -9.98026907e-01 9.47623551e-02 6.52934253e-01 1.39847028e+00 -9.71059084e-01 -1.05702296e-01 -2.39968985e-01 -6.45505607e-01 1.19679999e+00 8.47744107e-01 4.53707464e-02 3.49602848e-01 8.17761794e-02 -2.05642313e-01 -1.27111822e-01 -9.16084290e-01 -2.10211262e-01 4.91030872e-01 8.92496526e-01 1.51705652e-01 2.54475862e-01 8.26780647e-02 6.97682679e-01 -5.74851334e-01 3.76639962e-01 9.52479467e-02 9.95613277e-01 -8.96731973e-01 -6.38009250e-01 -6.58105373e-01 2.72310138e-01 6.15177810e-01 -1.33466452e-01 -4.69828963e-01 6.95312858e-01 6.49538219e-01 9.96546745e-01 1.81946516e-01 -3.98670286e-01 4.03367907e-01 3.27389300e-01 5.27562201e-01 -8.57193649e-01 -5.44868350e-01 -7.68419027e-01 7.17193633e-02 -7.44296014e-01 -9.46748331e-02 -5.29087603e-01 -2.15610600e+00 -2.38683179e-01 4.77239490e-01 4.35154699e-03 8.71961474e-01 1.27489495e+00 5.53659976e-01 8.07448685e-01 -6.76273853e-02 -9.64517176e-01 -3.20123851e-01 -5.03644466e-01 -2.15219222e-02 3.20334375e-01 2.66773909e-01 -5.44582665e-01 2.74436288e-02 2.69162744e-01]
[4.467419624328613, 1.166722297668457]
06303e2c-c7dd-4ed4-927d-fa4761ee0582
efficient-high-resolution-template-matching
2306.15010
null
https://arxiv.org/abs/2306.15010v1
https://arxiv.org/pdf/2306.15010v1.pdf
Efficient High-Resolution Template Matching with Vector Quantized Nearest Neighbour Fields
Template matching is a fundamental problem in computer vision and has applications in various fields, such as object detection, image registration, and object tracking. The current state-of-the-art methods rely on nearest-neighbour (NN) matching in which the query feature space is converted to NN space by representing each query pixel with its NN in the template pixels. The NN-based methods have been shown to perform better in occlusions, changes in appearance, illumination variations, and non-rigid transformations. However, NN matching scales poorly with high-resolution data and high feature dimensions. In this work, we present an NN-based template-matching method which efficiently reduces the NN computations and introduces filtering in the NN fields to consider deformations. A vector quantization step first represents the template with $k$ features, then filtering compares the template and query distributions over the $k$ features. We show that state-of-the-art performance was achieved in low-resolution data, and our method outperforms previous methods at higher resolution showing the robustness and scalability of the approach.
['Ida-Maria Sintorn', 'Ankit Gupta']
2023-06-26
null
null
null
null
['template-matching', 'object-tracking', 'image-registration', 'quantization']
['computer-vision', 'computer-vision', 'computer-vision', 'methodology']
[ 6.15060270e-01 -5.37124634e-01 -1.65973008e-02 -5.67907870e-01 -9.14125085e-01 -4.56825823e-01 7.09499598e-01 -4.63601984e-02 -5.69038570e-01 1.42847419e-01 -3.46767530e-02 3.51961702e-01 -2.86396056e-01 -9.22259510e-01 -5.11178493e-01 -6.85133755e-01 1.88434988e-01 4.15571481e-01 9.53806281e-01 1.77503061e-02 4.48534161e-01 1.11549318e+00 -1.98320901e+00 1.86442435e-01 2.81649590e-01 1.32264566e+00 -3.18539701e-03 4.80152965e-01 -5.11883609e-02 -2.04685673e-01 -3.96228433e-01 -4.33978111e-01 6.33841693e-01 -6.47907630e-02 -5.94436347e-01 1.74144462e-01 1.23498023e+00 1.90234594e-02 -5.41294694e-01 1.20087683e+00 6.31795466e-01 2.79440045e-01 6.23547733e-01 -1.00644720e+00 -4.67621505e-01 -3.91995877e-01 -4.70122159e-01 3.32874209e-02 5.04471660e-01 -8.74269530e-02 6.44131839e-01 -1.14882767e+00 9.58674908e-01 1.47460198e+00 8.39306355e-01 4.32995439e-01 -1.46944964e+00 -4.71918970e-01 -3.73083889e-01 3.28891218e-01 -1.63599885e+00 -4.08293158e-01 6.55120432e-01 -4.44731086e-01 9.63256717e-01 3.59368116e-01 4.84875292e-01 4.05212194e-01 2.96040654e-01 2.20679387e-01 1.07294297e+00 -6.51913881e-01 1.51088074e-01 -2.55813807e-01 -2.07695305e-01 5.70986509e-01 -9.25972778e-03 5.18688083e-01 -4.57587123e-01 -4.61633921e-01 1.09569454e+00 1.91740409e-01 -1.03877239e-01 -9.22047913e-01 -1.39902616e+00 9.17017877e-01 6.07572198e-01 2.92224228e-01 -3.65184605e-01 5.17517813e-02 2.90302217e-01 1.87942699e-01 1.55478150e-01 1.67312205e-01 -2.67455369e-01 1.24848746e-01 -9.72896993e-01 3.15227985e-01 5.64807236e-01 9.94318008e-01 9.13565218e-01 -3.47150207e-01 -1.30421102e-01 9.02179420e-01 2.21362680e-01 7.77771592e-01 4.40075845e-01 -1.44798052e+00 1.76907822e-01 4.70128983e-01 1.95360221e-02 -1.20302200e+00 -3.58742177e-01 -6.02918267e-02 -8.14970374e-01 5.50325930e-01 3.59986871e-01 7.36880839e-01 -9.17285025e-01 1.23612046e+00 6.28984809e-01 3.29067223e-02 -6.38933927e-02 7.77728617e-01 7.28529572e-01 3.11624408e-01 -3.91913325e-01 -2.36044630e-01 1.34964132e+00 -6.07294381e-01 -6.31758928e-01 -4.44723479e-02 1.03541471e-01 -1.42161906e+00 6.20591283e-01 1.32248566e-01 -1.05505359e+00 -7.55656898e-01 -8.56715679e-01 -1.15567118e-01 -4.23456520e-01 -2.88831621e-01 2.55480170e-01 6.35078728e-01 -9.47368860e-01 8.69344175e-01 -5.90075135e-01 -7.06268311e-01 3.35917771e-01 6.91736221e-01 -7.75653899e-01 -3.14144880e-01 -8.08301747e-01 8.68505478e-01 -1.43645564e-02 -9.23915282e-02 -5.81414588e-02 -2.82881707e-01 -9.50031340e-01 -3.46767306e-01 1.92455754e-01 -5.78349233e-01 9.67801392e-01 -4.21958387e-01 -1.28750896e+00 1.11092651e+00 -6.37927234e-01 -1.23583563e-01 3.58516455e-01 2.13976786e-01 -4.38636363e-01 2.49399953e-02 3.42241414e-02 6.97562814e-01 1.03961492e+00 -8.81527185e-01 -6.15493357e-01 -7.88648307e-01 -4.07450020e-01 1.44974172e-01 1.22311808e-01 2.10507169e-01 -7.52453983e-01 -5.96972883e-01 8.80638599e-01 -9.43233609e-01 -2.54849315e-01 5.93564749e-01 2.41440848e-01 -2.91074157e-01 9.98420477e-01 -1.22657277e-01 1.01104128e+00 -2.44236565e+00 -2.38345578e-01 5.42844474e-01 -2.69130878e-02 2.44026914e-01 -1.58015057e-01 2.10468963e-01 1.53742597e-01 -2.95225322e-01 -5.33961207e-02 -9.61795449e-02 3.43584530e-02 4.50537652e-01 1.09183015e-02 8.31685603e-01 -3.80367339e-02 7.25019038e-01 -5.98887086e-01 -7.55251229e-01 5.18679678e-01 8.39826643e-01 -2.14727461e-01 1.64538622e-02 2.43137881e-01 1.20470256e-01 -2.07917005e-01 7.07090795e-01 8.90247166e-01 2.53623817e-02 -2.95140058e-01 -7.56107926e-01 -2.67425656e-01 -1.03234887e-01 -1.60695410e+00 1.52935398e+00 1.28618956e-01 6.06632292e-01 1.08509965e-01 -7.18729913e-01 1.28410101e+00 6.30164519e-02 6.00962281e-01 -1.01632273e+00 -3.35098617e-02 4.66924995e-01 -6.86296746e-02 -2.29812637e-01 4.59331691e-01 1.88317090e-01 1.74245298e-01 1.60217397e-02 -2.46713489e-01 -5.13818920e-01 3.20700146e-02 -3.60835463e-01 8.96262884e-01 -3.36508825e-02 5.40801167e-01 -9.76973772e-02 6.61882222e-01 -5.58337756e-02 5.46546102e-01 7.41068840e-01 -3.56420636e-01 8.57427716e-01 -2.68023968e-01 -6.73511267e-01 -1.05092740e+00 -1.11128247e+00 -6.77065969e-01 7.07204580e-01 2.71097094e-01 -1.63285047e-01 -7.75192201e-01 -2.66287446e-01 2.38497689e-01 -7.11998865e-02 -4.72667158e-01 8.22321475e-02 -9.21887040e-01 -3.78175795e-01 2.34921977e-01 5.16852200e-01 5.94945252e-01 -1.02077436e+00 -8.13813746e-01 4.30607975e-01 8.31827298e-02 -1.09839165e+00 -7.79768348e-01 -7.60130864e-03 -1.08700395e+00 -1.09221148e+00 -6.92234576e-01 -9.12500560e-01 7.45906055e-01 2.62989730e-01 9.08813119e-01 -2.09261596e-01 -7.76130021e-01 3.86315495e-01 -1.14831850e-01 2.64742319e-03 -1.12953022e-01 -3.52158010e-01 1.43855944e-01 1.94380358e-02 6.03536308e-01 -3.32091212e-01 -6.51413798e-01 9.32958007e-01 -8.83624077e-01 -6.40521884e-01 5.54381192e-01 9.53162849e-01 1.29088867e+00 -3.70667838e-02 -1.10356465e-01 -5.87886751e-01 1.38348117e-01 4.18525398e-01 -1.03893876e+00 1.43973231e-01 -6.12045169e-01 1.48953304e-01 9.95318145e-02 -5.80088556e-01 -5.13954818e-01 6.51251316e-01 -6.47279844e-02 -5.78137815e-01 -3.34463090e-01 -1.75912529e-01 -1.92690700e-01 -7.76837945e-01 8.18731904e-01 2.07665697e-01 1.88495204e-01 -5.53716719e-01 4.18518931e-01 6.43701136e-01 8.60962272e-01 -2.36347020e-01 9.81105745e-01 7.92645454e-01 5.11309564e-01 -8.45499754e-01 -4.19603288e-01 -9.54665840e-01 -1.01767766e+00 3.55267115e-02 7.75700927e-01 -4.18034136e-01 -7.29545295e-01 5.12367487e-01 -1.19967628e+00 2.46435583e-01 -4.81818497e-01 5.27709126e-01 -7.89919913e-01 4.25157964e-01 -1.63783491e-01 -4.36800599e-01 -2.86530763e-01 -1.34358490e+00 1.17890644e+00 3.87602627e-01 -1.03091910e-01 -6.61713779e-01 1.68538481e-01 6.65998906e-02 6.27302945e-01 1.76047310e-01 6.74111009e-01 -5.28141856e-01 -7.11687446e-01 -4.83494461e-01 -4.64630842e-01 4.63176817e-02 2.94705331e-01 -1.53930753e-01 -9.52607751e-01 -3.81673843e-01 -8.51071253e-02 1.77391216e-01 5.27445555e-01 4.57260311e-01 8.41940641e-01 -7.03014061e-02 -5.02973735e-01 8.01278651e-01 1.55504656e+00 2.40421087e-01 8.75442982e-01 4.95978713e-01 4.24488455e-01 7.00661778e-01 8.97075415e-01 1.50179893e-01 3.64378132e-02 1.25389743e+00 4.09597665e-01 -2.21392483e-01 -3.35883170e-01 2.76581168e-01 -1.71462387e-01 3.49213958e-01 1.19534738e-01 4.02518302e-01 -6.73596561e-01 4.33042765e-01 -1.84616673e+00 -1.13171542e+00 -1.63240954e-01 2.51240563e+00 6.55747235e-01 -9.70587656e-02 -9.54471752e-02 9.41001475e-02 7.89388239e-01 -1.41455298e-02 -6.23337090e-01 -3.39070767e-01 -3.18897486e-01 4.33874756e-01 6.67118251e-01 4.30373222e-01 -1.37703013e+00 7.06756175e-01 7.02405453e+00 8.69073153e-01 -1.03654718e+00 -1.38292491e-01 1.05956614e-01 2.98648953e-01 1.20294169e-01 -1.97026268e-01 -1.16234016e+00 1.60381243e-01 4.70133573e-01 1.14606299e-01 3.01748842e-01 7.71399498e-01 -8.96841809e-02 -6.79132715e-02 -1.04524529e+00 1.44234228e+00 3.33977282e-01 -1.33392334e+00 -1.35593161e-01 2.66305983e-01 6.69790983e-01 1.83476120e-01 -5.83338141e-02 -2.36089766e-01 -2.42932707e-01 -9.70675051e-01 3.12733382e-01 6.69597328e-01 8.78113627e-01 -6.52522981e-01 8.11255753e-01 -2.03307960e-02 -1.56109393e+00 2.88401812e-01 -7.66476452e-01 4.03954625e-01 -4.54245768e-02 4.83631015e-01 -5.45753181e-01 2.30466589e-01 8.54611456e-01 3.45766455e-01 -5.61282218e-01 1.41219389e+00 5.37255108e-01 -2.96730191e-01 -6.54792547e-01 2.62414098e-01 -1.22703113e-01 -3.62874836e-01 4.38761979e-01 1.15710032e+00 3.69516075e-01 2.21387371e-01 3.84712070e-01 5.84585428e-01 1.00096881e-01 1.99966192e-01 -5.53970218e-01 4.80035871e-01 6.30540371e-01 1.10441291e+00 -6.67523324e-01 -2.43821263e-01 -5.05793214e-01 1.05799603e+00 -6.66979998e-02 5.99193834e-02 -3.46071899e-01 -7.33389258e-01 6.33771837e-01 2.91587859e-01 8.32053065e-01 -2.02610955e-01 -1.49294995e-02 -6.89704537e-01 3.08216125e-01 -6.78224564e-01 3.83159161e-01 -4.94376779e-01 -1.35171282e+00 7.26239860e-01 -1.92616098e-02 -1.55963528e+00 -5.38144052e-01 -7.03694701e-01 -1.17173776e-01 1.03039932e+00 -1.37844825e+00 -1.06930745e+00 -3.45312566e-01 8.91159177e-01 3.50676984e-01 -7.26894336e-03 1.06351423e+00 2.97229737e-01 1.18655294e-01 6.87020123e-01 4.30682093e-01 1.30365103e-01 9.50646043e-01 -9.53601003e-01 6.12127125e-01 5.93757391e-01 1.95835784e-01 5.52884996e-01 5.83715081e-01 -5.24308085e-01 -1.39688313e+00 -9.63766277e-01 1.09920001e+00 -2.05670685e-01 3.81319076e-01 -1.03097379e-01 -1.03938055e+00 1.66714862e-01 -3.05730551e-01 9.38697457e-01 3.89294088e-01 -5.03140807e-01 -6.75751746e-01 -3.63980174e-01 -1.64281166e+00 2.14354262e-01 9.98190463e-01 -6.72665894e-01 -5.24741471e-01 2.05090269e-01 3.07192713e-01 -6.90041304e-01 -1.26928353e+00 6.01785600e-01 9.29061949e-01 -1.06065738e+00 1.28907204e+00 9.80701298e-02 -6.86916471e-01 -7.26843834e-01 -6.21725559e-01 -7.64147460e-01 -4.68370169e-01 -4.46446717e-01 2.53163725e-01 9.99909163e-01 -3.28266360e-02 -6.40898645e-01 8.27026486e-01 6.80631816e-01 2.27368191e-01 -6.05277538e-01 -1.39753819e+00 -9.87888634e-01 -3.12963694e-01 -2.85832286e-01 5.83556414e-01 6.06338620e-01 -4.94356364e-01 -2.29292974e-01 9.15151611e-02 1.56456918e-01 1.11681986e+00 3.30243826e-01 7.04850376e-01 -1.52806091e+00 7.73219094e-02 -4.59231853e-01 -1.16649878e+00 -9.74913120e-01 -8.40915591e-02 -5.48178971e-01 3.15092579e-02 -1.31436515e+00 8.38754475e-02 -4.27241743e-01 9.57595110e-02 2.44047508e-01 1.46783873e-01 8.09129298e-01 1.75263479e-01 4.13188756e-01 -3.70845258e-01 1.05435446e-01 1.08320260e+00 -1.47811621e-01 3.64221372e-02 1.24189690e-01 1.21538244e-01 6.39177144e-01 4.36570495e-01 -5.43085277e-01 2.30662480e-01 -1.94388017e-01 -3.29294115e-01 -2.78140426e-01 3.90352339e-01 -1.03163028e+00 5.31934559e-01 -2.41184328e-02 6.86942577e-01 -9.10075545e-01 6.33351684e-01 -1.18000031e+00 4.81275439e-01 3.86061490e-01 7.49282539e-03 2.86790550e-01 -5.28908931e-02 3.99280071e-01 -3.66831750e-01 -2.24872977e-01 1.14726377e+00 -2.92322575e-03 -6.86446548e-01 5.03975689e-01 8.16031322e-02 -1.97739527e-01 8.52934241e-01 -8.59123647e-01 -8.83323625e-02 -9.96322483e-02 -6.61726594e-01 -2.59944826e-01 9.20287967e-01 3.22567701e-01 8.86175156e-01 -1.63036883e+00 -5.63968956e-01 6.99609160e-01 2.34181702e-01 -8.01525079e-03 -6.88009243e-03 7.36729801e-01 -4.18914944e-01 4.68652517e-01 -1.54065788e-01 -1.17151392e+00 -1.74564135e+00 4.93813783e-01 4.51682359e-01 1.12006092e-03 -5.84803700e-01 6.36043310e-01 9.96965100e-04 -4.84665900e-01 4.34498250e-01 -9.79572013e-02 -9.24859792e-02 -1.04500629e-01 6.78148866e-01 5.51305771e-01 4.73103255e-01 -1.14244866e+00 -5.59814095e-01 1.71500897e+00 -3.88527848e-02 -1.35401696e-01 8.32946777e-01 -7.01250508e-02 -2.22883388e-01 9.60550606e-02 1.48994887e+00 -1.61310852e-01 -1.07921898e+00 -7.03528345e-01 1.19471632e-01 -9.55477297e-01 2.57743392e-02 -2.70871043e-01 -9.45777953e-01 7.04441309e-01 1.26831031e+00 -3.83957964e-03 1.10111809e+00 1.88336611e-01 6.13242090e-01 4.16372448e-01 6.25763655e-01 -9.58571374e-01 -3.18190008e-01 5.66875875e-01 7.92604387e-01 -1.26095128e+00 1.85441911e-01 -5.85583925e-01 2.86013708e-02 1.31739175e+00 2.76661783e-01 -1.63939580e-01 8.18735361e-01 2.29287833e-01 3.12222362e-01 -1.92965701e-01 -1.89823329e-01 -3.23882282e-01 7.56291628e-01 9.02243495e-01 2.79611915e-01 -1.04523510e-01 -1.52532667e-01 -2.38242134e-01 -8.08475614e-02 -2.47803301e-01 -4.29549068e-02 9.15552378e-01 -4.64344442e-01 -1.51134467e+00 -9.48960483e-01 4.84658718e-01 -3.31197858e-01 2.70183124e-02 -1.66646019e-01 7.56765962e-01 1.49748489e-01 6.65560067e-01 4.01940674e-01 -1.09109543e-01 8.66392612e-01 -8.12916160e-02 7.53079236e-01 -2.17216492e-01 -5.90911567e-01 5.66322565e-01 -3.93004298e-01 -1.17563176e+00 -7.70039380e-01 -9.57945645e-01 -1.20678198e+00 -8.42566416e-02 -5.24686277e-01 -1.76419154e-01 9.53215539e-01 5.81865251e-01 4.43797737e-01 -7.47874528e-02 5.73313355e-01 -1.12648952e+00 -5.65402746e-01 -5.69303215e-01 -4.42885190e-01 7.50974715e-01 3.05966407e-01 -6.83880508e-01 -4.21994299e-01 1.22645088e-01]
[8.053352355957031, -2.3168656826019287]
d22eddf7-56e7-475a-9324-fd8104491eb5
attention-based-multimodal-fusion-for-video
1701.03126
null
http://arxiv.org/abs/1701.03126v2
http://arxiv.org/pdf/1701.03126v2.pdf
Attention-Based Multimodal Fusion for Video Description
Currently successful methods for video description are based on encoder-decoder sentence generation using recur-rent neural networks (RNNs). Recent work has shown the advantage of integrating temporal and/or spatial attention mechanisms into these models, in which the decoder net-work predicts each word in the description by selectively giving more weight to encoded features from specific time frames (temporal attention) or to features from specific spatial regions (spatial attention). In this paper, we propose to expand the attention model to selectively attend not just to specific times or spatial regions, but to specific modalities of input such as image features, motion features, and audio features. Our new modality-dependent attention mechanism, which we call multimodal attention, provides a natural way to fuse multimodal information for video description. We evaluate our method on the Youtube2Text dataset, achieving results that are competitive with current state of the art. More importantly, we demonstrate that our model incorporating multimodal attention as well as temporal attention significantly outperforms the model that uses temporal attention alone.
['Kazuhiro Sumi', 'Teng-Yok Lee', 'Tim K. Marks', 'John R. Hershey', 'Takaaki Hori', 'Chiori Hori']
2017-01-11
attention-based-multimodal-fusion-for-video-1
http://openaccess.thecvf.com/content_iccv_2017/html/Hori_Attention-Based_Multimodal_Fusion_ICCV_2017_paper.html
http://openaccess.thecvf.com/content_ICCV_2017/papers/Hori_Attention-Based_Multimodal_Fusion_ICCV_2017_paper.pdf
iccv-2017-10
['video-description']
['computer-vision']
[ 1.71096608e-01 -1.49751469e-01 -3.58191103e-01 -3.07341307e-01 -8.59091520e-01 -3.05884749e-01 8.89266908e-01 -5.65329008e-02 -3.67793024e-01 6.06032908e-01 8.86303782e-01 1.25332609e-01 2.03039810e-01 -4.98042375e-01 -7.25577533e-01 -4.12904888e-01 -6.08183667e-02 -6.55685924e-03 1.14310361e-01 -2.00459331e-01 4.17116880e-01 2.55416095e-01 -1.55981898e+00 7.19250798e-01 2.73055434e-01 8.82421076e-01 4.75307703e-01 9.13146198e-01 -1.26131862e-01 1.15433276e+00 -3.63781869e-01 -3.06238681e-01 -3.18499386e-01 -6.33002460e-01 -8.68520498e-01 8.46484229e-02 2.97526747e-01 -5.43051124e-01 -7.48088598e-01 6.19477451e-01 4.31839973e-01 3.98782730e-01 6.10553443e-01 -1.15382266e+00 -1.11116111e+00 4.36789930e-01 -4.66613531e-01 3.62352043e-01 6.95590317e-01 1.54215708e-01 1.08260798e+00 -1.02978265e+00 6.69938982e-01 1.09690309e+00 3.96576077e-01 8.87203574e-01 -1.04803395e+00 -3.46391261e-01 3.87089908e-01 6.58257484e-01 -1.43013632e+00 -7.37809777e-01 6.53387249e-01 -4.19850141e-01 1.28349721e+00 1.69552222e-01 4.63917553e-01 1.39772034e+00 5.07039845e-01 1.01871657e+00 3.41480166e-01 -2.44635969e-01 -4.73869592e-02 -5.75307123e-02 -3.27249050e-01 4.67535347e-01 -5.84101677e-01 -5.35598919e-02 -8.68945479e-01 7.49475285e-02 8.16343665e-01 3.31265032e-01 -4.44175720e-01 -7.59973302e-02 -1.45133460e+00 7.39211679e-01 4.61577028e-01 3.35887372e-01 -6.90962672e-01 7.25937963e-01 5.90283036e-01 6.80950955e-02 4.84351218e-01 2.48921335e-01 -2.98555195e-01 -5.10146260e-01 -8.63229930e-01 -3.67376208e-02 3.25735480e-01 1.06644559e+00 4.46162581e-01 -8.57765153e-02 -7.56435335e-01 8.15348804e-01 3.73274863e-01 2.66340166e-01 6.14923656e-01 -1.09508669e+00 6.29695237e-01 1.25737712e-01 8.25654194e-02 -8.09589744e-01 -2.70486057e-01 9.20779407e-02 -7.08379865e-01 -3.44483703e-01 -2.22861439e-01 -1.16877325e-01 -1.01813662e+00 1.98085380e+00 -3.63503873e-01 3.88901174e-01 1.46193862e-01 1.08317995e+00 1.07400441e+00 9.47936833e-01 2.27714241e-01 -1.31611213e-01 1.33436644e+00 -1.14089859e+00 -1.03563762e+00 -8.02944414e-03 4.88859296e-01 -5.61251223e-01 8.76793087e-01 -3.58755961e-02 -1.45583236e+00 -5.76878190e-01 -7.67132580e-01 -3.31123471e-01 -3.44907612e-01 -2.49773655e-02 3.32919210e-01 2.16961261e-02 -1.31780910e+00 5.08267760e-01 -7.25099444e-01 -6.41539454e-01 1.85519218e-01 3.75331879e-01 -5.77277064e-01 -3.75613500e-03 -1.30245972e+00 7.69952834e-01 1.26219541e-01 -1.40320465e-01 -9.95803475e-01 -3.11564058e-01 -1.21453750e+00 4.30869967e-01 1.07695334e-01 -8.68459046e-01 1.38415623e+00 -1.13126457e+00 -1.52218390e+00 3.89062613e-01 -5.04525423e-01 -4.47963387e-01 -1.33210301e-01 -1.68397963e-01 -2.32754543e-01 6.04153454e-01 -1.38133392e-02 1.40541387e+00 8.09531093e-01 -1.10281479e+00 -5.43066323e-01 1.26764014e-01 4.76468414e-01 3.35573167e-01 -5.90227246e-01 2.34338686e-01 -6.98869288e-01 -7.63901353e-01 -2.58136868e-01 -7.70315111e-01 -7.38941059e-02 7.74213625e-03 -2.72532880e-01 -2.24711075e-01 8.69189322e-01 -7.07647264e-01 1.40954316e+00 -2.25748253e+00 5.68948090e-01 -3.17610025e-01 1.52119219e-01 -1.44945562e-01 -4.55316812e-01 7.59343922e-01 -1.60756648e-01 2.81115443e-01 -7.19217509e-02 -6.21817172e-01 1.26926200e-02 2.11132914e-01 -3.69486868e-01 1.59783572e-01 5.77919662e-01 1.05374777e+00 -8.99311244e-01 -3.70568663e-01 2.13818491e-01 8.66250336e-01 -7.71046340e-01 2.02402860e-01 -3.04614842e-01 4.27763015e-01 -2.72301704e-01 5.36298215e-01 1.67036131e-01 -3.29456329e-01 1.80891585e-02 -2.32718810e-01 -2.40553692e-01 4.99737084e-01 -4.65520442e-01 2.06434178e+00 -5.94859421e-01 1.02985394e+00 -2.43666366e-01 -6.50952935e-01 5.09230435e-01 9.52931702e-01 4.95208502e-01 -8.13304424e-01 -1.12341018e-03 -2.33876541e-01 -2.52121657e-01 -9.00158405e-01 7.91985631e-01 -1.85789336e-02 -1.32545933e-01 5.91473877e-01 3.90338063e-01 2.55022854e-01 1.45194292e-01 2.91293800e-01 1.12684524e+00 4.20565814e-01 9.14166272e-02 2.06239775e-01 4.41939145e-01 -3.37681651e-01 3.14574301e-01 5.88601828e-01 -2.05771253e-01 1.05685055e+00 5.31305790e-01 -2.19396815e-01 -1.11155450e+00 -8.39215219e-01 3.16073388e-01 1.41650808e+00 2.46799335e-01 -7.61024773e-01 -4.50670421e-01 -6.74138606e-01 -3.30243349e-01 5.28187513e-01 -7.88061380e-01 -3.30117255e-01 -5.14512658e-01 -8.17017108e-02 3.78783196e-01 1.03724134e+00 3.86946946e-01 -1.38659382e+00 -6.09977186e-01 2.02549428e-01 -5.63771784e-01 -1.06563044e+00 -9.69067872e-01 1.28577232e-01 -6.65877938e-01 -6.57569528e-01 -1.14826512e+00 -6.70427501e-01 4.52068955e-01 3.79169613e-01 1.03463626e+00 -1.50123745e-01 4.60027568e-02 7.97281146e-01 -5.89944601e-01 1.31699303e-02 6.18715174e-02 1.29638523e-01 -1.87530890e-01 2.22156107e-01 1.41695768e-01 -3.42172652e-01 -6.05422318e-01 1.66477472e-01 -1.02010536e+00 3.92091036e-01 4.39728767e-01 8.96006405e-01 3.01639438e-01 -5.97840130e-01 6.82581306e-01 -2.73782611e-01 6.16972923e-01 -8.87679219e-01 1.63106173e-01 2.58340389e-01 8.92825946e-02 1.74546823e-01 4.70350266e-01 -4.86714095e-01 -9.52786326e-01 1.35914043e-01 -1.44820377e-01 -7.33696878e-01 -8.54694918e-02 6.52978778e-01 4.51445431e-02 2.23272398e-01 6.34991378e-02 4.63410556e-01 -5.26966378e-02 -3.10843766e-01 3.14529896e-01 5.78677475e-01 3.83336097e-01 -3.32849026e-01 2.39443436e-01 4.51171964e-01 -2.10323974e-01 -5.38875341e-01 -5.29532611e-01 -4.23004746e-01 -6.52663887e-01 -4.25594628e-01 1.33154416e+00 -9.66213226e-01 -7.80203104e-01 -5.27857393e-02 -1.53323936e+00 -1.73464611e-01 -1.16427794e-01 6.94582462e-01 -8.73918474e-01 2.88616061e-01 -8.95395637e-01 -6.87441230e-01 -5.66709824e-02 -1.20501828e+00 1.37546909e+00 1.23156771e-01 -3.98700327e-01 -1.17174721e+00 -3.23818587e-02 1.39533639e-01 5.92533827e-01 -6.54625241e-03 5.76553285e-01 -3.91011715e-01 -6.70294821e-01 -3.52380462e-02 -4.73533183e-01 -1.01740053e-02 2.91760508e-02 4.67822738e-02 -8.86933863e-01 -1.18550919e-01 -3.14979941e-01 -3.94005001e-01 1.24852800e+00 4.16788995e-01 1.28169501e+00 -2.82996684e-01 -2.82393694e-01 5.14329851e-01 1.18161106e+00 2.43868157e-01 8.53585064e-01 1.61882460e-01 6.13699615e-01 5.65759540e-01 4.58743006e-01 7.21056998e-01 7.05432653e-01 9.39029098e-01 6.99751079e-01 -1.75182655e-01 -1.61777884e-01 -5.44864163e-02 6.46947980e-01 6.84445798e-01 -3.93821269e-01 -6.81909323e-01 -6.22147858e-01 8.39704096e-01 -2.16985345e+00 -1.29884624e+00 1.68341845e-01 1.98422432e+00 5.51051795e-01 -2.55083084e-01 1.94664393e-02 -2.08540633e-01 7.15964675e-01 3.43820989e-01 -2.00440973e-01 -7.38058269e-01 -6.84171841e-02 -8.97349939e-02 1.16992444e-01 3.35724026e-01 -1.07107627e+00 7.01356232e-01 6.95655966e+00 5.71663141e-01 -1.16190231e+00 2.07888901e-01 2.91940868e-01 -4.56615537e-01 -4.42917645e-01 -2.18030766e-01 -3.57418209e-01 4.85533476e-01 1.19092917e+00 -6.95454925e-02 3.66004646e-01 3.77805293e-01 4.43792343e-01 6.35639057e-02 -1.31499267e+00 1.01224244e+00 5.62579751e-01 -1.47337413e+00 2.65848339e-01 8.51653889e-02 6.06410027e-01 -1.24546379e-01 2.61427552e-01 3.52460027e-01 -1.56521887e-01 -1.11967254e+00 8.16929698e-01 9.81780112e-01 9.47719932e-01 -6.06878877e-01 8.67363274e-01 8.85019973e-02 -1.39122224e+00 -6.65372089e-02 -1.78997573e-02 -6.24449626e-02 4.72659975e-01 -2.80239314e-01 -6.04586303e-01 3.57698172e-01 5.49099326e-01 1.18867147e+00 -2.65609622e-01 9.84677315e-01 -1.09007336e-01 2.97902644e-01 1.63799703e-01 1.56503320e-02 4.78187859e-01 3.63608718e-01 3.86176795e-01 1.53392565e+00 6.50626838e-01 2.07777247e-01 -1.63750663e-01 7.27171659e-01 -2.16295362e-01 -8.20561796e-02 -8.18053126e-01 -2.72229522e-01 1.75995156e-01 9.40235496e-01 -2.73321927e-01 -4.51224089e-01 -8.44405532e-01 1.31152713e+00 2.62334406e-01 6.27228141e-01 -1.15562606e+00 -4.00871277e-01 7.55543053e-01 4.93557677e-02 7.42113650e-01 -2.90626913e-01 1.10210523e-01 -1.17725444e+00 -1.72051638e-01 -1.80681005e-01 3.94299388e-01 -1.39284468e+00 -1.03501225e+00 7.16382027e-01 -1.96327176e-02 -1.46732342e+00 -4.71620142e-01 -3.81801426e-01 -6.28279269e-01 7.91717708e-01 -1.52803850e+00 -1.12215710e+00 -1.78147852e-01 7.53155529e-01 9.48586881e-01 -1.18377440e-01 8.64172757e-01 4.26433176e-01 -3.56305242e-01 5.22097707e-01 -1.38341144e-01 -2.55349781e-02 8.47539842e-01 -9.91221547e-01 5.50054535e-02 3.96804661e-01 1.03001125e-01 5.79956412e-01 5.15783727e-01 -3.39411408e-01 -1.30200911e+00 -1.02077651e+00 1.38654172e+00 -2.93801486e-01 5.29978454e-01 -2.34251842e-01 -7.69608438e-01 8.19911897e-01 8.14392686e-01 -4.91687357e-02 7.57685184e-01 -7.87800178e-02 -3.26345891e-01 1.39449701e-01 -8.63703430e-01 6.62495613e-01 8.52408469e-01 -7.92427540e-01 -4.27918762e-01 2.54964054e-01 9.40174580e-01 -2.69477874e-01 -7.31529891e-01 3.03683102e-01 6.84429169e-01 -9.30860579e-01 7.94833302e-01 -6.38371944e-01 8.93458962e-01 -1.95402026e-01 -3.88812393e-01 -1.12644684e+00 -5.38482189e-01 -4.85344082e-01 -3.43213767e-01 1.16434658e+00 4.89928275e-01 -8.13739970e-02 4.00655180e-01 4.51735556e-01 -4.64091510e-01 -5.92351675e-01 -8.58551919e-01 -4.51462865e-01 -2.32200608e-01 -4.70188439e-01 3.13600302e-01 8.09759319e-01 3.66771221e-01 4.36087966e-01 -8.14185441e-01 -8.16596374e-02 -1.18187204e-01 -1.20466821e-01 2.63033658e-01 -6.53640270e-01 -1.23477086e-01 -4.63171422e-01 -4.97187674e-01 -1.39672971e+00 3.30351859e-01 -7.90939808e-01 2.36787573e-01 -1.80542111e+00 7.32320726e-01 3.38349015e-01 -4.47140634e-01 6.65040433e-01 -1.17163332e-02 6.33988321e-01 5.09003818e-01 1.46789312e-01 -1.17191315e+00 8.87085557e-01 1.32088959e+00 -2.29700804e-01 -6.86864927e-02 -4.17817444e-01 -5.83856344e-01 3.53340626e-01 4.75660801e-01 -1.73851803e-01 -2.24397525e-01 -7.50249684e-01 1.17056228e-01 4.97629642e-01 5.36037087e-01 -8.95033062e-01 4.42285120e-01 -1.49071798e-01 3.42301339e-01 -6.24268651e-01 8.92201900e-01 -7.87732542e-01 3.20503153e-02 1.17261641e-01 -7.75908530e-01 2.84634143e-01 2.83550739e-01 5.20113647e-01 -6.05198145e-01 -3.91632542e-02 2.05211639e-01 -7.42496029e-02 -9.59687054e-01 2.45933309e-01 -7.85698712e-01 -3.60989362e-01 9.90553737e-01 -2.70800233e-01 -3.13350618e-01 -1.03465319e+00 -1.09593487e+00 3.04595560e-01 2.57979006e-01 6.76366448e-01 1.08600140e+00 -1.82990921e+00 -7.26147532e-01 1.00232624e-01 3.50726485e-01 -7.12842166e-01 4.45167214e-01 1.02843142e+00 -1.20478183e-01 8.48982334e-01 -2.26933271e-01 -6.58821464e-01 -1.25825262e+00 7.36847997e-01 9.54559147e-02 4.97248694e-02 -5.11555552e-01 7.80243814e-01 4.40460622e-01 1.83039233e-01 3.11132163e-01 -2.36659661e-01 -4.60358858e-01 5.30919386e-03 5.95954418e-01 -1.04695850e-03 -3.66632342e-01 -9.99873579e-01 -4.08334255e-01 6.79391205e-01 -2.86443811e-02 -3.35819125e-01 1.19750309e+00 -5.20621777e-01 1.28131390e-01 5.91509402e-01 1.29415834e+00 -3.73955667e-01 -1.43999720e+00 -1.70392573e-01 -2.59108067e-01 -2.84147441e-01 4.66399863e-02 -6.51647389e-01 -1.13153589e+00 1.09964824e+00 1.60750583e-01 2.98404068e-01 1.24426091e+00 1.83882654e-01 9.63562369e-01 -4.74250913e-02 3.66048850e-02 -9.23435986e-01 5.34534931e-01 8.65691662e-01 1.15099943e+00 -1.20304298e+00 -3.64756912e-01 7.55594969e-02 -1.03740215e+00 1.30042100e+00 5.55546463e-01 -5.95853180e-02 4.49110150e-01 1.29411831e-01 -2.74675190e-01 -7.93196857e-02 -1.52780914e+00 -4.29936945e-01 5.97739100e-01 4.79258507e-01 8.79301906e-01 -3.64409506e-01 -1.32701382e-01 6.71452045e-01 4.79251266e-01 2.22365577e-02 4.49144691e-01 9.19308066e-01 -3.74819428e-01 -9.26681042e-01 -2.87222832e-01 1.85524523e-01 -4.87154633e-01 -3.34124178e-01 -3.39205652e-01 5.73296845e-01 1.78735584e-01 8.96911323e-01 5.56251764e-01 -5.57665706e-01 1.06684871e-01 9.22116190e-02 5.21928012e-01 -6.74578667e-01 -6.45881832e-01 3.48218352e-01 1.09762713e-01 -7.35297024e-01 -7.12224722e-01 -6.36332929e-01 -1.22831631e+00 -1.63918853e-01 -3.23861353e-02 -1.28572306e-03 6.14702761e-01 9.54088032e-01 6.36879921e-01 9.02577698e-01 5.03635466e-01 -1.36051655e+00 1.41094908e-01 -1.05172360e+00 -2.46986121e-01 4.02929395e-01 6.60357833e-01 -5.83692014e-01 -1.91150621e-01 4.29084629e-01]
[10.555021286010742, 0.6986870765686035]
a7a21f19-2375-46b6-b8aa-6aedf8997335
towards-social-generative-ai-for-education
2306.10063
null
https://arxiv.org/abs/2306.10063v1
https://arxiv.org/pdf/2306.10063v1.pdf
Towards social generative AI for education: theory, practices and ethics
This paper explores educational interactions involving humans and artificial intelligences not as sequences of prompts and responses, but as a social process of conversation and exploration. In this conception, learners continually converse with AI language models within a dynamic computational medium of internet tools and resources. Learning happens when this distributed system sets goals, builds meaning from data, consolidates understanding, reconciles differences, and transfers knowledge to new domains. Building social generative AI for education will require development of powerful AI systems that can converse with each other as well as humans, construct external representations such as knowledge maps, access and contribute to internet resources, and act as teachers, learners, guides and mentors. This raises fundamental problems of ethics. Such systems should be aware of their limitations, their responsibility to learners and the integrity of the internet, and their respect for human teachers and experts. We need to consider how to design and constrain social generative AI for education.
['Mike Sharples']
2023-06-14
null
null
null
null
['ethics']
['miscellaneous']
[ 2.73292903e-02 6.73137307e-01 -3.21767144e-02 -1.47267640e-01 1.72021985e-01 -7.56471038e-01 9.21139479e-01 3.90597105e-01 -1.15985408e-01 7.88704157e-01 5.54538250e-01 -4.12377805e-01 -2.17797235e-01 -1.16016746e+00 -4.57781643e-01 -2.35246152e-01 5.23476124e-01 6.02626443e-01 3.68408114e-01 -5.50419629e-01 3.63546848e-01 2.90045440e-01 -1.92360306e+00 -1.95555672e-01 1.60722530e+00 -1.16238542e-01 1.51481196e-01 6.24814928e-01 -5.84655821e-01 1.61156571e+00 -7.79176950e-01 -5.76246321e-01 -3.96223456e-01 -9.82672274e-01 -1.09897816e+00 -1.47484377e-01 1.57144800e-01 -3.24657738e-01 9.89943594e-02 1.12313104e+00 3.10230255e-01 2.91835815e-01 1.97151229e-01 -1.19091308e+00 -1.22836089e+00 9.07776773e-01 8.77680853e-02 1.43282795e-02 7.00492144e-01 1.93089515e-01 9.84528884e-02 -2.64261335e-01 8.71776044e-01 1.29693472e+00 3.60517859e-01 8.15277815e-01 -8.67067873e-01 -8.15748990e-01 -6.85228333e-02 1.64529160e-01 -1.00208712e+00 -3.34971011e-01 5.29777467e-01 -6.54733956e-01 4.84096646e-01 3.81429762e-01 1.65764773e+00 9.03575420e-01 9.63716432e-02 3.61930668e-01 8.73790920e-01 -8.89292300e-01 2.21408725e-01 9.30072248e-01 3.13949525e-01 7.75069833e-01 4.28177744e-01 -4.00090545e-01 -1.16493762e+00 1.75479785e-01 7.00493872e-01 -2.40389675e-01 -1.97880343e-01 -8.78664777e-02 -1.18310273e+00 6.62500262e-01 1.81558430e-01 8.03528249e-01 -5.62117219e-01 2.04484671e-01 -4.04932439e-01 4.35601264e-01 1.85927600e-01 9.20608878e-01 5.98877519e-02 -8.12662780e-01 -1.83058664e-01 -1.28330067e-02 1.09412932e+00 7.15125620e-01 3.82281274e-01 -1.56955451e-01 5.88318050e-01 5.86352825e-01 9.10039783e-01 5.74857533e-01 4.75346625e-01 -1.18797100e+00 -2.88993418e-01 1.08481312e+00 -2.18229726e-01 -1.01994395e+00 1.65454581e-01 -4.31697339e-01 4.46211807e-02 2.79117554e-01 3.76368284e-01 -4.30878192e-01 -3.19380224e-01 1.69857562e+00 1.01663196e+00 1.22262403e-01 4.75057244e-01 6.57486737e-01 1.43541753e+00 5.92730224e-01 4.42275375e-01 8.56796876e-02 1.24517941e+00 -3.95250142e-01 -1.03646028e+00 -1.68707035e-03 9.23221707e-01 -8.33989441e-01 8.24369013e-01 3.28351796e-01 -1.68345308e+00 5.46402223e-02 -9.22700465e-01 -2.86512971e-01 -5.89759469e-01 -6.05866075e-01 6.50405467e-01 7.03171194e-01 -1.25737882e+00 4.00379688e-01 -7.08948433e-01 -7.25931466e-01 4.04541910e-01 1.03178822e-01 9.38225072e-03 2.21307695e-01 -1.26686537e+00 1.06750143e+00 2.39306957e-01 -6.59749508e-02 -3.66991848e-01 -7.86289155e-01 -4.25165802e-01 -1.51115969e-01 2.29004920e-02 -9.43177819e-01 1.18944645e+00 -1.27125144e+00 -1.94917202e+00 9.40526187e-01 3.42415750e-01 -1.46044400e-02 4.84407604e-01 -3.50483716e-01 -2.94169307e-01 9.52462573e-03 -9.08051804e-02 5.87084472e-01 -1.94072351e-01 -1.32831872e+00 -5.93675673e-01 -3.18854064e-01 8.65736529e-02 4.29809332e-01 -5.70641041e-01 1.82881474e-01 1.80601224e-01 2.63609532e-02 1.21176526e-01 -8.20398092e-01 -9.08073485e-02 4.76219971e-03 5.46758138e-02 -3.42306197e-01 9.58570063e-01 -4.01918054e-01 1.00245464e+00 -1.97913587e+00 3.23062763e-02 4.73333538e-01 7.31529891e-01 3.87737304e-01 2.70049900e-01 8.82224798e-01 4.37094122e-01 3.64832878e-01 6.14477515e-01 3.70848596e-01 2.55457014e-01 1.02941863e-01 2.96484004e-03 -1.01379886e-01 -4.57497805e-01 5.49059451e-01 -1.34502065e+00 -4.63491619e-01 2.92296559e-02 6.98351800e-01 -4.30807292e-01 4.63022172e-01 -2.29359582e-01 6.08184755e-01 -8.12120914e-01 2.00778190e-02 -3.15614715e-02 -5.20211577e-01 4.06962335e-01 7.40358233e-01 -5.91070890e-01 5.41945159e-01 -8.38127792e-01 1.41597855e+00 -6.22583747e-01 9.86310184e-01 1.08830675e-01 -4.41497475e-01 1.04529130e+00 6.55544877e-01 2.63234317e-01 -8.57553601e-01 2.24798083e-01 1.67824626e-01 4.11655962e-01 -7.97087252e-01 2.52562076e-01 1.62422016e-01 3.63208562e-01 1.38404667e+00 -6.93199858e-02 -6.71355486e-01 -1.53979108e-01 6.25924528e-01 7.94612586e-01 2.26368651e-01 -1.11847240e-02 -4.64782685e-01 1.41411588e-01 4.92973216e-02 1.02200784e-01 3.40057135e-01 5.23539968e-02 -5.34411669e-01 2.33570471e-01 -5.44470727e-01 -5.69972456e-01 -9.87007082e-01 1.91298313e-02 1.39545071e+00 1.96777716e-01 -2.14188397e-01 -9.13337886e-01 -8.69441479e-02 -2.08287388e-01 1.40587986e+00 -1.64081395e-01 -3.65993589e-01 -2.39717275e-01 1.18974172e-01 2.12525651e-01 6.61960021e-02 4.25934047e-01 -1.16784608e+00 -1.13425422e+00 5.20973682e-01 -3.93007174e-02 -5.83629608e-01 1.93475440e-01 -2.94670612e-01 -4.65031356e-01 -8.26709270e-01 1.33439481e-01 -9.35703754e-01 7.11541772e-01 2.14876235e-01 1.15882444e+00 7.45530546e-01 1.21034928e-01 9.38882411e-01 -3.32556784e-01 -1.14376688e+00 -1.30580831e+00 -3.60882580e-01 -2.64329255e-01 -4.48312730e-01 4.80627477e-01 -1.23529065e+00 -3.78947109e-01 1.67801157e-01 -9.22049165e-01 1.02358210e+00 1.28651276e-01 1.85011670e-01 -1.07360750e-01 -2.66727895e-01 8.49877715e-01 -8.10645878e-01 7.52703130e-01 -7.60060370e-01 -3.14066112e-01 4.85828280e-01 -6.99329674e-01 -2.53053695e-01 2.63634294e-01 -2.95774698e-01 -1.37551677e+00 -5.09699583e-01 4.53424275e-01 7.30265826e-02 -2.52049237e-01 4.65582043e-01 -1.90813899e-01 -2.53063440e-01 8.74116719e-01 1.03152283e-01 4.37626719e-01 -1.77056402e-01 6.51079297e-01 9.82900500e-01 3.60012025e-01 -7.45166898e-01 5.21813333e-01 -1.46320835e-01 -3.90985996e-01 -1.17441225e+00 -2.68446833e-01 2.16370821e-01 -4.84645963e-01 -9.40162897e-01 7.92066097e-01 -6.98957562e-01 -1.06738484e+00 1.99168876e-01 -9.95278537e-01 -5.76560140e-01 -6.18309975e-01 7.34915316e-01 -3.04818422e-01 -2.06821293e-01 -3.06780338e-01 -6.46265924e-01 -1.45015502e-02 -7.83233225e-01 -1.71054993e-02 9.90486860e-01 -7.84400940e-01 -1.41206801e+00 8.19288846e-03 9.99731600e-01 8.03629696e-01 4.06563461e-01 9.24080789e-01 -9.35247600e-01 -8.19090545e-01 1.78773720e-02 3.40369672e-01 1.09664826e-02 1.85859561e-01 5.84137619e-01 -7.62435257e-01 4.28087860e-01 -2.49015301e-01 -7.65820086e-01 -3.39606822e-01 -3.43104899e-01 6.34815037e-01 -9.10022259e-01 -2.21495945e-02 -6.89215586e-02 8.94186676e-01 7.78181434e-01 4.26121294e-01 1.76964089e-01 4.79470700e-01 1.10714149e+00 -1.41573563e-01 1.85583934e-01 9.98423398e-01 -7.66058415e-02 -1.64254442e-01 1.59465984e-01 -2.10921317e-01 -3.55507791e-01 1.08343586e-01 1.42206085e+00 -2.97164410e-01 -7.66689479e-02 -1.48862159e+00 6.32406354e-01 -2.00630021e+00 -9.33977425e-01 -2.67703980e-01 1.85937119e+00 1.30452573e+00 -3.44942123e-01 -2.75272310e-01 -3.51560116e-01 3.61745119e-01 -4.05307025e-01 -2.44229019e-01 -6.62121773e-01 4.67918068e-01 8.12430978e-02 -3.10289979e-01 6.96502268e-01 5.22448309e-02 1.07473314e+00 6.24614429e+00 2.26863965e-01 -8.30880880e-01 5.15224747e-02 3.59245211e-01 -8.18121284e-02 -1.04320037e+00 -4.20684963e-02 -2.70820200e-01 1.90262988e-01 1.07155073e+00 -9.60863352e-01 6.93285525e-01 2.95502603e-01 3.38299647e-02 -2.94217080e-01 -1.02596664e+00 1.87305003e-01 2.48692706e-02 -1.55192089e+00 -3.20508868e-01 5.68955131e-02 1.00247943e+00 -2.08991081e-01 -1.69311538e-01 -2.79630750e-01 1.47796798e+00 -1.12956190e+00 6.80952251e-01 7.38933623e-01 5.88047020e-02 -6.54617488e-01 2.09525734e-01 4.80786264e-01 -5.11886239e-01 2.23394081e-01 2.54984379e-01 -5.56317210e-01 -2.22547084e-01 -1.92326173e-01 -7.28372395e-01 -1.38073117e-01 3.90279830e-01 4.96658653e-01 -2.65071630e-01 7.69925416e-01 -4.52221870e-01 7.48367667e-01 -3.59232903e-01 -7.01879263e-01 -5.36188558e-02 -4.29059833e-01 4.67734963e-01 7.40598917e-01 2.99703479e-02 6.04634821e-01 -1.36284843e-01 9.05127347e-01 1.37990564e-01 1.30408108e-01 -8.18859875e-01 -7.19814599e-01 9.43252742e-01 9.36468780e-01 -6.98448181e-01 -3.41767788e-01 -3.19247633e-01 -1.17792189e-01 -1.51879713e-02 3.71216565e-01 -1.86885834e-01 -1.79561719e-01 8.53027582e-01 4.42606986e-01 -6.74434960e-01 -1.21510312e-01 -1.89182892e-01 -7.25722194e-01 -7.03400671e-01 -1.20259261e+00 -2.00800583e-01 -8.61194074e-01 -9.40863967e-01 8.31498504e-02 5.91827221e-02 -4.55431879e-01 -5.72179258e-01 5.65613322e-02 -8.04998159e-01 4.41871822e-01 -6.74263179e-01 -1.18102908e+00 -5.20932913e-01 5.49227238e-01 -8.53856355e-02 -1.31049633e-01 9.29272294e-01 -1.78551033e-01 -1.85021251e-01 1.63963258e-01 5.15685929e-03 -1.20463885e-01 2.20706984e-01 -8.18963587e-01 -1.32683948e-01 4.24144447e-01 1.69347167e-01 7.15343773e-01 8.41693938e-01 -6.52631104e-01 -1.79242933e+00 -3.16170633e-01 1.04128397e+00 -6.36689484e-01 8.20916772e-01 -1.15281999e-01 -1.10131276e+00 8.02509785e-01 9.21516359e-01 -7.10129142e-01 1.47966409e+00 2.42348928e-02 2.52042413e-01 -2.83973403e-02 -1.11944187e+00 9.95553076e-01 1.19165027e+00 -3.78357053e-01 -8.83361459e-01 6.88170314e-01 1.03401148e+00 -3.67042631e-01 -9.74921107e-01 -5.13305843e-01 6.01364195e-01 -9.21619058e-01 5.19067943e-01 -6.65762722e-01 3.93782020e-01 3.86205800e-02 2.77168542e-01 -1.18180919e+00 4.26702388e-02 -1.06198561e+00 4.00085866e-01 1.51023686e+00 2.87651151e-01 -1.15890706e+00 4.81697083e-01 1.60142219e+00 -3.09332281e-01 -2.66784430e-01 -6.01903260e-01 -1.96952354e-02 2.48531058e-01 -3.24508846e-01 9.32242632e-01 1.66206503e+00 7.69891620e-01 1.58960506e-01 3.10354590e-01 -1.28942117e-01 5.59397936e-01 -1.43781975e-01 9.25926566e-01 -1.55785871e+00 1.20229185e-01 -5.39455891e-01 -3.22059333e-01 -3.60424444e-02 -3.52399051e-02 -6.91094041e-01 -1.30623475e-01 -2.10961843e+00 -1.58675998e-01 -3.53336126e-01 3.74046117e-01 5.28947711e-01 2.95295894e-01 -3.59551013e-01 3.18055719e-01 1.39076054e-01 -5.42624414e-01 2.91361451e-01 1.78011096e+00 5.12355506e-01 -6.38561606e-01 -4.88687098e-01 -1.08530414e+00 1.12600219e+00 6.68892443e-01 -2.69480020e-01 -8.61290574e-01 -2.87396669e-01 7.53841460e-01 4.54843901e-02 2.67698050e-01 -1.05007148e+00 7.78408647e-01 -8.76585245e-01 3.57532293e-01 1.54432043e-01 -1.66118503e-01 -1.06362879e+00 7.03499913e-01 6.33229852e-01 -5.67438900e-01 3.51376794e-02 1.51344970e-01 -1.25583142e-01 -1.96570307e-02 -9.04826224e-02 4.15067524e-01 -7.43287727e-02 -9.46650133e-02 -5.32177329e-01 -8.56303811e-01 1.64404124e-01 1.53127098e+00 -4.70907956e-01 -7.73924947e-01 -7.01753378e-01 -5.78037858e-01 6.40520215e-01 7.17236578e-01 4.79566008e-01 4.70863014e-01 -9.28127170e-01 -5.53596079e-01 4.10038173e-01 -4.37771380e-01 3.81538808e-01 1.11998960e-01 9.19303149e-02 -8.32187116e-01 1.31368160e-01 -3.72143656e-01 -2.16407776e-01 -1.22434592e+00 -8.32739100e-02 3.05362284e-01 4.54971075e-01 -4.74585623e-01 1.05250764e+00 8.07356387e-02 -2.75230169e-01 1.50640234e-01 4.71694134e-02 -5.96830845e-01 2.64982134e-01 5.82727432e-01 4.07623798e-01 -6.43255353e-01 -4.57001299e-01 4.80683334e-02 4.23924774e-01 2.91942954e-01 -2.87992686e-01 1.37907803e+00 -9.65185091e-02 -3.66063774e-01 4.93511230e-01 4.83961850e-01 2.30838507e-01 -8.74298751e-01 -1.97869644e-01 -3.12643111e-01 -6.38311088e-01 3.54796238e-02 -1.19858325e+00 -6.73493922e-01 5.19886732e-01 1.19820423e-01 5.62363684e-01 7.06379235e-01 2.87320137e-01 3.77348542e-01 4.97310497e-02 2.29417477e-02 -1.19602060e+00 5.32621145e-01 1.28743201e-01 9.37406123e-01 -6.03135526e-01 -2.95268279e-02 -2.70258427e-01 -5.94631612e-01 1.05061591e+00 9.53315496e-01 4.71890271e-01 7.61565149e-01 1.25800148e-01 3.03726733e-01 -4.09479290e-01 -1.19782114e+00 1.49720401e-01 1.80984586e-01 8.39638889e-01 7.82585323e-01 1.69121966e-01 -6.95017755e-01 2.33475059e-01 -7.59332061e-01 4.47005540e-01 8.15936506e-01 1.15554190e+00 -7.84484684e-01 -1.07130432e+00 -3.44981909e-01 -2.24504575e-01 -1.98798314e-01 3.15380603e-01 -8.17550182e-01 7.37367392e-01 4.09349412e-01 1.03288698e+00 3.69244725e-01 -1.76345736e-01 2.43975017e-02 3.87135446e-01 2.77288079e-01 -5.53036332e-01 -9.86159801e-01 -4.22002524e-01 2.44401813e-01 -1.23498157e-01 -4.41407353e-01 -5.65289259e-01 -1.62550914e+00 -7.76123643e-01 -9.18270648e-02 6.21591449e-01 1.09767842e+00 7.91561186e-01 6.28868699e-01 5.00378847e-01 1.62826195e-01 -4.07467708e-02 -7.88124576e-02 -6.03820086e-01 -8.80665034e-02 -2.16556732e-02 -1.99552432e-01 -2.13306174e-01 -1.13987193e-01 4.94572222e-02]
[10.23792552947998, 7.2178168296813965]
b717181d-9f75-48ae-84e0-bd9c5da46009
sieg-at-mediqa-2019-multi-task-neural
null
null
https://aclanthology.org/W19-5049
https://aclanthology.org/W19-5049.pdf
Sieg at MEDIQA 2019: Multi-task Neural Ensemble for Biomedical Inference and Entailment
This paper presents a multi-task learning approach to natural language inference (NLI) and question entailment (RQE) in the biomedical domain. Recognizing textual inference relations and question similarity can address the issue of answering new consumer health questions by mapping them to Frequently Asked Questions on reputed websites like the NIH. We show that leveraging information from parallel tasks across domains along with medical knowledge integration allows our model to learn better biomedical feature representations. Our final models for the NLI and RQE tasks achieve the 4th and 2nd rank on the shared-task leaderboard respectively.
['James Route', 'Sai Abishek Bhaskar', 'Rashi Rungta', 'Teruko Mitamura', 'Eric Nyberg']
2019-08-01
null
null
null
ws-2019-8
['question-similarity']
['natural-language-processing']
[ 4.11544472e-01 4.81799275e-01 -4.81643200e-01 -6.73941135e-01 -1.59253812e+00 -4.27256495e-01 3.79664004e-01 8.01151514e-01 -6.64657593e-01 9.01505351e-01 6.98689759e-01 -5.57057500e-01 -6.15480840e-01 -3.30382079e-01 -9.76224244e-01 1.52585655e-01 3.40325385e-02 7.85172164e-01 5.54240367e-04 -2.86397427e-01 1.66093528e-01 -1.01582423e-01 -4.85560983e-01 1.20605576e+00 9.91175234e-01 1.16524136e+00 -1.61708340e-01 7.95585930e-01 -2.67583787e-01 1.58560050e+00 -3.94379318e-01 -7.58070230e-01 -3.86591822e-01 -2.68249214e-01 -1.79879522e+00 -4.87435132e-01 4.91214007e-01 -1.99718252e-01 -1.44312799e-01 7.77826607e-01 3.92320216e-01 -1.81036554e-02 8.04203987e-01 -1.14864540e+00 -1.11512446e+00 6.00324571e-01 -2.60165751e-01 6.55144930e-01 1.00450373e+00 -3.35096687e-01 1.65347874e+00 -8.94960344e-01 8.71734738e-01 1.33513308e+00 8.70291650e-01 4.97959554e-01 -1.03916514e+00 -5.32507956e-01 -2.41611972e-02 8.27734530e-01 -1.00976074e+00 -3.97205144e-01 4.34113175e-01 -3.24704468e-01 1.49127185e+00 4.22435313e-01 -2.20660433e-01 1.34077454e+00 9.31578934e-01 9.32594836e-01 1.06462848e+00 -7.73733407e-02 -3.24962661e-02 9.39414930e-03 6.29927218e-01 8.78407240e-01 1.47308663e-01 -5.12969613e-01 -3.64559591e-01 -6.38676465e-01 -1.55341225e-02 -1.55064017e-01 -9.44089592e-02 8.13031256e-01 -1.18536532e+00 1.03709936e+00 2.93365747e-01 4.59701985e-01 -5.40510893e-01 3.96589264e-02 7.05084324e-01 6.93637013e-01 6.45276427e-01 1.08611846e+00 -1.03612185e+00 4.40558493e-01 -6.08676970e-01 5.58048189e-01 1.26743150e+00 9.04787898e-01 6.38836086e-01 -9.70150173e-01 -4.74198252e-01 7.36617208e-01 1.74100488e-01 2.18847603e-01 5.29579401e-01 -1.07089353e+00 5.17474890e-01 4.86629069e-01 -7.58734569e-02 -1.03342760e+00 -8.80590022e-01 -2.36013055e-01 -7.20559120e-01 -8.56709003e-01 4.17542100e-01 -3.02853763e-01 -2.51640916e-01 1.43720198e+00 2.72082508e-01 1.27624497e-01 2.25911260e-01 5.16781330e-01 1.59650791e+00 3.97879660e-01 3.67099613e-01 1.39671937e-01 2.24409652e+00 -6.97902203e-01 -1.18623853e+00 -4.79656011e-01 8.10202360e-01 -8.76524210e-01 5.65098286e-01 2.53918707e-01 -9.16486800e-01 -3.40879947e-01 -7.53747821e-01 -8.30658853e-01 -3.96162570e-01 -9.09698904e-02 5.52089572e-01 -2.43377000e-01 -8.37544680e-01 2.19724163e-01 -3.30187142e-01 -3.61218244e-01 5.42197526e-01 5.76516800e-02 -2.61973858e-01 -5.47993302e-01 -1.84630692e+00 1.46679199e+00 1.87837988e-01 -8.20523035e-03 -8.05787325e-01 -1.25775099e+00 -9.40940738e-01 -6.28012046e-02 7.81998336e-01 -1.03808677e+00 1.36578524e+00 -2.12195903e-01 -9.11588967e-01 1.25145662e+00 -3.03739637e-01 -5.86389899e-01 8.83763656e-02 -3.25148940e-01 -5.96471131e-01 3.50970626e-01 5.08320868e-01 3.36131781e-01 2.95321405e-01 -3.58143181e-01 -4.31233436e-01 -4.66191947e-01 1.95860639e-01 -2.21536085e-01 8.93356726e-02 1.87194467e-01 4.76304740e-02 -3.28512639e-01 -3.16725582e-01 -5.78060746e-01 -2.71952569e-01 1.89055607e-01 -7.77430177e-01 -1.12953854e+00 3.22542220e-01 -1.21236610e+00 7.91632295e-01 -1.58853269e+00 1.13399141e-01 -2.68905699e-01 6.40105247e-01 -3.28645796e-01 -3.91089022e-01 5.10089159e-01 -1.54203311e-01 8.33317712e-02 2.58483976e-01 7.09678978e-02 -1.24420315e-01 4.94199663e-01 -1.71395928e-01 2.03867212e-01 6.25720799e-01 1.48192036e+00 -1.09935355e+00 -8.74010980e-01 -6.00259840e-01 -7.44220540e-02 -6.60874665e-01 1.97198570e-01 -6.69185042e-01 3.24748307e-01 -9.03903008e-01 4.61689055e-01 2.41082788e-01 -1.04708898e+00 2.36134648e-01 -7.35079944e-01 5.19579768e-01 8.54478598e-01 -3.45989436e-01 1.96829426e+00 -6.07335627e-01 2.19951212e-01 4.00773697e-02 -1.32621479e+00 4.82140690e-01 6.84340119e-01 6.50218129e-01 -9.27253485e-01 -1.97499380e-01 3.91185321e-02 -1.05526939e-01 -1.23276412e+00 -3.38497907e-02 -4.24576461e-01 -4.80862349e-01 5.98787189e-01 2.83329278e-01 1.44014969e-01 -1.18132956e-01 4.74620908e-01 1.30215895e+00 -6.38707429e-02 7.56132603e-01 -6.40549123e-01 7.79849231e-01 2.47659624e-01 3.30211759e-01 8.03441703e-01 -9.15068537e-02 -1.56659156e-01 7.15544701e-01 -6.46870255e-01 -5.48387825e-01 -8.82908702e-01 -4.00909483e-01 1.59477079e+00 -4.94291455e-01 -2.50170499e-01 -3.84678394e-01 -7.80537307e-01 3.43282372e-01 9.15060401e-01 -7.89882064e-01 -2.57225245e-01 -6.30529821e-01 -5.86813629e-01 6.96551561e-01 3.36345702e-01 1.50757834e-01 -8.45169663e-01 -2.51024365e-01 3.69109601e-01 -9.39136565e-01 -1.71449482e+00 -6.67635143e-01 1.41033992e-01 -5.85743904e-01 -1.40293372e+00 -6.06394410e-01 -9.40969288e-01 1.92986801e-01 -5.19780278e-01 1.47062039e+00 -1.85424358e-01 -6.51767552e-01 4.65053856e-01 -2.94876695e-01 -6.05359197e-01 -6.51068985e-01 1.57638252e-01 -4.94651198e-01 -2.96016037e-01 7.07289279e-01 -1.28425300e-01 -5.82765818e-01 -1.70083288e-02 -1.01098585e+00 -1.40175015e-01 5.21901667e-01 8.23477745e-01 5.56266785e-01 -7.51674056e-01 1.24006355e+00 -1.32556283e+00 1.04736650e+00 -9.37453628e-01 -8.24061707e-02 7.85396159e-01 -5.48917353e-01 5.23665845e-01 4.59734887e-01 -1.25132099e-01 -1.04050624e+00 -4.39741910e-01 -5.82264483e-01 2.98070043e-01 -3.09007596e-02 1.06332922e+00 2.48736084e-01 3.55321616e-01 8.45529079e-01 -1.10959597e-01 -2.18850430e-02 -4.41522479e-01 5.52151561e-01 4.81613159e-01 4.59890664e-01 -4.91912574e-01 2.29282528e-01 2.62141854e-01 -4.98274527e-02 -4.68271732e-01 -1.92526007e+00 -5.99701643e-01 -1.38884500e-01 2.80799747e-01 1.54991949e+00 -1.01103294e+00 -1.21365643e+00 -2.83839911e-01 -1.52955341e+00 3.07112873e-01 -7.20907450e-02 2.77735502e-01 -3.22900862e-01 4.36768413e-01 -1.03555632e+00 -1.67802170e-01 -7.91475415e-01 -7.48512149e-01 1.31123817e+00 -4.80987430e-01 -7.52991140e-01 -1.34123671e+00 2.38258973e-01 9.40103710e-01 4.38598841e-01 3.24908048e-01 1.85736203e+00 -1.38156676e+00 -2.48193517e-01 3.78493383e-03 -3.06254208e-01 8.25728010e-03 2.90467083e-01 -9.05512094e-01 -7.72960067e-01 3.43770497e-02 5.63694179e-01 -9.18147206e-01 9.06544447e-01 4.15772706e-01 1.26776493e+00 -7.44470954e-01 -3.83223474e-01 -4.79722060e-02 1.23417771e+00 -2.48781756e-01 1.71487391e-01 -1.87012523e-01 4.16469783e-01 9.05073524e-01 2.71449775e-01 3.07334691e-01 9.97442901e-01 3.87561649e-01 -5.39712906e-02 -1.61545739e-01 -8.85757059e-02 -4.03139144e-02 -1.05533525e-01 8.10061157e-01 5.34226537e-01 -1.93625409e-02 -1.15925682e+00 4.89868760e-01 -1.75614381e+00 -7.83483386e-01 -1.39066771e-01 1.24443376e+00 1.46715736e+00 -1.86942846e-01 -2.63094902e-01 -4.42232788e-01 1.77729204e-01 -1.14830688e-01 -7.71003485e-01 -4.55970436e-01 4.91570048e-02 3.53274494e-01 2.46238559e-01 6.59789503e-01 -1.08460045e+00 4.58884746e-01 7.02229691e+00 6.06125653e-01 -3.23137820e-01 7.22816885e-01 9.33392882e-01 4.06791270e-02 -6.83453977e-01 -4.57573414e-01 -7.46381521e-01 6.06046245e-02 1.08661795e+00 -5.05706787e-01 6.36184886e-02 3.83988589e-01 -1.19513184e-01 9.30697396e-02 -1.84730995e+00 7.08273590e-01 5.14611661e-01 -1.70021462e+00 1.73834860e-01 -1.81447595e-01 6.83023214e-01 3.47631246e-01 1.85941067e-02 3.02381158e-01 4.56516862e-01 -1.16818476e+00 -8.45193192e-02 9.11688447e-01 6.65438354e-01 -1.97051316e-01 9.31330085e-01 3.29724193e-01 -7.81125903e-01 2.21488699e-02 -2.16472268e-01 2.59269744e-01 1.09312408e-01 5.99687338e-01 -1.24194229e+00 8.27354729e-01 4.60694581e-01 6.71122789e-01 -5.56489050e-01 3.26182276e-01 -6.96833730e-02 2.49158219e-01 9.66130048e-02 -2.37602338e-01 2.44468346e-01 3.57321918e-01 1.28777519e-01 1.35780251e+00 -2.23189726e-01 2.44676828e-01 3.38181704e-01 1.06478488e+00 -6.28249347e-01 2.03115821e-01 -5.36608636e-01 -1.81698829e-01 -7.19703436e-02 9.93006945e-01 -1.04738414e-01 -5.88668287e-01 -6.49239898e-01 9.94607270e-01 4.83272523e-01 2.81728029e-01 -8.20308864e-01 -2.93561220e-01 4.58225369e-01 -3.09053898e-01 -1.08587153e-01 4.46361333e-01 -1.93593949e-01 -1.09702265e+00 -2.53175437e-01 -1.11516154e+00 1.06151152e+00 -4.84952241e-01 -2.19462705e+00 5.08565187e-01 7.04419911e-02 -4.15857017e-01 -6.26311600e-01 -7.51971662e-01 -2.13784590e-01 7.52977431e-01 -1.99473369e+00 -1.13823450e+00 2.23717809e-01 7.32822001e-01 5.95168650e-01 8.85665864e-02 1.10656095e+00 5.50874949e-01 -1.39074817e-01 6.92589223e-01 -9.06750783e-02 2.18010098e-01 9.30589855e-01 -1.11227679e+00 3.70048404e-01 -1.22783771e-02 -2.69303638e-02 6.02674186e-01 5.31918526e-01 -6.07608378e-01 -1.62394822e+00 -1.17161512e+00 1.76311147e+00 -8.64482284e-01 9.63013470e-01 -2.20212057e-01 -9.07884777e-01 1.03583241e+00 4.46162194e-01 -2.94617981e-01 1.45167565e+00 6.18688643e-01 -6.00259662e-01 -1.25692450e-02 -1.21799731e+00 1.88448116e-01 7.11377442e-01 -1.32242596e+00 -1.17726481e+00 1.41337574e+00 1.14660001e+00 -1.31892040e-01 -1.50537515e+00 1.50615528e-01 2.93564916e-01 5.14645167e-02 1.01349008e+00 -1.60999405e+00 1.06185186e+00 3.57489020e-01 -7.47275203e-02 -7.92034447e-01 -4.70913529e-01 -4.74641770e-01 1.34774983e-01 4.87002671e-01 1.14875805e+00 -5.52662075e-01 2.73811370e-01 6.55130625e-01 -1.89775955e-02 -9.43641424e-01 -1.13742483e+00 -2.74926245e-01 4.96851712e-01 -2.95027167e-01 1.10286556e-01 1.03795099e+00 4.39636379e-01 1.06377745e+00 -2.54244268e-01 3.57439332e-02 3.13637286e-01 3.53338242e-01 -4.22418937e-02 -1.27752054e+00 -4.53169316e-01 -3.62464525e-02 1.72493026e-01 -8.14935923e-01 6.15867734e-01 -1.58394432e+00 -1.42423198e-01 -1.92924058e+00 7.48153567e-01 3.60197306e-01 -4.19375837e-01 5.41878223e-01 -5.35361767e-01 -1.20263971e-01 -2.83346117e-01 -1.51253119e-01 -1.11805308e+00 -7.22906888e-02 1.32973778e+00 -4.44539636e-01 6.00794077e-01 -2.91553378e-01 -1.16045499e+00 4.32809532e-01 2.74912477e-01 -7.66779840e-01 -2.10640013e-01 -8.63741040e-01 8.37737024e-01 4.17703986e-01 2.79474765e-01 -1.57213926e-01 6.22335672e-01 1.72060177e-01 3.03691983e-01 -3.11727673e-01 1.48216799e-01 -4.84448135e-01 -2.92790949e-01 7.03603685e-01 -1.35241389e+00 2.79930830e-01 2.24458113e-01 7.90038347e-01 -6.55894205e-02 -1.75805673e-01 4.26620156e-01 -5.47562063e-01 -2.05728576e-01 2.29777843e-01 -5.51615477e-01 8.73443067e-01 5.40138543e-01 6.81527674e-01 -5.60989141e-01 -4.52577293e-01 -1.02234828e+00 7.35267580e-01 -6.70528471e-01 5.41274250e-01 9.55445528e-01 -9.56005573e-01 -1.44734931e+00 -2.88437039e-01 3.63269597e-01 -3.73715430e-01 2.71251708e-01 1.04234505e+00 -8.08836594e-02 1.06512868e+00 1.30849689e-01 -2.96135694e-01 -1.05308366e+00 6.92088366e-01 2.00168669e-01 -1.01393294e+00 -2.01378867e-01 1.09410846e+00 1.42185703e-01 -6.68058991e-01 7.10375607e-02 -8.17333400e-01 -3.77304077e-01 1.76271439e-01 6.64577365e-01 1.30210906e-01 2.09053010e-01 6.54810518e-02 -7.27883160e-01 9.53529999e-02 -6.59648716e-01 3.45876068e-01 1.33903050e+00 1.60020694e-01 -5.91144502e-01 3.86087716e-01 1.91878617e+00 -6.12105489e-01 6.00835457e-02 -7.68083990e-01 8.78769696e-01 3.17577809e-01 -8.90365914e-02 -1.32492614e+00 -3.45265269e-01 6.28060043e-01 1.59693345e-01 -1.75636753e-01 7.45832145e-01 8.36496651e-01 1.27436364e+00 1.12306464e+00 -2.73596551e-02 -9.47297215e-01 5.08729756e-01 5.54557800e-01 1.17691195e+00 -1.34707141e+00 6.48628473e-02 -3.37075710e-01 -7.90145099e-01 8.43687177e-01 2.57871360e-01 4.09720428e-02 8.53198409e-01 3.14471573e-01 -2.14831512e-02 -7.98944771e-01 -1.27220190e+00 7.71689042e-02 8.09213281e-01 3.42234135e-01 8.02497208e-01 -2.51149446e-01 -4.94142741e-01 6.91142738e-01 1.90498218e-01 2.75518328e-01 -3.80787775e-02 5.15357971e-01 -1.28149644e-01 -9.05406892e-01 1.53506875e-01 1.01627302e+00 -1.15348995e+00 -5.59655428e-01 -4.08995807e-01 2.39616826e-01 -6.51706755e-02 1.19581008e+00 -1.34440005e-01 -4.55314964e-02 2.94585854e-01 4.96409088e-01 4.32916671e-01 -6.99842274e-01 -9.13568020e-01 -2.88369328e-01 6.92506552e-01 -8.31866562e-01 -3.52374554e-01 -2.50632048e-01 -1.20643818e+00 1.54551253e-01 -3.47208828e-02 2.37481296e-01 2.34019458e-01 1.48700440e+00 5.92387199e-01 7.94268608e-01 1.51308626e-01 4.81000453e-01 -1.08973229e+00 -8.97915840e-01 -1.21252954e-01 6.54266179e-01 5.71452260e-01 4.28087562e-02 -1.68766100e-02 2.65018195e-02]
[8.739285469055176, 8.6454439163208]
c3805f26-ad2a-488b-8f07-533069987f88
depth-quality-aware-salient-object-detection
2008.04159
null
https://arxiv.org/abs/2008.04159v1
https://arxiv.org/pdf/2008.04159v1.pdf
Depth Quality Aware Salient Object Detection
The existing fusion based RGB-D salient object detection methods usually adopt the bi-stream structure to strike the fusion trade-off between RGB and depth (D). The D quality usually varies from scene to scene, while the SOTA bi-stream approaches are depth quality unaware, which easily result in substantial difficulties in achieving complementary fusion status between RGB and D, leading to poor fusion results in facing of low-quality D. Thus, this paper attempts to integrate a novel depth quality aware subnet into the classic bi-stream structure, aiming to assess the depth quality before conducting the selective RGB-D fusion. Compared with the SOTA bi-stream methods, the major highlight of our method is its ability to lessen the importance of those low-quality, no-contribution, or even negative-contribution D regions during the RGB-D fusion, achieving a much improved complementary status between RGB and D.
['Chenglizhao Chen', 'Jipeng Wei', 'Hong Qin', 'Chong Peng']
2020-08-07
null
null
null
null
['rgb-d-salient-object-detection', 'salient-object-detection']
['computer-vision', 'computer-vision']
[ 2.01437950e-01 -2.16123983e-01 1.82954688e-02 -1.72547072e-01 -5.09966135e-01 -2.92958707e-01 6.19903326e-01 4.75338638e-01 -3.06082845e-01 2.96777606e-01 8.97230133e-02 -1.79111250e-02 -1.16417788e-01 -1.04401731e+00 -5.57498969e-02 -7.43645191e-01 2.85344303e-01 -1.45916387e-01 7.66487718e-01 -4.19476479e-01 2.16867328e-01 7.83637524e-01 -2.08845806e+00 5.84429801e-02 7.36390591e-01 1.44183302e+00 2.11484581e-01 4.92689788e-01 -4.04502779e-01 5.42756379e-01 -5.08657396e-01 -1.58157915e-01 5.99084973e-01 -5.51123679e-01 -2.41898254e-01 1.73205659e-01 2.82512069e-01 -4.85471427e-01 -2.93590486e-01 1.33193851e+00 6.20223701e-01 -5.66559359e-02 4.43709821e-01 -1.42501593e+00 -1.68212324e-01 5.41661680e-02 -9.26487327e-01 3.43956172e-01 6.42903566e-01 2.44200423e-01 7.57978439e-01 -8.66281331e-01 4.17970657e-01 1.26775610e+00 4.32352066e-01 2.46754125e-01 -7.90369272e-01 -4.98087645e-01 3.11180800e-01 2.21209586e-01 -1.31388617e+00 -2.31187001e-01 1.54102159e+00 -1.45624295e-01 6.79312050e-01 3.56605828e-01 1.25352752e+00 3.33374411e-01 1.49909733e-02 9.28193808e-01 1.24673641e+00 -3.32025051e-01 4.19918716e-01 -1.60149336e-01 -1.15587495e-01 5.07033288e-01 3.16337138e-01 2.29662895e-01 -8.56085598e-01 2.28514284e-01 8.85284483e-01 1.26290157e-01 -2.74949104e-01 -5.27723610e-01 -1.14117777e+00 3.13940942e-01 8.54291499e-01 3.67373496e-01 -3.65258127e-01 -1.16216503e-01 2.09828660e-01 9.06281322e-02 4.77040946e-01 1.99389875e-01 -1.44854575e-01 -3.99189144e-02 -9.38235402e-01 2.60666877e-01 1.93408817e-01 7.73560464e-01 1.10898757e+00 -2.06104759e-02 -1.26737162e-01 3.18551481e-01 4.23089355e-01 4.95288789e-01 2.12655157e-01 -8.08075607e-01 4.01917666e-01 1.17384315e+00 1.45475835e-01 -1.10527658e+00 -5.64667225e-01 -2.49632001e-01 -8.03427875e-01 7.10805953e-01 4.40194875e-01 1.78590745e-01 -9.42549765e-01 1.28049469e+00 6.61194801e-01 -3.93111795e-01 1.14143759e-01 1.31234670e+00 1.07253981e+00 3.25200319e-01 -9.66721699e-02 -2.42458075e-01 1.19858778e+00 -5.00505805e-01 -6.97987080e-01 -2.31349468e-01 2.63257712e-01 -7.91178644e-01 1.17545283e+00 3.14394176e-01 -9.84463453e-01 -6.67958081e-01 -1.34335554e+00 -2.78302878e-01 -5.18746555e-01 -1.64871737e-01 6.99966788e-01 7.05524147e-01 -1.11520588e+00 2.99800754e-01 -4.40145195e-01 -2.25457743e-01 1.87094226e-01 6.71378151e-02 -2.66520947e-01 -4.73010875e-02 -1.10781455e+00 9.26522017e-01 3.68531615e-01 2.44531229e-01 -5.39887547e-01 -5.87885439e-01 -6.53054416e-01 -2.22644910e-01 5.05892575e-01 -4.12213892e-01 9.08865333e-01 -8.80582809e-01 -1.37047672e+00 8.55529308e-01 -6.63331896e-02 2.16438547e-02 6.11284018e-01 -7.28407055e-02 -2.63973147e-01 3.92085105e-01 6.46161288e-02 7.02941895e-01 8.55466425e-01 -1.70385742e+00 -1.09222782e+00 -6.96841300e-01 4.04009134e-01 5.58734059e-01 -2.65858561e-01 -4.07886982e-01 -5.95825553e-01 -4.35658604e-01 8.29956532e-01 -2.40244046e-01 -7.26306662e-02 4.64663684e-01 -2.01633185e-01 -1.47046015e-01 1.02232051e+00 -7.79718459e-02 1.09158444e+00 -2.09675193e+00 5.36412783e-02 -4.70406935e-02 4.40726370e-01 1.53369799e-01 1.60270542e-01 -2.21456308e-02 1.99698403e-01 -1.51511818e-01 -1.98131457e-01 -3.17640841e-01 -3.57409835e-01 2.20325664e-01 5.04667051e-02 6.12946749e-01 3.53411913e-01 6.24786854e-01 -1.28855586e+00 -7.89131224e-01 8.11284482e-01 4.79523301e-01 -1.57180384e-01 2.48745322e-01 -2.61317343e-02 1.36817738e-01 -5.19464195e-01 1.20429766e+00 9.27619338e-01 2.36877769e-01 -2.43862212e-01 -4.81593907e-01 -5.30751109e-01 1.71228558e-01 -1.35139191e+00 1.54577219e+00 -4.03047577e-02 4.91186589e-01 2.26160452e-01 -5.59398770e-01 1.23152554e+00 1.63822230e-02 8.94496143e-01 -1.25323749e+00 2.84843653e-01 2.59496808e-01 -2.91544110e-01 -2.37482205e-01 8.92935932e-01 -2.56602526e-01 -3.06142215e-02 7.44936466e-02 -3.27555031e-01 -7.24381268e-01 -2.37041735e-03 1.34731501e-01 8.09584260e-01 2.76140571e-01 5.03276825e-01 -6.08936995e-02 4.79946941e-01 1.01241700e-01 4.87961948e-01 5.73631585e-01 -6.53058171e-01 7.82579780e-01 4.27570581e-01 -1.55910090e-01 -8.03032637e-01 -1.07519948e+00 -2.85431836e-02 5.71831524e-01 9.94127452e-01 -1.79518491e-01 -3.21995914e-01 -5.22888958e-01 -2.96742283e-03 2.55347252e-01 -6.53487086e-01 -2.60598421e-01 -3.54473472e-01 -5.77835917e-01 3.10050368e-01 3.98285657e-01 8.84370804e-01 -7.58593440e-01 -1.24178624e+00 1.68091014e-01 -1.17840588e-01 -8.60902786e-01 -7.14921057e-02 6.04992330e-01 -1.11626625e+00 -1.08844280e+00 -9.01325345e-01 -3.23075652e-01 4.58520323e-01 8.90200198e-01 9.94450331e-01 -2.06685606e-02 -9.42570195e-02 3.46533120e-01 -7.33368099e-01 -6.10667586e-01 7.72238523e-02 -2.68037140e-01 -2.82982588e-01 -5.16907312e-02 2.65172392e-01 -2.84334242e-01 -8.66139054e-01 3.19989234e-01 -1.12368762e+00 2.56014347e-01 4.54098463e-01 2.89475083e-01 7.90131688e-01 6.60734326e-02 2.36537740e-01 -7.03796148e-02 2.36936450e-01 -2.16013774e-01 -6.40104771e-01 9.53375399e-02 -7.39187777e-01 -1.86010703e-01 1.31191507e-01 -2.33799815e-01 -9.23597515e-01 1.47405595e-01 -8.00264701e-02 -4.93754566e-01 3.99058498e-02 3.18795256e-02 -4.90213275e-01 -1.64483622e-01 3.54165137e-01 1.73680604e-01 -1.40922979e-01 -3.81605983e-01 3.55936438e-01 4.19731170e-01 5.79961121e-01 -1.36888355e-01 7.10245669e-01 7.47293413e-01 1.51044443e-01 -5.60623527e-01 -7.04813302e-01 -7.64139831e-01 -7.49844491e-01 -7.76594162e-01 6.21424675e-01 -8.21289241e-01 -5.27405977e-01 6.97063267e-01 -1.00413907e+00 -1.09545641e-01 -6.08525753e-01 2.32320637e-01 -3.65781784e-01 5.27275264e-01 -1.54865265e-01 -1.12830019e+00 -1.17223971e-01 -1.20779955e+00 1.33300412e+00 4.72253770e-01 1.65147170e-01 -5.53178072e-01 -2.48061493e-01 1.53885081e-01 3.17984372e-01 4.27988410e-01 7.42098093e-01 3.14520895e-01 -6.08273923e-01 -7.93072432e-02 -6.72000766e-01 1.69730946e-01 3.90009910e-01 1.00851990e-02 -1.09358585e+00 1.65723786e-01 1.43555120e-01 1.43742748e-02 7.43124604e-01 2.53672123e-01 6.98487043e-01 3.00940514e-01 -2.68636849e-02 6.37216866e-01 1.71970356e+00 1.65881529e-01 6.33975685e-01 5.84734678e-01 7.74655223e-01 5.68684816e-01 1.16724646e+00 5.88900626e-01 5.15919983e-01 8.21875513e-01 9.97573912e-01 -5.65902948e-01 -5.69017470e-01 -1.66843206e-01 3.10339540e-01 4.25264537e-01 -1.29763931e-01 -2.43803978e-01 -7.37106919e-01 5.86740434e-01 -1.69842732e+00 -6.18283093e-01 -3.95772845e-01 2.15842366e+00 8.35684776e-01 3.82344425e-01 3.08924884e-01 7.35100269e-01 4.95352328e-01 3.48970711e-01 -5.37024319e-01 -5.67557439e-02 -5.84640741e-01 -9.91104618e-02 7.18451023e-01 2.83723056e-01 -8.38739216e-01 5.68834245e-01 6.65064764e+00 7.86483169e-01 -1.40184259e+00 1.03539051e-02 2.99201518e-01 -3.35806042e-01 -5.90206981e-01 -2.84558646e-02 -5.86719930e-01 4.57574189e-01 1.57866657e-01 -4.43252660e-02 -1.38824552e-01 7.91107357e-01 1.85540751e-01 -1.01724851e+00 -8.71821582e-01 1.39114833e+00 9.09821223e-03 -1.00086784e+00 2.36337800e-02 -8.71246587e-03 5.64051867e-01 -9.96130854e-02 -1.29161954e-01 -2.35483602e-01 4.21370845e-03 -4.87123638e-01 1.31954956e+00 3.76869798e-01 6.13599002e-01 -7.35545516e-01 7.64600396e-01 1.14509106e-01 -1.41016781e+00 1.41967870e-02 -3.83454204e-01 -1.34871930e-01 3.46357554e-01 1.07767892e+00 -2.99172163e-01 8.93252194e-01 8.71069014e-01 6.82179987e-01 -6.31369591e-01 1.08743942e+00 -2.20197037e-01 -1.08663954e-01 -4.96519625e-01 -3.50860208e-02 1.90468445e-01 -6.36600107e-02 6.84971690e-01 9.25335824e-01 2.35125348e-01 1.81339011e-01 6.91989139e-02 6.39241397e-01 2.33605221e-01 1.69760808e-02 -4.90688980e-01 4.19025034e-01 2.62066901e-01 1.16930616e+00 -1.27159894e+00 -4.28499520e-01 -3.90533447e-01 9.01485503e-01 -2.21263573e-01 2.05875173e-01 -7.08627582e-01 -2.62965977e-01 5.30201495e-01 2.93222576e-01 2.48315200e-01 -2.89112061e-01 -8.70830357e-01 -8.65494549e-01 6.74981177e-02 -4.11399394e-01 3.27289671e-01 -1.09772217e+00 -1.01284301e+00 6.00312173e-01 1.47742599e-01 -1.73456824e+00 1.33549526e-01 -5.07324219e-01 -2.07585990e-01 7.10870445e-01 -1.88542747e+00 -1.14795601e+00 -7.69049287e-01 8.57311964e-01 3.07946473e-01 3.51110458e-01 2.59697467e-01 4.85078126e-01 -1.80475682e-01 1.96720704e-01 -3.04037035e-01 -3.25250477e-01 4.83475447e-01 -1.09750366e+00 -1.43153816e-01 1.05201554e+00 -2.41733566e-01 -3.08215450e-02 6.96506441e-01 -6.66990995e-01 -1.37342346e+00 -6.59162581e-01 3.82946074e-01 -2.54211396e-01 1.86845556e-01 -1.13209309e-02 -7.03706145e-01 -3.10340762e-01 -3.82750630e-01 9.88238379e-02 1.18958680e-02 -2.66503096e-01 -3.27977806e-01 -4.90711033e-01 -1.52642143e+00 4.69396114e-01 1.08901751e+00 -6.86387300e-01 -5.53524077e-01 -4.01898026e-01 5.79379857e-01 -2.38161623e-01 -8.40997159e-01 6.16443396e-01 5.87823272e-01 -1.62289882e+00 1.11791074e+00 4.65620697e-01 4.27329063e-01 -8.50399077e-01 -2.79830456e-01 -9.46267188e-01 3.75334769e-02 -1.80723205e-01 -2.28994042e-01 1.21351945e+00 -1.64752960e-01 -3.62735838e-01 7.84465492e-01 2.14989081e-01 -1.53969258e-01 -6.52319729e-01 -1.16250372e+00 -4.63646114e-01 -4.63766634e-01 -6.85637116e-01 8.15508246e-01 7.28788614e-01 -2.56648302e-01 3.01596429e-02 -1.04613051e-01 -9.42345187e-02 7.32430041e-01 3.37392718e-01 7.52031565e-01 -1.20929980e+00 9.81748849e-02 -7.03607023e-01 -6.32046700e-01 -1.07888520e+00 -7.67875850e-01 -3.34561050e-01 2.74246454e-01 -1.69572544e+00 -5.63651957e-02 -7.87185729e-01 -4.75852251e-01 3.99843216e-01 -2.96825796e-01 6.59301281e-01 2.55075812e-01 3.22404176e-01 -5.34537673e-01 6.04604900e-01 1.56613612e+00 -1.09261729e-01 -3.97926241e-01 -2.58418798e-01 -7.24911869e-01 7.21118867e-01 5.20557523e-01 -3.17291647e-01 -4.07204628e-01 -3.76651824e-01 2.38203809e-01 -1.07083376e-02 4.28068161e-01 -1.18538439e+00 2.17633709e-01 -3.10139567e-01 5.82314014e-01 -1.17199802e+00 4.58593309e-01 -8.99250448e-01 -9.10180733e-02 3.31096053e-01 2.91783988e-01 -1.05746672e-01 1.50809571e-01 3.82099211e-01 -5.40701926e-01 1.81899905e-01 9.41061914e-01 -2.71946400e-01 -1.18145180e+00 1.42467558e-01 -1.29497215e-01 -4.32931781e-01 9.57594752e-01 -1.05771446e+00 -2.82009356e-02 -3.26690763e-01 -3.56662840e-01 -8.00041668e-03 8.91838551e-01 3.85774344e-01 7.62126327e-01 -1.31374168e+00 -2.35175967e-01 4.05892015e-01 4.64506418e-01 3.86076957e-01 3.60425025e-01 9.18305457e-01 -4.34236199e-01 9.33559835e-02 -5.75486958e-01 -8.52832675e-01 -1.05163980e+00 4.56706226e-01 2.53316075e-01 1.39777064e-02 -7.09998965e-01 7.57590115e-01 1.04506709e-01 1.37330487e-01 4.04081136e-01 -5.85201561e-01 -1.42033294e-01 4.73732084e-01 4.13361192e-01 5.47301471e-01 3.29629481e-01 -7.53285408e-01 -6.01411343e-01 8.22198570e-01 5.69370389e-01 -2.40517586e-01 1.04196155e+00 -6.25232160e-01 -3.15031819e-02 6.17634952e-01 9.41774189e-01 1.36145446e-02 -1.51110005e+00 -1.42034918e-01 -3.07698160e-01 -8.39374483e-01 5.52890778e-01 -4.59134966e-01 -1.23176038e+00 8.07216704e-01 9.16860878e-01 4.10648435e-01 1.73600030e+00 1.40412539e-01 6.53887868e-01 -1.26418307e-01 7.11969674e-01 -1.09480298e+00 2.24142402e-01 1.38526708e-01 6.56247258e-01 -1.20521820e+00 5.11681497e-01 -4.92837697e-01 -3.63659054e-01 1.02496874e+00 5.72535515e-01 1.52901888e-01 5.33800066e-01 4.19078469e-01 2.45543063e-01 -3.31196964e-01 -1.09028861e-01 -7.39935517e-01 2.03083292e-01 8.13495815e-01 1.53715879e-01 -1.12649925e-01 -1.23320468e-01 -2.75090039e-02 1.53571814e-01 -6.40602037e-03 3.28695148e-01 1.08122492e+00 -6.21717751e-01 -9.86788571e-01 -6.98232412e-01 2.84680724e-01 -3.92977968e-02 2.16530845e-01 -4.20915455e-01 8.11824381e-01 5.10319114e-01 9.99560416e-01 1.63376465e-01 -5.07685900e-01 5.90003371e-01 -3.70473385e-01 6.54032290e-01 -2.16635048e-01 -6.14338875e-01 2.10188404e-01 -3.31226170e-01 -7.53172338e-01 -1.05856705e+00 -4.92259204e-01 -1.20176888e+00 -3.48844737e-01 -5.10727346e-01 -3.22976202e-01 7.59914935e-01 6.71759188e-01 -9.46836323e-02 5.02307832e-01 6.89423859e-01 -1.22548437e+00 1.33371592e-01 -7.11364985e-01 -6.49342299e-01 4.47063595e-01 7.37125993e-01 -1.01668692e+00 -4.43595171e-01 -3.23959351e-01]
[9.634143829345703, -0.8636232614517212]
134639a2-771a-4eec-9bf4-3e264555f289
human-scene-network-a-novel-baseline-with
2301.07923
null
https://arxiv.org/abs/2301.07923v1
https://arxiv.org/pdf/2301.07923v1.pdf
Human-Scene Network: A Novel Baseline with Self-rectifying Loss for Weakly supervised Video Anomaly Detection
Video anomaly detection in surveillance systems with only video-level labels (i.e. weakly-supervised) is challenging. This is due to, (i) the complex integration of human and scene based anomalies comprising of subtle and sharp spatio-temporal cues in real-world scenarios, (ii) non-optimal optimization between normal and anomaly instances under weak supervision. In this paper, we propose a Human-Scene Network to learn discriminative representations by capturing both subtle and strong cues in a dissociative manner. In addition, a self-rectifying loss is also proposed that dynamically computes the pseudo temporal annotations from video-level labels for optimizing the Human-Scene Network effectively. The proposed Human-Scene Network optimized with self-rectifying loss is validated on three publicly available datasets i.e. UCF-Crime, ShanghaiTech and IITB-Corridor, outperforming recently reported state-of-the-art approaches on five out of the six scenarios considered.
['Francois Bremond', 'Gianpiero Francesca', 'Lorenzo Garattoni', 'Quan Kong', 'Rui Dai', 'Snehashis Majhi']
2023-01-19
null
null
null
null
['video-anomaly-detection']
['computer-vision']
[ 3.26861620e-01 -2.85747558e-01 3.57846953e-02 -5.10925174e-01 -5.48303366e-01 -5.01294315e-01 6.34649456e-01 1.82053044e-01 -6.06388032e-01 4.63293165e-01 9.71844494e-02 2.53538024e-02 -1.69962093e-01 -2.34096363e-01 -7.39216447e-01 -5.82060277e-01 -5.96632957e-01 2.08721414e-01 4.25754339e-01 -1.17409542e-01 2.48266049e-02 4.10816103e-01 -1.78873336e+00 4.03069735e-01 9.38085079e-01 1.37221098e+00 -3.30859870e-01 8.62467349e-01 4.01580483e-01 1.10066175e+00 -3.17434639e-01 -4.31509733e-01 7.04533577e-01 -2.79838443e-01 -4.39841509e-01 5.11727095e-01 1.23834825e+00 -6.12360358e-01 -6.99262321e-01 1.22510159e+00 8.40506330e-02 2.31533587e-01 6.63799226e-01 -1.56697178e+00 -3.32675606e-01 -2.68090844e-01 -7.06772268e-01 7.80260861e-01 4.05243814e-01 6.48132980e-01 7.85059214e-01 -7.19127715e-01 4.13219333e-01 1.19775343e+00 7.27747083e-01 3.25831234e-01 -9.70889688e-01 -5.27212858e-01 7.10764229e-01 5.56602657e-01 -1.34862292e+00 -3.75575870e-01 7.00204134e-01 -8.52925420e-01 1.05316651e+00 7.95428157e-02 7.36064732e-01 1.51965928e+00 1.69198319e-01 6.82038903e-01 7.18752742e-01 1.15121350e-01 8.32752436e-02 -3.28512006e-02 8.21591690e-02 9.71180260e-01 3.21204066e-01 2.41938919e-01 -3.63982707e-01 -1.99376881e-01 5.27509153e-01 4.22672391e-01 -2.25894809e-01 -4.24338937e-01 -1.01545727e+00 4.75362390e-01 2.92955369e-01 1.06820017e-01 -6.06556416e-01 -4.79027219e-02 8.61521244e-01 5.39880335e-01 6.27584755e-01 2.59227723e-01 -5.08609474e-01 -1.06592514e-01 -1.02824509e+00 2.84173369e-01 4.45171237e-01 8.19274902e-01 5.40554583e-01 5.09489775e-01 -4.58111316e-01 6.16564572e-01 3.07000190e-01 2.73671418e-01 1.92321107e-01 -8.05462003e-01 6.91387832e-01 5.49354970e-01 2.26341084e-01 -1.27698064e+00 -6.11325145e-01 -5.68269551e-01 -1.07639301e+00 2.28856906e-01 6.89228237e-01 -3.81721333e-02 -1.17015207e+00 1.88591611e+00 2.23492607e-01 9.06513035e-01 -1.87054709e-01 1.02396989e+00 6.00227416e-01 5.83570123e-01 3.34460139e-01 -1.52493715e-01 1.16353714e+00 -1.07493985e+00 -6.90345287e-01 -4.32702363e-01 5.72672009e-01 -2.57362843e-01 9.09025192e-01 5.45731366e-01 -8.56213987e-01 -6.28997564e-01 -7.76947796e-01 1.69883564e-01 -4.41399336e-01 1.27113014e-01 2.97081769e-01 2.48251781e-01 -1.02498317e+00 3.13077778e-01 -8.82526457e-01 -6.03612304e-01 7.95232773e-01 1.21885367e-01 -6.66331947e-01 -3.06784898e-01 -9.19705093e-01 5.79074562e-01 4.05469090e-01 2.84428835e-01 -1.42902732e+00 -7.39408195e-01 -1.18196762e+00 -1.54357433e-01 6.49735332e-01 -5.89421093e-01 7.31692374e-01 -1.29661453e+00 -9.69063103e-01 1.10870934e+00 3.19491550e-02 -6.68676138e-01 9.36643481e-01 -6.63491607e-01 -6.32352054e-01 3.10717285e-01 2.99231648e-01 4.92469937e-01 1.05322182e+00 -1.08982933e+00 -8.32872868e-01 -5.91604173e-01 1.21922702e-01 1.41056851e-01 -3.38546664e-01 -7.02403337e-02 -5.40434718e-01 -1.03772247e+00 -5.76969832e-02 -7.61652768e-01 -3.72199774e-01 3.11080396e-01 -5.28406501e-01 -1.83954071e-02 1.17084610e+00 -8.76932204e-01 1.18429089e+00 -2.15655208e+00 9.56897438e-02 7.04755187e-02 2.76717365e-01 5.94312608e-01 -3.48788023e-01 8.12090561e-02 -2.16677010e-01 -2.58842260e-01 -5.13414502e-01 -4.47881043e-01 -4.30643350e-01 2.03722656e-01 -1.62326083e-01 8.64625275e-01 5.94994366e-01 5.78403652e-01 -1.13100910e+00 -3.83293629e-01 4.98249561e-01 1.94234550e-01 -7.27911115e-01 4.91788954e-01 -7.35722929e-02 8.23359072e-01 -3.76661032e-01 1.09224463e+00 5.48806667e-01 7.40826130e-02 -6.02441430e-01 -2.76610196e-01 -8.89662877e-02 -2.96851099e-01 -9.44995224e-01 1.70310140e+00 9.73747969e-02 6.19811833e-01 1.53611004e-01 -1.26593149e+00 4.50417191e-01 3.29508454e-01 6.71054482e-01 -6.08852506e-01 3.31936143e-02 1.76730826e-02 -1.68192476e-01 -9.80495512e-01 2.41572902e-01 3.24066937e-01 7.26488829e-02 -1.41094685e-01 4.26482141e-01 3.99055809e-01 3.73871952e-01 1.24875262e-01 1.51121569e+00 9.21860561e-02 3.06777447e-01 -1.95365667e-01 7.32705474e-01 -1.57052979e-01 9.44815636e-01 1.12737155e+00 -9.27046835e-01 8.02073121e-01 5.21759987e-01 -8.56537044e-01 -9.68080163e-01 -1.03299987e+00 -2.07294412e-02 9.98295426e-01 1.30650684e-01 -1.56950951e-01 -6.12291098e-01 -1.11507750e+00 -1.17304832e-01 6.54937029e-01 -6.99491024e-01 -4.27305192e-01 -5.82139790e-01 -7.54621387e-01 7.55889893e-01 4.18316543e-01 5.84638238e-01 -9.79943097e-01 -5.95835209e-01 1.09634154e-01 -1.45620331e-01 -1.64518356e+00 -4.82126951e-01 -4.47430313e-02 -7.13474810e-01 -1.42192221e+00 -4.68578786e-01 -3.65298718e-01 6.42373025e-01 3.20270926e-01 1.10015607e+00 -4.93605696e-02 -5.22842407e-01 7.95190573e-01 -3.14689189e-01 -1.47325680e-01 2.62503382e-02 -2.75111675e-01 1.44132987e-01 5.89530647e-01 2.89464384e-01 -4.87494797e-01 -6.65130675e-01 2.93227255e-01 -1.05144656e+00 -2.90146887e-01 5.23033202e-01 9.03427362e-01 4.49319631e-01 6.26966357e-02 3.25619280e-01 -7.90205181e-01 5.20122424e-02 -9.57051396e-01 -8.21486354e-01 2.27155358e-01 -2.43185207e-01 -3.44837904e-01 7.31103063e-01 -3.17113906e-01 -1.05895686e+00 7.75652155e-02 -1.94951706e-02 -9.42172468e-01 -7.55167067e-01 -6.37723180e-03 -7.43796304e-02 3.76875512e-02 5.38455546e-01 8.15465078e-02 -3.29740077e-01 -1.40530825e-01 5.97306192e-02 1.47288442e-01 8.98893714e-01 -4.49903816e-01 9.96251047e-01 7.34823883e-01 7.74149075e-02 -9.00544286e-01 -1.18074226e+00 -6.94229782e-01 -8.16772759e-01 -4.69773650e-01 1.15063119e+00 -1.09756005e+00 -2.27168053e-01 8.81234705e-01 -1.16548121e+00 -2.10430443e-01 -3.34500730e-01 4.99650806e-01 -4.28943187e-01 4.92816448e-01 -6.29366934e-01 -9.70336437e-01 2.85471249e-02 -1.10164261e+00 1.29934633e+00 7.07357675e-02 3.13774273e-02 -8.05260897e-01 5.16262390e-02 2.81000972e-01 2.21402124e-01 8.50092530e-01 4.15769756e-01 -6.83235466e-01 -6.65769935e-01 -4.27199841e-01 -3.77080351e-01 5.86086690e-01 2.23473907e-02 2.27630157e-02 -1.10229015e+00 -4.73699421e-01 -7.77280331e-02 -3.42507988e-01 1.13199532e+00 4.13635343e-01 1.37820280e+00 -5.94085515e-01 -3.57971638e-02 1.03003967e+00 1.20631444e+00 2.80073509e-02 5.44816554e-01 4.00977314e-01 1.08604610e+00 6.95038080e-01 7.67321229e-01 7.15729654e-01 2.64480829e-01 6.65035605e-01 7.79698789e-01 -2.56717026e-01 2.38435984e-01 2.85277283e-03 6.53759718e-01 9.10509899e-02 -1.30021915e-01 -4.43533242e-01 -9.12128270e-01 6.35695755e-01 -2.24097633e+00 -1.27716267e+00 -1.51063442e-01 2.09713483e+00 1.76932469e-01 1.92630336e-01 2.57103562e-01 -6.98732659e-02 5.94645143e-01 4.86836106e-01 -6.44653499e-01 5.73429763e-02 -4.00376856e-01 -3.41893703e-01 5.57309151e-01 1.91909358e-01 -1.83133936e+00 9.52014387e-01 5.26679993e+00 4.56591666e-01 -9.68687296e-01 2.24410415e-01 8.32285285e-01 -2.76339412e-01 4.58974391e-01 -4.06280965e-01 -4.00211066e-01 7.19114542e-01 7.11639881e-01 3.32545787e-01 2.52269745e-01 8.17736268e-01 3.55764568e-01 1.18519500e-01 -1.15971291e+00 1.04085577e+00 2.79153138e-01 -7.97344625e-01 1.56722918e-01 -2.13934377e-01 8.12391460e-01 2.57160634e-01 2.01299772e-01 2.70023823e-01 -1.25362799e-01 -8.90483081e-01 8.69024396e-01 7.03899443e-01 5.72100699e-01 -5.53415775e-01 8.95472288e-01 1.34128913e-01 -1.21610022e+00 -5.16339004e-01 -5.88817410e-02 9.01534557e-02 2.71944702e-01 5.51506519e-01 -2.78154522e-01 5.29184699e-01 1.25520515e+00 1.29980242e+00 -7.86680579e-01 1.24290836e+00 -2.33541746e-02 7.10241437e-01 -3.22687685e-01 8.58457565e-01 7.63228416e-01 -2.62637138e-01 1.12911355e+00 1.57225990e+00 2.24203765e-01 1.03325546e-01 5.72103381e-01 5.89366376e-01 2.29402617e-01 -3.41526389e-01 -9.82642651e-01 2.15693817e-01 -5.45089766e-02 1.17320991e+00 -3.95519346e-01 -1.94533914e-01 -6.96001112e-01 1.11507833e+00 2.27116257e-01 7.92007744e-01 -9.20187175e-01 1.11872785e-01 1.01379442e+00 1.58605635e-01 1.05156764e-01 -1.89902782e-01 2.23325744e-01 -1.45733678e+00 2.95337021e-01 -9.07346904e-01 8.84148180e-01 -3.72270018e-01 -1.58541441e+00 7.36129105e-01 2.79164135e-01 -1.64545131e+00 -2.80807495e-01 -7.44703174e-01 -8.40142071e-01 2.32075915e-01 -1.50903893e+00 -1.18222177e+00 -7.03609169e-01 1.01262903e+00 7.33302891e-01 -4.89364028e-01 3.41278940e-01 7.15400279e-01 -1.00975704e+00 6.83746815e-01 -2.99432009e-01 2.24378288e-01 6.37516916e-01 -1.08824861e+00 2.13194072e-01 1.41344833e+00 1.37817757e-02 -1.29994601e-01 7.22745180e-01 -5.41898966e-01 -9.19567943e-01 -1.69186878e+00 2.17765495e-01 -5.30944586e-01 6.27112925e-01 -3.27990025e-01 -1.21069372e+00 8.30017745e-01 4.24838103e-02 6.04401648e-01 3.20841402e-01 -3.21886241e-01 -5.16218603e-01 -1.72784552e-01 -1.34151483e+00 4.61997658e-01 1.34341395e+00 -4.71137404e-01 -2.38072231e-01 4.77931142e-01 5.10647893e-01 -3.52413625e-01 -2.54849821e-01 7.17801690e-01 1.89119324e-01 -1.24684668e+00 1.04002678e+00 -9.67790604e-01 1.89894229e-01 -5.07110834e-01 -1.98103562e-01 -1.08975399e+00 -4.08210635e-01 -5.77187538e-01 -4.49801803e-01 9.62966621e-01 1.50908120e-02 -5.84395647e-01 6.07908607e-01 3.61472875e-01 -4.49183106e-01 -7.32840002e-01 -1.07850361e+00 -8.00037682e-01 -6.67657912e-01 -6.88164473e-01 1.27634266e-02 9.68399286e-01 -6.31002665e-01 -1.04688242e-01 -9.04491127e-01 6.73407197e-01 8.81917655e-01 -7.27501571e-01 6.30693972e-01 -1.15621865e+00 -1.15552939e-01 -3.62692714e-01 -1.08036983e+00 -8.46216798e-01 3.22597772e-01 -4.78211939e-01 1.21319085e-01 -8.12380135e-01 6.47610202e-02 -1.87695667e-01 -7.25849032e-01 3.36762547e-01 -3.41681987e-01 1.83188856e-01 -8.63018855e-02 1.01300947e-01 -1.06895638e+00 6.89879894e-01 6.27523184e-01 -2.42481172e-01 -6.07662089e-02 2.86606494e-02 -1.91357478e-01 1.03573215e+00 6.06195450e-01 -5.53011537e-01 -2.83976942e-01 -4.64443982e-01 -2.85981327e-01 -1.25755236e-01 9.32603955e-01 -1.33825636e+00 2.43740588e-01 -1.44082874e-01 4.35220689e-01 -6.28604233e-01 3.72431219e-01 -9.52598989e-01 -3.62420708e-01 3.58332753e-01 -2.94410348e-01 5.00075102e-01 3.08486909e-01 1.28779387e+00 -4.52587396e-01 6.25913739e-02 9.65926349e-01 -5.54183945e-02 -9.65572894e-01 8.44940841e-01 -2.86643445e-01 4.13692266e-01 1.24702275e+00 -2.34057277e-01 -1.55510888e-01 -4.87516016e-01 -4.61971909e-01 4.57822949e-01 2.39310429e-01 6.50025845e-01 6.05489016e-01 -1.26481640e+00 -8.90046418e-01 3.88430238e-01 4.91992056e-01 -6.13132725e-04 6.59142971e-01 1.11008763e+00 -5.37996769e-01 3.26555163e-01 -4.04708713e-01 -9.72809494e-01 -1.15328252e+00 4.84213352e-01 5.80489993e-01 -3.65350038e-01 -6.97242975e-01 7.59009421e-01 5.98818123e-01 -2.24863291e-01 6.41142249e-01 -1.98674113e-01 -1.90391600e-01 -1.26594216e-01 5.87337494e-01 5.16690075e-01 -5.86735830e-02 -1.08727014e+00 -4.50803071e-01 5.01975477e-01 -1.06123857e-01 2.38971949e-01 1.20631671e+00 -9.63967945e-03 1.84042588e-01 2.74300933e-01 1.28387856e+00 -5.67790449e-01 -1.68753362e+00 -3.95529270e-01 6.09966740e-02 -7.64437973e-01 -1.23773687e-01 -4.21047956e-01 -1.35051739e+00 6.99366331e-01 1.04226279e+00 5.61135001e-02 1.39620757e+00 -1.26378074e-01 6.84346616e-01 6.25742257e-01 2.49774754e-02 -9.80775654e-01 3.49806845e-01 4.98410255e-01 8.85525107e-01 -1.65776360e+00 -2.77983248e-01 -1.50454625e-01 -7.44366646e-01 8.05227995e-01 1.18385816e+00 -3.53264630e-01 6.58280373e-01 -1.12550035e-01 -5.86823635e-02 -3.75756025e-01 -7.19274282e-01 -1.13144264e-01 6.12109303e-01 6.14824891e-01 1.14822745e-01 -3.53657216e-01 3.91277105e-01 2.52526283e-01 4.53091890e-01 -3.13648134e-01 2.24070281e-01 8.12418997e-01 -1.77024469e-01 -2.95775771e-01 -3.79157811e-01 7.39271283e-01 -5.94087362e-01 1.83483049e-01 -2.09130302e-01 7.49080777e-01 4.28668380e-01 1.05772507e+00 2.23414838e-01 -2.23801374e-01 6.84008121e-01 -1.80356845e-01 6.40143454e-02 -3.10426652e-01 -4.91553158e-01 -2.77595788e-01 -4.91021536e-02 -1.30245125e+00 -3.59679312e-01 -7.69863307e-01 -6.93246365e-01 6.14879802e-02 5.45584299e-02 -3.51611018e-01 1.68246385e-02 9.72767949e-01 3.87557745e-01 5.61422229e-01 4.66941059e-01 -1.01779926e+00 -2.69350260e-01 -7.33000636e-01 -3.76359880e-01 9.13368762e-01 9.86884177e-01 -8.12235951e-01 -6.73252702e-01 5.68816550e-02]
[7.855175495147705, 1.5697749853134155]
5be8e567-f3cc-4f8e-84f3-e572b03fd26c
fine-grained-visual-textual-representation
1709.00340
null
http://arxiv.org/abs/1709.00340v4
http://arxiv.org/pdf/1709.00340v4.pdf
Fine-grained Visual-textual Representation Learning
Fine-grained visual categorization is to recognize hundreds of subcategories belonging to the same basic-level category, which is a highly challenging task due to the quite subtle and local visual distinctions among similar subcategories. Most existing methods generally learn part detectors to discover discriminative regions for better categorization performance. However, not all parts are beneficial and indispensable for visual categorization, and the setting of part detector number heavily relies on prior knowledge as well as experimental validation. As is known to all, when we describe the object of an image via textual descriptions, we mainly focus on the pivotal characteristics, and rarely pay attention to common characteristics as well as the background areas. This is an involuntary transfer from human visual attention to textual attention, which leads to the fact that textual attention tells us how many and which parts are discriminative and significant to categorization. So textual attention could help us to discover visual attention in image. Inspired by this, we propose a fine-grained visual-textual representation learning (VTRL) approach, and its main contributions are: (1) Fine-grained visual-textual pattern mining devotes to discovering discriminative visual-textual pairwise information for boosting categorization performance through jointly modeling vision and text with generative adversarial networks (GANs), which automatically and adaptively discovers discriminative parts. (2) Visual-textual representation learning jointly combines visual and textual information, which preserves the intra-modality and inter-modality information to generate complementary fine-grained representation, as well as further improves categorization performance.
['Yuxin Peng', 'Xiangteng He']
2017-08-31
null
null
null
null
['fine-grained-visual-categorization']
['computer-vision']
[ 9.17732567e-02 -4.55515593e-01 -3.33935231e-01 -3.15448940e-01 -4.07674283e-01 -8.37964237e-01 7.31653214e-01 5.65843098e-02 -1.30297601e-01 3.68788570e-01 4.61435258e-01 -1.06890149e-01 -9.88630578e-02 -7.07592845e-01 -6.58754945e-01 -7.33175039e-01 3.71930927e-01 2.47243926e-01 2.52572000e-01 -2.29025885e-01 2.03014061e-01 4.20138329e-01 -1.57247531e+00 6.83239043e-01 7.78954625e-01 1.34917247e+00 2.32778713e-01 2.40054950e-01 -4.71633196e-01 7.54343092e-01 -5.66999018e-01 -3.69717181e-01 9.58118141e-02 -4.53353435e-01 -6.69247031e-01 4.88818526e-01 4.55325902e-01 -8.48924145e-02 -3.62964332e-01 1.22084761e+00 1.15185440e-01 1.18538760e-01 1.08754480e+00 -1.35033774e+00 -1.09529340e+00 5.30473590e-01 -9.88634765e-01 2.44527891e-01 -8.73364434e-02 3.27742666e-01 9.84856009e-01 -8.22739005e-01 2.00023890e-01 1.46249831e+00 5.48904777e-01 3.85325462e-01 -1.27890432e+00 -7.69599259e-01 6.22038424e-01 4.20419663e-01 -1.65890479e+00 -1.98706731e-01 1.01017821e+00 -6.44625127e-01 4.82561916e-01 3.03833216e-01 6.03917599e-01 1.26962912e+00 9.92223471e-02 8.32218349e-01 1.28701794e+00 -2.34287396e-01 -1.63864065e-03 3.65160048e-01 2.22587213e-01 5.92325449e-01 1.51113585e-01 -6.50769323e-02 -1.70207143e-01 1.51387691e-01 5.50629675e-01 6.43802345e-01 -2.77977258e-01 -4.35831845e-01 -1.16272259e+00 8.11112702e-01 7.97035754e-01 5.53955138e-01 -3.22933376e-01 5.38963219e-03 6.57334208e-01 1.97883725e-01 2.11580738e-01 1.32246856e-02 -3.50612372e-01 2.47294664e-01 -6.94551647e-01 -1.75856888e-01 2.14994073e-01 8.26820791e-01 1.03227007e+00 6.27217293e-02 -6.94826961e-01 1.12056637e+00 3.50189507e-01 4.87933278e-01 8.68870914e-01 -3.76698554e-01 4.08075213e-01 9.53320205e-01 -4.08130646e-01 -1.10740137e+00 -9.82860029e-02 -6.15248144e-01 -1.41301322e+00 7.74178803e-02 1.63962036e-01 3.12522501e-01 -1.18646634e+00 1.65643692e+00 7.64454976e-02 -1.78858459e-01 -4.12539840e-01 9.52364504e-01 1.13322711e+00 4.95891303e-01 3.55958581e-01 -9.18056592e-02 1.77889001e+00 -8.08865607e-01 -3.02901566e-01 -3.78370643e-01 4.80865501e-02 -6.87257886e-01 1.25635469e+00 6.43540248e-02 -5.26119292e-01 -1.02549231e+00 -8.23200881e-01 -3.51225510e-02 -5.76030493e-01 6.78971484e-02 5.32159388e-01 4.34592277e-01 -7.44939446e-01 3.80489975e-02 -3.44403237e-01 -2.24263385e-01 8.50412071e-01 8.44341442e-02 -4.34022903e-01 -4.00683701e-01 -1.03402364e+00 5.11617124e-01 5.12404680e-01 3.43144909e-02 -9.82358515e-01 -4.57614303e-01 -9.07786131e-01 2.41959229e-01 3.82088691e-01 -7.34447837e-01 8.22585940e-01 -1.29525054e+00 -9.86389995e-01 8.94624114e-01 -3.14199984e-01 -2.18028963e-01 4.01419848e-01 4.32543755e-01 -3.32885295e-01 1.32615894e-01 4.02710646e-01 7.45639563e-01 1.36845076e+00 -1.45644510e+00 -6.10167742e-01 -5.79725325e-01 7.14374473e-05 2.21137777e-02 -4.66708094e-01 -2.95687526e-01 -8.17600489e-01 -1.11414194e+00 5.25510758e-02 -4.35865849e-01 -1.20412037e-01 -7.14880303e-02 -6.39105976e-01 -5.62473238e-01 8.55489016e-01 -4.28815573e-01 9.23037112e-01 -2.22907233e+00 6.68274378e-03 7.39423931e-02 4.97083753e-01 5.06360009e-02 -2.95872808e-01 2.83890069e-01 -4.52073775e-02 2.46329576e-01 8.99678767e-02 -1.41655449e-02 9.35468599e-02 1.09916799e-01 -6.71374619e-01 3.78494978e-01 2.86696017e-01 1.44127083e+00 -5.02561390e-01 -7.22021580e-01 4.01674569e-01 4.13450330e-01 -2.30526909e-01 1.22885779e-01 -1.37772709e-01 4.55083072e-01 -8.62507522e-01 8.61606419e-01 6.58497274e-01 -4.07060444e-01 -2.01460809e-01 -6.64760470e-01 1.47054270e-01 -2.56859303e-01 -8.88790727e-01 1.37622106e+00 -3.65590513e-01 4.10632998e-01 -9.51246023e-02 -1.38770199e+00 8.68026257e-01 -1.58593312e-01 2.20782384e-01 -1.05988109e+00 3.04830909e-01 -1.64739877e-01 -1.31365761e-01 -4.49284881e-01 9.14444774e-02 -4.34416056e-01 -3.04553002e-01 3.55030447e-01 6.20059855e-02 5.82651496e-02 7.02089223e-04 2.76165664e-01 7.23825932e-01 -8.54888037e-02 5.49097419e-01 -3.63609456e-02 6.16448104e-01 4.09281999e-02 6.08251989e-01 7.37191081e-01 -3.03687513e-01 5.61137438e-01 3.25054646e-01 -3.06554884e-01 -8.84533763e-01 -9.45531845e-01 -2.79667884e-01 1.40049458e+00 6.11094356e-01 -2.16715023e-01 -4.67439264e-01 -9.92175996e-01 1.75700843e-01 4.25763786e-01 -1.21192968e+00 -3.44093353e-01 -1.69593036e-01 -4.67403799e-01 4.19683486e-01 7.57017374e-01 5.31372786e-01 -1.20818067e+00 -1.96475480e-02 -1.95042804e-01 -1.44038409e-01 -8.25815499e-01 -7.36724615e-01 4.08911228e-01 -5.34160256e-01 -1.07683802e+00 -9.18163240e-01 -8.52127254e-01 6.61347926e-01 7.69508600e-01 1.04754162e+00 2.60683373e-02 -5.32723188e-01 3.74503106e-01 -5.82785606e-01 -4.04603392e-01 -2.14564011e-01 -2.64487147e-01 -1.61676317e-01 3.82052183e-01 5.91560900e-01 -4.85965937e-01 -5.87438226e-01 4.46779966e-01 -8.06972206e-01 2.34746933e-02 1.05850792e+00 1.14449251e+00 9.03393507e-01 3.86529803e-01 3.95869941e-01 -7.59871125e-01 4.33917105e-01 -4.71417665e-01 -2.61377126e-01 4.49687481e-01 -3.46750826e-01 7.56567717e-02 1.01666355e+00 -6.28961980e-01 -8.31651807e-01 -2.51675211e-02 5.69231398e-02 -1.00442839e+00 -6.67717934e-01 2.13331625e-01 -5.19524932e-01 -1.22648124e-02 4.99430537e-01 8.05454969e-01 -1.53388634e-01 -4.55307573e-01 6.31652296e-01 6.49329066e-01 4.35616881e-01 -5.60158074e-01 9.86867785e-01 5.95624745e-01 -2.20386043e-01 -7.00943828e-01 -9.59944308e-01 -7.67997324e-01 -9.74663258e-01 8.23249668e-02 9.40545738e-01 -8.61030817e-01 -7.87747324e-01 1.97513297e-01 -8.78193796e-01 -6.44279197e-02 -3.29341263e-01 8.91675949e-02 -3.17396045e-01 6.39129460e-01 -3.22239548e-01 -5.06782770e-01 -2.55723804e-01 -1.13990760e+00 1.35622752e+00 2.46901050e-01 1.86563149e-01 -7.80531406e-01 -3.37618351e-01 4.10984844e-01 2.97451556e-01 1.13921622e-02 1.01181722e+00 -4.44887757e-01 -4.22633350e-01 -1.20266750e-01 -8.30888867e-01 4.01807219e-01 2.60239363e-01 -3.60775113e-01 -1.05156791e+00 -3.84916246e-01 -1.54513508e-01 -6.86863780e-01 1.26349366e+00 4.82595414e-01 1.74484408e+00 -4.41657633e-01 -5.04811227e-01 6.63002551e-01 1.31742370e+00 8.22503492e-02 4.11733031e-01 1.70672357e-01 1.15558887e+00 7.03050554e-01 5.22686422e-01 3.00932020e-01 2.93209970e-01 7.01151133e-01 4.39690828e-01 -3.06821465e-01 -3.56351078e-01 -3.63599211e-01 1.25838012e-01 4.47733670e-01 1.38301283e-01 -2.38273311e-02 -5.68770111e-01 4.86916125e-01 -1.59510624e+00 -1.25065196e+00 1.14055693e-01 1.82389319e+00 7.68326283e-01 -7.02712163e-02 1.77598462e-01 2.86963899e-02 9.76409614e-01 2.82184154e-01 -9.05109644e-01 -8.71000662e-02 -2.33167186e-01 2.78021786e-02 3.02225411e-01 -2.13162735e-01 -1.26917648e+00 8.58916521e-01 5.00544977e+00 1.47981870e+00 -1.26395023e+00 1.19248115e-01 8.98163259e-01 3.04573953e-01 -2.79274821e-01 -2.69197434e-01 -6.24329090e-01 5.57088196e-01 1.95285380e-01 -1.55565292e-01 3.86130661e-01 1.01738954e+00 -8.77810866e-02 3.88572872e-01 -9.20180917e-01 1.25268149e+00 3.57559443e-01 -1.19752932e+00 7.14095235e-01 1.45513147e-01 6.71910942e-01 -2.00126350e-01 1.19783700e-01 6.16203666e-01 2.51858354e-01 -1.36226940e+00 9.30990815e-01 3.32992166e-01 1.12459910e+00 -7.67200172e-01 7.19628334e-01 4.34979618e-01 -1.72931027e+00 -3.31433475e-01 -7.46833086e-01 2.82830805e-01 -3.27253908e-01 3.94931555e-01 -5.92896998e-01 5.64251661e-01 9.12595451e-01 9.95324671e-01 -8.54467690e-01 8.56525481e-01 -1.83398366e-01 5.23717344e-01 2.89142311e-01 -1.29915110e-03 3.55742395e-01 -4.30025272e-02 1.96122438e-01 1.30143607e+00 -1.50575181e-02 7.77684823e-02 5.79810917e-01 9.75477576e-01 -3.17850053e-01 9.90418419e-02 -5.05383849e-01 -1.33211468e-03 3.45827013e-01 1.45079684e+00 -8.89738262e-01 -3.17614615e-01 -5.89830160e-01 1.06148028e+00 3.02469134e-01 4.12627578e-01 -6.47635579e-01 -4.25589293e-01 5.64953864e-01 -2.98447628e-02 7.60351002e-01 1.79958478e-01 -3.50498289e-01 -1.28909135e+00 -3.87715511e-02 -1.03771615e+00 6.76109314e-01 -6.37192130e-01 -1.91327322e+00 6.76719427e-01 -2.68348664e-01 -1.58268595e+00 1.26231238e-01 -5.84386289e-01 -5.32488286e-01 9.32015181e-01 -1.37470925e+00 -1.69283175e+00 -7.59416759e-01 9.71291542e-01 8.73942733e-01 -2.01814964e-01 4.95808125e-01 1.40372351e-01 -3.51482958e-01 8.45871150e-01 5.66503741e-02 4.61112946e-01 7.06205010e-01 -1.13876045e+00 5.51584587e-02 7.17210472e-01 4.70634878e-01 7.01819301e-01 2.42749766e-01 -4.15084004e-01 -1.29351044e+00 -1.61894965e+00 1.84311286e-01 -5.45828462e-01 7.55258679e-01 -4.84319717e-01 -1.12426472e+00 4.00925845e-01 -4.92834970e-02 1.84134617e-01 4.06928927e-01 1.04415275e-01 -8.78546476e-01 -3.12398165e-01 -7.47581661e-01 3.94582510e-01 9.54753995e-01 -8.76727521e-01 -9.32303846e-01 1.67289853e-01 6.18601561e-01 1.34698257e-01 -4.17145044e-01 4.33646530e-01 4.45670158e-01 -7.61348486e-01 1.17517734e+00 -6.03289485e-01 4.54556465e-01 -4.22765702e-01 -2.33630016e-01 -1.16873622e+00 -7.52517045e-01 1.44433752e-01 1.68953598e-01 1.50876403e+00 -1.55837655e-01 -4.33561563e-01 5.20568728e-01 -1.13170899e-01 -1.48890406e-01 -7.31338561e-01 -7.27289319e-01 -6.99849069e-01 1.18627772e-01 -4.91587132e-01 5.77512741e-01 1.01152623e+00 -5.19486308e-01 6.31466925e-01 -3.81745815e-01 1.45457104e-01 5.80998719e-01 9.15538430e-01 7.25665629e-01 -1.29242039e+00 -2.89409161e-01 -9.12135780e-01 -6.49402201e-01 -1.26691139e+00 3.28133523e-01 -1.02449954e+00 2.24236220e-01 -1.58162975e+00 8.97599220e-01 -4.77625579e-01 -6.44647658e-01 6.98035538e-01 -2.88719445e-01 8.15587759e-01 4.98299152e-02 5.01124501e-01 -7.68812418e-01 7.44216442e-01 1.47441804e+00 -8.87094617e-01 1.63443968e-01 -2.32291296e-02 -1.27464879e+00 6.11285806e-01 3.05212438e-01 -1.73110798e-01 -4.23755795e-01 -1.46221966e-01 -3.09806854e-01 -2.05238581e-01 8.03076029e-01 -6.27074063e-01 6.39058575e-02 -3.58769059e-01 9.44462836e-01 -7.07153618e-01 1.03568405e-01 -7.55054832e-01 -2.09365219e-01 3.57387185e-01 -2.74066687e-01 -4.23986256e-01 2.01767817e-01 9.23644185e-01 -5.54919422e-01 5.32354861e-02 9.37732637e-01 -2.77492046e-01 -1.31601691e+00 6.46136820e-01 -1.14673510e-01 1.83219790e-01 1.09218323e+00 -4.21130538e-01 -4.19960648e-01 -1.94759250e-01 -5.05835116e-01 1.14267558e-01 4.79177028e-01 6.55666828e-01 5.41691780e-01 -1.35145378e+00 -6.42255366e-01 3.48329008e-01 6.08345926e-01 -2.45577648e-01 7.27876365e-01 6.71888053e-01 1.81743488e-01 6.18607938e-01 -3.88017625e-01 -8.91759276e-01 -1.25026000e+00 1.19355512e+00 2.03777477e-01 5.99813871e-02 -6.49070442e-01 9.58343387e-01 1.23451018e+00 -9.63487402e-02 1.80573002e-01 -1.14034206e-01 -5.28107941e-01 1.97082236e-01 6.14564598e-01 -7.28118643e-02 -8.22910517e-02 -9.30223942e-01 -5.61181009e-01 1.01776099e+00 -2.58330584e-01 4.94501740e-01 1.00426590e+00 -3.49721432e-01 -1.17409058e-01 3.77255768e-01 1.33313847e+00 1.39664948e-01 -1.07539713e+00 -5.14443099e-01 -5.21753609e-01 -4.66120809e-01 -4.13973741e-02 -8.44052196e-01 -1.11807215e+00 1.26975441e+00 4.90570724e-01 3.36089730e-01 1.31755805e+00 5.67492604e-01 5.32625198e-01 2.04614580e-01 3.22888285e-01 -6.46770000e-01 3.79488885e-01 4.20203984e-01 9.45778131e-01 -1.46379244e+00 -1.11207165e-01 -3.23633522e-01 -8.97682846e-01 1.01852870e+00 7.29679227e-01 7.27573335e-02 5.05300164e-01 -2.45032832e-01 4.67011938e-03 -2.12290302e-01 -4.82229263e-01 -5.45310736e-01 9.25728261e-01 7.81364560e-01 1.29780442e-01 9.26528126e-02 1.25957057e-01 9.44803298e-01 1.05928198e-01 -4.90779072e-01 -2.28007853e-01 3.27997237e-01 -4.29246247e-01 -9.22148168e-01 -3.99344742e-01 7.30308115e-01 -3.20843786e-01 -1.52484745e-01 -5.63626111e-01 6.58834100e-01 5.27893364e-01 8.65565121e-01 7.91561678e-02 -5.45886278e-01 2.13311628e-01 -3.31598908e-01 2.02611640e-01 -6.40248239e-01 -3.94362956e-01 1.62549540e-01 -4.97834653e-01 -4.82947677e-01 -9.39639881e-02 -3.60021532e-01 -1.04742169e+00 -1.83197752e-01 -1.60195902e-01 2.51845568e-01 2.59919584e-01 1.05873430e+00 2.86882877e-01 7.92554796e-01 9.30578649e-01 -9.09212530e-01 -4.67517555e-01 -9.79329407e-01 -7.10153222e-01 7.95714140e-01 3.87452304e-01 -8.96676540e-01 -3.40073884e-01 1.85959890e-01]
[9.700980186462402, 1.999404788017273]
463a5733-f47f-48bf-90b5-6d41c2d376ed
normalization-in-training-u-net-for-2d
1809.03783
null
http://arxiv.org/abs/1809.03783v3
http://arxiv.org/pdf/1809.03783v3.pdf
Normalization in Training U-Net for 2D Biomedical Semantic Segmentation
2D biomedical semantic segmentation is important for robotic vision in surgery. Segmentation methods based on Deep Convolutional Neural Network (DCNN) can out-perform conventional methods in terms of both accuracy and levels of automation. One common issue in training a DCNN for biomedical semantic segmentation is the internal covariate shift where the training of convolutional kernels is encumbered by the distribution change of input features, hence both the training speed and performance are decreased. Batch Normalization (BN) is the first proposed method for addressing internal covariate shift and is widely used. Instance Normalization (IN) and Layer Normalization (LN) have also been proposed. Group Normalization (GN) is proposed more recently and has not yet been applied to 2D biomedical semantic segmentation, however, no specific validations on GN were given. Most DCNNs for biomedical semantic segmentation adopt BN as the normalization method by default, without reviewing its performance. In this paper, four normalization methods - BN, IN, LN and GN are compared in details, specifically for 2D biomedical semantic segmentation. U-Net is adopted as the basic DCNN structure. Three datasets regarding the Right Ventricle (RV), aorta, and Left Ventricle (LV) are used for the validation. The results show that detailed subdivision of the feature map, i.e. GN with a large group number or IN, achieves higher accuracy. This accuracy improvement mainly comes from better model generalization. Codes are uploaded and maintained at Xiao-Yun Zhou's Github.
['Guang-Zhong Yang', 'Xiao-Yun Zhou']
2018-09-11
null
null
null
null
['2d-semantic-segmentation']
['computer-vision']
[ 1.89351514e-01 3.23109239e-01 -2.00145930e-01 -3.82223278e-01 8.33855867e-02 -2.02720433e-01 2.28587106e-01 2.02820525e-01 -6.63701534e-01 5.53162336e-01 -4.68688048e-02 -3.05191249e-01 -1.01509616e-01 -6.97936594e-01 -3.17885190e-01 -8.38093162e-01 1.61456779e-01 2.83095688e-01 2.86884397e-01 -6.09162077e-02 1.30094171e-01 8.00282657e-01 -1.10372674e+00 -1.01670913e-01 7.85713613e-01 9.67414200e-01 3.28672647e-01 4.04291481e-01 -3.98900032e-01 2.67634809e-01 -7.40301788e-01 2.24921312e-02 3.37418586e-01 -5.23130238e-01 -8.49190354e-01 -1.27806827e-01 -5.42888083e-02 -1.43926755e-01 -6.21275790e-02 1.14868593e+00 8.25823605e-01 9.66534317e-02 7.82536626e-01 -9.77857530e-01 -2.79632270e-01 7.05353320e-01 -4.46057260e-01 1.45544186e-01 -3.44356805e-01 -1.20328404e-01 2.10911661e-01 -4.16717947e-01 5.71220756e-01 1.06607795e+00 9.31214392e-01 7.59006143e-01 -8.27883780e-01 -7.32223630e-01 -1.71330065e-01 -2.18136936e-01 -1.09482527e+00 1.80308089e-01 7.25991786e-01 -6.30915880e-01 6.60623550e-01 1.76053867e-01 6.30467892e-01 7.88540542e-01 4.11949068e-01 6.19830728e-01 7.86939085e-01 -4.17640895e-01 2.32689306e-01 9.95720699e-02 2.25151420e-01 4.21190381e-01 6.53568327e-01 -1.08109824e-01 8.64219591e-02 2.67152786e-01 1.20781386e+00 6.98920414e-02 -1.74710393e-01 -4.43119138e-01 -1.24668121e+00 6.96774065e-01 7.09765971e-01 7.99951434e-01 -3.10915798e-01 1.89607903e-01 8.53680491e-01 1.31951228e-01 2.57194996e-01 6.06501520e-01 -7.35373378e-01 5.16915470e-02 -8.16722214e-01 1.15926616e-01 5.91578245e-01 9.50964987e-01 5.08655548e-01 5.79668395e-02 -3.12902361e-01 1.03373826e+00 1.28074676e-01 6.04227036e-02 1.02115321e+00 -7.40539253e-01 8.74577612e-02 9.61568534e-01 -4.64294940e-01 -9.28488612e-01 -1.13162661e+00 -7.49543846e-01 -1.41346896e+00 1.46022514e-01 4.41949010e-01 -3.86079460e-01 -1.33646607e+00 1.52858067e+00 2.95165569e-01 -1.46818474e-01 2.80980617e-01 9.94456232e-01 1.41233540e+00 8.58960599e-02 2.87729979e-01 -4.17430885e-02 1.41558456e+00 -8.89871299e-01 -9.80089426e-01 1.13070495e-02 1.04471588e+00 -7.18849480e-01 5.97030997e-01 2.00609505e-01 -7.20069647e-01 -6.83753788e-01 -1.02908349e+00 -1.22551925e-01 -6.40185773e-01 3.97828877e-01 8.19623888e-01 7.15538561e-01 -8.44320953e-01 8.54666293e-01 -1.02669454e+00 -7.76584387e-01 6.93105221e-01 6.17278874e-01 -4.38087881e-01 2.65694737e-01 -1.20039332e+00 8.33024800e-01 6.02192104e-01 3.54734391e-01 -2.93635219e-01 -7.66215146e-01 -7.51439154e-01 -2.23463222e-01 -5.56750856e-02 -7.42890298e-01 1.15579569e+00 -1.03025115e+00 -1.61466873e+00 1.03859079e+00 4.11482126e-01 -4.60003227e-01 7.77867436e-01 1.18482923e-02 -1.04178376e-01 1.41874194e-01 6.56921044e-02 9.33401823e-01 3.96990031e-01 -9.83063579e-01 -3.26006293e-01 -5.39670885e-01 -1.40997872e-01 2.40404576e-01 -3.27121556e-01 -1.38742477e-01 -4.84264612e-01 -9.61470544e-01 6.13747895e-01 -8.58044624e-01 -4.33077008e-01 -1.06642090e-01 -4.74190980e-01 -2.15552509e-01 8.42098594e-01 -7.43450105e-01 1.15040994e+00 -2.06496644e+00 -1.43611714e-01 2.93512195e-01 9.67303291e-02 5.21067262e-01 2.94812977e-01 -9.54734683e-02 -3.66834819e-01 2.47289076e-01 -4.25738990e-01 -7.75256827e-02 -3.74752730e-01 2.67591447e-01 5.50922036e-01 5.35554707e-01 -1.04714610e-01 8.55970263e-01 -6.29082799e-01 -4.69475359e-01 3.23058754e-01 3.05979133e-01 -5.85778534e-01 -6.66919053e-02 2.10610002e-01 8.35914135e-01 -3.80865455e-01 6.38202727e-01 9.72675085e-01 -8.82799029e-02 -3.68360692e-04 -5.64872205e-01 2.57848110e-02 -2.95109600e-01 -1.03061426e+00 1.92706358e+00 -1.07726537e-01 2.56584316e-01 2.94658411e-02 -1.28774619e+00 1.21730459e+00 4.13435042e-01 8.31386387e-01 -5.59207797e-01 5.87980866e-01 4.08867329e-01 3.37489337e-01 -6.44623935e-01 1.60739109e-01 -1.28868327e-01 -1.78475995e-02 -1.38621822e-01 2.01155841e-01 -1.46620527e-01 3.49040806e-01 -2.06889272e-01 5.83416224e-01 1.94238856e-01 3.67648333e-01 -5.83960831e-01 7.52281010e-01 2.19220310e-01 7.99139977e-01 6.06489718e-01 -4.27280456e-01 7.23022044e-01 6.72483683e-01 -4.12461996e-01 -8.80498588e-01 -6.65175557e-01 -4.09069210e-01 4.54015642e-01 3.92164409e-01 -2.82616336e-02 -1.09250593e+00 -6.99943483e-01 -3.04406472e-02 2.72811592e-01 -6.74697578e-01 -1.85832009e-01 -6.63470566e-01 -9.60783184e-01 6.42677844e-01 6.79847181e-01 7.94521272e-01 -1.22587717e+00 -8.45019341e-01 3.19935605e-02 1.22185960e-01 -1.08824480e+00 -9.99160260e-02 3.09501320e-01 -1.43130839e+00 -1.15100217e+00 -1.11494625e+00 -1.03223968e+00 1.04374123e+00 -2.02527285e-01 5.73939562e-01 1.91357642e-01 -5.46376884e-01 7.49836713e-02 -2.79347181e-01 -8.40255439e-01 -4.61801976e-01 4.77997541e-01 -3.72096375e-02 -3.28093410e-01 2.14379236e-01 -2.94057339e-01 -7.72332013e-01 2.96144396e-01 -9.86750364e-01 2.26594508e-01 8.61930907e-01 8.66528809e-01 5.83015859e-01 -2.37545624e-01 6.79720879e-01 -1.24827087e+00 5.40704012e-01 -1.76447332e-01 -3.94357115e-01 -1.86128199e-01 -6.01005614e-01 -2.66458958e-01 4.65917289e-01 -1.88286334e-01 -8.12784314e-01 -3.29976752e-02 -3.93244296e-01 -5.22161186e-01 -5.30990541e-01 4.68958348e-01 1.05884075e-02 -9.42607373e-02 6.70158744e-01 -2.26690814e-01 6.34992659e-01 -5.18406272e-01 -6.26930743e-02 6.19642138e-01 3.59330952e-01 -3.08348060e-01 3.28492284e-01 2.59413391e-01 3.24017972e-01 -7.82231688e-01 -4.44109201e-01 -6.22473419e-01 -9.01396275e-01 -1.25933602e-01 1.23091936e+00 -6.00831807e-01 -5.73697686e-01 7.53266513e-01 -8.92825723e-01 -4.34681118e-01 -3.01317751e-01 9.43305314e-01 -5.09795666e-01 2.68720388e-01 -5.92685163e-01 -2.81656861e-01 -5.84097147e-01 -1.29269576e+00 6.18351698e-01 6.05924904e-01 -1.79960966e-01 -1.15192199e+00 -3.67845535e-01 2.37730652e-01 6.49726391e-01 6.34751916e-01 1.15203512e+00 -1.03458846e+00 6.33016899e-02 -3.22884113e-01 -3.79980922e-01 7.87662446e-01 4.83253986e-01 -1.74956873e-01 -8.06643963e-01 -2.30589688e-01 4.01401520e-02 2.96793580e-01 6.44837558e-01 9.88114715e-01 1.49606144e+00 4.14203946e-03 -4.84591961e-01 7.12464690e-01 1.36501479e+00 4.64796960e-01 6.02163970e-01 6.05025709e-01 7.73123085e-01 4.90097612e-01 5.81902981e-01 8.76606405e-02 -1.22230798e-01 2.48034582e-01 5.23966134e-01 -6.66658521e-01 -3.35345209e-01 3.50593418e-01 -2.98068166e-01 7.86862373e-01 -3.19250256e-01 1.55894563e-01 -9.96409774e-01 4.06782806e-01 -1.67549241e+00 -4.24266577e-01 -2.74915904e-01 2.14346910e+00 6.66728795e-01 1.23792633e-01 -1.01749457e-01 1.95350513e-01 8.28044713e-01 -3.59981984e-01 -5.57030797e-01 -4.31332171e-01 8.01573247e-02 2.63679504e-01 8.43002439e-01 8.95505846e-02 -1.35930777e+00 8.25317204e-01 5.67596245e+00 7.25929797e-01 -1.35772991e+00 8.45459998e-02 8.79008472e-01 2.65027404e-01 3.14079940e-01 -3.02606165e-01 -7.08907008e-01 3.42168897e-01 4.24134016e-01 2.77201772e-01 -1.05063505e-01 8.67602885e-01 3.05931896e-01 -1.07334919e-01 -7.81135201e-01 1.06541145e+00 -1.37096792e-01 -1.28750813e+00 1.19393960e-01 -1.23662785e-01 7.32409060e-01 -2.06378207e-01 -2.53577769e-01 3.23460132e-01 -3.21884513e-01 -8.87512624e-01 2.06731588e-01 6.12871647e-01 7.16796875e-01 -7.32068837e-01 1.47281480e+00 8.03505182e-02 -7.54872143e-01 -3.47317345e-02 -3.75616103e-01 2.71320641e-01 -9.43306759e-02 5.69764793e-01 -8.15312326e-01 8.35632205e-01 9.10439312e-01 7.80046642e-01 -5.41463554e-01 1.05383861e+00 1.75365396e-02 4.92494226e-01 -1.35724619e-01 5.30206449e-02 3.01822573e-01 -3.19018632e-01 4.51729268e-01 1.27155542e+00 3.83709967e-01 -9.01015103e-02 2.99018379e-02 7.94132710e-01 -4.80642579e-02 4.06332493e-01 -2.97195494e-01 1.08179606e-01 -3.28965746e-02 1.42461455e+00 -1.29594707e+00 -3.20477337e-01 -1.88733399e-01 6.52463377e-01 -4.34644669e-01 3.14132839e-01 -6.91547871e-01 -7.01028466e-01 5.50531864e-01 3.65010127e-02 7.14089945e-02 -2.28888355e-02 -7.76241958e-01 -6.14424348e-01 -3.31680655e-01 -4.35914457e-01 4.99749601e-01 -4.43413973e-01 -1.10541677e+00 4.79859829e-01 9.87004265e-02 -1.24602175e+00 1.71955138e-01 -1.03692138e+00 -3.57035428e-01 9.99084055e-01 -1.38842893e+00 -1.06054342e+00 -7.51538396e-01 3.21887314e-01 4.25352603e-01 -1.60469905e-01 7.83684909e-01 4.70153302e-01 -6.43604875e-01 5.67123830e-01 -5.93491364e-03 5.19935131e-01 7.92912602e-01 -1.19188678e+00 -1.68975964e-01 5.67235768e-01 -7.19281316e-01 7.47623861e-01 5.00987411e-01 -6.93474174e-01 -6.56577408e-01 -1.20565379e+00 5.45778751e-01 1.29830271e-01 1.49228722e-01 -3.63389589e-02 -8.08327496e-01 5.37498772e-01 -4.67113219e-02 2.00127438e-01 6.94912612e-01 -3.98269027e-01 4.41551983e-01 -1.71767503e-01 -1.49096060e+00 4.82243598e-01 7.88595319e-01 2.06786975e-01 -3.72018635e-01 2.36907497e-01 7.14890003e-01 -8.34351480e-01 -1.20330608e+00 9.89923656e-01 3.85039508e-01 -8.57377648e-01 8.94327641e-01 -3.47368509e-01 3.31969142e-01 -3.50001246e-01 1.47842467e-01 -9.57370639e-01 -2.78099418e-01 -1.01044036e-01 2.89937317e-01 1.08528805e+00 2.07933336e-01 -8.73534143e-01 8.84896517e-01 3.38569850e-01 -5.67225635e-01 -1.06559145e+00 -7.32174754e-01 -6.96527183e-01 3.19938868e-01 -1.33805841e-01 5.96490622e-01 1.00993037e+00 -3.82759005e-01 -2.81957015e-02 2.47223765e-01 -1.72441900e-01 2.95399010e-01 -2.61645168e-01 7.13614345e-01 -1.47672713e+00 3.34304154e-01 -7.91296959e-01 -8.09920967e-01 -6.18529320e-01 -2.96570957e-01 -1.26169026e+00 -1.59269005e-01 -1.99172378e+00 -7.65179992e-02 -5.69820106e-01 -4.96797919e-01 5.53055644e-01 1.45962834e-01 3.03305686e-01 9.44135152e-03 2.65430182e-01 1.61020145e-01 2.76265591e-01 1.72595322e+00 -4.02639508e-02 -5.27515709e-01 2.49462128e-01 -5.46316981e-01 8.69591713e-01 1.20854414e+00 -3.12538356e-01 -2.80376911e-01 -4.86100949e-02 -3.30621809e-01 -3.02549243e-01 1.62343383e-01 -1.20839882e+00 2.44271964e-01 2.14038029e-01 7.19906747e-01 -7.35736132e-01 -1.66262940e-01 -8.93393517e-01 8.71370509e-02 8.10921073e-01 -2.14447618e-01 -7.82571584e-02 4.63999510e-01 1.55630991e-01 -1.93834320e-01 -3.68218839e-01 1.06048369e+00 -3.58877808e-01 -6.20028734e-01 4.11532879e-01 -3.20868224e-01 -2.19385415e-01 1.10042906e+00 -7.72617042e-01 8.06946903e-02 2.13699907e-01 -1.09146726e+00 5.35828322e-02 1.28130734e-01 3.91021013e-01 2.53518373e-01 -1.33319092e+00 -3.46142024e-01 2.55671471e-01 -5.35051674e-02 5.23138881e-01 5.20440638e-01 1.51809180e+00 -1.05666482e+00 5.06025374e-01 -5.07872224e-01 -8.88397813e-01 -1.11647809e+00 2.11571470e-01 7.28446543e-01 -2.56605923e-01 -7.80958354e-01 6.91196322e-01 2.53448576e-01 -8.47121477e-01 2.72031277e-01 -8.31947803e-01 -7.74416029e-01 1.33897007e-01 -9.16009024e-03 3.44089717e-01 3.04839641e-01 -4.71065432e-01 -3.63913804e-01 6.81603193e-01 1.16841517e-01 5.04988551e-01 1.19315553e+00 -1.21760806e-02 -4.38936979e-01 3.46791863e-01 1.24756622e+00 -6.06090724e-01 -9.63155627e-01 8.47164243e-02 -1.82934850e-02 -5.97768184e-03 -1.52976131e-02 -8.33630025e-01 -1.49280465e+00 8.20754290e-01 1.13730884e+00 -1.34224340e-01 1.10959923e+00 -1.97864532e-01 6.16124868e-01 6.40772283e-02 8.56946632e-02 -1.32691741e+00 -1.92676246e-01 4.70473379e-01 7.75330186e-01 -1.12118077e+00 -1.65540725e-02 -6.17777228e-01 -4.18978542e-01 1.54997730e+00 8.14308465e-01 -1.60135254e-01 9.21600521e-01 2.22642273e-01 3.61981362e-01 -2.33368248e-01 3.84541661e-01 -1.02399895e-03 1.87877610e-01 3.87300730e-01 6.09161258e-01 -2.75575165e-02 -8.34177375e-01 9.43112135e-01 -2.52314448e-01 2.22742677e-01 3.36551547e-01 9.26195204e-01 -1.57593489e-01 -8.96281838e-01 -3.51313859e-01 7.30026543e-01 -7.12857485e-01 1.84239194e-01 1.45784333e-01 1.00929868e+00 4.62485194e-01 5.25501251e-01 1.45813853e-01 -1.77181557e-01 4.02646512e-01 -1.05867185e-01 2.78196216e-01 -5.06641626e-01 -7.98613369e-01 8.81703943e-02 -3.68464082e-01 -5.23138285e-01 -5.61732054e-01 -3.66709799e-01 -1.79827654e+00 9.40519124e-02 -2.58723587e-01 5.45273833e-02 1.08337057e+00 7.99245417e-01 2.10805237e-01 1.21862471e+00 6.77178800e-02 -7.96746075e-01 -2.54270375e-01 -1.24018657e+00 -6.15495384e-01 3.86281461e-01 1.50232809e-02 -7.18109250e-01 -3.63793522e-01 3.50074396e-02]
[14.625676155090332, -2.5937044620513916]
5c8e8362-2b7b-43bf-aafd-a2b4f08299e0
community-detection-with-known-unknown-or
2301.04088
null
https://arxiv.org/abs/2301.04088v1
https://arxiv.org/pdf/2301.04088v1.pdf
Community Detection with Known, Unknown, or Partially Known Auxiliary Latent Variables
Empirical observations suggest that in practice, community membership does not completely explain the dependency between the edges of an observation graph. The residual dependence of the graph edges are modeled in this paper, to first order, by auxiliary node latent variables that affect the statistics of the graph edges but carry no information about the communities of interest. We then study community detection in graphs obeying the stochastic block model and censored block model with auxiliary latent variables. We analyze the conditions for exact recovery when these auxiliary latent variables are unknown, representing unknown nuisance parameters or model mismatch. We also analyze exact recovery when these secondary latent variables have been either fully or partially revealed. Finally, we propose a semidefinite programming algorithm for recovering the desired labels when the secondary labels are either known or unknown. We show that exact recovery is possible by semidefinite programming down to the respective maximum likelihood exact recovery threshold.
['Aria Nosratinia', 'Mohammad Esmaeili']
2023-01-08
null
null
null
null
['stochastic-block-model', 'community-detection']
['graphs', 'graphs']
[ 2.88555712e-01 5.52273035e-01 -5.11735678e-01 1.65278148e-02 -5.36029100e-01 -7.66389370e-01 2.84580350e-01 1.40789598e-02 6.49642125e-02 9.01143014e-01 1.23313859e-01 -1.83551684e-01 -4.88981962e-01 -6.14015818e-01 -7.41325498e-01 -1.05370212e+00 -4.03104484e-01 1.06316650e+00 -3.58549953e-01 3.78316194e-01 -1.47544131e-01 5.04408419e-01 -7.21748710e-01 -2.12331146e-01 7.48229444e-01 5.23318350e-02 -2.56825358e-01 8.95929337e-01 3.67961019e-01 6.23196006e-01 -2.42541388e-01 -1.28193751e-01 2.43983686e-01 -1.89580828e-01 -3.98366839e-01 8.39238703e-01 4.33035865e-02 -1.77387103e-01 -6.38671279e-01 1.38525379e+00 6.94753155e-02 -4.78540510e-01 9.81662333e-01 -1.81619251e+00 -7.14751244e-01 9.60308254e-01 -1.00744390e+00 -1.62725478e-01 2.50468433e-01 -2.73200512e-01 1.14445996e+00 -7.15103745e-01 7.11804330e-01 1.15141869e+00 6.04777217e-01 1.90385148e-01 -2.00578046e+00 -6.67186975e-01 1.57578394e-01 -1.42817006e-01 -1.51557660e+00 -5.42551279e-01 9.35667157e-01 -8.67184758e-01 2.14513168e-01 1.98106229e-01 2.15992033e-01 1.11894774e+00 -2.13001240e-02 4.68970656e-01 9.61829841e-01 -3.59693974e-01 1.64130092e-01 3.04563910e-01 5.21106839e-01 8.40975285e-01 9.10415888e-01 2.80990545e-02 -3.55640858e-01 -8.19905519e-01 6.78373933e-01 1.43359229e-01 -5.14621317e-01 -8.62152100e-01 -1.16952014e+00 1.09922838e+00 -5.75410463e-02 -3.44519541e-02 -5.07567227e-01 1.49984941e-01 -5.66560077e-03 4.11358029e-01 4.36757505e-01 -2.26957545e-01 -3.20056349e-01 6.37592793e-01 -8.87895107e-01 -4.08085048e-01 1.15579045e+00 1.34591389e+00 9.06795561e-01 7.67201334e-02 -4.89018187e-02 3.68519098e-01 5.19944847e-01 8.82251501e-01 -5.83139360e-01 -8.32706034e-01 6.53685749e-01 2.23083362e-01 5.04124999e-01 -1.07441604e+00 -3.13771039e-01 -7.67808139e-01 -1.25691438e+00 -1.67681918e-01 6.17025256e-01 -2.46117577e-01 -8.23660910e-01 2.02747560e+00 -1.12803606e-02 2.18078375e-01 -1.01286925e-01 6.26124442e-01 1.90627366e-01 5.47144473e-01 -1.56603888e-01 -9.35141683e-01 7.95515597e-01 -7.14172602e-01 -8.89254749e-01 -2.68574327e-01 4.94701564e-01 -4.77491766e-01 3.24179292e-01 2.67261386e-01 -9.66843247e-01 1.92404360e-01 -6.95010245e-01 4.42291260e-01 4.07441884e-01 3.02843690e-01 5.20116806e-01 7.76914477e-01 -1.19872057e+00 3.44303399e-01 -1.03839338e+00 -9.01623815e-02 3.07342038e-02 5.74490666e-01 -5.29695809e-01 -3.72416228e-01 -7.60937035e-01 9.81989801e-02 -3.80678065e-02 2.97575980e-01 -1.08383906e+00 -2.31556252e-01 -6.78490460e-01 2.51673698e-01 5.38840294e-01 -5.46014190e-01 4.65841621e-01 -1.06167138e+00 -5.25222063e-01 1.01325047e+00 -4.69973207e-01 -2.15230256e-01 5.92747152e-01 4.63175803e-01 -3.98672938e-01 3.86862040e-01 4.37579960e-01 -1.77637488e-01 1.04898298e+00 -1.49244392e+00 -1.36734217e-01 -4.64414716e-01 -1.22627482e-01 -2.10837767e-01 -1.03675798e-01 -2.17238888e-01 -4.82327342e-01 -4.21077460e-01 6.52481496e-01 -1.42850971e+00 -2.94658720e-01 1.14861518e-01 -9.42732573e-01 3.02619606e-01 4.04004991e-01 -9.48603094e-01 1.01774430e+00 -2.16973519e+00 4.37341094e-01 7.75065064e-01 5.85392773e-01 -4.80991304e-01 -2.85855114e-01 7.68169045e-01 -3.77885491e-01 2.04215705e-01 -4.47059304e-01 -5.14193296e-01 -2.54798979e-02 3.98108333e-01 -1.80472985e-01 1.26672840e+00 -2.10660920e-01 4.77069706e-01 -7.03045785e-01 -2.77906656e-01 -2.74300963e-01 2.62387633e-01 -4.27500308e-01 -1.24127299e-01 1.23307407e-01 5.59786558e-01 -6.66182220e-01 5.41898310e-01 1.02339184e+00 -7.21272588e-01 7.13912249e-01 5.58696240e-02 2.18541339e-01 -1.03330806e-01 -1.47159636e+00 1.00979090e+00 -1.00467456e-04 4.83639330e-01 7.23742604e-01 -1.07866788e+00 4.94727790e-01 6.11938059e-01 6.02448106e-01 2.45824546e-01 -2.58096993e-01 5.32798022e-02 -1.85116902e-02 -1.84915513e-01 1.16076633e-01 -2.75805473e-01 4.37593181e-03 6.44398034e-01 -1.15872450e-01 7.98215449e-01 1.95440456e-01 7.96136439e-01 1.25463188e+00 -5.20157635e-01 1.09725848e-01 -4.25662816e-01 2.70661205e-01 -9.35466886e-02 7.75703311e-01 1.02389824e+00 -2.38004718e-02 5.66449702e-01 1.23534322e+00 4.37391609e-01 -1.20573962e+00 -1.18158269e+00 -7.34618977e-02 4.90963459e-01 -6.90287501e-02 -1.09114483e-01 -3.53878200e-01 -4.47326571e-01 7.02161491e-02 4.26627815e-01 -7.82457829e-01 -9.35791582e-02 -5.92480041e-02 -1.04170704e+00 1.61903605e-01 1.82107121e-01 -9.54433829e-02 -3.14316213e-01 5.77581882e-01 2.35676959e-01 -4.37435210e-01 -1.04544878e+00 -6.31566286e-01 3.78378659e-01 -1.14741242e+00 -1.20944464e+00 -6.65197611e-01 -6.08162880e-01 1.45172119e+00 3.97372365e-01 8.66608679e-01 2.80985177e-01 2.45793648e-02 6.35176122e-01 -8.90050530e-02 5.12815654e-01 -4.99675781e-01 -3.16815972e-02 9.17411447e-02 3.81267786e-01 -3.70161124e-02 -8.83945286e-01 -2.39694521e-01 1.35739759e-01 -8.40887308e-01 -1.15958020e-01 3.66804659e-01 9.33458030e-01 5.19052505e-01 3.18528861e-01 2.16013491e-01 -1.22348762e+00 3.41222495e-01 -8.68984103e-01 -7.34595120e-01 4.93042767e-01 -5.77946007e-01 3.56512904e-01 1.90750465e-01 -4.97271061e-01 -8.06103230e-01 1.17941320e-01 6.22056067e-01 -5.02363265e-01 1.10275991e-01 9.43144023e-01 -4.12643611e-01 8.24674815e-02 2.29387969e-01 8.19765478e-02 -1.61594063e-01 -6.28549814e-01 9.33358595e-02 4.55036521e-01 1.41131327e-01 -5.04622459e-01 1.10807896e+00 9.74181592e-01 5.11590481e-01 -7.36809433e-01 -6.14173830e-01 -7.65424609e-01 -8.43277574e-01 5.56975650e-03 4.94571656e-01 -1.22126830e+00 -6.14205301e-01 4.26493585e-01 -1.05074370e+00 -1.16812512e-01 -6.60328865e-02 5.01082718e-01 -2.89859504e-01 7.13854790e-01 -8.63826156e-01 -1.13309586e+00 2.84855813e-01 -8.46075475e-01 8.31661701e-01 -3.39923263e-01 1.96762517e-01 -1.41478217e+00 1.04802385e-01 2.50415742e-01 -2.47863427e-01 2.53071547e-01 1.02652395e+00 -5.45056462e-01 -8.46264362e-01 -4.99676913e-01 -3.44981521e-01 -1.09002665e-01 1.71580374e-01 3.62255946e-02 -5.10415435e-01 -6.68641508e-01 -6.16976358e-02 1.95304021e-01 9.34198558e-01 6.37608171e-01 3.80416691e-01 -7.56832898e-01 -7.93998003e-01 5.40431023e-01 1.42755592e+00 -3.72254223e-01 2.88806379e-01 -2.62202978e-01 7.68687665e-01 6.86280131e-01 1.34322137e-01 6.58305645e-01 2.25478590e-01 3.62324476e-01 3.54140908e-01 -6.23620749e-02 3.43555927e-01 -3.89333636e-01 4.09668654e-01 8.70195329e-01 2.06324086e-01 -7.99827278e-01 -7.94017673e-01 8.85069847e-01 -2.04241776e+00 -9.51099396e-01 -1.13331664e+00 2.54327655e+00 6.42565668e-01 -1.11020051e-01 -3.74786812e-03 -5.75826727e-02 1.36932683e+00 -5.73697016e-02 -4.76525217e-01 1.32774785e-01 -4.56703275e-01 -2.95995355e-01 1.10559678e+00 9.62337554e-01 -8.46521318e-01 4.63557482e-01 6.29074812e+00 4.84526664e-01 -5.06482005e-01 3.07694256e-01 4.13063943e-01 2.11423635e-01 -8.29527617e-01 7.43795991e-01 -5.98559558e-01 1.70908853e-01 5.92735529e-01 -1.80762395e-01 5.28990746e-01 5.43385923e-01 4.16703045e-01 -9.90754645e-03 -1.08622837e+00 5.10467172e-01 1.06320940e-02 -8.23445082e-01 -2.65932858e-01 9.51593995e-01 1.13864243e+00 -1.98057204e-01 -4.32574749e-03 -2.75153041e-01 7.43479967e-01 -6.83776379e-01 4.66312826e-01 6.50654018e-01 9.70293462e-01 -5.77048898e-01 3.38881344e-01 5.49593508e-01 -9.24552858e-01 4.48610298e-02 -3.62256259e-01 -1.33209631e-01 3.72969061e-01 1.06099880e+00 -6.09385848e-01 3.39309931e-01 -3.13119851e-02 6.81965470e-01 -2.46678844e-01 9.91093218e-01 -5.21830142e-01 1.10426581e+00 -4.94761467e-01 5.74535549e-01 -1.02492921e-01 -8.53468478e-01 1.16550756e+00 6.69529855e-01 1.83646396e-01 1.05315320e-01 3.44837010e-01 1.01562309e+00 -8.18952918e-02 -1.37860075e-01 -4.48942900e-01 -4.25694048e-01 3.05166930e-01 9.79975879e-01 -1.15810263e+00 -1.61773577e-01 -4.04330045e-01 1.21906435e+00 1.86038986e-01 9.94589329e-01 -5.38338065e-01 2.76207656e-01 3.84913325e-01 2.57167190e-01 3.46770734e-01 -3.92094076e-01 -1.50559559e-01 -1.70749879e+00 9.27418247e-02 -4.79236931e-01 3.36645842e-01 -5.18234909e-01 -1.41339087e+00 -6.41478673e-02 -2.01332971e-01 -7.16529727e-01 -2.38556936e-01 -1.14044830e-01 -4.69867378e-01 9.95355129e-01 -1.12203038e+00 -1.30450392e+00 7.27652088e-02 7.08102405e-01 -2.96922505e-01 1.75112128e-01 6.65784419e-01 1.69230014e-01 -7.21842825e-01 2.70434886e-01 7.63318479e-01 1.82984725e-01 3.75786394e-01 -1.21049607e+00 1.96843967e-03 1.14810789e+00 2.11891532e-01 7.12959766e-01 1.16482151e+00 -1.18465698e+00 -1.29391384e+00 -9.04927075e-01 1.09180391e+00 3.72002758e-02 9.70551670e-01 -6.70185089e-01 -8.15230966e-01 1.23810244e+00 -1.66463912e-01 1.47579625e-01 6.48064911e-01 3.26366246e-01 -3.81557733e-01 2.76935041e-01 -9.59691405e-01 3.20324033e-01 9.68286037e-01 -6.54793680e-01 1.82774547e-03 7.00947344e-01 4.74910557e-01 3.11667562e-01 -5.36139429e-01 1.99726537e-01 2.48019725e-01 -6.29502296e-01 8.57389629e-01 -8.14805627e-01 1.50452405e-02 -2.17477143e-01 -1.56332716e-01 -9.53358591e-01 -6.15443885e-01 -6.84468925e-01 -1.38590679e-01 1.56215215e+00 5.88186383e-01 -5.82219243e-01 1.11975467e+00 7.15935469e-01 5.44636905e-01 1.79473773e-01 -1.03614390e+00 -7.92436063e-01 -1.81767061e-01 -3.47864069e-02 4.09074016e-02 1.34504390e+00 -8.77147838e-02 4.89859730e-01 -9.49723244e-01 7.80131698e-01 1.32119811e+00 2.85196394e-01 4.42110837e-01 -1.52978516e+00 -6.85971975e-01 2.14614406e-01 -1.29746199e-01 -9.98413503e-01 5.06656826e-01 -9.16511834e-01 -2.11093068e-01 -1.45485663e+00 9.88466203e-01 -5.74946404e-01 9.48205031e-03 2.24520266e-01 -7.07147038e-03 1.30992392e-02 -1.91288128e-01 5.34678042e-01 -2.52591521e-01 3.58063817e-01 8.83452237e-01 -1.76316708e-01 -3.06291729e-01 5.80266178e-01 -6.66590691e-01 6.38992965e-01 4.66917127e-01 -9.65854943e-01 -2.80085504e-01 -1.58773363e-01 5.90696394e-01 9.50976908e-01 6.68480575e-01 -3.03157657e-01 4.77420986e-01 -1.74494356e-01 -1.10979326e-01 -5.65043211e-01 2.44583830e-01 -1.06051350e+00 8.74408901e-01 4.64466959e-01 -4.71449196e-01 -4.19078946e-01 -3.97302717e-01 1.23727489e+00 1.47438616e-01 -5.62453210e-01 5.19046724e-01 3.05369705e-01 1.94287136e-01 5.63387871e-01 -6.36019468e-01 3.13906930e-02 7.73258209e-01 -1.21016964e-01 -4.38378938e-02 -1.00499952e+00 -1.42290473e+00 3.24617445e-01 6.62735283e-01 -2.09551722e-01 5.26040256e-01 -1.19840086e+00 -8.47090065e-01 5.73332980e-02 -3.08020003e-02 -5.76414227e-01 2.56041557e-01 1.23937643e+00 -3.73851135e-02 3.23944718e-01 1.74186856e-01 -5.08707464e-01 -1.55860877e+00 9.84857798e-01 1.54275984e-01 -4.56171006e-01 -2.46420935e-01 4.24018830e-01 4.70756918e-01 -3.16608161e-01 8.91317278e-02 2.44056761e-01 6.14455491e-02 1.35034874e-01 -1.42376989e-01 6.09128833e-01 -4.14063603e-01 -9.70753431e-01 -1.59733802e-01 2.20704496e-01 4.28921320e-02 -2.38546208e-01 1.38027215e+00 -7.76887596e-01 -5.33030987e-01 5.29748738e-01 1.16733170e+00 5.96220016e-01 -1.20254111e+00 -5.58290839e-01 4.56707552e-02 -4.17565256e-01 9.66558512e-03 -2.66219974e-01 -1.16792166e+00 7.74475455e-01 7.33418092e-02 3.39440197e-01 7.49626100e-01 3.56085807e-01 -2.52746772e-02 -4.35778014e-02 3.97880346e-01 -4.58403170e-01 -3.88840944e-01 3.78413275e-02 5.51894486e-01 -9.63253915e-01 2.14636430e-01 -1.05854023e+00 -1.89110160e-01 8.71550262e-01 -1.52794346e-01 -2.01130256e-01 7.62951076e-01 1.25263467e-01 -6.39871478e-01 -3.48924994e-01 -7.09338307e-01 -1.07731082e-01 1.79398134e-01 7.79093206e-01 1.34049758e-01 2.98991740e-01 -3.01773250e-01 4.49850827e-01 4.59285885e-01 -3.83911699e-01 1.09016776e+00 3.46172422e-01 -2.57799536e-01 -1.12661219e+00 -6.23353660e-01 5.50653100e-01 -5.59946299e-01 -3.64111453e-01 -5.32775939e-01 4.17758375e-01 -3.68896186e-01 1.21149576e+00 -2.36430585e-01 2.64903963e-01 -1.06556013e-01 -3.17616493e-01 3.18663865e-01 -7.46999979e-01 2.91837782e-01 5.48940718e-01 2.08795935e-01 3.01274247e-02 -3.88382852e-01 -1.03237498e+00 -7.35084772e-01 -4.59771007e-01 -8.81937623e-01 4.25113827e-01 2.11551905e-01 9.39382434e-01 2.79423036e-02 1.20351739e-01 8.23081434e-01 -3.62353861e-01 -7.17803597e-01 -7.92910337e-01 -1.39923465e+00 -4.03789766e-02 5.94657421e-01 -4.45157111e-01 -1.07734346e+00 2.94103205e-01]
[6.904253959655762, 5.149803638458252]
1d37e617-379a-436d-8522-1c59ea984036
label-informed-graph-structure-learning-for
2108.04595
null
https://arxiv.org/abs/2108.04595v1
https://arxiv.org/pdf/2108.04595v1.pdf
Label-informed Graph Structure Learning for Node Classification
Graph Neural Networks (GNNs) have achieved great success among various domains. Nevertheless, most GNN methods are sensitive to the quality of graph structures. To tackle this problem, some studies exploit different graph structure learning strategies to refine the original graph structure. However, these methods only consider feature information while ignoring available label information. In this paper, we propose a novel label-informed graph structure learning framework which incorporates label information explicitly through a class transition matrix. We conduct extensive experiments on seven node classification benchmark datasets and the results show that our method outperforms or matches the state-of-the-art baselines.
['Liang Wang', 'Shu Wu', 'Fenyu Hu', 'Liping Wang']
2021-08-10
null
null
null
null
['graph-structure-learning']
['graphs']
[ 1.82905838e-01 1.91304654e-01 -8.11969161e-01 -3.56021047e-01 -1.06096320e-01 -4.39568311e-01 5.94138384e-01 3.85383785e-01 -3.27444315e-01 7.24829793e-01 -1.54684773e-02 -4.26016092e-01 -1.95518717e-01 -1.07653272e+00 -3.96389812e-01 -5.35346150e-01 -2.06813030e-02 3.64370584e-01 3.91902149e-01 -3.12700160e-02 1.25750735e-01 3.66954088e-01 -8.76344562e-01 -1.36735439e-01 6.67773485e-01 5.25176406e-01 -2.46141016e-01 2.63455600e-01 -2.86918402e-01 1.12506378e+00 -3.96389961e-01 -4.83749479e-01 1.88376412e-01 -2.96814024e-01 -8.24723780e-01 7.11898804e-02 1.70204520e-01 -4.32654507e-02 -8.14876378e-01 1.39667165e+00 2.41282761e-01 1.35297984e-01 7.29190111e-01 -1.46935368e+00 -7.30357587e-01 1.01231754e+00 -6.67222261e-01 1.34749815e-01 1.14486493e-01 -9.37222838e-02 1.42384124e+00 -4.89037484e-01 6.90821350e-01 1.13475609e+00 7.78772593e-01 3.91744435e-01 -1.31498015e+00 -7.33810723e-01 5.96723437e-01 3.01805586e-01 -1.32738757e+00 -5.95304035e-02 1.34020996e+00 -2.49919608e-01 8.11559260e-01 -2.14633882e-01 5.55117249e-01 1.03334272e+00 6.21459223e-02 7.28869438e-01 1.08243275e+00 -3.88955832e-01 2.85609420e-02 -2.37821817e-01 5.67502737e-01 1.15519190e+00 5.49467742e-01 1.24866299e-01 -9.62317213e-02 -3.85253951e-02 7.61336863e-01 1.21160597e-01 -1.62657872e-01 -7.42144525e-01 -8.74435604e-01 1.06634653e+00 1.03632402e+00 3.90078664e-01 -1.23074941e-01 3.63624930e-01 4.57906157e-01 2.37240568e-01 5.97865403e-01 3.20303917e-01 -1.76982030e-01 4.04624939e-01 -5.47544658e-01 -2.56680936e-01 8.58586133e-01 8.35982263e-01 9.59039986e-01 1.65916562e-01 -2.15248451e-01 7.73389339e-01 5.88410318e-01 -6.71907375e-03 8.26557651e-02 -5.04434347e-01 4.44735616e-01 1.09341311e+00 -7.48995364e-01 -1.35091388e+00 -7.22887099e-01 -8.08950543e-01 -1.19072819e+00 -1.71478823e-01 2.38848090e-01 -4.41239141e-02 -1.27746439e+00 1.82176554e+00 2.94482946e-01 5.12673318e-01 -2.04955772e-01 5.17975569e-01 1.36451757e+00 4.03524041e-01 2.49608666e-01 -2.18911618e-02 8.41885448e-01 -1.39924216e+00 -6.90275729e-01 -3.10061038e-01 9.43356395e-01 -1.39722005e-01 7.13664591e-01 2.10245609e-01 -5.66112757e-01 -3.88708025e-01 -1.10896134e+00 1.70154750e-01 -3.89447957e-01 -2.35388398e-01 9.92287040e-01 8.35679531e-01 -1.26649535e+00 7.58484781e-01 -7.85594761e-01 -4.16876376e-01 4.63812292e-01 4.67503875e-01 -5.18295109e-01 -3.41333479e-01 -1.13577580e+00 5.59565246e-01 8.95685971e-01 9.93620381e-02 -8.30290854e-01 -1.75065950e-01 -1.06369615e+00 2.21126378e-01 8.61807346e-01 -6.42794788e-01 1.03552067e+00 -7.94300735e-01 -1.41562319e+00 6.81950629e-01 2.74956405e-01 -3.96281004e-01 3.82440072e-03 4.15313661e-01 -3.85889500e-01 7.90565610e-02 -1.23524539e-01 5.08066595e-01 4.71999079e-01 -1.22434485e+00 -2.76076198e-01 -1.65415943e-01 2.97807038e-01 1.34530634e-01 -3.87035280e-01 -3.01604360e-01 -6.50723338e-01 -6.25543296e-01 2.56040037e-01 -8.83231282e-01 -4.99632359e-01 -2.71584749e-01 -8.15488935e-01 -4.80309844e-01 6.37653530e-01 -1.69315428e-01 1.46982634e+00 -1.90816736e+00 1.31538346e-01 5.62366784e-01 8.73325527e-01 3.78529996e-01 -4.27993476e-01 5.14359474e-01 -2.38609314e-02 3.30985039e-01 -1.94840878e-01 -2.52838582e-01 1.37702882e-01 3.07933986e-01 2.99010366e-01 5.28689325e-01 -1.20548427e-01 1.19229710e+00 -9.71740961e-01 -7.31920958e-01 9.00753886e-02 3.39904279e-01 -4.24636036e-01 7.57291988e-02 -2.31981531e-01 2.85090178e-01 -5.79707503e-01 6.95211828e-01 5.96522033e-01 -8.08861613e-01 7.09637642e-01 -1.49945423e-01 5.90504467e-01 2.62088299e-01 -9.69126344e-01 1.51637888e+00 -7.10379481e-02 4.11060274e-01 2.98713241e-02 -1.40988827e+00 9.41644430e-01 -4.87676933e-02 4.28221673e-01 -5.46708882e-01 3.09286207e-01 -4.61592637e-02 3.67803633e-01 -1.28681034e-01 1.16464071e-01 -5.85191846e-02 8.75373185e-02 4.43784565e-01 7.19357803e-02 2.75959432e-01 4.49619502e-01 4.85549569e-01 1.51778233e+00 2.38802452e-02 5.39817929e-01 -1.73347563e-01 5.18913329e-01 -3.09144944e-01 7.15886652e-01 8.49355936e-01 -4.66669708e-01 3.50486070e-01 8.57888639e-01 -5.17588615e-01 -5.28570294e-01 -8.26604724e-01 3.43665183e-01 1.07203543e+00 2.14787617e-01 -8.16078901e-01 -7.65548646e-01 -1.31841052e+00 -1.14099100e-01 2.78426051e-01 -7.35264122e-01 -4.02013153e-01 -5.23717582e-01 -7.95711339e-01 5.56250334e-01 5.63111901e-01 6.18503630e-01 -1.17990386e+00 3.45542163e-01 2.87102491e-01 4.60891984e-02 -1.23855650e+00 -4.24988896e-01 1.32048288e-02 -1.07248962e+00 -1.27001655e+00 -2.87195504e-01 -1.08050179e+00 9.08243418e-01 3.34509283e-01 1.30598629e+00 6.94478750e-01 -9.09437053e-03 1.63103342e-01 -5.21676064e-01 7.77055845e-02 -3.53246361e-01 7.44139135e-01 -3.31201196e-01 -7.75192380e-02 3.34340960e-01 -7.23592103e-01 -2.21219629e-01 1.75206676e-01 -7.16328621e-01 8.78683701e-02 7.95477986e-01 7.62758851e-01 5.02363920e-01 2.81139284e-01 5.96469998e-01 -1.59232605e+00 8.57644081e-01 -4.51764196e-01 -5.37727296e-01 3.72700959e-01 -1.13082397e+00 4.29509223e-01 6.06851995e-01 -2.20515370e-01 -6.77203178e-01 -3.44478898e-02 -1.30943269e-01 -1.90121904e-01 -1.30675033e-01 1.16434944e+00 -2.75984794e-01 -2.99684912e-01 3.02092761e-01 -5.11371531e-02 -1.87850952e-01 -4.17285025e-01 2.19373465e-01 2.49573886e-01 2.05533296e-01 -4.76443052e-01 8.74309063e-01 1.56695679e-01 4.54630643e-01 -3.99647832e-01 -1.02355468e+00 -3.69967878e-01 -7.02750206e-01 -1.70354366e-01 5.08072972e-01 -6.33249938e-01 -4.33104098e-01 6.22469783e-01 -8.50756526e-01 -4.24598187e-01 2.17242017e-01 3.64912570e-01 -7.19428658e-02 6.93538904e-01 -9.25085783e-01 -3.67229730e-01 -3.40525985e-01 -1.16517329e+00 5.40731907e-01 2.11068064e-01 2.58793175e-01 -1.43057466e+00 2.61903286e-01 5.85266724e-02 3.19460452e-01 3.78909916e-01 1.11811340e+00 -8.13616395e-01 -6.86500490e-01 -1.23404935e-01 -6.67322338e-01 7.04511926e-02 4.76790279e-01 -9.01295841e-02 -5.34964085e-01 -5.28623998e-01 -6.63219690e-01 -2.10359961e-01 1.32722771e+00 3.08437794e-01 1.16464937e+00 -2.53818721e-01 -7.66005635e-01 7.32052445e-01 1.47834218e+00 -6.04165420e-02 4.55875248e-01 2.44460732e-01 1.31156635e+00 4.25438374e-01 1.87482923e-01 -7.34469220e-02 6.48958266e-01 4.32576448e-01 6.95979059e-01 -2.23857209e-01 -2.83635467e-01 -4.57297474e-01 -3.31951887e-03 1.08433223e+00 4.25911509e-02 -7.85071135e-01 -9.32609320e-01 3.73287052e-01 -1.96589398e+00 -5.62478125e-01 -2.41495684e-01 1.67402315e+00 5.36646128e-01 5.10473013e-01 8.96668956e-02 2.75526810e-02 1.01110673e+00 6.29750788e-01 -5.87574184e-01 -8.85325074e-02 1.01961635e-01 1.06134944e-01 5.01767933e-01 4.35364634e-01 -1.21254969e+00 1.20678592e+00 6.63289595e+00 6.23034894e-01 -6.72053635e-01 -1.61873147e-01 4.52870369e-01 5.26328921e-01 -3.59694600e-01 2.40887895e-01 -5.19735634e-01 1.43910170e-01 7.90132344e-01 -8.53943601e-02 3.74649227e-01 8.24107468e-01 -3.60528767e-01 2.84267962e-01 -1.03376412e+00 9.76793110e-01 9.97477444e-04 -1.19005799e+00 1.49787530e-01 2.34026611e-01 7.35318661e-01 3.09266448e-01 -2.52310932e-01 6.34721577e-01 8.66769433e-01 -1.19679081e+00 -1.74037851e-02 4.05995399e-01 5.34169436e-01 -8.28208804e-01 8.64297271e-01 3.06222558e-01 -1.55971551e+00 9.07531977e-02 -2.47466996e-01 -2.43495151e-01 1.00269780e-01 6.88686728e-01 -8.79240453e-01 7.84180939e-01 3.55400622e-01 1.13408482e+00 -1.09384859e+00 1.10630882e+00 -6.45837188e-01 9.51173961e-01 -1.21427082e-01 -2.89330333e-01 4.27243859e-01 -2.69783974e-01 3.33891153e-01 1.01574826e+00 -1.46165818e-01 1.34107424e-02 6.07766330e-01 7.86969304e-01 -6.39907479e-01 2.15333670e-01 -7.15356350e-01 -4.22024488e-01 3.24920207e-01 1.49106336e+00 -1.26783693e+00 -1.06061518e-01 -6.05475187e-01 5.87490559e-01 9.23230588e-01 3.59488547e-01 -6.52237296e-01 -5.76284885e-01 1.74753159e-01 -8.47257897e-02 1.18127905e-01 -2.87220478e-01 1.55930221e-01 -1.16364670e+00 -2.29527235e-01 -7.45173514e-01 6.56598210e-01 -4.11304176e-01 -1.61176074e+00 6.91818833e-01 -4.71411906e-02 -7.25155234e-01 4.45756577e-02 -6.32486463e-01 -5.92087269e-01 2.63971150e-01 -1.60614240e+00 -1.24918664e+00 -3.21091145e-01 4.12445128e-01 8.78864750e-02 -1.21362999e-01 5.49279988e-01 2.79606611e-01 -7.89346695e-01 6.40951276e-01 -4.65189293e-02 7.31031835e-01 5.25773704e-01 -1.33096290e+00 7.45537102e-01 8.34554255e-01 4.58260775e-01 6.06483877e-01 2.84473091e-01 -8.66219819e-01 -1.20282280e+00 -1.19337523e+00 6.05296731e-01 -1.29996851e-01 5.89648604e-01 -4.91696924e-01 -9.82258499e-01 9.76905823e-01 2.62941957e-01 3.92825007e-01 5.42229235e-01 4.40366626e-01 -5.13960063e-01 -2.22921781e-02 -9.99224484e-01 5.23427546e-01 1.43196619e+00 -4.14514184e-01 -2.10636199e-01 1.96484923e-01 9.03811455e-01 -2.78552115e-01 -7.49772727e-01 7.42646635e-01 2.66506553e-01 -7.42009640e-01 6.75350904e-01 -6.65035188e-01 5.13523370e-02 -2.83110559e-01 1.65439814e-01 -1.46495497e+00 -7.22961664e-01 -3.37139994e-01 -2.37558246e-01 1.19599164e+00 5.26585340e-01 -8.58840644e-01 1.20662773e+00 3.73896986e-01 2.47727651e-02 -7.30809927e-01 -5.43132007e-01 -7.04514682e-01 -1.07688941e-01 -7.04977736e-02 7.40761936e-01 1.15594077e+00 -9.60754156e-02 9.57719505e-01 -3.67945611e-01 3.66212092e-02 7.78939605e-01 1.35503978e-01 7.35314608e-01 -1.73788679e+00 -2.41986871e-01 -6.28974199e-01 -6.33640885e-01 -8.87786508e-01 7.52043545e-01 -1.42342103e+00 -1.14552289e-01 -2.15483689e+00 5.59121847e-01 -3.96222830e-01 -6.74797475e-01 7.90915608e-01 -4.53994185e-01 1.13109745e-01 -1.39587335e-02 -1.23917423e-01 -1.07308519e+00 5.98452449e-01 1.15021956e+00 -4.31032300e-01 -6.50930479e-02 -4.57759015e-02 -6.89063430e-01 7.17483282e-01 1.02049839e+00 -7.50246108e-01 -7.72084475e-01 -4.08854008e-01 3.52659345e-01 -2.50286192e-01 2.38026187e-01 -9.90312517e-01 3.58869165e-01 -1.34319931e-01 -2.94197779e-02 -5.89268744e-01 -1.29056081e-01 -7.60265410e-01 1.06764428e-01 5.03684342e-01 -3.84633034e-01 8.69263411e-02 -1.27665773e-01 9.60205197e-01 -1.45165235e-01 -2.95600444e-01 6.61310911e-01 -1.43724591e-01 -7.87779391e-01 8.25578928e-01 -1.19346410e-01 1.79500908e-01 6.84286833e-01 -7.96655118e-02 -4.23406094e-01 -4.00464714e-01 -5.40362716e-01 3.97448897e-01 3.56653512e-01 4.34409440e-01 5.13873756e-01 -1.44614625e+00 -6.52737975e-01 5.36319464e-02 1.66020364e-01 7.03538507e-02 -1.00397222e-01 5.20627022e-01 -4.36448574e-01 3.54114741e-01 -7.45403301e-03 -3.90778363e-01 -1.19721103e+00 8.23935091e-01 3.99468333e-01 -8.45352411e-01 -6.00178301e-01 7.97305465e-01 2.31635377e-01 -9.26918626e-01 3.22007418e-01 -7.37930685e-02 -5.51774323e-01 -2.64549524e-01 -3.16668525e-02 2.48341903e-01 -9.03849751e-02 -5.46687007e-01 -3.18688244e-01 4.73407656e-01 -3.77069056e-01 3.73189986e-01 1.22907007e+00 -2.58440003e-02 -2.05690786e-01 1.73334509e-01 1.21220040e+00 -2.25548565e-01 -1.05181885e+00 -6.98824465e-01 4.37370360e-01 -1.45724490e-01 1.09190725e-01 -5.92885375e-01 -1.60213435e+00 7.20989883e-01 9.63315368e-02 2.66042084e-01 1.08201909e+00 -2.75420938e-02 6.05573356e-01 6.47437692e-01 4.25157875e-01 -8.40902746e-01 1.83962673e-01 5.65032363e-01 2.92463452e-01 -1.40986145e+00 2.88679779e-01 -7.74849892e-01 -2.58914858e-01 9.07561660e-01 9.02314603e-01 -2.28181854e-01 9.16698515e-01 -5.85755222e-02 -1.41315028e-01 -4.56002325e-01 -7.30118513e-01 -4.06734139e-01 3.54335696e-01 7.28211820e-01 3.39188963e-01 1.08779617e-01 -3.16830963e-01 4.23458368e-01 1.92234278e-01 -2.40634963e-01 4.38839793e-01 7.67794490e-01 -3.71903569e-01 -1.51832056e+00 2.95151234e-01 6.05914712e-01 -5.06049216e-01 -2.63135791e-01 -8.04887116e-01 9.99490857e-01 -3.25791299e-01 9.79604721e-01 -5.06984830e-01 -5.73050261e-01 1.80254519e-01 -2.48865768e-01 4.90680605e-01 -8.86073887e-01 -4.86086220e-01 -3.28502990e-02 3.03829819e-01 -4.19126868e-01 -6.99116766e-01 -1.86137140e-01 -1.27322137e+00 -3.32953513e-01 -6.24186337e-01 3.43991041e-01 2.73013175e-01 8.52553308e-01 2.32681185e-01 7.51091361e-01 5.15904486e-01 -3.92455369e-01 -3.21135968e-01 -1.03490853e+00 -8.16438854e-01 3.05187136e-01 1.40912548e-01 -8.18122447e-01 -3.67186338e-01 -5.09524226e-01]
[7.204887866973877, 6.320528030395508]
62bbb4ba-6663-4067-8476-48d48f64ab4e
a-weakly-supervised-approach-to-emotion
2306.06979
null
https://arxiv.org/abs/2306.06979v1
https://arxiv.org/pdf/2306.06979v1.pdf
A Weakly Supervised Approach to Emotion-change Prediction and Improved Mood Inference
Whilst a majority of affective computing research focuses on inferring emotions, examining mood or understanding the \textit{mood-emotion interplay} has received significantly less attention. Building on prior work, we (a) deduce and incorporate emotion-change ($\Delta$) information for inferring mood, without resorting to annotated labels, and (b) attempt mood prediction for long duration video clips, in alignment with the characterisation of mood. We generate the emotion-change ($\Delta$) labels via metric learning from a pre-trained Siamese Network, and use these in addition to mood labels for mood classification. Experiments evaluating \textit{unimodal} (training only using mood labels) vs \textit{multimodal} (training using mood plus $\Delta$ labels) models show that mood prediction benefits from the incorporation of emotion-change information, emphasising the importance of modelling the mood-emotion interplay for effective mood inference.
['Roland Goecke', 'Ramanathan Subramanian', 'Akshay Asthana', 'Iman Abbasnejad', 'Ravikiran Parameshwara', 'Ibrahim Radwan', 'Soujanya Narayana']
2023-06-12
null
null
null
null
['metric-learning', 'metric-learning']
['computer-vision', 'methodology']
[ 5.39569795e-01 1.86744407e-02 9.49447230e-02 -9.27717626e-01 -6.97575271e-01 -6.71710491e-01 4.31579441e-01 3.36027056e-01 -2.95120776e-01 5.54646611e-01 3.59315723e-01 1.14911504e-01 -9.09868404e-02 -3.48851502e-01 -1.53306916e-01 -5.75294793e-01 -1.75172612e-01 1.91117793e-01 -8.23963761e-01 -2.65660018e-01 1.28064796e-01 -1.41386956e-01 -1.78069520e+00 3.49044085e-01 4.96072978e-01 1.53852081e+00 -5.33786893e-01 8.19872558e-01 -3.53375189e-02 1.16903019e+00 -5.31846941e-01 -8.05245280e-01 1.38453901e-01 -9.00415361e-01 -7.13766277e-01 1.68270692e-01 2.28891909e-01 1.63921982e-01 1.54495224e-01 8.91757488e-01 4.79035616e-01 5.69787323e-01 8.88028443e-01 -1.34655607e+00 -4.26678240e-01 2.02118397e-01 -2.39030883e-01 2.26824909e-01 7.73288131e-01 4.06053923e-02 1.45374298e+00 -6.49663806e-01 6.28425539e-01 7.98269391e-01 8.46657932e-01 2.54998326e-01 -1.15484953e+00 -5.10503232e-01 1.09239832e-01 3.20834011e-01 -1.22622871e+00 -6.91458344e-01 1.01659596e+00 -4.69813287e-01 9.82007802e-01 3.28491032e-01 8.42795670e-01 1.03945696e+00 8.89515132e-02 8.49730313e-01 1.13925350e+00 -3.84766757e-01 3.66911411e-01 2.28857115e-01 1.07709698e-01 8.29526782e-01 -7.40754426e-01 -3.56129944e-01 -7.75976539e-01 9.86650065e-02 7.18000010e-02 -2.61587143e-01 1.96274109e-02 -1.47777423e-01 -1.11587369e+00 8.37506175e-01 6.31239340e-02 -6.96960241e-02 -5.33962488e-01 1.24322042e-01 7.92385101e-01 6.16970837e-01 7.87041247e-01 6.90249205e-01 -4.51354176e-01 -8.97440672e-01 -1.05477655e+00 -1.07454762e-01 8.29272926e-01 7.08513856e-01 1.17472756e+00 1.59580082e-01 1.13334000e-01 1.21252894e+00 3.12014341e-01 5.07426858e-01 4.56906706e-01 -1.41472650e+00 2.42311165e-01 5.76787651e-01 1.16752148e-01 -1.25057888e+00 -6.75135911e-01 -5.42989187e-02 -7.55219281e-01 3.20235007e-02 2.58666784e-01 -6.78109705e-01 -6.78280175e-01 1.93277407e+00 1.37010440e-02 1.58059821e-01 1.99588940e-01 7.54471719e-01 6.36039138e-01 5.01947522e-01 1.24936841e-01 -6.73759282e-01 1.16090167e+00 -5.87072909e-01 -7.82474756e-01 -3.51393849e-01 6.57574892e-01 -5.96512794e-01 1.22825694e+00 5.58546722e-01 -1.21502090e+00 -2.62286454e-01 -1.01165998e+00 1.29055694e-01 -6.01563752e-01 -1.85767353e-01 8.74531627e-01 8.26252460e-01 -1.09939027e+00 4.55987036e-01 -5.41734040e-01 -2.87414283e-01 3.23303372e-01 3.95452201e-01 -3.08172822e-01 7.46484622e-02 -1.49406648e+00 1.08108056e+00 -2.61387795e-01 3.64263564e-01 -3.87461394e-01 -4.71600115e-01 -1.29928601e+00 -2.72215486e-01 5.49352467e-02 -4.47423458e-01 1.14695263e+00 -1.89902282e+00 -1.77571988e+00 8.88679564e-01 -2.70760447e-01 1.72762871e-02 -1.51068093e-02 1.62588313e-01 -4.98509079e-01 3.04152817e-01 -1.27165228e-01 9.40250754e-01 8.98899317e-01 -9.14821446e-01 -5.32469809e-01 -4.04119790e-01 1.38722016e-02 7.77391374e-01 -5.48627436e-01 1.30881935e-01 -3.50814819e-01 -2.95711309e-01 -1.03890501e-01 -1.16329265e+00 9.40214992e-02 -3.56113017e-01 -1.75142065e-02 -1.83488578e-01 4.58189428e-01 -5.02324820e-01 1.32700038e+00 -1.90133166e+00 2.78917968e-01 4.60136771e-01 -9.52038616e-02 -2.65573472e-01 -1.77655920e-01 1.90593958e-01 -2.21872732e-01 -2.17504054e-01 -2.60392308e-01 -8.03485632e-01 5.07606685e-01 2.41972566e-01 2.83649005e-02 4.07898575e-01 2.54317313e-01 9.00005221e-01 -7.33073771e-01 -4.78867710e-01 2.96079189e-01 5.82818925e-01 -6.32320523e-01 -9.93432477e-02 -2.32272327e-01 1.98173657e-01 -8.97391140e-02 7.46669769e-01 1.75386507e-04 -3.65576260e-02 1.38561860e-01 -2.14995623e-01 1.17055275e-01 2.08713878e-02 -1.12660396e+00 1.71209121e+00 -7.78725803e-01 9.82310832e-01 1.01418577e-01 -8.43353748e-01 9.26083386e-01 4.48927641e-01 8.54661047e-01 -8.36846471e-01 3.02478373e-01 -3.92846316e-01 -1.86267197e-01 -8.00144911e-01 3.92408669e-01 -7.73432255e-01 -5.40012002e-01 8.96097898e-01 7.21181035e-02 -3.53500873e-01 2.53195614e-01 -1.14810936e-01 1.21431267e+00 3.21736783e-01 -2.24767774e-02 1.22775570e-01 2.83464879e-01 -6.92736059e-02 4.61108834e-01 1.72107950e-01 -6.38378561e-01 6.66293859e-01 7.40059257e-01 -2.26475388e-01 -4.58134562e-01 -7.82863021e-01 -6.30902201e-02 1.71635115e+00 -1.16214864e-01 -4.03889924e-01 -5.59185088e-01 -4.54873085e-01 -3.82838666e-01 6.72156215e-01 -1.03322613e+00 -1.86941460e-01 -1.20151021e-01 -1.17805946e+00 5.60738504e-01 4.10675853e-01 2.29028717e-01 -1.25581658e+00 -8.97785127e-01 1.78385764e-01 -4.96921450e-01 -6.72061086e-01 -1.87573612e-01 6.71818376e-01 -3.64176899e-01 -6.74501896e-01 -2.39083737e-01 -4.33912277e-01 2.92086691e-01 -5.18958211e-01 1.42949319e+00 -3.96636844e-01 -2.51124263e-01 9.43728566e-01 -3.89293402e-01 -4.57145661e-01 7.03016520e-02 -8.92538875e-02 -4.11040969e-02 1.57272458e-01 6.57810092e-01 -7.29025543e-01 -6.42759502e-01 1.03927955e-01 -9.05226707e-01 -1.38993666e-01 2.41464168e-01 6.27058923e-01 4.35888708e-01 7.06643313e-02 1.05054057e+00 -6.84291482e-01 7.81309605e-01 -6.47328496e-01 1.19596399e-01 -7.26373568e-02 -7.97389388e-01 -2.35538006e-01 4.25741374e-01 -3.99025708e-01 -1.07226551e+00 2.38548592e-01 -1.78004712e-01 -5.45581222e-01 -2.37237498e-01 7.87082851e-01 -4.93828654e-02 4.19601113e-01 4.61090535e-01 -1.72603413e-01 1.28273576e-01 2.58475214e-01 5.77409863e-01 5.52802682e-01 4.20459360e-01 -4.87136692e-01 -2.86813416e-02 3.02428901e-01 -7.24273082e-03 -6.10591292e-01 -1.04725301e+00 -3.86985987e-01 -5.16113043e-01 -6.04561031e-01 9.40440655e-01 -8.55387747e-01 -9.00394678e-01 -2.13793176e-03 -3.74269933e-01 -6.16746843e-01 -3.10646176e-01 5.64855993e-01 -9.60171223e-01 3.69073451e-03 -6.43362343e-01 -1.02470434e+00 -3.17364693e-01 -9.03038621e-01 1.10085952e+00 -3.84551361e-02 -9.57486451e-01 -1.42343128e+00 4.15076196e-01 7.47545660e-01 1.96497589e-01 4.43840653e-01 8.65711868e-01 -4.07915533e-01 1.87607095e-01 -4.89959121e-01 -5.75093627e-02 3.23245227e-01 6.74845278e-02 -2.69102510e-02 -1.26122701e+00 3.58254641e-01 -2.97219437e-02 -7.13453710e-01 4.16822672e-01 2.94784397e-01 4.25029427e-01 -1.34155795e-01 5.03002882e-01 2.42722213e-01 1.15382838e+00 1.78412989e-01 5.97981095e-01 1.41152531e-01 4.94746625e-01 7.18669653e-01 5.99437237e-01 8.29595745e-01 9.83709216e-01 3.87681961e-01 3.99277866e-01 -9.42887738e-02 3.82449180e-01 3.34117323e-01 5.81060469e-01 8.12532365e-01 1.20915920e-01 8.17602649e-02 -8.56894433e-01 5.19334137e-01 -1.82242572e+00 -1.11370742e+00 1.16416208e-01 1.67493391e+00 1.22218311e+00 1.32160271e-02 1.83031097e-01 2.93833762e-01 2.05614880e-01 3.07178289e-01 -6.21417165e-01 -1.03970933e+00 -6.64597377e-02 3.29607457e-01 -2.74675608e-01 6.22757256e-01 -1.16179943e+00 7.93362379e-01 6.12633896e+00 3.27860415e-01 -1.22952390e+00 -1.14049621e-01 9.73082721e-01 -8.05716157e-01 -2.04618886e-01 -2.26046652e-01 -7.53176957e-02 2.92235881e-01 1.16452038e+00 2.20544130e-01 7.25924850e-01 4.60127026e-01 3.10234547e-01 -4.68772680e-01 -1.38873291e+00 1.11823201e+00 5.88260651e-01 -5.29317021e-01 -6.80539370e-01 -2.92963207e-01 8.04463029e-01 -2.23205805e-01 3.06006551e-01 7.95209050e-01 2.10789621e-01 -1.20868862e+00 6.27173305e-01 9.05061066e-01 7.25509226e-01 -1.03868091e+00 7.82219231e-01 5.68833277e-02 -1.04458940e+00 5.55426851e-02 1.84124410e-01 -5.88804007e-01 -3.25786471e-02 6.28712416e-01 -6.09959781e-01 2.53987193e-01 7.13732004e-01 9.83952761e-01 -6.09497845e-01 1.44821137e-01 1.03098884e-01 5.67579150e-01 -3.52817565e-01 -1.04007833e-01 1.60514757e-01 -4.66766447e-01 -7.32750818e-02 1.41001868e+00 8.39845911e-02 3.03640008e-01 5.80566861e-02 3.07300627e-01 -9.28585157e-02 4.50701326e-01 -4.01250601e-01 -1.21439710e-01 5.95491529e-02 1.57190549e+00 -8.10728312e-01 -3.63609105e-01 -3.52912515e-01 1.16963303e+00 9.55708697e-02 1.95017070e-01 -7.86727965e-01 -5.25576055e-01 8.65066588e-01 -5.69106281e-01 1.57503635e-01 8.08118805e-02 -7.62116432e-01 -1.04565060e+00 -1.50300875e-01 -8.20102811e-01 4.61934984e-01 -1.26915872e+00 -1.25552511e+00 4.40879375e-01 -2.03223705e-01 -9.47931767e-01 -5.93086064e-01 -2.49417812e-01 -5.01156449e-01 6.27983153e-01 -1.31937337e+00 -8.64316761e-01 -1.19016901e-01 5.66121280e-01 3.83220583e-01 2.33468294e-01 1.06397581e+00 2.26471066e-01 -7.51345813e-01 4.88039434e-01 -1.83764756e-01 -1.44477248e-01 9.35723245e-01 -1.44736218e+00 -6.19712293e-01 1.87524572e-01 -4.70463857e-02 4.53833014e-01 9.07231450e-01 -2.77385294e-01 -1.52542949e+00 -8.76658082e-01 8.37413669e-01 -8.73973131e-01 7.02669263e-01 -1.88751936e-01 -3.13439697e-01 5.80681205e-01 5.40933073e-01 -3.16280693e-01 1.46198857e+00 4.95327860e-01 -3.30664039e-01 -2.79263794e-01 -1.22695649e+00 7.65229404e-01 7.18657196e-01 -8.39605510e-01 -4.73951966e-01 7.18901455e-02 1.20088451e-01 7.06406459e-02 -1.29656601e+00 3.29526544e-01 8.39538872e-01 -1.11571550e+00 7.60913014e-01 -2.30399802e-01 7.58926451e-01 6.09220527e-02 -4.53386158e-01 -1.30403483e+00 1.02662317e-01 -4.52691615e-01 -5.50526520e-03 1.22957397e+00 5.63735485e-01 -3.44066620e-02 8.38270843e-01 1.18510258e+00 1.69972610e-02 -8.93024445e-01 -8.35207462e-01 1.22277625e-01 -1.23804025e-01 -1.01110792e+00 2.21952766e-01 1.34399354e+00 7.87982702e-01 7.57513404e-01 -4.71362144e-01 -2.76954919e-01 1.98969424e-01 2.23781690e-01 4.20941740e-01 -1.21683502e+00 -1.52487278e-01 -6.26150191e-01 -2.89832979e-01 -4.40984070e-01 5.29437184e-01 -8.12518239e-01 3.72237116e-01 -1.50643420e+00 2.38478072e-02 -2.29375973e-01 -5.32605886e-01 9.00576472e-01 -1.09851107e-01 1.05267632e+00 4.97348905e-02 -2.14209259e-01 -1.27289462e+00 6.25051498e-01 7.64422357e-01 6.29744977e-02 -1.78406104e-01 -1.88138649e-01 -8.44588816e-01 8.74195993e-01 5.31413794e-01 7.27361906e-03 -6.84224546e-01 7.52096102e-02 9.69958067e-01 3.29982489e-01 -1.04012273e-01 -8.87266457e-01 1.68208972e-01 -2.41281241e-01 6.09442174e-01 -2.00396508e-01 1.00393641e+00 -7.16752291e-01 -1.48748994e-01 -4.11184490e-01 -7.00388968e-01 3.09379190e-01 1.35482416e-01 4.08533812e-01 -2.14813173e-01 -1.82861269e-01 5.66649139e-01 -2.63155140e-02 -5.16698539e-01 -9.42172408e-02 -8.94444108e-01 1.41712293e-01 7.93250442e-01 -2.84737557e-01 1.40714422e-01 -9.49155390e-01 -1.24236274e+00 1.97991922e-01 3.57392401e-01 1.62050843e-01 3.29811454e-01 -1.26572871e+00 -3.26806366e-01 6.94766715e-02 1.29096329e-01 -3.59461427e-01 3.16800028e-01 1.03247857e+00 9.84777212e-02 1.10187265e-03 -1.64930597e-02 -4.05684263e-01 -1.22227514e+00 1.75308809e-01 3.38538736e-01 -1.31356463e-01 -6.97658285e-02 8.29896927e-01 -3.58715832e-01 -6.66448951e-01 3.65776062e-01 1.27719557e-02 -2.75235295e-01 9.06284034e-01 1.79915950e-01 3.65654826e-01 1.29212022e-01 -7.03255057e-01 -3.34395975e-01 3.90951872e-01 2.76255310e-01 -6.81158483e-01 1.39141226e+00 -4.80617106e-01 -1.74531147e-01 9.55633342e-01 1.33171189e+00 -2.47895971e-01 -1.19301188e+00 4.27322574e-02 1.41612023e-01 5.63401617e-02 7.25994930e-02 -1.13224781e+00 -9.11086619e-01 8.34364653e-01 6.89999104e-01 2.43668288e-01 1.46335161e+00 -2.77354002e-01 5.56748152e-01 6.46484315e-01 -5.76535463e-02 -1.61591733e+00 5.08497536e-01 7.39983201e-01 3.56728345e-01 -1.40670073e+00 -1.05990566e-01 3.94846529e-01 -1.28474653e+00 8.69041383e-01 2.90280730e-01 1.18974693e-01 7.18554854e-01 2.64742881e-01 6.55378103e-01 -3.39454055e-01 -1.12806988e+00 -2.56370097e-01 1.83287099e-01 4.21785593e-01 6.99026227e-01 -1.06495090e-01 2.69772351e-01 6.51429951e-01 -4.09304231e-01 -3.48571017e-02 3.92859280e-01 1.00923359e+00 -2.02566430e-01 -8.16120744e-01 -1.43448293e-01 6.79178476e-01 -4.80483323e-01 -2.74768412e-01 -5.46916842e-01 1.91092044e-01 4.42422837e-01 1.40110350e+00 2.80874908e-01 -5.24117529e-01 2.52830178e-01 8.15351903e-01 4.27060962e-01 -5.50156176e-01 -9.04948771e-01 1.20171815e-01 3.98588657e-01 -5.06864011e-01 -7.05395460e-01 -1.06081307e+00 -1.14729011e+00 -5.48475832e-02 1.31309152e-01 1.11131161e-01 9.50950325e-01 1.11665320e+00 3.27677310e-01 5.53355455e-01 7.74845541e-01 -1.00499833e+00 4.64308634e-02 -9.20907080e-01 -5.24006367e-01 7.76770711e-01 1.65231839e-01 -3.96803975e-01 -4.73375738e-01 4.85692143e-01]
[13.296934127807617, 5.365234375]
713feeeb-fa5f-4788-9c89-4e086c57c6fa
multimodal-contrastive-learning-for
2304.11080
null
https://arxiv.org/abs/2304.11080v1
https://arxiv.org/pdf/2304.11080v1.pdf
Multimodal contrastive learning for diagnosing cardiovascular diseases from electrocardiography (ECG) signals and patient metadata
This work discusses the use of contrastive learning and deep learning for diagnosing cardiovascular diseases from electrocardiography (ECG) signals. While the ECG signals usually contain 12 leads (channels), many healthcare facilities and devices lack access to all these 12 leads. This raises the problem of how to use only fewer ECG leads to produce meaningful diagnoses with high performance. We introduce a simple experiment to test whether contrastive learning can be applied to this task. More specifically, we added the similarity between the embedding vectors when the 12 leads signal and the fewer leads ECG signal to the loss function to bring these representations closer together. Despite its simplicity, this has been shown to have improved the performance of diagnosing with all lead combinations, proving the potential of contrastive learning on this task.
['Hieu Pham', 'Phi Le Nguyen', 'Nhat H. Tran', 'Tue M. Cao']
2023-04-18
null
null
null
null
['electrocardiography-ecg']
['methodology']
[ 1.44166112e-01 9.98164713e-02 9.75528732e-02 -3.89131367e-01 -5.33153951e-01 -3.81124437e-01 5.50278313e-02 1.18095070e-01 -3.75004292e-01 7.34226525e-01 -3.47362049e-02 -5.96862078e-01 -4.33809280e-01 -5.00652790e-01 -3.53900433e-01 -6.36235893e-01 -6.46495044e-01 3.08727086e-01 -3.47948760e-01 -5.16388044e-02 -2.49665648e-01 5.91726840e-01 -8.96147668e-01 3.18464339e-01 5.44103503e-01 7.77952611e-01 -2.46621668e-01 8.04118216e-01 2.99489945e-01 5.63000202e-01 -9.88836169e-01 -3.22772712e-01 4.98469979e-01 -7.70143032e-01 -6.36391819e-01 -9.25646797e-02 2.32779354e-01 -5.43287694e-01 -3.05119246e-01 6.37336075e-01 1.02821767e+00 -1.42898396e-01 6.93070173e-01 -1.08222175e+00 -1.98050186e-01 5.77434540e-01 -4.12426174e-01 5.01012146e-01 3.48095894e-01 1.48510844e-01 8.57987523e-01 -4.94573444e-01 4.10179645e-01 8.35858285e-01 1.08882940e+00 3.73904735e-01 -1.20675135e+00 -5.46686172e-01 -3.68596971e-01 2.70397961e-01 -1.33897054e+00 -4.83840555e-02 9.72781003e-01 -3.25227469e-01 8.79504025e-01 4.99326855e-01 9.92370784e-01 1.10023046e+00 4.04205829e-01 3.72061133e-01 1.06536329e+00 -4.67829347e-01 -2.17423327e-02 3.71243507e-01 3.01492244e-01 4.20944899e-01 4.74582583e-01 1.57969862e-01 -1.25062600e-01 -2.95555264e-01 8.54757071e-01 3.85351293e-02 -3.82374048e-01 -2.24860445e-01 -1.27413726e+00 8.42466295e-01 5.40726840e-01 6.60599828e-01 -5.29698849e-01 -3.11738811e-02 6.17430031e-01 6.87285960e-01 1.60032392e-01 1.12153518e+00 -5.15546858e-01 -5.36393747e-02 -8.92541528e-01 8.20951238e-02 8.60716760e-01 2.42085278e-01 2.90403783e-01 1.95732385e-01 -1.57213092e-01 6.20612323e-01 -7.71214887e-02 2.08824575e-01 1.93204507e-01 -9.57176268e-01 3.65666658e-01 4.00092393e-01 -4.68056910e-02 -1.12816715e+00 -8.40943456e-01 -9.54187930e-01 -1.01554132e+00 1.50454074e-01 5.96360743e-01 -5.94460189e-01 -7.49918044e-01 1.36126125e+00 -1.90424919e-02 3.79596144e-01 -3.68887261e-02 1.12140608e+00 6.79776371e-01 3.60429108e-01 3.90848666e-02 -1.39467970e-01 1.14053500e+00 -3.15296084e-01 -7.52827704e-01 1.25760004e-01 8.03605258e-01 -4.63055640e-01 1.05697417e+00 3.52858722e-01 -9.04447198e-01 -6.14344954e-01 -1.30514669e+00 1.00734413e-01 -9.66741070e-02 2.64991596e-02 6.41251385e-01 6.96704865e-01 -7.86812067e-01 8.66448104e-01 -7.43232369e-01 -5.48651814e-02 4.33241606e-01 3.29934925e-01 -2.96192676e-01 5.94486967e-02 -1.64103174e+00 1.10897434e+00 2.37542484e-02 4.60677817e-02 -3.50957334e-01 -7.67824233e-01 -6.51185095e-01 2.54959673e-01 3.80862691e-02 -7.73459733e-01 6.81360662e-01 -6.62298143e-01 -1.04423690e+00 7.15738654e-01 2.02290609e-01 -5.54814875e-01 6.53428078e-01 -2.77226031e-01 -3.45672846e-01 2.28739321e-01 -2.13462606e-01 3.54294866e-01 6.55030608e-01 -9.32387531e-01 -1.14052832e-01 -4.39078689e-01 2.25504383e-01 1.38428271e-01 -3.60818863e-01 -3.09866190e-01 -7.23247603e-03 -5.66386878e-01 2.03240633e-01 -8.55276644e-01 -3.24772567e-01 -2.02998333e-02 -2.80406922e-01 5.54332556e-03 3.71741593e-01 -8.68170023e-01 1.14362097e+00 -2.41795564e+00 6.22609146e-02 5.21463752e-01 5.99533796e-01 3.51643592e-01 -1.72987860e-02 2.68798918e-01 -3.08123082e-01 1.88950688e-01 -4.43265699e-02 1.66526541e-01 -2.86445171e-01 2.86842585e-01 1.15629233e-01 5.80832481e-01 2.99084991e-01 1.00299835e+00 -8.69278669e-01 -3.61202806e-01 3.86932760e-01 8.79334211e-01 -3.08224440e-01 -2.80070826e-02 6.18294895e-01 5.37918270e-01 -1.36432081e-01 2.97386438e-01 4.32538003e-01 -3.44107240e-01 4.33430791e-01 -3.67412478e-01 4.65056986e-01 3.36483330e-01 -1.07986712e+00 1.34461761e+00 -2.95741409e-01 7.35226631e-01 -3.85264218e-01 -1.25271690e+00 9.10476863e-01 6.86261892e-01 8.71984243e-01 -6.66875124e-01 1.92901880e-01 6.37153089e-02 7.28828132e-01 -7.60790348e-01 -3.48301172e-01 -3.69944245e-01 2.15967491e-01 2.63876766e-01 -7.85624459e-02 -8.67441744e-02 -2.03232616e-01 -1.18668877e-01 1.19446790e+00 -3.08058441e-01 2.94738114e-01 -1.36310473e-01 1.82920843e-01 -3.10689986e-01 5.92733026e-01 8.08379173e-01 -3.00336659e-01 7.85536051e-01 7.15789020e-01 -8.41739416e-01 -9.95644152e-01 -1.22684574e+00 -3.50802988e-01 3.29193324e-01 -1.82733312e-01 -4.68806446e-01 -5.01422584e-01 -8.26326489e-01 1.02686472e-01 5.12364209e-01 -6.15325928e-01 -2.97929078e-01 -5.62146783e-01 -8.98627996e-01 8.56509745e-01 9.10102606e-01 1.92971736e-01 -7.40280330e-01 -1.13409269e+00 1.80118099e-01 -6.11508302e-02 -6.67615533e-01 9.32153091e-02 5.69438100e-01 -1.13935304e+00 -1.24183285e+00 -9.23276424e-01 -4.97154295e-01 3.70691955e-01 -3.37829322e-01 1.20963192e+00 2.42241137e-02 -5.98283768e-01 2.38661766e-01 -2.00867504e-01 -5.30746996e-01 -2.50725150e-01 -2.37165838e-02 -8.19706172e-02 -1.98390707e-01 1.84834972e-01 -6.49999857e-01 -6.24955535e-01 -1.71530008e-01 -4.50175166e-01 -3.06670725e-01 6.00474119e-01 1.10194361e+00 2.14845926e-01 -4.91622500e-02 7.74752200e-01 -1.00384843e+00 9.61806059e-01 -3.35159510e-01 1.31915629e-01 9.73215606e-03 -7.21750259e-01 -1.30810186e-01 5.65018296e-01 -4.01478887e-01 -1.08783670e-01 1.14529277e-03 -4.37831491e-01 -5.36249280e-01 -3.67992073e-02 6.37862802e-01 7.41513968e-02 1.51708066e-01 8.81763518e-01 -8.55632883e-04 2.43167654e-01 -2.96914130e-01 -5.14778234e-02 5.38547516e-01 2.93113947e-01 -7.93560371e-02 3.67149353e-01 1.10988915e-01 2.35572085e-01 -7.78554440e-01 -3.47517312e-01 -3.22420061e-01 -6.01490021e-01 -1.44382581e-01 8.38009119e-01 -6.52887583e-01 -5.04427791e-01 -6.20152354e-02 -9.17315304e-01 -1.91929117e-02 -6.56204402e-01 7.11794734e-01 -3.92944932e-01 4.13053066e-01 -7.20654249e-01 -7.14087069e-01 -4.37903762e-01 -9.26393807e-01 5.80500960e-01 -2.65412807e-01 -7.44760871e-01 -1.03981256e+00 -1.30780831e-01 -7.82385841e-02 4.59475040e-01 6.45819545e-01 1.09217966e+00 -7.92782068e-01 1.66885093e-01 -5.02947867e-01 1.90907978e-02 6.52462721e-01 3.98786694e-01 -3.36982518e-01 -9.43722904e-01 -4.34557557e-01 2.44229540e-01 -6.51287287e-02 6.90001965e-01 3.86589468e-01 1.08543944e+00 -3.28115560e-02 -1.68246776e-01 5.77162802e-01 1.13824463e+00 5.11603475e-01 8.07173669e-01 8.84846747e-02 6.99265301e-01 4.23044354e-01 2.49576382e-02 3.02199006e-01 2.77323388e-02 5.48025250e-01 4.62337723e-03 -7.60374129e-01 -7.36815557e-02 3.36972028e-01 -1.10078909e-01 7.98981905e-01 -3.22686791e-01 8.11357200e-02 -1.09463382e+00 3.47514272e-01 -1.37866211e+00 -7.98912168e-01 -1.79113373e-01 2.12099743e+00 6.93788648e-01 2.06116602e-01 3.77643667e-02 8.37596595e-01 3.76475126e-01 -4.81766947e-02 -6.56627774e-01 -5.86389005e-01 -4.95117791e-02 5.54914594e-01 1.89364716e-01 1.04318388e-01 -1.04478621e+00 -1.01986445e-01 7.47519350e+00 1.68919444e-01 -1.58372545e+00 9.37004089e-02 8.59977365e-01 -5.00470214e-02 -1.49436399e-01 -3.59912455e-01 -1.32249787e-01 5.06867647e-01 1.03363156e+00 1.36547580e-01 1.23078056e-01 5.03023207e-01 1.21390425e-01 3.42707753e-01 -1.33181357e+00 1.28585541e+00 -6.08884022e-02 -1.15737665e+00 -1.63033485e-01 -2.05171425e-02 3.20446581e-01 -2.13866413e-01 6.20474778e-02 2.72254318e-01 -5.53270757e-01 -1.17958772e+00 6.96729347e-02 5.14989018e-01 9.00171041e-01 -7.96527863e-01 1.23321128e+00 1.18695028e-01 -6.27526581e-01 -1.62834123e-01 -1.60131514e-01 -2.67465055e-01 -1.25466794e-01 7.35236287e-01 -1.09759438e+00 6.22516632e-01 6.98582172e-01 7.35776544e-01 -5.78338981e-01 1.08222115e+00 3.17101390e-03 8.37110460e-01 -2.04839811e-01 1.51492730e-01 -2.64726654e-02 2.79113725e-02 5.50607800e-01 1.23706830e+00 1.44914329e-01 -1.59061000e-01 1.73619881e-01 7.81846464e-01 2.34008640e-01 2.43028346e-02 -9.12892282e-01 2.15678647e-01 2.53939599e-01 9.25380528e-01 -6.47417724e-01 -5.07846713e-01 -4.46565866e-01 8.27112257e-01 -1.14929788e-01 3.29840004e-01 -8.48586023e-01 -7.51950800e-01 3.25613022e-01 4.81571585e-01 -1.58646673e-01 5.76319024e-02 -8.34642708e-01 -7.70664692e-01 2.36536097e-02 -1.04405248e+00 4.03933138e-01 -4.63621438e-01 -1.37338257e+00 6.81599677e-01 -3.31216701e-03 -1.30377960e+00 -5.65075040e-01 -3.83396268e-01 -5.20530283e-01 1.06102931e+00 -1.18494296e+00 -6.08468950e-01 -6.20254390e-02 4.09581006e-01 1.71526730e-01 1.19413659e-02 1.18906641e+00 6.32523298e-01 -3.61128896e-01 9.59110439e-01 -2.08424583e-01 3.87257725e-01 6.72120810e-01 -1.52406025e+00 2.60497868e-01 4.35640037e-01 1.74724028e-01 8.05331588e-01 6.14099562e-01 -2.63812482e-01 -9.65042293e-01 -8.75995934e-01 9.40017581e-01 -4.20146614e-01 -5.20583950e-02 -1.34087488e-01 -9.74342406e-01 2.63478696e-01 2.65912265e-01 7.36266971e-02 8.35188687e-01 2.47735262e-01 -1.32150963e-01 -2.46565133e-01 -1.13335514e+00 4.67932254e-01 6.21194899e-01 -6.14434123e-01 -7.55128980e-01 1.07347826e-02 1.70594752e-01 -2.78817534e-01 -1.20271397e+00 8.12153995e-01 8.75005603e-01 -7.99234092e-01 1.05142629e+00 -5.84246457e-01 3.25317800e-01 -8.71553794e-02 1.30747721e-01 -1.46068978e+00 -4.29249972e-01 -3.22352529e-01 -1.41722456e-01 7.01303422e-01 4.93130744e-01 -8.55479717e-01 6.12352967e-01 4.11117077e-01 7.95397684e-02 -1.13750350e+00 -8.55676413e-01 -7.21355677e-01 1.95632398e-01 -2.98187643e-01 3.62461954e-01 1.34118223e+00 5.45982532e-02 5.61138451e-01 -4.95103538e-01 -1.14355847e-01 2.65648633e-01 -2.36956067e-02 2.84143209e-01 -1.49410915e+00 -5.91938674e-01 -3.14038754e-01 -8.19965065e-01 -4.81574357e-01 -2.33791918e-01 -1.01087415e+00 -3.03437412e-01 -1.70242405e+00 9.14169475e-02 -5.51875770e-01 -8.94241929e-01 5.76961398e-01 -4.32799488e-01 4.41785634e-01 2.38190889e-01 -1.81983843e-01 -5.07040210e-02 -1.39510199e-01 1.22566283e+00 -3.33377272e-01 -4.38651979e-01 5.08036502e-02 -7.36585855e-01 5.27694702e-01 1.02516687e+00 -4.89647567e-01 -5.67442298e-01 -1.32806823e-01 1.50756240e-01 2.50297070e-01 3.03228050e-01 -1.15512455e+00 -2.67915100e-01 6.40365481e-01 1.01412082e+00 -1.79618359e-01 3.44893903e-01 -8.97920668e-01 2.02492312e-01 8.76651764e-01 -4.10258502e-01 3.03402245e-01 4.00324941e-01 1.67085156e-01 -2.77747750e-01 8.15772042e-02 6.15723372e-01 -1.31091416e-01 -2.56741107e-01 -8.76001865e-02 -5.08202553e-01 -5.77095263e-02 8.34188044e-01 -4.05880511e-01 2.64459997e-01 -3.66221607e-01 -1.13604653e+00 -7.28420019e-02 -3.02674109e-03 3.13369751e-01 7.72807240e-01 -1.09584308e+00 -8.19924057e-01 4.95262682e-01 -1.42854765e-01 -3.54368627e-01 1.14449382e-01 1.20096898e+00 -6.50505245e-01 2.37882197e-01 -5.31406999e-01 -8.13515902e-01 -1.26325166e+00 4.11250085e-01 6.03685677e-01 -2.21850798e-01 -1.00808620e+00 6.28984511e-01 -1.36394307e-01 -1.11454941e-01 4.37726587e-01 -4.02199864e-01 -3.49103630e-01 1.34738639e-01 4.17938381e-01 6.36843801e-01 2.96353608e-01 8.39289511e-04 -4.73114610e-01 4.12096888e-01 1.40839070e-01 5.69013208e-02 1.27208555e+00 1.43224359e-01 2.13881746e-01 7.32478142e-01 1.28828919e+00 -1.38066784e-01 -7.59643137e-01 3.07489485e-01 -5.48640601e-02 -2.71888435e-01 2.42893435e-02 -9.81987357e-01 -1.22794294e+00 1.24167407e+00 1.24047577e+00 2.01116368e-01 1.16997159e+00 -3.84460062e-01 6.64839327e-01 4.01542515e-01 2.96304762e-01 -6.49533451e-01 -1.31287694e-01 1.31769910e-01 6.49816155e-01 -1.03919220e+00 5.69479465e-02 -1.35137826e-01 -6.63586557e-01 1.06367826e+00 1.52590603e-01 -3.00939113e-01 8.29497755e-01 3.11408937e-01 5.03186882e-01 -2.16531739e-01 -3.55596840e-01 2.76899841e-02 2.91102380e-01 6.79275036e-01 7.17041314e-01 2.95857519e-01 -5.48136592e-01 4.84746635e-01 -4.27601114e-02 7.92300627e-02 4.36317295e-01 8.63131464e-01 1.31157801e-01 -1.03967094e+00 -1.77093923e-01 9.70840573e-01 -8.87705505e-01 -9.45720151e-02 -4.94006574e-01 8.55695009e-01 4.23818111e-01 9.95845437e-01 -1.21903189e-01 -5.99469304e-01 4.67568994e-01 4.65352923e-01 5.82248747e-01 -5.66679120e-01 -7.80278027e-01 1.29897401e-01 -4.22848985e-02 -4.41191018e-01 -4.96435277e-02 -4.22321588e-01 -1.12251985e+00 6.05549775e-02 -2.70460784e-01 2.07071424e-01 4.37294990e-01 5.64767599e-01 4.82384473e-01 1.04822659e+00 5.76651394e-01 -5.09370565e-01 -7.39990234e-01 -1.00589454e+00 -7.99368858e-01 6.35976732e-01 6.43635392e-01 -4.32743102e-01 -3.44368279e-01 9.85143613e-03]
[14.318079948425293, 3.298522710800171]
990e03b6-46b6-4ca6-af58-b79a6acc2e55
streaming-parallel-transducer-beam-search
2203.15773
null
https://arxiv.org/abs/2203.15773v1
https://arxiv.org/pdf/2203.15773v1.pdf
Streaming parallel transducer beam search with fast-slow cascaded encoders
Streaming ASR with strict latency constraints is required in many speech recognition applications. In order to achieve the required latency, streaming ASR models sacrifice accuracy compared to non-streaming ASR models due to lack of future input context. Previous research has shown that streaming and non-streaming ASR for RNN Transducers can be unified by cascading causal and non-causal encoders. This work improves upon this cascaded encoders framework by leveraging two streaming non-causal encoders with variable input context sizes that can produce outputs at different audio intervals (e.g. fast and slow). We propose a novel parallel time-synchronous beam search algorithm for transducers that decodes from fast-slow encoders, where the slow encoder corrects the mistakes generated from the fast encoder. The proposed algorithm, achieves up to 20% WER reduction with a slight increase in token emission delays on the public Librispeech dataset and in-house datasets. We also explore techniques to reduce the computation by distributing processing between the fast and slow encoders. Lastly, we explore sharing the parameters in the fast encoder to reduce the memory footprint. This enables low latency processing on edge devices with low computation cost and a low memory footprint.
['Michael L Seltzer', 'Ozlem Kalinli', 'Vikas Chandra', 'Jiedan Zhu', 'Duc Le', 'Ke Li', 'Yangyang Shi', 'Jay Mahadeokar']
2022-03-29
null
null
null
null
['low-latency-processing']
['robots']
[ 6.49622083e-01 1.86421499e-01 4.48610820e-02 -4.12728041e-01 -1.20499146e+00 -5.73868871e-01 2.92408943e-01 6.17409572e-02 -5.10612130e-01 3.00939530e-01 5.19931972e-01 -6.54369533e-01 1.13392390e-01 -5.18880665e-01 -9.14264023e-01 -4.99811262e-01 1.32162318e-01 2.72100568e-01 7.05712259e-01 -2.44161282e-02 -1.91124796e-03 7.31798410e-02 -1.66890311e+00 7.97666609e-01 5.20768344e-01 8.20143998e-01 8.05157483e-01 1.47979808e+00 -5.15647270e-02 1.16387153e+00 -7.97740340e-01 -3.10642123e-01 1.36687636e-01 -5.56131840e-01 -5.32601595e-01 -4.67243254e-01 2.75829256e-01 -5.34532607e-01 -5.53180218e-01 7.66133249e-01 8.34654689e-01 5.68119064e-02 6.19495171e-04 -7.87810028e-01 -3.67544442e-01 1.33757603e+00 -3.80911618e-01 5.57941198e-01 3.79079461e-01 -4.89602610e-02 1.21020806e+00 -6.77411675e-01 1.40551850e-01 1.10791910e+00 4.51935947e-01 7.42146015e-01 -9.92506266e-01 -7.25122750e-01 1.96546361e-01 4.94479209e-01 -1.30537510e+00 -1.16484821e+00 5.32712996e-01 1.40721396e-01 1.57864285e+00 7.20085323e-01 3.90703261e-01 1.08970046e+00 -8.57007056e-02 9.38981116e-01 5.91037571e-01 -4.32048082e-01 3.90103102e-01 -1.99549958e-01 3.52398865e-02 1.84926063e-01 -2.25685582e-01 9.54232737e-03 -1.40523481e+00 -5.18466569e-02 5.05858719e-01 -2.01318115e-01 -2.14705884e-01 6.20621920e-01 -1.12482846e+00 3.96968186e-01 -1.49734497e-01 2.17547446e-01 -6.54561639e-01 4.20858592e-01 6.15651846e-01 4.64867532e-01 4.66343164e-01 -1.71976671e-01 -6.75781131e-01 -8.01242411e-01 -1.39147508e+00 -5.55728599e-02 6.67907298e-01 1.21260309e+00 1.39998510e-01 3.79581422e-01 -3.00200492e-01 7.79677510e-01 3.30131531e-01 4.96892363e-01 6.81288183e-01 -7.72903860e-01 7.64465094e-01 -2.55813804e-02 -1.08680129e-01 -2.48282760e-01 -9.09018442e-02 -2.80475050e-01 -6.51076317e-01 -3.21086824e-01 9.63866636e-02 -1.90201417e-01 -1.02013242e+00 1.57038510e+00 3.16518128e-01 7.93471098e-01 1.93412974e-01 8.59927654e-01 5.74244559e-01 1.10848343e+00 -2.51916200e-01 -5.76662362e-01 1.32680058e+00 -1.05611646e+00 -1.08363450e+00 -1.20776899e-01 7.66721070e-01 -8.38575423e-01 9.72549140e-01 5.11013985e-01 -1.58739340e+00 -2.93136090e-01 -1.03203726e+00 -2.91036218e-01 2.59971410e-01 2.24721342e-01 2.86124021e-01 7.66265750e-01 -1.34632993e+00 5.12046933e-01 -1.39962673e+00 5.35536408e-02 3.63154709e-02 5.30758202e-01 1.12135999e-01 2.81466246e-01 -1.18024576e+00 3.36985558e-01 2.59281695e-01 2.21397802e-01 -8.06340694e-01 -9.84829187e-01 -5.42997658e-01 2.90191412e-01 3.36519897e-01 -3.30035180e-01 1.85617602e+00 -8.51875246e-01 -2.08793092e+00 9.00195614e-02 -7.69298196e-01 -8.86849284e-01 3.22419673e-01 -4.50091869e-01 -4.50713366e-01 1.21310718e-01 -4.68974084e-01 2.32502401e-01 8.09453130e-01 -4.08666849e-01 -1.01128125e+00 -3.99818987e-01 -3.30770433e-01 3.21641654e-01 -5.77347219e-01 4.32752073e-01 -4.25344348e-01 -6.51362300e-01 1.68569282e-01 -8.22554708e-01 4.23593726e-03 -7.35030711e-01 -2.70718783e-01 -3.60885531e-01 8.71643841e-01 -8.31154823e-01 1.61438501e+00 -2.19306588e+00 6.68156371e-02 -7.23626912e-02 -1.46669462e-01 5.25105357e-01 1.27145415e-02 4.75050509e-01 7.42933601e-02 4.17608442e-03 3.18732969e-02 -5.30990064e-01 -1.87096015e-01 2.77341455e-01 -7.01374114e-01 1.67784810e-01 2.72541568e-02 5.15043378e-01 -9.10738707e-01 -2.81760156e-01 3.19533721e-02 5.64357102e-01 -5.74123859e-01 4.90818739e-01 -6.96850643e-02 4.06895876e-02 6.61183670e-02 3.12066495e-01 2.82448143e-01 2.06646435e-02 2.39958599e-01 9.98831764e-02 -2.79214472e-01 1.37592077e+00 -1.29588842e+00 1.78041220e+00 -7.62586236e-01 7.63484776e-01 2.89524227e-01 -7.88107276e-01 7.95194805e-01 1.13477933e+00 -2.81063039e-02 -7.34530807e-01 -2.95555711e-01 3.55694145e-01 6.19592555e-02 -2.68495768e-01 8.41529429e-01 -2.39096638e-02 3.58778030e-01 5.05945027e-01 9.87104252e-02 2.14625090e-01 2.61941440e-02 2.99842805e-01 1.55390072e+00 -7.58836120e-02 -4.03990671e-02 3.41402501e-01 3.41783792e-01 -4.24847871e-01 6.17535889e-01 8.69531155e-01 9.21671221e-04 5.91265142e-01 2.59940684e-01 -3.75126339e-02 -1.16191053e+00 -9.11362350e-01 2.90255547e-01 1.62223899e+00 -2.09894627e-01 -7.59336650e-01 -6.46521270e-01 -2.42150351e-01 -5.76981544e-01 9.20032203e-01 7.49340048e-03 1.06711000e-01 -9.70464528e-01 -3.11190903e-01 9.38633859e-01 8.19227874e-01 -1.68689098e-02 -9.11902368e-01 -7.26882100e-01 4.24648017e-01 -7.40904659e-02 -1.26380265e+00 -5.48722088e-01 3.73500466e-01 -8.77540827e-01 -2.03367457e-01 -4.15768176e-01 -5.73206306e-01 1.07723348e-01 3.74854743e-01 7.79035151e-01 -1.83862463e-01 2.43503302e-01 -6.07900657e-02 -5.68995237e-01 -4.12420154e-01 -6.82685316e-01 2.61532575e-01 2.02376530e-01 -1.00419775e-01 2.83870220e-01 -7.15989947e-01 -5.46343505e-01 1.27927229e-01 -8.83484781e-01 3.61391336e-01 5.63098431e-01 7.49732673e-01 5.71516514e-01 -1.01414748e-01 7.53586411e-01 -8.78402054e-01 4.43478405e-01 -4.16794270e-01 -5.62605739e-01 2.05211908e-01 -5.40918291e-01 1.08721942e-01 9.09082651e-01 -5.95777869e-01 -1.35836625e+00 1.55587241e-01 -6.23941362e-01 -4.57649499e-01 -4.99294810e-02 2.67656595e-01 2.17967499e-02 6.84444547e-01 4.54263657e-01 4.85634267e-01 -4.05599415e-01 -4.35041219e-01 4.41774458e-01 1.28665066e+00 4.31740075e-01 -1.19504198e-01 3.04436356e-01 1.48835316e-01 -4.15736318e-01 -9.18689191e-01 -3.69455576e-01 -5.91778576e-01 -1.87601984e-01 -4.82463203e-02 4.53226864e-01 -1.08106005e+00 -6.80982292e-01 3.98104101e-01 -1.39666831e+00 -4.02118593e-01 -3.28194201e-01 6.31596804e-01 -6.07379794e-01 1.04716904e-01 -1.01866949e+00 -1.33578467e+00 -7.48572648e-01 -9.95068371e-01 1.25542045e+00 1.15762733e-01 -3.31334382e-01 -4.98944402e-01 -1.13636501e-01 2.63245553e-01 3.98853898e-01 -7.73387313e-01 3.58931661e-01 -8.51824224e-01 -6.68440163e-01 5.04026823e-02 1.37634471e-01 2.72118330e-01 -6.49795309e-02 -9.86317843e-02 -1.23815691e+00 -2.76736498e-01 5.48314080e-02 -5.70919029e-02 7.63431072e-01 3.63337249e-01 1.03177702e+00 -6.14634097e-01 -7.15413690e-02 4.70480382e-01 1.01078784e+00 5.89159727e-01 4.47594374e-01 -2.72182882e-01 6.47281826e-01 4.06766117e-01 4.18534428e-01 4.90964502e-01 1.95816472e-01 7.41169631e-01 4.25329991e-03 3.34846973e-01 -2.70842314e-01 -4.57265615e-01 1.02189684e+00 1.80752087e+00 -4.37605828e-02 -6.25438333e-01 -7.26417661e-01 8.28101337e-01 -1.94553232e+00 -9.94891584e-01 -2.66892612e-01 2.40609908e+00 1.08523941e+00 1.94710389e-01 8.85802284e-02 6.78346574e-01 5.83475173e-01 1.55426517e-01 -3.17369521e-01 -8.88806641e-01 1.51085332e-01 5.24017334e-01 7.14220762e-01 5.70189953e-01 -4.78630334e-01 9.11156595e-01 6.10630846e+00 1.04667759e+00 -1.08027446e+00 5.30720353e-01 4.19467419e-01 -7.68934906e-01 -3.88069272e-01 -8.82939324e-02 -1.05780900e+00 5.74427783e-01 2.08649230e+00 -7.13287294e-02 5.94097316e-01 6.21954024e-01 5.87718248e-01 1.60863027e-01 -1.24094582e+00 9.94478583e-01 -1.77845508e-01 -1.35294747e+00 -1.75687805e-01 -2.49518260e-01 2.56726295e-01 2.70629287e-01 -7.81498179e-02 1.62942689e-02 3.21292490e-01 -7.49774277e-01 9.96408403e-01 8.75778496e-02 9.53626394e-01 -8.02240372e-01 4.93999511e-01 5.61126947e-01 -1.45968318e+00 -1.92782104e-01 -1.32726550e-01 -2.74116248e-01 5.61627746e-01 5.41328311e-01 -1.14797974e+00 4.12367523e-01 6.53929174e-01 2.81172156e-01 4.59622294e-02 5.25524020e-01 -3.83989573e-01 1.55980003e+00 -5.64516008e-01 -1.84111118e-01 -4.40240745e-03 2.26268649e-01 6.53651714e-01 1.61021852e+00 5.28905272e-01 2.68868595e-01 -3.96666378e-01 3.96370023e-01 -6.19946010e-02 1.78713899e-03 -2.78929412e-01 1.59941260e-02 1.04191196e+00 8.21645916e-01 -4.65933233e-01 -4.79648501e-01 -5.15455842e-01 1.13857126e+00 2.05880374e-01 2.42596686e-01 -8.33701611e-01 -5.00422120e-01 5.22318780e-01 1.39876664e-01 4.36301112e-01 -3.87547821e-01 -4.05718058e-01 -8.50842774e-01 1.23477265e-01 -7.68728554e-01 1.97855398e-01 -6.33562744e-01 -6.38119698e-01 6.04410827e-01 -3.33927542e-01 -6.65471613e-01 -7.24183202e-01 -7.09088817e-02 -3.98338526e-01 9.56112206e-01 -1.42080057e+00 -8.22517037e-01 1.83906510e-01 5.08770525e-01 1.17386174e+00 7.07726041e-03 7.02570319e-01 5.92444837e-01 -5.66062450e-01 8.91752183e-01 -6.70012161e-02 -1.40844256e-01 5.26659012e-01 -1.22106504e+00 9.05743301e-01 1.25058901e+00 4.18461740e-01 4.60445046e-01 7.09810376e-01 -5.50220847e-01 -1.67985868e+00 -1.05597997e+00 1.38060033e+00 -9.00993943e-02 5.49286127e-01 -7.34068334e-01 -1.00823963e+00 6.98507130e-01 3.06498528e-01 -6.22641966e-02 5.62589049e-01 1.36049166e-01 -2.18015581e-01 -3.52163017e-01 -5.25585413e-01 5.43763101e-01 1.15466332e+00 -8.07255447e-01 -4.70887899e-01 1.66565329e-01 1.35231757e+00 -6.54022872e-01 -6.64070845e-01 2.46877670e-02 6.35422707e-01 -8.62214386e-01 6.00917161e-01 -2.40733147e-01 3.35249603e-01 -2.57647485e-01 -2.48056218e-01 -1.07025313e+00 -3.28401406e-03 -1.31282234e+00 -6.92069471e-01 1.37179399e+00 4.99512523e-01 -4.52692389e-01 8.60080719e-01 4.23945993e-01 -4.40245807e-01 -6.01775527e-01 -1.31773663e+00 -7.45487750e-01 -5.94763577e-01 -1.07631862e+00 5.94221175e-01 2.05827951e-01 4.53304574e-02 4.74897176e-01 -5.21041632e-01 5.15432119e-01 1.74636245e-01 -2.45403394e-01 4.28852946e-01 -5.39590895e-01 -6.08385563e-01 -3.63242254e-02 -1.60855368e-01 -1.57670259e+00 -1.25912651e-01 -7.22862780e-01 4.04499114e-01 -1.05075181e+00 -8.88074711e-02 -4.57432926e-01 -3.38146299e-01 4.88551974e-01 -1.88105017e-01 1.62455030e-02 1.23536669e-01 1.13274954e-01 -5.07863224e-01 2.95557469e-01 5.32464325e-01 2.34918103e-01 -5.15705407e-01 1.54097676e-01 -2.01552272e-01 4.18225646e-01 7.18314409e-01 -7.38218725e-01 -7.16508269e-01 -7.94711292e-01 4.93425131e-01 5.20276666e-01 -1.33898512e-01 -8.61678839e-01 8.50448370e-01 2.29823336e-01 -1.82377994e-01 -7.63841331e-01 4.05531853e-01 -5.86338460e-01 2.10127875e-01 1.62580684e-01 -7.75823116e-01 2.65653670e-01 4.67780558e-03 6.36314273e-01 -2.01540828e-01 -2.91432202e-01 3.72945309e-01 2.07080811e-01 -2.97919512e-01 -1.39796156e-02 -6.93570495e-01 -1.91542387e-01 6.58428311e-01 -4.68010679e-02 2.03879420e-02 -4.42262411e-01 -5.46025455e-01 -8.94196033e-02 -1.69098258e-01 3.80766362e-01 7.88210154e-01 -9.42581356e-01 -8.15144539e-01 2.26242676e-01 -3.12490880e-01 2.30524302e-01 2.33401671e-01 7.87213504e-01 -3.04197669e-01 6.00694776e-01 5.02235174e-01 -6.83327317e-01 -1.79187059e+00 2.54062861e-01 5.87681644e-02 -2.53327250e-01 -5.82468808e-01 1.22699428e+00 -1.64785326e-01 4.34791930e-02 4.49220806e-01 -4.71076816e-01 2.06585035e-01 -1.17157221e-01 9.44813013e-01 7.03706741e-01 5.90168476e-01 -4.14837152e-01 -3.01307827e-01 -1.50855452e-01 -1.88391015e-01 -6.77258968e-01 1.28836191e+00 -3.49493772e-01 1.61300883e-01 8.80661368e-01 8.70510757e-01 1.80292845e-01 -1.06265044e+00 -2.66493142e-01 7.73239210e-02 -2.47586250e-01 4.61154103e-01 -5.70941150e-01 -9.10599232e-01 9.55926657e-01 4.76482123e-01 2.79391766e-01 1.44385266e+00 -2.61128023e-02 1.32903576e+00 1.09228194e-01 2.57611483e-01 -1.17072868e+00 -2.35052705e-01 5.61337948e-01 4.42840189e-01 -7.18209982e-01 -4.90977079e-01 -2.66673654e-01 -5.28234363e-01 1.06052172e+00 2.46919245e-01 2.13047296e-01 2.76167274e-01 9.89779353e-01 -1.16442136e-01 2.74974227e-01 -1.60378218e+00 3.73879001e-02 -7.79263675e-02 4.03614014e-01 7.52315104e-01 3.20730597e-01 -3.47337067e-01 6.97850525e-01 -3.85395318e-01 4.88520041e-02 5.78385711e-01 7.87895560e-01 -2.54359126e-01 -1.12997079e+00 -2.72735804e-01 3.87080222e-01 -7.92522013e-01 -4.95023161e-01 -1.36591465e-04 1.86884776e-02 -1.57242134e-01 1.34388494e+00 4.33550090e-01 -6.36021972e-01 2.22638518e-01 1.29477993e-01 2.26943880e-01 -6.78187728e-01 -9.12492394e-01 4.11758184e-01 1.95135966e-01 -6.67426646e-01 -1.93920761e-01 -7.30349660e-01 -1.36465323e+00 -1.24319203e-01 -5.81996858e-01 8.55266973e-02 1.00230706e+00 8.20734680e-01 6.50222480e-01 8.03194880e-01 6.59017146e-01 -4.75005925e-01 -7.97491729e-01 -1.16655362e+00 -3.74643803e-01 -1.81331605e-01 5.14958501e-01 2.32296601e-01 -2.96384364e-01 2.37929016e-01]
[14.489425659179688, 6.798915863037109]
bb4de338-0466-4ba3-9172-e60d78d85510
agcn-adversarial-graph-convolutional-network
null
null
https://www.bmvc2021-virtualconference.com/assets/papers/1545.pdf
https://www.bmvc2021-virtualconference.com/assets/papers/1545.pdf
AGCN: Adversarial Graph Convolutional Network for 3D Point Cloud Segmentation
3D point cloud segmentation provides a high-level semantic understanding of object structure that is valuable in applications such as medicine, robotics and self-driving. In this paper, we propose an Adversarial Graph Convolutional Network for 3D point cloud segmentation. Many current networks encounter problems such as low segmentation accuracy and high complexities due to their crude network architectures and local feature aggregation methods. To overcome these problems, we propose a) a graph convolutional network (GCN) in an adversarial learning scheme where a discriminator network provides a segmentation network with informative information to improve segmentation accuracy and b) a graph convolution, GeoEdgeConv, as a means of local feature aggregation to improve segmentation accuracy and space and time complexities. By using an embedding L2 loss as an adversarial loss, the proposed network is learned to reduce noisy labels by enforcing the consistency between neighbouring labels. Preserving geometric structures over convolution layers by using both point and relative position features, GeoEdgeConv helps learn fine details of complex structures, and thus improves segmentation accuracy in boundaries and reduces label noise inside a class without increased computational complexity. Experiments on ShapeNet Part demonstrate that our model outperforms the state-of-the-art (SOTA) with lower complexity and it has strong prospects in applications requiring low power but high segmentation performance.
['Daniel C. Alexander', 'Seunghoi Kim']
2021-11-25
null
null
null
british-machine-vision-conference-bmvc-2021
['3d-part-segmentation', 'point-cloud-segmentation']
['computer-vision', 'computer-vision']
[ 7.23878741e-02 4.35077310e-01 8.61399472e-02 -3.12942624e-01 -3.54485035e-01 -5.81694245e-01 2.78588623e-01 1.15093671e-01 -2.34467253e-01 2.87619174e-01 -5.43270767e-01 -2.46170774e-01 1.05272800e-01 -1.30768871e+00 -9.84995306e-01 -6.94712520e-01 -1.27562761e-01 5.67888260e-01 6.01341903e-01 -1.71691164e-01 9.50457528e-02 1.13380802e+00 -9.17126179e-01 -1.33870080e-01 1.19922793e+00 1.23063242e+00 -3.18147428e-02 2.50023305e-01 -4.81016666e-01 4.72310156e-01 -5.62943757e-01 -4.48154122e-01 7.20085740e-01 -2.49342933e-01 -9.06980574e-01 1.32219449e-01 4.00011927e-01 -8.70661065e-02 -3.76817197e-01 1.44106901e+00 4.20922935e-01 8.49178061e-03 5.91604888e-01 -1.32897151e+00 -7.07635581e-01 2.60779768e-01 -6.90624952e-01 -2.39969075e-01 -4.74076904e-02 3.92109931e-01 6.04819953e-01 -4.75223750e-01 4.84769821e-01 1.31791043e+00 1.04379094e+00 6.00755930e-01 -1.21211040e+00 -7.21271276e-01 2.65668333e-01 -2.67110318e-01 -1.45972002e+00 3.52658838e-01 1.20009387e+00 -3.45418066e-01 6.48968458e-01 2.00278684e-01 8.50062907e-01 5.32308459e-01 3.08931947e-01 7.04824269e-01 6.89058959e-01 9.93981361e-02 2.23668993e-01 -2.15510190e-01 -2.55854018e-02 9.79412198e-01 7.14401975e-02 1.43595468e-02 2.72576869e-01 -4.60640388e-03 1.38136470e+00 3.41372043e-01 -1.65382296e-01 -7.32256770e-01 -9.50589120e-01 9.45173025e-01 1.44428968e+00 3.64414096e-01 -2.86882013e-01 3.97069037e-01 3.26847941e-01 2.40066320e-01 5.75975895e-01 4.49009508e-01 -3.87052208e-01 5.33874273e-01 -7.27645695e-01 2.79522657e-01 5.88689089e-01 1.22258234e+00 1.05270302e+00 1.71594188e-01 -1.38668001e-01 6.77890897e-01 2.22425342e-01 5.26300430e-01 1.50291890e-01 -9.35655355e-01 3.04905742e-01 1.19009721e+00 -4.41283166e-01 -1.28892422e+00 -6.10240817e-01 -4.42198664e-01 -1.15980077e+00 6.25181079e-01 1.69427872e-01 1.98514208e-01 -1.41410601e+00 1.44570076e+00 5.41394055e-01 4.57549512e-01 -2.37236366e-01 1.01910889e+00 1.11004961e+00 4.76493835e-01 6.76063746e-02 3.41600031e-01 1.11114311e+00 -8.62757087e-01 -2.94762939e-01 -2.50820071e-01 5.56364119e-01 -5.47544837e-01 8.64491403e-01 -2.07217652e-02 -1.11262584e+00 -5.48575163e-01 -9.43982303e-01 -2.48417944e-01 -5.37568331e-01 -3.50531280e-01 8.36263716e-01 5.11489332e-01 -1.12554562e+00 8.67059708e-01 -1.05753326e+00 -4.24679145e-02 1.09623253e+00 6.72960639e-01 -2.49519199e-01 -8.11986104e-02 -9.04141128e-01 4.70083654e-01 4.13724571e-01 3.19497362e-02 -5.68875015e-01 -8.95043850e-01 -1.25099790e+00 -2.84912288e-02 2.86665231e-01 -9.06230032e-01 7.21141517e-01 -7.93389559e-01 -1.40270114e+00 1.02149558e+00 4.85250682e-01 -3.85682493e-01 6.64050341e-01 1.55906290e-01 4.03282372e-03 3.25487852e-01 2.14407369e-01 1.01065612e+00 7.59427845e-01 -1.26078224e+00 -3.81659746e-01 -6.98246360e-01 1.74829483e-01 1.81873664e-01 3.48129481e-01 -5.71702600e-01 -5.97257972e-01 -7.82812476e-01 6.70986712e-01 -9.86715734e-01 -6.08805835e-01 3.18471402e-01 -5.23863673e-01 -2.32610688e-01 1.26346827e+00 -5.03155231e-01 4.63552833e-01 -2.12202311e+00 1.02378935e-01 4.83834267e-01 5.31778932e-01 3.52473378e-01 -3.21082100e-02 -1.16122276e-01 1.31104782e-01 3.27656090e-01 -7.69302189e-01 -2.31310815e-01 -1.42562106e-01 4.85945493e-01 2.55753975e-02 5.93977273e-01 5.54038584e-01 1.54237366e+00 -9.94837284e-01 -4.71953779e-01 6.97708070e-01 6.08289123e-01 -6.55501366e-01 1.64118558e-01 -3.61331642e-01 6.99970961e-01 -8.64353120e-01 6.75285459e-01 1.14052713e+00 -3.20409477e-01 -4.95481461e-01 -1.74004242e-01 2.98800766e-01 -1.41097650e-01 -1.05412316e+00 1.99337471e+00 -3.01339090e-01 1.10466167e-01 3.69770318e-01 -1.28219712e+00 1.13471746e+00 -1.31452709e-01 6.83245182e-01 -4.91747051e-01 5.04634082e-01 1.69487670e-01 -2.34063759e-01 -2.07994476e-01 5.40263280e-02 -2.15024184e-02 -1.76526189e-01 -6.90021440e-02 -4.48668338e-02 -8.95136595e-01 -3.80309463e-01 2.09018260e-01 1.05283391e+00 3.79624330e-02 -1.99061573e-01 -3.03302526e-01 5.93970835e-01 6.43281918e-03 6.04626179e-01 5.31339884e-01 -1.52145773e-01 8.44861865e-01 3.56974214e-01 -5.41881323e-01 -9.54039276e-01 -1.02086914e+00 -1.84530884e-01 3.19281429e-01 7.31227577e-01 1.12567522e-01 -8.98027539e-01 -9.33313131e-01 2.79937267e-01 4.00106072e-01 -5.28905749e-01 -4.08104628e-01 -8.65742326e-01 -2.86148429e-01 5.41130364e-01 6.79444909e-01 9.65843797e-01 -1.14145410e+00 -2.68639654e-01 1.39806166e-01 2.26661146e-01 -1.24039853e+00 -6.61853909e-01 1.22539669e-01 -1.08279777e+00 -1.07481492e+00 -7.17837334e-01 -1.12021887e+00 9.60004747e-01 1.68007419e-01 1.15280211e+00 2.88986981e-01 -3.55209768e-01 1.78074956e-01 -2.11964235e-01 -3.13690931e-01 -2.91674316e-01 2.18679339e-01 -5.02757967e-01 -1.88141331e-01 2.48878568e-01 -7.82174766e-01 -7.26656139e-01 2.70288318e-01 -9.63493764e-01 -9.46506392e-03 5.79161167e-01 7.97697008e-01 9.44738507e-01 -6.37181178e-02 2.46851489e-01 -1.26799548e+00 2.33464658e-01 -3.81611913e-01 -6.86115623e-01 -1.43610165e-01 -5.13234198e-01 -1.81579709e-01 7.03100801e-01 -2.05701113e-01 -5.29131114e-01 2.05095783e-01 -4.79325563e-01 -9.14644063e-01 -2.83631414e-01 5.18784933e-02 -4.18004811e-01 -7.94885516e-01 4.06198740e-01 1.70521796e-01 2.85898328e-01 -3.07960689e-01 4.41270858e-01 1.23155586e-01 5.56564391e-01 -4.87181813e-01 9.85641658e-01 6.28863573e-01 4.66637135e-01 -6.00648165e-01 -6.82787895e-01 -4.48398679e-01 -7.63918459e-01 3.82995158e-02 1.22961795e+00 -7.94746041e-01 -7.62339294e-01 6.48511052e-01 -1.10510814e+00 -3.73298794e-01 -5.96022248e-01 2.64772661e-02 -6.88586950e-01 2.38406986e-01 -6.42643213e-01 -2.52065808e-01 -4.57158267e-01 -1.35795987e+00 1.31021488e+00 4.52473462e-01 2.95477062e-01 -1.19713783e+00 -5.20469725e-01 2.30560303e-01 2.26471707e-01 1.07451844e+00 7.56743550e-01 -5.00697553e-01 -1.13339567e+00 -2.94813931e-01 -3.86526644e-01 5.01084387e-01 1.20566033e-01 -3.51061791e-01 -6.85797215e-01 -3.59578788e-01 6.44542649e-02 -1.16274022e-02 7.21275926e-01 5.50787568e-01 1.73145604e+00 -2.32162118e-01 -4.96761382e-01 1.30245209e+00 1.41311073e+00 1.37386858e-01 6.85798764e-01 -6.02290928e-02 1.41460872e+00 2.23654330e-01 2.57966071e-01 -1.39554471e-01 1.98212683e-01 3.33194017e-01 8.30097914e-01 -6.63529217e-01 -3.70350331e-01 -3.43050838e-01 -4.18119222e-01 6.14573658e-01 6.16363510e-02 -1.41036972e-01 -8.23597312e-01 4.63614672e-01 -1.81461012e+00 -4.64392841e-01 -2.76206255e-01 1.73867261e+00 5.09826779e-01 2.66541243e-01 -1.42785519e-01 1.05915286e-01 7.67680526e-01 1.62960112e-01 -8.31970692e-01 -3.19552153e-01 -3.45605947e-02 4.75482374e-01 8.53336990e-01 4.51415449e-01 -1.21102512e+00 1.18741298e+00 5.16186237e+00 1.00863576e+00 -1.16639388e+00 4.75454405e-02 8.14392567e-01 5.07406056e-01 -2.15792179e-01 -2.93560028e-01 -3.77440304e-01 5.19220233e-01 7.74170533e-02 2.58580923e-01 3.56728733e-01 1.00817215e+00 -2.41255060e-01 2.79016912e-01 -8.42137992e-01 1.02790344e+00 -6.89225271e-02 -1.49183667e+00 2.87154734e-01 1.49533838e-01 9.03875947e-01 2.51578867e-01 -1.43828675e-01 5.10041900e-02 3.74232382e-01 -1.15796340e+00 5.27885914e-01 2.63097942e-01 7.95754373e-01 -1.06779099e+00 7.99009085e-01 3.96055937e-01 -1.27634752e+00 2.82157391e-01 -4.20350283e-01 1.46064550e-01 -2.17042137e-02 5.15865505e-01 -7.11907864e-01 6.66911423e-01 6.65952563e-01 8.07677150e-01 -2.97561586e-01 9.64106560e-01 -3.18111509e-01 3.12525451e-01 -5.11133850e-01 9.31514278e-02 6.51661813e-01 -5.99466860e-01 7.45488882e-01 8.70355189e-01 -3.74343544e-02 3.99399906e-01 6.44744813e-01 1.26766253e+00 -3.76541734e-01 -4.92872261e-02 -7.63445318e-01 3.07873100e-01 3.81720722e-01 1.22357595e+00 -1.28022361e+00 -1.37807712e-01 -1.36731386e-01 1.08007550e+00 2.79051274e-01 2.28467211e-01 -6.70929193e-01 -5.73696315e-01 7.04545379e-01 2.76697218e-01 2.65758812e-01 -2.86909491e-01 -8.41057360e-01 -8.34523976e-01 -8.05149376e-02 -2.34434485e-01 1.54215619e-01 -4.69870746e-01 -1.30899346e+00 4.66509193e-01 -3.75053316e-01 -1.18355870e+00 2.39311099e-01 -5.06877601e-01 -7.38929510e-01 9.49684203e-01 -1.62458777e+00 -1.48767567e+00 -5.86499095e-01 7.71587849e-01 3.87696236e-01 3.99269499e-02 3.52567524e-01 3.14524531e-01 -1.13142930e-01 6.39823616e-01 -2.96758890e-01 5.92186451e-01 1.21067666e-01 -1.46661687e+00 7.17948735e-01 6.67879522e-01 -8.15885440e-02 2.98544586e-01 1.07627526e-01 -7.37311721e-01 -1.15410018e+00 -1.69238043e+00 3.04435223e-01 -4.19774801e-01 2.19555244e-01 -3.21268827e-01 -1.18356478e+00 5.15547037e-01 -3.22432190e-01 5.83158195e-01 1.81439623e-01 -4.57106739e-01 -2.20053028e-02 3.48030329e-02 -1.76969516e+00 3.69163066e-01 1.29183781e+00 -3.02086592e-01 -4.44134206e-01 4.33126390e-01 1.34806824e+00 -9.21164811e-01 -9.90025759e-01 6.71557903e-01 -1.23434529e-01 -7.45785952e-01 1.22655165e+00 -3.41530919e-01 2.99807817e-01 -4.92852211e-01 1.71264634e-01 -1.29364276e+00 -4.09096152e-01 -4.77424145e-01 2.86450952e-01 1.00390410e+00 4.04256210e-02 -8.23375106e-01 1.06248319e+00 5.52780926e-01 -6.74537063e-01 -9.63523209e-01 -9.94452119e-01 -7.97972679e-01 3.89115810e-01 -3.75206262e-01 9.53767121e-01 1.18234777e+00 -7.50508964e-01 7.27741048e-02 3.27959061e-01 3.64861608e-01 8.53219688e-01 1.75116211e-01 8.27474654e-01 -1.27399659e+00 3.53270531e-01 -7.39364326e-01 -1.03368425e+00 -1.18295062e+00 2.35375360e-01 -1.24368334e+00 -1.28237262e-01 -1.63306642e+00 -3.62460583e-01 -8.37030172e-01 -8.95550027e-02 5.76832712e-01 -8.42479765e-02 6.11357689e-01 1.19185962e-01 1.82554610e-02 -3.47987205e-01 5.81101000e-01 1.97562850e+00 -4.87458616e-01 -3.45403850e-01 1.33323699e-01 -4.59511995e-01 8.90082240e-01 6.09875798e-01 -4.33104217e-01 -3.45378101e-01 -4.41352546e-01 -2.04988033e-01 -9.05003026e-02 7.21644700e-01 -9.11891162e-01 2.36981094e-01 7.80819058e-02 4.75393534e-01 -7.52232373e-01 2.18585119e-01 -1.20604539e+00 4.77048829e-02 5.54992676e-01 8.88966694e-02 -3.05823654e-01 2.24471688e-01 5.48916161e-01 -1.75323188e-01 -1.56995226e-02 1.12961435e+00 -4.24323231e-01 -6.28926039e-01 1.01251960e+00 3.41292173e-01 1.69993117e-01 1.26776564e+00 -5.58673382e-01 6.46980405e-02 8.02674815e-02 -7.49999881e-01 5.45586348e-01 7.41245151e-01 3.99082184e-01 7.47945249e-01 -1.52841175e+00 -3.99904966e-01 5.91690004e-01 -7.60487467e-02 1.00902116e+00 2.36155570e-01 4.98810053e-01 -1.10728526e+00 -4.54267263e-02 -2.47323930e-01 -1.11766183e+00 -7.76825607e-01 4.51385319e-01 5.52026391e-01 -3.06577142e-02 -9.94828403e-01 1.08356941e+00 4.39037532e-01 -8.36592138e-01 1.39042199e-01 -5.07412136e-01 4.30532657e-02 -4.45221603e-01 -3.35747823e-02 2.08329409e-01 1.93069309e-01 -5.83525240e-01 -3.89684051e-01 9.88510430e-01 1.34191886e-01 6.29201412e-01 1.28368461e+00 6.25130832e-02 -2.04101503e-01 4.32969220e-02 1.37398648e+00 -3.50241661e-01 -1.47627127e+00 -2.17236385e-01 -3.43207061e-01 -6.02603495e-01 3.13082904e-01 -4.97754216e-01 -1.70266688e+00 8.28399539e-01 6.22812569e-01 4.13946986e-01 1.06542361e+00 1.89075977e-01 1.19758236e+00 1.10245131e-01 4.94098008e-01 -7.96996474e-01 -1.12931572e-01 5.61710238e-01 8.48164022e-01 -1.22486269e+00 -1.93519890e-01 -8.32338452e-01 -3.77964705e-01 8.98213923e-01 6.81894720e-01 -8.19096208e-01 9.81005907e-01 1.77003786e-01 9.72178504e-02 -5.40904224e-01 2.26493135e-01 -2.58205414e-01 4.06627327e-01 7.75006533e-01 -1.26603916e-01 2.40032375e-01 -1.16820246e-01 4.86642480e-01 -2.65166074e-01 -3.58004361e-01 -1.39550706e-02 6.95258558e-01 -2.56833434e-01 -8.55134487e-01 -1.83656335e-01 5.28846920e-01 -3.72270852e-01 2.59501606e-01 -4.06184763e-01 9.75809872e-01 4.74289656e-01 4.85755295e-01 3.32736880e-01 -3.64432454e-01 5.61653435e-01 -3.26495588e-01 3.80536765e-01 -6.53984427e-01 -7.18337536e-01 2.54619960e-02 -5.56629419e-01 -7.89012551e-01 -3.10491174e-01 -3.18844676e-01 -1.70606077e+00 -3.69980574e-01 -2.80440509e-01 -2.41866708e-02 6.53346837e-01 7.25173712e-01 4.61569071e-01 7.79040217e-01 8.24677289e-01 -1.12692118e+00 -2.63947099e-01 -6.63991034e-01 -6.84303224e-01 7.67259657e-01 2.53688365e-01 -5.77704191e-01 -1.88426793e-01 -1.06934935e-01]
[7.953258514404297, -3.469313144683838]
66c97663-9ef6-4d41-9119-3483a6a62bdf
differential-private-stack-generalization
1811.09491
null
https://arxiv.org/abs/1811.09491v3
https://arxiv.org/pdf/1811.09491v3.pdf
Differential Private Stack Generalization with an Application to Diabetes Prediction
To meet the standard of differential privacy, noise is usually added into the original data, which inevitably deteriorates the predicting performance of subsequent learning algorithms. In this paper, motivated by the success of improving predicting performance by ensemble learning, we propose to enhance privacy-preserving logistic regression by stacking. We show that this can be done either by sample-based or feature-based partitioning. However, we prove that when privacy-budgets are the same, feature-based partitioning requires fewer samples than sample-based one, and thus likely has better empirical performance. As transfer learning is difficult to be integrated with a differential privacy guarantee, we further combine the proposed method with hypothesis transfer learning to address the problem of learning across different organizations. Finally, we not only demonstrate the effectiveness of our method on two benchmark data sets, i.e., MNIST and NEWS20, but also apply it into a real application of cross-organizational diabetes prediction from RUIJIN data set, where privacy is of significant concern.
['Quanming Yao', 'WeiWei Tu', 'Wenyuan Dai', 'Qiang Yang', 'James T. Kwok', 'Yuqiang Chen', 'Xiawei Guo']
2018-11-23
null
null
null
null
['diabetes-prediction']
['medical']
[ 1.86639547e-01 5.05923294e-03 -1.04569279e-01 -5.48032284e-01 -7.33653426e-01 -4.16529715e-01 7.68834911e-03 3.88267934e-01 -4.85640496e-01 1.20339739e+00 2.91056708e-02 -3.70383114e-01 -2.14157477e-01 -9.05530930e-01 -9.70587134e-01 -9.20776725e-01 6.30524680e-02 1.17745697e-01 -2.59495258e-01 2.41645768e-01 1.47284985e-01 3.00262988e-01 -1.03919196e+00 3.77519339e-01 1.09779787e+00 9.05725598e-01 -5.08912265e-01 1.19773313e-01 3.13274384e-01 6.47348881e-01 -3.40883195e-01 -8.34640145e-01 7.81159818e-01 -3.32736999e-01 -6.09921515e-01 -8.19353238e-02 3.30297023e-01 -3.19404751e-01 -2.53776520e-01 1.07390261e+00 4.72645462e-01 -6.35773083e-03 5.80505669e-01 -1.48473608e+00 -4.53355253e-01 5.08792639e-01 -7.51450777e-01 -4.66556787e-01 -1.33200124e-01 -2.07974046e-01 8.97147179e-01 -6.47850215e-01 3.97584766e-01 8.99614990e-01 8.62497509e-01 4.00274932e-01 -1.56424129e+00 -1.24747777e+00 2.12483406e-02 -5.33144735e-02 -1.36025238e+00 -4.12411690e-01 6.43804908e-01 -5.39629757e-01 1.96206361e-01 4.51373041e-01 3.84970367e-01 9.58638310e-01 2.72829533e-01 8.84203732e-01 1.49670780e+00 -2.82159775e-01 2.54094601e-01 6.54490888e-01 3.14828992e-01 5.19222200e-01 6.38088107e-01 1.26264721e-01 -4.74343717e-01 -6.97245181e-01 3.97385240e-01 5.81580877e-01 -4.52881157e-01 -8.24620187e-01 -9.11457658e-01 9.02672470e-01 2.61178643e-01 -1.69677377e-01 -2.25430384e-01 -1.24826007e-01 4.06021804e-01 5.55256426e-01 7.44459450e-01 2.47806951e-01 -6.77763820e-01 3.77643377e-01 -9.09451783e-01 2.62320608e-01 1.00498497e+00 8.88670385e-01 8.03825200e-01 -6.09361708e-01 -1.97675824e-01 5.52544177e-01 1.82151608e-02 7.22298473e-02 2.06591994e-01 -8.73074532e-01 6.50999784e-01 3.39759439e-01 2.59782106e-01 -1.24359202e+00 -1.11051619e-01 -5.25696039e-01 -1.16734838e+00 4.06474173e-02 6.05185449e-01 -6.50895357e-01 -3.13558459e-01 1.85058880e+00 3.28068078e-01 2.00001508e-01 2.05839351e-01 6.61668181e-01 1.45478576e-01 3.35704744e-01 -7.08240494e-02 -5.77401042e-01 1.06415665e+00 -8.32480073e-01 -6.48680270e-01 1.96492881e-01 8.92268479e-01 -1.77103296e-01 5.89686453e-01 5.96840441e-01 -6.18241787e-01 -6.32090047e-02 -9.89009261e-01 3.61862890e-02 -1.75015718e-01 2.94672083e-02 6.57979131e-01 9.56290305e-01 -6.44260406e-01 6.90880418e-01 -7.84436643e-01 -3.67566228e-01 8.57416391e-01 4.53319460e-01 -7.15117216e-01 -1.84405461e-01 -1.10772920e+00 4.81412202e-01 2.55462706e-01 -2.59669900e-01 -2.46334136e-01 -9.83391225e-01 -4.83079821e-01 2.67951727e-01 5.22972167e-01 -7.85248578e-01 8.18086088e-01 -9.00357068e-01 -1.20755816e+00 4.61334378e-01 -9.33317468e-02 -7.74721086e-01 9.75156963e-01 -2.91570395e-01 -4.08638902e-02 -3.26504469e-01 -1.50260106e-01 1.95404753e-01 6.68535292e-01 -1.32018065e+00 -8.13140631e-01 -8.65173876e-01 -2.03144327e-01 5.15323691e-02 -7.92178631e-01 -3.59999478e-01 -1.36318235e-02 -5.25267959e-01 -1.19773403e-01 -9.95866776e-01 -4.64182317e-01 7.80178308e-02 -5.34184456e-01 1.16083711e-01 7.97460616e-01 -8.16956699e-01 1.23879254e+00 -2.51516581e+00 -2.25669086e-01 5.34554124e-01 3.94044936e-01 4.80126441e-02 2.74946600e-01 2.58923560e-01 -1.89388730e-02 3.63033772e-01 -5.38410306e-01 -4.36899304e-01 -1.99428424e-01 5.97031973e-02 -3.01638722e-01 6.43355846e-01 -8.09639320e-02 5.57832837e-01 -5.57407796e-01 -3.71141583e-01 -2.71251202e-01 1.63580105e-01 -8.88824284e-01 -7.57016912e-02 2.43309483e-01 5.79167664e-01 -5.55230975e-01 3.73843849e-01 1.01163459e+00 -2.24148348e-01 4.14445132e-01 7.72052705e-02 1.62714779e-01 -2.11521626e-01 -1.02490997e+00 1.20404756e+00 -1.82578415e-01 2.36390501e-01 1.09246649e-01 -1.20205486e+00 9.71255302e-01 1.41547650e-01 5.80344796e-01 -2.13106334e-01 -1.77314878e-01 9.67578441e-02 -2.91711818e-02 -1.98060721e-01 2.35569417e-01 -1.95867419e-01 -1.76759481e-01 3.86240840e-01 -3.59485447e-01 5.85485339e-01 -4.18473214e-01 -2.00429052e-01 1.02498794e+00 -2.71673411e-01 4.96800929e-01 -3.18426520e-01 3.79546046e-01 -3.19224030e-01 1.08960938e+00 7.29226172e-01 -2.40640461e-01 5.90706885e-01 8.19715083e-01 -2.50693977e-01 -7.41733074e-01 -6.97947025e-01 -3.43696773e-01 8.06363821e-01 -3.53695974e-02 -2.54142255e-01 -6.51235223e-01 -1.28149021e+00 6.88400805e-01 6.02927566e-01 -7.13600636e-01 -1.50591925e-01 -1.57322794e-01 -1.01007760e+00 4.66311365e-01 2.47502342e-01 5.60953259e-01 -3.79233658e-01 -2.66910374e-01 6.29436970e-02 -6.23449609e-02 -6.87528372e-01 -5.24326444e-01 2.04033315e-01 -9.18945014e-01 -1.00003684e+00 -5.30487418e-01 -4.42987233e-01 7.92130828e-01 2.59883583e-01 6.08139634e-01 -8.54045227e-02 9.80871320e-02 1.84255689e-01 -1.12655662e-01 -6.65133953e-01 -1.11487672e-01 2.95310497e-01 1.01010397e-01 5.42735219e-01 5.07394314e-01 -6.07417822e-01 -5.73068261e-01 3.30590993e-01 -7.76311159e-01 -5.69151789e-02 5.91742873e-01 1.26735938e+00 5.85438013e-01 1.92084476e-01 8.66039038e-01 -1.52576733e+00 6.30919516e-01 -6.94300950e-01 -6.45459592e-01 4.36968833e-01 -1.08121002e+00 -1.96316272e-01 7.69073784e-01 -2.64395863e-01 -9.39084768e-01 3.91014904e-01 3.85380656e-01 -4.93554085e-01 2.63810139e-02 4.99060422e-01 -3.60389024e-01 -7.85950050e-02 4.00838822e-01 1.77122697e-01 4.53856885e-01 -4.63829994e-01 1.25328138e-01 8.98211718e-01 1.88065127e-01 -3.90381604e-01 6.48783803e-01 4.37449127e-01 1.86720476e-01 -4.42232490e-01 -5.50481796e-01 -1.00631364e-01 -4.76552904e-01 3.37332517e-01 6.01723790e-01 -1.04920399e+00 -8.12154114e-01 3.26291293e-01 -7.95407414e-01 9.35347527e-02 -2.16607854e-01 6.16045356e-01 -5.38902998e-01 3.92653316e-01 -5.07834613e-01 -8.10524881e-01 -2.58890092e-01 -9.61816132e-01 4.47489202e-01 1.38227521e-02 -1.74045619e-02 -8.18091691e-01 -1.07476287e-01 4.57595438e-01 8.26620907e-02 4.46165919e-01 9.14760768e-01 -1.37246144e+00 -5.80070734e-01 -3.95856321e-01 -1.54514536e-01 5.18478692e-01 3.03769618e-01 -3.36916983e-01 -9.10408080e-01 -7.05271304e-01 2.11609781e-01 -1.64441317e-01 8.61926496e-01 2.84593076e-01 1.63894975e+00 -6.51122272e-01 -4.61447448e-01 7.80955613e-01 1.27803183e+00 1.02271907e-01 5.82337916e-01 2.49382451e-01 6.01252615e-01 9.29810166e-01 7.82631576e-01 7.71820247e-01 3.90895873e-01 4.51348841e-01 1.51777923e-01 -9.77731422e-02 6.34402812e-01 -4.66432303e-01 2.06609845e-01 4.34526891e-01 1.82815924e-01 5.70780560e-02 -6.53788805e-01 1.97683081e-01 -2.22259736e+00 -8.61608028e-01 -7.59796053e-02 2.72904730e+00 9.68317688e-01 -3.61571580e-01 2.30970532e-01 -1.95531860e-01 7.19348967e-01 -2.51533151e-01 -7.43140817e-01 -1.12146489e-01 -2.86356602e-02 -1.22648001e-01 9.54122901e-01 1.36653289e-01 -1.23078370e+00 3.75006616e-01 5.62307501e+00 7.62718618e-01 -1.01561844e+00 1.42719135e-01 1.37133062e+00 -2.91031957e-01 -2.64603049e-01 3.46044265e-02 -6.85181856e-01 6.95264876e-01 7.87312627e-01 -4.79839653e-01 3.80242199e-01 8.98248017e-01 -6.05144501e-02 2.10342869e-01 -1.48013806e+00 9.38236296e-01 -2.05080286e-01 -1.08654523e+00 -3.62697780e-01 5.71955264e-01 7.70772934e-01 -3.65981370e-01 3.14542413e-01 4.70017225e-01 3.13035697e-01 -1.04059839e+00 2.18135223e-01 4.31901693e-01 5.64006984e-01 -1.13016367e+00 8.95902634e-01 6.49363518e-01 -4.13685143e-01 -3.39331031e-01 -5.72858572e-01 1.36884544e-02 -3.45495075e-01 8.91696513e-01 -8.34682643e-01 9.38230217e-01 7.34144986e-01 7.11989164e-01 -3.96451354e-01 1.12956333e+00 3.14238578e-01 6.04909718e-01 -2.75008500e-01 2.16989622e-01 -3.63660932e-01 -5.28865218e-01 2.87886351e-01 9.85535741e-01 5.99268436e-01 6.21034801e-02 1.34832725e-01 5.77118456e-01 -4.04778659e-01 5.14879525e-01 -9.28577662e-01 1.49695724e-01 5.83751440e-01 1.14873207e+00 -3.63265425e-02 -2.70677153e-02 -6.04216278e-01 8.69948983e-01 3.93467277e-01 3.10946345e-01 -6.37825489e-01 -3.41548622e-01 8.37494493e-01 1.20086327e-01 3.61799181e-01 8.20103064e-02 -5.64550459e-01 -1.16758442e+00 7.93763474e-02 -1.04930842e+00 6.12706244e-01 8.28081742e-02 -1.79984808e+00 1.04988560e-01 -2.80925244e-01 -1.46660197e+00 5.46342544e-02 -2.60167539e-01 -1.95900381e-01 9.11425769e-01 -1.29714406e+00 -9.28249598e-01 3.57620716e-02 6.04292631e-01 -1.72883093e-01 -2.25405946e-01 8.34618568e-01 4.12107974e-01 -7.33290017e-01 1.18509722e+00 6.32431567e-01 1.78093418e-01 1.17804515e+00 -9.68979776e-01 -1.29751831e-01 6.57899618e-01 -1.25032857e-01 6.69351935e-01 3.00219208e-01 -6.55969858e-01 -1.33350730e+00 -1.59880388e+00 7.56073296e-01 -3.82756501e-01 3.43862742e-01 -5.04260302e-01 -1.08187521e+00 9.94005322e-01 -1.01064064e-01 2.60333240e-01 1.22275388e+00 3.47743958e-01 -2.54599631e-01 -6.14458084e-01 -1.77742457e+00 5.18007100e-01 8.68052781e-01 -3.54828954e-01 -1.33499920e-01 2.45711878e-01 8.32203507e-01 -2.20487446e-01 -1.04968059e+00 4.40886021e-01 6.35962546e-01 -1.00527728e+00 6.64397120e-01 -1.02188396e+00 3.64799410e-01 -9.14039388e-02 -3.96300286e-01 -1.26558101e+00 -3.49883348e-01 -6.55755818e-01 5.51359588e-03 1.50133348e+00 5.64287841e-01 -1.18650413e+00 1.07501543e+00 1.09753096e+00 5.98298073e-01 -7.48562038e-01 -9.89077747e-01 -7.88760424e-01 3.45673293e-01 2.46798191e-02 8.58976126e-01 1.39716673e+00 9.57238954e-03 -6.98030600e-03 -8.63962054e-01 2.86460280e-01 7.55874991e-01 1.23147480e-01 1.09676719e+00 -1.47226548e+00 -5.49096644e-01 3.52601185e-02 -2.81704873e-01 -6.44261777e-01 3.04395318e-01 -9.43007350e-01 -2.31222242e-01 -7.44282842e-01 5.51594019e-01 -6.45288467e-01 -6.91443801e-01 5.96515417e-01 -2.59938776e-01 -3.88392322e-02 2.42461547e-01 1.76579982e-01 -3.39148253e-01 5.62922060e-01 1.02917778e+00 4.72334139e-02 -2.08553448e-01 4.51297432e-01 -1.17099142e+00 3.69456172e-01 7.82561779e-01 -6.21617913e-01 -4.07125533e-01 1.31205991e-02 -1.56057388e-01 3.72662753e-01 2.26796284e-01 -6.46645248e-01 2.76454896e-01 -1.72674865e-01 4.86960709e-01 -2.64148891e-01 -1.64198298e-02 -1.30288255e+00 4.22879577e-01 6.05139613e-01 -5.83644390e-01 -2.09509417e-01 -1.58157021e-01 9.82344925e-01 -5.06429113e-02 9.91686014e-04 6.33854449e-01 2.09548235e-01 6.69289380e-02 6.20244265e-01 1.17234319e-01 -3.69932801e-01 1.25287747e+00 -2.34898422e-02 -3.20032656e-01 -3.77049625e-01 -6.12842679e-01 4.55735654e-01 7.10075498e-01 -3.02658528e-02 3.31996411e-01 -1.34256971e+00 -9.02266622e-01 3.98174316e-01 1.80078045e-01 -3.33559252e-02 1.22226506e-01 1.14388156e+00 3.30346785e-02 1.67077839e-01 -1.08327689e-02 -4.14703667e-01 -1.45056999e+00 8.27432156e-01 2.38629002e-02 -4.46879387e-01 -4.11374897e-01 5.56381702e-01 4.43585992e-01 -6.67909861e-01 2.45376959e-01 -4.08210270e-02 1.61464319e-01 -3.12199853e-02 3.83279979e-01 3.92444938e-01 5.43637387e-02 6.63749054e-02 -2.67275333e-01 -1.59682538e-02 -5.11853516e-01 8.16449001e-02 1.43873799e+00 -1.84086114e-01 -2.64849663e-01 3.54405254e-01 1.38720918e+00 2.39556491e-01 -1.28345358e+00 -5.21897972e-01 7.96467811e-02 -8.76821578e-01 -2.32271001e-01 -5.57899535e-01 -1.14723361e+00 6.35288537e-01 6.14505410e-01 2.42025629e-01 1.28605080e+00 -5.81940353e-01 6.39447868e-01 4.66307938e-01 5.77052534e-01 -8.17852676e-01 -5.38252294e-01 9.15631130e-02 5.80018938e-01 -1.47464335e+00 1.58780202e-01 -5.01604140e-01 -7.19634116e-01 7.15931475e-01 5.65191448e-01 -1.42688002e-03 8.24040353e-01 1.44722015e-01 -2.87849724e-01 4.41433996e-01 -8.42703164e-01 5.74152768e-01 -6.55120797e-03 5.16847074e-01 1.86528727e-01 3.25504750e-01 -5.07530987e-01 1.14797735e+00 -1.05932586e-01 2.64286906e-01 4.01527375e-01 8.67433250e-01 -1.38539635e-02 -1.33989084e+00 -3.17765951e-01 9.37649727e-01 -7.02710330e-01 -2.62757204e-03 -3.45052779e-01 6.55813694e-01 3.40905879e-03 7.54217863e-01 2.45818812e-02 -4.88716245e-01 1.95113599e-01 2.58426160e-01 1.89562097e-01 -3.06012034e-01 -6.26088738e-01 -2.16388375e-01 -1.81454327e-02 -2.99160391e-01 -4.12284620e-02 -1.03349781e+00 -7.91641176e-01 -6.47722185e-01 -1.78769141e-01 3.05068374e-01 4.47900206e-01 6.54084086e-01 8.31163943e-01 1.16288371e-01 1.21378577e+00 -5.14302887e-02 -1.12876427e+00 -6.49488926e-01 -9.32714820e-01 3.99898022e-01 3.51936758e-01 -2.57619202e-01 -3.24367225e-01 -1.99166596e-01]
[6.111204147338867, 6.628015518188477]
ee13b7ce-29e8-416b-b413-b46c0bce608d
modelling-radiological-language-with
1609.08409
null
http://arxiv.org/abs/1609.08409v1
http://arxiv.org/pdf/1609.08409v1.pdf
Modelling Radiological Language with Bidirectional Long Short-Term Memory Networks
Motivated by the need to automate medical information extraction from free-text radiological reports, we present a bi-directional long short-term memory (BiLSTM) neural network architecture for modelling radiological language. The model has been used to address two NLP tasks: medical named-entity recognition (NER) and negation detection. We investigate whether learning several types of word embeddings improves BiLSTM's performance on those tasks. Using a large dataset of chest x-ray reports, we compare the proposed model to a baseline dictionary-based NER system and a negation detection system that leverages the hand-crafted rules of the NegEx algorithm and the grammatical relations obtained from the Stanford Dependency Parser. Compared to these more traditional rule-based systems, we argue that BiLSTM offers a strong alternative for both our tasks.
['Samuel Withey', 'Giovanni Montana', 'Robert Bakewell', 'Savelie Cornegruta']
2016-09-27
modelling-radiological-language-with-1
https://aclanthology.org/W16-6103
https://aclanthology.org/W16-6103.pdf
ws-2016-11
['negation-detection', 'medical-named-entity-recognition']
['natural-language-processing', 'natural-language-processing']
[ 2.55496919e-01 6.43742919e-01 -2.36525118e-01 -3.87390196e-01 -1.05618227e+00 -1.43225893e-01 4.10734028e-01 7.93844819e-01 -1.28181994e+00 6.03431702e-01 6.01660669e-01 -8.45379829e-01 -9.38668028e-02 -7.83281922e-01 -4.13144171e-01 -4.15944785e-01 -2.33075723e-01 4.37203139e-01 2.72929788e-01 -3.44224125e-01 1.49288967e-01 4.88304943e-01 -9.32414174e-01 5.07235944e-01 5.31991065e-01 7.84836531e-01 2.55897164e-01 9.55584645e-01 -2.45009005e-01 1.34618080e+00 -4.85609800e-01 -4.55982715e-01 -3.58785450e-01 -2.10086033e-01 -1.03964210e+00 -4.68435973e-01 8.75035897e-02 -1.74784198e-01 -4.91167754e-01 9.30617571e-01 7.74442375e-01 1.50628472e-02 5.55025816e-01 -1.80155009e-01 -6.53303862e-01 6.06689572e-01 2.23354921e-02 7.21862078e-01 2.95274615e-01 -1.10519640e-01 9.54551518e-01 -7.89344966e-01 9.57625866e-01 7.31008410e-01 1.01663589e+00 8.13658953e-01 -8.41668844e-01 -9.53251645e-02 -2.12094277e-01 9.30214599e-02 -1.07263720e+00 -1.01013884e-01 3.72408062e-01 -3.27854484e-01 1.60293508e+00 -5.05503044e-02 4.33440506e-01 1.26340806e+00 1.01385891e+00 5.82096279e-01 9.21760261e-01 -7.80139387e-01 1.01028860e-01 -5.63817611e-03 3.77067506e-01 1.05646753e+00 2.66287208e-01 3.18651706e-01 -2.98270673e-01 -4.22253877e-01 6.76546514e-01 -2.66187191e-01 -6.87386617e-02 1.95266567e-02 -1.34990358e+00 9.81112063e-01 5.17270923e-01 1.03519070e+00 -6.78926528e-01 2.01980591e-01 7.50917137e-01 2.09326580e-01 2.45389059e-01 6.40796483e-01 -4.99958307e-01 9.04485583e-02 -9.75575626e-01 -2.54820853e-01 9.79639947e-01 3.69075686e-01 -6.94742426e-02 -1.40483186e-01 -4.13189113e-01 7.53327131e-01 3.37190986e-01 7.59989619e-02 9.25974607e-01 -3.48838657e-01 2.34077483e-01 3.07184607e-01 -3.98114562e-01 -8.46628606e-01 -9.47727203e-01 -4.63261157e-01 -6.32901549e-01 -1.17222697e-01 2.22147450e-01 -2.94440866e-01 -1.26410699e+00 1.68356586e+00 3.55222672e-02 -1.39318913e-01 3.76827717e-01 5.48475385e-01 1.19760644e+00 1.74655199e-01 6.23903811e-01 -1.09139085e-01 1.74029839e+00 -6.63090885e-01 -8.99303138e-01 -1.70355245e-01 1.16936433e+00 -6.37431204e-01 5.29424787e-01 2.02127367e-01 -1.02620876e+00 -2.96882570e-01 -1.05805182e+00 -3.99301201e-01 -5.83111525e-01 4.61806431e-02 5.17895460e-01 5.29791474e-01 -1.30516028e+00 5.73037267e-01 -1.19247246e+00 -5.28623343e-01 2.69354820e-01 5.62602699e-01 -4.53207821e-01 5.29208779e-02 -1.44173431e+00 1.50801063e+00 4.10968363e-01 9.29805934e-02 -6.05877578e-01 -3.78211260e-01 -1.15634143e+00 -1.54744282e-01 1.83787048e-01 -1.01986372e+00 1.55041027e+00 -3.90285224e-01 -1.08691001e+00 1.34405851e+00 2.86898054e-02 -7.97206044e-01 7.42219687e-02 1.57420263e-02 -6.62045062e-01 2.72306591e-01 2.54886318e-02 5.28691471e-01 2.68918842e-01 -6.43265605e-01 -4.75382864e-01 -2.96928376e-01 4.83405031e-03 -9.95999798e-02 -3.28351855e-01 2.50204891e-01 -7.49698952e-02 -9.23671424e-01 -2.89944500e-01 -7.65996814e-01 -7.67301679e-01 -2.00165078e-01 -4.27823275e-01 -4.09266770e-01 -4.10303250e-02 -8.52455854e-01 1.31961906e+00 -1.97163093e+00 -1.74062222e-01 1.23223796e-01 3.27882349e-01 2.56158471e-01 -1.84581280e-01 3.51557523e-01 -4.64422733e-01 9.60991979e-02 -2.94895351e-01 -1.34630412e-01 -3.13763350e-01 6.84177697e-01 2.00939476e-01 2.30800673e-01 4.95913148e-01 1.03135777e+00 -9.47729051e-01 -8.39243531e-01 3.50364968e-02 6.12899065e-01 -3.14521432e-01 1.02851160e-01 -8.99496973e-02 2.89279014e-01 -4.58063453e-01 4.98447478e-01 9.10625905e-02 -2.07536668e-01 5.16135514e-01 -1.46242559e-01 8.28923211e-02 8.57659042e-01 -6.89952254e-01 2.08356118e+00 -6.59411013e-01 2.49545962e-01 -2.19928652e-01 -9.49225843e-01 5.88516533e-01 8.13783944e-01 3.63767207e-01 -7.77267814e-01 4.72977698e-01 4.38226700e-01 3.27134490e-01 -8.13124239e-01 2.60296017e-01 -7.71622181e-01 -3.44528466e-01 4.10002589e-01 5.59078872e-01 1.58444688e-01 2.47918293e-01 2.10900679e-01 1.75902593e+00 -1.54511496e-01 8.71509373e-01 -3.71149987e-01 7.61970639e-01 2.10875541e-01 5.36119580e-01 9.74103868e-01 -1.90460607e-01 4.52552885e-01 3.32231253e-01 -5.17969668e-01 -6.66026771e-01 -9.83253658e-01 -3.90933990e-01 9.77670372e-01 -6.91127777e-01 -3.16474080e-01 -4.80328828e-01 -9.78128552e-01 -2.70597994e-01 8.90102506e-01 -8.31118345e-01 -2.33354852e-01 -8.64209056e-01 -9.56562877e-01 8.79156172e-01 7.50084043e-01 -2.24169105e-01 -1.45437789e+00 -7.31688023e-01 6.34910405e-01 9.38706473e-03 -1.12342322e+00 -3.32532942e-01 9.12022650e-01 -1.02813280e+00 -1.14759254e+00 -5.71750343e-01 -1.18894899e+00 5.81317067e-01 -6.69259131e-01 1.40902567e+00 8.53393227e-02 -5.08136094e-01 5.34188747e-01 -3.80468547e-01 -5.65362751e-01 -9.74389911e-01 3.11125219e-01 -1.57424528e-02 -6.84335768e-01 7.76973724e-01 -3.70855838e-01 -4.19925869e-01 -5.00032127e-01 -1.13508129e+00 -2.29070753e-01 1.12614954e+00 9.94767904e-01 6.24987245e-01 -3.90631974e-01 5.78738749e-01 -1.25911224e+00 8.36435437e-01 -4.52901989e-01 5.41472547e-02 2.32455388e-01 -7.56732762e-01 5.52434206e-01 5.19586146e-01 -2.39233255e-01 -8.22109699e-01 -1.02091670e-01 -9.92291331e-01 2.16354549e-01 -4.12231714e-01 8.76624703e-01 3.26570272e-01 -9.72123146e-02 6.95701420e-01 2.50908911e-01 -6.23844601e-02 -4.05030131e-01 3.24982971e-01 5.84318995e-01 7.71479845e-01 -2.67753989e-01 3.34063053e-01 2.99071044e-01 -1.82456169e-02 -5.85132062e-01 -1.17668879e+00 -3.22031796e-01 -6.81213558e-01 2.97504425e-01 1.37293804e+00 -5.56725264e-01 -4.06614900e-01 -1.15564927e-01 -1.44143069e+00 1.29198097e-02 -5.58753610e-01 6.86396241e-01 -5.16481042e-01 4.56441462e-01 -1.29405129e+00 -4.08720762e-01 -7.50462592e-01 -9.66452599e-01 9.12150145e-01 -9.32920352e-02 -4.01046932e-01 -1.44332159e+00 5.36530793e-01 -8.06119367e-02 2.52682060e-01 3.54632646e-01 1.45919693e+00 -1.27849293e+00 2.89004475e-01 -4.10758555e-01 -1.10459132e-02 4.69499677e-01 9.39377993e-02 -6.69645846e-01 -7.37166703e-01 7.11766630e-03 4.90337372e-01 -2.41693363e-01 1.06158721e+00 2.98229128e-01 7.98134029e-01 -8.35999940e-03 -4.16509479e-01 3.39802057e-01 1.50886607e+00 2.11119160e-01 5.88547468e-01 6.52298987e-01 4.84690815e-01 3.28010559e-01 2.57661343e-01 8.11262876e-02 5.45535982e-01 3.23237889e-02 1.10586703e-01 -2.66422093e-01 -3.22701246e-01 1.37077887e-02 1.60453379e-01 1.24774635e+00 -2.75654905e-02 -6.10488318e-02 -1.39251769e+00 7.27334559e-01 -1.41583824e+00 -3.94864351e-01 -1.37786046e-01 1.69351566e+00 1.21743214e+00 4.88006949e-01 -3.87239397e-01 2.22030934e-02 2.97479898e-01 5.29502183e-02 -1.52371079e-01 -8.23325932e-01 -2.45250133e-03 9.17552114e-01 6.10179067e-01 2.89437920e-01 -1.09610033e+00 5.59005499e-01 7.18373299e+00 6.13446057e-01 -9.97969568e-01 5.66128969e-01 3.14983785e-01 2.53233016e-01 7.83738960e-03 -2.94627964e-01 -5.59046507e-01 -5.78022189e-02 1.59993804e+00 2.61474133e-01 -4.31478262e-01 5.55352211e-01 5.87121993e-02 -7.70358667e-02 -1.34834325e+00 6.02419138e-01 2.57858425e-01 -1.39290118e+00 1.22006245e-01 2.78440565e-02 1.34910345e-01 4.95975137e-01 -1.74832642e-01 4.12806898e-01 4.38893378e-01 -1.00727701e+00 2.34936833e-01 6.47866607e-01 7.37712801e-01 -4.91121352e-01 1.33856833e+00 1.76195055e-01 -8.38039100e-01 -5.44414595e-02 -8.58432651e-02 2.52777189e-01 2.50510901e-01 5.45902371e-01 -1.15743744e+00 7.38066316e-01 3.53306651e-01 4.09723878e-01 -5.78303635e-01 7.87229419e-01 -4.86037135e-01 5.68570197e-01 -1.93008736e-01 1.35108799e-01 4.99888629e-01 4.49464470e-01 5.32328069e-01 1.75326347e+00 -9.75902751e-03 8.20364133e-02 6.90663159e-02 5.55364728e-01 -1.23531803e-01 2.96683669e-01 -6.28779054e-01 -1.80636331e-01 -8.01852643e-02 1.21427977e+00 -7.92953968e-01 -4.88561958e-01 -7.08855212e-01 8.13274860e-01 2.69879073e-01 -2.08440989e-01 -7.20139623e-01 -4.44088250e-01 5.78870885e-02 6.26934320e-02 5.59808433e-01 -2.18065679e-01 -3.57851446e-01 -1.06688893e+00 -1.62972480e-01 -8.06248009e-01 9.39555943e-01 -5.42049766e-01 -1.51244128e+00 1.03485632e+00 -3.76574457e-01 -9.58934665e-01 -5.16101360e-01 -9.00443077e-01 -4.71967369e-01 6.43815994e-01 -1.94807231e+00 -1.04453003e+00 4.11172271e-01 4.09902990e-01 2.74335921e-01 -3.17546912e-02 1.44132602e+00 4.04414952e-01 -2.72848725e-01 5.37225962e-01 -7.96237066e-02 7.18785286e-01 5.68356693e-01 -1.41284871e+00 4.04490858e-01 7.14117169e-01 3.04067492e-01 8.89777601e-01 6.03957951e-01 -6.86633229e-01 -1.05678296e+00 -9.21910942e-01 1.50700521e+00 -5.71738005e-01 9.27792430e-01 4.27890709e-03 -8.92567992e-01 7.12173402e-01 2.44914919e-01 9.71211195e-02 1.21704805e+00 -6.94558918e-02 -2.63197154e-01 4.06741917e-01 -1.13458085e+00 1.92910701e-01 7.46935487e-01 -6.67031169e-01 -1.46094358e+00 4.26853359e-01 6.54048204e-01 -3.46675873e-01 -1.36137915e+00 4.28174824e-01 2.27634758e-01 -4.77468073e-01 9.15475786e-01 -8.71386468e-01 5.39155006e-01 1.25242531e-01 -6.64328784e-02 -1.12092793e+00 -1.95696801e-01 4.70313281e-02 1.86546016e-02 5.90443194e-01 6.96440279e-01 -5.95273614e-01 4.68019485e-01 4.69854861e-01 -3.96194041e-01 -9.19957161e-01 -1.12564957e+00 -5.32596707e-01 3.91878635e-01 -6.06306612e-01 -2.00983286e-01 8.22503626e-01 1.05846524e-01 5.59845686e-01 8.93842801e-02 5.50645627e-02 3.34017158e-01 -2.16033846e-01 -1.84758112e-01 -1.29295027e+00 -3.37550849e-01 -1.28137976e-01 -6.43419147e-01 -5.58330357e-01 1.74455315e-01 -1.36115098e+00 5.57955466e-02 -1.95334005e+00 1.15839869e-01 -2.20367566e-01 -8.17107856e-01 7.88821518e-01 3.45003866e-02 2.74936587e-01 -1.72548652e-01 -9.62278992e-02 -6.89255059e-01 1.14731617e-01 8.49077642e-01 -1.13796964e-01 9.10072178e-02 -3.67519975e-01 -8.12969506e-01 1.00039005e+00 4.54693496e-01 -1.21060276e+00 3.15638810e-01 -5.45344889e-01 4.37580347e-01 2.44678125e-01 1.37689695e-01 -9.21417356e-01 4.97238338e-01 3.73989195e-01 2.67624915e-01 -4.22782838e-01 -4.84026223e-02 -6.74138486e-01 -5.61465085e-01 9.63192463e-01 -5.07146716e-01 2.01446667e-01 3.49694729e-01 5.73476255e-01 -3.31786007e-01 -4.38452780e-01 6.03407681e-01 -5.34458041e-01 -5.90351224e-01 -1.64410491e-02 -9.40760612e-01 6.94160629e-03 6.31064534e-01 -6.32296726e-02 -1.00834221e-02 2.24170506e-01 -1.38738739e+00 -4.57037501e-02 -5.04745618e-02 3.25934350e-01 7.72571683e-01 -1.03077078e+00 -6.67416453e-01 -2.61523575e-02 1.42547071e-01 -2.04934329e-01 -2.25912835e-02 1.19582474e+00 -5.38206100e-01 7.57181406e-01 -6.98743537e-02 -3.13469052e-01 -1.12230134e+00 7.60418594e-01 4.98499513e-01 -1.11855674e+00 -7.97277987e-01 7.77329803e-01 -1.50169134e-01 -6.27067089e-01 2.06610523e-02 -7.74657071e-01 -5.31783819e-01 -5.10387942e-02 4.60987926e-01 -2.55780935e-01 6.46131396e-01 -4.84129786e-01 -6.33013070e-01 1.62991762e-01 -3.73718381e-01 1.50808720e-02 1.73041105e+00 2.12923631e-01 -2.70074248e-01 6.23470128e-01 1.06879747e+00 -1.17492132e-01 -3.08897067e-02 -3.57900530e-01 7.91593611e-01 4.06082332e-01 3.81095231e-01 -8.70058119e-01 -6.88844979e-01 8.02533567e-01 7.85630226e-01 -4.06044647e-02 9.79981780e-01 1.28813401e-01 1.12051976e+00 7.68369257e-01 3.23294610e-01 -1.00172257e+00 -6.12556301e-02 6.48837745e-01 4.34042662e-01 -1.16842544e+00 -1.56072050e-01 -5.13308905e-02 -3.94818366e-01 1.46992958e+00 1.84953019e-01 -3.26989740e-01 7.36773610e-01 6.59007967e-01 2.51240522e-01 -6.46388888e-01 -7.66084969e-01 -3.79945278e-01 2.96853483e-01 5.02704799e-01 8.55635464e-01 -1.36120081e-01 -7.12903082e-01 9.07778323e-01 -1.96514046e-03 3.19104254e-01 6.83480144e-01 1.31922317e+00 -2.10768297e-01 -1.42585194e+00 -2.68511087e-01 7.60896921e-01 -1.18774867e+00 -5.20454705e-01 -1.48166627e-01 8.34237516e-01 2.53120899e-01 7.12694108e-01 -1.79604247e-01 -1.47284687e-01 5.44247389e-01 3.57053101e-01 4.89693344e-01 -1.20239747e+00 -1.10359335e+00 -6.06231876e-02 3.65160018e-01 -4.82685655e-01 -6.68766677e-01 -3.62382829e-01 -1.67373323e+00 4.44912523e-01 -3.80851924e-01 7.47132152e-02 6.32025480e-01 1.12580419e+00 2.10384920e-01 1.08628428e+00 -1.41631931e-01 -1.44322574e-01 -5.51329613e-01 -1.08524811e+00 -3.73159140e-01 2.51006007e-01 3.80085647e-01 -4.54860419e-01 -3.69503684e-02 -1.47935003e-01]
[8.482357025146484, 8.728422164916992]
7db4622f-586a-4309-b0e5-1ca2fc95b6ed
towards-open-vocabulary-scene-graph
2208.08165
null
https://arxiv.org/abs/2208.08165v3
https://arxiv.org/pdf/2208.08165v3.pdf
Towards Open-vocabulary Scene Graph Generation with Prompt-based Finetuning
Scene graph generation (SGG) is a fundamental task aimed at detecting visual relations between objects in an image. The prevailing SGG methods require all object classes to be given in the training set. Such a closed setting limits the practical application of SGG. In this paper, we introduce open-vocabulary scene graph generation, a novel, realistic and challenging setting in which a model is trained on a set of base object classes but is required to infer relations for unseen target object classes. To this end, we propose a two-step method that firstly pre-trains on large amounts of coarse-grained region-caption data and then leverages two prompt-based techniques to finetune the pre-trained model without updating its parameters. Moreover, our method can support inference over completely unseen object classes, which existing methods are incapable of handling. On extensive experiments on three benchmark datasets, Visual Genome, GQA, and Open-Image, our method significantly outperforms recent, strong SGG methods on the setting of Ov-SGG, as well as on the conventional closed SGG.
['Yuan-Fang Li', 'Jingkuan Song', 'Lianli Gao', 'Tao He']
2022-08-17
null
null
null
null
['scene-graph-generation']
['computer-vision']
[ 6.25045180e-01 4.17840123e-01 6.46227598e-02 -3.21286261e-01 -6.00086749e-01 -6.68126464e-01 8.63199830e-01 1.75229281e-01 -8.41106400e-02 4.72914785e-01 -8.32997710e-02 -4.42610472e-01 2.51817942e-01 -9.12368774e-01 -1.15615904e+00 -5.93845248e-01 2.53204882e-01 6.12989485e-01 5.16704679e-01 -1.18629798e-01 9.01879650e-03 2.44380176e-01 -1.52798617e+00 1.85601503e-01 7.05668628e-01 1.06144917e+00 3.53859693e-01 5.85494876e-01 1.88988209e-01 8.20666969e-01 -2.77723640e-01 -5.70528626e-01 2.64676869e-01 -3.11314285e-01 -7.73498654e-01 5.52390695e-01 8.02006304e-01 -2.18997762e-01 -3.46434087e-01 1.11556327e+00 2.13592693e-01 3.49758685e-01 8.47430706e-01 -1.34100318e+00 -7.80150890e-01 4.64985400e-01 -5.08764565e-01 1.15135036e-01 2.16223612e-01 3.65801811e-01 1.22072124e+00 -9.65997934e-01 7.31639564e-01 1.33201182e+00 1.67310849e-01 5.75716555e-01 -1.29255652e+00 -3.61523926e-01 7.07712829e-01 2.16463476e-01 -1.40989637e+00 -4.02023375e-01 7.45651603e-01 -5.98409057e-01 8.04166377e-01 2.35007182e-01 5.29830754e-01 1.14462030e+00 -2.28342950e-01 6.28970325e-01 9.45065320e-01 -5.46214223e-01 3.26084405e-01 1.34024788e-02 5.83882863e-03 7.56036997e-01 3.40809435e-01 -1.19631901e-01 -3.69766057e-01 -1.40927613e-01 8.32945108e-01 -2.26194695e-01 -4.44534570e-01 -7.23672926e-01 -1.27570629e+00 8.11738849e-01 6.22723103e-01 -1.12458095e-01 -1.95845068e-01 1.42288148e-01 6.85710981e-02 -1.05162255e-01 5.88879287e-01 2.46073186e-01 -1.59162372e-01 4.92084593e-01 -6.40063047e-01 2.77577639e-01 7.60713100e-01 1.37065732e+00 7.97585130e-01 -3.78932536e-01 -4.60346431e-01 5.63524544e-01 4.70285773e-01 4.15857255e-01 1.01543956e-01 -4.68777984e-01 6.12134039e-01 7.53894508e-01 -5.35025671e-02 -1.12761641e+00 1.32527184e-02 -4.15699303e-01 -7.30163157e-01 -3.46266255e-02 5.08187652e-01 3.30037832e-01 -1.21895087e+00 1.78396070e+00 8.06115031e-01 3.52554172e-01 8.43109488e-02 9.20807958e-01 1.02846837e+00 6.24314547e-01 1.10132322e-01 1.62434913e-02 1.35603642e+00 -1.31195557e+00 -3.76191139e-01 -6.73490524e-01 4.60931689e-01 -4.89802748e-01 1.22873259e+00 3.34709346e-01 -7.64180481e-01 -5.32996058e-01 -8.59772384e-01 -2.34425664e-01 -5.98532617e-01 1.20722167e-01 7.04043567e-01 3.49168867e-01 -9.78888929e-01 1.73258349e-01 -6.19053781e-01 -4.51677352e-01 8.21759284e-01 2.07004935e-01 -3.88192832e-01 -4.80503261e-01 -7.49621570e-01 5.21021903e-01 8.26593876e-01 3.42993438e-01 -1.17311776e+00 -3.15011472e-01 -1.13646352e+00 3.02631930e-02 9.27190781e-01 -9.97039139e-01 1.01067710e+00 -7.14648306e-01 -1.08060789e+00 1.06717622e+00 -6.32344279e-03 -3.24974567e-01 5.16443014e-01 -1.18745476e-01 -1.54440299e-01 2.12382600e-01 5.33853211e-02 7.73387015e-01 1.18408954e+00 -1.40116346e+00 -4.50639248e-01 -4.55273479e-01 4.54845399e-01 3.12772840e-01 5.10012545e-02 -2.13841245e-01 -8.81721139e-01 -5.07625759e-01 1.14403971e-01 -9.05391932e-01 -3.62324059e-01 -3.96931660e-04 -8.05833817e-01 -4.44526434e-01 8.04113388e-01 -3.07146251e-01 8.51927876e-01 -2.16035247e+00 9.42652822e-02 2.32023716e-01 3.76988351e-01 2.85715610e-01 -2.80969471e-01 2.50932455e-01 6.34037629e-02 -9.09995660e-02 -2.63023555e-01 -2.93676466e-01 5.87346815e-02 4.72346067e-01 -4.64394748e-01 4.38175291e-01 4.43550140e-01 1.26124084e+00 -1.17572510e+00 -8.17463338e-01 3.83243382e-01 2.94793636e-01 -6.53355598e-01 4.69453126e-01 -8.06330979e-01 4.93884593e-01 -5.17126739e-01 5.59217930e-01 7.26379335e-01 -7.74099588e-01 1.80010468e-01 -2.55392760e-01 2.48691350e-01 3.85756753e-02 -1.11463499e+00 1.77770448e+00 -2.85676897e-01 4.05681700e-01 -3.73536527e-01 -1.13110483e+00 7.73273647e-01 -1.12460509e-01 -5.51184081e-02 -4.24168497e-01 2.57903606e-01 -1.03635199e-01 -1.81947425e-01 -5.87919116e-01 2.66566396e-01 1.00323312e-01 -9.74623710e-02 3.17641526e-01 1.97028533e-01 -2.41196126e-01 2.60324121e-01 5.93590319e-01 9.68593299e-01 3.09975117e-01 4.87130970e-01 -2.45044485e-01 5.39307117e-01 -1.40137270e-01 3.73864383e-01 9.88378167e-01 1.39537388e-02 8.92309368e-01 5.30312538e-01 -1.99741989e-01 -7.48924077e-01 -9.48810101e-01 9.69504490e-02 1.06135106e+00 6.14196837e-01 -5.46325386e-01 -8.11370432e-01 -1.15195370e+00 -1.39018983e-01 7.51443923e-01 -8.92377496e-01 -4.56651673e-02 -3.52209240e-01 -6.47682250e-01 1.45993009e-01 4.25599366e-01 2.64325619e-01 -1.19510293e+00 -3.89771461e-01 -8.62938762e-02 -2.48100415e-01 -1.68089700e+00 -5.66966236e-01 -1.74892262e-01 -5.06174445e-01 -1.31271017e+00 -3.64745140e-01 -8.97894084e-01 1.07966101e+00 4.27189261e-01 1.36054599e+00 2.40301982e-01 -3.20162654e-01 2.79169887e-01 -4.28772360e-01 -4.55051929e-01 -3.30243111e-01 1.22544996e-01 -4.60217178e-01 5.28175116e-01 1.17818855e-01 -3.45423877e-01 -6.18037105e-01 1.71317786e-01 -9.97668326e-01 6.19614959e-01 6.93090200e-01 7.27217734e-01 8.81483793e-01 -1.57575637e-01 3.96282822e-01 -1.26770484e+00 2.34093107e-02 -4.70688343e-01 -8.06577563e-01 6.10374570e-01 -3.63807648e-01 1.41430438e-01 4.79374826e-01 -4.73005772e-01 -1.01335025e+00 1.74454629e-01 1.12354107e-01 -5.73835731e-01 -1.62760228e-01 3.57752383e-01 -5.80621958e-01 -1.15854189e-01 6.66099191e-01 3.14673990e-01 -3.00118625e-01 -2.37836316e-01 7.94283748e-01 3.48130405e-01 7.83990383e-01 -5.97747445e-01 1.11050618e+00 6.98828936e-01 5.28171025e-02 -6.71267569e-01 -1.25024533e+00 -6.17449403e-01 -7.13606775e-01 -2.51990467e-01 8.85154307e-01 -9.77787375e-01 -2.58211166e-01 3.43326867e-01 -1.19668519e+00 -7.09629893e-01 -2.31672585e-01 1.07395768e-01 -5.47698081e-01 3.71967137e-01 -1.15731090e-01 -6.26356244e-01 -8.16561952e-02 -9.56997156e-01 1.48989630e+00 1.29650250e-01 2.94261575e-01 -1.07572317e+00 -2.30747476e-01 5.96594572e-01 6.84771826e-03 5.01961470e-01 7.82320857e-01 -6.02671623e-01 -1.03154528e+00 -2.52845008e-02 -5.92921674e-01 2.11521983e-01 1.32599026e-01 -1.67699769e-01 -1.04743814e+00 -3.44807982e-01 -3.29617590e-01 -6.26061141e-01 8.59170973e-01 1.10934049e-01 1.46002591e+00 -3.29277873e-01 -5.45899212e-01 6.84608161e-01 1.42230630e+00 -2.52698869e-01 5.33555090e-01 2.48394459e-02 1.14207053e+00 6.04111910e-01 7.99061775e-01 1.51558682e-01 5.79321325e-01 7.47867823e-01 7.39566684e-01 -2.09272742e-01 -3.32819521e-01 -5.84053755e-01 -8.18337314e-03 4.59524602e-01 4.70164530e-02 -6.75219178e-01 -7.47401476e-01 7.12787449e-01 -2.06372881e+00 -6.10895276e-01 -2.54934907e-01 2.08709121e+00 7.14154601e-01 1.15757026e-01 -1.32339343e-01 -2.12092072e-01 7.19588280e-01 2.33657137e-01 -6.29214823e-01 1.83508217e-01 -1.49787545e-01 1.39495522e-01 3.63539279e-01 4.01778638e-01 -1.31415915e+00 1.32683408e+00 4.96647263e+00 7.02654302e-01 -8.55148971e-01 5.86246252e-02 7.08845496e-01 1.72509372e-01 -3.29573214e-01 2.97771633e-01 -8.77484381e-01 2.17721164e-01 4.79605407e-01 -1.37909830e-01 2.91900158e-01 8.42066944e-01 -7.51710758e-02 -8.23905468e-02 -1.29882681e+00 1.10284686e+00 4.56321418e-01 -1.19426870e+00 3.55182230e-01 3.63292620e-02 8.47914398e-01 -5.56858145e-02 -1.64037287e-01 3.26188236e-01 4.00912672e-01 -9.54491794e-01 8.45654905e-01 2.01292694e-01 8.29402685e-01 -2.91139036e-01 4.30480510e-01 4.36222970e-01 -1.23040521e+00 2.23257750e-01 -4.53900605e-01 3.56221409e-03 2.09357873e-01 4.84305710e-01 -9.89279687e-01 7.39981353e-01 5.02107441e-01 7.26659954e-01 -9.55986261e-01 9.07026470e-01 -5.91698468e-01 7.00549364e-01 -3.16693813e-01 1.73669279e-01 2.35103488e-01 -9.26897824e-02 3.80719662e-01 1.04491115e+00 -5.68687953e-02 2.74409652e-01 3.74392509e-01 1.01788318e+00 -4.57300469e-02 3.29972133e-02 -7.53197789e-01 3.54231410e-02 1.72883764e-01 1.54331172e+00 -9.93861079e-01 -4.41498220e-01 -5.84337056e-01 1.01522732e+00 5.92074692e-01 5.09269595e-01 -9.96219218e-01 -5.40959537e-02 1.92464411e-01 1.71346381e-01 5.32045066e-01 -1.18625108e-02 1.30948260e-01 -1.46807587e+00 1.69224247e-01 -7.73807526e-01 6.26361847e-01 -8.84663403e-01 -1.24763429e+00 6.26599789e-01 1.59121633e-01 -1.03368592e+00 -3.42126846e-01 -7.34730959e-01 -4.84788090e-01 6.85744286e-01 -1.65081787e+00 -1.70087051e+00 -7.24901557e-01 8.27446878e-01 6.09985411e-01 3.68489891e-01 4.35537368e-01 4.52233255e-02 -6.51810467e-01 5.00089765e-01 -4.15331036e-01 2.05383882e-01 5.19965410e-01 -1.26901627e+00 6.38418317e-01 1.18809032e+00 5.21264315e-01 3.79851192e-01 5.35008073e-01 -6.65267885e-01 -1.17408919e+00 -1.74325526e+00 7.50981510e-01 -6.59124494e-01 5.66108048e-01 -1.04184330e+00 -9.58335638e-01 9.51537490e-01 -5.21482117e-02 6.36953056e-01 2.82504231e-01 -6.91791326e-02 -5.31241536e-01 1.17420346e-01 -7.21024573e-01 6.25284910e-01 1.49129665e+00 -4.28221673e-01 -4.89603668e-01 7.11857796e-01 8.45266938e-01 -6.64758265e-01 -5.01884639e-01 3.68176639e-01 1.93713143e-01 -6.84072614e-01 1.10565293e+00 -8.08380663e-01 2.98193574e-01 -5.34807563e-01 -1.72134757e-01 -1.14258039e+00 -1.61785945e-01 -6.78286731e-01 -2.61790931e-01 1.17871857e+00 3.44967335e-01 -5.85800231e-01 6.64000213e-01 4.39586550e-01 -1.86334059e-01 -6.80469930e-01 -5.25659800e-01 -7.88852036e-01 -3.17367017e-01 -4.43696290e-01 5.96212506e-01 8.00121427e-01 -4.94203657e-01 6.46774650e-01 -1.90227300e-01 5.18100262e-01 9.29639101e-01 4.51651335e-01 1.14033186e+00 -1.07185125e+00 -5.16798854e-01 -5.95904887e-02 -6.73443317e-01 -1.10564888e+00 1.62497565e-01 -9.91049826e-01 2.54152983e-01 -1.70534003e+00 4.53796983e-01 -5.82979500e-01 -1.31280303e-01 5.79935372e-01 -6.73092067e-01 4.90828067e-01 7.98716024e-02 7.14554116e-02 -1.14020801e+00 6.56474710e-01 1.51023746e+00 -2.74160922e-01 6.77458569e-02 -3.37426551e-02 -8.46056581e-01 6.82435989e-01 4.61007267e-01 -3.60290021e-01 -9.71608996e-01 -3.37895215e-01 2.83012778e-01 -2.60580093e-01 9.56054688e-01 -7.67892897e-01 1.23151138e-01 -3.42693746e-01 1.32948339e-01 -5.46729088e-01 1.63953528e-01 -5.17272055e-01 5.48924282e-02 -1.10501926e-02 -1.98170304e-01 -3.71330649e-01 6.13094978e-02 1.01488459e+00 -3.29937935e-02 -5.78829758e-02 6.54196382e-01 -8.72972012e-02 -9.81027722e-01 6.48039758e-01 3.02308589e-01 5.00635445e-01 1.18152380e+00 -2.97350258e-01 -4.14833665e-01 -2.21115485e-01 -6.21280074e-01 2.70713151e-01 5.26443601e-01 5.47458827e-01 6.59354746e-01 -1.24749374e+00 -7.39484549e-01 3.02688122e-01 8.07201922e-01 7.52896965e-01 2.76221573e-01 6.68453157e-01 -2.50260174e-01 2.88814694e-01 2.88579911e-01 -8.81222963e-01 -1.19767356e+00 1.04896677e+00 1.14061862e-01 -2.21196622e-01 -8.73301566e-01 1.10574257e+00 1.11374164e+00 -2.20655039e-01 7.31315613e-02 -5.07564664e-01 -2.38371745e-01 -3.07181150e-01 2.84186929e-01 -2.88664550e-01 8.41267556e-02 -8.21830153e-01 -2.90581286e-01 4.28937912e-01 -1.86628371e-01 8.44302475e-02 1.11431491e+00 -2.59285718e-01 4.85934019e-02 2.85290778e-01 1.05094671e+00 -2.17424199e-01 -1.45267582e+00 -4.84222084e-01 -1.89628288e-01 -5.45474052e-01 -2.32893378e-02 -5.41304767e-01 -1.03454375e+00 7.18852520e-01 1.95268929e-01 1.37672156e-01 1.19503617e+00 6.23487532e-01 4.83304083e-01 3.21965784e-01 4.55496877e-01 -6.74259126e-01 1.90325543e-01 1.44869030e-01 8.68423045e-01 -1.41661036e+00 -7.01722652e-02 -1.02706146e+00 -4.29467887e-01 7.52590716e-01 7.51888931e-01 -9.72489193e-02 4.44469333e-01 -2.27045268e-01 -1.13710240e-01 -5.07553935e-01 -8.87674510e-01 -4.67987001e-01 6.85613513e-01 6.62466466e-01 -6.94646984e-02 5.82323298e-02 8.34740251e-02 3.13412249e-01 -1.27334177e-01 -1.89351514e-02 3.45116645e-01 7.63389289e-01 -9.57239270e-02 -8.78518939e-01 -1.45901576e-01 4.19613838e-01 -1.41534060e-01 -3.18194389e-01 -4.76210922e-01 9.42553163e-01 2.13821381e-01 9.25084770e-01 4.43060435e-02 -2.47129519e-03 2.36310318e-01 -3.90031248e-01 6.62307620e-01 -9.47906017e-01 -1.14967845e-01 -6.90054521e-02 7.34054074e-02 -7.45124876e-01 -5.29782891e-01 -6.72631621e-01 -8.81689429e-01 3.05860192e-01 -6.13410234e-01 -4.41283695e-02 2.68025279e-01 1.08239460e+00 3.10372323e-01 4.83432382e-01 3.51552010e-01 -6.59464538e-01 -2.80681610e-01 -7.93069959e-01 -3.24681759e-01 7.75975943e-01 2.78978348e-01 -8.77265871e-01 -2.87605226e-01 4.11177069e-01]
[10.33988094329834, 1.6138097047805786]
8619df05-b023-4c63-be88-c42a87dba003
the-best-of-both-worlds-combining-human-and
2305.12737
null
https://arxiv.org/abs/2305.12737v1
https://arxiv.org/pdf/2305.12737v1.pdf
The Best of Both Worlds: Combining Human and Machine Translations for Multilingual Semantic Parsing with Active Learning
Multilingual semantic parsing aims to leverage the knowledge from the high-resource languages to improve low-resource semantic parsing, yet commonly suffers from the data imbalance problem. Prior works propose to utilize the translations by either humans or machines to alleviate such issues. However, human translations are expensive, while machine translations are cheap but prone to error and bias. In this work, we propose an active learning approach that exploits the strengths of both human and machine translations by iteratively adding small batches of human translations into the machine-translated training set. Besides, we propose novel aggregated acquisition criteria that help our active learning method select utterances to be manually translated. Our experiments demonstrate that an ideal utterance selection can significantly reduce the error and bias in the translated data, resulting in higher parser accuracies than the parsers merely trained on the machine-translated data.
['Gholamreza Haffari', 'Raj V. Tumuluri', 'Philip R. Cohen', 'Lizhen Qu', 'Zhuang Li']
2023-05-22
null
null
null
null
['semantic-parsing']
['natural-language-processing']
[ 3.22498202e-01 4.44687963e-01 -7.82229722e-01 -8.38859618e-01 -1.63336527e+00 -7.19699621e-01 1.40784115e-01 1.47349805e-01 -5.57955325e-01 8.68671417e-01 3.22553337e-01 -3.79418999e-01 3.77721459e-01 -8.22407126e-01 -8.51799726e-01 -3.69400114e-01 6.23063266e-01 7.02076495e-01 -3.48429382e-02 -2.71157086e-01 -5.48413023e-02 -2.09627166e-01 -1.05616105e+00 3.55692416e-01 1.67701411e+00 5.35394192e-01 5.02588987e-01 -1.21261477e-02 -5.60003996e-01 8.11269701e-01 -4.34259623e-01 -8.55429888e-01 3.74486983e-01 -6.62231147e-01 -7.41198480e-01 1.06602140e-01 5.63472211e-02 -2.59210259e-01 3.55973691e-01 1.25208032e+00 4.33437616e-01 -5.83662540e-02 1.84364282e-02 -9.12236273e-01 -6.71614587e-01 1.21490884e+00 -3.40213776e-01 -2.11082548e-01 4.87539768e-01 -1.64305011e-03 1.26405764e+00 -1.20086336e+00 5.89930892e-01 1.15693617e+00 5.13499677e-01 7.02037990e-01 -1.02481806e+00 -9.07894313e-01 3.17190737e-01 8.49134624e-02 -1.02850807e+00 -9.26751912e-01 9.21657681e-01 -1.54991627e-01 1.04630792e+00 1.63109660e-01 2.56825835e-01 1.22014117e+00 -3.40263695e-01 1.02444196e+00 9.24944341e-01 -9.63818848e-01 2.92036504e-01 3.49945992e-01 9.62300375e-02 7.84260213e-01 2.39707395e-01 -3.68337274e-01 -8.16764712e-01 -3.02354276e-01 3.72238487e-01 -2.68453300e-01 -1.28632352e-01 -1.57881483e-01 -1.04532671e+00 1.07772112e+00 5.32283857e-02 1.55647948e-01 -5.34147203e-01 -5.53870201e-01 3.76127452e-01 3.77275169e-01 9.54478681e-01 7.66179025e-01 -9.15705085e-01 -2.60812417e-02 -6.65664673e-01 -3.28051269e-01 6.79038465e-01 1.21027088e+00 1.25776505e+00 -2.55343527e-01 2.66800165e-01 1.16757846e+00 3.30546528e-01 5.75174809e-01 4.25758958e-01 -7.17255354e-01 1.24499738e+00 1.06156194e+00 3.67930382e-02 -6.46479726e-01 -1.29344445e-02 -8.69029760e-02 -2.24564090e-01 -3.10463816e-01 1.99808151e-01 -2.37868890e-01 -7.14811504e-01 1.77360022e+00 4.52394933e-01 -4.09087658e-01 1.65161476e-01 9.29551005e-01 6.21643364e-01 3.58409077e-01 5.52757204e-01 -5.31712651e-01 9.66680348e-01 -1.19330680e+00 -8.25813830e-01 -6.57337189e-01 9.52870846e-01 -8.85550201e-01 1.40415668e+00 1.17331930e-03 -1.06023681e+00 -3.98029476e-01 -9.03742850e-01 -2.29354575e-02 2.87382640e-02 3.18875670e-01 7.92059422e-01 5.59886038e-01 -6.91672087e-01 3.00478697e-01 -1.16939676e+00 -2.56612152e-01 4.07277524e-01 3.53695601e-01 -3.73821169e-01 -1.10977776e-01 -1.29956245e+00 9.51916873e-01 3.05993229e-01 -6.31590486e-02 -4.67859447e-01 -4.43331629e-01 -1.17101240e+00 -1.43936321e-01 6.76776886e-01 -4.72798854e-01 1.39143097e+00 -1.77955174e+00 -1.78347886e+00 8.82228971e-01 -3.74279231e-01 -1.13253452e-01 4.99794692e-01 -5.83633602e-01 -1.79613084e-01 4.89951149e-02 5.03118873e-01 4.42147225e-01 3.41056406e-01 -9.95164156e-01 -6.02509081e-01 -4.45393234e-01 1.36719361e-01 5.25869310e-01 -4.93369907e-01 2.99045205e-01 -5.54297388e-01 -3.98004889e-01 4.58408713e-01 -8.00164402e-01 -5.18971384e-01 -4.50263470e-01 -3.07473630e-01 -2.29340523e-01 1.74352661e-01 -8.59788120e-01 9.34877634e-01 -1.92261648e+00 7.42860287e-02 -2.20123410e-01 -1.47475630e-01 1.95432901e-01 -2.52408564e-01 3.14640522e-01 3.48242462e-01 2.12601200e-01 -3.40738714e-01 -4.90551114e-01 -2.92651922e-01 3.59589219e-01 -2.89909840e-01 1.25914633e-01 4.76553380e-01 9.53913808e-01 -1.17167604e+00 -8.97869587e-01 -6.50525913e-02 -5.41563556e-02 -5.40643930e-01 4.66497749e-01 -2.86509752e-01 7.98498154e-01 -7.04241216e-01 7.90458560e-01 4.33271289e-01 -1.37760192e-01 7.04055071e-01 1.62028104e-01 4.49341834e-02 1.01494145e+00 -5.70058346e-01 2.10248184e+00 -8.03181231e-01 7.31811896e-02 4.95211855e-02 -9.76833820e-01 1.03108335e+00 4.54351485e-01 2.67535716e-01 -1.15799916e+00 -4.70311418e-02 6.57014370e-01 -5.91189740e-03 -7.15787828e-01 3.57569605e-01 -2.01618686e-01 -2.95846879e-01 6.49682343e-01 1.81241348e-01 2.09416136e-01 1.24180831e-01 4.46423404e-02 9.49438214e-01 3.88574511e-01 4.42761451e-01 -9.94784012e-02 4.13875103e-01 4.75552261e-01 1.35729384e+00 5.18889427e-01 -1.58722520e-01 2.35339984e-01 1.92717746e-01 -1.50230154e-01 -9.27043736e-01 -8.61438453e-01 2.64803231e-01 1.49257207e+00 1.77683800e-01 -2.64439702e-01 -8.90583932e-01 -1.36650741e+00 -4.57857430e-01 7.79347539e-01 -3.77031951e-03 1.64645296e-02 -1.05102408e+00 -9.11026478e-01 4.10768449e-01 6.15113616e-01 2.73259401e-01 -9.43425417e-01 -2.70693451e-01 3.96435320e-01 -7.64146209e-01 -1.21326804e+00 -2.02811316e-01 1.29507586e-01 -1.04030561e+00 -9.47000980e-01 -1.03288636e-01 -9.37961996e-01 9.48379397e-01 1.19947724e-01 1.38141441e+00 7.73763508e-02 4.30794507e-01 -1.76303118e-01 -8.73736560e-01 -4.40671802e-01 -6.99418426e-01 4.85869288e-01 3.74310464e-02 -2.53248423e-01 8.09074283e-01 -2.72045195e-01 -3.31550241e-01 3.31023753e-01 -4.15571719e-01 4.10323858e-01 6.77566707e-01 9.22590792e-01 6.54749453e-01 -3.28451037e-01 9.07966316e-01 -1.41133988e+00 3.50218236e-01 -4.32371199e-01 -5.48795104e-01 5.82090318e-01 -6.87735915e-01 -2.44410033e-03 8.43007982e-01 -2.88910568e-01 -1.37467766e+00 4.12031233e-01 -1.76306635e-01 1.45420000e-01 1.38784945e-01 4.89857376e-01 -7.35690057e-01 1.37826070e-01 5.85740387e-01 -1.46821871e-01 -3.86867344e-01 -6.15517974e-01 2.63426125e-01 9.50730205e-01 5.68253361e-02 -7.81738102e-01 5.95068753e-01 -1.21718077e-02 -7.46983409e-01 -1.36136755e-01 -1.24136615e+00 -3.10037315e-01 -8.27678978e-01 7.25721419e-02 6.58163726e-01 -1.16699195e+00 1.40733704e-01 -2.48341151e-02 -1.19074833e+00 -3.29886079e-01 -7.96041563e-02 7.86309600e-01 -3.89885455e-01 1.78718194e-01 -7.08585680e-01 -7.79332221e-01 -5.84714592e-01 -1.32150781e+00 1.04077065e+00 2.31141567e-01 -4.66087490e-01 -8.72121453e-01 1.35753974e-01 8.38615298e-01 2.19642401e-01 -2.93871433e-01 1.07002306e+00 -1.09184277e+00 -6.91942334e-01 -4.86142933e-02 1.59778178e-01 2.36335710e-01 3.50611776e-01 -4.11180407e-01 -8.25191617e-01 -1.11948244e-01 1.70191050e-01 -6.14862144e-01 4.36646014e-01 -2.23707393e-01 5.73014438e-01 -3.85570556e-01 -1.58644140e-01 2.82043308e-01 1.32013309e+00 3.49992096e-01 1.62064850e-01 3.61192614e-01 6.78455234e-01 8.29037964e-01 1.04400826e+00 -1.23983346e-01 5.62574565e-01 5.60050368e-01 -8.68520215e-02 -2.30483368e-01 1.92949221e-01 -5.96440017e-01 6.11977339e-01 1.64384377e+00 1.97770134e-01 -9.32183564e-02 -1.04704678e+00 4.03617024e-01 -1.88741159e+00 -3.93265516e-01 7.16961697e-02 2.24507833e+00 1.35284221e+00 1.62556767e-01 -4.02785063e-01 -1.42583743e-01 8.74502778e-01 -8.30081850e-02 -4.51357394e-01 -2.53796756e-01 -1.08029567e-01 4.25974995e-01 5.28064430e-01 5.70260406e-01 -9.71130729e-01 1.48496354e+00 6.13248730e+00 4.47113395e-01 -1.09696484e+00 6.70877218e-01 4.99843746e-01 -8.06239471e-02 -4.83770192e-01 3.84591311e-01 -8.34535718e-01 5.22162139e-01 9.14257646e-01 4.49029505e-02 2.25320533e-01 9.17595148e-01 2.89535761e-01 4.97158468e-02 -1.16444457e+00 5.08745015e-01 -1.87978242e-02 -1.00939047e+00 2.10493784e-02 -2.26715550e-01 6.80516005e-01 -4.57223691e-03 -4.17147189e-01 5.61556399e-01 5.78194261e-01 -6.30751729e-01 7.90207863e-01 4.52738516e-02 7.07893133e-01 -5.00459731e-01 7.48225689e-01 7.32329845e-01 -8.84785950e-01 6.93234429e-02 -4.67054605e-01 -2.26739228e-01 3.55204046e-01 6.10588491e-01 -9.63613689e-01 6.85985923e-01 3.00722033e-01 4.86256599e-01 -4.16417807e-01 3.56955707e-01 -7.85033226e-01 9.11179125e-01 -2.51016254e-03 -9.03637707e-02 -5.06480299e-02 -3.64463151e-01 2.45697483e-01 1.03066885e+00 2.33067065e-01 1.06079653e-02 6.48231566e-01 7.04809666e-01 -3.03508967e-01 7.54267573e-01 -3.65606874e-01 -3.33440065e-01 7.80527592e-01 1.10810471e+00 -6.17793798e-01 -4.57894951e-01 -7.31599450e-01 1.04792297e+00 8.03321779e-01 4.43150640e-01 -6.55311286e-01 -1.12415962e-01 4.39785153e-01 -1.54034048e-01 -1.44178271e-01 -7.79785737e-02 -5.97282529e-01 -1.42346132e+00 4.24009383e-01 -1.07389390e+00 2.17469737e-01 -3.76588702e-01 -1.30279934e+00 6.08610392e-01 -4.41413939e-01 -1.24021864e+00 -4.17055428e-01 -2.99305111e-01 -3.62670302e-01 9.01413083e-01 -1.29267013e+00 -1.17048419e+00 8.48554671e-02 6.46414012e-02 9.71323192e-01 -1.95187330e-01 1.04809678e+00 5.11706889e-01 -8.36267650e-01 8.50327909e-01 -2.32245892e-01 5.36099613e-01 8.90354216e-01 -9.96114850e-01 6.13325536e-01 1.00978506e+00 3.12065363e-01 9.07000899e-01 4.78751987e-01 -8.83747637e-01 -1.39973271e+00 -9.73618925e-01 1.47649169e+00 -4.33616877e-01 5.45477688e-01 -5.44752061e-01 -8.77150178e-01 9.68064904e-01 5.70820309e-02 -3.43323857e-01 1.05014455e+00 4.51215148e-01 -4.10928339e-01 8.83338153e-02 -1.11135757e+00 4.55217898e-01 1.16157746e+00 -7.37212300e-01 -8.36241364e-01 3.63298684e-01 9.14774179e-01 -4.23526973e-01 -5.25371253e-01 4.91053462e-01 2.30448470e-01 -6.24879897e-01 6.04189038e-01 -8.02910745e-01 5.72114170e-01 4.50971629e-03 -1.35773137e-01 -1.33019650e+00 -4.75031659e-02 -3.63426983e-01 3.20611626e-01 1.56252325e+00 1.12495852e+00 -6.94247007e-01 7.69420743e-01 7.51312971e-01 -2.77782410e-01 -6.14380002e-01 -8.29686224e-01 -5.54853022e-01 8.79037008e-02 -3.04242313e-01 6.42877162e-01 1.30221927e+00 2.44407699e-01 7.69221365e-01 -1.35906458e-01 4.26561646e-02 4.51995015e-01 1.74509123e-01 7.39384353e-01 -9.97448385e-01 -3.10672075e-01 1.30931690e-01 6.77485019e-02 -9.56482768e-01 5.60280740e-01 -1.03634989e+00 4.79743540e-01 -1.49884272e+00 3.72761339e-01 -8.67141426e-01 -1.96663901e-01 6.40042663e-01 -7.22320974e-01 4.75718826e-02 -2.90078223e-02 4.19939548e-01 -7.18672574e-01 3.74565184e-01 1.12823594e+00 -1.52918638e-03 -3.43501061e-01 -1.05465040e-01 -8.93569648e-01 8.14941227e-01 7.99250543e-01 -8.19976926e-01 -3.93526942e-01 -1.02415812e+00 3.97374272e-01 1.29674241e-01 -3.57907414e-01 -3.41461957e-01 1.77942246e-01 -3.36871892e-01 1.50776953e-01 -2.45067894e-01 -1.01695489e-03 -6.09903395e-01 -1.22901775e-01 3.64128575e-02 -6.23000264e-01 1.11213684e-01 -2.20415607e-01 3.48955095e-01 -3.60601157e-01 -3.48692179e-01 5.42017639e-01 -5.96106589e-01 -6.29235506e-01 8.52254257e-02 -1.42081499e-01 1.25367969e-01 6.25451446e-01 1.63332120e-01 -2.80459940e-01 -2.53860671e-02 -4.30277050e-01 2.15225473e-01 6.86657429e-01 4.81144756e-01 1.41147822e-01 -1.23052669e+00 -6.61825001e-01 9.13417935e-02 2.68911153e-01 1.85753435e-01 -1.53518751e-01 9.46449518e-01 -3.52639019e-01 2.46806920e-01 -7.69036822e-03 -4.90105867e-01 -1.10095990e+00 2.51755416e-01 -1.37195298e-02 -3.37626696e-01 -4.42518562e-01 8.83349061e-01 2.72515826e-02 -9.88073170e-01 7.45981261e-02 1.62082762e-01 -1.25102885e-02 -2.20997315e-02 2.34935269e-01 5.95565811e-02 3.86784315e-01 -6.29998028e-01 -4.53390181e-01 2.35648826e-01 -1.38172403e-01 -3.31284553e-01 1.28620195e+00 -3.94719720e-01 -1.28290579e-01 4.53096896e-01 9.57499385e-01 5.23329556e-01 -9.23008978e-01 -6.43029273e-01 6.36382163e-01 -4.43100154e-01 -3.32811773e-01 -9.44958150e-01 -8.46044660e-01 6.06911778e-01 1.45031855e-01 -1.70768812e-01 1.02981877e+00 4.23856266e-02 1.15390527e+00 4.66057092e-01 8.84546936e-01 -1.39726341e+00 -1.30769625e-01 3.45977724e-01 3.32490504e-01 -1.68522286e+00 -1.42856061e-01 -8.87874901e-01 -8.27274859e-01 8.06449354e-01 7.16469765e-01 2.29989111e-01 -2.15803441e-02 3.15137446e-01 8.05853844e-01 1.77561849e-01 -7.69058347e-01 -1.91767901e-01 -4.34561111e-02 3.37178558e-01 7.97097325e-01 2.93386370e-01 -7.16686547e-01 9.26508844e-01 -3.07576120e-01 -1.64670795e-01 1.87144838e-02 1.11302328e+00 -3.59515935e-01 -1.70632362e+00 -1.61098227e-01 1.44335136e-01 -5.12635231e-01 -2.77902186e-01 -8.49726439e-01 4.56380725e-01 2.90631384e-01 1.27065980e+00 6.22869618e-02 -3.21963459e-01 3.40144753e-01 4.84125674e-01 5.44143856e-01 -1.05667293e+00 -7.11722076e-01 2.77016703e-02 5.00112891e-01 -5.13065517e-01 -5.89649022e-01 -5.79117656e-01 -1.45072854e+00 2.71385670e-01 -6.14074409e-01 3.85428548e-01 6.84854567e-01 1.22905076e+00 3.44626129e-01 4.80663218e-02 8.39119673e-01 -1.84447244e-01 -7.53329515e-01 -1.12525916e+00 9.16700214e-02 5.13667166e-01 -1.03232354e-01 -5.38858235e-01 -3.20638835e-01 9.55772251e-02]
[11.379995346069336, 10.184192657470703]
fa50bdaf-ca10-43b7-bbf8-c2fddb20ed6b
videomix-rethinking-data-augmentation-for
2012.03457
null
https://arxiv.org/abs/2012.03457v1
https://arxiv.org/pdf/2012.03457v1.pdf
VideoMix: Rethinking Data Augmentation for Video Classification
State-of-the-art video action classifiers often suffer from overfitting. They tend to be biased towards specific objects and scene cues, rather than the foreground action content, leading to sub-optimal generalization performances. Recent data augmentation strategies have been reported to address the overfitting problems in static image classifiers. Despite the effectiveness on the static image classifiers, data augmentation has rarely been studied for videos. For the first time in the field, we systematically analyze the efficacy of various data augmentation strategies on the video classification task. We then propose a powerful augmentation strategy VideoMix. VideoMix creates a new training video by inserting a video cuboid into another video. The ground truth labels are mixed proportionally to the number of voxels from each video. We show that VideoMix lets a model learn beyond the object and scene biases and extract more robust cues for action recognition. VideoMix consistently outperforms other augmentation baselines on Kinetics and the challenging Something-Something-V2 benchmarks. It also improves the weakly-supervised action localization performance on THUMOS'14. VideoMix pretrained models exhibit improved accuracies on the video detection task (AVA).
['Jinhyung Kim', 'Dongyoon Han', 'Byeongho Heo', 'Seong Joon Oh', 'Sangdoo Yun']
2020-12-07
null
null
null
null
['weakly-supervised-action-localization']
['computer-vision']
[ 6.61266208e-01 -1.39869079e-01 -6.14311814e-01 -1.10254191e-01 -8.37647736e-01 -3.05174857e-01 8.23649824e-01 -1.51169419e-01 -5.95867455e-01 5.58596611e-01 3.04814756e-01 1.74292848e-01 5.41565776e-01 -2.46874273e-01 -1.09472716e+00 -1.08297133e+00 -1.70387682e-02 2.98743099e-01 5.59665918e-01 1.95751056e-01 8.25408697e-02 1.95618004e-01 -1.56081414e+00 8.84417832e-01 3.62022728e-01 1.15694046e+00 1.06876288e-02 6.30294204e-01 6.52172253e-04 1.34336698e+00 -5.24039745e-01 -1.17861189e-01 3.29564333e-01 -5.19563973e-01 -7.53227830e-01 4.77678835e-01 1.15984392e+00 -4.68395203e-01 -7.52045691e-01 9.02780414e-01 2.28366151e-01 2.06639454e-01 5.80072582e-01 -1.72188270e+00 -3.63946587e-01 4.91596431e-01 -7.82218874e-01 7.68934190e-01 1.81158409e-01 3.12573999e-01 7.39015520e-01 -1.00786078e+00 6.71027780e-01 1.19770551e+00 7.59961188e-01 6.76148415e-01 -1.23710907e+00 -5.15509784e-01 6.54051304e-01 5.35865724e-01 -9.89340305e-01 -7.27389157e-01 5.55686593e-01 -5.67585111e-01 1.05315149e+00 2.48867169e-01 7.75240541e-01 1.69599342e+00 -9.86431092e-02 1.51146281e+00 1.07249188e+00 -2.53460467e-01 2.06096366e-01 -1.59465209e-01 1.19844638e-01 7.35772014e-01 1.48408979e-01 -4.75019254e-02 -9.22594309e-01 8.13794360e-02 6.86158657e-01 8.34408775e-02 -4.28608358e-01 -6.00472033e-01 -1.33974850e+00 4.78694946e-01 2.81456470e-01 3.28033626e-01 -3.47148955e-01 5.94094872e-01 7.23519802e-01 -1.99370161e-02 5.28029621e-01 3.52973133e-01 -5.45716822e-01 -2.68216968e-01 -1.03846264e+00 2.79849738e-01 1.73368901e-01 7.56440401e-01 3.63267958e-01 3.91836733e-01 -6.24720991e-01 5.94190657e-01 4.84615006e-02 3.61512601e-01 6.28470361e-01 -1.09328032e+00 5.85252702e-01 6.29539967e-01 -1.06381953e-01 -6.30167961e-01 -3.69566649e-01 -2.84363061e-01 -5.39239049e-01 7.78848231e-02 8.93741548e-01 1.81850120e-01 -1.20752037e+00 1.71894133e+00 2.51030803e-01 5.16798496e-01 1.26376217e-02 9.03727829e-01 8.73805463e-01 4.87429410e-01 4.51002538e-01 -1.79000661e-01 1.09559596e+00 -1.53197896e+00 -8.02690446e-01 -4.85332221e-01 9.88441586e-01 -4.14385319e-01 1.06075239e+00 4.48750168e-01 -1.06715167e+00 -5.81131697e-01 -9.26069438e-01 8.27302858e-02 -2.04787314e-01 3.91338319e-01 7.54110515e-01 5.47766268e-01 -7.54127860e-01 3.94113034e-01 -1.12536955e+00 -4.08519924e-01 1.04716349e+00 2.43407786e-01 -6.33739054e-01 -2.97531605e-01 -7.24880576e-01 6.66398764e-01 3.41271311e-01 -1.63962230e-01 -1.44143486e+00 -8.58771682e-01 -9.57111895e-01 -1.70923725e-01 8.04549575e-01 -4.21534806e-01 1.12884390e+00 -1.60108411e+00 -1.10544729e+00 8.13034236e-01 7.17323050e-02 -7.57805347e-01 6.17666245e-01 -3.95631313e-01 -1.43194050e-01 4.76951301e-01 1.26998857e-01 1.20437312e+00 1.12044966e+00 -1.06302333e+00 -6.88922405e-01 -4.36913192e-01 2.57576946e-02 1.64132819e-01 -5.12622893e-01 -1.59922540e-01 -6.10930741e-01 -9.96968269e-01 -1.33060336e-01 -1.05641639e+00 -3.57376598e-02 6.52738236e-05 -7.76378065e-02 -6.32442906e-02 1.14975786e+00 -4.50093418e-01 1.03420568e+00 -2.17299080e+00 3.04621220e-01 -5.12385666e-01 1.86551139e-02 4.90676165e-01 -3.45506430e-01 -7.01672509e-02 -3.37396204e-01 -8.88184607e-02 -2.68241227e-01 -3.11244786e-01 -3.50418717e-01 2.99841911e-01 -1.19420044e-01 6.89151585e-01 3.62832993e-01 1.03734636e+00 -8.00933421e-01 -6.40938222e-01 3.26737434e-01 3.94742608e-01 -8.50146353e-01 2.59273369e-02 -4.69980329e-01 4.25192386e-01 -2.27160722e-01 8.87714267e-01 3.16860706e-01 -3.75167131e-01 -2.55952720e-02 -3.22994798e-01 2.50407457e-01 -8.04428980e-02 -8.51733387e-01 1.87819374e+00 5.46117723e-02 8.90677869e-01 4.53596041e-02 -1.27688217e+00 2.04197362e-01 3.01817894e-01 9.82064545e-01 -4.81238693e-01 1.64666817e-01 -6.01128116e-02 1.33418262e-01 -7.95060635e-01 1.22923076e-01 6.19803928e-03 2.66655713e-01 1.10740066e-01 4.45715338e-01 3.94484043e-01 4.21756178e-01 3.18724066e-01 1.36627412e+00 6.49266005e-01 1.04156643e-01 -6.70752749e-02 4.20156509e-01 1.42348766e-01 5.31934261e-01 7.36422598e-01 -4.68294024e-01 6.31171703e-01 4.86411244e-01 -5.27928770e-01 -8.36274564e-01 -6.85499847e-01 -1.60230651e-01 1.46108258e+00 -5.26788719e-02 -5.71433604e-01 -9.98394787e-01 -1.15609014e+00 7.67550394e-02 4.00765538e-01 -9.57741261e-01 -3.18497926e-01 -5.38378060e-01 -9.93277192e-01 6.87687397e-01 1.11884499e+00 6.99769914e-01 -9.46313322e-01 -5.58529913e-01 5.52682057e-02 -2.86210537e-01 -1.69307983e+00 -3.71899605e-01 2.06347287e-01 -9.34499443e-01 -1.40169477e+00 -6.87131107e-01 -5.70829570e-01 6.74753249e-01 3.67526114e-01 9.21025932e-01 1.07549697e-01 -3.18096459e-01 7.62549043e-01 -4.84324008e-01 -2.53377676e-01 -2.97745317e-01 -1.25347465e-01 2.67583758e-01 3.70802462e-01 5.01811624e-01 -1.75370097e-01 -4.82662380e-01 3.90430450e-01 -9.81928349e-01 1.00974075e-01 5.72877407e-01 7.89726973e-01 4.94546831e-01 -3.29610735e-01 3.77644658e-01 -7.16156602e-01 -2.18383983e-01 -3.11927140e-01 -2.79419780e-01 1.02370851e-01 -1.63365617e-01 -4.56067622e-02 2.21703574e-01 -7.40113258e-01 -8.50180447e-01 6.08595252e-01 1.32777259e-01 -8.67526174e-01 -2.45223165e-01 1.03038199e-01 -2.32022271e-01 -2.85457492e-01 7.18236446e-01 1.29982993e-01 2.31625736e-02 -3.14728588e-01 2.78486758e-01 3.22343409e-01 5.92538714e-01 -4.50535178e-01 4.31521684e-01 7.37157404e-01 -2.67849881e-02 -1.18271220e+00 -1.05158913e+00 -5.01787484e-01 -9.08954144e-01 -5.63403010e-01 1.12753725e+00 -1.10412490e+00 -3.19943905e-01 7.37994790e-01 -8.22131872e-01 -6.44791067e-01 -2.79785872e-01 5.34498334e-01 -7.15649903e-01 4.37107116e-01 -5.41198909e-01 -6.19489968e-01 1.12390518e-01 -1.24977553e+00 1.14622581e+00 -1.87639520e-01 -1.24353051e-01 -7.06865966e-01 -2.08989456e-01 8.00814688e-01 2.17140168e-02 2.74312347e-01 4.22192782e-01 -7.94627190e-01 -6.90491199e-01 -3.24046046e-01 -6.13995679e-02 5.58082819e-01 -6.36768490e-02 -4.10737880e-02 -1.28523958e+00 -2.61280447e-01 -1.54576316e-01 -6.64145648e-01 1.50285494e+00 4.79272872e-01 1.41105807e+00 -2.97590107e-01 -5.82988679e-01 6.41079843e-01 8.91995013e-01 1.39082417e-01 6.49578452e-01 4.35077786e-01 9.44378912e-01 3.54553878e-01 6.88504636e-01 2.00166389e-01 -1.16003796e-01 8.49146724e-01 6.08267009e-01 -3.35902683e-02 -4.45633918e-01 -4.43986058e-02 7.33301818e-01 1.52173609e-01 -2.58003175e-01 -2.65375793e-01 -8.72347355e-01 4.50755835e-01 -1.92713106e+00 -1.07687807e+00 -1.66326240e-01 1.94733202e+00 5.46387076e-01 2.07474813e-01 4.59342450e-01 2.89110422e-01 4.14978564e-01 3.01172137e-01 -4.56050903e-01 4.22775745e-01 -2.93341994e-01 -2.14297757e-01 6.54782712e-01 1.60719380e-01 -1.64496517e+00 1.13050473e+00 6.47141981e+00 7.03493595e-01 -9.79319811e-01 3.76341969e-01 6.97363257e-01 -6.60447240e-01 3.10204953e-01 -2.47146517e-01 -8.60615671e-01 3.78060669e-01 7.30980933e-01 5.40405393e-01 1.57422245e-01 9.92235601e-01 6.96304254e-03 -3.08650851e-01 -1.39285839e+00 1.10753155e+00 5.80625713e-01 -1.47642183e+00 2.13824898e-01 2.60957554e-02 8.77780497e-01 1.33036733e-01 4.97311577e-02 5.21033227e-01 -1.19013138e-01 -9.98414814e-01 7.31338441e-01 3.07346314e-01 5.53879917e-01 -3.00894231e-01 5.77900887e-01 9.58700255e-02 -9.79092777e-01 -5.28620124e-01 -1.05032831e-01 -3.30202729e-02 9.13946852e-02 -1.23439275e-01 -5.18281281e-01 -6.26067519e-02 8.35268915e-01 1.11941743e+00 -9.05589879e-01 1.03369331e+00 4.28663492e-02 7.71987796e-01 -9.75467116e-02 2.73058176e-01 4.95957047e-01 1.60559177e-01 5.60101092e-01 1.12822902e+00 -1.73957840e-01 1.51915163e-01 4.12526429e-01 4.00217503e-01 -1.98705181e-01 -1.09347596e-03 -5.58314741e-01 -4.89345074e-01 -1.52188435e-01 1.11140180e+00 -8.72797310e-01 -5.65323949e-01 -6.52655542e-01 9.90961492e-01 2.01510221e-01 4.53737944e-01 -9.44428027e-01 4.80618298e-01 7.10198998e-01 5.59910297e-01 3.87062669e-01 -1.29698262e-01 1.04917303e-01 -1.21369708e+00 3.33174616e-02 -1.25898695e+00 5.76222956e-01 -7.26966619e-01 -8.18034172e-01 3.30928713e-01 2.06104010e-01 -1.08530641e+00 1.28350452e-01 -1.05586743e+00 -2.45727375e-01 -2.01514468e-01 -1.06844747e+00 -1.21504092e+00 -4.86038506e-01 6.33353174e-01 1.02181292e+00 -5.53046048e-01 5.24484515e-01 4.97105628e-01 -9.14252043e-01 4.07068133e-01 -1.86637044e-01 3.36262226e-01 6.99340403e-01 -1.06626630e+00 1.01619452e-01 9.33269083e-01 5.23830533e-01 1.81509238e-02 5.83349288e-01 -5.88881373e-01 -1.38831639e+00 -1.11670268e+00 9.31094289e-02 -8.90129685e-01 7.21470952e-01 -4.04784679e-01 -9.68561053e-01 9.05767679e-01 1.08354650e-01 4.97464985e-01 5.42754471e-01 -9.60913748e-02 -4.07941163e-01 -4.36228216e-02 -6.80976331e-01 4.80172008e-01 1.22160709e+00 -3.94527435e-01 -3.20542514e-01 6.63044453e-01 4.43780482e-01 -3.41988742e-01 -5.45392573e-01 6.58392668e-01 3.73971701e-01 -8.25373888e-01 1.10722435e+00 -1.34103870e+00 5.14517307e-01 -2.85846651e-01 -3.24254841e-01 -8.64357829e-01 -1.26529306e-01 -3.70365977e-01 -6.02796137e-01 1.07588124e+00 7.74614587e-02 5.31759188e-02 1.06918323e+00 2.56657451e-01 -1.80844247e-01 -7.91000903e-01 -9.62095320e-01 -7.45507002e-01 -1.16938472e-01 -5.97716570e-01 -1.00495033e-01 9.75247204e-01 -1.73576891e-01 3.57375026e-01 -4.69494641e-01 -1.01810105e-01 4.91835475e-01 -3.39678437e-01 8.76213551e-01 -8.56675267e-01 -2.14316294e-01 -5.46679378e-01 -7.15139866e-01 -9.35235441e-01 2.98963606e-01 -8.90260160e-01 -6.92762807e-02 -1.23917067e+00 4.21217471e-01 -6.69444948e-02 -3.23976070e-01 7.36984015e-01 -2.92456925e-01 6.96600020e-01 2.32369363e-01 1.04781620e-01 -9.57095027e-01 5.83531976e-01 1.08770645e+00 -4.19376135e-01 -4.07161787e-02 -1.38090983e-01 -2.58470148e-01 1.00192070e+00 5.77455223e-01 -3.23104143e-01 -3.84503514e-01 -3.38947117e-01 -1.11986108e-01 -1.83006257e-01 6.82388961e-01 -1.24902296e+00 -1.37045130e-01 -1.30905239e-02 6.54197097e-01 -4.26533014e-01 4.78977740e-01 -7.69987047e-01 -2.46351525e-01 4.35054690e-01 -4.80609000e-01 -1.86289772e-01 4.51545209e-01 9.15249348e-01 -6.78701326e-02 -8.19240063e-02 1.00364947e+00 -2.34059393e-01 -9.01600599e-01 3.53695989e-01 -6.46472275e-01 2.66838610e-01 1.30518389e+00 -2.61795849e-01 -3.46732140e-01 -1.26102060e-01 -9.40520227e-01 5.28073646e-02 4.34685796e-01 7.78395414e-01 3.61765593e-01 -1.41188908e+00 -5.32195628e-01 1.05388425e-01 1.95639998e-01 -3.11077535e-01 3.01953644e-01 1.38927591e+00 -3.86561185e-01 3.90706152e-01 -3.69447529e-01 -8.97753000e-01 -1.62163329e+00 9.61841524e-01 5.56509018e-01 1.28683567e-01 -6.43575966e-01 9.75716233e-01 4.90979284e-01 2.82191277e-01 7.09034204e-01 -4.54902887e-01 -1.93294257e-01 3.63023520e-01 7.55488992e-01 4.70727682e-01 2.12856475e-02 -9.08416510e-01 -5.15839875e-01 2.81669408e-01 -1.41691417e-01 1.81836799e-01 1.30317962e+00 2.98660010e-01 2.09279329e-01 3.82385284e-01 1.11090374e+00 -4.56938058e-01 -1.70182228e+00 -1.60983652e-01 4.09209393e-02 -7.08697557e-01 1.88456103e-01 -6.14152133e-01 -1.39645958e+00 9.34748888e-01 7.22207487e-01 -1.86183944e-01 8.90401304e-01 1.52403144e-02 4.82835501e-01 3.36579442e-01 1.18830837e-01 -1.31928921e+00 7.86382735e-01 1.50829211e-01 8.38600874e-01 -1.54069483e+00 1.09402895e-01 -3.54726315e-01 -9.90334570e-01 8.52948666e-01 1.02175450e+00 8.36504698e-02 2.55399346e-01 3.88342530e-01 -1.40040601e-02 -2.07297280e-01 -7.13668346e-01 -3.22368890e-01 4.48970020e-01 6.27108634e-01 3.89978498e-01 -3.69186729e-01 9.40394998e-02 4.84570622e-01 5.14628649e-01 -4.10633683e-02 3.75738710e-01 9.25798476e-01 -3.71766627e-01 -7.76296079e-01 -3.83445948e-01 4.61415291e-01 -5.90681374e-01 -2.22100969e-02 -7.04926133e-01 9.99861360e-01 2.06499055e-01 6.27179205e-01 1.59189314e-01 -2.84416795e-01 3.54770049e-02 4.11296874e-01 7.94370592e-01 -4.27347600e-01 -4.56902146e-01 2.76614636e-01 1.65841468e-02 -9.18576837e-01 -8.66372168e-01 -1.14860463e+00 -1.13461876e+00 2.70201176e-01 -1.43652514e-01 -1.89160317e-01 2.94190258e-01 9.78824914e-01 7.15072975e-02 7.17117190e-01 -9.19009000e-02 -1.03419185e+00 -2.71092504e-01 -1.12664914e+00 -2.49862492e-01 5.93312383e-01 3.26563746e-01 -1.07514882e+00 -2.71680057e-01 3.51862729e-01]
[8.5353422164917, 0.7424302697181702]
681064e9-fc80-4b58-b0f2-e04242a0cf0f
ultra-low-power-and-real-time-ecg-1
1905.02954
null
https://arxiv.org/abs/1905.02954v4
https://arxiv.org/pdf/1905.02954v4.pdf
Ultra Low-Power and Real-time ECG Classification Based on STDP and R-STDP Neural Networks for Wearable Devices
This paper presents a novel ECG classification algorithm for real-time cardiac monitoring on ultra low-power wearable devices. The proposed solution is based on spiking neural networks which are the third generation of neural networks. In specific, we employ spike-timing dependent plasticity (STDP), and reward-modulated STDP (R-STDP), in which the model weights are trained according to the timings of spike signals, and reward or punishment signals. Experiments show that the proposed solution is suitable for real-time operation, achieves comparable accuracy with respect to previous methods, and more importantly, its energy consumption is significantly smaller than previous neural network based solutions.
['Alireza Amirshahi', 'Matin Hashemi']
2019-05-08
ultra-low-power-and-real-time-ecg
null
null
arxiv190502954-2019-5
['ecg-classification']
['medical']
[ 5.25797725e-01 -5.32828391e-01 -1.47042394e-01 -1.72479391e-01 1.51947945e-01 -2.43630037e-01 -8.18028580e-04 4.02597845e-01 -6.55983210e-01 1.15504038e+00 -3.88230801e-01 9.26870108e-02 -1.75972953e-01 -6.79005682e-01 -4.90241021e-01 -8.94121766e-01 -9.73725915e-02 -5.11183143e-02 5.47127783e-01 -1.26016378e-01 5.16752183e-01 3.10689092e-01 -1.37695932e+00 8.30777641e-03 7.60170400e-01 1.24787450e+00 4.47646063e-03 3.22351158e-01 4.16690767e-01 3.85591447e-01 -5.08131683e-01 2.54167676e-01 -1.93646640e-01 -5.72992682e-01 -8.53610933e-02 -7.28925228e-01 -6.63294375e-01 2.25007787e-01 -4.03224021e-01 8.29711556e-01 9.35198367e-01 -2.01675788e-01 4.94561642e-01 -1.15362906e+00 -4.05571312e-01 5.34835100e-01 -3.95825744e-01 7.75737286e-01 -9.45129544e-02 9.31790769e-02 1.82691157e-01 -4.48646426e-01 2.96043515e-01 2.92156279e-01 1.04451132e+00 8.83875966e-01 -1.20427287e+00 -8.76664162e-01 -2.75172204e-01 4.26958175e-03 -1.42327309e+00 -2.15676919e-01 7.20917225e-01 -4.57621552e-02 1.40725803e+00 1.73886374e-01 1.13113272e+00 1.13886034e+00 1.19829595e+00 4.15565401e-01 1.14888990e+00 -3.78454104e-03 7.79320657e-01 -3.13709825e-01 3.24942797e-01 2.16709271e-01 6.43218279e-01 9.51357856e-02 -9.28052366e-01 -4.26875502e-01 1.01106536e+00 3.06635648e-01 -2.34201327e-01 2.11591750e-01 -1.16158783e+00 1.55996203e-01 4.36424285e-01 6.65974438e-01 -7.32246041e-01 6.34589136e-01 4.75067556e-01 -1.95816159e-02 5.99418469e-02 3.23381782e-01 -4.00796473e-01 -3.54766786e-01 -9.35805440e-01 2.08843902e-01 4.70352054e-01 5.08974016e-01 -1.27290459e-02 6.29060686e-01 -3.01862150e-01 4.63282973e-01 8.93908665e-02 4.58404899e-01 1.04966140e+00 -8.90771687e-01 1.00850567e-01 5.20056069e-01 -3.00352043e-03 -8.42258990e-01 -8.75113964e-01 -3.26374650e-01 -1.27377486e+00 9.08342451e-02 8.14899430e-02 -2.31436893e-01 -7.85473824e-01 1.67477131e+00 -3.09962600e-01 6.79840803e-01 1.53209716e-01 5.88232934e-01 7.43090749e-01 5.85989118e-01 3.69644344e-01 -6.40417278e-01 1.11320138e+00 -2.83097535e-01 -1.03268242e+00 -1.95309430e-01 7.42193535e-02 4.74855974e-02 6.29070401e-01 4.48534995e-01 -1.22050548e+00 -1.56930119e-01 -1.28046548e+00 5.55736244e-01 -2.54932731e-01 -9.61465687e-02 5.13791978e-01 7.87828326e-01 -1.09619033e+00 1.15621519e+00 -1.08681786e+00 -3.45099360e-01 4.80680555e-01 7.42439449e-01 2.36848190e-01 7.05276251e-01 -1.14945543e+00 7.10164487e-01 2.76148349e-01 8.49737972e-02 -4.73160028e-01 -3.97807091e-01 -3.73294890e-01 1.48116022e-01 -5.24392605e-01 -6.51083648e-01 8.66250038e-01 -6.95155799e-01 -1.68230581e+00 7.20944822e-01 -6.32335916e-02 -9.07809198e-01 -1.92313015e-01 4.48110878e-01 -3.82706195e-01 4.27958183e-02 -4.04895604e-01 3.13433379e-01 6.57034874e-01 -7.07010567e-01 -1.54193603e-02 -3.95321250e-01 -6.94168091e-01 -8.48218426e-02 -3.99902761e-01 1.75612107e-01 2.64159054e-01 -8.39614332e-01 2.81153232e-01 -7.82366574e-01 -3.35306108e-01 1.62634417e-01 6.20136410e-02 -3.18797827e-02 4.99320865e-01 -2.88927048e-01 1.33166385e+00 -2.22167349e+00 -8.66127685e-02 4.92854387e-01 1.93106145e-01 2.67441213e-01 2.01981112e-01 1.74955174e-01 6.14008680e-02 -9.93499309e-02 -5.60918510e-01 3.11933756e-01 -5.19245505e-01 5.01482964e-01 -3.66801838e-03 3.50754321e-01 9.56148803e-02 1.05440474e+00 -7.04596758e-01 -2.91194916e-01 -1.14664793e-01 5.33705711e-01 1.04119927e-01 -1.21157967e-01 3.13872606e-01 4.70658928e-01 -3.90063763e-01 8.08640659e-01 3.96579146e-01 -1.93713367e-01 4.07838196e-01 2.90581286e-02 -2.65264332e-01 1.66048169e-01 -9.40117478e-01 1.68954146e+00 1.85783207e-02 2.35706478e-01 -4.63584095e-01 -1.15611196e+00 1.46429765e+00 4.61498260e-01 6.69778645e-01 -9.95401680e-01 7.81649709e-01 6.43868148e-01 3.69190313e-02 -3.06915134e-01 -3.86701385e-03 -1.54361695e-01 -2.36528926e-03 5.58569908e-01 1.01411723e-01 1.55799687e-01 9.97640286e-03 -2.86267310e-01 1.45029724e+00 1.07359901e-01 3.57490927e-01 -5.30676663e-01 5.67558333e-02 -4.46735382e-01 9.93552208e-01 5.57962000e-01 -5.41196704e-01 4.83463556e-01 3.05586040e-01 -5.84888458e-01 -6.31820202e-01 -1.15448046e+00 -2.67154247e-01 4.25338924e-01 4.59510028e-01 -2.39278972e-02 -8.24080408e-01 1.13864169e-01 -9.61185023e-02 4.28086996e-01 -5.89559138e-01 -5.28432071e-01 -6.40562236e-01 -1.21543443e+00 1.04614711e+00 9.32194114e-01 5.84625959e-01 -1.46486700e+00 -1.55169868e+00 6.80168629e-01 1.18371937e-03 -6.99006259e-01 -1.94024205e-01 8.01658094e-01 -1.56799126e+00 -6.56834245e-01 -8.41009021e-01 -9.11014438e-01 6.60553694e-01 -3.45229864e-01 9.03269053e-01 8.15103576e-02 -6.40747309e-01 -5.02802096e-02 -7.06388280e-02 -6.59922600e-01 3.45136702e-01 -3.69274259e-01 3.60292792e-01 -9.26591158e-02 4.34271127e-01 -1.26572990e+00 -8.38582337e-01 -1.28565967e-01 -5.01174152e-01 -2.14436904e-01 5.42057693e-01 8.76954496e-01 1.04568028e+00 -1.13516375e-01 7.95626938e-01 -6.26623929e-01 9.51950967e-01 -3.15873235e-01 -2.51808584e-01 9.86458287e-02 -9.87204015e-01 -4.14683633e-02 5.66682339e-01 -7.08293319e-01 -6.96042061e-01 2.39007920e-01 4.63243835e-02 -1.25267759e-01 2.94395804e-01 2.02102110e-01 5.63728631e-01 -3.91335160e-01 8.86114776e-01 7.51317024e-01 -6.16626292e-02 -8.32796618e-02 -6.11166954e-01 5.12739539e-01 6.52604520e-01 -4.38474178e-01 1.49287991e-02 2.60339230e-01 1.49128735e-01 -3.32170099e-01 1.65701315e-01 1.37453511e-01 -3.01880568e-01 -3.30060452e-01 6.73161447e-01 -7.69586384e-01 -1.10899496e+00 7.99477696e-01 -1.19581556e+00 -3.13423097e-01 -3.20207298e-01 4.87747252e-01 -6.43141985e-01 -1.23894371e-01 -9.71831679e-01 -1.09423900e+00 -1.11805630e+00 -5.96011519e-01 3.11910421e-01 6.29155278e-01 -4.08106327e-01 -6.01450145e-01 1.88291550e-01 -5.15505791e-01 8.96208346e-01 6.58899486e-01 6.59237266e-01 -4.76742148e-01 -6.53469786e-02 -3.19560707e-01 3.13840657e-02 2.10419193e-01 -1.20646812e-01 -9.37886909e-02 -7.77599812e-01 -6.19163513e-02 2.83640593e-01 -1.82171538e-01 5.97402990e-01 8.17518473e-01 1.38163018e+00 9.12300050e-02 -6.57326579e-01 4.17542964e-01 1.57200205e+00 6.32223189e-01 8.87092113e-01 2.27655515e-01 4.32829978e-03 -5.47295213e-02 1.18981175e-01 7.21625030e-01 1.83358610e-01 2.27171987e-01 3.40735823e-01 -1.23427592e-01 3.00932854e-01 1.20265298e-01 5.20775691e-02 1.23626304e+00 -5.90949297e-01 -1.24886967e-02 -8.57149601e-01 4.32935953e-01 -2.05608439e+00 -9.05758619e-01 -3.78242910e-01 2.36646628e+00 9.46852148e-01 3.53476256e-01 5.34196682e-02 5.88702381e-01 6.22382522e-01 -2.99443990e-01 -8.67560744e-01 -7.72632718e-01 -3.76897901e-01 9.97060478e-01 6.21764183e-01 -3.49765003e-01 -5.56434870e-01 1.48737624e-01 7.53122616e+00 3.27240437e-01 -1.35280490e+00 3.88993591e-01 4.98236924e-01 -3.68537784e-01 1.04264334e-01 -3.95198882e-01 -2.31170014e-01 9.47948515e-01 1.26026011e+00 -3.97562265e-01 3.77402216e-01 4.48815942e-01 2.63727546e-01 -1.42933503e-01 -8.04871321e-01 1.37217915e+00 -1.22364923e-01 -1.39114225e+00 -3.74054164e-01 -5.21652460e-01 3.79004657e-01 -1.17672533e-02 3.33246179e-02 1.17496885e-02 -4.39772874e-01 -9.25067246e-01 4.11924511e-01 6.62377656e-01 5.95860124e-01 -8.92586827e-01 8.85167539e-01 2.64148355e-01 -1.18546891e+00 -1.73192799e-01 -3.88794839e-01 -4.64326501e-01 -1.27846198e-02 7.43869662e-01 2.06659168e-01 7.92930052e-02 1.08508837e+00 8.15938890e-01 -1.01891778e-01 1.17116356e+00 -2.33969428e-02 6.40589535e-01 -4.53080088e-01 -7.29056299e-01 -2.78073281e-01 1.00296624e-01 1.03106923e-01 1.00569034e+00 7.29504466e-01 2.83896536e-01 -4.11786169e-01 9.45942760e-01 -1.77930474e-01 -5.50262406e-02 -5.73583186e-01 9.44487005e-02 7.33219862e-01 1.10916996e+00 -1.08586907e+00 -3.02920252e-01 1.71046570e-01 9.14871633e-01 -1.17642835e-01 1.57472298e-01 -9.66298699e-01 -8.45317841e-01 1.63973838e-01 8.23758990e-02 -5.76804690e-02 1.17687084e-01 -1.02309191e+00 -8.64576995e-01 3.05167943e-01 -3.11072677e-01 1.11937843e-01 -8.13235521e-01 -9.90144789e-01 6.37389243e-01 -6.41486585e-01 -1.38746107e+00 1.85165226e-01 -3.55849087e-01 -1.03168035e+00 8.00531328e-01 -1.31022954e+00 -4.97582406e-01 -1.93102837e-01 7.35046685e-01 9.02345926e-02 5.20773865e-02 1.24398386e+00 2.74361223e-01 -5.56042969e-01 5.85586071e-01 1.62522167e-01 -1.76424339e-01 1.80680186e-01 -6.80419147e-01 2.19015792e-01 7.06767797e-01 -3.44226897e-01 7.22011447e-01 5.42268395e-01 -6.18832231e-01 -1.35369384e+00 -8.58828545e-01 9.48093534e-01 8.12191665e-02 2.51074344e-01 -1.88016191e-01 -9.30701196e-01 1.31454110e-01 1.85570031e-01 2.79141903e-01 8.10974121e-01 -4.24853712e-01 -3.52645144e-02 -4.41516906e-01 -1.65879130e+00 2.60770977e-01 9.03520286e-01 -1.58561036e-01 -5.06281972e-01 5.50258532e-02 1.29157126e-01 -4.51281399e-01 -8.95433486e-01 6.65579915e-01 8.98146152e-01 -6.75929666e-01 6.29275143e-01 -2.46783383e-02 6.92739189e-02 -3.85175765e-01 3.33693445e-01 -1.01625264e+00 -4.09078717e-01 -5.98787010e-01 -3.70717883e-01 8.94916534e-01 4.10395145e-01 -9.07387733e-01 6.38333380e-01 5.27884305e-01 2.30888203e-02 -1.22428954e+00 -1.45113862e+00 -1.00808620e+00 -4.00282025e-01 8.19415599e-03 4.02514189e-01 7.28613079e-01 5.50788581e-01 -6.23361133e-02 -3.17575157e-01 -1.49450764e-01 6.83511794e-01 -1.48188353e-01 -4.44052249e-01 -1.32244730e+00 -2.61814922e-01 -2.63794422e-01 -6.97391510e-01 -2.72482842e-01 -3.28713536e-01 -8.19891751e-01 2.86323071e-01 -1.34908426e+00 2.20564201e-01 -2.68769622e-01 -1.34623730e+00 7.36962616e-01 1.10330330e-02 7.94593155e-01 -2.44831488e-01 1.15769617e-01 -3.57210517e-01 2.82109231e-01 6.74687922e-01 7.02953860e-02 -4.47205812e-01 4.32577636e-03 -3.36359560e-01 5.79968095e-01 1.26686287e+00 -9.94215071e-01 -1.99970469e-01 -1.24367945e-01 1.88879251e-01 1.54851735e-01 1.48411319e-01 -1.50681341e+00 5.60313761e-01 3.09040048e-03 7.02781379e-01 -2.79137015e-01 2.99392879e-01 -6.00868940e-01 2.54986167e-01 1.32679701e+00 -1.92226306e-01 3.76831293e-01 3.18972915e-01 4.74879712e-01 6.63613826e-02 -2.00299080e-02 8.26967239e-01 1.73387676e-02 -2.50493139e-01 2.38834262e-01 -9.10025239e-01 -2.30161548e-01 1.24243307e+00 -6.72684610e-01 -2.05620930e-01 4.57026273e-01 -6.95860565e-01 -1.43751785e-01 1.36767268e-01 1.83865413e-01 1.09809339e+00 -1.50803566e+00 -2.90215224e-01 2.78039515e-01 1.01827919e-01 -5.62189162e-01 2.68359870e-01 1.10254347e+00 -4.75918055e-01 1.43324614e-01 -9.94485676e-01 -4.40916151e-01 -1.12431169e+00 2.42252037e-01 3.40132117e-01 -3.33742797e-02 -5.09128690e-01 8.39048922e-01 -6.32195830e-01 1.80737510e-01 2.62724519e-01 -3.79189581e-01 -2.88115770e-01 -3.74403715e-01 5.94280303e-01 4.09662098e-01 4.63375263e-02 9.22859237e-02 -7.50070453e-01 6.41631603e-01 4.45921779e-01 1.17631018e-01 1.55923343e+00 3.23829472e-01 -4.32996154e-01 9.71340060e-01 4.00971651e-01 -8.16236079e-01 -8.69690478e-01 1.33036196e-01 -1.70201957e-01 3.15962918e-02 -1.34808749e-01 -8.53777289e-01 -1.10505211e+00 9.02748704e-01 1.07713914e+00 -1.75625309e-01 1.54571605e+00 -7.35345304e-01 1.10505378e+00 3.74420881e-01 7.70557761e-01 -1.40555394e+00 7.53343180e-02 1.27451837e-01 3.93128127e-01 -4.95307356e-01 -1.15990177e-01 -2.64591053e-02 -4.28808898e-01 1.26436269e+00 6.68133318e-01 -6.82266593e-01 7.97635078e-01 7.78008223e-01 -2.43227959e-01 9.48228091e-02 -9.23646688e-01 2.61368066e-01 -2.87159592e-01 8.20635498e-01 4.72504824e-01 3.71628329e-02 -1.06425941e+00 1.15081072e+00 4.19979632e-01 8.29829931e-01 4.14287388e-01 1.29063714e+00 -4.99396175e-01 -8.42888892e-01 5.79031324e-03 8.24419081e-01 -6.59958899e-01 -1.84725940e-01 -5.31529076e-02 -2.02977546e-02 2.85339057e-01 6.70960426e-01 5.29284887e-02 -5.99851251e-01 4.07350302e-01 7.64296725e-02 5.55215895e-01 -2.30174035e-01 -1.07875788e+00 -2.42726699e-01 -4.30586100e-01 -5.83670735e-01 -4.26005155e-01 -3.19909096e-01 -1.94650221e+00 -1.13803707e-01 -5.76347597e-02 -1.68466806e-01 9.16574180e-01 6.85762048e-01 6.89364135e-01 8.37180853e-01 5.23668349e-01 -8.36867690e-01 -2.24348441e-01 -8.24598491e-01 -9.51628685e-01 1.72491536e-01 -1.18198320e-01 -6.32730782e-01 -1.12024412e-01 5.45609277e-03]
[8.294479370117188, 2.479668378829956]
f030bfe6-ffc9-4dd8-80e5-112db70fb5a4
vision-language-pre-training-for-multimodal
2204.07955
null
https://arxiv.org/abs/2204.07955v2
https://arxiv.org/pdf/2204.07955v2.pdf
Vision-Language Pre-Training for Multimodal Aspect-Based Sentiment Analysis
As an important task in sentiment analysis, Multimodal Aspect-Based Sentiment Analysis (MABSA) has attracted increasing attention in recent years. However, previous approaches either (i) use separately pre-trained visual and textual models, which ignore the crossmodal alignment or (ii) use vision-language models pre-trained with general pre-training tasks, which are inadequate to identify finegrained aspects, opinions, and their alignments across modalities. To tackle these limitations, we propose a task-specific Vision-Language Pre-training framework for MABSA (VLPMABSA), which is a unified multimodal encoder-decoder architecture for all the pretraining and downstream tasks. We further design three types of task-specific pre-training tasks from the language, vision, and multimodal modalities, respectively. Experimental results show that our approach generally outperforms the state-of-the-art approaches on three MABSA subtasks. Further analysis demonstrates the effectiveness of each pretraining task. The source code is publicly released at https://github.com/NUSTM/VLP-MABSA.
['Jianfei Yu', 'Rui Xia', 'Yan Ling']
2022-04-17
null
https://aclanthology.org/2022.acl-long.152
https://aclanthology.org/2022.acl-long.152.pdf
acl-2022-5
['aspect-based-sentiment-analysis']
['natural-language-processing']
[-2.71539409e-02 -1.64002404e-01 -9.57794115e-02 -5.80876529e-01 -1.01704657e+00 -4.79412228e-01 8.26825202e-01 -3.73756252e-02 -5.88062882e-01 2.01695323e-01 2.98505992e-01 -4.11140740e-01 5.02435744e-01 -3.66701990e-01 -6.83002174e-01 -5.35972416e-01 6.50123298e-01 3.78429443e-01 -1.14180177e-01 -2.81577080e-01 1.50379181e-01 -1.34677291e-01 -1.15504253e+00 8.54466200e-01 6.93833292e-01 1.16659558e+00 2.52381742e-01 6.22560561e-01 -4.76959050e-01 8.32240582e-01 -1.92665204e-01 -8.71556759e-01 -2.77660429e-01 -5.39746463e-01 -8.70287895e-01 2.77813435e-01 3.39494944e-01 -2.66042173e-01 -2.25596637e-01 1.11019254e+00 3.82496864e-01 -1.37801498e-01 5.80991924e-01 -1.13431132e+00 -1.15001261e+00 3.26819927e-01 -1.03322160e+00 -1.87560543e-01 2.03059793e-01 1.84871331e-01 1.18123305e+00 -1.32707155e+00 2.89486587e-01 1.39591491e+00 5.83942354e-01 6.71543002e-01 -9.18291569e-01 -2.60201722e-01 6.81796610e-01 2.07671613e-01 -9.96358275e-01 -4.58683908e-01 7.85597742e-01 -4.09639120e-01 1.10405302e+00 -4.62139621e-02 5.67824543e-01 1.35342991e+00 -2.17510294e-02 1.36618769e+00 1.30223179e+00 -4.04012829e-01 -9.63397697e-02 2.01904088e-01 3.46550971e-01 8.56286824e-01 3.70244384e-02 -3.83108526e-01 -7.32778192e-01 6.41804263e-02 4.20170933e-01 4.59406376e-02 -1.54996663e-01 -4.40123171e-01 -1.34059131e+00 8.78736198e-01 3.17885458e-01 2.23966897e-01 -2.72706121e-01 6.79843053e-02 6.61427021e-01 2.24582314e-01 5.81178606e-01 2.12775567e-03 -5.71115077e-01 5.93516491e-02 -7.49913692e-01 -2.07253054e-01 6.34462118e-01 9.65173900e-01 7.72938192e-01 1.22342572e-01 -3.78727943e-01 1.03516829e+00 8.16990316e-01 7.62213528e-01 5.30931652e-01 -4.54587311e-01 7.46095717e-01 7.72388637e-01 -5.80479018e-02 -6.72294438e-01 -4.95510519e-01 -5.11163436e-02 -7.45264113e-01 2.12420840e-02 2.66575038e-01 -2.23581225e-01 -1.19987881e+00 1.54250050e+00 1.59470245e-01 -3.88154566e-01 3.54593635e-01 1.01751637e+00 1.28780901e+00 6.78180277e-01 2.22464159e-01 1.07322395e-01 1.72568393e+00 -1.63084912e+00 -7.55774617e-01 -5.09145796e-01 5.11405230e-01 -9.99483407e-01 1.37511373e+00 1.09909475e-01 -1.10915685e+00 -7.57819176e-01 -8.36647451e-01 -3.92586529e-01 -5.62253475e-01 5.85630655e-01 4.67588335e-01 3.43085200e-01 -1.14350688e+00 -2.78226048e-01 -9.15199578e-01 -3.98355871e-01 4.88419831e-01 1.90895602e-01 -3.18687648e-01 -8.15427974e-02 -9.42151248e-01 9.81150746e-01 1.02926843e-01 4.63257402e-01 -1.02865744e+00 -2.58415729e-01 -1.28502035e+00 -6.06435649e-02 3.81354898e-01 -9.72237349e-01 1.44770563e+00 -1.50402725e+00 -1.56474924e+00 1.19688499e+00 -5.69440961e-01 6.33468851e-02 1.17964387e-01 -3.26513141e-01 -2.37509981e-01 -1.68635957e-02 7.59249777e-02 8.05584848e-01 8.81135166e-01 -1.66034079e+00 -5.34948111e-01 -4.54570293e-01 3.45632613e-01 4.82860804e-01 -3.94815147e-01 1.76290825e-01 -1.05522585e+00 -4.25609440e-01 -4.23256338e-01 -8.50468040e-01 -2.37433761e-01 -2.74851233e-01 -6.66659415e-01 -1.40301302e-01 6.49366915e-01 -7.15839922e-01 8.87308359e-01 -2.12039065e+00 3.91638815e-01 -2.13279918e-01 1.30752847e-01 3.06939423e-01 -6.50969505e-01 4.99949634e-01 1.09310932e-01 -1.61799550e-01 -3.24598789e-01 -9.39484775e-01 2.52436638e-01 1.20101422e-02 -3.44047755e-01 2.08868489e-01 2.15180203e-01 1.20325327e+00 -7.02871501e-01 -4.56884295e-01 2.14033619e-01 7.02309906e-01 -2.98336208e-01 3.78652930e-01 -3.47142905e-01 6.13331854e-01 -5.25132954e-01 1.00536346e+00 6.07358217e-01 -5.51950157e-01 1.96214780e-01 -4.83950168e-01 -1.12454832e-01 1.96742192e-01 -3.94608945e-01 1.92625713e+00 -6.65594280e-01 7.14179695e-01 2.64328122e-01 -1.07345784e+00 5.50538242e-01 3.38921696e-01 8.67512152e-02 -8.52633953e-01 4.42181885e-01 7.57499710e-02 -1.71771243e-01 -7.01155663e-01 5.33738315e-01 -3.17521572e-01 -2.49428317e-01 3.14735711e-01 3.69713485e-01 9.64217111e-02 1.41886681e-01 2.09639028e-01 4.73152727e-01 3.37711394e-01 1.90448195e-01 2.37540543e-01 7.98695147e-01 9.79285911e-02 3.16626936e-01 4.81360078e-01 -2.72818089e-01 8.63841176e-01 6.49104297e-01 -2.39067376e-01 -7.90214658e-01 -7.93839216e-01 1.98846221e-01 1.38328910e+00 3.83041412e-01 -4.15426046e-01 -6.37296736e-01 -8.70691895e-01 -1.52254432e-01 5.53504407e-01 -7.29544163e-01 1.63096502e-01 -9.21519399e-02 -8.42923522e-01 2.58180350e-01 6.47321224e-01 5.73751986e-01 -1.23177373e+00 -7.39786178e-02 -3.06253254e-01 -3.48534942e-01 -1.52216911e+00 -5.58513105e-01 -9.91744623e-02 -6.31629765e-01 -9.46925581e-01 -9.85506117e-01 -9.76037741e-01 7.07764208e-01 4.87072229e-01 1.10761571e+00 -1.20340198e-01 1.88786522e-01 8.74268949e-01 -4.21651453e-01 -4.79110777e-01 -1.29561469e-01 9.30643156e-02 -3.66177648e-01 3.78483653e-01 6.48441792e-01 -7.44740739e-02 -5.63345313e-01 4.61495556e-02 -7.23820090e-01 3.32186311e-01 1.04641628e+00 9.01122093e-01 9.14387226e-01 -6.73392057e-01 4.53231037e-01 -9.50265288e-01 7.06535518e-01 -3.64262819e-01 -4.94227260e-01 5.05531669e-01 -3.06840628e-01 -2.50620395e-01 4.57738280e-01 -3.03695619e-01 -1.10040128e+00 3.43538187e-02 -2.53814548e-01 -5.77866733e-01 -3.85061711e-01 9.61227298e-01 -4.23527867e-01 1.32703438e-01 -1.55300833e-02 4.64230150e-01 3.18429396e-02 -3.85148436e-01 5.70067585e-01 7.78089345e-01 3.55163306e-01 -2.79144257e-01 4.54889953e-01 6.59266889e-01 -3.78072649e-01 -8.54887724e-01 -1.31573725e+00 -6.43505931e-01 -5.92828274e-01 -2.76029110e-01 1.18927002e+00 -1.35149527e+00 -6.42500043e-01 6.73836470e-01 -1.36547792e+00 -3.75601381e-01 2.24063322e-01 4.38000739e-01 -4.85445887e-01 6.16425812e-01 -7.12375581e-01 -7.58136868e-01 -6.77338779e-01 -1.47704518e+00 1.26607037e+00 3.94041359e-01 -6.22329079e-02 -1.11162806e+00 1.22874431e-01 9.42884088e-01 3.68381411e-01 -1.31577313e-01 7.70431638e-01 -5.89180470e-01 -3.49136651e-01 -6.44000918e-02 -4.72376674e-01 4.64667708e-01 4.44368832e-02 -1.64380327e-01 -1.20588744e+00 -3.26662660e-01 -2.07057714e-01 -7.66269684e-01 1.18165648e+00 4.14711982e-01 8.14764202e-01 4.54527028e-02 -2.09491014e-01 5.08133650e-01 1.16955960e+00 -6.18560240e-02 3.89868796e-01 5.03815889e-01 1.13185501e+00 6.69709563e-01 5.53950727e-01 6.28583729e-02 1.08697450e+00 4.75778818e-01 5.64767480e-01 -4.75511044e-01 -5.20951264e-02 -9.07468051e-02 7.43508697e-01 1.35088003e+00 -1.26630649e-01 -2.41412550e-01 -8.25957060e-01 8.29123318e-01 -2.10571432e+00 -6.54182971e-01 -1.31571785e-01 1.73388088e+00 7.10648894e-01 -1.55026317e-01 1.60040572e-01 -5.65713167e-01 4.14530367e-01 5.67664981e-01 -5.97542107e-01 -7.23087490e-01 -1.90349162e-01 -2.40068570e-01 1.97868213e-01 4.35110778e-01 -1.46439219e+00 1.13943970e+00 5.62110519e+00 5.77201247e-01 -1.10367572e+00 3.79930884e-01 6.24892235e-01 -2.01674867e-02 -5.33470511e-01 -1.38769243e-02 -6.28009021e-01 2.56503463e-01 7.67480552e-01 3.65456522e-01 1.63790554e-01 9.21022892e-01 4.42038430e-03 1.68406479e-02 -9.49081838e-01 9.79253232e-01 5.72441041e-01 -1.00613499e+00 4.11610216e-01 -1.83165118e-01 7.65699267e-01 2.73482472e-01 3.05585265e-01 5.90497613e-01 1.00085326e-01 -9.45140898e-01 6.86914504e-01 6.06770575e-01 7.00173378e-01 -6.37879312e-01 8.80875885e-01 -5.90168424e-02 -1.06798828e+00 1.98011056e-01 -3.41139019e-01 1.73951715e-01 3.68999422e-01 3.79142910e-01 -1.70383051e-01 7.00306952e-01 7.36597657e-01 8.82342815e-01 -4.92051899e-01 6.53728485e-01 -4.61643457e-01 6.28471911e-01 2.74791956e-01 -5.55423014e-02 5.13038754e-01 -3.10802728e-01 3.42111886e-01 1.42803371e+00 2.24991012e-02 -3.46944839e-01 1.40587479e-01 6.22008085e-01 -2.04223543e-01 9.31295827e-02 -5.05059421e-01 -3.39045167e-01 -1.11749493e-01 1.53412914e+00 -4.52583343e-01 -3.41094106e-01 -1.32846677e+00 1.19599569e+00 4.92615432e-01 7.17187643e-01 -8.01630497e-01 -3.17152619e-01 7.22858489e-01 -4.68387842e-01 6.21871531e-01 -2.13782072e-01 -2.85913229e-01 -1.56901371e+00 -1.52087221e-02 -1.07675314e+00 3.97334903e-01 -1.05917716e+00 -1.44911361e+00 8.38846922e-01 -3.75727773e-01 -1.15336597e+00 -3.72965224e-02 -1.01253772e+00 -6.05909407e-01 9.29738283e-01 -1.88615906e+00 -1.97150016e+00 -2.31674433e-01 6.73974872e-01 7.60496736e-01 -3.11883271e-01 6.80297911e-01 1.54052317e-01 -7.04130471e-01 6.27312064e-01 -6.07149415e-02 3.70398074e-01 8.19240510e-01 -1.06967926e+00 1.55562490e-01 8.33883822e-01 1.55234113e-01 5.88264048e-01 3.12144846e-01 -3.66131186e-01 -1.66142356e+00 -1.01478124e+00 1.02471125e+00 -6.16216600e-01 8.45596194e-01 -4.53986853e-01 -9.21325684e-01 9.41920757e-01 9.65098917e-01 -3.47753316e-01 9.21024203e-01 3.23604524e-01 -5.19115984e-01 -7.17290938e-02 -4.01961356e-01 6.63623750e-01 4.48438644e-01 -9.66462731e-01 -6.24363065e-01 -5.17675013e-04 5.59544027e-01 -3.01167309e-01 -5.73090851e-01 4.82821852e-01 5.12162209e-01 -8.90884280e-01 8.77014697e-01 -6.33555233e-01 7.88964272e-01 -3.86192948e-01 -2.26732865e-01 -1.21999133e+00 -6.64632618e-02 -3.37088443e-02 -1.01600796e-01 1.28299177e+00 7.28931904e-01 -4.54968482e-01 2.50473469e-01 3.19345236e-01 -1.94753155e-01 -9.86717403e-01 -6.07697666e-01 -2.26363167e-01 -5.61643951e-03 -4.89477754e-01 1.76439211e-01 1.03425825e+00 8.96537080e-02 1.01538312e+00 -5.47966897e-01 3.01818281e-01 3.05410773e-01 6.60721362e-01 8.27774644e-01 -5.54177463e-01 -2.87514925e-01 -7.02983499e-01 -3.96311656e-02 -1.09829867e+00 2.61844426e-01 -8.19404125e-01 9.72026139e-02 -2.04746175e+00 7.69778848e-01 2.76853144e-01 -4.89843279e-01 8.18157554e-01 -4.18193549e-01 3.37601542e-01 2.08324954e-01 1.90013438e-01 -1.14924169e+00 9.98409867e-01 1.45687604e+00 -4.05918688e-01 7.39665702e-02 -1.65799603e-01 -9.56406593e-01 9.13769782e-01 6.53429329e-01 -6.75652251e-02 -3.29925060e-01 -8.34522188e-01 3.07256967e-01 -2.04126254e-01 3.39734226e-01 -3.10347736e-01 1.21519029e-01 -4.68661673e-02 3.67886841e-01 -8.55017364e-01 5.37377656e-01 -5.62785566e-01 -6.57597840e-01 1.56332523e-01 -2.62056381e-01 1.61668494e-01 4.81896758e-01 5.10679483e-01 -7.39425838e-01 -1.83868967e-02 4.60675955e-01 -1.99968703e-02 -8.44931006e-01 2.27887660e-01 -5.75210869e-01 -8.43307376e-02 6.08710289e-01 1.47773877e-01 -5.03006697e-01 -5.50270319e-01 -5.80673397e-01 5.64432740e-01 4.18209285e-01 4.38257813e-01 7.30828047e-01 -1.23259759e+00 -5.94065785e-01 -1.64799869e-01 4.47138131e-01 -5.22303768e-02 4.98566926e-01 1.24590337e+00 -1.69958726e-01 5.25289834e-01 -9.25687328e-02 -5.23451865e-01 -1.31936121e+00 6.96434438e-01 2.64667660e-01 -2.63120145e-01 -2.45692164e-01 7.86314547e-01 7.59174287e-01 -7.44403899e-01 9.30203348e-02 -9.05163512e-02 -5.73143780e-01 1.75128013e-01 4.14055884e-01 -2.10790098e-01 -2.19565824e-01 -1.05060410e+00 -5.15341520e-01 7.88004220e-01 -3.08271378e-01 -2.06705704e-01 1.04598296e+00 -5.06711602e-01 -2.08029628e-01 6.35393441e-01 1.14186943e+00 -1.16154425e-01 -1.06833327e+00 -3.07049066e-01 -1.15820847e-01 -3.88497859e-02 5.50427474e-02 -9.15725410e-01 -1.21124923e+00 1.27327299e+00 2.61754066e-01 -2.62953546e-02 1.28445184e+00 2.04825893e-01 7.06304371e-01 3.88117224e-01 -9.15340707e-02 -1.03602421e+00 2.46156484e-01 8.61115873e-01 1.00924397e+00 -1.63184893e+00 -1.94945112e-01 -1.22942522e-01 -1.44578552e+00 8.99235368e-01 8.32688749e-01 1.93690449e-01 4.41468894e-01 -7.29505196e-02 7.05012083e-01 -2.93214142e-01 -7.47152567e-01 -6.62835360e-01 6.34294689e-01 4.15539831e-01 7.63921499e-01 -4.49234843e-02 -1.43625528e-01 1.08580184e+00 2.23446280e-01 -1.84031665e-01 2.17278227e-01 9.40385282e-01 -8.23769346e-02 -9.65843081e-01 -1.52696058e-01 1.39495015e-01 -4.91192877e-01 -4.24904525e-01 -5.46447456e-01 7.94798553e-01 -2.25177139e-01 9.92391825e-01 -1.38019338e-01 -3.74334246e-01 4.38458800e-01 1.93430126e-01 3.53696674e-01 -4.63673621e-01 -4.83818054e-01 4.23350662e-01 2.35164121e-01 -5.46272576e-01 -7.97110260e-01 -4.72934723e-01 -1.09731269e+00 2.00178614e-03 -1.53661832e-01 -1.56447455e-01 6.83083296e-01 1.19075513e+00 5.16254961e-01 5.52924812e-01 3.53090554e-01 -9.14411664e-01 -7.12333098e-02 -1.07872438e+00 -2.26368591e-01 2.96114832e-01 3.73773336e-01 -4.05473530e-01 -4.65069450e-02 1.97361276e-01]
[10.827339172363281, 1.583335041999817]
3ec08b76-5520-4453-ba1d-010ec27383d7
inter-view-depth-consistency-testing-in-depth
2301.11752
null
https://arxiv.org/abs/2301.11752v1
https://arxiv.org/pdf/2301.11752v1.pdf
Inter-View Depth Consistency Testing in Depth Difference Subspace
Multiview depth imagery will play a critical role in free-viewpoint television. This technology requires high quality virtual view synthesis to enable viewers to move freely in a dynamic real world scene. Depth imagery at different viewpoints is used to synthesize an arbitrary number of novel views. Usually, depth images at multiple viewpoints are estimated individually by stereo-matching algorithms, and hence, show lack of interview consistency. This inconsistency affects the quality of view synthesis negatively. This paper proposes a method for depth consistency testing in depth difference subspace to enhance the depth representation of a scene across multiple viewpoints. Furthermore, we propose a view synthesis algorithm that uses the obtained consistency information to improve the visual quality of virtual views at arbitrary viewpoints. Our method helps us to find a linear subspace for our depth difference measurements in which we can test the inter-view consistency efficiently. With this, our approach is able to enhance the depth information for real world scenes. In combination with our consistency-adaptive view synthesis, we improve the visual experience of the free-viewpoint user. The experiments show that our approach enhances the objective quality of virtual views by up to 1.4 dB. The advantage for the subjective quality is also demonstrated.
['Markus Flierl', 'Pravin Kumar Rana']
2023-01-27
null
null
null
null
['stereo-matching-1']
['computer-vision']
[ 5.09056300e-02 -1.98233113e-01 2.08076835e-01 -3.45531017e-01 -5.48141301e-01 -6.41519904e-01 3.43380004e-01 -4.37442243e-01 5.78600261e-03 4.98640120e-01 8.94979015e-02 7.02541843e-02 5.49789853e-02 -8.97448003e-01 -4.19633329e-01 -6.80733383e-01 2.82456636e-01 2.70188421e-01 4.97990668e-01 -2.78622657e-01 3.48267317e-01 5.79523623e-01 -1.89721394e+00 4.37097669e-01 8.29146087e-01 8.25420916e-01 7.29098916e-01 7.01153159e-01 1.96497262e-01 4.54849929e-01 -3.66201073e-01 -5.95790781e-02 5.73972821e-01 -3.84928256e-01 -3.65595102e-01 5.42676866e-01 7.34791934e-01 -9.69074368e-01 -1.62835553e-01 1.30254340e+00 4.69026834e-01 5.96786924e-02 1.04251385e-01 -9.70845759e-01 1.36341676e-01 -9.37226340e-02 -6.41946018e-01 -3.45496424e-02 8.97603214e-01 3.23062181e-03 7.28571653e-01 -9.24623370e-01 1.03052473e+00 1.08106267e+00 -1.44441584e-02 3.86743009e-01 -1.09521222e+00 -3.29427510e-01 1.79036260e-01 5.63340485e-01 -1.35851693e+00 -5.73271096e-01 9.38983619e-01 -2.60036767e-01 4.24797684e-01 4.82739925e-01 1.04426646e+00 6.98181272e-01 3.88128191e-01 2.01749489e-01 1.05055702e+00 -4.09227252e-01 2.32736513e-01 4.29144710e-01 -3.46739858e-01 4.13172692e-01 1.78615034e-01 1.59604713e-01 -4.67390537e-01 1.20789334e-01 9.94188547e-01 1.45809218e-01 -7.48573720e-01 -8.66169930e-01 -1.23521638e+00 4.78062183e-01 7.52024576e-02 4.02683616e-01 -2.33364180e-02 -3.46581787e-01 1.23870619e-01 4.21662152e-01 4.92239296e-01 1.86837867e-01 -2.25944519e-01 -4.86786701e-02 -5.74439049e-01 1.41030297e-01 5.49451590e-01 1.09635234e+00 5.84525704e-01 -1.23083636e-01 4.54911619e-01 7.59408951e-01 1.52536705e-01 7.70334601e-01 1.36976406e-01 -1.40482664e+00 6.64374232e-01 4.71210539e-01 2.93302983e-01 -1.06369936e+00 -1.95875496e-01 -2.34520301e-01 -7.73743451e-01 1.00961912e+00 3.59161645e-01 1.89149216e-01 -3.15171719e-01 1.41086638e+00 5.49223781e-01 -2.66920328e-01 1.77441966e-02 1.06475210e+00 5.89708388e-01 6.64064348e-01 -1.12805438e+00 -5.79663873e-01 1.11423016e+00 -6.54080689e-01 -8.63758981e-01 -3.96311395e-02 1.92988232e-01 -1.01748848e+00 8.69902670e-01 1.09606111e+00 -1.48102808e+00 -9.01918709e-01 -1.27781725e+00 -3.79518111e-04 2.85918713e-01 -7.11622983e-02 2.60787364e-02 6.54367030e-01 -1.22646308e+00 3.26279610e-01 -6.71875358e-01 -4.90272492e-02 -3.14543456e-01 2.72482961e-01 -6.35546565e-01 -4.65640485e-01 -8.19303155e-01 9.16181982e-01 6.09685704e-02 -7.49065205e-02 -5.80518246e-01 -4.83371615e-01 -6.87463403e-01 8.32992420e-02 4.08703387e-01 -9.45722103e-01 8.29680264e-01 -8.55352283e-01 -1.65335739e+00 7.65578628e-01 -5.12826681e-01 2.07430914e-01 8.50561976e-01 -4.62803617e-02 -3.61182928e-01 5.32496333e-01 6.72141137e-03 2.52753079e-01 6.94149613e-01 -1.66650212e+00 -7.15924263e-01 -6.51977897e-01 2.65807480e-01 7.43203640e-01 2.96963956e-02 -4.60678607e-01 -7.02290118e-01 -5.44689782e-03 1.00273108e+00 -7.32156098e-01 -1.20996162e-01 2.98640251e-01 -4.22788486e-02 5.47706962e-01 7.35868573e-01 -4.91386950e-01 6.74859166e-01 -2.20700979e+00 3.74770761e-01 1.65974259e-01 5.04711151e-01 -3.23854864e-01 2.25748971e-01 3.79282743e-01 -7.55435303e-02 -4.74966466e-01 3.60700548e-01 -3.90016824e-01 -7.03640878e-01 1.09271519e-01 2.51586307e-02 5.94347537e-01 -6.51568294e-01 1.58961564e-01 -6.87766433e-01 -2.40040421e-01 6.80942595e-01 6.10249758e-01 -8.96835268e-01 5.06012619e-01 7.77054504e-02 9.14866388e-01 -8.26140121e-02 2.87856877e-01 1.27816606e+00 -1.25911981e-01 4.86235857e-01 -3.23648453e-01 -4.45369214e-01 8.17469507e-02 -1.56965446e+00 1.87804556e+00 -8.08204591e-01 7.38366067e-01 1.65841341e-01 -3.63845676e-01 8.46968651e-01 3.29487205e-01 5.04719555e-01 -9.21741486e-01 -3.73935304e-03 2.34001160e-01 -5.67854429e-03 -5.55899322e-01 5.23565531e-01 -2.17842415e-01 5.45309603e-01 1.33959323e-01 -2.84478605e-01 -4.65794384e-01 -2.68662609e-02 1.49545878e-01 5.54912329e-01 -9.21844095e-02 5.58553159e-01 -5.28058074e-02 7.63960660e-01 -7.22062469e-01 4.07167852e-01 2.17634976e-01 2.07779408e-01 9.14623797e-01 3.02829683e-01 -3.08973849e-01 -1.31152141e+00 -1.18757880e+00 -1.84757620e-01 2.14353219e-01 6.26370609e-01 -2.69275934e-01 -3.30079764e-01 -1.09970763e-01 -4.36977327e-01 4.53214288e-01 -2.12264076e-01 2.65660971e-01 -4.06829447e-01 -9.35365167e-03 -5.04525244e-01 4.21538390e-02 7.11971521e-01 -2.44570091e-01 -7.76400805e-01 -1.84002202e-02 -7.32953668e-01 -1.38470793e+00 -1.59773126e-01 -3.46572459e-01 -1.25849545e+00 -1.01246977e+00 -8.05368781e-01 -3.46482992e-01 7.29467809e-01 1.00510955e+00 1.01496279e+00 -1.84334993e-01 1.24816522e-01 4.53960598e-01 -2.79970527e-01 3.13613504e-01 -5.04529655e-01 -6.04890049e-01 1.32323027e-01 1.07533239e-01 -3.26024622e-01 -1.03265119e+00 -8.32098424e-01 7.46869743e-01 -8.45559418e-01 4.31511998e-01 8.80481899e-02 6.60364568e-01 4.53135818e-01 2.06098616e-01 -4.65232581e-02 -5.81377327e-01 -1.03854634e-01 4.60055135e-02 -1.15517211e+00 1.73690042e-03 -4.88994926e-01 -2.49782488e-01 7.36347556e-01 -1.30405560e-01 -1.27880406e+00 -2.54163355e-01 -2.66237170e-01 -4.37125683e-01 1.44183105e-02 -5.46246804e-02 -7.26554334e-01 -2.69442230e-01 5.36910415e-01 2.16123477e-01 -3.38684842e-02 -3.80343020e-01 2.48171419e-01 4.03101295e-01 2.47881263e-01 -9.05052796e-02 7.55531669e-01 9.87718642e-01 2.39570946e-01 -1.01113570e+00 -2.97389865e-01 -6.65538073e-01 -8.22528303e-01 -5.95605791e-01 7.53689647e-01 -1.15090001e+00 -9.34820652e-01 2.69334435e-01 -1.19478822e+00 1.12126745e-01 4.36044522e-02 8.05540681e-01 -6.68149412e-01 9.02211010e-01 -2.05491811e-01 -7.51924694e-01 2.07403690e-01 -1.37131560e+00 9.83170509e-01 -6.62568882e-02 2.03849390e-01 -1.00999093e+00 -2.48121861e-02 5.38174510e-01 7.89702684e-02 4.62495685e-02 5.46256185e-01 4.21557367e-01 -1.18634522e+00 1.57010332e-01 -3.21494564e-02 4.53095704e-01 2.74675131e-01 -1.12926371e-01 -1.11952758e+00 -4.12263721e-01 6.84655488e-01 2.48802632e-01 3.66196007e-01 5.77205002e-01 8.92333627e-01 -4.30715159e-02 -8.98693427e-02 8.40066314e-01 1.82469916e+00 6.23635590e-01 9.84057307e-01 2.81047583e-01 6.32858753e-01 6.55503273e-01 9.37520325e-01 7.04152465e-01 1.73486739e-01 1.28626335e+00 7.19084978e-01 -1.34568036e-01 -3.60963168e-03 1.02560982e-01 2.42722765e-01 9.13766325e-01 -3.16597492e-01 -4.77703780e-01 -4.14332479e-01 2.08486930e-01 -1.47075570e+00 -1.20656645e+00 -3.12196046e-01 2.68067312e+00 2.62994021e-01 1.96806192e-01 -1.48453936e-01 4.51374233e-01 5.10597765e-01 2.09010705e-01 -2.86287993e-01 -3.82349283e-01 5.11250086e-02 -2.36241430e-01 2.97870487e-01 9.77870405e-01 -3.72171640e-01 3.00077230e-01 5.64907122e+00 3.50713223e-01 -1.10705030e+00 -5.87912016e-02 2.34315231e-01 -2.75373906e-01 -7.42640138e-01 2.54889466e-02 -6.23492599e-01 3.18927318e-01 2.59296894e-01 -4.96503040e-02 3.72388721e-01 7.56152451e-01 6.24064624e-01 -6.93644226e-01 -1.18127549e+00 1.41358399e+00 3.69399071e-01 -9.73768830e-01 3.67978215e-02 3.80310893e-01 9.64693487e-01 -3.42471808e-01 2.05082208e-01 -5.55821121e-01 -4.41572219e-01 -4.14593995e-01 4.13120508e-01 3.80875379e-01 8.68116558e-01 -8.97099674e-01 6.42410517e-01 5.45624375e-01 -1.03578806e+00 5.32130711e-02 -5.44967294e-01 -1.54690370e-01 6.09174669e-01 9.30721998e-01 -6.65723324e-01 9.68923450e-01 4.56376463e-01 5.74491441e-01 -2.87241727e-01 1.00744033e+00 -5.92738241e-02 -3.16011459e-01 -4.95228432e-02 4.57249314e-01 -1.93743572e-01 -6.06036723e-01 8.69508445e-01 3.09998840e-01 6.32903993e-01 3.60647917e-01 -8.56514797e-02 5.31375945e-01 4.09037799e-01 -5.67204505e-02 -1.05211782e+00 8.88573647e-01 -2.15456355e-02 9.29579377e-01 -4.53754544e-01 -4.89560485e-01 -4.55304444e-01 1.39786315e+00 -3.29078227e-01 3.93316478e-01 -7.34649301e-01 1.34199215e-02 6.88641787e-01 4.30938214e-01 1.33872211e-01 -3.99800509e-01 -2.47088701e-01 -1.66482639e+00 3.34375232e-01 -1.01370072e+00 -3.11148036e-02 -1.24169099e+00 -6.93171263e-01 7.53083885e-01 1.47917092e-01 -2.07143235e+00 -5.09673476e-01 -3.83163601e-01 -2.25613296e-01 9.08432066e-01 -1.32766473e+00 -5.10495782e-01 -6.77754819e-01 8.07552218e-01 9.98503268e-01 6.58394992e-02 4.89386410e-01 4.73785937e-01 2.20912784e-01 1.52801648e-01 3.36447537e-01 -6.39069617e-01 7.70976841e-01 -9.35010970e-01 1.46753430e-01 9.90550280e-01 3.73105593e-02 3.91720474e-01 8.22334886e-01 -4.11060065e-01 -1.22025394e+00 -3.00873965e-01 7.20553279e-01 -3.66756588e-01 -4.63641770e-02 -2.84716636e-01 -7.26721644e-01 4.88213867e-01 2.70835847e-01 -1.85525566e-01 5.11007488e-01 -4.29544076e-02 -1.47589773e-01 -4.36019987e-01 -1.28659093e+00 6.49200261e-01 1.12591839e+00 -5.06102622e-01 -1.89841390e-01 3.69080827e-02 5.02072513e-01 -6.59027696e-01 -5.63584745e-01 3.22208077e-01 9.12053227e-01 -1.92139113e+00 1.09827125e+00 1.94525421e-01 6.33138418e-01 -4.69823778e-01 -3.93312216e-01 -1.30817544e+00 -2.08458662e-01 -2.35874265e-01 2.24757388e-01 7.93655336e-01 -3.87054086e-02 -8.81472290e-01 6.12348974e-01 3.33639532e-01 6.29320145e-02 -3.05314004e-01 -9.07468259e-01 -8.11030328e-01 -6.02060199e-01 -3.33486766e-01 1.87026188e-01 8.20437014e-01 1.40307665e-01 2.02424154e-01 -5.48091173e-01 6.17342830e-01 9.53498721e-01 4.36893404e-01 1.05231833e+00 -1.21244478e+00 -8.00588250e-01 8.66848752e-02 -7.72474110e-01 -1.57394195e+00 -4.15089071e-01 -3.46077114e-01 -3.36631238e-01 -1.51214397e+00 1.89250618e-01 -1.12837881e-01 3.78041148e-01 -6.78735852e-01 1.13698699e-01 2.64834970e-01 3.18612337e-01 7.77669176e-02 -1.53325140e-01 3.33078057e-01 1.76336348e+00 1.70912802e-01 -3.97721052e-01 3.01266491e-01 -2.10415259e-01 8.09541583e-01 6.37811184e-01 -1.56013429e-01 -9.23127532e-01 -5.29669166e-01 4.98267710e-01 7.82338858e-01 2.89117277e-01 -1.10191166e+00 -3.88615429e-02 -1.59524232e-01 5.46823919e-01 -9.43166733e-01 9.29059505e-01 -1.19426191e+00 4.85423118e-01 4.79906827e-01 1.86553225e-01 9.93421525e-02 -5.43768965e-02 3.67634892e-01 -3.78291190e-01 -1.66730851e-01 9.79573786e-01 -3.54131490e-01 -5.78151941e-01 6.74198568e-02 -2.27077752e-01 -3.30020964e-01 8.80622327e-01 -5.59875488e-01 -4.60307896e-02 -9.74809885e-01 -9.20638978e-01 -1.85633779e-01 9.71210599e-01 5.12837991e-02 9.79552209e-01 -1.31286049e+00 -4.46185917e-01 5.51918566e-01 1.68715149e-01 -1.81887403e-01 8.07500601e-01 7.85822332e-01 -8.78948867e-01 2.22526357e-01 -4.11181688e-01 -1.14947391e+00 -1.78148198e+00 5.94083905e-01 2.79603750e-01 -1.59536034e-01 -7.67745376e-01 5.12761235e-01 7.20775664e-01 1.16070889e-01 -7.60026276e-02 -5.13364196e-01 -2.65936196e-01 -1.69144571e-01 8.30908060e-01 4.77357447e-01 9.54009742e-02 -3.96739125e-01 -8.74196440e-02 1.08660388e+00 1.25084266e-01 -7.68024504e-01 1.02757394e+00 -9.45646703e-01 1.22581929e-01 6.02464259e-01 1.45187879e+00 8.27952862e-01 -1.21161759e+00 1.76905409e-01 -8.76813531e-01 -1.46125329e+00 -1.12132691e-01 -4.04123366e-01 -1.02729368e+00 1.01669562e+00 8.83810639e-01 1.49425268e-01 1.52596593e+00 -2.08935127e-01 4.32845950e-01 2.11193085e-01 8.61741602e-01 -5.97978175e-01 1.37637079e-01 1.29809693e-01 9.58304405e-01 -1.32423913e+00 2.01758355e-01 -9.33289826e-01 -5.23319781e-01 1.39162171e+00 4.83892828e-01 2.07633182e-01 3.21557760e-01 1.89097345e-01 2.13895842e-01 -1.27489835e-01 -7.79134810e-01 -6.98241219e-02 1.86878219e-01 5.71537375e-01 2.65107185e-01 -2.16452330e-01 -3.18536401e-01 -5.31058609e-01 -7.56082125e-03 -3.12872291e-01 1.01611292e+00 3.26116830e-01 -5.33100903e-01 -1.28065348e+00 -6.45017982e-01 -2.93954045e-01 -3.87820005e-02 1.37003839e-01 -2.39821766e-02 7.07032025e-01 7.88515434e-02 1.10199511e+00 -4.06844392e-02 -2.80830920e-01 5.24552166e-01 -3.66104156e-01 9.16088045e-01 -4.39834505e-01 -2.28618979e-02 3.80048156e-01 -2.95149554e-02 -9.82586801e-01 -5.45563102e-01 -4.52840477e-01 -8.17914128e-01 -5.44975698e-01 -1.57122299e-01 -1.21100679e-01 6.77168012e-01 4.21848506e-01 -2.12924164e-02 3.54837626e-01 1.25084329e+00 -7.51045406e-01 6.55649463e-03 -3.73852760e-01 -8.30445766e-01 2.44210154e-01 4.87085998e-01 -5.37131786e-01 -6.54337585e-01 -2.84796320e-02]
[9.219407081604004, -2.5282692909240723]
19bced65-165f-4083-9e04-1b680274cd39
avatarbooth-high-quality-and-customizable-3d
2306.09864
null
https://arxiv.org/abs/2306.09864v1
https://arxiv.org/pdf/2306.09864v1.pdf
AvatarBooth: High-Quality and Customizable 3D Human Avatar Generation
We introduce AvatarBooth, a novel method for generating high-quality 3D avatars using text prompts or specific images. Unlike previous approaches that can only synthesize avatars based on simple text descriptions, our method enables the creation of personalized avatars from casually captured face or body images, while still supporting text-based model generation and editing. Our key contribution is the precise avatar generation control by using dual fine-tuned diffusion models separately for the human face and body. This enables us to capture intricate details of facial appearance, clothing, and accessories, resulting in highly realistic avatar generations. Furthermore, we introduce pose-consistent constraint to the optimization process to enhance the multi-view consistency of synthesized head images from the diffusion model and thus eliminate interference from uncontrolled human poses. In addition, we present a multi-resolution rendering strategy that facilitates coarse-to-fine supervision of 3D avatar generation, thereby enhancing the performance of the proposed system. The resulting avatar model can be further edited using additional text descriptions and driven by motion sequences. Experiments show that AvatarBooth outperforms previous text-to-3D methods in terms of rendering and geometric quality from either text prompts or specific images. Please check our project website at https://zeng-yifei.github.io/avatarbooth_page/.
['Xun Cao', 'Hao Zhu', 'Yao Yao', 'Xinya Ji', 'Yuanxun Lu', 'Yifei Zeng']
2023-06-16
null
null
null
null
['text-to-3d']
['computer-vision']
[-9.15330555e-03 3.25554490e-01 4.21449006e-01 -3.33553761e-01 -5.05530596e-01 -4.73995209e-01 6.18053317e-01 -5.09243429e-01 1.17708929e-01 4.70048457e-01 1.92574039e-01 3.64848822e-01 2.04335049e-01 -6.06492281e-01 -5.52561283e-01 -5.33833325e-01 4.91917193e-01 6.42771065e-01 7.08360672e-02 -3.54125440e-01 -2.43013054e-01 6.92571938e-01 -1.38912678e+00 -1.03227280e-01 8.00698996e-01 9.33398664e-01 3.31055552e-01 7.48331666e-01 1.96925610e-01 4.76143986e-01 -5.59338570e-01 -6.34851813e-01 3.83613110e-01 -5.09599149e-01 -2.98067927e-01 4.51601416e-01 6.96475327e-01 -6.97794139e-01 -1.85273632e-01 6.71486974e-01 8.86002719e-01 2.91301072e-01 5.06453812e-01 -1.19897008e+00 -7.39870071e-01 4.90337722e-02 -8.35035026e-01 -5.70760429e-01 7.89473593e-01 2.83857346e-01 6.43735528e-01 -9.59622324e-01 9.31486309e-01 1.37455404e+00 3.27255785e-01 1.04515398e+00 -1.34137404e+00 -8.38347435e-01 1.11866876e-01 -7.56986514e-02 -1.47946370e+00 -7.69864023e-01 1.02794623e+00 -4.70294505e-01 3.03866386e-01 5.97263217e-01 1.06899273e+00 1.33697832e+00 -3.56394053e-02 6.21059120e-01 8.66327882e-01 -2.75500327e-01 -6.88323304e-02 -2.80767698e-02 -5.65271139e-01 1.05873346e+00 -3.32796723e-01 -2.03685090e-02 -7.13595033e-01 -1.44176409e-01 1.53418887e+00 -2.83042848e-01 -2.18244910e-01 -6.08716667e-01 -1.30978584e+00 5.71113527e-01 -9.00026858e-02 -2.67062873e-01 -4.50143754e-01 1.33249074e-01 1.11774400e-01 -6.36616200e-02 5.00633240e-01 1.55246228e-01 -2.14838743e-01 -1.17000878e-01 -6.95192218e-01 6.80096865e-01 4.39785391e-01 1.18543541e+00 5.06725073e-01 4.23478276e-01 -2.97304422e-01 1.00971437e+00 3.45439643e-01 8.98230433e-01 8.75357315e-02 -1.29328144e+00 9.57239568e-02 2.72681326e-01 1.54134452e-01 -1.05961907e+00 -2.71860063e-01 1.18556812e-01 -8.28633666e-01 4.46696848e-01 2.33790457e-01 -2.64712960e-01 -8.12052608e-01 1.65398502e+00 1.01635134e+00 -9.38607827e-02 -4.14552838e-01 1.15761960e+00 1.14282691e+00 5.36388338e-01 -2.46048406e-01 -2.82157153e-01 1.43022358e+00 -1.10455978e+00 -9.88087475e-01 1.14064060e-01 -1.78278014e-02 -9.14580226e-01 1.34569097e+00 2.82331318e-01 -1.38797605e+00 -4.85217571e-01 -6.65170610e-01 -2.07178250e-01 4.03485000e-01 1.95673183e-01 4.98677105e-01 5.14181972e-01 -9.47386801e-01 2.78869301e-01 -8.43830526e-01 -1.26668245e-01 2.21520305e-01 3.24611753e-01 -5.55861533e-01 3.35699469e-01 -8.14808190e-01 7.29605079e-01 -1.31206214e-01 8.18764418e-02 -8.70671272e-01 -7.69183338e-01 -1.03777027e+00 -2.87795037e-01 5.15778482e-01 -1.00139296e+00 1.32063258e+00 -9.45614815e-01 -2.16635108e+00 8.00986171e-01 -1.90830663e-01 2.77172118e-01 1.03205955e+00 -1.93674952e-01 -1.46700814e-01 2.45262548e-01 -5.94937541e-02 7.96483278e-01 1.15733087e+00 -1.44169438e+00 -1.23857796e-01 -3.93465519e-01 -1.00896716e-01 4.70754147e-01 -3.57081220e-02 1.19181961e-01 -9.13144231e-01 -9.17244196e-01 -4.10880558e-02 -9.51456368e-01 -1.73469141e-01 6.04937673e-01 -4.99335051e-01 1.76738948e-01 9.66020405e-01 -8.54987442e-01 8.12119126e-01 -1.93682802e+00 3.43856782e-01 1.06658898e-01 4.93141383e-01 6.88019171e-02 -1.66281268e-01 9.04598087e-02 1.54350847e-01 -2.08812356e-01 1.22183174e-01 -7.19071269e-01 8.84732679e-02 3.48168500e-02 7.36730695e-02 2.69107759e-01 -1.80654451e-01 9.12064791e-01 -5.02474308e-01 -7.84958899e-01 4.54195142e-01 9.60325956e-01 -5.51610231e-01 4.16306078e-01 -2.48776734e-01 1.09264505e+00 -4.89442706e-01 6.01024628e-01 7.03675926e-01 4.52650487e-02 5.61047010e-02 -2.92378396e-01 1.41664729e-01 -2.15913609e-01 -1.27840221e+00 1.79560125e+00 -4.58941609e-01 3.35859686e-01 4.88833606e-01 -1.68791071e-01 1.07701802e+00 4.81501013e-01 5.74429810e-01 -6.71283841e-01 2.76123166e-01 -1.21485285e-01 -4.93112296e-01 -3.38810414e-01 4.63268071e-01 -1.85274348e-01 1.75780617e-02 4.15569097e-01 -1.37718722e-01 -5.79191685e-01 -2.48219464e-02 1.32232159e-01 2.31327444e-01 5.68239689e-01 9.60506126e-02 5.12682162e-02 3.88612032e-01 -4.27544624e-01 6.25434637e-01 1.17053576e-01 1.23985969e-01 9.87889230e-01 2.48129442e-01 -4.32493955e-01 -1.38122213e+00 -1.19097841e+00 3.99773121e-02 8.23395193e-01 2.62012333e-01 -5.47020912e-01 -9.39053237e-01 -3.89208227e-01 -2.14772701e-01 5.41285872e-01 -6.65740967e-01 2.10022196e-01 -6.22345507e-01 -3.37892056e-01 2.87385970e-01 2.58897662e-01 3.62037152e-01 -9.00944352e-01 -5.83452284e-01 9.50567704e-03 -3.50043267e-01 -1.21965039e+00 -1.11543679e+00 -7.51487255e-01 -6.48668408e-01 -6.23605013e-01 -1.17759514e+00 -5.25099516e-01 8.41430128e-01 -7.19478354e-02 7.53124654e-01 -6.13651015e-02 -3.22965741e-01 3.48866075e-01 -1.99153215e-01 -2.55636156e-01 -5.05117059e-01 -3.12108457e-01 2.65370518e-01 2.34839767e-01 -5.81245661e-01 -8.02181542e-01 -6.87419891e-01 4.96165305e-01 -5.58616936e-01 9.89880383e-01 2.28466978e-03 6.41942441e-01 6.92571342e-01 -4.63931322e-01 1.36684701e-01 -6.49886131e-01 5.04983187e-01 2.77427018e-01 -6.82312310e-01 7.87197351e-02 -3.81471097e-01 -1.35011882e-01 5.55389285e-01 -7.93230057e-01 -1.34635985e+00 1.34108350e-01 -4.46683824e-01 -7.23759055e-01 -1.09793223e-01 -3.31023842e-01 -5.40874362e-01 -1.55462503e-01 3.92775357e-01 1.49653569e-01 3.32867801e-01 -4.70577896e-01 5.23114681e-01 3.23823512e-01 5.78381538e-01 -8.48083496e-01 9.75263000e-01 5.09036481e-01 -2.05579791e-02 -8.98686647e-01 -3.38715374e-01 2.47008890e-01 -7.51100361e-01 -6.78915918e-01 9.27398443e-01 -7.92790890e-01 -1.12124419e+00 6.36541188e-01 -1.10327828e+00 -5.27522743e-01 -2.97576100e-01 2.89550990e-01 -7.77543664e-01 3.48844230e-01 -6.87144995e-01 -7.72039294e-01 -4.52692956e-01 -1.22663462e+00 1.45640755e+00 3.54195416e-01 -5.10717392e-01 -7.78943658e-01 -7.60838687e-02 7.44291008e-01 1.09191023e-01 7.93554008e-01 5.89321792e-01 1.75908327e-01 -4.89680141e-01 1.08727012e-02 1.28708497e-01 6.73891883e-03 1.52705923e-01 2.34751627e-01 -7.94737339e-01 -9.30362567e-02 -4.39044625e-01 -1.71093479e-01 -6.69627339e-02 2.89879501e-01 7.98307538e-01 -4.64321673e-01 -2.03142781e-02 8.28464687e-01 9.86324847e-01 1.89091459e-01 4.37969059e-01 3.68798189e-02 1.23039818e+00 6.99288607e-01 6.54666603e-01 8.71801972e-01 5.29638112e-01 1.24015176e+00 3.18603069e-01 -2.84561217e-01 -3.04172784e-01 -5.71471751e-01 2.51503527e-01 7.41434574e-01 -5.36826015e-01 5.00435233e-02 -5.44798255e-01 2.90825993e-01 -1.66129935e+00 -6.92930579e-01 -2.55307615e-01 2.04405975e+00 8.06595743e-01 -4.13574994e-01 3.93402249e-01 -3.10160220e-01 6.31595314e-01 1.45927489e-01 -6.41204298e-01 -3.01054269e-01 2.35200226e-02 2.21106503e-02 5.36125898e-02 6.78875566e-01 -5.44762313e-01 1.04820228e+00 5.53428173e+00 7.94146419e-01 -1.01608336e+00 2.34968781e-01 5.39831042e-01 -5.73238254e-01 -5.72726727e-01 -3.20244938e-01 -5.97358882e-01 1.93108827e-01 2.32063726e-01 -3.04395288e-01 5.06820798e-01 6.71380281e-01 7.83274293e-01 8.42959508e-02 -8.68276894e-01 1.22090101e+00 2.22747564e-01 -1.25621951e+00 2.76469052e-01 1.12721086e-01 7.85124719e-01 -8.20554197e-01 1.67994007e-01 -2.42110655e-01 2.84312874e-01 -8.09483945e-01 1.21233487e+00 6.43555820e-01 1.24864960e+00 -8.15864563e-01 1.76718626e-02 2.83871591e-01 -1.16936040e+00 5.05987346e-01 -5.85000664e-02 2.85672188e-01 6.18044496e-01 1.84475869e-01 -5.90227306e-01 4.16755140e-01 6.28755093e-01 2.28094473e-01 -3.22201312e-01 4.29864168e-01 -2.22689852e-01 -3.88120417e-03 -1.73539922e-01 1.62254289e-01 -3.55302453e-01 -4.38539654e-01 7.46147156e-01 7.42190242e-01 3.36008608e-01 3.73597443e-01 9.07694250e-02 9.79724109e-01 7.75948465e-02 3.20562154e-01 -3.52532715e-01 1.43886968e-01 2.49389291e-01 1.36286426e+00 -4.20699596e-01 -2.34244809e-01 -5.62483072e-02 1.41911674e+00 9.59417745e-02 2.90691227e-01 -1.12601161e+00 -3.87670584e-02 8.37871909e-01 4.64836836e-01 1.56071231e-01 -3.60712707e-01 -2.16414541e-01 -1.26577556e+00 3.05243079e-02 -9.79056239e-01 -8.97328928e-02 -1.26354957e+00 -7.43512154e-01 8.16642106e-01 1.03658341e-01 -1.03380644e+00 -3.35029513e-01 -1.72506556e-01 -4.27733034e-01 7.85414398e-01 -7.04959571e-01 -1.74101925e+00 -6.00735962e-01 8.54315937e-01 6.33759201e-01 -1.05894059e-02 7.85030425e-01 3.05916965e-01 -4.75338757e-01 8.70602190e-01 -1.59118339e-01 -2.90186200e-02 9.00025070e-01 -8.81008983e-01 5.43280125e-01 4.47475642e-01 1.45897390e-02 2.64505178e-01 7.40568757e-01 -7.03135312e-01 -1.36426222e+00 -8.32290888e-01 4.56949919e-01 -5.31394064e-01 1.70426488e-01 -7.00121641e-01 -5.12467921e-01 6.51857734e-01 9.79150757e-02 -1.40735522e-01 4.45590287e-01 -2.73949474e-01 -9.18818340e-02 -2.12143525e-01 -1.23229718e+00 1.04449081e+00 1.23004961e+00 -2.24015698e-01 -6.04547784e-02 1.72478274e-01 6.14015102e-01 -1.02133548e+00 -9.62123990e-01 2.62035638e-01 1.03195214e+00 -8.94221306e-01 9.74693537e-01 -1.82341412e-01 4.30222750e-01 -3.88335139e-01 1.08173810e-01 -1.21145928e+00 -2.53905654e-01 -1.12344635e+00 -1.18401691e-01 1.33193445e+00 1.39253587e-01 -3.02190095e-01 8.82030010e-01 9.84993398e-01 1.38630405e-01 -6.09454453e-01 -6.33461773e-01 -4.76986796e-01 -2.81099290e-01 -2.73999840e-01 9.31834638e-01 8.18725884e-01 -2.77936190e-01 3.14241797e-01 -1.03853416e+00 1.02965288e-01 8.33325505e-01 1.09339379e-01 1.34728181e+00 -1.01848495e+00 -4.02015299e-01 -1.87921003e-01 -2.27822095e-01 -1.12930381e+00 3.03001683e-02 -3.96777302e-01 -1.05274960e-01 -1.42524564e+00 7.02163950e-02 -4.18841511e-01 7.47785866e-01 3.79125059e-01 -5.71816564e-02 6.81693375e-01 5.82393765e-01 1.55167833e-01 -2.72549629e-01 9.31160390e-01 2.10306072e+00 1.45237401e-01 -3.82624060e-01 -7.99445584e-02 -4.89972949e-01 8.09647977e-01 5.76489151e-01 -1.00825399e-01 -4.84145790e-01 -5.58009326e-01 -5.25536723e-02 5.97715020e-01 5.01259685e-01 -5.62710226e-01 -8.67291838e-02 -3.81987274e-01 5.10073900e-01 -3.69998932e-01 8.30965877e-01 -6.58582866e-01 8.04172337e-01 4.34601568e-02 -1.33329630e-01 9.13280845e-02 1.91527143e-01 2.11127907e-01 2.60986000e-01 2.41858408e-01 8.97095740e-01 -1.76084116e-01 -3.17759633e-01 7.40595877e-01 -3.29918742e-01 -1.09606065e-01 1.04411292e+00 -4.40258265e-01 2.30102867e-01 -8.96197975e-01 -1.18672752e+00 1.23265073e-01 8.82346034e-01 5.29216588e-01 7.54121423e-01 -1.61138558e+00 -8.53507042e-01 3.99139136e-01 -6.73641413e-02 1.98557585e-01 6.77772522e-01 7.32946754e-01 -8.28199327e-01 -1.35874435e-01 -3.29582930e-01 -5.96239924e-01 -1.86050868e+00 2.18817621e-01 3.88526589e-01 2.41620034e-01 -9.90085065e-01 6.71286345e-01 6.84554696e-01 -6.36694431e-01 7.16240108e-02 2.18627632e-01 7.91951790e-02 -2.37851545e-01 5.40873051e-01 3.88522118e-01 -2.88691372e-01 -1.05880511e+00 -1.57935783e-01 8.63069117e-01 6.91227540e-02 -4.66838509e-01 1.26482582e+00 -4.30545360e-01 2.10698634e-01 1.43634021e-01 7.56165743e-01 3.75411898e-01 -1.65669632e+00 1.08804248e-01 -9.36170638e-01 -8.67522895e-01 -2.32400626e-01 -6.67352498e-01 -1.27655470e+00 6.23319685e-01 4.27450478e-01 -4.76998240e-01 1.12743688e+00 -9.55207832e-03 9.96706486e-01 -1.63484186e-01 4.79786247e-01 -8.65124941e-01 2.95036018e-01 1.55628696e-01 1.28984749e+00 -8.91634583e-01 -4.48569432e-02 -6.69135749e-01 -1.02712619e+00 9.40375209e-01 8.33578289e-01 9.62733552e-02 2.88834423e-01 4.85300273e-01 3.68147105e-01 -1.02519862e-01 -4.74383205e-01 3.23627710e-01 4.44698960e-01 8.76958013e-01 2.19715863e-01 1.33208454e-01 -6.64924160e-02 5.34535229e-01 -5.53781271e-01 -2.08131716e-01 5.12150228e-01 4.09256309e-01 6.23075627e-02 -1.20510924e+00 -7.04511046e-01 7.85259828e-02 -1.98087275e-01 9.48764235e-02 -4.48940188e-01 6.65244997e-01 7.09411502e-02 7.14145422e-01 -7.81138241e-02 -3.26689959e-01 5.57715356e-01 -2.21347675e-01 8.70517612e-01 -3.77928495e-01 -3.93270642e-01 4.95819956e-01 2.58891284e-01 -6.01410210e-01 -1.09728105e-01 -6.31576836e-01 -1.04124331e+00 -7.36968994e-01 -2.71972656e-01 -6.73457086e-02 5.66497862e-01 5.01636326e-01 3.88304889e-01 3.83748025e-01 6.56667411e-01 -1.33495462e+00 -2.20772400e-02 -7.15821505e-01 -7.10598230e-01 4.62649643e-01 2.02883959e-01 -6.68650806e-01 9.29998010e-02 4.64650512e-01]
[12.345914840698242, -0.5842046737670898]
f35dbc0b-42c0-473d-95f7-6bc87b599ba7
a-study-of-acoustic-features-in-arabic
2110.12304
null
https://arxiv.org/abs/2110.12304v1
https://arxiv.org/pdf/2110.12304v1.pdf
A Study of Acoustic Features in Arabic Speaker Identification under Noisy Environmental Conditions
One of the major parts of the voice recognition field is the choice of acoustic features which have to be robust against the variability of the speech signal, mismatched conditions, and noisy environments. Thus, different speech feature extraction techniques have been developed. In this paper, we investigate the robustness of several front-end techniques in Arabic speaker identification. We evaluate five different features in babble, factory and subway conditions at the various signal to noise ratios (SNR). The obtained results showed that two of the auditory feature i.e. gammatone frequency cepstral coefficient (GFCC) and power normalization cepstral coefficients (PNCC), unlike their combination performs substantially better than a conventional speaker features i.e. Mel-frequency cepstral coefficients (MFCC).
['Abderrahmane Amrouche', 'Kawthar Yasmine Zergat', 'Zhor Benhafid']
2021-10-23
null
null
null
null
['speaker-identification']
['speech']
[-2.46912494e-01 -6.67287827e-01 5.12918890e-01 -1.13005809e-01 -5.08268774e-01 -5.69816887e-01 7.26991177e-01 1.38720751e-01 -5.00765324e-01 6.62229121e-01 4.08049196e-01 -1.84969738e-01 -3.39446276e-01 -2.46653184e-01 8.77235457e-02 -8.72217417e-01 -2.59140104e-01 -2.55205780e-01 3.53146493e-01 -4.88848895e-01 4.93334204e-01 7.38405406e-01 -2.00061798e+00 -6.11351691e-02 4.06675845e-01 8.93103182e-01 2.88184345e-01 1.09020972e+00 -6.22121170e-02 6.17647655e-02 -1.03325808e+00 -1.08237825e-01 -2.32460782e-01 -3.09726268e-01 -4.92894381e-01 6.05133129e-03 -3.32927495e-01 -5.26369289e-02 5.07931784e-02 1.05969357e+00 8.17681611e-01 4.20996308e-01 8.29295635e-01 -8.55021775e-01 -9.83792767e-02 4.84032840e-01 1.11406326e-01 6.82157755e-01 7.29232609e-01 -8.05761293e-02 3.30670416e-01 -1.12406790e+00 3.18086743e-02 1.31674659e+00 5.06837785e-01 1.44507170e-01 -8.24305892e-01 -4.20078278e-01 -4.01145935e-01 3.94874603e-01 -1.37702310e+00 -6.17159426e-01 6.81074321e-01 -3.28359038e-01 9.53826249e-01 5.24491847e-01 2.20325202e-01 8.42815518e-01 3.05750191e-01 -1.81566346e-02 1.23402774e+00 -9.71246183e-01 1.43252343e-01 3.80686045e-01 3.13395679e-01 2.80857593e-01 -8.92312005e-02 2.70729959e-01 -3.94942701e-01 -2.72312999e-01 3.21569681e-01 -5.47743499e-01 -4.59627688e-01 3.36880207e-01 -9.97951925e-01 5.38935244e-01 -1.77040741e-01 1.00942743e+00 -2.68663675e-01 -2.12674856e-01 3.67905438e-01 4.73619312e-01 3.97710539e-02 5.62926009e-02 -5.03975749e-01 -4.51322854e-01 -6.80226922e-01 2.55434029e-03 9.98170495e-01 5.21661878e-01 1.94681853e-01 5.66465318e-01 1.24650292e-01 1.03480279e+00 6.04759634e-01 7.28775918e-01 8.97366464e-01 -2.10493848e-01 2.37499684e-01 -3.02163750e-01 2.57743806e-01 -1.03927207e+00 -3.38600963e-01 -3.44255894e-01 -3.93211097e-01 1.63103491e-01 4.90628064e-01 -3.39086145e-01 -6.26362562e-01 1.22034049e+00 3.17454159e-01 -1.02409974e-01 3.75150710e-01 6.87097311e-01 6.90824091e-01 7.52895772e-01 -1.06259175e-01 -5.25536776e-01 1.33407199e+00 -2.60057211e-01 -1.18888462e+00 2.35952258e-01 -1.93627745e-01 -1.65737832e+00 1.02131760e+00 6.54037893e-01 -8.34034085e-01 -9.50634181e-01 -1.13446307e+00 6.89354956e-01 -7.13214219e-01 4.95345406e-02 -1.95404049e-02 1.50746155e+00 -7.50668049e-01 4.51596081e-01 -3.48132342e-01 -1.32222027e-01 -7.79085279e-01 2.98881501e-01 -4.48335588e-01 4.34430242e-01 -1.11410284e+00 8.89349639e-01 1.92556038e-01 2.20883593e-01 -4.61584717e-01 6.58901483e-02 -6.10470712e-01 2.50962734e-01 -2.07907572e-01 1.90864772e-01 1.23162270e+00 -7.62178600e-01 -2.00085759e+00 7.45964274e-02 -1.79220632e-01 -1.53474510e-01 1.06567860e-01 -1.58155814e-01 -1.30885828e+00 1.65855020e-01 -5.44775426e-01 -2.02888042e-01 1.14724624e+00 -9.91015196e-01 -4.63367224e-01 -1.59204781e-01 -7.12304175e-01 9.76180285e-02 -2.20740542e-01 6.95683718e-01 3.87008816e-01 -6.51502490e-01 1.63139537e-01 -4.04457361e-01 3.00513357e-01 -8.78577411e-01 -1.73021085e-03 -9.02749896e-02 9.52067912e-01 -9.06985760e-01 1.26896584e+00 -2.47905898e+00 -2.80413568e-01 4.46544498e-01 -7.45379269e-01 5.07908821e-01 2.77621865e-01 5.52760303e-01 -8.49022195e-02 -7.52051082e-03 1.40770540e-01 4.21305411e-02 4.62678969e-02 9.97515046e-04 -8.11623409e-02 4.59735543e-01 1.14858858e-01 -7.20009729e-02 -5.38432658e-01 -3.67906630e-01 4.34053808e-01 8.92765701e-01 -5.91669083e-02 4.88560200e-02 6.47101104e-01 3.06549162e-01 -1.46770611e-01 5.43876290e-01 6.43263102e-01 1.05106330e+00 -3.01172644e-01 -1.74159855e-01 -4.07667488e-01 4.12121266e-01 -1.67577231e+00 6.04811370e-01 -4.91394818e-01 6.22316420e-01 4.72272187e-01 -6.19550407e-01 1.24275947e+00 1.05957675e+00 -9.99827906e-02 -3.78520280e-01 5.37591815e-01 6.08643234e-01 2.80020773e-01 -6.55940890e-01 5.96785009e-01 -2.47685656e-01 2.54736930e-01 -1.70806959e-01 3.74026269e-01 -3.19290310e-01 1.10828757e-01 -3.59733760e-01 3.21112812e-01 -3.99572462e-01 4.79389876e-01 -3.28214854e-01 1.14956355e+00 -8.69724572e-01 1.77404344e-01 3.10382992e-01 -5.88028133e-01 4.72512871e-01 1.61636144e-01 2.94615060e-01 -7.77650952e-01 -8.92532229e-01 -4.07351702e-01 8.72973025e-01 -4.18006837e-01 -1.17113113e-01 -7.02925742e-01 -8.14410672e-02 -3.18587393e-01 6.55261219e-01 8.73052105e-02 1.18379667e-01 -6.53582036e-01 -5.65693378e-01 7.82617092e-01 1.51870385e-01 3.21857810e-01 -9.51139867e-01 -3.53411674e-01 5.29950619e-01 8.88825729e-02 -9.33482349e-01 -3.87962133e-01 5.25176227e-01 -6.54214561e-01 -7.02166438e-01 -6.29122198e-01 -7.89565802e-01 -9.08360630e-02 5.77934347e-02 7.78736889e-01 -2.61261761e-01 -2.25591958e-01 5.56298971e-01 -8.54192615e-01 -6.44574404e-01 -9.05038714e-01 -3.10470611e-01 2.67359227e-01 1.04079515e-01 3.30078900e-01 -4.28321749e-01 -2.05164462e-01 4.88675594e-01 -6.91028416e-01 -1.04104888e+00 3.19562763e-01 8.58811021e-01 7.88961425e-02 5.01194537e-01 1.00956082e+00 -1.02347240e-01 1.20237434e+00 -2.24137723e-01 -3.31974119e-01 9.88386720e-02 -2.12814569e-01 -2.81840891e-01 5.98263681e-01 -4.62886602e-01 -1.12187314e+00 -1.20550226e-02 -6.57685637e-01 2.04524785e-01 -6.82478070e-01 4.38391954e-01 -5.42931020e-01 -1.62762791e-01 7.43021131e-01 4.97804314e-01 -7.59158656e-02 -6.32946134e-01 5.06369397e-02 1.36142015e+00 5.42613387e-01 -3.45957428e-01 6.51431620e-01 -2.96362400e-01 -3.70211840e-01 -1.51982379e+00 2.10614353e-01 -8.24738503e-01 -4.66824174e-01 -4.09442961e-01 6.87246025e-01 -4.70073491e-01 -5.04249871e-01 8.63546312e-01 -1.04406917e+00 4.46106046e-01 2.17782930e-01 1.11926711e+00 -3.01078826e-01 6.48928463e-01 -5.38913727e-01 -1.63945401e+00 -3.30077380e-01 -1.14392209e+00 4.75437224e-01 6.44839942e-01 -1.02694951e-01 -7.57960618e-01 -1.97301626e-01 -8.34360346e-03 6.78314745e-01 -1.99516825e-02 7.29104578e-01 -6.07589304e-01 3.33371311e-01 -3.86964589e-01 3.77438188e-01 6.95767224e-01 4.90814209e-01 3.45792681e-01 -1.19940925e+00 -8.93033445e-02 5.63454211e-01 1.16750911e-01 3.89672607e-01 3.49484354e-01 5.44901967e-01 -2.38189012e-01 3.55875820e-01 8.91607329e-02 1.08917999e+00 8.37843597e-01 6.36918068e-01 2.44157873e-02 -1.10094868e-01 4.03339416e-01 7.39633501e-01 4.05463636e-01 -3.64776284e-01 5.59112966e-01 1.11096479e-01 2.87852257e-01 -3.95744108e-02 1.83069021e-01 5.70682943e-01 1.17050576e+00 -1.64660931e-01 -3.83237779e-01 -7.32790411e-01 5.86077392e-01 -8.76540184e-01 -8.61939669e-01 -2.57281780e-01 2.23871946e+00 6.76695347e-01 2.28578687e-01 2.77318805e-01 1.27374649e+00 8.86539280e-01 2.69955862e-02 2.68031269e-01 -1.00080550e+00 -2.74645984e-01 6.90012515e-01 4.42774653e-01 8.86038363e-01 -1.06451452e+00 4.07727301e-01 6.30525160e+00 7.55358696e-01 -1.19014001e+00 4.16290015e-02 5.55191152e-02 4.23450947e-01 1.08451694e-01 -3.90348792e-01 -5.57609975e-01 5.57522237e-01 1.30945778e+00 -5.81209781e-03 5.08773148e-01 6.39213324e-01 3.09091091e-01 -3.34250778e-01 -5.24225116e-01 9.82446909e-01 1.58292845e-01 -3.39419812e-01 -4.05021429e-01 -1.40193090e-01 3.85701396e-02 -1.89666912e-01 1.89371854e-01 1.95326969e-01 -2.80485839e-01 -9.41305280e-01 8.33851516e-01 3.70779514e-01 3.80877614e-01 -1.10416305e+00 1.07286882e+00 1.27639547e-01 -1.27330494e+00 -5.46328090e-02 -3.38275284e-01 -2.83471476e-02 1.75425842e-01 4.76658076e-01 -1.23653221e+00 5.25596201e-01 5.89983523e-01 -3.20217401e-01 -2.62677550e-01 1.46501493e+00 3.14125307e-02 8.90102863e-01 -4.21635300e-01 -4.76467609e-01 1.23424605e-01 1.79356590e-01 6.98484600e-01 1.68229091e+00 6.97119713e-01 -8.41421932e-02 -5.17906666e-01 1.29076242e-01 5.66426754e-01 5.82340539e-01 -1.87141985e-01 -1.50163725e-01 7.19782531e-01 9.96213496e-01 -6.40107751e-01 1.02802940e-01 -2.31923714e-01 6.39302552e-01 -6.65078282e-01 3.75545174e-01 -6.28526211e-01 -9.06241715e-01 5.63564956e-01 -1.63232222e-01 3.25719863e-01 -5.21166086e-01 6.77171946e-02 -6.47344708e-01 -9.38024595e-02 -9.25868511e-01 1.25620663e-01 -4.39102173e-01 -1.05059481e+00 7.44713128e-01 -7.20182154e-03 -1.17989802e+00 -4.48936552e-01 -9.28807557e-01 -7.88649321e-01 1.44717252e+00 -1.30439293e+00 -5.08982956e-01 -2.42687594e-02 6.79256499e-01 7.13657737e-01 -5.97673297e-01 1.03471625e+00 4.73239988e-01 -1.67405665e-01 5.27143419e-01 2.97412664e-01 6.21682557e-04 6.28524780e-01 -1.21612501e+00 1.00103714e-01 8.13354373e-01 7.96230286e-02 5.71651220e-01 9.93736088e-01 -2.18876675e-01 -1.01368845e+00 -2.85041183e-01 1.12917233e+00 8.95124823e-02 4.39582735e-01 -1.10290274e-01 -7.88421214e-01 -1.01376511e-01 2.02443570e-01 -2.65544564e-01 8.22443426e-01 -1.74735367e-01 -2.27021441e-01 -8.14902261e-02 -1.27339566e+00 1.42132044e-01 -5.64777106e-02 -7.15588272e-01 -8.77867877e-01 -2.36786380e-01 2.69485027e-01 -1.30057573e-01 -8.09717119e-01 6.26352653e-02 6.59407318e-01 -1.03453982e+00 1.01975727e+00 -1.85128093e-01 -5.14377296e-01 -5.55583715e-01 -5.30561566e-01 -1.41019499e+00 -2.71047890e-01 -6.77549779e-01 2.45352522e-01 1.66652310e+00 5.15610516e-01 -9.32149351e-01 6.78940490e-02 1.85652837e-01 -8.98389369e-02 1.66624729e-02 -1.20389044e+00 -8.46652329e-01 -2.31052935e-01 -3.53324682e-01 5.35262764e-01 4.76824939e-01 3.22241306e-01 2.69388795e-01 -3.64400536e-01 3.24550480e-01 9.97800827e-02 -6.53681457e-01 3.11541170e-01 -1.18759835e+00 -4.79480743e-01 -4.15160924e-01 -6.55117333e-01 -4.06460106e-01 -3.21040511e-01 -1.15863308e-01 2.21922938e-02 -1.10118473e+00 -6.61670387e-01 -1.08654104e-01 -3.30073267e-01 -2.34200820e-01 -1.98227078e-01 -1.65272206e-01 2.75517583e-01 -3.06858003e-01 5.00825465e-01 3.44869256e-01 6.98422611e-01 -2.95133349e-02 -3.68955165e-01 5.75553596e-01 6.88170716e-02 7.12813377e-01 1.01640415e+00 -3.77296001e-01 -3.25426847e-01 7.05892891e-02 -3.55176389e-01 1.84808105e-01 5.01724407e-02 -1.23032117e+00 1.35176241e-01 1.74931437e-02 3.55635107e-01 -7.16884136e-01 5.51588476e-01 -9.63319242e-01 1.08652137e-01 4.69534546e-01 8.81260559e-02 2.85471886e-01 1.71481013e-01 4.27948087e-01 -6.08779132e-01 -7.47096241e-01 8.45461547e-01 -3.65441963e-02 -6.01792336e-01 -7.01251507e-01 -8.93097878e-01 -6.80606961e-01 6.13547742e-01 -5.79196930e-01 -2.50828683e-01 -4.89090174e-01 -8.06714773e-01 -6.42656207e-01 -1.82943329e-01 3.37820947e-01 6.05790436e-01 -7.84248888e-01 -7.41903663e-01 5.16311228e-01 -3.40133339e-01 -7.08712935e-01 1.80176094e-01 8.97041321e-01 -6.90880477e-01 5.43125272e-01 -3.64485383e-01 -2.42647901e-01 -1.81926429e+00 2.95621783e-01 4.58645940e-01 4.21770722e-01 2.32548058e-01 6.70704603e-01 -6.07934833e-01 4.05820683e-02 5.45132637e-01 -4.72647935e-01 -7.11702168e-01 2.10284680e-01 6.54811084e-01 6.41272545e-01 5.41772127e-01 -9.11434650e-01 -4.94785637e-01 5.31985879e-01 2.98098058e-01 -6.91720903e-01 9.01029825e-01 -2.47622758e-01 7.10061416e-02 5.57005405e-01 1.04996490e+00 7.06717193e-01 -4.93751138e-01 1.53902218e-01 2.64796466e-01 -5.37192404e-01 1.81394547e-01 -9.47327852e-01 -3.54610294e-01 7.50783682e-01 1.10265529e+00 7.19632149e-01 1.27584267e+00 -5.87340415e-01 4.24178988e-01 3.62014204e-01 3.61564577e-01 -1.27921510e+00 -2.70000249e-01 7.53219903e-01 8.83196533e-01 -7.20564842e-01 -3.29764783e-01 -5.25141895e-01 -5.86933553e-01 1.52212965e+00 -6.23328276e-02 1.47788972e-01 1.10876501e+00 4.13025796e-01 3.16461653e-01 5.06872058e-01 -3.29407752e-01 -5.30914128e-01 2.48079374e-01 9.65667903e-01 8.78799617e-01 2.40037471e-01 -7.93871641e-01 7.24846065e-01 -6.80243671e-01 -3.83836687e-01 6.02550805e-01 8.16808045e-01 -1.00757754e+00 -1.15790784e+00 -1.23891735e+00 1.03915691e-01 -8.07972550e-01 7.93486461e-02 -4.24328238e-01 5.47060728e-01 2.16333121e-01 1.73192012e+00 -2.75701880e-01 -5.94007492e-01 5.70663035e-01 5.82800150e-01 2.66280055e-01 -2.16092184e-01 -1.04708779e+00 6.01185858e-01 2.11150065e-01 2.40982398e-01 -3.95952284e-01 -7.31009662e-01 -1.04076552e+00 -1.34349212e-01 -7.82225907e-01 5.85734427e-01 1.40860653e+00 7.76667714e-01 -2.75970131e-01 4.51740265e-01 8.08760643e-01 -6.61810040e-01 -6.36555612e-01 -1.49974799e+00 -8.42130244e-01 9.82078314e-02 4.07862723e-01 -5.28395653e-01 -6.02505386e-01 1.77510291e-01]
[14.730911254882812, 5.928839206695557]
cb1f583c-4de3-41e2-a016-661ff1a714e4
call-larisa-ivanovna-code-switching-fools
2109.14350
null
https://arxiv.org/abs/2109.14350v2
https://arxiv.org/pdf/2109.14350v2.pdf
Call Larisa Ivanovna: Code-Switching Fools Multilingual NLU Models
Practical needs of developing task-oriented dialogue assistants require the ability to understand many languages. Novel benchmarks for multilingual natural language understanding (NLU) include monolingual sentences in several languages, annotated with intents and slots. In such setup models for cross-lingual transfer show remarkable performance in joint intent recognition and slot filling. However, existing benchmarks lack of code-switched utterances, which are difficult to gather and label due to complexity in the grammatical structure. The evaluation of NLU models seems biased and limited, since code-switching is being left out of scope. Our work adopts recognized methods to generate plausible and naturally-sounding code-switched utterances and uses them to create a synthetic code-switched test set. Based on experiments, we report that the state-of-the-art NLU models are unable to handle code-switching. At worst, the performance, evaluated by semantic accuracy, drops as low as 15\% from 80\% across languages. Further we show, that pre-training on synthetic code-mixed data helps to maintain performance on the proposed test set at a comparable level with monolingual data. Finally, we analyze different language pairs and show that the closer the languages are, the better the NLU model handles their alternation. This is in line with the common understanding of how multilingual models conduct transferring between languages
['Ekaterina Artemova', 'Alexey Birshert']
2021-09-29
null
null
null
null
['intent-recognition']
['natural-language-processing']
[ 7.59096444e-02 5.77829480e-01 -2.49440670e-01 -3.90106916e-01 -1.10273743e+00 -7.84258425e-01 6.48439169e-01 5.46788052e-02 -1.84934884e-01 1.07815540e+00 2.40998492e-01 -8.32997978e-01 2.32640579e-01 -2.73511022e-01 -8.07933450e-01 -9.44700390e-02 -2.13824473e-02 1.00751972e+00 1.00029288e-02 -6.53476238e-01 -7.56860748e-02 -3.93436432e-01 -1.52066302e+00 6.34334207e-01 1.35198498e+00 3.10572922e-01 5.62104523e-01 6.86903417e-01 -6.49461746e-01 1.06356120e+00 -6.22708082e-01 -4.88049686e-01 1.20342001e-01 -6.69382632e-01 -1.31491387e+00 2.15334333e-02 4.49088722e-01 -5.18652238e-02 2.19918132e-01 9.52001035e-01 5.87369800e-02 -3.29161882e-01 6.88700080e-01 -1.08050811e+00 -5.88236094e-01 1.08016860e+00 1.81561112e-02 -2.97704637e-01 1.08832276e+00 1.80377886e-02 1.18007040e+00 -8.03980827e-01 1.10460436e+00 1.38999176e+00 7.20236003e-01 8.86954248e-01 -1.45433939e+00 -3.20595264e-01 6.43093437e-02 -1.76039532e-01 -1.31887722e+00 -5.81166089e-01 4.63056892e-01 -6.08924806e-01 1.44166660e+00 2.57118165e-01 1.90293938e-01 1.28317237e+00 -5.21654487e-02 9.81122434e-01 1.36998689e+00 -1.01039457e+00 -7.61737376e-02 8.61802518e-01 1.44153625e-01 8.18481445e-01 -1.53292716e-01 -1.76140592e-01 -3.40178937e-01 6.88431901e-04 1.61728993e-01 -5.12733817e-01 -4.28901851e-01 -4.01189744e-01 -1.37328362e+00 1.02768815e+00 -1.94882900e-02 6.75061226e-01 2.53944576e-01 -2.33652413e-01 8.95189404e-01 8.41174185e-01 4.01508570e-01 6.06262863e-01 -8.59785318e-01 -3.59485477e-01 -8.11324656e-01 3.55336249e-01 1.32712805e+00 1.47650480e+00 8.79877388e-01 -1.34011537e-01 -1.03990838e-01 1.30562949e+00 2.65289426e-01 4.53848034e-01 7.18752384e-01 -8.20492446e-01 7.69141674e-01 6.46546423e-01 -4.35655862e-02 -2.93542802e-01 -3.42989534e-01 -2.22854391e-01 -3.72234344e-01 -5.39731570e-02 8.30399990e-01 -1.31118760e-01 -5.17210722e-01 1.89248943e+00 -1.74855486e-01 -6.82432890e-01 6.13716781e-01 5.03630579e-01 6.13400400e-01 5.93910336e-01 7.12602809e-02 -1.43152401e-01 1.60065269e+00 -1.23705959e+00 -6.45624518e-01 -4.37790006e-01 1.26547444e+00 -1.05139518e+00 1.67260456e+00 1.98818564e-01 -9.12923396e-01 -5.82073808e-01 -1.02061939e+00 -1.67739034e-01 -4.97259259e-01 2.85372794e-01 7.07550168e-01 8.56379092e-01 -1.21915054e+00 5.30832671e-02 -4.45559949e-01 -7.88039386e-01 -2.30406702e-01 7.05711078e-03 -3.94051313e-01 -2.23346829e-01 -1.34921277e+00 1.11953282e+00 4.34039444e-01 -5.42741418e-01 -7.95474052e-01 -5.13760924e-01 -1.27830398e+00 -2.09401235e-01 3.29417109e-01 -4.83244181e-01 1.71361470e+00 -1.01604450e+00 -1.39991891e+00 1.40070856e+00 -2.33181372e-01 -6.24142408e-01 7.89292693e-01 -4.16695103e-02 -3.23767036e-01 -3.94974381e-01 5.33797920e-01 8.33327591e-01 2.99804926e-01 -1.41405797e+00 -5.58009028e-01 -6.56827586e-03 3.42603266e-01 1.93841010e-01 -9.53856781e-02 1.55280203e-01 -2.70731241e-01 -5.19718945e-01 -2.35676289e-01 -1.11983895e+00 -8.46898258e-02 -3.92701596e-01 -3.24055940e-01 -2.24895224e-01 5.40643334e-01 -7.44277835e-01 1.15537035e+00 -1.88223195e+00 1.50963470e-01 -2.38473505e-01 -2.31967777e-01 8.28215778e-02 -1.76695049e-01 6.58890903e-01 -8.64585862e-02 3.02067008e-02 -5.32831669e-01 -5.76288998e-01 1.84501424e-01 4.66511667e-01 -4.00754690e-01 -8.63024965e-02 2.15530783e-01 7.17608094e-01 -9.13774610e-01 -4.77795154e-01 2.45093569e-01 -1.35757193e-01 -9.44009423e-01 3.28574806e-01 -6.33047760e-01 5.36167622e-01 -2.49545187e-01 4.74697173e-01 2.45129138e-01 7.62555152e-02 4.62834597e-01 3.15229863e-01 -2.24394396e-01 8.52403283e-01 -8.02628040e-01 2.38295269e+00 -1.24221396e+00 6.40374482e-01 4.60697748e-02 -9.48023498e-01 1.01723969e+00 4.64944571e-01 -9.35434923e-02 -7.87837625e-01 -2.14465141e-01 8.06873858e-01 2.14244634e-01 -4.60983366e-01 5.88262677e-01 -3.37418653e-02 -6.15014672e-01 5.24989784e-01 3.51019681e-01 -4.70948160e-01 5.44786394e-01 1.38421550e-01 9.00208533e-01 1.56276107e-01 5.36128521e-01 -8.33218396e-01 9.75354671e-01 5.04216254e-01 7.78509974e-02 8.23352039e-01 -6.40952438e-02 3.61134619e-01 6.48381650e-01 -3.53939384e-01 -1.13806474e+00 -9.69023526e-01 -4.86755997e-01 1.31153667e+00 -2.94232994e-01 -4.50522602e-01 -1.16954827e+00 -8.65785480e-01 -2.29893178e-01 1.15312612e+00 -2.86592931e-01 1.80383012e-01 -5.21696031e-01 -3.89322996e-01 8.38220119e-01 -5.36866859e-02 3.25734079e-01 -1.17087507e+00 -2.33244389e-01 4.35336947e-01 -5.17775357e-01 -1.34016979e+00 -2.54580170e-01 4.05603081e-01 -6.13700092e-01 -1.02575958e+00 -6.58591211e-01 -1.16998601e+00 5.19780397e-01 -1.81422204e-01 1.61535418e+00 1.29577041e-01 -4.03813235e-02 3.16276878e-01 -5.62380314e-01 -2.49799475e-01 -1.51869488e+00 4.19309288e-01 -3.84880602e-02 -5.02496123e-01 5.16760945e-01 -4.06014711e-01 1.61264732e-01 3.35057586e-01 -7.44831741e-01 2.64953077e-01 3.74284565e-01 9.88968790e-01 -7.44863153e-02 -6.55408919e-01 5.47735691e-01 -1.18228102e+00 7.55125642e-01 -4.26421106e-01 -3.71382475e-01 5.32730997e-01 -4.63589489e-01 5.39971113e-01 9.55120742e-01 -2.36306384e-01 -1.20085514e+00 -5.52593060e-02 -3.64031345e-01 2.62390882e-01 -4.34321582e-01 4.60357159e-01 -9.87774506e-02 1.72934443e-01 9.87871706e-01 3.22408229e-01 -8.53511691e-03 -4.55183476e-01 4.71318930e-01 1.05708790e+00 3.58498245e-01 -1.08723009e+00 3.97897094e-01 -1.79614741e-02 -8.28210473e-01 -8.57981384e-01 -6.34173453e-01 -4.18718904e-01 -6.61278427e-01 -2.55713835e-02 8.18823516e-01 -1.12718785e+00 -1.05095699e-01 2.83281744e-01 -1.53922069e+00 -7.80191660e-01 -1.63783863e-01 2.83703774e-01 -8.81714463e-01 3.84247154e-01 -7.60884106e-01 -7.10946918e-01 -3.12878452e-02 -1.60552800e+00 1.17306578e+00 -3.22681487e-01 -6.52440369e-01 -1.21353257e+00 2.54081726e-01 6.71511173e-01 4.80679899e-01 -3.11476499e-01 1.27021873e+00 -8.84092212e-01 -3.73157382e-01 2.03346536e-01 -1.08316600e-01 2.31546134e-01 1.36335209e-01 -2.89665163e-01 -1.03966236e+00 -2.11983398e-01 1.50801362e-02 -9.09601450e-01 3.69454652e-01 -1.31981656e-01 4.31999773e-01 -2.72278041e-01 -7.30628967e-02 1.45454600e-01 1.14514923e+00 1.84292510e-01 4.93814409e-01 3.07260394e-01 4.86646533e-01 1.08419740e+00 6.23971224e-01 1.51454806e-01 7.62423635e-01 9.12379861e-01 -5.50395101e-02 -3.15658748e-02 -2.12283909e-01 -2.84196466e-01 7.58859277e-01 1.35383475e+00 3.77037615e-01 4.62961197e-02 -1.32143748e+00 7.30212808e-01 -1.74451137e+00 -3.66202354e-01 -2.06956014e-01 2.09860539e+00 1.37705028e+00 2.21437320e-01 -5.61816767e-02 -2.64520615e-01 4.49843645e-01 -1.56168919e-02 2.44835373e-02 -8.41704607e-01 -7.91047588e-02 2.59378310e-02 2.41334751e-01 9.32145357e-01 -9.11031902e-01 1.42406189e+00 5.93245554e+00 9.77465689e-01 -8.85342121e-01 4.45177853e-01 4.61766899e-01 5.80301404e-01 -5.54643214e-01 2.04581767e-01 -7.54750133e-01 2.63519853e-01 1.14049911e+00 -4.63553369e-02 7.13721216e-01 1.04548752e+00 -1.28662363e-01 -2.08037242e-01 -1.51003468e+00 7.55991042e-01 1.56833708e-01 -9.94006872e-01 -2.53039971e-02 -3.49222898e-01 8.81618202e-01 3.59646052e-01 -3.69812071e-01 9.57943738e-01 7.05562472e-01 -9.14464056e-01 1.00345242e+00 8.32166523e-02 9.23802376e-01 -3.32365602e-01 7.11898685e-01 5.74284911e-01 -1.13744891e+00 2.04296455e-01 -3.88382375e-01 -2.63915062e-01 6.71609715e-02 2.76389122e-01 -9.79421973e-01 6.16285920e-01 4.38474566e-01 5.11268973e-01 -7.74505258e-01 3.55564803e-01 -2.45724291e-01 4.09914017e-01 -9.88029167e-02 -1.09781712e-01 4.31693256e-01 -2.09073067e-01 4.62465912e-01 1.59509778e+00 2.57787019e-01 -7.63979435e-01 4.79417175e-01 1.09016490e+00 9.67273116e-02 4.69263583e-01 -1.10363054e+00 4.62284088e-02 2.03840762e-01 8.29681516e-01 -5.22448003e-01 -4.26752597e-01 -8.02001774e-01 1.08193326e+00 5.51863492e-01 1.70694008e-01 -5.36615014e-01 -2.46600717e-01 5.38972974e-01 -2.93318808e-01 -2.37300754e-01 -2.73373872e-01 -1.86434776e-01 -1.37037945e+00 2.77232111e-01 -1.43391514e+00 2.36068159e-01 -5.47561109e-01 -9.90941644e-01 9.69126642e-01 7.25212544e-02 -1.18633568e+00 -8.15710962e-01 -8.41170609e-01 -2.61678308e-01 8.45179260e-01 -1.37309253e+00 -1.24881387e+00 8.04280415e-02 4.15760368e-01 1.18240333e+00 -4.44825500e-01 1.31071353e+00 4.91119504e-01 -2.55275190e-01 6.45826221e-01 1.75192188e-02 2.61400640e-01 8.24533701e-01 -1.45198870e+00 5.96327722e-01 6.19063377e-01 3.14652532e-01 8.18190992e-01 9.34081554e-01 -3.98748010e-01 -1.10180616e+00 -8.58283818e-01 1.34869444e+00 -6.97629094e-01 9.87232327e-01 -8.28512371e-01 -9.51079428e-01 6.94886506e-01 5.66480398e-01 -3.39233071e-01 5.49825549e-01 3.28222722e-01 -4.67247456e-01 3.67149085e-01 -9.15310323e-01 6.99170887e-01 1.04333603e+00 -1.06506002e+00 -9.07324314e-01 5.56022525e-01 9.16478217e-01 -4.58591014e-01 -7.62123048e-01 9.63978991e-02 3.62196982e-01 -1.15351844e+00 6.23175740e-01 -5.89893103e-01 5.66881716e-01 -1.26848385e-01 -2.97354907e-01 -1.25595450e+00 4.51968700e-01 -4.15170342e-01 5.23378253e-01 1.43950343e+00 9.35390949e-01 -5.89735389e-01 3.95747125e-01 4.02138084e-01 -3.39998752e-01 -2.37013474e-01 -8.44629705e-01 -9.19085681e-01 3.65674764e-01 -7.65499175e-01 1.47891521e-01 1.17920601e+00 5.09308398e-01 7.15682209e-01 -2.20640406e-01 -3.99695396e-01 3.07218224e-01 1.12346508e-01 9.40456390e-01 -1.03031588e+00 -4.47827071e-01 -4.60222870e-01 -2.14973986e-02 -1.11935735e+00 7.68154263e-01 -1.29573262e+00 2.79486895e-01 -1.18099391e+00 8.50692838e-02 -8.15172791e-01 4.59855586e-01 5.05835593e-01 6.55191168e-02 1.89523734e-02 1.40265524e-01 1.66036680e-01 -5.98414481e-01 5.02127528e-01 8.56163681e-01 -3.47164392e-01 -1.77066192e-01 -1.43348753e-01 -3.27084452e-01 6.66873217e-01 6.12403393e-01 -4.34456319e-01 -4.33476210e-01 -3.83670270e-01 1.48340166e-01 3.65003735e-01 -1.18847117e-01 -1.08875167e+00 -1.38157710e-01 2.07716659e-01 -5.74509025e-01 1.40223941e-02 -1.24833919e-01 -8.12712193e-01 -1.02544360e-01 7.28340805e-01 -4.71420616e-01 -8.09762478e-02 4.02999520e-01 -1.06680747e-02 -4.31246608e-01 -7.33378232e-01 5.20364821e-01 -3.18792403e-01 -7.80641675e-01 -4.25235659e-01 -7.60643482e-01 3.86124164e-01 7.11019278e-01 -2.28851978e-02 -2.68202871e-01 -3.99140298e-01 -5.43854058e-01 2.21694350e-01 6.86419189e-01 8.09380591e-01 -1.19901866e-01 -9.87903118e-01 -6.43565834e-01 2.89986610e-01 7.28461742e-01 -2.30318829e-01 1.41439596e-02 7.32599735e-01 -7.75151670e-01 9.42686200e-01 -1.88720584e-01 -7.98973978e-01 -9.98039484e-01 3.48880321e-01 3.67175788e-01 -6.10395670e-01 -1.16283461e-01 5.68271816e-01 2.01158687e-01 -1.50369191e+00 2.12940410e-01 -5.37339926e-01 -9.95580703e-02 4.46017273e-02 1.42317861e-01 -1.52528375e-01 2.68345118e-01 -6.41500711e-01 -3.00310552e-01 3.73423576e-01 -1.59451827e-01 -1.84667781e-01 6.67482495e-01 -2.22900838e-01 -2.51071155e-01 6.82065070e-01 1.23196995e+00 2.73686737e-01 -7.52712011e-01 -2.16532752e-01 5.13981521e-01 -7.23007843e-02 -6.90614939e-01 -7.51026511e-01 -3.42886209e-01 8.36383462e-01 3.09903294e-01 3.35283548e-01 4.57764328e-01 1.66544408e-01 5.48553348e-01 8.08994770e-01 9.76826847e-01 -1.06914294e+00 -2.84105331e-01 1.15950191e+00 9.22605991e-01 -1.48245692e+00 -6.43989563e-01 -4.66026485e-01 -7.55038321e-01 9.88656223e-01 7.15567410e-01 3.10475498e-01 2.19825625e-01 2.76350498e-01 5.73277056e-01 8.47517326e-02 -7.66915977e-01 -3.12042952e-01 1.50470594e-02 6.65826261e-01 1.04841328e+00 2.16502234e-01 -5.91809332e-01 3.80351245e-01 -6.58497870e-01 -3.83281142e-01 6.27765834e-01 8.16822410e-01 -2.47907996e-01 -1.72934830e+00 -3.46888572e-01 1.81578621e-01 -3.81509662e-01 -4.38287109e-01 -3.94275397e-01 1.04885590e+00 2.66524544e-03 9.01436329e-01 -1.17221512e-01 -8.31366330e-02 2.50244826e-01 5.75139701e-01 3.78677994e-01 -1.08365476e+00 -6.35889292e-01 -3.58023375e-01 5.82687020e-01 -4.72576916e-01 -5.28923452e-01 -6.07567072e-01 -1.17162228e+00 3.23480368e-03 -1.13427080e-01 5.62935352e-01 6.52798235e-01 1.11154151e+00 -8.17790180e-02 4.53703225e-01 1.66858032e-01 -6.12600207e-01 -4.54099089e-01 -1.15724576e+00 -2.30619833e-01 5.11568606e-01 1.62627816e-01 -4.98705357e-01 -3.85280341e-01 2.55796880e-01]
[12.284607887268066, 8.51719856262207]
dc44ffb3-768f-4d55-9911-61a5eb97e715
braid-weaving-symbolic-and-statistical
2011.13354
null
https://arxiv.org/abs/2011.13354v4
https://arxiv.org/pdf/2011.13354v4.pdf
Braid: Weaving Symbolic and Neural Knowledge into Coherent Logical Explanations
Traditional symbolic reasoning engines, while attractive for their precision and explicability, have a few major drawbacks: the use of brittle inference procedures that rely on exact matching (unification) of logical terms, an inability to deal with uncertainty, and the need for a precompiled rule-base of knowledge (the "knowledge acquisition" problem). To address these issues, we devise a novel logical reasoner called Braid, that supports probabilistic rules, and uses the notion of custom unification functions and dynamic rule generation to overcome the brittle matching and knowledge-gap problem prevalent in traditional reasoners. In this paper, we describe the reasoning algorithms used in Braid, and their implementation in a distributed task-based framework that builds proof/explanation graphs for an input query. We use a simple QA example from a children's story to motivate Braid's design and explain how the various components work together to produce a coherent logical explanation. Finally, we evaluate Braid on the ROC Story Cloze test and achieve close to state-of-the-art results while providing frame-based explanations.
['David Ferrucci', 'Tom Breloff', 'Aditya Kalyanpur']
2020-11-26
null
null
null
null
['cloze-test']
['natural-language-processing']
[-7.07746819e-02 8.27995956e-01 -1.97079957e-01 -7.00228810e-01 -8.51849377e-01 -4.27913964e-01 6.08772457e-01 3.60656917e-01 1.63427740e-01 8.95081401e-01 2.42196217e-01 -6.14709556e-01 -8.28447938e-01 -9.39063609e-01 -7.88519979e-01 -1.28022926e-02 1.48358047e-01 1.01991320e+00 5.99399030e-01 -2.93274313e-01 1.45166725e-01 1.04767159e-01 -1.96004832e+00 5.82259178e-01 1.31530929e+00 7.26644516e-01 -2.94295758e-01 4.83426750e-01 -4.26352561e-01 1.30549014e+00 -4.30023462e-01 -9.16191399e-01 -3.34249467e-01 -2.94948459e-01 -1.21213889e+00 -6.97416604e-01 4.32376087e-01 -3.44957471e-01 4.64756135e-03 7.84318566e-01 9.77525190e-02 3.41659598e-02 6.99939787e-01 -1.65204918e+00 -6.59224451e-01 1.48482192e+00 1.28215805e-01 -1.96741194e-01 9.68790412e-01 -2.20628634e-01 1.08403873e+00 -4.01745677e-01 7.24452436e-01 1.55432594e+00 8.13115597e-01 6.17427647e-01 -1.43429267e+00 -3.75994116e-01 1.21889986e-01 6.64155662e-01 -1.37137616e+00 -3.44339937e-01 4.33781683e-01 -3.57641369e-01 1.30613148e+00 4.93795782e-01 5.89725733e-01 8.31625998e-01 4.34933193e-02 7.49476731e-01 9.55236137e-01 -9.73984301e-01 5.64944685e-01 1.39504731e-01 4.49639201e-01 8.89233112e-01 4.64001983e-01 1.43709749e-01 -7.51858711e-01 -3.19954932e-01 3.65857780e-01 -5.37950337e-01 -5.35699986e-02 -6.70679271e-01 -8.12577426e-01 8.77438426e-01 1.38494045e-01 2.15044379e-01 -1.30600125e-01 3.60959142e-01 2.61435270e-01 1.97116956e-01 -1.46056890e-01 3.96005869e-01 -4.65522677e-01 -3.56869698e-01 -8.73121738e-01 8.97334099e-01 1.21631408e+00 8.62758636e-01 4.32145923e-01 -3.34284395e-01 -9.97304991e-02 4.82940733e-01 8.32853198e-01 4.23666447e-01 1.84582666e-01 -1.34824848e+00 3.50076556e-01 8.17503273e-01 6.30092025e-02 -8.93740118e-01 -4.17932093e-01 1.14100732e-01 6.37379810e-02 3.96613359e-01 5.30146241e-01 1.95631415e-01 -7.89069712e-01 1.89520681e+00 5.36150336e-01 -7.28074610e-02 3.96129787e-01 5.67561388e-01 9.69038069e-01 1.37728751e-01 2.14679301e-01 1.23081453e-01 1.30768037e+00 -5.40434957e-01 -6.34620547e-01 -6.83767051e-02 5.83816171e-01 -3.01979989e-01 9.17945087e-01 7.10785210e-01 -1.30204344e+00 5.50303832e-02 -1.17292893e+00 -3.35740417e-01 -4.15638566e-01 -4.67059880e-01 1.18618095e+00 8.21875334e-01 -7.76179731e-01 4.53331739e-01 -8.41173172e-01 -1.97967723e-01 2.04164967e-01 2.54482448e-01 -2.81571984e-01 -3.16002935e-01 -1.34765613e+00 1.33019400e+00 7.69487858e-01 -3.00024778e-01 -5.49214602e-01 -8.24381113e-01 -1.20308971e+00 3.02287728e-01 6.29570186e-01 -8.28890264e-01 1.57171524e+00 -4.40415442e-01 -1.38136435e+00 4.18609858e-01 1.07385963e-02 -5.28678715e-01 3.71216625e-01 -3.48155320e-01 -4.86767501e-01 1.42642587e-01 3.12255830e-01 5.65433025e-01 2.01179639e-01 -1.02238011e+00 -5.61804295e-01 -2.03303039e-01 3.79205316e-01 -1.28437448e-02 5.07812917e-01 1.85216330e-02 -1.65367812e-01 -2.70986646e-01 4.18535531e-01 -5.84035635e-01 7.70897567e-02 -3.35470289e-01 -3.82545471e-01 -4.15346056e-01 1.67378336e-01 -4.03761089e-01 1.34249854e+00 -1.89729679e+00 1.44968167e-01 4.78301316e-01 8.94635320e-02 -1.35953262e-01 3.53078604e-01 4.36547160e-01 -9.66910794e-02 2.11260021e-02 -8.66363496e-02 1.29864246e-01 5.69410861e-01 6.86224639e-01 -5.02214909e-01 -1.27576441e-01 1.23724602e-01 8.46255481e-01 -9.71264780e-01 -9.37784433e-01 2.95464963e-01 2.55231291e-01 -7.99796224e-01 -8.22502300e-02 -8.89163136e-01 -4.24313843e-01 -4.97563660e-01 6.31299257e-01 3.79950225e-01 -3.41749229e-02 4.46649432e-01 1.27717257e-01 -6.70748278e-02 8.69364679e-01 -1.52401125e+00 1.81551325e+00 -2.24532634e-01 2.15684205e-01 -3.31507623e-01 -6.07998908e-01 5.27904391e-01 3.45198274e-01 -1.48066729e-01 -3.93664539e-01 5.91326728e-02 3.53139371e-01 1.07352277e-02 -6.74763322e-01 2.06207365e-01 -4.26313043e-01 -1.91625953e-01 5.99824071e-01 5.97327687e-02 -6.15457714e-01 3.41990024e-01 3.89867276e-01 1.23811185e+00 6.40278637e-01 4.46868896e-01 -2.04452142e-01 3.01871181e-01 4.29701120e-01 5.52441418e-01 8.17703843e-01 3.10741156e-01 4.39123333e-01 7.93513536e-01 -5.80207765e-01 -4.76948559e-01 -1.19722307e+00 -2.30340540e-01 7.62927651e-01 -4.92851697e-02 -6.71055019e-01 -6.26550436e-01 -6.65867805e-01 1.23960026e-01 1.67080164e+00 -6.32564545e-01 7.14905653e-03 -2.08740115e-01 -1.96414962e-01 9.76889789e-01 5.12193441e-01 2.05823421e-01 -9.93116617e-01 -1.14438391e+00 4.15959179e-01 -3.46932888e-01 -7.96359658e-01 5.38128972e-01 2.34520286e-01 -5.03188252e-01 -1.26435828e+00 3.36513937e-01 -5.87798208e-02 2.85942078e-01 -2.88422853e-01 1.38267338e+00 2.67542124e-01 -1.64275885e-01 4.16348040e-01 -4.91890877e-01 -6.53134108e-01 -6.70606852e-01 -1.96654394e-01 -1.69506326e-01 -9.66234326e-01 5.25646925e-01 -7.26826668e-01 8.39555711e-02 6.16112761e-02 -8.49195957e-01 3.02603453e-01 2.76218861e-01 8.76892149e-01 2.24909037e-01 3.93188000e-01 3.27839583e-01 -9.06364620e-01 4.64097023e-01 -3.76981080e-01 -8.09229732e-01 7.50001609e-01 -1.05182588e+00 7.54724920e-01 1.50122643e-01 -1.50846884e-01 -1.35317695e+00 -1.97203562e-01 -1.45990439e-02 -3.42922891e-03 -2.22172573e-01 7.83310771e-01 -1.73011482e-01 2.52058536e-01 9.70806777e-01 -1.82448700e-01 2.93918010e-02 -2.74073958e-01 7.88720429e-01 1.75419912e-01 7.84875214e-01 -1.31218922e+00 6.75926983e-01 7.18533769e-02 5.47786802e-02 1.17965326e-01 -1.02627766e+00 3.02035332e-01 -2.36968383e-01 3.57461721e-02 6.03290141e-01 -6.34886742e-01 -1.09358644e+00 -1.36095718e-01 -1.11723971e+00 -3.58931065e-01 -5.86581230e-01 4.99281079e-01 -8.36860240e-01 2.70585179e-01 -3.32340360e-01 -8.22702885e-01 -1.44686997e-01 -9.83832359e-01 7.12064862e-01 2.34496191e-01 -7.40975320e-01 -7.83909917e-01 2.54737824e-01 5.30359924e-01 1.61068976e-01 2.78870344e-01 1.52157331e+00 -9.35020208e-01 -5.30514836e-01 1.41826207e-02 -2.13074952e-01 -7.59710968e-02 -4.27177727e-01 4.12271410e-01 -7.61992335e-01 5.54815054e-01 -4.18845326e-01 -5.90268254e-01 1.96001008e-01 1.57548919e-01 6.22185588e-01 -2.82992184e-01 -2.33231068e-01 5.49844727e-02 1.26982975e+00 8.84884000e-02 7.20428586e-01 5.13126612e-01 1.68940410e-01 7.07534611e-01 6.47606850e-01 2.21696943e-01 1.10027874e+00 8.10619593e-01 2.56474167e-01 6.53774977e-01 -6.93117753e-02 -6.41604602e-01 1.10569283e-01 1.11390501e-01 -1.25638559e-01 1.26115635e-01 -1.20029986e+00 5.49344361e-01 -2.32675672e+00 -1.23228264e+00 -1.48058102e-01 1.90895152e+00 1.18260646e+00 3.68558228e-01 -1.24311283e-01 4.06612098e-01 2.32471555e-01 -4.40597802e-01 -3.80258018e-04 -8.75094473e-01 1.40112266e-01 3.96439195e-01 -3.53368372e-02 8.93894196e-01 -4.47903752e-01 9.85615909e-01 7.26061678e+00 7.55376518e-01 -5.20176172e-01 -6.73010498e-02 -4.14435975e-02 7.04645514e-02 -8.67959142e-01 3.90235394e-01 -5.19452870e-01 1.60331383e-01 8.94941688e-01 -9.24189910e-02 6.28611803e-01 1.06378090e+00 -3.83197635e-01 -6.03538871e-01 -1.48783696e+00 6.18395925e-01 -7.72448927e-02 -1.54752839e+00 -3.58750224e-02 -4.55524623e-01 2.82850415e-01 -2.11916804e-01 -3.91766161e-01 5.25124550e-01 8.33339989e-01 -1.23787355e+00 1.25462508e+00 5.01667202e-01 5.59633911e-01 -6.63331032e-01 7.57294536e-01 2.74219245e-01 -5.26820362e-01 -4.21321057e-02 6.17397651e-02 -4.26526666e-01 8.54300037e-02 5.75616002e-01 -1.00335920e+00 7.72815287e-01 7.18480229e-01 -1.76780671e-01 -4.66908425e-01 7.28701890e-01 -8.81897867e-01 4.29589003e-01 -6.65309191e-01 -8.79814327e-02 -1.01117656e-01 2.04569086e-01 2.30412036e-01 9.55910265e-01 1.86625913e-01 4.94240105e-01 -2.27929443e-01 1.24245429e+00 5.18371105e-01 -3.95089835e-01 -4.13504094e-01 2.35152483e-01 8.09589028e-01 7.91631103e-01 -5.22108555e-01 -4.61566895e-01 -2.27396816e-01 2.21064076e-01 3.40845823e-01 -1.04059083e-02 -8.60609829e-01 -2.41402179e-01 3.49165440e-01 -9.36109852e-03 1.65528119e-01 1.77880928e-01 -5.58744311e-01 -1.04509830e+00 1.21921502e-01 -1.11956596e+00 6.48210466e-01 -1.23638105e+00 -9.30738270e-01 2.13587701e-01 8.93535852e-01 -2.91301161e-01 -9.89294350e-01 -4.70203966e-01 -5.68397820e-01 6.07253969e-01 -1.10905051e+00 -1.27987123e+00 -9.12774429e-02 4.63369489e-01 -1.38652534e-03 1.45152435e-01 1.07956898e+00 6.85079396e-02 -5.78752421e-02 5.37392080e-01 -8.07976067e-01 -3.04097861e-01 2.08735779e-01 -1.55760241e+00 1.78808764e-01 8.18597317e-01 5.45105413e-02 8.56196165e-01 1.21756554e+00 -8.38178456e-01 -1.40313888e+00 -2.15311855e-01 1.34405625e+00 -7.59501636e-01 6.94627047e-01 5.12461066e-02 -9.15791452e-01 9.23383951e-01 -1.27123162e-01 -2.80268848e-01 5.42001069e-01 7.13100374e-01 -8.32883835e-01 1.04861960e-01 -1.46515131e+00 6.97287321e-01 1.01991534e+00 -3.48229438e-01 -1.61464059e+00 -5.03564142e-02 6.59559667e-01 -6.92759991e-01 -7.24557877e-01 4.96641845e-01 8.86692226e-01 -1.31341946e+00 8.44885945e-01 -6.14196599e-01 5.20835340e-01 -5.73974192e-01 -3.09566915e-01 -9.16340590e-01 -2.50411600e-01 -5.35502315e-01 -1.96460634e-01 1.39474308e+00 6.40747070e-01 -6.62376463e-01 5.60967088e-01 1.50289726e+00 -1.40018120e-01 -6.00737870e-01 -1.16072607e+00 -4.98884469e-01 -2.14170471e-01 -1.10943329e+00 1.09961665e+00 7.07562804e-01 8.67048085e-01 2.75537848e-01 2.25862399e-01 3.06948245e-01 6.15030646e-01 2.55432546e-01 6.46564186e-01 -1.25675488e+00 -4.91254956e-01 -3.86777520e-01 -5.09104133e-01 -2.22853705e-01 2.17857584e-01 -7.41218686e-01 2.61432320e-01 -1.71727371e+00 7.58111328e-02 -7.79258132e-01 2.93768737e-02 1.08470118e+00 1.26843199e-01 -3.74886483e-01 1.57161914e-02 -3.72570664e-01 -6.80629969e-01 1.45543039e-01 4.95761722e-01 5.15788831e-02 -1.11558534e-01 -2.32369229e-01 -9.79114294e-01 9.34284508e-01 3.22955132e-01 -5.52897394e-01 -6.77934229e-01 -4.68726069e-01 9.18152690e-01 3.19878370e-01 5.83801806e-01 -9.84965146e-01 3.23886722e-01 -3.71180713e-01 1.36535168e-01 -5.21347821e-01 1.52260363e-01 -7.74096429e-01 7.12321222e-01 4.39648539e-01 -4.03117269e-01 -1.59989614e-02 2.83091813e-01 1.62919071e-02 -6.22910745e-02 -6.12532139e-01 2.84247667e-01 2.92033553e-01 -5.87577701e-01 -4.71806228e-01 -3.12716335e-01 -3.57135013e-02 8.54164660e-01 -5.64475395e-02 -5.38466454e-01 -6.29697591e-02 -4.83731925e-01 3.68532777e-01 5.45370996e-01 2.33825877e-01 5.73021531e-01 -1.18560493e+00 -4.49428976e-01 1.14147320e-01 2.18976140e-01 1.86008990e-01 1.67622134e-01 5.89650214e-01 -7.52786756e-01 3.99481505e-01 -1.65742785e-01 -2.71462202e-01 -9.61344361e-01 5.95179439e-01 2.71254957e-01 -2.47974172e-01 -7.34795451e-01 6.88743055e-01 -4.37393636e-01 -5.43387115e-01 2.66217917e-01 -7.63220429e-01 4.81279194e-02 -2.51826197e-01 5.36206484e-01 3.48359644e-01 4.15084399e-02 5.87080456e-02 -7.00548768e-01 1.62276924e-01 1.67010367e-01 -5.52115619e-01 1.24491537e+00 1.83587670e-01 -3.15491319e-01 3.39690626e-01 -7.65971094e-02 1.82702437e-01 -6.60256267e-01 -9.33613256e-02 3.67773682e-01 -3.39195698e-01 -1.60724923e-01 -1.49610245e+00 -2.16126487e-01 4.45902079e-01 7.37075731e-02 3.24458748e-01 6.91127181e-01 3.61792266e-01 3.04507852e-01 4.94657695e-01 5.63879490e-01 -9.08595920e-01 -6.67353868e-01 3.25960308e-01 8.15553367e-01 -8.02750766e-01 3.47644687e-01 -5.35726786e-01 -5.58020949e-01 1.11593068e+00 5.03085554e-01 4.37794328e-01 1.42919511e-01 4.90299612e-01 -3.52732576e-02 -4.94930118e-01 -1.11376631e+00 -9.70755965e-02 1.92588359e-01 6.75269246e-01 2.68728405e-01 2.45246992e-01 -2.83777118e-01 1.03774047e+00 -5.76825619e-01 4.47106659e-01 3.25108498e-01 1.00052583e+00 -4.67687339e-01 -1.29369390e+00 -6.15583658e-01 1.65343240e-01 -3.81619543e-01 -9.31070596e-02 -2.83211797e-01 1.12545598e+00 3.54764283e-01 1.06166112e+00 -3.90672505e-01 -2.04290837e-01 2.25274086e-01 4.44938421e-01 1.01083052e+00 -6.51151121e-01 -3.68770182e-01 -5.71434796e-01 6.67505860e-01 -6.36784792e-01 -3.26193511e-01 -7.75151968e-01 -1.70878553e+00 -5.21471083e-01 -2.12320790e-01 4.23951745e-01 6.91576540e-01 1.45735705e+00 1.14248917e-01 3.55144769e-01 -3.07783753e-01 -2.62330443e-01 -6.10790491e-01 -5.39692342e-01 -2.28902727e-01 7.72672966e-02 -9.44871530e-02 -9.91359890e-01 -9.87790078e-02 -2.25577772e-01]
[9.134002685546875, 7.133362770080566]
141f64d8-2d29-46ab-b09b-65131b0cbde6
progressive-upsampling-audio-synthesis-via
null
null
https://openreview.net/forum?id=Skg9jnVFvH
https://openreview.net/pdf?id=Skg9jnVFvH
Progressive Upsampling Audio Synthesis via Effective Adversarial Training
This paper proposes a novel generative model called PUGAN, which progressively synthesizes high-quality audio in a raw waveform. PUGAN leverages on the recently proposed idea of progressive generation of higher-resolution images by stacking multiple encode-decoder architectures. To effectively apply it to raw audio generation, we propose two novel modules: (1) a neural upsampling layer and (2) a sinc convolutional layer. Compared to the existing state-of-the-art model called WaveGAN, which uses a single decoder architecture, our model generates audio signals and converts them in a higher resolution in a progressive manner, while using a significantly smaller number of parameters, e.g., 20x smaller for 44.1kHz output, than an existing technique called WaveGAN. Our experiments show that the audio signals can be generated in real-time with the comparable quality to that of WaveGAN with respect to the inception scores and the human evaluation.
['Jaegul Choo', 'Gerard Jounghyun Kim', 'Minwook Chang', 'Youngwoo Cho']
2019-09-25
null
null
null
null
['audio-generation']
['audio']
[ 4.24003035e-01 3.43113780e-01 2.27410316e-01 4.58053462e-02 -1.32607377e+00 -3.96540165e-01 5.30768812e-01 -4.70520228e-01 3.98488641e-02 7.43440807e-01 4.12917376e-01 -1.50836393e-01 4.17249203e-01 -1.00416720e+00 -9.42228496e-01 -4.13858086e-01 -5.42481095e-02 -1.88011825e-02 2.61496067e-01 -1.73100233e-01 -1.71345487e-01 -6.98936284e-02 -1.66492844e+00 5.86814761e-01 6.02076173e-01 1.13224828e+00 -1.93096120e-02 1.18877077e+00 3.31424147e-01 9.25180256e-01 -9.55740750e-01 -4.37620014e-01 2.77614594e-01 -9.79860485e-01 -4.86933380e-01 3.39348167e-02 4.60349888e-01 -8.07340622e-01 -4.36126798e-01 8.51873338e-01 9.22238827e-01 -2.15372130e-01 3.10360789e-01 -8.93405139e-01 -8.45808804e-01 1.05813968e+00 -3.47392797e-01 -6.60422444e-02 6.27566457e-01 3.20714474e-01 1.04921520e+00 -7.21254826e-01 4.29434150e-01 1.25488460e+00 7.59705484e-01 5.82473755e-01 -1.26577187e+00 -9.58682001e-01 -4.58562702e-01 7.55484626e-02 -1.55912673e+00 -6.40974760e-01 8.20487738e-01 -1.35775164e-01 6.36201680e-01 2.16461793e-01 7.32746422e-01 1.35443056e+00 1.40615717e-01 5.67908466e-01 8.33840787e-01 -3.18812460e-01 9.03730616e-02 -3.05478960e-01 -7.19625056e-01 4.09424067e-01 -4.32569496e-02 2.96114832e-01 -7.85425663e-01 1.99767351e-01 1.08077800e+00 -4.98945266e-01 -4.81290340e-01 2.62434900e-01 -1.26068366e+00 7.06761658e-01 2.96981186e-01 2.08892629e-01 -4.75254923e-01 6.52637899e-01 1.73016146e-01 3.31344277e-01 3.33768517e-01 4.39767599e-01 1.88871264e-01 -3.21111530e-01 -1.41139698e+00 2.94764489e-01 6.05636299e-01 9.78888810e-01 5.24404347e-01 7.95287848e-01 -2.37921670e-01 5.08263290e-01 2.24661067e-01 6.24259531e-01 7.01405227e-01 -1.13262212e+00 3.99114519e-01 -6.36648014e-03 5.28956056e-02 -6.63785458e-01 -4.73188013e-02 -6.06645048e-01 -8.86798441e-01 2.89570719e-01 -7.36058056e-02 -6.30928338e-01 -8.55945766e-01 1.67267263e+00 -4.77374643e-02 5.69199502e-01 9.77008566e-02 8.71020555e-01 9.71964896e-01 1.07070422e+00 -3.46252680e-01 1.32634044e-01 1.32599282e+00 -9.68122661e-01 -7.68991530e-01 -5.14755361e-02 -1.94301888e-01 -1.01255345e+00 1.08438051e+00 6.54977322e-01 -1.55979919e+00 -9.59558785e-01 -1.44197714e+00 -1.75653026e-01 2.47239783e-01 2.41830185e-01 3.86973709e-01 7.92164981e-01 -1.52167463e+00 5.34496784e-01 -4.83272702e-01 9.64017436e-02 1.30069658e-01 2.36632247e-02 -1.22886203e-01 2.95527190e-01 -1.43434238e+00 4.06858593e-01 4.02122736e-01 -3.67696732e-01 -1.29632711e+00 -9.78127956e-01 -9.85513687e-01 3.51156950e-01 -1.67309903e-02 -8.25554073e-01 1.66709554e+00 -7.91967928e-01 -2.25035071e+00 2.70929843e-01 2.11917922e-01 -7.50834882e-01 5.36946595e-01 -3.92784119e-01 -6.22483671e-01 4.60121840e-01 -2.75473982e-01 9.25652206e-01 1.25957119e+00 -1.13616884e+00 -7.16231048e-01 5.36426246e-01 1.59636840e-01 -7.07789958e-02 -1.78301573e-01 -1.57549113e-01 -4.77367789e-01 -9.89090919e-01 -3.00399214e-01 -7.68076241e-01 -5.54617159e-02 -1.84887156e-01 -3.33072186e-01 2.12865472e-01 7.74235904e-01 -6.33890867e-01 1.42277205e+00 -2.06528306e+00 -1.25206141e-02 -1.64085761e-01 2.26840928e-01 3.41220587e-01 -3.66063237e-01 4.26349550e-01 -1.41348407e-01 9.72376242e-02 -1.88343287e-01 -4.19319183e-01 4.47950959e-02 -3.06205809e-01 -5.36148310e-01 -1.98475141e-02 3.94373864e-01 8.11962306e-01 -9.13813889e-01 -1.46080852e-01 -4.91605885e-02 9.99950349e-01 -9.20600951e-01 3.72409344e-01 -1.02786742e-01 4.14015681e-01 -3.19484882e-02 3.51786613e-01 6.51824474e-01 -1.82232156e-01 1.60730630e-01 -2.40225077e-01 -1.35755226e-01 6.48547232e-01 -1.17083573e+00 1.85286903e+00 -5.97468793e-01 9.64562595e-01 -4.87919934e-02 -2.93548703e-01 1.05262935e+00 8.87435973e-01 1.75642624e-01 -6.09025896e-01 1.09795392e-01 1.74961403e-01 -1.86161622e-01 -1.99964717e-01 7.21225798e-01 -2.21633315e-01 -1.90067053e-01 5.49152136e-01 3.47519636e-01 -3.76596123e-01 1.95053205e-01 9.41175967e-04 1.16267788e+00 1.25137180e-01 1.15809798e-01 2.39548683e-01 3.36889863e-01 -6.10266864e-01 2.89778143e-01 5.36309302e-01 2.38458708e-01 1.17966139e+00 4.31007266e-01 9.31866094e-03 -1.40605891e+00 -1.21834850e+00 2.07764149e-01 6.96674049e-01 -1.75625980e-01 -7.19852924e-01 -1.07587135e+00 -8.54033232e-02 -4.35989141e-01 5.29843748e-01 -2.50610620e-01 -7.73473307e-02 -6.40395224e-01 -3.57959270e-01 1.15804350e+00 5.09274423e-01 8.37399662e-01 -1.02189088e+00 -9.55571353e-01 2.84989566e-01 -3.85549635e-01 -1.15977275e+00 -5.88217199e-01 -2.01946273e-01 -6.70304000e-01 -5.45648515e-01 -8.71390641e-01 -6.71208203e-01 1.89238802e-01 -8.16288367e-02 1.17955303e+00 -3.50817919e-01 -3.32120098e-02 4.38556932e-02 -5.44218123e-01 -4.33123201e-01 -7.36317694e-01 1.88136771e-01 -1.86633945e-01 8.04682896e-02 -1.90301716e-01 -8.91449988e-01 -8.40776920e-01 -1.67181119e-01 -1.22068882e+00 3.82337332e-01 8.88041317e-01 6.27793372e-01 5.68908215e-01 2.49443173e-01 7.51641273e-01 -6.46184623e-01 7.53359795e-01 -3.35913926e-01 -4.63471621e-01 -2.86984563e-01 -4.96032029e-01 -5.20065241e-02 9.53299999e-01 -4.99026209e-01 -1.03772056e+00 -1.01787686e-01 -5.75807571e-01 -4.26465601e-01 -3.08289770e-02 2.70030767e-01 -4.51598875e-02 1.22644342e-01 6.37335002e-01 3.28187466e-01 -1.27314582e-01 -4.94158506e-01 6.00833118e-01 7.39657104e-01 9.41030324e-01 -1.39140233e-01 1.09426296e+00 2.46033981e-01 -2.00496614e-01 -5.17162561e-01 -4.09195900e-01 1.30268589e-01 -9.45752934e-02 -2.28092834e-01 8.21931660e-01 -1.31611812e+00 -5.74735165e-01 5.45675159e-01 -1.11794484e+00 -5.07613003e-01 -5.10368526e-01 5.71051419e-01 -7.26478755e-01 6.93837106e-02 -9.97034788e-01 -5.47678232e-01 -5.36074698e-01 -9.90625381e-01 1.21787083e+00 3.03581625e-01 -3.34313869e-01 -4.51831847e-01 1.37202814e-01 4.21616845e-02 7.70004809e-01 3.43329519e-01 5.42264462e-01 -7.40873739e-02 -7.73423910e-01 -1.36768356e-01 3.80507368e-03 4.52324986e-01 3.41172889e-03 8.31463709e-02 -1.19011164e+00 -2.45763347e-01 5.00071160e-02 -3.51505250e-01 7.49034107e-01 1.63980126e-01 7.96627581e-01 -4.99460846e-01 3.98774624e-01 8.22223365e-01 1.25719225e+00 4.89148617e-01 1.08144188e+00 2.27231439e-02 3.24246317e-01 2.47271210e-02 7.95155689e-02 6.85719192e-01 3.54432493e-01 6.51321650e-01 3.72560114e-01 -2.80445963e-01 -7.45076001e-01 -6.00588143e-01 7.42387772e-01 1.15401876e+00 -3.97109650e-02 -3.28949600e-01 -4.71351624e-01 5.13005078e-01 -1.42614233e+00 -1.17817402e+00 1.41072765e-01 1.86146104e+00 1.23763907e+00 1.48752645e-01 1.30442753e-01 5.11027336e-01 6.01539910e-01 4.70301986e-01 -2.27290288e-01 -4.41247344e-01 1.96299423e-02 8.76603186e-01 1.33740976e-01 4.75534171e-01 -8.63691032e-01 6.79074109e-01 7.48497009e+00 8.85475159e-01 -1.38955212e+00 9.13593769e-02 4.78355408e-01 -3.33244413e-01 -5.07428467e-01 -2.96199501e-01 -5.28602540e-01 5.26112080e-01 1.51856053e+00 -2.96087593e-01 5.44089735e-01 6.96572781e-01 1.59809411e-01 4.29504663e-01 -1.00817215e+00 9.65336621e-01 1.97647974e-01 -1.52364969e+00 3.46562296e-01 -1.51276931e-01 7.77371824e-01 -3.46324295e-01 4.26055759e-01 3.21884066e-01 2.33673558e-01 -1.05970836e+00 1.18226349e+00 4.22680616e-01 1.45748484e+00 -9.74222183e-01 5.06675422e-01 -2.03832220e-02 -1.37200737e+00 1.22965097e-01 -1.29538193e-01 -9.33016762e-02 3.61358881e-01 6.62108362e-01 -9.16491568e-01 5.39356172e-01 6.31635845e-01 3.05436552e-01 -2.68109381e-01 9.76868331e-01 -7.09147632e-01 9.74267960e-01 -4.02853005e-02 3.49761963e-01 1.15387641e-01 3.45389754e-01 5.36097586e-01 1.29761636e+00 9.58928287e-01 -2.01540217e-02 -2.50471801e-01 9.47381318e-01 -4.61211771e-01 -2.95106024e-01 -3.96387547e-01 2.58062631e-02 6.64508879e-01 1.23741055e+00 -1.99097678e-01 -3.15163374e-01 -2.10859433e-01 9.64953899e-01 -2.21724436e-01 2.76430845e-01 -1.14608812e+00 -9.35971916e-01 4.16515946e-01 2.49603882e-01 6.34492457e-01 -1.36872664e-01 -4.07147594e-02 -8.60422909e-01 -9.41149369e-02 -1.17721987e+00 2.58667674e-02 -1.07848608e+00 -7.93467104e-01 1.06652761e+00 -3.20523828e-01 -1.56724548e+00 -9.02756274e-01 -1.99544966e-01 -6.52812243e-01 8.04741383e-01 -1.76474345e+00 -1.14987814e+00 -4.02033359e-01 4.65971470e-01 6.13817275e-01 -5.17548174e-02 9.16716397e-01 4.50740933e-01 -1.12779856e-01 7.56586552e-01 -3.06437224e-01 1.24675252e-01 7.40700901e-01 -1.09878278e+00 8.34339619e-01 1.11560726e+00 1.41423777e-01 3.53168219e-01 6.40855372e-01 -2.51102656e-01 -1.20276511e+00 -1.32861745e+00 8.16042900e-01 3.88292037e-02 5.10087967e-01 -4.37595844e-01 -6.57389820e-01 5.52950323e-01 6.99919522e-01 -2.63552934e-01 7.56626308e-01 -4.91427660e-01 -4.56203550e-01 -2.42721498e-01 -1.04930258e+00 6.49099231e-01 8.47057641e-01 -6.59529924e-01 -3.61460537e-01 -3.26804310e-01 1.23049736e+00 -7.26806641e-01 -9.49478865e-01 2.67986655e-01 6.83902085e-01 -1.19055068e+00 8.91651332e-01 2.88605914e-02 1.04034388e+00 -5.56758702e-01 -7.04181492e-02 -1.45344412e+00 -4.52593207e-01 -1.29280126e+00 -3.79924536e-01 1.18193591e+00 4.54862684e-01 -2.52400160e-01 4.95309502e-01 -2.15567589e-01 -3.00583929e-01 -4.88555908e-01 -9.04538095e-01 -6.61673725e-01 -1.76924825e-01 -5.16019285e-01 1.04601097e+00 4.53274012e-01 -1.63033009e-01 4.49075371e-01 -8.18265200e-01 1.80505410e-01 4.81918901e-01 5.00647239e-02 7.95209706e-01 -9.22123492e-01 -5.85767686e-01 -2.77934819e-01 -5.08802712e-01 -1.18014574e+00 -2.58440703e-01 -5.26324987e-01 2.22573057e-01 -1.39245498e+00 -1.10599734e-01 3.40668671e-02 -1.96216002e-01 3.09044868e-01 -2.54458771e-03 9.12646472e-01 4.48410630e-01 1.15780011e-02 -3.79081488e-01 5.92819512e-01 1.30907071e+00 -1.66768152e-02 -8.81726518e-02 -2.97407806e-01 -9.51733887e-01 6.18493617e-01 6.78049386e-01 -2.24739596e-01 -6.15309894e-01 -5.87634146e-01 2.27495059e-01 2.87901312e-01 3.01062554e-01 -1.61538637e+00 1.35205522e-01 2.34782264e-01 4.06261802e-01 -3.85696262e-01 4.77288634e-01 -4.18124527e-01 6.28770411e-01 3.93249184e-01 -3.71635318e-01 2.02107430e-02 2.20211253e-01 2.71297008e-01 -5.21679878e-01 1.57444194e-01 8.32391083e-01 2.40873247e-02 -4.58865792e-01 6.34064600e-02 -5.40379345e-01 -8.28415826e-02 7.28318989e-01 2.50004213e-02 -5.50462604e-01 -9.85021830e-01 -3.31832558e-01 -3.42408568e-01 1.92373157e-01 3.99571270e-01 8.11557591e-01 -1.68484962e+00 -1.01600420e+00 3.50333184e-01 -2.77833253e-01 -6.10398464e-02 2.86843896e-01 4.16154385e-01 -6.55810773e-01 4.25208330e-01 -2.65816778e-01 -4.52652335e-01 -8.96604121e-01 1.61828056e-01 1.44905150e-01 -3.76434088e-01 -7.59704113e-01 8.01877081e-01 1.16526820e-01 2.12985680e-01 4.66250777e-02 -3.82980973e-01 -6.34291917e-02 -1.16942162e-02 8.93951714e-01 3.42727035e-01 8.84132162e-02 -4.61905807e-01 1.45702735e-02 3.22983384e-01 3.22353929e-01 -6.63636506e-01 1.36910403e+00 6.01372719e-02 2.53920317e-01 3.00820619e-01 1.04698277e+00 3.94635528e-01 -1.48280370e+00 -4.73499298e-02 -5.33128619e-01 -3.52360129e-01 8.10074061e-02 -7.08860219e-01 -1.28293598e+00 7.88820207e-01 5.48385143e-01 2.97110021e-01 1.47520781e+00 -2.66553193e-01 1.29814208e+00 -1.01372831e-01 4.54357147e-01 -8.16282272e-01 4.13878173e-01 3.53736311e-01 9.57924843e-01 -4.95833516e-01 -3.32954794e-01 -1.84552252e-01 -4.68816906e-01 1.11702263e+00 2.52464086e-01 -2.62708992e-01 2.64038116e-01 7.85823047e-01 1.73520103e-01 2.25659296e-01 -1.04015720e+00 -1.64150998e-01 3.08410645e-01 7.27102935e-01 6.90524042e-01 -3.55099648e-04 -5.66072278e-02 7.51748264e-01 -8.94172370e-01 2.18842983e-01 8.36865246e-01 5.49911439e-01 -3.73148918e-01 -9.71358538e-01 -4.20236319e-01 -7.52355233e-02 -7.45650530e-01 -3.13828200e-01 -8.35473016e-02 4.96684551e-01 2.52303094e-01 1.17063081e+00 3.04985881e-01 -7.06703186e-01 2.90957838e-01 3.29435174e-03 3.27972859e-01 -4.55609888e-01 -6.28312469e-01 3.25898618e-01 6.87409267e-02 -7.40765095e-01 -3.61171007e-01 -1.86542079e-01 -1.09931862e+00 -3.15393209e-01 -1.03192456e-01 5.49144186e-02 4.72709656e-01 3.82834047e-01 5.77425480e-01 1.23534620e+00 7.63410270e-01 -1.08588278e+00 -4.32397127e-01 -1.01254594e+00 -4.89375800e-01 1.19965963e-01 5.39352238e-01 6.49288902e-03 -2.04343960e-01 4.68696356e-01]
[15.531429290771484, 5.848784923553467]
645654a6-3acf-4736-ae09-83929ff6ed4a
global-universal-approximation-of-functional
2306.03303
null
https://arxiv.org/abs/2306.03303v1
https://arxiv.org/pdf/2306.03303v1.pdf
Global universal approximation of functional input maps on weighted spaces
We introduce so-called functional input neural networks defined on a possibly infinite dimensional weighted space with values also in a possibly infinite dimensional output space. To this end, we use an additive family as hidden layer maps and a non-linear activation function applied to each hidden layer. Relying on Stone-Weierstrass theorems on weighted spaces, we can prove a global universal approximation result for generalizations of continuous functions going beyond the usual approximation on compact sets. This then applies in particular to approximation of (non-anticipative) path space functionals via functional input neural networks. As a further application of the weighted Stone-Weierstrass theorem we prove a global universal approximation result for linear functions of the signature. We also introduce the viewpoint of Gaussian process regression in this setting and show that the reproducing kernel Hilbert space of the signature kernels are Cameron-Martin spaces of certain Gaussian processes. This paves the way towards uncertainty quantification for signature kernel regression.
['Josef Teichmann', 'Philipp Schmocker', 'Christa Cuchiero']
2023-06-05
null
null
null
null
['gaussian-processes']
['methodology']
[-2.86659598e-02 4.46512043e-01 2.25925729e-01 -3.54390264e-01 -5.28841615e-01 -2.39648938e-01 5.15125930e-01 -6.26637554e-03 -6.28573179e-01 5.95581710e-01 1.27218112e-01 -3.38635802e-01 -2.74805099e-01 -1.05793357e+00 -7.56322742e-01 -1.13509822e+00 -5.06453812e-01 3.08484375e-01 7.44493902e-02 -2.18491703e-01 -1.04906641e-01 6.35673106e-01 -1.16930914e+00 -3.13033871e-02 6.05629563e-01 1.12659633e+00 -5.03477931e-01 1.08855104e+00 -7.95897618e-02 5.68578839e-01 -2.25195229e-01 -2.74137914e-01 3.16246420e-01 -3.80077958e-01 -6.74580634e-01 -1.60664752e-01 -1.05981603e-01 2.91859433e-02 -3.13949555e-01 1.18802202e+00 1.81050599e-01 7.43207037e-01 1.18741548e+00 -1.19322586e+00 -1.12493706e+00 7.68083930e-01 -6.14148080e-02 -1.31225601e-01 -1.46531612e-01 -1.21088915e-01 8.43940020e-01 -1.11805117e+00 2.70983756e-01 1.17839527e+00 1.07085037e+00 5.58257461e-01 -1.62740672e+00 3.09302565e-03 -3.11294168e-01 -1.99739397e-01 -1.16888535e+00 -1.76593121e-02 2.76915729e-01 -6.53335154e-01 5.03540993e-01 3.14823806e-01 2.39054874e-01 8.46873224e-01 3.19111854e-01 5.84425569e-01 8.70658815e-01 -5.52058101e-01 5.77007890e-01 7.78749213e-02 5.65429211e-01 1.05975378e+00 1.31111965e-01 -2.46674381e-02 2.24645421e-01 -3.23474050e-01 8.71879160e-01 4.35867876e-01 -3.26071560e-01 -4.22613740e-01 -1.15896857e+00 1.33510613e+00 3.63346934e-01 5.57166994e-01 -5.92999697e-01 4.33873743e-01 3.43666673e-01 3.30977947e-01 6.92629278e-01 3.52908634e-02 -2.89010674e-01 2.75772810e-01 -6.88895464e-01 2.45487154e-01 1.34139824e+00 8.15210819e-01 7.81508625e-01 3.05573821e-01 -5.23366451e-01 1.74655676e-01 2.36923099e-01 5.68014503e-01 2.19077989e-01 -1.04594684e+00 4.22335677e-02 2.72686332e-02 3.60354364e-01 -4.49504018e-01 -4.92633224e-01 -2.43715107e-01 -1.04586101e+00 5.92838585e-01 8.49626243e-01 -2.73239791e-01 -5.46404123e-01 1.87528718e+00 -5.73725440e-02 1.29467189e-01 1.70010887e-02 5.27020037e-01 -3.22827756e-01 6.87362134e-01 1.14266984e-02 -2.99507290e-01 8.89217317e-01 -4.60899025e-01 -6.55314863e-01 8.46968889e-01 5.10671020e-01 -1.30465910e-01 9.67187583e-01 2.47868314e-01 -1.13518178e+00 -3.99352551e-01 -8.57312977e-01 7.27165192e-02 -6.11466110e-01 -2.20768456e-03 3.79204988e-01 6.46440625e-01 -1.06546915e+00 1.33140266e+00 -8.03232372e-01 -1.89361975e-01 3.66938710e-01 1.87115118e-01 -4.00820196e-01 3.27929169e-01 -1.20188081e+00 9.68651295e-01 4.82039511e-01 4.25497502e-01 -6.61601841e-01 -8.56321454e-01 -8.58169734e-01 1.50915951e-01 -9.51856524e-02 -4.42668378e-01 1.34679127e+00 -8.74173045e-01 -1.63477087e+00 4.64904249e-01 2.04907626e-01 -7.90358186e-01 8.11873078e-01 2.95547433e-02 -4.77521807e-01 -1.72845498e-02 -2.21363246e-01 -1.25974655e-01 1.15781510e+00 -7.19965398e-01 -4.04463351e-01 -3.17613333e-01 -8.20496902e-02 -6.60237789e-01 -1.71779573e-01 -3.44108731e-01 6.66193366e-01 -3.25668931e-01 -2.87798513e-02 -6.75543547e-01 -3.97672147e-01 3.96464020e-02 -2.75751293e-01 -2.75801957e-01 5.48853040e-01 -5.73753536e-01 1.09262562e+00 -1.95098174e+00 2.70494372e-01 4.35296297e-01 1.41434401e-01 -1.89266160e-01 6.73631057e-02 4.34040904e-01 -2.04775319e-01 1.43492997e-01 -8.35301936e-01 -1.65783376e-01 5.68736851e-01 5.24312481e-02 -5.45981407e-01 1.07886696e+00 2.37774700e-01 8.95976484e-01 -9.22602117e-01 1.49071082e-01 1.89881712e-01 4.79390264e-01 -2.48762876e-01 -6.56484291e-02 -2.60483712e-01 2.04512849e-01 -3.58390659e-01 7.97650814e-02 6.43588305e-01 1.00209437e-01 -6.66887999e-01 2.32989416e-01 -4.41284984e-01 -5.02287030e-01 -1.13921249e+00 1.21212065e+00 -5.72754443e-01 4.12574232e-01 1.61055729e-01 -1.32793999e+00 8.39048386e-01 4.21078265e-01 4.42850649e-01 1.15586050e-01 2.57053494e-01 4.26846087e-01 -1.27336368e-01 -2.31319383e-01 2.44160980e-01 -9.07530308e-01 -1.45817399e-01 5.14747441e-01 3.13682139e-01 3.06374967e-01 -1.62404366e-02 -2.88243353e-01 1.06446874e+00 1.82426065e-01 2.42639080e-01 -7.89960146e-01 9.70462143e-01 -3.76275241e-01 4.52461205e-02 6.90625668e-01 -1.41815662e-01 4.43647563e-01 7.61438012e-01 -4.16828185e-01 -1.33253264e+00 -1.52884603e+00 -4.16042686e-01 1.12265027e+00 -5.46224654e-01 2.20061749e-01 -7.46557236e-01 -2.66652405e-01 1.79325670e-01 1.03242874e+00 -1.26422453e+00 -3.41423512e-01 -3.28510135e-01 -4.38689053e-01 9.67161655e-01 5.54707646e-01 3.31616849e-01 -9.54999506e-01 -4.23957229e-01 3.14824164e-01 6.45467579e-01 -5.10296404e-01 -4.83596087e-01 4.67870384e-01 -8.60663414e-01 -8.86252165e-01 -1.36959994e+00 -3.43630165e-01 3.87594402e-01 -4.59074050e-01 5.73846340e-01 -6.60113871e-01 9.82709974e-03 6.95238948e-01 3.03334177e-01 -5.95420301e-01 -6.66111112e-01 -3.16719770e-01 3.10765833e-01 6.05510592e-01 4.51161027e-01 -4.47451055e-01 -3.73929381e-01 1.89052582e-01 -1.00994325e+00 -6.32675231e-01 1.59345284e-01 7.17023849e-01 3.91693264e-01 1.06199645e-01 3.86037081e-01 -5.58982432e-01 1.02394450e+00 -6.85866177e-01 -9.48437035e-01 1.38331801e-01 -2.68727064e-01 8.04755270e-01 7.31258333e-01 -5.85043907e-01 -1.11751103e+00 -1.44396722e-01 1.87329948e-01 -3.31156552e-01 1.06791012e-01 2.67526716e-01 7.19155818e-02 -3.78331565e-03 8.53892207e-01 4.32677893e-03 1.63557217e-01 -2.91686773e-01 8.23345244e-01 2.91597098e-01 7.03349054e-01 -6.72465622e-01 7.77027786e-01 7.79138684e-01 6.77335083e-01 -9.76636648e-01 -5.90816379e-01 -3.80011141e-01 -7.51091540e-01 -9.90548953e-02 1.09991586e+00 -2.28065759e-01 -1.20407486e+00 2.18330503e-01 -1.07921684e+00 -5.21740496e-01 -9.97702658e-01 7.45170176e-01 -1.14910209e+00 1.83127329e-01 -9.19277728e-01 -1.55412853e+00 -1.95888191e-01 -6.16055369e-01 5.66771328e-01 -2.16322735e-01 -7.47164339e-02 -1.55068505e+00 3.44069898e-01 -6.39278352e-01 5.65478444e-01 4.40386772e-01 9.86350775e-01 -8.27042818e-01 -2.02736794e-03 -6.32664919e-01 -1.35085983e-02 9.15311933e-01 -4.08940673e-01 -4.87575773e-03 -8.39664817e-01 3.45584482e-01 5.52339554e-01 3.46584409e-01 1.16534483e+00 7.27840066e-01 7.81975687e-01 -3.10280204e-01 1.56524330e-01 3.16220403e-01 1.38488126e+00 -2.30590925e-01 4.53471810e-01 -1.29205789e-02 6.32535219e-01 7.13869095e-01 -5.07061891e-02 3.13714623e-01 -1.37437463e-01 7.42626265e-02 8.41390193e-02 6.12675607e-01 7.64693439e-01 -4.86399606e-02 7.82814503e-01 3.87595892e-01 -6.17177308e-01 2.53607661e-01 -6.28378689e-01 4.19244826e-01 -2.09537506e+00 -1.60291946e+00 -6.48534894e-01 2.75375915e+00 6.21369362e-01 5.84970824e-02 3.13872755e-01 5.37711792e-02 1.15003824e+00 -2.24294439e-01 -2.18265936e-01 -8.66490901e-01 -1.01571165e-01 7.27913141e-01 9.34923351e-01 9.45861638e-01 -1.02029443e+00 3.75489682e-01 5.88796854e+00 5.58925688e-01 -6.90214455e-01 5.48964143e-01 1.34903282e-01 3.13385904e-01 -2.81458855e-01 -1.85386941e-01 -2.86598206e-01 3.91815424e-01 1.44341207e+00 -3.44676435e-01 3.99232954e-01 1.13137221e+00 1.98837563e-01 9.44586024e-02 -1.26607287e+00 5.89122772e-01 -4.89203364e-01 -1.04887497e+00 -4.24522489e-01 5.49668729e-01 8.84766757e-01 -1.88734442e-01 4.77779284e-02 5.39357543e-01 4.11562860e-01 -1.20807266e+00 6.39576018e-01 1.10237503e+00 4.16383296e-01 -9.78407383e-01 6.09910488e-01 2.99924940e-01 -1.06061351e+00 -1.05892241e-01 -7.85869241e-01 -1.72247395e-01 2.83086360e-01 7.68209994e-01 -4.28201526e-01 2.04347014e-01 -2.28719890e-01 6.79648519e-02 2.89797097e-01 9.14249241e-01 6.48074076e-02 5.03182232e-01 -4.23548520e-01 -6.48479089e-02 6.69130921e-01 -6.89030230e-01 3.82220656e-01 1.39268577e+00 7.71807849e-01 -2.93633919e-02 -2.41852045e-01 1.24346364e+00 -1.08756118e-01 -3.65386270e-02 -9.03320849e-01 -1.41294345e-01 -2.32567355e-01 1.21891260e+00 -4.45763022e-01 -2.86239266e-01 -4.21929449e-01 1.07140434e+00 -3.57697308e-02 6.59325838e-01 -6.83525562e-01 -6.36894822e-01 8.81770968e-01 9.69498977e-02 3.50740045e-01 -3.53050709e-01 -3.27629536e-01 -1.07177317e+00 -1.52973831e-01 2.61354417e-01 3.55135262e-01 -4.76093501e-01 -1.34626210e+00 2.19379544e-01 7.29642808e-02 -7.89415538e-01 -3.98452967e-01 -9.81800735e-01 -9.85518456e-01 1.50236273e+00 -7.67463267e-01 -8.63235176e-01 3.80648553e-01 8.18410277e-01 -1.04698114e-01 -1.54340845e-02 1.02167869e+00 -3.31258684e-01 -1.54855251e-01 -1.65850446e-01 4.00148690e-01 7.07404921e-03 6.42898604e-02 -1.81407273e+00 3.70402753e-01 7.82591999e-01 -3.73518728e-02 7.21494973e-01 8.34105313e-01 -5.00011384e-01 -1.30654275e+00 -1.08052146e+00 6.59607887e-01 -3.76955807e-01 1.33334839e+00 -2.77907550e-01 -1.19680798e+00 9.57958102e-01 1.04057984e-02 3.76845926e-01 4.80967999e-01 -1.10687621e-01 -2.47139052e-01 2.20428124e-01 -1.20325971e+00 5.52929699e-01 6.02022827e-01 -7.16735184e-01 -6.08915567e-01 2.68141836e-01 7.27010787e-01 1.37301788e-01 -1.15936649e+00 1.66398257e-01 5.54566443e-01 -6.62121117e-01 7.85646081e-01 -1.18161833e+00 1.57741368e-01 -1.56792998e-01 -5.02443850e-01 -1.23823810e+00 -5.49840331e-01 -1.01084018e+00 -4.67281252e-01 6.71469688e-01 2.89542377e-01 -8.00782621e-01 2.56613612e-01 7.75465012e-01 -8.06793720e-02 -8.62459302e-01 -9.63921010e-01 -9.74964321e-01 5.88817060e-01 -8.35421979e-01 1.75073490e-01 5.58092535e-01 1.59947410e-01 -2.89609060e-02 -2.66643316e-01 4.75674160e-02 1.05899870e+00 -5.04144788e-01 -2.61698402e-02 -1.58242238e+00 -3.27647924e-01 -8.85800302e-01 -6.21532679e-01 -2.99309164e-01 5.09809792e-01 -1.10513675e+00 2.52077818e-01 -1.21905291e+00 -4.32646096e-01 3.25217135e-02 -6.26207471e-01 -6.98050782e-02 2.84949362e-01 -1.30871562e-02 -1.00119598e-01 -7.06775934e-02 -2.03081667e-01 4.99400139e-01 7.36972988e-01 1.70912370e-01 -3.53376493e-02 6.47191405e-01 -2.97462195e-01 1.01847339e+00 9.07218695e-01 -2.10098848e-01 -3.03537458e-01 3.63057345e-01 1.91962868e-01 -8.09911173e-03 7.03475714e-01 -9.77762580e-01 2.55904794e-01 -4.86303940e-02 3.25014085e-01 -2.60953575e-01 3.92005779e-02 -5.92527747e-01 -1.44856811e-01 5.59363127e-01 -7.19615817e-01 -2.39203066e-01 -2.41533920e-01 8.55604172e-01 2.22424641e-01 -7.58312523e-01 9.73883927e-01 -1.39913887e-01 -3.34832430e-01 5.99248052e-01 -5.51556826e-01 9.99822319e-02 9.39174533e-01 1.07069574e-01 1.18980967e-01 -4.25642997e-01 -1.16216528e+00 -2.14157835e-01 1.50609434e-01 -2.15071633e-01 5.28562188e-01 -1.59001255e+00 -5.96964777e-01 1.21703513e-01 -1.28072664e-01 -4.50306296e-01 3.18235457e-01 1.21820593e+00 -2.93102294e-01 5.41233122e-01 -8.03084001e-02 -1.84619799e-01 -4.24956799e-01 7.05062211e-01 5.13267994e-01 5.05597182e-02 -6.24530256e-01 5.80752552e-01 3.68089527e-02 -3.98541093e-01 1.85696051e-01 -7.98323274e-01 4.38178450e-01 1.13547415e-01 7.63152421e-01 8.55534375e-01 -1.58340320e-01 -4.66791570e-01 4.03177515e-02 1.10850222e-01 5.52624226e-01 -8.44882548e-01 1.23992240e+00 1.11547567e-01 -3.11784267e-01 1.28109741e+00 1.83271182e+00 -1.32730678e-01 -1.39366066e+00 -2.71828592e-01 4.06433493e-01 3.91634405e-01 -2.94202834e-01 -1.60091996e-01 -4.48275834e-01 1.17212546e+00 3.49329174e-01 8.54655206e-01 5.35638869e-01 1.29102804e-02 5.63738108e-01 6.52678370e-01 7.14576915e-02 -1.19372284e+00 -4.66250449e-01 6.36193395e-01 1.00674713e+00 -8.44717979e-01 -5.59434354e-01 2.17516363e-01 -3.75497550e-01 1.76388586e+00 -3.96521479e-01 -6.00470006e-01 9.97845471e-01 1.91154122e-01 -4.98663217e-01 1.12497017e-01 -3.39830101e-01 -5.18760026e-01 3.38720053e-01 6.27995908e-01 4.51427013e-01 4.20285732e-01 -2.06459954e-01 4.55216259e-01 1.60511643e-01 -7.37753464e-03 6.68097436e-01 4.69837457e-01 -7.76039064e-01 -8.45143020e-01 -4.26602900e-01 3.73463959e-01 -4.80100244e-01 -2.29674373e-02 2.80854225e-01 7.99436629e-01 -1.99834034e-01 3.92873496e-01 -3.04611977e-02 -4.74287085e-02 2.78703272e-01 8.93781722e-01 5.42804480e-01 -4.50612009e-01 -1.10503189e-01 -2.14169815e-01 -3.12007457e-01 -3.99358213e-01 -1.28168464e-01 -6.57457352e-01 -1.35972905e+00 -4.68994528e-01 5.72332889e-02 2.24184781e-01 9.23186123e-01 9.31667626e-01 -3.69842917e-01 4.80792791e-01 4.17605788e-01 -9.46199119e-01 -1.36082375e+00 -1.09250402e+00 -1.08011377e+00 2.45991312e-02 5.17832220e-01 -2.49060377e-01 -5.21932960e-01 -1.79264814e-01]
[7.473751544952393, 3.788459539413452]
f5858e2c-5cf7-4ae4-9907-76dbfc2542eb
sensala-a-dynamic-semantics-system-for
null
null
https://aclanthology.org/C18-2027
https://aclanthology.org/C18-2027.pdf
Sensala: a Dynamic Semantics System for Natural Language Processing
Here we describe Sensala , an open source framework for the semantic interpretation of natural language that provides the logical meaning of a given text. The framework{'}s theory is based on a lambda calculus with exception handling and uses contexts, continuations, events and dependent types to handle a wide range of complex linguistic phenomena, such as donkey anaphora, verb phrase anaphora, propositional anaphora, presuppositions and implicatures.
['Ekaterina Lebedeva', 'Daniyar Itegulov', 'Bruno Woltzenlogel Paleo']
2018-08-01
sensala-a-dynamic-semantics-system-for-1
https://aclanthology.org/C18-2027
https://aclanthology.org/C18-2027.pdf
coling-2018-8
['implicatures']
['natural-language-processing']
[-2.23995462e-01 5.79404354e-01 -3.79666418e-01 -4.18924868e-01 8.87642205e-02 -7.91636586e-01 9.94216919e-01 6.94507718e-01 -4.98682559e-01 1.17149091e+00 6.07104540e-01 -4.98328775e-01 -4.68767136e-01 -1.04043412e+00 -2.36175969e-01 -1.18919782e-01 3.73985269e-03 3.60778540e-01 1.03635120e+00 -9.07630503e-01 4.57938731e-01 3.66395205e-01 -1.48994434e+00 5.99516988e-01 -1.06926657e-01 6.39173269e-01 -1.29028887e-03 2.08813310e-01 -7.70310760e-01 1.40575397e+00 -5.61521769e-01 -9.59580839e-01 -4.08395648e-01 1.01118624e-01 -1.52846849e+00 -4.92536038e-01 -2.08490863e-01 -2.10450608e-02 7.49520212e-02 1.25780320e+00 1.19638056e-01 2.79523015e-01 1.94604427e-01 -1.46125329e+00 -3.92970651e-01 8.95795822e-01 7.24510774e-02 5.92540503e-01 1.43061149e+00 4.29198518e-02 1.28449547e+00 -5.56681573e-01 1.33002055e+00 2.05712962e+00 7.92013288e-01 8.16836417e-01 -1.10211766e+00 -7.35435542e-03 -1.67257600e-02 4.64139014e-01 -7.72599697e-01 -2.56211728e-01 4.16082919e-01 -1.10089891e-01 1.75712538e+00 6.59689307e-01 2.44125038e-01 1.09599781e+00 6.00361168e-01 4.99316692e-01 1.02478695e+00 -8.35166097e-01 3.50680977e-01 3.27100545e-01 1.03942549e+00 1.34155214e-01 3.32563937e-01 1.43894047e-01 -4.90672082e-01 -9.70767319e-01 2.05142140e-01 -2.79288143e-01 1.15132844e-02 2.02045143e-01 -9.54127610e-01 9.40992892e-01 -5.54525061e-03 4.15219754e-01 -5.00453115e-01 2.01631606e-01 9.37314689e-01 5.29040039e-01 -7.87231028e-02 4.28925365e-01 -8.34195793e-01 3.40814441e-02 6.78579748e-01 9.49134886e-01 1.10798848e+00 8.23988855e-01 4.62925553e-01 -6.58517540e-01 1.28164917e-01 4.12778795e-01 6.30198121e-01 4.15376484e-01 2.81717837e-01 -1.46864128e+00 1.29749984e-01 8.70725632e-01 6.26799524e-01 -8.98719370e-01 -5.38382471e-01 7.27144420e-01 3.84741843e-01 2.74188042e-01 5.18950224e-01 1.65763378e-01 1.43672466e-01 1.97472632e+00 7.98488557e-01 -6.42048940e-02 1.08946121e+00 8.37590575e-01 1.07849348e+00 4.00504649e-01 8.44355047e-01 -6.56401575e-01 2.07371187e+00 -1.03706941e-01 -1.53377044e+00 -3.83590311e-01 4.57099497e-01 -7.75890291e-01 1.27958965e+00 -4.71736724e-03 -1.23666286e+00 6.19705737e-01 -6.80985808e-01 -5.09515584e-01 -6.51226044e-01 -1.13183081e+00 9.71562922e-01 1.69165745e-01 -6.54836178e-01 2.43554711e-01 -4.64458853e-01 -6.73664153e-01 -1.64239585e-01 1.88791379e-01 -5.32051861e-01 4.18935418e-01 -1.87869370e+00 1.14472270e+00 9.38216627e-01 -5.26076496e-01 -1.16048306e-01 -4.40276533e-01 -8.78200769e-01 -1.43760249e-01 7.84725726e-01 -5.17109632e-01 1.48748708e+00 -8.79339397e-01 -1.35428452e+00 1.60512066e+00 -1.44961074e-01 -6.37442827e-01 -5.15059307e-02 -2.10486040e-01 -9.54589009e-01 -8.52701962e-02 5.56058228e-01 -2.35430777e-01 1.58029988e-01 -6.77366257e-01 -7.95236290e-01 -7.31852651e-01 8.06787550e-01 2.55058706e-01 4.22380596e-01 1.36087334e+00 3.05463225e-01 -2.56768316e-01 2.08038539e-01 -4.41293746e-01 -6.38747634e-03 -3.21441025e-01 -3.13209444e-01 -1.03469229e+00 7.50316679e-01 -3.94382142e-02 1.00254631e+00 -2.37696433e+00 -4.23942581e-02 -2.42616832e-01 -1.32071048e-01 -1.92698762e-01 4.26510334e-01 7.33387887e-01 -8.02645311e-02 -3.75625081e-02 -1.29287511e-01 5.56478024e-01 6.00730538e-01 5.96835196e-01 -8.91892254e-01 1.15527794e-01 9.16255340e-02 5.45803607e-01 -9.70669150e-01 -5.57495356e-01 3.04048270e-01 -1.01129316e-01 -2.68516362e-01 7.25578144e-02 -8.04752827e-01 -4.14329529e-01 -8.00403059e-01 4.13991421e-01 4.01827008e-01 2.50698216e-02 8.03646803e-01 1.36641815e-01 -3.63798320e-01 1.01016712e+00 -1.53579557e+00 1.43054056e+00 -1.14038497e-01 -3.55163403e-02 3.75484109e-01 -3.92198384e-01 5.80751479e-01 1.00309646e+00 -3.09737056e-01 -3.24667335e-01 3.39229137e-01 2.92435646e-01 -4.60804015e-01 -9.61981118e-01 2.59283513e-01 -5.23173213e-01 -7.60743916e-01 6.28185749e-01 -1.63363174e-01 -5.62494881e-02 1.62526041e-01 5.03003895e-01 1.20016980e+00 2.27476820e-01 1.38101804e+00 -6.56138659e-01 9.72424090e-01 4.61890131e-01 8.38728845e-01 4.35140729e-01 -3.19274396e-01 -4.34919000e-01 7.67536461e-01 -1.22905874e+00 -4.95364428e-01 -1.48589981e+00 -7.13775873e-01 1.46827805e+00 6.64018035e-01 -5.31620264e-01 -4.47951168e-01 -4.16439176e-01 4.52583656e-02 1.24039841e+00 -9.78635177e-02 3.90965608e-04 -5.66498637e-01 -8.33114624e-01 7.52160490e-01 2.92176396e-01 2.08162203e-01 -2.10546303e+00 -1.33248985e+00 4.21613365e-01 -1.81761488e-01 -1.25732160e+00 5.84669054e-01 1.36717871e-01 -6.72836125e-01 -1.53016579e+00 1.01899958e+00 -4.15582120e-01 4.49065957e-03 -5.46826839e-01 1.44492006e+00 2.07282245e-01 -1.29056796e-01 2.81336933e-01 -2.87086349e-02 -6.92779481e-01 -6.08865976e-01 -8.46749306e-01 3.25764745e-01 -6.20580137e-01 1.25761449e+00 -5.39904833e-01 6.67995363e-02 -4.23680171e-02 -8.94490600e-01 -6.03679955e-01 -5.06847680e-01 4.61214632e-01 1.34398058e-01 -1.30730197e-01 4.17078346e-01 -1.35441244e+00 1.05719113e+00 -6.06429815e-01 -6.55420303e-01 1.42346397e-01 -3.43568861e-01 2.57375687e-02 3.32324028e-01 -2.62058705e-01 -1.72459102e+00 -3.75943631e-01 8.21963027e-02 6.30172968e-01 -6.81417942e-01 4.48364764e-01 -6.62036955e-01 3.08735937e-01 1.03503203e+00 -2.90619195e-01 -4.60102372e-02 -3.90519440e-01 3.30204725e-01 6.48673832e-01 1.08512378e+00 -1.22849643e+00 -5.69439828e-02 8.86491954e-01 7.51290321e-02 -4.29602504e-01 -9.78684664e-01 -4.18669492e-01 -2.41727814e-01 1.91827387e-01 7.43980169e-01 -6.11883759e-01 -1.32017624e+00 6.00804538e-02 -1.69269264e+00 7.18374029e-02 -5.19978404e-01 3.02299351e-01 -7.65368164e-01 2.97982037e-01 -9.29212928e-01 -8.87235224e-01 -4.79910076e-01 -5.79926133e-01 7.37700045e-01 5.60126789e-02 -8.38792980e-01 -1.22529757e+00 3.62987742e-02 -2.57496864e-01 1.81585997e-01 2.87779391e-01 1.09995949e+00 -1.04063582e+00 -5.22282794e-02 -9.65235457e-02 -1.68833062e-02 -3.59004110e-01 -6.66867793e-02 -2.37276375e-01 -6.95135176e-01 4.30488288e-01 4.39072937e-01 -2.31147557e-01 -1.47390082e-01 -5.27017675e-02 1.07423507e-01 -6.92026615e-01 -4.29746747e-01 1.11284982e-02 1.73576474e+00 2.40754724e-01 1.00852644e+00 1.16950309e+00 -4.02509421e-01 7.18715847e-01 8.08068752e-01 5.35265267e-01 4.09860104e-01 6.30844057e-01 3.25929075e-01 7.97298789e-01 9.75128636e-02 3.29042017e-01 5.48677891e-02 -4.05252337e-01 -9.53183249e-02 1.92878425e-01 -9.00949895e-01 5.68829894e-01 -2.10887837e+00 -1.32878375e+00 -5.64837933e-01 1.85301876e+00 1.22220159e+00 2.41857931e-01 -1.96758136e-01 2.57630557e-01 1.02669299e+00 -1.46810710e-02 4.91596274e-02 -9.32521284e-01 -3.60312521e-01 2.34508216e-02 2.81211399e-02 8.77764821e-01 -8.32680345e-01 1.50270784e+00 7.24072075e+00 8.79144296e-02 -7.65038490e-01 4.41597104e-01 -6.91885591e-01 3.49485546e-01 -3.00295979e-01 6.15361929e-01 -8.53613973e-01 1.62886277e-01 8.52991760e-01 -6.36380374e-01 4.59662199e-01 6.59064054e-01 -7.99885690e-02 -2.48614833e-01 -9.88896310e-01 3.28457445e-01 -3.47700059e-01 -1.35879958e+00 -2.46568143e-01 -6.21315360e-01 1.92457289e-02 -1.59566581e-01 -7.64736116e-01 -1.43599166e-02 5.87382555e-01 -1.48195520e-01 8.66119921e-01 3.88128996e-01 3.43021825e-02 -4.41881210e-01 7.99406409e-01 8.14121887e-02 -6.00417793e-01 -2.41864234e-01 -3.75365019e-01 -6.75751984e-01 5.26230216e-01 3.60039711e-01 -2.41724789e-01 9.89779532e-02 9.35401142e-01 -1.88694019e-02 1.79938376e-01 5.65849066e-01 -7.18880594e-01 6.27892241e-02 -6.32726789e-01 -7.17309862e-02 2.18621604e-02 9.26030427e-02 1.30620992e+00 1.15884769e+00 -5.14881611e-01 8.58671546e-01 6.60007596e-02 8.20163369e-01 5.13202786e-01 3.36228967e-01 -7.09704578e-01 7.49390364e-01 9.09237623e-01 7.06155479e-01 -6.56564772e-01 -5.69332242e-01 -3.88779551e-01 4.95048553e-01 9.60845053e-02 3.22257876e-01 -4.12751347e-01 -3.52442890e-01 7.30374038e-01 5.58686480e-02 -3.58581334e-01 5.91217637e-01 -5.02614751e-02 -9.14947867e-01 -1.21954586e-02 -6.92431986e-01 1.25907850e+00 -8.74711812e-01 -1.39654922e+00 3.43842119e-01 4.41002399e-01 -2.43857443e-01 -3.46745640e-01 -8.47562313e-01 -8.62684965e-01 5.53379536e-01 -1.02563274e+00 -8.90376806e-01 3.22534204e-01 1.05751717e+00 1.38254568e-01 -1.55077413e-01 1.42324424e+00 -2.34965160e-01 -5.73358089e-02 -3.03036392e-01 -7.19063997e-01 -3.91778231e-01 7.27100670e-01 -1.31978321e+00 2.01424241e-01 5.88526666e-01 -7.58680344e-01 9.78253067e-01 1.46258652e+00 -6.92833424e-01 -1.33783150e+00 -4.03041273e-01 1.60784984e+00 -6.03298128e-01 1.19431436e+00 1.68096706e-01 -1.06090426e+00 1.40764809e+00 1.64316088e-01 3.46268922e-01 3.59151512e-01 3.70476276e-01 -7.56120384e-01 3.82123999e-02 -1.80908668e+00 5.29617786e-01 9.33995306e-01 -6.15002215e-01 -1.88822305e+00 4.89353985e-01 9.96400654e-01 -5.96644998e-01 -8.18274677e-01 2.37298131e-01 1.82484642e-01 -9.64216411e-01 1.12719250e+00 -1.36036956e+00 -7.18646031e-03 -3.28369260e-01 -5.33373773e-01 -3.62906456e-01 -7.28883445e-02 -8.29382896e-01 -9.73600969e-02 1.07880306e+00 3.04721117e-01 -1.09994757e+00 -3.62091511e-02 1.27409983e+00 -1.62783027e-01 4.03221905e-01 -1.21503460e+00 -4.13707644e-01 -1.47760481e-01 -8.52398992e-01 1.04732585e+00 1.31088364e+00 1.28681779e+00 5.88019550e-01 3.27018350e-01 2.58592099e-01 6.92753851e-01 2.32202888e-01 1.65881470e-01 -1.65484536e+00 -3.24120708e-02 -2.17162848e-01 -6.69167995e-01 1.51446298e-01 8.98969471e-01 -7.88269997e-01 -2.10872740e-01 -1.12258351e+00 -4.96118106e-02 -3.03573042e-01 6.94771037e-02 7.79356480e-01 3.55411395e-02 -6.76229298e-02 -2.79504210e-01 2.74589658e-01 -9.51054752e-01 -1.68116510e-01 6.36001348e-01 2.57746905e-01 -1.93914771e-01 -2.55529255e-01 -6.17842078e-01 1.41920245e+00 5.62617421e-01 -6.20449364e-01 5.51317930e-02 -1.31750509e-01 1.14992368e+00 3.36652875e-01 5.86731434e-01 -1.44206896e-01 2.61793286e-01 -8.53630245e-01 -7.70558715e-01 1.83653966e-01 -3.73612940e-02 -8.49983156e-01 2.21346781e-01 4.94086713e-01 -5.32687604e-01 4.67125103e-02 5.22925138e-01 2.97786921e-01 -5.19447662e-02 -6.79852009e-01 5.09692132e-01 -3.87090623e-01 -1.28834760e+00 -6.12287223e-01 -6.96214974e-01 3.05242479e-01 1.08880353e+00 3.89034361e-01 -8.42035770e-01 2.21149966e-01 -1.08768988e+00 -5.02271168e-02 3.65907401e-01 5.22135556e-01 3.90780985e-01 -1.20682573e+00 -3.16440970e-01 -3.47376257e-01 2.37730727e-01 -3.37653697e-01 -2.96446979e-01 5.91248333e-01 -5.95237195e-01 2.95288116e-01 -3.50348294e-01 5.30478433e-02 -1.26363695e+00 1.03741729e+00 2.15472877e-01 1.61147475e-01 -1.13506639e+00 3.44325364e-01 -4.25873064e-02 -5.65224051e-01 -1.05368420e-01 3.50293964e-02 -4.15564209e-01 -4.88766968e-01 1.23996055e+00 3.53015095e-01 -2.15351701e-01 -8.20405245e-01 -1.07602179e+00 3.21650840e-02 2.25967109e-01 -2.49836981e-01 9.59290922e-01 -4.83371943e-01 -1.30112422e+00 9.01769400e-01 4.10140604e-01 -9.69680399e-02 -1.87510625e-01 -2.56924719e-01 8.07330370e-01 -1.91783041e-01 -2.64450908e-01 -9.53499794e-01 -6.44120649e-02 -1.33191392e-01 1.92866728e-01 7.72702157e-01 5.57534873e-01 7.92783737e-01 3.48949850e-01 7.93659449e-01 5.07123172e-01 -1.18237901e+00 -6.27815187e-01 7.34931350e-01 1.02703714e+00 -6.63368225e-01 4.49547172e-02 -1.09164739e+00 -3.46410781e-01 1.10621440e+00 3.85002702e-01 -1.65120602e-01 4.55952853e-01 9.28650737e-01 4.80441481e-01 -9.13037777e-01 -1.24025273e+00 -1.28140114e-02 -5.69356143e-01 5.84988236e-01 4.98980761e-01 2.33967856e-01 -1.48987174e+00 1.03350973e+00 -1.59119800e-01 1.34272367e-01 8.26746464e-01 1.16443014e+00 -3.78699899e-01 -1.14805794e+00 -1.03448367e+00 -2.36009598e-01 -1.27715361e+00 -2.24673674e-02 -4.50714529e-01 1.01748621e+00 -7.75719760e-03 9.08316195e-01 3.72566342e-01 5.42675793e-01 6.57816827e-01 3.46848607e-01 5.04314959e-01 -6.94324613e-01 -9.19954956e-01 -3.39876682e-01 7.75860965e-01 -8.23992431e-01 -8.56137395e-01 -8.49673867e-01 -2.30720949e+00 -2.27180839e-01 -2.34381303e-01 2.28484809e-01 4.85878587e-01 1.50846517e+00 -1.06218114e-01 -1.14610747e-01 -1.75983861e-01 5.03516234e-02 -5.99767804e-01 -5.89730561e-01 -5.56605935e-01 1.07135272e+00 4.91278581e-02 -7.61074364e-01 -6.94653392e-01 -1.07855899e-02]
[10.032136917114258, 9.187586784362793]
7300f3b4-709f-4c0d-b71d-660cf37073de
weakly-supervised-instance-segmentation-using-3
null
null
http://papers.nips.cc/paper/8885-weakly-supervised-instance-segmentation-using-the-bounding-box-tightness-prior
http://papers.nips.cc/paper/8885-weakly-supervised-instance-segmentation-using-the-bounding-box-tightness-prior.pdf
Weakly Supervised Instance Segmentation using the Bounding Box Tightness Prior
This paper presents a weakly supervised instance segmentation method that consumes training data with tight bounding box annotations. The major difficulty lies in the uncertain figure-ground separation within each bounding box since there is no supervisory signal about it. We address the difficulty by formulating the problem as a multiple instance learning (MIL) task, and generate positive and negative bags based on the sweeping lines of each bounding box. The proposed deep model integrates MIL into a fully supervised instance segmentation network, and can be derived by the objective consisting of two terms, i.e., the unary term and the pairwise term. The former estimates the foreground and background areas of each bounding box while the latter maintains the unity of the estimated object masks. The experimental results show that our method performs favorably against existing weakly supervised methods and even surpasses some fully supervised methods for instance segmentation on the PASCAL VOC dataset.
['Yung-Yu Chuang', 'Yen-Yu Lin', 'Chung-Chi Tsai', 'Kuang-Jui Hsu', 'Cheng-Chun Hsu']
2019-12-01
null
null
null
neurips-2019-12
['box-supervised-instance-segmentation', 'weakly-supervised-instance-segmentation']
['computer-vision', 'computer-vision']
[ 3.90002012e-01 5.85337400e-01 -4.96760994e-01 -6.93005979e-01 -1.08613837e+00 -6.30066514e-01 3.68151337e-01 1.60797387e-01 -3.65245491e-01 8.87269318e-01 -4.89989638e-01 -1.20835632e-01 9.60119218e-02 -6.43135428e-01 -1.08900845e+00 -1.00582576e+00 1.46193296e-01 8.01895976e-01 5.59454620e-01 1.52544513e-01 1.80133179e-01 2.37191647e-01 -1.40225089e+00 4.79132175e-01 9.84085739e-01 1.32307160e+00 -1.62155345e-01 5.76365888e-01 -3.72292548e-01 8.44631255e-01 -7.89512634e-01 -2.43286431e-01 3.70405018e-01 -1.26811340e-01 -8.56512964e-01 4.98623610e-01 8.00379753e-01 -1.93703607e-01 2.15978429e-01 1.01829660e+00 7.88205490e-02 4.23645899e-02 7.19404757e-01 -1.44931066e+00 -5.32804653e-02 4.04625535e-01 -9.14071381e-01 2.89471447e-02 -2.27555111e-01 -4.76061627e-02 1.06759357e+00 -8.21304679e-01 3.19809586e-01 1.04601121e+00 5.68438232e-01 3.65737498e-01 -1.32543314e+00 -5.46350956e-01 6.62968397e-01 -2.63138920e-01 -1.37168312e+00 -1.03460655e-01 7.42226839e-01 -6.01413131e-01 5.16605437e-01 2.87352830e-01 4.58548069e-01 5.49454391e-01 -2.67617643e-01 1.16234589e+00 1.34476399e+00 -2.98649609e-01 3.57196391e-01 5.61952293e-01 5.85748315e-01 9.02098060e-01 2.82729834e-01 -1.82465687e-01 -2.18506157e-01 1.51198003e-02 7.62285531e-01 -1.54342338e-01 -1.86205953e-01 -7.97415018e-01 -9.29159224e-01 6.59142196e-01 4.63490963e-01 5.40464148e-02 2.79561222e-01 1.72751918e-01 2.39422902e-01 -3.93664122e-01 7.40471065e-01 1.08824283e-01 -5.96108079e-01 4.85675097e-01 -1.29183626e+00 2.11414039e-01 8.57114673e-01 1.16556668e+00 1.01370347e+00 -2.50425756e-01 -1.37605816e-01 6.35167897e-01 3.81556183e-01 2.78987437e-01 -1.29799679e-01 -6.53124511e-01 7.97910571e-01 7.79370427e-01 3.24976623e-01 -8.80972624e-01 -1.13439329e-01 -2.95749545e-01 -4.50474709e-01 2.44230777e-01 8.42541516e-01 -1.51038289e-01 -1.18654740e+00 1.37174773e+00 7.41380155e-01 3.30671072e-01 -2.98832357e-01 8.85074198e-01 9.19181168e-01 7.49979317e-01 1.91446215e-01 -1.24038614e-01 1.05001450e+00 -1.51434314e+00 -7.05091834e-01 -5.90178192e-01 3.57474476e-01 -3.31479907e-01 7.20541060e-01 3.66431355e-01 -1.12427366e+00 -6.93314135e-01 -1.30906224e+00 -8.70128870e-02 -4.72398788e-01 4.97044444e-01 6.74861968e-01 5.80910325e-01 -7.50134468e-01 4.42557096e-01 -8.16847086e-01 2.90803313e-01 5.62446296e-01 5.14037430e-01 -7.38329291e-02 1.98350519e-01 -7.17549801e-01 4.74530786e-01 7.43420184e-01 4.96117532e-01 -1.02453196e+00 -5.69995880e-01 -1.18572235e+00 -1.28511369e-01 6.51499748e-01 -9.98831019e-02 9.79108274e-01 -1.18829668e+00 -1.20920897e+00 1.19626975e+00 -1.14107490e-01 -4.65679049e-01 8.63831162e-01 -2.18486995e-01 2.04023197e-01 6.37118220e-02 1.87761441e-01 7.94955373e-01 1.04923403e+00 -1.89538622e+00 -8.38424504e-01 -5.81426561e-01 4.76699397e-02 1.23384669e-01 1.55618429e-01 -3.78043115e-01 -6.32183433e-01 -5.00560641e-01 2.95191765e-01 -7.25562871e-01 -3.23683321e-01 5.20386584e-02 -7.38708079e-01 -1.80936605e-01 1.06793070e+00 -6.19277298e-01 1.09277403e+00 -2.09744430e+00 -4.72137034e-02 2.43897304e-01 2.01327890e-01 1.28086224e-01 2.08017260e-01 -3.34390372e-01 2.14774646e-02 2.13783681e-01 -6.21162057e-01 -4.43249851e-01 3.95817831e-02 3.98067355e-01 -4.37568396e-01 6.60299599e-01 4.72642988e-01 8.34795117e-01 -9.98823106e-01 -9.04463708e-01 2.30737090e-01 1.96058109e-01 -2.60040194e-01 4.37056065e-01 -5.98969877e-01 4.45403218e-01 -3.42921376e-01 6.32740974e-01 9.25716221e-01 -2.54407257e-01 1.57458246e-01 -1.95419818e-01 6.09745737e-03 4.14795503e-02 -1.42141533e+00 1.29074216e+00 -1.56447683e-02 3.25958490e-01 3.84236664e-01 -1.20017660e+00 9.69751239e-01 -2.88878493e-02 3.59735489e-01 -2.77341127e-01 1.78278923e-01 2.04321072e-01 -3.39410096e-01 -3.54275018e-01 2.55464554e-01 -2.38591760e-01 -5.78449257e-02 9.03109238e-02 2.13384539e-01 -5.46536028e-01 2.78241277e-01 8.04183185e-02 4.97609168e-01 5.48553288e-01 2.07521290e-01 -4.70860362e-01 6.95766509e-01 1.61019459e-01 7.77783394e-01 7.24150240e-01 -4.73641813e-01 6.46998584e-01 7.92253613e-01 -4.51658517e-01 -7.65798450e-01 -1.14211583e+00 -3.42687190e-01 9.89698946e-01 7.03775644e-01 -1.06102834e-02 -1.18618560e+00 -1.19714558e+00 4.13449705e-02 3.13649058e-01 -7.06850171e-01 3.41763228e-01 -6.25840485e-01 -8.05810094e-01 2.45663390e-01 8.79798949e-01 7.90160120e-01 -6.64026618e-01 -3.12874854e-01 -1.45766690e-01 -1.54142693e-01 -1.33760023e+00 -3.79519016e-01 5.92489183e-01 -9.74426210e-01 -1.16178870e+00 -5.04935682e-01 -1.01740110e+00 1.09092355e+00 -7.33064413e-02 1.16815138e+00 1.67183340e-01 -2.46976256e-01 1.71423912e-01 -1.43011082e-02 -5.51308393e-01 -1.57845055e-03 -9.13287476e-02 -3.21920186e-01 1.67419598e-01 2.48552427e-01 7.02285692e-02 -4.01283145e-01 5.84601700e-01 -7.53082812e-01 6.85883984e-02 3.46328169e-01 9.32465971e-01 1.25497842e+00 2.35463455e-01 4.06770080e-01 -1.28956616e+00 -2.36576498e-02 -2.08772659e-01 -8.71464133e-01 3.46546143e-01 -3.51859570e-01 -1.72771215e-01 2.62886733e-01 -1.32284701e-01 -1.16697621e+00 4.72874880e-01 2.25680083e-01 -5.65916002e-02 -4.94633496e-01 -1.15953892e-01 -5.40412009e-01 -4.28935103e-02 3.31327140e-01 -9.94321257e-02 -3.78271937e-01 -1.61005706e-01 3.97382706e-01 5.30651152e-01 6.63713098e-01 -8.39985490e-01 8.40636790e-01 8.17382574e-01 -2.02723101e-01 -6.30789638e-01 -1.44608426e+00 -8.74051750e-01 -1.09652817e+00 -3.07845175e-01 1.11859000e+00 -8.63762259e-01 -4.21271473e-01 3.88570458e-01 -1.14823437e+00 -6.14320993e-01 -3.19077849e-01 -5.44287190e-02 -5.36451578e-01 1.94838285e-01 -7.30918288e-01 -1.03356004e+00 7.30518699e-02 -1.13768566e+00 1.43475592e+00 2.93848485e-01 7.43386447e-02 -9.71252084e-01 -9.80873927e-02 1.01076376e+00 -3.21025163e-01 5.79460144e-01 7.48998344e-01 -7.01053679e-01 -8.80958140e-01 -3.61596793e-01 -4.71787214e-01 6.49579585e-01 -1.54421598e-01 1.53887108e-01 -1.44957018e+00 -1.94836050e-01 -4.41419892e-03 -4.73834723e-01 1.02730453e+00 4.41021889e-01 1.48674488e+00 -3.43226075e-01 -4.94006336e-01 4.66950566e-01 1.45231497e+00 1.49143174e-01 4.53758836e-01 1.00435309e-01 8.62917304e-01 7.34869301e-01 1.00697243e+00 7.98904598e-02 2.36283571e-01 3.26428831e-01 5.85117400e-01 -5.20763874e-01 2.62954324e-01 -1.69967383e-01 5.56192733e-02 3.03686112e-01 1.25197828e-01 -1.91757500e-01 -8.57035995e-01 6.71777785e-01 -2.06219411e+00 -6.65027857e-01 -1.64924279e-01 2.22305822e+00 7.55515516e-01 5.59650064e-01 1.39877260e-01 2.28623256e-01 8.44147742e-01 3.44961762e-01 -5.65997839e-01 -4.24267709e-01 1.67954475e-01 1.09403081e-01 5.40494800e-01 7.15476155e-01 -1.63501990e+00 1.00469649e+00 6.19748926e+00 8.12840044e-01 -8.39522719e-01 -6.83718398e-02 1.32353342e+00 1.08902007e-01 5.32107465e-02 -7.06648156e-02 -1.25332105e+00 3.09058160e-01 3.85565877e-01 4.56027091e-01 -5.61537966e-02 1.17259264e+00 -5.56501187e-02 -5.18294334e-01 -1.37963998e+00 5.88650584e-01 2.17216998e-01 -9.98592973e-01 -4.63594124e-02 -2.25718811e-01 1.03925967e+00 -3.92414629e-01 4.78640720e-02 4.02301103e-01 1.50175914e-01 -1.14090002e+00 9.05325055e-01 7.45625794e-02 6.43911242e-01 -6.34165406e-01 8.14300358e-01 5.45808852e-01 -1.25524890e+00 1.36698976e-01 -1.69095069e-01 -5.07788453e-03 -1.41894072e-01 6.90465450e-01 -8.86085510e-01 1.57483280e-01 6.74524665e-01 4.68668193e-01 -3.73939514e-01 9.02484477e-01 -5.04972756e-01 5.75086653e-01 -2.11729586e-01 1.89129680e-01 4.22362506e-01 -4.52970684e-01 2.55004615e-01 1.36333990e+00 -5.20899177e-01 2.76308991e-02 5.66487193e-01 1.30722380e+00 -1.01777926e-01 2.84724112e-04 -3.09719920e-01 2.03867763e-01 8.15009549e-02 1.41889381e+00 -1.17854095e+00 -5.05558372e-01 -2.28420943e-01 8.82611156e-01 3.64188135e-01 4.77718771e-01 -1.17085695e+00 -2.61598378e-01 2.06064016e-01 8.01857933e-02 3.12215984e-01 4.02816013e-02 -8.04821610e-01 -8.95613968e-01 3.06393415e-01 -5.38655221e-01 4.00932103e-01 -5.77496409e-01 -1.20869815e+00 4.17728901e-01 8.70584175e-02 -8.42038810e-01 1.47884667e-01 -9.98338342e-01 -5.75232983e-01 6.86666012e-01 -1.59739876e+00 -1.26470530e+00 -4.85151917e-01 3.02058876e-01 5.63402474e-01 5.33092082e-01 3.40341181e-01 1.70984536e-01 -8.89487803e-01 3.96609426e-01 -1.99303523e-01 4.89404351e-01 4.25417423e-01 -1.69801891e+00 -7.14506656e-02 7.89293349e-01 7.68720210e-02 3.49895269e-01 5.61570823e-01 -6.07854605e-01 -6.78225100e-01 -1.30849779e+00 5.80251217e-01 -7.26281047e-01 4.86947417e-01 -7.67714798e-01 -9.20576215e-01 8.24931741e-01 -7.55108818e-02 5.30126095e-01 5.31237900e-01 -1.13951027e-01 -2.89381057e-01 -1.95535809e-01 -1.31479681e+00 2.30509341e-01 6.83301687e-01 -1.82191804e-01 -5.69699943e-01 3.68008345e-01 7.51968026e-01 -7.73903549e-01 -5.21596968e-01 7.91352510e-01 1.26932517e-01 -8.50137830e-01 9.07160103e-01 -6.19537592e-01 4.75381672e-01 -5.83469748e-01 -1.48937954e-02 -9.08679724e-01 1.56576365e-01 -1.47872284e-01 -1.50970846e-01 1.37998152e+00 7.30376840e-01 -2.52344787e-01 1.17758214e+00 8.76735151e-01 4.68528271e-02 -1.11159968e+00 -7.67128527e-01 -6.94509983e-01 4.70894016e-02 -3.33786815e-01 3.24317753e-01 8.89419734e-01 -1.25791341e-01 1.83470815e-01 -1.50777847e-02 4.65946794e-01 9.39816594e-01 3.76365125e-01 6.93974376e-01 -1.02718067e+00 -3.56545627e-01 -5.12600839e-02 -2.77704954e-01 -1.28408349e+00 2.87400961e-01 -6.26739442e-01 6.90399528e-01 -1.40543091e+00 3.69969338e-01 -6.27990842e-01 -2.29782015e-01 5.05883515e-01 -3.09839785e-01 3.15888554e-01 -2.47150674e-01 -1.06574252e-01 -9.62232828e-01 3.19432139e-01 1.23282301e+00 -5.40116906e-01 -2.58545756e-01 7.31783882e-02 -4.09709454e-01 1.23321700e+00 6.61742091e-01 -3.62387300e-01 -2.49859497e-01 -3.27815056e-01 -1.62142649e-01 -9.20912027e-02 5.41070819e-01 -8.27492416e-01 1.55219644e-01 -2.47974008e-01 5.33047318e-01 -8.09353054e-01 2.40083605e-01 -9.95511532e-01 -4.50471580e-01 1.11757450e-01 -3.55533749e-01 -5.71285605e-01 2.52162188e-01 7.89649308e-01 -3.99580926e-01 -1.90639004e-01 1.09542179e+00 -2.51715958e-01 -7.07649827e-01 2.66353637e-01 1.73735321e-01 2.61876851e-01 1.34752822e+00 -4.51809436e-01 -2.86363453e-01 2.00829610e-01 -8.00957739e-01 5.34554064e-01 1.95199728e-01 1.94984436e-01 4.56505418e-01 -9.74898934e-01 -3.19955468e-01 1.93212122e-01 1.16192371e-01 8.35088253e-01 -2.34137066e-02 6.21574640e-01 -6.12747788e-01 3.18840861e-01 2.73014188e-01 -9.56642926e-01 -1.27833927e+00 5.50120115e-01 6.25364959e-01 -4.42115277e-01 -1.94127128e-01 1.21664441e+00 5.92994452e-01 -5.51688135e-01 7.30188847e-01 -5.52469313e-01 -1.15763739e-01 -8.97362735e-03 4.22141433e-01 3.77954394e-01 -1.24876574e-01 -6.33993268e-01 -3.21037799e-01 4.49248195e-01 -6.77529052e-02 1.36054575e-01 1.12060273e+00 7.31501579e-02 -3.29641432e-01 5.81637263e-01 9.60077584e-01 -2.18415618e-01 -1.56267536e+00 -9.75072756e-03 1.10795178e-01 -4.13867116e-01 1.54972344e-03 -8.85314286e-01 -1.04400527e+00 9.10966516e-01 4.37013000e-01 1.35301933e-01 8.47232044e-01 5.50502725e-02 6.55650556e-01 2.27157548e-01 4.14580971e-01 -1.49036801e+00 1.25290900e-01 3.44542474e-01 6.07948542e-01 -1.61622488e+00 4.33496386e-02 -9.29917037e-01 -5.16889453e-01 9.23521340e-01 1.17582369e+00 -1.92961797e-01 4.77674276e-01 5.59765875e-01 4.02256958e-02 -2.23021105e-01 -2.91283607e-01 -1.05472691e-01 6.76361144e-01 4.47677284e-01 3.05455089e-01 7.89948851e-02 -2.14877814e-01 7.98820674e-01 2.49057874e-01 -3.21274877e-01 4.65166979e-02 8.11153054e-01 -6.80231392e-01 -6.53511465e-01 -6.33309603e-01 3.30694020e-01 -4.79694873e-01 5.15300855e-02 -6.40034139e-01 9.40198779e-01 6.84700310e-01 8.65713358e-01 1.69174030e-01 -4.83247712e-02 2.05699861e-01 -6.73052622e-03 4.64150071e-01 -9.02008474e-01 -4.75993574e-01 1.89188361e-01 3.96288447e-02 -5.17806292e-01 -3.94519389e-01 -3.46299142e-01 -1.49553812e+00 3.15934956e-01 -6.92709923e-01 1.67594552e-01 5.27906358e-01 1.08021033e+00 -3.71363401e-01 3.93881828e-01 4.34327006e-01 -1.04064012e+00 -4.33902740e-01 -5.61667860e-01 -6.86151862e-01 4.22274768e-01 4.87900555e-01 -6.29795432e-01 -6.27597094e-01 2.49002114e-01]
[9.510854721069336, 0.539635419845581]
2bb2b33c-7952-46a2-a0f1-c38490992f1e
unified-io-a-unified-model-for-vision
2206.08916
null
https://arxiv.org/abs/2206.08916v2
https://arxiv.org/pdf/2206.08916v2.pdf
Unified-IO: A Unified Model for Vision, Language, and Multi-Modal Tasks
We propose Unified-IO, a model that performs a large variety of AI tasks spanning classical computer vision tasks, including pose estimation, object detection, depth estimation and image generation, vision-and-language tasks such as region captioning and referring expression, to natural language processing tasks such as question answering and paraphrasing. Developing a single unified model for such a large variety of tasks poses unique challenges due to the heterogeneous inputs and outputs pertaining to each task, including RGB images, per-pixel maps, binary masks, bounding boxes, and language. We achieve this unification by homogenizing every supported input and output into a sequence of discrete vocabulary tokens. This common representation across all tasks allows us to train a single transformer-based architecture, jointly on over 90 diverse datasets in the vision and language fields. Unified-IO is the first model capable of performing all 7 tasks on the GRIT benchmark and produces strong results across 16 diverse benchmarks like NYUv2-Depth, ImageNet, VQA2.0, OK-VQA, Swig, VizWizGround, BoolQ, and SciTail, with no task-specific fine-tuning. Code and demos for Unified-IO are available at: https://unified-io.allenai.org.
['Aniruddha Kembhavi', 'Roozbeh Mottaghi', 'Rowan Zellers', 'Christopher Clark', 'Jiasen Lu']
2022-06-17
null
null
null
null
['object-categorization']
['computer-vision']
[ 1.36945605e-01 -6.83213770e-02 8.60921759e-03 -5.28361261e-01 -8.64298880e-01 -7.29292870e-01 7.50552535e-01 -1.41307130e-01 -4.16291624e-01 4.65502739e-01 1.20585971e-01 -4.02340591e-01 4.23935056e-01 -7.47754037e-01 -8.88742626e-01 -3.67484510e-01 3.55267555e-01 4.61404949e-01 4.40242141e-01 -2.93598473e-01 8.49645734e-02 4.88479108e-01 -1.47010100e+00 4.46766555e-01 5.08964300e-01 1.50280440e+00 3.05562705e-01 8.22611630e-01 -2.46614426e-01 1.12960184e+00 -4.55646694e-01 -5.39284945e-01 2.65926480e-01 -8.23389813e-02 -9.12438631e-01 -2.37913500e-03 9.64508057e-01 -6.85432911e-01 -5.75763822e-01 8.12267959e-01 6.76355541e-01 8.00857469e-02 6.09258771e-01 -1.44158602e+00 -1.04451168e+00 3.44364941e-01 -5.43555260e-01 1.06251001e-01 5.35669327e-01 7.00056016e-01 9.86545861e-01 -9.83778656e-01 6.79079354e-01 1.45827568e+00 3.97004157e-01 6.72143638e-01 -1.07647610e+00 -5.82426310e-01 1.88752964e-01 1.39576226e-01 -1.47595656e+00 -4.24209893e-01 3.96589488e-01 -4.47998166e-01 1.22886634e+00 1.24823935e-01 4.93389070e-01 1.22102368e+00 9.03943703e-02 1.04350197e+00 9.50515151e-01 -6.19992102e-03 1.20737061e-01 -1.49816334e-01 -9.27532092e-02 8.56889904e-01 -2.44980142e-01 -2.14580730e-01 -5.19860864e-01 2.33302027e-01 8.49801898e-01 -9.79712009e-02 -2.20915318e-01 -3.45634222e-01 -1.57396185e+00 7.60961235e-01 8.73560846e-01 -9.12809223e-02 -4.90360036e-02 7.10254252e-01 5.34487307e-01 1.25692949e-01 2.93555945e-01 5.99910080e-01 -5.70608795e-01 1.73023775e-01 -5.22889018e-01 3.85751933e-01 4.71882522e-01 1.26154530e+00 8.24814677e-01 -3.58926766e-02 -6.08618379e-01 7.65157938e-01 2.21176028e-01 9.24782336e-01 2.21862316e-01 -1.12641788e+00 6.25002503e-01 3.90744418e-01 3.86499614e-02 -7.37911046e-01 -4.01037842e-01 -1.31215528e-01 -8.22157145e-01 1.38833731e-01 3.09323072e-01 -2.78138425e-02 -1.53275979e+00 1.74722552e+00 1.46506056e-01 -9.45432112e-02 9.85039026e-02 1.07370877e+00 1.53529942e+00 8.40479434e-01 2.36171335e-01 6.11045301e-01 1.56008530e+00 -1.37848890e+00 -3.54992747e-01 -8.67178082e-01 2.71621764e-01 -6.53055370e-01 1.32216644e+00 2.19305322e-01 -1.12701571e+00 -4.88992274e-01 -8.12430322e-01 -9.09951448e-01 -6.21665239e-01 1.14643492e-01 8.05995047e-01 4.46755923e-02 -1.44918561e+00 -8.05814788e-02 -4.53690916e-01 -4.67391610e-01 6.86712742e-01 2.14493975e-01 -5.54315865e-01 -2.97106713e-01 -1.05187428e+00 9.98735607e-01 3.19450915e-01 1.71057478e-01 -1.13435459e+00 -7.34577835e-01 -1.15583277e+00 -1.65254638e-01 3.00665528e-01 -1.17593896e+00 1.48187137e+00 -8.24135303e-01 -1.27627254e+00 1.26661801e+00 -1.82010561e-01 -6.75867558e-01 5.40283024e-01 -2.17747241e-01 3.28431055e-02 7.03149885e-02 2.83510655e-01 1.60271370e+00 9.01480734e-01 -9.16851342e-01 -4.66809422e-01 -4.57504511e-01 3.91325921e-01 2.31041402e-01 1.68806717e-01 -2.95903683e-02 -9.75522220e-01 -4.87986624e-01 -4.18708399e-02 -7.33809590e-01 -2.48728007e-01 5.59301317e-01 -5.90169132e-01 -3.53038490e-01 7.75048018e-01 -4.63018775e-01 4.93073463e-01 -2.05078936e+00 3.09250414e-01 -3.82274747e-01 2.38134652e-01 7.14497715e-02 -3.59843314e-01 3.95752909e-03 1.75272018e-01 -5.64822182e-02 -3.72237206e-01 -5.08588731e-01 8.10495615e-02 2.62754560e-01 -5.94161153e-01 3.68114114e-01 4.85565394e-01 1.59260070e+00 -8.61057103e-01 -5.89537263e-01 6.04102135e-01 3.58070225e-01 -4.39643770e-01 3.63035053e-01 -7.65967965e-01 2.95416653e-01 -3.81610036e-01 1.00111270e+00 6.50605917e-01 -5.19149959e-01 -5.40017486e-01 -3.97287011e-01 -5.29575273e-02 1.80118918e-01 -6.74804926e-01 2.25433350e+00 -7.82031000e-01 9.24269974e-01 1.27539663e-02 -6.47881985e-01 7.66606748e-01 -7.41883144e-02 1.76277652e-01 -1.05816829e+00 2.25055546e-01 9.49164256e-02 -4.55288738e-01 -4.63002652e-01 6.83479548e-01 3.39162499e-01 -4.30288523e-01 2.58462697e-01 3.34172547e-01 -7.21828222e-01 4.39587161e-02 3.32018912e-01 9.65585232e-01 1.32526621e-01 2.49109298e-01 1.14220055e-02 3.53749663e-01 1.70255095e-01 3.63950171e-02 7.51270175e-01 -3.38884741e-01 1.05785596e+00 3.75701249e-01 -5.06966829e-01 -1.02055418e+00 -1.52231586e+00 -1.16028965e-01 1.26721525e+00 3.47825319e-01 -2.45237678e-01 -4.14611042e-01 -3.57824504e-01 2.37076804e-01 5.98685145e-01 -8.48826706e-01 -4.36335430e-02 -1.78020164e-01 -3.34493428e-01 7.61999965e-01 7.42922902e-01 8.56526792e-01 -1.34225059e+00 -8.01769078e-01 1.00542633e-02 -1.44958615e-01 -1.60213017e+00 -5.67154348e-01 3.66767943e-01 -4.90266949e-01 -7.91516542e-01 -9.40906465e-01 -7.66489208e-01 3.09123099e-01 1.86347052e-01 1.62624681e+00 -3.30151677e-01 -6.72119737e-01 3.83546203e-01 -1.56968385e-01 -4.58741099e-01 7.21928710e-03 1.22549526e-01 -4.70643491e-01 -3.12440693e-01 1.22781254e-01 -1.91489488e-01 -8.13172877e-01 2.21359462e-01 -8.70713234e-01 3.32709968e-01 5.87656379e-01 6.36170566e-01 7.44797349e-01 -1.14087617e+00 3.32372755e-01 -4.68520403e-01 2.13978723e-01 -3.11210632e-01 -7.05253005e-01 3.55659992e-01 2.76462883e-02 1.49263769e-01 4.38942015e-01 -2.84367770e-01 -6.78464353e-01 1.65644988e-01 -4.61896330e-01 -6.19720042e-01 -3.08944404e-01 -1.60292760e-02 -3.35845023e-01 -8.53219032e-02 8.14934850e-01 5.09719849e-01 -1.38711125e-01 -2.07054615e-01 1.01848447e+00 6.04142666e-01 1.16202879e+00 -4.47338134e-01 6.90920889e-01 5.88419855e-01 -1.63306937e-01 -7.06266105e-01 -1.17156708e+00 -4.37974185e-01 -5.11349380e-01 8.81377384e-02 1.39001608e+00 -1.28402174e+00 -8.40988040e-01 7.66336858e-01 -1.61746252e+00 -6.08605623e-01 -2.97688961e-01 -1.48031622e-01 -6.21789932e-01 -6.20429497e-03 -4.92067039e-01 -2.64737934e-01 -6.56826556e-01 -1.40405130e+00 1.59979951e+00 2.67865062e-01 7.92936459e-02 -8.05064499e-01 -2.33120948e-01 4.72071558e-01 5.69281340e-01 3.58441561e-01 6.38083816e-01 -1.78893626e-01 -8.72723281e-01 2.09009379e-01 -8.17332685e-01 2.94172108e-01 -5.50001264e-02 -9.60082635e-02 -1.12998259e+00 -2.42730509e-02 -6.64143324e-01 -1.10597181e+00 1.31428766e+00 3.53516221e-01 1.57606149e+00 1.23932719e-01 -1.75228029e-01 1.34272432e+00 1.29723620e+00 -9.41128656e-02 6.70376182e-01 3.25069487e-01 1.01119864e+00 2.86736578e-01 4.35455114e-01 1.87370732e-01 8.17130208e-01 7.09334612e-01 9.52397704e-01 -4.06561494e-01 -3.31526726e-01 -1.20444521e-01 3.15840214e-01 1.07532464e-01 4.72158641e-01 -3.93998802e-01 -1.01783800e+00 7.11002409e-01 -1.61882663e+00 -6.51154459e-01 4.29751799e-02 1.62195265e+00 8.14787447e-01 -8.51769820e-02 -4.56411764e-02 -5.67651987e-01 2.21817136e-01 4.77388591e-01 -1.01030374e+00 -5.08068025e-01 -4.22805011e-01 2.44297549e-01 7.35329390e-01 3.08212161e-01 -1.31722105e+00 1.38417184e+00 6.19361782e+00 5.92768252e-01 -1.41735697e+00 1.39049679e-01 9.09081936e-01 -9.00823623e-02 -2.43687615e-01 -3.33960563e-01 -7.61672020e-01 1.71681046e-02 5.42459786e-01 -1.24873528e-02 4.05409187e-01 8.81040573e-01 -1.51111573e-01 -2.43194968e-01 -1.27616370e+00 1.43382645e+00 2.58859068e-01 -1.59097624e+00 3.57092679e-01 -4.24447328e-01 6.92107022e-01 7.85687149e-01 3.51462960e-01 2.84201115e-01 3.94360632e-01 -1.42725253e+00 1.12279058e+00 2.72563666e-01 1.26015604e+00 -2.90448070e-01 4.24925059e-01 -4.63816337e-02 -1.15474796e+00 5.83123937e-02 -4.32767659e-01 5.17828353e-02 1.24469593e-01 2.46943846e-01 -6.78935766e-01 4.11638945e-01 8.29000413e-01 8.68275404e-01 -8.13435912e-01 8.97874117e-01 -3.43618959e-01 1.58116862e-01 -4.44132954e-01 1.41232535e-01 5.27177811e-01 1.19935945e-01 1.88339263e-01 1.17260134e+00 1.66095614e-01 -3.66332382e-02 1.12802491e-01 1.18332064e+00 -2.60129780e-01 -1.77805066e-01 -6.55371189e-01 1.46753758e-01 3.74114931e-01 1.25543892e+00 -5.47772884e-01 -3.67498249e-01 -4.42507267e-01 1.28379858e+00 2.63485253e-01 3.99754167e-01 -1.11727178e+00 -3.23315084e-01 9.89166737e-01 -1.54844010e-02 4.18982357e-01 -3.42549831e-01 -3.81540388e-01 -1.11088073e+00 -7.96426162e-02 -6.44074798e-01 3.06878060e-01 -1.34529424e+00 -1.03091490e+00 9.22230005e-01 1.34577408e-01 -9.56923306e-01 -4.06778216e-01 -9.46072996e-01 -4.76700634e-01 1.00762105e+00 -1.62951553e+00 -1.48446965e+00 -8.46751034e-01 9.13789153e-01 7.49264657e-01 -8.58291909e-02 6.11032486e-01 2.12974653e-01 -5.19664466e-01 5.65343678e-01 -3.80657852e-01 2.80897588e-01 8.80830050e-01 -1.26982546e+00 9.75055158e-01 5.88712394e-01 2.67673850e-01 1.90838650e-01 5.11382341e-01 -8.56408626e-02 -1.65404856e+00 -1.47660255e+00 3.85746092e-01 -6.61031246e-01 6.89038575e-01 -7.49731600e-01 -5.21554470e-01 7.83582389e-01 2.93077976e-01 5.86451709e-01 -9.70666632e-02 -3.46614867e-01 -6.99826896e-01 -8.98877904e-02 -9.39319670e-01 6.23319924e-01 1.20927525e+00 -7.75532842e-01 -3.68985802e-01 6.38877034e-01 1.11117494e+00 -9.33908284e-01 -5.95933557e-01 1.35179043e-01 4.12960500e-01 -8.94945443e-01 1.31139386e+00 -4.45902795e-01 8.31373811e-01 -3.75830829e-01 -4.21806216e-01 -1.05597627e+00 -2.47171223e-02 -2.40691900e-01 9.81383026e-02 9.73200738e-01 5.09579360e-01 -5.63971162e-01 5.35674751e-01 2.83103555e-01 -1.89248621e-01 -8.93751860e-01 -8.31877589e-01 -4.34083074e-01 8.06205273e-02 -6.81849182e-01 6.18989110e-01 5.72400212e-01 -7.96721935e-01 5.46041787e-01 -2.34050229e-01 -4.77771740e-03 5.68065286e-01 2.71005034e-01 1.05057216e+00 -7.90090263e-01 -1.86185598e-01 -3.44255954e-01 -4.63856161e-01 -1.47874296e+00 1.72605276e-01 -9.86786127e-01 1.17460176e-01 -2.01404428e+00 -3.12265977e-02 -3.55278850e-01 1.01259127e-01 8.57921779e-01 3.12389340e-02 6.36428595e-01 4.55375552e-01 2.89015472e-02 -8.88391018e-01 5.87499917e-01 1.43133223e+00 -5.61554313e-01 -3.56934443e-02 -4.70100075e-01 -7.79229522e-01 6.32397115e-01 5.37120759e-01 3.78735624e-02 -4.86388236e-01 -1.17653215e+00 1.21265247e-01 -2.49623079e-02 9.80179191e-01 -1.08335054e+00 2.85795361e-01 -2.08670363e-01 4.89381731e-01 -7.73692191e-01 7.09558547e-01 -4.36031818e-01 -1.84248939e-01 2.11420059e-01 -1.97951615e-01 2.86548615e-01 4.28270012e-01 2.41373420e-01 -2.65353769e-01 2.97619343e-01 7.34571695e-01 -2.34293938e-01 -1.52403092e+00 6.32239819e-01 1.52216345e-01 5.17757773e-01 1.11012924e+00 -2.19132558e-01 -6.51999652e-01 -4.16706651e-01 -5.20884454e-01 6.22712851e-01 5.60953915e-01 7.51655698e-01 8.32129896e-01 -1.09328890e+00 -8.55182707e-01 5.81730232e-02 6.43496275e-01 6.74050152e-01 2.46297285e-01 5.41942537e-01 -8.74641895e-01 6.59716964e-01 -3.92295986e-01 -1.00416100e+00 -8.00225079e-01 4.39151943e-01 5.13524473e-01 -3.98177467e-02 -7.18778074e-01 1.31720328e+00 7.53768563e-01 -3.98710877e-01 3.01381677e-01 -6.95301712e-01 1.28278047e-01 -2.04192296e-01 4.54372436e-01 -3.18270862e-01 5.59288450e-03 -5.82728922e-01 -6.06174886e-01 7.09808350e-01 -1.47834262e-02 -1.54715683e-02 1.04727364e+00 -1.33079603e-01 -9.93799940e-02 3.69946778e-01 1.24212909e+00 -5.62453985e-01 -1.41596830e+00 -2.72657841e-01 -3.18302035e-01 -2.21288204e-01 1.08592108e-01 -8.66020083e-01 -1.12626076e+00 1.08517849e+00 4.60867763e-01 -3.74343753e-01 1.19355464e+00 4.65256900e-01 7.79209316e-01 4.98797715e-01 5.49714088e-01 -6.09931350e-01 1.68345436e-01 7.57499397e-01 1.26000249e+00 -1.41252625e+00 -1.44454479e-01 -1.72838226e-01 -8.72657418e-01 6.90625191e-01 1.00682962e+00 -6.12720400e-02 2.08666518e-01 4.32313830e-01 2.27746174e-01 -1.42523050e-01 -1.03312707e+00 -4.18673992e-01 4.14799482e-01 7.33452201e-01 3.02791476e-01 -1.06478548e-02 3.76586795e-01 2.53441691e-01 -2.52293676e-01 -8.09510276e-02 3.53651792e-01 5.87919831e-01 -2.51026154e-01 -6.26181483e-01 -3.15574467e-01 3.76714140e-01 -1.22760423e-01 -2.81891674e-01 -5.95293224e-01 7.28078783e-01 1.24016032e-01 5.46392262e-01 3.64844352e-01 -2.54561901e-01 3.27709496e-01 -2.16255099e-01 5.63239932e-01 -7.00637519e-01 -4.42589164e-01 -4.38814551e-01 -1.19195834e-01 -8.67652059e-01 -2.39459723e-01 -2.61990666e-01 -1.18532336e+00 -4.50283326e-02 1.27427176e-01 -4.12018865e-01 7.36888349e-01 7.96814680e-01 3.42777133e-01 6.98991299e-01 1.65863737e-01 -1.09913635e+00 -3.99098843e-01 -9.03300643e-01 -1.86165407e-01 3.40199381e-01 6.20153010e-01 -6.14534020e-01 -3.67948115e-02 -1.82849430e-02]
[10.263580322265625, 1.3570305109024048]
c57ab201-9e5b-4836-b50e-2f66ca25e937
disentangling-human-dynamics-for-pedestrian
1911.01138
null
https://arxiv.org/abs/1911.01138v2
https://arxiv.org/pdf/1911.01138v2.pdf
Disentangling Human Dynamics for Pedestrian Locomotion Forecasting with Noisy Supervision
We tackle the problem of Human Locomotion Forecasting, a task for jointly predicting the spatial positions of several keypoints on the human body in the near future under an egocentric setting. In contrast to the previous work that aims to solve either the task of pose prediction or trajectory forecasting in isolation, we propose a framework to unify the two problems and address the practically useful task of pedestrian locomotion prediction in the wild. Among the major challenges in solving this task is the scarcity of annotated egocentric video datasets with dense annotations for pose, depth, or egomotion. To surmount this difficulty, we use state-of-the-art models to generate (noisy) annotations and propose robust forecasting models that can learn from this noisy supervision. We present a method to disentangle the overall pedestrian motion into easier to learn subparts by utilizing a pose completion and a decomposition module. The completion module fills in the missing key-point annotations and the decomposition module breaks the cleaned locomotion down to global (trajectory) and local (pose keypoint movements). Further, with Quasi RNN as our backbone, we propose a novel hierarchical trajectory forecasting network that utilizes low-level vision domain specific signals like egomotion and depth to predict the global trajectory. Our method leads to state-of-the-art results for the prediction of human locomotion in the egocentric view. Project pade: https://karttikeya.github.io/publication/plf/
['Adrien Gaidon', 'Kuan-Hui Lee', 'Juan Carlos Niebles', 'Ehsan Adeli', 'Karttikeya Mangalam']
2019-11-04
null
null
null
null
['human-dynamics']
['computer-vision']
[-2.16481790e-01 -4.68198098e-02 -1.75522361e-02 -3.23676705e-01 -6.67675078e-01 -3.14988643e-01 5.88456810e-01 -3.48247081e-01 -3.59778315e-01 6.59959912e-01 6.51352882e-01 2.40926728e-01 2.85052985e-01 -7.69910812e-01 -8.94127011e-01 -8.08488667e-01 -1.79056913e-01 5.47923326e-01 3.48869324e-01 -3.32822919e-01 -9.01212618e-02 2.86867708e-01 -1.85997343e+00 4.62021708e-01 6.46333754e-01 7.42040455e-01 2.45387524e-01 1.00225329e+00 4.48951989e-01 8.53376567e-01 1.45935547e-02 -5.54109216e-01 2.50679165e-01 -1.96218744e-01 -8.34472001e-01 1.91946313e-01 6.72147691e-01 -6.25428379e-01 -7.53220797e-01 6.37373924e-01 5.80188036e-01 3.10824603e-01 5.66009343e-01 -1.44551432e+00 -8.24819654e-02 1.92424625e-01 -4.32269871e-01 -3.83823970e-03 5.22346616e-01 3.50034416e-01 8.27046275e-01 -7.74895430e-01 9.26754296e-01 1.13981915e+00 9.93070483e-01 7.19118416e-01 -1.03283083e+00 -1.54670671e-01 5.42390406e-01 6.29560709e-01 -1.14074194e+00 -4.61976945e-01 6.68860078e-01 -8.38625312e-01 9.64172959e-01 3.27392742e-02 9.34107721e-01 1.72981691e+00 1.14997685e-01 1.08916974e+00 3.87611777e-01 -2.40221731e-02 1.44967631e-01 -4.68721986e-01 -1.95922419e-01 8.50919902e-01 -5.34615554e-02 1.13900471e-02 -5.72900712e-01 2.78013736e-01 7.43042529e-01 1.41414776e-01 -2.87958056e-01 -8.09693456e-01 -1.61023688e+00 6.64508462e-01 5.50336182e-01 -2.72434115e-01 -4.63695735e-01 4.53591704e-01 5.99305034e-01 -2.14397043e-01 5.77341080e-01 -2.81857383e-02 -6.59667015e-01 -3.72260302e-01 -9.16382551e-01 8.40563536e-01 7.29242206e-01 9.65713680e-01 5.90634525e-01 -1.43677875e-01 5.05386945e-03 4.80772495e-01 2.68159121e-01 3.95670921e-01 2.05016926e-01 -1.19682574e+00 9.19996262e-01 2.26910293e-01 5.45642018e-01 -1.09698772e+00 -7.37551808e-01 -3.20419222e-01 -7.64131904e-01 -7.71048218e-02 8.68239045e-01 -2.30429351e-01 -7.83173144e-01 1.85132039e+00 5.73445201e-01 3.38667363e-01 -2.99533635e-01 1.14885592e+00 7.90577412e-01 5.92179298e-01 1.59909412e-01 2.30209589e-01 1.24370062e+00 -1.52340150e+00 -2.22775027e-01 -1.84421375e-01 8.49689305e-01 -3.55996549e-01 7.11218655e-01 2.71887273e-01 -1.02970624e+00 -7.38297820e-01 -6.93066001e-01 -3.86321038e-01 -3.52277875e-01 5.19383430e-01 5.08765459e-01 2.85451561e-01 -1.10539544e+00 7.54727364e-01 -1.27569807e+00 -6.90610349e-01 2.37700701e-01 1.52949706e-01 -5.81085742e-01 -9.48591009e-02 -9.37136054e-01 7.98932731e-01 1.27917975e-01 3.66099477e-01 -1.00272679e+00 -6.78255916e-01 -1.11369145e+00 -1.42977357e-01 2.39461616e-01 -1.43669891e+00 1.13691604e+00 -4.60144460e-01 -1.28927124e+00 7.66031981e-01 -3.97728652e-01 -5.42411149e-01 1.13171899e+00 -5.80934882e-01 1.22840673e-01 1.31684378e-01 3.97282839e-01 1.11472511e+00 6.68644547e-01 -1.02374697e+00 -9.17786241e-01 -5.40178835e-01 -2.75604017e-02 2.67617792e-01 1.24021750e-02 -5.69745481e-01 -6.57568693e-01 -6.83547795e-01 7.17326105e-02 -1.11373150e+00 -4.94646281e-01 3.22716534e-02 -4.63072032e-01 -1.43787980e-01 6.53824389e-01 -1.01613939e+00 9.04602885e-01 -1.65287852e+00 6.78252220e-01 -3.03627044e-01 2.17207909e-01 -7.06662685e-02 -1.12322114e-01 4.24850911e-01 5.22851151e-05 -4.40522879e-01 -1.43025249e-01 -9.00734842e-01 7.63877705e-02 2.72962213e-01 -3.76347691e-01 6.54029012e-01 3.76403742e-02 1.07782698e+00 -1.17704463e+00 -2.11320698e-01 4.30730402e-01 7.14565933e-01 -9.05511200e-01 1.98898733e-01 -2.31699735e-01 9.44940865e-01 -3.53966415e-01 5.83802462e-01 5.64682662e-01 -1.18413866e-01 6.95254607e-03 -3.19677919e-01 -2.72063076e-01 2.29630232e-01 -1.13573062e+00 2.16217685e+00 -2.81638265e-01 4.40967590e-01 -1.52437538e-01 -1.11865485e+00 4.32044536e-01 3.12332332e-01 9.18667793e-01 -3.22898686e-01 1.84080936e-02 -1.98042169e-02 -6.48875535e-01 -8.64433110e-01 6.64426565e-01 1.35973558e-01 -1.63403645e-01 -1.35540692e-02 1.68726251e-01 2.89466530e-01 2.04736203e-01 -7.78879598e-02 1.12618685e+00 1.02086639e+00 9.47804898e-02 1.45626619e-01 5.39704144e-01 2.67549872e-01 6.47424757e-01 4.25448060e-01 -4.36900496e-01 9.31647122e-01 4.05564070e-01 -8.81511748e-01 -1.39746892e+00 -1.08957219e+00 3.75024974e-01 1.13855886e+00 1.18736356e-01 -6.41630828e-01 -8.93594742e-01 -7.99921572e-01 -3.42716500e-02 2.90603966e-01 -7.47031987e-01 1.96474329e-01 -1.02892804e+00 -7.27108419e-01 4.30404365e-01 8.50121140e-01 5.22557437e-01 -9.04908776e-01 -8.08889747e-01 1.57743841e-01 -8.57285023e-01 -1.44220650e+00 -4.34142560e-01 -1.51748449e-01 -6.40953481e-01 -1.02945971e+00 -1.02229631e+00 -5.55544257e-01 5.00437438e-01 2.12108880e-01 1.16281617e+00 -2.88189799e-01 -2.56893277e-01 5.96418679e-01 -2.93466330e-01 1.17941782e-01 1.18527167e-01 2.11451218e-01 2.19698563e-01 -6.57035187e-02 3.12151574e-02 -7.00281620e-01 -1.04877937e+00 3.37950259e-01 -1.36765257e-01 3.59384298e-01 1.56887487e-01 8.00397456e-01 5.55019379e-01 -3.06335509e-01 2.97912866e-01 -4.81002897e-01 -2.48927191e-01 -6.86208606e-01 -3.25405389e-01 -1.63935974e-01 1.65364295e-01 -1.63819611e-01 6.04390919e-01 -1.86561182e-01 -1.04951251e+00 7.03039944e-01 -4.50915664e-01 -5.04257381e-01 -5.25269866e-01 9.55186412e-02 -2.97438085e-01 1.86072096e-01 4.48892921e-01 1.67226672e-01 -1.51319563e-01 -5.06420493e-01 6.15777850e-01 7.08858892e-02 7.91135967e-01 -5.87415576e-01 7.13578880e-01 8.87461424e-01 2.25100040e-01 -8.24405134e-01 -7.85881698e-01 -6.12140536e-01 -1.30369365e+00 -4.88963515e-01 1.30223548e+00 -1.41461945e+00 -8.61609101e-01 5.16843796e-01 -1.28236341e+00 -5.64071178e-01 -2.36377805e-01 3.96648735e-01 -1.26512587e+00 6.99560285e-01 -6.23115420e-01 -7.09414721e-01 -6.12606071e-02 -1.11091685e+00 1.53959513e+00 -2.03081354e-01 -4.04379487e-01 -9.82512474e-01 2.71608591e-01 6.30525470e-01 -1.85562953e-01 7.38677919e-01 3.80283237e-01 -4.20002416e-02 -8.20635855e-01 -1.68622211e-01 -2.31897235e-02 -8.07792991e-02 -2.54416764e-01 -2.09752217e-01 -9.00409758e-01 -1.39560223e-01 -2.05461979e-01 -1.39832333e-01 1.20736194e+00 7.15726972e-01 9.68029618e-01 -3.04623127e-01 -5.28142989e-01 9.32435036e-01 1.01289916e+00 -4.50054348e-01 6.47604406e-01 5.21677434e-01 1.27378094e+00 1.06337094e+00 7.50264704e-01 6.46860540e-01 1.13855886e+00 1.10531211e+00 5.29929399e-01 2.27864176e-01 -2.20805928e-01 -6.25635386e-01 5.47504246e-01 5.57216942e-01 -6.25699401e-01 -2.43571118e-01 -9.33533311e-01 8.41073394e-01 -2.47512960e+00 -1.35032582e+00 -3.07357639e-01 2.02441716e+00 2.08372489e-01 -2.51472443e-01 7.53939033e-01 4.28172536e-02 5.21502495e-01 2.98603982e-01 -4.00939673e-01 1.04370169e-01 2.41043597e-01 -5.43424547e-01 4.50556636e-01 4.77174491e-01 -1.50451207e+00 1.05770719e+00 5.57890987e+00 4.30221856e-01 -9.48223472e-01 1.24363616e-01 5.31401038e-01 -3.20951045e-01 1.30715206e-01 -1.89198270e-01 -9.93987739e-01 4.50466216e-01 8.46168876e-01 4.94173199e-01 2.60783494e-01 1.00469494e+00 6.27556443e-01 2.82958825e-03 -1.21166372e+00 9.67041612e-01 1.36718350e-02 -1.24493575e+00 1.81307849e-02 1.02740243e-01 6.98338389e-01 1.69445127e-01 2.31533051e-02 2.17090949e-01 1.90762445e-01 -7.00674951e-01 1.05842924e+00 8.05502117e-01 3.99932444e-01 -6.26101017e-01 5.15267551e-01 7.05777764e-01 -1.57272696e+00 -2.95978338e-01 -2.80033439e-01 -3.57424706e-01 5.92186034e-01 3.63085240e-01 -5.41440070e-01 6.84036076e-01 9.36736345e-01 1.26772594e+00 -4.35803562e-01 1.05885017e+00 -2.40313038e-01 1.79577246e-01 -1.97649330e-01 4.63398337e-01 2.60129243e-01 -1.89907312e-01 7.83026278e-01 1.21159804e+00 5.58567464e-01 -1.47381797e-01 2.95868278e-01 6.51177764e-01 2.56316513e-01 -1.99501917e-01 -6.80986166e-01 4.95247781e-01 -4.11528423e-02 1.19215667e+00 -6.46210790e-01 -3.40867519e-01 -2.72550374e-01 1.26536489e+00 5.03863215e-01 4.83511209e-01 -9.80922580e-01 2.91013658e-01 9.85345185e-01 4.33184117e-01 6.93874598e-01 -5.57554245e-01 -2.57713765e-01 -1.56719947e+00 3.35075408e-01 -3.02605331e-01 3.94770503e-01 -7.59724379e-01 -1.09288704e+00 3.08620661e-01 1.57179050e-02 -1.46830261e+00 -7.01743543e-01 -7.16335118e-01 -5.72327137e-01 6.51542664e-01 -1.27491140e+00 -1.68555200e+00 -6.15767717e-01 5.10316908e-01 8.39115560e-01 7.81056210e-02 5.05689442e-01 3.02187741e-01 -5.48444986e-01 2.64852315e-01 -1.64080232e-01 1.87182829e-01 6.47624433e-01 -1.24067497e+00 8.47181559e-01 8.52644384e-01 -8.15704614e-02 3.42322499e-01 8.15898955e-01 -7.63328910e-01 -1.23265207e+00 -1.45148158e+00 1.14035499e+00 -1.15528822e+00 5.32442451e-01 -5.01632154e-01 -3.51114005e-01 8.72672677e-01 -4.99998242e-01 1.65510178e-01 2.76291460e-01 1.85418818e-02 -2.24881023e-01 1.88679114e-01 -8.31063807e-01 7.96353102e-01 1.61176193e+00 -3.50519627e-01 -2.22804829e-01 3.63743335e-01 5.14562130e-01 -5.83710253e-01 -7.26655900e-01 3.17867219e-01 8.53050172e-01 -1.16967559e+00 1.38826716e+00 -6.51291966e-01 8.14459682e-01 -3.66515964e-01 -2.74845928e-01 -1.19907033e+00 -2.29518056e-01 -4.60786134e-01 -4.33991611e-01 8.71965170e-01 -3.84768397e-02 -1.01140626e-01 1.31324553e+00 4.10924375e-01 -3.32190365e-01 -8.84344459e-01 -1.16830969e+00 -4.86371398e-01 -7.63172582e-02 -5.52810133e-01 3.42947662e-01 5.37240565e-01 1.05867558e-03 1.25792891e-01 -1.00893533e+00 1.96372315e-01 8.26083481e-01 -7.11989850e-02 1.23007584e+00 -1.05005157e+00 -1.40346348e-01 -1.42540470e-01 -7.91342676e-01 -1.49781120e+00 3.44666600e-01 -6.93177581e-01 2.79426694e-01 -1.71661389e+00 3.45761776e-02 6.72454685e-02 2.71723926e-01 1.51322231e-01 -1.27451330e-01 3.54750633e-01 2.29236558e-01 2.30857000e-01 -8.19963217e-01 8.22779179e-01 1.17072189e+00 3.13978940e-02 -1.13292336e-01 3.62211168e-01 -2.31761694e-01 1.00898099e+00 3.87737334e-01 -2.28557602e-01 -3.54004949e-01 -5.43244660e-01 1.95347369e-01 3.08127850e-01 1.06882381e+00 -1.35288799e+00 3.97598922e-01 6.31286800e-02 5.23729861e-01 -9.76553857e-01 7.99735129e-01 -6.20206714e-01 5.05858064e-02 4.86421525e-01 -5.91544211e-02 1.68560013e-01 -1.48474947e-01 9.30479407e-01 4.51507345e-02 2.96799481e-01 4.03061420e-01 -3.43601584e-01 -1.01264501e+00 6.54118419e-01 -3.47894937e-01 -4.36971933e-02 8.95753682e-01 -4.16505307e-01 -2.61054426e-01 -4.90273327e-01 -1.21835685e+00 4.11159426e-01 5.64542413e-01 5.77799737e-01 5.57796299e-01 -1.35221720e+00 -6.66985035e-01 -1.96620030e-03 6.70696199e-02 1.33531183e-01 7.73919284e-01 1.13334537e+00 -5.56718767e-01 5.73496521e-01 -4.00784284e-01 -8.69272351e-01 -1.06136811e+00 4.49059904e-01 3.58521044e-01 -3.62546355e-01 -8.71217668e-01 7.82729864e-01 4.34812754e-01 -5.80354869e-01 2.12735027e-01 -2.50425249e-01 -3.80390346e-01 2.02339590e-01 3.93304765e-01 8.44483018e-01 -1.23787351e-01 -1.18230152e+00 -2.78640479e-01 7.88595259e-01 2.09795937e-01 -3.02504152e-02 1.57374299e+00 -4.97794926e-01 1.91122979e-01 4.03234094e-01 1.16750610e+00 -3.98049057e-01 -1.88641357e+00 2.05774203e-01 -2.40663365e-01 -4.70237136e-01 -4.50255871e-01 -3.32349658e-01 -8.42894077e-01 1.06756604e+00 3.58541787e-01 -2.91197717e-01 7.20795631e-01 -1.66582778e-01 1.19485235e+00 4.20120656e-01 5.70099175e-01 -1.04159105e+00 7.73358494e-02 7.54386544e-01 8.34815741e-01 -1.16893566e+00 -9.59640667e-02 -6.09657586e-01 -7.74182379e-01 1.11339331e+00 7.46651828e-01 -2.81788707e-01 5.13099849e-01 -7.61470199e-02 -1.81015760e-01 -1.01535935e-02 -7.47103214e-01 -3.37577552e-01 3.25652421e-01 9.29287612e-01 2.61235565e-01 2.97599081e-02 1.52751505e-01 6.70144260e-01 -4.88317877e-01 1.14742137e-01 3.65956306e-01 6.04807436e-01 -3.22264373e-01 -8.94924402e-01 -2.59729385e-01 4.10063751e-02 -6.23051934e-02 2.57315189e-01 -5.49558215e-02 5.91754615e-01 4.58124071e-01 6.14665270e-01 8.23286101e-02 -6.35939181e-01 4.54184026e-01 2.47108676e-02 5.45162857e-01 -3.54862034e-01 -3.00852507e-01 -9.30348486e-02 2.99043894e-01 -1.07508683e+00 -5.23013115e-01 -9.75830913e-01 -9.37028766e-01 -4.54922050e-01 3.60069811e-01 -2.55613893e-01 3.69231641e-01 1.07724094e+00 2.84689397e-01 5.22675216e-01 1.73217893e-01 -1.86415482e+00 -2.45315045e-01 -6.16135001e-01 -2.75636673e-01 5.45814514e-01 5.66487730e-01 -9.16644871e-01 -1.39475241e-01 3.74490172e-01]
[7.171999454498291, -0.35317516326904297]
ed7b3717-473e-47c7-9e7e-6a53edf036eb
intersection-warning-system-for-occlusion
2303.07227
null
https://arxiv.org/abs/2303.07227v1
https://arxiv.org/pdf/2303.07227v1.pdf
Intersection Warning System for Occlusion Risks using Relational Local Dynamic Maps
This work addresses the task of risk evaluation in traffic scenarios with limited observability due to restricted sensorial coverage. Here, we concentrate on intersection scenarios that are difficult to access visually. To identify the area of sight, we employ ray casting on a local dynamic map providing geometrical information and road infrastructure. Based on the area with reduced visibility, we first model scene entities that pose a potential risk without being visually perceivable yet. Then, we predict a worst-case trajectory in the survival analysis for collision risk estimation. Resulting risk indicators are utilized to evaluate the driver's current behavior, to warn the driver in critical situations, to give suggestions on how to act safely or to plan safe trajectories. We validate our approach by applying the resulting intersection warning system on real world scenarios. The proposed system's behavior reveals to mimic the general behavior of a correctly acting human driver.
['Julian Eggert', 'Benedict Flade', 'Tim Puphal', 'Yuda Li', 'Florian Damerow']
2023-03-13
null
null
null
null
['survival-analysis']
['miscellaneous']
[ 3.55988741e-01 5.24219334e-01 1.68899357e-01 -2.20307127e-01 -7.07018733e-01 -3.48596215e-01 6.09188318e-01 7.58807361e-01 -6.99591756e-01 6.07047975e-01 9.60437134e-02 -9.01025951e-01 -4.21500683e-01 -1.09037161e+00 -4.68717337e-01 -5.37097454e-01 -2.44810045e-01 2.61171043e-01 6.01971865e-01 -3.43597025e-01 2.02251673e-01 1.13989282e+00 -1.93157411e+00 -1.54777318e-01 7.21871495e-01 7.80157804e-01 1.89562023e-01 6.53191626e-01 3.24786246e-01 4.13133770e-01 -5.34231067e-01 -8.57414529e-02 2.30148494e-01 2.51024097e-01 -3.08830202e-01 -1.83704138e-01 1.17191173e-01 -4.88049775e-01 -8.24404880e-02 8.01447272e-01 2.32297570e-01 3.67694616e-01 6.97703183e-01 -1.23399496e+00 8.95690382e-01 -4.08349670e-02 7.30907843e-02 4.40371484e-01 7.28758276e-01 4.24450755e-01 2.61985987e-01 -3.59112263e-01 5.62542915e-01 1.05532026e+00 2.11523518e-01 2.94617563e-01 -9.21610832e-01 -3.20509344e-01 3.94804716e-01 6.20258808e-01 -1.63365746e+00 -3.79223496e-01 8.23424160e-01 -5.50373852e-01 4.58637089e-01 4.59899157e-01 6.67294323e-01 6.61297858e-01 2.82860696e-01 2.27143869e-01 9.15987670e-01 -1.67566985e-01 4.93469894e-01 2.17383325e-01 2.07235992e-01 7.03298509e-01 2.99816340e-01 6.18154824e-01 -1.71823055e-01 -1.43763170e-01 -3.17407578e-01 -1.29169509e-01 -1.50761381e-01 -1.44381911e-01 -7.27578998e-01 4.44260061e-01 5.94607413e-01 8.83901585e-03 -8.80540073e-01 -1.16219684e-01 -6.51493371e-02 -1.49743751e-01 2.20620543e-01 -1.07093409e-01 3.44759703e-01 -1.37305245e-01 -5.49808681e-01 3.62886578e-01 5.99191844e-01 5.96754313e-01 8.79395664e-01 -1.14137053e-01 -2.51926869e-01 7.68603012e-02 2.62255430e-01 5.75564981e-01 -5.28899491e-01 -5.48960865e-01 5.12291968e-01 8.23192716e-01 3.96579385e-01 -1.08329630e+00 -6.99752331e-01 -2.42128491e-01 -4.77372468e-01 1.09506845e+00 6.02131009e-01 -2.01842785e-01 -6.92397058e-01 1.18216276e+00 5.02462268e-01 5.05462050e-01 1.84530228e-01 8.16206694e-01 3.40698838e-01 6.03424668e-01 4.23319250e-01 -1.09419592e-01 1.36472690e+00 -1.15108741e-02 -4.68049735e-01 -1.93291783e-01 6.73275471e-01 -4.67647314e-01 5.11487007e-01 6.53517365e-01 -7.70280898e-01 -5.07312000e-01 -9.97369468e-01 5.88837147e-01 -6.10062778e-01 2.14333415e-01 2.52319705e-02 7.44497895e-01 -8.83513033e-01 2.19762355e-01 -5.80439270e-01 -4.49964523e-01 2.41287038e-01 1.48905680e-01 -2.24112511e-01 -2.30814382e-01 -1.21215248e+00 1.38824856e+00 4.42036003e-01 4.00833488e-01 -1.36484253e+00 -5.06435573e-01 -8.07618141e-01 -3.86483455e-03 6.23215139e-01 -3.58912259e-01 8.42502058e-01 -2.13463902e-02 -9.64846134e-01 4.32066411e-01 -3.95143420e-01 -7.93395936e-01 8.39528203e-01 -2.25539859e-02 -8.27934682e-01 6.48974627e-02 -3.80965210e-02 3.20209771e-01 3.43640983e-01 -1.55794561e+00 -1.02224314e+00 -2.06221700e-01 3.33452314e-01 3.45546931e-01 1.89300880e-01 -1.69551671e-01 -2.40323603e-01 1.07213683e-01 -2.69754380e-01 -8.49117994e-01 -5.98488033e-01 -5.67919314e-02 -6.74718678e-01 -2.69991718e-02 6.99272990e-01 -5.50498068e-01 1.39128494e+00 -1.91438305e+00 -4.63171929e-01 9.56502795e-01 2.38608599e-01 2.44528994e-01 1.19210951e-01 4.86577779e-01 2.95693874e-01 -3.23900223e-01 -1.70471370e-01 -1.75916314e-01 -3.49205554e-01 3.27017680e-02 -1.84713289e-01 4.81154621e-01 -1.28845170e-01 3.18129152e-01 -8.50738347e-01 -4.16310191e-01 9.09563065e-01 3.17412674e-01 1.04240388e-01 4.64176923e-01 5.01421466e-02 4.92983192e-01 -7.11534858e-01 4.54960018e-01 6.88799024e-01 8.46318126e-01 -2.27534026e-01 9.59097221e-02 -7.76348412e-01 2.25906327e-01 -1.21454811e+00 9.13027465e-01 -7.40816593e-01 7.05753267e-01 -4.87086773e-02 -6.92754626e-01 1.01360238e+00 2.35882089e-01 2.53825665e-01 -7.86953688e-01 1.78220257e-01 -1.47925735e-01 -1.34130180e-01 -6.05865896e-01 2.73031235e-01 2.10658103e-01 -4.11425121e-02 2.98730403e-01 -8.83305430e-01 3.09899539e-01 1.33218586e-01 1.03596188e-01 1.28565288e+00 -3.64771605e-01 3.05270553e-01 -7.37551972e-02 7.83901036e-01 1.93241268e-01 8.55723917e-02 6.33778632e-01 -2.66210407e-01 1.08948484e-01 3.67929071e-01 -6.33135617e-01 -3.86157632e-01 -1.38433850e+00 -4.91217263e-02 3.91970485e-01 7.06912100e-01 -5.73027134e-03 -8.64358008e-01 -4.69135940e-01 -2.53834188e-01 1.42271733e+00 -5.49717963e-01 -4.80258733e-01 -5.39023399e-01 -4.11629230e-01 2.63823807e-01 1.73680577e-02 2.85368204e-01 -7.90258706e-01 -1.45715678e+00 3.43554616e-01 -1.78164076e-02 -9.10231054e-01 1.95577741e-01 -4.63387102e-01 -3.46544117e-01 -1.41581261e+00 -1.96022242e-01 -4.63986360e-02 8.65390658e-01 3.18134934e-01 8.17835391e-01 2.57179230e-01 -4.98770535e-01 6.18297219e-01 1.70744006e-02 -7.30894864e-01 -7.50130773e-01 -3.25607806e-01 -1.12317456e-02 4.20505732e-01 3.73718768e-01 -1.53798401e-01 -8.34103167e-01 5.81582189e-01 -4.55243766e-01 5.35634235e-02 2.74791002e-01 -1.67542085e-01 4.07216102e-01 4.79924351e-01 1.92475289e-01 -3.33809793e-01 7.97892749e-01 -5.93456745e-01 -1.08055198e+00 4.32084948e-01 -5.92703938e-01 -1.93311617e-01 3.14377815e-01 1.13443602e-02 -1.44220579e+00 3.15465838e-01 -2.21922442e-01 2.84983218e-02 -1.00297356e+00 2.56020844e-01 -3.47732961e-01 -1.01427265e-01 6.03618503e-01 -1.54303044e-01 -3.64136994e-01 -1.99954540e-01 2.37325743e-01 2.89845318e-01 5.23159504e-01 -1.97544292e-01 9.52975869e-01 6.92632556e-01 5.15690625e-01 -1.00359750e+00 -1.65128395e-01 -6.64130747e-01 -6.56262159e-01 -1.24504757e+00 9.60481286e-01 -4.96879160e-01 -1.30403221e+00 -3.44025493e-02 -1.25115263e+00 8.98985472e-03 -1.63518101e-01 6.15662158e-01 -3.47743452e-01 1.21655785e-01 4.37239408e-01 -1.52884412e+00 3.10628593e-01 -1.12185824e+00 9.43675399e-01 5.67255877e-02 -4.52640057e-02 -1.02679443e+00 1.26012087e-01 2.49264240e-01 1.77902624e-01 6.20415390e-01 7.17480481e-01 -2.86027968e-01 -9.69427705e-01 -5.90689540e-01 -9.55289826e-02 -2.11627901e-01 -8.84296820e-02 -1.41856313e-01 -1.16739321e+00 1.87008917e-01 -4.87822592e-01 5.70933998e-01 6.31219268e-01 4.52696711e-01 8.33677709e-01 -7.98223540e-02 -9.23091054e-01 2.12857500e-01 1.24463391e+00 5.12926459e-01 8.40572178e-01 1.40955910e-01 4.27159250e-01 1.33839917e+00 1.14014339e+00 4.25794780e-01 6.15207314e-01 9.85647917e-01 9.98308420e-01 -4.28247452e-01 -2.98380926e-02 -3.16676110e-01 2.78306246e-01 -2.78585225e-01 -3.37524801e-01 -6.14941120e-01 -1.17572880e+00 5.80963075e-01 -1.72009504e+00 -9.73278940e-01 -5.87750137e-01 2.60849571e+00 -3.88932079e-01 4.94238466e-01 3.75237405e-01 2.45142192e-01 7.02826023e-01 -2.05439299e-01 -2.24791527e-01 -4.90438998e-01 3.52416694e-01 -3.76916647e-01 9.63175118e-01 1.15740621e+00 -8.23113203e-01 6.28331184e-01 5.33351851e+00 6.05665147e-01 -8.17861974e-01 7.04251379e-02 5.24238646e-01 -9.37418863e-02 -3.64319593e-01 2.54578739e-01 -9.62819934e-01 4.23050016e-01 1.17149615e+00 -2.54478544e-01 1.04938529e-01 4.46662158e-01 8.74663115e-01 -8.78626049e-01 -8.71706486e-01 4.66856539e-01 -1.71804070e-01 -1.05883658e+00 -2.82335103e-01 2.27476478e-01 -1.41248479e-01 -3.32527757e-01 -1.93510026e-01 -6.93324134e-02 3.36093098e-01 -9.55487847e-01 6.62712514e-01 1.10069132e+00 5.82077205e-01 -1.04627824e+00 4.42769974e-01 7.20853925e-01 -1.40002906e+00 -1.41000867e-01 6.78717047e-02 -1.54063895e-01 1.00951111e+00 4.35204893e-01 -1.48140037e+00 5.53132057e-01 2.17974618e-01 7.65195414e-02 -6.80425167e-01 1.45779777e+00 -3.17985743e-01 5.39625764e-01 -6.13854647e-01 -5.03420644e-02 2.74287164e-01 -2.17379808e-01 1.07341921e+00 1.01064146e+00 4.88792598e-01 1.86336920e-01 1.40928671e-01 7.12704659e-01 7.58773446e-01 -7.13205934e-02 -1.34112275e+00 1.00870597e+00 3.12597513e-01 8.98272991e-01 -8.03062975e-01 -4.57145125e-02 -1.15207352e-01 4.98778492e-01 -7.46722892e-02 6.63768232e-01 -6.64345503e-01 -1.97370037e-01 7.27344930e-01 6.68673575e-01 -3.67279470e-01 -1.49486154e-01 -1.34079278e-01 -3.02851826e-01 6.90006614e-02 2.39168882e-01 3.48613322e-01 -7.94947565e-01 -3.08062285e-01 8.41171801e-01 7.19401538e-01 -1.51170373e+00 -2.70840645e-01 -3.99202585e-01 -1.08930385e+00 1.02686667e+00 -1.54469621e+00 -9.06113446e-01 -5.17951667e-01 6.20434761e-01 2.54179478e-01 -8.58233720e-02 4.40902591e-01 1.60859659e-01 -4.54820752e-01 2.20788315e-01 -4.32100385e-01 -5.42870820e-01 -4.19628546e-02 -7.69285321e-01 2.99716443e-01 1.20115089e+00 -3.40142906e-01 1.63728576e-02 9.86404181e-01 -9.94794071e-01 -8.83613527e-01 -1.09189892e+00 9.76484895e-01 -4.76383001e-01 3.91232252e-01 -3.93646508e-01 -7.29831219e-01 1.16618596e-01 -1.61448613e-01 -2.87239045e-01 1.47235945e-01 -2.32565239e-01 3.24344009e-01 -3.61990035e-01 -1.31883967e+00 9.06638026e-01 9.23441052e-01 -3.23136240e-01 -4.20341283e-01 2.05683842e-01 1.32263228e-01 3.04302499e-02 -2.08940819e-01 3.56838882e-01 3.46529633e-01 -1.24172115e+00 1.04219532e+00 -2.34594047e-01 -4.66506869e-01 -3.86661857e-01 2.53764838e-01 -1.29652143e+00 7.91306719e-02 -5.19351006e-01 5.33460379e-01 9.06209290e-01 4.14393187e-01 -7.07594216e-01 6.91067338e-01 8.27879131e-01 -2.33971208e-01 -4.74853158e-01 -1.56918943e+00 -4.77119088e-01 -5.81717610e-01 -1.13106835e+00 6.25536799e-01 -2.67002508e-02 -2.12029308e-01 -3.99338931e-01 -9.36201960e-02 8.68574560e-01 8.42096269e-01 -3.76968682e-01 7.75283396e-01 -1.31793213e+00 4.39612180e-01 -4.53027666e-01 -8.30844700e-01 -4.82531458e-01 1.34527370e-01 -4.35634583e-01 2.61138886e-01 -1.52462149e+00 -3.91223162e-01 -6.06163681e-01 -2.43000552e-01 8.19980204e-02 1.02117099e-01 -1.16373643e-01 9.02676984e-05 -3.11611593e-01 -1.52684063e-01 2.25534022e-01 5.94996333e-01 2.30949349e-03 -2.16532126e-01 7.25936115e-01 -1.49552554e-01 8.95888448e-01 7.95409977e-01 -4.57132965e-01 -6.96309745e-01 2.26443708e-01 1.20294355e-01 5.40244222e-01 9.88533735e-01 -1.33507919e+00 5.19347131e-01 -4.73157287e-01 -3.34884405e-01 -9.91630137e-01 6.16973102e-01 -1.42767978e+00 2.91317523e-01 7.64333606e-01 -3.15279573e-01 1.01561658e-01 4.74873215e-01 8.16380978e-01 2.91399602e-02 -3.35352629e-01 4.53089058e-01 4.56563354e-01 -9.26763356e-01 2.52751708e-01 -1.15716469e+00 -5.27082384e-01 1.82537043e+00 -4.89901066e-01 -1.36523232e-01 -5.92571557e-01 -8.49354386e-01 3.86665344e-01 2.09933043e-01 2.13929191e-01 1.06705093e+00 -1.04917955e+00 -7.10063159e-01 2.91585296e-01 4.45425749e-01 -3.20516169e-01 5.71780384e-01 6.47265553e-01 -6.00414336e-01 4.35638249e-01 -1.78002506e-01 -3.97233248e-01 -1.57878292e+00 6.93304956e-01 5.42992830e-01 -5.24888821e-02 -6.92871332e-01 3.03329498e-01 4.31104422e-01 1.88907906e-01 3.32690299e-01 -3.73598009e-01 -7.63262212e-01 -6.27178280e-03 5.94334185e-01 8.50746453e-01 2.25953877e-01 -1.08636820e+00 -5.53700507e-01 6.67081356e-01 4.49993670e-01 -3.28440011e-01 6.08884811e-01 -4.95830029e-01 5.96554101e-01 1.58439562e-01 7.04600334e-01 2.14831337e-01 -1.50892353e+00 1.55717343e-01 6.72627911e-02 -4.69388366e-01 2.67244846e-01 -7.98406899e-01 -6.60405099e-01 1.04456377e+00 1.06466246e+00 3.17574948e-01 1.10275805e+00 -6.00599088e-02 4.07706141e-01 4.40443337e-01 5.75193703e-01 -8.95624876e-01 -7.78665721e-01 -3.20977420e-02 7.77404606e-01 -1.16752684e+00 -9.44197029e-02 -6.79899752e-01 -6.13613844e-01 9.38558817e-01 3.67757261e-01 3.11221331e-01 9.61000800e-01 2.02045038e-01 2.57545292e-01 -4.39195544e-01 -6.08214915e-01 -8.11007380e-01 5.00018477e-01 9.77069914e-01 -5.09416401e-01 2.65992939e-01 -7.56315440e-02 -2.16435537e-01 -1.26260832e-01 -2.05758691e-01 5.97697735e-01 5.43381453e-01 -7.22960651e-01 -7.10747004e-01 -6.64493978e-01 2.73791522e-01 1.81743249e-01 3.55661631e-01 -2.21462592e-01 7.72083461e-01 4.28856790e-01 1.39362335e+00 2.40108818e-01 -3.22895765e-01 8.98344815e-01 -1.42477021e-01 -6.13080151e-02 -3.38694006e-01 -2.52201051e-01 -4.22612935e-01 6.61887884e-01 -6.93885028e-01 -3.13685238e-02 -7.69000113e-01 -1.13125563e+00 -1.22717105e-01 2.60110706e-01 -3.35869682e-03 9.27502155e-01 1.16387236e+00 1.94522753e-01 5.34116387e-01 5.83001912e-01 -8.19427848e-01 1.85826808e-01 -2.94996172e-01 -2.58309215e-01 1.79805651e-01 6.75832510e-01 -8.94112945e-01 -1.52936339e-01 -2.96762705e-01]
[5.7290940284729, 1.2664995193481445]
83bc998d-ae91-44ee-8db8-26f3fadfb093
exploring-phonetic-context-in-lip-movement
2305.19556
null
https://arxiv.org/abs/2305.19556v1
https://arxiv.org/pdf/2305.19556v1.pdf
Exploring Phonetic Context in Lip Movement for Authentic Talking Face Generation
Talking face generation is the task of synthesizing a natural face synchronous to driving audio. Although much progress has been made in terms of visual quality, lip synchronization, and facial motion of the talking face, current works still struggle to overcome issues of crude and asynchronous lip movement, which can result in puppetry-like animation. We identify that the prior works commonly correlate lip movement with audio at the phone level. However, due to co-articulation, where an isolated phone is influenced by the preceding or following phones, the articulation of a phone varies upon the phonetic context. Therefore, modeling lip motion with the phonetic context can generate more spatio-temporally aligned and stable lip movement. In this respect, we investigate the phonetic context in lip motion for authentic talking face generation. We propose a Context-Aware Lip-Sync framework (CALS), which leverages phonetic context to generate more spatio-temporally aligned and stable lip movement. The CALS comprises an Audio-to-Lip module and a Lip-to-Face module. The former explicitly maps each phone to a contextualized lip motion unit, which guides the latter in synthesizing a target identity with context-aware lip motion. In addition, we introduce a discriminative sync critic that enforces accurate lip displacements within the phonetic context through audio-visual sync loss and visual discriminative sync loss. From extensive experiments on LRW, LRS2, and HDTF datasets, we demonstrate that the proposed CALS effectively enhances spatio-temporal alignment, greatly improving upon the state-of-the-art on visual quality, lip-sync quality, and realness. Finally, we show the authenticity of the generated video through a lip readability test and achieve 97.7% of relative word prediction accuracy to real videos.
['Yong Man Ro', 'Jeongsoo Choi', 'Minsu Kim', 'Se Jin Park']
2023-05-31
null
null
null
null
['talking-face-generation', 'face-generation']
['computer-vision', 'computer-vision']
[ 3.09064478e-01 -5.42525761e-02 -3.83273989e-01 -8.92407522e-02 -1.06141996e+00 -4.77523804e-01 5.81492424e-01 -6.71702683e-01 2.04417944e-01 4.84322131e-01 5.87745309e-01 -3.67065280e-04 5.03266633e-01 -3.35927218e-01 -7.47233927e-01 -7.98512876e-01 2.91257739e-01 -1.94522992e-01 1.55892968e-02 8.58051237e-03 3.16934697e-02 4.27000046e-01 -1.82967043e+00 3.95586997e-01 7.79448092e-01 9.92038190e-01 1.43479571e-01 9.24225509e-01 6.88977689e-02 5.46230555e-01 -4.18207943e-01 -4.49892968e-01 2.04711318e-01 -8.02470744e-01 -3.72920483e-01 9.58301947e-02 7.04687655e-01 -3.19052517e-01 -2.07859993e-01 8.86658072e-01 8.50216746e-01 -1.10228091e-01 5.88736594e-01 -1.67360771e+00 -3.93009275e-01 2.39574924e-01 -6.06086075e-01 -2.72719562e-01 6.70146883e-01 6.94734991e-01 9.54562068e-01 -1.10853910e+00 6.77635431e-01 1.61316895e+00 6.85175061e-01 7.52321720e-01 -1.23207605e+00 -1.02823317e+00 5.47773112e-03 1.51277363e-01 -1.53301227e+00 -1.30039489e+00 9.07365322e-01 -2.89559901e-01 5.38191795e-01 2.96847951e-02 6.38428330e-01 1.18914139e+00 -1.41989999e-02 6.82584822e-01 7.34528542e-01 -4.76662070e-01 -7.43035004e-02 -1.40244097e-01 -6.32658541e-01 4.23466325e-01 -4.51098114e-01 4.59878296e-01 -1.03483093e+00 2.37083897e-01 5.62103689e-01 -6.65042222e-01 -5.36967576e-01 -1.30634949e-01 -9.57141221e-01 5.30753732e-01 7.97018260e-02 -1.93920303e-02 -1.25933915e-01 3.96952480e-01 3.34626734e-01 -2.02953339e-01 2.10035011e-01 -1.02000594e-01 3.13791260e-02 -3.48889410e-01 -1.22492290e+00 -6.96857751e-04 4.97258753e-01 9.87468302e-01 4.48465884e-01 4.65134770e-01 -3.21469992e-01 9.08327579e-01 5.83417177e-01 9.36758518e-01 3.45142663e-01 -1.50369513e+00 3.11172694e-01 -5.83428070e-02 -3.84272411e-02 -8.74401867e-01 6.67106882e-02 9.94845480e-02 -7.08469570e-01 4.13249463e-01 2.61854589e-01 -1.03996098e-01 -6.45765543e-01 2.23549819e+00 3.96272928e-01 7.11782217e-01 -9.23806336e-03 7.67143071e-01 6.35452449e-01 7.52592444e-01 1.38192281e-01 -6.42496645e-01 1.20296323e+00 -8.57802331e-01 -1.24749374e+00 8.95720161e-03 2.51564402e-02 -1.15116513e+00 1.29601455e+00 1.01641610e-01 -1.48053467e+00 -8.70386064e-01 -7.69451916e-01 -3.99983600e-02 3.44176471e-01 1.27355367e-01 9.06900167e-02 6.57791495e-01 -1.30786693e+00 2.04069436e-01 -5.38376927e-01 -9.96907428e-03 3.74337345e-01 1.79975048e-01 -3.51758778e-01 6.54758066e-02 -1.12362421e+00 5.03725588e-01 -1.96265876e-01 -1.65621400e-01 -8.04571271e-01 -9.74253356e-01 -1.06124485e+00 -1.15653984e-01 2.00488657e-01 -6.29883349e-01 1.30604386e+00 -1.04908764e+00 -2.09621477e+00 7.81543970e-01 -8.61277759e-01 -2.26092279e-01 5.33248901e-01 1.70274153e-02 -6.05085313e-01 3.86488676e-01 8.10414851e-02 1.30071390e+00 1.28496504e+00 -1.50758529e+00 -6.85167789e-01 2.12952226e-01 -4.61100101e-01 4.16239709e-01 -9.20552164e-02 1.86565265e-01 -9.20212746e-01 -9.25108790e-01 -2.67265409e-01 -1.04905903e+00 5.53011894e-01 3.50800395e-01 -3.64438295e-01 -1.03648067e-01 1.12341702e+00 -6.40747726e-01 1.22542012e+00 -2.47943735e+00 9.38841328e-03 -1.91611275e-01 -1.84852391e-01 2.52896279e-01 -3.08586240e-01 1.52172983e-01 -1.02083512e-01 2.55429804e-01 -1.45020355e-02 -8.08669269e-01 4.49636253e-03 6.83292672e-02 -6.09895229e-01 4.64215934e-01 2.32226461e-01 9.24537063e-01 -7.85748363e-01 -8.44961226e-01 1.78728759e-01 1.04651284e+00 -8.32812488e-01 2.26792291e-01 -5.14928661e-02 4.61835593e-01 1.90175146e-01 8.46722007e-01 5.82637846e-01 2.32540444e-01 1.00884095e-01 -3.83938342e-01 -1.74936317e-02 3.71454269e-01 -1.04697204e+00 1.65680015e+00 -6.72644556e-01 9.21468079e-01 3.68072093e-01 -3.84308666e-01 6.81067348e-01 6.96718574e-01 4.76544648e-01 -6.83627605e-01 -1.19342424e-01 2.25516915e-01 -1.22150891e-01 -4.84561801e-01 3.80495697e-01 -1.01655826e-01 2.55301625e-01 2.65704632e-01 -7.18332902e-02 -4.89732772e-01 -2.71014459e-02 -1.20228790e-02 5.57524920e-01 3.37149769e-01 6.13877513e-02 9.28671956e-02 6.59175515e-01 -7.95316994e-01 6.26073182e-01 7.02195540e-02 -5.65495908e-01 8.67588818e-01 3.87005121e-01 3.17150742e-01 -1.00769842e+00 -1.48936498e+00 -3.11161336e-02 1.07118058e+00 2.35109791e-01 -4.86428589e-01 -1.04465199e+00 -3.02767962e-01 -2.02006638e-01 6.42483771e-01 -2.29410261e-01 -1.34961635e-01 -7.47155786e-01 2.14308798e-01 8.71465445e-01 3.57858151e-01 4.92069125e-01 -1.29520762e+00 -2.49587670e-01 4.34846878e-02 -6.55054927e-01 -1.41713583e+00 -1.30145335e+00 -6.91822827e-01 -2.07954764e-01 -7.30847657e-01 -7.91891754e-01 -8.35716009e-01 2.83737779e-01 1.63261220e-01 8.53915334e-01 -1.46196723e-01 -2.44472459e-01 3.64808053e-01 -2.67106062e-03 -8.78933594e-02 -8.79899502e-01 -2.54222482e-01 4.69273597e-01 3.22782546e-01 -3.30159694e-01 -7.26819873e-01 -7.59240210e-01 5.16653776e-01 -7.20363557e-01 2.48510063e-01 1.88529715e-01 7.35653162e-01 5.90180397e-01 -1.31650195e-01 8.12087476e-01 5.48303090e-02 4.80024815e-01 -1.15868837e-01 -4.03731465e-01 8.60426351e-02 -3.62191260e-01 -3.30284655e-01 5.40942371e-01 -7.39867508e-01 -1.04693556e+00 1.24848410e-01 -3.47171783e-01 -7.64003694e-01 -1.06680192e-01 -2.08186939e-01 -6.76687956e-01 3.67570072e-02 3.02988857e-01 2.76829869e-01 2.22396940e-01 -1.20991273e-02 5.81787467e-01 7.80135453e-01 1.15528286e+00 -4.82022166e-01 7.62393773e-01 5.07057726e-01 -9.41143110e-02 -1.00598145e+00 -2.06425011e-01 -1.51235923e-01 -2.77303189e-01 -6.02004111e-01 9.04879570e-01 -9.81389463e-01 -1.16235530e+00 6.86862767e-01 -1.23979628e+00 -6.22901857e-01 -3.40982199e-01 2.55071133e-01 -9.58697021e-01 4.55214679e-01 -5.17248392e-01 -8.97795379e-01 -1.33243322e-01 -1.56501985e+00 1.38200188e+00 2.31315747e-01 -4.31799710e-01 -7.27005363e-01 -1.12271048e-02 4.43254769e-01 3.63667607e-01 1.50964009e-02 6.09182000e-01 2.23173127e-01 -4.41729993e-01 1.74932539e-01 -1.10758692e-02 3.65990609e-01 4.23854053e-01 4.96098340e-01 -1.37198472e+00 -2.14981884e-01 -3.77640963e-01 -2.95952439e-01 4.97989029e-01 6.21489763e-01 7.21965730e-01 -5.81931114e-01 -2.35561877e-01 7.64999390e-01 9.14013863e-01 3.30427706e-01 7.74868071e-01 -4.05347526e-01 5.78896046e-01 8.11122894e-01 6.25385940e-01 2.46405602e-01 2.25301340e-01 1.21898139e+00 2.53455997e-01 -1.36879385e-01 -9.89225030e-01 -6.80931389e-01 8.53717446e-01 6.36407793e-01 1.60042852e-01 -3.07642639e-01 -7.16916084e-01 5.60078919e-01 -1.40689814e+00 -1.18992114e+00 4.19931710e-01 2.04571199e+00 1.29492259e+00 -7.00403973e-02 2.26306751e-01 3.83546561e-01 9.86846149e-01 1.44904196e-01 -4.80955929e-01 -2.14101493e-01 -3.38940114e-01 1.40972406e-01 5.43591380e-03 1.04939961e+00 -7.51653731e-01 1.19892573e+00 5.84901142e+00 1.19834900e+00 -1.55953991e+00 -3.52080837e-02 6.30890012e-01 -2.53728598e-01 -4.09702301e-01 -2.46989712e-01 -8.16448212e-01 7.04548061e-01 7.82872319e-01 -2.14001089e-01 4.76535618e-01 5.83831906e-01 8.91015112e-01 -5.54574057e-02 -1.13751411e+00 1.12415922e+00 9.64534134e-02 -1.34341037e+00 9.29112956e-02 1.15272596e-01 7.41181612e-01 -4.83444542e-01 5.73302269e-01 -1.14894696e-01 -1.19879171e-01 -1.26328444e+00 1.03637886e+00 4.24927175e-01 1.58299494e+00 -8.11350703e-01 -2.51235850e-02 -3.95908803e-02 -1.65612757e+00 1.83629394e-01 2.96012193e-01 5.50927758e-01 4.88208681e-01 5.56853786e-02 -8.47174942e-01 2.54114985e-01 6.58074975e-01 5.88663161e-01 -2.34833378e-02 6.23359025e-01 -4.30156082e-01 6.47494912e-01 -2.39519119e-01 5.80873787e-01 -2.82806486e-01 1.85978875e-01 7.94176221e-01 1.19651663e+00 3.07089537e-01 -5.61631396e-02 -2.74844859e-02 8.84100914e-01 -2.79725939e-01 1.71453750e-03 -6.97766542e-01 1.82300955e-01 9.15196896e-01 9.55454707e-01 -3.13401192e-01 -9.92800295e-03 -8.00468773e-02 9.56698596e-01 -4.28370237e-01 5.72919190e-01 -1.10397792e+00 -1.45267740e-01 1.23987651e+00 2.76186883e-01 1.33360714e-01 2.83205137e-02 -2.57759511e-01 -6.45391703e-01 3.54133919e-02 -1.08770001e+00 -2.03150898e-01 -1.02228391e+00 -8.43643367e-01 5.22459865e-01 -2.73526847e-01 -1.25349784e+00 -6.80663526e-01 -1.04161873e-01 -6.82479084e-01 9.23087120e-01 -1.64818418e+00 -1.28610337e+00 -1.92671835e-01 8.09809685e-01 8.38602722e-01 -6.71171620e-02 6.23106360e-01 2.70527959e-01 -4.07150984e-01 1.23398268e+00 -3.53610009e-01 9.24746692e-02 1.23754370e+00 -5.85082829e-01 3.11219096e-01 9.26458597e-01 -1.30755678e-02 3.32944602e-01 7.06803441e-01 -5.31345963e-01 -1.11391246e+00 -1.03131568e+00 1.08657265e+00 -1.15476951e-01 4.23033595e-01 -4.15237695e-01 -7.35612035e-01 2.14510098e-01 3.51867050e-01 1.77197650e-01 5.36614239e-01 -6.76896513e-01 -4.68558788e-01 -3.30094010e-01 -1.07172716e+00 1.03605723e+00 1.06082439e+00 -9.79947090e-01 -8.56629089e-02 -9.24962685e-02 8.69122624e-01 -2.88525283e-01 -5.25675178e-01 5.02037227e-01 8.29650819e-01 -1.12973273e+00 1.16473043e+00 -6.54916242e-02 3.80586654e-01 -4.26617593e-01 -1.89733371e-01 -1.00409889e+00 2.64599383e-01 -1.44379544e+00 -9.82777625e-02 1.80378354e+00 1.64753258e-01 -2.17248306e-01 5.93562424e-01 2.59706169e-01 -2.05998003e-01 -6.06078148e-01 -1.20438170e+00 -8.29159796e-01 1.28967632e-02 -6.98771656e-01 3.77634943e-01 7.64976323e-01 3.45356874e-02 1.76591501e-01 -5.00494242e-01 1.13781169e-01 4.23514426e-01 -1.63717210e-01 8.68103981e-01 -6.40832305e-01 -1.79846641e-02 -6.65098429e-01 -9.72014293e-02 -1.13558352e+00 5.80187917e-01 -6.16675496e-01 4.81667578e-01 -1.10056663e+00 -2.76206285e-01 -3.22023273e-01 3.20359558e-01 3.62607330e-01 -1.71439230e-01 4.70449984e-01 4.95681465e-01 2.41859078e-01 -2.07598224e-01 6.69079363e-01 1.38097179e+00 -1.42629147e-01 -3.84818912e-01 4.71965037e-02 -2.23977134e-01 8.16477776e-01 6.20670855e-01 -1.92270741e-01 -5.45954347e-01 -1.22005291e-01 -1.85968697e-01 4.89480346e-01 3.37060153e-01 -1.03081858e+00 3.31069469e-01 -1.27211332e-01 1.04502938e-03 -4.27572668e-01 8.34557235e-01 -5.32258213e-01 7.90904015e-02 2.74456292e-01 -4.04747844e-01 -9.26597565e-02 3.43388915e-01 3.60100269e-01 -2.66227096e-01 3.48379970e-01 1.26531386e+00 5.02218843e-01 -3.19597960e-01 4.19436038e-01 -3.90460968e-01 3.43170166e-01 9.43842411e-01 -4.53257322e-01 -2.45996155e-02 -9.47102606e-01 -5.11482775e-01 -1.74653545e-01 6.55201912e-01 4.84352320e-01 7.49175429e-01 -1.58024955e+00 -7.81169713e-01 4.09305483e-01 -1.25118122e-01 -2.14868590e-01 3.08775574e-01 7.72385657e-01 -2.51974285e-01 2.48629421e-01 -6.52077794e-02 -9.40567553e-01 -1.55471075e+00 4.01665509e-01 3.58985782e-01 2.55609900e-01 -4.58860576e-01 8.19149673e-01 5.54606676e-01 2.98344851e-01 6.36509061e-01 -1.20003849e-01 -1.52072846e-03 2.23265961e-03 3.45668495e-01 2.64085889e-01 -3.68253112e-01 -1.08882236e+00 -2.71918118e-01 1.01575840e+00 4.87237960e-01 -5.95157087e-01 6.30044103e-01 -5.76666474e-01 3.07071686e-01 3.02536339e-01 1.23181510e+00 7.23300397e-01 -1.71068585e+00 6.97321519e-02 -5.10740936e-01 -4.38906312e-01 -2.52300799e-01 -6.41593695e-01 -1.08392501e+00 1.04051411e+00 4.98885512e-01 -2.37768441e-01 1.36237860e+00 -9.81629714e-02 9.26399231e-01 -3.05996716e-01 -2.81276144e-02 -9.87514496e-01 5.27367234e-01 4.16202635e-01 1.07666767e+00 -1.05002868e+00 -5.71964800e-01 -6.52029693e-01 -8.81047845e-01 9.79188979e-01 4.35763836e-01 4.62129563e-01 6.19226694e-01 6.85828924e-01 3.12878937e-01 5.05193055e-01 -7.27002621e-01 -1.14593975e-01 3.83354187e-01 9.98714089e-01 3.50713521e-01 -2.31143191e-01 3.59122217e-01 2.24595234e-01 -5.08406579e-01 -4.38155159e-02 2.13403791e-01 2.58092910e-01 -1.55769348e-01 -9.34288800e-01 -4.19441640e-01 -5.21810472e-01 -5.05886614e-01 -3.55414689e-01 -2.84631044e-01 7.65939176e-01 2.92811483e-01 1.31579542e+00 1.37809753e-01 -3.08756471e-01 7.88272619e-02 2.73022413e-01 3.41797769e-01 -2.20045432e-01 -2.40919501e-01 5.74740589e-01 -5.80311157e-02 -7.17778504e-01 -2.89631426e-01 -6.37379348e-01 -1.45466852e+00 -5.78244150e-01 -1.78233385e-01 -2.18614325e-01 5.82598567e-01 6.21541739e-01 4.49339390e-01 4.70886052e-01 9.22963381e-01 -1.09733045e+00 -1.11380130e-01 -7.86457002e-01 -2.29131281e-01 4.76180732e-01 6.59937978e-01 -5.28630078e-01 -6.15782619e-01 6.07906640e-01]
[13.263091087341309, -0.3988827168941498]
b4c0ee68-6c8d-4e4a-8bcf-6bcf7f3d3708
osu-multimodal-machine-translation-system
1710.02718
null
http://arxiv.org/abs/1710.02718v2
http://arxiv.org/pdf/1710.02718v2.pdf
OSU Multimodal Machine Translation System Report
This paper describes Oregon State University's submissions to the shared WMT'17 task "multimodal translation task I". In this task, all the sentence pairs are image captions in different languages. The key difference between this task and conventional machine translation is that we have corresponding images as additional information for each sentence pair. In this paper, we introduce a simple but effective system which takes an image shared between different languages, feeding it into the both encoding and decoding side. We report our system's performance for English-French and English-German with Flickr30K (in-domain) and MSCOCO (out-of-domain) datasets. Our system achieves the best performance in TER for English-German for MSCOCO dataset.
['Mingbo Ma', 'Dapeng Li', 'Liang Huang', 'Kai Zhao']
2017-10-07
osu-multimodal-machine-translation-system-1
https://aclanthology.org/W17-4751
https://aclanthology.org/W17-4751.pdf
ws-2017-9
['multimodal-machine-translation']
['natural-language-processing']
[ 5.05130649e-01 -1.22741777e-02 6.72370866e-02 -5.45696080e-01 -1.47726023e+00 -7.41398096e-01 7.45787263e-01 -5.58585644e-01 -8.63361716e-01 1.06373501e+00 1.70947149e-01 -4.90158886e-01 7.58675992e-01 -2.25858241e-01 -9.69207644e-01 -2.84961075e-01 4.62486118e-01 3.95536065e-01 1.76140919e-01 -3.45809728e-01 -1.41073987e-01 9.30924341e-02 -7.66112328e-01 1.10878170e+00 5.36397099e-01 5.99656999e-01 5.55282772e-01 1.18908525e+00 4.13313396e-02 5.27440071e-01 -3.90250176e-01 -1.02763736e+00 3.48476499e-01 -6.82823837e-01 -1.28248429e+00 -1.24846129e-02 8.56513441e-01 -3.85663301e-01 -6.26481533e-01 1.07683170e+00 8.55847180e-01 -1.74454734e-01 5.43004632e-01 -1.49117959e+00 -1.08897138e+00 5.17875314e-01 -6.87259078e-01 1.87484473e-01 8.34159374e-01 3.44891787e-01 5.30812323e-01 -1.03390133e+00 1.08730066e+00 1.27741313e+00 3.78237635e-01 9.03156638e-01 -1.09813058e+00 -5.43819427e-01 -5.38067967e-02 1.80909023e-01 -1.48651350e+00 -6.74028814e-01 2.35964343e-01 -2.39656866e-01 1.26028144e+00 5.30213237e-01 2.50661522e-01 1.46504641e+00 2.77479857e-01 9.69438672e-01 1.38022113e+00 -5.77938318e-01 -3.64818186e-01 5.12246549e-01 -4.23668653e-01 5.54862320e-01 -4.99701798e-01 -3.77115351e-03 -6.10310137e-01 2.61032820e-01 4.84364629e-01 -6.90068066e-01 -4.44820493e-01 1.19185381e-01 -1.79598701e+00 4.17931944e-01 3.73855025e-01 2.69128293e-01 1.83146417e-01 3.25527072e-01 4.48348284e-01 7.67247736e-01 3.12740266e-01 3.62253860e-02 -3.97124916e-01 -1.70405477e-01 -7.80189991e-01 1.70900062e-01 6.49687111e-01 1.49574637e+00 5.72079003e-01 -5.00492871e-01 -2.86018372e-01 8.68771374e-01 2.74114400e-01 9.95859921e-01 6.29679799e-01 -7.17369735e-01 1.23803473e+00 -2.32763644e-02 3.43194366e-01 -7.76942849e-01 2.12263674e-01 8.90125111e-02 -6.84862435e-01 -1.48711205e-01 1.28642887e-01 -4.36889559e-01 -1.16786098e+00 1.65106964e+00 -1.10899627e-01 -1.35969833e-01 7.13693500e-01 1.19066358e+00 1.18780291e+00 8.92674923e-01 8.21536756e-04 6.58087730e-02 1.46098483e+00 -1.53032756e+00 -8.15603495e-01 -3.31645548e-01 6.07556105e-01 -1.36980486e+00 1.02184033e+00 -1.92710087e-01 -1.19441128e+00 -6.93811297e-01 -8.15777898e-01 -4.36912179e-01 -7.61649489e-01 4.32448924e-01 3.34225781e-02 3.22363168e-01 -1.48468685e+00 4.97140139e-02 -1.59825474e-01 -8.54863465e-01 -2.17061080e-02 2.68666685e-01 -8.46114457e-01 -3.54728490e-01 -1.34620619e+00 1.36107540e+00 3.14761549e-01 1.48219049e-01 -7.88638592e-01 -7.43299052e-02 -8.13857555e-01 -5.15189469e-01 -2.13076752e-02 -8.25348794e-01 1.67539144e+00 -1.42703187e+00 -1.38770831e+00 1.41751218e+00 -3.83698165e-01 -4.47692215e-01 8.95091355e-01 -1.29492044e-01 -7.61142433e-01 4.34454501e-01 3.55167478e-01 1.65124285e+00 6.73709273e-01 -1.30133724e+00 -5.54069340e-01 -9.52630769e-03 1.09135546e-01 6.36465609e-01 1.06204301e-01 3.85510594e-01 -9.17402446e-01 -4.56999809e-01 -3.74417096e-01 -1.15367651e+00 -1.24157637e-01 -1.10834017e-01 -3.82763952e-01 3.73509526e-01 1.05684471e+00 -1.06574178e+00 7.46770978e-01 -2.23507357e+00 3.50856096e-01 -3.84610951e-01 -3.06199193e-01 1.18071465e-02 -6.14202261e-01 5.90787888e-01 -1.60445660e-01 3.28899398e-02 -2.94900715e-01 -4.77809012e-01 1.31376341e-01 3.45754266e-01 -4.10195142e-01 5.04735969e-02 3.48756552e-01 1.45821583e+00 -7.79849827e-01 -8.04838240e-01 1.01113237e-01 1.90089285e-01 1.43601179e-01 3.37716222e-01 5.21894498e-03 4.99987811e-01 1.96196303e-01 4.47621882e-01 8.20744395e-01 -7.34876143e-03 9.46538150e-02 -5.43895304e-01 -1.09799154e-01 -2.93670952e-01 -7.27473021e-01 2.11339617e+00 -3.59720230e-01 1.13283265e+00 4.88031954e-02 -4.14503366e-01 5.54867983e-01 6.49362922e-01 -1.13805301e-01 -9.41889882e-01 -2.85228770e-02 4.72001344e-01 -1.23350002e-01 -7.93575704e-01 8.34466577e-01 -9.80840698e-02 -3.91704440e-01 2.42575333e-01 1.54676467e-01 -3.42487812e-01 3.91859949e-01 3.06774676e-01 7.34474540e-01 3.74714375e-01 -7.98183754e-02 -6.09959336e-03 4.74259138e-01 3.15528452e-01 -1.72970369e-02 5.79491496e-01 -3.32759291e-01 1.08586085e+00 1.86343580e-01 -2.16856793e-01 -1.35454702e+00 -1.00243461e+00 2.69759476e-01 7.46129692e-01 1.52738482e-01 -1.24329157e-01 -9.14118886e-01 -8.17338705e-01 -3.35710645e-01 4.05368686e-01 -5.46058714e-01 1.43411681e-01 -4.78597134e-01 -4.08238888e-01 1.13382852e+00 3.99037659e-01 1.06446528e+00 -9.19085145e-01 -3.49086910e-01 -8.64476562e-02 -8.08542907e-01 -1.82055140e+00 -1.07861650e+00 -3.13718207e-02 -4.59745198e-01 -6.73635185e-01 -1.39231896e+00 -1.20157266e+00 8.06301594e-01 3.86613965e-01 9.94068086e-01 -3.53674263e-01 -2.64569670e-01 6.52573049e-01 -2.92285740e-01 -1.67875350e-01 -3.82858723e-01 -3.12364046e-02 -3.65262926e-01 -7.29539096e-02 3.51650357e-01 2.25779757e-01 -3.52736324e-01 4.31091517e-01 -8.83526921e-01 7.15638041e-01 7.31547892e-01 7.71631002e-01 4.30982411e-01 -5.97227275e-01 2.85650581e-01 -4.58778143e-01 7.68125594e-01 -1.92362353e-01 -3.80201995e-01 7.07516015e-01 1.13869533e-01 -2.59491056e-01 2.93010324e-01 -3.69036555e-01 -1.00471795e+00 3.55063826e-01 3.54978582e-03 -3.31750929e-01 -2.70724177e-01 3.92311543e-01 -2.25436866e-01 -9.32101384e-02 2.33248129e-01 3.58066976e-01 2.49044280e-02 -3.62158507e-01 5.14625847e-01 1.15679049e+00 8.85336578e-01 -4.22065169e-01 5.95692813e-01 1.00444518e-01 -3.05703372e-01 -6.15020573e-01 -3.21441442e-01 -4.12426561e-01 -9.02875662e-01 -4.35553402e-01 1.32080770e+00 -1.20381379e+00 -1.90536037e-01 6.73978329e-01 -1.57918048e+00 -5.04413128e-01 1.23237325e-02 4.98753220e-01 -7.37358034e-01 3.16578895e-01 -7.86233604e-01 -4.62746769e-01 -3.81640702e-01 -1.50976372e+00 1.40900159e+00 1.56469882e-01 2.59191841e-02 -9.42988336e-01 1.67202279e-01 6.85924709e-01 2.63723880e-01 -1.07827105e-01 5.13619125e-01 -1.91630200e-01 -5.29423475e-01 -9.05267298e-02 -8.48699629e-01 4.44495410e-01 -1.53227597e-01 -1.55932292e-01 -8.25504661e-01 -4.09850329e-01 -5.64649642e-01 -6.54090643e-01 7.48741627e-01 -1.88024238e-01 4.94999468e-01 -1.63507517e-02 -2.87532896e-01 2.97682136e-01 1.68368506e+00 1.74810275e-01 1.04051113e+00 1.68532312e-01 5.13036132e-01 4.87589300e-01 7.20174849e-01 -3.28313589e-01 6.10292435e-01 1.01619875e+00 -4.55249064e-02 -5.76893806e-01 -4.74232107e-01 -3.19362760e-01 8.29191267e-01 1.11673367e+00 2.42237136e-01 -6.99867606e-01 -8.35887790e-01 7.05776215e-01 -2.09370685e+00 -8.97544384e-01 -3.49376917e-01 1.83473039e+00 8.28999937e-01 -4.39599156e-01 -8.30598548e-03 -6.73905969e-01 7.41857588e-01 -1.51420742e-01 7.59425759e-03 -8.63581359e-01 -6.78153455e-01 -1.12865373e-01 7.08541512e-01 7.60390222e-01 -1.22615814e+00 1.13671124e+00 6.91222477e+00 5.74211895e-01 -1.07337296e+00 4.85540539e-01 6.52474642e-01 1.51746705e-01 -1.87944219e-01 -8.74667615e-02 -5.90812564e-01 4.46915269e-01 1.29034007e+00 -2.22725514e-02 3.70289326e-01 1.14446059e-01 1.46635264e-01 -4.90327805e-01 -1.12295103e+00 1.14728284e+00 5.49928069e-01 -1.19285214e+00 1.81901142e-01 -6.69001266e-02 7.05643296e-01 3.60820025e-01 1.93558618e-01 1.97213501e-01 1.25732630e-01 -1.24027383e+00 7.66344309e-01 7.20593274e-01 1.36804986e+00 -5.13672888e-01 1.06343508e+00 6.34146780e-02 -9.74383235e-01 5.71806729e-01 -3.26749831e-01 3.31943840e-01 3.69452924e-01 -3.41489352e-02 -7.72459984e-01 9.36254859e-01 7.09034204e-01 5.49363971e-01 -7.36134231e-01 8.75794351e-01 -8.77789631e-02 9.42057818e-02 -7.69727528e-02 1.55697286e-01 4.70995575e-01 -2.16224268e-01 3.67303461e-01 1.72249007e+00 5.06007373e-01 -4.05264869e-02 2.32914045e-01 4.30799872e-01 -2.94618428e-01 1.55996189e-01 -1.01065230e+00 -1.97762743e-01 -1.28728449e-01 1.06690705e+00 -5.46513259e-01 -6.97499573e-01 -6.74523771e-01 1.99657178e+00 4.75230291e-02 5.18244386e-01 -1.06552243e+00 -5.64238369e-01 2.85446912e-01 -3.62332940e-01 2.25512668e-01 -2.67838389e-01 9.40515697e-02 -1.46485066e+00 3.69946612e-03 -1.03130674e+00 1.59932867e-01 -1.65272164e+00 -1.10758424e+00 1.02865863e+00 1.45225659e-01 -1.33179712e+00 -2.03216329e-01 -7.81060815e-01 4.51866090e-02 1.27312863e+00 -1.50391996e+00 -1.63759375e+00 -1.86202019e-01 7.87018001e-01 6.24279022e-01 -2.31750444e-01 9.65228975e-01 6.39325798e-01 -4.49477792e-01 7.84040630e-01 2.60029167e-01 3.45348686e-01 1.35946691e+00 -1.09210110e+00 5.27966321e-01 9.19984400e-01 2.25176275e-01 8.53591189e-02 6.70211256e-01 -6.53836191e-01 -1.46150398e+00 -9.56032455e-01 1.43681681e+00 -5.28432906e-01 5.89177847e-01 -3.81045550e-01 -3.71483803e-01 7.87677884e-01 1.29469371e+00 -1.47938967e-01 5.33548594e-01 -7.15209484e-01 -3.38051498e-01 1.15288094e-01 -1.19241416e+00 8.49376142e-01 7.93318212e-01 -7.90748537e-01 -4.71190900e-01 6.51881158e-01 8.35225403e-01 -7.77930796e-01 -8.43865216e-01 1.05163813e-01 5.41561127e-01 -3.52641910e-01 6.17445588e-01 -6.08385563e-01 8.83900404e-01 -6.00503266e-01 -6.70257092e-01 -1.18494618e+00 1.45716652e-01 -5.42138994e-01 5.65062642e-01 1.02157211e+00 8.23479116e-01 -4.15377975e-01 3.79714012e-01 3.30297768e-01 -8.60598832e-02 -3.06539029e-01 -1.10290551e+00 -7.12784469e-01 7.80431330e-02 -3.14006686e-01 3.87891442e-01 8.74764740e-01 -4.33710255e-02 6.32272363e-01 -7.71101892e-01 5.46862297e-02 2.82127529e-01 2.89740283e-02 1.01990902e+00 -9.25335661e-02 -1.28181472e-01 5.03033213e-02 -3.28877270e-01 -1.21366835e+00 7.63186254e-03 -1.09563220e+00 1.70854151e-01 -1.68481588e+00 5.60327351e-01 2.53592342e-01 1.46241933e-01 6.08872294e-01 3.78309004e-02 9.70028520e-01 6.41617954e-01 1.68778345e-01 -7.57729232e-01 1.75544158e-01 1.38708735e+00 -4.43131089e-01 3.37590307e-01 -6.36731505e-01 -2.81672090e-01 1.64544553e-01 5.65240860e-01 -1.32007241e-01 -2.77451009e-01 -1.18203592e+00 -1.05948649e-01 1.66709140e-01 6.92135453e-01 -7.47461081e-01 1.33605585e-01 -7.10664466e-02 4.66265887e-01 -7.81099021e-01 5.09906590e-01 -1.00289106e+00 4.40692127e-01 3.57749701e-01 -5.29151797e-01 7.70535350e-01 4.67050523e-01 2.83547908e-01 -5.43075860e-01 -1.89935088e-01 7.10311472e-01 -2.61931449e-01 -9.87619281e-01 -1.07830979e-01 -4.52495188e-01 -1.65702924e-01 1.11415350e+00 -3.09442103e-01 -5.87183893e-01 -5.65617442e-01 -8.67070675e-01 3.90976012e-01 6.38204634e-01 6.60831809e-01 9.63820517e-01 -1.58086658e+00 -9.51858997e-01 -6.01921268e-02 3.33519429e-01 -6.84255660e-01 3.35248917e-01 1.06384504e+00 -7.42032588e-01 7.64918506e-01 -4.44459319e-01 -5.34554064e-01 -1.71914649e+00 4.06154096e-01 3.50858480e-01 -1.46119863e-01 -3.43233496e-01 7.68541753e-01 -1.55046418e-01 -6.50728762e-01 -2.00754702e-01 1.24677598e-01 1.62905291e-01 -5.68652749e-02 4.43070054e-01 -1.52974457e-01 -9.69978981e-03 -1.26475739e+00 -4.10460413e-01 4.26544040e-01 -2.92511284e-01 -9.11038637e-01 6.48817837e-01 -5.86829007e-01 -2.75090009e-01 4.53608274e-01 1.54501140e+00 -1.95365325e-01 -6.09180868e-01 -6.99237958e-02 -2.10563198e-01 -4.95158017e-01 -3.59690875e-01 -1.34087610e+00 -7.42507339e-01 1.04947925e+00 1.02882695e+00 -4.57853109e-01 1.18039501e+00 8.39969609e-03 1.04723012e+00 2.29792267e-01 4.77508962e-01 -1.21405995e+00 -1.79902613e-01 5.73605895e-01 1.11105311e+00 -1.42304230e+00 -1.52564332e-01 -2.50198722e-01 -1.13133264e+00 1.08529115e+00 6.99113488e-01 4.01299566e-01 -8.86873975e-02 1.98303059e-01 6.07246935e-01 2.77760297e-01 -9.59387898e-01 -1.17920086e-01 3.92033160e-01 7.16467977e-01 5.29425442e-01 2.16845080e-01 -4.17647511e-01 1.00045703e-01 -6.38167635e-02 1.05832256e-01 6.26997411e-01 1.12203431e+00 -8.35135356e-02 -1.32782114e+00 -3.77919376e-01 5.40799163e-02 -3.41482550e-01 -3.15846711e-01 -7.92627037e-01 8.58504117e-01 1.81349292e-01 9.41272438e-01 -5.09642363e-02 -4.56168205e-01 3.44037443e-01 1.60153717e-01 7.46647239e-01 -4.86091465e-01 -6.91207290e-01 1.73075140e-01 5.17080843e-01 -3.80522758e-01 -6.48327231e-01 -5.48597097e-01 -8.04661453e-01 -2.39702970e-01 1.12945952e-01 1.41638190e-01 8.68200839e-01 7.97290027e-01 5.30027270e-01 2.58479655e-01 2.81326890e-01 -5.75252950e-01 -2.54709572e-01 -9.10371602e-01 -1.03165075e-01 3.03743482e-01 1.40039787e-01 9.13262516e-02 3.79315168e-02 4.80869025e-01]
[11.449946403503418, 1.51760995388031]
96140b8c-cd56-43b5-8380-c27f93ba7934
exploring-regions-of-interest-visualizing
2305.20058
null
https://arxiv.org/abs/2305.20058v1
https://arxiv.org/pdf/2305.20058v1.pdf
Exploring Regions of Interest: Visualizing Histological Image Classification for Breast Cancer using Deep Learning
Computer aided detection and diagnosis systems based on deep learning have shown promising performance in breast cancer detection. However, there are cases where the obtained results lack justification. In this study, our objective is to highlight the regions of interest used by a convolutional neural network (CNN) for classifying histological images as benign or malignant. We compare these regions with the regions identified by pathologists. To achieve this, we employed the VGG19 architecture and tested three visualization methods: Gradient, LRP Z, and LRP Epsilon. Additionally, we experimented with three pixel selection methods: Bins, K-means, and MeanShift. Based on the results obtained, the Gradient visualization method and the MeanShift selection method yielded satisfactory outcomes for visualizing the images.
['Mohammed Amine Chikh', 'Khadidja Abi Ayad', 'Said Mahmoudi', 'Mohammed Brahimi', 'Imane Nedjar']
2023-05-31
null
null
null
null
['breast-cancer-detection', 'breast-cancer-detection']
['knowledge-base', 'medical']
[-3.97998728e-02 1.68210968e-01 -3.36579569e-02 -2.87319243e-01 -2.38299370e-01 -1.67872459e-01 7.06927359e-01 6.70874178e-01 -6.28068924e-01 5.60042620e-01 -1.75373152e-01 -8.87901902e-01 -1.80573702e-01 -7.80425847e-01 -2.52799928e-01 -9.61199820e-01 -3.85625035e-01 -5.77780306e-02 2.24708915e-01 -2.26407200e-02 5.31675637e-01 1.20135570e+00 -1.33808720e+00 6.27233028e-01 5.39063931e-01 9.51221287e-01 -8.15949589e-02 6.25946164e-01 -4.07026887e-01 5.69672525e-01 -5.95691383e-01 -2.72243116e-02 1.40555250e-02 -2.44002998e-01 -6.82074726e-01 -2.79623449e-01 2.97518134e-01 -6.09296635e-02 -1.12009645e-02 9.64376271e-01 5.72733998e-01 -1.08779080e-01 7.65553236e-01 -9.96700585e-01 -4.42820996e-01 3.31745803e-01 -7.14480579e-01 5.59387684e-01 7.06434483e-03 1.53300270e-01 3.91466141e-01 -9.20623004e-01 8.60632658e-01 1.17497551e+00 7.56446958e-01 4.59676981e-01 -9.94962692e-01 -4.69091654e-01 -2.32820660e-01 4.21095610e-01 -1.38000572e+00 -7.20626190e-02 7.67643929e-01 -5.88323116e-01 9.13958371e-01 4.91213709e-01 9.01884556e-01 5.36420107e-01 8.74072611e-01 5.03529012e-01 1.19210029e+00 -7.37526000e-01 3.12232375e-01 4.30067509e-01 2.22550243e-01 9.08569515e-01 4.08049226e-01 1.45506501e-01 -1.49880856e-01 -1.55262977e-01 7.47224987e-01 -3.72616909e-02 -2.58916736e-01 -3.52885842e-01 -1.14027429e+00 7.92564392e-01 8.13900709e-01 7.54920065e-01 -2.80590057e-01 1.33488953e-01 6.66716993e-01 -4.91769686e-02 4.55215663e-01 4.92471099e-01 1.15718469e-02 4.67742413e-01 -8.86439502e-01 -2.03936204e-01 3.30796003e-01 1.79095596e-01 4.90235269e-01 -7.42525905e-02 -2.82425016e-01 5.56101263e-01 2.39174441e-01 -3.99975590e-02 5.84584713e-01 -4.54340369e-01 -3.38752747e-01 8.18736851e-01 -1.83186069e-01 -1.33027363e+00 -8.70709956e-01 -4.62410212e-01 -1.15028024e+00 8.57243299e-01 4.36838955e-01 1.16240963e-01 -1.18809474e+00 7.30401993e-01 1.87478721e-01 -3.74628067e-01 8.96444693e-02 8.64968657e-01 1.20375788e+00 2.90339410e-01 4.44562465e-01 3.93300615e-02 1.29057062e+00 -5.50543904e-01 -8.31407368e-01 2.38785014e-01 1.09007084e+00 -4.68940288e-01 9.40120280e-01 3.04043353e-01 -7.91821122e-01 -5.21014571e-01 -1.04417276e+00 4.42037452e-03 -9.02092099e-01 7.33269870e-01 5.68767428e-01 4.50037360e-01 -1.30258203e+00 5.03034651e-01 -1.07810438e+00 -5.77428222e-01 6.30868435e-01 1.20310485e-01 -5.12101233e-01 5.12431920e-01 -7.74558544e-01 1.02441525e+00 5.48399150e-01 3.85965258e-01 -4.66334790e-01 -5.30085385e-01 -7.15821087e-01 1.95616812e-01 -3.62487644e-01 -3.24913681e-01 8.36603642e-01 -9.21993256e-01 -9.13472414e-01 1.30324996e+00 7.01949373e-02 -6.53305769e-01 7.46488333e-01 3.69770408e-01 -1.98186830e-01 3.97056758e-01 -2.29084194e-01 8.07297349e-01 1.33382484e-01 -1.30418885e+00 -8.13394725e-01 -4.69802767e-01 -1.02162383e-01 -4.22191173e-02 -3.61385584e-01 -2.04868317e-02 -1.95110753e-01 -4.12246257e-01 4.11088258e-01 -4.62769359e-01 -3.76641482e-01 5.40727317e-01 -6.17584646e-01 -2.13820279e-01 1.06991231e+00 -7.99757540e-01 8.93766105e-01 -2.42734003e+00 -5.07452130e-01 7.31476963e-01 3.48939657e-01 2.98409432e-01 4.10722017e-01 -1.93575714e-02 -3.63971174e-01 4.07307506e-01 1.26653850e-01 6.20128922e-02 -4.26542222e-01 -1.25065476e-01 3.23344797e-01 6.45097911e-01 1.82161629e-02 7.85084426e-01 -6.81979001e-01 -9.98660862e-01 5.93287230e-01 7.75758743e-01 -9.50027406e-02 -2.19414860e-01 2.65937686e-01 2.29918927e-01 -4.22127768e-02 6.76015258e-01 6.07093215e-01 -2.47587249e-01 2.41542637e-01 -5.86041927e-01 -2.03719258e-01 -1.91227332e-01 -7.16271341e-01 9.70270634e-01 -1.85246542e-01 1.17601919e+00 -7.63969719e-02 -7.46136487e-01 1.17285514e+00 9.39198434e-02 4.51828808e-01 -6.21200502e-01 3.06456953e-01 2.03573182e-01 1.69249594e-01 -6.03026628e-01 3.21204752e-01 1.45891249e-01 6.78965867e-01 1.46955535e-01 -1.17540084e-01 1.71662971e-01 2.45815247e-01 1.40797481e-01 7.70982921e-01 -3.73691469e-01 5.13711929e-01 -5.37974894e-01 4.23679441e-01 2.88749248e-01 1.62994966e-01 5.46845794e-01 -3.25118452e-01 5.82661271e-01 9.83177006e-01 -9.30253863e-01 -7.38939345e-01 -8.55572224e-01 -2.57933140e-01 4.75998729e-01 4.54764292e-02 3.00540365e-02 -5.59946835e-01 -8.03704381e-01 -1.32161468e-01 5.49010813e-01 -1.09132314e+00 -8.87190551e-02 -5.55213571e-01 -7.43584454e-01 3.54192197e-01 5.84708393e-01 5.65679789e-01 -1.27075887e+00 -1.33171141e+00 -1.41511470e-01 4.12086874e-01 -3.02397877e-01 2.06513360e-01 4.74195272e-01 -7.90184200e-01 -1.31356406e+00 -9.56856549e-01 -8.98401141e-01 1.21684384e+00 1.36424825e-02 8.08182240e-01 2.84711629e-01 -9.81162846e-01 4.43042032e-02 -2.90046990e-01 -4.34314728e-01 -4.80036587e-01 -3.63149145e-03 -6.50693595e-01 -2.64105558e-01 3.29411209e-01 8.94113630e-02 -1.04928553e+00 -1.81931257e-02 -8.68008673e-01 2.27918178e-01 7.85543025e-01 7.17461646e-01 6.90547764e-01 3.11174672e-02 8.91570374e-03 -8.68532658e-01 6.90909326e-01 -1.13579325e-01 -3.34068865e-01 2.19172329e-01 -6.33136868e-01 -2.98098713e-01 2.95918912e-01 -1.64191067e-01 -8.25246453e-01 6.53133467e-02 -3.91055904e-02 -2.59337157e-01 -3.87232572e-01 5.51090479e-01 3.59417170e-01 -4.60451871e-01 8.48952651e-01 -1.07563794e-01 3.01473856e-01 -5.19108735e-02 -8.90090093e-02 5.62038600e-01 4.35058206e-01 2.84146845e-01 2.11991183e-02 6.96857452e-01 1.95247322e-01 -7.10737348e-01 -2.99381763e-02 -2.23530740e-01 -4.39455181e-01 -7.34198511e-01 8.97727549e-01 -3.04690242e-01 -5.92607141e-01 2.48289704e-01 -9.61883068e-01 -3.12395662e-01 -2.13107139e-01 4.26059574e-01 -1.94638848e-01 2.18366101e-01 -4.81722325e-01 -6.16382718e-01 -6.56205118e-01 -1.12499082e+00 6.59148037e-01 5.63471556e-01 -3.21172953e-01 -1.17044306e+00 -3.20689559e-01 -4.43115443e-01 7.15175807e-01 6.78418636e-01 1.33576441e+00 -6.26383960e-01 -4.16614115e-02 -3.19086760e-01 -5.70571721e-01 -1.58453640e-02 1.56100154e-01 6.12855077e-01 -8.39323282e-01 -2.46887878e-01 -6.17966115e-01 3.48077029e-01 8.96700799e-01 8.13361645e-01 1.74363768e+00 3.13084200e-02 -9.73666728e-01 6.07849896e-01 1.42826903e+00 5.64889133e-01 5.88167608e-01 7.73989022e-01 2.69736260e-01 7.17891753e-01 5.11740863e-01 2.07173228e-01 -1.58357978e-01 3.39767009e-01 7.90675700e-01 -9.76557076e-01 -2.85565138e-01 2.10044071e-01 -5.64674020e-01 -2.82943338e-01 -9.17194039e-02 -8.52831826e-02 -1.45507181e+00 6.88117266e-01 -1.42046177e+00 -4.83025491e-01 -1.89612478e-01 1.73059082e+00 2.49060705e-01 3.24962437e-01 -2.04439715e-01 3.13407689e-01 6.20680690e-01 -1.62177518e-01 -2.63693571e-01 -6.35177135e-01 -9.34353750e-03 -2.67085270e-04 5.09903014e-01 9.83383432e-02 -1.15250504e+00 3.58887315e-01 6.60336256e+00 5.76707363e-01 -1.76034582e+00 -3.09508264e-01 1.33129656e+00 7.96559975e-02 -5.61444759e-02 -5.19414485e-01 -4.06139135e-01 2.97689706e-01 5.00814319e-01 8.27505812e-02 -4.64325458e-01 8.28405023e-01 3.49146664e-01 -4.68513787e-01 -9.29696321e-01 8.59853327e-01 -1.95458606e-01 -1.56955862e+00 1.38638169e-01 6.49421588e-02 2.95753390e-01 -2.95889854e-01 1.87119111e-01 -7.39081278e-02 -1.31592564e-02 -1.08640170e+00 3.57232749e-01 6.70866191e-01 8.65560055e-01 -7.05785632e-01 1.10499096e+00 -1.53027281e-01 -7.24622011e-01 -9.54048708e-02 -2.09103778e-01 4.49387103e-01 -3.13756406e-01 6.41390979e-01 -1.34681034e+00 2.10972637e-01 8.97674739e-01 2.54445374e-01 -9.10497665e-01 1.31127524e+00 1.81600168e-01 3.47091824e-01 5.21747060e-02 -3.30423146e-01 3.58896881e-01 1.75143123e-01 1.32897124e-01 1.65804422e+00 5.52504361e-01 -3.17565203e-01 -3.61115068e-01 7.34171689e-01 4.45839792e-01 4.01586562e-01 -5.40992260e-01 1.26911014e-01 1.59425914e-01 1.53347921e+00 -1.51952159e+00 -2.53045976e-01 -1.05606779e-01 5.81255138e-01 -5.02515361e-02 4.69046235e-01 -5.21778047e-01 -6.89354539e-01 2.92142153e-01 3.92285407e-01 -1.28378710e-02 2.86654048e-02 -6.52902722e-01 -3.45923305e-01 -3.21847528e-01 -4.68960822e-01 5.32199502e-01 -9.23542440e-01 -7.10959613e-01 6.30872607e-01 1.03727393e-01 -1.03002644e+00 -3.38926949e-02 -1.01961184e+00 -8.79253507e-01 8.58111739e-01 -1.27927518e+00 -9.60638523e-01 -6.07536793e-01 1.54352695e-01 2.47320369e-01 -1.99048847e-01 7.53580093e-01 -9.11024213e-02 -4.44096327e-01 3.63481879e-01 1.12072922e-01 2.76690334e-01 3.81969512e-01 -1.47790337e+00 -6.25644997e-02 3.27295214e-01 -3.88267100e-01 3.80970716e-01 7.03754604e-01 -3.14230055e-01 -6.63524926e-01 -9.70596731e-01 6.90022230e-01 4.81135428e-01 2.13432834e-01 1.25493884e-01 -8.87416422e-01 3.71370882e-01 4.07671005e-01 2.65651196e-01 6.60949945e-01 -2.09742442e-01 1.40119687e-01 -4.16834056e-02 -1.48955858e+00 6.75129712e-01 1.71058252e-01 -1.84569415e-02 -1.04878638e-02 1.06483608e-01 -6.96633086e-02 -4.93532926e-01 -6.83018863e-01 7.54864812e-01 6.95549905e-01 -1.20145679e+00 8.96283388e-01 -2.69823641e-01 4.04988080e-01 -1.70602605e-01 4.02266264e-01 -1.40153301e+00 -3.41293573e-01 3.35635185e-01 3.70149314e-01 7.58311331e-01 5.27929723e-01 -6.54308498e-01 1.01166320e+00 3.19313139e-01 -2.35138774e-01 -1.20881355e+00 -8.81563306e-01 -1.54719681e-01 6.88412264e-02 2.08469585e-01 3.55591208e-01 7.68053949e-01 4.33493070e-02 -5.12285948e-01 4.39415872e-01 -2.90185050e-03 2.32988507e-01 2.82840822e-02 5.04316926e-01 -1.06869221e+00 3.31118524e-01 -1.03166056e+00 -8.64859819e-01 -4.48735058e-02 -1.78937688e-01 -7.51447260e-01 -1.75719380e-01 -1.86826348e+00 2.19966486e-01 -3.48660618e-01 -6.24843121e-01 7.47793198e-01 -6.36256114e-02 3.62357706e-01 -5.27437292e-02 7.89076388e-02 3.45699675e-03 -1.71304375e-01 1.13567829e+00 -3.86546046e-01 -1.21977054e-01 -1.11303896e-01 -4.49391127e-01 7.02289104e-01 1.08862841e+00 1.31840361e-02 6.21031150e-02 -6.49918243e-03 -4.53457646e-02 -1.61905006e-01 5.73357940e-01 -1.09097469e+00 1.51843250e-01 6.83437809e-02 1.02326846e+00 -1.00892746e+00 4.99054939e-02 -6.85177326e-01 9.79862809e-02 9.53385830e-01 -5.75478077e-01 -1.29213676e-01 5.02477527e-01 6.05746955e-02 -3.09223622e-01 -1.75744817e-01 9.93445754e-01 -1.42726302e-01 -7.98250079e-01 -2.24623680e-01 -7.32681274e-01 -8.67673874e-01 1.18348002e+00 -5.67132175e-01 -4.45006609e-01 -1.57354027e-01 -9.43924367e-01 -3.16817909e-02 2.87029564e-01 -3.02336160e-02 8.48238111e-01 -1.18376386e+00 -4.52638328e-01 3.52146864e-01 2.24923983e-01 -2.11504489e-01 3.27943414e-01 1.12038016e+00 -1.15101016e+00 4.74980056e-01 -6.21127367e-01 -7.80052781e-01 -1.72561848e+00 3.15168381e-01 8.21893036e-01 -1.41090676e-01 -6.13147736e-01 8.39908123e-01 1.50313526e-01 -1.56614378e-01 4.59626138e-01 -4.76772666e-01 -8.24417889e-01 -3.36030982e-02 5.05267918e-01 3.71016711e-01 4.70558465e-01 -3.53341967e-01 -4.17038232e-01 2.92851686e-01 -2.66429842e-01 1.89249486e-01 8.47468138e-01 3.24133635e-01 -1.44904092e-01 2.40014255e-01 1.14683604e+00 -4.35947210e-01 -7.13759124e-01 1.84161857e-01 4.55754511e-02 -4.33596551e-01 2.92242974e-01 -8.40247929e-01 -1.23499823e+00 9.51776206e-01 1.35274577e+00 6.05052769e-01 1.24508655e+00 -1.33021101e-01 -4.80941720e-02 8.61182958e-02 2.53046118e-02 -7.46567845e-01 -2.04029366e-01 6.12646341e-02 7.62438953e-01 -1.20920908e+00 -5.09468019e-02 -4.36389774e-01 -3.04466248e-01 1.66317022e+00 8.71156216e-01 -7.47469952e-03 8.28827620e-01 2.64068961e-01 5.64458728e-01 -5.82586765e-01 -4.58800912e-01 -7.01441569e-03 3.15531731e-01 6.29939377e-01 8.45063448e-01 1.62042663e-01 -8.31079781e-01 -8.50564539e-02 -1.11045651e-01 2.14413945e-02 4.20281529e-01 1.08502471e+00 -5.73245525e-01 -3.14249903e-01 -4.41245139e-01 7.64094710e-01 -5.65123439e-01 2.97580272e-01 -5.77683508e-01 1.10387540e+00 1.68645248e-01 5.09923160e-01 3.73300284e-01 -1.80897832e-01 4.21865769e-02 -2.41781116e-01 1.37184128e-01 -2.44330913e-01 -6.14404440e-01 7.63704553e-02 -2.10876435e-01 -3.41017157e-01 -2.07613409e-01 -3.01318347e-01 -1.33338249e+00 5.82481064e-02 -2.66480088e-01 1.68084219e-01 1.03937113e+00 4.31876272e-01 1.00484185e-01 9.14701939e-01 1.64088368e-01 -7.43999600e-01 -8.36298689e-02 -1.11775160e+00 -5.88994861e-01 4.34046723e-02 3.36763531e-01 -4.18607295e-01 -3.40164274e-01 4.68213558e-02]
[15.26225757598877, -2.8937172889709473]
1b17ba6d-0349-4f58-91ee-54680c60419e
shadow-neural-radiance-fields-for-multi-view
2104.09877
null
https://arxiv.org/abs/2104.09877v1
https://arxiv.org/pdf/2104.09877v1.pdf
Shadow Neural Radiance Fields for Multi-view Satellite Photogrammetry
We present a new generic method for shadow-aware multi-view satellite photogrammetry of Earth Observation scenes. Our proposed method, the Shadow Neural Radiance Field (S-NeRF) follows recent advances in implicit volumetric representation learning. For each scene, we train S-NeRF using very high spatial resolution optical images taken from known viewing angles. The learning requires no labels or shape priors: it is self-supervised by an image reconstruction loss. To accommodate for changing light source conditions both from a directional light source (the Sun) and a diffuse light source (the sky), we extend the NeRF approach in two ways. First, direct illumination from the Sun is modeled via a local light source visibility field. Second, indirect illumination from a diffuse light source is learned as a non-local color field as a function of the position of the Sun. Quantitatively, the combination of these factors reduces the altitude and color errors in shaded areas, compared to NeRF. The S-NeRF methodology not only performs novel view synthesis and full 3D shape estimation, it also enables shadow detection, albedo synthesis, and transient object filtering, without any explicit shape supervision.
['Dario Izzo', 'Dawa Derksen']
2021-04-20
null
null
null
null
['shadow-detection']
['computer-vision']
[ 4.89877820e-01 -1.61570489e-01 2.41973132e-01 -4.74373817e-01 -2.71430224e-01 -6.95139706e-01 6.41080797e-01 -4.01244074e-01 -4.97424975e-02 8.59012067e-01 1.50860921e-01 -9.94112715e-02 1.56679109e-01 -9.51901913e-01 -9.27278578e-01 -1.08435595e+00 3.35113764e-01 4.18350995e-01 3.07118595e-01 -4.19735849e-01 -8.82255435e-02 9.22275841e-01 -1.58503890e+00 -2.01441437e-01 9.65763927e-01 7.76617110e-01 5.53231299e-01 7.51593292e-01 7.34681562e-02 7.38273740e-01 -4.12070245e-01 1.66077584e-01 5.79604447e-01 -1.75560027e-01 -2.01953426e-01 4.86683458e-01 9.52964067e-01 -5.89694619e-01 -2.87034035e-01 7.55466342e-01 3.84619474e-01 3.97619903e-01 5.36324263e-01 -8.86514544e-01 -4.85041678e-01 -3.88924003e-01 -5.03165185e-01 -1.51245251e-01 1.49845004e-01 1.40016496e-01 7.15396285e-01 -9.53273118e-01 6.61522567e-01 9.49422300e-01 5.43479979e-01 1.84802070e-01 -1.39919853e+00 -9.07983929e-02 2.62473971e-01 -4.79046367e-02 -1.32821167e+00 -3.54264587e-01 9.37263072e-01 -4.26174879e-01 7.07647443e-01 5.43506980e-01 9.30386543e-01 7.71887541e-01 3.72233003e-01 4.34462935e-01 1.67313588e+00 -4.39499944e-01 1.35585368e-01 2.38231570e-01 -2.09770352e-01 8.45335484e-01 -8.63611400e-02 4.37122643e-01 -6.20282292e-01 -1.73017964e-01 8.71235669e-01 1.31985068e-01 -9.84063148e-01 -6.36154473e-01 -8.17151666e-01 5.98154604e-01 7.26112664e-01 -2.38992259e-01 -2.46895686e-01 1.73084632e-01 -1.38547271e-01 1.95038855e-01 7.19572365e-01 9.70919579e-02 -7.15793610e-01 7.27557600e-01 -9.15695846e-01 8.17910805e-02 5.78385711e-01 5.44321179e-01 1.29269660e+00 5.70225656e-01 1.63162813e-01 6.62727594e-01 5.38150311e-01 1.46354508e+00 -3.79746743e-02 -1.04301369e+00 6.28959527e-03 3.86744887e-01 5.26353359e-01 -7.83957064e-01 -4.54305917e-01 -4.27515715e-01 -6.77942812e-01 8.78822029e-01 6.74828142e-02 -5.10215722e-02 -1.17401898e+00 1.60843968e+00 6.04243100e-01 1.85258567e-01 7.04897791e-02 1.14770997e+00 7.40317285e-01 7.63873398e-01 -7.76454866e-01 -3.63908291e-01 1.19837284e+00 -7.98407614e-01 -5.73027909e-01 -6.78732574e-01 3.55901532e-02 -6.69101119e-01 9.81759250e-01 1.95057094e-01 -7.22266614e-01 -2.78216064e-01 -9.22653854e-01 -1.88224941e-01 -3.60565364e-01 1.80070177e-01 6.62121713e-01 3.60589206e-01 -1.19195688e+00 2.03456640e-01 -5.11061609e-01 -5.66928089e-02 -1.89219508e-02 -1.63502797e-01 -1.87199935e-01 -9.20477137e-02 -9.66888249e-01 8.65752876e-01 -1.79171652e-01 2.94574320e-01 -1.01163781e+00 -7.36114979e-01 -9.84834433e-01 7.41115510e-02 4.28091526e-01 -8.30602467e-01 8.03431332e-01 -1.39033198e+00 -1.86626089e+00 7.93857813e-01 -4.88503128e-01 -1.71956792e-01 3.88422579e-01 -3.39999527e-01 -1.62702516e-01 2.78591037e-01 -4.55513559e-02 1.91527799e-01 1.19163907e+00 -2.09998178e+00 -1.42729625e-01 -4.65166688e-01 1.81280792e-01 8.20047379e-01 3.35080504e-01 -5.08294404e-01 -1.01212129e-01 -3.65759462e-01 9.47616398e-02 -9.50428367e-01 -1.94472626e-01 5.03121793e-01 -1.56563744e-01 5.68979025e-01 8.67819250e-01 -7.23102808e-01 4.38134700e-01 -1.90979004e+00 9.56331566e-02 2.00503185e-01 -2.92603672e-02 -3.01086158e-03 1.03787333e-01 2.50795215e-01 1.00977078e-01 -4.86802071e-01 -5.62660635e-01 -2.41448209e-01 -3.60939264e-01 5.21377981e-01 -7.82986283e-01 7.00299442e-01 -2.41593435e-01 5.45253336e-01 -8.08344722e-01 -1.68033376e-01 5.11365592e-01 7.81639934e-01 -1.25110641e-01 2.58651406e-01 -3.93362284e-01 6.07604623e-01 -9.39155370e-02 6.21899188e-01 1.06722760e+00 -4.54333378e-03 1.06859744e-01 -3.41530629e-02 -4.80250031e-01 7.22417086e-02 -1.10153008e+00 1.40280676e+00 -9.06855047e-01 7.24088669e-01 4.62720126e-01 -3.39547187e-01 1.06102681e+00 1.22712791e-01 2.77605712e-01 -8.00648093e-01 -2.40810245e-01 5.23698777e-02 -5.79649031e-01 -2.68812567e-01 4.47617352e-01 -4.12589222e-01 5.53238511e-01 1.42757669e-01 -2.33509585e-01 -6.99158788e-01 -3.52518529e-01 4.53241877e-02 4.94966954e-01 7.10054696e-01 2.87999213e-01 -2.47557595e-01 6.16143107e-01 -3.00856203e-01 7.50015199e-01 5.18590331e-01 2.71259129e-01 7.22823501e-01 -9.10142884e-02 -5.13125598e-01 -8.34502280e-01 -1.22145200e+00 -2.73915917e-01 1.12352812e+00 2.75832325e-01 1.11533813e-01 -1.97984487e-01 -3.77350241e-01 1.44131735e-01 8.37095797e-01 -4.40687418e-01 1.70302823e-01 -5.84658742e-01 -7.04425156e-01 -2.23715212e-02 2.88319528e-01 5.91764569e-01 -7.56026208e-01 -9.65635777e-01 -1.88016802e-01 -2.90104359e-01 -1.09520769e+00 -4.62151051e-01 2.27273330e-01 -9.13022459e-01 -9.82991397e-01 -6.31360650e-01 -1.24728017e-01 6.62287951e-01 8.16552162e-01 1.31950092e+00 1.27487339e-03 -4.05975729e-01 7.05325603e-01 -7.30401203e-02 -4.85807449e-01 -1.57489151e-01 -8.70373428e-01 -4.13452536e-02 3.70226979e-01 -3.04064006e-01 -6.80600345e-01 -6.83122098e-01 4.00579125e-01 -8.07437539e-01 2.97543824e-01 4.03726280e-01 8.67889047e-01 8.29532921e-01 -2.10974395e-01 -3.03280115e-01 -7.91104496e-01 -3.80392849e-01 -1.22237131e-01 -1.28617406e+00 2.78510898e-01 -6.71816587e-01 -2.00708911e-01 4.87941056e-01 2.20410358e-02 -1.81536376e+00 3.84241700e-01 2.26091474e-01 -5.53012431e-01 -2.80554265e-01 1.46686181e-01 -1.13029785e-01 -3.46781611e-01 8.67045343e-01 6.49501860e-01 -4.33344960e-01 -3.36275697e-01 4.12097394e-01 2.05174789e-01 4.15478647e-01 -3.47898275e-01 1.21359599e+00 1.29063511e+00 4.04435307e-01 -1.46348834e+00 -9.95355010e-01 -4.78213817e-01 -6.20165408e-01 -4.57536846e-01 7.46972322e-01 -1.14373207e+00 -4.51571763e-01 5.67289412e-01 -9.97568905e-01 -7.81308651e-01 -3.07136387e-01 3.08281839e-01 -4.20893282e-01 4.85303670e-01 1.77907776e-02 -1.08758557e+00 -3.82688165e-01 -7.80612469e-01 1.33661377e+00 2.44291395e-01 5.86954474e-01 -1.26116741e+00 2.41647616e-01 4.21168625e-01 2.07839802e-01 5.52296817e-01 7.04698563e-01 5.91988504e-01 -1.08142734e+00 2.49052733e-01 -2.36006692e-01 5.87539792e-01 2.25385487e-01 3.28235663e-02 -1.31209505e+00 -4.48655277e-01 2.69869715e-01 -2.23019004e-01 1.07716608e+00 6.08682454e-01 7.77224362e-01 -3.47804487e-01 -1.58866141e-02 1.32461298e+00 2.01311064e+00 -1.36318579e-01 4.67341483e-01 3.01994354e-01 1.02999282e+00 4.62701172e-01 4.41799730e-01 5.47828317e-01 4.68353629e-01 6.45256221e-01 8.74569297e-01 -6.80735409e-01 -3.03535104e-01 1.47486404e-01 3.51721168e-01 1.70860201e-01 -5.75418055e-01 -3.08093309e-01 -7.41644859e-01 3.25469136e-01 -1.64256573e+00 -9.82169390e-01 -3.81491750e-01 2.54427910e+00 5.12708247e-01 -3.55174392e-01 -5.76233029e-01 -2.32001975e-01 1.55525818e-01 6.97921216e-01 -7.11842597e-01 -8.76979679e-02 -6.36190832e-01 1.07651455e-02 1.01989973e+00 1.11877894e+00 -6.63783193e-01 9.17024493e-01 5.53559303e+00 -1.18087223e-02 -1.37618387e+00 7.58664031e-03 1.28800154e-01 1.37342503e-02 -9.84381735e-01 3.85787666e-01 -6.07522488e-01 7.34983385e-02 2.74301410e-01 2.96106339e-01 8.01429212e-01 7.01933563e-01 3.99316162e-01 -5.44297636e-01 -5.06879508e-01 8.69020343e-01 4.47491407e-01 -1.17197394e+00 4.94683757e-02 1.06097236e-01 8.59698176e-01 4.68024969e-01 -1.83045626e-01 -2.29789302e-01 3.02555054e-01 -5.73642671e-01 7.80067921e-01 1.01237476e+00 8.61900866e-01 -3.38031560e-01 3.68406624e-01 3.37671131e-01 -1.23275363e+00 2.07504462e-02 -3.32903922e-01 7.43090659e-02 3.16412538e-01 9.04103577e-01 -7.19510734e-01 8.01607192e-01 7.92845130e-01 5.70603907e-01 -3.78861129e-01 7.29852617e-01 -6.71439886e-01 3.57398510e-01 -5.34912467e-01 6.52598679e-01 -6.11004420e-02 -7.15779483e-01 9.09521580e-01 9.05602157e-01 1.39974311e-01 1.97148860e-01 2.44570807e-01 7.58317411e-01 5.41668087e-02 -1.49482876e-01 -6.68284893e-01 5.50178647e-01 5.46037368e-02 1.39462924e+00 -4.72349435e-01 -2.19125256e-01 -3.75226885e-01 1.34114981e+00 3.42141092e-02 9.05716419e-01 -6.77352786e-01 1.12952918e-01 5.62041640e-01 2.75330544e-01 1.86516851e-01 -2.68364310e-01 -1.74376592e-01 -1.39302135e+00 9.64373797e-02 -5.54227650e-01 -1.51600957e-01 -1.32884943e+00 -7.50010610e-01 3.29974204e-01 -5.69717325e-02 -1.13711333e+00 1.84158459e-01 -6.56154633e-01 -5.97064614e-01 1.09101081e+00 -2.30649137e+00 -1.34707141e+00 -8.96164000e-01 7.71253228e-01 4.56352949e-01 1.88183680e-01 8.28434169e-01 -1.48110822e-01 4.60603684e-02 -2.89099425e-01 4.02215034e-01 -3.51170093e-01 8.61122966e-01 -1.65949464e+00 1.10901572e-01 8.77436221e-01 -3.30245541e-03 1.75902531e-01 8.36543798e-01 -4.51317638e-01 -1.53068292e+00 -1.05395317e+00 5.09655595e-01 -2.94741243e-01 2.49915242e-01 -3.59399587e-01 -9.38820422e-01 6.86576247e-01 8.63932818e-02 3.96681577e-01 4.27277714e-01 -1.84910297e-01 -4.48501468e-01 -5.34124851e-01 -9.84312832e-01 3.05391312e-01 7.34166205e-01 -6.58483863e-01 -4.02455807e-01 6.82356954e-01 4.22764152e-01 -6.73867285e-01 -4.51920509e-01 5.31006932e-01 4.08342957e-01 -1.44815457e+00 1.02073193e+00 8.87499303e-02 1.38657063e-01 -6.08887732e-01 -4.30995762e-01 -1.56322527e+00 -2.12029442e-01 -4.72387135e-01 -1.55684203e-01 7.88918078e-01 3.48956361e-02 -8.79695475e-01 3.65980625e-01 -3.58646326e-02 -4.82565284e-01 -5.58638573e-01 -7.16779768e-01 -5.18042207e-01 -2.89660633e-01 7.05816364e-03 3.38783771e-01 7.96867251e-01 -1.02835119e+00 4.12123770e-01 -5.88965952e-01 8.65461349e-01 1.00903666e+00 8.44003081e-01 9.09095109e-01 -1.50717819e+00 -4.53659564e-01 4.22695428e-02 2.94457108e-01 -1.14785373e+00 5.80303185e-02 -6.65388644e-01 3.98019075e-01 -1.77487731e+00 -5.13577275e-02 -2.62051463e-01 1.71942204e-01 2.50836790e-01 -4.70478646e-03 1.43866003e-01 7.24683031e-02 2.79253870e-01 8.99414048e-02 8.55420709e-01 1.43636191e+00 8.49295259e-02 -2.56163448e-01 1.16162218e-01 1.32437095e-01 1.09102869e+00 6.13413751e-01 -2.84778267e-01 -5.01827598e-01 -7.92837024e-01 6.08981371e-01 3.16066384e-01 6.61865115e-01 -6.57325268e-01 -2.82219857e-01 -5.58175445e-01 6.26971662e-01 -6.26912832e-01 8.35732460e-01 -9.88535702e-01 1.56717002e-01 2.11611480e-01 4.12904948e-01 -4.36743766e-01 -1.29987910e-01 7.89026499e-01 1.69393092e-01 8.42351764e-02 1.12263823e+00 -4.91242617e-01 -5.24900198e-01 2.51176596e-01 -2.70566285e-01 -1.58825651e-01 5.55740297e-01 -2.67841309e-01 -4.44591612e-01 -4.81204420e-01 -3.34466577e-01 1.42866656e-01 8.61391723e-01 5.69524094e-02 7.36415565e-01 -8.60572159e-01 -5.89219809e-01 3.30223471e-01 1.83296487e-01 2.17644528e-01 3.08054656e-01 7.51435161e-01 -7.09506273e-01 9.93020162e-02 3.25839631e-02 -6.43559039e-01 -1.40692449e+00 2.32272252e-01 8.23126554e-01 5.61773069e-02 -9.29292858e-01 7.53127456e-01 6.93527102e-01 -7.81054497e-01 -7.17503056e-02 -1.67479023e-01 -7.13864565e-02 -1.13602422e-01 3.36050361e-01 4.25518125e-01 2.64147054e-02 -8.99806798e-01 -1.14794739e-01 8.24612141e-01 6.68465674e-01 -8.05458650e-02 1.32906032e+00 -5.39752185e-01 -1.94228873e-01 8.56116593e-01 7.59707570e-01 4.15956527e-01 -1.66967428e+00 -4.16471899e-01 -7.64439702e-01 -6.61061168e-01 6.05218172e-01 -9.25205648e-01 -1.12305176e+00 7.36832380e-01 5.79663515e-01 -5.22850119e-02 1.23024070e+00 -3.03075850e-01 5.71365058e-01 5.20260751e-01 3.03236395e-01 -1.09875047e+00 -1.22786835e-02 8.00922751e-01 1.07385278e+00 -1.30798054e+00 3.35288465e-01 -3.67249906e-01 -6.23218536e-01 1.15626109e+00 4.30347949e-01 -4.45044301e-02 7.08521724e-01 1.30340531e-01 5.23922861e-01 -2.75140017e-01 -4.09732938e-01 -3.55766267e-01 3.79514813e-01 4.29082990e-01 8.73062536e-02 1.07339188e-01 2.27036759e-01 -4.08024549e-01 2.33888850e-02 -3.17395627e-01 7.31693208e-01 6.71219349e-01 -5.87702930e-01 -4.72760260e-01 -6.55646324e-01 1.53733552e-01 1.89489886e-01 -2.11033866e-01 -3.11688453e-01 4.50328708e-01 3.10162961e-01 4.87937063e-01 1.24331497e-01 2.28124723e-01 2.53134370e-01 -1.27841616e-02 5.32437265e-01 -5.71818352e-01 2.16156486e-02 3.60524625e-01 -6.90131187e-02 -6.20590091e-01 -6.45034850e-01 -6.24004781e-01 -1.20683956e+00 5.46581857e-02 -5.52642465e-01 -2.99752980e-01 8.87574852e-01 9.11391616e-01 -4.41504531e-02 4.22079742e-01 9.68658149e-01 -1.34373605e+00 -1.59624800e-01 -5.89857221e-01 -8.78679633e-01 -1.07446322e-02 9.66295600e-01 -7.99196243e-01 -8.85762155e-01 1.06017798e-01]
[9.864337921142578, -3.005108594894409]
86c1c1fd-d53a-498e-9ab1-7503cc576055
copula-entropy-based-variable-selection-for
2209.01561
null
https://arxiv.org/abs/2209.01561v1
https://arxiv.org/pdf/2209.01561v1.pdf
Copula Entropy based Variable Selection for Survival Analysis
Variable selection is an important problem in statistics and machine learning. Copula Entropy (CE) is a mathematical concept for measuring statistical independence and has been applied to variable selection recently. In this paper we propose to apply the CE-based method for variable selection to survival analysis. The idea is to measure the correlation between variables and time-to-event with CE and then select variables according to their CE value. Experiments on simulated data and two real cancer data were conducted to compare the proposed method with two related methods: random survival forest and Lasso-Cox. Experimental results showed that the proposed method can select the 'right' variables out that are more interpretable and lead to better prediction performance.
['Jian Ma']
2022-09-04
null
null
null
null
['variable-selection', 'survival-analysis']
['methodology', 'miscellaneous']
[ 1.11887179e-01 -2.17470735e-01 -5.14333606e-01 -4.93766665e-01 -6.05574965e-01 6.90126419e-02 1.05766758e-01 4.46984261e-01 -5.45876741e-01 1.49631500e+00 2.10267529e-01 -3.00521523e-01 -4.31224763e-01 -8.68068993e-01 -1.18717467e-02 -9.75013733e-01 -5.82757056e-01 5.55383623e-01 -1.90911219e-01 5.57684004e-02 1.23930566e-01 3.19935083e-01 -1.19237757e+00 -4.30238962e-01 1.05536437e+00 6.97367191e-01 -8.79637823e-02 4.98629153e-01 1.72886178e-02 4.00605738e-01 -5.05684912e-01 -2.38727406e-01 -8.32150206e-02 -8.38283479e-01 -4.19394761e-01 -4.47877169e-01 -5.88251948e-01 4.01245594e-01 2.90468276e-01 8.69276106e-01 5.90410411e-01 2.04979345e-01 1.12507653e+00 -1.35507011e+00 -1.34086818e-01 7.52205431e-01 -7.76796043e-01 2.31252447e-01 1.64488226e-01 -5.10464907e-01 9.15569425e-01 -5.35924792e-01 6.47368848e-01 1.30588365e+00 6.77783847e-01 4.91034478e-01 -1.26217198e+00 -7.33918905e-01 -3.34637552e-01 2.81569779e-01 -1.37451339e+00 -4.47713025e-02 5.42563200e-01 -4.38779026e-01 4.08252835e-01 6.25044465e-01 7.09936321e-01 6.25171959e-01 9.44531441e-01 6.17547095e-01 1.43855882e+00 -5.63389778e-01 4.04355943e-01 3.24408531e-01 3.78799677e-01 7.32728004e-01 4.81068254e-01 5.31815648e-01 -3.44430774e-01 -5.88434756e-01 4.66624618e-01 1.53670475e-01 -3.87998253e-01 -3.60733569e-01 -1.09831560e+00 1.41262531e+00 2.65600055e-01 1.11360922e-01 -5.05165637e-01 -1.50319844e-01 6.34059012e-01 1.95942983e-01 5.33246160e-01 1.98492214e-01 -5.38874924e-01 1.32242769e-01 -8.87984276e-01 1.19628906e-01 9.82908189e-01 6.15895689e-01 1.42852157e-01 -2.11281791e-01 -6.16587043e-01 5.13340235e-01 3.68347973e-01 7.04550982e-01 4.78696167e-01 -3.51126254e-01 1.92036971e-01 3.71748149e-01 -9.35188904e-02 -8.86602163e-01 -7.23441184e-01 -6.43057525e-01 -1.25626314e+00 2.08195537e-01 1.41139492e-01 -3.81666631e-01 -8.03539395e-01 1.52662814e+00 1.90772086e-01 2.47928519e-02 -1.30280137e-01 8.00619423e-01 6.02044225e-01 2.77791768e-01 4.08530354e-01 -8.83999050e-01 1.19340360e+00 -4.10039157e-01 -8.75603080e-01 3.26879948e-01 4.57952380e-01 -4.15581346e-01 5.97713768e-01 5.41790664e-01 -5.54984748e-01 1.88851859e-02 -7.94060290e-01 5.77103198e-01 -9.84100923e-02 -1.00183681e-01 9.67180312e-01 6.78233266e-01 -5.35415113e-01 5.05426049e-01 -7.95947790e-01 -3.36002260e-01 4.86723810e-01 4.14828748e-01 -3.35253537e-01 2.37029046e-01 -1.32779503e+00 8.09968650e-01 4.52714503e-01 -1.70184702e-01 -5.98144233e-01 -9.64708105e-02 -7.37766027e-01 1.80262432e-01 2.37651423e-01 -1.15061986e+00 7.46251345e-01 -9.86078084e-01 -1.17386913e+00 5.95349967e-01 -6.05689764e-01 -6.75084352e-01 5.12572408e-01 3.26505639e-02 -3.35467368e-01 -1.66907072e-01 2.19781578e-01 -1.24435082e-01 6.04737937e-01 -9.70716834e-01 -6.72032714e-01 -7.09375024e-01 -7.96904445e-01 -3.43733840e-02 -1.82400905e-02 2.01949656e-01 6.86760917e-02 -7.51484215e-01 2.70404845e-01 -7.86453485e-01 -5.77447951e-01 -4.59491730e-01 -5.98192275e-01 -2.32137218e-01 3.51462454e-01 -7.33444393e-01 1.50031090e+00 -1.70168030e+00 4.29139167e-01 7.47100592e-01 2.14672446e-01 -2.58708239e-01 4.30847317e-01 2.86434114e-01 -1.67998537e-01 3.86009336e-01 -4.78940576e-01 -1.70486212e-01 -4.90240306e-01 8.70496705e-02 2.43145183e-01 6.85898185e-01 -1.30894467e-01 4.58268315e-01 -7.80508339e-01 -1.06844258e+00 1.26429513e-01 3.84434193e-01 -1.92821696e-01 1.77517042e-01 1.63285330e-01 6.80882931e-01 -7.76396930e-01 9.07127500e-01 5.75459659e-01 -4.92595881e-02 4.92650867e-02 4.42439049e-01 1.41559377e-01 -2.90144652e-01 -9.34661627e-01 7.57059395e-01 -2.36200169e-01 6.03596389e-01 -1.41739741e-01 -1.09595370e+00 1.24126410e+00 3.39375138e-01 4.91296828e-01 -2.16148451e-01 5.95004141e-01 1.93112269e-01 -7.38632530e-02 -6.81284904e-01 -1.08277835e-01 -7.99253821e-01 -1.42122313e-01 -1.83486551e-01 -3.07602406e-01 1.15706036e-02 1.65208668e-01 -1.81763157e-01 7.93286324e-01 -2.37896994e-01 1.15868902e+00 -3.55378211e-01 8.78909230e-01 -1.63277406e-02 1.13881660e+00 6.78328335e-01 -1.79248840e-01 2.17627138e-01 7.83807814e-01 -1.36635467e-01 -6.65126503e-01 -9.58579123e-01 -6.68117523e-01 5.61311841e-01 -1.30625293e-01 -1.35353059e-01 -2.99696296e-01 -7.61813343e-01 2.29620859e-01 9.29191589e-01 -8.71101618e-01 2.15536878e-02 -1.69765040e-01 -9.80611086e-01 4.89638895e-02 3.05017471e-01 2.49596134e-01 -9.53661680e-01 -5.22899628e-01 2.26552889e-01 -1.43653825e-01 -1.77909166e-01 4.50745225e-03 4.09901440e-01 -1.13673639e+00 -1.04826880e+00 -7.94741392e-01 -5.94813645e-01 7.37808764e-01 -1.80053219e-01 1.14523363e+00 2.98230261e-01 -1.28725171e-01 -2.93793172e-01 -6.96406424e-01 -8.24970901e-01 -2.98338920e-01 -3.56649868e-02 -3.06657143e-02 -1.58450112e-01 4.30737913e-01 -3.30121607e-01 -4.99235421e-01 2.60431826e-01 -6.12042546e-01 -2.81004250e-01 6.57232523e-01 1.42057991e+00 9.02503014e-01 3.61121356e-01 6.14576697e-01 -1.26568317e+00 6.67579234e-01 -7.48525023e-01 -6.05191529e-01 2.77560264e-01 -1.04453897e+00 2.62514979e-01 4.20117378e-01 -1.04884245e-01 -7.92184293e-01 3.76968719e-02 1.77598491e-01 -1.52687341e-01 2.04305574e-01 1.08082104e+00 -2.09244028e-01 2.36684531e-01 3.08001250e-01 5.83174042e-02 6.18720874e-02 -4.29987133e-01 -3.55008602e-01 6.43947482e-01 1.05276428e-01 -1.05352648e-01 3.75407666e-01 3.49000126e-01 8.21718693e-01 -4.46729451e-01 -3.87890756e-01 -4.18707877e-01 -3.81692976e-01 3.89043540e-02 9.49706614e-01 -5.02711952e-01 -9.28682923e-01 1.17409743e-01 -5.96644282e-01 1.88565582e-01 1.47250861e-01 9.93245125e-01 -6.30978286e-01 5.46344332e-02 -1.22466154e-01 -1.23113751e+00 -7.10067809e-01 -9.66931462e-01 6.28869176e-01 4.51785833e-01 -1.54895335e-01 -1.27501440e+00 2.12928057e-01 -9.37388837e-02 2.18072951e-01 9.36122775e-01 9.82817054e-01 -7.61201322e-01 1.24112621e-01 -6.37014568e-01 1.50176689e-01 6.49572862e-03 -1.14103621e-02 1.84445739e-01 -3.60737205e-01 -4.21845526e-01 6.32778406e-02 2.69553751e-01 9.66593742e-01 9.15871561e-01 1.23717451e+00 -2.25024939e-01 -9.43536162e-01 7.76775122e-01 1.68562043e+00 2.46199578e-01 6.14827633e-01 5.28712153e-01 2.05375209e-01 4.81049895e-01 1.19797587e+00 7.96068251e-01 4.75561842e-02 7.26119220e-01 1.03379019e-01 -1.45181790e-01 4.46579903e-01 -1.84797674e-01 9.13891643e-02 4.41730231e-01 -1.13508455e-01 -2.71840155e-01 -9.02090430e-01 3.01128864e-01 -1.94906509e+00 -9.42877650e-01 -7.06960082e-01 2.54095697e+00 7.32716680e-01 2.72242844e-01 2.87082732e-01 2.28496984e-01 8.27089190e-01 -4.87856388e-01 -2.31984138e-01 -6.51009917e-01 -2.99549878e-01 2.79086798e-01 9.37069893e-01 5.22943020e-01 -1.12282157e+00 3.98829490e-01 6.74858856e+00 8.66424978e-01 -1.10941327e+00 -1.58096887e-02 8.37389350e-01 1.48136541e-01 -1.80890024e-01 3.02649915e-01 -5.84084511e-01 5.14914334e-01 7.29136884e-01 -4.68329191e-01 -8.89027193e-02 6.31340027e-01 6.21038139e-01 -4.67568636e-01 -7.53039360e-01 5.97041368e-01 -1.09825879e-01 -7.00743675e-01 -2.87743151e-01 6.22306541e-02 6.55617893e-01 -4.52919990e-01 -2.97660053e-01 2.00466096e-01 3.32695663e-01 -1.39340496e+00 2.01597467e-01 1.00356865e+00 7.29232490e-01 -8.95530999e-01 1.48238873e+00 3.17430377e-01 -9.03342128e-01 -1.43396243e-01 -3.79882485e-01 -7.34418705e-02 3.44041437e-01 1.02212644e+00 -1.23862243e+00 7.45810509e-01 5.98471522e-01 5.43416500e-01 -5.15408814e-01 1.57825387e+00 -3.70615453e-01 9.80071068e-01 -1.64711997e-01 -6.09452367e-01 -2.81436771e-01 -3.60394329e-01 8.74441326e-01 1.04148185e+00 4.00246471e-01 1.15563363e-01 -8.35163742e-02 5.08400738e-01 6.28804147e-01 5.44637859e-01 -4.42996651e-01 2.58239895e-01 6.65676892e-01 9.30032432e-01 -9.58942115e-01 -2.44118124e-01 -1.98900282e-01 6.78451240e-01 -1.37940675e-01 5.97140603e-02 -7.68591106e-01 -4.61368084e-01 5.95595650e-02 -9.55705997e-03 1.74860165e-01 5.66845611e-02 -8.20328832e-01 -9.12922800e-01 -3.90177280e-01 -5.57497263e-01 9.40367758e-01 -2.76432246e-01 -1.30871797e+00 4.87595052e-01 1.43899783e-01 -1.38912964e+00 -1.53511032e-01 -3.59685779e-01 -7.39251733e-01 1.07754254e+00 -1.11771822e+00 -7.95021355e-01 -2.36514062e-01 5.36882639e-01 1.64689779e-01 -3.24723095e-01 1.03801727e+00 -1.04951680e-01 -6.67966425e-01 6.44294262e-01 6.34460032e-01 -9.86047611e-02 5.52933753e-01 -1.48341131e+00 -4.47535187e-01 4.91181999e-01 -3.37722838e-01 5.08644104e-01 1.12379634e+00 -9.77048576e-01 -8.21616173e-01 -5.85733652e-01 1.22799444e+00 -1.72852919e-01 2.49139816e-01 1.08256102e-01 -5.17250478e-01 3.49293232e-01 -1.92535669e-01 -2.89243877e-01 9.23879027e-01 4.43991035e-01 3.18095207e-01 -2.70349920e-01 -1.48514187e+00 3.33967298e-01 3.49098235e-01 2.94671685e-01 -5.12406230e-01 1.57658935e-01 3.14102322e-01 -7.41867200e-02 -1.02330101e+00 5.22393882e-01 7.43088305e-01 -9.28732872e-01 7.73898005e-01 -6.77356184e-01 2.77989745e-01 -9.76457298e-02 8.91230926e-02 -1.44874549e+00 -3.55509073e-01 -4.11260009e-01 3.40191245e-01 1.26047432e+00 5.88346064e-01 -8.24933469e-01 6.07801914e-01 4.57271129e-01 5.68834782e-01 -1.00716507e+00 -1.16986322e+00 -7.68548489e-01 1.34719670e-01 9.28755179e-02 7.10221887e-01 9.24797475e-01 1.12795949e-01 4.18389112e-01 -4.46977198e-01 -2.24483222e-01 8.00428092e-01 7.38589093e-03 6.34308100e-01 -1.59389114e+00 -3.29412222e-01 -4.88776118e-01 -7.04843402e-01 9.05005336e-02 8.28547627e-02 -7.42565691e-01 1.87279675e-02 -1.40919316e+00 7.35290527e-01 -6.11974180e-01 -6.54422641e-01 1.65422648e-01 -7.05977201e-01 -4.01796490e-01 -1.09235510e-01 1.16929725e-01 -1.18386380e-01 5.99558115e-01 1.05029380e+00 1.74655333e-01 -4.38060611e-01 8.03650200e-01 -4.62470531e-01 4.05778378e-01 9.32408988e-01 -8.95065427e-01 -8.60197917e-02 5.01786470e-01 -6.91947415e-02 7.32199311e-01 1.89190462e-01 -7.40854502e-01 -2.49972567e-01 -5.11163175e-01 5.74886620e-01 -4.63982165e-01 -2.78224349e-01 -9.71296489e-01 3.57637405e-01 8.43370318e-01 -4.28960681e-01 9.45746377e-02 -2.17795283e-01 6.34158313e-01 -2.29220524e-01 -4.26987082e-01 6.53718531e-01 1.51137248e-01 -3.89690459e-01 2.75069773e-02 -1.14096984e-01 -2.97300130e-01 1.30035329e+00 1.09658474e-02 1.16734535e-01 -6.15729868e-01 -9.19573307e-01 4.51389581e-01 2.21597165e-01 -2.46013049e-02 7.37745166e-01 -1.23014176e+00 -1.28340304e+00 4.58892435e-02 1.70186460e-02 -3.67703259e-01 -2.66051650e-01 1.25476587e+00 -4.53515887e-01 4.62723315e-01 -1.91688642e-01 -4.55713004e-01 -1.73313010e+00 5.94645321e-01 1.71056628e-01 -6.56919777e-01 -3.03817898e-01 8.13216567e-01 -2.05228746e-01 -9.29667503e-02 6.06880113e-02 2.10266799e-01 -6.60308480e-01 5.80858774e-02 2.53779054e-01 6.97370350e-01 -2.70340711e-01 -5.51453173e-01 -6.80895925e-01 4.14773822e-01 3.01789522e-01 -2.95561075e-01 1.38740170e+00 -2.08695874e-01 -4.62138802e-01 6.36726797e-01 1.32554388e+00 1.45750239e-01 -5.70188999e-01 -2.79319417e-02 3.65891606e-01 -7.36915052e-01 2.37597227e-01 -9.11321282e-01 -9.44926143e-01 6.07962251e-01 8.88337851e-01 2.51495898e-01 1.50194287e+00 -1.29547819e-01 3.30192834e-01 -1.52012438e-01 4.19211000e-01 -9.38021004e-01 -6.93541467e-01 9.93873999e-02 7.67923534e-01 -1.47146332e+00 4.86390948e-01 -5.16952932e-01 -8.70095491e-01 1.10695577e+00 2.17772856e-01 4.72006314e-02 9.60238099e-01 1.05564063e-02 -7.52444267e-02 -1.21050164e-01 -6.01832688e-01 -2.36435860e-01 3.15015197e-01 6.05026603e-01 7.66453028e-01 6.24801457e-01 -1.46691239e+00 8.76351297e-01 -3.39647651e-01 3.93124610e-01 1.54242754e-01 8.34892750e-01 -3.35150510e-01 -1.19330466e+00 -6.35161281e-01 9.58256721e-01 -7.33720720e-01 2.89070476e-02 -2.24597275e-01 8.80773067e-01 -2.82755401e-03 9.27815020e-01 -1.68330967e-01 -3.51243496e-01 2.29272805e-02 -2.91990340e-02 5.10160923e-02 -2.48398066e-01 -3.62927526e-01 1.32220060e-01 1.62316427e-01 -6.33176044e-02 -3.53251457e-01 -9.79008138e-01 -1.44148481e+00 -2.08640486e-01 -8.54971647e-01 5.45036316e-01 5.93618512e-01 7.81938851e-01 -9.91194248e-02 5.54599583e-01 1.07055795e+00 -2.34452486e-01 -6.97473884e-01 -8.76467407e-01 -9.26700711e-01 3.70489657e-01 3.23519468e-01 -9.34617817e-01 -5.39963067e-01 -2.21056402e-01]
[7.846938133239746, 4.902050018310547]
ca65a0a3-b157-4fc8-bf86-59db5b64dadc
deep-ultrasound-denoising-using-diffusion
2306.07440
null
https://arxiv.org/abs/2306.07440v1
https://arxiv.org/pdf/2306.07440v1.pdf
Deep Ultrasound Denoising Using Diffusion Probabilistic Models
Ultrasound images are widespread in medical diagnosis for musculoskeletal, cardiac, and obstetrical imaging due to the efficiency and non-invasiveness of the acquisition methodology. However, the acquired images are degraded by acoustic (e.g. reverberation and clutter) and electronic sources of noise. To improve the Peak Signal to Noise Ratio (PSNR) of the images, previous denoising methods often remove the speckles, which could be informative for radiologists and also for quantitative ultrasound. Herein, a method based on the recent Denoising Diffusion Probabilistic Models (DDPM) is proposed. It iteratively enhances the image quality by eliminating the noise while preserving the speckle texture. It is worth noting that the proposed method is trained in a completely unsupervised manner, and no annotated data is required. The experimental blind test results show that our method outperforms the previous nonlocal means denoising methods in terms of PSNR and Generalized Contrast to Noise Ratio (GCNR) while preserving speckles.
['Hassan Rivaz', 'Adrian Basarab', 'Sobhan Goudarzi', 'Hojat Asgariandehkordi']
2023-06-12
null
null
null
null
['medical-diagnosis']
['medical']
[ 4.14571464e-01 -2.35426098e-01 5.56281090e-01 -8.22203085e-02 -5.36330700e-01 -1.76136538e-01 9.82104391e-02 3.61275412e-02 -4.65314716e-01 5.90305269e-01 2.36314446e-01 5.58924079e-02 -3.91139507e-01 -5.09077430e-01 -1.39154315e-01 -1.44074738e+00 1.80522073e-02 -2.82763422e-01 4.39790159e-01 1.83248356e-01 1.77517548e-01 3.98532450e-01 -1.40304303e+00 -1.04035892e-01 1.15062332e+00 9.76107001e-01 5.03222942e-01 5.41833818e-01 1.21786475e-01 6.51239932e-01 -5.59223115e-01 -1.86857775e-01 5.49631864e-02 -6.02217495e-01 -2.52419174e-01 3.38172585e-01 -1.33093938e-01 -4.94167984e-01 -4.56333369e-01 1.44002223e+00 8.53057563e-01 2.76445419e-01 5.04321635e-01 -3.47981393e-01 -6.24099314e-01 1.55882537e-01 -8.56320739e-01 4.36718792e-01 -1.47504779e-02 6.36375993e-02 1.24879614e-01 -8.71670008e-01 4.58430111e-01 9.78025496e-01 5.79158247e-01 2.19897151e-01 -9.99851465e-01 -3.75823408e-01 -4.40956116e-01 3.51772606e-01 -1.33974719e+00 -4.07141149e-01 8.99268508e-01 -2.84592807e-01 -5.94776049e-02 3.26931357e-01 3.83633077e-01 7.85671234e-01 5.75648308e-01 4.77335304e-01 1.49357998e+00 -4.76863623e-01 3.00887048e-01 -1.91569999e-01 -1.24542087e-01 6.69013560e-01 4.10778850e-01 6.21662550e-02 -4.29117501e-01 -4.03784029e-02 8.97661507e-01 1.04962997e-01 -6.02220654e-01 -1.25115439e-01 -1.08438444e+00 3.44502807e-01 5.88704608e-02 7.51394391e-01 -7.86459506e-01 -1.04895778e-01 3.06283623e-01 -9.37390849e-02 4.86280233e-01 1.75201427e-02 2.97896445e-01 -1.09979443e-01 -8.95303667e-01 -4.63463753e-01 4.88790661e-01 4.15075332e-01 4.12888467e-01 2.06265792e-01 -1.93240792e-01 1.03180516e+00 4.54852164e-01 1.01642036e+00 4.13115472e-01 -1.25509477e+00 -8.72071832e-02 1.21993609e-02 1.36327790e-02 -1.38862026e+00 -7.34518245e-02 -8.18574786e-01 -1.32314968e+00 1.45674780e-01 2.61107147e-01 3.36871408e-02 -8.76896739e-01 1.12993479e+00 4.83579040e-01 3.97637159e-01 -5.10380082e-02 1.13671660e+00 9.72194970e-01 5.87154686e-01 -2.73329671e-02 -7.72188723e-01 1.21971905e+00 -6.26679957e-01 -1.43514919e+00 -1.39473513e-01 6.88854679e-02 -1.17188072e+00 5.51103175e-01 6.86649084e-01 -1.16716909e+00 -5.98940849e-01 -8.83496642e-01 4.72724557e-01 5.53204775e-01 8.79017636e-02 6.92777410e-02 9.37876940e-01 -8.53699684e-01 6.27182305e-01 -1.27835715e+00 -1.63897216e-01 2.18394384e-01 1.69880167e-02 -2.59458721e-01 -6.64751768e-01 -8.72750223e-01 7.72740602e-01 -7.47680813e-02 7.35092103e-01 -5.89201272e-01 -3.24237347e-01 -8.02552342e-01 -9.68096331e-02 3.39558005e-01 -3.16805810e-01 8.15556765e-01 -6.47890806e-01 -1.60200441e+00 3.82392645e-01 -2.13676229e-01 4.02666591e-02 3.86104554e-01 -1.77723259e-01 -4.34374869e-01 9.33772743e-01 4.14487673e-03 -1.22700632e-01 1.15842021e+00 -1.44476867e+00 -1.44402102e-01 -2.39753559e-01 -6.53900564e-01 4.47864830e-02 -2.22721890e-01 -3.12744291e-04 -5.39379716e-01 -8.00200939e-01 8.14967394e-01 -7.53107667e-01 -3.90804172e-01 1.69880781e-02 -1.58661261e-01 4.02739495e-01 5.92440963e-01 -1.17688715e+00 1.21210420e+00 -2.53228378e+00 -1.89359903e-01 5.26917577e-01 1.47253141e-01 5.13011873e-01 -1.30396113e-01 2.61285841e-01 9.51571241e-02 -1.80384859e-01 -5.72795689e-01 -3.99200469e-02 -4.80209500e-01 3.85259628e-01 4.25348967e-01 9.42291737e-01 -2.64917791e-01 4.75036860e-01 -1.01502073e+00 -8.48375380e-01 3.73852342e-01 7.53804147e-01 -7.75083825e-02 1.83253407e-01 7.05249131e-01 9.83920991e-01 -5.71519732e-01 6.99070692e-01 1.05705166e+00 1.68969825e-01 2.15869859e-01 -4.96799171e-01 -4.98091914e-02 -3.72257113e-01 -1.44556653e+00 1.46003592e+00 -2.24012211e-01 3.06192815e-01 6.53154492e-01 -9.94011760e-01 8.09366584e-01 5.48017204e-01 6.44460499e-01 -8.08234036e-01 2.10492805e-01 5.50595820e-01 1.65151313e-01 -1.03185284e+00 1.88646689e-02 -3.79683554e-01 6.22140169e-01 1.46116048e-01 -1.72908053e-01 1.02917753e-01 2.10441977e-01 -3.42955859e-03 9.74725783e-01 -1.16417967e-01 1.35167703e-01 -4.27159727e-01 6.12788737e-01 -5.07787466e-01 7.71935642e-01 7.95549810e-01 -3.66473943e-01 9.00290608e-01 1.10201463e-01 7.88123161e-02 -7.74580061e-01 -1.01314688e+00 -3.19622368e-01 2.95021713e-01 4.78282690e-01 2.54862607e-01 -7.52219677e-01 -1.08649366e-01 -5.18302202e-01 4.91294712e-01 -2.48555914e-01 -6.92573413e-02 -5.97745299e-01 -7.56469071e-01 2.68612593e-01 1.91669956e-01 4.53011721e-01 -8.82120311e-01 -5.16695082e-01 3.58974874e-01 -6.26518548e-01 -1.14605975e+00 -4.04008389e-01 -2.42966637e-01 -1.05774581e+00 -9.78421986e-01 -1.11701727e+00 -6.11866832e-01 8.94198179e-01 4.95911807e-01 5.64220130e-01 1.91780880e-01 -4.05080229e-01 5.15622795e-01 -4.70691204e-01 -2.27136984e-01 -6.60281181e-01 -6.07435286e-01 -5.87087236e-02 3.89119565e-01 -2.02328384e-01 -5.99892855e-01 -1.16803122e+00 3.30827713e-01 -1.33596075e+00 -3.81771654e-01 9.92224991e-01 9.36167300e-01 7.22633302e-01 6.39022648e-01 2.84542114e-01 -8.33507955e-01 6.17810965e-01 -1.53375417e-01 -3.10978770e-01 -2.68411562e-02 -5.33607185e-01 -3.37862194e-01 2.35385954e-01 -2.70470023e-01 -1.55832613e+00 -3.68528247e-01 -1.21342659e-01 -3.02457005e-01 -3.09495866e-01 6.97917521e-01 2.05626264e-01 -3.38566422e-01 4.88973647e-01 6.11124516e-01 3.31832021e-01 -4.37902004e-01 -2.01075330e-01 5.77363014e-01 6.80591404e-01 -1.99245334e-01 8.33808184e-01 6.28373861e-01 3.39786619e-01 -1.29938650e+00 -4.98787373e-01 -6.42951071e-01 -3.06524724e-01 -4.56463546e-01 8.27570021e-01 -5.02857089e-01 -6.87176824e-01 7.47496247e-01 -1.00612557e+00 3.20215106e-01 5.49894683e-02 1.04749095e+00 -5.10994084e-02 1.13431025e+00 -9.49125707e-01 -1.10839128e+00 -3.39298934e-01 -1.33292663e+00 5.33605754e-01 3.72934580e-01 1.48333952e-01 -9.22442496e-01 -2.45034099e-01 4.60603118e-01 7.67666161e-01 2.79180497e-01 8.36678863e-01 -6.59390241e-02 -4.64258999e-01 -2.12196127e-01 -2.12325037e-01 8.48810911e-01 3.90505642e-01 -2.78130502e-01 -7.91160405e-01 -2.25226983e-01 7.93548882e-01 1.90539062e-01 5.55235326e-01 9.43334937e-01 1.11798394e+00 -4.38759178e-02 2.09785551e-02 3.55638534e-01 1.44311976e+00 4.30659831e-01 1.00221360e+00 1.12086684e-01 3.02637935e-01 7.21260965e-01 5.83330393e-01 3.57017189e-01 -2.91516453e-01 2.20630225e-02 4.32640493e-01 -4.98803347e-01 -3.57377559e-01 3.70112896e-01 -2.06296630e-02 1.21889532e+00 -2.65005559e-01 -2.95007795e-01 -6.71191633e-01 7.11768866e-01 -1.49589705e+00 -7.18872905e-01 -5.68873882e-01 2.12685990e+00 7.82437742e-01 -1.74774677e-01 -7.23291576e-01 3.39052498e-01 8.13510954e-01 1.32185249e-02 -1.66278437e-01 3.73734571e-02 -1.33604258e-01 4.18550581e-01 5.55311859e-01 4.27666515e-01 -8.85072112e-01 1.19348858e-02 5.76007128e+00 9.54652369e-01 -9.32736993e-01 2.65335053e-01 5.27987361e-01 3.25941741e-01 -1.39291748e-01 -3.03870261e-01 9.76047516e-02 5.64931035e-01 5.63604474e-01 3.34395319e-01 1.04923114e-01 2.34513655e-01 6.08520091e-01 -7.75690019e-01 -2.69836336e-01 1.02614737e+00 -1.08317025e-02 -8.40267420e-01 -3.12699974e-01 -1.26487240e-01 7.20115066e-01 -4.93041009e-01 2.45506782e-02 -4.48770076e-01 -4.61825639e-01 -7.86973119e-01 1.93459660e-01 1.05839086e+00 5.49484551e-01 -7.97562718e-01 1.39139342e+00 3.10586452e-01 -5.42641640e-01 2.86287993e-01 -1.26939699e-01 4.23323929e-01 3.15571368e-01 1.25246572e+00 -2.32276469e-01 7.64450014e-01 7.63717175e-01 3.67205888e-01 -1.91180527e-01 1.33977735e+00 -3.66929859e-01 9.48277175e-01 -1.90373689e-01 3.48877877e-01 9.26791877e-02 -6.57832801e-01 8.24949861e-01 1.04140246e+00 6.63002253e-01 4.24394637e-01 -6.70233667e-02 5.49153030e-01 3.24531257e-01 1.37602672e-01 -6.23441190e-02 1.31225958e-01 2.99832940e-01 1.26439250e+00 -1.01094687e+00 -6.11179173e-02 -3.42297375e-01 9.64175880e-01 -8.91142845e-01 6.58581614e-01 -3.51069510e-01 -5.84348381e-01 -8.90704319e-02 1.96869746e-01 3.47731322e-01 -3.05073321e-01 -1.73441440e-01 -7.86045969e-01 1.74462423e-01 -9.66265261e-01 7.40809180e-03 -6.65327311e-01 -1.19644380e+00 4.27891642e-01 -1.60469905e-01 -1.34736061e+00 2.94065684e-01 -1.48793653e-01 -3.23389202e-01 8.89126241e-01 -1.61104929e+00 -7.08597541e-01 -3.41248035e-01 2.24188417e-01 1.95546597e-01 1.77526921e-01 5.34267604e-01 5.27378440e-01 -3.61697942e-01 1.59137920e-01 5.93070149e-01 1.73965562e-02 6.96438253e-01 -9.09422457e-01 -5.56680739e-01 1.22291887e+00 -5.11224329e-01 7.38345683e-01 9.41389143e-01 -6.99392438e-01 -1.33953965e+00 -5.54624796e-01 5.82901418e-01 4.49859053e-01 5.51568389e-01 3.97101581e-01 -1.08634925e+00 -1.01445310e-01 3.43076348e-01 9.33356509e-02 7.58674920e-01 -5.27787745e-01 3.75990361e-01 -2.85160810e-01 -1.39893460e+00 4.60092217e-01 5.03230214e-01 -1.02285422e-01 -3.89690638e-01 1.01944245e-01 1.55301288e-01 -4.84494627e-01 -1.02156699e+00 4.49352264e-01 4.20218378e-01 -1.11328781e+00 8.56755853e-01 3.78988862e-01 4.07412559e-01 -5.40558934e-01 1.03196532e-01 -1.13315642e+00 -3.23064387e-01 -5.68239570e-01 1.18673570e-01 1.22974956e+00 -2.64409594e-02 -7.16380835e-01 4.05045867e-01 2.81350613e-01 -2.96391845e-01 -4.21756625e-01 -1.01647174e+00 -6.04435444e-01 -5.78942955e-01 -1.79904863e-01 -2.53002614e-01 6.92732155e-01 -4.21743423e-01 7.19774794e-03 -5.32245636e-01 5.05672395e-01 1.27334654e+00 -5.23278564e-02 5.69301397e-02 -9.56303775e-01 -3.01523179e-01 -2.81313881e-02 -2.89832652e-01 -8.35797906e-01 -4.81090009e-01 -3.59995425e-01 3.71458739e-01 -1.84706104e+00 2.24702343e-01 -1.72473460e-01 -4.30395484e-01 -4.55979034e-02 -3.83337319e-01 4.64449525e-01 -2.53484845e-01 4.37208474e-01 -3.13164115e-01 5.35150290e-01 1.78627729e+00 -5.66075705e-02 3.24833095e-02 2.17009395e-01 -4.61984754e-01 8.02294791e-01 4.30962741e-01 -6.72563910e-01 -3.47571015e-01 -5.35801589e-01 -1.10741213e-01 3.46144825e-01 2.02030614e-01 -9.99726474e-01 3.51462752e-01 3.70839722e-02 2.83717811e-01 -5.29699028e-01 2.07756102e-01 -1.02662790e+00 1.24479987e-01 7.91627109e-01 6.67064041e-02 -4.77772117e-01 -1.78004324e-01 8.68364692e-01 -5.60909331e-01 -5.72767138e-01 1.15515959e+00 -1.76941201e-01 -3.29762548e-01 -1.03821896e-01 -8.19186449e-01 -4.24445301e-01 7.00063646e-01 -4.05716866e-01 -1.19891286e-01 -5.56783080e-01 -7.84108162e-01 -8.70239362e-02 8.51312503e-02 -3.62427086e-01 8.92891645e-01 -8.95766735e-01 -8.42030525e-01 1.40332669e-01 -2.12033600e-01 -1.33420572e-01 1.03403091e+00 1.67603564e+00 -9.44669008e-01 -8.57719257e-02 1.15022942e-01 -7.15550661e-01 -1.18541944e+00 1.74003154e-01 1.97398633e-01 -7.93255717e-02 -6.28699541e-01 5.62745452e-01 2.57520117e-02 -2.27648448e-02 1.02616929e-01 -2.28554308e-02 -1.95104107e-01 -3.90376002e-01 6.96564794e-01 8.00224364e-01 2.77577013e-01 -5.92694223e-01 -2.85709172e-01 5.40724993e-01 8.61265138e-02 -1.99625399e-02 1.32671189e+00 -5.19660115e-01 -5.23203731e-01 1.21913321e-01 8.66487920e-01 3.04619491e-01 -9.97608185e-01 -3.68977696e-01 -1.23558462e-01 -6.39940858e-01 4.77232277e-01 -6.46863997e-01 -1.19723427e+00 8.80249441e-01 9.58937645e-01 2.24901885e-01 1.53605533e+00 -4.00903374e-01 9.77207363e-01 -1.35130447e-03 8.03041682e-02 -9.59455788e-01 1.64626807e-01 3.62725258e-02 5.99291205e-01 -9.32311952e-01 2.66654491e-01 -6.44648671e-01 -3.96673769e-01 1.13301837e+00 -3.77970678e-03 -1.68631319e-02 6.41167521e-01 4.78274971e-01 5.33325076e-01 3.24972793e-02 6.12246841e-02 -1.49581641e-01 2.57945150e-01 5.91958821e-01 3.95713449e-01 -3.44615936e-01 -9.04627860e-01 3.38943392e-01 6.04791224e-01 7.49247894e-03 5.46807528e-01 1.10420060e+00 -6.77858531e-01 -8.30681562e-01 -8.73780012e-01 2.66394138e-01 -1.00594294e+00 -5.75952232e-02 3.99147838e-01 3.09057027e-01 4.93671857e-02 1.44975877e+00 -4.76127595e-01 1.23731591e-01 4.27300245e-01 -3.93708199e-01 3.63510668e-01 -3.28607261e-01 -1.42963395e-01 9.10511971e-01 -2.20378667e-01 -4.19341803e-01 -9.78087068e-01 -4.90001976e-01 -1.18800366e+00 -4.06886525e-02 -4.82946157e-01 2.56632656e-01 8.64853621e-01 1.00689387e+00 4.45035733e-02 8.12340081e-01 6.78672194e-01 -5.02933085e-01 -3.72322083e-01 -1.11032999e+00 -1.11993623e+00 3.83753926e-01 3.30671817e-01 -4.54601139e-01 -4.91786838e-01 2.87398309e-01]
[12.201712608337402, -2.589515209197998]
1a0fbdf9-276b-4db3-8426-097473c03835
debiasing-stance-detection-models-with
2212.10392
null
https://arxiv.org/abs/2212.10392v1
https://arxiv.org/pdf/2212.10392v1.pdf
Debiasing Stance Detection Models with Counterfactual Reasoning and Adversarial Bias Learning
Stance detection models may tend to rely on dataset bias in the text part as a shortcut and thus fail to sufficiently learn the interaction between the targets and texts. Recent debiasing methods usually treated features learned by small models or big models at earlier steps as bias features and proposed to exclude the branch learning those bias features during inference. However, most of these methods fail to disentangle the ``good'' stance features and ``bad'' bias features in the text part. In this paper, we investigate how to mitigate dataset bias in stance detection. Motivated by causal effects, we leverage a novel counterfactual inference framework, which enables us to capture the dataset bias in the text part as the direct causal effect of the text on stances and reduce the dataset bias in the text part by subtracting the direct text effect from the total causal effect. We novelly model bias features as features that correlate with the stance labels but fail on intermediate stance reasoning subtasks and propose an adversarial bias learning module to model the bias more accurately. To verify whether our model could better model the interaction between texts and targets, we test our model on recently proposed test sets to evaluate the understanding of the task from various aspects. Experiments demonstrate that our proposed method (1) could better model the bias features, and (2) outperforms existing debiasing baselines on both the original dataset and most of the newly constructed test sets.
['Bing Qin', 'Yanyan Zhao', 'Jianhua Yuan']
2022-12-20
null
null
null
null
['counterfactual-inference', 'stance-detection']
['miscellaneous', 'natural-language-processing']
[ 9.36877802e-02 9.62778181e-02 -8.83953512e-01 -6.23594463e-01 -5.37324250e-01 -7.16373563e-01 1.05960822e+00 5.21794967e-02 -4.00571376e-01 9.13635254e-01 7.30306089e-01 -3.30231428e-01 1.36502072e-01 -9.71309304e-01 -9.57773685e-01 -6.47047281e-01 3.91310900e-01 4.59169924e-01 1.38714775e-01 -4.61617082e-01 5.86624324e-01 -8.93514305e-02 -1.11360550e+00 5.48761666e-01 1.15070689e+00 7.42188871e-01 -5.13716578e-01 1.87537372e-01 1.68035850e-01 1.32643306e+00 -8.71360302e-01 -7.17759609e-01 2.13347286e-01 -6.04711890e-01 -7.04745770e-01 -4.47705746e-01 6.79516733e-01 -6.80735171e-01 -4.68322873e-01 1.05319500e+00 5.88161170e-01 -2.22958043e-01 9.59717035e-01 -1.41928244e+00 -7.45071769e-01 1.35510600e+00 -8.01898360e-01 3.90056849e-01 1.43238157e-01 3.71001869e-01 1.42762458e+00 -6.40343487e-01 5.59235692e-01 1.42349339e+00 6.97762609e-01 6.42466962e-01 -1.30915606e+00 -1.09894228e+00 6.08394146e-01 5.52928329e-01 -4.53359306e-01 -2.74503440e-01 1.24087942e+00 -6.00392640e-01 2.90356696e-01 3.02607268e-01 4.74053353e-01 2.02608275e+00 2.88860112e-01 1.18187189e+00 1.58637023e+00 -1.75094977e-01 1.10574678e-01 5.04947305e-02 9.63342667e-01 3.52532148e-01 5.33908010e-01 5.79735756e-01 -6.66904569e-01 -3.71748775e-01 1.12263910e-01 -7.51678646e-02 -3.25529307e-01 -1.42412707e-01 -1.39416647e+00 1.29615104e+00 6.82679057e-01 9.17694122e-02 -2.76024729e-01 2.46906772e-01 5.35787463e-01 3.37295204e-01 6.28797233e-01 5.93942642e-01 -6.94261909e-01 8.50465372e-02 -9.65803325e-01 7.14033067e-01 7.29385972e-01 5.65258265e-01 5.00676572e-01 -2.21410871e-01 -8.69169235e-01 5.71618080e-01 6.88980818e-02 7.13540018e-01 5.08657396e-01 -7.13064790e-01 7.04476893e-01 7.08881497e-01 2.46876016e-01 -1.00141001e+00 -3.81097734e-01 -4.44222271e-01 -7.33867347e-01 -3.42306569e-02 9.25980330e-01 -2.68384814e-01 -7.87100732e-01 2.21722913e+00 3.77697200e-01 -3.58830720e-01 -3.18076789e-01 9.76176083e-01 7.24073827e-01 2.16018751e-01 7.78361484e-02 -1.09595269e-01 1.42752719e+00 -8.16085994e-01 -6.66700721e-01 -5.52004635e-01 8.91480625e-01 -5.61660826e-01 1.35317540e+00 2.28828266e-01 -9.53747690e-01 -3.96556497e-01 -1.11930585e+00 -3.68609279e-02 -2.66920716e-01 -5.89060374e-02 5.05367517e-01 6.13920748e-01 -2.03325123e-01 7.29822159e-01 -4.16210383e-01 2.42994040e-01 6.49576664e-01 -5.32614253e-02 3.14335942e-01 -8.86544934e-04 -2.00029635e+00 1.11733150e+00 7.49660730e-02 -2.17982307e-01 -1.13640893e+00 -1.07717133e+00 -5.55885315e-01 1.38891995e-01 6.27209723e-01 -8.16007137e-01 1.03315759e+00 -1.21402442e+00 -1.06153655e+00 8.16068411e-01 1.48108993e-02 -4.38038766e-01 1.01120138e+00 -4.70730454e-01 4.42373976e-02 -3.54748070e-01 2.32780859e-01 2.58403450e-01 1.22123885e+00 -1.18780613e+00 -4.34164226e-01 -5.55481493e-01 4.23040390e-01 2.14913469e-02 -2.13404715e-01 -2.12738797e-01 4.85437423e-01 -1.03121281e+00 -2.66443670e-01 -8.88170183e-01 2.43479386e-01 -1.93749949e-01 -6.14118516e-01 -2.73147583e-01 5.98758340e-01 -6.32171333e-01 1.38210535e+00 -1.73038483e+00 1.54229954e-01 -3.21994461e-02 2.96241403e-01 5.14360555e-02 8.55862275e-02 9.31529701e-02 -2.30930790e-01 2.25780070e-01 -7.01591149e-02 1.05079584e-01 2.94470638e-01 8.17363858e-02 -8.44273388e-01 6.49595916e-01 1.78675575e-03 9.29433584e-01 -9.52082276e-01 -3.66837412e-01 -2.22560301e-01 -9.95397940e-02 -9.23625886e-01 1.97564796e-01 -4.62196976e-01 3.07546824e-01 -2.85725027e-01 4.58931953e-01 5.31847477e-01 2.80399527e-02 8.26540068e-02 -4.13746715e-01 2.47003034e-01 9.33721781e-01 -6.85785353e-01 1.04687941e+00 -2.07280919e-01 6.17156982e-01 -1.64902166e-01 -1.08931267e+00 6.07610881e-01 1.56020867e-02 2.05170155e-01 -6.45421386e-01 2.62934148e-01 1.00982696e-01 4.97495443e-01 -4.03710246e-01 2.60610610e-01 -5.34369946e-01 -3.83679122e-01 7.55591631e-01 -2.83932120e-01 -3.18521522e-02 -6.73785759e-03 3.28018993e-01 8.75124514e-01 1.92241054e-02 2.32383564e-01 -4.46691364e-01 4.44545239e-01 4.18674983e-02 6.63692653e-01 1.05305231e+00 -3.73330265e-01 2.44611546e-01 1.01272309e+00 -3.16828310e-01 -8.65695000e-01 -7.72037745e-01 -1.48693144e-01 1.45591044e+00 6.52750134e-02 -7.40352497e-02 -6.56962216e-01 -1.57241642e+00 2.90278465e-01 1.30198431e+00 -1.44083357e+00 -6.25823557e-01 -7.47073174e-01 -1.10380101e+00 6.61213636e-01 6.42372608e-01 4.18118954e-01 -7.93877363e-01 -4.14456904e-01 -1.07841372e-01 -6.41191006e-01 -4.59006816e-01 -6.99496984e-01 2.32627943e-01 -6.20103240e-01 -1.32382238e+00 -2.65374273e-01 -1.16250543e-02 2.87327558e-01 -9.17516742e-03 1.17562604e+00 7.75428042e-02 3.65844280e-01 -2.27220416e-01 -3.19746077e-01 -7.79451191e-01 -5.78511477e-01 1.74064264e-01 -6.42148033e-02 -2.46103615e-01 5.19270599e-01 -3.28974754e-01 -6.68677270e-01 4.59479362e-01 -7.88948119e-01 -7.20025972e-02 3.45300376e-01 1.40573490e+00 -1.19945750e-01 -3.80119234e-01 8.60161960e-01 -1.43449593e+00 7.10108280e-01 -7.01591611e-01 -2.48951137e-01 -3.07982080e-02 -9.92476523e-01 2.62852043e-01 5.63210666e-01 -7.61767328e-01 -1.15224445e+00 -9.60970044e-01 -4.75532934e-02 -1.35075441e-02 1.66743070e-01 4.59451824e-01 -4.06546086e-01 7.46598601e-01 9.71699595e-01 -1.54814899e-01 -8.37757662e-02 -2.26043060e-01 4.74352568e-01 6.18423700e-01 7.30878338e-02 -9.81030405e-01 8.57855499e-01 6.50320470e-01 -2.06993103e-01 1.39056399e-01 -1.83469594e+00 -4.34581935e-02 -5.66816807e-01 -4.59195264e-02 5.56847095e-01 -7.94488788e-01 -5.56015670e-01 3.18347424e-01 -1.15910017e+00 -4.50195849e-01 -1.90479770e-01 2.88780808e-01 -5.53918481e-01 1.39665976e-01 -5.89647651e-01 -4.65459466e-01 -3.46890450e-01 -9.01664734e-01 7.55484104e-01 -2.27512032e-01 -6.96896613e-01 -1.03554416e+00 2.02903584e-01 5.92069805e-01 2.94276536e-01 1.68039814e-01 1.43816042e+00 -1.08888185e+00 -1.94746777e-02 -2.35425413e-01 -2.47268468e-01 3.76756102e-01 5.78019805e-02 -1.96043812e-02 -1.12693357e+00 -2.95417547e-01 3.54788333e-01 -5.31136274e-01 1.25471377e+00 4.76733387e-01 1.03613043e+00 -6.41951144e-01 -2.05288082e-01 2.19172269e-01 9.80829418e-01 -1.38508946e-01 5.01988292e-01 4.97851372e-01 7.19801724e-01 7.92204022e-01 8.08891177e-01 2.32497364e-01 3.31103474e-01 5.23319125e-01 5.16619742e-01 9.49325413e-02 -1.44012108e-01 -4.63348269e-01 7.92160094e-01 4.27194118e-01 1.34652704e-01 -1.14630885e-01 -6.57216132e-01 5.02284348e-01 -1.82412004e+00 -1.23414600e+00 -3.19173396e-01 1.91730607e+00 1.31839812e+00 7.04037786e-01 2.25894645e-01 2.17871457e-01 5.75038791e-01 5.17443299e-01 -6.71128571e-01 -3.58830541e-01 -1.24085166e-01 -1.65776610e-02 3.41213703e-01 5.57027042e-01 -9.01942015e-01 7.94974208e-01 5.88447237e+00 6.84720874e-01 -9.72777486e-01 1.85394779e-01 5.92321754e-01 -4.15226907e-01 -6.43833160e-01 2.04002574e-01 -8.66482615e-01 7.60557413e-01 6.64297819e-01 -1.64271235e-01 3.55253778e-02 8.47644389e-01 1.89493299e-01 9.89728048e-02 -1.66670620e+00 2.64201134e-01 1.12435900e-01 -1.06357634e+00 3.57309163e-01 7.05880746e-02 8.04538429e-01 -3.04830194e-01 2.09044829e-01 8.36853743e-01 6.93192840e-01 -9.38754439e-01 1.21891689e+00 3.70907098e-01 3.72397751e-01 -5.22931814e-01 8.46032202e-01 6.96424961e-01 -1.61345169e-01 -3.95179391e-01 -3.41420293e-01 -4.59915161e-01 -3.41854721e-01 7.96283185e-01 -6.69931948e-01 2.61005163e-01 3.98420900e-01 7.40537524e-01 -5.68538129e-01 3.04818332e-01 -7.06843019e-01 1.16355491e+00 1.97776720e-01 -2.18470082e-01 1.80269182e-01 2.07204193e-01 6.63492620e-01 9.77802455e-01 -2.22967595e-01 -1.35544375e-01 -1.49889529e-01 1.14659941e+00 -4.06353682e-01 -7.81001747e-02 -4.65956748e-01 2.47876555e-01 4.69329476e-01 7.33401775e-01 -1.61094293e-01 -6.53574109e-01 -3.75916153e-01 3.77446711e-01 4.59723324e-01 2.29740322e-01 -1.35033023e+00 -3.57275568e-02 7.26295233e-01 1.02039844e-01 1.09199986e-01 4.72878844e-01 -9.04359162e-01 -1.48506641e+00 -1.34814322e-01 -1.41218567e+00 5.99278092e-01 -5.29049516e-01 -1.73071611e+00 -5.89267462e-02 1.64494380e-01 -9.08302784e-01 -1.88046604e-01 -4.59473193e-01 -7.09682763e-01 7.71626830e-01 -1.54856992e+00 -1.13319099e+00 -9.13885683e-02 4.88738596e-01 6.15474105e-01 1.96260199e-01 3.79819214e-01 -8.99162814e-02 -6.85182452e-01 7.64966846e-01 -1.10044807e-01 3.51972342e-01 1.38947046e+00 -1.34595370e+00 -6.38061622e-03 6.52228057e-01 -2.50027418e-01 8.95829976e-01 1.03796220e+00 -6.98771775e-01 -7.77501404e-01 -9.14612114e-01 8.79937768e-01 -1.14481151e+00 9.27135170e-01 -3.89310092e-01 -9.98695910e-01 9.05291736e-01 1.55150726e-01 -3.96558076e-01 6.55126393e-01 5.30227304e-01 -1.03592443e+00 -8.83743986e-02 -1.00898063e+00 6.94362521e-01 1.05878747e+00 -3.40829670e-01 -1.35578048e+00 1.09094270e-01 5.96170783e-01 -2.60677844e-01 -4.86690134e-01 5.37722826e-01 6.76620722e-01 -9.86138880e-01 8.78236473e-01 -1.11848044e+00 1.28414667e+00 1.97788671e-01 -1.75326109e-01 -1.62371314e+00 -4.28997457e-01 -2.68391930e-02 -3.76300126e-01 1.25623190e+00 4.61463422e-01 -5.97924590e-01 6.86795235e-01 4.49569643e-01 1.67414293e-01 -7.03218639e-01 -7.03618407e-01 -4.97472584e-01 9.53695357e-01 -2.68700033e-01 8.15465987e-01 1.31657124e+00 1.27284139e-01 7.73530543e-01 -5.50585508e-01 -9.40938741e-02 7.02765942e-01 7.02333868e-01 7.89656520e-01 -1.34001815e+00 -3.39262962e-01 -7.27945864e-01 3.23571920e-01 -9.73904610e-01 5.61377466e-01 -9.83522117e-01 -3.96931954e-02 -1.06176412e+00 7.75493622e-01 -3.67528945e-01 -1.93514243e-01 3.91627312e-01 -9.59750414e-01 -1.47688329e-01 -2.32961047e-02 2.78674155e-01 -5.23654893e-02 5.76065063e-01 1.39413333e+00 -6.05091274e-01 1.32277399e-01 8.65357965e-02 -1.19928586e+00 9.26281214e-01 6.45892501e-01 -8.55903685e-01 -3.51875842e-01 -2.72697002e-01 5.29505193e-01 -2.14564696e-01 5.97473145e-01 -2.23500431e-01 -1.59274802e-01 -5.32115877e-01 5.12504756e-01 -5.09487689e-01 -3.56182419e-02 -6.07415795e-01 -6.03238761e-01 5.86499989e-01 -9.32906866e-01 -4.09359485e-01 -1.42066687e-01 6.44380510e-01 3.68046463e-02 -1.31071836e-01 8.28720331e-01 -1.09472342e-01 1.16142489e-01 -1.14953242e-01 -1.84489071e-01 4.82236445e-01 6.95807755e-01 2.99992174e-01 -9.56271410e-01 -3.81958425e-01 -5.55188775e-01 2.77738452e-01 5.00181258e-01 4.21151400e-01 7.94893131e-02 -1.33483768e+00 -9.51585293e-01 -2.69488208e-02 4.62703034e-02 -3.17506999e-01 1.02792047e-01 1.10775340e+00 2.29528338e-01 3.45638663e-01 -6.68494627e-02 -3.30120683e-01 -1.11823010e+00 8.35264862e-01 3.22929293e-01 -7.10757077e-01 -2.70648468e-02 7.16156423e-01 5.57221413e-01 -3.79724950e-01 1.27500162e-01 -4.49891150e-01 -1.78400606e-01 5.36391079e-01 4.59643096e-01 5.42274415e-01 -8.61046985e-02 -3.96964103e-01 -1.95060581e-01 1.01524055e-01 -3.37764293e-01 1.02269694e-01 1.23095751e+00 -6.59256279e-02 -1.19367115e-01 6.14919126e-01 9.35679376e-01 2.54385591e-01 -1.15551329e+00 -3.68216693e-01 8.12151283e-02 -5.62312305e-01 5.79990149e-02 -1.24107528e+00 -7.67973900e-01 1.02962124e+00 5.95242977e-02 1.83300242e-01 7.35793293e-01 -1.56326480e-02 5.76160967e-01 3.64331044e-02 5.90999871e-02 -1.13430452e+00 3.85321081e-01 5.49133837e-01 1.05659211e+00 -1.39708281e+00 1.30927265e-01 -2.61030555e-01 -5.43363452e-01 8.94282758e-01 7.97493577e-01 -2.81807572e-01 4.83452231e-01 1.72138944e-01 1.24667846e-01 -3.00070643e-01 -1.09838116e+00 2.06927016e-01 3.92471194e-01 3.13084632e-01 5.91742158e-01 3.52477245e-02 -7.80033052e-01 1.07223153e+00 -4.43136871e-01 -2.47611016e-01 5.65269649e-01 6.12374306e-01 -2.91900992e-01 -9.02534008e-01 -6.04055166e-01 6.74711227e-01 -5.95876455e-01 -2.78772503e-01 -8.56200218e-01 9.22830641e-01 2.48001739e-01 8.09319139e-01 -1.35938317e-01 -4.21773404e-01 5.66572368e-01 3.37835610e-01 4.98226583e-01 -3.66835922e-01 -8.95919085e-01 -2.69571006e-01 2.87357390e-01 -5.57365119e-01 -4.11712795e-01 -7.74946868e-01 -7.72052824e-01 -6.85091555e-01 -5.57824492e-01 -1.14427623e-03 1.73874646e-01 1.18624401e+00 -2.64902189e-02 5.59133053e-01 7.78839052e-01 -4.84223902e-01 -1.51083112e+00 -1.43984449e+00 -3.32578957e-01 1.00663006e+00 5.24909377e-01 -9.64778543e-01 -7.71747172e-01 -1.12818651e-01]
[10.170427322387695, 7.798941135406494]
368989ce-3b85-4bec-a0ae-7a37908990f7
inferring-community-characteristics-in
2105.13762
null
https://arxiv.org/abs/2105.13762v2
https://arxiv.org/pdf/2105.13762v2.pdf
The Feature-First Block Model
Labelled networks are an important class of data, naturally appearing in numerous applications in science and engineering. A typical inference goal is to determine how the vertex labels (or features) affect the network's structure. In this work, we introduce a new generative model, the feature-first block model (FFBM), that facilitates the use of rich queries on labelled networks. We develop a Bayesian framework and devise a two-level Markov chain Monte Carlo approach to efficiently sample from the relevant posterior distribution of the FFBM parameters. This allows us to infer if and how the observed vertex-features affect macro-structure. We apply the proposed methods to a variety of network data to extract the most important features along which the vertices are partitioned. The main advantages of the proposed approach are that the whole feature-space is used automatically and that features can be rank-ordered implicitly according to impact.
['Lawrence Tray', 'Ioannis Kontoyiannis']
2021-05-28
null
null
null
null
['stochastic-block-model']
['graphs']
[ 4.18739945e-01 1.30351782e-01 -2.34807849e-01 -4.79874432e-01 -2.18822911e-01 -5.09310007e-01 1.13057768e+00 2.51837313e-01 -2.16974676e-01 8.97975445e-01 9.50318575e-02 -1.53659135e-01 -7.72813857e-01 -1.26695669e+00 -6.05285525e-01 -7.72629023e-01 -2.10872516e-01 8.92509758e-01 4.91403073e-01 1.51960582e-01 5.05925655e-01 8.57238770e-01 -1.79170513e+00 -3.28582413e-02 6.54036701e-01 6.49917424e-01 7.62909353e-02 5.92593729e-01 -3.59775066e-01 6.21421754e-01 -2.97280759e-01 -3.42434764e-01 -1.24916419e-01 -2.71030694e-01 -9.05692995e-01 7.76730776e-02 -1.82241514e-01 3.73327881e-02 2.95198616e-02 1.10478187e+00 5.69811203e-02 1.91935301e-01 1.41859567e+00 -1.22548735e+00 2.94110805e-01 7.35881805e-01 -4.51061904e-01 2.57405698e-01 2.85259008e-01 -1.61132336e-01 1.26959026e+00 -8.14742446e-01 8.99129748e-01 1.56811011e+00 2.85127878e-01 -1.78405970e-01 -1.51604736e+00 -3.48147959e-01 1.03092730e-01 3.47975999e-01 -1.55676746e+00 -3.55420411e-01 9.16304410e-01 -8.64655733e-01 4.49951261e-01 3.47929776e-01 6.54359519e-01 9.21519876e-01 2.53925592e-01 5.32979012e-01 1.17837596e+00 -4.64933008e-01 4.42773908e-01 2.15392336e-01 3.61047328e-01 6.51201546e-01 4.27228361e-01 1.23581253e-01 -4.76184428e-01 -6.48393095e-01 6.64310157e-01 1.18058190e-01 2.23440692e-01 -6.71575248e-01 -9.26915109e-01 8.92258108e-01 2.10296270e-02 2.51449347e-01 -4.74041820e-01 4.48830217e-01 1.62174210e-01 2.74860822e-02 3.43766421e-01 -2.13923808e-02 -2.34235987e-01 -9.35484692e-02 -8.99076402e-01 3.19289654e-01 1.05910778e+00 7.63952017e-01 1.36787248e+00 -6.01641893e-01 -3.88024539e-01 6.20420516e-01 9.00267184e-01 3.07227373e-01 -4.42712873e-01 -7.37868845e-01 1.60673574e-01 5.11867583e-01 2.12284133e-01 -1.24988294e+00 -1.63124382e-01 -3.82070750e-01 -7.88361251e-01 1.79971576e-01 4.24506426e-01 -8.06277171e-02 -7.28268504e-01 1.57053411e+00 6.28132403e-01 7.42786303e-02 -3.87829304e-01 2.54171968e-01 6.27604961e-01 5.82927883e-01 4.73417044e-02 -2.99321294e-01 1.31306398e+00 -1.96025014e-01 -6.12969995e-01 2.50094533e-01 2.25570023e-01 -7.18030393e-01 5.76259315e-01 5.71779490e-01 -6.73455417e-01 -4.45181042e-01 -6.71241105e-01 5.23785055e-01 -4.49626803e-01 -5.95782734e-02 6.16531014e-01 7.19407558e-01 -8.92165363e-01 1.02338982e+00 -8.58760715e-01 -4.11307126e-01 3.96352082e-01 4.72541839e-01 -7.63143897e-02 -5.13134198e-03 -1.12768185e+00 6.78515494e-01 5.07004380e-01 2.08274379e-01 -1.17090881e+00 -2.21184239e-01 -5.60792744e-01 2.54974335e-01 7.94410050e-01 -6.24683380e-01 8.59663725e-01 -6.02013469e-01 -1.38202703e+00 5.32537222e-01 -3.77358973e-01 -6.85180500e-02 5.90273738e-01 7.14307800e-02 -1.52658582e-01 1.63012505e-01 4.94692707e-03 2.09862992e-01 1.14104044e+00 -1.41130733e+00 -5.88728666e-01 -4.43150192e-01 -1.61936641e-01 7.22103268e-02 -6.50417581e-02 -5.15935663e-03 -5.76855779e-01 -3.72654617e-01 4.53861132e-02 -8.36764395e-01 -5.00911117e-01 -2.59262264e-01 -9.20635402e-01 -5.48440218e-01 5.63674569e-01 -7.32633621e-02 1.24853277e+00 -1.89463556e+00 2.79240727e-01 1.16869104e+00 4.47291851e-01 -1.82503626e-01 3.18145663e-01 9.76617396e-01 2.10100532e-01 2.45439500e-01 -1.97650820e-01 -9.53715742e-02 4.35287766e-02 3.19823802e-01 6.53715746e-04 5.29651284e-01 3.24444026e-01 5.76856375e-01 -8.34950209e-01 -7.76720285e-01 3.10670167e-01 4.87107992e-01 -3.75927031e-01 4.30917740e-02 -3.74250799e-01 6.16658270e-01 -9.32252526e-01 4.20901179e-01 5.92893660e-01 -1.73175678e-01 3.23426783e-01 -6.85661063e-02 -1.04100876e-01 1.45100534e-01 -1.55584681e+00 9.79894221e-01 -2.30651721e-02 3.64196509e-01 -6.61157072e-02 -7.94907629e-01 1.02186537e+00 8.24112222e-02 3.10130626e-01 1.26849443e-01 2.88334221e-01 -6.99622929e-02 4.55527492e-02 -3.96003246e-01 2.25683078e-01 -9.75254849e-02 -1.51356220e-01 5.75047016e-01 1.00718558e-01 -1.17446132e-01 5.11310637e-01 2.91795224e-01 1.13733470e+00 -6.24621511e-02 6.53062880e-01 -5.07123411e-01 6.76940143e-01 -3.70137483e-01 4.24748898e-01 1.00065720e+00 2.34194800e-01 6.73631430e-02 1.14737225e+00 -1.25730902e-01 -8.20701361e-01 -1.05228806e+00 -2.08979905e-01 8.96715701e-01 -1.44293040e-01 -2.91405946e-01 -5.52999258e-01 -7.40135550e-01 1.03482679e-01 5.32776952e-01 -7.64630437e-01 -5.07615730e-02 -7.01103508e-02 -5.46741545e-01 1.52960181e-01 2.68503893e-02 5.95997423e-02 -1.13401484e+00 -1.10995106e-01 1.97342664e-01 1.53760150e-01 -5.41313469e-01 1.37864187e-01 2.50688046e-01 -1.06107259e+00 -1.11697817e+00 -1.18501224e-01 -2.76666671e-01 7.90050387e-01 -3.38029951e-01 1.05001569e+00 -4.94599789e-02 -2.75842607e-01 2.02947989e-01 -3.33774894e-01 -3.28348055e-02 -6.08261347e-01 3.80518556e-01 -2.32413441e-01 4.51927006e-01 2.31324866e-01 -7.89193153e-01 -2.36033782e-01 3.07528883e-01 -9.00938392e-01 -2.49571472e-01 8.14475656e-01 5.59598267e-01 6.93194151e-01 5.44472635e-01 4.65656310e-01 -1.64183450e+00 5.64963937e-01 -6.61473274e-01 -7.83858716e-01 2.94849813e-01 -6.71630681e-01 4.59562510e-01 3.08106989e-01 -8.71827453e-02 -1.04993498e+00 2.35865057e-01 -1.13223113e-01 3.47507722e-03 -5.50332248e-01 7.90616870e-01 -5.81315398e-01 4.61746417e-02 2.89070815e-01 2.78638322e-02 -1.99326456e-01 -6.54759407e-01 3.62545848e-01 5.37052274e-01 8.09362754e-02 -7.93749273e-01 8.26125681e-01 5.93952179e-01 6.38424695e-01 -9.10753131e-01 -5.70401609e-01 -6.64845943e-01 -8.08253944e-01 -4.34292316e-01 4.49456751e-01 -4.15961951e-01 -8.13832402e-01 3.37726265e-01 -9.24495399e-01 1.18546702e-01 -1.68983534e-01 3.59494686e-01 -5.70031941e-01 5.10231972e-01 -3.62141490e-01 -1.02383780e+00 7.57233948e-02 -1.16381085e+00 7.12695897e-01 5.78107610e-02 -2.35873267e-01 -1.08440781e+00 3.45517665e-01 -4.48733903e-02 -6.51184916e-02 2.80311286e-01 1.22335267e+00 -7.74498940e-01 -8.26399148e-01 -1.63739279e-01 -2.68806458e-01 1.10273873e-02 1.14239067e-01 6.82778835e-01 -7.96656668e-01 -2.38897607e-01 -3.31928670e-01 1.54117391e-01 8.01119149e-01 5.51118076e-01 9.37137187e-01 1.02853782e-01 -6.96038842e-01 1.71935752e-01 1.42320442e+00 -2.54901163e-02 5.92044592e-01 -1.83822036e-01 5.86332798e-01 7.80145466e-01 7.83868194e-01 7.49819279e-01 -2.52397656e-02 5.93105972e-01 5.59902728e-01 2.39992574e-01 2.73758799e-01 -4.18186307e-01 8.90274122e-02 5.67186296e-01 -1.50239766e-01 -2.83895731e-01 -9.25261796e-01 4.84262526e-01 -1.90365076e+00 -8.66666138e-01 -5.51452696e-01 2.14493585e+00 7.87879646e-01 4.66301531e-01 1.45485863e-01 2.14256570e-01 1.02712429e+00 4.86773178e-02 -3.35749507e-01 -7.58371726e-02 3.77442122e-01 1.72023013e-01 4.29128379e-01 7.16930032e-01 -1.05235600e+00 7.68088937e-01 6.49409819e+00 1.11834705e+00 -4.01824653e-01 -2.73098648e-01 4.26156849e-01 5.12878001e-01 -4.43153858e-01 4.66843158e-01 -1.15646362e+00 3.60612869e-01 8.54891658e-01 9.56451818e-02 1.42120868e-01 5.90267241e-01 3.91607732e-01 -4.98586804e-01 -1.24847651e+00 4.27668512e-01 -4.24906731e-01 -1.09437513e+00 2.21272901e-01 5.73899269e-01 6.11177325e-01 -2.87258387e-01 -1.11254536e-01 -9.38010514e-02 6.77904546e-01 -9.06389058e-01 4.54158336e-01 1.17684066e+00 7.95944750e-01 -1.23066258e+00 5.65895200e-01 4.05002832e-01 -1.12229860e+00 1.17939904e-01 -2.42895097e-01 -1.89631522e-01 8.24265629e-02 1.26454151e+00 -1.29720187e+00 5.39754152e-01 4.36061829e-01 7.21777201e-01 -5.37877619e-01 1.12522280e+00 -4.65900451e-01 8.83589447e-01 -4.18256879e-01 -5.02856672e-01 7.25406781e-02 -3.59652907e-01 7.26931095e-01 9.91403997e-01 8.39701742e-02 -3.94731998e-01 9.68230143e-02 9.48587954e-01 1.14562422e-01 1.59348026e-01 -7.59734154e-01 -1.93926334e-01 6.01226032e-01 1.37661886e+00 -1.31638813e+00 -3.02036881e-01 -1.04664400e-01 4.13909793e-01 2.54203767e-01 3.10988456e-01 -3.63510162e-01 -5.04779339e-01 3.05568665e-01 1.88796908e-01 6.34321690e-01 -6.34942651e-02 4.06996906e-02 -7.36342728e-01 -4.18574512e-01 -5.75701892e-01 2.09192991e-01 -3.50652009e-01 -1.47581530e+00 3.52719218e-01 4.18091625e-01 -8.60486090e-01 -4.66298461e-01 -4.89617556e-01 -5.22719800e-01 8.40941846e-01 -1.17239535e+00 -9.60441232e-01 2.45534237e-02 6.16191149e-01 8.76545608e-02 5.38621508e-02 5.62445700e-01 2.95446310e-02 -4.29412663e-01 -9.31800995e-03 3.79540712e-01 3.76167819e-02 1.82473302e-01 -1.18205750e+00 1.76005140e-01 6.64298117e-01 3.15415204e-01 6.38950467e-01 9.91911650e-01 -1.06959784e+00 -8.99950564e-01 -8.81253719e-01 9.06499326e-01 -3.59535396e-01 7.02323675e-01 -5.56893110e-01 -4.12529975e-01 5.64565957e-01 -1.50844127e-01 -1.85389131e-01 6.62458181e-01 4.45279092e-01 5.28809056e-02 -1.02131955e-01 -1.13517570e+00 4.45916295e-01 9.28836405e-01 -3.20847213e-01 -4.03306425e-01 7.01300353e-02 1.80342793e-01 4.81072962e-01 -9.07400727e-01 3.54347408e-01 3.35087150e-01 -1.06816971e+00 8.33409429e-01 -5.65411687e-01 1.30330309e-01 -4.93203908e-01 -4.18247208e-02 -1.18800926e+00 -5.01721144e-01 -6.45599127e-01 -2.19326869e-01 1.51550496e+00 3.54625225e-01 -7.56967366e-01 7.89772391e-01 1.41879678e-01 4.57610697e-01 -6.15539372e-01 -8.83360624e-01 -2.46755064e-01 -5.70472479e-01 -3.55006307e-01 6.34298980e-01 5.28030932e-01 -3.74939144e-01 5.21663070e-01 -1.43975407e-01 1.74080133e-01 8.98226678e-01 1.94809809e-01 6.80343091e-01 -2.09205937e+00 -5.19428492e-01 -2.68504322e-01 -5.74829459e-01 -7.67457783e-01 7.54415169e-02 -7.59635031e-01 7.25057721e-02 -1.42560804e+00 5.91694415e-01 -6.57813191e-01 -1.85930520e-01 1.68089867e-01 -7.37001076e-02 -1.34238020e-01 -2.43147761e-01 2.69912839e-01 -5.48555434e-01 4.71149117e-01 1.01891625e+00 2.96774358e-01 5.37682734e-02 6.48613870e-01 -2.56053150e-01 7.81843901e-01 5.11647046e-01 -7.44214177e-01 -5.36532164e-01 2.90463269e-01 6.40158951e-01 1.28167033e-01 3.56339425e-01 -5.86045086e-01 1.61955103e-01 -1.92568094e-01 3.61963183e-01 -1.08155477e+00 2.48213589e-01 -9.14302230e-01 5.82751811e-01 4.29369271e-01 -3.01932871e-01 -3.85501921e-01 -4.22758311e-01 9.81376946e-01 -7.32116625e-02 -7.80059874e-01 4.41460371e-01 -9.12387371e-02 -3.16868544e-01 3.40281010e-01 -6.31596982e-01 -7.76872560e-02 9.80731130e-01 -1.08996749e-01 2.24846825e-01 -4.26937938e-01 -1.10274661e+00 -4.66871783e-02 3.30744982e-01 -1.36359200e-01 4.63225007e-01 -1.18010890e+00 -4.77672309e-01 1.55427650e-01 -2.77883187e-03 -4.57573347e-02 1.39185280e-01 6.81909800e-01 -4.92807150e-01 1.88837916e-01 -1.73075031e-02 -7.96326220e-01 -1.14934397e+00 3.72020155e-01 -6.53084517e-02 -7.10374773e-01 -2.40739793e-01 6.57440424e-01 -4.95798551e-02 -4.14967299e-01 -7.46192457e-03 -1.20465741e-01 -5.99101424e-01 4.22116190e-01 1.36133611e-01 6.66831076e-01 -5.45932213e-03 -5.79788983e-01 -2.23913223e-01 4.40897673e-01 -1.11121342e-01 -3.21588695e-01 1.48816991e+00 -2.48885721e-01 -4.63742375e-01 7.75549889e-01 9.43537533e-01 5.49538806e-02 -1.23593664e+00 -3.67799997e-01 4.06741947e-01 -4.94786769e-01 8.50572288e-02 -3.89412731e-01 -8.40213358e-01 7.84456909e-01 2.07655922e-01 5.93325377e-01 6.92059815e-01 3.47402573e-01 3.61185856e-02 3.57752919e-01 3.79484206e-01 -9.48552310e-01 -1.71716928e-01 3.13629180e-01 4.88164544e-01 -7.04292715e-01 1.37001097e-01 -8.98938000e-01 -2.07819417e-01 9.77338910e-01 2.95143928e-02 -2.08839580e-01 1.03062820e+00 1.67426661e-01 -4.61520076e-01 -5.88456452e-01 -8.51134896e-01 -4.77189630e-01 2.32511505e-01 5.44227123e-01 2.22844854e-01 8.49923119e-02 -3.92777860e-01 2.13559940e-01 -1.69841349e-02 -1.41491696e-01 3.63275021e-01 8.18147004e-01 -5.53011179e-01 -1.46291554e+00 -4.73085672e-01 8.37076426e-01 -3.37211281e-01 5.68296015e-02 -4.90451157e-01 5.78976750e-01 1.96198359e-01 8.88923526e-01 -4.16097902e-02 -1.39539585e-01 9.18645188e-02 1.05535157e-01 4.87978548e-01 -8.48898411e-01 -2.34023020e-01 3.04854840e-01 3.20414275e-01 -3.10954839e-01 -4.43359554e-01 -1.08194160e+00 -9.25444722e-01 -1.57146215e-01 -6.10786259e-01 3.68218541e-01 7.15982854e-01 1.07665300e+00 1.67018279e-01 5.48430562e-01 8.41458380e-01 -7.77403533e-01 -4.95704651e-01 -1.03575325e+00 -9.27910089e-01 1.19177535e-01 1.99614596e-02 -1.11027431e+00 -3.32570195e-01 -1.29134431e-01]
[7.0947442054748535, 4.71970272064209]
60a24841-f8b1-4a7d-bfe2-fa40f7a55c54
a-survey-on-offline-model-based-reinforcement
2305.03360
null
https://arxiv.org/abs/2305.03360v1
https://arxiv.org/pdf/2305.03360v1.pdf
A Survey on Offline Model-Based Reinforcement Learning
Model-based approaches are becoming increasingly popular in the field of offline reinforcement learning, with high potential in real-world applications due to the model's capability of thoroughly utilizing the large historical datasets available with supervised learning techniques. This paper presents a literature review of recent work in offline model-based reinforcement learning, a field that utilizes model-based approaches in offline reinforcement learning. The survey provides a brief overview of the concepts and recent developments in both offline reinforcement learning and model-based reinforcement learning, and discuss the intersection of the two fields. We then presents key relevant papers in the field of offline model-based reinforcement learning and discuss their methods, particularly their approaches in solving the issue of distributional shift, the main problem faced by all current offline model-based reinforcement learning methods. We further discuss key challenges faced by the field, and suggest possible directions for future work.
['Haoyang He']
2023-05-05
null
null
null
null
['model-based-reinforcement-learning']
['reasoning']
[-1.61451489e-01 -2.64359176e-01 -9.06488419e-01 -3.36798429e-01 -9.89557624e-01 -6.15176976e-01 3.88202935e-01 3.29055667e-01 -8.50668311e-01 1.04558361e+00 -1.10039108e-01 -3.95012379e-01 -4.22604173e-01 -8.69803131e-01 -6.61779523e-01 -6.79140985e-01 -5.79373837e-01 7.11788118e-01 4.48045880e-02 -6.33947372e-01 4.29368913e-01 3.62012416e-01 -1.52681303e+00 -5.08757941e-02 7.74810076e-01 6.82847857e-01 1.46068767e-01 8.24753165e-01 -2.45852321e-01 9.10713375e-01 -8.72896194e-01 -2.50121444e-01 1.63010865e-01 -6.42770171e-01 -7.31546640e-01 -6.91180751e-02 1.24572970e-01 -5.41642010e-01 -6.78749323e-01 8.42805386e-01 6.97976589e-01 5.30634046e-01 4.85663623e-01 -1.50462425e+00 -2.81059623e-01 7.58252203e-01 -4.45358306e-01 6.33598149e-01 4.25807923e-01 1.98277116e-01 9.14213836e-01 -4.68733281e-01 3.30157459e-01 1.05981898e+00 8.36468160e-01 6.63641453e-01 -1.15209281e+00 -7.36995101e-01 5.40767848e-01 7.69666731e-01 -8.66858125e-01 -1.41738392e-02 8.94999623e-01 -2.05299020e-01 1.30064058e+00 -5.54502793e-02 1.07387352e+00 9.37968969e-01 2.55325973e-01 1.12814212e+00 1.45636201e+00 -6.93447232e-01 4.53884900e-01 -1.11798353e-01 -1.91572327e-02 3.58868033e-01 -3.88581425e-01 1.01988161e+00 -6.75302446e-01 -2.70589113e-01 7.59068370e-01 -2.21561372e-01 3.25537354e-01 -5.10897398e-01 -6.51744962e-01 1.16240036e+00 8.82668719e-02 5.87874986e-02 -2.89928257e-01 3.51004690e-01 6.76786005e-01 6.78805292e-01 3.48524153e-01 4.23440546e-01 -8.48236620e-01 -7.53571630e-01 -1.02465439e+00 9.41540360e-01 7.02993393e-01 9.29356039e-01 5.64776957e-01 5.72814167e-01 -1.60118323e-02 9.76528227e-01 2.84799457e-01 4.65662211e-01 8.27898324e-01 -7.96532631e-01 5.24093807e-01 -1.83712095e-02 1.28553331e-01 -2.09065169e-01 -3.54983091e-01 -4.85532433e-02 -3.80488187e-02 2.41228163e-01 4.37433958e-01 -3.15289378e-01 -6.11701131e-01 1.57044268e+00 4.83972669e-01 3.26281011e-01 4.44754474e-02 2.10973188e-01 4.42242861e-01 4.93856877e-01 3.74810398e-01 -6.07356966e-01 7.76776969e-01 -1.16687977e+00 -7.70705283e-01 -3.94489281e-02 4.67980921e-01 -6.34447217e-01 9.38483775e-01 3.70998263e-01 -9.67022061e-01 -5.23654103e-01 -9.53223944e-01 5.34847140e-01 -6.07646644e-01 -5.44830203e-01 8.47857594e-01 7.60706246e-01 -8.01899016e-01 1.02661812e+00 -8.35882664e-01 -2.04877004e-01 2.22341388e-01 6.25818133e-01 2.33077347e-01 1.62569597e-01 -1.60486543e+00 1.06938481e+00 3.68682504e-01 -3.13787013e-01 -1.23318827e+00 -7.79754221e-01 -9.44964588e-01 -1.64926216e-01 4.74747747e-01 2.37060189e-02 2.11932421e+00 -8.39654684e-01 -1.84758222e+00 2.69815058e-01 1.25600398e-01 -7.90993810e-01 6.86940968e-01 1.70256698e-03 -6.59579754e-01 2.30690092e-02 -2.06787571e-01 2.37695098e-01 7.85874367e-01 -1.01131999e+00 -1.01614523e+00 -2.27777064e-01 1.34284988e-01 3.97785664e-01 -2.29960129e-01 -1.74994823e-02 1.34979412e-01 -8.72656882e-01 -7.09039688e-01 -6.91005886e-01 -5.65841317e-01 -6.66897297e-01 3.85618180e-01 -6.66477084e-01 7.78562069e-01 -4.32366878e-01 1.66739571e+00 -1.91087377e+00 -4.05252397e-01 2.32646838e-01 -2.86238611e-01 2.23405048e-01 -4.02946591e-01 1.13459444e+00 -2.00429931e-01 -2.30195239e-01 -2.26435736e-01 1.88292924e-03 6.38811514e-02 5.03421247e-01 -6.20121896e-01 2.79871166e-01 -1.66544020e-01 9.48947251e-01 -1.43649185e+00 -2.86404461e-01 4.39940780e-01 -2.98348129e-01 -3.90529335e-01 4.81297195e-01 -3.16689640e-01 3.38066667e-01 -3.40485394e-01 5.84465086e-01 4.11209732e-01 4.66938287e-01 5.68717182e-01 4.65114027e-01 -1.87644735e-01 2.62805372e-01 -1.08249462e+00 1.35530376e+00 -5.14509797e-01 1.97956130e-01 -1.89700201e-01 -1.51185000e+00 8.21031392e-01 4.00550455e-01 9.49751556e-01 -1.07695675e+00 -2.12696776e-01 2.87094593e-01 7.91611969e-02 -4.44558233e-01 6.05275929e-01 -5.36916196e-01 -1.30779758e-01 5.73319376e-01 3.63637209e-01 -3.71394485e-01 5.22967339e-01 -1.30063340e-01 8.24880481e-01 5.40731847e-01 5.36987364e-01 -1.11788370e-01 2.85266519e-01 1.07640408e-01 5.20661354e-01 1.00854826e+00 -6.69969738e-01 -1.33261278e-01 7.79731050e-02 -5.04740238e-01 -9.12918508e-01 -9.67713714e-01 2.26336122e-02 1.36013687e+00 -1.23880627e-02 -3.69340122e-01 -5.79674542e-01 -1.10915101e+00 5.38252115e-01 6.17177606e-01 -7.90069222e-01 -2.14339465e-01 -7.84464538e-01 -6.95983887e-01 4.90913391e-01 8.34208190e-01 1.46676391e-01 -1.49805903e+00 -5.55233777e-01 7.31681406e-01 3.78609076e-02 -6.28208995e-01 -2.06257463e-01 4.79065895e-01 -1.42655158e+00 -1.25437665e+00 -4.63506192e-01 -7.41492987e-01 2.00489655e-01 1.08655795e-01 1.15802276e+00 -7.67219812e-02 -1.25957102e-01 1.01855648e+00 -4.14491147e-01 -7.33918548e-01 -5.07689178e-01 3.02924253e-02 3.50453079e-01 -6.09294236e-01 5.70916891e-01 -3.43478411e-01 -1.45183995e-01 1.33749709e-01 -9.21298325e-01 -8.17464292e-01 -4.13480066e-02 1.32639074e+00 5.64428270e-01 3.02056074e-01 1.31489956e+00 -1.07467103e+00 9.72502589e-01 -6.21324360e-01 -9.72233713e-01 3.72348398e-01 -1.15928566e+00 -7.53004998e-02 8.85713756e-01 -5.97970307e-01 -1.01940608e+00 -2.80117929e-01 -5.85026443e-01 -2.47165293e-01 -6.33878540e-03 6.92216516e-01 3.01343143e-01 -1.06782541e-01 6.30329549e-01 2.80424446e-01 2.95503318e-01 -5.23190379e-01 2.93459654e-01 5.10214984e-01 5.50286509e-02 -8.15219223e-01 6.15399241e-01 -1.87604763e-02 -2.46280059e-01 -6.82946205e-01 -7.63518214e-01 -5.47611833e-01 -3.80426854e-01 -4.65582132e-01 2.31237054e-01 -6.90008283e-01 -6.41563177e-01 7.22494006e-01 -4.13093537e-01 -1.14023411e+00 -8.91070485e-01 4.94782627e-01 -1.41484809e+00 3.08876961e-01 -7.54502892e-01 -9.62575257e-01 -2.79098246e-02 -1.24561894e+00 3.09612393e-01 5.86521268e-01 -1.14555076e-01 -1.65112555e+00 6.39469147e-01 1.41456917e-01 2.77664691e-01 -1.20483726e-01 1.11347711e+00 -8.72914970e-01 1.79908738e-01 4.64578997e-03 6.43330693e-01 4.71107662e-01 5.46888709e-02 -1.44662514e-01 -8.72834980e-01 -5.54056108e-01 -8.89819935e-02 -7.80587018e-01 4.54818100e-01 5.36976933e-01 1.25180113e+00 -1.54811829e-01 4.34865244e-02 5.14471456e-02 1.62196398e+00 6.03967488e-01 2.45977208e-01 6.82877064e-01 1.49754897e-01 5.25835395e-01 1.39150369e+00 8.17370594e-01 4.05753225e-01 4.24014479e-01 3.40335935e-01 6.43203333e-02 6.64635226e-02 -7.34578490e-01 5.17002940e-01 1.07237291e+00 1.55574799e-01 1.21890187e-01 -7.66038716e-01 5.99408388e-01 -1.98086393e+00 -1.23205709e+00 3.49777132e-01 2.23249984e+00 1.13151991e+00 -5.50097004e-02 7.94672132e-01 1.46453574e-01 4.71320987e-01 4.09696475e-02 -8.05877745e-01 -9.00716245e-01 1.50937542e-01 7.52367735e-01 5.89817464e-01 5.70440948e-01 -1.13197398e+00 1.14060938e+00 8.64186001e+00 1.01810586e+00 -8.25350165e-01 -8.40081200e-02 3.60898674e-01 9.02490541e-02 -1.91504076e-01 6.44072145e-02 -8.70835602e-01 3.29115152e-01 1.27950537e+00 -3.59962940e-01 8.32679749e-01 1.06111860e+00 3.13783020e-01 -4.13508713e-01 -1.01157987e+00 8.18060279e-01 -1.34331942e-01 -1.18104887e+00 -1.40319675e-01 -1.08712316e-01 1.05449736e+00 1.34685457e-01 2.31467351e-01 1.03851390e+00 5.20115554e-01 -9.02494073e-01 6.21563613e-01 2.99572349e-01 7.14310527e-01 -1.32810557e+00 5.38121045e-01 5.10743439e-01 -1.05778122e+00 -5.95658123e-01 -4.31363612e-01 -3.26367646e-01 5.50750503e-03 8.03553239e-02 -5.76303005e-01 5.74106514e-01 7.15621114e-01 9.37984884e-01 -2.64590442e-01 1.26227415e+00 -1.30108312e-01 1.01526761e+00 -4.19814214e-02 -1.90716803e-01 4.20856774e-01 -3.17068309e-01 1.64443851e-01 1.01616240e+00 -4.79069315e-02 -5.23381382e-02 8.43383431e-01 1.30096212e-01 1.48634389e-01 2.16503888e-01 -7.01668382e-01 -2.00794831e-01 6.54715061e-01 7.58389592e-01 -3.65615249e-01 -3.65452260e-01 -5.65071881e-01 3.12405914e-01 4.59048092e-01 2.84381300e-01 -8.05231929e-01 -5.97312331e-01 3.91985059e-01 -1.44235656e-01 3.02497029e-01 -2.83559650e-01 6.02478273e-02 -7.63491392e-01 -5.00594199e-01 -1.43177950e+00 8.52178276e-01 -1.11567467e-01 -1.53385937e+00 4.74817585e-03 4.73602742e-01 -1.26369309e+00 -7.08313704e-01 -6.31705165e-01 -4.38904464e-01 5.17758667e-01 -1.79000401e+00 -7.18886971e-01 4.29184675e-01 6.80305600e-01 9.65509593e-01 -3.97440165e-01 9.61903393e-01 1.52802065e-01 -1.57503188e-01 7.98002422e-01 7.01576650e-01 -7.76600689e-02 8.83019805e-01 -1.44520843e+00 3.03300738e-01 2.26927921e-01 2.49327600e-01 3.52803171e-01 6.48088336e-01 -5.39543867e-01 -1.45571744e+00 -7.80143023e-01 5.88945329e-01 -2.48588651e-01 8.86643529e-01 -1.34139210e-01 -6.35969579e-01 5.64575493e-01 3.27797413e-01 -2.37187788e-01 9.82466877e-01 2.42675081e-01 -6.75618872e-02 -2.34837800e-01 -1.23884368e+00 5.08156180e-01 5.70286870e-01 -4.23660100e-01 -5.92422426e-01 2.52825201e-01 3.71704102e-01 -4.74223882e-01 -1.15618384e+00 2.79798537e-01 6.41507447e-01 -7.96025157e-01 7.83720672e-01 -1.02173281e+00 2.55584177e-02 2.51958996e-01 1.86886013e-01 -1.78156221e+00 -1.67682320e-01 -8.09046626e-01 -5.05126178e-01 9.54148829e-01 1.58705413e-01 -6.20777249e-01 8.94584715e-01 1.32453904e-01 2.89324094e-02 -1.18729472e+00 -8.34183156e-01 -1.19502282e+00 7.17098653e-01 -5.79904735e-01 5.83970428e-01 8.43570590e-01 4.14733022e-01 -3.91145423e-02 -4.18743163e-01 -6.45610034e-01 4.46307272e-01 1.54675290e-01 6.61623001e-01 -7.06384003e-01 -5.31451762e-01 -3.80366623e-01 -1.41117990e-01 -1.08265829e+00 4.11935776e-01 -6.93438709e-01 1.30391702e-01 -1.27229321e+00 -1.52029274e-02 -6.36123121e-01 -6.10812485e-01 4.88360822e-01 -4.65255454e-02 -4.87712882e-02 2.16326177e-01 -2.44879499e-01 -4.65259671e-01 7.72481978e-01 1.21259320e+00 -1.26265541e-01 -3.47795933e-01 4.14326191e-01 -3.61151934e-01 4.84396666e-01 1.11995494e+00 -6.01946533e-01 -7.96561420e-01 1.97154377e-02 1.60756975e-01 2.91032642e-01 -2.02564508e-01 -6.64675951e-01 -1.84958056e-02 -8.20490360e-01 4.38390851e-01 -6.51615560e-01 1.50072170e-04 -7.87763238e-01 -5.84358633e-01 7.17415810e-01 -4.40996319e-01 8.41036737e-01 5.46069980e-01 7.73685157e-01 -4.23755676e-01 -5.50929070e-01 9.61038888e-01 -2.83342153e-01 -1.07304668e+00 5.04649401e-01 -8.07503164e-01 5.25930882e-01 1.27689826e+00 -1.78539529e-02 2.29059592e-01 -5.27236521e-01 -8.89533103e-01 4.70123470e-01 -2.23137550e-02 5.60819328e-01 6.84279144e-01 -1.34164906e+00 -3.59360844e-01 3.11388046e-01 7.26618320e-02 -7.16546535e-01 3.65897357e-01 6.45094395e-01 -1.30459860e-01 1.68276772e-01 -3.45686913e-01 -2.20791221e-01 -1.08211231e+00 7.85231471e-01 3.26240242e-01 -7.20442772e-01 -2.44265854e-01 5.42555869e-01 -4.43343639e-01 -8.25952649e-01 4.67294723e-01 1.20675035e-01 -3.69729489e-01 -6.50983863e-03 4.18274671e-01 6.46296382e-01 1.13745898e-01 -1.27268597e-01 -9.73952189e-02 1.69672906e-01 -1.73230886e-01 -4.18747991e-01 1.34718561e+00 1.15008324e-01 1.50600478e-01 8.28946531e-01 8.57512176e-01 -3.83314550e-01 -1.39552200e+00 -1.13819331e-01 2.56406754e-01 -3.56920898e-01 -3.60584289e-01 -9.40410197e-01 -6.57499909e-01 8.69948089e-01 8.40208888e-01 2.81860884e-02 1.04289246e+00 -4.52163786e-01 6.96180165e-01 4.02130663e-01 7.77627707e-01 -2.09098029e+00 3.91933560e-01 1.12154150e+00 5.67325175e-01 -1.10750902e+00 1.49872288e-01 3.46424460e-01 -7.02720881e-01 1.20360816e+00 8.33055019e-01 -5.22916436e-01 1.09367716e+00 2.65357018e-01 2.92178541e-01 2.90020525e-01 -8.32567751e-01 -1.10547595e-01 -8.76133591e-02 9.33538079e-01 2.03563079e-01 1.37556091e-01 -3.56118858e-01 3.87180299e-01 -2.77968884e-01 -1.00897446e-01 3.60793084e-01 1.43636787e+00 -3.78141552e-01 -1.98579776e+00 -1.83812857e-01 5.04973710e-01 -3.74363780e-01 7.19890818e-02 -1.99587457e-03 1.04142869e+00 -2.63477951e-01 1.00221896e+00 7.89112821e-02 -3.18049908e-01 3.70888472e-01 1.97753951e-01 9.60237682e-01 -6.20209217e-01 -1.07983422e+00 1.14464991e-01 -8.12494755e-02 -4.80510533e-01 -4.24398541e-01 -8.59222233e-01 -1.31622791e+00 -1.90722406e-01 -3.45699042e-01 4.73378509e-01 6.46422505e-01 9.46750164e-01 -1.57880396e-01 3.05332512e-01 1.05164886e+00 -5.43783963e-01 -1.48945928e+00 -8.24699640e-01 -9.11678374e-01 2.06273481e-01 2.21587032e-01 -8.89357746e-01 -7.50278682e-02 -2.18675390e-01]
[4.039872646331787, 2.2728967666625977]
9930afad-656a-4641-86ac-3dad72faecef
negation-typology-and-general-representation
null
null
https://aclanthology.org/2021.naacl-srw.3
https://aclanthology.org/2021.naacl-srw.3.pdf
Negation typology and general representation models for cross-lingual zero-shot negation scope resolution in Russian, French, and Spanish.
Negation is a linguistic universal that poses difficulties for cognitive and computational processing. Despite many advances in text analytics, negation resolution remains an acute and continuously researched question in Natural Language Processing. Reliable negation parsing affects results in biomedical text mining, sentiment analysis, machine translation, and many other fields. The availability of multilingual pre-trained general representation models makes it possible to experiment with negation detection in languages that lack annotated data. In this work we test the performance of two state-of-the-art contextual representation models, Multilingual BERT and XLM-RoBERTa. We resolve negation scope by conducting zero-shot transfer between English, Spanish, French, and Russian. Our best result amounts to a token-level F1-score of 86.86{\%} between Spanish and Russian. We correlate these results with a linguistic negation typology and lexical capacity of the models.
['Fabio Rinaldi', 'Anastassia Shaitarova']
2021-06-01
null
null
null
naacl-2021-4
['negation-detection', 'negation-scope-resolution']
['natural-language-processing', 'natural-language-processing']
[ 2.20240787e-01 2.14888617e-01 -3.53854954e-01 -5.16655803e-01 -7.68665016e-01 -6.11796677e-01 5.39950550e-01 8.85420144e-01 -1.00021625e+00 1.19812489e+00 4.74412471e-01 -3.73916715e-01 1.78748131e-01 -8.06822538e-01 -5.61632156e-01 -6.09785728e-02 2.53901243e-01 4.58083600e-01 1.33104652e-01 -7.83404171e-01 5.77396080e-02 1.88856095e-01 -1.19461381e+00 8.13162506e-01 9.46997285e-01 4.27713931e-01 -5.88939674e-02 3.27002734e-01 -4.12602186e-01 9.19181705e-01 -6.00732327e-01 -7.67907977e-01 -2.79101193e-01 -5.96407712e-01 -8.01022470e-01 -6.60144091e-01 1.34708539e-01 2.98107028e-01 2.24648938e-01 1.37180305e+00 4.75343049e-01 -1.13324709e-01 4.57611382e-01 -4.43412364e-01 -8.59970450e-01 8.33807647e-01 -3.42111677e-01 5.52053392e-01 8.37189257e-01 -1.14507966e-01 9.44181085e-01 -8.61740172e-01 1.32583511e+00 1.27515340e+00 7.26288676e-01 8.01537752e-01 -9.01421309e-01 -5.32737672e-01 1.14142038e-01 1.40490070e-01 -1.19868147e+00 -3.44286025e-01 4.59799826e-01 -1.61848769e-01 1.55489755e+00 -2.43712198e-02 5.33761263e-01 1.20289505e+00 6.86844051e-01 3.62709939e-01 1.33510017e+00 -9.28775787e-01 1.89966455e-01 2.53273010e-01 1.15691170e-01 7.30321825e-01 4.22646642e-01 -2.02414051e-01 -8.34335387e-01 1.64675161e-01 1.97225347e-01 -4.89246994e-01 -1.09429352e-01 2.76618838e-01 -1.06107640e+00 9.06741917e-01 2.71193329e-02 8.94854188e-01 -4.57848549e-01 -1.79058477e-01 8.98019195e-01 7.34211981e-01 5.73310554e-01 4.47936416e-01 -8.32059681e-01 -9.96878147e-02 -6.77449882e-01 6.63846359e-02 8.80352318e-01 8.12803626e-01 4.60556448e-01 -4.38208617e-02 -1.13374978e-01 7.70842135e-01 -9.11637321e-02 5.97551346e-01 6.73730135e-01 -4.87878084e-01 4.14027065e-01 6.17084384e-01 -1.95733473e-01 -8.56914103e-01 -7.46329427e-01 -2.42037967e-01 -5.54882407e-01 -8.39437172e-02 4.99886036e-01 -2.54010767e-01 -4.73661482e-01 1.96518409e+00 9.96905193e-02 -3.15981537e-01 7.15164900e-01 5.93991458e-01 7.91145623e-01 2.93641508e-01 6.10428393e-01 -3.94588828e-01 1.86193335e+00 -5.18564522e-01 -1.15092170e+00 -5.56695819e-01 9.02307212e-01 -8.86637211e-01 1.07127213e+00 4.28707242e-01 -1.04049766e+00 -2.98427522e-01 -9.64766860e-01 -1.89083010e-01 -7.28965461e-01 -8.17172602e-02 7.21329272e-01 9.08483565e-01 -8.76706123e-01 4.11933482e-01 -5.64250529e-01 -6.53957963e-01 2.32446775e-01 2.07609922e-01 -8.09835494e-01 -4.19890106e-01 -1.70740974e+00 1.40490520e+00 4.19611603e-01 -2.18978785e-02 -9.01370272e-02 -4.46343064e-01 -1.01780152e+00 -2.03295469e-01 3.41691196e-01 -5.32950819e-01 1.00039005e+00 -1.13242960e+00 -1.07170784e+00 1.51737297e+00 -3.62856686e-01 -5.15069306e-01 2.81682193e-01 -4.42151517e-01 -8.95134032e-01 -1.76285096e-02 4.97576773e-01 4.36589956e-01 2.79631466e-01 -3.78282011e-01 -5.68268776e-01 -4.62124586e-01 -7.42998421e-02 2.05673084e-01 -1.88093588e-01 5.38131654e-01 -9.85352248e-02 -5.65746248e-01 -7.38343298e-02 -4.45610464e-01 -1.98816672e-01 -3.07015568e-01 -1.65737681e-02 -4.09808308e-01 1.86821803e-01 -7.17917562e-01 9.68126178e-01 -1.96897674e+00 5.55036776e-02 3.62087451e-02 -3.06336492e-01 2.59276599e-01 -2.11682558e-01 3.22080374e-01 -3.33958030e-01 4.90425855e-01 -1.63280621e-01 1.18738087e-02 -1.35063589e-01 4.43640202e-01 -1.36431381e-01 4.64544356e-01 7.25378931e-01 1.08708990e+00 -1.03926134e+00 -4.70751315e-01 -3.23581994e-02 5.62994659e-01 -6.94730699e-01 -3.51781309e-01 -4.04529303e-01 2.48053342e-01 -1.79125428e-01 8.09542298e-01 3.05559397e-01 2.97572374e-01 5.87106466e-01 -2.36006044e-02 -1.65797159e-01 5.21648407e-01 -9.00949955e-01 1.85482597e+00 -2.33259082e-01 2.74867296e-01 2.69297464e-03 -8.88733327e-01 9.05491829e-01 4.12032038e-01 -4.45850343e-02 -1.34281743e+00 2.29148388e-01 5.76459646e-01 2.67524663e-02 -5.85876107e-01 5.95594823e-01 -7.14908779e-01 -5.66319585e-01 7.25986063e-02 3.17362368e-01 -3.23000289e-02 5.88121772e-01 -1.41685680e-01 1.13596499e+00 1.69924378e-01 9.85491753e-01 -5.58424771e-01 7.44346917e-01 1.93133190e-01 7.84626782e-01 5.30637026e-01 -3.95442605e-01 1.56362146e-01 8.82093370e-01 -4.06325787e-01 -6.42796576e-01 -7.59459078e-01 -2.04334155e-01 1.16267657e+00 -3.80718440e-01 -3.42884868e-01 -7.68843293e-01 -6.76067650e-01 -2.03666091e-01 1.01803946e+00 -7.15646029e-01 -2.86162198e-01 -8.82048368e-01 -6.61597788e-01 9.37933683e-01 3.98107052e-01 6.40360862e-02 -1.58776593e+00 -4.30243313e-01 4.16938752e-01 -3.43194872e-01 -1.36936903e+00 1.61463872e-01 5.08059382e-01 -6.59144402e-01 -1.08566022e+00 -1.84700057e-01 -9.39021647e-01 2.76238441e-01 -6.31136417e-01 1.45848131e+00 2.80270446e-02 -2.02435255e-01 4.06471044e-02 -4.24967438e-01 -6.34748578e-01 -6.04344010e-01 1.20672174e-01 1.78723648e-01 -7.53816783e-01 9.53531384e-01 -1.06932901e-01 -3.37825008e-02 -2.77599871e-01 -9.32923496e-01 -6.01496994e-01 5.00921547e-01 7.94833779e-01 9.19260502e-01 -3.87311727e-01 9.86129045e-01 -1.40599823e+00 9.07661200e-01 -5.11133969e-01 -3.22435617e-01 2.69278288e-01 -3.68723691e-01 5.12644462e-02 6.21645689e-01 -1.07794032e-01 -9.34147477e-01 -1.70989543e-01 -5.89851141e-01 2.52553552e-01 -3.16103488e-01 1.02130115e+00 -2.49822974e-01 5.02857149e-01 1.00942028e+00 -1.32655427e-01 -2.64695823e-01 -3.60575542e-02 4.63108689e-01 3.35147917e-01 5.97425818e-01 -4.54780012e-01 1.66378275e-01 2.48899102e-01 -1.60151362e-01 -1.18053734e+00 -1.14097023e+00 -2.05727488e-01 -5.82236528e-01 9.11237299e-02 1.23164880e+00 -9.61735845e-01 -5.57469845e-01 -1.54906400e-02 -1.38405704e+00 -6.09195083e-02 -5.39783299e-01 4.55099761e-01 -1.95242420e-01 3.27801347e-01 -6.62734330e-01 -4.45329666e-01 -4.59543139e-01 -7.42837846e-01 7.36908972e-01 -7.82057121e-02 -6.85201883e-01 -1.15193856e+00 2.94203103e-01 3.37996840e-01 2.15782687e-01 2.62085319e-01 1.28388274e+00 -9.44057405e-01 8.34465101e-02 -2.55737286e-02 -1.07591055e-01 3.07671010e-01 -5.18015325e-02 -4.82849598e-01 -8.55865836e-01 -1.05198296e-02 1.97785839e-01 -5.71995735e-01 8.80937815e-01 9.75556150e-02 3.35127890e-01 1.07233778e-01 9.03100800e-03 2.03884989e-01 1.37080181e+00 -6.16688058e-02 6.14831030e-01 4.29085553e-01 2.68101364e-01 7.48380005e-01 7.00338602e-01 -3.21316649e-03 2.06133783e-01 6.45231977e-02 1.63376883e-01 1.56831801e-01 -8.34317431e-02 -3.96909192e-03 5.57040989e-01 9.77744043e-01 2.22808883e-01 -2.27654696e-01 -1.17258191e+00 5.78130841e-01 -1.60170579e+00 -8.85016143e-01 -1.25701390e-02 1.64893222e+00 1.10043728e+00 4.67791975e-01 -5.59648871e-01 5.34385964e-02 3.68526012e-01 -1.12870209e-01 -1.07047550e-01 -9.33018744e-01 -7.30224073e-01 7.15001106e-01 9.35974792e-02 5.91025472e-01 -1.08876240e+00 1.46878135e+00 6.14318371e+00 5.45280516e-01 -1.02958965e+00 2.46890306e-01 3.26622427e-01 1.15001194e-01 -4.45244968e-01 -1.96516737e-01 -8.00437391e-01 7.24679604e-03 1.24771070e+00 -3.30015346e-02 2.93243259e-01 4.98481750e-01 3.97784784e-02 -3.80109638e-01 -1.13258564e+00 6.47887409e-01 4.76509184e-01 -1.28808844e+00 1.69225991e-01 -4.31847870e-01 6.15546525e-01 3.10957968e-01 -2.61526257e-01 6.97087526e-01 -3.45036795e-04 -1.23063493e+00 6.74721777e-01 5.86901605e-01 9.33855414e-01 -1.02443016e+00 1.28116155e+00 2.79291689e-01 -8.11098516e-01 1.51115596e-01 -4.93876755e-01 -2.56679296e-01 1.39838219e-01 7.73060918e-01 -5.22919536e-01 6.29239619e-01 5.91991603e-01 5.07550836e-01 -5.30641794e-01 2.96696067e-01 -7.06771433e-01 4.97978300e-01 -1.89902008e-01 -2.20904469e-01 -7.39125954e-03 -1.22195378e-01 3.88923228e-01 1.72530282e+00 -1.22191058e-02 6.12474307e-02 2.40590304e-01 4.83903646e-01 -4.36163872e-01 8.50716472e-01 -7.93452382e-01 -3.30166847e-01 8.22317600e-02 8.94328058e-01 -1.00686836e+00 -2.16120556e-01 -7.04257667e-01 9.89486277e-01 6.72841311e-01 -2.14335211e-02 -5.39577603e-01 -4.59862500e-01 5.62951624e-01 -1.76205829e-01 2.23633811e-01 -3.11751012e-02 -2.81698793e-01 -1.21360862e+00 9.59080011e-02 -1.14172041e+00 4.10379022e-01 -5.68498373e-01 -1.47423804e+00 7.63345122e-01 -3.23746890e-01 -5.43349445e-01 -4.38615799e-01 -8.78076434e-01 -2.46127754e-01 9.49382007e-01 -1.82835937e+00 -1.03078735e+00 3.72882009e-01 5.18114805e-01 2.58776337e-01 -3.40891570e-01 1.53935921e+00 4.02235299e-01 -2.72401631e-01 5.58141232e-01 -3.84697765e-01 2.97469735e-01 1.02899754e+00 -1.01782775e+00 2.25775570e-01 7.52543330e-01 1.27025023e-02 7.83518791e-01 8.45217526e-01 -9.79213655e-01 -1.06148815e+00 -9.87862170e-01 1.83758092e+00 -3.84533763e-01 8.17288160e-01 -2.59521782e-01 -9.93797958e-01 6.20051146e-01 5.06234288e-01 -5.27030267e-02 1.09215069e+00 4.56237048e-01 -5.88028073e-01 1.88209340e-01 -1.35011840e+00 6.73660517e-01 9.25912201e-01 -9.65977907e-01 -1.05530345e+00 4.21605349e-01 7.14003503e-01 -3.00678790e-01 -7.60291517e-01 2.65311807e-01 1.61235765e-01 -9.17977571e-01 5.87586939e-01 -9.63626683e-01 4.89200056e-01 -1.39956772e-01 -4.06077236e-01 -1.02150929e+00 3.24935280e-02 -2.27211565e-01 4.54224676e-01 1.00902867e+00 7.59100795e-01 -6.00361943e-01 5.63586056e-01 1.35330409e-01 -1.51442125e-01 -5.99691033e-01 -1.07977211e+00 -4.36828405e-01 5.88195264e-01 -8.46196949e-01 1.80650309e-01 1.27036572e+00 4.13086027e-01 8.56738925e-01 2.09510803e-01 -1.62849233e-01 1.00721195e-01 -1.91616505e-01 8.93402547e-02 -1.42397344e+00 1.95495263e-02 -1.95733145e-01 -4.35557306e-01 -1.60556450e-01 7.75500298e-01 -1.40472150e+00 -3.54787141e-01 -1.64722848e+00 3.16853449e-02 8.26434493e-02 -3.54095042e-01 8.99782181e-01 -3.78470682e-02 3.87480438e-01 -1.30104080e-01 -4.67146188e-01 -5.78809500e-01 3.13615501e-01 7.84977794e-01 -2.57831085e-02 -7.52789155e-02 -5.70752501e-01 -8.56360912e-01 1.10057926e+00 9.87712204e-01 -7.68659532e-01 -7.97800720e-03 -4.39312726e-01 9.49135482e-01 -1.62856936e-01 -8.15950856e-02 -7.70211697e-01 1.77078635e-01 -7.17521608e-02 4.66397852e-01 -3.07458639e-01 1.52948529e-01 -5.37550271e-01 -4.38493639e-01 6.69658959e-01 -2.29488119e-01 5.26906431e-01 6.13065243e-01 3.79538029e-01 -3.25677693e-01 -4.88935322e-01 6.82119668e-01 -3.58412415e-01 -8.12041640e-01 -5.11896551e-01 -7.53883481e-01 6.56599998e-01 8.14931035e-01 4.93828617e-02 -4.67783362e-01 -2.07411889e-02 -8.65392148e-01 -2.44207215e-02 3.80157053e-01 4.62338477e-01 5.72924793e-01 -8.21784496e-01 -8.78809690e-01 3.84840071e-01 3.27601016e-01 -5.65286338e-01 -3.77832842e-03 6.50993168e-01 -5.64121544e-01 5.97100735e-01 -3.81866068e-01 -2.25090891e-01 -1.19660044e+00 4.58594203e-01 9.48247537e-02 -5.11197984e-01 -2.47208267e-01 6.49280965e-01 -5.60942292e-01 -9.06072438e-01 -1.27556801e-01 -4.42731440e-01 -4.99206960e-01 2.83894598e-01 4.40804482e-01 3.59499641e-02 5.61881185e-01 -6.81968331e-01 -7.75512338e-01 3.18384707e-01 -1.23050205e-01 -1.06805675e-01 1.23915422e+00 3.12718660e-01 -6.03943408e-01 6.48667991e-01 8.52435768e-01 6.20002270e-01 9.53755379e-02 -5.33509329e-02 5.54582596e-01 2.56320089e-01 -2.53904134e-01 -1.09238446e+00 -5.42807102e-01 5.04738033e-01 4.28075761e-01 -1.88949198e-01 8.61468911e-01 2.09135599e-02 3.69170874e-01 9.64872718e-01 2.31971800e-01 -1.31473792e+00 -2.32794106e-01 1.33265936e+00 6.60347939e-01 -1.17413604e+00 -2.24869717e-02 -4.53880399e-01 -5.94644308e-01 8.75090003e-01 4.11574632e-01 -1.31166384e-01 5.71008384e-01 5.07195354e-01 6.09719157e-01 -2.89003104e-01 -7.56908894e-01 -2.00262949e-01 1.78426541e-02 5.08399904e-01 1.18189692e+00 1.18044866e-02 -1.00044644e+00 1.04532397e+00 -3.41097981e-01 2.60737315e-02 4.86363292e-01 1.06353605e+00 -3.35739046e-01 -1.54890394e+00 -1.85385585e-01 3.07412177e-01 -1.02142382e+00 -5.17063141e-01 -4.81919408e-01 9.22910511e-01 2.89297402e-01 8.95058393e-01 -9.42066461e-02 1.66130349e-01 7.06955075e-01 5.62913895e-01 4.70926404e-01 -9.07957792e-01 -1.11029458e+00 -6.77664056e-02 4.73177344e-01 -5.18638194e-01 -5.40860176e-01 -8.09129596e-01 -1.71604216e+00 -4.44811620e-02 -1.11917160e-01 2.14460477e-01 6.63049757e-01 1.07397318e+00 1.17497385e-01 7.25366890e-01 -4.35386360e-01 -9.38228667e-02 -3.04246187e-01 -8.42246771e-01 -3.32331419e-01 3.64957035e-01 6.86469581e-03 -2.93994099e-01 1.82379950e-02 -9.82712656e-02]
[10.425074577331543, 9.286370277404785]
3d160552-3cf8-4d69-9d72-a2e8d9b71a2f
multi-graph-tensor-networks
2010.13209
null
https://arxiv.org/abs/2010.13209v4
https://arxiv.org/pdf/2010.13209v4.pdf
Multi-Graph Tensor Networks
The irregular and multi-modal nature of numerous modern data sources poses serious challenges for traditional deep learning algorithms. To this end, recent efforts have generalized existing algorithms to irregular domains through graphs, with the aim to gain additional insights from data through the underlying graph topology. At the same time, tensor-based methods have demonstrated promising results in bypassing the bottlenecks imposed by the Curse of Dimensionality. In this paper, we introduce a novel Multi-Graph Tensor Network (MGTN) framework, which exploits both the ability of graphs to handle irregular data sources and the compression properties of tensor networks in a deep learning setting. The potential of the proposed framework is demonstrated through an MGTN based deep Q agent for Foreign Exchange (FOREX) algorithmic trading. By virtue of the MGTN, a FOREX currency graph is leveraged to impose an economically meaningful structure on this demanding task, resulting in a highly superior performance against three competing models and at a drastically lower complexity.
['Danilo P. Mandic', 'Kriton Konstantinidis', 'Yao Lei Xu']
2020-10-25
null
null
null
null
['algorithmic-trading']
['time-series']
[-2.97975808e-01 9.25287083e-02 -2.65344948e-01 -1.85602922e-02 -3.87858957e-01 -6.40362144e-01 7.08708167e-01 2.66392112e-01 1.31866723e-01 4.90203232e-01 4.25992996e-01 -4.07091588e-01 -6.47177637e-01 -9.80592251e-01 -6.51094437e-01 -5.33960938e-01 -5.09464800e-01 5.84438741e-01 -3.77294391e-01 -2.60348827e-01 1.84652105e-01 5.87233603e-01 -1.08052814e+00 -6.44557774e-02 7.58357406e-01 1.33846104e+00 -1.38637275e-01 1.47130713e-01 -1.65538669e-01 8.86778295e-01 -1.69304833e-01 -8.60648632e-01 6.72831297e-01 -7.37469643e-02 -6.49037182e-01 3.50612670e-01 3.66966486e-01 -3.89577538e-01 -6.63519263e-01 9.83008146e-01 1.45143270e-01 1.97209474e-02 2.62733817e-01 -1.26990235e+00 -8.55298281e-01 7.90128708e-01 -5.32161295e-01 2.36527666e-01 -8.58967602e-02 2.43990511e-01 1.73115826e+00 -5.97193718e-01 5.27414858e-01 1.20783544e+00 6.19897842e-01 -2.60473229e-03 -1.41691840e+00 -4.45012569e-01 6.08148612e-02 -7.17233494e-02 -8.28484893e-01 -1.64247185e-01 1.13774502e+00 -4.37281191e-01 7.98715472e-01 -5.41802682e-02 8.20961714e-01 1.09004593e+00 1.78135335e-01 6.62026703e-01 1.18414915e+00 1.46891251e-01 2.51458824e-01 -4.10679519e-01 -1.20755173e-01 8.79038870e-01 4.84719962e-01 2.11885348e-01 -7.26254165e-01 -1.18531160e-01 9.40254629e-01 2.28315219e-01 -7.25170672e-02 -8.25724244e-01 -1.38273180e+00 1.21828508e+00 1.01118708e+00 3.30552757e-01 -6.12466276e-01 5.63858986e-01 6.08499885e-01 4.13403779e-01 5.26179910e-01 5.68558276e-01 -4.28754240e-01 -9.45011228e-02 -6.52007043e-01 3.33088815e-01 7.29144275e-01 7.44377553e-01 6.19532108e-01 4.48964983e-01 9.01871696e-02 4.85091448e-01 3.09168518e-01 2.79795736e-01 2.42959991e-01 -9.26310062e-01 7.46219456e-01 9.18431520e-01 -3.91288668e-01 -1.53153813e+00 -5.11316836e-01 -9.76608455e-01 -1.18879342e+00 1.44058913e-02 4.34273124e-01 1.06354617e-01 -6.30755961e-01 1.58491957e+00 4.41108704e-01 -2.53712475e-01 -3.25680673e-02 8.61138284e-01 2.18539149e-01 4.22042757e-01 -2.00323090e-01 1.43448889e-01 1.22237957e+00 -7.87371933e-01 -4.14374530e-01 9.90305319e-02 5.94524682e-01 -4.13181514e-01 1.04355323e+00 4.44869280e-01 -8.30296934e-01 -1.99248761e-01 -8.99698496e-01 -1.65355116e-01 -2.66606569e-01 -3.39416414e-01 1.35706317e+00 5.82669437e-01 -1.16796553e+00 6.73478603e-01 -8.54191720e-01 -3.50439064e-02 8.42235982e-01 3.61915916e-01 -3.40827584e-01 -1.87971070e-01 -1.02156401e+00 4.18179542e-01 3.04024577e-01 1.52288795e-01 -7.27546036e-01 -1.01047826e+00 -8.08575809e-01 3.67504597e-01 6.72370017e-01 -7.93796182e-01 8.56090963e-01 -8.44987869e-01 -1.39139342e+00 3.08532566e-01 6.17091298e-01 -7.58880794e-01 7.51753986e-01 2.33495571e-02 1.49823129e-02 2.95988053e-01 6.17132988e-03 2.40078285e-01 9.88103867e-01 -8.03047359e-01 -2.40770757e-01 -5.62823057e-01 4.61908728e-01 4.93353233e-02 -6.12383783e-01 -4.51688200e-01 1.29605446e-03 -9.96375740e-01 -5.22648543e-02 -8.46020043e-01 -3.38248014e-01 -7.97964707e-02 -4.40810621e-01 -3.99910688e-01 7.75008619e-01 -4.07472581e-01 8.83509159e-01 -1.95882094e+00 5.29461801e-01 2.62167513e-01 1.00392628e+00 9.24375467e-03 -2.53365189e-01 5.90359032e-01 9.83688682e-02 1.48740932e-01 -7.95156732e-02 -2.27862835e-01 2.50138074e-01 2.73148775e-01 -3.31738293e-01 4.53242600e-01 4.69281942e-01 1.33663940e+00 -9.37382579e-01 -2.85012305e-01 -3.82691845e-02 3.06370735e-01 -7.70120680e-01 1.99240521e-02 -4.46942478e-01 3.96005154e-01 -6.44949019e-01 8.29006255e-01 5.85592628e-01 -6.66900873e-01 5.39485991e-01 -2.94070154e-01 1.58500254e-01 1.83676377e-01 -8.65456522e-01 1.74965405e+00 -2.99319088e-01 2.52672791e-01 2.50889361e-01 -1.50073540e+00 8.89598250e-01 9.82914343e-02 9.35490847e-01 -1.19174922e+00 3.27529162e-02 3.97652060e-01 6.27468154e-02 -2.05942154e-01 5.74552774e-01 -2.20199078e-01 -7.89277703e-02 6.75655961e-01 1.94936078e-02 9.27329808e-02 2.72129238e-01 4.60315049e-01 1.03936410e+00 2.47456748e-02 -5.64326793e-02 -6.00811303e-01 -5.79977408e-03 -1.28448606e-01 5.33482194e-01 5.08867443e-01 -4.91509698e-02 2.04105690e-01 8.71608913e-01 -9.21506584e-01 -1.21620119e+00 -1.01189494e+00 1.19841971e-01 8.08377922e-01 -2.75785029e-01 -3.38993281e-01 -3.56281072e-01 -8.05256844e-01 5.57673991e-01 -1.40049830e-02 -6.18974328e-01 4.01059166e-02 -7.18781590e-01 -7.62093365e-01 3.44374955e-01 4.22156423e-01 4.41696882e-01 -7.06303060e-01 -5.54335415e-01 3.49834412e-01 -6.94568083e-02 -1.31189847e+00 -5.32334626e-01 1.02466553e-01 -1.29983568e+00 -9.55060005e-01 -6.08856916e-01 -3.17615986e-01 2.33669877e-01 2.98317194e-01 1.27022886e+00 2.06348345e-01 -1.94059163e-02 2.93475330e-01 -3.75665516e-01 -5.14837727e-02 -2.38434866e-01 4.28758532e-01 1.37677416e-01 4.48723704e-01 4.07795236e-02 -9.58474517e-01 -6.63824975e-01 -8.29483271e-02 -1.22894347e+00 -7.55086467e-02 6.57753170e-01 8.87656748e-01 3.12228709e-01 1.89631730e-01 7.91887105e-01 -7.65324950e-01 7.52953291e-01 -7.84542978e-01 -1.00746119e+00 2.32595112e-02 -9.08847928e-01 4.56791997e-01 9.17217612e-01 -2.60402739e-01 -5.71481466e-01 -3.34080398e-01 4.41682786e-01 -6.33832216e-01 5.36538243e-01 9.52972829e-01 8.99707749e-02 -3.02151501e-01 2.03880876e-01 8.83805305e-02 4.04752672e-01 -5.40541410e-01 5.45355082e-01 3.52537408e-02 1.53503433e-01 -7.89070666e-01 1.01498997e+00 4.93577152e-01 6.09611452e-01 -5.33386171e-01 -7.14974463e-01 -1.10815233e-02 -5.52567780e-01 -1.98632628e-02 5.27453005e-01 -8.36235106e-01 -9.42915142e-01 3.81894767e-01 -7.26601660e-01 -2.24153101e-01 -3.58670473e-01 4.20124888e-01 -4.85385269e-01 5.60643911e-01 -6.99224651e-01 -5.26481271e-01 -2.93517023e-01 -1.03961384e+00 8.69787812e-01 -1.40309617e-01 3.49666625e-01 -1.29866982e+00 -1.07110202e-01 6.27499580e-01 7.40456820e-01 6.07469976e-01 1.15545845e+00 -4.85460371e-01 -1.29915905e+00 -2.36602854e-02 -6.60180390e-01 2.60088563e-01 2.26212770e-01 -3.77679437e-01 -5.75170100e-01 -4.91557211e-01 2.74707209e-02 -5.11246204e-01 7.80313730e-01 2.17822000e-01 9.74226236e-01 -5.83625674e-01 3.23249370e-01 9.54085231e-01 1.55973959e+00 -2.62934625e-01 1.28976718e-01 3.91471773e-01 1.18698263e+00 5.04607499e-01 -6.91042766e-02 6.00103259e-01 6.90801382e-01 5.62104940e-01 8.82774889e-01 -8.60007480e-02 -1.73770353e-01 -3.51646036e-01 8.02520886e-02 1.12381887e+00 -1.66440636e-01 -6.94007277e-02 -9.71534967e-01 5.17405391e-01 -1.72459996e+00 -6.86615944e-01 6.07066192e-02 1.87587905e+00 5.29369414e-01 2.37371221e-01 4.05245841e-01 5.39097451e-02 2.79763103e-01 6.18496001e-01 -7.77840197e-01 -3.14216346e-01 -2.99189627e-01 8.97154883e-02 5.21538556e-01 6.84671476e-02 -9.63500202e-01 5.69778383e-01 5.68651724e+00 6.02096498e-01 -1.18291295e+00 -6.60944805e-02 7.17023253e-01 -6.21231720e-02 -6.80936456e-01 -5.31486832e-02 -2.61721373e-01 3.14076990e-01 8.52356374e-01 -3.65364671e-01 1.03623354e+00 5.63789666e-01 -5.71330963e-03 3.94254535e-01 -1.05810189e+00 9.74907696e-01 -1.93205759e-01 -1.72975838e+00 3.41940105e-01 8.43572974e-01 6.37842059e-01 3.73779744e-01 4.85285699e-01 1.66574776e-01 4.45512384e-01 -1.03445077e+00 7.44095564e-01 2.84544766e-01 7.08113372e-01 -7.14417279e-01 4.08352017e-01 6.12540822e-03 -1.29238582e+00 -4.43379581e-01 -3.33148122e-01 -2.00415894e-01 -9.31465030e-02 8.29705477e-01 -7.06383824e-01 1.13556933e+00 5.08323550e-01 1.03499985e+00 -5.18343568e-01 7.18864858e-01 4.27235872e-01 4.94273692e-01 -3.57463717e-01 1.11387439e-01 7.57932067e-01 -6.34607315e-01 5.35998166e-01 7.97294319e-01 2.51312524e-01 -2.87003577e-01 2.68268913e-01 1.13649023e+00 -6.91386878e-01 6.54857606e-02 -9.12054777e-01 -6.47088766e-01 3.92616689e-02 1.28795314e+00 -7.82539546e-01 -1.30410269e-02 -4.81042057e-01 4.78238016e-01 7.76468515e-01 3.12823564e-01 -5.94860613e-01 1.89898293e-02 5.30307889e-01 4.43324596e-02 5.22239745e-01 -6.42115414e-01 -3.74396414e-01 -1.46651220e+00 3.66896480e-01 -1.16485786e+00 5.32059908e-01 -1.45362958e-01 -1.65741944e+00 6.09786928e-01 -3.06455314e-01 -1.11970997e+00 -1.66578740e-02 -6.38548136e-01 -1.52035385e-01 6.32995784e-01 -1.87956822e+00 -1.31375730e+00 8.20116475e-02 7.23126113e-01 2.98489660e-01 -3.47333938e-01 5.33343196e-01 4.00298744e-01 -5.24064660e-01 4.38265860e-01 3.49308610e-01 2.35516250e-01 -7.58457035e-02 -1.57058632e+00 5.61640322e-01 7.90255368e-01 4.19847339e-01 4.87639070e-01 2.31365442e-01 -5.57611704e-01 -2.21887040e+00 -1.09105837e+00 5.19591689e-01 -4.68627065e-01 1.29678750e+00 -5.05797923e-01 -7.66697824e-01 5.56904376e-01 2.32916325e-02 3.46337080e-01 3.98140788e-01 3.18307936e-01 -8.84970367e-01 -5.37823915e-01 -8.71835113e-01 2.21481591e-01 1.04826808e+00 -6.47350252e-01 -1.69918656e-01 5.34857154e-01 9.75872636e-01 -5.64674772e-02 -1.26974690e+00 2.26275906e-01 4.08880323e-01 -9.70022142e-01 1.04720914e+00 -7.88933992e-01 6.77882195e-01 6.36118352e-02 -3.38860154e-01 -1.24673724e+00 -4.13002163e-01 -9.77569282e-01 -4.68373865e-01 1.02457297e+00 1.59813434e-01 -7.09795833e-01 8.16264212e-01 4.06331867e-01 2.99043022e-02 -7.94219673e-01 -1.21772671e+00 -9.23468113e-01 1.95997968e-01 -2.38667712e-01 9.47202086e-01 1.14810228e+00 -1.15839995e-01 3.77936482e-01 -6.38468206e-01 -1.22546285e-01 1.06623447e+00 4.61809874e-01 6.50360584e-01 -1.39371669e+00 -4.81453270e-01 -6.47686660e-01 -5.00458777e-01 -9.22220826e-01 -6.43159747e-02 -1.31774294e+00 -6.03395343e-01 -1.19667816e+00 1.06948555e-01 -7.18850374e-01 -4.99366999e-01 3.08400869e-01 9.05671567e-02 2.35462800e-01 5.52507997e-01 5.20375073e-01 -5.25698423e-01 8.92848551e-01 1.54449284e+00 -2.94901699e-01 1.51296318e-01 -1.22166626e-01 -8.40594709e-01 2.46831715e-01 7.00615466e-01 -1.87992841e-01 -5.19676268e-01 -1.00463772e+00 5.30537486e-01 3.02517682e-01 4.51671243e-01 -6.04011774e-01 1.82113349e-02 -7.56724328e-02 -6.57338426e-02 -1.35529816e-01 8.44397992e-02 -8.40915740e-01 9.67999324e-02 5.09481609e-01 -2.14097902e-01 6.92427397e-01 -1.51864350e-01 1.00819695e+00 -1.92069501e-01 4.36898023e-01 5.44296086e-01 -1.43460050e-01 -2.23377615e-01 7.82547772e-01 2.56137192e-01 1.79941133e-01 7.99128711e-01 8.79566967e-02 -3.85002881e-01 -2.69625902e-01 -3.87962431e-01 1.39494166e-01 2.48792902e-01 5.27431071e-01 4.62337047e-01 -1.50416994e+00 -7.03975260e-01 2.75267035e-01 -2.45988742e-02 -6.78684860e-02 2.19047777e-02 1.03321493e+00 -6.42004192e-01 5.57855606e-01 -3.63150597e-01 -4.71318305e-01 -4.33004439e-01 9.29167271e-01 3.18998814e-01 -7.51383066e-01 -1.03849339e+00 3.87086421e-01 2.24969760e-01 -4.20692205e-01 8.93992409e-02 -4.82931316e-01 8.32798332e-02 1.45842969e-01 4.73602638e-02 2.48695150e-01 2.22062930e-01 -4.78077173e-01 4.90852967e-02 2.65519768e-01 -7.42539540e-02 3.09454411e-01 1.72732604e+00 -4.57472242e-02 -2.41708085e-01 2.71045059e-01 1.16970348e+00 -1.95901394e-02 -1.33629429e+00 -4.92719918e-01 3.83077770e-01 -5.41134953e-01 9.94895473e-02 -5.05513489e-01 -1.75496304e+00 8.01211894e-01 1.21635102e-01 8.61053646e-01 9.88547981e-01 -2.92239785e-02 1.14349377e+00 3.04826319e-01 4.80755568e-01 -7.90429235e-01 3.55240822e-01 3.22141200e-01 7.35560060e-01 -1.24137294e+00 -6.49068579e-02 -8.49545002e-02 -4.32693005e-01 1.31163251e+00 -3.04993670e-02 -3.09449762e-01 6.45707011e-01 -9.61680934e-02 -2.11191967e-01 -7.33540654e-01 -6.16401672e-01 4.07026373e-02 1.86977148e-01 4.68372673e-01 8.67912248e-02 2.68322468e-01 -7.43574426e-02 1.54006854e-01 -2.64552236e-01 -1.26159102e-01 5.60275078e-01 5.62396228e-01 5.75093254e-02 -1.05171490e+00 -2.96724774e-02 6.28460526e-01 -6.76749766e-01 -1.52105361e-01 -1.75634548e-01 8.17555845e-01 -3.51574272e-01 7.51809716e-01 -1.21273503e-01 -2.96492040e-01 1.79683194e-01 -3.77242893e-01 1.91107213e-01 -1.72475323e-01 -6.29313529e-01 6.13547117e-02 -2.45560221e-02 -8.92477751e-01 -4.86618370e-01 -6.41580820e-01 -6.13812685e-01 -6.10945344e-01 2.43573487e-02 8.35808888e-02 5.80124140e-01 7.27688968e-01 6.30678535e-01 4.37589198e-01 8.84465933e-01 -6.89802647e-01 -1.06712067e+00 -5.93768358e-01 -7.87208319e-01 6.69710159e-01 5.85761786e-01 -7.02679813e-01 -2.91125774e-01 -3.38619679e-01]
[6.867447376251221, 5.995962619781494]
4b434595-8b41-4fed-9763-2fe6c7b1b612
a-new-sentence-ordering-method-using-bert
2108.11994
null
https://arxiv.org/abs/2108.11994v1
https://arxiv.org/pdf/2108.11994v1.pdf
A New Sentence Ordering Method Using BERT Pretrained Model
Building systems with capability of natural language understanding (NLU) has been one of the oldest areas of AI. An essential component of NLU is to detect logical succession of events contained in a text. The task of sentence ordering is proposed to learn succession of events with applications in AI tasks. The performance of previous works employing statistical methods is poor, while the neural networks-based approaches are in serious need of large corpora for model learning. In this paper, we propose a method for sentence ordering which does not need a training phase and consequently a large corpus for learning. To this end, we generate sentence embedding using BERT pre-trained model and measure sentence similarity using cosine similarity score. We suggest this score as an indicator of sequential events' level of coherence. We finally sort the sentences through brute-force search to maximize overall similarities of the sequenced sentences. Our proposed method outperformed other baselines on ROCStories, a corpus of 5-sentence human-made stories. The method is specifically more efficient than neural network-based methods when no huge corpus is available. Among other advantages of this method are its interpretability and needlessness to linguistic knowledge.
['Heshaam Faili', 'Seyedeh Zahra Razavi', 'Melika Golestani']
2021-08-26
null
null
null
null
['sentence-ordering']
['natural-language-processing']
[ 4.96733725e-01 8.05554986e-02 -1.39280111e-01 -5.84980249e-01 -4.14829999e-01 -2.83893794e-01 8.86551678e-01 6.99274719e-01 -6.43091440e-01 8.26756120e-01 6.60629034e-01 -2.07628667e-01 -1.65900141e-01 -1.05883622e+00 -5.89609027e-01 -3.08870465e-01 -2.41957739e-01 5.50625384e-01 3.04745674e-01 -5.15591204e-01 8.54295790e-01 1.42110169e-01 -1.44941449e+00 7.76948333e-01 8.70739520e-01 7.92921901e-01 5.98125935e-01 8.72778893e-01 -3.28517497e-01 1.48049045e+00 -6.03998303e-01 -1.77785501e-01 -9.36586857e-02 -8.08304071e-01 -1.10012627e+00 -1.70217752e-01 1.28207684e-01 2.65047280e-03 -2.12497219e-01 7.32693553e-01 3.11296523e-01 3.17952603e-01 8.99787962e-01 -7.37046123e-01 -6.03444099e-01 1.04383397e+00 -2.09881723e-01 7.12350845e-01 6.24804914e-01 -4.06100303e-01 1.35029566e+00 -8.56072545e-01 5.60622394e-01 1.27045548e+00 5.41554809e-01 3.58855456e-01 -9.54610705e-01 -2.96491504e-01 -4.09202129e-02 7.64273942e-01 -9.67268229e-01 -4.04384971e-01 9.55962360e-01 -3.54071230e-01 1.48398459e+00 3.83891344e-01 6.26285732e-01 7.64565468e-01 4.33870435e-01 8.50461841e-01 8.11044395e-01 -1.04485619e+00 3.34556162e-01 1.57817781e-01 4.83472049e-01 5.83989739e-01 -1.13770477e-01 -3.83614302e-01 -7.69500077e-01 7.56825283e-02 3.68223846e-01 2.69377586e-02 -4.17182110e-02 1.81030855e-01 -1.34151566e+00 9.84540761e-01 2.99340934e-01 6.98728502e-01 -4.63031918e-01 1.28455842e-02 7.73807049e-01 5.60204506e-01 6.02054179e-01 7.56632686e-01 -3.36454868e-01 -2.80760705e-01 -9.74548876e-01 9.92665663e-02 8.05965483e-01 6.07493818e-01 4.52945679e-01 -1.94245532e-01 -5.52555621e-02 9.06443536e-01 1.08242206e-01 -2.09899351e-01 9.86725509e-01 -5.28974354e-01 7.65785396e-01 7.20132291e-01 -3.52456152e-01 -1.44284630e+00 -2.02798530e-01 -1.53887033e-01 -8.79336655e-01 -2.44029641e-01 5.04988665e-03 4.73364666e-02 -4.75124300e-01 1.51978934e+00 2.12296713e-02 2.71654695e-01 4.16418850e-01 3.23967576e-01 7.29741335e-01 1.15025115e+00 -1.95794165e-01 -4.97081697e-01 1.19016469e+00 -9.52866077e-01 -7.51804471e-01 -3.27999651e-01 5.98085165e-01 -7.32476234e-01 1.09528804e+00 3.19615543e-01 -9.92161930e-01 -6.78400755e-01 -1.20496380e+00 -4.65700887e-02 -3.76750737e-01 2.17809435e-02 6.84070110e-01 2.32043669e-01 -9.00256574e-01 8.57091665e-01 -5.85875034e-01 -7.64084935e-01 2.14953199e-01 2.78618962e-01 -1.83527067e-01 3.31152886e-01 -1.46818411e+00 1.23591805e+00 1.32065654e+00 -1.31508365e-01 -4.93850678e-01 -2.87349075e-01 -8.95104945e-01 1.88633651e-01 1.67974472e-01 -4.96605575e-01 1.28349447e+00 -8.12062085e-01 -1.32278144e+00 6.64140284e-01 -3.58317375e-01 -1.03850210e+00 1.00351013e-01 -3.34027112e-01 -3.32918674e-01 2.87814289e-01 -4.52446491e-02 5.18759549e-01 4.96898383e-01 -7.74779379e-01 -7.60391355e-01 -2.32066736e-02 -9.66129154e-02 4.45853442e-01 -7.11998880e-01 2.05404446e-01 1.23916611e-01 -5.36755502e-01 1.66576490e-01 -3.96450520e-01 -1.26281768e-01 -6.38877094e-01 -1.85286388e-01 -7.96992242e-01 6.02066934e-01 -6.58485711e-01 1.80668819e+00 -1.72832966e+00 -9.26334038e-02 -8.66309926e-02 2.66951579e-03 2.31985226e-02 6.75218701e-02 9.63665247e-01 -1.24746650e-01 -9.90258902e-03 -2.01329350e-01 -6.43480122e-02 -1.37662902e-01 1.19695418e-01 -4.67833549e-01 5.84993921e-02 3.64278585e-01 6.81778908e-01 -1.03167021e+00 -8.48911524e-01 1.86064303e-01 -1.07796952e-01 -5.21430731e-01 2.49513865e-01 -3.02858114e-01 4.39439528e-02 -2.50585854e-01 1.43624529e-01 -1.50613025e-01 -1.70208886e-01 2.08309099e-01 -1.25502944e-01 -8.41724426e-02 8.26345205e-01 -9.44947064e-01 1.70444930e+00 -4.26403731e-01 1.11299253e+00 -1.12367034e+00 -1.47176969e+00 1.22717392e+00 5.41795552e-01 3.16087604e-01 -4.56828177e-01 1.01692639e-01 7.90392421e-03 3.06247622e-01 -8.99611354e-01 6.10739172e-01 -2.78996855e-01 -1.77709013e-01 5.96824050e-01 2.29469407e-02 -2.18666643e-01 6.98416948e-01 3.68704766e-01 1.26182115e+00 -1.62372887e-01 9.00549531e-01 -2.11233318e-01 6.80084407e-01 5.29957414e-02 3.71870309e-01 7.86211014e-01 2.06639376e-02 4.16896224e-01 4.17424411e-01 -7.59386361e-01 -1.42118323e+00 -7.90429592e-01 5.83289750e-02 9.36462879e-01 -2.78202713e-01 -5.42694449e-01 -6.77215517e-01 -4.40889210e-01 -3.48324299e-01 1.21864212e+00 -6.27360821e-01 -1.31855443e-01 -8.78590703e-01 -6.36838973e-01 5.24450243e-01 3.70444000e-01 4.54435259e-01 -1.54227340e+00 -6.52184069e-01 5.10935605e-01 -3.82152855e-01 -8.98940742e-01 -2.34875962e-01 1.41903639e-01 -1.09973192e+00 -7.97636807e-01 -1.52318314e-01 -1.17884719e+00 6.22703791e-01 -1.14998389e-02 1.24593699e+00 -2.84682900e-01 -1.11320436e-01 -1.15496270e-01 -6.21190190e-01 -5.78282237e-01 -6.46876812e-01 6.56882077e-02 2.54900903e-01 -1.43873066e-01 7.05807924e-01 -7.43087769e-01 -4.22808766e-01 -1.65050641e-01 -9.48697269e-01 3.62691581e-01 6.26700640e-01 9.90935862e-01 1.98967874e-01 4.05811220e-01 8.35372508e-01 -8.70218277e-01 1.12128890e+00 -4.18864638e-01 1.38338637e-02 5.07298648e-01 -4.51466620e-01 1.79223940e-01 9.32815790e-01 -4.12843525e-01 -1.10858548e+00 -1.81473106e-01 1.67473182e-02 3.14931303e-01 -2.47926444e-01 9.05204177e-01 1.53203979e-01 6.10676348e-01 7.87016630e-01 5.04864335e-01 -2.88919419e-01 -2.21719727e-01 2.40482554e-01 8.70868385e-01 4.44342822e-01 -3.62818211e-01 3.72354031e-01 1.54493019e-01 -2.24089891e-01 -9.88363206e-01 -9.43060338e-01 -5.39068878e-01 -9.21762764e-01 -3.32276493e-01 7.07535207e-01 -4.59871590e-01 -5.75049818e-01 -7.88868442e-02 -1.65815771e+00 9.10479426e-02 -1.04634568e-01 6.68090343e-01 -5.57361305e-01 6.19484425e-01 -6.99335337e-01 -9.23843086e-01 -6.89551771e-01 -4.04810131e-01 4.37615275e-01 1.63501412e-01 -8.25937629e-01 -1.13670361e+00 2.55096525e-01 1.61712378e-01 8.91874209e-02 1.89695880e-01 1.04594231e+00 -9.76614952e-01 -1.23023093e-01 -3.37032020e-01 9.98367891e-02 3.91521990e-01 3.59414518e-01 -1.44323856e-01 -7.84913898e-01 5.18171228e-02 5.00006795e-01 -4.65289235e-01 8.05950582e-01 4.10034120e-01 9.06391263e-01 -5.33631504e-01 -4.24186103e-02 -1.42232090e-01 1.41715360e+00 7.41132557e-01 6.62624240e-01 6.72819018e-01 3.64393502e-01 8.12126815e-01 7.22225249e-01 4.70472276e-01 3.35858375e-01 2.40009755e-01 -6.72249123e-02 2.14089021e-01 1.33314356e-01 -3.66230100e-01 5.25813580e-01 1.58262873e+00 -4.67078164e-02 -3.89083445e-01 -1.09366858e+00 6.83806598e-01 -2.04048920e+00 -1.61239815e+00 6.18091132e-03 1.80524933e+00 1.18282342e+00 6.68042064e-01 -1.83735937e-01 5.24495304e-01 5.67450225e-01 2.08444193e-01 -1.14672489e-01 -7.83707619e-01 -2.59635448e-02 5.70150837e-02 -7.24247992e-02 5.33119500e-01 -1.06638050e+00 9.46413517e-01 5.90227890e+00 8.53612661e-01 -7.11561739e-01 -1.07615709e-01 6.97517693e-01 -4.09770086e-02 -2.05077335e-01 3.32935415e-02 -7.57250965e-01 5.05545437e-01 1.16730547e+00 -3.83805424e-01 7.41441222e-03 5.82319558e-01 6.10415220e-01 -3.83856922e-01 -1.47001529e+00 7.54662395e-01 5.46888769e-01 -1.60957634e+00 2.35021830e-01 -6.27667069e-01 5.48026502e-01 -2.80330449e-01 -5.19855082e-01 1.66998059e-01 1.63774475e-01 -9.34714317e-01 5.50195813e-01 5.99506795e-01 2.10797951e-01 -8.83935809e-01 7.88141429e-01 7.15050519e-01 -1.13746417e+00 5.92634939e-02 -6.42734647e-01 -6.82103634e-01 2.97645897e-01 5.46529531e-01 -1.35399854e+00 4.49187130e-01 3.86450022e-01 8.90971243e-01 -5.28320193e-01 8.20676088e-01 -2.40875989e-01 8.63781214e-01 -2.11185038e-01 -8.19030344e-01 3.44212025e-01 -6.96731061e-02 4.98602390e-01 1.50958753e+00 2.16526389e-01 1.87978551e-01 1.22715510e-01 4.96075690e-01 7.58624300e-02 3.12093437e-01 -9.47272122e-01 -1.46643713e-01 6.28119528e-01 7.05280244e-01 -8.95245433e-01 -6.44023538e-01 -2.51105636e-01 1.05513287e+00 4.94688183e-01 -2.02941954e-01 -5.78040481e-01 -6.58138633e-01 -8.61576274e-02 -2.39981353e-01 1.09784655e-01 -2.65835702e-01 -4.77217853e-01 -1.11316109e+00 1.47519007e-01 -7.06627607e-01 3.96789342e-01 -5.58423340e-01 -1.21291149e+00 9.42548156e-01 8.38165283e-02 -1.28188360e+00 -6.37308478e-01 -3.93184334e-01 -8.87837946e-01 4.44364965e-01 -1.19674587e+00 -8.96336198e-01 1.58810064e-01 2.01562867e-01 1.36790276e+00 -4.57926512e-01 9.08594787e-01 1.82613894e-01 -4.64214742e-01 1.22024775e-01 1.84819147e-01 2.22443312e-01 4.97147381e-01 -1.31281483e+00 5.41884899e-01 1.06159699e+00 5.35660267e-01 6.92861676e-01 9.86002207e-01 -7.29703963e-01 -8.64630401e-01 -6.57836318e-01 1.76725030e+00 -3.08448434e-01 8.96761596e-01 -4.07926112e-01 -7.01957703e-01 5.44506848e-01 7.40547478e-01 -8.07281733e-01 8.42229486e-01 1.36536196e-01 1.53097078e-01 -2.47283190e-01 -5.77097416e-01 6.71474218e-01 7.18101680e-01 -4.85070288e-01 -1.35059845e+00 5.62347949e-01 7.79241443e-01 6.87192678e-02 -6.75197303e-01 1.70830801e-01 4.10149604e-01 -8.65131438e-01 7.55242050e-01 -7.33682990e-01 1.00986862e+00 -2.47904196e-01 -3.55268233e-02 -1.16265059e+00 -3.99525255e-01 -4.51454550e-01 -1.21630076e-02 1.32674921e+00 7.07489908e-01 -2.45328203e-01 7.36960113e-01 3.09042126e-01 -1.24844782e-01 -8.18081737e-01 -5.45133889e-01 -7.23672748e-01 -2.69521952e-01 -4.91208196e-01 8.94717053e-02 1.01006377e+00 5.79057813e-01 9.74250555e-01 -5.18317103e-01 -2.49833763e-01 3.41134369e-01 9.21256281e-03 3.93749326e-01 -1.10464144e+00 -3.33505094e-01 -3.57798725e-01 -3.84885609e-01 -8.33458781e-01 4.97454107e-02 -9.90503013e-01 2.70989269e-01 -1.70169497e+00 4.25469458e-01 1.56708345e-01 -3.73687863e-01 1.47243425e-01 -2.63530552e-01 -3.24323922e-01 1.22165844e-01 3.37104857e-01 -6.61682546e-01 6.25327945e-01 7.91795194e-01 -2.02599198e-01 -3.19483310e-01 -1.77303717e-01 -2.50908434e-01 8.85255873e-01 1.11923313e+00 -6.56369567e-01 -7.07582653e-01 -4.19521660e-01 2.82297701e-01 -1.23569496e-01 -1.88175272e-02 -1.15504622e+00 6.50096536e-01 -1.30528763e-01 3.32125008e-01 -9.62810576e-01 1.52846470e-01 -6.31731451e-01 -4.78504039e-02 6.65297806e-01 -8.84991467e-01 4.44242656e-01 -4.96404506e-02 5.27758539e-01 -5.93929827e-01 -7.36055791e-01 4.83681023e-01 -4.28638101e-01 -1.02938604e+00 -1.97045416e-01 -5.71999550e-01 -1.56619146e-01 1.12578404e+00 -4.00720119e-01 7.88824186e-02 -3.62891048e-01 -2.93435663e-01 -3.12205870e-02 -1.23424977e-01 3.51270616e-01 1.02652693e+00 -1.22584653e+00 -8.83789182e-01 -1.13380902e-01 -9.03810039e-02 -1.22253470e-01 -6.61052838e-02 4.66118246e-01 -9.13534820e-01 6.60339594e-01 -1.84077889e-01 -3.35652471e-01 -1.55595517e+00 3.73949289e-01 -1.91311181e-01 -5.69274008e-01 -6.36150718e-01 9.94755149e-01 -8.51946250e-02 -1.20106086e-01 3.52665246e-01 -3.59547377e-01 -8.75240028e-01 2.30451569e-01 7.99914658e-01 1.76992401e-01 -1.74294934e-01 -2.65418559e-01 -1.89001039e-01 2.27628142e-01 -5.28507710e-01 -2.43279442e-01 1.66122389e+00 -9.95971262e-02 -4.63242143e-01 9.71680462e-01 1.12173676e+00 -3.88281465e-01 -5.85406661e-01 -3.34325016e-01 7.45986640e-01 -1.90112203e-01 -1.80077642e-01 -3.89492273e-01 -1.23592488e-01 8.82062912e-01 2.35963061e-01 5.86466193e-01 1.10475016e+00 -5.12223057e-02 9.18015242e-01 9.05610681e-01 7.00949728e-02 -1.35181081e+00 4.61522520e-01 8.47845495e-01 9.43989873e-01 -1.32422507e+00 9.86207649e-02 -1.82474256e-01 -7.34274328e-01 1.51607609e+00 4.39829975e-01 -3.28860760e-01 3.87310296e-01 -9.61926859e-03 -1.64289117e-01 -1.62813112e-01 -1.08801126e+00 4.86245044e-02 4.45879549e-01 1.58668518e-01 7.65598238e-01 -1.98090449e-01 -7.66121745e-01 2.13299379e-01 -5.80973148e-01 -1.11524135e-01 4.72929329e-01 1.08819425e+00 -9.00849044e-01 -1.04174781e+00 -1.67301193e-01 5.99294007e-01 -3.57925296e-01 -4.44549769e-01 -5.02683938e-01 4.43144411e-01 3.53366807e-02 1.08376205e+00 1.47887886e-01 -3.28341424e-01 1.45317420e-01 1.40522391e-01 3.62043828e-01 -7.99710214e-01 -4.23601627e-01 -2.35483319e-01 3.80898684e-01 -1.55502511e-02 -7.07793713e-01 -8.22562993e-01 -1.09763849e+00 -2.76213616e-01 -3.15337747e-01 2.84320831e-01 4.15528804e-01 1.17483020e+00 -3.89404818e-02 5.10550141e-01 7.59252369e-01 -4.58297938e-01 -2.71972597e-01 -1.33075476e+00 -1.97494209e-01 4.80412543e-01 -3.40997279e-02 -1.18735194e-01 -7.34833926e-02 5.25372326e-01]
[12.054742813110352, 9.382614135742188]
b4e561db-aff4-41da-8605-17229c015c70
frame-semantic-enhanced-sentence-modeling-for
null
null
https://aclanthology.org/2021.emnlp-main.331
https://aclanthology.org/2021.emnlp-main.331.pdf
Frame Semantic-Enhanced Sentence Modeling for Sentence-level Extractive Text Summarization
Sentence-level extractive text summarization aims to select important sentences from a given document. However, it is very challenging to model the importance of sentences. In this paper, we propose a novel Frame Semantic-Enhanced Sentence Modeling for Extractive Summarization, which leverages Frame semantics to model sentences from both intra-sentence level and inter-sentence level, facilitating the text summarization task. In particular, intra-sentence level semantics leverage Frames and Frame Elements to model internal semantic structure within a sentence, while inter-sentence level semantics leverage Frame-to-Frame relations to model relationships among sentences. Extensive experiments on two benchmark corpus CNN/DM and NYT demonstrate that our model outperforms six state-of-the-art methods significantly.
['Hongye Tan', 'XiaoLi Li', 'Ru Li', 'Shaoru Guo', 'Yong Guan']
null
null
null
null
emnlp-2021-11
['extractive-document-summarization']
['natural-language-processing']
[ 6.49699688e-01 4.85668004e-01 -5.55448532e-01 -6.32624626e-01 -9.00972307e-01 -2.15155602e-01 5.85634708e-01 7.33150005e-01 -1.75645739e-01 9.34402168e-01 1.55572820e+00 2.05734119e-01 2.43779272e-01 -6.27298474e-01 -6.25510991e-01 -1.40420943e-01 4.04152781e-01 -2.61492934e-03 2.82122046e-01 -4.33157086e-01 6.18430018e-01 -2.47837394e-01 -1.34112036e+00 9.95701909e-01 8.32310617e-01 6.99326456e-01 4.60770220e-01 8.73437047e-01 -5.82281291e-01 1.38522816e+00 -1.01565588e+00 -1.22880220e-01 -5.05200684e-01 -6.64422572e-01 -1.16055405e+00 3.08229536e-01 5.62123835e-01 -2.77678013e-01 -3.21369708e-01 9.36734617e-01 5.51982284e-01 3.46109748e-01 3.25525701e-01 -4.11042273e-01 -6.13121688e-01 1.28653574e+00 -4.65665370e-01 5.69168687e-01 7.79211760e-01 -2.03176200e-01 1.48613954e+00 -8.15829098e-01 9.57258165e-01 1.57546425e+00 2.85317123e-01 6.70272827e-01 -8.12829852e-01 -2.91117243e-02 5.44757903e-01 1.76331252e-01 -4.95446891e-01 -6.90503120e-01 9.12617326e-01 1.67598918e-01 1.61797237e+00 5.39902866e-01 7.41496146e-01 1.04983723e+00 5.30963361e-01 1.50595474e+00 2.56247550e-01 -3.55656594e-01 2.12991431e-01 -7.15059161e-01 7.84414411e-01 3.88381243e-01 2.43509233e-01 -9.79417861e-01 -1.09707844e+00 1.06467418e-01 1.52738810e-01 -7.05160648e-02 -1.78443134e-01 4.73914891e-01 -1.15418684e+00 7.99582601e-01 1.56292871e-01 4.35127914e-01 -5.50313175e-01 3.09337586e-01 1.04412985e+00 3.19638401e-02 1.02537048e+00 4.55261141e-01 -4.92408097e-01 -3.33761394e-01 -1.21060073e+00 4.97818798e-01 7.37772286e-01 1.13326252e+00 4.06093478e-01 2.22454607e-01 -9.43064451e-01 8.26681018e-01 1.32255375e-01 2.57446170e-01 6.17519915e-01 -9.87063825e-01 9.93369877e-01 8.24564815e-01 -3.01273018e-01 -8.48287880e-01 -3.24299127e-01 -3.95773977e-01 -1.08353198e+00 -9.58884120e-01 -6.62007272e-01 -1.09485142e-01 -8.69371235e-01 1.41003215e+00 8.20403993e-02 1.77967623e-01 4.60555822e-01 4.74116385e-01 1.67709935e+00 9.07733381e-01 1.82319298e-01 -7.52937615e-01 1.50713944e+00 -1.32643890e+00 -1.05471718e+00 -5.11479795e-01 7.52818942e-01 -5.99947810e-01 9.67094243e-01 -2.02417880e-01 -1.64172113e+00 -5.44858694e-01 -9.24410343e-01 -6.75596297e-01 2.82120079e-01 1.44994959e-01 2.55170316e-01 -3.07994545e-01 -9.72199500e-01 3.69323909e-01 -8.37125421e-01 -4.54623014e-01 6.83990657e-01 1.30811587e-01 -9.67574939e-02 2.38507137e-01 -1.23066807e+00 6.22761846e-01 9.31356668e-01 -1.68286338e-01 -5.82374930e-01 -7.22644448e-01 -1.27451420e+00 6.35281026e-01 4.13900226e-01 -1.32387328e+00 1.67094409e+00 -6.41609669e-01 -1.43924594e+00 6.05710626e-01 -1.03609145e+00 -1.03487766e+00 -1.68654650e-01 -5.35566986e-01 -5.99230044e-02 5.89612126e-01 4.80115145e-01 7.14931726e-01 7.70873845e-01 -8.89324605e-01 -8.87994945e-01 -3.20328027e-01 2.73590177e-01 5.07365167e-01 -4.83509868e-01 3.96005481e-01 -2.40064487e-01 -9.82105553e-01 -5.09438477e-02 -1.30818442e-01 -2.10087508e-01 -9.72535431e-01 -8.57312322e-01 -7.05908120e-01 1.00282979e+00 -7.50869632e-01 1.82939565e+00 -1.71408916e+00 5.36802590e-01 -7.32975483e-01 3.56446803e-01 1.13005914e-01 -6.44446015e-02 7.06616580e-01 1.61764279e-01 1.42026499e-01 -3.22767943e-01 -8.08067143e-01 1.12329423e-02 7.74948597e-02 -8.47071171e-01 -2.99311399e-01 3.47772777e-01 1.07867742e+00 -1.07574165e+00 -1.01612508e+00 1.23697244e-01 4.70701642e-02 -5.27221382e-01 3.96464765e-02 -6.48133934e-01 1.72260925e-01 -9.77866173e-01 4.64382082e-01 2.09085643e-01 -1.75655439e-01 2.25965716e-02 -2.50719100e-01 9.05486047e-02 9.18433070e-01 -3.93422574e-01 2.17226982e+00 -3.50938112e-01 7.08679080e-01 -3.24136525e-01 -1.07707536e+00 6.56767786e-01 3.30988020e-01 3.31849158e-01 -5.35283744e-01 1.13709658e-01 -1.38129771e-01 -4.49470103e-01 -5.97746193e-01 1.41795874e+00 -9.73454788e-02 -4.82722431e-01 3.71749073e-01 2.52108276e-01 -3.36644173e-01 7.96714187e-01 7.26970732e-01 1.18792033e+00 -7.23585440e-03 7.50388205e-01 -3.38359237e-01 7.73272812e-01 8.50597024e-03 6.80204868e-01 6.98179722e-01 1.01182617e-01 7.91029751e-01 7.92800665e-01 -3.95527273e-01 -7.16904402e-01 -6.98463917e-01 2.75433272e-01 1.18542433e+00 2.51587361e-01 -1.19708943e+00 -9.00709629e-01 -8.83543193e-01 -3.47307712e-01 1.25057304e+00 -5.32595336e-01 -2.34765872e-01 -1.04379308e+00 -3.68615836e-01 4.47100967e-01 7.64546156e-01 6.06487095e-01 -1.18063152e+00 -6.74114883e-01 3.54424030e-01 -7.10956156e-01 -1.28886116e+00 -8.23221862e-01 -3.60492110e-01 -1.06575453e+00 -7.54000485e-01 -3.68657857e-01 -9.11036134e-01 5.00255048e-01 5.32278717e-01 1.36657703e+00 3.89737301e-02 2.78342366e-01 3.13163668e-01 -6.87209368e-01 -7.35481501e-01 -4.25132960e-01 5.84372401e-01 -2.66835719e-01 -2.70835817e-01 2.39718363e-01 -3.16362113e-01 -5.12747645e-01 -4.48495448e-01 -1.09462905e+00 4.43943918e-01 2.08034113e-01 6.30326152e-01 5.93790770e-01 -2.00106710e-01 9.07754183e-01 -9.33113873e-01 1.09816349e+00 -2.57773727e-01 3.62938166e-01 5.07932782e-01 3.89370136e-02 1.24535084e-01 7.39970386e-01 1.08018592e-01 -1.46224666e+00 -5.54733336e-01 -1.31263480e-01 8.50368012e-03 1.60389349e-01 9.18598175e-01 -1.00964986e-01 9.90243196e-01 4.34161901e-01 5.67802489e-01 -3.75161409e-01 -1.27698720e-01 3.35925251e-01 5.52622736e-01 5.63801348e-01 -5.82636595e-01 3.50349694e-01 5.66892803e-01 -6.54523894e-02 -1.19688153e+00 -1.76554656e+00 -5.17576098e-01 -6.24896288e-01 -9.24330354e-02 9.67846155e-01 -1.03035700e+00 -1.72706053e-01 1.28734663e-01 -1.72541308e+00 1.42829120e-01 -8.86976421e-01 1.00496665e-01 -5.63943267e-01 6.80557251e-01 -6.28716409e-01 -4.39469516e-01 -1.31579554e+00 -8.39090526e-01 1.70000100e+00 5.36916494e-01 -6.46805644e-01 -1.19448447e+00 -2.08736032e-01 5.66530108e-01 1.53808981e-01 2.49316990e-01 7.64227688e-01 -7.02418566e-01 -2.29740322e-01 -9.59770232e-02 -3.76627669e-02 3.58501703e-01 3.03546369e-01 7.75292749e-03 -4.55071062e-01 -1.14294000e-01 3.83375347e-01 -3.79402757e-01 1.54359436e+00 8.33742917e-01 1.15085161e+00 -6.47338212e-01 -1.85467765e-01 1.16178758e-01 7.74257302e-01 -2.55585730e-01 6.46578193e-01 3.27161431e-01 7.96257019e-01 5.45342982e-01 8.98396611e-01 6.20888829e-01 7.69187093e-01 2.91465342e-01 3.82124893e-02 2.91149497e-01 -2.77259052e-01 -3.80809963e-01 5.76611996e-01 1.31645560e+00 1.73208863e-01 -4.57758486e-01 -4.45758581e-01 4.99084622e-01 -2.38203096e+00 -1.42397380e+00 -2.33674884e-01 1.37968302e+00 1.05976427e+00 4.00312454e-01 -1.77182883e-01 -2.57363707e-01 7.21004605e-01 9.73576784e-01 -4.36119944e-01 -5.05791843e-01 -5.33903837e-01 4.56508845e-02 -1.24945171e-01 4.94130492e-01 -1.09596324e+00 1.28423309e+00 5.78551579e+00 1.04575467e+00 -7.28697896e-01 5.92475943e-02 6.92120671e-01 -3.88133198e-01 -5.48282087e-01 2.56683558e-01 -1.09870481e+00 3.29440325e-01 6.95397317e-01 -8.44190896e-01 -3.41351032e-01 6.35720909e-01 6.05732799e-01 -2.09925145e-01 -1.00057924e+00 6.17894411e-01 7.95115352e-01 -1.99364376e+00 7.08884954e-01 -5.49309552e-01 9.06748950e-01 -2.06470951e-01 -4.69748259e-01 3.58965784e-01 -4.46822345e-02 -5.38807631e-01 8.38098824e-01 5.79596817e-01 3.80230159e-01 -6.82496905e-01 7.91013181e-01 5.34520566e-01 -1.28810418e+00 1.03597790e-01 -5.09820640e-01 -2.74567157e-01 6.21897399e-01 6.71647370e-01 -6.97816551e-01 8.78234267e-01 2.85872161e-01 1.52490008e+00 -5.73087037e-01 3.24401408e-01 -5.56610644e-01 6.36058629e-01 1.20393917e-01 -1.61484987e-01 3.47007722e-01 1.88001618e-01 1.01356602e+00 1.49162912e+00 2.67607212e-01 1.33515075e-01 1.66599184e-01 6.29207194e-01 -5.51492035e-01 6.51401235e-03 -3.60119700e-01 -5.63357621e-02 3.84200752e-01 1.09994447e+00 -6.23587728e-01 -7.48575211e-01 -2.52537310e-01 8.96430910e-01 1.81645483e-01 1.69379368e-01 -6.11547053e-01 -3.18340510e-01 4.74333584e-01 -1.45864800e-01 2.94762641e-01 -1.02327086e-01 -6.07321024e-01 -1.74800694e+00 2.82669693e-01 -6.57589316e-01 5.12050509e-01 -8.98376584e-01 -7.85071552e-01 3.52172554e-01 2.21254334e-01 -1.04201722e+00 -3.16822141e-01 2.16558158e-01 -1.09706557e+00 2.68536359e-01 -1.41378295e+00 -1.44045472e+00 -1.52095768e-03 6.98220059e-02 1.72746527e+00 -1.41417354e-01 5.50949156e-01 -5.77153623e-01 -6.74538732e-01 2.36240821e-03 -1.53273478e-01 -2.64060088e-02 3.54293615e-01 -1.24972844e+00 8.10980082e-01 1.13080263e+00 -3.64628881e-02 7.29643464e-01 8.84929299e-01 -9.84043181e-01 -1.28013909e+00 -1.35753846e+00 1.50784600e+00 -3.19844484e-01 4.29953396e-01 -1.25566140e-01 -6.75294697e-01 7.98703790e-01 7.86302209e-01 -6.34792686e-01 7.71613002e-01 1.18804118e-02 5.13899252e-02 8.19014087e-02 -6.89590752e-01 8.08759332e-01 1.15793371e+00 -4.32039857e-01 -1.50539839e+00 5.79158962e-01 1.54124522e+00 -6.46181107e-01 -7.27922678e-01 4.37565655e-01 1.85537115e-01 -7.56777167e-01 9.21383977e-01 -9.13562357e-01 1.28581822e+00 -1.13418415e-01 -8.14718604e-02 -1.42761922e+00 -1.74039960e-01 -7.20408678e-01 -7.34192550e-01 1.59110439e+00 2.50307083e-01 -1.94719523e-01 6.39566839e-01 2.92535007e-01 -8.37332845e-01 -7.58887351e-01 -8.99283826e-01 -3.49194407e-01 -1.49958983e-01 -3.99097443e-01 6.15049660e-01 4.77129072e-01 3.25003564e-01 1.18776309e+00 -2.16567963e-01 -3.07074130e-01 4.38270509e-01 3.28211993e-01 6.77944005e-01 -9.39124703e-01 5.51362010e-03 -6.34050071e-01 -1.39196202e-01 -1.23983216e+00 9.14433539e-01 -8.90980542e-01 -8.91487822e-02 -2.34319282e+00 5.71986020e-01 7.97396064e-01 1.06480874e-01 1.91053212e-01 -6.46403849e-01 -5.46492398e-01 3.73287529e-01 2.43030474e-01 -1.36405993e+00 1.13048995e+00 1.42737436e+00 -5.52067995e-01 -2.41661683e-01 -8.34625587e-02 -1.16190624e+00 8.95140588e-01 6.77212000e-01 -3.49557459e-01 -5.56105733e-01 -8.40753019e-01 2.51578838e-01 2.75322050e-01 -6.26102835e-02 -7.20273614e-01 4.71603662e-01 -2.35899553e-01 1.77327275e-01 -1.15389109e+00 1.81563079e-01 -6.24713525e-02 -6.82846606e-01 2.64542639e-01 -1.01640582e+00 -1.37678027e-01 1.06798910e-01 6.95543408e-01 -6.52886510e-01 -4.70950633e-01 2.95464069e-01 -2.69277424e-01 -5.41764498e-01 6.78361580e-02 -2.83813477e-01 4.97968286e-01 7.34175622e-01 -7.22405985e-02 -6.73060894e-01 -5.42667091e-01 -4.11570877e-01 6.27070069e-01 2.15626478e-01 4.78550851e-01 9.94150043e-01 -1.14240277e+00 -1.17757750e+00 -2.99312115e-01 1.03382722e-01 6.56404078e-01 5.60100436e-01 6.40735090e-01 -3.26957196e-01 7.36130655e-01 2.78052151e-01 -5.13126254e-01 -1.63171411e+00 2.88289450e-02 -2.92090893e-01 -6.37136459e-01 -8.15607905e-01 7.60036588e-01 2.79674470e-01 1.04912996e-01 -1.27896201e-03 -8.05874228e-01 -5.27101755e-01 2.75457144e-01 9.64747906e-01 3.50277483e-01 -1.62899330e-01 -8.26354504e-01 -6.20124862e-02 3.28846514e-01 -5.63457906e-01 1.12035111e-01 1.59326768e+00 -4.48104441e-01 -6.85729027e-01 3.51785511e-01 1.08147418e+00 -2.37864658e-01 -9.63435233e-01 -3.73455614e-01 3.26147377e-01 -1.81308940e-01 6.69155270e-02 -2.72787422e-01 -4.36920673e-01 6.61040127e-01 -6.71594024e-01 3.36118162e-01 1.30099928e+00 1.64992824e-01 1.45639205e+00 7.38854289e-01 -5.98920137e-02 -1.44553590e+00 3.43402773e-01 1.04532909e+00 1.19851065e+00 -8.21614742e-01 3.93058360e-01 -4.59736824e-01 -8.65872562e-01 1.36355484e+00 5.84641933e-01 -1.92950249e-01 8.83658677e-02 -3.66268493e-02 -6.47388279e-01 -2.03910112e-01 -1.31387389e+00 -1.04319319e-01 3.27625602e-01 7.94231743e-02 6.56105101e-01 -6.41222764e-03 -6.14077568e-01 8.63236308e-01 -2.46957898e-01 7.70677477e-02 9.02930975e-01 1.22783363e+00 -9.54709470e-01 -9.76513147e-01 -3.50878797e-02 7.90236950e-01 -6.05739594e-01 -3.67592573e-01 -6.29122317e-01 2.37176836e-01 -4.73061025e-01 1.13472676e+00 9.84976068e-02 -1.66766897e-01 3.82255822e-01 2.14616209e-02 3.02787155e-01 -1.23556578e+00 -8.10663342e-01 2.65475184e-01 5.28846800e-01 -2.50980258e-01 -8.87217045e-01 -8.22404385e-01 -1.76782048e+00 -1.42392904e-01 -7.45420381e-02 1.84902221e-01 2.66385883e-01 1.28261411e+00 7.31577098e-01 1.02231348e+00 4.65877622e-01 -8.74156773e-01 -4.74471748e-01 -1.35910797e+00 -2.49464348e-01 4.32630002e-01 4.16845798e-01 8.87539908e-02 -8.99055004e-02 2.25826904e-01]
[12.53211784362793, 9.491437911987305]
29aa008c-cdb4-4ae7-aff8-88555a03d628
are-neural-nets-modular-inspecting-functional-1
2010.02066
null
https://arxiv.org/abs/2010.02066v3
https://arxiv.org/pdf/2010.02066v3.pdf
Are Neural Nets Modular? Inspecting Functional Modularity Through Differentiable Weight Masks
Neural networks (NNs) whose subnetworks implement reusable functions are expected to offer numerous advantages, including compositionality through efficient recombination of functional building blocks, interpretability, preventing catastrophic interference, etc. Understanding if and how NNs are modular could provide insights into how to improve them. Current inspection methods, however, fail to link modules to their functionality. In this paper, we present a novel method based on learning binary weight masks to identify individual weights and subnets responsible for specific functions. Using this powerful tool, we contribute an extensive study of emerging modularity in NNs that covers several standard architectures and datasets. We demonstrate how common NNs fail to reuse submodules and offer new insights into the related issue of systematic generalization on language tasks.
['Jürgen Schmidhuber', 'Sjoerd van Steenkiste', 'Róbert Csordás']
2020-10-05
are-neural-nets-modular-inspecting-functional
https://openreview.net/forum?id=7uVcpu-gMD
https://openreview.net/pdf?id=7uVcpu-gMD
iclr-2021-1
['systematic-generalization']
['reasoning']
[ 3.94642293e-01 3.85113120e-01 5.76537438e-02 -2.76887059e-01 3.06796938e-01 -8.28995764e-01 3.17588955e-01 -1.41507387e-01 3.07850074e-02 7.43342161e-01 -6.25463724e-02 -5.83965480e-01 -6.70823753e-01 -8.74327004e-01 -7.51062751e-01 -6.20991826e-01 -4.78496999e-01 -1.88527599e-01 4.32850540e-01 -3.74315590e-01 1.69025525e-01 5.65373003e-01 -1.85725582e+00 3.72827977e-01 1.01331079e+00 5.88498890e-01 4.92228180e-01 5.01048326e-01 -1.20881461e-01 5.55636585e-01 -7.30327249e-01 -7.69748151e-01 1.62897244e-01 -2.43854240e-01 -8.10673714e-01 -3.25237840e-01 3.99951518e-01 -1.02783674e-02 -9.28756520e-02 1.15054119e+00 1.04733042e-01 -1.65506139e-01 8.39455485e-01 -1.25685668e+00 -7.96356440e-01 1.12960863e+00 -6.02987111e-02 9.23486426e-02 -1.23156942e-01 2.08007514e-01 1.48162293e+00 -3.84594828e-01 5.48479736e-01 1.26941502e+00 9.01599348e-01 8.98841321e-01 -1.73672748e+00 -6.49235427e-01 2.71362066e-01 -8.71239081e-02 -1.03310692e+00 -3.95992786e-01 4.40684050e-01 -5.17869234e-01 1.39628160e+00 2.87261009e-01 9.06318367e-01 1.01410437e+00 3.22619170e-01 7.03128457e-01 5.15665054e-01 -2.21485645e-01 9.33140293e-02 1.56383872e-01 3.91109735e-01 9.70491827e-01 9.35077190e-01 -6.55672327e-02 -5.27400434e-01 -1.15429156e-01 7.66907275e-01 2.18937784e-01 -2.06464723e-01 -5.84592402e-01 -8.41296077e-01 6.93953693e-01 5.73058486e-01 5.18936276e-01 1.47954613e-01 4.13509279e-01 2.61989683e-01 7.26833344e-01 -1.90757975e-01 9.17227805e-01 -9.28479493e-01 3.75206828e-01 -4.89040315e-01 -1.01340182e-01 6.80718541e-01 1.09354210e+00 1.02485967e+00 3.59319121e-01 3.38152021e-01 7.70084321e-01 2.59111464e-01 -1.03028834e-01 5.61906874e-01 -1.01668215e+00 2.15245306e-01 1.17913532e+00 -5.54103673e-01 -6.84763491e-01 -7.13650167e-01 -9.43051040e-01 -1.10018659e+00 3.33030015e-01 1.30550668e-01 7.74501963e-03 -4.90140438e-01 2.05414844e+00 -2.48013511e-01 -5.96914768e-01 5.06806839e-03 -4.35608104e-02 7.27111220e-01 1.19603172e-01 3.83158885e-02 4.50888455e-01 1.21626174e+00 -6.57869458e-01 -1.08687589e-02 -2.74518847e-01 7.40001321e-01 -1.02832943e-01 9.08878684e-01 4.05795038e-01 -1.13266647e+00 -6.33402109e-01 -1.51873291e+00 2.92435974e-01 -7.02731609e-01 1.26301199e-02 1.15680397e+00 1.15847695e+00 -1.49293995e+00 1.11978710e+00 -6.08519793e-01 -3.67772490e-01 7.48736441e-01 7.87132978e-01 -5.45340419e-01 5.00069201e-01 -1.05077052e+00 8.60055327e-01 6.38075173e-01 -2.34891161e-01 -9.61920857e-01 -7.22175717e-01 -8.59589219e-01 4.49614108e-01 -4.23017982e-03 -1.16498840e+00 1.01536393e+00 -1.20521665e+00 -1.05281711e+00 6.04499280e-01 8.38876367e-02 -6.13830686e-01 -3.30710590e-01 1.92049071e-01 -2.36851037e-01 6.93396628e-02 -1.26932979e-01 9.80176806e-01 7.78706968e-01 -1.07499039e+00 -5.42095006e-01 -1.05857216e-01 5.55528462e-01 -4.20797259e-01 -9.67476606e-01 -2.52903044e-01 2.09348291e-01 -5.73536098e-01 1.31293640e-01 -3.70397240e-01 -9.65197086e-02 1.15195654e-01 -6.03090227e-01 -2.54414737e-01 7.00240359e-02 -1.81312248e-01 1.22910094e+00 -2.03080225e+00 4.41794753e-01 3.35300237e-01 6.89707756e-01 -9.58940201e-03 -2.26951823e-01 5.50345123e-01 -2.90715903e-01 6.17420435e-01 -4.11256760e-01 6.31243289e-02 1.26427114e-01 2.93458670e-01 -1.66153595e-01 1.62884742e-01 7.21947074e-01 1.01793706e+00 -6.86296761e-01 -3.53320614e-02 -1.85997710e-01 1.78873852e-01 -6.26704276e-01 -2.03050882e-01 -1.72368184e-01 -6.30068753e-05 4.05998267e-02 8.57219875e-01 3.46228331e-01 -2.17918247e-01 4.13096786e-01 -9.38533694e-02 -4.62401286e-02 4.81291413e-01 -9.76540923e-01 1.29335690e+00 -3.05352211e-01 8.07194293e-01 7.98505265e-03 -1.39138496e+00 7.09719002e-01 1.33421510e-01 -6.95914626e-02 -5.03091931e-01 -8.81223902e-02 2.02055633e-01 6.14102960e-01 -3.09098184e-01 1.84874088e-01 -3.13784257e-02 -2.84815859e-02 3.41177642e-01 7.85374939e-01 2.52998888e-01 4.65573370e-01 9.82711017e-02 1.59152091e+00 -5.92771471e-02 5.68917215e-01 -5.51537454e-01 3.96149099e-01 -2.75364071e-01 4.48785096e-01 9.66959000e-01 1.31010681e-01 2.83380121e-01 8.68390501e-01 -3.47980648e-01 -1.05688846e+00 -1.37335956e+00 -2.50650376e-01 1.19145536e+00 -2.56649286e-01 -4.99479979e-01 -6.37038767e-01 -4.75547075e-01 -9.48599875e-02 4.05926347e-01 -7.07731962e-01 -6.66164339e-01 -3.19549233e-01 -6.29974544e-01 1.04730630e+00 6.43180251e-01 3.35419863e-01 -1.18033385e+00 -8.57742429e-01 6.07287474e-02 3.88237685e-01 -4.14997101e-01 5.03191613e-02 8.32670152e-01 -1.46164739e+00 -1.19172263e+00 -5.16097248e-01 -1.06372869e+00 1.09835017e+00 4.78164822e-01 1.41125166e+00 6.47237659e-01 -5.39100826e-01 2.69074380e-01 2.55075917e-02 -9.01739672e-02 -3.38848621e-01 4.90952849e-01 3.03549990e-02 -5.19834399e-01 -3.70382406e-02 -1.20802855e+00 -4.15148228e-01 5.03961504e-01 -1.04160798e+00 3.81503366e-02 1.01578045e+00 9.52192783e-01 -1.01095177e-01 2.95093596e-01 9.28535342e-01 -9.99519229e-01 8.78926516e-01 -6.17678702e-01 -4.75700080e-01 5.53520739e-01 -7.05450296e-01 4.90033060e-01 8.27471972e-01 -3.79117996e-01 -7.96216726e-01 4.87802364e-02 -1.10110931e-01 3.58028680e-01 -5.60761839e-02 3.34531397e-01 -4.94190872e-01 -3.17272544e-01 6.74207330e-01 3.07720900e-01 -2.81248838e-01 -5.37588477e-01 3.58741432e-01 7.81359896e-02 1.90375999e-01 -6.99950039e-01 8.32560003e-01 2.19599068e-01 5.52047677e-02 -7.60205567e-01 -1.96709648e-01 -1.56947106e-01 -6.39254630e-01 4.90450412e-02 3.21558952e-01 -6.47580147e-01 -8.28898132e-01 2.42239404e-02 -1.22153103e+00 -2.07164988e-01 -2.48637795e-01 -1.15025498e-01 -2.99526989e-01 3.10995430e-01 -4.31298614e-01 -7.44028866e-01 -4.26484734e-01 -9.20523465e-01 4.55925494e-01 3.82563680e-01 -5.62309504e-01 -1.02358437e+00 8.45835358e-03 -1.79547772e-01 5.42027771e-01 -2.78737396e-01 1.60265052e+00 -6.89314485e-01 -6.49601579e-01 1.17238529e-01 -1.78321883e-01 5.14729440e-01 4.59881350e-02 1.25264034e-01 -8.92792344e-01 -1.63537726e-01 -2.80636430e-01 -1.27394721e-01 1.21976566e+00 8.11648965e-02 1.19223201e+00 -5.08405566e-01 -4.90348607e-01 7.17982471e-01 1.34775674e+00 2.83376992e-01 7.15890110e-01 2.81310260e-01 3.26875538e-01 9.85265732e-01 -4.61398661e-01 -2.90587973e-02 -8.65618214e-02 5.16781695e-02 6.67241335e-01 2.32092693e-01 -3.63208503e-02 -9.96232382e-04 6.12652659e-01 6.94312930e-01 -2.26432830e-01 -1.37371942e-01 -6.33925676e-01 5.42348921e-01 -1.78175700e+00 -9.85963762e-01 8.40104967e-02 1.99991453e+00 9.25917387e-01 6.09589517e-01 6.09284788e-02 2.05124363e-01 5.49092472e-01 -3.07648957e-01 -6.15349352e-01 -4.24262404e-01 -4.90478724e-01 4.24503207e-01 3.15844923e-01 1.11475531e-02 -8.37683916e-01 6.07830346e-01 7.28255844e+00 6.55543268e-01 -5.02054870e-01 1.46577999e-01 2.67532915e-01 -6.11586869e-03 -6.83132708e-01 4.82709743e-02 -8.63247156e-01 1.08838767e-01 8.57182741e-01 2.61825621e-01 6.07399821e-01 8.36658657e-01 -4.34517562e-01 2.04888046e-01 -1.30274963e+00 4.22512889e-01 -2.05343544e-01 -1.52464914e+00 1.98620260e-01 -2.11240929e-02 7.82206714e-01 -1.53158203e-01 3.16241458e-02 3.05491686e-01 5.77837467e-01 -1.23432052e+00 8.38773608e-01 6.82308435e-01 3.93150121e-01 -7.54415393e-01 4.27758902e-01 1.47987157e-01 -1.24407148e+00 -3.61166179e-01 -6.93765044e-01 -2.94934511e-01 -4.54252779e-01 3.38831037e-01 -5.24747014e-01 2.81954288e-01 7.13928044e-01 6.44232512e-01 -1.03008890e+00 1.28034520e+00 -4.10843611e-01 3.37493122e-01 2.95885727e-02 -3.77375424e-01 -1.36196733e-01 5.12958542e-02 3.58854830e-01 1.21990967e+00 2.30790094e-01 -7.19149351e-01 -6.02098584e-01 1.42360723e+00 -1.70698449e-01 -3.70345235e-01 -9.93217468e-01 -1.64429247e-01 3.48008662e-01 1.43233728e+00 -9.85893667e-01 -1.16168953e-01 -5.23785949e-01 7.01016665e-01 6.90620840e-01 2.68581986e-01 -4.52962607e-01 -8.09783340e-01 1.02619874e+00 -7.49549121e-02 4.85612392e-01 -3.33896160e-01 -7.00841308e-01 -9.83940423e-01 -9.41530860e-04 -5.59812427e-01 1.54716432e-01 -6.61127448e-01 -1.32958603e+00 4.00126815e-01 -1.40641600e-01 -1.01264501e+00 9.50350165e-02 -1.14204931e+00 -9.75512087e-01 4.92763579e-01 -9.25195694e-01 -9.36033130e-01 2.13579357e-01 3.02433461e-01 2.97800869e-01 -6.31225646e-01 9.34687018e-01 2.54220992e-01 -6.19679093e-01 7.37494051e-01 9.83595476e-02 -3.39309238e-02 1.02419712e-01 -1.35159075e+00 6.35238469e-01 7.10600793e-01 2.99362510e-01 1.60638118e+00 5.04540503e-01 -4.25603181e-01 -1.29119408e+00 -9.19493616e-01 6.58314288e-01 -3.02907050e-01 7.63841331e-01 -7.51445830e-01 -7.10578024e-01 5.77078640e-01 3.83246422e-01 -6.12161875e-01 8.59996319e-01 4.20662075e-01 -7.01511323e-01 -3.40559542e-01 -9.58202124e-01 9.79402900e-01 1.79655635e+00 -3.54452819e-01 -8.03350031e-01 -7.73943737e-02 9.77033973e-01 6.81773126e-01 -5.93553662e-01 3.58252764e-01 8.47595036e-01 -1.15274298e+00 1.21956730e+00 -9.23425376e-01 5.37708938e-01 -2.28543118e-01 2.08657458e-02 -1.28951073e+00 -6.24025822e-01 -6.35739744e-01 -2.20906213e-01 1.28289509e+00 8.69128406e-01 -1.03870285e+00 4.70513254e-01 2.38349944e-01 -5.07844150e-01 -7.56381512e-01 -9.84035015e-01 -1.01956236e+00 -3.61073692e-03 -3.86113226e-01 5.75956881e-01 5.96030056e-01 2.61319607e-01 4.66602474e-01 8.06725100e-02 -1.66875973e-01 4.21607465e-01 -1.09527566e-01 3.11728477e-01 -1.62244177e+00 -5.79125464e-01 -1.23512959e+00 -7.20025361e-01 -9.04372573e-01 2.45397747e-01 -1.25208998e+00 -3.38278234e-01 -1.36281419e+00 2.98168540e-01 -9.17221978e-02 -3.88530374e-01 7.85963774e-01 3.01293641e-01 2.61010498e-01 -1.70044988e-01 2.57903934e-02 -6.27208531e-01 3.28290671e-01 7.92984247e-01 -4.54176933e-01 1.06347568e-01 7.13789761e-02 -1.37229884e+00 8.73935521e-01 1.25399065e+00 -5.30099809e-01 -5.54395318e-01 -5.58727205e-01 1.00378919e+00 -7.62737632e-01 5.76143086e-01 -1.12117147e+00 3.11395288e-01 9.30604711e-02 5.35172701e-01 -2.75024921e-01 7.37864599e-02 -8.66373777e-01 2.69542426e-01 9.76512015e-01 -2.37726241e-01 2.46354952e-01 3.59541327e-01 6.57314181e-01 1.91582173e-01 -1.00009012e+00 4.68563527e-01 -5.22543609e-01 -5.72741389e-01 -2.10047975e-01 -1.01741517e+00 -1.09889679e-01 6.70764744e-01 -4.17518020e-01 -5.77794611e-01 5.50416000e-02 -6.35314822e-01 -8.77331570e-03 2.77157962e-01 3.74509841e-01 7.02724695e-01 -1.09570003e+00 -9.97018442e-02 4.22660321e-01 1.54721439e-01 -3.97653788e-01 5.95638603e-02 5.42032599e-01 -3.39514166e-01 5.15141249e-01 -4.85548288e-01 -3.49648029e-01 -1.13616908e+00 3.46940368e-01 4.81651038e-01 -1.03801586e-01 -3.09798360e-01 1.11521339e+00 5.51290274e-01 -6.73756301e-01 4.46146339e-01 -5.72823107e-01 -2.27663472e-01 4.73927855e-02 3.52158189e-01 3.37017328e-01 1.38607100e-01 1.16860099e-01 -2.62566924e-01 3.35612714e-01 -3.81867848e-02 2.74925888e-01 1.57342362e+00 9.92438793e-02 -6.43794477e-01 3.82123262e-01 9.26330268e-01 -3.00302178e-01 -1.04448020e+00 1.02033727e-01 3.82125437e-01 1.69283137e-01 -6.24167264e-01 -6.85330749e-01 -1.08873093e+00 9.61485982e-01 3.16743582e-01 7.07607269e-01 1.11319458e+00 2.61813223e-01 2.76566178e-01 9.94916201e-01 3.20951611e-01 -8.31200480e-01 1.24590851e-01 7.69587398e-01 8.34049642e-01 -6.56076431e-01 -1.97788611e-01 -1.05985276e-01 8.71600676e-03 1.54770410e+00 7.40885913e-01 -1.27898678e-01 5.49475253e-01 1.11310974e-01 -8.24100316e-01 -3.25661600e-01 -1.07608783e+00 -2.70426571e-01 2.33819306e-01 9.03769135e-01 5.15332937e-01 -6.24338016e-02 -6.03061058e-02 1.09219921e+00 -3.80346417e-01 -5.17876565e-01 2.89290816e-01 8.49436760e-01 -8.17954004e-01 -1.16317046e+00 -3.00452486e-02 7.18210459e-01 -2.22553760e-01 -4.43372607e-01 -7.07819819e-01 6.34916186e-01 5.52921116e-01 6.12339377e-01 -1.20256320e-01 -7.48592436e-01 2.50593930e-01 3.61282408e-01 7.00713813e-01 -8.48411560e-01 -9.30974603e-01 -4.75025237e-01 1.10791273e-01 -1.64238378e-01 -2.27001548e-01 -5.12660027e-01 -1.04539323e+00 -2.53053546e-01 -3.27014327e-01 -2.51685023e-01 4.25330371e-01 7.90722370e-01 4.40411329e-01 9.99130070e-01 2.22296491e-01 -7.19275653e-01 -4.20074403e-01 -7.53805637e-01 -4.82542366e-01 6.49829879e-02 1.18815690e-01 -6.09619021e-01 -3.52816522e-01 -4.46274765e-02]
[8.324400901794434, 3.4496476650238037]
76ebf7dc-0e3c-4411-80ce-0acf08ebd890
uvim-a-unified-modeling-approach-for-vision
2205.10337
null
https://arxiv.org/abs/2205.10337v3
https://arxiv.org/pdf/2205.10337v3.pdf
UViM: A Unified Modeling Approach for Vision with Learned Guiding Codes
We introduce UViM, a unified approach capable of modeling a wide range of computer vision tasks. In contrast to previous models, UViM has the same functional form for all tasks; it requires no task-specific modifications which require extensive human expertise. The approach involves two components: (I) a base model (feed-forward) which is trained to directly predict raw vision outputs, guided by a learned discrete code and (II) a language model (autoregressive) that is trained to generate the guiding code. These components complement each other: the language model is well-suited to modeling structured interdependent data, while the base model is efficient at dealing with high-dimensional outputs. We demonstrate the effectiveness of UViM on three diverse and challenging vision tasks: panoptic segmentation, depth prediction and image colorization, where we achieve competitive and near state-of-the-art results. Our experimental results suggest that UViM is a promising candidate for a unified modeling approach in computer vision.
['Neil Houlsby', 'Jeremiah Harmsen', 'Xiaohua Zhai', 'Lucas Beyer', 'André Susano Pinto', 'Alexander Kolesnikov']
2022-05-20
null
null
null
null
['colorization']
['computer-vision']
[ 4.31051821e-01 2.21924428e-02 -3.00829839e-02 -5.68749130e-01 -6.44051790e-01 -4.18035448e-01 9.30365324e-01 -1.14679575e-01 -3.42091173e-01 6.17365949e-02 -3.03650737e-01 -4.68024671e-01 1.91725135e-01 -6.01449728e-01 -6.68725729e-01 -7.18158484e-01 2.02368498e-01 4.65443760e-01 3.85721803e-01 5.90659082e-02 4.58804041e-01 4.12177235e-01 -1.75405347e+00 4.69301760e-01 1.05018926e+00 1.04843640e+00 6.92553639e-01 1.08329463e+00 -2.87633121e-01 1.19640315e+00 -9.30192620e-02 -2.35703662e-01 1.73777372e-01 -4.46798801e-01 -7.27498293e-01 5.39608359e-01 4.96870577e-01 -1.48647517e-01 -1.03443570e-01 1.06803882e+00 3.73416319e-02 -8.43251199e-02 9.53940988e-01 -9.19281483e-01 -8.83516729e-01 5.59918769e-02 -6.80064142e-01 -1.92574024e-01 1.15378127e-01 2.24588901e-01 9.34457242e-01 -1.01500285e+00 4.73326743e-01 1.17885780e+00 6.10568643e-01 7.81087518e-01 -1.54360867e+00 -1.06404107e-02 3.62703174e-01 -5.60429879e-02 -1.02768481e+00 -3.16451401e-01 5.02937615e-01 -8.94012094e-01 1.08454549e+00 3.03139370e-02 4.94972646e-01 8.65316570e-01 1.94320366e-01 9.16184604e-01 1.25471354e+00 -6.55474305e-01 2.86117047e-01 2.12889105e-01 3.71984094e-01 9.95932579e-01 -1.63337022e-01 2.93924600e-01 -4.09926683e-01 -3.30943353e-02 8.30599964e-01 -1.34894863e-01 -1.64454386e-01 -5.52547455e-01 -9.48670447e-01 9.92770255e-01 5.89102805e-01 -4.94571682e-03 -2.01942831e-01 3.54742467e-01 7.20616058e-02 1.90660059e-01 4.80887383e-01 2.99399972e-01 -4.65075076e-01 2.06595048e-01 -9.94453609e-01 1.08173028e-01 7.07501888e-01 8.94521117e-01 9.70646203e-01 8.58751312e-02 -1.09141096e-01 9.89232957e-01 6.31543577e-01 4.47667062e-01 4.73889381e-01 -1.04228878e+00 2.86032319e-01 5.22730947e-01 3.98535468e-02 -5.42381108e-01 -4.16742593e-01 -3.12244534e-01 -6.57726169e-01 7.47359991e-01 3.13004375e-01 -1.94391124e-02 -1.48399627e+00 1.64772129e+00 -1.43349096e-01 3.38703573e-01 4.02339771e-02 6.06891572e-01 9.25085306e-01 1.03040397e+00 6.44090325e-02 -6.84476122e-02 1.13817167e+00 -1.56248188e+00 -1.82129711e-01 -7.06453323e-01 2.54791886e-01 -8.07385564e-01 1.16332936e+00 6.21230900e-01 -1.20062566e+00 -8.84566009e-01 -8.00640941e-01 -2.81263351e-01 -4.29692745e-01 5.23651063e-01 7.31841743e-01 4.96857315e-01 -1.63199973e+00 3.02473545e-01 -7.57890105e-01 -3.42915326e-01 1.16057433e-01 3.48196954e-01 -4.56106290e-02 -1.39431387e-01 -3.88118029e-01 7.41929114e-01 3.10052186e-01 -1.49114328e-02 -1.04857433e+00 -3.57110322e-01 -1.08402371e+00 -4.30508628e-02 1.15125209e-01 -1.08613443e+00 1.56176913e+00 -1.29851210e+00 -1.71039855e+00 1.39102435e+00 -4.19612110e-01 -6.92637563e-01 5.01866698e-01 -1.94364801e-01 -3.51921393e-04 9.59281847e-02 -1.23431891e-01 1.16151094e+00 1.23145032e+00 -1.47567320e+00 -6.20188951e-01 -3.20349157e-01 -1.19338259e-01 1.86609745e-01 -1.75215751e-01 1.93509366e-02 -1.05604768e+00 -5.50825238e-01 3.61342616e-02 -1.12603390e+00 -4.54744607e-01 3.34947407e-01 -2.02003479e-01 -1.33588538e-01 6.01779699e-01 -2.73128361e-01 1.02564013e+00 -2.16940641e+00 3.76440912e-01 4.30023335e-02 1.01806648e-01 4.19471562e-01 -3.60356152e-01 2.75545627e-01 -7.31327012e-03 -9.61713567e-02 -5.57100475e-01 -7.87613690e-01 -2.40625337e-01 4.23377067e-01 -4.61543858e-01 1.70646936e-01 4.07201499e-01 1.05118215e+00 -6.46022499e-01 -3.14876199e-01 5.05144417e-01 3.79711241e-01 -5.22632062e-01 5.32123029e-01 -7.41471946e-01 2.78862625e-01 -2.66556740e-01 3.72742951e-01 6.01349652e-01 -5.39802194e-01 -1.79690108e-01 1.53986856e-01 -4.12199616e-01 3.34162451e-03 -9.14797306e-01 1.90817487e+00 -4.46731955e-01 6.73395991e-01 9.54335630e-02 -9.46811795e-01 9.94608998e-01 -4.87422049e-02 1.78018421e-01 -4.10372555e-01 4.39688889e-03 -3.59068140e-02 -2.92351007e-01 -5.75662911e-01 3.54159832e-01 2.71909595e-01 2.85079241e-01 3.71903002e-01 2.77631223e-01 -5.34739256e-01 2.20447212e-01 1.06245935e-01 6.70119524e-01 4.76188481e-01 2.61509508e-01 -2.60889441e-01 6.45943582e-01 1.49257153e-01 3.56378525e-01 8.74622881e-01 -1.00101843e-01 8.44859362e-01 4.16767359e-01 -5.63478172e-01 -8.32743585e-01 -1.15464795e+00 -3.26873884e-02 1.14224124e+00 1.33795664e-01 -2.45858058e-01 -8.82961094e-01 -3.33638638e-01 -1.46005034e-01 5.61638594e-01 -8.19004714e-01 2.23755032e-01 -9.87747610e-02 -6.96645319e-01 1.38864204e-01 6.27924621e-01 4.13605571e-01 -1.04438066e+00 -5.50000191e-01 3.50960791e-02 1.78714737e-01 -1.21708333e+00 -3.09627235e-01 3.11771959e-01 -1.08696556e+00 -1.05661583e+00 -6.46300137e-01 -9.73188341e-01 7.80424416e-01 5.37000597e-01 1.32589710e+00 8.84686932e-02 -4.23385710e-01 6.70998096e-01 -1.39422387e-01 -5.90440094e-01 -4.03985381e-01 -2.79391944e-01 -5.11601090e-01 2.06641197e-01 2.29521781e-01 -1.35088488e-01 -5.02983987e-01 -3.45590264e-02 -9.17508364e-01 3.94683838e-01 6.81178868e-01 8.92004192e-01 5.66298842e-01 -6.32764935e-01 8.71426985e-02 -1.09055889e+00 3.91960829e-01 -1.78519130e-01 -1.00912786e+00 3.96232307e-01 -7.48970687e-01 7.64435306e-02 5.74034631e-01 -3.10132116e-01 -1.15302444e+00 6.61581993e-01 -1.69428989e-01 -2.67818093e-01 -2.85696298e-01 4.35653120e-01 2.64989465e-01 -3.67598832e-01 6.67911172e-01 4.90884036e-01 1.51090994e-01 -5.34513056e-01 5.89615762e-01 4.26085323e-01 7.12109566e-01 -3.71032864e-01 6.51779413e-01 5.87390125e-01 -7.01687932e-02 -1.09942102e+00 -8.05983722e-01 -5.97672462e-01 -7.41385281e-01 -1.63945064e-01 1.18181145e+00 -1.12964392e+00 -3.26565534e-01 7.80282795e-01 -1.32943952e+00 -6.03514671e-01 -6.44907057e-02 3.59053105e-01 -9.40945327e-01 4.09098744e-01 -9.19731021e-01 -7.80241370e-01 -3.34912866e-01 -1.24113846e+00 1.16170883e+00 4.15907055e-01 2.04882860e-01 -1.25549710e+00 2.52536416e-01 3.37287456e-01 7.93966949e-02 6.89479858e-02 1.05198956e+00 -2.54847169e-01 -7.88245201e-01 1.15953051e-01 -4.24271047e-01 5.47288001e-01 -1.15304388e-01 5.10576725e-01 -1.34400558e+00 -1.58300430e-01 -6.79514036e-02 -6.65237963e-01 1.39294279e+00 7.02992797e-01 1.35853493e+00 1.98861256e-01 -1.57636851e-01 9.65765715e-01 1.64167452e+00 2.07486659e-01 6.22365952e-01 1.51676670e-01 5.12720644e-01 6.27830148e-01 3.48353744e-01 2.52179742e-01 5.21962762e-01 5.61755836e-01 6.63935006e-01 -5.61434448e-01 -1.83503330e-01 -2.08006218e-01 4.53326344e-01 5.72261035e-01 -1.76753681e-02 -1.18863747e-01 -1.00700855e+00 4.09235120e-01 -2.21698308e+00 -6.65565968e-01 -4.18825001e-01 1.99791241e+00 4.94779199e-01 4.03866880e-02 9.29521024e-02 -3.09194088e-01 3.42641771e-01 6.69860765e-02 -6.17188275e-01 -5.85997403e-01 -2.34141704e-02 1.51934162e-01 1.38410881e-01 6.66802406e-01 -1.09105253e+00 1.13995528e+00 7.77151632e+00 4.56301659e-01 -1.07573450e+00 -6.54596323e-03 8.57581675e-01 3.11452597e-01 -1.64256021e-01 -5.54349422e-02 -7.22050786e-01 2.67395943e-01 6.30954921e-01 3.28337312e-01 4.39009815e-01 9.60436046e-01 1.41013607e-01 -2.54507482e-01 -1.03933358e+00 1.18078291e+00 3.06828231e-01 -1.48718750e+00 1.68223083e-01 -5.48965000e-02 1.01265192e+00 5.07744014e-01 2.66357273e-01 2.96207834e-02 5.07257283e-01 -9.44742024e-01 7.61759877e-01 6.18849695e-01 6.58196330e-01 -3.61287117e-01 1.94791958e-01 4.52566475e-01 -1.06238627e+00 -1.79856226e-01 -5.63624918e-01 -6.94426522e-02 -2.15576395e-01 4.78374064e-01 -5.19510150e-01 2.42708027e-01 5.01855373e-01 9.10442412e-01 -8.21650684e-01 1.06133211e+00 -3.75786930e-01 3.96082520e-01 2.56557986e-02 2.24791184e-01 5.28128564e-01 -4.78267848e-01 6.72713295e-02 1.45950747e+00 1.80742621e-01 -1.62981465e-01 4.26108479e-01 1.08510804e+00 2.64967650e-01 -4.93716523e-02 -7.52047420e-01 1.07377574e-01 -5.64819127e-02 1.30434656e+00 -7.40151942e-01 -3.18159044e-01 -8.58688831e-01 1.21904850e+00 4.32277828e-01 6.13828480e-01 -6.19134784e-01 -3.77392992e-02 6.48408949e-01 -3.90415370e-01 5.44719577e-01 -4.92013603e-01 -4.83881682e-01 -1.35668790e+00 -2.54225641e-01 -6.17622554e-01 3.12707335e-01 -1.19031250e+00 -1.15845835e+00 8.64446461e-01 -3.33856255e-01 -1.12171471e+00 -6.18278205e-01 -1.28845036e+00 -6.68636203e-01 9.79915857e-01 -1.99612856e+00 -1.41856503e+00 -4.51211363e-01 8.06016922e-01 8.53982031e-01 -2.88318723e-01 1.03953671e+00 -1.32361248e-01 -3.93795252e-01 2.31848694e-02 1.68800831e-01 1.41640455e-02 5.94745338e-01 -1.43491566e+00 5.20536542e-01 9.92083967e-01 5.74151337e-01 4.03936595e-01 5.42908311e-01 -1.77154586e-01 -1.37225652e+00 -1.12960267e+00 7.67100453e-01 -4.93606269e-01 5.28348505e-01 -4.09801632e-01 -7.34374523e-01 6.89871192e-01 2.79679239e-01 1.45658582e-01 6.41948462e-01 -5.90198711e-02 -5.43707728e-01 -6.28191084e-02 -7.53019631e-01 3.63423765e-01 7.33789623e-01 -5.60451508e-01 -5.13143897e-01 2.80039728e-01 5.56143165e-01 -2.97525913e-01 -3.76342088e-01 1.68601468e-01 3.70124698e-01 -1.36260521e+00 1.00755727e+00 -5.03224611e-01 7.12583005e-01 -3.32943588e-01 -1.47991814e-02 -1.14004767e+00 -4.23927575e-01 -4.83820319e-01 -2.16969520e-01 1.00126076e+00 4.85005975e-01 -4.57472831e-01 6.26421750e-01 5.58013558e-01 -1.51929066e-01 -8.15481961e-01 -2.74411350e-01 -5.51516414e-01 4.33826260e-02 -5.40156722e-01 2.23548673e-02 5.24805486e-01 -5.18784463e-01 4.60075557e-01 -3.97433519e-01 7.04968870e-02 6.45073593e-01 5.35591006e-01 6.89702570e-01 -1.37864053e+00 -6.06382132e-01 -5.30277491e-01 -1.85031369e-01 -1.59307551e+00 1.84572041e-01 -7.60943770e-01 2.50227958e-01 -1.69326735e+00 2.81550825e-01 -1.91307336e-01 -1.50288150e-01 4.35022950e-01 -1.89562850e-02 2.54537135e-01 4.55988050e-01 3.79841030e-01 -4.53725934e-01 3.79026800e-01 9.66298461e-01 -1.47621140e-01 -3.01039934e-01 2.61460125e-01 -7.40277767e-01 1.07824135e+00 4.83373523e-01 -1.27671674e-01 -7.79313266e-01 -8.96780968e-01 1.59278944e-01 -1.77643150e-02 5.14690280e-01 -9.04007196e-01 3.68897319e-01 -3.30045640e-01 2.85267025e-01 -4.36949700e-01 5.19427598e-01 -7.24084914e-01 -3.48922849e-01 5.66197991e-01 -3.06232363e-01 6.74430728e-02 1.49682760e-01 5.85338831e-01 -4.41421866e-01 -4.66983169e-01 1.07087266e+00 -3.81749213e-01 -1.18925226e+00 4.02855366e-01 -4.77339715e-01 -2.03080580e-01 9.56105590e-01 -3.09211850e-01 -3.18740129e-01 -2.88073868e-01 -7.85517275e-01 1.61228925e-01 5.61517358e-01 5.12433946e-01 8.19957256e-01 -8.37804496e-01 -6.55910552e-01 5.43643773e-01 3.58156472e-01 -8.28146264e-02 -1.09370522e-01 3.71478587e-01 -5.67675114e-01 5.15223444e-01 -1.00769483e-01 -9.64875817e-01 -1.12868011e+00 6.91259623e-01 3.38422775e-01 -1.74859837e-01 -5.29083967e-01 1.10925901e+00 5.81739187e-01 -3.64173621e-01 3.23366165e-01 -5.59012771e-01 -2.33104020e-01 -1.25525907e-01 6.73641562e-01 -1.83406815e-01 -3.15889306e-02 -3.65567148e-01 -3.48604992e-02 9.70207930e-01 4.99705374e-02 -2.02907100e-01 1.40749085e+00 -2.15719208e-01 -2.99958467e-01 7.05882013e-01 8.00468743e-01 -5.86104989e-01 -1.78428400e+00 -4.12324071e-01 9.63290781e-02 -3.77970874e-01 1.71264738e-01 -7.93210387e-01 -8.92635107e-01 1.32507920e+00 5.50094843e-01 1.90198734e-01 1.39109886e+00 -1.02523915e-01 3.53346705e-01 4.07122672e-01 2.99699932e-01 -9.49955106e-01 2.88036585e-01 8.30505073e-01 8.25256646e-01 -1.30890048e+00 -2.70137876e-01 -4.85005677e-01 -8.66596162e-01 1.25487578e+00 5.87371469e-01 -1.74710751e-01 7.78019786e-01 3.96446317e-01 3.11398983e-01 -4.25370000e-02 -1.11946118e+00 -5.95774949e-01 5.27528524e-01 6.94327652e-01 5.12411237e-01 -1.74211785e-01 3.13305818e-02 3.34093645e-02 2.97434747e-01 4.36332403e-03 3.97756368e-01 7.44183719e-01 -7.03848541e-01 -1.21982920e+00 -2.85091102e-01 2.65051425e-01 -7.91901276e-02 -2.03842282e-01 -6.02096558e-01 3.83948207e-01 1.13053270e-01 8.96532774e-01 1.29334748e-01 -3.47028077e-01 -7.59678185e-02 1.23689380e-02 6.03059709e-01 -9.55335021e-01 -4.74881589e-01 2.19887704e-01 -3.59063983e-01 -6.14980161e-01 -6.54417276e-01 -4.32268918e-01 -1.01064098e+00 1.20693095e-01 1.34804053e-02 -2.56799936e-01 9.02460754e-01 8.05007935e-01 3.01237047e-01 2.80246288e-01 5.88812053e-01 -9.65005875e-01 -4.64442581e-01 -6.80231154e-01 -4.30743068e-01 3.71414721e-01 5.32517493e-01 -4.05081809e-01 1.22052627e-02 6.77278221e-01]
[10.239792823791504, 1.6016793251037598]
fc4584e6-8afe-4fb2-a411-bad020fb2e8b
deconfounded-video-moment-retrieval-with
2106.01534
null
https://arxiv.org/abs/2106.01534v1
https://arxiv.org/pdf/2106.01534v1.pdf
Deconfounded Video Moment Retrieval with Causal Intervention
We tackle the task of video moment retrieval (VMR), which aims to localize a specific moment in a video according to a textual query. Existing methods primarily model the matching relationship between query and moment by complex cross-modal interactions. Despite their effectiveness, current models mostly exploit dataset biases while ignoring the video content, thus leading to poor generalizability. We argue that the issue is caused by the hidden confounder in VMR, {i.e., temporal location of moments}, that spuriously correlates the model input and prediction. How to design robust matching models against the temporal location biases is crucial but, as far as we know, has not been studied yet for VMR. To fill the research gap, we propose a causality-inspired VMR framework that builds structural causal model to capture the true effect of query and video content on the prediction. Specifically, we develop a Deconfounded Cross-modal Matching (DCM) method to remove the confounding effects of moment location. It first disentangles moment representation to infer the core feature of visual content, and then applies causal intervention on the disentangled multimodal input based on backdoor adjustment, which forces the model to fairly incorporate each possible location of the target into consideration. Extensive experiments clearly show that our approach can achieve significant improvement over the state-of-the-art methods in terms of both accuracy and generalization (Codes: \color{blue}{\url{https://github.com/Xun-Yang/Causal_Video_Moment_Retrieval}}
['Tat-Seng Chua', 'Meng Wang', 'Wei Ji', 'Fuli Feng', 'Xun Yang']
2021-06-03
null
null
null
null
['moment-retrieval']
['computer-vision']
[ 1.01070255e-01 -3.75048101e-01 -7.93859124e-01 -7.48310462e-02 -7.57069468e-01 -6.97415590e-01 9.57335770e-01 -2.58207858e-01 -1.09407464e-02 2.53479242e-01 5.65730274e-01 -2.34102085e-01 -3.92341465e-01 -5.11484623e-01 -9.17408168e-01 -5.24020612e-01 8.31722748e-03 -1.47816017e-01 -1.19882695e-01 -7.38851354e-02 3.55293185e-01 1.46603197e-01 -1.54185748e+00 5.67836225e-01 5.60058296e-01 8.25537205e-01 1.28676221e-01 4.02968347e-01 2.68636137e-01 9.09133017e-01 -2.77346134e-01 -5.05463421e-01 2.59194225e-01 -3.76521707e-01 -3.97663623e-01 -1.46669358e-01 5.07218897e-01 -4.63462919e-01 -1.07399857e+00 9.56833005e-01 4.96374905e-01 1.43897217e-02 5.93937814e-01 -1.49376643e+00 -8.86464715e-01 5.39714694e-01 -8.45350921e-01 4.44264710e-01 6.97701216e-01 1.48981586e-01 1.28618205e+00 -9.91560161e-01 6.79947555e-01 1.28122342e+00 2.40996897e-01 5.23037493e-01 -1.33892488e+00 -1.00311303e+00 4.48716581e-01 5.31793296e-01 -1.50010300e+00 -4.55712676e-01 1.15204942e+00 -6.25324965e-01 2.25373551e-01 7.38701582e-01 5.96157312e-01 1.66316605e+00 1.41821727e-01 1.07971692e+00 1.01039326e+00 -1.43019676e-01 -3.53095055e-01 -7.04394234e-03 -1.78713739e-01 6.16705000e-01 -1.01176091e-01 3.29196334e-01 -1.05662918e+00 -1.99873865e-01 8.33177984e-01 2.58899927e-01 -4.79787946e-01 -3.51811856e-01 -1.69024420e+00 7.73614168e-01 2.83568561e-01 1.37499720e-01 -2.38843828e-01 1.40820369e-01 2.65837461e-01 1.66368380e-01 3.98595542e-01 2.45543897e-01 -4.01431054e-01 -8.75892639e-02 -9.65721667e-01 4.17462438e-01 3.28792661e-01 9.27698135e-01 5.41360021e-01 -3.21777791e-01 -4.99623924e-01 7.24936903e-01 5.19619763e-01 6.39357388e-01 4.00867730e-01 -7.57300913e-01 5.28361022e-01 5.95275223e-01 1.09114647e-02 -1.54823840e+00 -6.92204237e-02 -1.89080417e-01 -5.97703993e-01 -3.84080827e-01 2.87330180e-01 1.55753732e-01 -6.37578309e-01 2.07888079e+00 3.23288798e-01 4.99470323e-01 -3.53570670e-01 1.28865039e+00 1.08434761e+00 5.19865215e-01 9.19110999e-02 -3.64244938e-01 1.48344100e+00 -5.97573817e-01 -7.27633417e-01 -7.09768012e-02 2.88624823e-01 -8.36596668e-01 1.17897749e+00 2.98210412e-01 -8.89017403e-01 -3.52459252e-01 -8.17010403e-01 -2.03286827e-01 -2.05291599e-01 7.34577700e-02 6.98669910e-01 1.36598557e-01 -5.24110854e-01 4.14726198e-01 -5.95501244e-01 -4.74753454e-02 8.61156359e-02 1.19690210e-01 -3.91917378e-01 -2.15692893e-01 -1.60720885e+00 5.42741895e-01 7.12380856e-02 2.23214209e-01 -1.04636645e+00 -9.27091062e-01 -6.57627940e-01 -2.27003917e-01 7.04419971e-01 -8.92038941e-01 9.14713264e-01 -8.95999968e-01 -1.14245820e+00 7.30427206e-01 -5.00301123e-01 5.67181520e-02 5.35655737e-01 -3.19990933e-01 -4.27970588e-01 2.51941562e-01 1.45433292e-01 6.11445546e-01 1.12662578e+00 -1.46687150e+00 -3.26857507e-01 -4.67410535e-01 2.67574638e-01 1.81977138e-01 -3.17120343e-01 -5.43217883e-02 -1.04153597e+00 -1.01171434e+00 2.18161151e-01 -9.74315107e-01 1.83044821e-01 -2.36151502e-01 -4.59789306e-01 -1.38737381e-01 7.74025798e-01 -7.61541128e-01 1.71693683e+00 -2.22360206e+00 4.47246760e-01 5.85133135e-02 3.61254841e-01 -2.30990604e-01 -2.23604485e-01 7.10346401e-01 -4.15146589e-01 2.67294437e-01 3.54277164e-01 -2.66627282e-01 1.02801234e-01 -7.21362829e-02 -9.25325990e-01 5.78061998e-01 3.45422141e-02 1.18780828e+00 -9.70837355e-01 -5.81490695e-01 2.28317603e-01 7.02774048e-01 -5.35982788e-01 2.65251100e-01 -3.18720132e-01 5.96200407e-01 -4.66294706e-01 8.16725433e-01 4.47512925e-01 -2.48015821e-01 1.44670323e-01 -7.85884202e-01 -5.98813333e-02 2.50236064e-01 -9.62423742e-01 1.78394949e+00 -5.77372164e-02 6.69250369e-01 -3.84687424e-01 -6.87256932e-01 5.08717954e-01 4.57729936e-01 7.15722203e-01 -8.63480091e-01 -9.88019258e-02 -1.33088499e-01 -1.60065591e-01 -7.98275232e-01 3.90274107e-01 9.94357541e-02 -1.45903856e-01 1.18708812e-01 -1.96296930e-01 4.04176354e-01 -1.28798977e-01 4.94781882e-01 9.72580373e-01 4.52215403e-01 1.10968910e-02 2.35669076e-01 1.85457036e-01 -1.62080079e-01 6.57129169e-01 6.99662805e-01 -1.44034266e-01 6.53299093e-01 8.37716341e-01 -9.76511985e-02 -7.61869907e-01 -1.08186722e+00 1.23384185e-02 1.19860756e+00 5.29432178e-01 -6.66959345e-01 -3.35495442e-01 -4.77864295e-01 6.03164323e-02 6.87802732e-01 -9.98910189e-01 -2.87954599e-01 -3.74769837e-01 -6.48788810e-01 4.96056318e-01 1.84922159e-01 1.49413422e-01 -6.74022615e-01 -3.22028726e-01 -3.20998132e-01 -7.62868285e-01 -1.09065008e+00 -6.54727697e-01 -5.95970333e-01 -7.46252596e-01 -1.07613027e+00 -5.07055104e-01 -4.34894301e-02 4.19830918e-01 6.21401727e-01 8.97324502e-01 1.51540721e-02 -1.88402668e-01 6.74511254e-01 -3.52397323e-01 -8.08973461e-02 1.71004474e-01 -3.28567594e-01 6.48979191e-03 3.89680892e-01 3.66129160e-01 -5.94032824e-01 -1.13193309e+00 4.63207573e-01 -1.13899159e+00 3.67393702e-01 6.46046162e-01 7.24537015e-01 4.78173077e-01 -2.81979591e-01 2.86193609e-01 -7.36614227e-01 4.17838037e-01 -9.15873945e-01 -3.45142722e-01 2.27239639e-01 -5.59020460e-01 -9.95647460e-02 1.24785990e-01 -8.63601267e-01 -8.89972389e-01 -1.39911398e-01 4.55857486e-01 -1.07944226e+00 7.57408962e-02 6.96477890e-01 -3.25255334e-01 2.38979757e-01 2.40952760e-01 3.25329900e-01 -1.75403625e-01 -3.36633235e-01 5.37252903e-01 1.79557174e-01 3.95499527e-01 -6.34924591e-01 7.53028214e-01 7.98261702e-01 7.05944225e-02 -5.02369463e-01 -7.86208212e-01 -5.43478012e-01 -3.83635700e-01 -6.27744615e-01 7.63525128e-01 -1.21480954e+00 -9.59298611e-01 -3.55607495e-02 -1.14169657e+00 -7.82325044e-02 3.84900391e-01 5.58615148e-01 -5.04881442e-01 4.29259807e-01 -5.32078505e-01 -7.00935781e-01 1.29238620e-01 -9.25828218e-01 1.23513138e+00 -1.53790757e-01 -3.11980784e-01 -8.00940573e-01 3.80187016e-03 6.50646329e-01 1.15238493e-02 3.66150588e-01 9.55280304e-01 -4.45943713e-01 -1.08536482e+00 -3.50931376e-01 -2.83933103e-01 -3.16398561e-01 -1.02656089e-01 1.81270182e-01 -9.80279207e-01 -8.80192593e-02 -4.35313433e-02 5.07748425e-02 9.35638428e-01 2.63195902e-01 1.21395528e+00 -4.64280874e-01 -4.75352436e-01 4.79827285e-01 1.22336900e+00 -9.42055732e-02 7.37341821e-01 2.49131203e-01 1.01019812e+00 7.29153752e-01 7.68135190e-01 5.35020590e-01 5.97310066e-01 8.29585969e-01 5.75899720e-01 7.88133666e-02 -2.20999960e-02 -6.80744708e-01 4.39642876e-01 7.13344574e-01 -1.86554834e-01 -2.58295715e-01 -6.99647188e-01 4.78743255e-01 -2.18381047e+00 -1.22677958e+00 -1.82558343e-01 2.28293347e+00 6.70597315e-01 -2.59002596e-01 -4.68031764e-02 -1.36342600e-01 5.93884051e-01 6.01648331e-01 -4.67318296e-01 2.74197727e-01 -1.29703760e-01 -5.42567432e-01 3.25057358e-01 3.58750790e-01 -9.55776513e-01 7.52311826e-01 5.30733204e+00 8.87309253e-01 -1.23781729e+00 1.76873595e-01 3.44734818e-01 -5.86937249e-01 -6.40772045e-01 2.85087436e-01 -4.70404804e-01 5.56227088e-01 4.93327290e-01 -4.22989689e-02 6.66326702e-01 3.10174108e-01 6.97230458e-01 6.70708995e-03 -1.35940778e+00 1.02782130e+00 3.15274417e-01 -1.07374871e+00 4.14651573e-01 1.80571586e-01 5.24647951e-01 -3.30893606e-01 4.73579198e-01 1.54220968e-01 -2.68443257e-01 -8.30935717e-01 9.13043380e-01 9.89230692e-01 6.43664598e-01 -4.25470829e-01 6.01711273e-02 3.52943361e-01 -1.10922360e+00 -1.15577646e-01 3.54469866e-02 9.18434411e-02 1.24626672e-02 4.97853220e-01 -2.99701661e-01 6.40767872e-01 7.04855740e-01 7.68832684e-01 -5.60373545e-01 6.31206214e-01 -3.38926584e-01 6.37121797e-01 1.61893815e-01 2.88977206e-01 -1.74237445e-01 -6.11867122e-02 9.37810302e-01 1.02443218e+00 1.45620242e-01 1.85828492e-01 -3.96104567e-02 1.00527894e+00 2.32168045e-02 5.79048209e-02 -8.95530164e-01 -1.49956778e-01 5.29445589e-01 1.10669172e+00 -4.08271790e-01 -1.14323124e-01 -5.13137341e-01 9.70356345e-01 2.84534782e-01 8.00299942e-01 -1.17451131e+00 1.17242508e-01 5.96178591e-01 7.81043246e-02 3.03725988e-01 -1.58357292e-01 -1.95321321e-01 -1.55369830e+00 2.66445547e-01 -1.03444362e+00 4.54052329e-01 -1.02195382e+00 -1.28990030e+00 -2.16957112e-03 3.21899176e-01 -1.41574216e+00 -1.12394005e-01 -2.38341063e-01 -3.26756716e-01 6.94963217e-01 -1.35257816e+00 -1.40112174e+00 -1.32147580e-01 7.82256126e-01 4.14582074e-01 1.72549084e-01 4.75344181e-01 5.32301664e-01 -6.45758390e-01 5.80828607e-01 -2.35915899e-01 1.21935897e-01 1.09232199e+00 -8.14013124e-01 -2.50787914e-01 8.56393814e-01 2.36678079e-01 1.17984343e+00 7.96762049e-01 -7.55827427e-01 -2.02347350e+00 -9.04928923e-01 8.08801174e-01 -9.60285723e-01 9.25990403e-01 -3.84362102e-01 -7.57545114e-01 6.85251415e-01 8.87113661e-02 -8.63872021e-02 7.50420451e-01 1.23297453e-01 -8.94834280e-01 -7.76234791e-02 -4.99589473e-01 1.08724391e+00 1.09616792e+00 -1.03066492e+00 -5.11703014e-01 2.53935546e-01 9.19330299e-01 -3.26375186e-01 -8.98759007e-01 6.19535148e-01 9.60200191e-01 -1.09381711e+00 1.16194475e+00 -6.52387023e-01 9.48008955e-01 -3.10313135e-01 -3.43720555e-01 -8.54283810e-01 -2.89137542e-01 -6.40188038e-01 -4.99351263e-01 1.46280777e+00 3.36673141e-01 -3.88671637e-01 3.22515398e-01 7.70959556e-01 3.06807697e-01 -8.38476658e-01 -7.57201672e-01 -4.77733880e-01 -2.21529990e-01 -7.93380141e-01 5.17132401e-01 1.22590923e+00 5.84485531e-02 3.57382208e-01 -8.18488836e-01 5.74121833e-01 5.32306135e-01 4.26513880e-01 7.85303891e-01 -7.94174790e-01 -3.89709294e-01 -5.57890415e-01 -2.39168197e-01 -1.05340338e+00 1.58085018e-01 -6.22829258e-01 -2.82663405e-01 -1.14330864e+00 6.95051134e-01 -1.03877643e-02 -4.19555992e-01 2.39788830e-01 -3.41800481e-01 2.13490382e-01 3.63107383e-01 6.32710338e-01 -7.16299951e-01 5.24932444e-01 1.36729252e+00 -5.97995222e-02 1.47649301e-02 -2.19817236e-01 -7.89692342e-01 5.84743738e-01 2.70363331e-01 -4.14033055e-01 -5.00958204e-01 -4.57636833e-01 6.51943803e-01 4.61309940e-01 9.60523665e-01 -2.01056436e-01 2.14662686e-01 -4.69364822e-01 3.44325513e-01 -5.52275360e-01 4.55504298e-01 -8.20706487e-01 3.88666689e-01 1.24007324e-02 -5.69311678e-01 1.79073438e-01 7.77924061e-02 9.73645031e-01 -2.17063874e-01 2.35522225e-01 7.30317272e-03 6.96710721e-02 -5.89713514e-01 4.51969266e-01 -7.89740607e-02 -9.63834673e-02 8.41051161e-01 3.29581052e-02 -4.20003623e-01 -5.53484559e-01 -4.21685964e-01 2.46352836e-01 3.14001083e-01 8.71963203e-01 6.01233304e-01 -1.59245324e+00 -4.68209684e-01 -1.29420355e-01 3.27945173e-01 -4.89578009e-01 5.04400969e-01 1.21268678e+00 2.66975343e-01 5.08155644e-01 3.82401764e-01 -6.07438564e-01 -1.25195551e+00 9.69493091e-01 2.79695056e-02 -1.91846807e-02 -2.64413178e-01 4.71472055e-01 5.47254026e-01 -1.46218389e-03 3.00519317e-01 -8.68318528e-02 -1.37890995e-01 2.88978726e-01 4.39390540e-01 3.38863939e-01 -4.27588493e-01 -7.68855274e-01 -4.11529064e-01 5.63287616e-01 9.87420976e-02 -2.23508164e-01 9.53426123e-01 -3.77327949e-01 -2.53372401e-01 7.96037436e-01 1.40035975e+00 2.46555015e-01 -1.19430995e+00 -2.61286646e-01 -2.05748901e-01 -8.14963281e-01 -9.35330689e-02 -7.04087555e-01 -9.64280128e-01 8.05524290e-01 4.95200276e-01 8.81018564e-02 1.17509401e+00 1.86223537e-01 5.46321094e-01 -7.53769577e-02 5.19233570e-02 -6.20159984e-01 2.41384640e-01 1.90775797e-01 1.10017896e+00 -1.35510886e+00 1.77313551e-01 -3.74253333e-01 -5.41114390e-01 7.76237905e-01 4.87907261e-01 -6.61751032e-02 5.56619823e-01 -2.93521434e-01 -1.01864813e-02 -3.79805744e-01 -1.03117228e+00 -1.00056097e-01 8.72848094e-01 1.66204482e-01 4.35603529e-01 5.71212023e-02 -4.52438563e-01 7.06982970e-01 1.34918898e-01 -8.16114694e-02 -4.38118540e-02 5.09932101e-01 3.07420820e-01 -8.27873468e-01 -4.99797642e-01 1.49494797e-01 -5.91955960e-01 -2.88513899e-01 -4.56299126e-01 8.56784821e-01 1.29916742e-01 8.95758688e-01 -1.35527343e-01 -7.63506651e-01 3.69436264e-01 -4.87637967e-02 3.96420240e-01 -9.64773148e-02 -2.29611486e-01 3.70173693e-01 -1.52890205e-01 -9.57101882e-01 -5.91403186e-01 -6.27880394e-01 -8.49450588e-01 -2.27765903e-01 -2.68244386e-01 -1.68157011e-01 4.37068820e-01 9.45539355e-01 5.62120259e-01 3.61659586e-01 7.78471947e-01 -9.18815494e-01 -2.83572435e-01 -6.88688874e-01 -2.49184340e-01 8.28359604e-01 4.57608759e-01 -1.04848528e+00 -5.61697006e-01 1.77391395e-01]
[10.232401847839355, 0.894092321395874]
bc2d33cc-4dd5-4047-ab92-77e85d286777
exploring-model-dynamics-for-accumulative
2306.03726
null
https://arxiv.org/abs/2306.03726v1
https://arxiv.org/pdf/2306.03726v1.pdf
Exploring Model Dynamics for Accumulative Poisoning Discovery
Adversarial poisoning attacks pose huge threats to various machine learning applications. Especially, the recent accumulative poisoning attacks show that it is possible to achieve irreparable harm on models via a sequence of imperceptible attacks followed by a trigger batch. Due to the limited data-level discrepancy in real-time data streaming, current defensive methods are indiscriminate in handling the poison and clean samples. In this paper, we dive into the perspective of model dynamics and propose a novel information measure, namely, Memorization Discrepancy, to explore the defense via the model-level information. By implicitly transferring the changes in the data manipulation to that in the model outputs, Memorization Discrepancy can discover the imperceptible poison samples based on their distinct dynamics from the clean samples. We thoroughly explore its properties and propose Discrepancy-aware Sample Correction (DSC) to defend against accumulative poisoning attacks. Extensive experiments comprehensively characterized Memorization Discrepancy and verified its effectiveness. The code is publicly available at: https://github.com/tmlr-group/Memorization-Discrepancy.
['Bo Han', 'Liang Wang', 'Tongliang Liu', 'Shuo Yuan', 'Li He', 'Chao Du', 'Jiangchao Yao', 'Xiawei Guo', 'Jianing Zhu']
2023-06-06
null
null
null
null
['memorization']
['natural-language-processing']
[ 1.74524322e-01 -4.86845821e-01 2.32539866e-02 5.68661429e-02 -9.98259664e-01 -1.08468115e+00 6.69086516e-01 5.46940386e-01 -4.39940661e-01 4.71308053e-01 -9.14798975e-02 -3.50149333e-01 3.49048115e-02 -6.34779096e-01 -8.20401371e-01 -1.05395865e+00 -2.50100166e-01 1.34623617e-01 1.69319615e-01 -2.49098346e-01 4.88070071e-01 5.00872076e-01 -9.94177043e-01 4.28486586e-01 7.14433670e-01 7.18130112e-01 -3.71595681e-01 7.83566773e-01 2.07744896e-01 8.31332207e-01 -1.00542474e+00 -3.80846679e-01 6.45406246e-01 -5.24936974e-01 -5.50097167e-01 -2.64414668e-01 2.60245323e-01 -6.03277028e-01 -6.97245896e-01 1.41773510e+00 4.60118055e-01 -3.47081423e-01 2.98516095e-01 -1.64636850e+00 -5.91109574e-01 7.68384576e-01 -6.69079542e-01 6.01867080e-01 2.30533049e-01 6.85535371e-01 4.93806809e-01 -4.62600529e-01 1.81635380e-01 1.33970916e+00 3.77038419e-01 9.47812557e-01 -1.13295531e+00 -1.01198721e+00 3.82040828e-01 2.52341896e-01 -1.21542656e+00 -3.07210267e-01 9.07526791e-01 -2.55882174e-01 2.82169729e-01 7.98985422e-01 2.59711385e-01 1.54756677e+00 3.39363039e-01 8.26570094e-01 1.08051860e+00 2.72873994e-02 5.35705864e-01 1.55589301e-02 2.03347534e-01 3.44194442e-01 5.68642735e-01 2.02223703e-01 -5.82309306e-01 -9.28199112e-01 4.37398016e-01 3.51520061e-01 -5.53338110e-01 7.16483071e-02 -8.50032747e-01 8.63709152e-01 3.07837486e-01 -5.01251221e-02 -1.32961988e-01 1.27767727e-01 7.96853542e-01 5.69364429e-01 3.66279483e-01 3.95395488e-01 -4.83045608e-01 1.76854029e-01 -3.51851791e-01 2.78992206e-01 8.04756463e-01 5.27167201e-01 2.93067724e-01 2.63599873e-01 2.63164323e-02 1.01080716e-01 1.03306137e-01 7.18128860e-01 5.17253220e-01 -5.58698058e-01 6.40443742e-01 2.96935499e-01 -1.63121261e-02 -1.23415661e+00 -7.01253815e-03 -3.49880666e-01 -1.01212299e+00 1.88732162e-01 5.08400619e-01 -4.24322709e-02 -5.32531857e-01 1.96077609e+00 6.52904749e-01 4.57774729e-01 3.58103700e-02 7.72620678e-01 1.69319540e-01 4.47538733e-01 3.06567460e-01 -4.29291070e-01 1.07186544e+00 -4.17486072e-01 -5.31044066e-01 1.24875180e-01 7.19633222e-01 -2.68716961e-01 1.23449624e+00 6.11742020e-01 -9.44851756e-01 -1.61835358e-01 -1.11523616e+00 6.13370478e-01 -2.38364980e-01 -7.78823197e-01 2.62148261e-01 8.23578179e-01 -3.42433631e-01 6.98987186e-01 -1.02804875e+00 8.78224745e-02 5.86679101e-01 2.72709161e-01 -2.73081601e-01 5.36031909e-02 -1.36896062e+00 4.83868331e-01 1.04350843e-01 -7.43955001e-02 -1.49712741e+00 -8.81564021e-01 -5.51559687e-01 -1.85910091e-01 3.53458494e-01 -4.59693551e-01 1.12270546e+00 -4.64437783e-01 -9.86112714e-01 5.62057555e-01 2.52340585e-01 -9.08541918e-01 9.90511537e-01 -3.45199734e-01 -3.14228207e-01 3.29524606e-01 -3.65670681e-01 -6.69752285e-02 1.08549225e+00 -1.38089430e+00 -3.69348526e-01 -5.29543400e-01 6.52991459e-02 -1.68144196e-01 -9.21116292e-01 1.42644167e-01 3.04384887e-01 -7.99435079e-01 -1.92410171e-01 -6.34602964e-01 -3.98657799e-01 4.84896498e-03 -7.26592004e-01 1.38961956e-01 1.00671291e+00 -5.03689885e-01 1.45620418e+00 -2.26484704e+00 -2.54040986e-01 2.03800909e-02 4.98377532e-01 6.76052213e-01 -2.22985804e-01 8.69722664e-01 5.41696139e-02 3.63020808e-01 -6.52005434e-01 -2.83377767e-01 -9.33611318e-02 -9.10175312e-03 -1.19310844e+00 9.65165555e-01 5.14451154e-02 6.13180995e-01 -9.93487716e-01 3.37417126e-02 -1.01169974e-01 2.60027945e-01 -5.03109753e-01 3.22633743e-01 -2.70661056e-01 6.73210263e-01 -6.66759431e-01 5.68700671e-01 1.13122046e+00 1.28629357e-01 -3.88635322e-02 1.14348352e-01 3.29706579e-01 1.61428049e-01 -9.19270635e-01 1.10217857e+00 1.33966710e-02 2.90176608e-02 4.54123206e-02 -6.79454446e-01 8.80284488e-01 2.93086559e-01 1.61167040e-01 -4.52474982e-01 2.47227564e-01 2.91902244e-01 -8.98096636e-02 -4.42572743e-01 2.47928992e-01 2.40738634e-02 -3.67388517e-01 8.35754991e-01 -5.27273357e-01 1.01857938e-01 -2.58326232e-01 4.52395529e-01 1.38203609e+00 -5.48821330e-01 6.02480769e-02 -1.72020137e-01 5.62395573e-01 -7.64249563e-02 7.74589837e-01 1.00604117e+00 -4.55155611e-01 3.50586087e-01 5.62142909e-01 -5.42967021e-01 -8.97210717e-01 -1.24086237e+00 1.94464207e-01 7.68533707e-01 3.88743341e-01 -5.43547869e-01 -1.04005837e+00 -9.92963374e-01 1.32050499e-01 6.90085411e-01 -6.76107049e-01 -9.49048519e-01 -6.61132097e-01 -9.16323483e-01 1.11335027e+00 3.36561561e-01 5.59567630e-01 -7.86540091e-01 -5.20608366e-01 -5.02017140e-03 2.47209929e-02 -7.26979256e-01 -6.21097803e-01 7.08323717e-02 -8.33397985e-01 -1.21465409e+00 8.25524107e-02 -2.31343269e-01 7.12644637e-01 3.87153178e-01 5.21485984e-01 4.37408954e-01 -4.01954114e-01 2.06209376e-01 -3.32367539e-01 -6.81899250e-01 -7.83549845e-01 -2.76708722e-01 4.76914167e-01 1.31057009e-01 3.70112181e-01 -6.73366964e-01 -6.23753667e-01 1.46555573e-01 -1.57336712e+00 -4.63011593e-01 4.36420515e-02 5.89621305e-01 3.55156481e-01 2.24554226e-01 7.80583739e-01 -9.45718944e-01 8.77416432e-01 -8.76567245e-01 -4.76449877e-01 1.44539118e-01 -2.84435332e-01 -1.11889504e-01 1.11997473e+00 -1.11864638e+00 -5.42563379e-01 -2.09560767e-01 -1.73091918e-01 -6.64993942e-01 -2.13417962e-01 7.82845020e-02 -4.21907544e-01 7.60932278e-04 8.12366664e-01 5.23286283e-01 -2.16251276e-02 -5.60617208e-01 2.51266181e-01 4.43594247e-01 6.47563577e-01 -6.33981168e-01 1.32968879e+00 7.39868164e-01 -9.75362360e-02 -5.17551064e-01 -6.62920475e-01 -1.14821605e-01 -2.26141974e-01 1.44278714e-02 2.23288208e-01 -6.76645398e-01 -8.91650259e-01 1.05542243e+00 -1.12525165e+00 -3.70846212e-01 -2.21593365e-01 3.78494747e-02 -3.34684730e-01 7.82737792e-01 -9.59002316e-01 -9.89026606e-01 -5.04559100e-01 -8.20089638e-01 6.01058185e-01 -7.80834705e-02 2.07110178e-02 -8.62407327e-01 3.00631493e-01 6.91035911e-02 3.57317120e-01 5.88026583e-01 9.05172706e-01 -1.27329183e+00 -3.77338827e-01 -5.78021288e-01 2.96769679e-01 4.43409771e-01 8.81887227e-02 -5.60683571e-02 -1.15004122e+00 -7.45056629e-01 9.10803497e-01 -4.60309207e-01 8.28379035e-01 -2.30314851e-01 1.42718375e+00 -9.62712646e-01 2.58910600e-02 5.80599606e-01 1.34305847e+00 2.31480643e-01 5.41819692e-01 2.51186073e-01 7.08357632e-01 4.53982323e-01 5.39918721e-01 8.99154186e-01 -3.34381461e-02 2.29842678e-01 8.54855061e-01 1.85891226e-01 3.98621798e-01 -6.10081017e-01 4.96992558e-01 8.05852652e-01 5.51341355e-01 -4.42810625e-01 -6.61285281e-01 2.53788829e-01 -1.62949526e+00 -1.13350976e+00 -1.81063458e-01 2.52158070e+00 1.08522987e+00 3.27907413e-01 2.40362093e-01 5.20630419e-01 7.12660909e-01 2.52306849e-01 -9.02574837e-01 -4.02951539e-01 -1.58134148e-01 -1.52465299e-01 6.67234361e-01 4.77060348e-01 -1.07179320e+00 7.72879243e-01 5.78883839e+00 1.20557833e+00 -1.10467780e+00 1.98697060e-01 7.28287935e-01 -2.73985863e-01 -3.51027250e-01 -9.38281193e-02 -7.63382256e-01 8.31549406e-01 1.15659285e+00 -4.00430381e-01 2.96010464e-01 5.95195413e-01 1.69022992e-01 2.31879607e-01 -1.07946134e+00 5.23339152e-01 -9.78262443e-03 -1.08845973e+00 4.07684267e-01 2.76653245e-02 3.63763064e-01 -2.29468361e-01 4.75672096e-01 2.55267546e-02 4.54906315e-01 -8.18772256e-01 6.19265735e-01 3.38424385e-01 3.95183980e-01 -9.08753276e-01 2.21502990e-01 8.05856168e-01 -9.27048802e-01 -4.12275225e-01 -4.64664519e-01 -1.13339417e-01 -1.39126368e-02 3.81807327e-01 -5.10063410e-01 4.70304966e-01 5.74830055e-01 3.66391569e-01 -5.76526165e-01 8.40771437e-01 -2.02232823e-01 1.05295098e+00 -3.39408547e-01 2.74590522e-01 6.46325760e-03 1.17455617e-01 8.42909157e-01 9.77245331e-01 -1.61666796e-01 1.04596317e-01 2.40413174e-01 7.18182921e-01 -1.02409631e-01 -2.87986368e-01 -6.46232009e-01 -7.05471169e-03 9.85109210e-01 8.98416698e-01 -4.32901859e-01 -2.27442428e-01 1.31606564e-01 9.90207851e-01 1.67583406e-01 2.58473337e-01 -1.10361624e+00 -3.28056008e-01 8.65257204e-01 -2.61797905e-02 -9.05280411e-02 -3.35184962e-01 -4.00238812e-01 -1.18224812e+00 7.86553323e-02 -1.35439110e+00 6.44749582e-01 -4.91938479e-02 -1.70244765e+00 6.69064879e-01 -2.74024028e-02 -1.38865829e+00 2.10062712e-01 -4.11175750e-02 -9.84168470e-01 5.63040674e-01 -1.07227552e+00 -8.18279624e-01 -2.20790412e-02 7.67714739e-01 4.96060967e-01 -1.38233230e-02 7.57866144e-01 5.27101345e-02 -9.30099964e-01 1.09254920e+00 1.85947135e-01 1.30582333e-01 6.39154494e-01 -8.59838843e-01 7.88271189e-01 1.12358713e+00 4.05348130e-02 7.26676285e-01 9.61061895e-01 -8.78111899e-01 -1.55684912e+00 -1.16953719e+00 3.62179101e-01 -6.57171786e-01 1.08179963e+00 -7.57772744e-01 -1.51157057e+00 3.88657302e-01 -8.53463486e-02 -2.50347741e-02 6.28079355e-01 -8.10685992e-01 -1.08395135e+00 -3.15818228e-02 -1.60363448e+00 6.62013590e-01 8.10702205e-01 -6.63224638e-01 -3.84514183e-01 2.92123884e-01 1.22044361e+00 -2.11336240e-02 -5.50118744e-01 4.03861463e-01 1.57302842e-01 -6.91947758e-01 1.03297710e+00 -1.01714575e+00 8.43377784e-02 -3.27868432e-01 -1.42032310e-01 -8.98243904e-01 -3.94793525e-02 -9.30669606e-01 -6.31661236e-01 1.22277808e+00 6.90151937e-04 -9.97914314e-01 4.79926139e-01 4.83095855e-01 2.92946726e-01 -6.88340664e-01 -9.36918020e-01 -1.14840269e+00 5.23954213e-01 -2.53299177e-01 6.96448803e-01 1.08244705e+00 5.72812892e-02 -3.28037143e-01 -6.64822161e-01 7.03606308e-01 1.10907590e+00 -1.40351579e-01 7.49829531e-01 -8.45147371e-01 -5.18085480e-01 -1.82519764e-01 -2.89183766e-01 -7.12205768e-01 -7.85636306e-02 -6.76036894e-01 -9.60831046e-02 -6.70779765e-01 3.80390197e-01 -3.17340374e-01 -6.36003792e-01 4.21923697e-01 -4.91676211e-01 2.88107097e-01 4.53824073e-01 6.31952047e-01 -6.25490785e-01 4.97661293e-01 7.94814289e-01 -2.15391144e-01 -5.99828884e-02 -5.22647686e-02 -8.27758789e-01 6.02539480e-01 1.35792553e+00 -1.10922956e+00 -4.31563348e-01 -2.85167843e-01 -3.40429768e-02 -1.10753231e-01 4.96001631e-01 -9.13651288e-01 2.90143609e-01 -3.50821078e-01 -5.00322357e-02 -4.03931767e-01 9.97326374e-02 -6.18482411e-01 7.40874782e-02 1.27229178e+00 -6.83912694e-01 1.70388371e-01 2.97447592e-01 1.01880634e+00 1.64879411e-01 -6.68932199e-02 9.82050419e-01 8.94977059e-03 1.01101538e-02 7.22518086e-01 -5.80618382e-01 3.06987792e-01 1.25530648e+00 2.15219796e-01 -8.05691242e-01 -2.73798168e-01 -3.35894912e-01 2.06109598e-01 6.20972872e-01 2.58311868e-01 7.51829088e-01 -1.09526813e+00 -9.73789752e-01 3.06261003e-01 -5.54897450e-03 -2.36764237e-01 4.31739599e-01 7.46624708e-01 -2.36457020e-01 -1.61227241e-01 -1.27725065e-01 -2.61986136e-01 -1.50223029e+00 1.19559383e+00 2.51235068e-01 -1.81296334e-01 -5.38018167e-01 7.69138217e-01 3.97689193e-01 -8.14125389e-02 4.14210737e-01 1.81406096e-01 3.44646752e-01 -3.61075222e-01 1.12427926e+00 4.31216061e-01 -2.52292365e-01 -2.26907343e-01 -3.11722219e-01 1.03788994e-01 -4.87095207e-01 1.01582736e-01 1.10163140e+00 -3.00253108e-02 -1.07087404e-01 3.64024460e-01 1.21388817e+00 -9.87124071e-03 -1.49637270e+00 -2.55793333e-01 1.94197670e-02 -7.85159707e-01 -5.22136331e-01 -5.91658771e-01 -9.19960976e-01 9.44188893e-01 3.48618329e-01 5.91431558e-01 1.16632247e+00 -2.36561209e-01 1.09786463e+00 4.05399710e-01 4.99033302e-01 -5.61143756e-01 2.98572510e-01 2.93680668e-01 7.82720506e-01 -7.50399053e-01 -2.04290345e-01 -2.11472794e-01 -6.16268277e-01 6.92728043e-01 6.04239643e-01 -4.57693011e-01 4.99276668e-01 5.83672583e-01 7.21950755e-02 9.35015380e-02 -1.09139872e+00 6.64918721e-01 -3.63540620e-01 7.02703595e-01 -3.38163793e-01 -5.08210994e-02 -2.39905730e-01 7.22543418e-01 1.02469616e-01 -6.49549782e-01 7.30276704e-01 1.13425827e+00 -5.96645117e-01 -1.18382907e+00 -6.52043164e-01 1.20952561e-01 -5.85905790e-01 3.41912871e-03 -7.35076189e-01 3.81587923e-01 -3.04910392e-01 1.30686343e+00 -2.17013344e-01 -8.36080194e-01 1.42291069e-01 -1.86109111e-01 1.37094080e-01 -2.80065596e-01 -9.50983524e-01 -2.40741670e-01 -4.09317195e-01 -6.14094198e-01 3.01021457e-01 -5.70222795e-01 -1.21508169e+00 -8.99109006e-01 -3.23658228e-01 3.27967584e-01 4.57644284e-01 7.03896582e-01 3.93813461e-01 1.28324151e-01 1.39417672e+00 -5.76864183e-01 -1.56502378e+00 -6.56767964e-01 -5.71065605e-01 6.48199201e-01 5.88218510e-01 -1.32679716e-01 -1.09873724e+00 -8.73780549e-02]
[5.745835304260254, 7.54346227645874]
416d876d-8b88-4a97-81a1-279c57e61d0e
radioses-mmwave-based-audioradio-speech
2204.07092
null
https://arxiv.org/abs/2204.07092v1
https://arxiv.org/pdf/2204.07092v1.pdf
RadioSES: mmWave-Based Audioradio Speech Enhancement and Separation System
Speech enhancement and separation have been a long-standing problem, especially with the recent advances using a single microphone. Although microphones perform well in constrained settings, their performance for speech separation decreases in noisy conditions. In this work, we propose RadioSES, an audioradio speech enhancement and separation system that overcomes inherent problems in audio-only systems. By fusing a complementary radio modality, RadioSES can estimate the number of speakers, solve source association problem, separate and enhance noisy mixture speeches, and improve both intelligibility and perceptual quality. We perform millimeter-wave sensing to detect and localize speakers, and introduce an audioradio deep learning framework to fuse the separate radio features with the mixed audio features. Extensive experiments using commercial off-the-shelf devices show that RadioSES outperforms a variety of state-of-the-art baselines, with consistent performance gains in different environmental settings. Compared with the audiovisual methods, RadioSES provides similar improvements (e.g., ~3 dB gains in SiSDR), along with the benefits of lower computational complexity and being less privacy concerning.
['K. J. Ray Liu', 'Min Wu', 'Beibei Wang', 'Chenshu Wu', 'Muhammed Zahid Ozturk']
2022-04-14
null
null
null
null
['speech-separation']
['speech']
[ 1.07618511e-01 -2.31453910e-01 1.66260481e-01 -2.81513512e-01 -1.45241141e+00 -4.61449146e-01 2.89060891e-01 -2.82230526e-02 -3.23672712e-01 5.49291253e-01 7.24272490e-01 -1.70326993e-01 -1.70650147e-02 -4.31437522e-01 -3.62366825e-01 -9.92866457e-01 -8.59390572e-02 -1.98611245e-01 9.62913856e-02 -2.31355533e-01 -3.25238258e-01 3.08696777e-01 -1.50686383e+00 3.47758038e-03 7.99109459e-01 1.38757026e+00 3.46962869e-01 9.38475728e-01 5.03156818e-02 6.75689399e-01 -1.04745388e+00 7.85285085e-02 2.70811886e-01 5.01007512e-02 1.80215761e-01 -1.83527783e-01 5.34131944e-01 -4.33519781e-01 -1.07710528e+00 1.07543933e+00 1.44373536e+00 1.40416980e-01 2.87053555e-01 -1.07011127e+00 -5.09886742e-01 5.50932169e-01 -6.46023214e-01 3.55130136e-01 4.70569223e-01 -3.27643692e-01 7.31983840e-01 -8.86520743e-01 -3.37751925e-01 1.18849349e+00 7.48466671e-01 4.30759847e-01 -9.19875264e-01 -1.27983892e+00 -5.48693947e-02 -1.30854368e-01 -1.47764087e+00 -1.31883848e+00 6.08793974e-01 -1.10861070e-01 8.36119592e-01 4.31699246e-01 1.00870028e-01 1.21514201e+00 -5.22647724e-02 8.27252626e-01 1.19638562e+00 -2.48832062e-01 3.20643038e-01 1.24876872e-01 -1.02387339e-01 4.56984311e-01 -2.53049675e-02 4.16296780e-01 -1.11137235e+00 -1.63791582e-01 3.23145509e-01 -2.31240287e-01 -6.76608920e-01 2.36521438e-01 -8.84488225e-01 3.71429950e-01 3.07916522e-01 3.08106273e-01 -1.32508069e-01 4.04022694e-01 -2.33662426e-01 2.15509504e-01 5.92445791e-01 2.12677687e-01 -9.39866602e-02 4.29455638e-02 -1.21820748e+00 -8.74608457e-02 5.85904121e-01 1.02739751e+00 3.29208225e-01 5.54335952e-01 -7.79923797e-02 1.34455502e+00 6.47268772e-01 1.18146658e+00 5.01023948e-01 -8.96380663e-01 7.31846154e-01 -4.64986503e-01 -3.89530584e-02 -7.33398259e-01 -4.91768688e-01 -1.14581573e+00 -9.00816381e-01 2.10356638e-01 -1.11387819e-01 -5.13027310e-01 -1.07382107e+00 1.80074573e+00 1.51223421e-01 3.67601126e-01 3.64431798e-01 9.12918806e-01 1.08477163e+00 7.56914854e-01 -4.20206219e-01 -5.44600859e-02 1.31945992e+00 -1.09905922e+00 -1.04721403e+00 -6.74914360e-01 -2.53384650e-01 -1.03742158e+00 5.44764221e-01 7.12597549e-01 -9.92961705e-01 -4.94797587e-01 -1.53333116e+00 8.50061849e-02 -2.19813719e-01 1.02522761e-01 5.83165705e-01 1.45019114e+00 -1.25310707e+00 -1.12311609e-01 -7.76830733e-01 4.17609885e-02 1.43057108e-01 4.92427230e-01 -1.37202531e-01 -1.11936122e-01 -1.08834648e+00 3.04893732e-01 -3.40018749e-01 -9.57586989e-02 -1.10491419e+00 -7.10995376e-01 -8.04379165e-01 3.04967940e-01 3.34822088e-01 -5.98369181e-01 1.46391571e+00 -3.95208627e-01 -1.77661169e+00 2.51133502e-01 -3.86262923e-01 -5.06752431e-01 1.88744724e-01 -2.71741062e-01 -1.23284829e+00 2.63232589e-01 1.72514748e-02 4.87899780e-01 9.29154038e-01 -1.26607120e+00 -9.30777669e-01 -4.03160840e-01 -1.02529325e-01 3.69323552e-01 -4.95467395e-01 2.16148585e-01 -5.97578704e-01 -9.51111257e-01 6.33390963e-01 -7.48919904e-01 -6.91396594e-02 -1.28145993e-01 -3.63787085e-01 5.81834733e-01 5.91792226e-01 -8.34339559e-01 9.71573830e-01 -2.59364295e+00 -3.45155925e-01 7.11363852e-02 4.59302366e-01 2.44426712e-01 2.67178304e-02 6.24584332e-02 3.36036943e-02 -2.13240683e-01 -9.43721235e-02 -7.98148751e-01 1.51453316e-01 -4.44985777e-01 -3.28539729e-01 5.11162579e-01 -3.05725038e-01 1.13449255e-02 -6.73058093e-01 -1.21874340e-01 2.25395784e-01 8.46603096e-01 -3.84760261e-01 1.55261174e-01 5.25542021e-01 4.92056757e-01 -1.85730293e-01 8.99524987e-01 1.02366710e+00 2.00367555e-01 -3.30405146e-01 3.12706381e-02 5.52050844e-02 6.07419968e-01 -1.45848632e+00 1.62856412e+00 -9.24290657e-01 9.71144259e-01 1.06352258e+00 -5.72138488e-01 1.07431352e+00 6.82140648e-01 2.92466849e-01 -9.36114907e-01 6.72867615e-03 4.36881363e-01 -3.68801504e-01 -4.38964397e-01 5.88265419e-01 -2.56965488e-01 -5.29803559e-02 6.72184974e-02 2.81523496e-01 -1.36345372e-01 -4.32055503e-01 2.20917061e-01 1.27568209e+00 -7.21117735e-01 2.18942419e-01 4.30855192e-02 4.64533687e-01 -8.38811517e-01 4.55162108e-01 8.08206737e-01 -3.14691067e-01 8.75840485e-01 -5.05641162e-01 6.64228678e-01 -2.89043784e-01 -1.47384107e+00 -2.51195934e-02 1.18277419e+00 4.05008286e-01 -2.19850212e-01 -6.23336911e-01 -5.17211258e-02 -1.15521803e-01 5.45401573e-01 1.73491299e-01 6.25878572e-02 -2.92867243e-01 -8.37846935e-01 1.06519961e+00 5.82363486e-01 8.01690102e-01 1.53997568e-02 6.72414824e-02 2.13174969e-01 -5.16348422e-01 -1.36777794e+00 -5.55433750e-01 4.72175807e-01 -1.84463099e-01 -2.06369594e-01 -1.04689407e+00 -7.79626429e-01 1.31957665e-01 1.07670164e+00 6.62202537e-01 -5.55835485e-01 -3.44319716e-02 5.73679149e-01 -1.11000136e-01 -7.04749048e-01 -1.99971274e-01 -2.43700832e-01 4.55088019e-01 1.49683878e-01 5.76749742e-02 -9.66581047e-01 -6.66116416e-01 3.09643865e-01 -6.03097916e-01 -4.41114515e-01 5.99199653e-01 3.95295262e-01 1.56376302e-01 4.36444372e-01 8.26104820e-01 2.99957469e-02 6.62934542e-01 -4.46821690e-01 -5.41724384e-01 -7.28190318e-02 -4.36262250e-01 -1.19950950e-01 5.13187945e-01 -2.32522622e-01 -1.36568487e+00 3.20588388e-02 -4.17836130e-01 -1.34328142e-01 -1.90740705e-01 2.65322536e-01 -5.71180463e-01 -2.48376042e-01 6.53331161e-01 1.29677281e-01 -2.51911342e-01 -6.77485585e-01 1.93803713e-01 1.55974603e+00 1.06564760e+00 -1.86807528e-01 8.34148943e-01 6.24729514e-01 -3.03064555e-01 -1.22107720e+00 -4.07148242e-01 -9.69536006e-01 2.80233055e-01 -1.02952905e-01 5.07094443e-01 -1.78578889e+00 -4.38012898e-01 5.46437562e-01 -8.00424933e-01 8.67482126e-02 2.22901925e-01 1.02600718e+00 -1.72752604e-01 2.41841182e-01 -5.74663043e-01 -1.23013389e+00 -2.24335089e-01 -1.23147500e+00 1.21796525e+00 3.87438655e-01 3.21397394e-01 -4.46898669e-01 -7.00270906e-02 7.60264516e-01 6.93016946e-01 -3.53566259e-01 5.02332412e-02 -3.03842455e-01 -5.50833464e-01 -1.04942821e-01 -1.81172453e-02 2.43950799e-01 2.84244388e-01 -7.58514404e-01 -1.82821190e+00 -4.94863629e-01 2.74221599e-01 9.21941325e-02 1.05564463e+00 6.01371348e-01 8.40909660e-01 -1.62472464e-02 -4.14941937e-01 9.55001414e-01 9.75391626e-01 4.49448258e-01 4.67211694e-01 -7.16608763e-02 2.73664504e-01 3.20223510e-01 3.95085931e-01 3.51472199e-01 1.43235415e-01 7.21016765e-01 2.44242862e-01 -3.50925177e-01 -7.13964641e-01 -4.59394976e-02 7.17336595e-01 9.49993670e-01 4.98818755e-01 -6.65993750e-01 -5.89130342e-01 4.97195393e-01 -1.24315488e+00 -7.19191730e-01 2.38132715e-01 2.15309072e+00 5.88896394e-01 -8.92005339e-02 -5.35667688e-02 3.67356509e-01 8.84644806e-01 5.25259912e-01 -3.88764381e-01 1.87290400e-01 -4.63316739e-01 3.76118153e-01 9.72819924e-01 8.68046939e-01 -1.15014446e+00 4.67950046e-01 6.73262024e+00 1.01387310e+00 -1.38299799e+00 3.26079339e-01 3.46300483e-01 -5.65413833e-01 -1.55443743e-01 -6.66964710e-01 -7.00232387e-01 3.03068697e-01 9.74442780e-01 8.15189108e-02 7.40394711e-01 5.99562109e-01 2.18932346e-01 -8.30485076e-02 -9.41182733e-01 1.48427987e+00 4.21378821e-01 -9.52143192e-01 -7.18427777e-01 2.57762074e-01 4.33603436e-01 4.22918797e-01 6.20496571e-01 1.37806520e-01 3.73890579e-01 -1.01306248e+00 9.28201079e-01 2.23196805e-01 7.04251647e-01 -6.67815626e-01 5.51915944e-01 1.94545329e-01 -1.34069991e+00 -3.75811666e-01 -1.56288341e-01 2.17689827e-01 1.94774717e-01 9.80920076e-01 -6.73710644e-01 6.10022128e-01 1.00736368e+00 -3.15901302e-02 -3.28779787e-01 1.17956364e+00 -2.38512740e-01 7.77382255e-01 -6.12629294e-01 2.05748573e-01 1.06259855e-02 1.89093351e-01 8.82080495e-01 1.29566693e+00 8.42776179e-01 1.17016099e-01 4.00869101e-02 3.69353890e-01 -2.94907868e-01 -2.72242963e-01 -4.42998827e-01 1.90008700e-01 9.18323755e-01 1.12418354e+00 -2.24412903e-01 -5.26994653e-02 -4.80646044e-01 7.79487789e-01 -4.72457826e-01 5.37685275e-01 -9.17762399e-01 -7.27716684e-01 8.59394014e-01 -8.30083787e-02 3.32463384e-01 -4.65562701e-01 -1.90931857e-01 -8.42062473e-01 1.57915309e-01 -1.09620929e+00 -1.84441078e-02 -9.05670464e-01 -8.17188323e-01 6.10566974e-01 -5.05657792e-01 -1.31230640e+00 6.92667514e-02 -4.52153176e-01 -3.87779981e-01 9.51746643e-01 -1.76775622e+00 -6.92261457e-01 -3.66115063e-01 5.91102004e-01 4.16170150e-01 -4.98565257e-01 7.39486575e-01 9.26196516e-01 -4.54286098e-01 1.00740969e+00 7.44777977e-01 9.12298784e-02 9.72326756e-01 -1.08648741e+00 3.49122524e-01 1.11999190e+00 2.96201676e-01 5.07818222e-01 8.37733209e-01 -1.66772664e-01 -1.34970200e+00 -9.60270345e-01 4.33053911e-01 1.58950463e-01 5.05989313e-01 -6.84240937e-01 -4.36821133e-01 2.90008754e-01 2.92545170e-01 1.63754523e-01 1.10154271e+00 -5.46996109e-03 -4.51758444e-01 -5.99986732e-01 -1.22460103e+00 3.68195534e-01 9.92894650e-01 -8.63271773e-01 -3.88867348e-01 1.55240744e-01 9.75473344e-01 -5.01569152e-01 -5.48062861e-01 3.24755572e-02 4.77281302e-01 -9.26909149e-01 1.32796967e+00 2.59390533e-01 -1.79894596e-01 -6.29530609e-01 -8.22155833e-01 -1.50798690e+00 -2.84707367e-01 -1.17974067e+00 -1.77081957e-01 1.72775817e+00 5.05855799e-01 -7.86089242e-01 5.59949815e-01 6.99668601e-02 -4.16822761e-01 1.41757950e-02 -1.14705241e+00 -1.18259811e+00 -4.17880416e-01 -6.55238271e-01 8.28217506e-01 5.23661494e-01 1.87263917e-02 4.73638862e-01 -6.21593058e-01 1.06775391e+00 7.41906941e-01 -4.08361584e-01 6.67931795e-01 -9.44819331e-01 -8.83366585e-01 -1.42425016e-01 -4.03343201e-01 -1.63245416e+00 -9.18494239e-02 -6.21096849e-01 4.67018962e-01 -1.38726366e+00 -4.50283080e-01 -3.70747328e-01 -4.96677935e-01 -6.95003644e-02 -1.30087167e-01 2.66285628e-01 8.26865733e-02 -1.58938646e-01 -4.47253376e-01 7.19354808e-01 5.10131717e-01 -6.45795643e-01 -2.42577419e-01 2.02506572e-01 -1.20801175e+00 7.53844500e-01 6.41423285e-01 -4.20862824e-01 -3.75648290e-01 -8.77455294e-01 -1.79792061e-01 2.83927798e-01 5.45175886e-03 -1.77296484e+00 6.99646592e-01 3.22381616e-01 2.61895329e-01 -4.91320461e-01 9.72382009e-01 -8.63847077e-01 -1.52883409e-02 9.56509039e-02 -2.84292489e-01 -4.65248138e-01 2.37918332e-01 1.00455678e+00 -4.00460929e-01 1.26389459e-01 7.68604159e-01 3.18872809e-01 -2.94174582e-01 7.64831081e-02 -7.57825971e-01 -1.61188558e-01 4.96597737e-01 1.00274580e-02 -5.36605239e-01 -9.36779380e-01 -5.35413980e-01 1.62864506e-01 -2.13009015e-01 4.03418660e-01 5.14908195e-01 -1.14087129e+00 -5.87640822e-01 1.31200328e-01 1.13083897e-02 -1.80337578e-01 3.15677196e-01 5.65642357e-01 -1.90983880e-02 5.22460639e-01 3.09737802e-01 -5.05378366e-01 -1.54897678e+00 3.34060699e-01 4.43318129e-01 2.87474602e-01 -4.19610381e-01 1.23888552e+00 2.44452581e-01 -4.14652705e-01 8.49038422e-01 -2.85414994e-01 -3.66274640e-02 -2.22985193e-01 9.64764178e-01 7.02268124e-01 4.02883381e-01 -5.23376703e-01 -5.16605318e-01 3.38417739e-01 2.75910079e-01 -8.40191841e-01 1.19010174e+00 -5.90078831e-01 4.23223466e-01 9.91513506e-02 1.16764927e+00 1.03637958e+00 -1.12072468e+00 -5.46178639e-01 -5.78991711e-01 -5.33254266e-01 7.96884060e-01 -1.01819766e+00 -1.28083444e+00 1.01494503e+00 1.22278154e+00 2.75364876e-01 1.43954086e+00 1.62210874e-02 9.77875054e-01 3.78651261e-01 3.52304101e-01 -1.05319881e+00 3.90738584e-02 1.98888034e-01 6.73790395e-01 -1.06211936e+00 -2.03632370e-01 -6.40378654e-01 -1.83212966e-01 6.94802105e-01 1.80649430e-01 5.07902324e-01 7.55707979e-01 9.99268413e-01 4.02677715e-01 9.31465700e-02 -2.26607606e-01 -3.12429845e-01 3.33705172e-02 1.05844414e+00 3.47423136e-01 2.16438815e-01 5.13563573e-01 8.95820975e-01 -6.79389775e-01 -4.43257511e-01 3.22455406e-01 7.17161894e-01 -6.78004801e-01 -8.11997712e-01 -1.11847794e+00 9.20632780e-02 -7.39113212e-01 -3.45523745e-01 -3.43860656e-01 1.24453060e-01 3.42321321e-02 1.96346211e+00 -1.54868096e-01 -7.23652899e-01 2.13383093e-01 -3.81575257e-01 1.39526010e-01 -2.94745773e-01 -3.79591644e-01 6.43058956e-01 3.25175434e-01 -3.96596879e-01 -3.36391479e-01 -5.15904427e-01 -1.16241980e+00 -2.99333990e-01 -6.67957544e-01 2.12667659e-01 1.05801928e+00 7.69511998e-01 5.60538054e-01 1.16611075e+00 1.02791297e+00 -7.06606627e-01 -5.29541731e-01 -8.26391697e-01 -8.99664819e-01 -4.07448709e-01 9.34918165e-01 -4.98112768e-01 -6.60475016e-01 -3.50850731e-01]
[14.900307655334473, 5.928405284881592]
efc6f216-0345-45a2-acda-0c551be93fcd
inclg-inpainting-for-non-cleft-lip-generation
2305.10589
null
https://arxiv.org/abs/2305.10589v1
https://arxiv.org/pdf/2305.10589v1.pdf
INCLG: Inpainting for Non-Cleft Lip Generation with a Multi-Task Image Processing Network
We present a software that predicts non-cleft facial images for patients with cleft lip, thereby facilitating the understanding, awareness and discussion of cleft lip surgeries. To protect patients privacy, we design a software framework using image inpainting, which does not require cleft lip images for training, thereby mitigating the risk of model leakage. We implement a novel multi-task architecture that predicts both the non-cleft facial image and facial landmarks, resulting in better performance as evaluated by surgeons. The software is implemented with PyTorch and is usable with consumer-level color images with a fast prediction speed, enabling effective deployment.
['Hubert P. H. Shum', 'Edmond S. L. Ho', 'Amir Atapour-Abarghouei', 'Shuang Chen']
2023-05-17
null
null
null
null
['image-inpainting']
['computer-vision']
[ 5.82314953e-02 4.89593267e-01 -3.91729474e-01 -5.01438022e-01 -1.14327669e+00 -2.98823029e-01 -1.86310783e-02 -1.74243003e-01 -4.02911782e-01 2.07877606e-01 4.39041942e-01 -4.36897159e-01 3.96092504e-01 -4.89016324e-01 -6.17958188e-01 -6.63046718e-01 1.76093057e-01 7.83060715e-02 -2.92205989e-01 4.07956243e-01 1.66552573e-01 4.64101464e-01 -1.71611452e+00 9.33711588e-01 4.45391893e-01 1.21293569e+00 -8.38404372e-02 6.69896662e-01 -6.68118000e-02 4.54745919e-01 -4.92995143e-01 -8.39158297e-01 4.76246953e-01 1.45008385e-01 -5.76016009e-01 -2.66500115e-01 1.04031467e+00 -9.80082214e-01 -8.50890279e-02 7.83870637e-01 7.88349569e-01 -5.46684861e-01 6.25637099e-02 -1.24858630e+00 -2.88287193e-01 -1.71428189e-01 -6.11005366e-01 -6.03431940e-01 2.46936336e-01 3.39053690e-01 7.37527192e-01 -9.08183873e-01 8.59177351e-01 9.91433084e-01 9.20390725e-01 1.06527460e+00 -1.23823595e+00 -1.16418040e+00 -4.43167955e-01 9.42185447e-02 -1.47584152e+00 -1.04596686e+00 5.76817691e-01 -1.64645478e-01 7.09485531e-01 2.42890581e-01 1.00573361e+00 1.25251651e+00 4.97304171e-01 9.51234758e-01 9.71346080e-01 -3.47033203e-01 8.00358728e-02 2.10211381e-01 -5.48382521e-01 8.29663038e-01 5.94458953e-02 3.34421396e-01 -9.35783088e-01 -3.33276033e-01 6.68151796e-01 -4.49653864e-02 -2.88806379e-01 -5.14358878e-01 -5.77102244e-01 5.89271188e-01 1.76578958e-03 -3.09121221e-01 -4.66857553e-01 1.63000628e-01 6.37888670e-01 1.32784352e-01 4.38235313e-01 -3.74199480e-01 -2.27855816e-01 -1.08231574e-01 -8.92777860e-01 -6.42367229e-02 6.87211573e-01 1.02595055e+00 4.87541199e-01 -2.51380324e-01 2.15286478e-01 9.32630897e-01 5.95166922e-01 2.12507904e-01 4.50443149e-01 -1.06474602e+00 2.71045595e-01 2.07190365e-01 -2.91338384e-01 -5.37215471e-01 -3.02654088e-01 2.12194592e-01 -5.83885908e-01 1.02785635e+00 1.40337855e-01 -1.63268119e-01 -1.12943411e+00 1.50157154e+00 2.98427075e-01 2.80905694e-01 1.10655077e-01 5.18147409e-01 1.03914940e+00 1.50210291e-01 4.65745658e-01 1.05875470e-01 1.26895738e+00 -1.13422823e+00 -8.15806985e-01 -3.20713848e-01 7.71065354e-01 -8.12098086e-01 9.55651104e-01 6.18196070e-01 -1.08422387e+00 6.48225248e-02 -6.95152283e-01 -5.47834218e-01 -3.68576437e-01 9.81377736e-02 8.38367641e-01 9.65273440e-01 -1.38397086e+00 4.27806228e-01 -7.73326695e-01 -1.11340508e-01 1.06869423e+00 6.91180825e-01 -1.14449310e+00 -4.80616167e-02 -3.61001700e-01 1.04246998e+00 -1.85368538e-01 -9.88623966e-03 -6.08453453e-01 -1.29688334e+00 -1.14716828e+00 8.79555345e-02 -9.20747072e-02 -4.74496186e-01 1.29638433e+00 -9.04418051e-01 -1.61624396e+00 1.44264925e+00 -2.63982266e-01 -1.93591759e-01 7.09657371e-01 -1.90047175e-01 -2.32060805e-01 2.97935992e-01 -3.56911123e-01 1.09577274e+00 8.94557953e-01 -1.27762330e+00 -5.26848555e-01 -4.84665811e-01 -5.48727870e-01 1.70484245e-01 -2.49476284e-01 -9.25973430e-02 -5.99703610e-01 -3.87446284e-01 -1.66998088e-01 -1.01228535e+00 -1.37360260e-01 1.23243940e+00 -2.10382923e-01 2.17818290e-01 1.07575881e+00 -1.03348196e+00 5.79133153e-01 -2.48707604e+00 -7.91909277e-01 3.09677809e-01 2.61657745e-01 5.26487291e-01 -4.11693811e-01 2.39664972e-01 -2.43480012e-01 4.20690656e-01 8.64727870e-02 -1.14008319e+00 -5.38872182e-01 2.10517421e-01 -7.54528940e-02 4.85504717e-01 -1.06227227e-01 7.71970093e-01 -2.89628774e-01 -8.81248951e-01 4.14719045e-01 9.14318264e-01 -8.05434823e-01 2.46329337e-01 3.53744142e-02 3.50103885e-01 -1.50116324e-01 9.54419434e-01 1.16313887e+00 2.57671475e-01 1.95324868e-01 -2.03773320e-01 -2.07205452e-02 1.48650452e-01 -7.18412340e-01 2.17958260e+00 -7.67516792e-01 7.08087564e-01 9.40910459e-01 6.43024594e-02 6.28948927e-01 6.39687717e-01 7.28936017e-01 -5.92718840e-01 9.36019793e-02 7.25909993e-02 -3.78614664e-01 -6.78455472e-01 5.58335073e-02 -2.35151395e-01 5.39842844e-01 3.68445814e-01 -9.77658182e-02 -4.09182101e-01 -4.90111172e-01 -2.21478745e-01 6.54124320e-01 2.73195416e-01 2.46129528e-01 -5.54973679e-03 9.98110138e-03 -3.45131040e-01 5.13179243e-01 8.50147754e-02 -3.52933645e-01 8.73185039e-01 4.99780148e-01 -6.62733018e-01 -8.40636134e-01 -1.10652280e+00 -3.19593489e-01 8.14450920e-01 -2.67711073e-01 -4.31351513e-01 -7.98804879e-01 -7.23445117e-01 2.97372520e-01 5.71038008e-01 -9.52706873e-01 4.68442999e-02 -3.06938112e-01 -4.70683202e-02 5.21503389e-01 3.07188034e-01 3.79318222e-02 -1.03260493e+00 -5.81944108e-01 -2.62343019e-01 -2.11634673e-02 -7.98192918e-01 -9.30880487e-01 -1.21150509e-01 -6.06764913e-01 -1.23202455e+00 -7.11175501e-01 -1.11983955e+00 8.14526439e-01 -9.60861146e-02 6.58066869e-01 2.03353256e-01 -7.30396986e-01 3.21253002e-01 1.52410299e-01 -8.72451305e-01 -5.83466053e-01 -2.43545711e-01 -3.23488742e-01 1.27717294e-02 3.44033092e-01 -6.28381312e-01 -1.03011358e+00 -7.45787174e-02 -9.81544435e-01 4.85867947e-01 7.42068648e-01 7.48559952e-01 7.56349266e-01 -7.07262516e-01 8.46872479e-02 -8.98170650e-01 4.07802224e-01 -3.17324102e-01 -6.93581462e-01 2.77098268e-01 -8.29212070e-01 -3.47552806e-01 4.20921057e-01 -1.60262883e-01 -1.09131765e+00 4.45776254e-01 -5.89267969e-01 -5.51478982e-01 -1.73928693e-01 5.34715541e-02 -1.16358101e-01 -7.29810894e-01 1.71351746e-01 5.67246713e-02 1.00180864e+00 -6.01078689e-01 6.79774210e-02 8.10140848e-01 3.54076743e-01 3.96540686e-02 3.13237250e-01 5.72326899e-01 1.57188345e-02 -8.02408636e-01 -2.06627473e-01 -1.84710845e-01 -3.48471314e-01 -2.44409144e-01 6.50403082e-01 -9.26508367e-01 -1.27995884e+00 3.99672121e-01 -1.05893791e+00 -1.69403970e-01 -2.26990064e-03 3.08759451e-01 -6.33282900e-01 3.29280943e-01 -5.79555988e-01 -5.83554804e-01 -9.73678231e-01 -1.25643420e+00 1.28836179e+00 2.35082284e-01 -2.31321424e-01 -7.02255130e-01 1.70597777e-01 5.64006329e-01 5.91851473e-01 1.68537110e-01 9.71373260e-01 -3.75625968e-01 -6.80630147e-01 -3.83893549e-01 -2.26762772e-01 5.31233013e-01 1.12638801e-01 3.17034483e-01 -1.26183879e+00 -2.33991235e-01 -3.33129466e-01 -5.67577899e-01 4.38554585e-01 6.15420938e-01 1.65334332e+00 -3.72578025e-01 -5.57353616e-01 1.15798509e+00 1.40115726e+00 -9.02199186e-03 8.60439003e-01 -4.76083439e-03 2.47288451e-01 8.04027319e-01 4.11663473e-01 4.41096127e-01 5.94483435e-01 4.79324967e-01 7.50730217e-01 -7.47972548e-01 -3.43922496e-01 -5.71044564e-01 -2.09328920e-01 2.27001444e-01 1.12797432e-01 1.67420030e-01 -9.46896374e-01 6.42655909e-01 -1.30573511e+00 -4.57489818e-01 4.62839425e-01 2.15372777e+00 9.03040230e-01 -5.95800579e-01 -3.75767976e-01 -4.97402072e-01 4.35390145e-01 9.65675041e-02 -5.23907900e-01 -6.27899408e-01 2.78718591e-01 7.30629683e-01 5.90206265e-01 4.73813206e-01 -8.84192228e-01 1.08209372e+00 7.48156023e+00 5.65696955e-01 -1.50630963e+00 7.67175928e-02 8.45853567e-01 -5.81599295e-01 -2.06401512e-01 -2.06505835e-01 -2.96663731e-01 1.39357194e-01 7.90525198e-01 -2.11301133e-01 5.27888611e-02 1.39238358e+00 2.75465190e-01 -1.06831796e-01 -9.49095666e-01 1.08363485e+00 2.20302314e-01 -1.72586060e+00 1.74332783e-01 2.50134140e-01 1.53682649e-01 1.02401212e-01 4.04480040e-01 -1.45545885e-01 -3.05950250e-02 -1.15907609e+00 3.23904574e-01 2.88840085e-01 1.41921008e+00 -7.04405963e-01 7.01693356e-01 -1.24958582e-01 -7.02226043e-01 1.42658353e-01 6.60903975e-02 7.02289522e-01 1.65828645e-01 -1.07424013e-01 -1.31344438e+00 -6.95932135e-02 8.90629649e-01 2.67113447e-01 -2.51427233e-01 1.21768498e+00 1.83115557e-01 1.25506327e-01 -4.11072403e-01 3.29682082e-01 -2.33768567e-01 -6.53381599e-03 4.33995910e-02 1.12085176e+00 4.22118157e-01 -4.44605909e-02 -2.87362486e-01 3.62225652e-01 -3.39544177e-01 6.08399332e-01 -7.54806340e-01 4.17578131e-01 3.28261316e-01 1.04716170e+00 5.13400361e-02 2.12669283e-01 -7.24922419e-01 8.29312742e-01 9.46880952e-02 4.05545644e-02 -4.68251616e-01 -1.88949585e-01 1.38913131e+00 3.47119510e-01 -2.94317435e-02 2.09527299e-01 -6.19934857e-01 -7.16105700e-01 1.55800015e-01 -9.30664182e-01 4.07005131e-01 -8.22530806e-01 -6.30337238e-01 6.30301595e-01 -6.47895575e-01 -1.26701260e+00 -2.07053959e-01 -7.29520619e-01 -6.11049891e-01 8.27304065e-01 -1.96498656e+00 -1.75838351e+00 -4.20390099e-01 8.78549278e-01 2.60729551e-01 -1.66430265e-01 1.58203816e+00 1.46994710e-01 -4.25365746e-01 1.00094879e+00 -1.86160520e-01 1.99639440e-01 1.13957858e+00 -8.18851650e-01 7.53386542e-02 4.05845106e-01 -2.18385920e-01 6.39603496e-01 3.44784379e-01 -5.10642350e-01 -1.49222362e+00 -1.00086820e+00 6.48196399e-01 -1.07103765e-01 7.88779110e-02 -3.81782919e-01 -5.66758931e-01 9.20771062e-01 4.04788166e-01 2.41127208e-01 1.61840749e+00 -1.66967250e-02 -6.44399762e-01 -5.37959278e-01 -1.83847761e+00 8.98263931e-01 5.45523226e-01 -7.16446936e-01 -1.67499371e-02 4.98593032e-01 2.80709416e-01 -7.06702590e-01 -1.13575494e+00 4.26848263e-01 1.15522838e+00 -9.22383845e-01 7.43525684e-01 -3.78902197e-01 4.94958073e-01 3.94437373e-01 2.85980582e-01 -1.01566184e+00 2.84572423e-01 -9.69738543e-01 2.12549552e-01 7.71274984e-01 7.68955588e-01 -7.64024973e-01 1.66293335e+00 1.36550391e+00 -6.29365593e-02 -6.01789832e-01 -1.48704183e+00 -1.98998246e-02 2.04389885e-01 -4.80539352e-01 5.51023185e-01 4.36331868e-01 2.67984390e-01 -6.76317215e-01 -5.36883652e-01 2.71168381e-01 6.66367948e-01 3.63688432e-02 8.39443028e-01 -7.38026023e-01 3.01035047e-01 -3.98950756e-01 -3.49138767e-01 -4.35206503e-01 2.19551340e-01 -8.86815369e-01 -1.00221850e-01 -1.12288082e+00 -2.63099223e-02 -3.00454319e-01 5.60594909e-02 1.20876193e+00 3.34567159e-01 5.33762157e-01 9.03941914e-02 -1.02571622e-01 8.41908306e-02 3.88851762e-01 1.27902281e+00 1.70633510e-01 1.74386967e-02 1.78124979e-01 -7.53910065e-01 6.88316584e-01 5.88939548e-01 -5.58830798e-01 -1.46380246e-01 -7.74180770e-01 -4.49191928e-01 1.60217315e-01 2.40358099e-01 -6.87743068e-01 4.26493555e-01 -1.80682745e-02 3.78668398e-01 -5.27516246e-01 8.63049686e-01 -1.18309700e+00 2.23569334e-01 5.68636000e-01 -3.26869905e-01 -3.09773743e-01 5.79420388e-01 1.51976839e-01 -2.53107041e-01 9.74959359e-02 1.09944820e+00 1.96364392e-02 -4.16305661e-01 8.05505574e-01 -2.06091672e-01 -5.80514967e-01 1.24787319e+00 -3.58979374e-01 -2.06077605e-01 -6.50567412e-01 -8.60293150e-01 1.15743324e-01 6.98502839e-01 5.96161723e-01 1.02249074e+00 -8.88462901e-01 -7.56893098e-01 8.94371867e-01 3.23628157e-01 -8.94084349e-02 6.50191545e-01 5.11417091e-01 -1.17865038e+00 1.77020326e-01 -2.84118116e-01 -4.74780828e-01 -1.89212823e+00 2.84555376e-01 2.78123617e-01 2.43308753e-01 -1.03594720e+00 8.16376448e-01 4.95394021e-02 -3.70667428e-01 5.63810468e-01 -1.64610334e-02 1.19085081e-01 -2.95680672e-01 9.41031218e-01 -1.61873877e-01 2.50497818e-01 -3.30116034e-01 -3.37389290e-01 6.13063693e-01 -4.72113669e-01 5.73356934e-02 1.35954130e+00 4.00848910e-02 -5.96021675e-02 -5.15319109e-01 1.53829598e+00 4.21478659e-01 -1.38824391e+00 8.40249211e-02 -3.56332213e-01 -8.98389399e-01 3.13392937e-01 -1.12376893e+00 -1.49606419e+00 8.68513048e-01 9.61099207e-01 -6.32079601e-01 1.20108950e+00 -1.96851820e-01 9.71226990e-01 -1.82426706e-01 6.17474079e-01 -8.79956841e-01 -4.12684798e-01 -2.41720632e-01 1.11326921e+00 -1.33114922e+00 -1.63140580e-01 -6.33724809e-01 -8.79853189e-01 1.18762255e+00 5.80138922e-01 3.28486949e-01 1.00871563e+00 1.08889234e+00 9.86189306e-01 1.88588589e-01 -7.83685446e-01 1.95533574e-01 -1.06338207e-02 1.08683407e+00 2.17889994e-01 -1.75204004e-05 2.52289921e-02 3.45384032e-01 -2.70025939e-01 4.24041510e-01 1.82111621e-01 8.42949748e-01 2.41070360e-01 -1.38742208e+00 -9.79111120e-02 5.54540157e-01 -6.06588066e-01 -3.50346416e-01 -8.58854130e-02 8.03862810e-01 6.45080656e-02 6.09916091e-01 -2.33207457e-02 -1.10584646e-01 1.76919505e-01 1.48729473e-01 1.31792381e-01 -6.42040253e-01 -7.87413716e-01 -3.00155673e-02 2.43174434e-01 -1.17016160e+00 3.23616594e-01 -7.14800179e-01 -7.73832738e-01 -3.62187445e-01 -5.60089238e-02 -2.32779384e-01 1.36883593e+00 2.87904561e-01 8.31829548e-01 -8.46085697e-02 5.37610233e-01 -7.52854884e-01 -9.77278501e-02 -7.24924147e-01 -5.77907681e-01 9.83459353e-02 7.19647169e-01 -1.16156764e-01 -1.92427695e-01 -8.19616765e-02]
[13.056262016296387, 0.18384987115859985]
a849bbfb-7dcf-4c6f-832c-9459f98eb450
sadtalker-learning-realistic-3d-motion
2211.12194
null
https://arxiv.org/abs/2211.12194v2
https://arxiv.org/pdf/2211.12194v2.pdf
SadTalker: Learning Realistic 3D Motion Coefficients for Stylized Audio-Driven Single Image Talking Face Animation
Generating talking head videos through a face image and a piece of speech audio still contains many challenges. ie, unnatural head movement, distorted expression, and identity modification. We argue that these issues are mainly because of learning from the coupled 2D motion fields. On the other hand, explicitly using 3D information also suffers problems of stiff expression and incoherent video. We present SadTalker, which generates 3D motion coefficients (head pose, expression) of the 3DMM from audio and implicitly modulates a novel 3D-aware face render for talking head generation. To learn the realistic motion coefficients, we explicitly model the connections between audio and different types of motion coefficients individually. Precisely, we present ExpNet to learn the accurate facial expression from audio by distilling both coefficients and 3D-rendered faces. As for the head pose, we design PoseVAE via a conditional VAE to synthesize head motion in different styles. Finally, the generated 3D motion coefficients are mapped to the unsupervised 3D keypoints space of the proposed face render, and synthesize the final video. We conducted extensive experiments to demonstrate the superiority of our method in terms of motion and video quality.
['Fei Wang', 'Ying Shan', 'Yu Guo', 'Xi Shen', 'Yong Zhang', 'Xuan Wang', 'Xiaodong Cun', 'Wenxuan Zhang']
2022-11-22
null
http://openaccess.thecvf.com//content/CVPR2023/html/Zhang_SadTalker_Learning_Realistic_3D_Motion_Coefficients_for_Stylized_Audio-Driven_Single_CVPR_2023_paper.html
http://openaccess.thecvf.com//content/CVPR2023/papers/Zhang_SadTalker_Learning_Realistic_3D_Motion_Coefficients_for_Stylized_Audio-Driven_Single_CVPR_2023_paper.pdf
cvpr-2023-1
['talking-head-generation']
['computer-vision']
[-1.02811567e-01 1.33460656e-01 2.19037294e-01 -7.18481481e-01 -9.12666142e-01 -3.73776704e-01 4.73322123e-01 -1.13504291e+00 8.17270856e-03 4.03844506e-01 6.80735469e-01 4.24528807e-01 2.97341436e-01 -2.56788224e-01 -7.95063674e-01 -8.80690038e-01 8.48663598e-02 1.33429110e-01 -4.13480759e-01 -1.90373421e-01 -9.09232050e-02 5.32474339e-01 -1.78149557e+00 3.69477987e-01 4.15570527e-01 1.14551878e+00 -4.35096398e-02 9.48211432e-01 -1.25975147e-01 9.42913949e-01 -8.92091990e-01 -3.94311935e-01 9.13971141e-02 -5.75523853e-01 -3.98048639e-01 5.97884178e-01 7.20352232e-01 -8.39127243e-01 -3.61144006e-01 9.86876011e-01 8.47420692e-01 6.87920079e-02 7.41547585e-01 -1.43816185e+00 -6.68788671e-01 1.43986940e-01 -6.21172547e-01 -3.59672040e-01 9.83774602e-01 2.02876315e-01 4.20523942e-01 -1.30078650e+00 8.17209065e-01 1.98774648e+00 4.85101759e-01 1.01441157e+00 -1.04984999e+00 -9.67818499e-01 2.91471362e-01 2.12002754e-01 -1.56846690e+00 -1.03879881e+00 1.06319368e+00 -4.40789878e-01 4.39103872e-01 3.04287404e-01 8.03972840e-01 1.45729434e+00 -1.25217468e-01 8.62194777e-01 5.86683154e-01 -1.18509464e-01 7.25705698e-02 -1.60887659e-01 -5.98535001e-01 6.68233752e-01 -6.14177048e-01 3.97074074e-02 -7.86635518e-01 -1.23368308e-01 8.82425368e-01 -3.36978763e-01 -7.74316728e-01 -1.36090517e-01 -1.10454512e+00 6.88614726e-01 -4.77363309e-03 -1.77980587e-01 -2.50061631e-01 2.12460980e-01 1.20614238e-01 1.26337767e-01 4.32438046e-01 -1.16246469e-01 -2.03840479e-01 -1.24750420e-01 -9.01730776e-01 5.46525002e-01 6.34838879e-01 1.11619413e+00 5.47411680e-01 5.45590937e-01 -2.02442363e-01 8.12904418e-01 5.23536325e-01 8.55910540e-01 4.16538507e-01 -1.56576633e+00 3.45525146e-01 -1.63723752e-02 4.37919870e-02 -1.09187794e+00 -2.56838918e-01 1.12845093e-01 -9.22931194e-01 1.08017653e-01 6.92660213e-02 -3.99273455e-01 -7.65943468e-01 2.20646119e+00 7.08930731e-01 4.79164928e-01 -4.49246094e-02 1.16821086e+00 1.06164622e+00 9.56115603e-01 -2.45782375e-01 -5.45485973e-01 1.08186114e+00 -8.22162151e-01 -1.38232708e+00 1.11671455e-01 4.87037927e-01 -7.73533285e-01 8.06205988e-01 3.85061800e-01 -1.47009015e+00 -8.16587925e-01 -7.44928956e-01 -2.48290867e-01 3.95565718e-01 1.52129024e-01 1.66196406e-01 3.29437941e-01 -1.28978002e+00 1.30860329e-01 -6.23184800e-01 6.15291111e-02 9.67559591e-02 3.99496466e-01 -5.61568201e-01 3.35988030e-02 -1.23761272e+00 5.47973394e-01 -1.52008906e-01 2.77290046e-01 -9.60286736e-01 -6.16803229e-01 -1.27202380e+00 -2.15803668e-01 -6.15849905e-02 -9.17611897e-01 1.44759142e+00 -1.20907688e+00 -2.03221941e+00 8.77989054e-01 -4.95560348e-01 1.77451015e-01 6.92145288e-01 -3.31956059e-01 -4.80568320e-01 2.85211712e-01 -4.84202616e-02 1.16824150e+00 1.37934709e+00 -1.16690803e+00 -4.28425223e-01 -4.11099613e-01 -1.36111885e-01 4.58121300e-01 -2.22410709e-01 5.12495600e-02 -7.58677125e-01 -9.49297071e-01 7.75005892e-02 -9.15745795e-01 3.05164933e-01 4.62294430e-01 -2.49144897e-01 7.14626685e-02 1.00824201e+00 -9.56198275e-01 1.04273236e+00 -2.38770890e+00 6.44430935e-01 -8.09661672e-02 9.99206454e-02 -7.99000785e-02 -2.76509702e-01 -2.48914227e-01 -2.54426777e-01 -9.87377465e-02 -1.02163441e-01 -6.31188571e-01 5.80724180e-02 1.00791082e-01 -3.62430304e-01 5.21089315e-01 3.46778929e-01 7.75284410e-01 -7.43604839e-01 -5.19044220e-01 1.14375591e-01 1.17543423e+00 -1.17158759e+00 5.00371277e-01 -1.45515683e-03 9.30903018e-01 -3.68308544e-01 5.24754405e-01 9.25288320e-01 2.85808951e-01 5.87700168e-03 -4.70866919e-01 1.49007842e-01 6.17092028e-02 -1.40788162e+00 1.98637509e+00 -4.03010517e-01 5.47650218e-01 5.65397501e-01 -5.80820680e-01 8.47358644e-01 6.90790892e-01 4.26008373e-01 -4.38446552e-01 2.78656721e-01 5.83570544e-03 -4.47094738e-01 -8.94184232e-01 2.54757613e-01 -2.91402698e-01 6.21310174e-02 1.85357481e-01 2.27222517e-01 -5.73173821e-01 -4.84074116e-01 -4.23228294e-02 6.09029889e-01 4.10180211e-01 -2.50085264e-01 1.84728093e-02 7.13974416e-01 -8.46455991e-01 6.71102166e-01 -1.13837142e-02 -1.14487752e-01 9.06065643e-01 4.83790904e-01 -1.96754143e-01 -8.31779182e-01 -1.09780097e+00 1.37361050e-01 9.21560824e-01 -2.60671712e-02 -3.15575451e-01 -1.08573639e+00 -2.96493798e-01 -2.32675046e-01 4.54283506e-01 -4.87974107e-01 -1.98386431e-01 -8.51117790e-01 -3.45798582e-01 6.05709374e-01 3.06735694e-01 4.48784977e-01 -8.38771462e-01 -1.33712783e-01 -1.50099717e-04 -6.26321375e-01 -1.20346081e+00 -1.12013793e+00 -5.87740242e-01 -4.11440402e-01 -5.96772790e-01 -1.08511579e+00 -9.56126094e-01 6.61607683e-01 1.06022365e-01 7.81423390e-01 -1.02164313e-01 -9.95298252e-02 3.47396493e-01 -1.13276914e-01 -1.51307642e-01 -5.24574220e-01 -4.89933521e-01 5.48796296e-01 4.74629849e-01 -1.03933863e-01 -7.38423944e-01 -5.35246491e-01 2.94956148e-01 -8.21344256e-01 1.89831287e-01 2.79499963e-02 8.21552694e-01 4.17804271e-01 -2.19032228e-01 4.57125455e-01 -3.51421535e-01 4.88711029e-01 -1.63450763e-01 -3.73470992e-01 -1.26992419e-01 3.42543691e-01 5.46185821e-02 3.18312079e-01 -7.57173300e-01 -1.36732709e+00 2.29959339e-01 -6.62279367e-01 -9.81670499e-01 -1.59719914e-01 -2.05067739e-01 -8.49923253e-01 2.12972611e-01 4.00271505e-01 1.12032704e-01 2.11110920e-01 -4.19954449e-01 6.33602262e-01 7.63276398e-01 9.27653134e-01 -5.46438932e-01 7.94778287e-01 7.19598889e-01 -2.28890479e-01 -1.00699079e+00 -6.94949150e-01 9.82685313e-02 -5.06295741e-01 -5.12218893e-01 1.14486790e+00 -1.28785765e+00 -9.24969673e-01 8.70866954e-01 -1.55269134e+00 -1.98225290e-01 9.73733980e-03 5.12622237e-01 -8.20863426e-01 4.35645640e-01 -8.61592114e-01 -6.79632962e-01 -2.00335428e-01 -1.43176734e+00 1.57664168e+00 -3.34117338e-02 -4.68794167e-01 -6.22814476e-01 -1.08420014e-01 3.12650710e-01 6.22796193e-02 3.10137749e-01 6.41188443e-01 3.57926100e-01 -3.89478564e-01 -2.17108950e-02 2.03437611e-01 3.52620602e-01 2.75431454e-01 2.80447066e-01 -1.35391784e+00 -2.25462809e-01 3.32675159e-01 -3.17373306e-01 3.74979854e-01 6.31566942e-01 1.13208532e+00 -6.86143577e-01 6.28723651e-02 1.18677616e+00 5.46893418e-01 2.39069387e-01 4.87900823e-01 -2.80413240e-01 8.20387900e-01 9.86283898e-01 4.36409414e-01 7.20423937e-01 4.65457410e-01 9.83879924e-01 3.06366354e-01 6.43454567e-02 -2.36251593e-01 -4.28371161e-01 8.42653215e-01 1.16608417e+00 8.91930237e-03 -5.08119538e-02 -3.59485030e-01 1.96146965e-01 -1.44141352e+00 -1.09467959e+00 2.67489552e-01 1.92206287e+00 8.61933291e-01 -2.41044611e-01 2.02102333e-01 1.24341242e-01 8.55343461e-01 1.62218302e-01 -5.58496892e-01 -1.79254621e-01 -3.07723284e-01 2.18020547e-02 -2.66726464e-01 8.62308800e-01 -7.23837912e-01 8.78939688e-01 6.08387327e+00 5.86810410e-01 -1.36770129e+00 -1.04544505e-01 5.76336563e-01 -5.63849449e-01 -6.01981044e-01 -4.32680011e-01 -8.40589404e-01 5.14733732e-01 5.72412968e-01 8.68153870e-02 4.39240575e-01 6.66457653e-01 5.64332247e-01 5.23379862e-01 -1.19368982e+00 1.46786642e+00 3.98049176e-01 -1.11076427e+00 4.68649596e-01 -2.67610652e-04 6.21010005e-01 -6.20256126e-01 3.25281084e-01 2.57816494e-01 -9.63758826e-02 -1.01699495e+00 1.37760687e+00 5.29491305e-01 1.10655105e+00 -8.04466784e-01 1.73030555e-01 3.33414376e-01 -1.11170971e+00 4.68727611e-02 -9.76432264e-02 8.12163055e-02 6.19672239e-01 2.21948937e-01 -4.40230995e-01 1.46656156e-01 8.14865172e-01 6.81308329e-01 -1.74735151e-02 3.83915633e-01 -3.24815452e-01 1.18132703e-01 -2.39102513e-01 4.43792224e-01 -1.16823673e-01 -4.20387946e-02 7.22379923e-01 9.93219495e-01 7.52464890e-01 3.30144882e-01 -1.54681012e-01 8.44869018e-01 -1.85205534e-01 -1.11324519e-01 -6.69860423e-01 2.95378506e-01 5.20450652e-01 1.07880127e+00 1.38894022e-01 -3.24792385e-01 -2.62802511e-01 1.23946667e+00 -1.05189711e-01 5.40370703e-01 -1.13152075e+00 -8.41073841e-02 1.22202075e+00 1.10998794e-01 1.28444806e-01 -1.71686798e-01 4.13124174e-01 -1.46882558e+00 1.25427410e-01 -1.03301525e+00 -5.91906123e-02 -1.24942398e+00 -9.92530286e-01 7.56678164e-01 -1.02735899e-01 -1.27288818e+00 -7.12718844e-01 -4.34896320e-01 -4.81748611e-01 7.34789371e-01 -1.12769961e+00 -9.00780141e-01 -5.03367007e-01 9.32334721e-01 7.07933784e-01 1.05507381e-01 6.85720444e-01 5.98577499e-01 -4.88668025e-01 9.01374638e-01 -4.45124149e-01 1.47942096e-01 1.05339420e+00 -6.02290273e-01 5.38476348e-01 3.39480311e-01 -1.66827977e-01 2.45243207e-01 7.44364917e-01 -2.40281910e-01 -1.49782073e+00 -1.13864172e+00 6.58190668e-01 -4.96222258e-01 2.15322539e-01 -5.87099850e-01 -8.40699792e-01 7.09055066e-01 -3.22677791e-02 1.19155152e-02 4.52132136e-01 -7.23110676e-01 -2.27752537e-01 -4.29804996e-02 -1.06443977e+00 7.03763127e-01 1.40151680e+00 -6.30183578e-01 -4.03010994e-01 2.08309293e-02 9.76958990e-01 -6.54763579e-01 -7.40995288e-01 4.10688370e-01 6.66045964e-01 -9.92408097e-01 1.03929877e+00 -4.65905309e-01 3.39422405e-01 -3.69479328e-01 -3.75473797e-01 -1.30215836e+00 -1.14831045e-01 -9.58432972e-01 -1.83814332e-01 1.51298881e+00 -3.48829501e-03 -1.75847039e-01 6.88585281e-01 4.80080277e-01 -1.56281888e-02 -4.12773162e-01 -8.44666421e-01 -2.76868790e-01 3.07338871e-02 -4.79417503e-01 9.79785204e-01 1.03581929e+00 -2.38288671e-01 4.48142976e-01 -8.77963185e-01 1.37627512e-01 5.80780149e-01 -6.71372265e-02 1.14863122e+00 -8.44547212e-01 -2.29257330e-01 -1.40048549e-01 -4.74683255e-01 -1.59650660e+00 7.18570650e-01 -5.77509761e-01 1.54816598e-01 -8.51467073e-01 -8.81742239e-02 1.80454984e-01 4.95868057e-01 6.32092915e-03 -1.49385750e-01 6.34657368e-02 3.31669003e-01 5.46372570e-02 -1.06594905e-01 9.76171494e-01 1.66317892e+00 -1.54822975e-01 -2.50034541e-01 -2.58139729e-01 -3.85643154e-01 1.07378221e+00 4.05950069e-01 -1.45841986e-01 -5.89395583e-01 -8.54747236e-01 -1.11093007e-01 6.89266443e-01 3.54847938e-01 -8.03502798e-01 2.02931501e-02 -1.06645040e-01 6.10436261e-01 -4.54107881e-01 1.02318490e+00 -5.05686879e-01 3.38618696e-01 -2.24889871e-02 -3.12067926e-01 1.35345936e-01 6.48398548e-02 3.34599137e-01 -4.19575155e-01 3.95829976e-01 8.98032844e-01 -4.12892587e-02 -4.18739170e-01 5.88316977e-01 -3.86470526e-01 7.92695656e-02 6.53794467e-01 -2.45938852e-01 2.26949751e-01 -1.16154814e+00 -9.92403865e-01 8.34162831e-02 5.10539055e-01 5.84159434e-01 8.11493695e-01 -1.76219249e+00 -8.05145800e-01 7.35843658e-01 -2.35245273e-01 3.06550622e-01 6.11921668e-01 5.94172180e-01 -4.60386485e-01 -5.18322550e-02 -2.04182416e-01 -9.02068675e-01 -1.27919781e+00 3.24189007e-01 4.85181689e-01 5.67659080e-01 -5.55106819e-01 1.09185588e+00 9.01416540e-01 -5.73325098e-01 5.50477028e-01 -1.77223817e-01 -4.59643491e-02 1.20292813e-01 7.99326837e-01 1.59566313e-01 -2.58106798e-01 -1.21579850e+00 -2.65516728e-01 9.48418319e-01 2.56049216e-01 -5.11802554e-01 1.07926345e+00 -4.63185191e-01 2.22822428e-02 2.35438466e-01 1.62935948e+00 6.62193075e-02 -1.61294019e+00 1.16752788e-01 -5.85767925e-01 -5.39203703e-01 -2.07992330e-01 -3.75883915e-02 -1.36303401e+00 1.07293189e+00 5.23407638e-01 -6.09849393e-01 1.33262372e+00 -1.20515771e-01 8.66807222e-01 1.73352525e-01 1.86618984e-01 -9.36661899e-01 3.59722376e-01 4.02825594e-01 1.18506277e+00 -8.54753494e-01 -4.85315204e-01 -4.46663916e-01 -7.81609058e-01 9.69744861e-01 6.62716568e-01 1.95921347e-01 7.67590404e-01 4.71109211e-01 4.41101104e-01 1.17175847e-01 -7.62982965e-01 3.29848528e-01 7.76091069e-02 7.50952542e-01 4.95794386e-01 -2.07681164e-01 3.13847214e-01 5.75082839e-01 -6.44685030e-01 3.95468473e-02 3.89130354e-01 6.33646488e-01 -5.43172956e-02 -6.66688621e-01 -7.47228503e-01 -3.16939622e-01 -3.97537947e-01 1.77016646e-01 -4.34434205e-01 5.38580894e-01 1.59753889e-01 8.19706798e-01 2.02945337e-01 -5.46618283e-01 5.03613532e-01 1.83913127e-01 6.94829106e-01 -2.75995433e-01 -3.96527313e-02 5.47512174e-01 -1.25988230e-01 -5.82120419e-01 -3.63940805e-01 -4.28740293e-01 -1.26910317e+00 -5.87852180e-01 -9.44895744e-02 6.26085624e-02 4.28243607e-01 5.44706404e-01 3.98025244e-01 3.88230622e-01 9.53489900e-01 -1.51781356e+00 -4.40144390e-01 -9.03793812e-01 -6.86962008e-01 6.81510329e-01 7.01025009e-01 -8.04750741e-01 -6.52154267e-01 5.36796749e-01]
[13.159063339233398, -0.43643757700920105]
3d4cdba6-c8f8-494f-9d30-121836f8490e
desra-detect-and-delete-the-artifacts-of-gan
2307.02457
null
https://arxiv.org/abs/2307.02457v1
https://arxiv.org/pdf/2307.02457v1.pdf
DeSRA: Detect and Delete the Artifacts of GAN-based Real-World Super-Resolution Models
Image super-resolution (SR) with generative adversarial networks (GAN) has achieved great success in restoring realistic details. However, it is notorious that GAN-based SR models will inevitably produce unpleasant and undesirable artifacts, especially in practical scenarios. Previous works typically suppress artifacts with an extra loss penalty in the training phase. They only work for in-distribution artifact types generated during training. When applied in real-world scenarios, we observe that those improved methods still generate obviously annoying artifacts during inference. In this paper, we analyze the cause and characteristics of the GAN artifacts produced in unseen test data without ground-truths. We then develop a novel method, namely, DeSRA, to Detect and then Delete those SR Artifacts in practice. Specifically, we propose to measure a relative local variance distance from MSE-SR results and GAN-SR results, and locate the problematic areas based on the above distance and semantic-aware thresholds. After detecting the artifact regions, we develop a finetune procedure to improve GAN-based SR models with a few samples, so that they can deal with similar types of artifacts in more unseen real data. Equipped with our DeSRA, we can successfully eliminate artifacts from inference and improve the ability of SR models to be applied in real-world scenarios. The code will be available at https://github.com/TencentARC/DeSRA.
['Chao Dong', 'Jiantao Zhou', 'Ying Shan', 'Gen Li', 'Xiangyu Chen', 'Xintao Wang', 'Liangbin Xie']
2023-07-05
null
null
null
null
['image-super-resolution', 'super-resolution']
['computer-vision', 'computer-vision']
[ 5.93011081e-01 6.95251068e-03 3.07857901e-01 -2.56567970e-02 -9.11223829e-01 -4.66220886e-01 1.80787489e-01 -6.60169721e-01 1.58655539e-01 9.68038678e-01 1.53414950e-01 1.56080804e-03 2.31973045e-02 -8.37780476e-01 -6.62963808e-01 -8.44736159e-01 4.05972958e-01 -9.31648761e-02 4.98135649e-02 -1.52114734e-01 9.41714272e-02 4.22217876e-01 -1.42522311e+00 4.06774104e-01 1.36892498e+00 7.13543534e-01 2.03373909e-01 4.78268594e-01 4.54427581e-03 9.24667478e-01 -1.13423860e+00 -3.87455285e-01 3.93456995e-01 -8.85297954e-01 -3.33260655e-01 4.89010625e-02 3.78423542e-01 -4.50687647e-01 -2.40036815e-01 1.36306107e+00 7.92614520e-01 7.34690055e-02 3.32528561e-01 -1.05006540e+00 -7.66869307e-01 4.39372718e-01 -8.19074750e-01 1.91625044e-01 2.47933015e-01 4.00684953e-01 4.08487111e-01 -8.18990409e-01 5.30838668e-01 1.18755078e+00 8.04291964e-01 8.28153849e-01 -1.29137623e+00 -8.27850878e-01 -1.58060193e-01 2.60859996e-01 -1.43102884e+00 -6.21616185e-01 1.24094760e+00 -8.02295357e-02 3.06310028e-01 6.16060495e-01 3.51579845e-01 1.56776583e+00 2.21915245e-01 6.65469110e-01 1.29238403e+00 -3.34545583e-01 2.57010609e-01 1.71306387e-01 -4.20711905e-01 2.04084754e-01 1.53940395e-01 1.59956872e-01 -4.04932141e-01 2.71394178e-02 9.74842846e-01 -4.00094837e-02 -5.88392973e-01 3.91791277e-02 -9.19509053e-01 6.41242623e-01 4.29941952e-01 5.02548516e-01 -3.88621658e-01 1.37943834e-01 2.18897760e-01 1.72003254e-01 7.01865375e-01 5.17346799e-01 -1.72056243e-01 5.34730963e-02 -1.01822495e+00 1.13812000e-01 7.39442930e-02 9.33905780e-01 4.41959500e-01 4.23689067e-01 -3.81254673e-01 1.20911181e+00 -2.66353846e-01 4.76719260e-01 4.55226451e-01 -9.15356696e-01 2.47760266e-01 1.05981156e-01 1.66683242e-01 -1.07813501e+00 7.70057514e-02 -8.58549833e-01 -1.15438151e+00 3.53578418e-01 2.39678502e-01 -1.57176092e-01 -1.04537237e+00 1.71274889e+00 2.23855987e-01 5.32827437e-01 -1.81179643e-02 1.01052094e+00 7.26111591e-01 5.58289528e-01 -1.32564098e-01 -2.48997048e-01 1.07196593e+00 -8.28487396e-01 -1.07564652e+00 -2.62575358e-01 1.87682152e-01 -9.01266456e-01 1.41093099e+00 6.44410014e-01 -1.13058865e+00 -7.79961884e-01 -9.87652123e-01 5.98179065e-02 3.36172688e-03 1.71513826e-01 3.26695740e-01 6.43305302e-01 -1.02276587e+00 8.28632236e-01 -6.17938876e-01 -2.58310530e-02 5.82142174e-01 -1.93134308e-01 1.24250144e-01 -7.47859180e-02 -1.29904044e+00 9.23009038e-01 3.84833254e-02 4.19619948e-01 -1.10980499e+00 -7.28915095e-01 -7.23044217e-01 -1.66377068e-01 5.59324741e-01 -5.95527053e-01 9.69778836e-01 -1.27411044e+00 -1.40753293e+00 5.99816263e-01 -1.82815358e-01 -2.10498244e-01 8.40508640e-01 -3.38119239e-01 -8.76990318e-01 -1.75418258e-02 8.33847150e-02 2.42047817e-01 1.24801540e+00 -1.74947560e+00 -2.28180885e-01 -1.97479457e-01 -1.97739005e-01 1.01439096e-02 -2.40840778e-01 -3.51802371e-02 -3.00308973e-01 -1.25352085e+00 2.91575287e-02 -6.64245307e-01 -2.67794818e-01 -7.91197419e-02 -6.07056201e-01 2.81983107e-01 8.44841719e-01 -9.98504937e-01 9.38380718e-01 -2.27642107e+00 -8.26119483e-02 4.15492877e-02 2.45746806e-01 3.49005014e-01 -2.53704429e-01 1.51009597e-02 -1.19987011e-01 1.84511334e-01 -5.13631284e-01 -2.65437394e-01 -4.31785405e-01 -4.14941423e-02 -4.78184938e-01 2.48182550e-01 2.81504720e-01 7.39039600e-01 -8.87489259e-01 -3.39681655e-01 3.67273331e-01 6.86216414e-01 -2.53595352e-01 2.34264582e-01 -1.68717932e-02 8.96587789e-01 -4.01954800e-01 6.26890063e-01 1.08387303e+00 -7.48128304e-03 -2.15036407e-01 -3.19368869e-01 2.38839641e-01 3.26123796e-02 -1.14465988e+00 1.65007162e+00 -6.96256101e-01 7.20272660e-01 -6.38255253e-02 -6.55512094e-01 1.05891490e+00 1.55648232e-01 2.59046316e-01 -8.55916262e-01 1.09398179e-02 1.83685675e-01 -2.27154225e-01 -5.44525385e-01 3.78305256e-01 -3.65870863e-01 2.92572647e-01 1.13597713e-01 -2.58263707e-01 -1.48984134e-01 -2.27707997e-01 -9.87528451e-03 1.14419460e+00 1.59184799e-01 5.93127944e-02 -2.18233652e-02 5.08962154e-01 -1.98574752e-01 7.70979643e-01 6.96808696e-01 -1.05267361e-01 1.13376880e+00 7.99717903e-02 -2.85089016e-01 -1.10621011e+00 -1.34216177e+00 -7.47145265e-02 4.37596321e-01 4.21337754e-01 -7.74005130e-02 -9.25498724e-01 -7.21204877e-01 -3.17331761e-01 1.16230750e+00 -5.18366218e-01 -4.58477139e-01 -6.35142922e-01 -8.03730547e-01 4.59839404e-01 4.24727350e-01 7.67934084e-01 -1.34464812e+00 -3.14698339e-01 1.34039313e-01 -3.73396486e-01 -1.05749691e+00 -4.06196594e-01 -2.06817061e-01 -7.60490596e-01 -8.17416728e-01 -8.20954323e-01 -4.51512963e-01 8.72920752e-01 3.47147912e-01 1.12161291e+00 1.66619465e-01 -3.96895349e-01 -2.34018713e-01 -4.24991488e-01 -2.67870963e-01 -7.23786354e-01 -5.03145754e-01 -3.29353124e-01 1.06797777e-01 5.80062866e-02 -7.87644029e-01 -8.04366231e-01 4.31596577e-01 -1.06818473e+00 1.67302638e-01 5.91449857e-01 8.82603049e-01 6.13554001e-01 5.91062307e-01 8.10227931e-01 -8.86045754e-01 5.79512358e-01 -3.28511119e-01 -4.09824818e-01 3.08985747e-02 -4.84167874e-01 -1.40923724e-01 1.02201664e+00 -5.60915351e-01 -1.48886454e+00 -3.46750140e-01 -2.73811966e-01 -8.25695693e-01 -3.38526219e-01 1.11076005e-01 -4.86316592e-01 -1.67261865e-02 8.25202048e-01 4.50111121e-01 -3.25057566e-01 -6.03300810e-01 2.48110309e-01 5.57512105e-01 7.05835044e-01 -3.31725001e-01 1.17634833e+00 5.93077600e-01 -1.61447585e-01 -5.77215850e-01 -9.20201659e-01 2.35904213e-02 -1.46529078e-01 -3.08139175e-01 5.91341436e-01 -8.92149389e-01 3.14289555e-02 5.96725404e-01 -1.02599347e+00 -3.92530262e-01 -5.54407001e-01 1.80036739e-01 -4.88350183e-01 4.85922635e-01 -6.20384276e-01 -8.60318601e-01 -4.62919235e-01 -9.77449954e-01 9.14228082e-01 3.39252800e-01 -7.89999366e-02 -6.31703734e-01 -1.25301674e-01 4.55166578e-01 6.63212717e-01 5.10941625e-01 5.63920796e-01 -1.16756640e-01 -4.83548850e-01 7.48862922e-02 -1.41553879e-01 7.62620389e-01 4.75643069e-01 -1.49118781e-01 -1.17514288e+00 -4.25857276e-01 4.18661594e-01 6.73556142e-03 8.23002875e-01 4.30216342e-01 1.73067403e+00 -3.38269919e-01 -3.15892952e-03 7.74635136e-01 1.51518548e+00 3.84900868e-01 1.31219935e+00 2.74333060e-01 7.13426530e-01 4.12800252e-01 6.67824030e-01 2.33093664e-01 -4.14339274e-01 7.23403096e-01 4.05992478e-01 -3.97494882e-01 -6.14700615e-01 -4.68534142e-01 4.27863240e-01 5.50343215e-01 -1.65648386e-01 -4.76722926e-01 -3.63227576e-01 6.34315550e-01 -1.48226821e+00 -1.02259541e+00 -1.37407556e-01 2.26097775e+00 8.97619724e-01 2.48545393e-01 -1.86711475e-01 2.36739159e-01 1.06351197e+00 2.54547834e-01 -6.89275384e-01 -2.78863341e-01 -3.26811612e-01 3.49333972e-01 3.22122842e-01 2.43134722e-01 -8.12732279e-01 7.79946268e-01 5.51114225e+00 1.23097217e+00 -1.02175820e+00 3.50673974e-01 8.55872869e-01 -1.15322620e-01 -6.36018336e-01 -2.06306219e-01 -2.65620381e-01 8.47513497e-01 6.30473375e-01 4.06465167e-03 5.85280895e-01 7.51701713e-01 5.54920673e-01 3.35426852e-02 -7.48277187e-01 1.04595411e+00 1.78054869e-01 -1.12880182e+00 1.00705117e-01 -3.58352751e-01 9.00266826e-01 -4.49539065e-01 1.63240373e-01 2.29487419e-02 2.00283751e-01 -1.09699917e+00 6.08768880e-01 4.37321842e-01 1.05244887e+00 -7.99869537e-01 8.71739328e-01 1.80870995e-01 -8.09919596e-01 8.73849913e-02 -4.08011228e-01 2.82156616e-01 2.66299367e-01 1.11750245e+00 -4.80430335e-01 7.01837063e-01 6.89539611e-01 6.57057643e-01 -5.52774310e-01 9.44161773e-01 -6.97952867e-01 7.16743529e-01 5.93409240e-02 4.61453110e-01 -3.10184091e-01 -2.92827368e-01 9.02205229e-01 9.10530150e-01 6.97848439e-01 -1.84627119e-02 -5.34521699e-01 1.37547684e+00 -9.44013670e-02 -1.37416542e-01 -5.81167042e-01 4.32503790e-01 5.05180955e-01 1.16099596e+00 -6.37137175e-01 -3.41370463e-01 -1.79674059e-01 1.45237958e+00 -1.33263841e-01 5.34550786e-01 -1.16014051e+00 -3.05889487e-01 5.07685542e-01 1.75950244e-01 2.05592871e-01 2.60148913e-01 -6.28458858e-01 -1.35575390e+00 4.03374255e-01 -1.21439755e+00 2.32290208e-01 -1.14179063e+00 -1.35714018e+00 7.10008860e-01 -3.59145433e-01 -1.53418231e+00 -1.73878409e-02 1.53404353e-02 -9.86582100e-01 8.08440387e-01 -1.36154509e+00 -9.04244483e-01 -7.69565582e-01 6.08264029e-01 8.10080230e-01 1.58162177e-01 5.53188920e-01 4.63828444e-01 -6.93291903e-01 7.92221725e-01 2.13512123e-01 -3.00541129e-02 7.54259229e-01 -9.76150513e-01 4.71508920e-01 1.32925761e+00 7.91155547e-02 3.28096539e-01 1.13897860e+00 -7.41427422e-01 -9.47805107e-01 -1.43008292e+00 2.46024445e-01 -2.01239362e-01 2.53023475e-01 -3.45133930e-01 -1.14152372e+00 5.88634133e-01 1.03797369e-01 -1.03318289e-01 2.24074069e-02 -2.81281978e-01 -1.54592097e-01 -2.73537755e-01 -1.63515472e+00 7.52163351e-01 1.28179395e+00 -3.63180727e-01 -4.42010880e-01 2.31072545e-01 7.93291986e-01 -4.19059068e-01 -6.12618208e-01 6.08115077e-01 2.00258747e-01 -1.09229410e+00 1.04119968e+00 -1.44246772e-01 7.85953879e-01 -6.59298539e-01 2.72807240e-01 -1.63632286e+00 -2.38046125e-01 -7.20222712e-01 4.63745445e-02 1.39317071e+00 3.06401938e-01 -6.33307457e-01 6.77534044e-01 1.91954046e-01 -2.61272788e-01 -3.80611271e-01 -7.94776738e-01 -1.02317989e+00 -2.07239032e-01 -2.96645492e-01 6.96241260e-01 9.78511989e-01 -6.89372003e-01 -1.03287935e-01 -7.79058993e-01 4.16658670e-01 9.12461698e-01 1.41520038e-01 8.49050164e-01 -6.45526946e-01 -3.77446026e-01 -1.34056181e-01 -2.48152986e-01 -7.26193190e-01 -1.81077003e-01 -3.75009984e-01 3.04625660e-01 -1.33260345e+00 2.23582849e-01 -4.17650014e-01 -4.64432567e-01 2.52485573e-01 -5.73377788e-01 5.83345652e-01 6.32136390e-02 2.22674817e-01 -1.45116508e-01 7.06638277e-01 1.50424945e+00 -9.43229720e-02 -1.67206466e-01 -7.27831200e-02 -6.59875512e-01 6.87746167e-01 1.13695633e+00 -5.40733397e-01 -4.81798291e-01 -3.71521771e-01 -1.10167228e-01 -1.28266364e-01 6.93038702e-01 -1.16606402e+00 -3.53224069e-01 -1.48962483e-01 7.20192969e-01 -4.65138406e-01 2.25030839e-01 -7.45618522e-01 7.74937928e-01 3.82434249e-01 -2.81575501e-01 -3.78914744e-01 2.43480876e-01 3.46507162e-01 -2.47554809e-01 -2.02565968e-01 1.05857742e+00 -8.32148120e-02 -5.12108386e-01 2.82670408e-02 -3.63216996e-02 -6.40646666e-02 9.98534501e-01 -1.79232240e-01 -5.13380229e-01 -6.61344469e-01 -6.81539774e-01 -1.42070979e-01 7.13845849e-01 4.05300021e-01 8.37760389e-01 -1.30179489e+00 -9.14210260e-01 3.13851237e-01 -1.28924370e-01 1.82679757e-01 7.94827223e-01 6.22919917e-01 -3.41799349e-01 -2.69596845e-01 -2.37378478e-01 -3.41373563e-01 -1.10125518e+00 8.32345307e-01 3.97715420e-01 -1.28016651e-01 -9.39687431e-01 7.13846922e-01 4.13125306e-01 1.69946684e-03 -8.18364173e-02 -1.10347509e-01 7.02850148e-02 -4.22058225e-01 6.53090060e-01 4.22582835e-01 1.76392317e-01 -2.52201378e-01 -7.99219087e-02 5.23957670e-01 5.49163520e-02 1.70122787e-01 1.28033090e+00 -2.21346453e-01 3.75143848e-02 1.34973764e-01 9.21350241e-01 3.97502780e-01 -1.43029082e+00 -2.41945200e-02 -3.70938480e-01 -8.52946758e-01 4.99467365e-02 -9.58146870e-01 -1.65901780e+00 5.70258915e-01 7.72376597e-01 1.83478266e-01 1.72231972e+00 -7.51854405e-02 1.12199473e+00 -4.48225528e-01 3.02226126e-01 -9.38429952e-01 7.54629970e-02 -2.79792190e-01 1.21919513e+00 -9.41039085e-01 2.48669796e-02 -6.71734810e-01 -5.85882008e-01 7.60705292e-01 6.78680539e-01 -2.23612741e-01 5.96911348e-02 4.28194821e-01 2.03454003e-01 2.61818841e-02 -4.48066235e-01 1.68360546e-01 5.39467894e-02 7.39221096e-01 6.96559204e-03 5.14807412e-03 -3.27419162e-01 4.37528968e-01 -2.47120351e-01 1.20082960e-01 7.17582226e-01 5.72731495e-01 -1.20667487e-01 -7.62807548e-01 -6.82336748e-01 3.92682999e-01 -4.78653371e-01 -1.96934402e-01 -1.86963186e-01 5.68330765e-01 3.09731364e-01 1.12701440e+00 -1.41779914e-01 -4.95711476e-01 3.62574548e-01 -1.77774340e-01 3.01096022e-01 -1.95890993e-01 -2.42305487e-01 2.20003843e-01 1.29353791e-01 -7.58532405e-01 -3.68858218e-01 -5.03280878e-01 -9.53889668e-01 -4.32480991e-01 -5.28874278e-01 -9.39702764e-02 3.92438233e-01 6.39382064e-01 3.99250329e-01 9.25590873e-01 8.81364822e-01 -5.86703897e-01 -4.50872779e-01 -1.12796283e+00 -5.96715569e-01 7.79337227e-01 2.68680066e-01 -5.18249512e-01 -8.91073287e-01 9.22323912e-02]
[11.37254524230957, -1.4889882802963257]
0a7cf5c1-9600-4ade-83bf-3eec52948d96
open-information-extraction-via-chunks
2305.03299
null
https://arxiv.org/abs/2305.03299v1
https://arxiv.org/pdf/2305.03299v1.pdf
Open Information Extraction via Chunks
Open Information Extraction (OIE) aims to extract relational tuples from open-domain sentences. Existing OIE systems split a sentence into tokens and recognize token spans as tuple relations and arguments. We instead propose Sentence as Chunk sequence (SaC) and recognize chunk spans as tuple relations and arguments. We argue that SaC has better quantitative and qualitative properties for OIE than sentence as token sequence, and evaluate four choices of chunks (i.e., CoNLL chunks, simple phrases, NP chunks, and spans from SpanOIE) against gold OIE tuples. Accordingly, we propose a simple BERT-based model for sentence chunking, and propose Chunk-OIE for tuple extraction on top of SaC. Chunk-OIE achieves state-of-the-art results on multiple OIE datasets, showing that SaC benefits OIE task.
['XiaoLi Li', 'Jung-jae Kim', 'Aixin Sun', 'Kuicai Dong']
2023-05-05
null
null
null
null
['open-information-extraction', 'chunking']
['natural-language-processing', 'natural-language-processing']
[-2.79808581e-01 1.02888751e+00 -7.31170952e-01 -3.57578695e-01 -7.82603681e-01 -6.20286822e-01 3.23795915e-01 6.46302521e-01 -1.96918651e-01 1.02896369e+00 6.30945802e-01 -3.44357342e-01 -1.17525697e-01 -1.19718611e+00 -9.71710205e-01 4.61264074e-01 -3.65155458e-01 9.60389912e-01 5.34547508e-01 -3.65383297e-01 8.06967244e-02 1.98745906e-01 -1.46607625e+00 1.15930116e+00 1.07719100e+00 1.18454671e+00 -6.06069863e-01 6.47076011e-01 -9.17642474e-01 1.45859432e+00 -9.53272998e-01 -8.86796474e-01 1.95295960e-01 -4.54073027e-02 -1.62846494e+00 -3.29998583e-01 8.09929445e-02 -9.23180208e-02 -7.63288513e-02 5.62467217e-01 1.52902693e-01 -1.92458808e-01 6.11662209e-01 -1.37042093e+00 -6.96608245e-01 1.67750287e+00 -7.75523186e-02 1.12358116e-01 9.12551582e-01 -2.68769532e-01 1.50716329e+00 -1.18679035e+00 8.97057891e-01 1.17817712e+00 8.22396934e-01 4.28159088e-01 -1.08254039e+00 -2.36248091e-01 -9.02613401e-02 5.79802878e-02 -1.19366097e+00 -5.48867047e-01 8.20846707e-02 -6.19380772e-02 1.89147258e+00 8.36209059e-01 5.31849861e-01 6.78183496e-01 1.82193950e-01 1.23322225e+00 6.74972713e-01 -3.76254350e-01 3.33662987e-01 4.71651033e-02 6.83045089e-01 2.23903045e-01 4.11989421e-01 -1.85329601e-01 -9.44551885e-01 -2.15096757e-01 2.25485757e-01 -5.22933066e-01 2.33865768e-01 2.55040318e-01 -1.28572464e+00 4.19837773e-01 3.00294906e-01 -1.63482428e-02 -4.69040453e-01 -2.72060901e-01 8.56730163e-01 5.05243599e-01 6.95412695e-01 6.63444817e-01 -7.05979586e-01 -4.36991483e-01 -5.75330853e-01 7.79604912e-01 1.66600013e+00 1.46271276e+00 7.22974539e-01 -6.42265439e-01 -6.70712531e-01 9.28289831e-01 -1.23784080e-01 3.27428132e-01 -6.23164587e-02 -8.87648642e-01 1.22057486e+00 9.02098536e-01 3.39995921e-01 -4.28644121e-01 -5.00499606e-01 2.45641217e-01 -4.18121487e-01 -5.96980095e-01 1.96233734e-01 -2.41191834e-01 -6.54254496e-01 1.19491458e+00 3.30501705e-01 -1.49837196e-01 7.46907353e-01 5.96445382e-01 1.55260396e+00 6.80140495e-01 2.57995456e-01 -2.93730617e-01 1.68631685e+00 -7.58393228e-01 -6.48846209e-01 -5.11432707e-01 8.54040563e-01 -3.47337544e-01 8.42366338e-01 1.34623408e-01 -1.13137650e+00 -2.83485562e-01 -9.70110297e-01 -5.24770081e-01 -5.20802081e-01 -1.18661970e-01 9.31326210e-01 4.64003205e-01 -3.97328854e-01 5.02719879e-01 -4.15635139e-01 -1.75429210e-02 4.73624408e-01 3.21914583e-01 -5.47132313e-01 2.04356357e-01 -1.72686660e+00 7.62462795e-01 1.16858804e+00 -1.01124858e-02 5.77502400e-02 -1.15942752e+00 -1.13177907e+00 4.84336913e-01 8.76951873e-01 -8.50246429e-01 1.29875791e+00 9.50297266e-02 -1.20576429e+00 8.36059749e-01 -4.70251352e-01 -1.02127123e+00 4.96484376e-02 -6.12872779e-01 -4.51668113e-01 2.57795990e-01 3.59313577e-01 7.64678657e-01 2.18375668e-01 -1.11362469e+00 -8.25900078e-01 -1.08594090e-01 3.34663302e-01 9.55475941e-02 -6.55855089e-02 3.67504925e-01 -7.85112008e-02 -2.93923229e-01 2.32654646e-01 -5.62692285e-01 1.36906907e-01 -9.64243412e-01 -1.00203383e+00 -1.04751253e+00 3.60460192e-01 -4.81669545e-01 1.99796164e+00 -1.80354333e+00 -3.07166934e-01 7.85080940e-02 6.82215035e-01 3.27667713e-01 6.78462088e-02 8.70886087e-01 -1.12409607e-01 5.72495580e-01 -9.81506258e-02 -1.28429383e-01 3.89276147e-01 5.36551178e-01 -7.98646986e-01 -5.92189252e-01 4.93030161e-01 1.65708697e+00 -7.93369293e-01 -1.08074176e+00 -3.52368742e-01 -6.35786891e-01 -2.69561917e-01 4.24506724e-01 -9.84731913e-01 -5.26443481e-01 -3.37854266e-01 9.43354070e-01 8.08604598e-01 -3.12292147e-02 1.98719904e-01 -1.81507334e-01 -1.22808740e-01 1.10063040e+00 -9.83741701e-01 1.20823443e+00 -2.06371918e-01 1.05560869e-01 -2.60569781e-01 -5.11009991e-01 1.04704952e+00 3.42481762e-01 4.95103747e-01 -5.76751351e-01 -1.38166144e-01 4.03734386e-01 -2.45736033e-01 -8.10006022e-01 1.23117197e+00 -1.98622122e-01 -8.25448573e-01 5.97970843e-01 2.50590950e-01 -1.86962843e-01 7.82378614e-01 8.40303123e-01 1.50737643e+00 -6.35281652e-02 5.89913905e-01 -3.59297916e-02 1.18576907e-01 3.09923470e-01 9.61371243e-01 7.73739398e-01 7.26415440e-02 4.70120072e-01 1.34667540e+00 -2.92728364e-01 -9.99225616e-01 -1.14784575e+00 -2.14202672e-01 9.67227817e-01 1.14570886e-01 -1.08874345e+00 -6.40939415e-01 -1.17537332e+00 4.93292809e-01 6.28587425e-01 -4.55984622e-01 2.93407768e-01 -7.91887105e-01 -3.59215200e-01 1.04279029e+00 8.33298385e-01 2.68333852e-01 -1.43544209e+00 -4.47324038e-01 4.44451421e-01 -4.81671304e-01 -1.49333656e+00 -1.64508328e-01 4.28159893e-01 -4.07074600e-01 -9.45105135e-01 4.93623279e-02 -5.78698516e-01 -1.22111619e-01 -2.18096018e-01 1.90052068e+00 -1.45578817e-01 2.11122453e-01 -2.38630980e-01 -1.04329526e+00 -6.26485944e-01 -4.63650048e-01 4.29743916e-01 -6.45247567e-03 -5.45594215e-01 9.81081367e-01 -2.98410982e-01 -3.66205387e-02 2.22396463e-01 -7.13828564e-01 -3.34527045e-02 4.57191467e-01 6.93773448e-01 5.55610597e-01 -2.85798669e-01 1.04422569e+00 -1.87403822e+00 9.31347013e-01 -6.99551165e-01 -3.64741981e-02 8.58174801e-01 -6.01453960e-01 1.46194935e-01 7.01801479e-01 3.17730047e-02 -1.12032342e+00 -4.69790041e-01 -2.82492131e-01 -1.49045795e-01 -2.57317752e-01 8.90655518e-01 -4.83611077e-01 5.99097669e-01 7.31954336e-01 -3.74074817e-01 -4.04588521e-01 -2.53881276e-01 5.57647228e-01 8.81035626e-01 8.98976862e-01 -1.16379237e+00 4.66023386e-01 1.47413746e-01 -2.12883964e-01 -5.43304741e-01 -1.37646770e+00 -4.61540163e-01 -5.76041877e-01 1.99842915e-01 6.57488823e-01 -7.00181961e-01 -1.05357385e+00 5.76769859e-02 -1.39453328e+00 -7.59044141e-02 -9.42242503e-01 -4.13580239e-02 -5.45687497e-01 3.25445503e-01 -1.17841208e+00 -6.07938886e-01 -5.46717823e-01 -2.83186466e-01 9.59648430e-01 1.62633315e-01 -7.13521600e-01 -5.18713951e-01 1.38637424e-01 2.70172298e-01 -3.07529211e-01 1.81322441e-01 9.06321049e-01 -1.08332658e+00 -6.14148855e-01 -1.53273055e-02 -5.11125803e-01 1.78535432e-01 -2.45291889e-01 -4.13482040e-02 -7.29915380e-01 5.21869838e-01 -2.06487373e-01 -8.46053362e-01 9.29530203e-01 -2.68261749e-02 7.24844098e-01 -8.29823852e-01 -3.87343764e-01 4.22021270e-01 1.15410876e+00 7.02470616e-02 1.06474710e+00 1.04598582e-01 6.42836452e-01 8.53023112e-01 1.17422760e+00 6.01558268e-01 7.03398287e-01 9.49204713e-02 -6.83686584e-02 4.31271166e-01 1.09629288e-01 -6.20898724e-01 1.34268343e-01 7.36748576e-01 1.99835643e-01 -3.57651532e-01 -1.02331913e+00 6.60465956e-01 -2.12237906e+00 -1.13309872e+00 -4.05467391e-01 1.53293800e+00 1.23684299e+00 6.17236912e-01 2.88786858e-01 2.20358387e-01 3.15093845e-01 2.72488236e-01 -4.14624631e-01 -9.68543351e-01 -4.28775489e-01 4.23301458e-01 4.95598882e-01 2.42585838e-01 -1.15513539e+00 1.32144344e+00 6.58387232e+00 1.11569977e+00 -1.97310224e-01 -2.03479841e-01 2.99560785e-01 1.34251267e-01 -7.14941800e-01 3.02507043e-01 -1.25863123e+00 3.93666476e-01 1.31118476e+00 -2.25992709e-01 -1.63359847e-02 6.61128998e-01 -4.32403833e-01 -4.25318509e-01 -1.65770912e+00 4.89424258e-01 -3.92303556e-01 -1.98835599e+00 -1.31225988e-01 -1.88650906e-01 5.36461234e-01 -1.94367722e-01 -4.33190614e-01 7.20095873e-01 3.90985072e-01 -1.11279464e+00 9.00871515e-01 6.02685928e-01 7.50059247e-01 -6.29641771e-01 9.31784093e-01 4.71593469e-01 -1.40109444e+00 -1.47246316e-01 -5.04726708e-01 -3.10070038e-01 2.51123995e-01 8.13042521e-01 -1.01111686e+00 1.10603774e+00 5.40355146e-01 6.78585589e-01 -6.68337643e-01 5.86499095e-01 -2.86428183e-01 6.65198028e-01 -4.74353641e-01 -1.44558728e-01 -9.58783999e-02 -5.46439923e-02 4.83626425e-01 1.46519268e+00 -3.00274014e-01 4.87293571e-01 1.54723465e-01 9.88841772e-01 -3.09689134e-01 -1.37430310e-01 -4.19192374e-01 -2.67167866e-01 1.18649006e+00 8.24794590e-01 -6.23815775e-01 -6.92282319e-01 -5.82264900e-01 4.41768050e-01 7.49888659e-01 3.23450789e-02 -4.98985142e-01 -8.04129541e-01 5.62149405e-01 -9.55891386e-02 5.22856653e-01 1.95649981e-01 -1.04196274e+00 -1.23397040e+00 4.98280644e-01 -8.19253385e-01 7.13855624e-01 -4.45174307e-01 -1.55271161e+00 5.71145713e-01 3.85859460e-01 -1.24406421e+00 -6.51591837e-01 -3.94001573e-01 -5.70090830e-01 6.49520755e-01 -9.87264037e-01 -9.46083188e-01 2.70788461e-01 1.05709732e-01 2.51083463e-01 2.01747596e-01 7.94469893e-01 6.75332993e-02 -5.62646747e-01 6.66908324e-01 -4.01741713e-01 5.72730780e-01 3.50325316e-01 -1.54685330e+00 9.16440010e-01 7.20882237e-01 3.58896434e-01 8.14872801e-01 6.82170749e-01 -9.86867309e-01 -1.22291839e+00 -7.57229924e-01 1.65928137e+00 -9.11166489e-01 8.25079739e-01 -5.88618815e-01 -1.19683945e+00 8.35424125e-01 2.38982156e-01 1.35930762e-01 5.34162641e-01 7.82238126e-01 -6.64217710e-01 -8.28092024e-02 -9.03625607e-01 1.26395568e-01 1.10259259e+00 -8.85001123e-01 -1.33609676e+00 1.30462646e-01 1.48994803e+00 -7.03928947e-01 -1.61019552e+00 7.27098882e-01 5.21362424e-01 -1.31778216e+00 1.10027039e+00 -8.50860119e-01 7.90524840e-01 -4.48899046e-02 4.61265445e-02 -9.78560507e-01 2.91035622e-01 -5.60711324e-01 -9.32206750e-01 1.68601823e+00 9.98905957e-01 -4.73630637e-01 1.04066133e+00 1.04225779e+00 -4.70279217e-01 -1.36010087e+00 -8.08727562e-01 -1.11931205e+00 1.17108636e-01 -6.48373783e-01 1.16638374e+00 3.96135062e-01 1.02319515e+00 7.13784754e-01 3.04792047e-04 -5.33230975e-02 2.96568185e-01 6.78914070e-01 7.87486970e-01 -1.16585243e+00 -1.43943250e-01 7.42209330e-03 1.33276433e-01 -1.08928740e+00 6.24587297e-01 -7.49200702e-01 8.60695988e-02 -1.76429343e+00 8.96521807e-02 -8.33677232e-01 1.46832213e-01 6.21540189e-01 -3.90796989e-01 -1.59268022e-01 3.92146647e-01 3.65169495e-01 -1.01274443e+00 3.70439470e-01 9.09055889e-01 -1.41608745e-01 -3.44441891e-01 1.17410786e-01 -7.00969994e-01 3.33687961e-01 5.04952252e-01 -5.58393240e-01 -7.43033588e-02 -2.47821026e-02 8.08986247e-01 6.82720482e-01 2.53065792e-03 -7.09252834e-01 3.33174765e-01 -1.97355568e-01 9.75201931e-03 -9.73943949e-01 9.98500511e-02 -1.29527196e-01 -1.28842309e-01 -1.01400897e-01 -5.50851166e-01 -2.96987087e-01 -4.20402437e-02 2.56644458e-01 -8.06714475e-01 -5.20960271e-01 -9.24429297e-02 -1.85613468e-01 -7.58058786e-01 1.17030486e-01 1.91372056e-02 9.12771344e-01 5.98066151e-01 -2.89655477e-01 -1.06180537e+00 1.28131092e-01 -7.45044887e-01 6.86411381e-01 1.82244182e-02 2.73916095e-01 7.64289021e-01 -1.08725536e+00 -7.43516743e-01 -4.65823524e-02 4.43844169e-01 4.96382952e-01 2.04917341e-01 4.49956000e-01 -5.33012688e-01 7.36627281e-01 1.76077828e-01 -5.93042374e-02 -1.14331210e+00 7.48914242e-01 -3.05242687e-01 -8.56824636e-01 -6.86653733e-01 1.07573307e+00 -3.69670779e-01 -6.38947368e-01 1.29296675e-01 -9.26762223e-01 -2.25172192e-01 2.96491265e-01 3.81878883e-01 3.16470474e-01 2.57306755e-01 -1.89415365e-01 -4.62397724e-01 -2.49221057e-01 -1.02822624e-01 -4.37872782e-02 9.36731756e-01 7.10339239e-03 -7.06606030e-01 4.74547476e-01 1.01260650e+00 3.81464928e-01 -8.39477539e-01 -3.64547491e-01 8.30886006e-01 -3.03123862e-01 -8.58456671e-01 -7.20313549e-01 -2.40743198e-02 2.53912151e-01 -7.30344534e-01 8.86463702e-01 7.01036513e-01 6.94566727e-01 1.46582353e+00 5.64544737e-01 5.04140615e-01 -1.10769451e+00 -3.26127321e-01 1.00532448e+00 7.73916185e-01 -1.07159841e+00 1.20473199e-01 -1.01031518e+00 -8.88250232e-01 8.64733934e-01 9.12809134e-01 -8.80478173e-02 5.81034660e-01 6.17085755e-01 -1.47839770e-01 -4.41409141e-01 -1.34694672e+00 -5.04036605e-01 2.12575465e-01 4.91606116e-01 3.50856483e-01 4.76876348e-01 -5.08295119e-01 1.24670017e+00 -7.68998563e-01 3.04064080e-02 4.63208348e-01 9.85201597e-01 -3.94927800e-01 -1.33984506e+00 -2.70058125e-01 1.05244243e+00 -3.25301021e-01 -2.80553639e-01 -6.03067040e-01 7.29785562e-01 2.47005805e-01 1.01671076e+00 9.36785266e-02 -7.53447473e-01 4.56374794e-01 2.59115428e-01 4.32983339e-01 -1.06319916e+00 -1.08364868e+00 -5.72264612e-01 1.05259156e+00 -6.32729173e-01 -2.73916274e-01 -5.49512148e-01 -1.62736714e+00 -4.18863237e-01 -2.68748552e-01 7.70096302e-01 -1.50207598e-02 1.01781785e+00 5.49835503e-01 3.42781961e-01 4.88033593e-01 -5.88589683e-02 -4.81477469e-01 -1.08670998e+00 -7.80937612e-01 4.01902646e-01 5.99928871e-02 -3.48430395e-01 1.56347573e-01 -4.01829362e-01]
[9.59016227722168, 8.618504524230957]
88f44097-7046-4b9b-9611-9ffa00fa1aa4
dermatological-diagnosis-explainability
2302.12084
null
https://arxiv.org/abs/2302.12084v1
https://arxiv.org/pdf/2302.12084v1.pdf
Dermatological Diagnosis Explainability Benchmark for Convolutional Neural Networks
In recent years, large strides have been taken in developing machine learning methods for dermatological applications, supported in part by the success of deep learning (DL). To date, diagnosing diseases from images is one of the most explored applications of DL within dermatology. Convolutional neural networks (ConvNets) are the most common (DL) method in medical imaging due to their training efficiency and accuracy, although they are often described as black boxes because of their limited explainability. One popular way to obtain insight into a ConvNet's decision mechanism is gradient class activation maps (Grad-CAM). A quantitative evaluation of the Grad-CAM explainability has been recently made possible by the release of DermXDB, a skin disease diagnosis explainability dataset which enables explainability benchmarking of ConvNet architectures. In this paper, we perform a literature review to identify the most common ConvNet architectures used for this task, and compare their Grad-CAM explanations with the explanation maps provided by DermXDB. We identified 11 architectures: DenseNet121, EfficientNet-B0, InceptionV3, InceptionResNetV2, MobileNet, MobileNetV2, NASNetMobile, ResNet50, ResNet50V2, VGG16, and Xception. We pre-trained all architectures on an clinical skin disease dataset, and fine-tuned them on a DermXDB subset. Validation results on the DermXDB holdout subset show an explainability F1 score of between 0.35-0.46, with Xception displaying the highest explainability performance. NASNetMobile reports the highest characteristic-level explainability sensitivity, despite it's mediocre diagnosis performance. These results highlight the importance of choosing the right architecture for the desired application and target market, underline need for additional explainability datasets, and further confirm the need for explainability benchmarking that relies on quantitative analyses.
['Alfiia Galimzianova', 'Ole Winther', 'Raluca Jalaboi']
2023-02-23
null
null
null
null
['medical-diagnosis']
['medical']
[-1.06613757e-02 4.44085062e-01 -4.38828439e-01 -4.04667675e-01 -2.10378096e-01 -4.16054696e-01 5.50460279e-01 1.26828685e-01 -1.41900823e-01 6.34962380e-01 1.37424260e-01 -5.22597909e-01 -6.80446863e-01 -5.72412431e-01 -3.67607206e-01 -3.89846057e-01 2.44263858e-02 4.52538788e-01 -9.55914184e-02 -1.85945868e-01 -8.04135948e-02 5.65581203e-01 -1.19275260e+00 8.25574756e-01 1.05447459e+00 9.45899367e-01 1.89767376e-01 9.79160547e-01 -3.14967573e-01 7.88416862e-01 -4.70530599e-01 -6.31479084e-01 -1.19096316e-01 -4.54039752e-01 -1.02635741e+00 -3.87340821e-02 2.56478906e-01 -2.10211232e-01 -1.43271372e-01 5.23551464e-01 4.44163799e-01 -5.17981648e-01 6.71802104e-01 -1.20123327e+00 -7.93982863e-01 4.15332049e-01 -2.27532312e-01 3.13406676e-01 3.84287462e-02 3.48829627e-01 8.35940480e-01 -6.17158473e-01 8.62868011e-01 9.37498212e-01 9.36138332e-01 1.07946324e+00 -1.20387852e+00 -3.96150440e-01 -7.29829520e-02 2.80769587e-01 -1.13464212e+00 3.09561968e-01 4.07539159e-02 -2.17221826e-01 1.32965291e+00 8.16465437e-01 8.92534554e-01 1.33748507e+00 6.42470598e-01 6.50722921e-01 1.24066210e+00 -2.48554826e-01 2.29577914e-01 3.14518690e-01 2.27574021e-01 7.10923672e-01 2.92699069e-01 1.14053022e-02 -3.45859915e-01 1.45552561e-01 7.59835482e-01 1.78431898e-01 -4.63862598e-01 1.30656883e-01 -6.52875304e-01 8.04053068e-01 9.14907515e-01 4.36050564e-01 -5.03930926e-01 4.53776121e-01 3.62798154e-01 3.30514133e-01 4.70442116e-01 6.75015032e-01 -6.36364043e-01 -1.24177158e-01 -6.77503288e-01 1.79938838e-01 5.72000086e-01 3.56371522e-01 3.31043750e-01 -2.00207401e-02 6.41986579e-02 7.32692480e-01 6.78628236e-02 3.80006284e-02 5.08810461e-01 -3.71457160e-01 2.12084185e-02 9.33575988e-01 -4.91343200e-01 -7.64453888e-01 -7.48932183e-01 -5.42210758e-01 -1.16902590e+00 3.30727488e-01 3.20912719e-01 -6.77278265e-02 -1.35719705e+00 1.31614113e+00 -7.85810221e-03 -1.83112204e-01 -7.12908953e-02 1.12137663e+00 1.10417581e+00 1.49789542e-01 4.04288888e-01 5.70574462e-01 1.18722117e+00 -6.60731316e-01 -3.38443130e-01 7.17687532e-02 7.50817657e-01 -5.44495821e-01 9.03693080e-01 8.82917106e-01 -8.12369525e-01 -5.31122267e-01 -8.25191975e-01 -3.72717679e-02 -5.40029049e-01 1.62280142e-01 1.19599128e+00 5.82484126e-01 -1.28194523e+00 7.16187298e-01 -9.34213936e-01 -7.66376734e-01 5.14957368e-01 6.48626149e-01 -6.77333832e-01 -1.07012592e-01 -1.14918685e+00 1.18860459e+00 2.80394822e-01 1.57091483e-01 -7.94516921e-01 -9.35041785e-01 -4.32396859e-01 3.60015705e-02 -4.37296741e-02 -8.38584304e-01 7.62049079e-01 -1.08069694e+00 -7.50485420e-01 9.66542125e-01 2.98272491e-01 -8.38568091e-01 5.98799944e-01 2.51953267e-02 -6.82417572e-01 2.45821580e-01 -2.04046607e-01 1.02143776e+00 2.77672112e-01 -8.83441508e-01 -6.28909588e-01 -1.61749706e-01 3.08108360e-01 -1.68506503e-01 -2.41128668e-01 -4.58637238e-01 -2.92275637e-01 -4.27137733e-01 -1.99487563e-02 -9.07282233e-01 -3.03589076e-01 1.69813991e-01 -9.60137248e-01 -1.68520287e-01 5.57288289e-01 -6.58286333e-01 1.06606376e+00 -1.83480179e+00 -1.09931715e-01 2.90401071e-01 7.79331148e-01 4.88012105e-01 -2.49034747e-01 4.08092499e-01 -5.84303200e-01 6.20945573e-01 1.72221333e-01 2.77446657e-02 -2.26692557e-01 3.81860435e-01 1.38126582e-01 2.93158293e-01 6.07890308e-01 1.01831138e+00 -5.66443801e-01 -8.50135088e-02 6.04721606e-01 8.74203265e-01 -6.77785277e-01 -2.28933975e-01 -1.88606337e-01 3.57587904e-01 -3.68769437e-01 7.08257258e-01 5.81685543e-01 -6.54862225e-01 1.84998721e-01 -2.83371091e-01 2.28665918e-01 -1.22951316e-02 -6.84821844e-01 1.44987488e+00 -6.59958482e-01 9.49091852e-01 -2.35398293e-01 -6.03820264e-01 7.98736572e-01 3.29286605e-01 5.87517977e-01 -4.48649436e-01 1.49638832e-01 3.90517473e-01 5.11622071e-01 -7.42703021e-01 1.29106373e-01 -4.53644805e-02 5.75819433e-01 2.25049723e-02 3.62267606e-02 1.35704905e-01 -7.02666864e-02 1.14404730e-01 1.43546188e+00 -3.47589135e-01 3.79865885e-01 -3.74682873e-01 3.64861786e-01 2.78821886e-01 3.46586965e-02 6.33829951e-01 -8.33982900e-02 1.06263864e+00 6.54582739e-01 -1.11503756e+00 -9.40962791e-01 -9.21370447e-01 -6.27741337e-01 4.04172361e-01 9.78101231e-03 -2.50823498e-01 -9.29059505e-01 -1.00009274e+00 8.35227892e-02 5.88871300e-01 -1.11196566e+00 -6.84250742e-02 -5.06536812e-02 -7.19221771e-01 6.73167169e-01 5.76248407e-01 6.43380821e-01 -1.12055933e+00 -4.99792993e-01 6.98377341e-02 2.09603161e-01 -6.19287074e-01 2.06135541e-01 3.40456128e-01 -5.58219373e-01 -1.49253249e+00 -8.07017028e-01 -3.70053083e-01 7.04818547e-01 -1.20312415e-01 1.17902100e+00 5.49179614e-01 -1.00912333e+00 2.30510309e-01 -2.61971176e-01 -5.19190431e-01 -2.42416009e-01 5.26529670e-01 -2.22653911e-01 -3.40354830e-01 6.23942792e-01 -1.80941433e-01 -9.27518547e-01 2.38767102e-01 -1.04926395e+00 3.92137647e-01 8.76731932e-01 1.04811859e+00 7.59930074e-01 -1.65541157e-01 5.01722634e-01 -1.16207802e+00 6.18169546e-01 -7.05457091e-01 9.85484496e-02 1.94133714e-01 -8.98651898e-01 -1.87425658e-01 4.06270772e-01 -2.30624646e-01 -5.72715580e-01 -2.42682457e-01 -4.79383469e-01 -3.11514139e-01 -4.69639361e-01 5.32390296e-01 2.18428358e-01 -8.67513716e-02 1.19522393e+00 -1.08646169e-01 2.62153149e-01 -3.18958730e-01 1.73767045e-01 6.02152169e-01 2.71801770e-01 -8.56934190e-02 2.27930576e-01 4.52589065e-01 3.00374720e-02 -8.31764400e-01 -6.10254645e-01 -3.73138376e-02 -1.49725541e-01 -1.47033975e-01 1.12345314e+00 -4.65551883e-01 -8.03236842e-01 1.80654570e-01 -1.18360221e+00 -3.08394015e-01 -2.58842260e-01 4.13245261e-01 -1.06809832e-01 -1.27644137e-01 -5.81449687e-01 -4.16965872e-01 -5.14974117e-01 -1.29545856e+00 9.05631065e-01 3.10455203e-01 -9.27783549e-01 -1.44330609e+00 -2.81378180e-01 3.16342056e-01 6.63714826e-01 7.35183179e-01 1.19802403e+00 -9.58421350e-01 -2.74587244e-01 -2.91291356e-01 -6.18187129e-01 2.85782903e-01 2.13171944e-01 5.49741536e-02 -1.00574851e+00 -7.89250433e-03 -5.14780641e-01 -2.43008867e-01 9.15939033e-01 8.89861524e-01 1.62915719e+00 -1.01104677e-01 -3.97601783e-01 7.53361523e-01 1.67223752e+00 8.74024406e-02 7.19096124e-01 4.16016787e-01 5.97914934e-01 6.50538027e-01 1.24174118e-01 -8.86446517e-03 2.12566823e-01 4.13404256e-01 1.06667209e+00 -8.63614619e-01 -6.59435272e-01 6.20617196e-02 -3.07710439e-01 1.25024080e-01 -3.17851543e-01 -3.27370882e-01 -1.02455401e+00 5.27788222e-01 -1.51433516e+00 -4.79481131e-01 -6.96725965e-01 1.62168181e+00 4.08699691e-01 1.88451216e-01 -2.15813667e-02 1.19022906e-01 6.09584510e-01 -2.90757328e-01 -5.83453596e-01 -8.90797377e-01 -1.07704602e-01 5.56317389e-01 3.34054828e-01 3.50392252e-01 -6.92034900e-01 6.50251865e-01 6.48331642e+00 8.49195540e-01 -1.61191857e+00 -3.47597487e-02 1.12790620e+00 -1.44738719e-01 -5.04341722e-01 -3.87879282e-01 -5.18100142e-01 6.24654174e-01 7.79503644e-01 3.00305635e-01 3.42500776e-01 1.02326822e+00 1.75171211e-01 9.88866854e-03 -1.10571206e+00 7.91124046e-01 -2.82355487e-01 -1.81488657e+00 1.70031041e-01 3.40223938e-01 6.31569743e-01 1.05296195e-01 3.80902231e-01 1.04669824e-01 7.59377703e-02 -1.72131598e+00 2.61911564e-02 4.08134311e-01 1.15054190e+00 -7.72202492e-01 1.10599768e+00 -2.06688896e-01 -5.61160088e-01 7.94272199e-02 -5.15912771e-01 1.07126765e-01 -2.02121079e-01 7.04713225e-01 -1.35480797e+00 4.29597855e-01 8.14948261e-01 5.64758360e-01 -5.15410364e-01 7.88325667e-01 -4.12003070e-01 6.44449532e-01 -2.97615118e-02 -3.53921771e-01 5.32090008e-01 3.54635030e-01 2.70774961e-01 1.30633581e+00 1.96511254e-01 -9.27531272e-02 -4.52064812e-01 1.11848736e+00 1.42573819e-01 -1.04472317e-01 -4.00496125e-01 5.76234460e-02 5.05807362e-02 1.53090513e+00 -6.19977653e-01 1.87020395e-02 -1.73966348e-01 9.20116007e-01 -1.32886648e-01 2.32870758e-01 -9.23198879e-01 -2.84759998e-01 7.92813420e-01 5.11420131e-01 -2.83052195e-02 5.45851707e-01 -6.59045994e-01 -6.70894146e-01 -3.78788650e-01 -1.00690138e+00 3.96510154e-01 -1.03071988e+00 -1.38501024e+00 1.09050560e+00 -2.84019053e-01 -7.90749371e-01 -2.51320869e-01 -1.09946883e+00 -5.13073027e-01 1.22285724e+00 -1.37509120e+00 -1.35369432e+00 -8.58273268e-01 4.98599917e-01 6.28854215e-01 -2.88728923e-01 1.04889119e+00 7.84516633e-02 -4.24695969e-01 4.92569983e-01 -3.92425150e-01 -1.22188412e-01 3.35423023e-01 -1.57764292e+00 3.61725956e-01 1.20302036e-01 -1.41409803e-02 6.85742855e-01 6.44721389e-01 -5.56121171e-01 -8.00906718e-01 -1.08392859e+00 7.64553845e-01 -4.36238110e-01 4.77783978e-01 -2.43856851e-02 -8.19687068e-01 3.77225518e-01 3.68286371e-01 -5.13748638e-02 8.16704094e-01 3.38033438e-01 -1.15274839e-01 -5.80778718e-02 -1.40055203e+00 5.13051152e-01 8.12616408e-01 -2.01601014e-01 -1.22945875e-01 4.71692413e-01 4.66939777e-01 -4.51767176e-01 -9.70545530e-01 2.75943100e-01 6.46618068e-01 -1.25247967e+00 6.94231689e-01 -9.11285579e-01 1.16197097e+00 2.29486004e-01 9.41081345e-02 -1.38979173e+00 -2.38685027e-01 -1.12193085e-01 1.86088100e-01 9.01234746e-01 5.79876125e-01 -6.87374711e-01 1.30886281e+00 8.15956116e-01 -1.35037497e-01 -1.62281835e+00 -6.86392725e-01 -5.07935464e-01 1.13728875e-02 -4.33501810e-01 5.86597741e-01 9.81463432e-01 -2.07855269e-01 -1.39382392e-01 -2.44230330e-01 -9.94278193e-02 1.94213435e-01 -3.85049850e-01 5.53422868e-01 -1.09940398e+00 -4.31789637e-01 -5.78096449e-01 -9.28688467e-01 -3.36244285e-01 -2.80386060e-01 -1.11677814e+00 -5.47206581e-01 -1.84979606e+00 3.94795179e-01 -4.53671515e-01 -3.63697529e-01 9.19007659e-01 -2.03910843e-02 3.60948950e-01 -6.83029220e-02 1.23089820e-01 -1.02670724e-02 -3.41896653e-01 1.25302613e+00 -1.71209484e-01 -1.33380145e-01 -1.37669355e-01 -9.56656635e-01 6.45722449e-01 8.45104456e-01 -1.25694260e-01 -5.58305860e-01 -6.44010067e-01 6.25474900e-02 -3.35639238e-01 6.30876243e-01 -1.00745153e+00 -9.06076655e-02 -4.49691154e-02 7.57184029e-01 -3.41022789e-01 2.07170635e-01 -7.84394145e-01 5.36047161e-01 1.11647296e+00 -4.93759513e-01 -2.55700424e-02 3.89230490e-01 2.12434113e-01 -1.96973100e-01 -1.12570420e-01 6.64197326e-01 -1.08600304e-01 -9.02172029e-01 4.64866340e-01 -2.69836456e-01 -3.48412693e-01 9.74462688e-01 -5.70034146e-01 -5.81426978e-01 -4.62404370e-01 -1.14896429e+00 -2.89936010e-02 1.98194176e-01 3.75962734e-01 6.23936236e-01 -1.13442445e+00 -6.07411265e-01 4.74288780e-03 9.92322043e-02 -2.30836600e-01 6.59006059e-01 9.50259149e-01 -1.12659693e+00 6.67392254e-01 -5.39114058e-01 -8.83070171e-01 -1.24161875e+00 2.13707283e-01 7.55809486e-01 -4.35535699e-01 -5.38642883e-01 1.00230527e+00 3.52916241e-01 -4.30320948e-01 5.83131239e-03 -3.90331268e-01 7.99687550e-05 -4.96945530e-01 3.34281445e-01 4.44522142e-01 3.21685553e-01 8.82898569e-02 -4.81949627e-01 2.61641324e-01 -3.44134510e-01 3.16430330e-01 1.44639230e+00 3.74174505e-01 1.33476362e-01 -3.22816819e-01 1.03776610e+00 -5.65643251e-01 -9.19574022e-01 6.65456831e-01 -1.79264337e-01 -2.19667196e-01 2.35334458e-03 -1.54617453e+00 -1.29995227e+00 1.13223279e+00 9.42346096e-01 5.27664900e-01 1.22263300e+00 -1.18631490e-01 4.73758608e-01 -1.77837998e-01 1.53939322e-01 -8.57381880e-01 3.96295860e-02 -8.31287503e-02 9.86690760e-01 -1.07687032e+00 -1.83931932e-01 -6.27112150e-01 -7.07680464e-01 1.21218681e+00 8.18196058e-01 -1.69208258e-01 5.40699065e-01 1.45711631e-01 1.70991048e-01 -6.59085035e-01 -6.70779884e-01 -3.02970950e-02 4.44546521e-01 8.70213389e-01 6.86657965e-01 1.07806578e-01 -5.50227761e-01 8.12321186e-01 -2.19443530e-01 9.50000361e-02 2.99673736e-01 2.95168519e-01 -6.24013192e-04 -1.12910509e+00 3.82080525e-02 8.05009902e-01 -6.91507280e-01 -1.07190311e-01 -1.00618649e+00 1.58578241e+00 5.04727662e-01 7.23775387e-01 -3.17018330e-02 -7.31591046e-01 3.40328813e-01 -3.56639892e-01 2.24365428e-01 -4.50986266e-01 -1.03553808e+00 -2.52717555e-01 1.29675373e-01 -6.72770381e-01 2.58991178e-02 -6.35746121e-02 -1.39831984e+00 -6.80275977e-01 -2.56040961e-01 -8.93178284e-02 9.71048295e-01 8.79514217e-01 5.47839165e-01 9.15476680e-01 1.22203708e-01 -1.79150730e-01 -2.53765911e-01 -8.41446221e-01 -6.42231703e-01 3.99359554e-01 1.07072070e-01 -2.85622954e-01 -1.89206511e-01 -2.50249565e-01]
[15.469243049621582, -2.758995532989502]
6aac6388-e50c-422b-9259-65dfb916a26d
boosting-text-classification-performance-on
null
null
https://aclanthology.org/W18-5114
https://aclanthology.org/W18-5114.pdf
Boosting Text Classification Performance on Sexist Tweets by Text Augmentation and Text Generation Using a Combination of Knowledge Graphs
Text classification models have been heavily utilized for a slew of interesting natural language processing problems. Like any other machine learning model, these classifiers are very dependent on the size and quality of the training dataset. Insufficient and imbalanced datasets will lead to poor performance. An interesting solution to poor datasets is to take advantage of the world knowledge in the form of knowledge graphs to improve our training data. In this paper, we use ConceptNet and Wikidata to improve sexist tweet classification by two methods (1) text augmentation and (2) text generation. In our text generation approach, we generate new tweets by replacing words using data acquired from ConceptNet relations in order to increase the size of our training set, this method is very helpful with frustratingly small datasets, preserves the label and increases diversity. In our text augmentation approach, the number of tweets remains the same but their words are augmented (concatenation) with words extracted from their ConceptNet relations and their description extracted from Wikidata. In our text augmentation approach, the number of tweets in each class remains the same but the range of each tweet increases. Our experiments show that our approach improves sexist tweet classification significantly in our entire machine learning models. Our approach can be readily applied to any other small dataset size like hate speech or abusive language and text classification problem using any machine learning model.
['Stan Matwin', 'Borna Jafarpour', 'Sima Sharifirad']
2018-10-01
null
null
null
ws-2018-10
['text-augmentation']
['natural-language-processing']
[ 3.42682064e-01 4.81116027e-01 -3.69707853e-01 -3.22109044e-01 2.03129813e-01 -3.99922848e-01 8.57263088e-01 6.10459983e-01 -5.09098530e-01 1.11040306e+00 3.10625166e-01 -2.13282228e-01 9.19044111e-03 -1.33517504e+00 -2.10035771e-01 -4.43032265e-01 2.91108161e-01 8.13573420e-01 2.92102963e-01 -8.37736249e-01 4.29393768e-01 8.70946422e-02 -1.54919946e+00 2.15431854e-01 9.72129464e-01 6.22399986e-01 -4.47299063e-01 4.23583388e-01 -8.96680236e-01 9.47716415e-01 -8.52465630e-01 -7.36436963e-01 1.53126314e-01 -3.05987805e-01 -1.12413442e+00 5.45343570e-02 1.42296970e-01 2.60522775e-02 -1.63040727e-01 9.45660710e-01 4.51640368e-01 1.94523543e-01 6.47854567e-01 -1.61888099e+00 -4.24509615e-01 1.14671922e+00 -8.81256461e-01 1.09381028e-01 1.41655266e-01 -3.90290618e-01 7.93787479e-01 -6.96313620e-01 6.52201772e-01 1.44448495e+00 6.36965573e-01 6.16809666e-01 -9.93332803e-01 -1.18769157e+00 1.90673694e-01 -2.41247080e-02 -1.24928415e+00 -2.50763521e-02 8.41123641e-01 -4.30653185e-01 7.69787550e-01 3.20029557e-01 7.19046116e-01 1.08175921e+00 -1.46423027e-01 3.36455435e-01 8.96857321e-01 -6.35655284e-01 -2.98024081e-02 7.47597277e-01 4.25502181e-01 5.96167684e-01 5.61710954e-01 -3.17609608e-01 -5.31596839e-01 -3.07365298e-01 2.47618914e-01 2.04125360e-01 1.39092371e-01 1.41368926e-01 -9.97968495e-01 1.39562964e+00 2.57171631e-01 5.32417953e-01 1.65458381e-01 -4.86837327e-02 6.24034703e-01 2.60684460e-01 9.23211515e-01 7.83154607e-01 -4.78007883e-01 -2.59373095e-02 -8.08666527e-01 3.15520525e-01 9.84222293e-01 7.35266745e-01 9.05154109e-01 -9.44930017e-02 6.26410395e-02 1.00329852e+00 -9.39540789e-02 4.65828508e-01 1.07016671e+00 -1.44804254e-01 6.63185656e-01 1.23442960e+00 -3.30400944e-01 -1.42639005e+00 -5.91021478e-01 -4.59764332e-01 -8.54473054e-01 -1.67599395e-01 2.42254227e-01 -4.28443164e-01 -9.98917282e-01 1.45999873e+00 4.07799065e-01 2.30816100e-02 7.64424577e-02 2.38407582e-01 9.65792775e-01 6.31822586e-01 2.07794368e-01 -1.05082147e-01 1.42336810e+00 -6.60949647e-01 -8.65272403e-01 -3.86681378e-01 1.03194952e+00 -8.34322929e-01 9.71079171e-01 2.70581424e-01 -4.32785422e-01 -2.84899950e-01 -1.02007914e+00 9.77764428e-02 -1.17203677e+00 -1.22883275e-01 8.11048746e-01 1.02532578e+00 -5.38507223e-01 4.10880774e-01 -2.22297579e-01 -5.51347017e-01 5.73751569e-01 5.69555521e-01 -3.44759941e-01 9.92631540e-02 -1.33440876e+00 8.58034313e-01 1.03527856e+00 -4.90398914e-01 1.89547725e-02 -4.91098493e-01 -1.01485550e+00 -1.31323278e-01 5.48176169e-01 -4.64755237e-01 8.50687683e-01 -1.02458215e+00 -1.04532743e+00 8.05070162e-01 1.04102813e-01 -4.38169658e-01 3.31395656e-01 -4.77299616e-02 -3.81337881e-01 -2.22894624e-01 1.01557076e-01 7.62039602e-01 8.65416169e-01 -1.27206874e+00 -6.70176268e-01 -4.34541911e-01 -4.17647170e-05 1.07202321e-01 -1.08806038e+00 -7.49232918e-02 1.41269162e-01 -8.43862891e-01 1.21003233e-01 -9.62212384e-01 -1.83352381e-01 -4.33594793e-01 -5.84109962e-01 -2.31908381e-01 1.39964795e+00 -3.34284127e-01 1.51357162e+00 -1.95614576e+00 -3.16485524e-01 4.55056369e-01 5.38612604e-01 4.77379173e-01 1.41142324e-01 5.72001874e-01 -1.45240784e-01 7.55238712e-01 -3.64956677e-01 -2.99375713e-01 -2.70186484e-01 5.95837772e-01 -4.10526782e-01 -5.42897061e-02 2.29200855e-01 7.01093912e-01 -1.06046712e+00 -7.69201577e-01 1.24870799e-01 2.32404187e-01 -4.98340786e-01 -1.22928977e-01 -2.00105384e-01 1.05213560e-01 -4.49284941e-01 1.21876977e-01 5.97437799e-01 5.73654026e-02 9.61768031e-02 1.27311960e-01 1.47644877e-01 2.82866895e-01 -1.21266127e+00 1.01987803e+00 -5.22861302e-01 6.77740693e-01 -5.98957002e-01 -1.02072906e+00 1.30283689e+00 1.40177324e-01 3.93214017e-01 -3.85678440e-01 3.67818385e-01 -2.76753418e-02 1.51219785e-01 -6.05086088e-01 7.95587957e-01 -3.68371338e-01 -1.25551328e-01 7.79186130e-01 7.52091408e-03 -3.89077723e-01 6.54775858e-01 5.73607206e-01 6.27096295e-01 -4.21943605e-01 4.59683955e-01 -9.13327113e-02 5.04685223e-01 2.09132567e-01 2.53006905e-01 6.12971425e-01 2.67542958e-01 2.98672348e-01 7.34328091e-01 -5.12505949e-01 -1.13149512e+00 -3.19179803e-01 -1.62038282e-01 1.17841685e+00 -1.52660608e-01 -8.22593153e-01 -5.29333115e-01 -1.01350629e+00 -2.30366085e-02 7.24065125e-01 -8.73498857e-01 -4.16882217e-01 -5.40226281e-01 -1.27786827e+00 7.55825043e-01 3.31181854e-01 6.35270178e-01 -9.87530887e-01 -1.02217622e-01 1.63374931e-01 -2.73538411e-01 -9.81660366e-01 -1.09284319e-01 1.06251538e-01 -8.14550400e-01 -1.12286019e+00 -2.86270771e-02 -7.17550159e-01 8.52026999e-01 8.99273679e-02 9.80861962e-01 4.78144825e-01 -2.10032463e-01 -2.25776955e-01 -8.59941959e-01 -1.12075758e+00 -6.36069000e-01 4.73492831e-01 7.86560494e-03 2.44707409e-02 5.46996295e-01 -5.30235708e-01 -2.00652137e-01 1.43108115e-01 -1.25765526e+00 1.68059364e-01 1.39270261e-01 9.16841686e-01 -1.87230989e-01 4.69014555e-01 7.05702841e-01 -1.67033923e+00 9.35522437e-01 -6.95167124e-01 -1.04741938e-01 -1.56417459e-01 -8.20167243e-01 5.69537021e-02 6.59363031e-01 -6.59564257e-01 -8.64623547e-01 -1.75829902e-01 -1.77999526e-01 2.68204957e-01 1.47282211e-02 5.80735624e-01 1.97972611e-01 1.17691137e-01 9.78150725e-01 3.53488661e-02 1.07556090e-01 -2.01353878e-01 4.17553157e-01 1.01039660e+00 1.24499602e-02 -2.37887472e-01 1.01038730e+00 4.60202426e-01 7.43775629e-03 -8.92248869e-01 -9.17336881e-01 -4.74115014e-01 -8.65187168e-01 -1.23961112e-02 5.07493377e-01 -3.78693521e-01 -5.46116352e-01 4.16816771e-01 -9.67746019e-01 2.13510320e-01 -3.63310009e-01 3.37997347e-01 1.63326517e-01 1.73809335e-01 -2.67955989e-01 -9.53671753e-01 -6.00260079e-01 -6.07449412e-01 7.53322065e-01 1.85410842e-01 -4.31120396e-01 -1.23428655e+00 4.49591242e-02 4.41780508e-01 3.78012836e-01 4.23643798e-01 1.17073977e+00 -1.44318080e+00 2.51516372e-01 -5.73513329e-01 -2.78686464e-01 2.50879019e-01 4.15568978e-01 1.38982251e-01 -8.61540139e-01 -1.57758815e-03 -1.07899576e-01 -3.29945803e-01 9.06608760e-01 -3.55581135e-01 1.25392318e+00 -7.55361617e-01 -4.65638429e-01 2.45124251e-02 1.29974651e+00 1.31394953e-01 5.72220087e-01 2.57149130e-01 8.88448834e-01 9.17163491e-01 4.82153624e-01 5.20630777e-01 3.15160304e-01 3.54232132e-01 3.13554227e-01 -2.16504246e-01 8.72351602e-02 -2.73839116e-01 -4.79913503e-02 7.13723063e-01 1.31083682e-01 -4.55594033e-01 -1.15742004e+00 4.46745068e-01 -1.82537782e+00 -1.07678425e+00 -4.22385335e-01 1.99842966e+00 1.16695940e+00 3.56785983e-01 1.85447335e-01 7.97143638e-01 6.66001856e-01 -5.07769920e-03 -6.28690720e-02 -5.54418683e-01 7.41287228e-03 4.34727103e-01 4.69753981e-01 4.88462687e-01 -9.91998315e-01 1.13537633e+00 5.60476780e+00 9.31836009e-01 -1.17934465e+00 1.58176124e-01 6.26180351e-01 -6.57733083e-02 -1.86906174e-01 -1.68639690e-01 -9.36295450e-01 6.16431952e-01 6.96872950e-01 -3.46383750e-01 7.08722174e-02 6.67952418e-01 2.25872770e-02 -2.09264114e-01 -7.78174996e-01 9.07312691e-01 4.89777207e-01 -1.25532758e+00 3.96144301e-01 -2.86414959e-02 7.18178749e-01 -3.51009578e-01 -1.12480797e-01 4.84902203e-01 4.38957423e-01 -1.13877869e+00 3.32948655e-01 -2.08789576e-02 6.04235888e-01 -1.02133250e+00 1.17561889e+00 4.16410267e-01 -7.93454409e-01 -3.12643051e-01 -2.58822471e-01 -3.36992353e-01 -7.66280890e-02 7.81106591e-01 -1.38479841e+00 3.37168664e-01 5.23497522e-01 4.88128990e-01 -8.98730874e-01 7.04491436e-01 -9.01891366e-02 6.68445766e-01 -4.31771100e-01 -4.11425710e-01 2.55637944e-01 4.99091893e-02 3.51707280e-01 1.29194701e+00 -1.29083872e-01 1.03554390e-01 2.41863698e-01 4.99612272e-01 -3.34087342e-01 4.79805201e-01 -8.24238658e-01 -2.02721775e-01 4.62711900e-01 1.32986677e+00 -9.42519128e-01 -6.04043186e-01 -1.72195673e-01 5.20947337e-01 2.58473486e-01 -2.51036026e-02 -5.22145748e-01 -7.96885252e-01 3.49038512e-01 3.47668737e-01 -3.27095062e-01 -1.79142896e-02 -5.67024589e-01 -8.99999440e-01 -1.55016616e-01 -7.19464779e-01 4.78720129e-01 -3.90065908e-01 -1.38858080e+00 6.78916454e-01 8.97062793e-02 -9.05180871e-01 -2.47949511e-01 -5.37082911e-01 -5.67062914e-01 4.69741642e-01 -1.30956018e+00 -1.22529697e+00 -5.45254946e-01 5.90742826e-01 4.97374982e-01 -2.23638728e-01 7.29815662e-01 4.17641401e-01 -5.42016506e-01 5.91754556e-01 -1.96068197e-01 5.64144969e-01 7.84299135e-01 -1.19577098e+00 3.43316078e-01 4.53042179e-01 5.74937537e-02 6.05616987e-01 7.45922565e-01 -1.01354122e+00 -5.69331408e-01 -1.27589369e+00 1.06110001e+00 -6.14130616e-01 8.46935570e-01 -7.05742121e-01 -9.14685369e-01 6.28335953e-01 1.09721527e-01 -3.43967468e-01 1.02489376e+00 2.73633182e-01 -3.23233336e-01 -3.20856161e-02 -1.20084512e+00 6.25049412e-01 8.37460458e-01 -1.75441071e-01 -6.82610452e-01 6.57446384e-01 7.67345786e-01 -2.03725338e-01 -4.80459899e-01 1.63708180e-01 2.74475366e-01 -4.87408668e-01 6.09953821e-01 -9.27703857e-01 5.92862725e-01 -1.45838648e-01 3.09856147e-01 -1.46322751e+00 1.38010889e-01 -3.23638558e-01 1.13243550e-01 1.52803695e+00 7.31260598e-01 -7.95921922e-01 8.69427860e-01 6.12684488e-01 3.45107317e-01 -5.95726550e-01 -4.69268471e-01 -5.45486629e-01 1.91945642e-01 -3.10132504e-01 7.72275209e-01 1.49129283e+00 4.39156622e-01 7.85282969e-01 -5.01790226e-01 -3.80698800e-01 2.74606764e-01 -2.01942667e-01 8.96791875e-01 -1.72261560e+00 2.16825232e-01 -3.38300169e-01 -4.36849058e-01 -1.39208063e-01 1.24130085e-01 -1.06453562e+00 -3.62228572e-01 -1.38065207e+00 4.28489119e-01 -7.57398546e-01 3.69323373e-01 8.29337835e-01 -2.57462293e-01 5.85454524e-01 1.90303683e-01 -9.74523053e-02 -3.72788683e-02 3.85009497e-01 1.01122272e+00 -2.83447325e-01 -5.14761627e-01 -3.13479863e-02 -9.41360474e-01 7.97246397e-01 1.04806137e+00 -9.24003482e-01 -7.05146015e-01 -6.10396639e-02 7.13850021e-01 -7.71889031e-01 6.13958314e-02 -7.38620937e-01 1.13068111e-01 -1.82869494e-01 4.27938938e-01 -3.51502627e-01 2.14564517e-01 -8.37863624e-01 -3.10221076e-01 5.14143229e-01 -3.07887465e-01 -2.24979185e-02 2.45799080e-01 3.16885889e-01 -1.72741979e-01 -5.26093602e-01 7.24909842e-01 -2.80843794e-01 -2.20302105e-01 1.47962093e-01 -3.29486668e-01 2.13654459e-01 1.02637422e+00 -4.31834608e-01 -6.31781757e-01 -3.65623683e-01 -5.91668189e-01 3.30345988e-01 1.68112233e-01 7.21585512e-01 4.40931886e-01 -1.16475379e+00 -8.11599314e-01 1.76190361e-01 2.98129648e-01 4.43681963e-02 -3.08100700e-01 4.91127789e-01 -4.19525892e-01 2.40679473e-01 -2.07539320e-01 -2.06145212e-01 -1.34319985e+00 4.61082906e-01 2.72491220e-02 -4.08234209e-01 -2.24821314e-01 6.68663502e-01 -3.97957861e-02 -6.36626422e-01 -2.04858370e-02 -6.78474829e-02 -8.52986217e-01 5.94747663e-01 6.86899960e-01 2.36197978e-01 1.87973574e-01 -5.74740231e-01 -6.32429123e-02 3.70334893e-01 -4.85476941e-01 -1.71518214e-02 1.36184359e+00 -4.52880114e-02 -4.82038200e-01 3.37279320e-01 1.15330970e+00 2.00779051e-01 -2.33621046e-01 -8.73347670e-02 8.59421268e-02 -5.62579930e-01 -7.95665160e-02 -7.38163710e-01 -1.08693635e+00 6.92452967e-01 2.34669372e-01 4.41057742e-01 8.81271124e-01 -7.02313781e-02 7.00643957e-01 3.34973156e-01 6.26729056e-02 -1.20550334e+00 3.20628524e-01 7.33884037e-01 6.46296501e-01 -1.47027433e+00 2.11890146e-01 -8.03697646e-01 -7.35906899e-01 1.07026696e+00 8.67818058e-01 2.87965745e-01 7.19652355e-01 2.71322221e-01 -3.88583094e-02 -3.28108639e-01 -4.79879200e-01 -2.63878763e-01 6.46700710e-02 6.81960702e-01 5.44335842e-01 -1.53422624e-01 -6.93951011e-01 6.08607590e-01 -8.45915437e-01 -3.24702233e-01 8.89596820e-01 9.40629184e-01 -6.29360914e-01 -1.38160944e+00 -4.28589910e-01 9.92439628e-01 -5.25717914e-01 -3.23860526e-01 -8.65040302e-01 8.85169029e-01 5.38137317e-01 1.17239308e+00 2.28544444e-01 -6.14976108e-01 9.92364064e-02 3.07960302e-01 -3.71995792e-02 -1.03541708e+00 -8.03803265e-01 -5.56387722e-01 3.24671119e-01 8.40766430e-02 -2.63695329e-01 -2.93500870e-01 -1.50348485e+00 -8.01809132e-01 -6.67123854e-01 2.94089109e-01 8.41190875e-01 1.04186106e+00 8.54017735e-02 2.84688383e-01 5.62484920e-01 -3.44654530e-01 -1.20712016e-02 -1.26712835e+00 -4.63650823e-01 7.16435432e-01 6.46361932e-02 -7.31876314e-01 -2.66380310e-01 8.50818977e-02]
[10.500727653503418, 7.656519412994385]
7bde9b3c-1a29-4b3b-a367-c0021a0680d9
rethinking-of-the-image-salient-object
2008.05397
null
https://arxiv.org/abs/2008.05397v1
https://arxiv.org/pdf/2008.05397v1.pdf
Rethinking of the Image Salient Object Detection: Object-level Semantic Saliency Re-ranking First, Pixel-wise Saliency Refinement Latter
The real human attention is an interactive activity between our visual system and our brain, using both low-level visual stimulus and high-level semantic information. Previous image salient object detection (SOD) works conduct their saliency predictions in a multi-task manner, i.e., performing pixel-wise saliency regression and segmentation-like saliency refinement at the same time, which degenerates their feature backbones in revealing semantic information. However, given an image, we tend to pay more attention to those regions which are semantically salient even in the case that these regions are perceptually not the most salient ones at first glance. In this paper, we divide the SOD problem into two sequential tasks: 1) we propose a lightweight, weakly supervised deep network to coarsely locate those semantically salient regions first; 2) then, as a post-processing procedure, we selectively fuse multiple off-the-shelf deep models on these semantically salient regions as the pixel-wise saliency refinement. In sharp contrast to the state-of-the-art (SOTA) methods that focus on learning pixel-wise saliency in "single image" using perceptual clues mainly, our method has investigated the "object-level semantic ranks between multiple images", of which the methodology is more consistent with the real human attention mechanism. Our method is simple yet effective, which is the first attempt to consider the salient object detection mainly as an object-level semantic re-ranking problem.
['Zhen-Yu Wu', 'Hong Qin', 'Shuai Li', 'Chenglizhao Chen', 'Aimin Hao']
2020-08-10
null
null
null
null
['salient-object-detection']
['computer-vision']
[ 3.69417340e-01 1.92763761e-01 -1.54165879e-01 -1.84048876e-01 -5.87898970e-01 -2.43130215e-02 4.88525391e-01 5.17871559e-01 -4.82476324e-01 4.23654139e-01 3.79728913e-01 6.02702498e-02 5.67573421e-02 -6.23736978e-01 -8.44114065e-01 -6.24488890e-01 4.17474061e-01 8.80212858e-02 1.05445123e+00 -4.99106884e-01 7.08605945e-01 1.72808200e-01 -1.95050097e+00 3.31207931e-01 9.14501846e-01 9.55548644e-01 7.84328818e-01 2.75222838e-01 -3.82411480e-02 7.21828938e-01 -2.16589123e-01 -2.09231049e-01 -1.00778081e-01 -3.97965640e-01 -1.14410150e+00 1.09529644e-01 3.87545973e-01 -3.02555803e-02 1.56573623e-01 1.57685018e+00 2.59908378e-01 3.42434160e-02 2.77186841e-01 -1.23047411e+00 -8.78433347e-01 6.16596282e-01 -1.00011981e+00 5.76837122e-01 2.34581277e-01 1.28214240e-01 1.22066498e+00 -1.08413947e+00 3.86878282e-01 1.28379524e+00 3.07035178e-01 4.10185397e-01 -1.03899109e+00 -2.88323760e-01 5.51116765e-01 4.09844965e-01 -1.15920794e+00 -1.93129882e-01 1.22682428e+00 -3.90437841e-01 4.40281093e-01 3.39452744e-01 6.63694620e-01 9.20368254e-01 8.93394649e-02 1.21645319e+00 1.04767692e+00 -2.87312716e-01 1.92075878e-01 2.33133271e-01 2.11660877e-01 4.77943361e-01 1.24729119e-01 -1.54478446e-01 -6.16642594e-01 2.19787389e-01 7.32122600e-01 3.51015449e-01 -1.66823506e-01 -4.46555883e-01 -1.57740569e+00 6.54763401e-01 9.46080148e-01 6.43319726e-01 -6.84748232e-01 -3.21534574e-02 2.69210219e-01 -1.20031148e-01 5.84266067e-01 4.87647116e-01 -3.03313434e-01 4.56079304e-01 -1.36026573e+00 2.68262416e-01 1.45145252e-01 5.84345400e-01 1.11182344e+00 -3.74190211e-02 -4.55555052e-01 7.08770871e-01 5.05359530e-01 8.92963260e-02 8.19067955e-01 -4.67736870e-01 1.87631220e-01 8.42393160e-01 2.37959862e-01 -1.23479784e+00 -4.34727788e-01 -7.14077532e-01 -6.94431901e-01 2.88900137e-01 7.66067356e-02 2.53696471e-01 -1.07549822e+00 1.72770154e+00 2.88746655e-01 2.05307290e-01 -1.56682543e-02 1.43728542e+00 1.05103827e+00 3.43299806e-01 5.52051663e-01 -5.07989749e-02 1.72186375e+00 -1.31096256e+00 -3.50977391e-01 -4.92756903e-01 8.24628472e-02 -8.95810068e-01 1.32160687e+00 -2.84317601e-03 -1.17773223e+00 -8.23763132e-01 -1.04026949e+00 -3.68454069e-01 -6.18383765e-01 4.83628623e-02 6.28298759e-01 5.03439941e-02 -1.25403690e+00 3.94905895e-01 -3.87505680e-01 -4.98724669e-01 6.27842426e-01 2.45614089e-02 -2.75073461e-02 3.74677449e-01 -1.27313340e+00 1.07502925e+00 5.52533865e-01 -2.53678393e-02 -1.26859248e+00 -7.09851623e-01 -8.07534397e-01 3.26442242e-01 6.14466369e-01 -7.53737569e-01 1.12361073e+00 -1.63595879e+00 -1.04058695e+00 1.10840106e+00 -5.38210750e-01 -4.30389345e-01 3.73178691e-01 -2.30465487e-01 -2.91039884e-01 2.91067243e-01 5.88447750e-01 1.12678659e+00 1.03975999e+00 -1.67537963e+00 -1.04647839e+00 -2.46074572e-01 1.99923500e-01 2.96310067e-01 -2.31267780e-01 3.00923496e-01 -3.84387881e-01 -7.43444622e-01 3.90562803e-01 -4.04779851e-01 -5.01527667e-01 -1.07315138e-01 -5.23974061e-01 -4.40866590e-01 9.52342272e-01 -4.67146397e-01 9.61035788e-01 -2.11949348e+00 1.15002535e-01 -2.20798552e-01 4.17553961e-01 2.25927293e-01 -7.70955160e-02 6.72103139e-03 -2.09487975e-01 1.64083764e-01 -3.52731943e-01 -4.21929389e-01 -1.77905798e-01 -3.70497406e-01 -5.01746535e-01 1.42582804e-01 5.29776752e-01 1.25316370e+00 -1.27954006e+00 -8.54645729e-01 2.91691571e-01 1.25314593e-01 -3.18005532e-01 1.92152977e-01 -2.98164219e-01 4.53115433e-01 -6.05991006e-01 8.55765939e-01 5.36818326e-01 -4.56844777e-01 -2.86810160e-01 -4.26680893e-01 -4.06086057e-01 1.79736257e-01 -9.42419350e-01 1.82956016e+00 -9.33294296e-02 4.35040891e-01 -1.81258678e-01 -1.13581622e+00 7.77442276e-01 9.66719240e-02 5.30399740e-01 -8.22220802e-01 6.67149499e-02 2.93538362e-01 -1.42103970e-01 -4.65265781e-01 8.28672171e-01 -2.32449293e-01 -1.03055619e-01 6.28019124e-02 3.60087380e-02 6.65279031e-02 -5.11584198e-03 2.33038440e-01 4.51422751e-01 2.48336375e-01 5.04036725e-01 -6.15697324e-01 6.19711220e-01 1.76138282e-01 5.38601398e-01 6.10172331e-01 -4.57279712e-01 1.10507786e+00 4.89377558e-01 -2.83970714e-01 -9.81855750e-01 -1.07287109e+00 1.17626294e-01 1.51125205e+00 1.01797855e+00 -2.93234736e-02 -8.57586205e-01 -6.01823866e-01 -9.46794301e-02 5.87245166e-01 -8.46546352e-01 -1.88367963e-01 -3.16124350e-01 -6.01938367e-01 -3.21558714e-02 4.31006819e-01 7.90713191e-01 -1.73578346e+00 -9.18088317e-01 1.00176618e-01 -1.18719891e-01 -8.06352437e-01 -5.02464950e-01 1.63271457e-01 -5.90545774e-01 -9.83411252e-01 -1.01286352e+00 -1.08521223e+00 6.98010087e-01 8.55164170e-01 1.11358702e+00 2.17183247e-01 -1.81838796e-01 -2.91280914e-04 -3.58460099e-01 -5.93738139e-01 1.72573954e-01 1.21962450e-01 -1.77500069e-01 4.25579518e-01 3.32051158e-01 -4.67077047e-01 -9.97302473e-01 2.79263049e-01 -9.78233814e-01 4.91220713e-01 8.36201191e-01 5.86471379e-01 7.45530427e-01 -1.20801307e-01 7.21485198e-01 -7.14418232e-01 4.61201429e-01 -6.75144374e-01 -2.69260049e-01 3.95012915e-01 -3.98285568e-01 -7.19737411e-02 4.46758300e-01 -1.51825786e-01 -1.04447913e+00 1.16593055e-01 -6.20683916e-02 -4.86894906e-01 -2.91426152e-01 3.75495911e-01 -1.72984049e-01 -6.14787117e-02 4.15658146e-01 6.08425319e-01 -2.76629418e-01 -5.11041284e-01 2.27804795e-01 4.23615724e-01 6.93922579e-01 -3.28883380e-01 7.01261997e-01 5.69090664e-01 -1.59583136e-01 -5.00239313e-01 -1.45596457e+00 -6.75077975e-01 -8.43603373e-01 -1.42750069e-01 1.06045318e+00 -8.94343913e-01 -5.85081697e-01 4.10561949e-01 -1.12059617e+00 9.13956203e-03 -3.68474275e-01 1.28279090e-01 -5.46548426e-01 4.31181818e-01 -1.70820475e-01 -6.44469142e-01 -3.42994362e-01 -1.30528295e+00 1.45154536e+00 6.35851502e-01 -9.97085273e-02 -7.43272483e-01 -3.00825536e-01 2.91182369e-01 3.89413357e-01 1.32380709e-01 7.29094207e-01 -5.20255029e-01 -7.27829635e-01 3.00537735e-01 -8.17500055e-01 1.50810391e-01 8.02459866e-02 -1.39877558e-01 -1.10102212e+00 -1.89724296e-01 1.13057710e-01 -1.23442344e-01 1.17096806e+00 5.35384059e-01 1.37327266e+00 -1.39753222e-01 -4.73668694e-01 3.78304690e-01 1.51753080e+00 -7.12178722e-02 5.49794137e-01 4.66113746e-01 9.22438085e-01 8.46941829e-01 8.45349312e-01 1.24122776e-01 5.83178103e-01 5.34384370e-01 8.69718313e-01 -7.68509567e-01 -2.52878129e-01 -4.65574652e-01 1.44881621e-01 3.96841645e-01 8.03126097e-02 9.05359313e-02 -7.49740720e-01 9.75268126e-01 -2.10171247e+00 -9.22066510e-01 -1.28074914e-01 2.09396267e+00 7.95748472e-01 2.59275019e-01 3.03428113e-01 -1.41332135e-01 1.04046845e+00 4.12500948e-01 -6.66998267e-01 -1.14195630e-01 -2.79457569e-01 -1.18827581e-01 2.23292068e-01 2.30090335e-01 -1.35823393e+00 1.28002489e+00 5.64507341e+00 9.29369092e-01 -1.31611693e+00 3.86029750e-01 8.31974328e-01 2.63274517e-02 -5.64062595e-01 2.40253687e-01 -6.76122308e-01 7.41589963e-01 2.66148835e-01 -1.43195480e-01 1.87794901e-02 9.31131065e-01 2.11844563e-01 -4.69320208e-01 -8.55338931e-01 8.99363339e-01 2.09424227e-01 -1.29699075e+00 4.02234048e-01 -3.22957844e-01 7.52405047e-01 -1.27754426e-02 3.02607596e-01 6.52734414e-02 1.36789486e-01 -9.37974572e-01 1.15296757e+00 5.74627578e-01 2.84541309e-01 -4.97624248e-01 5.64701080e-01 2.99727321e-01 -1.20726001e+00 -1.86944351e-01 -4.71575022e-01 4.65161502e-02 9.98117626e-02 6.30197167e-01 -4.04509485e-01 4.55354363e-01 9.95999277e-01 9.13729131e-01 -9.36127424e-01 1.29836118e+00 -2.83987939e-01 2.30738148e-01 1.74958661e-01 -4.24554497e-02 5.08343220e-01 1.05785422e-01 6.46777153e-01 1.11210823e+00 1.48040608e-01 -4.99035977e-02 3.23243856e-01 1.15853703e+00 6.95392340e-02 1.52099565e-01 -2.34042436e-01 4.55066711e-01 1.33719556e-02 1.42592454e+00 -1.11923444e+00 -5.16496301e-01 -3.22530091e-01 1.01036310e+00 3.37486625e-01 3.05541903e-01 -7.64198542e-01 -2.41433978e-01 5.11899650e-01 2.73280710e-01 3.69528472e-01 1.31697342e-01 -6.22315824e-01 -1.07876730e+00 5.58391772e-02 -3.52928966e-01 3.13609064e-01 -1.10503566e+00 -1.21597230e+00 5.54357588e-01 -1.86374903e-01 -1.30012333e+00 2.64102131e-01 -2.45454833e-01 -6.90569401e-01 1.02647901e+00 -2.04831719e+00 -1.39305866e+00 -3.17924380e-01 6.02143586e-01 8.85118783e-01 1.38468429e-01 3.46614122e-01 1.10223956e-01 -3.24915707e-01 1.79232627e-01 -2.88116097e-01 -7.42028058e-02 4.11593318e-01 -1.21549940e+00 2.09149718e-01 1.20808506e+00 1.08197592e-01 5.82149208e-01 8.23318839e-01 -6.28778279e-01 -7.01770902e-01 -9.98519361e-01 1.05313599e+00 -3.82146597e-01 6.89212859e-01 -3.32539707e-01 -1.08857477e+00 3.08218628e-01 2.73821533e-01 2.88406238e-02 2.20185518e-02 7.09635541e-02 -1.75081000e-01 -6.73360303e-02 -1.00372219e+00 8.70211303e-01 1.06394315e+00 -5.48814654e-01 -9.68346953e-01 1.90055266e-01 1.08637691e+00 -1.34758413e-01 -3.20046782e-01 6.09311938e-01 2.53406227e-01 -1.07606673e+00 1.15464854e+00 -5.38999915e-01 6.29491687e-01 -7.29062855e-01 7.98711032e-02 -1.15546072e+00 -5.74648321e-01 -3.55501324e-01 3.29370350e-01 1.19447756e+00 2.83824831e-01 -3.31887454e-01 5.67806900e-01 9.29197744e-02 -3.86096865e-01 -7.19834030e-01 -8.24830353e-01 -3.14642340e-01 -3.67253631e-01 -2.23452181e-01 6.27865970e-01 8.39352131e-01 -6.76472038e-02 3.38610113e-01 -3.32878977e-01 1.74499243e-01 5.55752814e-01 7.15502203e-01 3.00220609e-01 -1.37980783e+00 1.80929050e-01 -8.69478405e-01 -3.24410856e-01 -9.46130812e-01 7.51826838e-02 -7.58607507e-01 4.41715747e-01 -1.43075514e+00 7.71069169e-01 -2.22564310e-01 -9.58894312e-01 5.79772472e-01 -7.15697765e-01 3.13685447e-01 1.99185312e-01 3.12169135e-01 -1.16434836e+00 6.30607665e-01 1.46845901e+00 -2.87505597e-01 -1.70060113e-01 -3.52308676e-02 -1.35770416e+00 8.25548649e-01 5.71729004e-01 -3.38070184e-01 -3.76139611e-01 -2.86787719e-01 4.00301106e-02 -2.38213986e-01 9.67498899e-01 -1.00841916e+00 3.92078996e-01 -3.85341138e-01 2.97693491e-01 -7.23327935e-01 5.16996980e-02 -6.50305808e-01 -3.49363774e-01 3.42419028e-01 -4.67092305e-01 -1.54566973e-01 1.77162269e-03 4.42104369e-01 -4.65398848e-01 -2.40095302e-01 9.51339185e-01 -3.98768991e-01 -1.47452748e+00 2.93288231e-01 -1.15606502e-01 2.55570132e-02 1.00660360e+00 -3.87921780e-01 -3.44149321e-01 -2.12260876e-02 -6.29409373e-01 1.88176423e-01 4.69650328e-01 7.27305472e-01 7.89551198e-01 -1.06960440e+00 -6.58902943e-01 5.65645024e-02 3.78111541e-01 1.07849061e-01 4.56078619e-01 8.77168000e-01 1.31410314e-02 3.95002127e-01 -4.71373081e-01 -7.69044995e-01 -1.06700695e+00 1.03960121e+00 2.04980180e-01 5.53913116e-02 -4.62462962e-01 1.01639187e+00 7.96522260e-01 1.81593984e-01 -3.95473167e-02 -3.07551742e-01 -7.08837867e-01 2.55281389e-01 3.50266784e-01 -6.41278774e-02 -1.21833354e-01 -9.55456555e-01 -4.36908811e-01 8.28901589e-01 -1.22386627e-01 1.86009794e-01 1.17799389e+00 -4.29339111e-01 -3.23908627e-01 5.30891180e-01 9.71048057e-01 -2.55846173e-01 -1.37017787e+00 -4.51458097e-01 2.35518456e-01 -4.34032500e-01 1.86093617e-02 -6.21350050e-01 -1.10678101e+00 9.51228201e-01 5.67893744e-01 3.48722070e-01 1.29871213e+00 3.89260262e-01 6.79976940e-01 -2.61477530e-01 3.27101231e-01 -1.12106454e+00 3.65722984e-01 2.51190156e-01 8.95336509e-01 -1.68887985e+00 4.18862365e-02 -5.32011569e-01 -9.58268166e-01 6.40825808e-01 8.95703256e-01 -2.76805609e-01 5.46561718e-01 -3.57240915e-01 -1.87141716e-01 -4.39104259e-01 -4.27248418e-01 -8.98311853e-01 6.29502296e-01 4.22977298e-01 2.67525196e-01 1.19869485e-01 -3.11931938e-01 7.25819826e-01 -9.30333883e-02 -6.31914362e-02 2.56875873e-01 5.21240115e-01 -9.51187253e-01 -5.35214186e-01 -2.65779585e-01 3.15207541e-01 -3.75615448e-01 -4.31197464e-01 -2.13302121e-01 4.83076692e-01 3.32360983e-01 8.90514731e-01 1.16559550e-01 -3.13538641e-01 2.02623233e-01 -2.29915038e-01 -8.53423923e-02 -8.36733043e-01 -7.33733654e-01 -9.23841447e-02 -5.50188124e-01 -5.35384059e-01 -6.46164894e-01 -6.88185811e-01 -1.36886597e+00 1.71638399e-01 3.89053747e-02 4.26297225e-02 3.88393164e-01 1.17599785e+00 2.49498874e-01 7.58978248e-01 6.53773665e-01 -1.02143049e+00 -7.17467666e-02 -7.67280638e-01 -5.14945447e-01 7.64109671e-01 5.44241726e-01 -7.83540487e-01 -1.71772048e-01 -7.42930248e-02]
[9.891252517700195, -0.24639928340911865]
6ec69aec-3cec-4a3c-b078-5f3087ebc678
synchronous-dual-network-with-cross-type
null
null
https://aclanthology.org/2021.emnlp-main.219
https://aclanthology.org/2021.emnlp-main.219.pdf
Synchronous Dual Network with Cross-Type Attention for Joint Entity and Relation Extraction
Joint entity and relation extraction is challenging due to the complex interaction of interaction between named entity recognition and relation extraction. Although most existing works tend to jointly train these two tasks through a shared network, they fail to fully utilize the interdependence between entity types and relation types. In this paper, we design a novel synchronous dual network (SDN) with cross-type attention via separately and interactively considering the entity types and relation types. On the one hand, SDN adopts two isomorphic bi-directional type-attention LSTM to encode the entity type enhanced representations and the relation type enhanced representations, respectively. On the other hand, SDN explicitly models the interdependence between entity types and relation types via cross-type attention mechanism. In addition, we also propose a new multi-task learning strategy via modeling the interaction of two types of information. Experiments on NYT and WebNLG datasets verify the effectiveness of the proposed model, achieving state-of-the-art performance.
['Xiaodong Shi', 'Hui Wu']
null
null
null
null
emnlp-2021-11
['joint-entity-and-relation-extraction']
['natural-language-processing']
[-8.17017555e-02 2.77374446e-01 -3.40067506e-01 -5.52163839e-01 -3.56428921e-01 -4.16996539e-01 4.91265416e-01 6.43424019e-02 -5.41663289e-01 8.33165407e-01 1.99057415e-01 -3.99149835e-01 -1.22410566e-01 -9.53348696e-01 -8.07300985e-01 -4.31111306e-01 1.43207004e-02 5.02336979e-01 1.57646909e-02 -1.57788470e-01 -3.18374604e-01 2.59621263e-01 -1.22023511e+00 2.16905326e-01 1.03939390e+00 1.06587756e+00 2.05210149e-01 2.54095584e-01 -5.70848048e-01 8.26833248e-01 -3.57878596e-01 -4.61797416e-01 1.43597005e-02 8.98659322e-03 -1.14911711e+00 -1.98605180e-01 -3.68212238e-02 -1.13604687e-01 -3.84080619e-01 9.39789891e-01 5.84323585e-01 4.35259230e-02 3.48360866e-01 -1.31961799e+00 -8.95000935e-01 9.86633778e-01 -6.93668604e-01 2.77323723e-01 8.16766024e-02 -1.02037668e-01 1.25590432e+00 -8.09722304e-01 5.39484739e-01 1.23595476e+00 4.98264462e-01 4.25588071e-01 -1.05605626e+00 -9.66341436e-01 8.13934505e-01 4.89970565e-01 -1.29610026e+00 -2.03801021e-01 7.60295331e-01 -2.34323725e-01 1.33853030e+00 -4.54114005e-02 2.97298849e-01 1.04865193e+00 -1.45930737e-01 1.06450737e+00 8.48473310e-01 -1.68225646e-01 -3.31074864e-01 1.41325116e-01 5.14906108e-01 6.16824627e-01 4.35954362e-01 -1.63520291e-01 -1.57902092e-01 -4.67267074e-02 8.16154659e-01 8.45974162e-02 -2.05579713e-01 -9.34145451e-02 -1.30370009e+00 4.54629958e-01 7.12020516e-01 6.84926748e-01 -6.69878244e-01 -2.40176939e-03 5.27838290e-01 7.14302063e-02 5.09128451e-01 2.73540795e-01 -1.10520947e+00 1.17960870e-01 -3.76155555e-01 -4.53595109e-02 8.82208645e-01 1.41380835e+00 8.00682724e-01 7.75016844e-03 -3.35646719e-01 8.78214121e-01 4.90982592e-01 2.55913526e-01 3.90840590e-01 -1.23505145e-01 8.62290144e-01 1.06530261e+00 -1.01033419e-01 -7.95115769e-01 -5.90128005e-01 -7.81000495e-01 -1.21959484e+00 -3.99525136e-01 1.75727114e-01 -5.63056231e-01 -9.72581446e-01 2.21110892e+00 4.36263382e-01 4.53442574e-01 5.32157838e-01 5.88050246e-01 1.29911959e+00 5.31628013e-01 4.60709125e-01 -1.54176891e-01 1.79649580e+00 -1.10225677e+00 -1.20882654e+00 -4.62164879e-01 8.15310478e-01 -4.10772532e-01 5.02451718e-01 -3.27237427e-01 -9.85992968e-01 -4.80580121e-01 -8.92055869e-01 -3.98380607e-01 -7.55840957e-01 4.17021841e-01 9.66986537e-01 1.57186300e-01 -4.63246793e-01 2.67757922e-01 -8.41727316e-01 -1.39547110e-01 3.64864439e-01 6.90776229e-01 -4.73788112e-01 1.95137545e-01 -1.83879435e+00 8.88086319e-01 7.48830438e-01 7.92826951e-01 -2.44704187e-01 -7.74284244e-01 -1.01942682e+00 4.63900954e-01 7.24578559e-01 -8.20573986e-01 1.23890030e+00 -6.68743789e-01 -1.19619346e+00 4.54947472e-01 -3.05936873e-01 -3.11880201e-01 1.38432115e-01 -3.89582753e-01 -6.17458045e-01 -3.70265901e-01 -2.02087052e-02 4.79271322e-01 -9.49826539e-02 -1.14345133e+00 -8.20465684e-01 -4.33825076e-01 2.58036256e-01 4.64616030e-01 -4.44207042e-01 -9.18876156e-02 -4.56461728e-01 -5.17894566e-01 8.65585133e-02 -4.86727953e-01 -2.27749854e-01 -3.97048801e-01 -6.98642612e-01 -7.57274628e-01 9.04120743e-01 -7.39175320e-01 1.48409665e+00 -1.98384166e+00 2.73936123e-01 -2.71582678e-02 5.02766550e-01 4.83244807e-01 -1.27506077e-01 1.65204987e-01 -3.16415340e-01 3.64290267e-01 -4.52940501e-02 -2.92597294e-01 1.13710701e-01 3.93741578e-01 3.97583731e-02 1.63619649e-02 5.86380303e-01 1.05541456e+00 -9.67104375e-01 -5.42655051e-01 -2.15839699e-01 6.08709335e-01 -2.43194252e-01 3.54601055e-01 -1.08722910e-01 1.47956312e-01 -8.28535974e-01 4.63776946e-01 7.55613089e-01 -5.05586445e-01 4.64878500e-01 -6.69811606e-01 -4.16136272e-02 6.87089622e-01 -1.29129994e+00 1.48672545e+00 -6.91119015e-01 1.54452443e-01 9.21068564e-02 -9.85447824e-01 8.42754066e-01 7.67089486e-01 2.54078954e-01 -5.20241320e-01 -6.94361189e-03 3.32618535e-01 2.62851506e-01 -5.29621661e-01 3.83062750e-01 -1.71148896e-01 1.24225505e-02 3.48664641e-01 4.64372694e-01 7.78303146e-01 1.49745241e-01 9.57091972e-02 9.20472920e-01 2.57069051e-01 5.03702521e-01 -2.72941049e-02 5.90607822e-01 -5.90004802e-01 1.19513690e+00 4.90243345e-01 2.11597867e-02 5.70843481e-02 6.85102761e-01 -5.09588778e-01 -5.54927289e-01 -7.41626263e-01 6.49033207e-03 9.39846992e-01 2.18377829e-01 -2.72449940e-01 -3.34208310e-01 -1.06168079e+00 -1.87125847e-01 5.80744565e-01 -6.67975903e-01 -1.38257697e-01 -7.11068094e-01 -1.02031422e+00 6.89742327e-01 1.02135968e+00 9.84896421e-01 -1.26854849e+00 -9.28327665e-02 4.63122725e-01 -4.53804940e-01 -1.48948610e+00 -3.90718967e-01 5.34839869e-01 -5.95419109e-01 -1.02508402e+00 -6.20651960e-01 -1.07174850e+00 4.30395454e-01 -9.67896953e-02 1.10942066e+00 4.40852717e-02 3.13741118e-01 -8.35728496e-02 -3.11144561e-01 -2.60064155e-01 1.75083145e-01 8.12428117e-01 -2.10710123e-01 2.31731534e-01 5.00738859e-01 -6.59177661e-01 -2.38587007e-01 7.06992298e-02 -7.44412899e-01 2.96648413e-01 9.59362149e-01 9.14533615e-01 3.38441789e-01 6.04489110e-02 8.50945115e-01 -1.29437995e+00 2.92571545e-01 -8.61416101e-01 -2.06563830e-01 7.54933298e-01 -5.27645051e-01 3.09869379e-01 5.21835923e-01 -5.04972041e-01 -1.64742506e+00 -9.32541788e-02 -1.08067282e-01 -2.75100350e-01 -2.50632226e-01 8.74739766e-01 -8.80410135e-01 4.56971645e-01 -1.55467972e-01 1.08373880e-01 -6.16048515e-01 -6.07223213e-01 3.30708116e-01 5.50855398e-01 5.16470909e-01 -6.95506454e-01 5.56004882e-01 -3.06495670e-02 -2.69575834e-01 -4.31458473e-01 -8.92098367e-01 -2.43985757e-01 -8.18422794e-01 2.72716433e-01 1.12095988e+00 -9.02014077e-01 -8.14386070e-01 8.20349038e-01 -1.52236867e+00 -1.56337872e-01 2.47675311e-02 5.63334763e-01 2.78016943e-02 1.98588148e-01 -9.13256943e-01 -7.24766910e-01 -4.65809882e-01 -1.08159459e+00 9.98322904e-01 3.99753541e-01 3.19851667e-01 -1.27902186e+00 -2.22391427e-01 9.26190093e-02 2.51550883e-01 1.03653170e-01 1.17143035e+00 -1.21231353e+00 -5.17440379e-01 -6.00316115e-02 -8.66613388e-01 -7.44388327e-02 3.21213245e-01 -2.46812344e-01 -8.09522450e-01 1.42356142e-01 -3.01073909e-01 -1.18389674e-01 7.56040871e-01 8.56728107e-02 9.18404043e-01 -5.12903750e-01 -5.84423780e-01 5.82514584e-01 1.24339533e+00 3.00077677e-01 5.46683013e-01 2.98558831e-01 1.28407300e+00 6.61914587e-01 2.71629930e-01 3.04759055e-01 1.05041921e+00 6.73940659e-01 1.93020627e-01 -3.90668541e-01 1.06816329e-01 -2.39360154e-01 -5.09199686e-02 8.43240798e-01 -2.01670647e-01 -4.75322574e-01 -9.61478233e-01 4.07298446e-01 -1.98449409e+00 -7.66765237e-01 -3.04483473e-01 1.81383812e+00 1.05233729e+00 8.50418210e-02 -2.28079498e-01 -2.06582412e-01 1.00495720e+00 1.19948566e-01 -4.59695548e-01 -1.37099385e-01 -2.32355416e-01 2.02917326e-02 5.30546188e-01 2.76235700e-01 -1.28292572e+00 9.95287597e-01 4.64066982e+00 8.88133109e-01 -9.78266656e-01 8.40707645e-02 5.69688737e-01 3.98290306e-01 -4.73787576e-01 1.08807154e-01 -1.10059559e+00 4.19744194e-01 6.90405607e-01 -1.78996637e-01 1.36917621e-01 5.05592942e-01 -3.11063945e-01 3.23068559e-01 -1.09483814e+00 5.99193215e-01 -3.53233904e-01 -9.96711254e-01 1.70990895e-03 1.74156338e-01 3.92797261e-01 -9.25896168e-02 -3.64291728e-01 7.08513081e-01 5.37909329e-01 -7.88691938e-01 5.01289845e-01 5.30795157e-01 5.94282746e-01 -6.99398160e-01 1.15211678e+00 2.81245410e-01 -1.86924028e+00 6.63732886e-02 4.59262058e-02 2.08052285e-02 2.47977093e-01 5.18780291e-01 -4.04960871e-01 1.26935625e+00 5.33426106e-01 9.30765688e-01 -4.47189867e-01 7.32749224e-01 -4.03227299e-01 3.86644423e-01 -4.26246166e-01 1.38329178e-01 2.08706424e-01 -8.69397372e-02 3.24844748e-01 1.30517542e+00 8.56074393e-02 3.10179740e-01 2.75689751e-01 9.50549722e-01 -3.98779809e-01 -4.34890985e-02 -5.43759167e-01 -2.48023942e-01 7.41350532e-01 1.39736664e+00 -4.81730580e-01 -6.57140434e-01 -7.19203711e-01 6.26553774e-01 8.00813496e-01 5.57320714e-01 -8.46639395e-01 -6.00302398e-01 5.55081189e-01 -4.26055282e-01 5.46645641e-01 -7.60326162e-02 -3.81667286e-01 -1.46261787e+00 2.83532768e-01 -5.38081348e-01 5.04940152e-01 -4.73176360e-01 -1.44804144e+00 8.92600119e-01 6.01150580e-02 -8.55646133e-01 -7.90728331e-02 -3.56959313e-01 -6.21333063e-01 1.05585945e+00 -1.66328776e+00 -1.53381288e+00 -9.43449587e-02 3.75507653e-01 1.92541674e-01 5.70917763e-02 8.99578035e-01 7.42513597e-01 -1.25691652e+00 8.40653598e-01 -3.36765915e-01 6.12387240e-01 4.82480466e-01 -1.42669868e+00 4.94655460e-01 7.52031207e-01 -1.39502615e-01 8.41834068e-01 1.51032776e-01 -7.56273150e-01 -1.13059676e+00 -1.19722629e+00 1.35991085e+00 1.09947883e-01 6.00211561e-01 -4.98624772e-01 -1.27795029e+00 1.16107082e+00 4.07051593e-01 1.89863950e-01 7.02700675e-01 6.81174159e-01 -5.93113899e-01 -9.75923762e-02 -9.13968027e-01 3.23608518e-01 1.15406120e+00 -4.31586415e-01 -6.95295930e-01 1.14907742e-01 9.92269278e-01 -4.55981493e-01 -1.10150337e+00 9.42377985e-01 4.52839255e-01 -4.34777498e-01 7.85013556e-01 -7.34942973e-01 3.72070998e-01 -1.70673251e-01 -2.39761304e-02 -1.17895257e+00 -4.42753196e-01 -2.76811332e-01 -4.21436608e-01 1.95652652e+00 7.49166369e-01 -9.11829591e-01 5.07721663e-01 6.43176615e-01 -1.83917478e-01 -1.17742193e+00 -7.22706139e-01 -6.39625013e-01 -1.24884956e-01 -1.43071234e-01 8.60027194e-01 1.23391950e+00 -3.19354832e-02 1.01122928e+00 -3.53962809e-01 3.22025329e-01 2.00864524e-01 2.65401244e-01 3.73000801e-01 -1.22670650e+00 -3.42452139e-01 -4.72970456e-01 -1.27525151e-01 -1.08662891e+00 4.95414555e-01 -9.06502187e-01 -6.44339249e-02 -1.71641612e+00 1.87340945e-01 -8.08579087e-01 -5.61291099e-01 1.03934944e+00 -6.45928919e-01 -4.25713390e-01 5.65627124e-03 -7.16564953e-02 -6.66236401e-01 7.28405356e-01 1.11832869e+00 4.65238374e-03 -2.27372617e-01 -2.26124987e-01 -8.43151748e-01 6.43254757e-01 7.05406070e-01 -2.61509627e-01 -3.29671443e-01 -8.26128960e-01 2.52455652e-01 1.34716868e-01 2.05413178e-01 -5.80868483e-01 3.79382998e-01 -6.48485571e-02 2.85210222e-01 -6.42808378e-01 2.53526121e-01 -8.04991305e-01 -6.87018037e-02 1.07866779e-01 -3.60138863e-01 1.22955300e-01 3.34405541e-01 6.81544602e-01 -3.65502447e-01 1.27695233e-01 2.99510807e-01 -6.82804883e-02 -7.95498908e-01 6.22580886e-01 -8.62652622e-03 2.09389046e-01 8.74178112e-01 1.42958969e-01 -4.01609093e-01 1.05168298e-01 -7.77808070e-01 7.46728718e-01 -2.04711407e-01 6.07224584e-01 3.25564623e-01 -1.56622767e+00 -5.97984135e-01 3.70635748e-01 -6.09881245e-02 4.22546387e-01 5.91501474e-01 8.07799757e-01 8.11066926e-02 3.14724147e-01 -6.24802299e-02 -5.79272956e-02 -1.08178735e+00 6.34642243e-01 4.66453165e-01 -1.04710209e+00 -3.11891228e-01 9.27758336e-01 6.64048612e-01 -7.81217337e-01 2.78275549e-01 -3.49485755e-01 -6.17333889e-01 1.74220577e-01 2.46199533e-01 1.09215327e-01 -5.34184556e-03 -5.17092764e-01 -4.93552417e-01 2.22452536e-01 -4.93656874e-01 1.99388072e-01 1.45800161e+00 -2.18866067e-03 -2.62071729e-01 4.94107485e-01 1.16906834e+00 -4.10771787e-01 -9.13018346e-01 -6.46344721e-01 2.37580106e-01 8.99118464e-03 -1.23686172e-01 -8.60456765e-01 -1.49156272e+00 8.71759117e-01 1.29318580e-01 1.74335346e-01 1.11892247e+00 -8.02639499e-02 1.08492362e+00 3.63229424e-01 1.54976234e-01 -7.38568783e-01 -4.18880761e-01 7.11912572e-01 5.39605021e-01 -1.04506052e+00 -2.73721069e-01 -7.53469169e-01 -4.84871328e-01 9.40156817e-01 1.16480267e+00 3.44184153e-02 8.34713519e-01 5.02610326e-01 -1.35819793e-01 -1.88373044e-01 -1.06848335e+00 -3.84324819e-01 3.68953168e-01 4.81702656e-01 8.26232970e-01 4.84021865e-02 -3.74992877e-01 1.04079282e+00 2.22490609e-01 3.36780511e-02 1.26946747e-01 9.04674172e-01 1.69622689e-01 -1.32661343e+00 1.73689753e-01 5.31898320e-01 -5.96059501e-01 -4.24214631e-01 -1.09320313e-01 7.99466670e-01 3.46998930e-01 7.23240435e-01 2.87157157e-03 -4.98736084e-01 4.57076252e-01 1.16213821e-01 1.71064213e-01 -6.97781324e-01 -9.21651781e-01 2.77356748e-02 3.55293930e-01 -2.28575706e-01 -3.81974727e-01 -5.09239018e-01 -1.29607749e+00 -2.07913592e-02 -6.11935377e-01 1.94640487e-01 2.58495510e-01 1.38725567e+00 6.59116387e-01 1.06181347e+00 2.99289674e-01 -4.87271428e-01 -3.02142352e-01 -1.27955294e+00 -5.39312303e-01 2.44171098e-01 2.41539195e-01 -9.69929814e-01 3.26086469e-02 -2.82784551e-01]
[9.245691299438477, 8.706156730651855]
ca4f9cc7-9cf0-499a-a735-1360ab9aa46e
causal-counterfactuals-for-improving-the
2211.05551
null
https://arxiv.org/abs/2211.05551v3
https://arxiv.org/pdf/2211.05551v3.pdf
Causal Counterfactuals for Improving the Robustness of Reinforcement Learning
Reinforcement learning (RL) is used in various robotic applications. RL enables agents to learn tasks autonomously by interacting with the environment. The more critical the tasks are, the higher the demand for the robustness of the RL systems. Causal RL combines RL and causal inference to make RL more robust. Causal RL agents use a causal representation to capture the invariant causal mechanisms that can be transferred from one task to another. Currently, there is limited research in Causal RL, and existing solutions are usually not complete or feasible for real-world applications. In this work, we propose CausalCF, the first complete Causal RL solution incorporating ideas from Causal Curiosity and CoPhy. Causal Curiosity provides an approach for using interventions, and CoPhy is modified to enable the RL agent to perform counterfactuals. Causal Curiosity has been applied to robotic grasping and manipulation tasks in CausalWorld. CausalWorld provides a realistic simulation environment based on the TriFinger robot. We apply CausalCF to complex robotic tasks and show that it improves the RL agent's robustness using CausalWorld.
['Ivana Dusparic', 'Jasmina Gajcin', 'Tom He']
2022-11-02
null
null
null
null
['robotic-grasping']
['robots']
[-1.36956185e-01 5.45309007e-01 -3.51583004e-01 -8.14654082e-02 2.08047293e-02 -4.42697465e-01 9.48273301e-01 -1.24148875e-01 -3.37188616e-02 1.32073891e+00 4.11586881e-01 -3.01630288e-01 -6.81372941e-01 -5.75025678e-01 -1.01105380e+00 -7.71604598e-01 -6.52255177e-01 2.08571255e-01 4.78309058e-02 -3.35504919e-01 4.42776620e-01 5.00643075e-01 -1.50994551e+00 1.38217837e-01 6.33003771e-01 1.52536646e-01 7.38353789e-01 8.15152109e-01 3.55144560e-01 1.61142778e+00 -5.94208539e-01 5.34349263e-01 1.03714742e-01 -5.38968861e-01 -1.01111913e+00 -5.52863598e-01 -4.97253627e-01 -6.17990196e-01 -3.64178032e-01 5.30898571e-01 3.57018620e-01 1.22188292e-01 6.73656404e-01 -2.00082970e+00 -6.20112956e-01 1.24883461e+00 -3.71282876e-01 -2.86704034e-01 6.53862178e-01 4.10511285e-01 8.12920988e-01 -3.25998999e-02 6.13200009e-01 2.17834735e+00 1.90405428e-01 8.24159503e-01 -1.09529626e+00 -8.65820765e-01 3.58653158e-01 3.05367112e-01 -6.95814192e-01 -2.27081850e-02 5.29969871e-01 -4.38979238e-01 8.69805932e-01 -1.61547994e-03 5.77849507e-01 1.41838157e+00 8.63826752e-01 8.97237241e-01 1.44021034e+00 -3.44584405e-01 4.52437907e-01 -3.47307920e-01 -2.54829437e-01 4.71990198e-01 2.20342800e-01 9.33471203e-01 -5.83166242e-01 -2.33576611e-01 1.08523953e+00 -1.59106165e-01 -2.00044140e-01 -6.81520641e-01 -1.55168939e+00 8.13316107e-01 7.02178478e-01 2.13132754e-01 -6.95311725e-01 1.02735543e+00 2.97463626e-01 5.16126275e-01 -3.00892532e-01 1.00627935e+00 -5.61468959e-01 -4.13513407e-02 2.08949819e-01 8.26581478e-01 7.14809835e-01 9.99942839e-01 2.50559032e-01 -2.52369586e-02 -1.80267498e-01 2.92454779e-01 5.94277740e-01 7.11545289e-01 1.60164624e-01 -1.54357171e+00 -8.93309489e-02 3.44345242e-01 4.76895571e-01 -7.61957228e-01 -7.51358151e-01 3.00309569e-01 -2.83841521e-01 7.93427527e-01 2.53046006e-01 -3.55061084e-01 -4.25389975e-01 1.98167408e+00 2.83520371e-01 1.56312510e-01 5.17340660e-01 9.88003194e-01 4.52429771e-01 5.42269409e-01 3.44466448e-01 -4.21513081e-01 9.56717253e-01 -5.35361826e-01 -9.76566076e-01 2.02883240e-02 3.44962656e-01 -6.73793793e-01 1.23725247e+00 5.97558498e-01 -6.65186942e-01 -1.94798246e-01 -1.22308266e+00 2.82364011e-01 -8.58589709e-02 -4.14452761e-01 1.04742038e+00 8.60096440e-02 -7.27454484e-01 9.10751581e-01 -7.63709128e-01 -5.52441061e-01 -1.10509517e-02 3.34024459e-01 -2.88782984e-01 -5.87991104e-02 -1.40527940e+00 1.30664337e+00 5.71098268e-01 -1.56007722e-01 -1.79416847e+00 -4.37107950e-01 -4.25246149e-01 -3.68761271e-01 7.73432434e-01 -7.38597631e-01 1.64331257e+00 -5.33061385e-01 -1.99435127e+00 -1.76652282e-01 3.95008326e-01 -3.59927893e-01 4.56818402e-01 -5.74510455e-01 7.41112754e-02 -7.35096727e-03 2.39341170e-01 7.39564538e-01 9.19660211e-01 -1.71310997e+00 -6.04839563e-01 -2.01647028e-01 5.13830304e-01 2.62262553e-01 4.67556834e-01 -1.88642532e-01 3.97269875e-01 -4.37117487e-01 -1.93809614e-01 -1.23379242e+00 -2.63115823e-01 -4.39373344e-01 -3.96168649e-01 -6.93337083e-01 1.13014317e+00 -5.41464565e-03 5.41567326e-01 -1.82612705e+00 4.92488474e-01 -1.72200292e-01 6.34109527e-02 -3.40154320e-01 -3.60555202e-01 7.33927906e-01 -3.69644105e-01 1.10388823e-01 1.31794021e-01 5.35261571e-01 1.76113501e-01 6.81986809e-01 -4.67347741e-01 4.37006861e-01 2.75241792e-01 6.49852872e-01 -1.47429943e+00 -3.80256414e-01 3.45819294e-01 7.49212429e-02 -6.18589580e-01 8.06543529e-01 -6.15162790e-01 8.13827455e-01 -8.40425789e-01 9.53615233e-02 1.70600861e-01 3.26311976e-01 4.61141199e-01 3.30348849e-01 -3.69314075e-01 3.66248190e-01 -1.00800145e+00 1.61764169e+00 -5.72755992e-01 3.95929307e-01 -8.39325115e-02 -5.24689078e-01 6.44819200e-01 6.36982739e-01 4.27971423e-01 -4.60447580e-01 2.07086876e-02 -7.90793300e-02 2.90464699e-01 -9.89921391e-01 1.67392090e-01 -2.02633947e-01 -3.25628728e-01 8.16914976e-01 -1.77217141e-01 -9.27802920e-01 1.37124896e-01 3.71126294e-01 1.52237093e+00 8.96415532e-01 4.38628376e-01 -4.23215181e-01 7.00320154e-02 3.38729739e-01 4.98230189e-01 8.96105826e-01 -2.44857401e-01 -1.29251271e-01 8.04143846e-01 -2.64250129e-01 -7.75733829e-01 -1.22763562e+00 2.84180760e-01 1.22895026e+00 3.51134568e-01 -4.81054448e-02 -6.29800081e-01 -7.05616593e-01 7.39428923e-02 1.57052779e+00 -7.54347861e-01 -5.12743056e-01 -5.87787449e-01 -4.44195092e-01 3.77590477e-01 2.84363985e-01 2.96650350e-01 -1.78025067e+00 -1.19533312e+00 2.40010157e-01 -2.48574167e-01 -5.19662142e-01 6.03823876e-03 2.84164190e-01 -7.48100698e-01 -1.40673602e+00 -7.12505600e-04 -2.01732635e-01 2.78053313e-01 3.56536239e-01 7.44358361e-01 -9.00473893e-02 -2.25024089e-01 5.51912010e-01 -4.49310929e-01 -6.34123385e-01 -8.85705709e-01 -5.33268452e-01 5.00870764e-01 -8.86030734e-01 -2.65657306e-01 -4.28637385e-01 -4.28350270e-01 4.90779430e-01 -6.33439183e-01 -1.69031784e-01 6.78189456e-01 9.79926109e-01 -1.94299683e-01 4.09441710e-01 8.02601635e-01 -2.72923410e-01 1.12287283e+00 -5.77989638e-01 -4.72070962e-01 9.89504606e-02 -5.76269329e-01 4.91511703e-01 4.43689674e-01 -6.34824395e-01 -1.47548604e+00 -1.05512356e-02 5.27338147e-01 -1.72396645e-01 -2.44399279e-01 2.72480071e-01 -4.34191339e-02 5.66288590e-01 9.54140007e-01 -5.94248831e-01 4.13831919e-02 9.19966679e-03 8.56658697e-01 3.85031164e-01 3.05193841e-01 -1.01628482e+00 4.04061735e-01 2.64691800e-01 1.93611667e-01 -3.69013578e-01 -3.30428928e-01 3.64388153e-02 -5.66528380e-01 -5.69282472e-01 8.37856293e-01 -5.02931237e-01 -1.76264334e+00 1.66652706e-02 -1.36909032e+00 -9.05723810e-01 -2.23980293e-01 7.56798208e-01 -1.28646171e+00 -2.46361420e-01 -3.26770872e-01 -1.09556186e+00 2.72704184e-01 -1.24228489e+00 6.91909730e-01 5.50537892e-02 -5.99884093e-01 -4.78221118e-01 5.16848452e-02 -2.05750540e-01 9.60866734e-02 3.45660478e-01 1.11752915e+00 1.91481970e-02 -6.06277764e-01 3.16579252e-01 -1.27695188e-01 -1.60629243e-01 3.14606458e-01 1.26023173e-01 -7.80429006e-01 3.18921544e-03 1.87455863e-02 -7.22719967e-01 2.70816416e-01 4.79703337e-01 6.28784776e-01 -4.38494265e-01 -5.25181115e-01 -5.15143454e-01 9.36264396e-01 6.68540776e-01 7.22510874e-01 4.35454011e-01 4.46498722e-01 1.23291707e+00 1.38170910e+00 3.95937830e-01 5.23884773e-01 4.88670111e-01 9.30339158e-01 2.10738227e-01 -1.29989088e-01 -6.06077671e-01 7.45083749e-01 1.21713094e-01 -3.79238248e-01 -7.31206089e-02 -7.55615115e-01 3.29729646e-01 -2.44689536e+00 -1.24586546e+00 -4.76115972e-01 1.88994348e+00 9.62718248e-01 -1.55939668e-01 -4.98896986e-02 -8.75317827e-02 5.65049410e-01 -3.76201153e-01 -7.88893878e-01 -5.46949446e-01 3.27366829e-01 -4.57141161e-01 3.92927736e-01 4.88945395e-01 -7.45407999e-01 1.11137033e+00 6.85823250e+00 4.38573301e-01 -6.99975491e-01 3.91787626e-02 1.17742993e-01 -5.46723828e-02 -4.27616909e-02 2.56777644e-01 -1.15290612e-01 -1.23826049e-01 8.31031263e-01 -1.66271761e-01 7.45148480e-01 7.83891559e-01 9.48431253e-01 -6.42254710e-01 -1.55227983e+00 3.72400790e-01 -6.00878000e-01 -7.98171997e-01 -3.03270310e-01 -2.56901860e-01 4.18947875e-01 -2.39907116e-01 -1.76706925e-01 3.35588664e-01 1.64573586e+00 -1.17912126e+00 9.46417093e-01 6.11357391e-01 2.44555697e-01 -8.31669152e-01 5.49863756e-01 4.41116691e-01 -5.66816628e-01 -6.57983243e-01 -3.23332608e-01 -4.85336244e-01 8.78707021e-02 9.83794183e-02 -1.42626488e+00 3.90338957e-01 9.59037006e-01 4.57659632e-01 1.53985918e-01 3.93402666e-01 -1.10178351e+00 3.25454295e-01 1.47484481e-01 -4.85141844e-01 3.91794853e-02 9.05937478e-02 7.30538428e-01 6.85999095e-01 1.44132078e-02 2.08597943e-01 1.69443160e-01 9.63490665e-01 5.31529963e-01 -3.33181977e-01 -1.06986058e+00 -4.97213416e-02 4.92749721e-01 8.62246513e-01 -4.52360690e-01 -1.08307846e-01 2.20005587e-01 6.26559496e-01 2.66706109e-01 2.94230580e-01 -8.83044422e-01 -3.49371023e-02 7.28833914e-01 -2.62375772e-01 -4.05345976e-01 -3.49189937e-01 -8.80605504e-02 -5.35727859e-01 -6.18916094e-01 -9.58313823e-01 1.61359623e-01 -1.44210041e+00 -1.23833609e+00 6.26667961e-02 5.64570785e-01 -8.28277588e-01 -6.77352011e-01 -3.68972063e-01 -2.12564796e-01 4.66902405e-01 -1.20715809e+00 -1.04717624e+00 -4.67291884e-02 6.60671473e-01 5.89166582e-01 2.02633832e-02 9.21533763e-01 -4.96469051e-01 -3.74217093e-01 -4.39407140e-01 -3.84605020e-01 -5.14454126e-01 1.11547458e+00 -1.29811263e+00 -1.78891942e-01 4.34239447e-01 -8.00954282e-01 9.50540245e-01 1.24098492e+00 -1.07328844e+00 -1.75253451e+00 -8.67405236e-01 2.18637541e-01 -4.32348430e-01 9.61284816e-01 -1.67573348e-01 -4.70595509e-01 6.59229338e-01 5.68396568e-01 -5.82877100e-01 8.85701645e-03 2.69603431e-01 -2.46144921e-01 9.81536061e-02 -1.21656919e+00 1.23192465e+00 1.25809693e+00 -6.63230047e-02 -1.14514685e+00 3.22671622e-01 1.26406538e+00 3.72126214e-02 -6.50864780e-01 3.18763375e-01 6.22763693e-01 -7.30063915e-01 8.27529848e-01 -5.37037194e-01 6.02635801e-01 -7.03892291e-01 -5.19054048e-02 -1.89045584e+00 -4.57663178e-01 -7.55651593e-01 2.25400671e-01 9.74390626e-01 1.80342808e-01 -7.43354738e-01 -7.16754794e-02 4.08147991e-01 -3.72605957e-02 1.46387592e-01 -5.71135283e-01 -8.50075245e-01 2.72073448e-01 -4.65452671e-01 6.60610020e-01 1.03802812e+00 5.94659865e-01 4.66291457e-01 -3.05733085e-01 3.06008130e-01 6.60534859e-01 -3.54642048e-02 9.80277061e-01 -1.07656312e+00 -2.60373473e-01 -2.31673554e-01 2.20664874e-01 -4.86720592e-01 3.61758471e-01 -4.89674687e-01 7.96920538e-01 -1.52784681e+00 2.38410100e-01 -8.65098834e-01 5.29758818e-02 8.40015173e-01 -3.19196247e-02 -6.34935021e-01 3.18264842e-01 3.63886714e-01 -2.61168987e-01 6.29358172e-01 1.58133781e+00 -5.94670549e-02 -5.02322614e-01 -2.81872332e-01 -4.37319368e-01 9.44922984e-01 1.16908836e+00 -5.68021476e-01 -8.12371969e-01 -6.43007383e-02 3.52665216e-01 4.79962945e-01 6.05187833e-01 -5.49215913e-01 8.98672789e-02 -7.13804185e-01 3.09258047e-02 -2.65987605e-01 -3.28135304e-02 -8.94974113e-01 1.86614022e-01 9.43712115e-01 -5.43497503e-01 8.26184824e-02 2.75852710e-01 7.51786828e-01 2.90278733e-01 -1.88924372e-01 5.27146161e-01 -1.71505988e-01 -7.39814937e-01 -4.75623310e-01 -8.35106492e-01 -4.82081383e-01 1.37567306e+00 5.85915029e-01 -6.48087323e-01 -4.35101986e-01 -5.65614402e-01 5.12622595e-01 1.52259842e-01 8.82227719e-01 6.95849776e-01 -1.07500470e+00 -4.84241575e-01 -4.98817444e-01 3.12296487e-02 -2.64446884e-01 -9.09763128e-02 6.20696783e-01 -2.63994187e-01 4.16501433e-01 -5.77039897e-01 -4.87089157e-01 -9.65867698e-01 1.02259719e+00 1.84062034e-01 -3.30838785e-02 -5.88783324e-01 4.54323620e-01 5.42095721e-01 -6.48268759e-01 9.09202099e-02 -4.12133753e-01 -3.75256568e-01 -2.49702200e-01 3.84645104e-01 5.96433938e-01 -6.63821459e-01 6.78153560e-02 -2.19097957e-01 1.87553763e-01 3.26398343e-01 -6.00007474e-01 1.41238046e+00 -2.93954879e-01 -4.12913680e-01 7.32942522e-01 2.46569172e-01 -3.42012554e-01 -1.77432609e+00 4.52712983e-01 2.14649603e-01 -2.29142264e-01 -5.12809753e-02 -1.20177746e+00 -3.60407412e-01 6.57024145e-01 4.84490037e-01 3.65126640e-01 7.78909445e-01 7.52161965e-02 -1.45225748e-01 4.50103581e-01 1.01367235e+00 -1.15175247e+00 5.52719712e-01 5.24876535e-01 1.74626839e+00 -1.04996085e+00 1.80547297e-01 -3.32761139e-01 -7.85947323e-01 9.69931901e-01 5.33566415e-01 -2.08784774e-01 2.77671188e-01 4.71229106e-01 -9.55244899e-02 -2.15224564e-01 -1.19499469e+00 -1.96923539e-01 -3.92087430e-01 9.45313513e-01 2.64361829e-01 5.39889932e-01 -4.13616061e-01 1.57304630e-01 -1.76723957e-01 2.02099755e-01 9.26658928e-01 9.24135268e-01 -3.32600117e-01 -1.06281555e+00 -8.88317704e-01 -1.30007803e-01 -3.54250409e-02 2.11774811e-01 -5.13825715e-01 1.17083693e+00 1.18800014e-01 1.77636600e+00 -1.69646293e-01 -1.90606177e-01 3.95191997e-01 -2.99817950e-01 7.85093069e-01 -4.77018714e-01 -1.92270964e-01 1.58211552e-02 2.65870392e-01 -1.14677107e+00 -6.59712851e-01 -9.78425205e-01 -2.01240993e+00 -4.44584906e-01 -8.99176598e-02 -2.98153292e-02 9.31862354e-01 8.08310986e-01 6.34062067e-02 1.04219699e+00 5.84653020e-01 -8.86006474e-01 -3.04018676e-01 -1.00239027e+00 -3.16770047e-01 3.95657606e-02 3.03022563e-01 -1.32578015e+00 -2.41421387e-01 7.53164440e-02]
[4.256217002868652, 1.4753233194351196]
a54bd962-aedf-4c2f-abab-81342474a745
zero-shot-learners-for-natural-language
2210.08590
null
https://arxiv.org/abs/2210.08590v2
https://arxiv.org/pdf/2210.08590v2.pdf
Zero-Shot Learners for Natural Language Understanding via a Unified Multiple Choice Perspective
We propose a new paradigm for zero-shot learners that is format agnostic, i.e., it is compatible with any format and applicable to a list of language tasks, such as text classification, commonsense reasoning, coreference resolution, and sentiment analysis. Zero-shot learning aims to train a model on a given task such that it can address new learning tasks without any additional training. Our approach converts zero-shot learning into multiple-choice tasks, avoiding problems in commonly used large-scale generative models such as FLAN. It not only adds generalization ability to models but also significantly reduces the number of parameters. Our method shares the merits of efficient training and deployment. Our approach shows state-of-the-art performance on several benchmarks and produces satisfactory results on tasks such as natural language inference and text classification. Our model achieves this success with only 235M parameters, which is substantially smaller than state-of-the-art models with billions of parameters. The code and pre-trained models are available at https://github.com/IDEA-CCNL/Fengshenbang-LM .
['Tetsuya Sakai', 'Jiaxing Zhang', 'Xinyu Gao', 'Ziwei Wu', 'Lin Zhang', 'Xinyu Zhu', 'Ruyi Gan', 'Junjie Wang', 'Ping Yang']
2022-10-16
null
null
null
null
['coreference-resolution']
['natural-language-processing']
[ 4.25186902e-02 2.42321342e-01 -4.47812796e-01 -5.56713998e-01 -1.05357707e+00 -3.51966828e-01 8.26845884e-01 1.40052363e-01 -5.56145966e-01 7.58099139e-01 3.87531221e-01 -4.57701355e-01 7.43225589e-02 -9.42595005e-01 -6.76788151e-01 -4.48337555e-01 5.19417346e-01 8.52831185e-01 3.39751422e-01 -5.86854517e-01 1.99731976e-01 -3.33306104e-01 -1.59956253e+00 4.06565279e-01 6.99091971e-01 8.06558192e-01 1.79241821e-01 5.82103312e-01 -5.09664118e-01 1.01614082e+00 -2.88429916e-01 -7.27734506e-01 -3.43438029e-01 -1.93445176e-01 -1.11623037e+00 -3.34355831e-01 2.67371386e-01 -1.61888719e-01 -4.77713495e-01 9.70811009e-01 5.79355478e-01 4.95621860e-01 5.92998683e-01 -1.25878036e+00 -8.13055098e-01 1.13531756e+00 -2.96276093e-01 1.77943528e-01 1.90566033e-01 3.65588255e-02 1.23893082e+00 -1.14203644e+00 6.89527810e-01 1.35926950e+00 5.74190319e-01 1.00897944e+00 -1.07812190e+00 -8.83985996e-01 9.28835645e-02 3.26390505e-01 -1.01254356e+00 -7.22389102e-01 5.07020533e-01 -3.06497902e-01 1.13791907e+00 1.78529382e-01 2.86069006e-01 1.49776328e+00 4.71296608e-02 9.01603699e-01 6.51520848e-01 -6.42795980e-01 3.54153603e-01 1.37057751e-01 4.81984586e-01 6.91391468e-01 1.44400313e-01 -4.87348646e-01 -7.09721327e-01 -2.89691597e-01 1.52777612e-01 2.20480621e-01 -2.31288001e-01 -3.51155192e-01 -1.09302700e+00 1.20084822e+00 6.23432323e-02 4.96196419e-01 1.89545542e-01 2.63575673e-01 5.65527260e-01 3.34749222e-01 6.25832260e-01 5.61990261e-01 -5.87768137e-01 -4.07409549e-01 -7.76956379e-01 2.24372894e-01 9.59694684e-01 1.08356440e+00 6.72006786e-01 2.43709385e-02 -2.62685031e-01 9.86257195e-01 1.15572035e-01 3.05006415e-01 8.15614104e-01 -1.04366016e+00 5.20503283e-01 4.85827863e-01 -1.43425256e-01 -3.30228359e-01 -3.80551845e-01 -2.21392170e-01 -7.42516816e-01 -2.27010623e-01 1.73503473e-01 -3.21676701e-01 -9.49153423e-01 1.88425410e+00 1.64726362e-01 1.63020104e-01 2.77470648e-01 4.60672200e-01 1.32260430e+00 7.88733244e-01 1.16914418e-02 -1.61029920e-01 1.48173094e+00 -9.56538260e-01 -7.43670940e-01 -5.84732294e-01 8.26150298e-01 -6.15960121e-01 1.47684216e+00 1.67419761e-01 -1.01918888e+00 -2.51744181e-01 -8.10715079e-01 -3.77882034e-01 -5.88804960e-01 -5.22888124e-01 8.79625559e-01 4.64149684e-01 -7.00771391e-01 4.82232749e-01 -6.15604281e-01 -5.57563424e-01 4.38807279e-01 5.94689138e-02 -1.27506763e-01 -2.55065084e-01 -1.56579268e+00 9.20279264e-01 5.65868437e-01 -6.86730683e-01 -7.20897079e-01 -9.09098327e-01 -1.09164512e+00 4.35780376e-01 6.77840233e-01 -7.48493433e-01 1.70697439e+00 -3.87313813e-01 -1.48571563e+00 7.41039753e-01 -3.86234343e-01 -4.05887723e-01 1.89253315e-01 -3.40080649e-01 -4.88181263e-01 -2.01743066e-01 1.80142283e-01 6.82390034e-01 6.16881013e-01 -8.24227870e-01 -4.54055578e-01 -8.10369030e-02 2.28549063e-01 6.84561580e-02 -7.55813599e-01 -1.30689228e-02 -5.10631442e-01 -4.31723207e-01 -3.89664173e-01 -8.58634174e-01 -9.25559700e-02 -1.79537818e-01 -2.24843472e-01 -6.24565721e-01 8.57201934e-01 -4.43868898e-02 1.23736525e+00 -2.08617234e+00 -4.27037850e-02 -3.24187964e-01 2.19269499e-01 3.45321178e-01 -6.09021559e-02 5.29125035e-01 1.39861837e-01 8.43010172e-02 -3.26555640e-01 -4.89862084e-01 2.33032733e-01 2.51676947e-01 -5.04423499e-01 4.76964116e-02 -1.06900014e-01 1.20320153e+00 -1.10828865e+00 -4.95138705e-01 2.37936303e-01 2.92294413e-01 -6.64415061e-01 2.27405820e-02 -5.05622745e-01 -1.65387854e-01 -3.17772001e-01 4.12409127e-01 1.75964519e-01 -7.24839985e-01 2.49640241e-01 1.64442360e-01 8.00251886e-02 5.23470104e-01 -9.91443574e-01 2.03948379e+00 -5.35699904e-01 6.20744228e-01 -4.41695362e-01 -9.34577525e-01 8.64828825e-01 4.36003119e-01 8.90003815e-02 -3.35512191e-01 3.38340551e-01 1.01030461e-01 -6.48147985e-03 -4.28694546e-01 4.55213815e-01 -2.18393818e-01 -4.98753160e-01 6.86345398e-01 7.46994019e-01 -2.08874524e-01 4.03471798e-01 6.38333261e-01 1.02676427e+00 -1.81198180e-01 6.57212317e-01 -3.63268346e-01 1.76238775e-01 -2.50312775e-01 5.22179544e-01 8.22734654e-01 1.63142756e-02 2.39185199e-01 5.12774169e-01 -3.44430357e-01 -8.54784787e-01 -8.06397974e-01 -1.37829006e-01 1.79363620e+00 -1.69627287e-03 -7.97989607e-01 -4.65157211e-01 -4.48626012e-01 8.76714960e-02 1.46259403e+00 -8.38990211e-01 -4.10395861e-01 -9.98788625e-02 -7.19884217e-01 5.48129141e-01 5.99974513e-01 2.55413890e-01 -1.06684959e+00 -5.28325856e-01 3.81148197e-02 -2.91165531e-01 -9.52189267e-01 -4.60762620e-01 4.56739604e-01 -7.26992667e-01 -1.10094655e+00 -4.03309166e-01 -7.92841077e-01 2.66253978e-01 3.01756173e-01 1.28933346e+00 -2.77564615e-01 -2.38705650e-01 1.41277447e-01 -4.06951696e-01 -6.55516267e-01 -3.52619708e-01 3.16587389e-01 1.76675376e-02 -2.62022913e-01 8.20761025e-01 -4.75864679e-01 -1.42101586e-01 -1.19418152e-01 -8.03349078e-01 9.17622540e-03 2.90275276e-01 1.18857074e+00 2.76210904e-01 -3.02044719e-01 6.94800794e-01 -1.50528061e+00 8.19015086e-01 -6.43956721e-01 -1.98141068e-01 3.78212214e-01 -8.52730334e-01 2.21477628e-01 6.56923234e-01 -4.28537428e-01 -1.23583853e+00 -4.08116221e-01 -1.15784302e-01 -4.33143824e-01 -6.97108060e-02 5.04621446e-01 -6.49330467e-02 2.85400689e-01 8.58290851e-01 1.22288771e-01 -1.94387943e-01 -4.98964041e-01 6.78498745e-01 8.52003932e-01 4.12178785e-01 -5.03598332e-01 5.68400741e-01 2.82542109e-01 -3.03649038e-01 -7.32529700e-01 -1.40723062e+00 -7.23527968e-01 -4.14774835e-01 1.30670905e-01 6.41163409e-01 -8.61648798e-01 -6.01157546e-01 2.79631019e-01 -1.16685855e+00 -3.48030269e-01 -4.24118578e-01 3.42035413e-01 -5.27840137e-01 1.03710040e-01 -7.40862131e-01 -5.73242068e-01 -7.75038779e-01 -6.85186148e-01 8.40443134e-01 2.81449705e-01 -4.84589756e-01 -1.15771151e+00 2.21413195e-01 3.44610453e-01 5.11269093e-01 -3.13014507e-01 1.22066951e+00 -1.00153422e+00 -7.83338025e-02 -3.87663506e-02 1.29566714e-01 -1.34330103e-02 -1.25857949e-01 -2.12151036e-01 -1.09485912e+00 -2.35884160e-01 -1.35323942e-01 -1.00895762e+00 1.20507360e+00 2.30797827e-01 1.29265523e+00 -2.65716672e-01 -3.37295622e-01 5.71873903e-01 1.25919712e+00 6.26463303e-03 6.04056120e-01 3.41476768e-01 5.33310890e-01 3.45614761e-01 5.44333279e-01 7.04854310e-01 5.02319515e-01 4.40598458e-01 3.00142646e-01 2.06924573e-01 1.18554652e-01 -3.49792570e-01 1.47024542e-01 8.19219530e-01 8.52013975e-02 -3.72192323e-01 -1.08716607e+00 5.14628112e-01 -2.14114761e+00 -1.24950266e+00 3.23535353e-01 1.91774416e+00 1.14536464e+00 3.21375787e-01 -1.45354629e-01 -1.64478138e-01 6.08267128e-01 4.21269745e-01 -6.81046546e-01 -5.87840021e-01 2.15190891e-02 5.19836962e-01 1.09129772e-01 6.19459033e-01 -1.13072956e+00 1.24790084e+00 5.88602161e+00 8.90496850e-01 -8.65140319e-01 5.17535150e-01 3.88165921e-01 -5.02867520e-01 -5.40967584e-01 -5.48360907e-02 -1.05649698e+00 2.77202338e-01 1.03034556e+00 -7.02826023e-01 2.90980160e-01 1.04286826e+00 -3.97600621e-01 2.73242980e-01 -1.16281128e+00 9.36192691e-01 4.17767912e-01 -1.72490144e+00 2.69878060e-01 -2.54352868e-01 6.99620366e-01 4.07608867e-01 -9.51261669e-02 9.92573023e-01 5.89859545e-01 -1.02144742e+00 4.24026281e-01 3.98492545e-01 9.09086287e-01 -8.24081779e-01 7.52740800e-01 6.88405871e-01 -7.64847517e-01 -1.03040777e-01 -6.07064903e-01 -7.23762289e-02 8.93324018e-02 4.96199846e-01 -6.21335506e-01 1.79070726e-01 6.52073085e-01 6.71131074e-01 -3.58756363e-01 6.21949375e-01 -3.32412928e-01 6.15650535e-01 -1.00808956e-01 -3.48033071e-01 2.73295194e-01 3.59588385e-01 3.74729544e-01 1.35097468e+00 3.06355178e-01 2.98153132e-01 1.90638050e-01 7.58146226e-01 -5.62385976e-01 1.77361846e-01 -6.97465718e-01 -1.06394760e-01 8.71292651e-01 1.23787272e+00 -2.15723619e-01 -6.86551929e-01 -7.02445328e-01 6.03453875e-01 6.19516313e-01 1.95348799e-01 -7.33398080e-01 -5.92305660e-01 5.46901643e-01 -1.04541592e-02 4.57111299e-01 1.52039111e-01 7.45742396e-02 -1.55306816e+00 -3.01220447e-01 -8.36134374e-01 6.43054843e-01 -6.04868233e-01 -1.44811380e+00 4.44933981e-01 5.80697283e-02 -8.92907500e-01 -6.33558214e-01 -5.95933616e-01 -9.32130516e-01 5.72528839e-01 -1.27433479e+00 -1.05103207e+00 -3.18866938e-01 8.12503457e-01 8.80760133e-01 -3.95924956e-01 1.36042202e+00 2.83302944e-02 -4.38378274e-01 7.21731007e-01 2.58270353e-01 2.18737975e-01 1.02726436e+00 -1.19643736e+00 6.69268429e-01 6.82722330e-01 2.10410804e-01 7.54963815e-01 6.56861842e-01 -3.79509717e-01 -1.35837328e+00 -1.06460738e+00 1.16324222e+00 -4.80508238e-01 9.24402893e-01 -5.80379844e-01 -1.00734282e+00 8.73585641e-01 2.82056093e-01 1.47072095e-02 1.25423014e+00 8.02004039e-01 -7.50313580e-01 3.52484919e-02 -6.88797712e-01 5.63389361e-01 9.89335716e-01 -5.53208232e-01 -9.64716017e-01 5.32447696e-01 9.55972195e-01 -4.29778218e-01 -7.59558141e-01 1.68923661e-01 4.90703970e-01 -6.49488091e-01 6.31804943e-01 -1.18292236e+00 7.07219839e-01 3.28388333e-01 -3.13375294e-01 -1.39297593e+00 -6.91642523e-01 -6.72990143e-01 -8.14741969e-01 1.28398633e+00 6.61175430e-01 -5.94564676e-01 4.46416914e-01 6.96038067e-01 -2.10993439e-01 -8.95086467e-01 -8.83542538e-01 -7.60158479e-01 2.84379780e-01 -4.17423010e-01 4.70138937e-01 1.33955431e+00 5.15200555e-01 1.03317714e+00 -5.01253903e-01 -5.65836072e-01 6.06643915e-01 3.33700091e-01 7.71984339e-01 -1.52821195e+00 -5.20061910e-01 -3.42243940e-01 -4.50190343e-02 -8.31591308e-01 4.93145287e-01 -1.15343332e+00 -1.34352118e-01 -1.61559153e+00 5.57678163e-01 -2.31773436e-01 -4.47820306e-01 8.82753849e-01 -3.06372732e-01 -2.07458213e-02 2.84703910e-01 1.49950519e-01 -8.89196694e-01 7.17449665e-01 9.59404409e-01 -1.86911866e-01 -4.43159752e-02 -1.90154269e-01 -1.18544626e+00 8.79955471e-01 1.01620364e+00 -5.88117421e-01 -5.79785407e-01 -3.96342158e-01 1.76596195e-01 -2.06230894e-01 7.26873577e-02 -7.63550460e-01 3.99737686e-01 -1.96540236e-01 1.92466587e-01 -2.67379135e-01 5.44379890e-01 -1.79188848e-01 -3.33722264e-01 3.67682308e-01 -7.06150115e-01 -2.69286007e-01 1.19044073e-01 5.27728438e-01 -1.36168748e-01 -5.22804797e-01 7.81831682e-01 -3.30124438e-01 -1.00598288e+00 3.05722952e-01 -2.09175006e-01 5.89547694e-01 9.73108649e-01 4.43634331e-01 -9.17363703e-01 -5.02420545e-01 -3.96774352e-01 3.27783883e-01 3.10739875e-01 7.76197076e-01 5.65339446e-01 -1.19260180e+00 -7.43826330e-01 -3.33551876e-02 5.14651775e-01 -1.01699091e-01 2.13569507e-01 6.18884861e-01 6.99540824e-02 7.01350570e-01 4.48098741e-02 -2.47933522e-01 -1.18474400e+00 6.31161690e-01 7.08150417e-02 -3.57059091e-01 -8.44353795e-01 9.29037988e-01 1.95242226e-01 -6.13988519e-01 2.05231071e-01 -6.72596600e-03 -1.66214556e-01 9.52269658e-02 7.84143388e-01 1.38116807e-01 -7.03903437e-02 -1.41388923e-01 -3.81204069e-01 1.27071187e-01 -5.11002481e-01 -2.91874545e-04 1.31024063e+00 1.79297328e-01 2.26750579e-02 1.04587901e+00 1.13439047e+00 -2.82843351e-01 -8.17648888e-01 -5.54928541e-01 -2.45296091e-01 -2.54656881e-01 2.69968092e-01 -8.07029068e-01 -5.26467383e-01 1.04365253e+00 -2.46048216e-02 -7.24872574e-03 5.82431734e-01 3.67794245e-01 9.70057547e-01 9.32373703e-01 4.35134172e-01 -1.13850057e+00 9.71552059e-02 9.91022766e-01 4.86643732e-01 -1.41531563e+00 -9.95201096e-02 -1.19065680e-01 -7.48298645e-01 9.86557782e-01 6.93279743e-01 1.62185967e-01 6.82041109e-01 3.98528963e-01 -1.88230485e-01 -1.88165799e-01 -1.50922894e+00 -2.30656460e-01 3.19586128e-01 3.57872725e-01 7.97982395e-01 8.67934674e-02 -1.54747576e-01 9.08158779e-01 -2.76395828e-01 1.67424694e-01 5.00918388e-01 9.59628642e-01 -8.18700671e-01 -9.64962780e-01 1.57504737e-01 7.62105048e-01 -2.87775755e-01 -5.84435761e-01 -2.47292802e-01 6.34148180e-01 -1.05822414e-01 7.87497997e-01 1.06514566e-01 -1.70194626e-01 8.01223442e-02 6.61826134e-01 4.03776348e-01 -1.05229032e+00 -3.03472549e-01 -2.20825285e-01 2.49362931e-01 -3.37703109e-01 -2.18217254e-01 -5.50853014e-01 -1.18552625e+00 -6.33675516e-01 -2.96531379e-01 3.49978209e-01 3.61436129e-01 9.93918180e-01 4.34130311e-01 5.66708863e-01 2.26415470e-01 -4.53761727e-01 -6.81029737e-01 -1.19894373e+00 -4.48332399e-01 3.84540021e-01 1.93271961e-03 -7.58012295e-01 -2.84415841e-01 -6.49514273e-02]
[10.740853309631348, 7.902599811553955]
51e1871a-f0e4-4691-9d91-b54b0843080b
unidentified-video-objects-a-benchmark-for
2104.04691
null
https://arxiv.org/abs/2104.04691v1
https://arxiv.org/pdf/2104.04691v1.pdf
Unidentified Video Objects: A Benchmark for Dense, Open-World Segmentation
Current state-of-the-art object detection and segmentation methods work well under the closed-world assumption. This closed-world setting assumes that the list of object categories is available during training and deployment. However, many real-world applications require detecting or segmenting novel objects, i.e., object categories never seen during training. In this paper, we present, UVO (Unidentified Video Objects), a new benchmark for open-world class-agnostic object segmentation in videos. Besides shifting the problem focus to the open-world setup, UVO is significantly larger, providing approximately 8 times more videos compared with DAVIS, and 7 times more mask (instance) annotations per video compared with YouTube-VOS and YouTube-VIS. UVO is also more challenging as it includes many videos with crowded scenes and complex background motions. We demonstrated that UVO can be used for other applications, such as object tracking and super-voxel segmentation, besides open-world object segmentation. We believe that UVo is a versatile testbed for researchers to develop novel approaches for open-world class-agnostic object segmentation, and inspires new research directions towards a more comprehensive video understanding beyond classification and detection.
['Du Tran', 'Heng Wang', 'Matt Feiszli', 'Weiyao Wang']
2021-04-10
null
http://openaccess.thecvf.com//content/ICCV2021/html/Wang_Unidentified_Video_Objects_A_Benchmark_for_Dense_Open-World_Segmentation_ICCV_2021_paper.html
http://openaccess.thecvf.com//content/ICCV2021/papers/Wang_Unidentified_Video_Objects_A_Benchmark_for_Dense_Open-World_Segmentation_ICCV_2021_paper.pdf
iccv-2021-1
['one-shot-visual-object-segmentation']
['computer-vision']
[ 8.90807714e-03 -2.44255006e-01 -4.10840720e-01 -1.95891544e-01 -5.45877755e-01 -1.04034209e+00 1.83645170e-03 -8.67804140e-02 -3.95958722e-01 4.54506397e-01 -4.38696861e-01 -5.80175593e-02 2.44833216e-01 -5.44241667e-01 -9.72174168e-01 -4.90449160e-01 -3.74947369e-01 6.54972136e-01 1.04519939e+00 -1.83268450e-02 4.05221097e-02 4.54718024e-01 -1.79183853e+00 7.72137493e-02 6.77393913e-01 9.95690048e-01 3.82639796e-01 9.24445808e-01 -2.24615093e-02 4.47977066e-01 -6.42470062e-01 -5.06645858e-01 7.97476053e-01 1.76731884e-01 -1.05794263e+00 6.23141944e-01 1.18997204e+00 -5.49690008e-01 -4.17463273e-01 1.27435625e+00 2.75174886e-01 4.51484680e-01 3.08848113e-01 -1.70886326e+00 -4.84283209e-01 5.29209793e-01 -6.38383090e-01 7.17333436e-01 3.25175136e-01 6.88752949e-01 7.54028678e-01 -7.52216220e-01 8.84940147e-01 1.08800888e+00 6.51347637e-01 7.24497497e-01 -7.91946948e-01 -7.71229386e-01 6.45259440e-01 3.36932510e-01 -1.44841444e+00 -3.05326939e-01 3.69717956e-01 -6.53610528e-01 5.30603170e-01 5.03874302e-01 7.93787241e-01 1.01280499e+00 -3.96900564e-01 1.28802204e+00 5.94593346e-01 2.08815277e-01 2.30524540e-01 1.35562152e-01 3.37096959e-01 6.32892966e-01 4.24364150e-01 -2.67856628e-01 -1.80300564e-01 1.34834513e-01 8.41852307e-01 2.09081814e-01 -3.52980822e-01 -5.92553198e-01 -1.51832330e+00 5.42564809e-01 3.54280680e-01 -1.85092422e-03 5.80509268e-02 2.90417492e-01 6.63075864e-01 6.53425083e-02 3.88312817e-01 4.78464365e-01 -7.39572346e-01 -2.28497177e-01 -1.10460186e+00 2.32047722e-01 7.43185878e-01 1.56758010e+00 7.27626503e-01 1.48357093e-01 -1.78386614e-01 6.42363012e-01 -1.60605628e-02 4.79118258e-01 3.73839349e-01 -1.43899620e+00 4.09026682e-01 3.58816475e-01 1.54515162e-01 -8.66401613e-01 -2.27496326e-01 -3.69100183e-01 -2.53825814e-01 -1.51757762e-01 6.39461517e-01 -1.72005847e-01 -1.18045521e+00 1.37570286e+00 7.51547933e-01 8.23716164e-01 -1.79643720e-01 1.23311889e+00 1.21783924e+00 6.43478870e-01 -1.09761201e-01 -2.28897065e-01 1.40325689e+00 -1.46367335e+00 -5.32675505e-01 -3.94813031e-01 4.96244341e-01 -6.08568966e-01 1.02924526e+00 4.47394818e-01 -1.03231525e+00 -5.28843999e-01 -7.22010374e-01 6.69667870e-02 -4.37802732e-01 -3.11261892e-01 9.02315378e-01 7.62945831e-01 -7.10817575e-01 3.07070613e-01 -7.87396431e-01 -4.69443411e-01 9.52016473e-01 2.67905533e-01 -2.99737364e-01 -3.52965713e-01 -7.03905702e-01 1.45752713e-01 6.40441358e-01 -8.73620361e-02 -1.40997446e+00 -7.86829710e-01 -8.78767014e-01 -2.20888052e-02 1.27714050e+00 -3.82259548e-01 1.25390339e+00 -1.01791024e+00 -8.60419929e-01 8.52266669e-01 2.81756315e-02 -3.22442800e-01 7.27687120e-01 -3.34467232e-01 -3.57962608e-01 5.64965367e-01 5.16649187e-01 9.38262522e-01 9.24041390e-01 -1.37785447e+00 -9.29845691e-01 -2.92069346e-01 4.20435190e-01 5.79173006e-02 -1.82696715e-01 1.83185503e-01 -1.20349860e+00 -7.75565505e-01 7.16015100e-02 -8.86901915e-01 -2.78076321e-01 3.36865366e-01 -5.06043494e-01 -2.64903873e-01 1.40177822e+00 -2.63328880e-01 9.70009565e-01 -2.10366392e+00 -9.09114927e-02 -1.37194008e-01 5.39742827e-01 5.69898367e-01 -1.74030527e-01 -5.04391156e-02 1.74525142e-01 2.84242839e-01 -7.86850601e-02 -1.59312587e-03 -1.82012916e-01 3.14880341e-01 -2.22118631e-01 5.39296806e-01 -4.24531214e-02 8.87200713e-01 -1.21177661e+00 -9.13413227e-01 2.76837051e-01 -1.10114634e-01 -6.67088866e-01 9.66809690e-02 -6.26954973e-01 3.92684937e-01 -3.64552408e-01 1.19774354e+00 9.87345576e-01 -2.49837577e-01 -2.05403760e-01 -1.08424410e-01 4.93466519e-02 -6.87553346e-01 -1.55346692e+00 1.56776643e+00 1.05356865e-01 1.02831781e+00 3.04383785e-01 -1.00570977e+00 3.23865354e-01 9.33587402e-02 7.44347334e-01 -1.12811811e-01 2.89912462e-01 6.06269352e-02 -1.61589667e-01 -9.52640355e-01 5.82107484e-01 4.43542600e-01 2.53119498e-01 1.99963659e-01 3.20339918e-01 -1.32209465e-01 9.84193027e-01 5.54904282e-01 9.13266182e-01 -4.42837998e-02 2.59110685e-02 -2.02048987e-01 5.82129583e-02 2.22637877e-01 8.32693040e-01 1.11503434e+00 -8.00106347e-01 8.17326903e-01 1.42533883e-01 -4.08840001e-01 -6.70711458e-01 -1.16731429e+00 -3.49696815e-01 1.27029800e+00 8.51316869e-01 -3.87673706e-01 -1.08477890e+00 -9.30606961e-01 1.01204835e-01 4.19847816e-02 -4.08768088e-01 3.19979608e-01 -5.96722841e-01 -4.40793246e-01 6.19696617e-01 6.96332574e-01 5.41442215e-01 -8.89852703e-01 -6.29462898e-01 1.47347718e-01 -3.99998337e-01 -1.71475708e+00 -7.80702412e-01 -2.49009773e-01 -8.49820971e-01 -1.60950232e+00 -9.51141715e-01 -9.92214143e-01 5.94735622e-01 9.30887163e-01 1.24323988e+00 2.06909031e-01 -6.69603050e-01 8.54180276e-01 -5.51450431e-01 -3.49222034e-01 8.21545662e-04 -2.47186869e-01 1.37169138e-01 2.46810645e-01 2.33004943e-01 -7.23322332e-02 -8.40852320e-01 9.24614072e-01 -1.04595029e+00 -2.12192789e-01 5.32621145e-02 3.65230680e-01 6.86045110e-01 7.58263320e-02 3.13530922e-01 -8.94969046e-01 -1.10464126e-01 -6.69287205e-01 -6.01941168e-01 2.09249511e-01 9.40554291e-02 -7.99234390e-01 2.81405270e-01 -8.75541091e-01 -8.11586738e-01 7.12241530e-02 6.60737976e-02 -8.34575415e-01 -4.15869027e-01 -7.49258846e-02 -1.91516474e-01 -3.20166290e-01 5.80627084e-01 1.39862411e-02 -4.44006979e-01 -3.36711228e-01 3.50596040e-01 6.25526786e-01 7.48305321e-01 -4.36181635e-01 8.46102893e-01 7.85542011e-01 -5.41499794e-01 -1.09224105e+00 -9.20740962e-01 -1.18940532e+00 -6.41541898e-01 -5.20460784e-01 1.17564595e+00 -1.15723407e+00 -5.38747966e-01 5.21889448e-01 -1.05170798e+00 -6.04418337e-01 -4.96524423e-01 3.17391455e-01 -5.61851978e-01 5.47573388e-01 -4.89690781e-01 -6.15819156e-01 7.83956144e-03 -1.33214784e+00 1.25827479e+00 4.39875036e-01 1.90647691e-01 -7.71420181e-01 -4.60708737e-01 8.48742068e-01 -1.01267084e-01 2.21020639e-01 1.10269442e-01 -6.30055189e-01 -1.23311508e+00 -1.32206813e-01 -3.90540540e-01 3.93204510e-01 -1.12374283e-01 2.59117156e-01 -8.79938126e-01 -4.38181847e-01 -3.29609722e-01 -3.25273812e-01 9.49953437e-01 3.19136143e-01 1.67751145e+00 -1.85436383e-01 -6.43011749e-01 9.75132465e-01 1.23327816e+00 2.89991856e-01 4.19274092e-01 1.91404924e-01 1.11406171e+00 2.00783655e-01 1.08262610e+00 3.86459082e-01 2.45920509e-01 7.87706494e-01 7.11689472e-01 -2.31791735e-01 -3.44015718e-01 2.11864308e-01 1.89687714e-01 3.60987276e-01 -4.91584167e-02 -5.09879589e-01 -9.36568141e-01 8.75472426e-01 -1.94950068e+00 -1.08578086e+00 -4.15559858e-01 1.90570974e+00 5.11750579e-01 1.41833514e-01 3.73344958e-01 -7.12982640e-02 9.39002931e-01 7.13857263e-02 -7.60481715e-01 2.87971079e-01 -1.41805679e-01 -1.96626648e-01 6.79314196e-01 -4.94603142e-02 -1.61996615e+00 1.10820901e+00 6.57083988e+00 1.07203603e+00 -9.26253021e-01 4.71651614e-01 5.40668666e-01 -2.97503442e-01 3.59662980e-01 -3.07673335e-01 -9.13989365e-01 5.95113218e-01 1.91981003e-01 1.33599952e-01 2.32198983e-01 1.23630357e+00 1.23142032e-03 -2.58556992e-01 -1.19238889e+00 1.19605196e+00 2.96855032e-01 -1.48357105e+00 -7.27810711e-02 -2.17939049e-01 1.08972549e+00 4.55411881e-01 -1.33343562e-01 2.97134340e-01 -1.53236780e-02 -4.88040984e-01 9.52195406e-01 -1.33582130e-01 7.50779867e-01 -2.52654940e-01 5.81601620e-01 2.91002661e-01 -1.47937131e+00 -1.99588940e-01 -3.38340312e-01 1.36684731e-01 3.34123731e-01 3.09119582e-01 -5.28518617e-01 2.17378795e-01 1.24006319e+00 9.48289156e-01 -8.63245368e-01 1.67368639e+00 2.65276432e-01 6.77740216e-01 -3.44690621e-01 1.94077939e-01 3.84785801e-01 -5.63034043e-02 8.65347922e-01 1.36569524e+00 -2.14814562e-02 1.61399513e-01 8.75207007e-01 4.59912658e-01 -1.94168240e-01 -6.26808777e-02 -4.31152076e-01 9.03083980e-02 2.63310105e-01 1.19648707e+00 -1.53570902e+00 -7.03974783e-01 -5.44549644e-01 9.67506230e-01 -8.92836750e-02 5.78583777e-01 -1.26301801e+00 -2.84661800e-01 9.48788404e-01 3.28364432e-01 7.91260898e-01 -3.05185676e-01 2.37408981e-01 -1.59793663e+00 2.67933812e-02 -8.99728179e-01 4.47514504e-01 -7.04845846e-01 -1.24096906e+00 2.43791267e-01 3.00362587e-01 -1.22981071e+00 3.12479436e-01 -7.49946296e-01 -5.62977493e-01 -1.67106539e-01 -1.37492704e+00 -8.74509454e-01 -6.74196303e-01 7.91163981e-01 1.28595269e+00 6.04428612e-02 1.24360733e-01 6.70324206e-01 -8.23690414e-01 4.40979511e-01 2.38635182e-01 5.56506991e-01 5.82139492e-01 -1.16044652e+00 3.50900918e-01 1.06749892e+00 4.45880145e-01 2.65794784e-01 6.49385691e-01 -7.06000388e-01 -1.47095501e+00 -1.59201956e+00 -2.74861485e-01 -7.21575916e-01 6.57201052e-01 -5.49816549e-01 -7.54492462e-01 9.06467497e-01 -8.68126228e-02 7.92819083e-01 5.13739228e-01 -2.66843766e-01 -2.66331732e-01 1.39288022e-04 -1.11722279e+00 4.57792163e-01 1.58764803e+00 -4.82016578e-02 -2.73721367e-01 8.93404782e-01 1.14527285e+00 -8.02740455e-01 -7.43427515e-01 3.95306259e-01 2.99785495e-01 -8.19921255e-01 1.17673039e+00 -7.71464705e-01 -2.46544592e-02 -5.91424286e-01 -1.49379000e-01 -8.07727993e-01 1.02641702e-01 -7.80440986e-01 -5.01363993e-01 1.22063315e+00 -1.49641689e-02 -3.90250564e-01 1.03553450e+00 4.71899867e-01 -3.57726604e-01 -6.36762381e-01 -7.98477113e-01 -1.28500998e+00 -3.94278169e-01 -7.12452054e-01 3.77291530e-01 9.40006793e-01 -6.29678309e-01 -1.77130073e-01 -2.06914097e-01 2.96955079e-01 7.22338319e-01 2.43009374e-01 1.16971111e+00 -1.12042844e+00 -3.63832921e-01 -3.17412704e-01 -8.23390841e-01 -1.47624588e+00 -1.00398473e-01 -6.22568548e-01 1.40144214e-01 -1.34028447e+00 3.76863480e-01 -5.75145245e-01 6.16559722e-02 2.20832080e-01 -2.62142003e-01 1.01093006e+00 6.57632411e-01 1.74144790e-01 -1.41115379e+00 1.47714049e-01 1.54919755e+00 -4.84492302e-01 -1.75617695e-01 2.97711909e-01 -5.00531077e-01 1.00713766e+00 4.78958935e-01 -4.72732842e-01 -3.05901110e-01 -4.59134758e-01 -2.10176051e-01 -2.48929545e-01 4.94320869e-01 -1.20511472e+00 3.86651568e-02 -4.45680946e-01 1.49428606e-01 -7.10572422e-01 4.40760702e-01 -9.09734130e-01 -2.86209024e-02 3.26801211e-01 2.32058436e-01 -2.66188890e-01 1.94268659e-01 8.60142589e-01 -2.18311176e-01 -3.80957723e-01 6.32385194e-01 -4.48391169e-01 -1.52404583e+00 8.07004452e-01 -3.36829543e-01 6.50273561e-01 1.82246172e+00 -7.88578689e-01 -5.23081899e-01 -5.72053120e-02 -9.71540034e-01 7.35476136e-01 5.00812650e-01 5.47002256e-01 6.85204864e-01 -8.95262420e-01 -4.69808400e-01 -5.63848987e-02 2.85869360e-01 3.17497849e-01 3.64161968e-01 7.54746258e-01 -8.36004734e-01 1.12978287e-01 -9.33568776e-02 -1.18424356e+00 -1.53258848e+00 8.85037541e-01 2.03469679e-01 3.68837386e-01 -7.34992802e-01 1.00934052e+00 6.31084681e-01 -2.28477731e-01 6.08668208e-01 -3.17698777e-01 2.45943032e-02 1.30755931e-01 6.27047658e-01 7.50030518e-01 -1.61242023e-01 -7.21721411e-01 -3.73049110e-01 5.95209002e-01 7.44316578e-02 4.89400923e-01 1.06446922e+00 -2.49072880e-01 1.88854292e-01 3.55694711e-01 1.01417458e+00 -1.74831778e-01 -1.64250588e+00 -1.26520962e-01 -2.97113717e-01 -9.70216751e-01 -2.87125945e-01 -4.33226913e-01 -1.48649967e+00 6.63379252e-01 6.60318673e-01 3.69471163e-01 9.28222537e-01 4.19262946e-01 1.03326058e+00 4.62940127e-01 6.73412561e-01 -1.18564725e+00 3.95756036e-01 3.61215323e-01 4.71332401e-01 -1.78597033e+00 8.49705935e-03 -1.04590607e+00 -5.98030150e-01 8.65182519e-01 1.10693336e+00 4.91424315e-02 6.07637882e-01 1.51454374e-01 1.39223039e-01 -1.99452832e-01 -2.59441674e-01 -5.00837624e-01 2.33238071e-01 9.14254844e-01 -2.13430420e-01 9.41077694e-02 2.50586659e-01 3.34801883e-01 1.38835877e-01 -2.19224855e-01 8.82792592e-01 8.06652725e-01 -5.22812963e-01 -5.82539201e-01 -6.16770327e-01 6.97283804e-01 -5.15246749e-01 1.70412555e-01 -9.12935734e-02 9.20307755e-01 5.11182010e-01 9.87899482e-01 2.71268189e-01 2.74923127e-02 4.07004952e-02 -4.16654885e-01 3.56471986e-01 -9.49537873e-01 -3.36645186e-01 -1.10175036e-01 -1.17982149e-01 -1.00509942e+00 -7.15103805e-01 -7.24896610e-01 -1.19080806e+00 -8.23351741e-02 -7.59501755e-01 -2.78200563e-02 5.52614033e-01 7.59423256e-01 2.63398409e-01 4.60421085e-01 2.75813669e-01 -1.30311704e+00 1.96052287e-02 -4.20718729e-01 -4.69423443e-01 5.60447454e-01 4.12379801e-01 -9.58223581e-01 -1.49711713e-01 3.58874023e-01]
[9.174782752990723, -0.0637766420841217]
52283468-f797-49b3-86eb-e60014f1e3c6
findings-of-the-shared-task-on-multimodal
null
null
https://aclanthology.org/2022.dravidianlangtech-1.39
https://aclanthology.org/2022.dravidianlangtech-1.39.pdf
Findings of the Shared Task on Multimodal Sentiment Analysis and Troll Meme Classification in Dravidian Languages
This paper presents the findings of the shared task on Multimodal Sentiment Analysis and Troll meme classification in Dravidian languages held at ACL 2022. Multimodal sentiment analysis deals with the identification of sentiment from video. In addition to video data, the task requires the analysis of corresponding text and audio features for the classification of movie reviews into five classes. We created a dataset for this task in Malayalam and Tamil. The Troll meme classification task aims to classify multimodal Troll memes into two categories. This task assumes the analysis of both text and image features for making better predictions. The performance of the participating teams was analysed using the F1-score. Only one team submitted their results in the Multimodal Sentiment Analysis task, whereas we received six submissions in the Troll meme classification task. The only team that participated in the Multimodal Sentiment Analysis shared task obtained an F1-score of 0.24. In the Troll meme classification task, the winning team achieved an F1-score of 0.596.
['Prasanna Kumaresan', 'Arunaggiri Pandian', 'Sreelakshmi K', 'Dhanalakshmi V', 'Soman Kp', 'Bharathi B', 'Malliga Subramanian', 'Bharathi Raja Chakravarthi', 'Premjith B']
null
null
null
null
dravidianlangtech-acl-2022-5
['meme-classification']
['natural-language-processing']
[-1.11071318e-02 -2.79637098e-01 2.09349066e-01 -4.25583512e-01 -1.20454895e+00 -7.66782343e-01 6.69049442e-01 4.74828213e-01 -8.07161570e-01 3.78922969e-01 4.31990027e-01 3.87436561e-02 2.15733185e-01 -1.08736008e-01 -4.25634027e-01 -5.85024297e-01 1.84607044e-01 9.18592513e-02 -1.74496874e-01 -4.62035626e-01 7.98642755e-01 -1.74267128e-01 -1.73049831e+00 1.44476926e+00 1.22159712e-01 1.33797038e+00 3.93847190e-02 1.34986281e+00 -1.82631418e-01 1.38387263e+00 -7.62418270e-01 -6.57807767e-01 -2.02944919e-01 -5.57911932e-01 -8.11933935e-01 5.54755069e-02 7.39314318e-01 3.00558120e-01 9.91852582e-02 6.39631391e-01 6.26464427e-01 1.51090398e-01 8.79561424e-01 -1.27855909e+00 -9.15912166e-02 2.41537556e-01 -3.41970652e-01 3.19984555e-01 9.16205883e-01 -4.17459726e-01 1.04262233e+00 -1.33471859e+00 7.59373665e-01 1.06740260e+00 5.30940652e-01 3.99191111e-01 -6.88992560e-01 -7.32057571e-01 -2.19862908e-01 4.64110933e-02 -1.17313349e+00 -5.16228855e-01 4.29918557e-01 -7.31220543e-01 8.30290020e-01 3.11501205e-01 4.49564487e-01 1.01211965e+00 4.03177440e-01 9.54776049e-01 1.32235467e+00 -4.42690074e-01 1.03812613e-01 8.66553724e-01 -1.28706498e-02 4.88361597e-01 -4.80411768e-01 -7.47783184e-01 -1.43245625e+00 -7.75131658e-02 -9.63761061e-02 -3.78681064e-01 1.12822674e-01 2.21061125e-01 -1.40574908e+00 1.02445662e+00 -2.54770219e-01 3.77534091e-01 -1.19083114e-01 -8.10743570e-02 1.04023862e+00 8.11245322e-01 8.47932816e-01 3.42227519e-01 -4.68095899e-01 -5.94441772e-01 -9.96116042e-01 5.76141924e-02 8.05371463e-01 3.88122320e-01 3.81367683e-01 -3.54800135e-01 3.81875098e-01 1.08398342e+00 3.87149006e-01 6.92821801e-01 6.67271912e-01 -5.95961630e-01 7.17265368e-01 5.88445246e-01 5.45786396e-02 -1.41708970e+00 -7.04158664e-01 3.11303377e-01 -4.26972628e-01 2.12138109e-02 2.15808839e-01 -6.11002564e-01 -5.74028611e-01 1.00898004e+00 3.27321142e-02 -5.78293204e-01 4.33511376e-01 8.83752763e-01 1.49611020e+00 8.73017669e-01 -4.22830209e-02 -1.44246221e-01 1.32488954e+00 -8.22933972e-01 -8.06975722e-01 3.66415866e-02 1.05767298e+00 -1.45494771e+00 8.13848257e-01 8.67575824e-01 -9.97519851e-01 -6.49543881e-01 -9.83774781e-01 3.38426262e-01 -6.13237977e-01 3.92725110e-01 3.90813828e-01 9.58128572e-01 -9.63987529e-01 -8.23449716e-03 -2.57834345e-01 -7.34094262e-01 3.06036230e-02 4.18071806e-01 -9.48713541e-01 1.59143090e-01 -9.44854021e-01 9.27751422e-01 -4.32672538e-02 -1.67099852e-02 -6.22407496e-01 -9.33329612e-02 -9.61034119e-01 -8.08449984e-01 -1.14552721e-01 1.70813814e-01 9.85199869e-01 -1.64901829e+00 -1.30670083e+00 1.38757753e+00 -2.54803151e-01 -5.81169827e-03 4.29557323e-01 -6.47572875e-02 -6.61907613e-01 3.93328816e-01 2.41269663e-01 8.00685525e-01 7.56204486e-01 -8.78550351e-01 -1.18034744e+00 -2.48173684e-01 5.87068452e-03 4.46143121e-01 -6.28914297e-01 6.86421037e-01 -1.60859615e-01 -5.77405274e-01 -9.63152647e-02 -1.05352688e+00 2.28390560e-01 -9.12437022e-01 4.14938368e-02 -2.16405571e-01 8.99911046e-01 -6.28801405e-01 9.24382448e-01 -2.31710887e+00 2.87587494e-01 6.96784705e-02 8.74683335e-02 -3.38191956e-01 -1.62588358e-01 8.46091449e-01 -1.24691725e-01 2.34658554e-01 3.91517013e-01 -7.20342577e-01 -8.35753679e-02 -3.70108604e-01 -1.45056129e-01 6.41672194e-01 5.82273938e-02 4.47434098e-01 -5.39347410e-01 -6.09296739e-01 3.06273643e-02 2.24780038e-01 -1.85499132e-01 -2.48695891e-02 2.55103350e-01 5.75942993e-01 -2.50654966e-01 4.81728792e-01 3.28144610e-01 9.07039344e-02 1.02882087e-01 -3.48414630e-01 -4.90639746e-01 -5.56223802e-02 -9.54989910e-01 1.51394534e+00 -5.07535458e-01 1.31527293e+00 9.20556113e-02 -8.26098382e-01 1.07412767e+00 8.10130060e-01 6.33454859e-01 -6.86117589e-01 5.26026309e-01 4.36914921e-01 -3.03004652e-01 -7.92901158e-01 1.05145025e+00 -2.34479442e-01 -7.31602550e-01 6.12172365e-01 9.86735299e-02 -3.48191321e-01 4.42603201e-01 5.45618474e-01 6.54109955e-01 -8.99146050e-02 -1.57587573e-01 -2.89262861e-01 7.21590638e-01 3.08166057e-01 -1.22074507e-01 3.97321373e-01 -2.59962380e-01 7.34198213e-01 5.94755292e-01 -8.05790544e-01 -7.27021575e-01 -2.78773725e-01 3.88999544e-02 1.60558796e+00 -2.03146804e-02 -8.69282126e-01 -6.25741839e-01 -7.42814064e-01 -5.51253200e-01 -2.95321434e-03 -8.43555033e-01 6.42864257e-02 -7.18572512e-02 -7.98388600e-01 6.40694261e-01 5.40689006e-02 2.99304932e-01 -1.06833446e+00 -6.21610403e-01 -1.24024339e-01 -7.96913743e-01 -1.12984037e+00 -3.84670824e-01 2.74050325e-01 -3.82998943e-01 -9.24209356e-01 -7.73031533e-01 -1.03199637e+00 2.99183339e-01 -5.84498281e-03 7.59091258e-01 -2.07306847e-01 -6.63025454e-02 9.32935357e-01 -9.06789064e-01 -8.28773558e-01 -3.81528407e-01 2.51086622e-01 1.04750574e-01 4.81934607e-01 6.37506545e-01 3.76971662e-01 -2.14817628e-01 6.46432579e-01 -8.08705270e-01 4.51207953e-03 1.49875768e-02 5.53876162e-01 3.16030771e-01 -8.44455659e-02 7.68083751e-01 -4.95377779e-01 7.09056854e-01 -5.16126573e-01 -9.63319000e-03 -2.73506492e-02 1.21300936e-01 -6.92803681e-01 1.33406833e-01 -3.11178714e-01 -6.81692779e-01 2.43713483e-01 -2.21956652e-02 1.33143052e-01 -1.74058303e-01 8.84242415e-01 3.22341293e-01 -1.47443205e-01 5.46299100e-01 -5.18784970e-02 -3.07270549e-02 -1.36924954e-02 -2.82382578e-01 1.21805775e+00 2.15380535e-01 -6.90340772e-02 6.55276030e-02 3.37597340e-01 -9.84808207e-02 -1.41924727e+00 -1.00998044e+00 -7.83875108e-01 -5.10709524e-01 -1.06200504e+00 1.26234448e+00 -1.17705488e+00 -8.40134382e-01 8.11398923e-01 -9.68057930e-01 6.41672239e-02 1.20008878e-01 7.27496445e-01 -6.05768979e-01 2.46335685e-01 -5.33527732e-01 -1.00686061e+00 -1.04495734e-01 -1.18785596e+00 1.08737612e+00 -8.18187445e-02 -7.52774119e-01 -9.80756879e-01 4.99404520e-01 1.11966658e+00 4.01134491e-02 2.52762616e-01 2.13625401e-01 -9.03038144e-01 3.47256243e-01 -5.87053776e-01 1.39260471e-01 5.18106222e-01 -2.85740972e-01 -8.26030374e-02 -1.21017134e+00 -2.51278013e-01 2.84017995e-02 -1.01969171e+00 9.26548660e-01 3.07863742e-01 4.40238208e-01 2.46131971e-01 2.97477067e-01 -2.13804424e-01 1.04244494e+00 3.50865722e-01 5.26298583e-01 5.37827492e-01 5.01364768e-01 1.17730319e+00 9.89452243e-01 5.13996303e-01 5.22080183e-01 4.95926768e-01 4.04450268e-01 2.69309103e-01 3.76765072e-01 2.44956940e-01 1.01774216e+00 1.11745834e+00 -1.58605680e-01 -5.14126182e-01 -1.12129581e+00 5.83282351e-01 -2.00031781e+00 -8.73887479e-01 -6.50860548e-01 1.86900961e+00 2.35168561e-01 -9.04274285e-02 5.21462798e-01 3.82939696e-01 6.50277674e-01 1.30880758e-01 4.33825731e-01 -1.10425305e+00 -4.60403562e-01 -2.72349596e-01 1.94235563e-01 3.90145391e-01 -1.54723525e+00 7.53822207e-01 5.90898418e+00 9.10240591e-01 -1.17730570e+00 3.07789326e-01 4.70374227e-01 -4.16378558e-01 1.54506087e-01 -3.91323566e-01 -7.63886273e-01 4.47828323e-01 1.59251785e+00 4.28733796e-01 -1.00484125e-01 2.16861650e-01 1.66888192e-01 -7.59178996e-01 -7.20239162e-01 1.17377377e+00 8.39116454e-01 -1.21399188e+00 -8.62215385e-02 3.12222671e-02 8.80935609e-01 2.20299602e-01 2.23710656e-01 2.19609782e-01 -5.54317355e-01 -1.15952468e+00 1.08382237e+00 6.48055553e-01 5.11584461e-01 -1.14688492e+00 1.25537026e+00 2.04396218e-01 -1.08524942e+00 -2.44794297e-03 1.11710437e-01 -3.24713528e-01 8.70841891e-02 1.06363200e-01 -5.61358333e-01 3.29301745e-01 9.25751626e-01 1.17327058e+00 -5.55002451e-01 6.99512005e-01 2.35710576e-01 5.05463243e-01 -3.35849971e-02 -4.78941202e-01 3.14449102e-01 8.25575590e-02 5.39024293e-01 1.70350492e+00 1.15349248e-01 -3.45054120e-01 2.52707064e-01 -4.73359555e-01 7.20064640e-02 7.20601439e-01 -4.50282484e-01 -3.96265835e-01 -3.36848348e-01 1.39139450e+00 -1.00506651e+00 -1.74489349e-01 -3.93126070e-01 9.54697907e-01 -3.87938589e-01 -5.18086813e-02 -5.52936316e-01 -6.62629843e-01 -9.39123631e-02 -1.97363555e-01 2.09743187e-01 -7.18637230e-03 -1.99240878e-01 -9.67218101e-01 -1.54420629e-01 -1.01534963e+00 4.36787963e-01 -9.67429519e-01 -1.27043200e+00 9.63261187e-01 -2.28084505e-01 -1.25788164e+00 -2.49872338e-02 -9.20921087e-01 -3.33187491e-01 6.81941867e-01 -8.47027242e-01 -1.45665371e+00 -2.02740580e-01 7.44937479e-01 7.68452168e-01 -7.22972870e-01 8.62962484e-01 4.96314108e-01 -2.52721190e-01 3.75073195e-01 -1.13264367e-01 -6.82892743e-03 1.27165878e+00 -9.36672091e-01 -6.55194819e-01 1.89595342e-01 -1.50077408e-02 4.17681225e-02 8.44185352e-01 -6.03404105e-01 -1.18818617e+00 -7.19757497e-01 1.43571305e+00 -8.57352138e-01 9.12742078e-01 -1.59647018e-01 -8.65276009e-02 4.10987824e-01 5.50441444e-01 -6.31701648e-01 1.24241781e+00 -3.81029956e-02 -1.62404209e-01 2.70747840e-01 -8.78571689e-01 -4.86925663e-03 -4.08595651e-02 -9.22861397e-01 -3.63460958e-01 4.81133312e-01 3.60709429e-02 -3.23356152e-01 -1.06216717e+00 1.14806183e-02 9.96529520e-01 -7.27928460e-01 3.50435376e-01 -5.87905049e-01 1.09767294e+00 -2.47264609e-01 -7.96079516e-01 -1.05875707e+00 6.01417661e-01 -2.57166237e-01 6.64339244e-01 1.12417006e+00 7.93185353e-01 -1.80341393e-01 6.73215270e-01 1.74587578e-01 7.57264569e-02 -3.52887183e-01 -8.62687826e-01 -1.62700370e-01 -5.99702559e-02 -9.68858302e-01 -4.14744943e-01 9.51375008e-01 4.82728064e-01 7.67325580e-01 -7.62995839e-01 -2.92699248e-01 1.58972427e-01 -2.35682055e-01 9.33929026e-01 -1.04694033e+00 3.46661150e-01 -2.40581617e-01 -8.53222072e-01 -2.73936659e-01 2.01135829e-01 -8.03537071e-01 -3.64627875e-02 -1.41786897e+00 4.17998254e-01 8.65405872e-02 -2.11988255e-01 2.52791911e-01 4.59396720e-01 1.12058604e+00 5.48730731e-01 2.26760000e-01 -1.18470180e+00 -4.39072326e-02 7.78786421e-01 -1.78987116e-01 -2.00938135e-02 3.21689323e-02 -5.56468964e-01 7.93675125e-01 7.96903491e-01 -4.95093256e-01 -3.27463858e-02 -5.77324741e-02 1.26821995e+00 3.36478502e-02 1.99366957e-01 -8.80259156e-01 3.11876059e-01 8.64205211e-02 3.38840008e-01 -1.13850391e+00 7.97740221e-01 -6.45549536e-01 -8.31877440e-02 1.41028941e-01 -4.18539315e-01 4.04053539e-01 4.40020770e-01 1.97628289e-01 -7.72027910e-01 -3.14520240e-01 4.79479879e-01 -2.24404992e-03 -7.84226954e-01 -4.76585716e-01 -1.41110182e+00 -8.62842277e-02 1.09141386e+00 -4.76915270e-01 -1.53532803e-01 -9.85755444e-01 -1.18318737e+00 2.68763393e-01 2.02838674e-01 6.21629775e-01 7.78827488e-01 -1.05254376e+00 -9.50476766e-01 -2.07444489e-01 4.25999612e-01 -9.83431101e-01 5.03817141e-01 1.38851440e+00 -4.73465413e-01 4.36784357e-01 -2.89395422e-01 -6.87735975e-01 -1.96908152e+00 -2.34164074e-01 2.22741947e-01 -2.25398988e-02 2.27605432e-01 8.55702162e-01 1.06027815e-02 -5.70549488e-01 5.46203330e-02 4.95969981e-01 -9.52803433e-01 1.09221756e+00 8.74633729e-01 4.54910219e-01 3.09499502e-01 -1.46478617e+00 -5.02909660e-01 8.78124952e-01 8.49549696e-02 -7.09218979e-01 1.33331168e+00 -4.66506571e-01 -3.24782073e-01 1.12183380e+00 1.48865676e+00 3.88061672e-01 -1.01466417e-01 5.66226065e-01 -8.79636630e-02 -1.47226349e-01 2.32320681e-01 -9.57580149e-01 -7.92430282e-01 9.31920052e-01 6.44589484e-01 5.13466656e-01 9.00738537e-01 -1.26452729e-01 4.44102079e-01 3.70989978e-01 1.06929280e-01 -1.54331338e+00 3.09124470e-01 9.69196916e-01 8.88479292e-01 -1.53843987e+00 -9.21548083e-02 7.66738430e-02 -1.46400511e+00 1.38085508e+00 2.76638240e-01 1.37994453e-01 6.41537189e-01 -2.79825032e-02 5.59870660e-01 -5.10930777e-01 -7.93394625e-01 2.88758487e-01 7.32948482e-01 3.38730067e-01 8.43575418e-01 -8.75541270e-02 -4.87898469e-01 6.38885498e-01 -2.66911805e-01 -1.24260068e-01 9.98777568e-01 1.09581149e+00 -4.37045187e-01 -8.05091143e-01 -5.38598776e-01 2.85706639e-01 -1.06994784e+00 8.83729309e-02 -8.89372766e-01 5.96954644e-01 3.60949785e-02 1.56026840e+00 1.51171967e-01 -9.19001341e-01 2.87780702e-01 5.54060470e-03 1.29754096e-01 -4.92231578e-01 -1.27480280e+00 1.32404804e-01 6.71297491e-01 -3.36606234e-01 -1.12791717e+00 -8.86177480e-01 -9.20772910e-01 -3.57568860e-01 -1.70131236e-01 5.16268253e-01 1.37418962e+00 9.87027705e-01 -5.75763322e-02 3.53226870e-01 7.73488581e-01 -1.07334161e+00 3.53901148e-01 -9.51730549e-01 -6.43195152e-01 2.48785660e-01 3.96992713e-01 -2.15013519e-01 -4.93199944e-01 3.31853092e-01]
[13.009093284606934, 5.276452541351318]
76161387-d886-4aec-84da-706d267b2146
eslam-efficient-dense-slam-system-based-on
2211.11704
null
https://arxiv.org/abs/2211.11704v2
https://arxiv.org/pdf/2211.11704v2.pdf
ESLAM: Efficient Dense SLAM System Based on Hybrid Representation of Signed Distance Fields
We present ESLAM, an efficient implicit neural representation method for Simultaneous Localization and Mapping (SLAM). ESLAM reads RGB-D frames with unknown camera poses in a sequential manner and incrementally reconstructs the scene representation while estimating the current camera position in the scene. We incorporate the latest advances in Neural Radiance Fields (NeRF) into a SLAM system, resulting in an efficient and accurate dense visual SLAM method. Our scene representation consists of multi-scale axis-aligned perpendicular feature planes and shallow decoders that, for each point in the continuous space, decode the interpolated features into Truncated Signed Distance Field (TSDF) and RGB values. Our extensive experiments on three standard datasets, Replica, ScanNet, and TUM RGB-D show that ESLAM improves the accuracy of 3D reconstruction and camera localization of state-of-the-art dense visual SLAM methods by more than 50%, while it runs up to 10 times faster and does not require any pre-training.
['François Fleuret', 'Camilla Carta', 'Mohammad Mahdi Johari']
2022-11-21
null
http://openaccess.thecvf.com//content/CVPR2023/html/Johari_ESLAM_Efficient_Dense_SLAM_System_Based_on_Hybrid_Representation_of_CVPR_2023_paper.html
http://openaccess.thecvf.com//content/CVPR2023/papers/Johari_ESLAM_Efficient_Dense_SLAM_System_Based_on_Hybrid_Representation_of_CVPR_2023_paper.pdf
cvpr-2023-1
['simultaneous-localization-and-mapping', 'camera-localization']
['computer-vision', 'computer-vision']
[ 5.69502525e-02 -3.32159132e-01 -2.39343598e-01 -6.24986708e-01 -8.07125747e-01 -7.31953502e-01 6.02836132e-01 -2.26817150e-02 -5.43958843e-01 5.60051799e-01 1.35551125e-01 -2.35812187e-01 2.43488878e-01 -7.11140931e-01 -1.16569281e+00 -1.44791618e-01 -1.90713517e-02 7.86563694e-01 1.84991062e-01 -4.17515896e-02 4.03686553e-01 8.74760628e-01 -1.47142768e+00 -1.67866468e-01 3.78561139e-01 1.10866356e+00 4.64602053e-01 8.56723487e-01 -1.14783339e-01 1.08509171e+00 -6.15562238e-02 2.30574325e-01 3.70302886e-01 -1.13521658e-01 -8.71107817e-01 4.37781252e-02 7.91102171e-01 -5.16233146e-01 -7.86109149e-01 8.63910913e-01 3.43572497e-01 7.45474473e-02 7.67240673e-02 -1.06569529e+00 -4.67405170e-01 -1.66351020e-01 -7.45153069e-01 -1.93892255e-01 8.19912434e-01 1.78736746e-02 5.88560760e-01 -1.13060832e+00 9.09124732e-01 1.13945198e+00 1.19867599e+00 6.09337240e-02 -1.21392918e+00 -5.19921720e-01 -1.19573914e-01 -1.28242895e-01 -1.88818765e+00 -5.70620239e-01 4.63059127e-01 -2.59064049e-01 1.57021725e+00 5.66515997e-02 8.31013858e-01 7.79903650e-01 2.52697438e-01 2.71518409e-01 8.74116719e-01 -3.41790736e-01 4.48854476e-01 -3.41280192e-01 -2.51540810e-01 1.09997594e+00 2.75274158e-01 1.54408485e-01 -1.09831953e+00 -8.68149251e-02 1.27687609e+00 -3.74210067e-03 -3.43965828e-01 -1.03303838e+00 -1.67473221e+00 7.19897985e-01 1.08754957e+00 -1.58719555e-01 -3.89975101e-01 9.51241255e-01 -6.73085079e-02 1.03906654e-01 2.82131493e-01 2.90703326e-01 -2.40383968e-01 -3.24480116e-01 -1.00534058e+00 -1.17381914e-02 4.78773266e-01 1.22156096e+00 1.49401367e+00 4.06527985e-03 6.55674338e-01 1.92523822e-01 5.16501904e-01 1.15772760e+00 1.60150066e-01 -1.47179604e+00 4.40813601e-01 3.69805962e-01 3.10773313e-01 -1.13047671e+00 -5.08443892e-01 -1.72238141e-01 -5.90666533e-01 2.80629933e-01 -2.17446849e-01 2.99724042e-01 -1.07331967e+00 1.38515556e+00 3.06028008e-01 4.90752041e-01 -4.72485088e-02 1.01489747e+00 5.83637357e-01 6.26532853e-01 -4.66833651e-01 2.68759400e-01 8.18369925e-01 -8.29531968e-01 -4.52550828e-01 -8.98383319e-01 5.22328019e-01 -5.08999050e-01 5.49794793e-01 1.61411121e-01 -7.18137980e-01 -4.03215557e-01 -1.27352703e+00 -6.12835050e-01 -2.05965266e-01 2.35519074e-02 1.16980445e+00 1.56712249e-01 -1.53053761e+00 3.63990277e-01 -1.23519135e+00 -4.39837337e-01 2.16734961e-01 4.92389143e-01 -9.70202625e-01 -2.75668740e-01 -5.83560348e-01 9.96869683e-01 1.82416946e-01 2.56346941e-01 -1.01319814e+00 -3.64786178e-01 -1.45317996e+00 -4.96189088e-01 -8.21579099e-02 -7.97843695e-01 1.23864198e+00 -7.21475959e-01 -1.43436778e+00 9.96736586e-01 -6.00918055e-01 -4.05904442e-01 2.49110296e-01 -3.42832565e-01 1.13978691e-01 1.42973229e-01 3.58102262e-01 1.09852254e+00 3.13423842e-01 -1.37242997e+00 -4.67138797e-01 -4.50954944e-01 -7.19833523e-02 5.61484158e-01 6.01281822e-01 -3.83594275e-01 -6.18010163e-01 1.62943900e-01 1.07183135e+00 -9.98504102e-01 -2.94399738e-01 5.28533340e-01 -1.92185894e-01 6.31219447e-01 5.61404407e-01 -5.42145312e-01 3.28629225e-01 -2.05646181e+00 4.28609282e-01 1.68436989e-01 2.37456813e-01 -4.64977741e-01 -4.49055731e-02 2.32643276e-01 2.87861407e-01 -3.14590871e-01 -1.59644201e-01 -9.70772266e-01 -5.52839413e-02 6.38953984e-01 -4.31245267e-01 1.15139759e+00 -2.80542701e-01 9.67609525e-01 -1.07261956e+00 -2.68773466e-01 6.55000508e-01 7.90048778e-01 -4.37803119e-01 1.64692670e-01 -9.76705328e-02 6.24813616e-01 -1.33867890e-01 8.32573712e-01 9.81351912e-01 -3.34991693e-01 7.90776759e-02 -2.49141548e-02 -5.12849629e-01 5.98142266e-01 -1.10040021e+00 3.03846741e+00 -5.61201274e-01 1.10713792e+00 6.32508993e-02 -2.90638298e-01 9.03124094e-01 -2.18624100e-01 2.54060626e-01 -1.13220489e+00 2.31874119e-02 3.12133968e-01 -9.67779815e-01 2.50339478e-01 1.05599964e+00 1.99033201e-01 -2.21862644e-01 1.41781896e-01 2.43111685e-01 -5.52447557e-01 -5.17844141e-01 2.30802163e-01 1.08970022e+00 7.11701632e-01 4.61784333e-01 3.56686972e-02 1.20564550e-01 3.83468598e-01 3.41518581e-01 7.46420503e-01 1.43249393e-01 7.56936848e-01 1.25309657e-02 -6.94898307e-01 -1.08349001e+00 -1.32460380e+00 5.65200262e-02 5.03704727e-01 7.07738340e-01 -4.92290378e-01 -1.17435865e-01 -2.09655061e-01 2.94992357e-01 5.02746224e-01 -5.31921804e-01 1.20185770e-01 -4.82204616e-01 -5.76751903e-02 5.77364206e-01 5.15946627e-01 7.45727837e-01 -6.39901161e-01 -1.11798656e+00 -6.91654682e-02 -2.28072286e-01 -1.18449795e+00 3.54817249e-02 6.34365141e-01 -8.89216185e-01 -9.56029534e-01 -2.44125009e-01 -6.22393370e-01 8.88746023e-01 7.05165505e-01 1.14072442e+00 -1.93493918e-01 -1.37424931e-01 3.88579190e-01 -9.88985226e-02 1.76656783e-01 -9.30409804e-02 -1.16622813e-01 1.72236010e-01 -4.72112328e-01 1.76463380e-01 -5.15654683e-01 -3.77148002e-01 1.28856882e-01 -2.65121609e-01 4.79502738e-01 3.51825923e-01 5.39266646e-01 1.08292258e+00 -6.56865895e-01 -5.27301252e-01 -4.02920723e-01 -2.14097589e-01 -3.08212996e-01 -1.16229844e+00 -1.55676249e-02 -4.18242425e-01 2.26713493e-01 9.01697055e-02 2.69795936e-02 -5.93489587e-01 7.61292517e-01 1.93655156e-02 -6.15453005e-01 -6.99821934e-02 3.60934734e-01 2.13648438e-01 -7.62369633e-01 7.04238534e-01 5.04147828e-01 -1.52901441e-01 -4.54443932e-01 6.92442179e-01 5.48145831e-01 1.12164426e+00 -2.60474175e-01 8.40466619e-01 8.27332914e-01 2.22590268e-01 -4.89948869e-01 -6.69841707e-01 -6.15694642e-01 -1.12463403e+00 -1.01432480e-01 6.73020720e-01 -1.46776772e+00 -6.52025163e-01 5.48500657e-01 -1.38710940e+00 -6.20160282e-01 -2.16956109e-01 6.30481422e-01 -8.42201471e-01 3.49041522e-01 -3.88647467e-01 -4.87029165e-01 -5.11920713e-02 -1.18448305e+00 1.68989635e+00 6.86141104e-02 -2.51848884e-02 -6.74111605e-01 5.41950345e-01 -1.32982969e-01 4.39734399e-01 4.35821265e-01 2.47824565e-01 4.45679456e-01 -1.30514598e+00 -1.54100299e-01 -3.53532255e-01 -1.78761154e-01 1.82224866e-02 -5.78835249e-01 -1.00530028e+00 -4.30914819e-01 -3.15297455e-01 -4.59867269e-01 8.00203383e-01 1.43834636e-01 6.68372631e-01 1.28264293e-01 -5.43310881e-01 1.61236966e+00 1.90266240e+00 -1.97174907e-01 6.96955919e-01 6.20478630e-01 9.40896332e-01 -1.82635099e-01 5.02283812e-01 3.86063308e-01 8.09949875e-01 5.97945809e-01 1.07604861e+00 -1.21210791e-01 -9.97756720e-02 -6.93795979e-01 3.26003194e-01 6.55787230e-01 8.77911001e-02 -4.56502400e-02 -9.30263937e-01 4.15342003e-01 -1.76300097e+00 -5.04681170e-01 -4.58004624e-02 2.42175698e+00 5.15573204e-01 -2.75041461e-01 -6.60594702e-01 -2.61720926e-01 2.70340532e-01 5.33087254e-01 -6.26271009e-01 -1.79061905e-01 -2.36858457e-01 2.05349103e-01 1.35144722e+00 1.02892029e+00 -1.00139642e+00 1.38954639e+00 6.53577328e+00 -2.20714658e-02 -1.34802294e+00 1.48128316e-01 -1.55524373e-01 -1.70552641e-01 -3.69414866e-01 5.26081741e-01 -6.73777699e-01 1.18419165e-02 1.00911129e+00 2.43559569e-01 1.01526392e+00 9.57940102e-01 -2.02519178e-01 -6.67736888e-01 -1.04147494e+00 1.57550716e+00 2.48004586e-01 -1.70826411e+00 -3.55586708e-01 2.32389197e-01 6.67382836e-01 1.11256886e+00 -2.47212723e-01 -8.70002806e-02 4.69408572e-01 -1.05989087e+00 1.26399505e+00 5.35098612e-01 1.47211730e+00 -6.23576283e-01 4.88078773e-01 3.37631524e-01 -1.26975417e+00 3.04847449e-01 -7.21582830e-01 -2.74511904e-01 3.45344126e-01 2.93454140e-01 -1.00789297e+00 5.25212884e-01 7.11105168e-01 1.08054161e+00 -7.13149190e-01 9.12996590e-01 -3.92365217e-01 -1.20446160e-01 -7.19475150e-01 3.82029474e-01 3.61264914e-01 9.71954688e-02 2.05002815e-01 8.66831481e-01 5.07308900e-01 -3.03028166e-01 9.63731855e-02 9.07037675e-01 -5.62114567e-02 -6.21640205e-01 -9.91580546e-01 3.49990278e-01 7.38251626e-01 8.84427965e-01 -6.60822034e-01 -1.16350926e-01 -2.29749098e-01 1.73576427e+00 5.15390217e-01 1.86133549e-01 -8.48049641e-01 -2.96382248e-01 8.07780564e-01 -1.05066299e-01 2.87655622e-01 -1.08543384e+00 -1.79543436e-01 -1.22427142e+00 -1.42302141e-01 -2.83775210e-01 -2.37470448e-01 -1.47836232e+00 -4.50069338e-01 6.27108693e-01 -3.75969917e-01 -1.18855894e+00 -4.90434945e-01 -5.71432590e-01 2.95456678e-01 1.04277587e+00 -1.75001872e+00 -1.22970808e+00 -1.07675374e+00 6.22558773e-01 1.49024144e-01 2.73432761e-01 1.10975778e+00 8.36882964e-02 1.97985709e-01 -6.97534829e-02 2.42590457e-01 1.29510075e-01 4.77081537e-01 -1.26727962e+00 1.28430951e+00 8.96113634e-01 5.42306244e-01 5.82832158e-01 4.14546669e-01 -7.22135961e-01 -2.06929111e+00 -9.78531361e-01 8.59425247e-01 -7.84780025e-01 4.27818298e-01 -8.84625316e-01 -3.56675059e-01 1.27124345e+00 -4.77236416e-03 5.92872143e-01 3.11794574e-03 -2.20744208e-01 -5.50927937e-01 -1.95175074e-02 -1.10214329e+00 1.61129370e-01 1.37238204e+00 -1.07120645e+00 -3.89739960e-01 3.07681918e-01 8.66981626e-01 -1.33015728e+00 -4.48446840e-01 1.38949856e-01 5.83833277e-01 -1.27982461e+00 1.14234519e+00 7.53840655e-02 -2.49316692e-01 -8.51080835e-01 -8.27784777e-01 -1.17490125e+00 -3.24308664e-01 -4.39112961e-01 -1.78849295e-01 5.72513998e-01 -1.33327708e-01 -7.13871598e-01 7.92863131e-01 1.28468350e-01 -1.34173915e-01 -1.77953809e-01 -1.31135261e+00 -4.53071833e-01 -6.58042550e-01 -7.00228274e-01 6.43557847e-01 7.31120527e-01 -5.41198730e-01 7.35211745e-02 -4.41217542e-01 6.86433792e-01 8.49930406e-01 1.25900969e-01 1.08178246e+00 -1.00014353e+00 -5.22072241e-02 1.70357510e-01 -8.97727251e-01 -1.71990025e+00 3.42203707e-01 -9.24524426e-01 4.35506344e-01 -1.90425324e+00 -1.39138594e-01 -5.77743471e-01 1.86185874e-02 5.83512008e-01 6.66254520e-01 5.63455582e-01 -6.72010854e-02 3.12043071e-01 -9.28298891e-01 4.38566208e-01 5.69629610e-01 -3.93968634e-02 1.29343361e-01 -6.37738585e-01 -2.23687470e-01 6.34767771e-01 1.93545654e-01 -4.70793933e-01 -2.03240976e-01 -1.24826777e+00 6.18563950e-01 2.02428028e-01 7.84558892e-01 -1.33964407e+00 4.86426800e-01 -5.24698049e-02 7.06901610e-01 -1.03482878e+00 8.08312416e-01 -9.49362218e-01 4.14599657e-01 3.35583657e-01 1.31513119e-01 4.91520554e-01 2.10690215e-01 5.85918069e-01 -2.48867646e-02 2.06333667e-01 4.69755143e-01 -3.25373739e-01 -1.49601841e+00 2.87335455e-01 4.47457805e-02 -2.92749763e-01 5.69236636e-01 -3.55767131e-01 -4.45495486e-01 -5.10586083e-01 -1.11594103e-01 3.59268039e-02 1.36628199e+00 4.24256086e-01 9.16134119e-01 -1.40560019e+00 -2.31978834e-01 7.39982784e-01 2.88518369e-01 6.77764297e-01 -8.29314440e-03 7.04126537e-01 -1.48618329e+00 6.44846618e-01 -1.87822148e-01 -1.20616257e+00 -7.55334556e-01 2.45344624e-01 6.07811451e-01 4.24230129e-01 -8.69530976e-01 9.82587695e-01 -1.80896476e-01 -8.11527908e-01 1.98145658e-01 -5.94216645e-01 6.49120092e-01 -5.50281525e-01 4.45436895e-01 1.72190353e-01 1.45882815e-01 -1.15399504e+00 -9.60594654e-01 1.03986216e+00 6.84746683e-01 -2.92551517e-01 1.29809868e+00 -4.17464077e-01 -4.24983680e-01 5.87990820e-01 1.27135873e+00 1.35281727e-01 -1.52957225e+00 -1.39574140e-01 -1.16646431e-01 -8.13962162e-01 4.55786258e-01 -6.64875031e-01 -7.03304946e-01 7.96624124e-01 6.22602165e-01 -6.19119167e-01 7.71070063e-01 8.67516622e-02 5.72935402e-01 6.46414757e-01 1.39657712e+00 -4.70078498e-01 -3.24613124e-01 9.54676390e-01 5.57971895e-01 -1.12464333e+00 3.01270306e-01 -5.74051403e-02 -3.65830690e-01 1.07345700e+00 3.16546947e-01 -2.64966279e-01 1.04501516e-01 4.57509518e-01 1.96180314e-01 -2.10215628e-01 -3.32804441e-01 -6.78275079e-02 -8.79740715e-02 7.28155613e-01 7.54531994e-02 -3.88714410e-02 7.53605604e-01 -3.95699650e-01 -2.74392843e-01 1.21785216e-01 3.19215000e-01 1.17141700e+00 -5.76098621e-01 -7.21578181e-01 -3.42923552e-01 -3.11472476e-01 4.48050499e-01 -1.35162264e-01 -3.11487526e-01 8.23635221e-01 7.07544237e-02 4.49410737e-01 4.42119390e-01 -5.41220009e-01 1.33741116e-02 -1.79598585e-01 9.30119276e-01 -4.05407190e-01 8.06509331e-03 -2.95836926e-01 2.76454762e-02 -1.45433390e+00 -3.38817507e-01 -5.31006873e-01 -1.73939836e+00 -3.79578650e-01 -9.17185396e-02 -6.75288588e-02 1.35667515e+00 7.39822865e-01 6.40000582e-01 6.68469891e-02 4.70469624e-01 -1.49281669e+00 -1.58847407e-01 -6.19175315e-01 -4.41558391e-01 -1.52979791e-01 9.17441368e-01 -7.74785817e-01 -2.91465491e-01 -2.24592328e-01]
[7.595970630645752, -2.3314268589019775]
895f13d8-c7f9-4104-8d53-e50d65a52bac
progression-cognition-reinforcement-learning
2306.05016
null
https://arxiv.org/abs/2306.05016v1
https://arxiv.org/pdf/2306.05016v1.pdf
Progression Cognition Reinforcement Learning with Prioritized Experience for Multi-Vehicle Pursuit
Multi-vehicle pursuit (MVP) such as autonomous police vehicles pursuing suspects is important but very challenging due to its mission and safety critical nature. While multi-agent reinforcement learning (MARL) algorithms have been proposed for MVP problem in structured grid-pattern roads, the existing algorithms use randomly training samples in centralized learning, which leads to homogeneous agents showing low collaboration performance. For the more challenging problem of pursuing multiple evading vehicles, these algorithms typically select a fixed target evading vehicle for pursuing vehicles without considering dynamic traffic situation, which significantly reduces pursuing success rate. To address the above problems, this paper proposes a Progression Cognition Reinforcement Learning with Prioritized Experience for MVP (PEPCRL-MVP) in urban multi-intersection dynamic traffic scenes. PEPCRL-MVP uses a prioritization network to assess the transitions in the global experience replay buffer according to the parameters of each MARL agent. With the personalized and prioritized experience set selected via the prioritization network, diversity is introduced to the learning process of MARL, which can improve collaboration and task related performance. Furthermore, PEPCRL-MVP employs an attention module to extract critical features from complex urban traffic environments. These features are used to develop progression cognition method to adaptively group pursuing vehicles. Each group efficiently target one evading vehicle in dynamic driving environments. Extensive experiments conducted with a simulator over unstructured roads of an urban area show that PEPCRL-MVP is superior to other state-of-the-art methods. Specifically, PEPCRL-MVP improves pursuing efficiency by 3.95% over TD3-DMAP and its success rate is 34.78% higher than that of MADDPG. Codes are open sourced.
['Lin Zhang', 'Jianhua He', 'Lei LI', 'Chen Xu', 'Qinwen Wang', 'Zhe Wang', 'Zheng Yuan', 'Yiying Yang', 'Xinhang Li']
2023-06-08
null
null
null
null
['multi-agent-reinforcement-learning']
['methodology']
[-3.61388952e-01 -9.87969115e-02 -3.27857882e-01 -1.38715636e-02 -8.67335796e-01 -8.88164937e-02 4.96215641e-01 -4.51825224e-02 -4.87785637e-01 6.17684782e-01 -2.74058562e-02 -4.55532193e-01 -4.75984335e-01 -9.17957783e-01 -6.22256458e-01 -8.99707496e-01 -3.40092212e-01 6.34965360e-01 7.26281285e-01 -6.78157091e-01 4.13327634e-01 4.99567509e-01 -1.81787646e+00 6.36783689e-02 1.12739384e+00 4.04758096e-01 8.02559793e-01 5.86036623e-01 -1.75289139e-02 7.86291659e-01 -4.77248281e-01 8.05730820e-02 2.66675204e-01 -4.19394150e-02 -3.58284861e-01 1.62754711e-02 8.31897929e-02 -2.45137155e-01 -4.84151691e-01 9.00521159e-01 4.63460475e-01 4.76024508e-01 5.73940098e-01 -2.01430178e+00 -1.04789972e-01 4.85247374e-01 -7.89771557e-01 5.54079413e-01 -6.70065954e-02 7.99286962e-01 6.57131314e-01 -6.93431795e-01 3.45212519e-01 1.53148127e+00 1.58603683e-01 5.38763404e-01 -8.41328025e-01 -9.70662057e-01 5.93869865e-01 1.06201756e+00 -1.26445317e+00 -1.51350364e-01 8.14634919e-01 -2.66062528e-01 7.84464657e-01 -2.40068622e-02 8.14422786e-01 6.82968199e-01 6.59896612e-01 1.09467304e+00 1.09744310e+00 1.93655878e-01 2.60434151e-01 3.13580707e-02 3.74517202e-01 6.95346415e-01 2.29429975e-01 4.47938263e-01 -4.72018957e-01 6.73589632e-02 2.20950037e-01 -2.21379608e-01 1.76776439e-01 -1.59669608e-01 -9.19842899e-01 8.60218883e-01 1.78415731e-01 -2.78293863e-02 -8.77988815e-01 1.23524837e-01 2.75511950e-01 6.47336006e-01 4.49061207e-02 4.80189286e-02 -1.23032443e-02 -2.46503606e-01 -5.33953249e-01 7.50010014e-01 2.80921727e-01 8.22732985e-01 9.52586591e-01 4.70061302e-01 -4.29225117e-01 6.09837532e-01 4.87836748e-01 9.26565289e-01 -3.69007066e-02 -1.28026700e+00 5.92192709e-01 3.56873423e-01 1.16542600e-01 -1.32554162e+00 -5.92734575e-01 -3.78158182e-01 -4.31700081e-01 8.30660820e-01 1.25029802e-01 -4.30256516e-01 -5.73904097e-01 1.70966971e+00 4.27810311e-01 5.00918984e-01 4.84567076e-01 8.36531222e-01 6.20989382e-01 1.02271676e+00 3.50518584e-01 -4.53931808e-01 1.19767463e+00 -1.05589557e+00 -6.63694084e-01 -2.13791981e-01 4.46103245e-01 -3.05651963e-01 7.92041183e-01 3.71203363e-01 -9.63715494e-01 -7.58635759e-01 -1.04468870e+00 8.94783735e-01 -5.78235574e-02 -2.42688969e-01 4.08822626e-01 5.31545699e-01 -1.00026596e+00 8.57916027e-02 -3.72091800e-01 6.52118325e-02 6.50573134e-01 2.97491878e-01 2.36455247e-01 -2.98010528e-01 -1.38791609e+00 8.42891693e-01 1.17832378e-01 -1.69122145e-01 -1.72878695e+00 -6.76862180e-01 -5.39939165e-01 4.35495116e-02 8.03368628e-01 -2.08921462e-01 1.06213295e+00 -5.83286643e-01 -1.39110041e+00 1.68574169e-01 -3.25039551e-02 -4.93969411e-01 3.78785312e-01 6.74503595e-02 -6.68240726e-01 3.23861837e-01 5.05946577e-01 8.22425365e-01 8.13843131e-01 -1.59088838e+00 -1.40379691e+00 -4.05290723e-02 2.96049863e-01 7.00424254e-01 8.96418188e-03 -1.95065737e-01 -2.83404976e-01 -3.73403989e-02 -4.26147461e-01 -9.08436477e-01 -5.07684231e-01 -5.33259928e-01 3.04111540e-01 -9.10462618e-01 1.25694001e+00 -1.64305851e-01 1.13180888e+00 -2.04512262e+00 -1.02147818e-01 2.99041480e-01 3.03319305e-01 5.18098474e-01 -5.69309413e-01 4.03897107e-01 6.45484447e-01 -3.70763242e-01 3.43280256e-01 2.60546487e-02 -4.77952696e-02 2.84929514e-01 -8.92523825e-02 3.01449150e-01 1.04995452e-01 6.69635475e-01 -1.15812409e+00 -6.70569718e-01 3.14029813e-01 1.38855934e-01 -4.99216318e-01 2.00085212e-02 -2.89488286e-01 5.00040650e-01 -7.96650767e-01 5.99693239e-01 8.84132445e-01 1.83161706e-01 -1.88055903e-01 1.89957187e-01 -4.06211108e-01 -3.60463321e-01 -1.27932286e+00 9.43500042e-01 -2.40466833e-01 7.65683055e-01 2.50082672e-01 -1.05621755e+00 1.09140778e+00 2.29686737e-01 6.05100334e-01 -1.06408846e+00 1.67423487e-01 1.50116021e-02 2.21280694e-01 -7.99876511e-01 7.97329545e-01 2.70592272e-01 -8.06916505e-02 3.25336486e-01 -2.94760346e-01 2.04613909e-01 4.09177929e-01 3.39195907e-01 1.18014634e+00 -2.03809679e-01 -2.66808152e-01 -1.43552199e-01 7.22947836e-01 3.54529381e-01 1.06710625e+00 1.12873673e+00 -8.56544256e-01 -3.64939600e-01 3.37784559e-01 -3.33024889e-01 -5.38230181e-01 -1.03236330e+00 3.44869703e-01 1.01208413e+00 9.20369089e-01 6.56788275e-02 -6.09459519e-01 -5.07677674e-01 -1.13617182e-01 1.01426828e+00 -1.65786922e-01 -2.93961436e-01 -9.07876849e-01 -5.80377042e-01 3.09831738e-01 8.55172873e-02 9.15608168e-01 -1.30796957e+00 -7.69839048e-01 5.20309806e-01 -1.77196607e-01 -1.00622118e+00 -2.37063423e-01 -5.39178669e-01 -2.70511568e-01 -1.25478065e+00 -2.89637059e-01 -9.88111675e-01 3.26647282e-01 9.52148438e-01 5.98048329e-01 1.78871140e-01 1.58469081e-01 6.94699705e-01 -3.52622420e-01 -6.92155957e-01 -5.47732115e-01 -1.18681349e-01 2.03364536e-01 3.70968014e-01 8.06366146e-01 -3.34331214e-01 -5.20427048e-01 5.44275403e-01 -3.96937340e-01 1.16328955e-01 5.69755971e-01 6.62716687e-01 4.35139954e-01 5.18969178e-01 1.08258617e+00 -2.13746384e-01 9.39402401e-01 -8.60658467e-01 -7.42718875e-01 4.27601859e-02 -6.62580550e-01 -3.62514049e-01 5.12387812e-01 -6.79244936e-01 -1.07028234e+00 -5.06365359e-01 -3.00137214e-02 -4.90766168e-01 -1.40020266e-01 2.81426996e-01 -1.44645959e-01 -8.65343609e-05 4.12173122e-01 3.25734437e-01 3.33241850e-01 3.77393544e-01 -3.12678553e-02 5.31875908e-01 1.38935000e-01 -5.22180498e-01 8.65133226e-01 2.22819015e-01 1.82921946e-01 -8.08548570e-01 -1.92818806e-01 -3.16476256e-01 1.38871089e-01 -1.20293200e+00 7.37333477e-01 -9.98791695e-01 -1.40225625e+00 5.89775026e-01 -9.56338704e-01 -5.31806886e-01 6.06381893e-02 6.99905813e-01 -6.57423139e-01 1.66740716e-01 -4.08627927e-01 -1.14320779e+00 -6.24942034e-02 -1.48211300e+00 3.85848969e-01 6.88389480e-01 3.74022603e-01 -6.35331929e-01 -1.42523572e-01 5.86688817e-01 5.62079012e-01 1.51256630e-02 8.41652632e-01 -3.65713358e-01 -1.10733533e+00 2.13915616e-01 8.56315419e-02 -1.13652974e-01 -3.12331885e-01 -2.06554562e-01 -4.88383949e-01 -2.94494003e-01 -1.70647457e-01 -1.74079150e-01 6.80254698e-01 6.27807200e-01 6.85839653e-01 -3.82534750e-02 -5.91700077e-01 -1.19732626e-01 1.19791353e+00 8.86556029e-01 6.68588102e-01 7.09888935e-01 3.31637830e-01 9.08793330e-01 1.56027377e+00 4.29109335e-01 9.96459961e-01 5.23284018e-01 9.07557905e-01 1.78703129e-01 -4.14785370e-02 5.81712043e-03 6.51222885e-01 5.11321187e-01 -4.58958447e-02 -3.36455375e-01 -7.96718061e-01 7.78815627e-01 -2.17348504e+00 -1.54290533e+00 -2.87924588e-01 1.64374244e+00 3.28104705e-01 4.50458676e-01 2.35295847e-01 4.59282957e-02 8.15279901e-01 2.81923413e-01 -7.03379750e-01 -3.77306074e-01 -1.38162240e-01 -4.85559940e-01 4.19155926e-01 7.67828882e-01 -7.33393490e-01 1.09512329e+00 4.74923182e+00 1.38591802e+00 -8.14989030e-01 2.91487694e-01 4.44270283e-01 -3.86810973e-02 -2.19378337e-01 -7.58300349e-02 -1.19994819e+00 4.92348313e-01 9.52531219e-01 -3.24658334e-01 4.44763213e-01 6.48600221e-01 8.98959458e-01 -3.14789027e-01 -3.84555787e-01 9.22895491e-01 -9.31129158e-02 -1.31863141e+00 -5.64115904e-02 -3.78902256e-02 6.63343966e-01 2.07473233e-01 2.64544338e-01 8.42589438e-01 5.74046195e-01 -6.97724164e-01 5.85149944e-01 6.42297029e-01 6.60083070e-03 -1.27357173e+00 4.66251135e-01 5.80263138e-01 -1.32040358e+00 -6.13404453e-01 -2.91606456e-01 8.62601697e-02 5.28056443e-01 8.51964504e-02 -6.07848644e-01 4.85659659e-01 5.69784224e-01 5.01604915e-01 -3.24717879e-01 9.86356020e-01 -2.74344310e-02 8.06007445e-01 -1.55266095e-02 -4.47572798e-01 8.83464277e-01 -2.21678331e-01 1.19989443e+00 7.85937428e-01 1.87784910e-01 2.06091136e-01 6.92748249e-01 4.75362897e-01 4.01690453e-01 5.68586076e-03 -6.37557745e-01 4.26422685e-01 8.54424715e-01 1.31806052e+00 -3.83801401e-01 -5.02537906e-01 -3.34904253e-01 -3.34691964e-02 1.68048903e-01 5.04967749e-01 -1.19181144e+00 -3.33962053e-01 9.23657060e-01 1.71653405e-01 3.72365296e-01 -2.35759020e-01 1.08573519e-01 -2.68861413e-01 -2.61267245e-01 -9.85672355e-01 9.25971121e-02 -6.54502988e-01 -7.95419395e-01 6.97047532e-01 3.24176818e-01 -1.52473164e+00 5.64152971e-02 -1.50563985e-01 -9.05996621e-01 4.31760609e-01 -1.99949253e+00 -9.80296373e-01 -3.54061097e-01 7.51447082e-01 1.19107175e+00 -9.99403238e-01 1.10392183e-01 3.12026531e-01 -5.44672251e-01 3.73750389e-01 -1.48780882e-01 -4.80165362e-01 3.03506166e-01 -6.11486137e-01 -1.80003822e-01 8.17700446e-01 -5.00794113e-01 -1.06248058e-01 8.19906414e-01 -7.27960646e-01 -1.54559219e+00 -1.35311472e+00 5.36374688e-01 7.38959610e-02 3.59541208e-01 2.47247055e-01 -9.20528471e-01 1.47833496e-01 5.32338619e-01 -2.69822180e-01 3.12751055e-01 -3.27924013e-01 2.61651099e-01 -4.44457710e-01 -1.13262904e+00 1.10105848e+00 8.45798492e-01 1.38704404e-01 -3.58607084e-01 2.15627223e-01 8.19053531e-01 -2.32176855e-01 -3.36908221e-01 3.14063430e-01 1.08152598e-01 -7.80338764e-01 6.99236989e-01 -3.04580599e-01 -2.59391451e-03 -7.22100019e-01 -4.94614504e-02 -1.34004283e+00 -5.97244680e-01 -6.02612197e-01 -1.27353519e-01 1.06200349e+00 2.12101653e-01 -7.52770543e-01 6.68765485e-01 2.26492196e-01 -5.98249912e-01 -8.56845200e-01 -9.85248268e-01 -7.57726073e-01 -1.79545488e-02 -5.44046819e-01 5.90250015e-01 4.19686884e-01 -2.74900317e-01 3.11211318e-01 -5.62985420e-01 6.30974650e-01 1.03626120e+00 -8.97863284e-02 9.84808505e-01 -1.03067374e+00 -1.84376508e-01 -3.86992663e-01 -2.57192016e-01 -1.14184284e+00 3.84161741e-01 -7.10638404e-01 1.90061122e-01 -1.54770541e+00 -9.23226848e-02 -8.60207319e-01 -2.39927068e-01 2.93868989e-01 -1.37571990e-01 -1.93614289e-01 3.44841868e-01 6.08828962e-02 -1.05586946e+00 7.43858039e-01 1.45732355e+00 -5.57482541e-01 -4.95821983e-01 2.04747230e-01 -5.13420701e-01 5.24632156e-01 1.25300026e+00 -5.71066260e-01 -8.27283442e-01 -2.62235492e-01 -1.56772226e-01 5.82504332e-01 3.35162848e-01 -1.32230926e+00 6.53668106e-01 -8.38508308e-01 -2.89501220e-01 -1.29088700e+00 4.48242784e-01 -7.24934578e-01 3.84868570e-02 8.47167969e-01 -8.54300931e-02 2.12581351e-01 3.33865374e-01 8.61761451e-01 6.78490754e-03 -2.01346129e-01 6.72006547e-01 7.84469675e-03 -1.34020400e+00 4.95455056e-01 -1.35159647e+00 4.52287346e-02 1.71680260e+00 -3.30210209e-01 -4.36500251e-01 -4.64080989e-01 -3.24184358e-01 1.29275978e+00 -2.72248536e-01 6.71739399e-01 1.00763810e+00 -1.39806414e+00 -9.26669896e-01 1.68852434e-01 -1.60774902e-01 -2.90625691e-01 7.39662886e-01 1.07569373e+00 -1.73177451e-01 2.46418878e-01 -5.19259095e-01 -7.01133788e-01 -1.57383978e+00 4.93540436e-01 1.99315906e-01 -2.82332093e-01 -6.25454426e-01 1.17775135e-01 -2.27453690e-02 -2.36556306e-01 8.14088508e-02 4.60906893e-01 -9.04561758e-01 6.95881471e-02 6.96989238e-01 7.96490550e-01 -4.74621683e-01 -8.27413738e-01 -1.62749618e-01 4.70609754e-01 -1.86713696e-01 -1.26458824e-01 1.20854139e+00 -5.18656194e-01 4.26484287e-01 5.54007031e-02 5.70450425e-01 -2.33262300e-01 -1.61801255e+00 -2.61938989e-01 -3.65405709e-01 -4.35492635e-01 1.48131818e-01 -3.55711579e-01 -1.14552188e+00 5.09090841e-01 7.70867407e-01 3.55386771e-02 9.02127087e-01 -1.60375774e-01 8.18601847e-01 4.27203715e-01 7.28604496e-01 -1.50812697e+00 4.26725030e-01 7.70346165e-01 6.86679661e-01 -1.31612980e+00 -3.79486352e-01 -1.52399614e-01 -1.17320204e+00 7.91469872e-01 1.19342756e+00 -2.13120982e-01 7.09775507e-01 1.36565398e-02 1.44724876e-01 -3.78075659e-01 -1.06794834e+00 -3.49117726e-01 -3.45714897e-01 9.35144842e-01 -6.99363887e-01 6.12595603e-02 -6.03148699e-01 2.14109883e-01 2.19299257e-01 -3.31930161e-01 7.61942506e-01 8.75627458e-01 -1.03838515e+00 -8.78402472e-01 -4.24869746e-01 3.55850101e-01 7.52487853e-02 4.07188445e-01 5.90415239e-01 7.24605024e-01 2.74635196e-01 1.63608813e+00 1.13969266e-01 -5.30177951e-01 3.54441702e-01 -4.30616885e-01 3.15680727e-02 -8.06855857e-02 -5.66920578e-01 -7.20784739e-02 1.66653022e-01 -4.88397747e-01 -6.41105890e-01 -9.01588500e-01 -1.71079254e+00 -5.46058953e-01 -3.51227298e-02 4.50340241e-01 2.93885201e-01 9.27796781e-01 5.28863490e-01 8.52143407e-01 1.11171472e+00 -8.05790305e-01 -3.80093426e-01 -5.64058602e-01 -4.14624184e-01 7.84197152e-02 2.86976486e-01 -1.11194670e+00 -1.61639214e-01 -6.45774245e-01]
[5.184247016906738, 1.34658682346344]
a06677ff-4bcb-4fb0-81b7-199d83cacb96
escl-equivariant-self-contrastive-learning
2303.05143
null
https://arxiv.org/abs/2303.05143v1
https://arxiv.org/pdf/2303.05143v1.pdf
ESCL: Equivariant Self-Contrastive Learning for Sentence Representations
Previous contrastive learning methods for sentence representations often focus on insensitive transformations to produce positive pairs, but neglect the role of sensitive transformations that are harmful to semantic representations. Therefore, we propose an Equivariant Self-Contrastive Learning (ESCL) method to make full use of sensitive transformations, which encourages the learned representations to be sensitive to certain types of transformations with an additional equivariant learning task. Meanwhile, in order to improve practicability and generality, ESCL simplifies the implementations of traditional equivariant contrastive methods to share model parameters from the perspective of multi-task learning. We evaluate our ESCL on semantic textual similarity tasks. The proposed method achieves better results while using fewer learning parameters compared to previous methods.
['Junlan Feng', 'Chao Deng', 'Xue Han', 'Yixuan Liu', 'Jie Liu']
2023-03-09
null
null
null
null
['semantic-textual-similarity']
['natural-language-processing']
[ 3.33918780e-01 -1.09969221e-01 -1.40436471e-01 -6.93481326e-01 -8.77799988e-01 -5.22358894e-01 9.92736161e-01 2.81724781e-01 -6.19351387e-01 5.23215711e-01 4.14179057e-01 6.00415729e-02 -7.58904368e-02 -7.25184500e-01 -5.34422874e-01 -6.63995385e-01 5.04808009e-01 3.62710118e-01 2.78601855e-01 -6.40044451e-01 1.31095842e-01 1.07073948e-01 -1.12869775e+00 5.01483977e-01 8.70514989e-01 5.68136334e-01 -1.55699579e-03 1.72987282e-01 -1.45109206e-01 8.28933239e-01 -4.90669668e-01 -6.38449073e-01 1.37638509e-01 -5.27876735e-01 -8.78089905e-01 -3.07681292e-01 5.30375600e-01 1.29956920e-02 -1.93476945e-01 1.35555458e+00 4.28328961e-01 4.46033418e-01 9.27015841e-01 -1.37070072e+00 -9.36148405e-01 6.67991519e-01 -6.51918411e-01 2.88027555e-01 1.39515594e-01 -9.96382460e-02 1.31810641e+00 -1.12031603e+00 3.04647505e-01 1.59677815e+00 6.61745489e-01 5.36182523e-01 -1.29101765e+00 -7.88542986e-01 5.09744227e-01 4.91085529e-01 -1.11945784e+00 -3.89921635e-01 1.14140487e+00 -8.76699090e-02 8.33069563e-01 3.59064668e-01 1.91276729e-01 1.15163350e+00 9.35892612e-02 8.33410203e-01 1.02648926e+00 -2.91653305e-01 1.50141850e-01 1.68609202e-01 3.52000237e-01 5.62202454e-01 9.20083299e-02 -2.49516591e-01 -2.01094940e-01 -2.05624640e-01 3.77934724e-01 2.67122269e-01 -3.79750952e-02 -5.95607221e-01 -1.16107154e+00 1.11177492e+00 6.66912556e-01 3.79834712e-01 5.49653172e-02 -9.14522931e-02 7.81849980e-01 6.19617462e-01 7.62564778e-01 6.09007418e-01 -1.56865984e-01 3.11002672e-01 -3.50264758e-01 3.20143759e-01 3.02780926e-01 8.17679524e-01 8.63181651e-01 1.41109243e-01 -4.89881396e-01 1.23527741e+00 1.40258402e-01 3.19988370e-01 7.68920362e-01 -6.66977644e-01 5.28874397e-01 7.53856003e-01 -3.37257683e-01 -1.07104385e+00 -2.67098129e-01 -3.73308271e-01 -8.63699079e-01 -1.60268232e-01 -1.06791005e-01 2.16909319e-01 -5.31482458e-01 1.97854018e+00 6.00976087e-02 8.46607164e-02 3.43604445e-01 7.39520609e-01 8.97183180e-01 6.80827856e-01 2.71144688e-01 -2.58265048e-01 1.06993520e+00 -1.13825524e+00 -7.91110694e-01 -2.93248713e-01 8.62854660e-01 -7.19821811e-01 1.71923649e+00 -3.54195833e-02 -1.01398790e+00 -4.86730456e-01 -1.14909506e+00 -2.29809046e-01 -4.27284598e-01 -2.55490154e-01 5.20262063e-01 5.47074854e-01 -7.71863401e-01 4.25855994e-01 -4.47978228e-01 -1.21541418e-01 3.56306225e-01 2.78964937e-01 -1.80419132e-01 -5.45041189e-02 -1.46954155e+00 1.09886122e+00 6.18479073e-01 -2.91469932e-01 -4.51303899e-01 -7.51820147e-01 -9.16288793e-01 2.41512507e-01 2.47104824e-01 -5.98337293e-01 1.26893854e+00 -1.23768568e+00 -1.47251272e+00 7.55319476e-01 1.37004610e-02 -1.51784286e-01 5.83533466e-01 -1.87378213e-01 -3.52513999e-01 -4.21827286e-02 5.38254865e-02 5.78054488e-01 8.59193146e-01 -1.24652851e+00 -1.73468381e-01 -1.63823903e-01 1.96048170e-01 5.15264630e-01 -9.91778374e-01 -5.95872616e-03 -1.38407022e-01 -9.84499633e-01 -1.90301146e-02 -8.13245177e-01 -1.64751053e-01 5.08347079e-02 -4.56789546e-02 -5.50650239e-01 1.09387815e+00 -2.69795567e-01 8.42423379e-01 -2.17564297e+00 2.93645531e-01 -6.56803027e-02 2.10039914e-01 3.56765568e-01 -5.96096754e-01 2.12687150e-01 -2.04868361e-01 -1.10137694e-01 -4.27012563e-01 -3.81379664e-01 1.26807177e-02 2.40837231e-01 -3.47547203e-01 2.64952600e-01 2.28124827e-01 8.24792981e-01 -1.08913946e+00 -7.25218058e-01 2.99952716e-01 3.23430628e-01 -7.65674293e-01 2.80315340e-01 -9.44299847e-02 4.41160202e-02 -4.02376443e-01 9.04216319e-02 7.24867284e-01 -7.85854384e-02 1.79666489e-01 -3.62681329e-01 1.96375951e-01 3.28791291e-01 -9.24643755e-01 1.57573998e+00 -6.04963541e-01 2.03299478e-01 -4.41717982e-01 -1.26914549e+00 1.13197017e+00 2.06792161e-01 3.50685060e-01 -7.99946368e-01 2.32710257e-01 4.93986756e-02 -1.16689600e-01 -2.28910610e-01 5.41849315e-01 -3.31038505e-01 -1.74934924e-01 4.64014322e-01 1.16046734e-01 -3.46588671e-01 -4.39582914e-02 3.32725674e-01 6.49809539e-01 6.93696663e-02 5.28592885e-01 -3.97429913e-01 6.48845851e-01 -3.23176712e-01 6.59835398e-01 5.42126119e-01 -2.29961812e-01 4.65825200e-01 3.16096514e-01 -2.82978237e-01 -1.10740137e+00 -1.22042525e+00 2.10304353e-02 1.41208029e+00 3.23778123e-01 -4.78849888e-01 -6.06241882e-01 -9.83239412e-01 -2.38194942e-01 9.26969826e-01 -5.11860251e-01 -8.05030346e-01 -6.06289148e-01 -9.63600576e-01 4.39267516e-01 5.59951782e-01 7.27666497e-01 -9.74929690e-01 1.61332209e-02 -4.26930841e-03 -3.29525888e-01 -9.31829572e-01 -7.45356381e-01 -9.73443210e-04 -7.33405173e-01 -8.18339109e-01 -4.94409084e-01 -1.01802886e+00 6.88077569e-01 5.81900477e-01 6.88001513e-01 -2.62364715e-01 6.41134977e-02 1.47605315e-01 -3.49768102e-01 -3.14226478e-01 -5.87028801e-01 1.77419290e-01 1.36819948e-02 1.17409974e-01 3.17723960e-01 -6.23137832e-01 -1.66871428e-01 8.51826370e-02 -9.65718567e-01 1.79227054e-01 3.52751076e-01 1.14035058e+00 4.89119530e-01 -3.48701954e-01 7.84568369e-01 -1.14379668e+00 8.92736852e-01 -5.15450299e-01 -1.68765709e-01 5.32587945e-01 -7.80258417e-01 3.73237461e-01 9.49515045e-01 -7.46363401e-01 -1.36101937e+00 -2.03086033e-01 6.34544268e-02 -6.61930084e-01 3.25210482e-01 2.83957601e-01 -3.06417286e-01 -7.95792714e-02 8.74031723e-01 1.55859709e-01 -2.65670326e-02 -2.80444562e-01 5.68804741e-01 5.60252130e-01 4.78420258e-01 -5.96068025e-01 8.58023763e-01 2.71521628e-01 -1.42484695e-01 -4.76863027e-01 -1.10721660e+00 -2.40038291e-01 -4.56449628e-01 -8.16582292e-02 4.34669882e-01 -8.59420538e-01 -3.00014526e-01 2.19102934e-01 -1.05182326e+00 5.11237793e-02 -2.97883958e-01 4.96873111e-01 -5.68999350e-01 6.37607455e-01 -5.23105919e-01 -2.97610760e-01 -4.90377277e-01 -8.98681879e-01 7.10746527e-01 9.25136916e-03 -3.29527974e-01 -1.27684450e+00 1.51001275e-01 2.62618959e-01 6.50641739e-01 -7.41255656e-02 1.29330456e+00 -1.02559388e+00 1.24921001e-01 2.68922355e-02 -1.93546861e-01 5.38530111e-01 3.86994481e-01 -3.18025649e-01 -1.07227051e+00 -5.42961419e-01 2.38709345e-01 -6.02201104e-01 9.25462186e-01 -3.87833565e-02 1.44462538e+00 -5.79446554e-01 -4.05952148e-02 5.45087576e-01 1.19838822e+00 -9.53045040e-02 4.56525743e-01 4.89419460e-01 8.53278279e-01 5.41942179e-01 5.50211489e-01 2.96613067e-01 3.51937085e-01 6.48741603e-01 2.44277894e-01 -4.19465125e-01 -5.99533580e-02 -3.23195457e-01 4.18483108e-01 1.19006968e+00 1.34669721e-01 -1.23986229e-01 -5.22139847e-01 3.53121430e-01 -2.00908399e+00 -8.92086685e-01 4.06946689e-02 2.00731516e+00 9.76309061e-01 1.56910822e-01 -9.21805725e-02 -2.71927081e-02 9.39035833e-01 5.49479902e-01 -5.37728667e-01 -5.36761284e-01 -2.54039705e-01 2.55886555e-01 5.88759854e-02 4.57099587e-01 -1.23544824e+00 1.19364977e+00 6.38214064e+00 9.28812563e-01 -9.94000971e-01 3.58284563e-01 4.45447445e-01 -1.51992947e-01 -8.68670821e-01 3.39757390e-02 -3.52400333e-01 2.06035078e-01 5.29572845e-01 -4.41449434e-01 1.11728378e-01 9.00474966e-01 -3.07491552e-02 5.43883324e-01 -1.09150541e+00 9.89573896e-01 3.42898577e-01 -1.15191853e+00 6.40828013e-01 -6.32447481e-01 8.81262720e-01 -2.72317290e-01 2.23100662e-01 4.98032093e-01 3.79587591e-01 -6.44591391e-01 3.68880808e-01 3.14007282e-01 4.43446159e-01 -8.65164340e-01 6.90678775e-01 8.57508481e-02 -9.95228469e-01 -5.76782972e-03 -5.27189732e-01 -8.11702386e-02 -7.90308416e-02 2.64783740e-01 -6.59876347e-01 5.01428306e-01 5.20361125e-01 8.75733256e-01 -7.86502421e-01 5.12675583e-01 -2.83083439e-01 4.24102932e-01 2.01605141e-01 -2.65869945e-01 2.51892835e-01 -2.39745140e-01 4.14352775e-01 1.22191918e+00 9.09378007e-02 -1.83364049e-01 3.08394700e-01 8.29563022e-01 -2.91288018e-01 4.79571819e-01 -6.41391695e-01 3.11704516e-01 6.35866046e-01 1.17684805e+00 -2.75816798e-01 -4.05827790e-01 -5.64295650e-01 1.01332045e+00 6.22502565e-01 2.55345792e-01 -6.84522629e-01 -4.15318608e-01 3.97355586e-01 -1.81499690e-01 -1.11222282e-01 6.37361631e-02 -2.87784219e-01 -1.18774247e+00 9.66322124e-02 -9.68750834e-01 7.35907793e-01 -6.55224085e-01 -1.67326438e+00 4.61493611e-01 2.03744516e-01 -1.29366875e+00 -2.13853478e-01 -2.73972511e-01 -8.06916058e-01 6.06181085e-01 -1.56605697e+00 -1.38995636e+00 -1.91063762e-01 8.82438779e-01 7.11577654e-01 -4.29572433e-01 8.51868749e-01 -3.56740989e-02 -4.56300616e-01 9.11219895e-01 1.65711373e-01 -9.94378626e-02 1.11076128e+00 -1.09029126e+00 2.65610814e-01 7.09204018e-01 2.85593197e-02 5.03665328e-01 6.18927538e-01 -2.74788648e-01 -8.38814974e-01 -1.36371851e+00 1.02108634e+00 -1.93749323e-01 6.22706711e-01 -3.77917647e-01 -1.25202847e+00 6.50795102e-01 2.77950138e-01 -3.83923911e-02 6.53226316e-01 1.67256847e-01 -9.25236404e-01 -3.68769526e-01 -1.03504694e+00 9.47937548e-01 9.54389155e-01 -8.22179914e-01 -1.09520316e+00 4.04738426e-01 8.71321261e-01 4.33660783e-02 -7.12669551e-01 5.20556688e-01 1.09109968e-01 -5.67826509e-01 9.70920265e-01 -7.44393766e-01 2.85622746e-01 -1.14777714e-01 -1.92980483e-01 -1.55075073e+00 -6.42838776e-01 -3.23411793e-01 2.52303928e-01 1.27840376e+00 3.10019493e-01 -7.96030700e-01 2.42756680e-01 2.46817321e-01 -3.95967633e-01 -3.03355068e-01 -8.42497587e-01 -9.71020818e-01 4.46508765e-01 9.43446252e-03 5.53693533e-01 1.59171700e+00 2.06805587e-01 7.52155185e-01 -3.58779281e-01 -1.06197000e-01 3.75206053e-01 8.87604281e-02 4.96921331e-01 -1.22498178e+00 -1.64886028e-01 -5.33284724e-01 -1.89092606e-01 -4.78162646e-01 6.45956576e-01 -1.41839051e+00 -6.01752847e-02 -1.07349825e+00 7.85949945e-01 -2.61241376e-01 -7.55101442e-01 6.49817765e-01 -6.69215083e-01 1.64346203e-01 1.76840037e-01 3.11893076e-01 -7.73451090e-01 1.02866268e+00 1.14467251e+00 -4.04758096e-01 -7.43093267e-02 -2.13148296e-01 -7.93643117e-01 6.55793846e-01 9.75363314e-01 -5.51013649e-01 -8.18261981e-01 -3.97070289e-01 -6.39477819e-02 -4.58251595e-01 2.34912738e-01 -6.91910625e-01 1.36096124e-02 -2.50993431e-01 1.72378480e-01 -4.00390029e-02 3.38451654e-01 -3.75680774e-01 -2.22070143e-01 5.49250722e-01 -8.47291172e-01 3.28467429e-01 -3.09454333e-02 2.88234770e-01 -4.41304117e-01 -2.93413430e-01 1.03588545e+00 -1.12254173e-01 -6.72809839e-01 3.08361173e-01 -8.88059437e-02 2.75372148e-01 8.13472867e-01 2.97066011e-02 -4.51252580e-01 -3.96762222e-01 -3.35351944e-01 1.78871021e-01 3.83986324e-01 8.76805305e-01 7.30831623e-01 -1.62904406e+00 -8.75735998e-01 1.66693524e-01 5.56591749e-01 -2.96567380e-01 2.59816051e-01 4.03393030e-01 3.67936082e-02 1.64829165e-01 -3.87788922e-01 -4.11360770e-01 -1.35151780e+00 7.76631474e-01 4.03333724e-01 -2.52779365e-01 -6.68210924e-01 5.09152710e-01 5.76349020e-01 -7.64963269e-01 8.04911554e-02 1.01731300e-01 -5.04910707e-01 6.65814951e-02 2.49729708e-01 2.30725020e-01 5.59316725e-02 -4.18591172e-01 -2.69086123e-01 4.69770640e-01 -6.09104395e-01 -5.22332340e-02 1.24029803e+00 1.15317106e-01 -8.41958895e-02 6.38531387e-01 1.49503756e+00 -2.38850668e-01 -1.04953861e+00 -6.20482683e-01 -3.27003039e-02 -2.89915353e-01 -4.92434716e-03 -4.43507135e-01 -9.18944061e-01 9.10543025e-01 6.58904433e-01 -2.23036230e-01 1.02337837e+00 -5.90522550e-02 4.71992850e-01 7.17430353e-01 -6.07480481e-02 -1.28629005e+00 6.67655289e-01 5.33971906e-01 9.57948923e-01 -1.19896102e+00 -1.44649018e-02 -5.42025924e-01 -8.32819700e-01 1.00733066e+00 9.61139917e-01 -2.26772711e-01 2.87942231e-01 3.83284986e-02 -3.94340008e-02 1.07113890e-01 -7.73294210e-01 1.28351256e-01 2.16922581e-01 5.27569413e-01 4.70641196e-01 6.11699140e-03 -6.14041030e-01 4.98473108e-01 -6.57116696e-02 -5.59150577e-01 3.40462893e-01 7.32445478e-01 -3.46751720e-01 -1.17613220e+00 7.26934820e-02 2.03369081e-01 -1.56412676e-01 -1.65237471e-01 -5.22059202e-01 7.86551476e-01 -2.51546741e-01 6.78105772e-01 2.08465785e-01 -2.64820576e-01 4.28702593e-01 1.38703927e-01 4.71412033e-01 -5.33185124e-01 -6.94820940e-01 -1.15130454e-01 -3.11357621e-03 -2.35987246e-01 -4.14644778e-01 -6.18794203e-01 -1.27626002e+00 -1.57138348e-01 -2.45231792e-01 9.52603966e-02 1.75754189e-01 1.20631325e+00 1.56437859e-01 6.15383685e-01 1.05100358e+00 -2.63310045e-01 -9.62306857e-01 -1.05193734e+00 -3.40366036e-01 1.02303076e+00 1.07130460e-01 -6.20555997e-01 -3.30594271e-01 -1.72278583e-01]
[10.902629852294922, 8.606444358825684]
c99774fd-1818-4dd5-9eb7-39ae2e7bd435
word-separation-in-continuous-sign-language
2204.00923
null
https://arxiv.org/abs/2204.00923v4
https://arxiv.org/pdf/2204.00923v4.pdf
Word separation in continuous sign language using isolated signs and post-processing
. Continuous Sign Language Recognition (CSLR) is a long challenging task in Computer Vision due to the difficulties in detecting the explicit boundaries between the words in a sign sentence. To deal with this challenge, we propose a two-stage model. In the first stage, the predictor model, which includes a combination of CNN, SVD, and LSTM, is trained with the isolated signs. In the second stage, we apply a post-processing algorithm to the Softmax outputs obtained from the first part of the model in order to separate the isolated signs in the continuous signs. While the proposed model is trained on the isolated sign classes with similar frame numbers, it is evaluated on the continuous sign videos with a different frame length per each isolated sign class. Due to the lack of a large dataset, including both the sign sequences and the corresponding isolated signs, two public datasets in Isolated Sign Language Recognition (ISLR), RKS-PERSIANSIGN and ASLLVD, are used for evaluation. Results of the continuous sign videos confirm the efficiency of the proposed model to deal with isolated sign boundaries detection.
['Sergio Escalera', 'Kourosh Kiani', 'Razieh Rastgoo']
2022-04-02
null
null
null
null
['sign-language-recognition']
['computer-vision']
[ 3.96107137e-01 -2.95169234e-01 4.81065251e-02 -3.45108479e-01 -4.75084484e-01 -2.53708720e-01 4.62287843e-01 -8.48607242e-01 -8.55004072e-01 4.55591828e-01 3.90489191e-01 -6.13715015e-02 3.73237193e-01 5.55161834e-02 -5.20352423e-01 -9.31579232e-01 2.66229391e-01 -4.54442240e-02 6.25458896e-01 -5.43332584e-02 3.14534694e-01 5.24798334e-01 -1.70541584e+00 6.34615958e-01 7.82416701e-01 1.10873616e+00 1.78551003e-01 9.54583466e-01 -1.11025244e-01 1.16449881e+00 -4.75092888e-01 -3.70856328e-03 3.76051277e-01 -7.37301707e-01 -3.55303586e-01 6.56651035e-02 9.15409207e-01 -7.23014653e-01 -6.94788754e-01 9.65207756e-01 9.13885593e-01 5.17631285e-02 6.48514986e-01 -1.20550346e+00 -3.11925560e-01 2.96147555e-01 -2.68760115e-01 1.01036914e-02 8.61075372e-02 4.38253075e-01 9.54766989e-01 -1.01392090e+00 9.12417054e-01 1.15912449e+00 4.80127990e-01 7.30407000e-01 -3.95293236e-01 -6.90604091e-01 1.26037136e-01 6.98154211e-01 -1.06846297e+00 -6.20108366e-01 6.58187449e-01 -6.03846073e-01 8.10599744e-01 -3.99359800e-02 5.98662794e-01 1.04072297e+00 -2.89868891e-01 1.35481882e+00 1.17653358e+00 -5.42790413e-01 7.18438029e-02 -2.43401989e-01 5.19555271e-01 5.25491774e-01 -7.08507746e-02 2.19073817e-01 -3.47056448e-01 3.46172422e-01 5.80275893e-01 -2.26485461e-01 -4.89659965e-01 -1.55837774e-01 -1.20901692e+00 3.67123634e-01 3.04604888e-01 5.18672705e-01 -4.11941290e-01 2.04925671e-01 6.01469815e-01 3.86253059e-01 -3.11066717e-01 -2.82292485e-01 -4.15462643e-01 -1.94802642e-01 -1.05032670e+00 -5.57224043e-02 7.82654226e-01 7.22211182e-01 -1.38503090e-01 2.43506283e-01 -5.54551840e-01 9.38455760e-01 5.23960471e-01 7.31610179e-01 6.84045970e-01 -4.42947239e-01 5.62170684e-01 4.48956549e-01 -1.63677486e-03 -5.67858875e-01 -2.22488940e-01 -2.43114695e-01 -8.01203966e-01 6.12759292e-01 8.46978784e-01 -7.96534345e-02 -1.58101320e+00 1.45918989e+00 -4.86739054e-02 2.33664081e-01 2.71655649e-01 1.38401330e+00 1.28718233e+00 4.78548974e-01 9.45157856e-02 1.82944611e-01 1.31261539e+00 -1.20902956e+00 -6.59798384e-01 -1.20537028e-01 5.56302786e-01 -7.43807018e-01 8.26295257e-01 3.49156439e-01 -7.90644526e-01 -6.49323761e-01 -9.53325927e-01 -2.35649407e-01 -2.72450536e-01 1.07073236e+00 3.49944495e-02 2.93722481e-01 -8.38449419e-01 1.81452930e-01 -6.59130812e-01 -4.29877847e-01 2.94318974e-01 1.04980441e-02 -3.56951505e-01 -2.45549232e-01 -1.03807080e+00 1.01221478e+00 2.40115926e-01 8.07312429e-01 -5.30323863e-01 1.71308278e-03 -7.44993985e-01 -7.96488672e-02 7.05724582e-02 -8.23950097e-02 1.07445216e+00 -1.29166198e+00 -1.64038289e+00 9.59730744e-01 -3.64812165e-01 -2.34046862e-01 1.07975078e+00 -1.79133043e-01 -4.62223083e-01 1.46068007e-01 -4.30014521e-01 5.82367301e-01 1.15034759e+00 -9.84859407e-01 -7.79589236e-01 1.77539252e-02 -3.85380089e-01 5.98954670e-02 2.37738073e-01 5.65659881e-01 -4.91897583e-01 -5.42561173e-01 2.39921317e-01 -8.67299497e-01 1.73844665e-01 1.86774001e-01 -2.80410886e-01 -2.40977690e-01 9.08288181e-01 -1.38982606e+00 9.33148205e-01 -2.42349291e+00 1.05527699e-01 2.22376600e-01 -1.41513050e-01 8.81969750e-01 -5.08128047e-01 -1.27114385e-01 3.02523393e-02 -4.68233198e-01 -2.90131778e-01 -3.08255881e-01 6.50858656e-02 3.31655532e-01 -1.77725196e-01 4.24862474e-01 3.79569352e-01 9.19980288e-01 -6.19667411e-01 -6.89577758e-01 1.45309344e-01 5.26692152e-01 -1.39511690e-01 1.56149834e-01 -1.35529102e-04 5.05956352e-01 -1.15138747e-01 8.31808567e-01 6.93325937e-01 1.23828195e-01 5.87402135e-02 -2.92529106e-01 -1.77487642e-01 8.57816860e-02 -1.38028705e+00 1.17584693e+00 -3.83153632e-02 9.89792347e-01 2.22596601e-01 -8.53016078e-01 7.89560318e-01 4.74329948e-01 2.06534296e-01 -8.86177719e-01 3.87207925e-01 8.04617763e-01 5.02894700e-01 -9.85097706e-01 1.61080390e-01 2.41986632e-01 2.72049189e-01 2.03953400e-01 2.79702842e-02 2.01801345e-01 6.28456950e-01 -3.57275873e-01 9.84716475e-01 3.55617404e-01 -1.07047632e-01 5.08582413e-01 9.78557467e-01 -2.75648415e-01 6.78867519e-01 6.35803163e-01 -6.51950657e-01 7.49500692e-01 3.83591384e-01 -4.23128784e-01 -8.96498442e-01 -9.20160770e-01 1.11603692e-01 7.87833869e-01 -8.84455591e-02 2.08569154e-01 -4.16119099e-01 -8.05042803e-01 6.20108508e-02 4.25954849e-01 -3.19091707e-01 1.93194762e-01 -1.15178144e+00 -4.13815737e-01 7.76428699e-01 6.66889608e-01 9.24483657e-01 -1.59463441e+00 -9.06605840e-01 -6.08720295e-02 -1.77372888e-01 -1.44870698e+00 -7.56568074e-01 -1.28586262e-01 -4.60928321e-01 -1.32738471e+00 -1.25484133e+00 -1.45606887e+00 8.49685490e-01 -2.32206613e-01 3.03749591e-01 -4.88946922e-02 -2.02760607e-01 6.62394837e-02 -6.11431122e-01 -1.55851722e-01 -5.49777865e-01 -3.42915207e-01 -3.27404797e-01 4.25934404e-01 3.77133101e-01 -1.24373697e-01 -4.84342068e-01 4.40474838e-01 -7.55611479e-01 2.83093508e-02 1.05909872e+00 9.92116868e-01 2.54302502e-01 -7.04938173e-01 2.46639952e-01 8.32218602e-02 4.70397592e-01 2.55695611e-01 -5.80316424e-01 6.03574455e-01 2.68580895e-02 1.39095992e-01 3.92992347e-01 -8.04844797e-01 -8.43173623e-01 3.08668733e-01 -2.05326751e-01 -3.32235843e-01 -3.47129583e-01 3.36954117e-01 -1.53880846e-02 -2.06604630e-01 1.91621870e-01 6.69062853e-01 3.22478503e-01 -5.64858258e-01 2.86606133e-01 1.11737490e+00 8.24515641e-01 2.44828448e-01 5.92243433e-01 2.27584556e-01 -7.83269182e-02 -1.12259090e+00 -3.32284242e-01 -5.24418354e-01 -8.45970869e-01 -5.40313005e-01 8.39576125e-01 -6.18379593e-01 -6.74275815e-01 1.43372202e+00 -1.31323135e+00 -4.08990085e-01 -2.57204145e-01 9.26186264e-01 -4.29768503e-01 7.36375213e-01 -6.78551018e-01 -8.21625769e-01 -4.67345536e-01 -1.18536961e+00 8.73010516e-01 3.41135472e-01 -1.23518929e-02 -3.84011567e-01 -1.07641004e-01 2.61019856e-01 3.81952941e-01 1.78983554e-01 6.19738817e-01 -6.91796958e-01 -5.78171790e-01 -5.68965673e-01 -6.58189595e-01 1.10379088e+00 3.01037878e-02 3.96743603e-02 -8.57853472e-01 -2.12385684e-01 -3.31194639e-01 -5.57978272e-01 1.27191567e+00 5.05459249e-01 4.44425702e-01 -4.68454957e-02 1.49049610e-01 4.73704964e-01 9.69272316e-01 4.83371019e-01 6.98225319e-01 4.00349274e-02 5.26982784e-01 2.64561594e-01 4.30400908e-01 9.54924524e-02 1.58492133e-01 5.48341990e-01 -1.41315639e-01 -2.81844169e-01 -8.63386750e-01 -1.43913165e-01 7.93506205e-01 9.90491748e-01 -2.63380885e-01 -8.88060685e-03 -7.65113354e-01 4.13818002e-01 -1.89251685e+00 -1.01889563e+00 -2.74388403e-01 2.06838441e+00 5.60134649e-01 -3.98551626e-03 -3.24447080e-02 3.98916602e-01 6.99407339e-01 2.22762331e-01 -6.67114437e-01 -3.64451826e-01 -7.04930067e-01 5.32574728e-02 4.44502562e-01 3.98942620e-01 -1.15403020e+00 1.05868292e+00 5.97702599e+00 5.05909204e-01 -1.70621073e+00 -1.59435138e-01 -8.97037610e-03 -2.70537678e-02 6.32416546e-01 -2.34660655e-01 -7.70606697e-01 5.75218081e-01 3.29286337e-01 4.85705942e-01 2.48162761e-01 6.48900211e-01 5.38090825e-01 -2.46409863e-01 -9.40778494e-01 1.05435252e+00 4.91455227e-01 -7.07639694e-01 -6.91531003e-02 -3.12917709e-01 5.76197088e-01 3.60716552e-01 -2.85944432e-01 2.76578695e-01 -8.59268084e-02 -7.95925915e-01 8.56523633e-01 9.35369968e-01 9.08050060e-01 -1.04459807e-01 1.01770866e+00 3.25044513e-01 -1.16784585e+00 -2.50328481e-01 -3.03904526e-02 1.98572110e-02 4.69642937e-01 1.59950349e-02 -5.26292920e-01 1.26647711e-01 3.48702341e-01 7.96737552e-01 -5.09461284e-01 1.67436516e+00 -7.36964703e-01 6.87336862e-01 -5.21653354e-01 -2.26427689e-01 3.15667480e-01 -1.17203481e-01 6.01929545e-01 1.33126152e+00 2.52924144e-01 -2.14070007e-01 -5.72588407e-02 5.56599915e-01 2.59335577e-01 1.75772026e-01 -1.68688655e-01 -1.59805313e-01 -2.09331810e-01 8.27203512e-01 -4.07535374e-01 -4.94325131e-01 -5.24052024e-01 1.18041885e+00 -1.49184108e-01 7.06148088e-01 -6.91861808e-01 -7.22377717e-01 3.48670155e-01 -4.26298171e-01 7.01771855e-01 -4.12098408e-01 -4.15066583e-03 -1.32173812e+00 5.05916774e-01 -9.31782305e-01 3.33685011e-01 -7.88033009e-01 -1.04298198e+00 4.92395729e-01 -3.59983176e-01 -1.42151237e+00 -3.80032420e-01 -1.01709831e+00 -7.93877900e-01 1.03624046e+00 -1.94635844e+00 -1.32142889e+00 -4.73279715e-01 5.84376574e-01 4.24456328e-01 -2.35308766e-01 3.24410200e-01 5.12850642e-01 -5.41519701e-01 7.10545242e-01 2.68415749e-01 8.48798215e-01 7.83307374e-01 -7.47622669e-01 2.63796777e-01 1.19219303e+00 -8.79813135e-02 3.62668186e-02 2.88797051e-01 -6.78775787e-01 -8.35044801e-01 -6.01809442e-01 1.43832994e+00 1.59603521e-01 4.55432802e-01 -9.87566262e-02 -6.39037371e-01 4.08418864e-01 -1.59963548e-01 2.53062457e-01 1.09412372e-01 -7.53709614e-01 -3.27794969e-01 5.39734624e-02 -9.04305279e-01 5.08065403e-01 1.09204817e+00 -4.22367424e-01 -8.54905486e-01 -3.20903622e-02 9.09999907e-02 -4.07059848e-01 -2.84665495e-01 5.83920717e-01 1.06889188e+00 -6.66628242e-01 7.43733943e-01 -6.65557981e-01 3.59806806e-01 -4.56871599e-01 -1.50168270e-01 -9.40171301e-01 1.11871898e-01 -1.56922355e-01 -8.36113393e-02 9.15513813e-01 2.36995995e-01 -6.64659739e-01 5.92653155e-01 4.21029478e-01 -2.20944714e-02 -3.90388191e-01 -1.11761498e+00 -9.66020346e-01 -1.95354760e-01 -3.78415704e-01 5.85686741e-03 3.45839947e-01 -3.16892326e-01 -1.34507000e-01 -5.08596361e-01 -7.34381750e-02 6.41210198e-01 1.71319500e-01 8.17833900e-01 -1.00451636e+00 -2.48993233e-01 -6.44075990e-01 -6.99261785e-01 -1.42639351e+00 1.20305300e-01 -8.26546371e-01 4.10449445e-01 -1.68633759e+00 -2.52183974e-01 3.05197667e-02 -3.26971710e-01 5.71131527e-01 7.00011924e-02 1.70193225e-01 5.89658737e-01 2.41456524e-01 -3.59121144e-01 5.90477467e-01 1.47381568e+00 -2.75627971e-01 -3.47863793e-01 1.49361774e-01 3.12085599e-01 8.88849318e-01 4.01561201e-01 -1.83155586e-03 1.65385976e-01 -3.19497854e-01 -4.24430996e-01 -6.03579171e-02 6.44494653e-01 -1.10454655e+00 4.03954953e-01 8.87948126e-02 2.58294314e-01 -9.48228121e-01 2.26821825e-01 -6.35017097e-01 -5.13601959e-01 8.88198674e-01 -4.25151706e-01 -3.76396120e-01 -1.16176434e-01 1.11806765e-01 -5.04363656e-01 -2.47708738e-01 1.02200615e+00 4.67604659e-02 -1.08421719e+00 6.21861406e-03 -3.71017873e-01 7.06884414e-02 7.22614110e-01 -5.92436373e-01 -1.61733121e-01 -3.25882167e-01 -8.97871971e-01 4.20308501e-01 -1.49433538e-01 6.06526494e-01 9.11103010e-01 -1.19372141e+00 -9.16601181e-01 5.33445597e-01 1.28673509e-01 -1.83041558e-01 2.86407083e-01 1.23491502e+00 -7.43040740e-01 2.61129409e-01 -4.74025846e-01 -4.75326747e-01 -1.76136291e+00 1.00306980e-01 5.03514051e-01 -8.39605778e-02 -8.61787260e-01 7.35967994e-01 -3.66143674e-01 -1.70821488e-01 8.20307314e-01 -8.54891002e-01 -3.88898998e-01 1.92146674e-01 5.49285173e-01 3.28030229e-01 -2.90160209e-01 -1.07829523e+00 -3.29758167e-01 9.56317902e-01 1.23791412e-01 -1.29052803e-01 1.21294498e+00 1.22686833e-01 6.35462776e-02 2.84012139e-01 1.14952815e+00 -2.41526648e-01 -1.40013957e+00 -5.32802403e-01 1.66956410e-01 -2.66677916e-01 -1.24668188e-01 -1.04496574e+00 -1.16848230e+00 9.10838902e-01 8.65332901e-01 -6.18566453e-01 1.02018857e+00 -3.56741458e-01 1.00557387e+00 4.64327842e-01 4.06343155e-02 -1.41886497e+00 -1.38292834e-01 9.50347364e-01 1.25312579e+00 -1.32242858e+00 -5.26599586e-01 6.63275197e-02 -7.20137179e-01 1.29394424e+00 3.71389776e-01 -2.51616418e-01 6.61819637e-01 1.47688195e-01 5.51933169e-01 3.07799935e-01 -2.16476575e-01 -6.16367102e-01 4.58970666e-01 4.04595345e-01 1.38570696e-01 -1.84897199e-01 -7.63239086e-01 3.48106235e-01 7.48845935e-02 5.57952583e-01 3.80757749e-01 9.90729153e-01 -3.62702221e-01 -9.20809209e-01 -4.50192004e-01 3.15126926e-01 2.97551174e-02 1.53572243e-02 -6.25726640e-01 6.49920344e-01 2.93871433e-01 8.15432131e-01 -1.27158061e-01 -2.81249493e-01 6.53044820e-01 5.78922987e-01 3.93542230e-01 1.15809187e-01 -4.62833136e-01 -1.96651723e-02 8.60544145e-02 -4.64551032e-01 -3.76237750e-01 -8.55029881e-01 -1.35805666e+00 3.64006072e-01 -9.97574255e-02 -4.87832725e-01 6.71139956e-01 1.12415934e+00 -1.67188030e-02 3.79030257e-01 1.83030918e-01 -8.66639972e-01 -8.63113582e-01 -1.20360422e+00 -6.33731365e-01 8.15210104e-01 6.60477877e-01 -5.74712813e-01 -5.60929179e-01 8.94250125e-02]
[9.135222434997559, -6.445216178894043]
50b268d9-2f18-48f1-9656-a60e0ca25b94
flow-to-control-offline-reinforcement
2212.01105
null
https://arxiv.org/abs/2212.01105v1
https://arxiv.org/pdf/2212.01105v1.pdf
Flow to Control: Offline Reinforcement Learning with Lossless Primitive Discovery
Offline reinforcement learning (RL) enables the agent to effectively learn from logged data, which significantly extends the applicability of RL algorithms in real-world scenarios where exploration can be expensive or unsafe. Previous works have shown that extracting primitive skills from the recurring and temporally extended structures in the logged data yields better learning. However, these methods suffer greatly when the primitives have limited representation ability to recover the original policy space, especially in offline settings. In this paper, we give a quantitative characterization of the performance of offline hierarchical learning and highlight the importance of learning lossless primitives. To this end, we propose to use a \emph{flow}-based structure as the representation for low-level policies. This allows us to represent the behaviors in the dataset faithfully while keeping the expression ability to recover the whole policy space. We show that such lossless primitives can drastically improve the performance of hierarchical policies. The experimental results and extensive ablation studies on the standard D4RL benchmark show that our method has a good representation ability for policies and achieves superior performance in most tasks.
['Chongjie Zhang', 'Qianchuan Zhao', 'Jun Yang', 'Siyuan Li', 'Wenzhe Li', 'Hao Hu', 'Yiqin Yang']
2022-12-02
null
null
null
null
['d4rl']
['robots']
[-1.01114571e-01 1.52997607e-02 -7.38199890e-01 -4.31176908e-02 -7.55325973e-01 -7.60066032e-01 6.85080767e-01 5.44022098e-02 -7.03661203e-01 1.05341268e+00 2.33583018e-01 -4.72943366e-01 -1.86012790e-01 -7.04293489e-01 -1.02578866e+00 -8.01516116e-01 -6.36867583e-01 4.38046843e-01 2.06677392e-01 -1.87688604e-01 -2.89401580e-02 6.03011549e-01 -1.69519985e+00 1.13002919e-01 8.94747138e-01 1.02276719e+00 2.26497754e-01 4.63304162e-01 -3.80604644e-03 1.39627135e+00 -5.28961301e-01 2.41347045e-01 6.36970997e-01 -3.18295598e-01 -7.89126337e-01 -2.94494275e-02 3.95340025e-01 -9.92159486e-01 -6.56387746e-01 8.83341670e-01 2.65647858e-01 5.27739406e-01 3.49027663e-01 -1.13192964e+00 -8.00959393e-02 7.33769119e-01 -3.30955476e-01 -4.98257950e-02 2.14867502e-01 4.39523250e-01 1.05808949e+00 -2.22654328e-01 6.14149451e-01 1.60915887e+00 2.50744224e-01 6.78778887e-01 -1.28684092e+00 -7.72313416e-01 7.73369670e-01 1.34338722e-01 -7.22977459e-01 -4.19904172e-01 6.01939082e-01 -1.29119143e-01 8.32723081e-01 5.30670583e-02 7.65857518e-01 1.44231558e+00 -4.56173252e-03 1.42899513e+00 1.42056739e+00 -2.61123598e-01 4.20873523e-01 -9.71505642e-02 -4.62527797e-02 1.03574717e+00 2.04203367e-01 8.74775290e-01 -6.70446157e-01 -2.06813753e-01 9.22629952e-01 8.79678205e-02 -1.41656712e-01 -7.75942326e-01 -8.20712924e-01 8.77346635e-01 5.64239860e-01 1.31993592e-02 -1.75044924e-01 4.79338944e-01 5.32597482e-01 6.60807669e-01 1.23625100e-01 6.76438093e-01 -4.13560092e-01 -4.58615005e-01 -6.05030537e-01 5.61324000e-01 8.22881341e-01 9.29561377e-01 7.52206504e-01 3.12906295e-01 -3.27495188e-01 3.87063354e-01 -1.61109000e-01 2.74226069e-01 4.84692097e-01 -1.45937359e+00 5.25635660e-01 4.59595561e-01 4.43107456e-01 -4.86050516e-01 -2.54060179e-01 -3.20277154e-01 -5.10390878e-01 5.92154145e-01 5.37783206e-01 -2.13357583e-01 -9.02205944e-01 2.15011072e+00 2.20712051e-01 1.85034722e-01 7.31594339e-02 4.82572377e-01 4.62786704e-02 5.91183722e-01 4.55421135e-02 -3.72193068e-01 7.25592256e-01 -1.03361404e+00 -5.57062328e-01 -4.23723400e-01 6.35168433e-01 1.02877311e-01 1.53290331e+00 4.82082427e-01 -1.02281535e+00 -4.06699926e-01 -1.00478792e+00 -5.49875051e-02 -9.32579935e-02 -8.80112946e-02 1.05159092e+00 1.95791662e-01 -8.96755278e-01 9.40710604e-01 -1.39075160e+00 6.08951668e-05 6.97108209e-01 3.47013354e-01 -2.41164967e-01 -6.57571331e-02 -1.11196673e+00 8.99304032e-01 7.70460486e-01 -3.92276168e-01 -1.75066102e+00 -6.71950996e-01 -9.24825072e-01 2.13726074e-01 9.19174671e-01 -3.02069575e-01 1.72273755e+00 -7.88797796e-01 -1.75049055e+00 2.90945977e-01 2.63364073e-02 -8.89470935e-01 8.20773065e-01 -5.00598848e-01 1.70790255e-01 2.25320652e-01 -1.89019158e-01 5.85262060e-01 9.85866308e-01 -1.25830829e+00 -9.72510517e-01 -2.27348953e-01 5.78913093e-01 3.78735632e-01 -4.11642015e-01 -5.45020223e-01 -2.77064115e-01 -5.33182323e-01 -4.65750039e-01 -1.02600360e+00 -3.71517211e-01 1.10962547e-01 5.33852447e-03 -3.07282329e-01 8.27588975e-01 -4.08011347e-01 1.11602116e+00 -2.07494950e+00 1.61606148e-01 3.83723490e-02 1.10687152e-01 2.11033970e-01 -1.75159350e-01 4.81355906e-01 3.74544978e-01 -1.22018501e-01 -2.71037072e-01 -4.49668825e-01 1.45883486e-01 8.88218880e-01 -9.14998114e-01 4.28435594e-01 -3.12717408e-01 9.59574580e-01 -1.21672571e+00 -2.61933297e-01 1.73382148e-01 -9.72252563e-02 -6.56468391e-01 4.42362905e-01 -6.97353601e-01 7.40995646e-01 -7.66372383e-01 3.78606349e-01 8.40139687e-02 3.10934242e-02 4.36943918e-01 4.56496358e-01 5.86295128e-02 4.92081046e-01 -8.00618529e-01 1.99588346e+00 -5.89586437e-01 3.74508917e-01 1.91772118e-01 -1.03879964e+00 5.42985260e-01 9.65272039e-02 7.00828314e-01 -1.02355921e+00 -2.45719373e-01 5.02701737e-02 -1.11369386e-01 -1.35847628e-01 3.12177300e-01 -3.95809412e-02 -2.59674132e-01 5.05757987e-01 4.47002798e-02 -1.47275239e-01 2.60110736e-01 1.50068790e-01 1.19613159e+00 5.91200650e-01 3.27914149e-01 -1.28164694e-01 1.41720667e-01 4.47838269e-02 8.01937699e-01 1.21277785e+00 -2.50672579e-01 -3.80511820e-01 7.51639009e-01 -4.44326699e-01 -8.88387859e-01 -1.04089200e+00 2.46336982e-01 1.41111600e+00 8.48912373e-02 -4.73145157e-01 -3.67828250e-01 -1.06570339e+00 2.99419433e-01 8.73317599e-01 -7.14338839e-01 -4.80435461e-01 -9.67239678e-01 -2.98719764e-01 5.27454555e-01 6.33469343e-01 5.22622764e-01 -1.11010480e+00 -1.05072331e+00 3.35398793e-01 5.56617342e-02 -1.09741664e+00 -1.71229273e-01 4.46014732e-01 -1.20186973e+00 -1.04627323e+00 -3.23948145e-01 -5.85697353e-01 4.26358014e-01 5.51507585e-02 9.45149302e-01 -1.49905831e-01 -1.95760638e-01 5.08868933e-01 -2.55589515e-01 -2.41386876e-01 -3.74932468e-01 -3.33360024e-02 2.89228588e-01 -4.99893516e-01 -1.44606352e-01 -8.05087447e-01 -4.23978657e-01 -1.70057211e-02 -7.28866577e-01 -1.92712694e-02 5.39033711e-01 9.54755843e-01 5.65075219e-01 3.21530193e-01 3.66070718e-01 -8.57907057e-01 6.87351882e-01 -2.14448333e-01 -1.03702414e+00 7.32917190e-02 -7.79777467e-01 7.68426299e-01 1.12951541e+00 -5.99210322e-01 -1.13993502e+00 6.48084879e-02 1.92298502e-01 -6.04479671e-01 -3.23969051e-02 1.05775692e-01 -4.07761848e-03 4.73551825e-02 6.35015070e-01 3.89938205e-01 1.37521714e-01 -7.82045305e-01 6.35635257e-01 3.80858816e-02 5.52345395e-01 -1.37913895e+00 6.25787377e-01 6.76123798e-01 1.18099183e-01 -4.25669402e-01 -1.07801223e+00 -2.61932343e-01 -1.95558116e-01 1.80432975e-01 2.38018423e-01 -8.21764350e-01 -9.97852266e-01 9.86510962e-02 -5.57388008e-01 -1.07472253e+00 -8.24211359e-01 4.29670274e-01 -1.15024281e+00 3.34966958e-01 -8.04843366e-01 -8.35218847e-01 -7.84004182e-02 -1.30120277e+00 8.25514913e-01 2.88000330e-02 2.97602385e-01 -9.11734223e-01 1.98489100e-01 -2.54957736e-01 1.71058729e-01 2.67418444e-01 1.11402237e+00 -4.04800028e-01 -6.67647243e-01 3.26024592e-01 2.65502363e-01 3.56060714e-01 1.84762686e-01 -6.08619452e-01 -8.65026712e-01 -8.73320997e-01 7.26004317e-02 -9.59561825e-01 1.18645906e+00 1.43039733e-01 1.67696917e+00 -7.65001893e-01 -2.92481035e-01 7.00374126e-01 1.31784642e+00 3.09964299e-01 2.93569565e-01 4.08752024e-01 4.48036075e-01 4.71327960e-01 8.22192550e-01 7.46588349e-01 1.77565366e-01 4.25989687e-01 6.59990311e-01 2.46226251e-01 -4.79356758e-03 -9.21476185e-01 8.73819828e-01 3.09868217e-01 4.66599725e-02 -1.04617439e-01 -6.24771118e-01 3.61298531e-01 -2.21140575e+00 -9.44769561e-01 9.47460771e-01 2.22888875e+00 1.22693515e+00 2.42784411e-01 2.60532737e-01 -1.62256852e-01 1.09105416e-01 3.96166772e-01 -1.15338027e+00 -2.74373651e-01 1.88190594e-01 3.42590958e-01 7.25442886e-01 7.09717512e-01 -1.06649232e+00 1.34515524e+00 6.87701368e+00 1.04682612e+00 -9.59848404e-01 -9.79034603e-02 2.61869848e-01 -3.35472763e-01 -1.15873531e-01 7.87246749e-02 -9.11807656e-01 3.29100937e-01 8.12463939e-01 -2.62734026e-01 9.27703619e-01 1.00460899e+00 1.30898535e-01 -1.20040074e-01 -1.55875826e+00 7.85837352e-01 -4.66757655e-01 -1.12114251e+00 1.77020013e-01 2.24395230e-01 7.16437519e-01 9.61942424e-04 2.09152386e-01 9.01880264e-01 1.04852605e+00 -1.14945471e+00 6.68881893e-01 3.88147980e-01 9.60336685e-01 -8.54822516e-01 1.76179335e-02 9.53167677e-01 -1.00299907e+00 -6.38658702e-01 -4.20145869e-01 -2.71714061e-01 -2.33062252e-01 -1.23760194e-01 -9.14540172e-01 4.44644332e-01 5.67247212e-01 8.28347027e-01 -3.64681631e-01 7.55319834e-01 -6.19200706e-01 6.36175692e-01 -4.76583064e-01 1.24719411e-01 7.87768185e-01 -1.88589334e-01 5.38614452e-01 7.98084557e-01 3.62893119e-02 -9.84928161e-02 7.46356368e-01 5.89942038e-01 -1.77485079e-01 -3.48431289e-01 -8.95655334e-01 -2.32886001e-01 4.01038051e-01 7.53321528e-01 -1.71365201e-01 -2.90505916e-01 -2.45156035e-01 6.73989296e-01 9.61672187e-01 5.18440723e-01 -6.15087926e-01 1.34430707e-01 8.16360056e-01 -6.48752898e-02 2.94331551e-01 -6.56425595e-01 1.44614905e-01 -1.25489354e+00 -7.94094130e-02 -1.23288047e+00 6.33869767e-01 -4.45336960e-02 -9.31779206e-01 1.42224029e-01 3.39922279e-01 -1.02901256e+00 -7.94243336e-01 -6.13947332e-01 -2.99998701e-01 3.28364998e-01 -1.61828291e+00 -8.30224276e-01 -1.12089412e-02 7.84296989e-01 6.78785384e-01 -3.22946608e-01 8.16669822e-01 -1.44486070e-01 -3.63237232e-01 6.38426423e-01 3.65232140e-01 -3.63141820e-02 5.02423406e-01 -1.50301623e+00 1.32759839e-01 7.76635289e-01 1.83806702e-01 5.94441295e-01 5.13903022e-01 -5.11191070e-01 -1.57055831e+00 -9.59624112e-01 -1.31105915e-01 -2.61178613e-01 7.57641792e-01 -4.96269792e-01 -7.32135892e-01 1.05545425e+00 -6.31801710e-02 -1.07316636e-02 2.21213177e-01 5.23220189e-02 -3.39870006e-01 -2.44042456e-01 -9.19777572e-01 8.21125269e-01 1.23507524e+00 -5.69710493e-01 -7.64479458e-01 2.19995409e-01 9.25315440e-01 -4.64382619e-01 -7.30552614e-01 3.57980072e-01 5.39505124e-01 -7.97109365e-01 1.08093452e+00 -1.10289836e+00 1.77049622e-01 -1.27896643e-03 -5.60232475e-02 -1.33661962e+00 -6.31993189e-02 -1.06417179e+00 -9.44475114e-01 6.92217529e-01 -8.60487446e-02 -6.33244812e-01 8.08065355e-01 4.94660914e-01 -4.84090373e-02 -8.49707246e-01 -8.54264915e-01 -1.22404325e+00 4.24085170e-01 -3.26767892e-01 5.52640021e-01 5.79921007e-01 -8.57978985e-02 -5.72369769e-02 -6.15999162e-01 -1.37399405e-01 7.83313036e-01 5.63496888e-01 6.61574364e-01 -9.94822562e-01 -5.98357320e-01 -4.30845499e-01 2.21672937e-01 -1.62860262e+00 7.86684632e-01 -9.00005698e-01 1.18380468e-02 -1.16031075e+00 3.80690489e-03 -8.28924894e-01 -5.03073752e-01 8.41395974e-01 7.90367797e-02 -6.13292754e-01 3.20892751e-01 3.55595171e-01 -7.39843786e-01 1.09279716e+00 1.70833361e+00 -9.61594358e-02 -4.59049255e-01 7.10107982e-02 -6.38511717e-01 7.61776149e-01 1.03015709e+00 -4.34006989e-01 -8.88122857e-01 -4.17821050e-01 -1.85123980e-02 1.57758802e-01 2.65860289e-01 -7.47634172e-01 1.24168985e-01 -5.82657933e-01 1.83439076e-01 -2.30715409e-01 4.94261324e-01 -8.33573997e-01 -5.81018567e-01 8.37714672e-01 -7.85076022e-01 -1.15206800e-01 3.89707208e-01 8.73267770e-01 -7.18524083e-02 -1.55830141e-02 7.98018456e-01 -4.43031311e-01 -9.84464467e-01 7.29873538e-01 -1.17265105e-01 3.32230598e-01 1.01061654e+00 1.83262616e-01 -3.20194215e-01 -4.16390479e-01 -5.97558796e-01 6.41478777e-01 6.10795677e-01 2.63695627e-01 4.41313237e-01 -1.23213685e+00 -2.47387245e-01 1.58317238e-01 -1.08904883e-01 1.84090957e-01 -1.35557458e-01 3.82566094e-01 -2.87639320e-01 5.14614046e-01 -5.30340970e-01 -2.43074641e-01 -6.45321429e-01 8.76735330e-01 3.34407210e-01 -7.61156440e-01 -1.01116371e+00 6.03446305e-01 4.20200288e-01 -2.73778796e-01 8.07798922e-01 -5.62024117e-01 -1.19305797e-01 -5.84139079e-02 4.19722944e-01 3.55439037e-01 -2.95246303e-01 1.43977255e-01 -3.63143869e-02 5.39371520e-02 -3.09398413e-01 -3.86569858e-01 1.38877928e+00 1.72827765e-01 2.55135357e-01 4.18942481e-01 9.52831149e-01 -1.72255963e-01 -2.21926832e+00 -4.53009307e-01 1.24708384e-01 -4.82317448e-01 1.04799584e-01 -6.66470468e-01 -7.39433229e-01 8.55133891e-01 3.75859529e-01 -5.65738603e-02 9.77625728e-01 -1.43953308e-01 7.31349349e-01 9.05795336e-01 9.04106379e-01 -1.33889687e+00 2.61367053e-01 7.04409540e-01 8.15397620e-01 -1.02984715e+00 3.72460559e-02 1.57090098e-01 -6.80900514e-01 8.95818174e-01 7.84735441e-01 -2.89844811e-01 1.85703754e-01 2.57436633e-01 -4.75386620e-01 1.76961929e-01 -1.13664842e+00 -4.16869968e-01 3.92848579e-03 6.15511000e-01 -2.48500124e-01 7.46288672e-02 4.29408625e-02 3.23798656e-01 -3.06236058e-01 -2.24418223e-01 2.78720170e-01 1.31688309e+00 -7.37763286e-01 -1.36588275e+00 7.12587638e-03 3.65985751e-01 -3.27537894e-01 2.12457985e-01 -2.65348315e-01 9.47950363e-01 -2.79993951e-01 6.66429281e-01 -2.61303652e-02 -1.45663451e-02 1.27760470e-01 1.36639997e-02 9.39861953e-01 -5.45061588e-01 -2.69033283e-01 -1.14137843e-01 6.17965721e-02 -1.33165193e+00 -3.13362330e-02 -4.59788293e-01 -1.38101268e+00 -2.14896247e-01 3.83136779e-01 1.16750948e-01 1.83774441e-01 8.07110488e-01 2.01976597e-01 4.19827521e-01 7.01064408e-01 -6.56309187e-01 -1.40888155e+00 -5.63312292e-01 -6.34190977e-01 3.54309767e-01 8.16570342e-01 -1.07985938e+00 -2.36202523e-01 -2.99213082e-01]
[4.137388229370117, 2.0340678691864014]
6c76cb1d-cb5f-4e47-a279-62eabead3134
casia-iris-africa-a-large-scale-african-iris
2302.13049
null
https://arxiv.org/abs/2302.13049v1
https://arxiv.org/pdf/2302.13049v1.pdf
CASIA-Iris-Africa: A Large-scale African Iris Image Database
Iris biometrics is a phenotypic biometric trait that has proven to be agnostic to human natural physiological changes. Research on iris biometrics has progressed tremendously, partly due to publicly available iris databases. Various databases have been available to researchers that address pressing iris biometric challenges such as constraint, mobile, multispectral, synthetics, long-distance, contact lenses, liveness detection, etc. However, these databases mostly contain subjects of Caucasian and Asian docents with very few Africans. Despite many investigative studies on racial bias in face biometrics, very few studies on iris biometrics have been published, mainly due to the lack of racially diverse large-scale databases containing sufficient iris samples of Africans in the public domain. Furthermore, most of these databases contain a relatively small number of subjects and labelled images. This paper proposes a large-scale African database named CASIA-Iris-Africa that can be used as a complementary database for the iris recognition community to mediate the effect of racial biases on Africans. The database contains 28,717 images of 1023 African subjects (2046 iris classes) with age, gender, and ethnicity attributes that can be useful in demographically sensitive studies of Africans. Sets of specific application protocols are incorporated with the database to ensure the database's variability and scalability. Performance results of some open-source SOTA algorithms on the database are presented, which will serve as baseline performances. The relatively poor performances of the baseline algorithms on the proposed database despite better performance on other databases prove that racial biases exist in these iris recognition algorithms. The database will be made available on our website: http://www.idealtest.org.
['Zhenan Sun', 'Kunbo Zhang', 'Junxing Hu', 'Yunlong Wang', 'Jawad Muhammad']
2023-02-25
null
null
null
null
['iris-recognition']
['computer-vision']
[ 5.19047584e-03 -3.51782382e-01 -3.70043486e-01 -5.93521059e-01 -5.99780306e-02 -3.53848428e-01 3.97931248e-01 -1.64609537e-01 -2.05508590e-01 8.01097214e-01 2.04129368e-01 -3.54547679e-01 -2.46899184e-02 -5.46903908e-01 -3.87936719e-02 -9.38127279e-01 -5.23474589e-02 3.35280091e-01 -4.68473077e-01 -1.40939364e-02 5.15732110e-01 6.16545737e-01 -1.97779584e+00 2.05489069e-01 1.05991638e+00 5.07418036e-01 -7.71845520e-01 7.29325950e-01 2.77531296e-01 1.26877233e-01 -6.14732504e-01 -4.05410916e-01 6.54287279e-01 -5.81955612e-01 -6.57018363e-01 -3.30097340e-02 1.00863671e+00 -3.48798305e-01 5.21849655e-03 9.98770773e-01 1.13910198e+00 -2.64242709e-01 5.39501071e-01 -8.75206351e-01 -8.03820491e-01 8.11104849e-02 -1.24054408e+00 2.73680151e-01 4.64937985e-01 5.43642521e-01 2.97176749e-01 -4.54739749e-01 3.45278382e-01 1.18539786e+00 7.28980899e-01 7.17227638e-01 -1.01186168e+00 -1.00240529e+00 -6.26525879e-01 -1.68599948e-01 -1.58118474e+00 -8.49911094e-01 3.60405296e-01 -5.45423388e-01 6.18496299e-01 7.66234457e-01 7.59428501e-01 6.84259236e-01 -2.01926410e-01 1.31270528e-01 1.98373210e+00 -5.27984142e-01 -3.26743245e-01 5.47714889e-01 1.37009576e-01 6.60113335e-01 3.87057513e-01 7.30301201e-01 -5.68658590e-01 -4.55835849e-01 7.78911948e-01 -1.68495744e-01 -1.81621149e-01 6.43215925e-02 -9.70740318e-01 4.58747566e-01 8.78932178e-02 3.31456929e-01 -3.27320755e-01 -7.86463976e-01 2.20666409e-01 4.84211177e-01 4.34643060e-01 2.97772050e-01 -3.77160281e-01 -1.65945783e-01 -9.76052582e-01 6.02454692e-02 6.92799270e-01 5.85243642e-01 5.76951683e-01 -7.26378933e-02 -1.02897272e-01 1.13092542e+00 3.81404161e-01 8.23731720e-01 4.68799710e-01 -3.42076689e-01 -7.15598911e-02 9.49154973e-01 6.79851025e-02 -8.84382725e-01 -3.81339043e-01 -1.66112155e-01 -1.00914192e+00 3.42456073e-01 6.28047049e-01 -2.45297328e-01 -1.10369349e+00 1.22790754e+00 5.94287694e-01 2.40858197e-01 -2.46807914e-02 9.64748383e-01 1.00707197e+00 -3.94019634e-02 -5.13989814e-02 -3.15707594e-01 1.50543201e+00 -1.99524418e-01 -3.92826885e-01 3.36904407e-01 9.70488042e-02 -1.26212537e+00 9.47705209e-01 2.33043358e-01 -8.28696489e-01 -3.90725434e-01 -5.80375254e-01 2.77341574e-01 -5.35709977e-01 4.21094894e-01 6.36725545e-01 1.83616602e+00 -1.00851715e+00 2.03878488e-02 -4.09154117e-01 -9.90747094e-01 7.49101043e-01 8.42875063e-01 -3.49476606e-01 1.16631821e-01 -6.91069841e-01 7.03948081e-01 1.04004294e-02 8.98550376e-02 -2.39117131e-01 -7.22973228e-01 -4.50206190e-01 -7.16844380e-01 -1.91869169e-01 -6.22693419e-01 4.86111641e-01 -1.13548577e+00 -1.48818600e+00 1.70138073e+00 -5.73952079e-01 -6.06683344e-02 4.03806418e-01 2.74448752e-01 -8.48146260e-01 -1.00304961e-01 -1.49135023e-01 4.03847218e-01 6.46198869e-01 -8.37384880e-01 -6.46799505e-01 -1.00236595e+00 -2.63145208e-01 2.65471637e-02 -1.10798530e-01 7.81981707e-01 -1.72197104e-01 -6.03345513e-01 -1.01039670e-01 -9.82967913e-01 9.38944817e-02 -3.55980247e-01 -4.40152913e-01 -7.57288700e-03 5.15253603e-01 -7.51684606e-01 1.22578359e+00 -2.03170180e+00 -4.66881007e-01 4.46385652e-01 1.46254543e-02 6.73148751e-01 -1.49776507e-02 1.62464827e-01 -2.22711354e-01 3.58993649e-01 -9.83345434e-02 2.29282528e-01 -4.95861739e-01 -9.13225189e-02 3.85545194e-02 9.21549201e-01 1.95536409e-02 5.79565644e-01 -4.23467517e-01 -4.97558087e-01 4.07027781e-01 4.00609493e-01 -3.60013783e-01 8.94424692e-02 5.32505035e-01 7.54480004e-01 -1.95697322e-01 1.62048995e+00 9.93530989e-01 2.11731642e-01 -1.37642771e-01 -1.25755429e-01 -3.54554981e-01 -2.80595243e-01 -1.16003144e+00 1.09801507e+00 1.69068918e-01 4.65324432e-01 8.19839444e-03 -5.13043702e-01 1.00961602e+00 4.36459690e-01 4.77119595e-01 -3.16103131e-01 2.66013622e-01 3.38772446e-01 4.62517530e-01 -7.17848539e-01 3.31883341e-01 -2.08916157e-01 7.70671606e-01 5.01560628e-01 -3.45494121e-01 2.64737457e-01 2.07399547e-01 -3.48323435e-01 2.84771562e-01 -4.19436023e-02 3.44103694e-01 -3.70441049e-01 8.69167328e-01 2.27742158e-02 5.86991429e-01 5.38962245e-01 -7.17045128e-01 5.42463005e-01 1.34295955e-01 -8.13439071e-01 -9.40341830e-01 -6.53877795e-01 -1.00562441e+00 5.54759324e-01 -9.65585485e-02 -6.09228984e-02 -6.06062055e-01 -2.74256438e-01 1.54112563e-01 -2.86749274e-01 -6.61553979e-01 3.61712188e-01 -3.66938822e-02 -1.76314902e+00 9.93267477e-01 -7.02321157e-02 6.82256877e-01 -7.36826539e-01 -3.87052774e-01 -5.15939713e-01 1.71714872e-01 -4.25008714e-01 -2.94899791e-01 -8.88633132e-01 -9.33770418e-01 -1.80764568e+00 -8.84919763e-01 -5.40523529e-01 1.02209759e+00 -6.66321963e-02 9.35366213e-01 3.21047544e-01 -8.71977687e-01 1.37062892e-01 -1.21733285e-02 -8.73047233e-01 -2.96923190e-01 -1.34302333e-01 4.96659786e-01 6.06017351e-01 1.24820280e+00 -2.55203843e-01 -8.62908185e-01 6.56112134e-01 -4.43118364e-01 -2.62115657e-01 5.73543072e-01 7.91778028e-01 3.44764918e-01 -1.95108294e-01 4.72381532e-01 -1.18045068e+00 4.00755256e-01 -2.84019768e-01 -6.38212323e-01 2.90208519e-01 -9.19592798e-01 -5.66901803e-01 -1.08952329e-01 -2.92573392e-01 -9.81765330e-01 -2.26143047e-01 2.03770265e-01 9.00631770e-02 -7.04620063e-01 2.72773892e-01 1.28914326e-01 -6.48015320e-01 9.03406858e-01 3.89920063e-02 5.13917983e-01 -5.67346692e-01 -1.90854132e-01 1.46167111e+00 5.64384401e-01 -7.07367659e-01 6.61471963e-01 3.85793209e-01 -1.48940952e-02 -1.14409530e+00 -1.97858244e-01 -7.47416794e-01 -6.73781872e-01 -2.52027363e-01 3.52166921e-01 -8.82590294e-01 -1.16584516e+00 1.16710317e+00 -3.28154385e-01 2.44436309e-01 8.38999897e-02 6.42278910e-01 8.28422606e-03 2.13673875e-01 -4.54057008e-01 -1.13422632e+00 -5.49233794e-01 -1.08860981e+00 6.27803862e-01 9.56826031e-01 -2.48832017e-01 -7.17576206e-01 2.08575964e-01 8.49226296e-01 5.48791349e-01 5.03319085e-01 6.31274462e-01 -3.00096095e-01 -2.89944440e-01 -3.90923887e-01 -4.27004665e-01 1.09678283e-01 6.32448196e-01 6.51173174e-01 -1.32003689e+00 -5.60822666e-01 -4.00534511e-01 -2.50539482e-01 4.38886791e-01 6.35124803e-01 8.71474743e-01 -1.12865664e-01 -2.52047390e-01 9.75033343e-01 1.38445675e+00 4.68411058e-01 8.55244875e-01 1.23743869e-01 4.15311009e-01 8.19616675e-01 2.50351280e-01 3.88590187e-01 1.80665985e-01 2.72021502e-01 -6.64479062e-02 -4.89951462e-01 -1.82109982e-01 1.47892192e-01 -1.17434457e-01 4.10781264e-01 -1.04382718e+00 4.61945772e-01 -1.26026273e+00 5.56082368e-01 -1.18584752e+00 -9.81495559e-01 -4.52763855e-01 2.62519598e+00 1.16948450e+00 -6.94863856e-01 5.94785631e-01 -9.05044004e-02 8.37464094e-01 -7.89932013e-02 -5.82143605e-01 -5.36521375e-01 -5.60964584e-01 4.49892431e-01 5.37158787e-01 3.27865809e-01 -1.14953268e+00 6.80152237e-01 7.17855930e+00 2.62921214e-01 -1.25266349e+00 -2.90473372e-01 9.08304632e-01 -2.20442772e-01 3.61610025e-01 -1.06373644e-02 -8.63332510e-01 4.96302068e-01 1.01254535e+00 -1.87607020e-01 4.84029472e-01 1.83925837e-01 3.87267530e-01 -4.95760471e-01 -6.06372535e-01 1.18615723e+00 1.07627980e-01 -1.01600313e+00 -1.15280174e-01 4.75251973e-01 1.00813639e+00 -2.99424250e-02 4.10369009e-01 -3.09012324e-01 -1.02094769e-01 -1.38984334e+00 -4.44969207e-01 6.68756425e-01 1.46514416e+00 -6.37932837e-01 9.52606082e-01 -1.61795810e-01 -5.89604318e-01 7.71814361e-02 -4.41259414e-01 -1.30844504e-01 -5.45082271e-01 4.26369518e-01 -7.59885132e-01 4.94771451e-01 8.04643869e-01 7.09689975e-01 -9.00129735e-01 1.29786003e+00 4.35382932e-01 7.53112495e-01 -3.50736171e-01 1.64335549e-01 -3.64813030e-01 -6.12425685e-01 3.79947394e-01 7.91198373e-01 1.41260907e-01 3.13925534e-01 -2.59851426e-01 6.47402465e-01 2.16625616e-01 6.61691785e-01 -6.33603036e-01 -2.03603134e-01 3.25402945e-01 1.00370955e+00 -2.72552699e-01 -9.33072120e-02 -7.53424942e-01 3.68945569e-01 -4.30085599e-01 4.30578947e-01 -1.14597261e-01 -2.27468118e-01 1.06402111e+00 2.28679031e-01 -4.98001516e-01 4.03452069e-01 -6.25492573e-01 -1.10309672e+00 -3.44775110e-01 -1.67519808e+00 6.45686686e-01 -4.33160424e-01 -1.31310117e+00 3.23845983e-01 -2.94527322e-01 -1.11719835e+00 9.65396613e-02 -5.72346568e-01 -3.23576033e-01 1.80587959e+00 -1.30595672e+00 -1.47082734e+00 -3.80209804e-01 7.97586620e-01 -1.31572500e-01 -1.04848397e+00 1.13967919e+00 3.99406105e-01 -9.75952327e-01 9.54293966e-01 -2.77895313e-02 3.48930836e-01 1.31944096e+00 -1.08549440e+00 -8.77768174e-02 8.81253183e-01 -1.65918618e-01 1.29090822e+00 3.48501951e-01 -7.23486304e-01 -1.27731526e+00 -5.39738297e-01 7.78333008e-01 -7.21390486e-01 4.93076220e-02 3.54227066e-01 -5.66015422e-01 4.10925120e-01 2.79543310e-01 -3.73088918e-03 1.38210237e+00 6.90878868e-01 -2.54675269e-01 -2.60804951e-01 -1.55664372e+00 4.66204196e-01 5.14895499e-01 -5.32493353e-01 -2.24960685e-01 2.30389103e-01 -5.33540785e-01 -6.65269077e-01 -1.21139753e+00 5.71719587e-01 1.03182590e+00 -1.24907255e+00 7.86497951e-01 -8.46233785e-01 2.89694756e-01 -5.48911512e-01 3.30847621e-01 -7.88514018e-01 9.45523977e-02 -7.78791189e-01 2.20516041e-01 1.42848635e+00 3.22834104e-01 -1.16748405e+00 9.03402328e-01 9.25026000e-01 5.93035579e-01 -6.33758843e-01 -6.26725614e-01 -3.52651954e-01 1.07060291e-01 3.67094487e-01 9.91839945e-01 1.24647558e+00 -2.59856910e-01 -2.20768690e-01 -4.65172470e-01 3.57837915e-01 7.76597083e-01 3.70189577e-01 1.22178185e+00 -1.37293482e+00 9.33064669e-02 -5.47426760e-01 -6.73920631e-01 -6.39087558e-02 -3.57706755e-01 -5.77456534e-01 -7.71961272e-01 -6.49853766e-01 4.66047525e-01 -7.52941549e-01 -2.57349700e-01 5.79121768e-01 -3.25060129e-01 7.84374177e-01 -3.57602119e-01 4.12072062e-01 6.59925580e-01 -4.10321236e-01 1.34021282e+00 -1.21387355e-01 -4.62495089e-01 3.16256076e-01 -8.80414844e-01 4.38719988e-01 1.00664735e+00 -3.36823724e-02 -1.74412847e-01 1.36345223e-01 -1.94133267e-01 -3.30702513e-01 1.92730710e-01 -7.99329281e-01 1.63218558e-01 -4.62348312e-01 6.39945030e-01 -4.21910584e-01 -1.10917561e-01 -3.79610181e-01 4.47875082e-01 3.79100472e-01 1.28558770e-01 -7.03105181e-02 2.79305011e-01 3.40553597e-02 -3.35193157e-01 2.14381322e-01 1.15156841e+00 -1.01746604e-01 -4.87490952e-01 6.61643803e-01 1.96491271e-01 1.41043290e-02 1.01712012e+00 -7.52084494e-01 -5.55165291e-01 1.44710734e-01 -3.97910684e-01 6.79107383e-02 1.02506340e+00 4.06546116e-01 1.97659135e-01 -9.47094738e-01 -1.10733032e+00 9.53119576e-01 4.29112971e-01 -4.32094753e-01 2.29337171e-01 1.24936032e+00 -8.57925892e-01 4.30301577e-01 -7.07002819e-01 -5.92667460e-01 -1.98948026e+00 3.43227625e-01 6.86332464e-01 5.13458192e-01 -2.82653213e-01 8.61848652e-01 -3.12454462e-01 -5.57780921e-01 9.44361240e-02 2.66169876e-01 -3.54232877e-01 9.50120911e-02 7.94354260e-01 4.32121664e-01 -1.47181213e-01 -9.63479578e-01 -4.09699082e-01 8.51611018e-01 -7.35156909e-02 2.52161056e-01 1.01742506e+00 -9.46656093e-02 -8.39567184e-01 1.62967056e-01 5.36996186e-01 3.69215965e-01 -3.43826562e-01 -1.08173065e-01 -1.97330728e-01 -1.22245884e+00 -2.23735690e-01 -1.22617960e+00 -1.17984581e+00 6.03639364e-01 1.30287731e+00 -1.83482960e-01 1.36434627e+00 -5.29144764e-01 1.58012897e-01 -2.74954468e-01 2.56565928e-01 -9.43104744e-01 -1.03149176e+00 -2.41784677e-02 5.73499978e-01 -1.62225890e+00 2.66635656e-01 -2.60415912e-01 -3.43536109e-01 9.25161839e-01 6.30814195e-01 4.19179171e-01 7.17177033e-01 4.27006111e-02 9.23739374e-01 -1.37503937e-01 -1.21109270e-01 -2.19898239e-01 5.22729099e-01 1.01412773e+00 1.02521145e+00 3.77731174e-01 -7.42154598e-01 4.99518588e-02 -4.07743901e-01 2.83584505e-01 4.66616303e-01 5.51029265e-01 1.69484913e-01 -1.50776291e+00 -8.52143228e-01 8.89243722e-01 -8.52579296e-01 -1.24531664e-01 -5.90234041e-01 5.28929293e-01 4.19428885e-01 1.00780213e+00 -1.48955002e-01 -1.55412689e-01 9.19351429e-02 2.45299205e-01 4.65140492e-01 -3.57650250e-01 -9.29472506e-01 -6.07655086e-02 2.86227651e-02 -2.92390198e-01 -1.03357136e+00 -8.79888415e-01 -3.36380959e-01 -9.97437060e-01 -1.10284209e-01 -7.83892497e-02 5.27115047e-01 4.85181421e-01 3.26626182e-01 -2.86847770e-01 5.31755686e-01 -1.33282393e-01 -1.75159693e-01 -1.15857065e+00 -1.03183007e+00 4.52882051e-01 4.22860563e-01 -4.02884513e-01 -1.05946787e-01 2.06611753e-01]
[3.7459805011749268, -3.6281657218933105]
958f7d85-493c-46e6-b3e9-657e9efea3e8
centerhmr-a-bottom-up-single-shot-method-for
2008.12272
null
https://arxiv.org/abs/2008.12272v4
https://arxiv.org/pdf/2008.12272v4.pdf
Monocular, One-stage, Regression of Multiple 3D People
This paper focuses on the regression of multiple 3D people from a single RGB image. Existing approaches predominantly follow a multi-stage pipeline that first detects people in bounding boxes and then independently regresses their 3D body meshes. In contrast, we propose to Regress all meshes in a One-stage fashion for Multiple 3D People (termed ROMP). The approach is conceptually simple, bounding box-free, and able to learn a per-pixel representation in an end-to-end manner. Our method simultaneously predicts a Body Center heatmap and a Mesh Parameter map, which can jointly describe the 3D body mesh on the pixel level. Through a body-center-guided sampling process, the body mesh parameters of all people in the image are easily extracted from the Mesh Parameter map. Equipped with such a fine-grained representation, our one-stage framework is free of the complex multi-stage process and more robust to occlusion. Compared with state-of-the-art methods, ROMP achieves superior performance on the challenging multi-person benchmarks, including 3DPW and CMU Panoptic. Experiments on crowded/occluded datasets demonstrate the robustness under various types of occlusion. The released code is the first real-time implementation of monocular multi-person 3D mesh regression.
['Michael J. Black', 'Yu Sun', 'Qian Bao', 'Yili Fu', 'Wu Liu', 'Tao Mei']
2020-08-27
null
http://openaccess.thecvf.com//content/ICCV2021/html/Sun_Monocular_One-Stage_Regression_of_Multiple_3D_People_ICCV_2021_paper.html
http://openaccess.thecvf.com//content/ICCV2021/papers/Sun_Monocular_One-Stage_Regression_of_Multiple_3D_People_ICCV_2021_paper.pdf
iccv-2021-1
['3d-depth-estimation', '3d-multi-person-pose-estimation', '3d-multi-person-mesh-recovery']
['computer-vision', 'computer-vision', 'computer-vision']
[ 7.17023462e-02 -1.10039890e-01 1.24192514e-01 -4.53763127e-01 -6.26650870e-01 -1.59142151e-01 4.12557513e-01 4.62235734e-02 -4.76269424e-01 4.04609233e-01 3.18884687e-03 4.09196138e-01 4.66584593e-01 -9.31076169e-01 -7.67005324e-01 -5.59856892e-01 2.68056065e-01 1.04214728e+00 3.95463914e-01 -2.15265721e-01 -2.69807398e-01 3.90745610e-01 -1.71167362e+00 -1.35884538e-01 7.00254440e-01 1.02048624e+00 -3.83427829e-01 6.59962952e-01 1.24790542e-01 1.33297175e-01 -4.36778426e-01 -6.76822066e-01 4.78907585e-01 -2.86552787e-01 -4.02457416e-01 3.96373808e-01 1.16836131e+00 -3.15021306e-01 -2.14926124e-01 7.99864054e-01 7.29270518e-01 -4.34021652e-02 7.19008327e-01 -9.92345929e-01 -1.84246615e-01 -1.90403104e-01 -1.05073738e+00 -3.24595690e-01 6.90146863e-01 4.03482974e-01 6.49309456e-01 -9.03719366e-01 5.38927734e-01 1.66495836e+00 1.01909709e+00 5.82278669e-01 -1.53168023e+00 -7.38486767e-01 3.33981156e-01 -4.65567142e-01 -1.59695101e+00 -1.49416000e-01 7.78652966e-01 -7.90777862e-01 5.33743083e-01 3.01570088e-01 1.24341357e+00 8.88840735e-01 1.66537315e-02 6.11051559e-01 1.35082138e+00 -1.55481055e-01 -1.86955884e-01 -1.89530179e-01 -1.22236975e-01 1.15801036e+00 4.07244176e-01 -1.73955113e-02 -6.23540282e-01 -1.87102124e-01 9.82457459e-01 2.46520996e-01 -4.22863066e-02 -8.04990053e-01 -1.07394838e+00 6.83875322e-01 4.88807082e-01 -3.82087708e-01 -2.91173548e-01 1.60855249e-01 1.18707038e-01 -1.15021296e-01 9.58792031e-01 -3.61276507e-01 -2.46436492e-01 3.15025330e-01 -1.20038080e+00 9.20171201e-01 7.05389917e-01 8.56595397e-01 9.37965274e-01 -2.99561799e-01 -3.73120844e-01 7.63926566e-01 5.38916349e-01 1.08607388e+00 -1.55449286e-01 -7.31149137e-01 6.17439568e-01 1.04028571e+00 1.97525948e-01 -1.00238550e+00 -6.20281994e-01 -1.18314110e-01 -8.30669463e-01 4.96438175e-01 6.79026723e-01 -1.59042314e-01 -1.15262449e+00 1.41345406e+00 1.24070644e+00 -1.32104605e-01 -5.71591079e-01 1.23813498e+00 1.15164638e+00 2.95679361e-01 1.49685398e-01 2.72606999e-01 1.57811284e+00 -1.03855765e+00 -2.05752209e-01 -4.25862938e-01 -1.53376535e-02 -4.72473115e-01 8.80451262e-01 2.18719155e-01 -1.29060316e+00 -7.64203608e-01 -7.50716031e-01 -3.32163423e-01 -2.03635171e-01 1.95605204e-01 4.55355138e-01 7.52570093e-01 -6.76281869e-01 4.88132715e-01 -8.20663333e-01 -4.56133753e-01 5.52259684e-01 5.42126596e-01 -4.00397480e-01 1.01039764e-02 -7.71131098e-01 8.56691122e-01 -1.18453205e-01 2.40550563e-01 -6.22245789e-01 -7.01181293e-01 -1.08804631e+00 -4.98952180e-01 4.12483096e-01 -1.36886406e+00 8.98218811e-01 -7.14913785e-01 -1.55722833e+00 1.53906929e+00 -3.13778877e-01 -9.87002477e-02 1.19067860e+00 -5.37562132e-01 6.42388985e-02 1.32638350e-01 1.93180799e-01 8.36552799e-01 1.25556624e+00 -1.14333916e+00 -5.68304300e-01 -7.57562637e-01 -2.00018778e-01 2.75082052e-01 1.00285687e-01 8.66301060e-02 -1.06860805e+00 -5.47573864e-01 2.10358515e-01 -1.09700429e+00 -3.06777447e-01 6.14917397e-01 -5.19185007e-01 -2.49102026e-01 3.71399581e-01 -6.76685989e-01 8.79104495e-01 -1.70582271e+00 5.43507874e-01 1.82912797e-01 3.55351478e-01 -3.54837291e-02 3.11959356e-01 -6.45133704e-02 3.28991920e-01 -9.45987999e-02 -4.35440600e-01 -9.64148700e-01 1.05002038e-01 -2.93510053e-02 1.90759912e-01 1.01846123e+00 2.46691108e-01 8.73110116e-01 -7.12006092e-01 -9.29232657e-01 5.06799340e-01 8.45593631e-01 -5.81948280e-01 3.82377088e-01 -1.57766894e-01 8.97626698e-01 -2.99508959e-01 1.16775191e+00 7.69224644e-01 -1.31497055e-01 -1.68215528e-01 -1.36337638e-01 -4.50099930e-02 -2.12931976e-01 -1.30949843e+00 1.84377742e+00 -2.29748324e-01 1.60487249e-01 3.01924378e-01 -4.44795758e-01 1.05097330e+00 1.18128747e-01 5.84586382e-01 -4.97599959e-01 1.55134678e-01 2.86544766e-02 -5.67109227e-01 -2.84758925e-01 3.03714156e-01 -1.83957621e-01 -4.30614829e-01 1.18692860e-01 -1.98951572e-01 -3.00017565e-01 1.89649165e-02 -3.03885877e-01 5.79078794e-01 8.41420829e-01 1.31034136e-01 -1.71377271e-01 5.70887685e-01 -5.31216115e-02 6.64781332e-01 7.09962904e-01 -2.88717508e-01 1.10315168e+00 1.64978698e-01 -9.13735509e-01 -1.06524336e+00 -1.16635823e+00 -1.02383539e-01 1.10133290e+00 3.86454314e-01 -5.77080846e-01 -9.14253354e-01 -5.61893225e-01 5.02078116e-01 -2.25316793e-01 -8.40849996e-01 5.11919379e-01 -9.55334127e-01 -7.60748863e-01 3.46962094e-01 3.95367295e-01 5.64371288e-01 -7.94721723e-01 -8.54971647e-01 1.25667885e-01 -2.53858656e-01 -1.18350589e+00 -4.76309866e-01 -3.49156916e-01 -7.29563057e-01 -1.16792607e+00 -1.08741224e+00 -4.96268511e-01 8.09948146e-01 -9.96941701e-02 1.39395738e+00 2.04352036e-01 -7.23384202e-01 4.64586467e-01 1.04996383e-01 -4.07016128e-01 9.56372768e-02 -1.12587050e-01 9.49263647e-02 2.12728053e-01 2.47113734e-01 -4.30098534e-01 -1.04571271e+00 4.55618680e-01 -1.54848740e-01 2.57772654e-01 2.12869167e-01 4.08676982e-01 1.13774836e+00 -2.55724669e-01 -2.33888477e-01 -8.34695876e-01 -1.36311322e-01 -1.76762193e-01 -7.06199110e-01 7.59309679e-02 -1.39915615e-01 -3.29234481e-01 1.85500950e-01 -4.89299417e-01 -9.15754676e-01 5.59661984e-01 -6.80306852e-02 -4.05672669e-01 -3.75214607e-01 -4.05646175e-01 -2.00594038e-01 -1.83372885e-01 5.99275351e-01 -1.00010648e-01 -5.55843115e-02 -7.15776324e-01 3.74518812e-01 3.91013086e-01 7.52606213e-01 -8.19288254e-01 1.17917979e+00 9.20256436e-01 2.58402377e-01 -8.41721237e-01 -9.57898200e-01 -4.92584944e-01 -1.23187518e+00 -6.11486137e-01 1.24016500e+00 -1.45011985e+00 -8.54865909e-01 7.17528999e-01 -1.04776716e+00 -4.94922340e-01 -1.03513867e-01 2.17889156e-02 -5.44648349e-01 1.90920994e-01 -5.97426176e-01 -8.40175390e-01 -6.42191112e-01 -9.62775588e-01 1.78083873e+00 2.71199822e-01 -3.93759042e-01 -6.43732071e-01 9.53132212e-02 8.07937205e-01 6.07538782e-03 9.81677055e-01 3.10575277e-01 1.87638059e-01 -5.49011290e-01 -3.63424450e-01 -5.82456961e-02 -7.25312456e-02 -1.72125101e-01 -1.77611448e-02 -9.78412509e-01 -2.79488087e-01 -4.04618263e-01 -3.75970751e-01 8.55024219e-01 5.17518342e-01 1.02149570e+00 -1.02591552e-02 -3.31259817e-01 1.02849543e+00 1.30441666e+00 -8.48368704e-01 2.75422573e-01 1.94158420e-01 1.24298489e+00 8.52427840e-01 6.40081763e-01 4.93015528e-01 8.52459192e-01 9.21172023e-01 2.98457146e-01 -5.22157311e-01 -3.59034836e-01 -4.22080755e-01 1.64284766e-01 3.01373661e-01 -6.11928642e-01 3.20004016e-01 -9.67099249e-01 2.53531307e-01 -1.84674716e+00 -5.35924375e-01 -5.38797915e-01 2.15968370e+00 8.08747590e-01 5.55635802e-02 8.03538978e-01 -1.43385321e-01 7.54129350e-01 1.74544230e-01 -5.77446043e-01 1.14198491e-01 -1.16486654e-01 1.72073394e-01 5.76452494e-01 3.70604634e-01 -1.60747457e+00 9.43932891e-01 5.97243738e+00 3.51579994e-01 -6.76970482e-01 1.22379869e-01 4.91131634e-01 -4.70294654e-01 1.93191975e-01 -2.83241034e-01 -1.18949282e+00 4.36224997e-01 4.26808357e-01 5.06500959e-01 1.98645934e-01 7.31693685e-01 1.00873582e-01 -3.30576688e-01 -1.06490827e+00 1.35709357e+00 1.27852991e-01 -8.64921570e-01 -2.72466749e-01 1.62439018e-01 7.81987190e-01 -1.55644035e-02 -2.23862424e-01 1.50152057e-01 2.13547587e-01 -1.01181090e+00 1.24201286e+00 8.22311878e-01 1.02032137e+00 -6.59105718e-01 2.95381039e-01 3.32186997e-01 -1.56059003e+00 1.78550631e-01 -3.70888859e-01 -1.72821686e-01 2.24985912e-01 5.53067923e-01 -2.42838115e-01 3.74246031e-01 1.19844472e+00 5.48352420e-01 -7.84428298e-01 9.29380596e-01 -4.65554446e-01 1.25510141e-01 -5.22643626e-01 1.69301510e-01 -3.02725673e-01 -3.50874990e-01 4.65736985e-01 1.43547273e+00 5.38766989e-03 9.24801305e-02 6.39666140e-01 9.27248299e-01 -7.16140820e-03 2.35574871e-01 -2.56794542e-01 6.79953516e-01 1.51718467e-01 1.28702021e+00 -8.37375104e-01 -3.93884689e-01 -4.44308519e-01 1.11144710e+00 5.05819976e-01 1.20966397e-01 -9.08988476e-01 1.20669849e-01 7.35131085e-01 5.51757038e-01 5.10275722e-01 -1.89577460e-01 -5.38531601e-01 -1.13950348e+00 2.51880586e-01 -8.02554667e-01 2.97399312e-01 -5.36390603e-01 -1.29708791e+00 3.67221773e-01 1.19380437e-01 -1.05342877e+00 2.08986867e-02 -4.61212277e-01 -2.79507101e-01 1.07140315e+00 -1.39351904e+00 -1.68070745e+00 -7.18668401e-01 8.23389769e-01 3.27543318e-01 2.89940715e-01 7.66596437e-01 1.98593110e-01 -7.77764678e-01 3.68064344e-01 -5.08638918e-01 3.43649149e-01 7.87773252e-01 -1.39004755e+00 5.55687487e-01 7.13600516e-01 -1.82382137e-01 3.99900109e-01 6.71384037e-01 -9.99094009e-01 -1.39829636e+00 -1.17286146e+00 6.98980093e-01 -8.96259606e-01 1.41397730e-01 -8.33280206e-01 -6.87325060e-01 4.93866503e-01 -3.35758746e-01 3.68231177e-01 4.90550905e-01 2.70462811e-01 -3.80226135e-01 -2.94812292e-01 -1.16274643e+00 5.38067281e-01 1.28956139e+00 -2.49209538e-01 -4.64436471e-01 4.12453383e-01 3.00872564e-01 -9.76970911e-01 -1.10326517e+00 4.07116771e-01 7.81533897e-01 -1.11630952e+00 1.47840786e+00 -1.63272128e-01 2.23830596e-01 -5.35907626e-01 9.27704945e-02 -7.35349953e-01 -1.92221984e-01 -6.33147359e-01 -4.05070722e-01 1.04736531e+00 -9.88999903e-02 -1.76053450e-01 8.92889977e-01 9.17803407e-01 3.09417486e-01 -8.26509535e-01 -9.79297817e-01 -4.32722092e-01 1.52580696e-03 -3.38250875e-01 5.70304096e-01 2.02562869e-01 -6.99001253e-01 1.36420310e-01 -6.97414160e-01 2.35100478e-01 1.21479571e+00 4.71011490e-01 1.60123670e+00 -1.66184843e+00 -1.63679525e-01 -2.53151834e-01 -3.88249278e-01 -1.12223601e+00 -1.80492662e-02 -5.16912699e-01 2.31912956e-01 -1.53620195e+00 3.05408478e-01 -4.33242083e-01 3.18185449e-01 5.39072633e-01 -4.72211331e-01 7.79400408e-01 3.16290021e-01 2.74921447e-01 -6.37487948e-01 4.63795274e-01 1.31869602e+00 -1.98198318e-01 -2.06235275e-01 1.62506923e-01 -3.04313183e-01 1.09250629e+00 3.73434544e-01 -5.28298199e-01 2.10437134e-01 -2.78311104e-01 -3.44611257e-02 -2.18116000e-01 9.17062342e-01 -1.09883928e+00 1.54296786e-01 -5.38875200e-02 9.83811200e-01 -9.88062322e-01 7.24303901e-01 -6.43004358e-01 1.89518124e-01 5.09482980e-01 2.76745498e-01 -2.23400682e-01 -4.44331951e-02 5.32743573e-01 3.93299252e-01 3.90658081e-01 1.02124465e+00 -3.55671525e-01 -3.57329339e-01 7.62582660e-01 3.04867744e-01 1.49288565e-01 9.15471554e-01 -4.56946820e-01 1.89042196e-01 -3.84676445e-04 -7.00847149e-01 3.53584647e-01 8.36909771e-01 3.83911908e-01 5.74078262e-01 -1.15847349e+00 -1.02256262e+00 4.00278419e-01 -3.27757117e-03 5.93716979e-01 2.84887373e-01 8.26687694e-01 -5.70390344e-01 -6.30324632e-02 -1.93058271e-02 -1.12298727e+00 -1.59401393e+00 2.27509812e-01 6.36487961e-01 -2.31017858e-01 -1.13859046e+00 8.94549370e-01 1.75345227e-01 -7.03308642e-01 3.68625194e-01 -2.03653857e-01 1.11660354e-01 4.08640951e-02 5.01137137e-01 3.31151545e-01 -2.73218006e-01 -1.15484917e+00 -4.62089896e-01 1.41635716e+00 4.06860828e-01 3.04700639e-02 1.36750579e+00 -2.87453294e-01 -8.05841461e-02 4.24287021e-01 7.99826264e-01 4.78442647e-02 -1.82163727e+00 -3.36284935e-01 -3.95376116e-01 -6.45396411e-01 -2.89752573e-01 -5.55660784e-01 -1.12510729e+00 8.22586894e-01 6.35248840e-01 -2.21372813e-01 8.05151105e-01 2.08868340e-01 7.19534636e-01 -1.67882711e-01 4.89974111e-01 -1.08947730e+00 -7.83708245e-02 1.58961013e-01 9.16307151e-01 -1.34299624e+00 5.82172871e-01 -7.52061605e-01 -3.96866798e-01 9.76044893e-01 8.27489555e-01 -2.80036688e-01 4.71958816e-01 1.35173842e-01 5.29373474e-02 -3.85474086e-01 -1.93652119e-02 -5.27181983e-01 6.47997797e-01 7.17385411e-01 2.90515900e-01 2.64871329e-01 1.02714963e-01 4.17106807e-01 -4.49755967e-01 -2.50842333e-01 -2.44302541e-01 6.82165384e-01 -2.91489750e-01 -9.47596788e-01 -9.30689514e-01 1.64819404e-01 -2.53076136e-01 3.78519654e-01 -3.61316979e-01 8.79219413e-01 5.88157654e-01 7.50181198e-01 1.75721973e-01 -7.71772861e-02 7.13633537e-01 -2.13676151e-02 7.68978059e-01 -5.92969656e-01 -8.47625494e-01 2.82489300e-01 -7.40995407e-02 -8.79170835e-01 -6.76233470e-01 -8.21586132e-01 -9.74293530e-01 -3.92666161e-01 8.06626007e-02 -5.40305078e-01 5.97548962e-01 8.23836923e-01 -2.27894224e-02 2.72627383e-01 2.21678630e-01 -1.58649051e+00 5.03330212e-03 -8.23780000e-01 -3.92198622e-01 8.01446199e-01 3.43567848e-01 -9.04991567e-01 4.06808406e-02 2.81599872e-02]
[7.091941833496094, -1.0329508781433105]
260dce1f-c54c-4e68-a0b4-1e8d2fbab26c
injecting-knowledge-base-information-into-end
2107.02286
null
https://arxiv.org/abs/2107.02286v1
https://arxiv.org/pdf/2107.02286v1.pdf
Injecting Knowledge Base Information into End-to-End Joint Entity and Relation Extraction and Coreference Resolution
We consider a joint information extraction (IE) model, solving named entity recognition, coreference resolution and relation extraction jointly over the whole document. In particular, we study how to inject information from a knowledge base (KB) in such IE model, based on unsupervised entity linking. The used KB entity representations are learned from either (i) hyperlinked text documents (Wikipedia), or (ii) a knowledge graph (Wikidata), and appear complementary in raising IE performance. Representations of corresponding entity linking (EL) candidates are added to text span representations of the input document, and we experiment with (i) taking a weighted average of the EL candidate representations based on their prior (in Wikipedia), and (ii) using an attention scheme over the EL candidate list. Results demonstrate an increase of up to 5% F1-score for the evaluated IE tasks on two datasets. Despite a strong performance of the prior-based model, our quantitative and qualitative analysis reveals the advantage of using the attention-based approach.
['Chris Develder', 'Thomas Demeester', 'Johannes Deleu', 'Klim Zaporojets', 'Severine Verlinden']
2021-07-05
null
https://aclanthology.org/2021.findings-acl.171
https://aclanthology.org/2021.findings-acl.171.pdf
findings-acl-2021-8
['joint-entity-and-relation-extraction']
['natural-language-processing']
[ 1.41697705e-01 1.09544420e+00 -4.06409264e-01 7.14150146e-02 -9.55725670e-01 -5.01050532e-01 9.29069579e-01 6.49066806e-01 -7.50149727e-01 1.17666221e+00 7.90913284e-01 2.89114006e-02 -5.54919064e-01 -8.08020711e-01 -1.05651379e+00 -2.95898557e-01 -8.05491582e-02 9.25948679e-01 3.87684941e-01 -2.15770096e-01 1.50317684e-01 4.34220910e-01 -1.41707158e+00 2.81354427e-01 1.20786786e+00 5.91197133e-01 2.02512756e-01 4.13265795e-01 -6.85305119e-01 1.10849464e+00 -6.75225258e-01 -8.52883220e-01 -3.74501437e-01 -1.13696329e-01 -1.51946151e+00 -4.38121080e-01 3.84068280e-01 2.36864954e-01 -4.52316105e-01 1.13497210e+00 4.15133715e-01 1.41692907e-01 7.88955688e-01 -1.07589483e+00 -6.25773966e-01 1.07443786e+00 -4.40133929e-01 1.93170309e-01 5.71085572e-01 -4.89082634e-01 1.25830436e+00 -8.66586685e-01 1.25950074e+00 1.03976738e+00 4.73409146e-01 2.67533571e-01 -1.16306412e+00 -3.81795675e-01 8.31207335e-02 2.89485723e-01 -1.52765691e+00 -5.39006948e-01 5.76960862e-01 -4.10185367e-01 1.36373341e+00 2.58960351e-02 1.35995060e-01 8.19307506e-01 -1.07474722e-01 7.27636695e-01 5.60826719e-01 -7.88813055e-01 -1.91738024e-01 5.19758046e-01 6.78693891e-01 5.88893056e-01 7.57039905e-01 -3.60529035e-01 -6.30091250e-01 -2.94531226e-01 2.88115054e-01 -6.69580340e-01 -6.35606766e-01 -5.17304897e-01 -1.18191397e+00 6.16972566e-01 5.14938891e-01 5.99040329e-01 -7.73906171e-01 -1.48384869e-01 3.49304676e-01 -4.80057523e-02 1.67629629e-01 6.87429547e-01 -4.91496623e-01 2.72656053e-01 -7.24175811e-01 1.58728927e-01 1.19651568e+00 1.18352199e+00 8.77749681e-01 -4.62265372e-01 -4.22700465e-01 7.64659762e-01 2.80086666e-01 3.14225584e-01 2.97803760e-01 -4.84203547e-01 9.50752378e-01 7.93206513e-01 4.54836130e-01 -1.19939470e+00 -4.99053895e-01 -4.46360171e-01 -4.72887665e-01 -2.43797585e-01 3.90174866e-01 -2.96276689e-01 -7.10798144e-01 2.00977802e+00 2.82444924e-01 -1.69990093e-01 5.24524212e-01 4.62297857e-01 1.19844973e+00 6.27528787e-01 5.10529578e-01 -4.35136527e-01 1.60096788e+00 -9.18879986e-01 -1.20859599e+00 -1.67437911e-01 7.86517084e-01 -4.11219984e-01 2.42346853e-01 7.33380616e-02 -1.06324852e+00 -4.17305052e-01 -1.14189410e+00 -2.61570036e-01 -8.32425594e-01 3.25877666e-01 2.12537631e-01 3.16218168e-01 -1.02672863e+00 5.30799031e-01 -4.99926031e-01 -7.58071065e-01 1.65858328e-01 4.15583283e-01 -7.82626331e-01 -8.10305551e-02 -1.59448564e+00 1.27511895e+00 9.41799998e-01 6.98269382e-02 -4.42852139e-01 -5.10487735e-01 -9.67477143e-01 3.30083281e-01 6.07430637e-01 -7.93316007e-01 5.22726119e-01 -7.12998152e-01 -1.02761519e+00 8.84062231e-01 -1.47238180e-01 -5.58485806e-01 2.41687387e-01 -6.22178912e-01 -4.66173708e-01 2.62000173e-01 9.37030166e-02 6.57645762e-01 3.15736353e-01 -1.56476927e+00 -4.65094179e-01 -3.52594614e-01 2.50543654e-01 2.71234691e-01 -3.75025809e-01 2.40966365e-01 -7.17762053e-01 -3.32203329e-01 -1.04573049e-01 -7.31994748e-01 4.47070301e-02 -5.56625426e-01 -8.56233478e-01 -4.22455847e-01 4.08773214e-01 -1.29316843e+00 1.67237735e+00 -1.74570429e+00 6.82651460e-01 2.22616106e-01 1.70120984e-01 3.63148540e-01 -1.47919089e-01 7.10885048e-01 -1.44709677e-01 3.85825068e-01 -1.72891825e-01 -1.32745653e-01 -8.96587446e-02 9.19218510e-02 -1.69301733e-01 -1.45681780e-02 2.67689407e-01 8.55207145e-01 -9.55070734e-01 -7.39997208e-01 -3.45816702e-01 4.91791576e-01 -3.12541962e-01 2.04006165e-01 -2.33157814e-01 3.66587862e-02 -6.31196022e-01 2.20275626e-01 5.00555456e-01 -2.17544571e-01 7.37687409e-01 -9.34657633e-01 -6.71847016e-02 5.72165728e-01 -1.40305781e+00 1.80649757e+00 -2.87184656e-01 4.18840051e-01 -1.27065137e-01 -8.15348506e-01 9.29987133e-01 6.76813066e-01 2.20602944e-01 -4.68021721e-01 -1.34767056e-01 2.18456343e-01 -1.48096725e-01 -5.77389896e-01 7.55117834e-01 2.77896941e-01 -1.02310032e-01 3.28256100e-01 8.23556900e-01 5.79899669e-01 6.02969110e-01 7.50590324e-01 1.10915899e+00 2.52263516e-01 7.55802691e-01 -2.96074867e-01 7.35287964e-01 1.01766311e-01 4.29640621e-01 7.23957419e-01 2.94226527e-01 1.64378956e-01 7.85906672e-01 -4.48228978e-02 -8.07787776e-01 -8.50684226e-01 -1.11050785e-01 8.08412373e-01 5.10239042e-03 -5.44080615e-01 -6.87897325e-01 -1.05937731e+00 4.73373011e-02 8.96231771e-01 -7.40961909e-01 -1.59351677e-01 -6.81307912e-01 -7.00786769e-01 7.14419961e-01 7.06777155e-01 3.42426181e-01 -1.26070154e+00 -2.49230623e-01 2.83301592e-01 -5.31916738e-01 -1.07600713e+00 1.73609219e-02 4.32738394e-01 -6.31126463e-01 -1.07066321e+00 -6.26834810e-01 -6.61324978e-01 5.92475474e-01 -4.29585129e-01 1.23552382e+00 -5.32950573e-02 3.52789015e-02 7.54182816e-01 -3.25790882e-01 -1.61038086e-01 -2.49010712e-01 3.56904864e-01 -2.82733073e-03 -6.43000603e-02 3.73781711e-01 -2.39977568e-01 2.16410272e-02 -1.46475315e-01 -7.38282859e-01 -1.67184681e-01 7.06261694e-01 8.02879691e-01 3.56465459e-01 -7.51596168e-02 7.87381053e-01 -1.25028145e+00 6.09989285e-01 -7.02834070e-01 -2.60535389e-01 8.55867684e-01 -7.04221129e-01 4.91508514e-01 1.25610381e-01 -2.24107608e-01 -1.58724010e+00 -6.22239038e-02 1.31574258e-01 -1.39341205e-01 -1.01653591e-01 9.95145500e-01 -4.18983251e-01 2.11151347e-01 6.12222493e-01 -1.12987682e-01 -4.55809951e-01 -6.76154137e-01 6.65870011e-01 4.58823532e-01 6.19229019e-01 -8.60413313e-01 5.18860459e-01 -2.81327851e-02 -1.96816534e-01 -5.86351693e-01 -8.36450219e-01 -3.18858743e-01 -1.03455436e+00 4.60476354e-02 1.08044660e+00 -8.17095578e-01 -4.63116109e-01 -1.70390308e-01 -1.53953004e+00 1.81613371e-01 -2.14042529e-01 6.30708575e-01 -2.56746620e-01 3.24971288e-01 -4.34537351e-01 -7.62085974e-01 -3.13877821e-01 -6.74483955e-01 7.12603509e-01 3.93005669e-01 -2.42347538e-01 -1.02275777e+00 4.68519688e-01 3.89881194e-01 -2.42281854e-02 1.66321129e-01 1.26790512e+00 -1.36257458e+00 -5.34367025e-01 -2.36943439e-01 -5.88632464e-01 -1.49441227e-01 -9.25640017e-02 -6.72478601e-02 -9.91411090e-01 -7.27788955e-02 -7.96183169e-01 -2.57624954e-01 8.20345998e-01 -1.21717744e-01 3.51999223e-01 -4.13722873e-01 -8.49245489e-01 3.01704854e-02 1.69253659e+00 1.68002486e-01 8.41861188e-01 5.45549214e-01 6.74546480e-01 9.01338756e-01 3.59140456e-01 1.13881104e-01 5.38419187e-01 8.20143163e-01 2.09569469e-01 1.55514970e-01 -4.66723889e-01 -4.03528333e-01 9.51671079e-02 8.25667441e-01 -3.92477453e-01 -5.52750885e-01 -1.06808591e+00 8.95197988e-01 -2.00684547e+00 -9.16323483e-01 -1.48283780e-01 2.21085191e+00 1.06013060e+00 5.97617514e-02 -1.50289640e-01 -1.65331423e-01 8.89019728e-01 -5.32483533e-02 -1.26551300e-01 -5.28120957e-02 -3.36497188e-01 2.09693611e-01 4.11157489e-01 5.38666189e-01 -1.09730756e+00 7.95774877e-01 5.79047060e+00 6.61338508e-01 -5.13849199e-01 3.06999795e-02 -5.77230640e-02 4.16268438e-01 -4.59278673e-01 3.06176096e-01 -1.17340660e+00 8.80967975e-02 9.69516337e-01 -4.18102413e-01 1.25817269e-01 4.62350726e-01 -5.70357859e-01 -9.05746315e-03 -9.26579475e-01 3.99129331e-01 2.19078779e-01 -1.32346880e+00 4.40922678e-01 2.59726997e-02 5.26468754e-01 -1.57898590e-02 -5.74602723e-01 6.07638001e-01 4.92482424e-01 -7.06138372e-01 4.88074511e-01 1.08759236e+00 4.49498415e-01 -7.12570548e-01 1.21032310e+00 2.53232151e-01 -1.15774369e+00 9.03787538e-02 -3.15998256e-01 6.90576732e-01 2.10298166e-01 4.31612402e-01 -7.05384195e-01 1.36503291e+00 6.00110173e-01 4.53372985e-01 -6.60090089e-01 1.00495374e+00 -4.15343344e-01 3.00639659e-01 -2.44931161e-01 1.11492604e-01 3.14656571e-02 -3.72455269e-02 6.60708725e-01 1.58267784e+00 1.83235914e-01 2.10519880e-01 -1.00924648e-01 8.49619150e-01 -4.52754349e-01 5.22392213e-01 -6.80118918e-01 -4.56269413e-01 6.04314685e-01 1.36061907e+00 -5.02365768e-01 -5.04560173e-01 -5.39829135e-01 7.62656927e-01 8.41325402e-01 4.56805259e-01 -5.47069907e-01 -8.87512743e-01 1.46255344e-01 -2.08738849e-01 5.83269536e-01 1.76208511e-01 2.38893032e-01 -9.68033075e-01 -7.72384703e-02 -3.90056938e-01 7.33464062e-01 -9.07646120e-01 -1.02253318e+00 8.00768971e-01 2.34440625e-01 -7.56328106e-01 -1.54863834e-01 -3.30696464e-01 -4.09624130e-01 8.85458469e-01 -1.51835144e+00 -1.08022404e+00 -1.59149766e-01 3.57804716e-01 -1.13956422e-01 4.25173007e-02 9.44067955e-01 5.31840324e-01 -6.57213032e-01 5.26604235e-01 -1.22334488e-01 4.49206978e-01 7.03851104e-01 -1.32210243e+00 -1.99199572e-01 6.57220125e-01 3.92276198e-01 1.04156661e+00 6.22125745e-01 -9.31637645e-01 -1.15746021e+00 -9.46269631e-01 1.49665654e+00 -6.05513036e-01 5.85604131e-01 1.12696119e-01 -1.29031074e+00 1.03551948e+00 6.75455332e-01 -2.20270634e-01 5.68986475e-01 3.21986139e-01 -4.83934045e-01 1.94697037e-01 -1.19135201e+00 2.85975069e-01 1.03652298e+00 -4.55179960e-01 -1.16243184e+00 4.30683009e-02 7.94635653e-01 -1.01441316e-01 -1.34289229e+00 5.14048457e-01 4.25210327e-01 -4.66895342e-01 9.76062238e-01 -1.07212365e+00 2.83360004e-01 -3.42219263e-01 -9.01627615e-02 -1.20948982e+00 -4.81329381e-01 -2.63855845e-01 -3.69882971e-01 1.82699203e+00 7.77611911e-01 -3.35579276e-01 3.11455041e-01 4.77972597e-01 -3.30522694e-02 -2.70647466e-01 -8.63205552e-01 -5.14478028e-01 -8.58582184e-02 1.83286279e-01 2.72514284e-01 1.13493431e+00 4.60222811e-01 8.21245492e-01 -2.27751762e-01 4.99218732e-01 5.51658511e-01 -7.64275491e-02 5.21109939e-01 -1.63166201e+00 -8.54860544e-02 -2.11743459e-01 -1.76551223e-01 -5.72725475e-01 3.71752173e-01 -1.12768090e+00 -1.34355485e-01 -2.00311255e+00 3.60846609e-01 -2.72328943e-01 -4.72532094e-01 5.75934112e-01 -3.24740589e-01 -2.31053248e-01 1.15816996e-01 2.74507493e-01 -7.28933692e-01 3.61945063e-01 7.42411733e-01 -1.72402367e-01 -9.89835337e-02 -5.72252393e-01 -6.75663173e-01 5.91003776e-01 2.14726955e-01 -7.03236997e-01 -8.37370828e-02 -3.61256838e-01 5.81303298e-01 3.06893975e-01 -4.92106890e-03 -7.13562727e-01 6.83533072e-01 2.16862872e-01 2.03831330e-01 -3.69343221e-01 2.07786158e-01 -6.50255859e-01 2.16980994e-01 2.05000445e-01 -4.60268706e-01 -3.22038889e-01 4.09994155e-01 7.08956301e-01 -3.95154685e-01 -6.54939294e-01 3.38862270e-01 -6.01468496e-02 -7.85017669e-01 -1.82080686e-01 -6.45787120e-02 2.49770269e-01 6.28171086e-01 1.50569692e-01 -6.26900554e-01 -1.35958105e-01 -1.14348686e+00 1.85370177e-01 5.11132041e-03 2.52558887e-01 1.69466257e-01 -1.31065559e+00 -6.05890274e-01 -2.46950284e-01 4.29064691e-01 -2.41377890e-01 9.54481885e-02 9.45953667e-01 -1.04105502e-01 7.77319312e-01 -3.56228590e-01 -3.21376733e-02 -1.06351507e+00 7.55949080e-01 2.77894046e-02 -8.30091000e-01 -4.78629559e-01 6.62846267e-01 6.63833693e-02 -5.12504697e-01 3.74578834e-01 1.49177149e-01 -1.07354784e+00 5.95564187e-01 3.94642889e-01 4.25377309e-01 1.80032551e-01 -8.13449740e-01 -5.61463833e-01 5.95504522e-01 -3.22090894e-01 -1.16329759e-01 1.24985540e+00 -7.93249607e-02 -2.22178519e-01 1.50843486e-01 8.86987031e-01 4.09270197e-01 -4.77916837e-01 -4.74011391e-01 7.04426646e-01 1.48520052e-01 3.19028720e-02 -9.07984674e-01 -8.46726477e-01 5.66756070e-01 1.75173849e-01 1.50662124e-01 6.90055788e-01 3.15811038e-01 3.17946196e-01 6.96353436e-01 3.70378464e-01 -8.18078041e-01 -3.26138884e-01 4.16359693e-01 9.88302529e-01 -8.22922051e-01 1.99163049e-01 -4.95045274e-01 -6.80503607e-01 1.16922319e+00 5.74410379e-01 1.00310683e-01 5.96800268e-01 1.32221937e-01 -3.79346669e-01 -4.71745044e-01 -8.54729235e-01 -5.17183781e-01 6.03086233e-01 5.66618562e-01 5.84813178e-01 -3.37789774e-01 -6.96636975e-01 9.96922612e-01 3.39557439e-01 -1.98736787e-02 3.08455408e-01 8.28958154e-01 -4.13428605e-01 -9.58868384e-01 -1.26112685e-01 2.56796509e-01 -4.15988177e-01 -1.28524810e-01 -5.54346681e-01 1.02416039e+00 1.21291511e-01 6.47082567e-01 7.16537610e-02 -1.26504913e-01 5.47973990e-01 6.54905081e-01 5.13739944e-01 -5.56307793e-01 -6.47922993e-01 -2.14238510e-01 7.39250422e-01 -2.72478610e-01 -5.73475718e-01 -4.98251528e-01 -1.18110359e+00 2.63133883e-01 -6.60169899e-01 5.55326581e-01 5.81215024e-01 1.07022238e+00 4.76427644e-01 6.99460864e-01 2.00862903e-02 -5.06447196e-01 -1.04767904e-01 -1.23118901e+00 -4.45836395e-01 4.07403439e-01 -1.06146775e-01 -1.08121932e+00 -2.77737170e-01 8.66656899e-02]
[9.402067184448242, 8.694247245788574]
8f9b9392-38fe-4a3c-8d2f-ef1185861924
achieving-stable-subspace-clustering-by-post
1605.08680
null
http://arxiv.org/abs/1605.08680v1
http://arxiv.org/pdf/1605.08680v1.pdf
Achieving stable subspace clustering by post-processing generic clustering results
We propose an effective subspace selection scheme as a post-processing step to improve results obtained by sparse subspace clustering (SSC). Our method starts by the computation of stable subspaces using a novel random sampling scheme. Thus constructed preliminary subspaces are used to identify the initially incorrectly clustered data points and then to reassign them to more suitable clusters based on their goodness-of-fit to the preliminary model. To improve the robustness of the algorithm, we use a dominant nearest subspace classification scheme that controls the level of sensitivity against reassignment. We demonstrate that our algorithm is convergent and superior to the direct application of a generic alternative such as principal component analysis. On several popular datasets for motion segmentation and face clustering pervasively used in the sparse subspace clustering literature the proposed method is shown to reduce greatly the incidence of clustering errors while introducing negligible disturbance to the data points already correctly clustered.
['Duc-Son Pham', 'Svetha Venkatesh', 'Ognjen Arandjelovic']
2016-05-27
null
null
null
null
['face-clustering']
['computer-vision']
[ 4.21304822e-01 -3.24321032e-01 1.07932970e-01 -1.94687277e-01 -8.50424409e-01 -8.42159748e-01 5.40890217e-01 4.19923291e-02 -3.48634183e-01 3.95710468e-01 2.31172875e-01 -3.66402157e-02 -4.65301394e-01 -2.78791010e-01 -3.87780726e-01 -1.08234107e+00 8.18867683e-02 6.76400721e-01 2.25466952e-01 1.76712930e-01 2.77557582e-01 9.60590959e-01 -1.61350572e+00 6.89870268e-02 9.17479873e-01 4.84856963e-01 -2.71058325e-02 4.26698238e-01 2.14851294e-02 5.14543019e-02 -3.22298020e-01 1.91825643e-01 4.18603033e-01 -5.75631738e-01 -5.50197303e-01 6.78604186e-01 3.54367584e-01 1.55660734e-01 1.42187133e-01 1.12179136e+00 4.94203180e-01 4.71410334e-01 8.11902821e-01 -1.08677840e+00 3.47777665e-01 2.13693947e-01 -6.66865349e-01 6.33544698e-02 4.06649798e-01 -2.26137668e-01 4.73963231e-01 -1.11864126e+00 7.79680073e-01 1.14489102e+00 6.83301270e-01 3.64304423e-01 -1.80638874e+00 -5.29707611e-01 -1.23958655e-01 3.63379195e-02 -1.72157693e+00 -1.14736629e+00 1.08898640e+00 -4.58196521e-01 3.21092308e-01 6.04758322e-01 4.09977525e-01 6.71246052e-01 -5.73133111e-01 3.34480733e-01 9.05638337e-01 -4.55708295e-01 7.97280490e-01 1.84544876e-01 1.69071481e-01 3.38072151e-01 3.46324623e-01 -1.76534265e-01 -2.14029267e-01 -7.42900014e-01 6.67086959e-01 -2.35603154e-01 -2.22669035e-01 -1.23033273e+00 -1.15066779e+00 7.80712426e-01 1.06588222e-01 5.93841553e-01 -4.83490646e-01 -3.09451282e-01 1.07120626e-01 -1.61112949e-01 3.39046031e-01 3.12618464e-01 -1.59128189e-01 1.00994103e-01 -1.62584174e+00 1.61538690e-01 5.21258175e-01 7.12546706e-01 7.04533041e-01 1.98635017e-03 7.47483224e-02 9.17666197e-01 2.04177633e-01 3.26484740e-01 4.34758097e-01 -1.41886163e+00 -1.12294573e-02 5.49970508e-01 4.82969657e-02 -1.24228549e+00 -2.27869675e-01 -4.71321464e-01 -7.87421227e-01 7.66166002e-02 4.63725775e-01 9.63865891e-02 -8.29181373e-01 1.49244845e+00 7.88143218e-01 3.90380979e-01 -1.03739791e-01 7.49907374e-01 2.07971305e-01 4.13128674e-01 1.97685044e-02 -8.56218696e-01 6.78895950e-01 -3.57774824e-01 -5.57064652e-01 2.74803281e-01 3.85542989e-01 -8.89489353e-01 5.97084641e-01 5.36449552e-01 -9.68064427e-01 -5.66602767e-01 -7.92585850e-01 5.03588259e-01 6.82230815e-02 2.89427191e-01 3.57970089e-01 9.40467894e-01 -1.21708190e+00 7.03997552e-01 -9.59619343e-01 -5.55021465e-01 2.87177414e-01 7.12992370e-01 -4.97028828e-01 4.16369140e-02 -2.78790563e-01 1.88656032e-01 3.17277491e-01 -4.24865186e-02 -4.82043564e-01 -5.07255971e-01 -6.79789662e-01 -1.12889171e-01 1.91413835e-01 -4.67922866e-01 5.39325833e-01 -1.10827196e+00 -1.26496494e+00 6.75267577e-01 -6.87255323e-01 -1.57449871e-01 4.56328422e-01 7.01513663e-02 -2.45145574e-01 5.71711481e-01 2.68106490e-01 5.77594638e-01 1.35078049e+00 -1.64088142e+00 -3.12561244e-01 -5.35280049e-01 -8.90677691e-01 2.80428141e-01 -3.67099762e-01 1.42142564e-01 -8.15572798e-01 -6.65812433e-01 8.93065989e-01 -1.24541891e+00 -6.82217240e-01 -3.84756505e-01 -3.07926863e-01 6.94663301e-02 1.07877958e+00 -5.60460865e-01 1.28459752e+00 -2.41087008e+00 5.47294676e-01 9.70534503e-01 1.59376994e-01 1.04212545e-01 -8.80803391e-02 2.31591851e-01 -4.87595081e-01 -1.28249064e-01 -6.51180148e-01 -2.08246976e-01 -5.29114544e-01 -1.07576586e-02 -8.38219970e-02 9.33390021e-01 -1.25452727e-01 5.54808378e-02 -7.94615984e-01 -6.88083410e-01 3.50472122e-01 4.71674412e-01 -6.98175907e-01 1.25867784e-01 3.92702043e-01 5.08657277e-01 -2.65662581e-01 5.99994719e-01 7.96293080e-01 2.15293784e-02 4.14620578e-01 -3.03924114e-01 1.09942332e-02 -2.71128923e-01 -1.82849109e+00 1.56958783e+00 3.00605208e-01 3.50455284e-01 5.32909513e-01 -1.03907478e+00 7.80020595e-01 3.91292572e-01 1.18166971e+00 2.68207341e-01 1.11615250e-03 2.20632270e-01 -2.49722805e-02 -1.24838930e-02 3.82962644e-01 4.13790420e-02 2.74378777e-01 1.95405737e-01 -1.01325594e-01 2.24644784e-02 1.11927561e-01 4.33976054e-01 7.37810969e-01 4.35302518e-02 2.65131772e-01 -7.20316052e-01 8.81080687e-01 1.48758814e-01 5.96844375e-01 4.23257589e-01 -3.47364962e-01 8.71264577e-01 6.31952807e-02 1.29470304e-01 -1.03004801e+00 -1.08141088e+00 -4.22588050e-01 7.76752412e-01 6.56812415e-02 -3.78441483e-01 -1.08819544e+00 -6.30119383e-01 -5.29669747e-02 5.06511390e-01 -3.20857882e-01 -1.84265748e-02 -4.65762913e-01 -1.07909393e+00 7.03581199e-02 1.91594929e-01 1.71399400e-01 -6.65277660e-01 -3.72178644e-01 1.43275365e-01 -1.33984134e-01 -7.96083450e-01 -4.60257083e-01 1.10888951e-01 -1.30382538e+00 -1.10432756e+00 -7.09001601e-01 -6.57448709e-01 1.16289687e+00 6.61586463e-01 5.56393504e-01 -9.80780721e-02 4.64952737e-02 7.31956065e-01 -2.99094468e-01 4.89926398e-01 -5.16162395e-01 -9.96914208e-02 5.63996434e-01 4.09485400e-01 3.13774854e-01 -6.93927526e-01 -3.95344406e-01 3.93003255e-01 -8.11953306e-01 -3.84736300e-01 1.34388208e-01 6.22370124e-01 6.52409434e-01 4.48688686e-01 2.31545672e-01 -8.45039427e-01 5.78229368e-01 -4.90562886e-01 -4.19978738e-01 -1.24551512e-01 -6.79619431e-01 -1.20179683e-01 5.11980772e-01 -5.36892712e-01 -8.96668732e-01 8.73109162e-01 2.73451149e-01 -7.87201643e-01 -5.27412534e-01 1.88884139e-01 -2.96549290e-01 -4.13657010e-01 6.90012336e-01 2.82130569e-01 8.14961046e-02 -7.01955080e-01 3.94619256e-01 6.09776258e-01 7.40091443e-01 -5.12259007e-01 1.05562687e+00 5.98197043e-01 1.38521954e-01 -1.31459892e+00 7.39701092e-02 -1.04344356e+00 -1.23547983e+00 -2.80353427e-01 5.87545991e-01 -8.22264552e-01 -1.99312940e-01 1.86724558e-01 -8.23467135e-01 1.94063380e-01 -1.68363675e-01 3.16019118e-01 -4.51567739e-01 9.09400880e-01 -1.87611461e-01 -9.53429759e-01 2.98177842e-02 -1.03659260e+00 1.00115180e+00 -2.51825154e-02 -5.32959163e-01 -7.65873015e-01 3.94099057e-02 3.53845984e-01 2.50917245e-02 2.92939901e-01 7.00672090e-01 -6.72131121e-01 -2.19076991e-01 -1.56993210e-01 2.66507566e-01 1.14616692e-01 2.09800765e-01 2.20238104e-01 -9.72178578e-01 -7.88328648e-01 1.24199428e-01 3.30685675e-01 7.04665780e-01 5.89550912e-01 9.23275471e-01 -5.05988039e-02 -7.77316928e-01 7.43816495e-01 1.31500554e+00 4.21849787e-01 4.22626883e-01 1.55067533e-01 9.25282419e-01 9.06702340e-01 4.24808890e-01 3.24818134e-01 -2.27117807e-01 7.75391519e-01 -1.18209817e-01 -4.26741540e-02 1.00576699e-01 3.66148278e-02 2.99557447e-01 9.11812782e-01 3.83558236e-02 2.94090867e-01 -9.04815316e-01 7.42007375e-01 -1.90469539e+00 -1.05567253e+00 -3.88125509e-01 2.53375983e+00 3.91001910e-01 -2.49295428e-01 6.04953468e-01 6.36452258e-01 9.30879235e-01 -8.07172433e-02 -3.52802724e-01 -4.06255238e-02 -7.28281438e-02 -2.81010661e-02 4.08277839e-01 5.00518382e-01 -1.40616059e+00 8.33766699e-01 6.64458656e+00 7.89672673e-01 -7.40169764e-01 -2.27960810e-01 5.38356483e-01 -5.59335686e-02 -5.05408347e-02 1.30368009e-01 -4.36828911e-01 4.23061013e-01 8.61395836e-01 -2.31675562e-02 5.68330109e-01 7.92087436e-01 4.78963792e-01 -2.09498674e-01 -9.21012342e-01 1.11223257e+00 1.66438684e-01 -1.01597381e+00 8.02661628e-02 1.55870125e-01 8.21087360e-01 -4.85699713e-01 -1.22131202e-02 -3.44657928e-01 1.22968927e-02 -7.07742333e-01 3.63558322e-01 2.44105086e-01 6.08934700e-01 -9.32344973e-01 2.12347537e-01 2.69739777e-01 -1.11875200e+00 -8.39973167e-02 -2.23186806e-01 2.84902245e-01 -7.64716417e-02 5.30633330e-01 -9.29290712e-01 3.15164536e-01 5.83997309e-01 5.33170879e-01 -7.38928795e-01 1.16285408e+00 3.66138488e-01 7.43123293e-01 -5.65562129e-01 4.34763402e-01 4.04047817e-02 -8.30850542e-01 1.05538201e+00 1.12224758e+00 3.74009848e-01 2.10936099e-01 1.81841090e-01 5.89372635e-01 4.90880936e-01 2.88353354e-01 -7.11211503e-01 2.10220695e-01 6.72525764e-01 1.22065103e+00 -1.29050410e+00 -3.70266259e-01 -4.41376865e-02 1.18540955e+00 -1.27692744e-01 6.59997165e-01 -3.04328024e-01 -6.92059994e-02 5.41904330e-01 2.65660197e-01 4.66735393e-01 -4.82539773e-01 -4.31946516e-01 -1.04618716e+00 -1.68667689e-01 -1.00385070e+00 4.66209710e-01 -3.87143224e-01 -9.18977678e-01 5.06518424e-01 1.57267869e-01 -1.25827813e+00 -4.36336339e-01 -8.78898650e-02 -5.24563730e-01 7.18934774e-01 -5.94437778e-01 -8.43433082e-01 4.73793671e-02 9.03176844e-01 3.97612303e-01 -4.04435694e-01 6.62265539e-01 2.38597870e-01 -6.25757992e-01 3.44424725e-01 5.74820876e-01 -1.56876311e-01 6.35382295e-01 -1.08882773e+00 -2.04275832e-01 1.31072879e+00 2.77985990e-01 9.51171339e-01 9.45914686e-01 -8.43255758e-01 -1.17985535e+00 -9.72410023e-01 5.35393298e-01 -4.13412154e-01 3.56474340e-01 -2.93269068e-01 -1.04476011e+00 2.73740441e-01 -2.17478037e-01 -4.12802815e-01 8.34049284e-01 8.86067376e-02 3.94432470e-02 -6.28450960e-02 -1.36125028e+00 5.57845354e-01 8.09085011e-01 -3.84400725e-01 -5.32588422e-01 1.37747645e-01 1.15385778e-01 1.72786683e-01 -6.56167269e-01 4.80031997e-01 3.36991400e-01 -1.01049662e+00 1.19371092e+00 -3.95073235e-01 -1.99684158e-01 -7.53107369e-01 -3.48839045e-01 -1.06322026e+00 -7.09795177e-01 -9.20828104e-01 1.26573846e-01 1.33334947e+00 1.08361915e-01 -1.77473024e-01 1.28189600e+00 5.81589878e-01 2.25011125e-01 -1.56772345e-01 -1.14069605e+00 -5.21473706e-01 -2.64096260e-01 -2.00166836e-01 1.51385620e-01 1.26057971e+00 4.66109104e-02 1.82884723e-01 -8.34264979e-02 4.39058512e-01 1.23181832e+00 2.69428164e-01 7.75325894e-01 -1.36047626e+00 -1.59034684e-01 -3.41776192e-01 -3.91460508e-01 -6.54515564e-01 9.21791978e-03 -7.12591708e-01 -1.39790270e-02 -9.16547120e-01 1.78612813e-01 -4.39614624e-01 -2.05096722e-01 4.71140556e-02 -2.85222948e-01 4.11376506e-01 2.80204773e-01 5.85990489e-01 -4.09654021e-01 2.66267896e-01 6.33154213e-01 1.44836426e-01 -7.81106889e-01 1.88896969e-01 -5.23818731e-01 7.21123338e-01 4.38534170e-01 -4.77492929e-01 -4.68729049e-01 2.49956191e-01 -4.25612032e-01 1.99629858e-01 2.02876762e-01 -1.34884632e+00 2.43202716e-01 5.38646504e-02 7.04412937e-01 -6.47595763e-01 2.78737575e-01 -1.20785666e+00 6.38650298e-01 4.28309768e-01 -1.09725885e-01 -8.86982530e-02 1.13633104e-01 7.43037760e-01 -9.52372923e-02 -1.53110042e-01 1.05073738e+00 1.69047341e-01 -6.01813853e-01 5.60682565e-02 -5.91088116e-01 -5.62241137e-01 1.12398648e+00 -6.40686631e-01 6.10867858e-01 -4.49479997e-01 -1.11152101e+00 -3.78442183e-02 8.00409257e-01 -2.22741850e-02 5.11609912e-01 -1.33147097e+00 -4.57903624e-01 5.36818862e-01 -2.21298084e-01 -2.61459321e-01 1.14394259e-03 8.95577967e-01 -3.20367992e-01 3.40209842e-01 -1.19302440e-02 -9.33026969e-01 -1.75978565e+00 8.40116858e-01 1.18060715e-01 3.31951559e-01 -4.28007275e-01 5.46058953e-01 -1.37289062e-01 -2.40435943e-01 2.15401918e-01 8.96213576e-02 -2.92294800e-01 2.56261975e-01 1.29960209e-01 7.57336676e-01 3.12342588e-02 -1.17143798e+00 -5.79700410e-01 6.98307455e-01 2.98061848e-01 -3.46000791e-01 1.26087248e+00 -3.88318479e-01 -2.26083383e-01 2.95069665e-01 1.18378913e+00 3.08045000e-01 -1.17927301e+00 1.27389655e-01 2.53274888e-01 -5.93629479e-01 1.47785202e-01 -3.35978270e-01 -9.03345823e-01 4.47230279e-01 7.26434290e-01 1.23931125e-01 1.37686932e+00 -1.71468601e-01 3.11636746e-01 1.49040788e-01 3.12795341e-01 -1.06195724e+00 -4.04558510e-01 -1.55912517e-02 5.02973735e-01 -9.52873647e-01 1.61525026e-01 -6.88381612e-01 -4.09329385e-01 1.00423908e+00 2.41831020e-01 -2.44857922e-01 6.63378477e-01 8.37345608e-03 -1.09502114e-02 -1.21190749e-01 -1.70713469e-01 -3.87808084e-02 4.24860030e-01 7.09320843e-01 2.10587814e-01 -3.84770110e-02 -4.86949086e-01 1.96782425e-01 1.31232021e-02 -2.57896960e-01 3.93645853e-01 6.23981416e-01 -4.03110772e-01 -1.10752726e+00 -1.02021074e+00 3.23901415e-01 -1.66688770e-01 2.33631447e-01 -6.95460141e-01 5.01537263e-01 6.62090778e-02 1.18349814e+00 2.82248538e-02 -2.24002227e-01 1.97122041e-02 2.49654815e-01 3.44803631e-01 -3.51048827e-01 -4.06372428e-01 9.53856170e-01 -5.63729927e-03 -6.87566459e-01 -7.83915579e-01 -1.21897459e+00 -9.13398325e-01 -1.41191378e-01 -2.88572490e-01 4.90441382e-01 4.82479304e-01 6.57838166e-01 3.74566436e-01 8.02421793e-02 9.06166852e-01 -9.93432403e-01 -2.87256747e-01 -5.67074835e-01 -7.05067039e-01 6.70867383e-01 1.27169877e-01 -5.37579179e-01 -4.57363248e-01 4.62142974e-01]
[7.708306312561035, 4.452266216278076]
ff757cbc-ba96-4e35-9dea-5d0096ca3838
exploring-partial-intrinsic-and-extrinsic
2003.02294
null
https://arxiv.org/abs/2003.02294v2
https://arxiv.org/pdf/2003.02294v2.pdf
Exploring Partial Intrinsic and Extrinsic Symmetry in 3D Medical Imaging
We present a novel methodology to detect imperfect bilateral symmetry in CT of human anatomy. In this paper, the structurally symmetric nature of the pelvic bone is explored and is used to provide interventional image augmentation for treatment of unilateral fractures in patients with traumatic injuries. The mathematical basis of our solution is on the incorporation of attributes and characteristics that satisfy the properties of intrinsic and extrinsic symmetry and are robust to outliers. In the first step, feature points that satisfy intrinsic symmetry are automatically detected in the M\"obius space defined on the CT data. These features are then pruned via a two-stage RANSAC to attain correspondences that satisfy also the extrinsic symmetry. Then, a disparity function based on Tukey's biweight robust estimator is introduced and minimized to identify a symmetry plane parametrization that yields maximum contralateral similarity. Finally, a novel regularization term is introduced to enhance similarity between bone density histograms across the partial symmetry plane, relying on the important biological observation that, even if injured, the dislocated bone segments remain within the body. Our extensive evaluations on various cases of common fracture types demonstrate the validity of the novel concepts and the robustness and accuracy of the proposed method.
['Greg Osgood', 'Mathias Unberath', 'Javad Fotouhi', 'Mehran Armand', 'Giacomo Taylor', 'Nassir Navab', 'Alex Johnson', 'Sing Chun Lee']
2020-03-04
null
null
null
null
['novel-concepts']
['reasoning']
[ 2.82653153e-01 2.18263134e-01 -2.44135395e-01 -2.11820185e-01 -5.22305429e-01 -8.92864764e-02 1.31301254e-01 2.93280691e-01 -4.65042114e-01 5.91566682e-01 1.15984075e-01 1.88211903e-01 -6.31795526e-01 -5.27594745e-01 -5.88711560e-01 -8.33200812e-01 -1.86441779e-01 7.97047019e-01 2.45982736e-01 -1.32484660e-01 5.25044203e-01 8.72182667e-01 -1.72083151e+00 -6.72516823e-02 9.23994243e-01 8.70829880e-01 -1.12153152e-02 2.39039123e-01 1.61363453e-01 1.69870630e-01 -1.61210418e-01 -3.24767441e-01 6.08599305e-01 -4.36777443e-01 -7.69136906e-01 3.90772521e-01 2.33591393e-01 -1.61429182e-01 -4.92940806e-02 9.69734311e-01 5.78466058e-01 2.39728317e-01 1.05878496e+00 -9.85678077e-01 8.69220676e-05 2.17083022e-01 -8.88176858e-01 1.72518790e-01 3.40951890e-01 -2.04561725e-01 8.50689471e-01 -1.06541407e+00 7.61595249e-01 7.13889837e-01 5.41165233e-01 3.46026808e-01 -1.09533548e+00 -6.41144395e-01 -5.04863918e-01 6.72655702e-02 -1.57502258e+00 -2.43607581e-01 7.15054214e-01 -5.52074492e-01 3.21170151e-01 4.15796548e-01 8.03648591e-01 3.78146350e-01 6.44652903e-01 3.60641360e-01 9.50535655e-01 -4.81587768e-01 1.42420337e-01 -2.47042328e-01 -1.55603305e-01 8.74012470e-01 3.63828301e-01 1.39122233e-01 -5.51912487e-01 -1.96918219e-01 8.57849836e-01 1.03284732e-01 -2.82236278e-01 -9.34659898e-01 -8.79910409e-01 7.76338160e-01 4.13508028e-01 4.58011389e-01 -5.51745296e-01 -2.23966792e-01 3.86458099e-01 -2.98963338e-01 1.55572146e-01 2.32131913e-01 2.25588620e-01 1.16485171e-01 -8.07890952e-01 1.32893234e-01 4.23901856e-01 6.80065215e-01 4.77203041e-01 -1.74302995e-01 1.64971538e-02 7.62689233e-01 2.29952127e-01 3.82697731e-01 7.24362671e-01 -8.60753179e-01 2.21702427e-01 7.60297596e-01 -3.06753725e-01 -1.14274120e+00 -4.50445473e-01 -6.02109969e-01 -7.79323339e-01 3.29328239e-01 4.49804991e-01 3.04964155e-01 -7.81919003e-01 1.31841588e+00 5.65839946e-01 -2.04323456e-02 -2.88861692e-01 9.67029154e-01 4.29448545e-01 6.32624375e-03 -1.28448591e-01 -2.48330221e-01 1.36114550e+00 -3.16086859e-01 -5.39972782e-01 1.54505759e-01 4.06537503e-01 -6.19879901e-01 8.54719937e-01 3.55416119e-01 -1.21778464e+00 -1.13996536e-01 -9.67386246e-01 3.18607956e-01 2.05844983e-01 -2.76702065e-02 2.08922416e-01 6.54993534e-01 -5.07056415e-01 6.97766006e-01 -8.61283243e-01 -2.38238230e-01 1.37917325e-01 5.28624356e-01 -6.86615109e-01 1.74133196e-01 -7.37200320e-01 1.03365433e+00 3.19962561e-01 2.73407847e-01 -2.91758567e-01 -4.83829826e-01 -9.79751408e-01 1.74450502e-02 2.20660880e-01 -7.75233150e-01 7.22046793e-01 -6.81127369e-01 -1.37769949e+00 1.10450959e+00 -5.87757342e-02 -2.44501144e-01 8.36671770e-01 1.08736336e-01 4.10683788e-02 6.04389071e-01 2.73942024e-01 9.73589644e-02 6.60395443e-01 -1.35222757e+00 -4.28585827e-01 -8.76424611e-01 -6.11636579e-01 5.12810528e-01 1.15515348e-02 -1.44993842e-01 -4.73071307e-01 -5.59189498e-01 1.11766684e+00 -9.10814762e-01 -3.79292399e-01 2.88125407e-02 -3.49500835e-01 2.04827309e-01 4.54972386e-01 -8.08229327e-01 1.05147970e+00 -2.19866896e+00 2.34340370e-01 1.24722707e+00 2.47347504e-01 -3.63816619e-01 4.78551805e-01 1.74143359e-01 -2.89333284e-01 -2.05019802e-01 -6.60533786e-01 2.56637745e-02 -4.47124153e-01 2.41678149e-01 2.77363807e-01 1.05965340e+00 -2.12903678e-01 3.46882939e-01 -5.46307862e-01 -8.75383973e-01 1.03095315e-01 1.16080649e-01 -6.12878919e-01 -1.24670006e-01 4.90467608e-01 5.47721744e-01 -3.60166281e-01 4.70823228e-01 6.75784647e-01 1.66001752e-01 9.36268419e-02 -2.58943319e-01 -1.89436167e-01 -1.34477481e-01 -1.41935396e+00 1.43702304e+00 -1.32233918e-01 -8.16689506e-02 1.67713106e-01 -1.04430342e+00 1.09592855e+00 2.98001856e-01 1.17070091e+00 -5.89583695e-01 4.67967868e-01 5.99772096e-01 1.72790721e-01 -5.37612915e-01 3.22418451e-01 -5.37194967e-01 2.31411502e-01 3.17908406e-01 -4.04364727e-02 -3.98993224e-01 2.32534349e-01 -1.12913743e-01 5.33636987e-01 -1.03572845e-01 5.41353822e-01 -5.59530079e-01 7.07572937e-01 -1.74838260e-01 5.96896470e-01 3.84941101e-01 -9.12264809e-02 9.35855031e-01 2.55109131e-01 -1.96685880e-01 -1.03039396e+00 -1.16530335e+00 -5.78881562e-01 3.25639933e-01 3.85912180e-01 1.34820923e-01 -6.88502192e-01 -2.13108003e-01 1.06380560e-01 2.31951222e-01 -6.19489074e-01 -2.59305596e-01 -8.08058798e-01 -8.40794683e-01 3.88544619e-01 3.24172914e-01 2.28653416e-01 -6.98320031e-01 -9.89306867e-01 3.40904742e-02 -3.46589118e-01 -6.92115009e-01 -1.76588148e-01 1.68322831e-01 -1.22748065e+00 -1.29084027e+00 -8.77103746e-01 -7.37406850e-01 9.94035363e-01 -5.76735958e-02 4.92183566e-01 3.99095863e-01 -7.32509494e-01 2.89611459e-01 -2.35584036e-01 5.18599302e-02 -2.90760249e-01 -2.68494636e-01 9.53697264e-02 1.35036021e-01 -1.20150089e-01 -5.47115743e-01 -7.37606585e-01 5.21065593e-01 -8.41967046e-01 -2.32586160e-01 6.76534057e-01 8.61055791e-01 7.83253253e-01 1.31957024e-01 9.62882116e-02 -5.61392009e-01 3.72959793e-01 -3.09886009e-01 -3.56875628e-01 -2.01130938e-02 -4.53407407e-01 1.51392937e-01 6.23887926e-02 -1.49097323e-01 -1.05855763e+00 2.58106500e-01 -1.10462680e-01 -2.23238334e-01 5.92532242e-03 4.88802224e-01 -4.08314727e-02 -3.25070560e-01 6.75731480e-01 2.66591311e-01 5.51223695e-01 -1.10912353e-01 2.93705408e-02 4.03893650e-01 8.50517929e-01 -7.14787424e-01 7.32057393e-01 9.69688654e-01 4.76678610e-01 -9.47219968e-01 -3.10308069e-01 -9.25912917e-01 -8.15302253e-01 -4.04474914e-01 7.64156461e-01 -2.94789135e-01 -8.17369640e-01 1.19757578e-01 -7.00834751e-01 3.90811980e-01 -4.68834579e-01 1.02435648e+00 -9.90099072e-01 9.51716840e-01 -5.79582095e-01 -7.72118509e-01 -5.16325176e-01 -1.20065105e+00 7.82303929e-01 6.46502227e-02 -2.89285779e-01 -6.94711328e-01 1.17207214e-01 3.01317155e-01 -4.69635725e-02 3.43051910e-01 1.06181991e+00 -6.81660950e-01 -1.55806184e-01 -4.25362796e-01 3.93800996e-02 1.55056596e-01 1.26237720e-01 1.65201634e-01 -3.77788275e-01 -6.66498616e-02 3.71642947e-01 1.98276058e-01 4.65008438e-01 6.06015623e-01 9.26458538e-01 2.23099232e-01 -3.63243967e-01 6.58268392e-01 1.42746890e+00 1.93820655e-01 6.36985064e-01 4.65610504e-01 2.00123519e-01 8.39608967e-01 7.30935931e-01 7.07287848e-01 -6.25461563e-02 5.66008747e-01 6.70006394e-01 -1.78113148e-01 1.11136332e-01 -2.09334102e-02 -1.68523371e-01 7.47291565e-01 -4.88037497e-01 3.02384555e-01 -9.77257311e-01 5.85212588e-01 -1.45039773e+00 -8.80660594e-01 -4.77894574e-01 2.56999302e+00 5.52657604e-01 2.13748470e-01 9.47914273e-02 4.19181168e-01 9.29389775e-01 -5.50018191e-01 -1.10605925e-01 -2.12060675e-01 3.05601154e-02 4.62612838e-01 6.96682870e-01 4.91269290e-01 -7.90148616e-01 3.40748817e-01 6.20817184e+00 7.20016479e-01 -9.36832607e-01 -2.11695641e-01 1.33336484e-01 3.44329596e-01 -2.21387565e-01 2.34172270e-02 -4.86131579e-01 2.61006206e-01 2.48738766e-01 -1.68196455e-01 -1.76797614e-01 6.23885334e-01 2.15089694e-01 -6.15492225e-01 -6.77410364e-01 7.77566910e-01 3.16057593e-01 -9.16505218e-01 -2.14369763e-02 2.63721675e-01 4.76048112e-01 -4.25015867e-01 1.88591987e-01 -3.18679422e-01 -2.80032843e-01 -7.53384352e-01 5.68599880e-01 4.88425910e-01 6.10026300e-01 -8.60804260e-01 9.54308093e-01 3.07680786e-01 -1.09872746e+00 -6.45790547e-02 -2.02492550e-01 2.28355840e-01 4.05688912e-01 4.63427663e-01 -1.03010976e+00 9.18383777e-01 5.67679584e-01 1.91295654e-01 -3.39452624e-01 1.56061339e+00 2.75532226e-03 -4.39169779e-02 -5.56797445e-01 4.09839630e-01 -2.50589512e-02 -5.75920343e-01 7.19751358e-01 6.96775258e-01 5.00021338e-01 4.01482224e-01 -1.16383173e-01 5.07140934e-01 4.10896003e-01 8.11554492e-01 -5.75187445e-01 6.62547171e-01 1.74614966e-01 9.09584701e-01 -1.16102886e+00 -1.12300508e-01 -1.71023995e-01 6.97411954e-01 -2.26310901e-02 -8.39460194e-02 -5.73470056e-01 -1.03667259e-01 9.31765735e-02 4.29741025e-01 -3.95036824e-02 -6.62845224e-02 -5.92744887e-01 -9.49666917e-01 1.42580390e-01 -7.02434003e-01 7.03678489e-01 -4.02524412e-01 -9.53833640e-01 3.15842062e-01 2.23405048e-01 -1.44025064e+00 -2.65826046e-01 -4.58905131e-01 -6.55272126e-01 5.52952886e-01 -7.45278776e-01 -9.19783413e-01 -2.83151895e-01 7.91754305e-01 2.41637528e-01 1.18840501e-01 5.86799741e-01 2.46115416e-01 -2.61375993e-01 3.52366179e-01 7.79841393e-02 -6.90859370e-03 5.37528217e-01 -1.04242730e+00 -4.63119328e-01 7.71824121e-01 -4.02446866e-01 6.91499174e-01 9.00955260e-01 -1.01412392e+00 -8.44826400e-01 -3.51415843e-01 7.39173114e-01 4.87219132e-02 4.40572351e-01 -1.92896705e-02 -7.53580451e-01 5.80608428e-01 -3.40383023e-01 -2.01386943e-01 7.65299380e-01 -2.93588102e-01 1.27010971e-01 3.46256047e-02 -1.33926475e+00 6.20374918e-01 7.00700223e-01 4.67807008e-03 -8.50302815e-01 2.07203209e-01 -1.99245304e-01 -5.88123202e-01 -1.04183710e+00 8.16874683e-01 7.70554781e-01 -1.07748973e+00 1.11073053e+00 -3.85857075e-01 2.16003641e-01 -2.44662672e-01 -1.58617850e-02 -7.16724992e-01 8.80242512e-02 -3.03914756e-01 6.36458337e-01 7.53996909e-01 1.26412302e-01 -4.10719365e-01 1.10710275e+00 3.88599128e-01 -3.95596772e-01 -6.56569719e-01 -1.33756173e+00 -7.27461696e-01 2.98060812e-02 1.58970244e-02 8.51641670e-02 6.88293397e-01 4.13728207e-01 -3.11306834e-01 -9.19079632e-02 1.93072230e-01 8.24443161e-01 9.28149074e-02 6.39560461e-01 -1.30535781e+00 -1.68286964e-01 -3.71513635e-01 -7.53568828e-01 -5.11253715e-01 -5.78432083e-02 -9.29029405e-01 2.12756649e-01 -1.16955566e+00 2.67427564e-01 -4.69617248e-01 -5.61639294e-02 -1.06636941e-01 1.64289206e-01 3.45670789e-01 -1.39642030e-01 3.80866051e-01 1.92998320e-01 6.41653776e-01 1.45965230e+00 3.16203207e-01 -1.76223367e-01 3.70382100e-01 -1.54046491e-01 1.00995755e+00 6.34766161e-01 -5.05973399e-01 -1.26864344e-01 1.43339336e-01 -1.15391158e-01 3.16956222e-01 2.02746496e-01 -1.09200823e+00 1.73786655e-01 -1.11486532e-01 2.51021355e-01 -6.94167435e-01 3.76642764e-01 -1.15640092e+00 2.63257027e-01 1.02526450e+00 9.25909542e-03 1.86866373e-01 -2.70160019e-01 3.68683815e-01 -2.73689777e-01 -6.77666306e-01 1.12488508e+00 -1.00033991e-01 -2.69874364e-01 2.09841564e-01 -3.56129527e-01 -7.32289329e-02 1.19617009e+00 -6.79153621e-01 3.56348485e-01 -2.83827215e-01 -1.07471955e+00 -1.46000236e-01 5.09906888e-01 -2.05161422e-01 7.87248552e-01 -1.10989070e+00 -5.60116947e-01 3.88241976e-01 1.44595876e-01 -7.63357431e-02 3.90316188e-01 1.39122522e+00 -1.06004512e+00 1.83194689e-02 -6.80431724e-01 -9.94615078e-01 -1.39643967e+00 3.11914504e-01 5.33258200e-01 -1.35172576e-01 -7.83958197e-01 5.19178629e-01 2.34770343e-01 -3.07225674e-01 -3.44711393e-02 -2.17820987e-01 -2.79456526e-01 -8.41967091e-02 1.25648072e-02 5.81705928e-01 3.34100783e-01 -1.10909224e+00 -2.85458028e-01 8.73938739e-01 2.72584587e-01 -2.48650193e-01 1.15691876e+00 -2.31269374e-01 -2.08455354e-01 5.24016730e-02 1.02259958e+00 3.08218628e-01 -8.42758954e-01 -9.84114781e-02 4.27702628e-02 -6.46924615e-01 -4.08429563e-01 -1.05908766e-01 -9.98080552e-01 6.09750092e-01 6.58451796e-01 -3.07062894e-01 9.29458678e-01 2.69234143e-02 4.18867826e-01 -1.23377435e-01 2.73422390e-01 -1.07282293e+00 -3.97866853e-02 9.33131203e-02 8.64419103e-01 -7.32984364e-01 1.95022851e-01 -9.11328018e-01 -5.52029550e-01 1.27194393e+00 5.26414454e-01 -3.45681101e-01 5.92166483e-01 1.56934440e-01 -1.48449481e-01 -3.61789972e-01 1.14695571e-01 -2.19255775e-01 3.23912442e-01 4.56373960e-01 3.16052973e-01 -1.57607019e-01 -1.10330534e+00 2.40217343e-01 -5.27082264e-01 -3.30897152e-01 4.95354623e-01 1.06346977e+00 -7.07035482e-01 -7.42990971e-01 -6.96978509e-01 2.95559347e-01 -6.96013808e-01 3.22695434e-01 1.82483941e-02 1.23200715e+00 1.02277786e-01 5.09987831e-01 7.74204135e-02 1.36844531e-01 4.75969970e-01 -9.24947411e-02 6.31913483e-01 -5.57930768e-01 -4.56244677e-01 4.12001967e-01 -2.53950387e-01 -4.65955347e-01 -3.65288556e-01 -8.23968291e-01 -1.57674694e+00 9.62938145e-02 -5.49150586e-01 3.91795784e-01 8.26986313e-01 1.08802855e+00 -3.47555101e-01 1.25205517e-01 4.60926324e-01 -7.24861145e-01 -6.00880444e-01 -5.78078806e-01 -9.41086888e-01 7.41331160e-01 -6.25628326e-03 -1.09722745e+00 -4.50190187e-01 -2.59436257e-02]
[13.982754707336426, -2.625553607940674]
b4c1364f-e1ce-4297-b480-dbc86722fb17
gabor-barcodes-for-medical-image-retrieval
1605.04478
null
http://arxiv.org/abs/1605.04478v1
http://arxiv.org/pdf/1605.04478v1.pdf
Gabor Barcodes for Medical Image Retrieval
In recent years, advances in medical imaging have led to the emergence of massive databases, containing images from a diverse range of modalities. This has significantly heightened the need for automated annotation of the images on one side, and fast and memory-efficient content-based image retrieval systems on the other side. Binary descriptors have recently gained more attention as a potential vehicle to achieve these goals. One of the recently introduced binary descriptors for tagging of medical images are Radon barcodes (RBCs) that are driven from Radon transform via local thresholding. Gabor transform is also a powerful transform to extract texture-based information. Gabor features have exhibited robustness against rotation, scale, and also photometric disturbances, such as illumination changes and image noise in many applications. This paper introduces Gabor Barcodes (GBCs), as a novel framework for the image annotation. To find the most discriminative GBC for a given query image, the effects of employing Gabor filters with different parameters, i.e., different sets of scales and orientations, are investigated, resulting in different barcode lengths and retrieval performances. The proposed method has been evaluated on the IRMA dataset with 193 classes comprising of 12,677 x-ray images for indexing, and 1,733 x-rays images for testing. A total error score as low as $351$ ($\approx 80\%$ accuracy for the first hit) was achieved.
['Hamid. R. Tizhoosh', 'Ershad Banijamali', 'Mina Nouredanesh']
2016-05-14
null
null
null
null
['medical-image-retrieval', 'medical-image-retrieval']
['computer-vision', 'medical']
[ 2.94423074e-01 -4.08439845e-01 -1.61286723e-02 -3.09393853e-01 -1.22677815e+00 -2.81028986e-01 5.02272308e-01 6.67236269e-01 -6.13302290e-01 6.44746184e-01 -1.25723600e-01 7.55383149e-02 -6.16751432e-01 -9.30913925e-01 -1.84304953e-01 -1.18847120e+00 -1.21446103e-01 2.95743912e-01 6.14482880e-01 9.98966172e-02 6.11432672e-01 8.28747749e-01 -1.73015451e+00 2.18516916e-01 5.15801013e-01 1.29048622e+00 3.37224573e-01 5.02702713e-01 -1.28709093e-01 5.32470405e-01 -6.49187386e-01 -2.96468467e-01 -4.65447754e-02 -3.22851866e-01 -6.87241852e-01 2.18254879e-01 -1.04101144e-01 6.24596961e-02 -2.07585886e-01 1.04072046e+00 6.89724445e-01 1.00521207e-01 8.18665981e-01 -4.14840639e-01 -5.23720980e-01 6.47140369e-02 -5.46238720e-01 4.97898817e-01 2.51252621e-01 -2.25467354e-01 6.51129186e-01 -8.53623807e-01 6.23778343e-01 8.19045424e-01 4.23124194e-01 9.88958254e-02 -8.42787325e-01 -2.18494624e-01 -7.49479473e-01 4.66249168e-01 -1.59824443e+00 -1.78503171e-01 6.77283704e-01 -4.37865406e-01 7.28237569e-01 5.68456292e-01 4.05046880e-01 4.89363819e-01 5.49568415e-01 1.50868520e-01 1.56366777e+00 -7.08666027e-01 2.36548215e-01 1.91358551e-01 1.34292200e-01 9.36596096e-01 3.53111774e-01 -1.02643438e-01 -3.53544623e-01 -4.09906447e-01 6.27327442e-01 1.22898735e-01 -9.70537588e-02 -9.79582965e-02 -8.79094064e-01 8.16716373e-01 3.42519104e-01 6.92743182e-01 -5.37131548e-01 -1.49018347e-01 3.60511929e-01 -2.06852674e-01 3.27025563e-01 2.20631465e-01 2.19696034e-02 -1.15048304e-01 -4.15151983e-01 2.17764899e-02 3.09102207e-01 4.77074504e-01 4.41250056e-01 -3.02207500e-01 -3.28856945e-01 1.19693005e+00 2.53191739e-01 8.01504493e-01 7.58214593e-01 -2.83773839e-01 1.85708538e-01 5.88006854e-01 -1.42287880e-01 -1.61259198e+00 -4.94275033e-01 -2.66484767e-01 -8.11326325e-01 -1.53219342e-01 2.83437222e-01 6.64653063e-01 -1.11380744e+00 1.09820902e+00 3.37062627e-01 -3.01755130e-01 -7.38849640e-02 8.05377543e-01 8.15923035e-01 5.41800976e-01 9.66258049e-02 -2.33250916e-01 1.96656418e+00 -2.76292145e-01 -6.00984156e-01 2.43430391e-01 3.73289526e-01 -1.32049358e+00 7.83956468e-01 3.61967415e-01 -8.20470393e-01 -5.17715514e-01 -1.00619638e+00 2.76648164e-01 -6.35734737e-01 3.58431071e-01 3.60316515e-01 8.38971138e-01 -7.96187878e-01 2.58645594e-01 -8.80790055e-01 -3.45755279e-01 2.21530184e-01 3.48450065e-01 -3.63416076e-01 -2.50099421e-01 -9.75594342e-01 8.56102407e-01 3.19054067e-01 1.84484452e-01 -2.76659906e-01 1.23942293e-01 -5.58898509e-01 1.09578692e-03 1.07354969e-01 -4.98842485e-02 5.36812305e-01 -2.38340154e-01 -1.11440933e+00 1.14543426e+00 1.02028809e-01 -3.08921129e-01 1.28334299e-01 1.91439942e-01 -6.77119195e-01 7.15002298e-01 2.36802652e-01 2.58510947e-01 7.01801002e-01 -8.47564936e-01 -4.66537684e-01 -6.89953983e-01 -3.78941745e-01 1.58873647e-01 -3.74494255e-01 2.71909297e-01 -5.51888764e-01 -6.77980483e-01 4.58541751e-01 -8.53310883e-01 9.13388431e-02 -3.97374988e-01 -1.61727637e-01 -2.59134471e-01 6.68581128e-01 -7.54195333e-01 1.18303490e+00 -2.14392138e+00 -3.14729124e-01 6.12075746e-01 -2.01426461e-01 3.43216687e-01 2.25070536e-01 3.56861293e-01 1.67297833e-02 -6.48382679e-02 -1.68820709e-01 8.75792578e-02 -3.71781498e-01 2.72198200e-01 -5.77154346e-02 5.62232435e-01 1.31468862e-01 3.45474124e-01 -5.03839195e-01 -9.69492555e-01 4.48762059e-01 6.73096180e-01 -1.75335810e-01 1.62405986e-02 3.62724334e-01 3.96158397e-01 -7.68975437e-01 8.59251857e-01 5.24024546e-01 -2.31961712e-01 -1.37327835e-01 -3.49757046e-01 -7.35459551e-02 -2.99677014e-01 -1.04117167e+00 1.27475691e+00 -2.48272091e-01 2.32577428e-01 -3.23521823e-01 -1.15955460e+00 1.36651897e+00 4.65188235e-01 8.55352998e-01 -1.21532452e+00 2.91946143e-01 5.18862426e-01 -2.54937708e-01 -8.12209129e-01 4.67665911e-01 6.84749102e-03 -1.36717603e-01 1.04174279e-01 -1.37316138e-01 -8.83207098e-02 4.00829852e-01 -2.58051693e-01 1.05266023e+00 -2.83716917e-01 4.61615026e-01 -2.03815117e-01 9.52692807e-01 1.14312442e-03 2.16012597e-01 6.11568391e-01 2.45767534e-02 6.31914020e-01 1.48331979e-02 -7.07266629e-01 -8.38614106e-01 -8.44005227e-01 -6.71777725e-01 6.05049968e-01 3.09663713e-01 -6.39071912e-02 -6.41764820e-01 -1.52290255e-01 -2.85319567e-01 -1.70086566e-02 -3.56989413e-01 -7.65754059e-02 -6.86287045e-01 -1.21360385e+00 5.66349626e-01 8.69283900e-02 8.13500941e-01 -1.13340259e+00 -1.01879859e+00 1.79622963e-01 -1.69936359e-01 -1.08696711e+00 -2.21353211e-03 1.97769418e-01 -8.33151937e-01 -1.35921872e+00 -9.18750107e-01 -7.30505943e-01 8.41193557e-01 1.18958250e-01 8.26678753e-01 2.13720471e-01 -1.10885990e+00 4.11224395e-01 -6.24770463e-01 -5.50522096e-02 -2.54524171e-01 -2.80558523e-02 -2.66384333e-01 1.45477653e-01 2.05436066e-01 2.06450522e-02 -7.80192316e-01 4.79772568e-01 -1.23536396e+00 -3.76384020e-01 8.19535971e-01 1.06305170e+00 9.22155917e-01 2.50590086e-01 3.35669845e-01 -7.64154851e-01 5.09035587e-01 -1.28378406e-01 -7.29463637e-01 3.46261233e-01 -5.05882382e-01 -1.69314761e-02 4.61195350e-01 -6.67207222e-03 -8.82818758e-01 -2.21373051e-01 -3.18004191e-01 2.01777935e-01 -2.05339387e-01 6.55379653e-01 3.66369128e-01 -3.58957678e-01 7.17287183e-01 4.29604948e-01 -5.66082671e-02 -3.85799885e-01 -7.26695508e-02 8.66659105e-01 4.80990142e-01 -6.61350250e-01 5.29731750e-01 5.49908340e-01 2.89659202e-01 -1.16537702e+00 -4.67246383e-01 -7.51150370e-01 -3.37640882e-01 -2.63433397e-01 1.07857573e+00 -4.92874146e-01 -6.51085734e-01 5.41773915e-01 -9.13950145e-01 4.34618920e-01 -2.91137560e-03 7.44691968e-01 -3.35723281e-01 4.49341238e-01 -5.42338014e-01 -7.50593007e-01 -4.90005761e-01 -1.47991812e+00 9.98446107e-01 5.46550095e-01 2.13652402e-01 -6.84378445e-01 -2.51496695e-02 4.57688093e-01 5.42514443e-01 3.18360180e-01 1.12352753e+00 -6.45449877e-01 -5.99408567e-01 -6.60934627e-01 -4.55965728e-01 2.57471591e-01 2.97785848e-01 -2.37472162e-01 -7.54471123e-01 -2.30981782e-01 1.56915247e-01 -2.30119571e-01 5.30298114e-01 3.47012699e-01 1.17436326e+00 2.65430957e-02 -3.86891007e-01 3.50764185e-01 1.60163057e+00 8.89614642e-01 8.35732162e-01 4.95548904e-01 2.37485692e-01 1.70095608e-01 9.30891275e-01 5.46221316e-01 -1.52557343e-01 7.21060455e-01 2.48728558e-01 -2.81453252e-01 -6.66570663e-02 3.37506592e-01 -3.42420548e-01 9.22197878e-01 -4.12610978e-01 -2.93847919e-02 -9.31187630e-01 2.36564279e-01 -1.22283757e+00 -8.10521841e-01 2.33851045e-01 2.23134494e+00 6.56310737e-01 9.14040655e-02 -1.35980457e-01 4.43681777e-01 8.26637208e-01 1.31869122e-01 -7.98348039e-02 -6.73966482e-02 -1.39722871e-02 8.08509827e-01 6.91690207e-01 1.61858633e-01 -1.23279881e+00 4.82203841e-01 5.49568033e+00 1.06526423e+00 -1.33849251e+00 -1.08951684e-02 8.32013965e-01 5.63548923e-01 8.09140056e-02 -1.45259932e-01 -6.90499425e-01 5.56813061e-01 5.48192561e-01 2.87519515e-01 -7.50407577e-03 6.82658076e-01 1.33542577e-02 -5.79990506e-01 -1.18698716e-01 1.19583452e+00 2.69268721e-01 -1.15543854e+00 -1.12915806e-01 1.86138794e-01 3.25508118e-01 -2.65650243e-01 2.54982024e-01 -1.60875246e-01 -4.62428868e-01 -8.44717205e-01 3.80036205e-01 6.84960127e-01 8.67508769e-01 -7.47479320e-01 1.09577847e+00 -6.04293607e-02 -1.12939692e+00 -4.86142049e-03 -4.38188493e-01 5.16254127e-01 -1.92066371e-01 5.43335378e-01 -9.03170466e-01 6.60073876e-01 7.50579000e-01 2.51012780e-02 -7.20060945e-01 1.22980559e+00 3.28598946e-01 2.81765878e-01 -4.10532981e-01 -2.39878431e-01 1.63617402e-01 -2.81435907e-01 1.90487429e-01 1.14110756e+00 5.50704777e-01 2.63966203e-01 4.23761420e-02 2.25711837e-01 2.10715249e-01 5.66603422e-01 -5.07660568e-01 -7.96825141e-02 4.76874590e-01 1.31337082e+00 -1.49671352e+00 -2.10030273e-01 -2.99193442e-01 6.47915363e-01 -2.01084226e-01 1.16856366e-01 -7.70348132e-01 -7.64967918e-01 -1.10325158e-01 1.84100613e-01 2.74933845e-01 -2.41502345e-01 1.91461548e-01 -6.64481461e-01 2.78077070e-02 -6.86124384e-01 6.72850132e-01 -5.59068143e-01 -9.07348633e-01 8.23088109e-01 1.54126972e-01 -1.26041114e+00 -8.09803233e-02 -7.25774646e-01 5.57272024e-02 7.72544265e-01 -1.37776697e+00 -9.34056699e-01 -4.89740700e-01 6.91783011e-01 2.33793497e-01 -2.63954282e-01 1.01666212e+00 5.43432534e-01 -1.80798292e-01 2.54414827e-01 3.86405945e-01 1.46427378e-01 6.13407135e-01 -8.73326600e-01 -3.95462841e-01 5.83767116e-01 2.39518613e-01 4.72067684e-01 4.71548885e-01 -4.05750334e-01 -1.27784455e+00 -4.99399990e-01 6.71699643e-01 3.85236554e-02 2.01672763e-01 1.08083218e-01 -7.52443731e-01 -1.42024636e-01 -2.77092278e-01 3.37183923e-01 6.55651629e-01 -5.14258802e-01 -9.50824022e-02 -3.93811166e-01 -1.34693050e+00 1.43779784e-01 4.75458473e-01 -6.19033873e-01 -2.20392525e-01 3.68900090e-01 2.12058350e-02 -5.78536212e-01 -1.24717665e+00 5.44121683e-01 4.91623074e-01 -1.10169816e+00 1.24281192e+00 3.42053473e-02 -2.46263072e-02 -3.75914127e-01 -2.41711870e-01 -6.65193856e-01 -9.06688273e-02 5.53897880e-02 5.40712953e-01 9.24735248e-01 -5.36971092e-02 -7.33991325e-01 6.51481986e-01 1.95060030e-01 -1.03433952e-01 -8.69621694e-01 -1.17144883e+00 -5.20611227e-01 -5.49751401e-01 4.39461544e-02 2.67173737e-01 6.03265464e-01 -2.41531640e-01 -1.02573164e-01 -1.02770381e-01 -1.57683017e-03 4.78336930e-01 4.49514836e-02 3.50880951e-01 -1.01514387e+00 -2.01982632e-01 -4.01384324e-01 -1.02939951e+00 -4.05750871e-01 -5.33767402e-01 -7.21609056e-01 -3.20125483e-02 -1.33675063e+00 1.58916965e-01 -7.80232549e-01 -4.47477132e-01 2.96887279e-01 3.33726816e-02 8.16491783e-01 -4.88169491e-02 5.21293819e-01 -3.00212950e-01 1.34097844e-01 1.06352317e+00 -1.23504519e-01 1.41357630e-01 7.62374401e-02 -1.84110016e-01 5.54027140e-01 5.91680646e-01 -5.28320909e-01 -2.09398970e-01 1.14983534e-02 1.37549520e-01 2.84919024e-01 2.26575330e-01 -1.20542037e+00 1.99128538e-01 6.95304200e-02 4.53955978e-01 -6.73257113e-01 4.75730002e-01 -8.18169951e-01 2.93235421e-01 6.73012376e-01 -1.39881209e-01 3.32530588e-01 -2.23717559e-02 4.80932325e-01 -6.78467631e-01 -5.84327459e-01 8.50916803e-01 -1.14019983e-01 -7.35280514e-01 1.60718352e-01 -1.61284700e-01 -3.73031914e-01 1.12473345e+00 -3.52702588e-01 -3.02145720e-01 2.05390200e-01 -6.71731055e-01 -4.90535468e-01 1.13509350e-01 1.00604191e-01 7.59264648e-01 -1.19975293e+00 -2.89231539e-01 3.05139422e-01 3.40637416e-01 -2.24997014e-01 4.07695889e-01 8.71136665e-01 -1.04300690e+00 6.28921032e-01 -2.01282859e-01 -7.40044892e-01 -1.64252019e+00 2.17359662e-01 4.34343927e-02 -4.90359426e-01 -5.17852247e-01 5.32116592e-01 -3.35662276e-01 2.43208602e-01 -4.17323485e-02 -2.31883883e-01 -5.00975072e-01 5.98858595e-02 4.21454757e-01 2.57863671e-01 6.14429235e-01 -8.40430140e-01 -4.32402968e-01 1.12418616e+00 -1.24669120e-01 -1.29340887e-01 1.15050662e+00 3.94843556e-02 -1.55853465e-01 1.15144670e-01 1.28339922e+00 3.32321413e-02 -3.16887856e-01 -2.57042021e-01 3.03067267e-01 -6.93579674e-01 -1.58509359e-01 -6.55932844e-01 -9.01424587e-01 6.62472785e-01 1.03936577e+00 5.62911153e-01 1.34852850e+00 1.15529060e-01 5.80641031e-01 2.26332948e-01 6.95681751e-01 -1.18766487e+00 2.17560142e-01 1.14266492e-01 5.59112787e-01 -1.00448596e+00 1.50890067e-01 -4.03842211e-01 -2.99433529e-01 1.33246636e+00 -6.17967397e-02 -1.39828008e-02 6.49188638e-01 -1.26078809e-02 1.01854585e-01 -5.52759051e-01 -3.33320629e-03 -1.87945366e-01 3.09987932e-01 3.78349811e-01 5.63365400e-01 5.80813794e-04 -7.76906610e-01 8.66669267e-02 1.61588147e-01 1.09022893e-02 -3.88923399e-02 1.20626664e+00 -5.07796407e-01 -1.07185650e+00 -9.29104447e-01 5.37322938e-01 -8.32925856e-01 3.15463185e-01 3.51978809e-01 8.96193087e-01 1.00319222e-01 7.51338482e-01 -4.60254215e-02 -1.81450754e-01 2.11004034e-01 -4.75177765e-02 5.71356773e-01 -2.43165001e-01 -2.52811670e-01 3.07215035e-01 -2.25332409e-01 -3.75863343e-01 -6.88515544e-01 -4.45878327e-01 -1.23970389e+00 1.54918745e-01 -5.04272044e-01 3.87028456e-01 1.02675962e+00 8.10540557e-01 1.37993157e-01 3.61004144e-01 6.55215740e-01 -4.55989867e-01 -5.41222811e-01 -8.17066252e-01 -6.71758831e-01 6.76140428e-01 -1.91778019e-01 -9.25441444e-01 -1.35517418e-01 1.23804353e-01]
[14.206510543823242, -1.4239113330841064]
d1be6093-ce6b-4bb2-ae50-2c9684352c5f
improving-distantly-supervised-relation-3
2102.01156
null
https://arxiv.org/abs/2102.01156v1
https://arxiv.org/pdf/2102.01156v1.pdf
Improving Distantly-Supervised Relation Extraction through BERT-based Label & Instance Embeddings
Distantly-supervised relation extraction (RE) is an effective method to scale RE to large corpora but suffers from noisy labels. Existing approaches try to alleviate noise through multi-instance learning and by providing additional information, but manage to recognize mainly the top frequent relations, neglecting those in the long-tail. We propose REDSandT (Relation Extraction with Distant Supervision and Transformers), a novel distantly-supervised transformer-based RE method, that manages to capture a wider set of relations through highly informative instance and label embeddings for RE, by exploiting BERT's pre-trained model, and the relationship between labels and entities, respectively. We guide REDSandT to focus solely on relational tokens by fine-tuning BERT on a structured input, including the sub-tree connecting an entity pair and the entities' types. Using the extracted informative vectors, we shape label embeddings, which we also use as attention mechanism over instances to further reduce noise. Finally, we represent sentences by concatenating relation and instance embeddings. Experiments in the NYT-10 dataset show that REDSandT captures a broader set of relations with higher confidence, achieving state-of-the-art AUC (0.424).
['Grigorios Tsoumakas', 'Despina Christou']
2021-02-01
null
null
null
null
['relationship-extraction-distant-supervised']
['natural-language-processing']
[-0.05814383 0.76173955 -0.67103297 -0.52072775 -0.77769005 -0.59545517 0.68617904 0.6001395 -0.37177533 0.6760644 0.5912221 -0.20800243 -0.4148364 -0.9910722 -0.44869545 -0.51412034 -0.18972565 1.007577 0.275104 -0.2853538 -0.3379627 0.4536053 -1.208219 0.35862443 0.7359901 1.1937264 -0.38421777 0.33863842 -0.34467843 1.1097414 -0.57797873 -1.0432872 0.00811551 -0.08584403 -1.3934304 -0.15577197 0.12583697 -0.01118672 -0.48729044 0.6224229 0.2475987 0.17251298 0.87220657 -1.109194 -0.9527804 1.2928964 -0.39097744 0.30707768 0.31316966 -0.46147442 1.8484123 -1.145031 0.8174138 1.3847419 0.6703126 0.3583985 -1.3651167 -0.5623686 0.18823878 0.28570947 -1.500161 -0.3214031 0.5244659 -0.24486652 1.6031137 0.47272012 0.37797412 1.0234938 -0.29210505 0.67202395 0.6013186 -0.5644798 -0.19992247 0.17049676 0.5039821 0.45283097 0.2151135 -0.17211635 -0.45474175 -0.1451145 0.27619648 0.02036302 -0.15818308 -0.2507142 -1.1199523 0.6788785 0.7887017 0.6087679 -0.37487993 -0.2788148 0.54645175 0.22768533 0.8933435 0.7180197 -1.0625554 -0.03664074 -0.37143603 -0.06078801 0.8794054 1.1550075 0.93676376 -0.7233989 -0.76805615 1.2092432 0.07843082 0.03378704 0.32820937 -0.53984 0.8300206 1.1735964 -0.21683657 -0.7323351 -0.34012645 -0.5807898 -0.8464705 -0.5130429 0.0444703 -0.13959761 -0.7994172 1.6081986 0.4978341 -0.03874506 0.3619942 0.49051866 1.2206504 0.56395763 0.34365532 -0.17640544 1.5924007 -1.3019774 -0.83609295 -0.3525333 1.1318717 -0.49061292 0.7977424 -0.089554 -0.59545636 -0.4083021 -0.74899966 -0.56098115 -0.7745949 0.38545173 0.79988056 0.1230844 -0.5330596 0.7316336 -0.5808146 -0.40560374 0.51931125 0.32335216 -0.82987803 -0.09054834 -1.4968075 1.2919084 0.71930677 0.1265746 -0.39507043 -0.69711 -1.2610202 0.48266685 0.74766546 -0.47709063 0.9193841 -0.08986875 -1.1425126 0.9694446 -0.35364878 -0.45341846 -0.1695768 -0.5204486 -0.554644 -0.09288835 0.3283791 0.5034562 0.12203235 -1.2237066 -0.5776627 -0.21044461 0.10634173 0.22469608 -0.72813106 0.15668744 -0.36787814 -0.47627264 0.07869531 -0.656272 -0.08118033 -0.5914585 -0.882263 -1.1849242 0.60699046 -0.59090203 1.546364 -2.1018264 0.2744596 0.08977768 0.5869635 0.5186551 -0.25969535 0.7207211 -0.40908882 0.34903085 -0.03069771 -0.5908511 0.11587368 0.61377406 -0.15387858 -0.07707676 0.78395414 1.1912006 -1.1077402 -0.6838024 -0.01103562 0.28615794 -0.21107955 0.5046577 -0.10150338 -0.04493861 -0.3759259 0.50274295 0.38989675 -0.31863186 0.48915488 -0.4204982 0.26415688 0.8207296 -0.8752891 1.1939689 -0.65454876 0.3065917 -0.49824074 -1.0260639 1.2398618 0.40005803 0.482424 -0.4057165 0.20589505 0.2043194 -0.04135175 -0.7722007 0.3984092 -0.04854202 -0.18069056 0.17153393 0.5189238 0.20430654 0.4836098 0.39534992 1.4353324 0.1082987 0.5816387 0.20251054 0.385427 -0.13282765 0.70134723 0.21041642 0.19964355 0.3023582 0.83683884 -0.2847637 -0.77263683 -0.89374256 -0.2869468 1.2467208 -0.18318668 -0.94431895 -0.16893202 -1.4155053 0.20356111 0.6928336 -0.9377983 -0.29073185 -0.6781954 -0.69244343 0.36892498 0.68446636 0.14752245 -1.0824811 0.32225588 0.29897615 -0.31898224 -1.4496607 -0.14962713 0.8864631 -0.48223287 -1.0740359 -0.42570052 -1.0269814 0.5224752 -0.18245916 1.488664 -0.08727173 0.14033766 -0.29550707 -0.75933343 0.12924585 -0.21055654 0.55970883 -0.16278705 -0.05842515 0.8693652 -0.6269226 -0.02160773 0.17570366 -0.49699205 -0.35907152 0.74390894 1.1975794 0.5070678 0.14374928 0.57825494 -1.4184916 0.5654873 -0.6961314 0.01077973 0.6169968 -0.7207839 0.3189195 0.56704724 -0.5284908 -0.97941965 -0.2743246 -0.26907957 -0.27505004 -0.1391731 0.5390207 -0.35695952 0.4311654 0.7353969 -0.29095212 -0.5981058 -0.641974 0.7812215 0.88949066 0.40614057 -0.72931004 0.76256496 -0.11137392 -0.11483487 -0.3711951 -1.6604488 -0.83509535 -0.86958456 0.42145407 0.700035 -0.82747334 -0.5375523 -0.15871319 -1.26418 -0.11562169 -0.7128263 0.47679842 0.0828 0.04758852 -1.0061979 -0.7193641 -0.41933915 -0.57725435 1.2424124 0.1434678 -0.43462104 -1.0318427 0.23151061 0.30163893 0.03355254 0.12212824 1.1214404 -1.3094194 -0.2826055 -0.28238586 -0.59501857 0.45489872 0.40146366 -0.13625848 -1.0998135 0.11289412 -0.57823807 -0.4383424 1.0673306 -0.19950259 0.8136365 -0.3305329 -0.77769643 0.37058312 1.1637229 -0.09341185 0.50012314 0.26369315 1.0608816 0.90038824 0.84002674 0.10776729 0.6544078 0.66008496 0.19578767 -0.14120503 -0.2689457 -0.6126266 0.00612134 1.0437961 -0.03497316 -0.34961626 -0.69092804 0.8285383 -1.7866763 -0.6855176 -0.23093872 1.7630193 1.372246 0.31882635 0.0485974 0.43840465 0.60599184 -0.01567309 -0.10958601 -0.42238647 -0.10795701 0.5815138 0.3881384 0.40076038 -1.2414688 1.354578 5.2004294 1.0181242 -0.5617042 0.24246816 0.42243952 0.31085172 -0.4776028 0.2145314 -1.1818174 0.10675059 1.0466067 0.03545265 -0.03529194 0.7652569 -0.39065084 0.22734697 -1.4335326 0.6301315 -0.04611382 -1.210189 -0.13316253 0.03623779 0.61867946 -0.14072038 -0.37794766 0.8483574 0.70485425 -0.9868862 0.2916159 0.20190984 0.9326605 -0.63541657 1.2911481 0.14602202 -1.4490355 -0.08148088 -0.37194818 -0.00548527 0.07168818 1.0838449 -1.1612965 0.9081371 0.6747903 1.1221625 -0.61031336 0.69753003 -0.80537397 0.68170244 -0.31551772 -0.17097805 0.01870012 0.05329337 0.17446624 1.5032136 -0.01056902 0.12720567 0.18104121 0.61433554 -0.50967777 0.21436238 -0.56091785 -0.11250821 0.85110587 1.5340571 -0.30499187 -0.5112276 -0.25971022 0.7605809 1.1119885 0.30727968 -0.46017292 -0.66935074 0.53398216 -0.19862135 0.4937586 0.11077418 -0.04133757 -1.072039 0.16155125 -0.40518078 0.6285945 -0.3852884 -1.6592667 0.9517684 0.01452722 -0.88498247 -0.18977803 -0.5622223 -0.25718442 0.77913797 -1.7248515 -1.5024498 0.08425233 0.1234249 0.27219984 0.0811483 1.1970731 0.5917453 -0.8878129 0.9255784 -0.23875614 0.5742675 0.77609205 -1.6491991 0.35802627 0.46954903 0.5666471 0.74966544 0.29065168 -0.58879435 -0.66612 -1.2247981 1.8701671 -0.58115405 0.90127313 -0.56309724 -0.96570086 1.0598814 0.21590492 0.4604168 0.8395572 1.0446801 -0.78082097 -0.30254754 -1.0815448 0.33405942 1.2688587 -0.66065407 -0.9796115 0.39641574 1.154579 -0.3016106 -1.4458143 0.62462753 0.10683873 -0.4143556 0.89688617 -0.76670796 0.51762116 -0.04079403 -0.04818647 -1.520061 -0.59242177 -0.37990484 -0.6061373 2.0656083 0.8733563 -0.6622559 0.61439824 0.16924156 -0.08025403 -1.173263 -0.7633821 -0.80490214 -0.03104238 -0.15580672 0.8368218 1.0992749 0.37401256 1.1170653 -0.1900964 0.2665939 0.24471213 0.12898049 0.4686128 -1.3847536 -0.09056588 -0.11671931 -0.38682237 -1.1034187 0.47760528 -1.1509919 0.08923572 -1.6786174 0.29294685 -0.9671679 -0.49638924 0.9334789 -0.48430824 0.12707615 -0.27059057 0.07015279 -0.7817507 0.7667788 1.1499861 -0.1982438 0.10979599 -0.15839893 -0.8850004 0.45490447 0.4938191 -0.8060989 -0.23329963 -0.28462538 0.21883123 -0.2311052 -0.05746345 -0.5553751 0.08363058 -0.00786529 0.14429793 -0.46016246 0.3642929 -0.8555798 -0.31255028 -0.12993816 -0.6137816 -0.3043325 -0.22386366 0.46200824 -0.51343346 -0.284028 0.29378283 0.20536987 -0.43401626 0.31936994 0.2791881 0.3939631 0.8836712 0.43019584 -0.56204873 0.16160049 -0.9932321 0.48841774 -0.11450057 0.49628612 0.40149465 -1.6469157 -0.7131368 0.11135621 0.62416565 0.42079186 -0.10038684 0.51088804 0.06078419 0.28551847 0.44927564 -0.31536204 -1.2797753 0.7556645 0.15011233 -1.0021157 -0.62927926 1.3429033 -0.15985206 -0.7785932 0.21686833 -0.6240118 -0.70594805 0.409888 0.25618282 0.07944873 0.2828403 -0.5495175 -0.48506004 0.42548916 -0.31337804 0.2910727 1.612207 -0.01965836 -0.43329713 0.41244447 1.4107583 0.19305319 -0.8065399 -0.77216196 0.6042064 -0.2500602 -0.17257038 -0.75746334 -1.0220474 0.76340836 -0.01614238 0.65449685 0.7134387 0.7124003 0.9402923 0.34514666 0.09789213 -0.6512483 -0.01095777 0.7030081 0.69223213 -1.1505105 -0.08061818 -1.018527 -0.62247133 0.96524674 0.6891838 0.05701837 0.6820897 0.40767756 -0.01628436 -0.3687502 -0.97240543 -0.65732944 0.43624482 0.72422713 0.6583086 0.27433452 -0.25702658 0.7357107 -0.2386086 -0.38086998 -0.04698035 0.5856464 -0.1923342 -1.6104914 0.14029993 0.7483191 -0.4192674 -0.34318268 -0.42621475 0.4876353 0.5680638 1.1249238 0.02257612 -0.6067432 0.6066632 0.12826179 0.2621275 -1.1833074 -0.61347336 -0.28575763 0.86651284 -0.22935946 -0.361769 -0.48607588 -1.1423383 -0.04183773 -0.7089379 0.5592682 -0.03007964 1.1835023 0.33569422 0.94179046 0.7236878 -0.32832456 -0.48887095 -1.5425915 -0.5526737 0.63528913 0.25037706 -0.93023616 -0.4108063 -0.39264643]
[9.339463233947754, 8.591050148010254]
92bea0a2-f37c-460e-8d98-5c457cdcde9f
tuning-deep-active-learning-for-semantic-role
null
null
https://aclanthology.org/2021.iwcs-1.20
https://aclanthology.org/2021.iwcs-1.20.pdf
Tuning Deep Active Learning for Semantic Role Labeling
Active learning has been shown to reduce annotation requirements for numerous natural language processing tasks, including semantic role labeling (SRL). SRL involves labeling argument spans for potentially multiple predicates in a sentence, which makes it challenging to aggregate the numerous decisions into a single score for determining new instances to annotate. In this paper, we apply two ways of aggregating scores across multiple predicates in order to choose query sentences with two methods of estimating model certainty: using the neural network’s outputs and using dropout-based Bayesian Active Learning by Disagreement. We compare these methods with three passive baselines — random sentence selection, random whole-document selection, and selecting sentences with the most predicates — and analyse the effect these strategies have on the learning curve with respect to reducing the number of annotated sentences and predicates to achieve high performance.
['Martha Palmer', 'Skatje Myers']
null
null
null
null
iwcs-acl-2021-6
['semantic-role-labeling']
['natural-language-processing']
[ 7.12544441e-01 8.83002520e-01 -5.05435169e-01 -8.04672599e-01 -1.65498090e+00 -8.88431668e-01 6.96510434e-01 9.21019018e-01 -1.06877732e+00 1.09139824e+00 6.00846648e-01 -1.85093477e-01 -1.21681355e-01 -5.93791425e-01 -6.00548506e-01 -6.28295302e-01 2.19725683e-01 8.44225347e-01 6.95510745e-01 2.26246864e-01 1.42232001e-01 1.54795378e-01 -1.09509337e+00 6.40518725e-01 8.48592818e-01 6.88421369e-01 1.57289894e-03 4.07854915e-01 -4.01986003e-01 1.28506231e+00 -8.65313649e-01 -5.52700341e-01 4.76585180e-02 -2.29668751e-01 -1.19585645e+00 -2.25829288e-01 3.28685522e-01 -9.02830437e-02 3.45026225e-01 7.75363207e-01 4.74076331e-01 5.05560815e-01 6.00979149e-01 -7.64787555e-01 -2.69777775e-02 1.13827014e+00 -2.75858670e-01 3.60427439e-01 6.37662292e-01 1.91335425e-01 1.59178722e+00 -6.31315410e-01 7.06906974e-01 1.57890511e+00 3.30509841e-01 5.16566098e-01 -1.62874842e+00 -4.40140277e-01 4.39876467e-01 2.91225277e-02 -8.77077818e-01 -8.57515275e-01 6.24054909e-01 -4.76838976e-01 1.17150068e+00 2.68202662e-01 2.13308841e-01 9.73232985e-01 -4.44276661e-01 8.77866983e-01 9.97065663e-01 -7.29687870e-01 5.75654268e-01 2.19262198e-01 5.60497582e-01 5.32781363e-01 2.96142220e-01 -3.36133480e-01 -9.35066342e-01 -8.43076169e-01 -2.36513186e-02 -6.83190703e-01 1.35853635e-02 -6.01994945e-03 -9.35440898e-01 9.18566465e-01 1.50172696e-01 -3.83585282e-02 -3.13448489e-01 -5.34602255e-03 4.49128598e-01 2.13571757e-01 7.91705072e-01 1.08461547e+00 -8.59860182e-01 -3.94145735e-02 -6.49159193e-01 4.90755886e-01 7.79008627e-01 3.77997726e-01 6.95949674e-01 -4.97339576e-01 -5.98392606e-01 1.03633225e+00 4.28620040e-01 5.54157831e-02 1.24074435e-02 -1.22508502e+00 9.15144026e-01 7.32095718e-01 4.21505630e-01 -4.76292223e-01 -3.60204011e-01 2.01746404e-01 9.51247960e-02 9.14473757e-02 7.06215799e-01 -4.18007791e-01 -8.45748901e-01 1.78067613e+00 2.76992321e-01 -4.33316439e-01 4.54971902e-02 5.78508735e-01 8.01509857e-01 6.58299029e-01 8.72960091e-01 -4.62572753e-01 1.08643675e+00 -7.03493655e-01 -5.24403512e-01 -6.51235044e-01 8.49111438e-01 -4.63499308e-01 1.20714831e+00 2.44353086e-01 -1.16236341e+00 -2.00926647e-01 -7.96490908e-01 -2.91392267e-01 3.30823064e-02 -2.84961045e-01 5.70934653e-01 2.27076158e-01 -7.64105678e-01 4.64298159e-01 -1.05006218e+00 1.39598891e-01 5.65775275e-01 4.98652756e-01 -1.23093441e-01 1.91842586e-01 -1.56094921e+00 1.15347350e+00 7.64374733e-01 -3.14155161e-01 -5.63825905e-01 -5.10101318e-01 -8.40804398e-01 3.75732005e-01 7.58392990e-01 -4.76151347e-01 1.53364980e+00 -9.49816525e-01 -1.15757585e+00 9.62856114e-01 -5.36486208e-01 -5.90174794e-01 3.89616072e-01 -3.61896276e-01 2.88783967e-01 -1.90791709e-03 2.32850030e-01 7.92958677e-01 4.10846144e-01 -9.67008650e-01 -6.51984632e-01 -3.82288724e-01 5.24338067e-01 7.66291380e-01 -1.40881330e-01 4.43356633e-01 -1.04659885e-01 -8.75900313e-02 1.00979596e-01 -7.86794126e-01 -3.57583851e-01 -1.59997419e-01 -4.12810266e-01 -1.00165117e+00 2.64875829e-01 -5.12806952e-01 8.10825646e-01 -2.30078530e+00 9.86246616e-02 -5.18974736e-02 1.67675927e-01 -8.58128965e-02 -3.22057720e-04 7.32154995e-02 1.97051555e-01 2.94845521e-01 -3.74149054e-01 -5.20390093e-01 -6.75909743e-02 2.01906443e-01 -4.41416889e-01 6.41751140e-02 6.16272032e-01 6.38149023e-01 -1.16015494e+00 -8.94198895e-01 -2.33724251e-01 6.84234425e-02 -4.34456527e-01 1.51899785e-01 -7.40874708e-01 4.85397488e-01 -3.44899535e-01 3.11629683e-01 4.66469713e-02 -1.73770100e-01 3.84364069e-01 2.94326305e-01 2.07931310e-01 1.26995969e+00 -8.55187416e-01 1.37996745e+00 -4.07502651e-01 4.77012902e-01 -1.18332222e-01 -7.90599346e-01 7.33819425e-01 5.94608605e-01 3.39321077e-01 -4.47324395e-01 -2.74562329e-01 2.29983822e-01 1.33256331e-01 -4.21796858e-01 2.19386354e-01 -3.10396515e-02 -3.76256257e-01 5.08247554e-01 7.38988072e-02 -2.13801086e-01 5.61432183e-01 4.38636839e-01 1.21898592e+00 5.23878783e-02 1.92279637e-01 -1.85883850e-01 3.80244642e-01 2.90868700e-01 9.33441460e-01 1.02062750e+00 -1.51066586e-01 2.15093642e-01 1.16082001e+00 -2.35489979e-02 -6.85871661e-01 -1.13940287e+00 7.85822701e-03 1.48960578e+00 -1.15582213e-01 -2.53104359e-01 -4.02475089e-01 -1.08069050e+00 -1.86648205e-01 1.26732767e+00 -2.08056986e-01 -1.39268130e-01 -6.72139645e-01 -8.78383100e-01 4.02998388e-01 4.06543642e-01 1.95483536e-01 -1.27551162e+00 -5.77859581e-01 1.62485868e-01 -3.66853446e-01 -9.76236641e-01 3.02520953e-02 7.12073863e-01 -7.22913146e-01 -1.03422260e+00 -1.18535161e-01 -5.73437274e-01 6.73963428e-01 -5.43216884e-01 1.43799996e+00 -1.64005414e-01 3.22488517e-01 -2.40686536e-02 -4.48164344e-01 -6.06830657e-01 -5.58997214e-01 3.42947453e-01 -2.70156503e-01 -2.93257236e-01 4.83011097e-01 1.21828206e-02 -1.05743945e-01 -2.64092892e-01 -6.40411437e-01 -1.21393315e-02 4.23997074e-01 7.93580770e-01 4.52931553e-01 -7.47780083e-03 4.95140731e-01 -1.77364409e+00 8.14880490e-01 -3.53097081e-01 -5.79753101e-01 4.76528853e-01 -6.00351870e-01 3.35299790e-01 3.01203519e-01 -2.84997672e-01 -1.41484356e+00 3.99825484e-01 -9.28732231e-02 4.56422329e-01 -6.87742904e-02 6.53798103e-01 -1.30324915e-01 5.49167752e-01 9.66783464e-01 -4.16047812e-01 -1.55005112e-01 -2.44205818e-01 2.34177008e-01 5.48210680e-01 4.11757901e-02 -6.60845101e-01 5.97145200e-01 -1.16369128e-03 -4.46142673e-01 -3.90463382e-01 -1.78568137e+00 -5.19969285e-01 -6.33596957e-01 1.17497355e-01 8.17798615e-01 -9.30180609e-01 -3.32731128e-01 1.34593561e-01 -1.33250487e+00 -5.56264758e-01 -6.09532893e-01 4.87652898e-01 -3.13164055e-01 1.63159538e-02 -5.81275821e-01 -8.36987376e-01 -2.35746682e-01 -1.18228996e+00 1.02264929e+00 1.87924087e-01 -8.85986328e-01 -9.57773924e-01 1.48901731e-01 6.27593756e-01 1.99563608e-01 -3.49597931e-02 1.18211770e+00 -1.27008152e+00 -3.88145268e-01 -5.43943085e-02 6.16036989e-02 1.37005538e-01 -1.17272876e-01 -1.41345680e-01 -1.11469531e+00 -1.53283045e-01 6.46160124e-03 -7.91664779e-01 1.02206814e+00 2.75928080e-01 8.92109275e-01 -5.08886456e-01 -2.85977662e-01 -1.97018713e-01 1.14844811e+00 3.64723712e-01 3.49013090e-01 2.13546470e-01 3.73116195e-01 8.58980894e-01 7.41536975e-01 2.07164939e-02 1.10634826e-01 6.21430695e-01 -7.09043592e-02 2.04827115e-02 2.16183171e-01 -4.88886200e-02 4.17570025e-01 3.18138570e-01 2.68673033e-01 -4.33085829e-01 -1.09030306e+00 3.77816916e-01 -1.84317124e+00 -8.15471530e-01 1.18906461e-01 2.22197986e+00 1.35244119e+00 8.63239944e-01 -5.31786419e-02 1.87528983e-01 6.97483182e-01 3.31480861e-01 -5.39053917e-01 -3.59494388e-01 -1.24478504e-01 3.33619058e-01 3.81391257e-01 9.40117240e-01 -1.20284724e+00 8.70070696e-01 6.31383705e+00 4.76862371e-01 -7.10739851e-01 3.82939488e-01 8.21770549e-01 -1.78657547e-01 -2.77425945e-01 6.08916521e-01 -1.08811891e+00 3.81799012e-01 1.04934657e+00 -5.90448081e-02 -5.58419060e-03 6.40581727e-01 1.93024188e-01 -5.29650986e-01 -1.25086343e+00 3.43937248e-01 -1.63517296e-01 -1.23660767e+00 -1.78750847e-02 -4.44195807e-01 6.53940737e-01 1.60790399e-01 -4.52905804e-01 3.96660507e-01 8.57143879e-01 -7.13984609e-01 7.75246263e-01 3.36279839e-01 4.49468434e-01 -1.89781353e-01 7.02436805e-01 5.72503090e-01 -5.21498263e-01 -3.26753527e-01 6.04268070e-03 -2.79491276e-01 2.62877822e-01 5.73627651e-01 -1.31407034e+00 -1.41320646e-01 3.66207659e-01 1.58566684e-01 -7.59588718e-01 8.96757841e-01 -7.26147234e-01 1.22602153e+00 -4.61897969e-01 -2.72669494e-01 -3.56264301e-02 2.63432920e-01 5.88285267e-01 9.12613869e-01 -5.93886316e-01 -3.48577015e-02 5.13186872e-01 8.62156093e-01 -1.82361186e-01 -3.34378518e-02 -1.34671181e-01 -2.50522614e-01 9.86973643e-01 8.65110695e-01 -8.51121962e-01 -5.01230776e-01 -3.24175149e-01 5.34813344e-01 4.56153631e-01 2.77981699e-01 -4.16669369e-01 -3.34133834e-01 -1.24202497e-01 3.23091507e-01 -4.21356022e-01 -4.62256419e-03 -4.44768816e-01 -8.44773471e-01 4.83412370e-02 -4.91218835e-01 7.66701460e-01 -7.36318648e-01 -1.20609999e+00 2.74128318e-01 4.02419686e-01 -4.42500323e-01 -4.97797757e-01 -2.06504196e-01 -5.68959415e-01 9.53099668e-01 -1.14780915e+00 -6.84993863e-01 1.57473668e-01 3.23938951e-02 7.30483174e-01 8.31528082e-02 9.16798115e-01 1.30922407e-01 -3.19426626e-01 4.97910291e-01 -4.00755584e-01 4.93246138e-01 7.31697857e-01 -1.56971776e+00 6.08551323e-01 8.27617347e-01 2.62670368e-01 6.33084059e-01 6.64145410e-01 -6.82767451e-01 -5.57395816e-01 -7.30998456e-01 1.38020468e+00 -7.98563302e-01 3.68699133e-01 -5.89808404e-01 -9.06618893e-01 8.21675062e-01 -3.45119685e-02 -2.41923988e-01 5.74736178e-01 6.55544579e-01 -2.89734155e-01 3.79749276e-02 -1.04355311e+00 2.55808353e-01 6.50750995e-01 -5.72080553e-01 -9.18581128e-01 5.57425976e-01 1.16942835e+00 -3.78004521e-01 -4.56775576e-01 4.93540138e-01 -3.00865783e-03 -5.06319761e-01 6.52336299e-01 -6.49277866e-01 2.96019465e-01 -5.16057462e-02 1.44794777e-01 -1.11466241e+00 -3.70437980e-01 -3.77187997e-01 1.30038664e-01 1.30271220e+00 1.30289257e+00 -7.35091150e-01 8.43442142e-01 1.09438813e+00 -7.56357834e-02 -7.94508040e-01 -8.81708860e-01 -2.47526288e-01 -3.95573713e-02 -5.52198254e-02 1.35995150e-01 8.38430166e-01 -1.20362960e-01 1.08409882e+00 4.15700734e-01 -9.24910828e-02 5.25582075e-01 -2.15283647e-01 2.50292897e-01 -1.62831378e+00 -4.41835314e-01 -4.69245836e-02 -2.51800139e-02 -6.59313977e-01 4.77412432e-01 -8.06325376e-01 4.19667721e-01 -1.70925117e+00 4.25555915e-01 -8.50642681e-01 -1.98688328e-01 9.70484316e-01 -5.03866017e-01 -1.44316733e-01 7.04411939e-02 2.84527808e-01 -9.34727430e-01 9.34445709e-02 7.12135315e-01 -3.64694864e-01 -4.53086913e-01 9.92387235e-02 -7.02843428e-01 7.98055530e-01 5.96487999e-01 -8.31074595e-01 -5.48137486e-01 -5.48072875e-01 6.87906504e-01 1.86558202e-01 3.37604620e-02 -6.12129211e-01 2.40231797e-01 -1.71175912e-01 2.22784087e-01 -3.34160358e-01 3.84923637e-01 -2.91742146e-01 -2.29255497e-01 2.36756295e-01 -1.45483601e+00 -3.29838455e-01 -4.11582552e-02 4.44080859e-01 -2.35820517e-01 -7.24487185e-01 7.77208388e-01 -4.25036818e-01 -7.23539054e-01 -1.36682525e-01 -3.43632966e-01 5.81686616e-01 6.62593722e-01 8.54185969e-02 -4.09256637e-01 -1.08956210e-01 -1.17022765e+00 3.02847594e-01 2.03972474e-01 3.53178382e-01 1.18056275e-01 -6.52436376e-01 -8.86496782e-01 -2.87998378e-01 5.90941273e-02 6.97633505e-01 -2.71415114e-01 5.75189710e-01 -3.91757041e-01 4.02055144e-01 3.95064473e-01 -5.01779020e-01 -1.39741516e+00 -8.28835666e-02 1.68634802e-01 -6.67367995e-01 -1.65159464e-01 1.30332208e+00 -1.15879595e-01 -6.63320005e-01 4.37815040e-01 1.20437875e-01 -4.94844377e-01 3.29324454e-01 3.10041644e-02 1.96763836e-02 2.04342917e-01 -2.30057850e-01 -3.36445421e-01 -2.05375850e-01 -3.04937929e-01 -4.32346582e-01 1.24426007e+00 5.46967685e-02 -3.37301880e-01 9.78173614e-01 7.66917348e-01 2.14476049e-01 -1.17835450e+00 -3.84093404e-01 7.41658151e-01 -2.12208509e-01 -1.25579080e-02 -1.02289689e+00 -2.43442401e-01 3.75440687e-01 2.36938342e-01 2.97352850e-01 5.72815597e-01 2.89713234e-01 3.35958838e-01 6.37055457e-01 3.10322464e-01 -1.12931192e+00 -5.75032318e-03 5.27821004e-01 4.25472170e-01 -1.30657423e+00 3.51712257e-01 -6.81330442e-01 -7.15722442e-01 6.13558531e-01 7.81771123e-01 1.60638258e-01 2.11916521e-01 2.48953730e-01 1.56892776e-01 -2.69180059e-01 -1.27059150e+00 -7.74369910e-02 1.01656027e-01 2.87650451e-02 7.41762459e-01 -1.29262554e-02 -4.60878968e-01 1.09131999e-01 -2.01605391e-02 -4.64963973e-01 4.05289948e-01 9.49717462e-01 -4.77531791e-01 -1.17303669e+00 -1.45460621e-01 8.48926246e-01 -7.76264727e-01 -1.89516455e-01 -8.20757449e-01 3.44171762e-01 6.04538284e-02 1.04672074e+00 3.27596068e-01 2.15297744e-01 9.50038582e-02 5.45093894e-01 4.00195748e-01 -1.50829887e+00 -7.28590190e-01 -2.00654328e-01 8.71124089e-01 -1.84089631e-01 -7.06645072e-01 -7.85102487e-01 -1.40034819e+00 5.67766488e-01 -7.18283236e-01 5.32112241e-01 3.14518869e-01 1.29806244e+00 1.27663985e-01 2.03677714e-01 1.85105562e-01 -2.60528475e-01 -9.29030180e-01 -1.04997551e+00 -1.48705930e-01 7.01070011e-01 1.79947898e-01 -6.17648542e-01 -6.18315816e-01 -3.63567583e-02]
[10.452434539794922, 7.934598445892334]
9b5b3341-3d1a-40ad-a48f-430266ed7c20
self-organization-preserved-graph-structure
2301.00015
null
https://arxiv.org/abs/2301.00015v1
https://arxiv.org/pdf/2301.00015v1.pdf
Self-organization Preserved Graph Structure Learning with Principle of Relevant Information
Most Graph Neural Networks follow the message-passing paradigm, assuming the observed structure depicts the ground-truth node relationships. However, this fundamental assumption cannot always be satisfied, as real-world graphs are always incomplete, noisy, or redundant. How to reveal the inherent graph structure in a unified way remains under-explored. We proposed PRI-GSL, a Graph Structure Learning framework guided by the Principle of Relevant Information, providing a simple and unified framework for identifying the self-organization and revealing the hidden structure. PRI-GSL learns a structure that contains the most relevant yet least redundant information quantified by von Neumann entropy and Quantum Jensen-Shannon divergence. PRI-GSL incorporates the evolution of quantum continuous walk with graph wavelets to encode node structural roles, showing in which way the nodes interplay and self-organize with the graph structure. Extensive experiments demonstrate the superior effectiveness and robustness of PRI-GSL.
['Philip S. Yu', 'Hao Peng', 'Xingcheng Fu', 'Beining Yang', 'JianXin Li', 'Qingyun Sun']
2022-12-30
null
null
null
null
['graph-structure-learning']
['graphs']
[ 2.56924003e-01 5.87408662e-01 -1.71825811e-01 -4.78781722e-02 3.55146490e-02 -6.85395122e-01 4.49465007e-01 4.39493418e-01 1.75964877e-01 6.91711068e-01 1.22697778e-01 -2.33448774e-01 -5.12873471e-01 -1.39303088e+00 -7.52810121e-01 -1.16844964e+00 -9.12493289e-01 2.80381471e-01 1.63071588e-01 -4.17229235e-01 6.84097270e-03 2.94187188e-01 -1.22193003e+00 8.48148689e-02 4.72314984e-01 5.94893575e-01 1.50275216e-01 7.96403229e-01 -2.95661241e-02 1.09647572e+00 -1.94901437e-01 -4.33426321e-01 2.10714355e-01 -8.11793864e-01 -9.09085453e-01 -1.36327118e-01 -9.27472264e-02 4.42614593e-02 -1.00664496e+00 1.35835326e+00 1.42974511e-01 -3.19525689e-01 3.36910367e-01 -1.30265653e+00 -8.27808857e-01 1.14944160e+00 -1.69132769e-01 3.74412507e-01 4.38698620e-01 1.29300386e-01 1.72765374e+00 -1.13773227e-01 9.99248803e-01 1.09965503e+00 8.14634562e-01 4.07643348e-01 -1.53991699e+00 -4.30931479e-01 -1.61023095e-01 3.14959437e-01 -1.54721320e+00 -1.63388669e-01 1.26631761e+00 -1.83697775e-01 5.94707847e-01 2.36391708e-01 9.55673397e-01 1.21062958e+00 6.51779711e-01 2.86564857e-01 1.05477846e+00 -3.47880065e-01 3.71900320e-01 -1.74859688e-01 4.45155114e-01 1.42275751e+00 8.50189209e-01 2.95797586e-01 -8.77850294e-01 -2.19464675e-01 5.09037793e-01 -1.98942244e-01 -3.44848782e-01 -6.56975567e-01 -1.06625962e+00 8.43147159e-01 8.37962627e-01 4.66105133e-01 -3.44315439e-01 3.86237383e-01 3.76354247e-01 6.24555051e-01 9.68936905e-02 4.46088672e-01 -1.08990550e-01 3.42173934e-01 -4.88447487e-01 -1.78886265e-01 1.08772004e+00 7.04389989e-01 1.30394948e+00 5.67448959e-02 1.15075126e-01 -1.46026224e-01 5.06666839e-01 2.90817559e-01 7.37365931e-02 -8.94510686e-01 -4.85381335e-02 9.76617813e-01 -5.59794188e-01 -1.60702264e+00 -4.87664819e-01 -1.00407946e+00 -1.46606410e+00 -1.92430124e-01 6.32450953e-02 2.24255994e-02 -4.24102813e-01 2.06374335e+00 2.12500706e-01 2.86467165e-01 2.74103820e-01 6.28820002e-01 1.08534765e+00 4.14653122e-01 -4.96773660e-01 -1.68215066e-01 1.11579478e+00 -3.55694085e-01 -7.27547824e-01 3.85041013e-02 6.75678909e-01 2.46059403e-01 6.38901770e-01 -1.37613580e-01 -8.62232327e-01 -2.24986076e-01 -1.29948056e+00 1.91523224e-01 -2.81612009e-01 -6.32046938e-01 1.01946449e+00 8.66419077e-01 -1.50639760e+00 1.01559603e+00 -7.36781478e-01 -2.87811160e-01 3.84062111e-01 3.97101521e-01 -7.09760129e-01 1.57294884e-01 -1.38948846e+00 2.30891764e-01 7.52229154e-01 2.02996433e-01 -9.97982323e-01 -2.18201190e-01 -9.85685229e-01 3.94305110e-01 4.97006208e-01 -9.16711390e-01 5.39914608e-01 -4.18420196e-01 -1.26713610e+00 7.06114411e-01 -7.42032379e-02 -6.28714383e-01 -1.92929372e-01 7.67784595e-01 -2.89243519e-01 5.68561554e-01 -3.23691815e-02 1.91313997e-01 5.21140575e-01 -1.30215156e+00 1.25661299e-01 -5.93051791e-01 2.67499357e-01 4.41476479e-02 -3.01805913e-01 -7.06792891e-01 -2.78393682e-02 -5.06534353e-02 7.85237789e-01 -6.51881695e-01 -2.29223847e-01 -1.82649702e-01 -6.98301613e-01 -7.20898286e-02 5.85112512e-01 -2.01745391e-01 1.32118547e+00 -1.89540803e+00 1.05927683e-01 5.15230715e-01 1.12074757e+00 -2.69944340e-01 -1.53352216e-01 1.17594039e+00 -1.62814539e-02 4.20507193e-01 -2.31671587e-01 -1.57473069e-02 -5.79308812e-03 5.45736194e-01 -5.19056171e-02 6.87065482e-01 8.39881748e-02 1.32075298e+00 -1.14587283e+00 -4.90630001e-01 -1.00978978e-01 4.06726778e-01 -4.63415742e-01 -9.15990211e-03 -3.55189815e-02 4.38201219e-01 -4.96241778e-01 5.45919359e-01 4.96057838e-01 -1.03703904e+00 7.72327304e-01 -1.24984317e-01 3.93610150e-01 3.37772876e-01 -1.16194940e+00 1.39931858e+00 3.38206172e-01 6.92895830e-01 2.97327101e-01 -1.34212041e+00 1.00108004e+00 9.23723057e-02 5.65823793e-01 -8.11133206e-01 7.16431960e-02 -2.21082523e-01 3.68426919e-01 -4.11295950e-01 2.45700523e-01 3.45743150e-02 5.71931303e-02 7.88258910e-01 3.33296627e-01 2.69154787e-01 2.78562546e-01 8.22192430e-01 1.63922763e+00 -3.93794030e-01 5.91756642e-01 -5.79424798e-01 2.63832480e-01 -2.93083519e-01 4.06534433e-01 1.22310734e+00 -2.76399523e-01 2.51483887e-01 9.42120969e-01 -4.64194655e-01 -7.50187933e-01 -1.15042245e+00 1.86150983e-01 7.00965166e-01 3.96446228e-01 -8.15245926e-01 -6.19201899e-01 -4.16178316e-01 -2.99744189e-01 2.41201743e-01 -8.57532918e-01 -5.68982601e-01 -2.31919602e-01 -7.89254367e-01 6.61525249e-01 -2.28501827e-01 5.24159312e-01 -1.04337716e+00 -2.83874273e-01 2.63065964e-01 -2.10864097e-01 -1.15771854e+00 -2.57845095e-04 3.41371328e-01 -9.22477245e-01 -1.31548584e+00 1.86541647e-01 -7.33071864e-01 8.84284914e-01 4.48276162e-01 1.28352654e+00 6.15564346e-01 -3.16566586e-01 3.43070000e-01 -2.84065157e-01 2.71256745e-01 -8.27829242e-01 1.97193339e-01 -1.05002142e-01 7.09420815e-02 6.04976118e-02 -1.30295134e+00 -4.59423691e-01 -1.91067398e-01 -7.98293650e-01 1.55385733e-01 5.99352419e-01 7.60768175e-01 2.59923995e-01 7.52947807e-01 2.77033150e-01 -9.52610731e-01 7.72762179e-01 -5.40752947e-01 -3.82588089e-01 3.93794388e-01 -7.85542190e-01 5.53107679e-01 6.22564852e-01 1.65056467e-01 -3.82282495e-01 -2.11865231e-01 2.03374282e-01 3.14309262e-02 -2.28219014e-02 9.12925422e-01 -1.24038637e-01 -3.93451452e-01 6.58879757e-01 7.11280763e-01 1.64165407e-01 3.51301022e-02 4.17462170e-01 -3.60076353e-02 5.20627916e-01 -5.03118217e-01 9.90246356e-01 7.47751653e-01 7.71799326e-01 -1.09697104e+00 -5.81396818e-01 -3.03256214e-01 -8.30282450e-01 -1.91508949e-01 4.85325694e-01 -6.12551212e-01 -1.30755258e+00 2.70486891e-01 -1.10004401e+00 1.86296199e-02 -3.22307050e-01 7.86541775e-02 -3.02152276e-01 9.71893132e-01 -9.16325092e-01 -8.78732562e-01 -4.87015098e-01 -7.68054128e-01 6.87340319e-01 -1.06540620e-01 1.46139055e-01 -1.30083728e+00 4.43009645e-01 2.87953559e-02 2.47994989e-01 5.11801958e-01 1.15242219e+00 -4.86030042e-01 -1.09086645e+00 -2.10631356e-01 -2.88248450e-01 -2.14039519e-01 1.10301085e-01 -1.41969457e-01 -6.42282903e-01 -4.63334620e-01 -9.11874324e-02 -1.73943311e-01 8.75788927e-01 1.79055646e-01 8.02766860e-01 -6.52865529e-01 -1.56962380e-01 7.31839836e-01 1.56014860e+00 -3.45596611e-01 4.57523316e-01 -2.37568393e-01 8.08565438e-01 6.33731484e-01 -7.33004093e-01 3.26017141e-01 7.10842073e-01 1.07153533e-02 8.80905211e-01 2.63064653e-01 -2.62642484e-02 -6.82125092e-01 3.01150233e-01 1.56368423e+00 -5.46212047e-02 -3.38877320e-01 -7.48597801e-01 9.08690169e-02 -1.76025808e+00 -1.25971460e+00 -3.94096345e-01 1.86237228e+00 5.14698148e-01 2.92102456e-01 -1.59033120e-01 1.08460523e-01 7.45946407e-01 5.16817570e-01 -5.10982394e-01 5.61760478e-02 -6.43148959e-01 -3.49915922e-02 5.04915416e-01 5.13213456e-01 -6.17673278e-01 6.43284917e-01 6.89123487e+00 4.08167630e-01 -8.42413604e-01 -4.15696166e-02 1.93751469e-01 6.10077977e-01 -7.02075243e-01 4.91399944e-01 -2.20024720e-01 2.50135422e-01 9.48282480e-01 -4.06712681e-01 7.37162054e-01 4.84997422e-01 -1.49039328e-01 6.78003132e-02 -8.92358661e-01 8.77490401e-01 -1.19443417e-01 -1.85505605e+00 1.05675608e-02 5.08273482e-01 6.14158452e-01 3.37614626e-01 -4.23728198e-01 1.23848088e-01 7.77206659e-01 -9.45546687e-01 4.16175872e-01 5.44324815e-01 3.02862555e-01 -2.62208939e-01 5.65611839e-01 5.85432470e-01 -1.48693967e+00 1.40726659e-02 -4.38461542e-01 -3.07169378e-01 -1.46611065e-01 6.65281177e-01 -8.05066347e-01 1.02147555e+00 5.46853781e-01 9.61785018e-01 -6.74781442e-01 5.88339269e-01 -3.62764299e-01 8.65509391e-01 -2.16610983e-01 -4.24161762e-01 2.55037099e-01 -6.64825380e-01 9.07356024e-01 8.52016151e-01 6.81984276e-02 -6.73752129e-02 1.81677461e-01 1.24257231e+00 -2.98102707e-01 -2.68004894e-01 -1.12526357e+00 -6.57499731e-01 5.58509886e-01 1.19269574e+00 -1.17332232e+00 2.19218321e-02 -3.61111239e-02 8.33069682e-01 5.51240087e-01 4.16543782e-01 -1.93233788e-01 -1.07102871e-01 1.97101906e-01 9.60500538e-02 2.79182732e-01 -4.68763232e-01 -1.75210051e-02 -1.15597689e+00 3.31751332e-02 -6.36622488e-01 3.93124729e-01 -4.39992785e-01 -1.42680371e+00 5.15645206e-01 -3.20410967e-01 -7.13031471e-01 6.20830022e-02 -5.63601494e-01 -6.96805775e-01 3.64623010e-01 -1.25928020e+00 -1.09151661e+00 -3.07558566e-01 6.73169196e-01 -4.52030927e-01 -1.31473228e-01 1.15035474e+00 -1.98161766e-01 -5.46291292e-01 3.00630778e-01 2.63416678e-01 3.64779741e-01 -3.20877433e-01 -1.43970740e+00 4.53980893e-01 7.78714061e-01 6.23888910e-01 8.87140095e-01 7.30455279e-01 -7.41655529e-01 -2.16749907e+00 -6.45940721e-01 6.61602199e-01 -1.67863354e-01 1.13706458e+00 -9.02544796e-01 -9.21288908e-01 3.51276577e-01 2.44235545e-01 1.78480133e-01 6.36734128e-01 2.97817826e-01 -6.83757067e-01 -1.66602045e-01 -9.51890469e-01 4.99806285e-01 1.42879355e+00 -1.07639229e+00 -3.48446012e-01 4.35934871e-01 1.01145828e+00 1.28740743e-01 -6.52481377e-01 2.11801335e-01 3.06767315e-01 -1.23800159e+00 8.31400573e-01 -5.98860443e-01 2.36333936e-01 -2.08664745e-01 -2.48125821e-01 -1.11321342e+00 -6.37932181e-01 -1.04846203e+00 -4.14321214e-01 6.85724020e-01 1.95956573e-01 -8.32024932e-01 1.03929985e+00 -1.54985130e-01 1.83232665e-01 -6.03458285e-01 -1.08377147e+00 -6.36875868e-01 -2.17714041e-01 -3.01936448e-01 5.97989500e-01 1.20992815e+00 7.29728341e-02 6.90161705e-01 -3.80442828e-01 4.35621053e-01 1.18772626e+00 1.58296853e-01 4.62244242e-01 -1.66792488e+00 -5.39308846e-01 -6.16356373e-01 -9.43114758e-01 -5.89060903e-01 2.38109395e-01 -1.53259671e+00 -2.56107002e-01 -1.75465202e+00 4.88007516e-01 7.89540932e-02 -5.11998236e-01 1.50770187e-01 1.33522525e-01 -2.42827218e-02 -1.38221905e-01 2.78652757e-01 -9.50284660e-01 6.56938612e-01 1.23188102e+00 -1.94110215e-01 8.84752646e-02 -2.41101846e-01 -9.00905788e-01 2.68697649e-01 7.04279184e-01 -5.06915092e-01 -6.09883845e-01 -9.32642259e-03 8.71554732e-01 1.11927189e-01 7.12417006e-01 -9.86020744e-01 6.21591628e-01 1.59352794e-01 -1.44716084e-01 -5.17275333e-01 1.69830352e-01 -6.42243087e-01 3.44334483e-01 8.94719303e-01 -3.94933701e-01 -4.89675738e-02 -4.30362880e-01 1.10645032e+00 -6.15391415e-03 -9.96558443e-02 3.03790003e-01 -4.49216604e-01 -5.67767441e-01 5.25987744e-01 -1.55000508e-01 2.72688121e-02 6.64616704e-01 -3.07846576e-01 -5.13016999e-01 -7.40796685e-01 -6.28222406e-01 7.48198405e-02 3.07089627e-01 -3.72916274e-02 7.11941183e-01 -1.11265266e+00 -7.63286948e-01 2.88978368e-01 1.38870120e-01 -3.39905322e-01 4.13618863e-01 5.60740948e-01 -4.08077896e-01 2.47390002e-01 -1.32834971e-01 -6.38741016e-01 -9.66299653e-01 6.68354750e-01 3.32447439e-01 -5.13533354e-01 -9.42962885e-01 5.56599677e-01 1.00704320e-01 -6.50243700e-01 -1.03919059e-02 -8.76130303e-04 -1.63076092e-02 -2.09988460e-01 2.13262007e-01 1.33709371e-01 -1.48561269e-01 -7.77168810e-01 -1.50957659e-01 3.15075308e-01 1.79067269e-01 1.34749055e-01 1.31633914e+00 -3.01476449e-01 -7.98988283e-01 5.43065250e-01 1.21864009e+00 -2.51561731e-01 -7.53777444e-01 -6.90091908e-01 2.57402629e-01 7.09341392e-02 1.18715921e-03 -1.92038253e-01 -9.76659536e-01 8.48961115e-01 4.24628034e-02 1.04193032e+00 8.11748862e-01 3.13226849e-01 3.93696100e-01 1.09168625e+00 7.81347096e-01 -5.18792152e-01 1.26424864e-01 4.45988357e-01 4.85264480e-01 -1.01681507e+00 4.41625081e-02 -4.58273709e-01 -2.68493104e-03 1.17324185e+00 1.62077397e-01 -1.84514806e-01 1.04167962e+00 6.47664368e-02 -5.53638279e-01 -8.71148705e-01 -8.59317422e-01 -2.83796638e-01 1.58059046e-01 6.44641161e-01 -1.63512267e-02 3.12146634e-01 1.15225062e-01 2.79484332e-01 -4.41850007e-01 -5.53906620e-01 7.17407703e-01 7.13111401e-01 -4.43288237e-01 -9.51337278e-01 1.53214738e-01 3.33360672e-01 -1.28160760e-01 -8.35322291e-02 -7.79883444e-01 6.87111974e-01 -2.12747097e-01 8.97543490e-01 -3.48924994e-01 -7.06709325e-01 -2.62049735e-01 -1.40780792e-01 3.70483279e-01 -5.51102281e-01 -1.72091514e-01 -3.34642947e-01 -5.44642247e-02 -4.71113861e-01 -5.31530082e-01 -1.58243790e-01 -1.29034591e+00 -6.61004663e-01 -2.39420608e-01 3.07245046e-01 4.01850671e-01 8.95692766e-01 5.99442601e-01 5.88996053e-01 7.52631068e-01 -2.28401333e-01 -4.14882332e-01 -5.35747349e-01 -7.80114949e-01 2.50069082e-01 6.61693275e-01 -3.44819874e-01 -6.56877756e-01 -4.37709630e-01]
[7.014506816864014, 6.170078277587891]
894dbd3d-d9a4-4d42-8aab-36bb36e14a38
dounseen-zero-shot-object-detection-for
2304.02833
null
https://arxiv.org/abs/2304.02833v1
https://arxiv.org/pdf/2304.02833v1.pdf
DoUnseen: Zero-Shot Object Detection for Robotic Grasping
How can we segment varying numbers of objects where each specific object represents its own separate class? To make the problem even more realistic, how can we add and delete classes on the fly without retraining? This is the case of robotic applications where no datasets of the objects exist or application that includes thousands of objects (E.g., in logistics) where it is impossible to train a single model to learn all of the objects. Most current research on object segmentation for robotic grasping focuses on class-level object segmentation (E.g., box, cup, bottle), closed sets (specific objects of a dataset; for example, YCB dataset), or deep learning-based template matching. In this work, we are interested in open sets where the number of classes is unknown, varying, and without pre-knowledge about the objects' types. We consider each specific object as its own separate class. Our goal is to develop a zero-shot object detector that requires no training and can add any object as a class just by capturing a few images of the object. Our main idea is to break the segmentation pipelines into two steps by combining unseen object segmentation networks cascaded by zero-shot classifiers. We evaluate our zero-shot object detector on unseen datasets and compare it to a trained Mask R-CNN on those datasets. The results show that the performance varies from practical to unsuitable depending on the environment setup and the objects being handled. The code is available in our DoUnseen library repository.
['Moritz Roidl', 'Anas Gouda']
2023-04-06
null
null
null
null
['template-matching', 'zero-shot-object-detection', 'robotic-grasping']
['computer-vision', 'computer-vision', 'robots']
[ 4.23515588e-01 1.77755266e-01 3.39444540e-02 -4.41876113e-01 -3.39094460e-01 -8.69292438e-01 3.08600307e-01 1.90524444e-01 -4.20020193e-01 3.30784678e-01 -6.69301212e-01 -1.72179982e-01 -3.70899625e-02 -8.68502438e-01 -1.14761424e+00 -6.06937170e-01 1.67647570e-01 9.65363860e-01 9.92772460e-01 -2.57501960e-01 1.03373431e-01 8.08322310e-01 -1.88088262e+00 3.20425302e-01 5.71905315e-01 1.07201970e+00 6.50610149e-01 7.59246826e-01 -3.40161383e-01 3.05836827e-01 -7.59002507e-01 -9.55197439e-02 8.17683458e-01 -4.54594865e-02 -8.68718386e-01 3.91200662e-01 4.62385833e-01 -5.28272510e-01 8.01859051e-02 1.06818867e+00 1.43851757e-01 1.06161699e-01 6.83525443e-01 -1.35750318e+00 -3.17890346e-01 7.50451744e-01 -3.87623608e-01 3.82372700e-02 -1.38642579e-01 4.39895123e-01 4.84702587e-01 -6.16658866e-01 8.24484289e-01 1.23143446e+00 5.16062915e-01 6.80540919e-01 -1.25888360e+00 -4.02716011e-01 3.43437403e-01 -1.44425286e-02 -9.72458363e-01 -1.29894927e-01 6.49444103e-01 -7.34279156e-01 6.38246059e-01 1.10072613e-01 5.05888402e-01 9.71636474e-01 -2.06018895e-01 7.62564003e-01 6.27094865e-01 -3.68322462e-01 5.47566473e-01 2.77843028e-01 7.14212477e-01 2.41410434e-01 6.40067041e-01 -1.05714478e-01 2.55235463e-01 2.25522503e-01 6.61907792e-01 4.01753843e-01 7.28183314e-02 -9.16581035e-01 -1.05511916e+00 6.71658933e-01 4.68018740e-01 3.52701247e-01 -2.77172297e-01 1.87616095e-01 2.19788298e-01 4.94197235e-02 -2.59696580e-02 5.11820078e-01 -7.48058975e-01 3.56983215e-01 -7.76126802e-01 3.60040814e-01 1.02271771e+00 1.52916992e+00 1.14767826e+00 -2.23668039e-01 -1.04479566e-01 7.69024551e-01 -9.56897661e-02 1.77107841e-01 3.40064466e-01 -9.39417303e-01 1.05835147e-01 7.18705893e-01 3.49175781e-01 -3.94968718e-01 -5.08820355e-01 5.59455808e-03 -2.48287290e-01 5.44029653e-01 7.13537931e-01 -3.99783254e-01 -1.71213496e+00 1.31564844e+00 4.76364285e-01 -3.07703111e-02 5.10351323e-02 9.26255941e-01 1.02992988e+00 5.22724926e-01 6.19586417e-03 1.53183684e-01 1.58577323e+00 -9.92164493e-01 -4.41005856e-01 -7.49496520e-01 4.78388399e-01 -6.45272255e-01 8.62153709e-01 2.66476780e-01 -7.72511482e-01 -7.11009562e-01 -1.11642861e+00 -5.68783358e-02 -1.02050567e+00 -4.42075059e-02 6.88642383e-01 5.40503800e-01 -5.07225454e-01 6.97454453e-01 -9.46462154e-01 -6.98942244e-01 6.48123622e-01 6.51701987e-01 -1.67824551e-01 -2.28068620e-01 -6.80913806e-01 8.81966889e-01 1.00953019e+00 -1.14490569e-01 -1.10144448e+00 -5.66846013e-01 -7.87020922e-01 1.30169258e-01 9.93446231e-01 -2.20428690e-01 1.40470469e+00 -1.29776406e+00 -1.04295325e+00 8.18806708e-01 3.57216984e-01 -2.55823940e-01 5.33352137e-01 -2.62302370e-03 2.90291667e-01 6.65034279e-02 -1.03037013e-02 1.04247761e+00 7.82698333e-01 -1.71943760e+00 -8.67567003e-01 -4.91787225e-01 4.74056542e-01 -2.59731889e-01 1.01770371e-01 8.80067945e-02 -3.35843235e-01 -3.42754781e-01 2.45383322e-01 -9.20845032e-01 -3.56716424e-01 2.82223523e-01 -4.17226762e-01 -1.87099189e-01 1.45055902e+00 -4.16511506e-01 3.49815190e-01 -2.17900062e+00 -1.15611050e-02 -1.91895813e-01 -1.47807315e-01 3.81710529e-01 -1.83420375e-01 1.71496764e-01 2.46193986e-02 -3.83749902e-02 -6.44238293e-01 -3.55285890e-02 -9.37864110e-02 6.07795119e-01 -9.47324559e-04 2.18159661e-01 5.07808983e-01 8.06293905e-01 -8.97454917e-01 -3.95610780e-01 3.50352317e-01 1.11974537e-01 -4.63976353e-01 3.19239974e-01 -6.84643745e-01 2.99764723e-01 -2.66148716e-01 7.91747332e-01 8.85831654e-01 -8.25455189e-02 -9.71233845e-03 -1.77662760e-01 -1.36334121e-01 -3.73703063e-01 -1.59202981e+00 1.62342763e+00 -3.69734019e-02 3.76985759e-01 1.33872896e-01 -1.10234571e+00 8.65537167e-01 1.60620213e-02 4.89501506e-01 8.01163539e-03 4.83782172e-01 2.05075279e-01 3.84370208e-01 -6.83003783e-01 3.78998965e-01 -2.97663584e-02 -1.48823962e-01 3.46143484e-01 4.27041918e-01 -3.81452829e-01 6.06191158e-01 -1.07407168e-01 1.02383816e+00 2.31115773e-01 1.61289930e-01 -2.19026163e-01 -1.58306614e-01 5.00944853e-01 4.61897850e-01 1.04499316e+00 -2.08317071e-01 9.64877784e-01 4.06556070e-01 -3.92423600e-01 -1.21899390e+00 -9.05337572e-01 -3.45448017e-01 1.12395918e+00 6.95788026e-01 3.58784616e-01 -9.50624943e-01 -5.71404815e-01 1.79802418e-01 6.48334861e-01 -5.36530972e-01 -1.27331585e-01 -5.95096767e-01 -7.17470706e-01 -1.62592664e-01 5.79240441e-01 2.27336243e-01 -1.26483178e+00 -1.32404339e+00 2.14865685e-01 1.94673195e-01 -1.12042332e+00 1.01557419e-01 7.69186378e-01 -8.68259192e-01 -1.29259133e+00 -7.04612732e-01 -1.08223295e+00 8.36211979e-01 3.36375892e-01 7.95220554e-01 -1.35448113e-01 -7.50744998e-01 3.37993413e-01 -5.33646226e-01 -9.20075655e-01 -3.41832399e-01 1.89941853e-01 -3.28147233e-01 -1.04745500e-01 4.51372087e-01 -1.89075410e-01 -5.18569171e-01 4.01887178e-01 -1.20058298e+00 -2.90174931e-01 5.41742623e-01 4.78447378e-01 4.51114386e-01 -8.39758012e-03 4.41379845e-01 -1.00713110e+00 1.04994178e-01 -6.09992683e-01 -7.06477880e-01 4.38707292e-01 5.18871620e-02 -9.73616168e-02 3.78364980e-01 -1.01132274e+00 -8.92646968e-01 6.73636138e-01 1.76398531e-01 -6.11018002e-01 -6.63833261e-01 -8.89466330e-02 -4.05167401e-01 5.93858697e-02 6.46498203e-01 -3.23078126e-01 -4.96989377e-02 -6.29804790e-01 4.37511563e-01 8.43376160e-01 6.40646696e-01 -5.37767947e-01 5.31298637e-01 3.64605427e-01 -4.43989038e-01 -7.53368616e-01 -7.53150225e-01 -6.94949806e-01 -1.18053472e+00 -2.09941357e-01 1.02659237e+00 -4.86790299e-01 -3.53498667e-01 4.86446798e-01 -1.30584836e+00 -6.71053052e-01 -7.26703763e-01 2.24693924e-01 -7.15559661e-01 2.50379946e-02 -4.92100954e-01 -7.45955169e-01 -4.57701609e-02 -1.34287286e+00 1.08863449e+00 4.19966757e-01 1.99617445e-02 -3.63690436e-01 -5.27268708e-01 2.25766022e-02 1.29806548e-01 3.48393172e-01 8.73217165e-01 -1.15479922e+00 -9.26638365e-01 -4.42847192e-01 -1.34797335e-01 3.22177321e-01 2.22800583e-01 2.52073348e-01 -9.07512724e-01 -1.94151998e-01 1.42961675e-02 -2.94045806e-01 7.75219917e-01 3.89663070e-01 1.26762044e+00 -5.78419417e-02 -5.95149696e-01 3.43984872e-01 1.41968477e+00 5.85207403e-01 6.50647759e-01 2.27748185e-01 5.67508161e-01 8.94398987e-01 7.54907250e-01 3.66757900e-01 -1.49633408e-01 5.02398849e-01 7.25208163e-01 -7.70886317e-02 -8.10605288e-03 2.98406929e-01 -1.28646344e-01 -2.85991170e-02 6.28298670e-02 -3.98838878e-01 -9.66557145e-01 7.46544123e-01 -1.83663273e+00 -7.51009524e-01 -1.33517653e-01 2.15706897e+00 5.88218033e-01 2.03601971e-01 2.42164642e-01 9.10643488e-02 1.07087028e+00 -2.25100487e-01 -8.61068964e-01 -2.05413312e-01 1.95072204e-01 1.20765723e-01 5.99263430e-01 1.53076634e-01 -1.33284175e+00 1.11867940e+00 5.62351799e+00 4.61022943e-01 -1.00691175e+00 6.70677274e-02 4.77582395e-01 8.18952918e-02 3.38774294e-01 2.19920278e-01 -9.02103186e-01 4.31326330e-01 4.86639351e-01 1.91504687e-01 4.05327559e-01 1.06404030e+00 -2.89415449e-01 -3.57065558e-01 -1.55247998e+00 6.48928404e-01 7.73418024e-02 -8.65478516e-01 -2.42079332e-01 -1.91647798e-01 6.63628042e-01 2.97681782e-02 -4.21369702e-01 4.81133133e-01 4.90697145e-01 -6.52615786e-01 9.58529294e-01 5.26236534e-01 3.92157257e-01 -2.49682561e-01 6.88385963e-01 7.24647820e-01 -6.85826600e-01 -3.97706002e-01 -6.18480086e-01 7.81240240e-02 -1.48280570e-02 1.02308020e-01 -7.57599175e-01 2.15735644e-01 8.85018945e-01 2.52168894e-01 -4.37963367e-01 1.38514400e+00 1.07736580e-01 1.19993605e-01 -4.57885444e-01 -3.26662622e-02 1.40504003e-01 -4.99159694e-02 4.33534831e-01 1.02552545e+00 2.13096544e-01 5.14692962e-01 4.70700264e-01 1.14423287e+00 1.27213569e-02 -3.06412578e-01 -5.13197720e-01 6.81990758e-02 2.93118626e-01 1.40434086e+00 -1.39298713e+00 -5.14328182e-01 -4.16475564e-01 7.52918482e-01 9.15311947e-02 3.19119304e-01 -5.87575138e-01 -7.48910785e-01 4.84088540e-01 2.31230885e-01 8.46751928e-01 -5.08636944e-02 -3.06973159e-01 -9.12662506e-01 8.27580132e-03 -5.00489593e-01 2.18953818e-01 -8.32436204e-01 -1.32945657e+00 3.48251998e-01 3.55546385e-01 -1.07735991e+00 -1.20907106e-01 -1.05209637e+00 -4.91260260e-01 3.91047150e-01 -1.16256249e+00 -1.13459098e+00 -6.69915974e-01 2.02889472e-01 7.76335776e-01 2.45557562e-01 4.98330981e-01 1.99342608e-01 -4.76702988e-01 1.18909493e-01 1.00221612e-01 4.24960792e-01 3.55111659e-01 -9.88969624e-01 4.22002003e-02 7.23809421e-01 -1.73967391e-01 4.23310727e-01 8.49359751e-01 -7.11569548e-01 -1.21776140e+00 -1.17970502e+00 6.21726736e-02 -4.74661410e-01 5.26124120e-01 -7.17031896e-01 -1.20107174e+00 9.79947448e-01 -1.25052452e-01 5.70917666e-01 1.19178444e-01 -3.97943318e-01 -2.90901475e-02 -1.29686981e-01 -1.49289691e+00 1.97676256e-01 1.03691566e+00 2.10459605e-01 -7.17889905e-01 4.98276919e-01 8.91310573e-01 -5.30887067e-01 -6.34761393e-01 7.52791584e-01 4.08913881e-01 -7.05506861e-01 8.69141638e-01 -8.72186363e-01 3.76850128e-01 -2.73946404e-01 -1.53463647e-01 -1.06996250e+00 -1.96241383e-02 -3.22226174e-02 -4.83863503e-02 1.19356203e+00 3.27761412e-01 -4.47626472e-01 8.03229988e-01 9.68768120e-01 -3.86653721e-01 -3.99798483e-01 -4.87352520e-01 -1.07176244e+00 8.00092295e-02 -1.40071884e-01 7.23058760e-01 7.40893543e-01 -4.26502258e-01 -2.25936510e-02 1.06887519e-01 2.36015201e-01 3.65112603e-01 5.20104825e-01 1.00089908e+00 -1.61946547e+00 -1.53716490e-01 -2.31845662e-01 -6.14452302e-01 -7.42886722e-01 -9.48483199e-02 -7.50638068e-01 6.17924690e-01 -1.80017531e+00 3.10107887e-01 -7.61252403e-01 -3.36850137e-02 7.66567826e-01 -4.00003832e-04 -9.00724437e-03 3.90023291e-01 7.98461437e-02 -5.05234599e-01 2.16102265e-02 1.10815728e+00 -4.91978586e-01 -3.61845285e-01 1.88453704e-01 -3.58050376e-01 7.54074275e-01 7.65534878e-01 -6.00642979e-01 -9.87402871e-02 -4.19944853e-01 -4.51298654e-01 -1.97171628e-01 4.62258011e-01 -1.18862450e+00 1.70585960e-01 -3.61198157e-01 2.53883988e-01 -6.83845818e-01 4.20117825e-01 -1.13812077e+00 1.43237174e-01 5.63567817e-01 -1.13850787e-01 -6.27461910e-01 2.47387648e-01 4.11428750e-01 1.22025289e-01 -1.03407323e+00 9.87703502e-01 -6.23113334e-01 -1.00578797e+00 3.24585825e-01 -2.09356979e-01 -1.08038269e-01 1.56401050e+00 -5.95526278e-01 -4.02055323e-01 2.53045052e-01 -9.08088863e-01 2.52887249e-01 6.74945056e-01 6.19281054e-01 2.43250415e-01 -7.19159544e-01 -4.51882243e-01 1.16078347e-01 3.92306119e-01 7.31046140e-01 3.51706035e-02 2.43862569e-01 -5.86197078e-01 1.79430600e-02 -4.39881116e-01 -7.80482829e-01 -1.13735390e+00 1.03458512e+00 4.83603656e-01 3.97312939e-01 -6.48600817e-01 7.52623022e-01 3.41920525e-01 -5.48249483e-01 4.09091532e-01 -6.42337084e-01 -1.26660571e-01 1.32168859e-01 3.34628761e-01 2.44870588e-01 7.12919161e-02 -3.47709447e-01 -1.46761969e-01 4.34936911e-01 -1.09887443e-01 4.12770748e-01 1.57107639e+00 3.49238366e-01 -1.14425249e-01 8.08555901e-01 9.26837683e-01 -6.35843992e-01 -1.56099796e+00 -4.38074060e-02 2.71353155e-01 -3.17880511e-01 -4.37970877e-01 -7.09489942e-01 -1.11463988e+00 9.22816157e-01 8.68624508e-01 2.05477089e-01 7.47997940e-01 4.53330815e-01 5.58917403e-01 6.06083095e-01 7.21902311e-01 -1.25603902e+00 1.07403591e-01 4.94533449e-01 7.09136069e-01 -1.47065711e+00 -1.60661623e-01 -6.81098104e-01 -2.95296103e-01 1.26406693e+00 9.12874043e-01 -3.12030494e-01 5.20798326e-01 4.34133023e-01 -5.00817709e-02 -2.19396666e-01 -1.88252702e-01 -5.42046309e-01 -2.91605536e-02 6.76835299e-01 -2.37892821e-01 1.07937694e-01 -3.40716690e-02 7.60174274e-01 -5.67889102e-02 5.11441343e-02 7.53613293e-01 1.41597438e+00 -9.32986319e-01 -8.74241471e-01 -4.82272387e-01 7.62064874e-01 -2.50055343e-01 4.12623197e-01 -4.17015702e-01 9.22763288e-01 6.16196990e-01 7.98027456e-01 4.18434411e-01 -3.44548374e-02 4.35971469e-01 1.00346953e-01 5.59296310e-01 -1.20941842e+00 -5.09805858e-01 -1.14103548e-01 -2.91446209e-01 -1.95207998e-01 -3.36393446e-01 -7.13784754e-01 -1.52005100e+00 3.61364692e-01 -6.13733709e-01 -3.62592816e-01 9.80049789e-01 8.62192214e-01 6.57576546e-02 6.01784229e-01 1.46371201e-01 -1.30693877e+00 -4.32740957e-01 -9.31692660e-01 -5.29870629e-01 4.65401113e-01 2.69124061e-01 -8.51753592e-01 -2.96540856e-01 3.33530307e-01]
[6.192483901977539, -1.0083290338516235]
51cd3cab-6755-445f-97f4-0042f3f254a5
sustainability-of-collusion-and-market
2105.02094
null
https://arxiv.org/abs/2105.02094v1
https://arxiv.org/pdf/2105.02094v1.pdf
Sustainability of Collusion and Market Transparency in a Sequential Search Market: a Generalization
The present work generalizes the analytical results of Petrikaite (2016) to a market where more than two firms interact. As a consequence, for a generic number of firms in the oligopoly model described by Janssen et al (2005), the relationship between the critical discount factor which sustains the monopoly collusive allocation and the share of perfectly informed buyers is non-monotonic, reaching a unique internal point of minimum. The first section locates the work within the proper economic framework. The second section hosts the analytical computations and the mathematical reasoning needed to derive the desired generalization, which mainly relies on the Leibniz rule for the differentiation under the integral sign and the Bounded Convergence Theorem.
['Giuseppe Puleio', 'Jacopo De Tullio']
2021-05-05
null
null
null
null
['mathematical-reasoning']
['natural-language-processing']
[-5.54777026e-01 5.20069361e-01 -5.06724954e-01 4.15126711e-01 2.02189922e-01 -1.18895459e+00 4.08714682e-01 1.12545133e-01 -5.12432694e-01 7.96581924e-01 -6.24990165e-01 -4.47325677e-01 -6.49266958e-01 -6.73083782e-01 -3.87788743e-01 -1.04697740e+00 -2.79321492e-01 2.26320252e-01 1.43705800e-01 -2.63330162e-01 2.04179391e-01 6.17284596e-01 -1.10146570e+00 -3.50865901e-01 8.64240408e-01 1.39909053e+00 7.66686127e-02 5.12129128e-01 1.93442047e-01 4.32038426e-01 -3.75992775e-01 -9.37398255e-01 1.01932347e+00 -1.40263647e-01 -3.21820796e-01 1.03161886e-01 -5.57547033e-01 -5.17790616e-01 -3.79156359e-02 1.18569732e+00 1.84910133e-01 2.56686568e-01 7.89369524e-01 -1.64020777e+00 -6.79140091e-01 7.79829741e-01 -4.68828022e-01 4.07553017e-01 -1.93761781e-01 -1.55262098e-01 1.03893626e+00 -6.68271542e-01 6.63893461e-01 9.35574710e-01 1.96943060e-01 2.43652344e-01 -7.63214648e-01 -3.64663512e-01 2.56214142e-01 -1.67154357e-01 -1.27660978e+00 3.47474068e-02 1.82430461e-01 -4.27094907e-01 8.10486138e-01 2.32943326e-01 9.31231558e-01 5.11653900e-01 6.34618580e-01 4.20544535e-01 9.40207839e-01 -4.29293633e-01 3.77283037e-01 3.29989165e-01 -1.35573987e-02 -1.47359923e-01 1.15393782e+00 2.49379009e-01 3.01180720e-01 -1.29558668e-01 1.13778150e+00 5.15012890e-02 7.63855502e-02 -6.12404883e-01 -5.88573039e-01 9.48771834e-01 2.01054215e-01 6.07081175e-01 -6.64985418e-01 -1.13517679e-01 2.74940938e-01 6.10094190e-01 1.80665120e-01 3.77390772e-01 -2.11587027e-01 -1.17653664e-02 -4.61226404e-01 3.92823577e-01 1.30963337e+00 1.05084789e+00 1.13500960e-01 -9.50320512e-02 1.72392115e-01 9.19051096e-02 5.39424241e-01 5.78093827e-01 1.04014076e-01 -1.35837615e+00 5.49230278e-01 1.61258534e-01 8.50308359e-01 -8.52506816e-01 -1.59622595e-01 -1.01893365e+00 -3.12043816e-01 1.27883255e-01 9.19341922e-01 -3.33110273e-01 1.64027035e-01 1.44541955e+00 8.33090618e-02 -4.99590069e-01 2.47685641e-01 8.56055379e-01 -8.58676583e-02 7.46411026e-01 -8.24320465e-02 -9.04697001e-01 9.98556793e-01 -9.12884116e-01 -7.82410622e-01 3.07821184e-01 3.20876867e-01 -5.03325522e-01 4.57905233e-01 5.47273040e-01 -1.44481659e+00 2.37856925e-01 -8.93470824e-01 2.65398234e-01 -2.78620481e-01 -3.14706773e-01 7.40062118e-01 7.68376589e-01 -1.13753521e+00 5.32677531e-01 -5.58467031e-01 -3.03708941e-01 -3.85892354e-02 5.12623787e-01 1.47407979e-01 3.17236841e-01 -1.08981216e+00 1.01197302e+00 2.48361573e-01 3.88053536e-01 -6.23953283e-01 -5.04175305e-01 -4.25580561e-01 6.33839965e-01 5.68657517e-01 -4.85506326e-01 1.51482391e+00 -1.35065162e+00 -1.61056173e+00 5.41335166e-01 4.96723026e-01 -4.91056621e-01 9.90174949e-01 1.13517731e-01 1.34801656e-01 3.12347382e-01 1.52037904e-01 5.49116246e-02 2.69254059e-01 -1.24918902e+00 -7.34330952e-01 -4.43152249e-01 5.52561760e-01 2.29977652e-01 -2.25680508e-02 2.85492003e-01 3.07399053e-02 -5.62501967e-01 1.17711909e-02 -7.41067827e-01 -4.63612348e-01 -4.87616241e-01 1.13901533e-01 -3.35675031e-01 -1.57958627e-01 -2.51839101e-01 9.21896398e-01 -2.12968707e+00 5.57860620e-02 3.60318929e-01 2.77276505e-02 -1.90389752e-01 2.73979902e-01 1.06618941e+00 7.00930832e-03 1.62719831e-01 -1.83708388e-02 -1.02346539e-01 7.37484574e-01 1.37204200e-01 -3.23125303e-01 8.79401565e-01 -7.19303489e-02 7.67993331e-01 -8.90038013e-01 -1.11247517e-01 -9.54511687e-02 -2.10830614e-01 -2.66589165e-01 -2.22773775e-01 3.55086029e-01 -7.67738521e-02 -4.87756222e-01 5.83243310e-01 9.27103698e-01 1.56229153e-01 4.39442128e-01 5.40356040e-01 -8.34161758e-01 1.65720731e-02 -1.60335672e+00 7.10736990e-01 -3.80784661e-01 2.20449671e-01 6.97585821e-01 -9.49974954e-01 4.17135239e-01 3.41727287e-01 6.06333494e-01 -3.66219908e-01 5.65081418e-01 6.42758727e-01 1.96607873e-01 -2.14731365e-01 3.82866323e-01 -5.18823624e-01 -8.99660885e-02 3.94776583e-01 -2.04478711e-01 -3.36458310e-02 7.13890612e-01 2.70512581e-01 4.67823118e-01 -9.38184336e-02 6.28479600e-01 -9.59695041e-01 3.48182470e-01 -4.15911376e-02 5.63936055e-01 6.73329771e-01 -3.59159440e-01 -2.05147162e-01 1.26803410e+00 1.17134012e-01 -1.17113030e+00 -1.19265354e+00 -3.63790154e-01 7.67948151e-01 4.10503387e-01 2.90022016e-01 -8.50317061e-01 -1.16372116e-01 5.08441150e-01 7.40134895e-01 -7.42384017e-01 1.84650347e-01 -3.17622386e-02 -5.01825213e-01 -8.81294534e-02 2.73018658e-01 2.11448252e-01 -7.53026843e-01 -7.06789672e-01 5.62303960e-02 3.34411293e-01 -8.72451067e-01 -2.76134849e-01 3.18900347e-01 -7.02410698e-01 -9.48630929e-01 -9.58599746e-01 -4.33967113e-01 6.39673591e-01 2.81861484e-01 5.49029112e-01 -1.44726753e-01 3.87072951e-01 3.73870254e-01 -1.62445337e-01 -6.99368119e-01 -4.38394517e-01 -5.86974621e-02 1.54015318e-01 3.30279842e-02 2.01468363e-01 -4.91257042e-01 -6.13016665e-01 3.93585593e-01 -8.89866292e-01 -4.03984606e-01 5.08899331e-01 2.19611928e-01 2.24377587e-01 2.51324445e-01 9.03771281e-01 -8.95837098e-02 6.59932673e-01 -9.40334320e-01 -1.47973740e+00 1.84983104e-01 -7.52291024e-01 -2.75031894e-01 7.95143723e-01 -3.48971546e-01 -1.08847070e+00 -2.27227718e-01 5.26979744e-01 1.25158101e-01 3.33913922e-01 2.92743772e-01 -3.24563742e-01 -1.65368915e-02 -1.02690160e-01 -1.71614140e-01 2.90314052e-02 -5.56791663e-01 3.39232922e-01 7.82674670e-01 3.09832901e-01 -3.53165239e-01 6.84884191e-01 6.11422837e-01 1.67168722e-01 -3.66655022e-01 -2.57354468e-01 -2.79786944e-01 -6.35052323e-01 -3.22122008e-01 5.09564281e-01 -7.48632610e-01 -1.63932741e+00 2.57212430e-01 -1.09846222e+00 -2.12393284e-01 -8.06244195e-01 8.03153932e-01 -7.96414733e-01 2.94867754e-01 -8.62591624e-01 -1.69762552e+00 2.66058087e-01 -9.20149803e-01 3.15508306e-01 4.06833559e-01 3.80305499e-01 -9.36699092e-01 -3.96424420e-02 -3.65199447e-02 2.34754786e-01 1.69013187e-01 3.75708252e-01 -4.82559532e-01 -7.58688927e-01 -2.63537139e-01 -3.42542231e-02 9.92913842e-02 -1.05492331e-01 3.09839845e-01 -3.14846814e-01 -2.08182707e-01 5.08177638e-01 4.30253834e-01 4.12343949e-01 5.31419873e-01 2.03237478e-02 -5.76487601e-01 -1.80543303e-01 2.73156881e-01 1.74757266e+00 5.60907900e-01 4.24153119e-01 7.59503663e-01 -8.00476447e-02 1.00354385e+00 7.29714334e-01 7.27495551e-01 3.97562534e-01 5.92125833e-01 7.64799535e-01 4.84891206e-01 8.31202209e-01 -2.14959290e-02 3.65337968e-01 6.12747729e-01 -4.31079865e-01 -3.15813363e-01 -2.52993703e-01 7.06058025e-01 -2.06827950e+00 -9.71138597e-01 -2.15509638e-01 2.41146612e+00 4.21128094e-01 8.88882484e-03 7.95627654e-01 1.01139799e-01 9.22905028e-01 -4.58947569e-01 -3.13387543e-01 -1.12096441e+00 -3.63132864e-01 -2.75641143e-01 1.36156285e+00 6.00359857e-01 -4.54800695e-01 4.74421620e-01 7.09315777e+00 6.29660308e-01 -6.69190705e-01 1.22622013e-01 3.73036474e-01 -2.76830852e-01 -4.95852113e-01 2.85890400e-01 -5.09400964e-01 6.81797683e-01 9.63172853e-01 -8.62891972e-01 5.61184347e-01 8.18397701e-01 7.02157199e-01 -5.27052939e-01 -5.42132854e-01 3.23785633e-01 -5.11044919e-01 -7.76537240e-01 -5.63754618e-01 7.14256585e-01 7.62587607e-01 -5.37903905e-01 2.10315838e-01 -1.84782296e-01 4.93729830e-01 -7.80649722e-01 1.04465783e+00 3.45098197e-01 5.54755181e-02 -9.98082459e-01 8.74474704e-01 4.64059919e-01 -8.68081689e-01 -7.38357723e-01 -3.20698410e-01 -6.34913862e-01 5.87441862e-01 6.30357206e-01 -3.09778243e-01 9.10567462e-01 2.74889410e-01 1.83881428e-02 1.01917051e-01 1.30578554e+00 -2.34612375e-01 2.92562991e-01 -5.70416689e-01 -1.91554695e-01 5.66633463e-01 -1.00151360e+00 3.64306480e-01 7.57385254e-01 3.56376767e-01 5.12065962e-02 -4.81381476e-01 9.37280416e-01 1.47917077e-01 4.61830139e-01 -3.43521655e-01 -1.40550196e-01 2.24305809e-01 1.20214844e+00 -1.18859386e+00 1.61073692e-02 -5.70174694e-01 4.51412708e-01 -2.70860910e-01 4.00309592e-01 -6.31238759e-01 -4.62223619e-01 3.84184867e-01 1.83747992e-01 5.58861673e-01 -4.48688149e-01 -5.27857661e-01 -8.10787797e-01 4.52633530e-01 -2.05742791e-01 3.08655709e-01 -9.47135761e-02 -1.07921386e+00 -5.75784929e-02 3.79860669e-01 -9.49008346e-01 -5.48843622e-01 -7.25414932e-01 -5.14636695e-01 8.96333277e-01 -1.42663050e+00 -5.71499467e-01 5.52174330e-01 -4.55087945e-02 -6.36793626e-03 1.51010886e-01 1.35562897e-01 2.54631966e-01 -6.10683382e-01 1.64006293e-01 7.97781289e-01 -2.87110299e-01 -1.69569597e-01 -1.30914176e+00 1.04528621e-01 9.18103278e-01 -6.21871233e-01 7.22584426e-01 9.51422513e-01 -5.96674025e-01 -1.43962479e+00 -1.38311476e-01 1.07856607e+00 5.08371778e-02 1.28276849e+00 -2.98991114e-01 -2.65649796e-01 6.32789075e-01 4.67688918e-01 -2.73818433e-01 2.80494809e-01 -5.18502176e-01 2.95461416e-01 -1.59584537e-01 -1.29388857e+00 5.42201519e-01 7.61876941e-01 1.14366926e-01 -3.48206490e-01 1.85702145e-01 5.46520054e-01 -7.50380978e-02 -1.20444787e+00 5.74864075e-03 7.39177406e-01 -9.86473143e-01 5.51347554e-01 -5.03573060e-01 2.57151760e-02 1.57259885e-04 -4.48912233e-02 -8.92055750e-01 -3.34574372e-01 -1.18343592e+00 1.64795861e-01 1.13386464e+00 3.62664491e-01 -1.30575502e+00 1.41168505e-01 6.68411553e-01 2.00405061e-01 -6.20740294e-01 -1.24100208e+00 -1.39067829e+00 7.11024284e-01 9.89462733e-02 4.42042112e-01 6.82894766e-01 5.69874048e-01 -4.10098284e-01 5.70302121e-02 -1.01514468e-02 6.67855918e-01 3.03636752e-02 1.46349773e-01 -1.06130397e+00 -5.00244617e-01 -6.97505414e-01 -6.59943745e-02 -1.07330596e+00 -2.29740236e-02 -7.30175972e-01 -2.48709664e-01 -1.30597770e+00 -1.05917091e-02 -3.50209951e-01 -1.92804247e-01 -3.38389039e-01 5.64468622e-01 -1.34509966e-01 7.30234325e-01 3.09651643e-01 -4.43330467e-01 2.79608935e-01 1.29699636e+00 4.01033461e-01 -3.34685028e-01 5.63273191e-01 -1.16763222e+00 4.82880950e-01 6.57751203e-01 -2.92267233e-01 -3.18290591e-01 9.33229476e-02 8.76061320e-01 2.16801256e-01 3.58958662e-01 1.62726063e-02 7.47406110e-02 -6.06149256e-01 -3.85657996e-01 -2.32299864e-01 -7.12944344e-02 -1.06760740e+00 3.24877828e-01 5.85623801e-01 -1.42149717e-01 2.62870222e-01 -9.82942134e-02 3.59127998e-01 2.87221104e-01 -1.06594956e+00 4.98719066e-01 -7.92357773e-02 2.11196661e-01 -6.86848685e-02 -7.26543248e-01 -3.19243371e-02 1.40958178e+00 -2.69983590e-01 -2.44277716e-01 -5.44423878e-01 -7.55410492e-01 4.22826469e-01 7.00702727e-01 -4.61188816e-02 -2.78314859e-01 -1.09411013e+00 -4.80082631e-01 -4.11991268e-01 -4.78896022e-01 -3.07072043e-01 1.82382166e-01 1.20913613e+00 -4.45102781e-01 6.93696737e-01 -3.66732687e-01 -1.72586814e-02 -4.05511349e-01 8.94441366e-01 6.84657097e-01 -2.24863544e-01 -1.61035955e-01 1.58748388e-01 2.51953542e-01 4.40560251e-01 -6.63074553e-02 -3.93269271e-01 8.17745700e-02 3.41964275e-01 2.70591289e-01 8.98402572e-01 -1.53740302e-01 -6.82738960e-01 -3.12806189e-01 2.83389568e-01 3.09961438e-01 -6.68020368e-01 1.40476692e+00 -7.26915658e-01 -2.66266972e-01 5.53747594e-01 7.31193066e-01 2.77367443e-01 -1.53885067e+00 2.74251670e-01 1.89887643e-01 -4.72225100e-01 -4.14850742e-01 -3.92556816e-01 -1.11932218e+00 4.56936657e-01 -7.55732553e-03 1.12017536e+00 8.43043089e-01 1.92090217e-02 1.75701216e-01 3.31741609e-02 3.75866860e-01 -1.32722831e+00 -5.99347174e-01 1.10007495e-01 8.57344627e-01 -5.04712999e-01 -9.62647349e-02 -7.57053137e-01 -5.83427727e-01 9.74165261e-01 6.70630112e-02 -4.38691765e-01 7.35660553e-01 3.62315625e-01 -3.48818094e-01 2.14316174e-01 -4.27767962e-01 -2.25214079e-01 -2.07601383e-01 5.12600303e-01 1.35821104e-02 3.87483865e-01 -1.48615468e+00 1.25740337e+00 -2.26705328e-01 -3.51600945e-02 1.09380221e+00 7.06305683e-01 -2.58743733e-01 -1.00168598e+00 -3.03859890e-01 1.40399206e-02 -8.50202382e-01 -1.35095539e-02 -3.84986490e-01 1.23507953e+00 -3.37585323e-02 9.72810030e-01 3.93803477e-01 7.01360404e-01 4.68287379e-01 -2.50716239e-01 5.63220084e-01 -2.73149550e-01 -6.74170732e-01 3.09097856e-01 -3.85264844e-01 6.15091296e-03 -5.05488396e-01 -9.05633569e-01 -1.11227524e+00 -6.57666922e-01 -5.29995084e-01 5.49674332e-01 6.49923205e-01 1.00399566e+00 -1.17556930e-01 -5.93623519e-03 8.79737258e-01 -3.62179965e-01 -9.67914760e-01 -6.42638564e-01 -1.66878390e+00 -2.62519181e-01 -4.96173017e-02 -6.43667817e-01 -8.37442338e-01 -4.66460317e-01]
[4.862112522125244, 3.823110580444336]
09c0c12e-214b-408f-a70c-e6479baf8df2
toward-dnn-of-luts-learning-efficient-image
2303.14506
null
https://arxiv.org/abs/2303.14506v1
https://arxiv.org/pdf/2303.14506v1.pdf
Toward DNN of LUTs: Learning Efficient Image Restoration with Multiple Look-Up Tables
The widespread usage of high-definition screens on edge devices stimulates a strong demand for efficient image restoration algorithms. The way of caching deep learning models in a look-up table (LUT) is recently introduced to respond to this demand. However, the size of a single LUT grows exponentially with the increase of its indexing capacity, which restricts its receptive field and thus the performance. To overcome this intrinsic limitation of the single-LUT solution, we propose a universal method to construct multiple LUTs like a neural network, termed MuLUT. Firstly, we devise novel complementary indexing patterns, as well as a general implementation for arbitrary patterns, to construct multiple LUTs in parallel. Secondly, we propose a re-indexing mechanism to enable hierarchical indexing between cascaded LUTs. Finally, we introduce channel indexing to allow cross-channel interaction, enabling LUTs to process color channels jointly. In these principled ways, the total size of MuLUT is linear to its indexing capacity, yielding a practical solution to obtain superior performance with the enlarged receptive field. We examine the advantage of MuLUT on various image restoration tasks, including super-resolution, demosaicing, denoising, and deblocking. MuLUT achieves a significant improvement over the single-LUT solution, e.g., up to 1.1dB PSNR for super-resolution and up to 2.8dB PSNR for grayscale denoising, while preserving its efficiency, which is 100$\times$ less in energy cost compared with lightweight deep neural networks. Our code and trained models are publicly available at https://github.com/ddlee-cn/MuLUT.
['Zhiwei Xiong', 'Zhen Cheng', 'Chang Chen', 'Jiacheng Li']
2023-03-25
null
null
null
null
['demosaicking']
['computer-vision']
[ 2.08348170e-01 -4.47046041e-01 3.74830030e-02 -1.66001171e-01 -7.44575381e-01 -2.71970838e-01 1.99029781e-02 -1.06456399e-01 -5.40629625e-01 4.80704159e-01 2.53939211e-01 -4.11627561e-01 1.93619832e-01 -9.88915026e-01 -8.12594712e-01 -7.10234642e-01 1.53949365e-01 -4.66445982e-01 4.81596053e-01 -5.52966213e-03 2.00377718e-01 6.58798039e-01 -1.52577734e+00 3.02064240e-01 6.35492861e-01 1.33388853e+00 5.40271580e-01 5.54212809e-01 -1.15280442e-01 7.35244095e-01 -4.35856074e-01 -3.59923631e-01 3.52190256e-01 -2.92687863e-01 -5.36275744e-01 -7.21455291e-02 5.47723413e-01 -8.63744736e-01 -7.88403511e-01 1.20313442e+00 7.79008269e-01 -4.61723320e-02 1.99703015e-02 -6.59461856e-01 -7.78343976e-01 3.84607106e-01 -6.92388117e-01 3.78487974e-01 -1.86088040e-01 -3.99789661e-02 7.34724641e-01 -7.26038992e-01 3.97296965e-01 1.20137751e+00 6.49922490e-01 6.79754198e-01 -1.22157252e+00 -7.29948938e-01 -9.35863331e-02 2.62313575e-01 -1.33318210e+00 -8.28178644e-01 6.43887222e-01 1.91278428e-01 9.93498921e-01 3.34414452e-01 5.27056038e-01 5.66113353e-01 2.00123742e-01 6.19192481e-01 1.14852178e+00 -3.17206800e-01 3.68778437e-01 -4.04641449e-01 5.21388315e-02 6.33572042e-01 2.92473614e-01 -1.19893111e-01 -7.55040586e-01 4.85145934e-02 1.46509492e+00 2.63674557e-01 -4.59004432e-01 -2.76079215e-02 -9.47332740e-01 4.53266114e-01 8.25810671e-01 1.74317420e-01 -2.89179236e-01 6.33050680e-01 6.02700531e-01 2.97428727e-01 2.59381026e-01 1.23391286e-01 -3.40598494e-01 6.69978186e-02 -9.66960847e-01 -2.52134025e-01 4.46627438e-01 6.95432663e-01 7.76871920e-01 2.05029234e-01 -5.09363506e-03 1.08019137e+00 9.83306915e-02 3.68469059e-01 4.92061734e-01 -1.22238803e+00 2.78009146e-01 3.84844065e-01 -1.07373074e-01 -9.57695544e-01 -3.08279008e-01 -3.79726201e-01 -1.43435025e+00 2.95328856e-01 2.13695198e-01 2.45912492e-01 -1.06690955e+00 1.60588968e+00 6.88399002e-02 5.81973121e-02 -6.03661733e-03 9.37346697e-01 6.79760575e-01 8.80524218e-01 -1.41644761e-01 -1.78731635e-01 1.55810034e+00 -9.58153725e-01 -7.06518412e-01 -3.89737487e-01 3.27148169e-01 -8.10939908e-01 1.20150459e+00 4.17687446e-01 -1.21030927e+00 -6.27266049e-01 -1.18204498e+00 -4.61821318e-01 -1.86365154e-02 1.42234921e-01 8.26836586e-01 6.36651814e-01 -1.51796389e+00 7.22182751e-01 -1.07058692e+00 1.30473133e-02 5.52848637e-01 5.24008751e-01 -2.19008237e-01 -3.10292661e-01 -8.11683536e-01 3.40586662e-01 1.99641272e-01 2.45546058e-01 -4.03096974e-01 -4.88776654e-01 -5.41871250e-01 3.90281081e-01 1.23205103e-01 -5.36981761e-01 1.05102015e+00 -7.14277506e-01 -1.50178337e+00 5.04559278e-01 -3.30792844e-01 -5.16715169e-01 1.19644903e-01 -1.27309993e-01 -4.44629788e-01 2.67349303e-01 -1.70539275e-01 7.72502899e-01 9.00105238e-01 -9.74443495e-01 -3.93426389e-01 -4.14084882e-01 1.27197728e-01 8.19699913e-02 -8.47034276e-01 2.52155792e-02 -9.10777807e-01 -8.02273631e-01 5.89050770e-01 -6.13906980e-01 -4.84561443e-01 4.87443447e-01 -1.63051173e-01 2.32527301e-01 7.34570980e-01 -6.59274161e-01 1.38211656e+00 -2.47080231e+00 -1.65662691e-01 -6.14718571e-02 3.59835118e-01 3.15103531e-01 1.84746850e-02 5.52917197e-02 1.74540460e-01 1.09483734e-01 -2.00772464e-01 -3.17681700e-01 -2.59436876e-01 3.57283115e-01 -2.63707846e-01 2.99349338e-01 -1.43886700e-01 6.57709777e-01 -3.98562431e-01 -2.40538716e-01 5.11124469e-02 7.44907498e-01 -6.73471034e-01 -1.77519128e-01 3.01774889e-01 1.13699295e-01 -2.28742316e-01 8.10124874e-01 1.10915518e+00 -5.82935750e-01 4.18224066e-01 -7.43733048e-01 -2.73291707e-01 4.41876501e-01 -1.26990819e+00 1.60501194e+00 -7.01312423e-01 6.89804077e-01 3.51629615e-01 -7.10511386e-01 8.62025380e-01 1.08443499e-01 1.35852054e-01 -1.33056855e+00 -1.10699181e-02 5.02890408e-01 -3.33149552e-01 8.89302194e-02 6.23974442e-01 -2.21244842e-02 3.59581299e-02 3.62113476e-01 -2.16099061e-02 4.82733697e-01 9.92244855e-02 1.03227489e-01 1.24315393e+00 -2.17956617e-01 6.86443236e-04 -3.56041968e-01 2.82124430e-01 -4.14547622e-01 6.34673119e-01 6.50331736e-01 -1.70134664e-01 5.68400085e-01 2.96875060e-01 -6.86679542e-01 -1.07713032e+00 -9.74388003e-01 -2.69335747e-01 9.07847464e-01 4.88417834e-01 -5.53175330e-01 -7.13485837e-01 -1.17042372e-02 -2.47096986e-01 4.88760062e-02 -8.66317078e-02 -1.36965811e-02 -8.70127380e-01 -9.81816173e-01 3.94095093e-01 6.77976310e-01 1.14780784e+00 -8.21118534e-01 -9.62066770e-01 2.53695071e-01 -1.65547669e-01 -1.10040724e+00 -5.32208145e-01 4.16167855e-01 -1.30360925e+00 -5.90249538e-01 -6.87552750e-01 -8.77511501e-01 8.42012346e-01 4.97394353e-01 9.62379873e-01 1.90739870e-01 -2.33418971e-01 -6.19893447e-02 -4.71204631e-02 3.27094287e-01 -3.54186259e-02 -1.47470161e-01 -2.75840927e-02 -2.08251312e-01 -1.46759609e-02 -8.15207362e-01 -1.26724434e+00 1.92401886e-01 -1.12930799e+00 3.12211156e-01 8.86994362e-01 9.67995107e-01 8.95064473e-01 2.16534883e-01 3.05388600e-01 -4.31619167e-01 3.69652063e-01 9.22225341e-02 -7.40291715e-01 1.90544501e-02 -5.82542300e-01 2.85878509e-01 7.05265760e-01 -3.65063071e-01 -9.02347267e-01 8.52662325e-02 -3.71170729e-01 -3.59547049e-01 1.87179431e-01 1.89244479e-01 -1.57771811e-01 -4.08421546e-01 4.12877202e-01 3.08207750e-01 -1.81576446e-01 -8.64036262e-01 2.22928226e-01 6.09174788e-01 6.78508222e-01 -2.97609836e-01 4.88858163e-01 6.05179131e-01 -2.18243711e-02 -6.52954221e-01 -2.25068063e-01 -1.95512623e-01 -2.44643003e-01 -7.56006390e-02 5.60248077e-01 -1.18755221e+00 -8.69058490e-01 7.31351912e-01 -1.08750999e+00 -5.31003714e-01 -5.91384545e-02 2.25072637e-01 -1.13709584e-01 3.61003101e-01 -1.22718155e+00 -4.42705661e-01 -7.95903981e-01 -1.29607391e+00 8.82546782e-01 3.98921996e-01 3.31926823e-01 -4.70086128e-01 -5.76474726e-01 2.07910106e-01 7.81709254e-01 -1.62023783e-01 9.23192263e-01 1.97530881e-01 -1.08959258e+00 7.65716061e-02 -8.62982571e-01 4.79096860e-01 5.82368746e-02 -6.81390941e-01 -8.91421616e-01 -5.42960227e-01 1.37013257e-01 -1.86653212e-01 1.16458642e+00 3.40288669e-01 1.44116604e+00 -3.88219923e-01 -1.59389183e-01 9.65009451e-01 1.82265401e+00 2.82686532e-01 1.01742244e+00 4.64235336e-01 5.89651287e-01 -9.61723179e-02 1.76298118e-03 4.70696479e-01 2.30269507e-01 6.11868858e-01 4.00424808e-01 -3.37271363e-01 -5.59818745e-01 -5.99973612e-02 3.64114046e-01 1.04861212e+00 6.29677922e-02 -1.72431603e-01 -6.13762796e-01 4.09398198e-01 -1.45042372e+00 -5.66948652e-01 3.78520340e-02 2.33555889e+00 8.50840151e-01 1.51164129e-01 -3.61395955e-01 1.65600628e-01 6.41515076e-01 3.92671853e-01 -7.67624021e-01 -4.07707691e-01 -1.62277088e-01 4.11853164e-01 9.43330050e-01 2.67782539e-01 -8.80484641e-01 6.86860859e-01 6.08461523e+00 1.13025916e+00 -1.35629916e+00 3.15718442e-01 9.67621207e-01 -1.25154018e-01 -1.53586850e-01 -1.02426022e-01 -8.25079143e-01 4.69051808e-01 9.51167345e-01 2.03910291e-01 6.73868179e-01 7.84288645e-01 1.91691276e-02 -2.10991070e-01 -6.27000988e-01 1.32710612e+00 -1.39178827e-01 -1.55292583e+00 1.60306185e-01 1.42865017e-01 5.20789981e-01 1.14274941e-01 7.15806857e-02 -1.19144462e-01 -1.35475338e-01 -6.25383317e-01 5.12443900e-01 7.37593547e-02 1.16888082e+00 -8.67806375e-01 3.82127523e-01 -2.05247495e-02 -1.25672221e+00 -1.70397028e-01 -6.32710397e-01 1.57303736e-03 7.09126294e-02 9.11550820e-01 -4.46875766e-02 2.27054894e-01 1.21197534e+00 4.27408010e-01 -4.48629200e-01 1.02272427e+00 1.50442660e-01 4.16920602e-01 -4.72661525e-01 2.76266515e-01 -4.05832790e-02 -2.08607893e-02 1.48722559e-01 9.74662542e-01 5.52776337e-01 1.68828860e-01 -2.67850608e-01 5.49291074e-01 -6.05173767e-01 -1.68867245e-01 -3.63770351e-02 2.97527611e-01 5.57433605e-01 1.20375657e+00 -1.02174151e+00 -3.56876165e-01 -6.25732005e-01 1.51639926e+00 1.57238305e-01 2.10527852e-01 -6.52257860e-01 -5.62375247e-01 8.21820080e-01 1.32089332e-01 4.32303727e-01 -4.01244193e-01 -4.70999241e-01 -1.17990172e+00 2.95654416e-01 -7.75482714e-01 1.79914795e-02 -6.90738022e-01 -9.12493348e-01 8.28958869e-01 -5.31002045e-01 -1.17446816e+00 4.73869681e-01 -6.64652348e-01 -2.19955012e-01 8.32661569e-01 -1.67397726e+00 -6.88701212e-01 -4.54000384e-01 6.17703915e-01 4.97605145e-01 2.60297596e-01 7.09426999e-01 8.98099422e-01 -7.88545549e-01 7.06049383e-01 4.07616585e-01 7.04722926e-02 7.56827772e-01 -8.19466770e-01 7.32592523e-01 1.12527025e+00 -3.60591672e-02 7.04390287e-01 3.08361501e-01 -4.52643365e-01 -1.88057339e+00 -9.25915539e-01 5.77381313e-01 3.59289467e-01 4.57564205e-01 -3.45719814e-01 -1.13979125e+00 3.17972451e-01 7.28652477e-02 4.13218141e-01 5.02769887e-01 -2.13774756e-01 -4.84823376e-01 -5.81881702e-01 -1.07504451e+00 7.72319376e-01 1.11938131e+00 -6.10752583e-01 1.14214964e-01 2.14935690e-01 6.50270522e-01 -6.43109202e-01 -7.82805741e-01 2.75961697e-01 6.25811279e-01 -1.13700438e+00 1.21556818e+00 3.26053053e-01 4.41723645e-01 -4.36770946e-01 -3.44352394e-01 -7.32882738e-01 -5.19989789e-01 -5.58354437e-01 -2.47600257e-01 9.44627225e-01 1.94801077e-01 -7.24448681e-01 7.88153291e-01 4.80396658e-01 -2.22605288e-01 -9.12779808e-01 -1.19837379e+00 -6.50714219e-01 -3.01251501e-01 -2.21462250e-01 3.88589472e-01 4.69075024e-01 -4.06260461e-01 1.09164461e-01 -5.56299865e-01 3.11940044e-01 7.20317662e-01 2.85335686e-02 2.66278744e-01 -8.38529110e-01 -4.22774345e-01 -3.56073797e-01 -3.68835777e-01 -1.78789306e+00 -6.10949695e-01 -5.74958146e-01 -7.01914504e-02 -1.63227618e+00 2.30566964e-01 -5.83578467e-01 -4.98156041e-01 6.65487587e-01 8.37086663e-02 8.78834367e-01 3.48988563e-01 5.26544750e-01 -5.06150305e-01 3.51132244e-01 1.28778851e+00 2.70492844e-02 -1.75003231e-01 -3.57449025e-01 -8.19931865e-01 6.07118487e-01 8.42251301e-01 -3.32990021e-01 -1.87756136e-01 -1.03753734e+00 2.13572040e-01 1.51997477e-01 5.94218493e-01 -1.32802916e+00 4.29602504e-01 3.33214790e-01 6.40135586e-01 -4.37087923e-01 5.23157418e-01 -6.42306864e-01 2.14308932e-01 5.39266109e-01 -1.83924176e-02 9.50636119e-02 4.55092728e-01 4.28291231e-01 -2.91618288e-01 3.59391719e-02 8.64441276e-01 -1.06181107e-01 -1.03038418e+00 2.64161944e-01 -2.38927782e-01 -4.58174556e-01 4.10853297e-01 -3.23736608e-01 -5.05143762e-01 -1.64843842e-01 -4.52650696e-01 -1.95759147e-01 5.19622505e-01 1.30306572e-01 8.19724500e-01 -1.26208591e+00 -2.40703762e-01 4.02852386e-01 -4.85417217e-01 -1.01203017e-01 8.02614808e-01 7.41516769e-01 -7.84574747e-01 2.46554941e-01 -4.13815767e-01 -3.21344316e-01 -1.28610468e+00 3.78479362e-01 2.84434825e-01 -2.85088331e-01 -9.46964860e-01 8.83805454e-01 1.38426468e-01 2.23780125e-01 1.41007140e-01 -2.80210286e-01 2.74082452e-01 -1.79572061e-01 9.28831339e-01 3.40470850e-01 2.62395591e-01 -3.16003025e-01 -2.45944902e-01 5.53028345e-01 -1.43771484e-01 9.90158767e-02 1.25611889e+00 -3.71503621e-01 -4.93590295e-01 -1.11646742e-01 1.25719774e+00 -1.01068415e-01 -1.46378028e+00 -4.05231744e-01 -3.46176267e-01 -6.01551712e-01 6.57399714e-01 -6.21381998e-01 -1.51887965e+00 8.09086204e-01 1.03861475e+00 1.30065084e-01 1.87094843e+00 -1.68434560e-01 1.31892943e+00 3.21062028e-01 5.57600677e-01 -8.11691463e-01 8.43926817e-02 3.50849807e-01 6.47809207e-01 -9.91740108e-01 4.78406623e-02 -4.09136593e-01 -1.85785681e-01 1.22326863e+00 5.55348158e-01 3.76913045e-03 5.58064222e-01 6.14925563e-01 -3.70039679e-02 9.43425819e-02 -4.23569828e-01 -5.35490885e-02 -1.50953904e-01 1.64036572e-01 3.05186242e-01 5.52936783e-03 -2.96440303e-01 3.23242843e-01 1.07690394e-01 1.87290654e-01 3.67592543e-01 8.92489791e-01 -4.95759726e-01 -1.28958154e+00 -3.20906788e-01 5.35480320e-01 -6.15705252e-01 -4.77238417e-01 2.84012198e-01 3.00608575e-01 -1.47298106e-03 7.16456652e-01 3.30308080e-01 -5.06061375e-01 1.98207363e-01 -3.79356056e-01 2.75381833e-01 -1.39978409e-01 -3.28353316e-01 3.15260351e-01 -2.10813507e-01 -7.76108086e-01 -3.19802076e-01 -1.79935485e-01 -1.12872016e+00 -5.64458847e-01 -1.10228106e-01 -2.58458734e-01 6.99993134e-01 4.59408373e-01 6.97721243e-01 7.22221076e-01 4.64413911e-01 -9.78101134e-01 -2.30687857e-01 -4.46701050e-01 -4.88200784e-01 -1.94273144e-01 5.01148939e-01 -1.52095661e-01 -2.78695494e-01 1.84480064e-02]
[10.959243774414062, -2.0239431858062744]
efd1bf90-5d18-449a-bfc0-0442a3d89379
human-action-recognition-without-human
1608.07876
null
http://arxiv.org/abs/1608.07876v1
http://arxiv.org/pdf/1608.07876v1.pdf
Human Action Recognition without Human
The objective of this paper is to evaluate "human action recognition without human". Motion representation is frequently discussed in human action recognition. We have examined several sophisticated options, such as dense trajectories (DT) and the two-stream convolutional neural network (CNN). However, some features from the background could be too strong, as shown in some recent studies on human action recognition. Therefore, we considered whether a background sequence alone can classify human actions in current large-scale action datasets (e.g., UCF101). In this paper, we propose a novel concept for human action analysis that is named "human action recognition without human". An experiment clearly shows the effect of a background sequence for understanding an action label.
['Hirokatsu Kataoka', 'Soma Shirakabe', 'Yun He', 'Yutaka Satoh']
2016-08-29
null
null
null
null
['action-analysis']
['computer-vision']
[ 5.08819044e-01 -2.55873144e-01 -3.38935703e-01 -2.09694415e-01 -1.11475803e-01 -1.28311306e-01 7.94548392e-01 -4.88078505e-01 -6.52527690e-01 8.52685571e-01 5.57677627e-01 -1.62229255e-01 3.30600470e-01 -7.45891333e-01 -5.05174935e-01 -8.95510793e-01 2.19816074e-01 -2.98275828e-01 5.95730007e-01 -2.27253661e-01 3.55669886e-01 5.92126608e-01 -1.71634579e+00 8.52860928e-01 4.64105964e-01 8.53137851e-01 -9.06589702e-02 7.60772645e-01 -2.25468874e-01 1.63672709e+00 -8.61860096e-01 5.01611978e-02 2.84088433e-01 -9.35102284e-01 -1.05395770e+00 3.03763688e-01 1.55634448e-01 -6.06121302e-01 -6.27129853e-01 9.90241289e-01 4.00631100e-01 4.34975863e-01 4.85735238e-01 -1.48056543e+00 -4.31087017e-01 4.85230893e-01 -3.66374880e-01 6.13397956e-01 5.49634695e-01 4.67389435e-01 4.09230381e-01 -4.42812055e-01 8.01881373e-01 1.33506441e+00 6.40417993e-01 8.49698305e-01 -5.91192842e-01 -6.49140716e-01 2.80584753e-01 7.02501893e-01 -1.01258886e+00 -2.82801032e-01 7.03194261e-01 -5.82592607e-01 1.13757074e+00 1.78917080e-01 7.64725447e-01 1.59451890e+00 2.85116553e-01 1.55661821e+00 8.30674648e-01 -4.32105035e-01 2.14051098e-01 -4.79125977e-01 1.53225094e-01 4.86375451e-01 -6.03781566e-02 2.21166506e-01 -4.60765928e-01 1.35433376e-01 8.46075416e-01 9.72036049e-02 -3.33334178e-01 -4.93990071e-02 -1.48534048e+00 5.60806692e-01 2.86480397e-01 6.71404362e-01 -3.59035552e-01 2.40401521e-01 7.75753856e-01 -2.86901798e-02 3.11905533e-01 4.96081039e-02 -2.76708126e-01 -7.94602036e-01 -5.99150598e-01 1.01088643e-01 4.79493469e-01 6.73088074e-01 3.06857705e-01 3.79920602e-01 -4.59857225e-01 4.43233699e-01 6.40072599e-02 3.84127408e-01 7.99923778e-01 -1.11351728e+00 4.14641976e-01 8.27040434e-01 3.35327506e-01 -1.00245702e+00 -5.22018015e-01 2.27149725e-01 -1.05393720e+00 4.10580099e-01 7.12739468e-01 -1.53234437e-01 -1.08092499e+00 1.34307361e+00 1.15316145e-01 4.35285568e-01 3.24048549e-01 1.14140606e+00 8.65933180e-01 5.01562655e-01 4.18420643e-01 -1.16545623e-02 1.06477571e+00 -1.25612354e+00 -1.05959201e+00 6.56495290e-03 1.02074122e+00 -3.99518311e-01 8.37683082e-01 4.31703091e-01 -6.68561697e-01 -1.01048899e+00 -7.63403416e-01 8.90316293e-02 -5.41525126e-01 4.31315273e-01 7.85824955e-01 6.39470220e-01 -6.26244783e-01 8.90084982e-01 -1.21379125e+00 -6.53842390e-01 5.90183794e-01 4.61826846e-02 -4.81488675e-01 -4.72550094e-02 -1.26533985e+00 9.25514519e-01 6.17107093e-01 1.81164503e-01 -1.01518917e+00 6.02260418e-02 -7.62515068e-01 -2.35974446e-01 3.46688926e-01 -2.04526663e-01 1.39768410e+00 -1.56298101e+00 -1.50232434e+00 6.93496883e-01 -1.68916672e-01 -7.61670053e-01 7.64581919e-01 -5.41890085e-01 -6.54486060e-01 3.25111985e-01 -3.82027850e-02 6.76794231e-01 6.27939463e-01 -8.39495838e-01 -8.91376376e-01 -2.12956473e-01 3.89367759e-01 -1.46553814e-01 -2.92694829e-02 3.27159166e-01 -4.04463429e-03 -8.38831961e-01 -1.39565423e-01 -1.11748493e+00 -3.45028549e-01 -1.71188846e-01 -2.06487611e-01 -3.26928705e-01 9.18292701e-01 -7.40883887e-01 1.38989651e+00 -2.20317745e+00 -1.60445094e-01 -3.19026619e-01 -2.02819601e-01 7.00623751e-01 -1.53342471e-01 3.88766050e-01 -2.99688250e-01 1.27543718e-01 -1.46445394e-01 1.61464214e-01 -2.20077485e-01 4.40895140e-01 -6.17310405e-02 4.82307792e-01 2.43684947e-01 1.15201271e+00 -9.80161905e-01 -5.57882905e-01 3.76555622e-01 3.57828170e-01 -1.24177650e-01 5.36024719e-02 -4.56386171e-02 7.61035502e-01 -5.70188165e-01 8.15788984e-01 3.11961472e-01 -2.02434063e-01 -2.60878447e-02 -1.71814635e-01 -1.90300629e-01 -1.41303837e-01 -1.08164179e+00 1.60933375e+00 1.92733124e-01 8.28530908e-01 -3.69336426e-01 -1.04387724e+00 5.78053534e-01 4.90395010e-01 8.49079728e-01 -8.09749007e-01 3.53228688e-01 -9.97846276e-02 2.15789557e-01 -8.84156704e-01 4.38614041e-01 5.92158996e-02 2.95230508e-01 2.67757982e-01 -2.48260677e-01 7.06489027e-01 4.65983212e-01 8.65444634e-03 1.53093684e+00 6.86376214e-01 5.13714135e-01 1.29907668e-01 7.79519796e-01 3.25461686e-01 7.57235229e-01 7.17556953e-01 -8.65752995e-01 7.64769733e-01 4.89973933e-01 -8.11925709e-01 -7.48405993e-01 -5.52790046e-01 3.19072723e-01 1.01473081e+00 1.64366111e-01 -3.66584122e-01 -8.37718010e-01 -1.07683051e+00 -2.98575073e-01 5.42559862e-01 -7.34864354e-01 -2.05101967e-01 -9.30916369e-01 -6.25938594e-01 8.47166002e-01 1.22701406e+00 1.06493032e+00 -1.66531181e+00 -1.06749916e+00 3.06184679e-01 -3.53223085e-01 -1.27398503e+00 3.13159823e-02 -7.79246958e-03 -7.28919923e-01 -1.37498248e+00 -8.70769799e-01 -4.12963212e-01 4.18394178e-01 3.19427341e-01 8.19376290e-01 -3.31520140e-02 -3.43978941e-01 4.86203074e-01 -9.00126278e-01 -4.17322248e-01 -3.33117783e-01 -3.34756196e-01 9.06563029e-02 2.58617133e-01 7.73572803e-01 -6.31713541e-03 -7.51175165e-01 4.20374960e-01 -9.17920887e-01 -7.11248145e-02 7.13913918e-01 5.30081987e-01 2.05660284e-01 1.88113660e-01 2.35241145e-01 -5.16772807e-01 3.13938528e-01 -2.26204693e-01 -1.33766949e-01 2.34529600e-01 1.11850262e-01 -2.29620695e-01 4.64591563e-01 -6.40974402e-01 -1.15948927e+00 4.61063743e-01 -1.92678213e-01 -6.40990615e-01 -8.67266476e-01 2.08043620e-01 -3.43950033e-01 7.27598220e-02 5.58021247e-01 3.33422750e-01 -3.63165140e-03 -4.79344398e-01 1.44417688e-01 4.74418789e-01 4.43086833e-01 -2.80735731e-01 1.71773568e-01 7.01939404e-01 -5.12005948e-02 -8.19074214e-01 -7.82136738e-01 -6.38441563e-01 -9.47373450e-01 -5.63092351e-01 1.59585404e+00 -7.62500882e-01 -8.25779080e-01 9.34343934e-01 -1.22424543e+00 -5.32106996e-01 -3.54446977e-01 8.36883247e-01 -7.36482143e-01 5.67595601e-01 -7.53078461e-01 -8.97523403e-01 1.44561157e-01 -1.01863015e+00 1.02339816e+00 1.42993435e-01 -3.82863492e-01 -8.36281657e-01 1.04480192e-01 4.26660061e-01 2.60336220e-01 5.55775404e-01 2.65318960e-01 -6.89317763e-01 -5.72066307e-01 -1.55882642e-01 -1.48575187e-01 6.14732265e-01 1.79600999e-01 2.11164445e-01 -9.62524712e-01 2.68024337e-02 -7.05692023e-02 -3.07083875e-01 9.73418355e-01 3.61987948e-01 1.31930518e+00 -1.28816277e-01 -3.74237627e-01 2.17990354e-01 9.92295861e-01 7.20149696e-01 1.28259027e+00 5.86240947e-01 8.29703033e-01 5.22140801e-01 1.05174851e+00 5.51854491e-01 -2.07160830e-01 5.64292550e-01 1.93673283e-01 4.16284241e-02 -9.96873304e-02 -9.93532613e-02 6.68384135e-01 4.07509357e-01 -6.74189866e-01 -4.14095700e-01 -1.12402177e+00 1.91275522e-01 -2.19640446e+00 -1.41186976e+00 -3.34065735e-01 1.55958450e+00 2.26431459e-01 1.95278585e-01 1.42602086e-01 2.84786314e-01 7.44528592e-01 3.33364576e-01 -2.71277308e-01 -5.93636818e-02 -1.61610708e-01 -7.75699178e-03 4.03499722e-01 -1.14437774e-01 -1.61119425e+00 1.00740778e+00 6.68966913e+00 8.13514709e-01 -1.03692949e+00 -1.02498323e-01 3.48369390e-01 1.62699074e-01 4.79249686e-01 -1.90189689e-01 -7.64158905e-01 4.88606423e-01 8.23946714e-01 -1.47339972e-02 -2.58011580e-01 9.97213423e-01 4.54477161e-01 -2.72310913e-01 -9.50956404e-01 1.02456439e+00 2.32186183e-01 -1.02805305e+00 1.87601402e-01 -1.17623031e-01 5.11655688e-01 -2.13140354e-01 -4.57696080e-01 6.19899452e-01 2.24408746e-01 -1.10309660e+00 3.49568486e-01 6.33330345e-01 3.82413894e-01 -4.75618929e-01 9.36700761e-01 5.60791612e-01 -1.21417713e+00 -2.14631900e-01 -3.08212280e-01 -4.04365748e-01 4.42977488e-01 -1.05124312e-02 -3.67733330e-01 6.76194906e-01 6.97893500e-01 1.13523912e+00 -7.09749281e-01 9.05396104e-01 -4.55556735e-02 6.80248380e-01 2.72615980e-02 -1.51178706e-02 6.07860386e-01 -3.23238000e-02 3.07911485e-01 1.19426298e+00 2.54769623e-01 6.59898639e-01 4.51058984e-01 3.43987942e-01 4.41356450e-01 -2.92532444e-02 -9.56916213e-01 -5.47451019e-01 -4.50472593e-01 9.05611217e-01 -1.06495273e+00 -6.00007117e-01 -7.42601454e-01 1.11176467e+00 -2.04716429e-01 4.78217930e-01 -9.73140001e-01 4.60364707e-02 5.88091195e-01 -3.57915051e-02 3.54703903e-01 -1.81100205e-01 8.79624560e-02 -1.29604983e+00 -2.39379078e-01 -9.61655259e-01 5.34558833e-01 -1.02901793e+00 -9.06742632e-01 3.56267303e-01 9.63280201e-02 -1.83125639e+00 -1.60920039e-01 -1.03193235e+00 -6.17902517e-01 1.68633148e-01 -9.12193298e-01 -1.02790332e+00 -5.91313362e-01 8.53358090e-01 8.13955545e-01 -3.61535966e-01 5.45225620e-01 3.81138116e-01 -5.81985593e-01 1.13647729e-01 -3.14601809e-01 6.52252495e-01 3.62457454e-01 -1.00335586e+00 2.83630013e-01 8.64592850e-01 2.53356040e-01 2.64965564e-01 4.70139384e-01 -9.15635467e-01 -1.03038597e+00 -8.53825450e-01 5.80312490e-01 -6.41636014e-01 5.32467425e-01 3.05467308e-01 -9.91672635e-01 7.14161932e-01 3.14192593e-01 7.50663131e-02 5.89297712e-01 -3.75138044e-01 1.10695273e-01 3.31212878e-01 -8.69916975e-01 6.80978537e-01 1.38126683e+00 -3.07302833e-01 -5.70743680e-01 2.77223498e-01 3.71809095e-01 -2.03518718e-01 -6.36412263e-01 9.60060418e-01 5.22080064e-01 -1.16044247e+00 9.08739030e-01 -1.21400678e+00 6.63363338e-01 -3.63551438e-01 -1.82524696e-01 -9.03964043e-01 -3.93910527e-01 -1.19292811e-01 -3.57023299e-01 8.61081004e-01 -2.50536501e-01 -2.32461721e-01 1.14194071e+00 5.32217741e-01 -2.94293128e-02 -5.37911057e-01 -7.29901612e-01 -1.01345825e+00 -1.74982697e-01 -4.96325970e-01 1.66588068e-01 1.02089274e+00 -1.70097068e-01 -7.50817824e-03 -6.13132596e-01 -2.20214695e-01 1.76597834e-02 -1.47718817e-01 9.27773118e-01 -7.97568560e-01 -2.07548533e-02 -3.92659992e-01 -9.65748429e-01 -9.69957829e-01 3.79194677e-01 -5.07483661e-01 1.33745251e-02 -1.58018124e+00 1.48467377e-01 3.80019993e-01 -5.79330921e-01 5.46111107e-01 -1.39564082e-01 8.99928734e-02 2.34740004e-01 3.87151465e-02 -8.00842762e-01 6.66419268e-01 1.42214334e+00 -2.76847631e-01 1.12358168e-01 1.18088886e-01 1.51140511e-01 1.13530993e+00 9.68113959e-01 -1.88316241e-01 -2.51394749e-01 -2.11910694e-03 -4.44054365e-01 2.11021677e-02 5.31731606e-01 -1.45490837e+00 1.31331444e-01 -4.25707191e-01 5.72485089e-01 -7.55398512e-01 2.54435629e-01 -8.16949069e-01 1.37638420e-01 7.08807886e-01 -3.88694882e-01 7.74748102e-02 7.29776993e-02 6.41140163e-01 -6.50914967e-01 -1.95749745e-01 6.21198177e-01 -5.13830721e-01 -1.54017162e+00 1.61218494e-01 -6.71719432e-01 -2.42608786e-02 1.27444685e+00 -5.35614252e-01 -4.07762051e-01 -3.24943066e-01 -8.29603255e-01 -1.51603878e-01 1.81989789e-01 8.13333750e-01 6.07678771e-01 -1.51525915e+00 -4.45014179e-01 1.15578563e-03 1.86028883e-01 -5.58137655e-01 3.33869129e-01 1.03463364e+00 -6.31985605e-01 5.20458460e-01 -7.09618866e-01 -5.02321303e-01 -1.55031979e+00 7.94833004e-01 3.10618103e-01 -1.48235515e-01 -9.80077803e-01 5.36353230e-01 2.35059351e-01 4.31627892e-02 4.16036725e-01 -4.02538210e-01 -5.86077869e-01 1.89466581e-01 7.52588093e-01 5.84854186e-01 -4.81550574e-01 -9.28653419e-01 -4.86893982e-01 3.21336150e-01 2.23859012e-01 6.24707192e-02 8.85323167e-01 1.38079748e-01 1.21886566e-01 6.42772019e-01 1.08851278e+00 -4.90766108e-01 -1.25985456e+00 1.67994663e-01 3.61846775e-01 -7.28565395e-01 -5.33468604e-01 -5.48097432e-01 -1.03834796e+00 9.69870687e-01 8.14454854e-01 1.22553878e-01 1.08244872e+00 -4.14602190e-01 8.97941411e-01 6.72514260e-01 5.75088501e-01 -1.39955485e+00 4.62735355e-01 6.88325644e-01 8.22922707e-01 -1.49330020e+00 -1.69508606e-01 -1.61619335e-01 -1.16119754e+00 1.19984555e+00 1.04089320e+00 5.13120219e-02 6.24745011e-01 1.64067626e-01 2.66045332e-01 -1.19944647e-01 -4.60944504e-01 -6.30103946e-01 1.76865220e-01 4.44255352e-01 4.15345639e-01 -1.14096187e-01 -4.93177205e-01 3.50288600e-01 3.31135839e-01 5.59592307e-01 3.98673952e-01 1.42109096e+00 -5.35255313e-01 -8.59955847e-01 -2.78869629e-01 2.08221719e-01 -6.89135909e-01 3.86365116e-01 -6.02819741e-01 9.56379771e-01 3.23455334e-01 7.66863883e-01 -5.19463308e-02 -5.80170333e-01 4.34048116e-01 4.02279854e-01 3.26529920e-01 -3.62080753e-01 -5.12114167e-01 -2.50606209e-01 2.69409746e-01 -1.13645434e+00 -1.19258583e+00 -5.68184316e-01 -1.28775525e+00 -1.58668488e-01 8.49585831e-02 -3.14420700e-01 1.26587093e-01 1.00414181e+00 3.59203182e-02 6.35468781e-01 -1.10153509e-02 -8.75292003e-01 -1.57704428e-01 -1.12773895e+00 -5.79613984e-01 7.42050290e-01 3.24271098e-02 -7.69545317e-01 -4.02271509e-01 4.52601612e-01]
[8.153359413146973, 0.5474671125411987]
769d69bc-375e-4ab0-b8ba-f3a64f9d8a38
data-driven-modeling-of-time-domain-induced
2107.14796
null
https://arxiv.org/abs/2107.14796v1
https://arxiv.org/pdf/2107.14796v1.pdf
Data-driven modeling of time-domain induced polarization
We present a novel approach for data-driven modeling of the time-domain induced polarization (IP) phenomenon using variational autoencoders (VAE). VAEs are Bayesian neural networks that aim to learn a latent statistical distribution to encode extensive data sets as lower dimension representations. We collected 1 600 319 IP decay curves in various regions of Canada, the United States and Kazakhstan, and compiled them to train a deep VAE. The proposed deep learning approach is strictly unsupervised and data-driven: it does not require manual processing or ground truth labeling of IP data. Moreover, our VAE approach avoids the pitfalls of IP parametrization with the empirical Cole-Cole and Debye decomposition models, simple power-law models, or other sophisticated mechanistic models. We demonstrate four applications of VAEs to model and process IP data: (1) representative synthetic data generation, (2) unsupervised Bayesian denoising and data uncertainty estimation, (3) quantitative evaluation of the signal-to-noise ratio, and (4) automated outlier detection. We also interpret the IP compilation's latent representation and reveal a strong correlation between its first dimension and the average chargeability of IP decays. Finally, we experiment with varying VAE latent space dimensions and demonstrate that a single real-valued scalar parameter contains sufficient information to encode our extensive IP data compilation. This new finding suggests that modeling time-domain IP data using mathematical models governed by more than one free parameter is ambiguous, whereas modeling only the average chargeability is justified. A pre-trained implementation of our model -- readily applicable to new IP data from any geolocation -- is available as open-source Python code for the applied geophysics community.
['Pierre Bérubé', 'Charles L. Bérubé']
2021-07-30
null
null
null
null
['geophysics']
['miscellaneous']
[-4.07638773e-02 -1.31831944e-01 1.87337235e-01 -3.87228936e-01 -1.02555490e+00 -4.90480840e-01 7.69843221e-01 9.95430425e-02 -3.32874835e-01 9.25307870e-01 2.04706758e-01 -4.93133605e-01 -5.02536237e-01 -8.46466780e-01 -9.42758441e-01 -1.24818528e+00 -3.36433858e-01 8.74503434e-01 1.43671244e-01 -1.35347238e-02 1.22054584e-01 7.21514583e-01 -1.50325632e+00 -1.25313208e-01 8.86383057e-01 1.23301387e+00 -2.82968014e-01 5.11885941e-01 2.18743578e-01 4.75519955e-01 -5.20255148e-01 -8.37146565e-02 8.31931755e-02 -2.34378025e-01 -3.37581098e-01 -1.65505841e-01 -1.80436280e-02 -2.35860899e-01 -4.67481464e-01 9.12787735e-01 4.97906417e-01 3.55772562e-02 1.28982604e+00 -1.23369849e+00 -3.18093121e-01 4.77503866e-01 -3.69198084e-01 2.04803631e-01 -3.81163746e-01 3.09385866e-01 8.83595347e-01 -8.21685314e-01 5.08163869e-01 8.99529338e-01 8.38821948e-01 1.62211172e-02 -1.66400826e+00 -4.84196603e-01 -4.57725435e-01 -1.15272477e-01 -1.37298810e+00 -3.18004072e-01 9.31008935e-01 -7.70952284e-01 7.39897192e-01 -1.10964384e-02 3.39138448e-01 1.46646702e+00 2.46280551e-01 2.52059400e-01 9.65293050e-01 -3.35047573e-01 5.85838556e-01 -1.61887005e-01 2.00257361e-01 5.27383089e-01 5.71325719e-01 3.46452892e-01 -4.84436899e-01 -7.07427502e-01 6.91296220e-01 -4.41682607e-01 -1.32169902e-01 -4.86187309e-01 -9.44890380e-01 1.00735271e+00 7.17820525e-02 1.05265401e-01 -4.93364006e-01 5.18877029e-01 2.86891520e-01 1.23827003e-01 4.92423475e-01 4.17974323e-01 -5.42079449e-01 -7.20147714e-02 -1.16056967e+00 3.47425729e-01 7.64877617e-01 6.18731260e-01 7.74273157e-01 5.34552574e-01 1.84346035e-01 6.89225137e-01 7.14568198e-01 9.66061056e-01 2.07474560e-01 -1.30889809e+00 2.81884104e-01 -4.51378748e-02 4.36060458e-01 -8.62531066e-01 -5.98846912e-01 -4.43368703e-01 -7.57394493e-01 1.04978390e-01 6.03373170e-01 -3.67282808e-01 -8.72688115e-01 1.77546203e+00 -1.44836858e-01 -1.32881969e-01 2.32328415e-01 6.72832906e-01 5.76397538e-01 8.41513216e-01 -6.93913028e-02 -4.10373628e-01 1.21885741e+00 1.07337847e-01 -5.67177832e-01 -1.41130155e-02 2.77728498e-01 -2.36377940e-01 8.56090307e-01 5.17810166e-01 -8.44482601e-01 -2.25155782e-02 -1.22951269e+00 3.52773577e-01 -1.56268999e-01 6.42898232e-02 8.15416396e-01 6.80633485e-01 -5.64575315e-01 7.44419396e-01 -1.11818779e+00 -1.32663906e-01 2.36186817e-01 2.37416297e-01 -1.75837293e-01 4.95543748e-01 -1.29077590e+00 5.21161675e-01 2.88863689e-01 1.13399021e-01 -1.15641892e+00 -6.20341778e-01 -7.15726614e-01 2.73117125e-01 2.94915289e-02 -5.03120422e-01 1.05818522e+00 -3.67389441e-01 -1.43931639e+00 5.31940103e-01 6.18750639e-02 -5.67098200e-01 3.11538547e-01 9.21839997e-02 -6.19544148e-01 1.24718487e-01 -7.84764588e-02 2.45587602e-01 1.03259587e+00 -1.58313406e+00 1.24108404e-01 -1.69151425e-01 -4.37262505e-01 -5.00440776e-01 -5.95893301e-02 -1.87429771e-01 -1.60198063e-01 -5.88577807e-01 6.11349225e-01 -7.56874919e-01 4.71148901e-02 -1.73078060e-01 -2.83373922e-01 1.90837979e-01 5.51322818e-01 -6.36573553e-01 9.46621716e-01 -2.17599392e+00 1.23978131e-01 5.41749656e-01 1.97012693e-01 -3.11342269e-01 1.45021051e-01 4.96521503e-01 -1.82234824e-01 1.26042947e-01 -8.36499751e-01 -1.98593482e-01 3.43456328e-01 3.21105868e-01 -7.12437630e-01 7.24386871e-01 2.33295843e-01 4.78269637e-01 -6.90524340e-01 -9.65418890e-02 3.78833488e-02 4.06195879e-01 -7.03262031e-01 3.75224203e-02 -4.32255208e-01 5.45553684e-01 -1.74660608e-01 7.52600908e-01 9.76818502e-01 -1.49952054e-01 1.52456418e-01 -5.39370477e-01 -2.20117390e-01 2.10241571e-01 -1.13542724e+00 1.19484448e+00 -3.07011962e-01 8.64213765e-01 1.41914770e-01 -1.00185204e+00 1.01078117e+00 4.19848002e-02 6.22412801e-01 -6.33286834e-01 3.01409245e-01 4.92203206e-01 -1.17857583e-01 -4.36591834e-01 3.93542349e-01 -3.22183222e-01 -2.74920464e-01 4.96505022e-01 4.62145895e-01 -2.70350218e-01 1.55543000e-01 1.55665368e-01 8.76729727e-01 1.42919615e-01 -1.80370301e-01 -5.62401116e-01 8.67583081e-02 -1.70751363e-01 7.10773945e-01 8.36458385e-01 4.56266589e-02 6.90063894e-01 1.06035352e+00 -3.69720101e-01 -1.32031918e+00 -1.41438079e+00 -7.02195764e-01 5.56341887e-01 -1.94380149e-01 -1.90796480e-01 -4.21732962e-01 -1.56670183e-01 1.48601860e-01 9.57151711e-01 -5.63356757e-01 -1.43214345e-01 -3.13689202e-01 -1.61947346e+00 9.90098298e-01 4.06226218e-01 3.83052498e-01 -6.90909266e-01 -3.96451354e-01 1.75540999e-01 -3.65397751e-01 -9.40585792e-01 1.87408835e-01 7.36683130e-01 -8.90953243e-01 -7.95564532e-01 -4.09563631e-01 -1.02001126e-03 4.18077171e-01 -5.10152459e-01 9.91635323e-01 -4.44630265e-01 -7.08653480e-02 4.26206261e-01 6.44772947e-02 -3.98277879e-01 -5.13201356e-01 -3.80084485e-01 6.15713298e-01 7.31973350e-03 3.32563847e-01 -9.89309132e-01 -3.90605867e-01 2.57448584e-01 -9.37356651e-01 -7.40549803e-01 3.27951610e-01 9.54898059e-01 5.47654390e-01 3.09341669e-01 2.45218977e-01 -3.09004962e-01 5.63096464e-01 -6.19718552e-01 -1.15367413e+00 -7.38985837e-02 -5.48446834e-01 6.03772342e-01 2.36253515e-01 -1.65548712e-01 -1.18677759e+00 -3.03574950e-01 -2.26746723e-01 -3.09903175e-01 -1.27269745e-01 7.07355022e-01 -1.94826245e-01 1.30022019e-01 9.61316645e-01 2.25250512e-01 -1.13711290e-01 -4.64043647e-01 1.63504496e-01 7.14974463e-01 7.44367063e-01 -1.19319940e+00 8.31537604e-01 6.82291627e-01 2.23956749e-01 -1.21849954e+00 -4.10763115e-01 -4.37977584e-03 -4.59091127e-01 -1.08713441e-01 7.06269801e-01 -9.71053898e-01 -7.11145461e-01 6.28350139e-01 -1.14820004e+00 -2.44587794e-01 -2.27643088e-01 7.06742823e-01 -7.11805344e-01 4.82482493e-01 -5.70764720e-01 -9.76889670e-01 -6.84364438e-02 -1.10412109e+00 1.08648920e+00 1.14729330e-02 -4.59891334e-02 -9.18254435e-01 3.08255702e-01 1.64427795e-02 4.51251298e-01 4.01687711e-01 1.25077879e+00 -4.35592741e-01 -5.82865477e-01 -1.23536393e-01 -2.15082556e-01 4.00158077e-01 -3.86164457e-01 5.15934110e-01 -1.18562329e+00 -1.54176503e-01 2.43545175e-01 -2.31445044e-01 1.01107848e+00 7.58979321e-01 1.03398836e+00 -1.89742863e-01 -8.21743608e-02 8.91454339e-01 1.46649373e+00 3.02367806e-02 8.12935054e-01 2.86203593e-01 2.60971010e-01 4.09549713e-01 8.33823681e-02 8.60500634e-01 6.88186437e-02 4.02234167e-01 6.29227281e-01 2.77293086e-01 4.46969837e-01 -9.75796282e-02 4.32992816e-01 7.69651175e-01 -2.44964510e-01 -3.85748655e-01 -1.16649008e+00 4.81820852e-01 -1.48885584e+00 -1.02611959e+00 -4.64717925e-01 2.29542279e+00 4.63775456e-01 2.70538390e-01 -9.83676314e-02 5.79397082e-02 3.90441626e-01 1.45243898e-01 -3.87257427e-01 -1.45469725e-01 -2.85059988e-01 1.32924289e-01 8.60078454e-01 4.28267717e-01 -1.06622601e+00 5.03259897e-01 6.58745527e+00 5.47018886e-01 -1.19182384e+00 8.35878626e-02 2.71977633e-01 2.38631219e-01 -6.95779085e-01 2.81413868e-02 -6.20075464e-01 6.16500258e-01 1.22859108e+00 8.61038789e-02 3.23298186e-01 6.00927353e-01 3.08825672e-01 -2.20287859e-01 -7.55254328e-01 8.68531346e-01 -3.47542673e-01 -1.28928316e+00 -1.10892886e-02 2.72748858e-01 3.89090240e-01 3.20516616e-01 9.00659710e-02 2.54012585e-01 2.05646440e-01 -8.09776962e-01 8.08579206e-01 1.00974858e+00 8.10631275e-01 -7.54993737e-01 8.16253304e-01 1.49695203e-01 -6.53342903e-01 -2.13585258e-01 -5.92998922e-01 2.90324390e-01 3.06276351e-01 1.03138173e+00 -3.74741375e-01 5.55433214e-01 8.21898043e-01 1.65935963e-01 -3.61723423e-01 8.48763525e-01 -7.13106841e-02 1.06343758e+00 -8.27553630e-01 4.25730795e-01 1.53959706e-01 -4.35424000e-01 8.66643548e-01 1.07050455e+00 6.76301599e-01 -1.00726411e-01 -6.28780544e-01 1.26638949e+00 1.42839178e-01 -3.93930763e-01 -5.28900325e-01 -4.58251148e-01 4.54143584e-01 9.51375365e-01 -6.77845657e-01 1.78060886e-02 -1.96747586e-01 4.67382729e-01 -2.53306687e-01 6.96368992e-01 -1.09806585e+00 -4.69288141e-01 6.95701718e-01 1.73473448e-01 4.56317842e-01 -5.74349344e-01 -2.91407377e-01 -1.26078928e+00 -1.17779858e-01 -5.26358902e-01 3.22005957e-01 -9.85576153e-01 -1.42123556e+00 5.60386002e-01 4.68019068e-01 -1.32799077e+00 -3.91423762e-01 -1.00372422e+00 -5.98477602e-01 7.80620992e-01 -9.67075408e-01 -7.98192382e-01 -2.77808905e-01 3.28676909e-01 -2.85201877e-01 -3.53712559e-01 7.97981381e-01 3.18990648e-01 -3.95706266e-01 2.24006653e-01 7.16745019e-01 -2.16019414e-02 5.32406747e-01 -1.14212060e+00 1.78669199e-01 8.47695410e-01 9.23221931e-03 7.57622600e-01 1.24853683e+00 -5.95741630e-01 -1.18654931e+00 -7.28240073e-01 4.78434563e-01 -6.13957942e-01 9.69031990e-01 -4.05944556e-01 -9.91569817e-01 6.18316948e-01 -6.19361699e-02 1.33757219e-01 6.50619328e-01 8.37768018e-02 -3.31989229e-01 -2.06066042e-01 -1.11021709e+00 1.97759137e-01 4.82985944e-01 -6.58252835e-01 -6.95427716e-01 2.60965466e-01 5.72980762e-01 -1.19472682e-01 -9.97701466e-01 5.86629391e-01 5.19985914e-01 -1.07826853e+00 9.54951048e-01 -5.54085851e-01 2.48984367e-01 -5.40088594e-01 -6.75778270e-01 -1.21720910e+00 -2.28942379e-01 -3.88355672e-01 -3.42551231e-01 1.15086138e+00 4.10962820e-01 -5.78215837e-01 5.09905040e-01 4.72485363e-01 -1.54004812e-01 -2.65270293e-01 -1.09405136e+00 -7.67595708e-01 3.14167142e-01 -9.12916362e-01 4.36874628e-01 7.22051263e-01 -3.70017737e-01 8.91125947e-03 -3.84535879e-01 8.03355873e-01 1.08005357e+00 -2.38263205e-01 4.72428262e-01 -1.66037166e+00 -4.20756578e-01 -1.79230258e-01 -2.81963199e-01 -7.91519165e-01 3.36720459e-02 -6.57268286e-01 7.54347369e-02 -1.13601184e+00 -1.87817514e-01 -4.32903886e-01 -1.91193834e-01 1.76128030e-01 6.21920705e-01 4.92795035e-02 -3.62441033e-01 2.05841154e-01 -1.34793684e-01 8.25017750e-01 3.98914427e-01 -2.00729683e-01 -1.32600248e-01 -1.01755016e-01 -3.39049160e-01 8.04875255e-01 5.05458593e-01 -7.88939893e-01 -2.56218374e-01 -3.22220564e-01 6.65173411e-01 1.82620198e-01 7.40449071e-01 -1.16646099e+00 8.25769901e-02 -2.66937539e-02 4.45282787e-01 -7.30390012e-01 2.50296384e-01 -7.83676863e-01 3.26545209e-01 2.35986263e-02 1.88878447e-01 -3.38460237e-01 3.91510993e-01 6.90136433e-01 -2.21902221e-01 -4.30024624e-01 8.19883704e-01 3.59820202e-02 -4.86266911e-01 8.06562975e-02 -8.65246773e-01 6.94119409e-02 5.05771339e-01 1.50532559e-01 -3.88555735e-01 -5.70324302e-01 -8.49656045e-01 -5.37693128e-02 4.14472789e-01 -7.44997188e-02 2.38833666e-01 -1.21739221e+00 -6.28501773e-01 4.42183048e-01 1.84107751e-01 -1.38462499e-01 3.44421655e-01 8.76291871e-01 -7.66287208e-01 3.39675933e-01 -1.03559695e-01 -9.41570699e-01 -3.64955664e-01 2.28878200e-01 6.85495257e-01 5.26089482e-02 -3.62596184e-01 6.75139010e-01 -1.07264958e-01 -6.83092594e-01 4.31635827e-02 -4.67105418e-01 1.41704172e-01 4.09976453e-01 1.35950014e-01 3.35260689e-01 1.79203913e-01 -5.98561347e-01 -3.69350255e-01 4.28606242e-01 4.20820475e-01 -3.14848810e-01 1.53715980e+00 -4.23039086e-02 -2.18218744e-01 6.24867082e-01 1.04221296e+00 1.09275110e-01 -1.45444536e+00 9.34122782e-03 1.13349175e-02 8.19951743e-02 3.07414025e-01 -5.82801282e-01 -8.67276371e-01 9.73734796e-01 5.85609555e-01 1.32519200e-01 7.67318726e-01 2.13408675e-02 2.51402766e-01 6.76922619e-01 4.44366544e-01 -1.17327321e+00 -3.32215093e-02 7.23500431e-01 9.75670695e-01 -1.02933729e+00 8.86871889e-02 2.49471232e-01 -5.43244243e-01 1.27004766e+00 1.84863061e-01 1.43037438e-01 8.27679813e-01 3.74799937e-01 -4.53186445e-02 -4.21878874e-01 -5.44481814e-01 5.11137694e-02 8.24582577e-03 5.03820181e-01 1.35976180e-01 -1.43058747e-01 -1.17727526e-01 1.02395654e+00 -1.06237352e-01 -1.86934918e-01 7.67117023e-01 6.23626351e-01 -3.15918595e-01 -8.22321355e-01 -5.99911034e-01 4.62643713e-01 -3.05341303e-01 -3.46222632e-02 1.87828764e-01 8.09764564e-01 3.24849971e-02 5.47770977e-01 2.44064197e-01 -1.71716392e-01 1.78543419e-01 4.49893355e-01 2.93375582e-01 -8.08995441e-02 3.67642760e-01 1.63710669e-01 1.77078605e-01 -3.26974452e-01 -2.89553821e-01 -7.89024711e-01 -1.20975518e+00 -2.84945458e-01 -1.94930762e-01 3.31711709e-01 8.73469293e-01 8.15865636e-01 1.79110721e-01 4.79435831e-01 3.62633348e-01 -1.11471903e+00 -6.39446437e-01 -1.12552226e+00 -1.05521262e+00 -1.02160312e-02 4.91002530e-01 -1.16539896e+00 -1.11581612e+00 -1.04541175e-01]
[7.056229591369629, 3.68778395652771]
3c1de6a4-c160-467c-a572-847eff895f92
an-empirical-assessment-of-the-qualitative
null
null
https://aclanthology.org/2021.nlp4if-1.11
https://aclanthology.org/2021.nlp4if-1.11.pdf
An Empirical Assessment of the Qualitative Aspects of Misinformation in Health News
The explosion of online health news articles runs the risk of the proliferation of low-quality information. Within the existing work on fact-checking, however, relatively little attention has been paid to medical news. We present a health news classification task to determine whether medical news articles satisfy a set of review criteria deemed important by medical experts and health care journalists. We present a dataset of 1,119 health news paired with systematic reviews. The review criteria consist of six elements that are essential to the accuracy of medical news. We then present experiments comparing the classical token-based approach with the more recent transformer-based models. Our results show that detecting qualitative lapses is a challenging task with direct ramifications in misinformation, but is an important direction to pursue beyond assigning True or False labels to short claims.
['Ritwik Banerjee', 'Qi Zhang', 'Chaoyuan Zuo']
null
null
null
null
naacl-nlp4if-2021-6
['news-classification']
['natural-language-processing']
[ 2.59134471e-01 4.54490274e-01 -1.09261787e+00 -2.83821046e-01 -1.31438673e+00 -4.47817206e-01 7.36642659e-01 1.13617826e+00 -4.64893967e-01 8.01620483e-01 8.06008875e-01 -7.90723681e-01 -1.96338937e-01 -7.76337683e-01 -8.25215578e-01 -2.05436066e-01 1.72427505e-01 3.73688757e-01 1.60584062e-01 7.94807822e-02 6.38086915e-01 -5.83962277e-02 -1.13946056e+00 7.29954600e-01 7.70044386e-01 9.68543410e-01 -4.65107322e-01 3.56668621e-01 -8.26923996e-02 1.56072903e+00 -6.05255902e-01 -9.58173215e-01 -3.15927804e-01 -6.84825718e-01 -1.15670967e+00 -7.45987371e-02 2.39635944e-01 -2.82802992e-02 1.11478299e-01 1.23260403e+00 4.17627454e-01 -4.11214888e-01 5.96973836e-01 -8.89268458e-01 -9.47711527e-01 1.14531350e+00 -3.47385228e-01 6.81839406e-01 6.45123661e-01 -3.09131205e-01 1.11005414e+00 -4.01386440e-01 1.08599758e+00 8.71048987e-01 1.10234833e+00 -5.94376912e-03 -9.49901223e-01 -3.83825719e-01 -1.08199693e-01 1.05241172e-01 -7.56215274e-01 -6.35502875e-01 4.58959550e-01 -9.60792899e-01 6.48503959e-01 3.16041768e-01 6.91425383e-01 1.27471507e+00 7.10133612e-01 3.97444218e-01 1.57638729e+00 -4.06266809e-01 2.61614412e-01 4.09323096e-01 5.41603863e-01 6.38226926e-01 7.76236892e-01 -1.12058364e-01 -5.93108773e-01 -8.13789904e-01 2.45964214e-01 3.61028947e-02 -1.19490676e-01 3.86431158e-01 -1.35244584e+00 1.01002169e+00 -2.51936167e-02 3.92878085e-01 -6.60656929e-01 -2.47180164e-01 8.63057554e-01 4.76452887e-01 1.04510641e+00 6.52160764e-01 -5.16234100e-01 -2.08438948e-01 -1.22491288e+00 3.43502909e-01 9.86289442e-01 4.84816939e-01 2.14837380e-02 -6.17677093e-01 -4.49608803e-01 6.21172011e-01 9.83772576e-02 3.89038295e-01 3.03932339e-01 -8.69557440e-01 4.41524923e-01 6.66768014e-01 2.33817682e-01 -1.54913259e+00 -4.36203331e-01 -5.67569613e-01 -5.67117512e-01 -4.05582786e-01 3.70703787e-01 -6.06787801e-02 -5.00830233e-01 1.06501222e+00 2.99518108e-01 -3.80856067e-01 -1.04192132e-02 4.71843839e-01 9.86959815e-01 2.68041849e-01 1.84887901e-01 -5.77101111e-01 1.87490404e+00 -4.97384965e-01 -1.34979963e+00 5.99845871e-02 6.46169245e-01 -1.04924214e+00 6.01157725e-01 4.86690342e-01 -1.21882451e+00 1.64434865e-01 -6.15620971e-01 -6.52340800e-02 -3.75459194e-01 -4.01579030e-02 5.19240499e-01 6.82792068e-01 -5.72755694e-01 5.09411812e-01 -5.82365334e-01 -3.29708636e-01 8.18941891e-01 -3.56785029e-01 -1.23111784e-01 -7.43794292e-02 -1.39933276e+00 1.06603324e+00 3.91301848e-02 -3.46880883e-01 -6.09297752e-01 -8.38264346e-01 -7.43066847e-01 -7.25650936e-02 7.86691964e-01 -6.77414715e-01 1.37745881e+00 -6.50957882e-01 -8.27204168e-01 1.25460839e+00 -4.29990739e-02 -7.53095925e-01 7.50661194e-01 8.56185034e-02 -7.05114603e-01 3.55632246e-01 6.89099848e-01 -1.38259307e-01 6.46608889e-01 -8.21276188e-01 -7.57972240e-01 -3.47877920e-01 -1.83103636e-01 -3.91639054e-01 -1.34945801e-02 6.92487895e-01 2.15044558e-01 -8.39322507e-01 -2.00090632e-01 -6.73021376e-01 -1.60258025e-01 -2.15484530e-01 -7.85343826e-01 -3.44798535e-01 5.46021983e-02 -8.54489744e-01 1.48910034e+00 -1.63623977e+00 -6.89157724e-01 9.41922236e-03 4.69318897e-01 -2.32297182e-01 6.26729190e-01 5.77156067e-01 5.02134711e-02 6.63474202e-01 -1.92651570e-01 2.00616702e-01 -1.68069676e-01 -7.99544454e-02 -4.54943925e-01 6.97165370e-01 7.38653243e-02 1.03071296e+00 -1.13334572e+00 -7.35524237e-01 -4.99661118e-01 1.37149096e-01 -4.12832975e-01 -3.27717334e-01 -9.86834168e-02 1.36392504e-01 -4.58563060e-01 7.90239215e-01 2.10873425e-01 -6.80182397e-01 1.06923170e-01 -1.70355022e-01 -2.69936651e-01 1.21840429e+00 -4.27961320e-01 1.04427135e+00 9.19140950e-02 4.43386197e-01 -7.30481818e-02 -1.04944730e+00 4.17989969e-01 5.96556842e-01 6.84153795e-01 -6.88789010e-01 1.89315125e-01 2.22125798e-01 -2.58607678e-02 -9.13833022e-01 3.59378070e-01 -6.28151834e-01 -2.44631067e-01 6.72433197e-01 -4.01581287e-01 2.64930636e-01 -1.16669707e-01 2.79707283e-01 1.26754594e+00 -3.50259483e-01 7.30429530e-01 -3.63266766e-01 1.05512962e-01 6.82771921e-01 6.01825476e-01 8.66274238e-01 -3.01591694e-01 3.50054651e-01 9.37264681e-01 -4.31493491e-01 -1.09046757e+00 -4.53898162e-01 -7.18227625e-01 7.75991797e-01 -4.86419499e-01 -4.84197199e-01 -5.16219616e-01 -8.25964391e-01 5.95723018e-02 7.03991175e-01 -1.04213512e+00 1.02509081e-01 -4.14367802e-02 -1.09058332e+00 7.50173211e-01 6.16215542e-02 2.44688705e-01 -7.66772449e-01 -8.52590501e-01 3.78527611e-01 -6.38810039e-01 -9.91827726e-01 -3.49512130e-01 -2.57330686e-02 -5.94861507e-01 -1.52255023e+00 -8.45972836e-01 -4.31278855e-01 4.82973754e-01 -1.49956763e-01 1.28531516e+00 4.21425998e-02 -8.16126019e-02 3.92091781e-01 -6.66584671e-01 -6.61675394e-01 -9.43364978e-01 6.05709963e-02 -2.78785467e-01 -1.82469532e-01 5.59741974e-01 7.87320286e-02 -4.31557596e-01 -5.12013957e-02 -9.21545386e-01 -1.51828408e-01 5.09356499e-01 9.30951059e-01 4.14832652e-01 1.01251177e-01 1.00440073e+00 -1.73554003e+00 8.96128893e-01 -9.84026790e-01 -2.22100437e-01 1.57181904e-01 -1.16455173e+00 -1.47732556e-01 2.38991916e-01 -2.23311245e-01 -8.63791883e-01 -5.63298881e-01 -2.40767822e-01 5.14945030e-01 8.18127021e-03 1.25360179e+00 5.40242493e-01 3.52337092e-01 1.01553631e+00 -2.28934050e-01 1.76402360e-01 -4.32249546e-01 -4.89670783e-02 6.85825288e-01 1.49020717e-01 -2.06305131e-01 3.13482322e-02 5.12942314e-01 -4.92632419e-01 -5.35349429e-01 -1.62163627e+00 -5.30313313e-01 8.22627917e-03 -1.08283421e-03 7.20997989e-01 -8.22631240e-01 -7.20908403e-01 -7.46725360e-03 -1.06445670e+00 1.02012880e-01 -3.60307485e-01 5.54831803e-01 -6.80359080e-02 2.95161337e-01 -1.01443970e+00 -8.37298870e-01 -3.24272573e-01 -9.16683972e-01 6.37214899e-01 -5.45298040e-01 -5.13135970e-01 -1.03888965e+00 2.85135061e-01 6.25767887e-01 3.85706186e-01 4.84557807e-01 8.88067663e-01 -9.61506128e-01 3.72068174e-02 -4.04968500e-01 -1.66509166e-01 -7.69283101e-02 8.48987326e-02 6.05425984e-02 -7.41878331e-01 2.25434348e-01 4.22576159e-01 -4.12000537e-01 1.18599188e+00 7.98805356e-01 7.51744330e-01 -1.25366557e+00 -5.37546277e-01 -2.05130249e-01 1.34704065e+00 1.71076372e-01 4.22732443e-01 4.86813366e-01 3.24227720e-01 7.36213148e-01 4.94575083e-01 5.53409338e-01 7.40681410e-01 3.03555220e-01 -1.01565495e-01 3.27816010e-02 2.03444794e-01 -3.45193326e-01 9.34313536e-02 8.43884587e-01 5.70472442e-02 -1.12289630e-01 -1.28427041e+00 9.61601377e-01 -1.56564522e+00 -1.36672390e+00 -3.79727155e-01 1.92364621e+00 1.35378659e+00 4.79262173e-01 2.97993153e-01 3.96880925e-01 8.03716898e-01 -3.60722542e-02 -3.29106897e-02 -2.80509144e-01 6.89966083e-02 -1.97660103e-01 6.73382938e-01 2.17708960e-01 -1.07691002e+00 2.17580125e-01 7.34355354e+00 3.91268015e-01 -8.73468935e-01 6.01766467e-01 1.01655948e+00 3.19640964e-01 -5.87247849e-01 -1.00393683e-01 -6.14782751e-01 7.13846803e-01 1.15691173e+00 -2.78039396e-01 -3.44341516e-01 8.36336493e-01 3.96920234e-01 -4.83583003e-01 -8.43959093e-01 5.30086219e-01 2.17268705e-01 -1.81775510e+00 -1.35785595e-01 1.15799658e-01 9.98503506e-01 5.82263172e-02 6.09565750e-02 -1.01615168e-01 3.52965772e-01 -7.32034028e-01 9.00443912e-01 6.82422400e-01 8.21517646e-01 -3.24556828e-01 1.17569041e+00 2.79084206e-01 -3.53742599e-01 1.65766075e-01 -1.67831510e-01 -1.39018923e-01 3.58010769e-01 1.49583173e+00 -1.01412201e+00 3.86988610e-01 5.87138176e-01 9.69080031e-01 -3.98311824e-01 1.20257628e+00 -1.23627990e-01 1.14848721e+00 2.43950784e-01 -8.48703831e-02 1.24137782e-01 4.72627074e-01 2.97756284e-01 1.40857387e+00 1.63313299e-01 2.13223144e-01 3.52653079e-02 8.41777444e-01 -3.51691395e-01 3.64902198e-01 -7.65023828e-01 -4.80441064e-01 1.49413511e-01 8.96108091e-01 -1.10613894e+00 -7.70286620e-01 -3.94968599e-01 3.24190825e-01 3.94871756e-02 -9.83614698e-02 -5.66702068e-01 -6.57460615e-02 -1.28563657e-01 5.44327617e-01 4.20666076e-02 5.51047862e-01 -5.18514097e-01 -1.20232320e+00 -2.16423810e-01 -1.04494143e+00 6.84561372e-01 -3.18062335e-01 -1.64883363e+00 4.81774926e-01 -2.43581384e-01 -9.54304397e-01 -4.29772139e-02 -1.70973435e-01 -4.43806089e-02 4.49509412e-01 -1.64027393e+00 -7.98199594e-01 2.32552424e-01 1.31485760e-01 2.59759843e-01 1.78853005e-01 6.70494676e-01 4.84668761e-01 -2.86507070e-01 2.54652321e-01 -5.63328192e-02 3.23837161e-01 1.04245830e+00 -9.70947564e-01 2.70872086e-01 3.95610899e-01 -2.07163110e-01 6.56366527e-01 9.10559356e-01 -1.18602097e+00 -8.15136075e-01 -9.64124620e-01 1.74296272e+00 -8.43753517e-01 7.55974352e-01 1.76231503e-01 -1.04866982e+00 6.19568706e-01 1.89074904e-01 -2.89342463e-01 1.08848798e+00 3.09196502e-01 -6.78809583e-01 2.21511871e-01 -1.27902496e+00 1.16080337e-03 5.72405457e-01 -6.61709428e-01 -1.04600620e+00 7.23020971e-01 6.43047154e-01 -2.47172192e-01 -1.13952541e+00 1.79369599e-01 5.49838543e-01 -6.79089904e-01 6.35798097e-01 -9.21783626e-01 1.17602217e+00 1.53229505e-01 3.94679040e-01 -1.10010111e+00 -3.59315902e-01 -2.29134500e-01 3.53983283e-01 9.97140467e-01 9.39689279e-01 -6.50577128e-01 3.33014756e-01 5.02073705e-01 -1.88501570e-02 -6.90495849e-01 -6.80115104e-01 -3.39234471e-01 1.08890414e-01 -5.99397898e-01 1.61463365e-01 1.71558905e+00 6.65626109e-01 4.36908036e-01 -3.01509738e-01 -1.95207015e-01 2.83640802e-01 2.68602163e-01 2.83478200e-02 -1.46366167e+00 -8.95224288e-02 -4.45467472e-01 -2.41512321e-02 -2.64415115e-01 -2.29946107e-01 -8.21544409e-01 3.34606767e-02 -1.95438433e+00 7.53250301e-01 -4.34907764e-01 -2.10904330e-01 4.46545631e-01 -1.71834201e-01 1.24955125e-01 -4.49345857e-01 3.61595869e-01 -7.79869020e-01 -2.59856209e-02 1.07395875e+00 -2.68916219e-01 9.68379080e-02 2.73636043e-01 -1.11131680e+00 7.09733844e-01 5.44505179e-01 -1.14924514e+00 2.72598630e-03 2.97391182e-03 1.25085521e+00 3.27289104e-01 5.14443576e-01 -4.97404784e-01 3.87566179e-01 -1.94219083e-01 1.02850139e-01 -5.88927746e-01 -4.90526676e-01 -5.67439020e-01 1.47466689e-01 7.02627718e-01 -1.06548309e+00 2.90157825e-01 -1.68527126e-01 7.17004418e-01 -3.21945161e-01 -1.74997821e-01 4.93912965e-01 -5.69463015e-01 2.20215037e-01 -8.80306438e-02 -8.10320735e-01 5.39766669e-01 6.22829437e-01 3.88210237e-01 -6.61821008e-01 -3.11530054e-01 -6.37179315e-01 -2.61280715e-01 1.96189359e-01 1.06170014e-01 4.23178196e-01 -9.84198809e-01 -1.00601816e+00 -5.42890489e-01 2.88060576e-01 -6.57721639e-01 2.54823770e-02 1.47854435e+00 -3.45183522e-01 6.42672658e-01 1.78727180e-01 -8.46460909e-02 -9.02251363e-01 1.13843358e+00 -2.76326742e-02 -4.30572897e-01 -7.56169379e-01 4.62734163e-01 -3.85702699e-01 6.79574683e-02 1.64090857e-01 -8.34969282e-01 -4.39544529e-01 6.61258221e-01 7.77558029e-01 5.14430523e-01 2.83139944e-01 -5.48237026e-01 -3.31398338e-01 -1.70284942e-01 -1.69077784e-01 -2.26869792e-01 1.42799079e+00 -9.84975323e-02 -3.70746553e-01 8.30226362e-01 9.34195936e-01 2.84686029e-01 -6.75329864e-02 -4.48952347e-01 4.56619978e-01 -2.17868164e-01 2.41175830e-01 -1.16065407e+00 -6.00871503e-01 4.41479146e-01 -1.16734058e-02 9.17506695e-01 4.58657205e-01 2.44792655e-01 6.83145225e-01 5.03699966e-02 4.67356630e-02 -1.28435934e+00 -1.35756388e-01 2.04957053e-01 7.27575839e-01 -1.53736663e+00 2.27698565e-01 -3.81160975e-01 -7.94705570e-01 6.77695215e-01 -2.95780510e-01 1.76130503e-01 8.89747083e-01 2.77701288e-01 -3.80294919e-02 -9.18706179e-01 -8.93475294e-01 5.19763120e-02 4.10316616e-01 7.69655704e-02 8.33313167e-01 9.81843099e-02 -1.07130408e+00 9.72732067e-01 -8.99628624e-02 4.17725950e-01 7.81406403e-01 7.84220994e-01 -3.65200669e-01 -5.76874256e-01 -5.91928780e-01 1.20546651e+00 -1.67646897e+00 -3.78237456e-01 -3.56935650e-01 3.94544601e-01 2.07917556e-01 1.07944119e+00 -2.30454862e-01 -9.52505171e-02 1.78205550e-01 2.79279292e-01 -1.14464223e-01 -6.90851986e-01 -9.54450130e-01 1.39525130e-01 7.21693397e-01 -3.36826205e-01 -1.17882395e+00 -8.91664684e-01 -7.40001798e-01 -3.42190087e-01 -3.50922763e-01 5.11545420e-01 4.78220880e-01 1.11991906e+00 3.48620534e-01 5.13715208e-01 2.01556966e-01 3.26943070e-01 -4.45120662e-01 -7.96654582e-01 -3.25960338e-01 3.70013207e-01 6.43599331e-01 -5.22905588e-01 -4.07562643e-01 3.17007422e-01]
[8.675217628479004, 9.719094276428223]
270a83b3-3eed-491b-b3a3-fe7471b8d911
rapid-ai-development-cycle-for-the
2003.05037
null
https://arxiv.org/abs/2003.05037v3
https://arxiv.org/pdf/2003.05037v3.pdf
Rapid AI Development Cycle for the Coronavirus (COVID-19) Pandemic: Initial Results for Automated Detection & Patient Monitoring using Deep Learning CT Image Analysis
Purpose: Develop AI-based automated CT image analysis tools for detection, quantification, and tracking of Coronavirus; demonstrate they can differentiate coronavirus patients from non-patients. Materials and Methods: Multiple international datasets, including from Chinese disease-infected areas were included. We present a system that utilizes robust 2D and 3D deep learning models, modifying and adapting existing AI models and combining them with clinical understanding. We conducted multiple retrospective experiments to analyze the performance of the system in the detection of suspected COVID-19 thoracic CT features and to evaluate evolution of the disease in each patient over time using a 3D volume review, generating a Corona score. The study includes a testing set of 157 international patients (China and U.S). Results: Classification results for Coronavirus vs Non-coronavirus cases per thoracic CT studies were 0.996 AUC (95%CI: 0.989-1.00) ; on datasets of Chinese control and infected patients. Possible working point: 98.2% sensitivity, 92.2% specificity. For time analysis of Coronavirus patients, the system output enables quantitative measurements for smaller opacities (volume, diameter) and visualization of the larger opacities in a slice-based heat map or a 3D volume display. Our suggested Corona score measures the progression of disease over time. Conclusion: This initial study, which is currently being expanded to a larger population, demonstrated that rapidly developed AI-based image analysis can achieve high accuracy in detection of Coronavirus as well as quantification and tracking of disease burden.
['Wenbin Ji', 'Maayan Frid-Adar', 'Ophir Gozes', 'Hayit Greenspan', 'Eliot Siegel', 'Huangqi Zhang', 'Adam Bernheim', 'Patrick D. Browning']
2020-03-10
null
null
null
null
['covid-19-image-segmentation']
['computer-vision']
[-2.13309135e-02 -5.75820506e-01 -6.70951381e-02 -1.29226789e-01 -5.25268555e-01 -8.42565238e-01 1.60851523e-01 5.37581325e-01 -3.10902923e-01 3.15324277e-01 1.18808866e-01 -6.61655426e-01 -1.76494062e-01 -6.30965769e-01 -2.72009164e-01 -6.27222538e-01 -8.40597570e-01 1.31429660e+00 -1.78693667e-01 3.28814417e-01 -1.36249274e-01 1.04804170e+00 -7.42921293e-01 4.97618228e-01 9.47725356e-01 8.29175830e-01 3.20225418e-01 1.16301620e+00 1.13346428e-01 4.41453785e-01 -6.38176262e-01 3.93862814e-01 3.70387435e-01 -3.10829163e-01 -2.13489503e-01 -1.98594213e-01 6.19595885e-01 -6.92607224e-01 9.88819003e-02 3.44772935e-01 5.29458344e-01 -6.43835783e-01 1.23391998e+00 -1.02541304e+00 -4.91357595e-01 -1.70268700e-01 -2.39370167e-01 7.27072954e-01 -5.26835583e-02 5.27693450e-01 1.65072158e-01 -2.92488307e-01 9.13781822e-01 7.89008975e-01 1.21999609e+00 2.46039614e-01 -8.31093967e-01 -7.51700163e-01 -5.35040915e-01 -1.45771012e-01 -1.14346015e+00 6.83511019e-01 1.55495837e-01 -1.18624103e+00 1.09544230e+00 3.84958178e-01 1.17415011e+00 6.60864115e-01 9.36194956e-01 5.01135767e-01 1.19315469e+00 4.36013229e-02 -8.30735341e-02 5.74530959e-02 8.34247842e-02 8.90376806e-01 5.25838852e-01 3.31903785e-01 5.51305771e-01 -7.25699484e-01 9.20959890e-01 6.04095817e-01 -1.16823271e-01 -3.29029977e-01 -1.30403137e+00 1.24911106e+00 5.62226534e-01 4.34520543e-01 -7.96191216e-01 -3.02141219e-01 6.83224261e-01 1.22400001e-01 4.21120286e-01 2.59167910e-01 -7.12587953e-01 2.60144264e-01 -9.14445996e-01 2.00124905e-01 3.30185801e-01 5.34242749e-01 -1.15374222e-01 8.03013369e-02 -5.26858747e-01 3.48188281e-01 3.13210011e-01 1.36783671e+00 5.46997726e-01 -5.68961203e-01 1.83324486e-01 8.59844983e-01 3.78905907e-02 -7.73032844e-01 -1.29293501e+00 -4.58227754e-01 -1.09719634e+00 2.30472878e-01 8.09814706e-02 -6.15343153e-01 -1.40443420e+00 1.23229897e+00 2.07223520e-01 -8.98448564e-03 -1.52179256e-01 8.02764118e-01 6.14744067e-01 6.15739763e-01 3.51721555e-01 -4.14788276e-01 1.81574929e+00 -5.19751906e-01 -4.60094184e-01 2.22682297e-01 1.17939997e+00 -4.46938545e-01 6.89495027e-01 2.36834913e-01 -5.92952967e-01 -2.66669929e-01 -8.18254232e-01 8.07589889e-01 -5.30777097e-01 4.20745313e-01 5.35706341e-01 9.41852748e-01 -9.43559408e-01 3.22894990e-01 -1.03042293e+00 -7.10441470e-01 7.81529009e-01 2.10201621e-01 -6.20567165e-02 1.13893561e-01 -9.79552746e-01 1.15481985e+00 2.24051386e-01 -2.12210327e-01 -9.71231520e-01 -1.14801204e+00 -5.32253861e-01 -1.51921615e-01 -3.89210314e-01 -1.21533608e+00 9.08433437e-01 -7.00787485e-01 -5.62471747e-01 1.14442086e+00 2.53411263e-01 -4.80204195e-01 4.72281575e-01 -1.84224367e-01 -5.21165252e-01 4.64398712e-01 1.44992054e-01 3.74606490e-01 3.62777412e-01 -1.04581976e+00 -6.11566901e-01 -6.72506809e-01 -7.58964360e-01 5.94674610e-03 2.43387192e-01 2.96113521e-01 1.15844877e-02 -7.15602934e-01 -4.57178503e-01 -1.21362829e+00 -4.41689521e-01 9.53495950e-02 2.10529894e-01 -2.51503021e-01 9.94362295e-01 -1.00116825e+00 9.42712843e-01 -1.67629540e+00 -7.14327574e-01 2.81091541e-01 6.24858677e-01 8.30006778e-01 2.60928459e-02 4.36854921e-02 -6.51175454e-02 3.87888491e-01 -5.70478141e-01 3.07858944e-01 -5.26466727e-01 -1.81508645e-01 7.39821494e-02 7.35100329e-01 2.00891852e-01 1.29455328e+00 -7.09739983e-01 -8.74646425e-01 4.50765491e-01 6.65639400e-01 -4.75012124e-01 3.79372448e-01 4.52227406e-02 3.54608178e-01 -6.42106533e-01 7.37248421e-01 7.91497707e-01 -6.32455587e-01 2.03874499e-01 -6.82338476e-02 -7.44576156e-02 -4.87314552e-01 -5.10807037e-01 1.03494811e+00 -2.46706679e-01 8.25980902e-01 1.50285512e-01 -4.60092157e-01 7.63300538e-01 4.41387773e-01 1.01787984e+00 -6.02080405e-01 6.20526671e-01 -6.69802800e-02 1.04741663e-01 -8.19107354e-01 -3.29725087e-01 -4.44691062e-01 1.88179880e-01 5.64409137e-01 -4.74474996e-01 -2.61674464e-01 -4.52139564e-02 1.14192158e-01 9.62521136e-01 -3.23878914e-01 2.83142835e-01 -2.92641908e-01 2.22504005e-01 8.52376580e-01 4.20816898e-01 1.03909397e+00 -6.41549826e-01 5.07429302e-01 2.93804824e-01 -8.31940651e-01 -1.27890205e+00 -1.51383471e+00 -5.21786690e-01 4.96142000e-01 -4.23150510e-01 3.26433927e-02 -5.49658298e-01 -7.41196573e-01 2.32994571e-01 4.37993616e-01 -8.21256995e-01 1.30142659e-01 -8.34950626e-01 -1.07419956e+00 7.28256702e-01 8.20828378e-01 -4.84579019e-02 -1.25696194e+00 -1.40405190e+00 1.56881362e-01 6.64192140e-02 -7.21928060e-01 -3.47329557e-01 -1.04577512e-01 -1.35828316e+00 -1.38562918e+00 -1.16316676e+00 -1.00581694e+00 4.31851476e-01 -1.31354198e-01 1.12260175e+00 2.21817553e-01 -9.25469935e-01 5.83052993e-01 -1.15521669e-01 -9.08996582e-01 -5.76101005e-01 -3.62093389e-01 1.95376545e-01 -7.49103427e-01 3.63170356e-01 5.83086312e-02 -1.01879013e+00 1.87037259e-01 -7.31628656e-01 -2.08119452e-01 8.16264868e-01 4.43822205e-01 5.93888223e-01 -5.40625095e-01 3.85110199e-01 -7.34285295e-01 7.82517433e-01 -5.68185389e-01 -6.52380407e-01 2.89597303e-01 -8.77236605e-01 -5.17991185e-01 4.63175088e-01 -2.17853695e-01 -7.07973957e-01 4.75208275e-03 4.78269637e-01 -8.09107423e-01 -2.51458615e-01 2.42153287e-01 8.44704330e-01 4.33688015e-01 6.04083300e-01 2.18137167e-02 5.36023736e-01 -3.17567915e-01 1.11969234e-02 8.69798720e-01 3.11321586e-01 -7.94847831e-02 4.64215606e-01 7.30310261e-01 1.13338187e-01 -7.45055318e-01 -2.26522267e-01 -7.75032461e-01 -8.89192343e-01 -3.80307943e-01 1.47607148e+00 -8.57379675e-01 -8.23649824e-01 3.15620750e-01 -1.03656614e+00 -3.70604217e-01 4.50643972e-02 9.68776643e-01 -3.75391155e-01 3.11143667e-01 -6.40708029e-01 -5.76774836e-01 -1.33998525e+00 -1.23710251e+00 9.62921560e-01 7.47225359e-02 -2.73197353e-01 -1.16897297e+00 8.79560709e-01 1.96639299e-01 7.79152274e-01 6.50909662e-01 1.07832730e+00 -9.23362970e-01 -2.05990344e-01 -4.24262673e-01 -6.13909483e-01 1.56406969e-01 1.20367549e-01 1.54901311e-01 -5.02172291e-01 -4.01854575e-01 -4.26989533e-02 -4.61898884e-03 6.09264791e-01 1.12320626e+00 8.15526009e-01 3.22848111e-02 -8.41545343e-01 6.11252606e-01 1.40083528e+00 9.63365018e-01 2.79984474e-01 1.60486326e-01 5.05720854e-01 1.71118543e-01 4.43049669e-01 2.83179909e-01 8.28008652e-02 2.60798514e-01 1.88091516e-01 -5.43107450e-01 1.09644972e-01 4.06821907e-01 4.48662229e-02 6.15568161e-01 -3.70103151e-01 -1.39557406e-01 -1.43630052e+00 5.50892115e-01 -1.14720654e+00 -8.58159959e-01 -5.97706676e-01 1.95304644e+00 1.23116963e-01 -1.21151477e-01 3.33290339e-01 -7.51625478e-01 7.14522123e-01 -2.39462063e-01 -5.52685678e-01 -8.22507143e-01 -5.23638166e-02 2.24576667e-01 6.38961673e-01 1.28406197e-01 -1.17381942e+00 2.90447444e-01 7.36043692e+00 1.06674902e-01 -1.40367305e+00 2.18059897e-01 6.56193614e-01 -8.52168202e-02 5.58667406e-02 -5.03962219e-01 -2.07708910e-01 2.56723791e-01 1.03416407e+00 -3.51345688e-02 -1.00755312e-01 8.46189439e-01 3.84446442e-01 1.79808185e-01 -5.90683579e-01 8.05600405e-01 2.99150705e-01 -1.60983169e+00 4.27105576e-02 1.11751750e-01 6.21456146e-01 9.59501803e-01 -2.79757202e-01 3.79340380e-01 1.06970976e-04 -1.03571177e+00 6.73860535e-02 5.73962450e-01 1.26580787e+00 -2.20224902e-01 1.12161624e+00 2.51893187e-03 -1.21501994e+00 1.37343451e-01 5.23520261e-03 4.65438068e-01 4.65320081e-01 2.43379489e-01 -1.62605953e+00 9.50513110e-02 8.05019677e-01 2.31568158e-01 -4.58337635e-01 1.15170836e+00 4.19233054e-01 6.75452769e-01 -5.37153542e-01 -2.17500716e-01 3.15995514e-01 -2.12125689e-01 5.83467364e-01 1.81744623e+00 1.19464234e-01 4.25117552e-01 1.96499571e-01 8.12538207e-01 6.04162931e-01 4.16486204e-01 -8.22154522e-01 -1.41198739e-01 4.23733927e-02 1.31355000e+00 -1.02084589e+00 -8.12848508e-01 -2.34318048e-01 4.71704870e-01 -2.56766677e-01 7.33533204e-02 -1.18113339e+00 -2.45314926e-01 5.02158582e-01 1.94211304e-01 3.12897772e-01 -9.12658051e-02 -5.81276953e-01 -7.18664169e-01 -5.34048021e-01 -6.65756702e-01 1.09658110e+00 -1.04257119e+00 -1.19313562e+00 7.30289280e-01 1.15153626e-01 -1.30450988e+00 -1.59093842e-01 -1.00502968e+00 -9.17215943e-01 7.98330367e-01 -1.00810397e+00 -1.06698573e+00 -4.87214118e-01 3.30841005e-01 2.61948407e-01 -1.55282870e-01 1.03697813e+00 1.38499632e-01 -2.25622311e-01 2.79128402e-01 3.11659068e-01 3.52402031e-01 3.98530751e-01 -1.06489170e+00 -4.06199647e-03 2.15776622e-01 -6.20594203e-01 6.57998204e-01 8.07220489e-02 -1.33989704e+00 -1.03512919e+00 -1.09044361e+00 6.10574543e-01 -8.37996364e-01 3.98316681e-01 4.43437174e-02 -6.44353271e-01 6.70893550e-01 1.40251249e-01 -3.03007960e-01 9.60063934e-01 -4.38981652e-01 -1.02940239e-01 2.78704584e-01 -1.49181640e+00 1.85080916e-01 4.99624938e-01 -1.76606148e-01 -8.14231455e-01 4.92720157e-01 5.55262864e-01 -2.34694466e-01 -1.16139388e+00 9.71885741e-01 8.95041406e-01 -5.89316964e-01 1.02857780e+00 -1.12551105e+00 1.32557988e-01 -3.00418407e-01 1.70360848e-01 -9.42884028e-01 -5.90579271e-01 -1.22029008e-02 3.69171351e-01 1.59104049e-01 3.87493253e-01 -6.22130275e-01 5.88162124e-01 1.36678770e-01 -1.70739576e-01 -8.27640414e-01 -6.63213015e-01 -5.49674571e-01 2.49710813e-01 -2.94752419e-01 3.55312645e-01 1.08741665e+00 -3.15455407e-01 -1.30329177e-01 2.25967750e-01 3.40632439e-01 5.12871265e-01 3.93130004e-01 3.82202715e-01 -1.46236289e+00 3.19294155e-01 -6.48887217e-01 -4.48789507e-01 -3.39615792e-02 -5.78160763e-01 -1.01536667e+00 -4.76597548e-01 -1.97559679e+00 6.20924413e-01 -5.79028845e-01 -3.41473013e-01 2.68229067e-01 7.22900257e-02 1.99223280e-01 3.85805339e-01 3.57425243e-01 1.89212319e-02 -8.80977437e-02 1.49501777e+00 -1.77385300e-01 -3.71681005e-01 -5.38472757e-02 2.11499557e-02 6.37974262e-01 1.11295950e+00 -6.34162068e-01 -7.50616267e-02 -1.27047420e-01 -1.85388654e-01 1.55797020e-01 5.25945783e-01 -9.05172348e-01 -3.19249243e-01 -3.45025420e-01 7.65934527e-01 -1.26210332e+00 -1.89221203e-01 -8.00678551e-01 2.94900239e-01 1.43376088e+00 3.29215169e-01 6.74139440e-01 5.87517738e-01 2.90303081e-01 4.91233289e-01 3.29218924e-01 8.89444351e-01 -1.64978057e-01 -3.02650005e-01 3.97249252e-01 -8.43411863e-01 1.45746067e-01 1.17764151e+00 -2.75027752e-01 -5.36806166e-01 -1.06765248e-01 -6.10181868e-01 2.22592741e-01 3.25246185e-01 4.46191728e-01 4.61698979e-01 -1.01354694e+00 -1.06054163e+00 1.65193260e-01 1.65076420e-01 -1.77437663e-01 6.37691796e-01 1.35614383e+00 -1.46212041e+00 8.35918248e-01 -4.62406904e-01 -1.20954442e+00 -1.48525918e+00 8.97393167e-01 7.05511510e-01 -4.38307106e-01 -7.64006138e-01 2.72595704e-01 5.01691222e-01 -4.29334641e-01 -1.04260184e-01 -5.40701509e-01 -3.27216923e-01 1.57480404e-01 5.13579905e-01 2.73022532e-01 -7.53511414e-02 -6.11455083e-01 -7.81992614e-01 8.38856876e-01 3.95193845e-02 5.20032346e-01 1.35375214e+00 1.64833695e-01 9.74136144e-02 1.75502971e-01 1.19171488e+00 -1.58631325e-01 -5.77559769e-01 3.82624596e-01 -5.17498136e-01 1.60252899e-01 -9.14026201e-02 -1.22451472e+00 -9.79746222e-01 7.47737110e-01 1.77181518e+00 1.12692684e-01 1.06218278e+00 2.44817525e-01 7.89767683e-01 -7.65762925e-02 -2.54324496e-01 -5.94302237e-01 -2.75464922e-01 4.26382452e-01 7.15957046e-01 -1.19837260e+00 8.98743570e-02 1.41304046e-01 -8.73012662e-01 9.33662832e-01 4.37536538e-01 -1.17678270e-01 7.51723886e-01 4.00424182e-01 8.06941450e-01 -9.66975629e-01 -4.28984612e-01 1.16939314e-01 3.33845347e-01 7.44866312e-01 3.80624741e-01 7.23204017e-01 -4.72821474e-01 4.42919314e-01 1.57585368e-01 1.63179860e-01 2.17816249e-01 1.02053607e+00 -4.81367767e-01 -2.99042076e-01 -6.89599395e-01 1.05408514e+00 -3.21612746e-01 -5.96750826e-02 -4.72573578e-01 1.07929027e+00 3.20462644e-01 3.44203651e-01 5.59118867e-01 -1.54917121e-01 2.67878532e-01 1.65590972e-01 1.97797343e-01 -2.38688469e-01 -8.33140373e-01 8.37676451e-02 -8.90781209e-02 -3.11050147e-01 -3.39201480e-01 -5.59033513e-01 -1.57258451e+00 -4.76594828e-02 -2.05534309e-01 3.25744152e-02 9.21918035e-01 6.02211118e-01 5.81148982e-01 4.33982790e-01 4.27346140e-01 -4.05722558e-01 -9.65301767e-02 -1.04494131e+00 -5.50248563e-01 5.09809673e-01 5.20860255e-01 -4.58625555e-01 -4.14657116e-01 5.69084138e-02]
[15.550301551818848, -1.7347570657730103]
0c3ee8bb-2a6e-4210-804d-7bb0a3d0a5d3
adaptive-background-matting-using-background
2203.05193
null
https://arxiv.org/abs/2203.05193v2
https://arxiv.org/pdf/2203.05193v2.pdf
Adaptive Background Matting Using Background Matching
Due to the difficulty of solving the matting problem, lots of methods use some kinds of assistance to acquire high quality alpha matte. Green screen matting methods rely on physical equipment. Trimap-based methods take manual interactions as external input. Background-based methods require a pre-captured, static background. The methods are not flexible and convenient enough to use widely. Trimap-free methods are flexible but not stable in complicated video applications. To be stable and flexible in real applications, we propose an adaptive background matting method. The user first captures their videos freely, moving the cameras. Then the user captures the background video afterwards, roughly covering the previous captured regions. We use dynamic background video instead of static background for accurate matting. The proposed method is convenient to use in any scenes as the static camera and background is no more the limitation. To achieve this goal, we use background matching network to find the best-matched background frame by frame from dynamic backgrounds. Then, robust semantic estimation network is used to estimate the coarse alpha matte. Finally, we crop and zoom the target region according to the coarse alpha matte, and estimate the final accurate alpha matte. In experiments, the proposed method is able to perform comparably against the state-of-the-art matting methods.
['Jinlin Liu']
2022-03-10
null
null
null
null
['image-matting']
['computer-vision']
[ 2.31280953e-01 -5.40115595e-01 2.71439217e-02 -1.38136130e-02 -2.27901965e-01 -3.68677735e-01 3.01872075e-01 -3.02691489e-01 -5.12732625e-01 6.92133367e-01 -3.22200894e-01 -4.11553308e-02 2.70935923e-01 -9.75687385e-01 -7.05851316e-01 -8.67888570e-01 4.32032049e-01 4.96132165e-01 9.07931268e-01 -2.31873706e-01 6.47973940e-02 4.34427798e-01 -1.68784916e+00 3.29437882e-01 1.07545686e+00 7.93490350e-01 7.72057891e-01 5.58219910e-01 -5.91977417e-01 9.16625619e-01 -7.00240314e-01 -3.00711185e-01 4.92075175e-01 -7.53849268e-01 -2.58427143e-01 4.87234682e-01 4.50932443e-01 -3.99264365e-01 -3.59502822e-01 1.41727638e+00 1.37311876e-01 3.18841100e-01 2.11605653e-01 -1.24967945e+00 -4.14759815e-02 3.20309877e-01 -8.98838818e-01 4.15080100e-01 4.27954227e-01 1.05054900e-01 2.26615101e-01 -8.51530135e-01 5.92009664e-01 1.22028506e+00 3.59326541e-01 5.69192648e-01 -9.37262297e-01 -6.68187737e-01 3.79519582e-01 3.47970128e-01 -1.41690576e+00 -4.35971349e-01 8.33672047e-01 -3.84336293e-01 2.34705448e-01 5.38358629e-01 1.03989530e+00 8.75913441e-01 1.92375943e-01 7.33557820e-01 1.29690528e+00 -4.82022166e-01 3.03055525e-01 2.74701118e-01 3.74129042e-02 8.86475205e-01 4.75778222e-01 -4.50384974e-01 -4.19739574e-01 -1.86216831e-02 1.00530589e+00 3.49979669e-01 -6.00775003e-01 -4.09191430e-01 -1.51394725e+00 2.86802113e-01 1.90664992e-01 5.22618115e-01 -4.60738957e-01 1.19996099e-02 1.45083904e-01 1.40638173e-01 4.60426122e-01 -1.33665085e-01 -1.72206275e-02 -3.39146435e-01 -1.48348618e+00 1.71760805e-02 6.92649841e-01 1.06301391e+00 9.07616615e-01 2.96148866e-01 4.64320183e-02 6.17596269e-01 2.07784265e-01 8.41785312e-01 2.57250011e-01 -8.79650414e-01 6.47072256e-01 5.92634737e-01 3.69536191e-01 -1.28948164e+00 -1.77012216e-02 -1.03569016e-01 -1.05404985e+00 6.49023116e-01 7.94593096e-01 3.51029038e-02 -1.15806603e+00 1.22789180e+00 4.52595145e-01 3.84118259e-01 -2.22712010e-01 9.44669008e-01 6.19170070e-01 1.05098808e+00 -2.53910035e-01 -7.07193553e-01 1.22343349e+00 -1.20266831e+00 -9.94770527e-01 -2.59217083e-01 9.03048611e-04 -1.03691947e+00 1.12928927e+00 7.01869905e-01 -1.39752865e+00 -6.76024675e-01 -1.17772698e+00 3.38165581e-01 -1.62163556e-01 3.48718643e-01 1.80458248e-01 6.19425416e-01 -1.03385699e+00 4.70787227e-01 -1.04678369e+00 -3.58001471e-01 -1.47201205e-02 2.23986581e-01 -2.07604706e-01 -1.24954768e-01 -8.54328334e-01 1.11782503e+00 5.70526242e-01 3.72065872e-01 -9.65880871e-01 -2.28066668e-01 -6.74207449e-01 -3.63799669e-02 6.08908534e-01 -1.02399385e+00 8.82415652e-01 -1.70175445e+00 -1.72359991e+00 7.41190910e-01 -2.97866642e-01 -9.25474465e-02 9.98054504e-01 -3.75966847e-01 -3.87395948e-01 2.99707204e-01 -5.68636581e-02 2.41126880e-01 1.15083694e+00 -1.42579401e+00 -6.29676461e-01 -3.31490673e-02 2.11287364e-01 4.78351742e-01 -2.51260757e-01 1.02682307e-01 -9.16875064e-01 -5.63712418e-01 1.71955690e-01 -7.93748140e-01 -2.50963151e-01 2.07220927e-01 -8.28071237e-02 4.26999152e-01 1.12903380e+00 -8.84470344e-01 1.38897264e+00 -2.18391800e+00 1.89559817e-01 2.76153177e-01 2.49615386e-01 4.34704542e-01 2.50935793e-01 4.07302892e-03 1.76804528e-01 -4.67072278e-01 -4.60262448e-02 -2.24278867e-01 -4.29141223e-01 1.52506411e-01 1.04277030e-01 4.65362787e-01 -3.61623615e-01 2.89750785e-01 -9.17995572e-01 -8.24121535e-01 6.30298555e-01 3.80379140e-01 -1.94606587e-01 3.40814084e-01 -3.33218783e-01 3.99647772e-01 -2.18130484e-01 7.87348330e-01 1.04322577e+00 -4.73371744e-02 1.66903585e-02 -4.33669657e-01 -2.47900739e-01 -3.33211184e-01 -1.64926457e+00 1.61830974e+00 -4.24989134e-01 7.12700844e-01 6.19815111e-01 -7.62542605e-01 8.35346818e-01 -6.81287190e-03 4.76695120e-01 -2.12972254e-01 2.55774617e-01 3.43228161e-01 -8.87545422e-02 -6.03920996e-01 4.88883436e-01 1.80018917e-02 5.26878417e-01 1.00962564e-01 -3.31937790e-01 7.19158491e-03 3.69992912e-01 2.21378282e-01 1.03300941e+00 2.69638449e-01 3.03415090e-01 -2.74280816e-01 6.99804544e-01 1.94147646e-01 6.71086967e-01 5.57073236e-01 -1.47944331e-01 6.93272591e-01 -2.22620666e-02 -6.17751479e-01 -1.09414470e+00 -1.10798216e+00 3.21782112e-01 8.41585815e-01 8.09089899e-01 -4.24292326e-01 -1.13565719e+00 -5.17565787e-01 -4.97314274e-01 3.43207806e-01 -4.57705170e-01 2.95232058e-01 -9.02350187e-01 -5.77079356e-01 -6.61516041e-02 2.93434650e-01 1.25841415e+00 -9.25622106e-01 -7.33627617e-01 1.97658151e-01 -5.41125834e-01 -9.38933969e-01 -5.05934238e-01 -2.03856483e-01 -9.51130748e-01 -9.17383432e-01 -1.13581955e+00 -6.91947699e-01 7.82222211e-01 8.99084151e-01 1.04844856e+00 3.19261640e-01 8.77242610e-02 2.11226240e-01 -1.94587857e-01 -1.66550890e-01 -5.52818298e-01 -1.88376591e-01 -1.49631510e-02 2.83594668e-01 1.75244868e-01 -4.39068258e-01 -6.23257756e-01 6.01649582e-01 -1.01647830e+00 6.77541435e-01 4.13317829e-01 4.98065412e-01 5.36893845e-01 2.92263806e-01 -1.72862992e-01 -6.17130578e-01 1.48109213e-01 -9.72616896e-02 -7.85828471e-01 4.14382637e-01 -7.35657811e-02 -3.66011143e-01 6.22039378e-01 -5.98477960e-01 -1.23767734e+00 1.28897280e-01 1.05852351e-01 -8.94427955e-01 -3.78987528e-02 1.16137773e-01 -5.97648442e-01 -7.70063996e-02 5.29902518e-01 1.72623619e-01 6.84056059e-02 -3.10888916e-01 1.45074800e-01 4.32340443e-01 6.29344463e-01 -3.68754715e-01 1.07352877e+00 6.10361338e-01 -1.82247639e-01 -8.32843721e-01 -6.34632528e-01 -4.73082215e-01 -6.42744541e-01 -7.22255588e-01 1.10485208e+00 -8.31110835e-01 -3.26960981e-01 5.78247368e-01 -1.21239614e+00 -4.09684241e-01 6.71969578e-02 4.67366815e-01 -4.60698515e-01 6.96860254e-01 -6.47167444e-01 -8.35706234e-01 -2.68765599e-01 -1.24664509e+00 6.97936654e-01 4.04865026e-01 2.09562674e-01 -7.75604904e-01 -1.60511553e-01 2.86096811e-01 5.05687296e-01 3.21986079e-01 3.61521393e-01 2.83561021e-01 -1.05168486e+00 1.48736402e-01 -1.68058962e-01 2.24539191e-01 4.85778123e-01 3.21209669e-01 -7.51581371e-01 -2.21172541e-01 1.26541764e-01 5.39601684e-01 8.94230425e-01 4.92454946e-01 9.69667494e-01 -2.24601194e-01 -3.85862172e-01 6.27877831e-01 1.44520628e+00 5.53933620e-01 1.05066013e+00 8.73057365e-01 8.71672571e-01 2.46301904e-01 1.05476511e+00 2.42559418e-01 5.11960536e-02 7.57052302e-01 3.77911359e-01 -3.57864946e-01 -1.65129051e-01 1.05562605e-01 7.14601099e-01 9.34255600e-01 -5.17031014e-01 -2.30306953e-01 -6.73286915e-01 2.83761114e-01 -2.05514336e+00 -1.30768669e+00 -2.59166032e-01 2.28651643e+00 7.50967264e-01 3.83021593e-01 3.20728123e-01 6.15525730e-02 1.20500493e+00 3.63730825e-02 -2.96916008e-01 5.08866087e-02 -1.97549060e-01 -1.28175586e-01 4.31432515e-01 4.61518288e-01 -1.03692603e+00 9.98550236e-01 5.78918886e+00 9.44269121e-01 -1.14889860e+00 2.62593627e-01 4.52819943e-01 -1.34830683e-01 -1.53877050e-01 -6.48015970e-03 -6.21069133e-01 8.69627357e-01 5.70526361e-01 -8.64215195e-02 6.66500807e-01 8.77038598e-01 4.08751875e-01 -5.30272305e-01 -7.25654483e-01 1.40752435e+00 2.32011676e-01 -1.21712816e+00 -2.79110912e-02 -2.96664268e-01 6.32236302e-01 -4.99508947e-01 -2.76926249e-01 -2.79701296e-02 -1.03223324e-01 -5.16652346e-01 8.14743876e-01 7.39850998e-01 6.01031125e-01 -6.17437065e-01 6.68014824e-01 3.82791072e-01 -1.29002452e+00 1.84120864e-01 -7.15042889e-01 -1.31065279e-01 4.26432461e-01 8.18195462e-01 -4.78383601e-01 3.32623869e-01 7.63532281e-01 3.76196176e-01 -5.80361724e-01 1.31007111e+00 1.05581909e-01 3.34770232e-01 -4.38467294e-01 7.68852383e-02 3.04226168e-02 -7.03629971e-01 4.94307160e-01 1.37104952e+00 5.55202305e-01 1.86671838e-01 4.04436171e-01 6.60028815e-01 1.90347686e-01 2.24554211e-01 -6.05688453e-01 2.24278688e-01 2.01893061e-01 1.30611229e+00 -1.35019410e+00 -9.70188677e-01 -3.82198900e-01 1.35051107e+00 -1.58261910e-01 3.03146839e-01 -1.17454684e+00 -2.64306247e-01 3.04705858e-01 4.45482641e-01 1.13296993e-01 -3.96776021e-01 -1.05968632e-01 -1.59453857e+00 1.17653452e-01 -1.10459220e+00 2.73352295e-01 -1.11804569e+00 -8.24517369e-01 8.01492691e-01 3.36203337e-01 -1.60963416e+00 1.15474038e-01 -5.35401225e-01 -6.56529129e-01 5.94194293e-01 -9.32132959e-01 -1.04152536e+00 -1.14851177e+00 9.19315517e-01 1.04034841e+00 -6.95349872e-02 2.94188350e-01 4.76712167e-01 -5.64420462e-01 9.27161723e-02 5.86131327e-02 -7.65852034e-02 8.26429129e-01 -1.04390442e+00 5.70278428e-02 1.36574757e+00 1.45516098e-01 5.56825221e-01 7.91242003e-01 -9.29994345e-01 -1.19434988e+00 -8.05311143e-01 2.46832445e-01 -3.95257622e-01 3.55183780e-01 -4.62710291e-01 -9.46950972e-01 4.39740479e-01 4.87738043e-01 -6.61017820e-02 9.30999443e-02 -5.30488849e-01 1.19527169e-01 -3.71442616e-01 -1.03730416e+00 7.50920475e-01 9.65409994e-01 -8.05194899e-02 -5.19120097e-01 1.04323693e-01 5.79495549e-01 -7.84447670e-01 -3.18599194e-01 1.69307441e-01 4.62244928e-01 -1.19773293e+00 8.37628424e-01 1.56662509e-01 1.48245677e-01 -1.08535552e+00 -1.73825317e-03 -1.16917682e+00 -2.83076495e-01 -7.21543550e-01 -8.59001130e-02 1.20802236e+00 2.15183832e-02 -3.31028044e-01 9.43170071e-01 4.91152942e-01 -6.03422262e-02 -2.54426956e-01 -6.14705145e-01 -6.54415011e-01 -6.09047949e-01 -7.61459097e-02 3.61557543e-01 9.85277653e-01 -2.46604204e-01 -9.99288168e-03 -6.42615914e-01 2.04756454e-01 7.76422262e-01 2.53877699e-01 1.17986834e+00 -1.04141188e+00 -4.17127818e-01 -1.22047797e-01 -5.02375603e-01 -9.68638301e-01 -1.91810206e-01 -2.18341902e-01 9.46729630e-02 -1.61251295e+00 3.69264066e-01 -3.19772780e-01 -1.02098361e-01 1.30592614e-01 -3.90476435e-01 4.60931867e-01 4.61605877e-01 2.41482258e-01 -6.12243712e-01 1.83886483e-01 1.20886850e+00 -3.40615243e-01 -3.79405141e-01 1.63795322e-01 -1.57728106e-01 9.56768811e-01 8.56688023e-01 -2.03999355e-01 -4.77963746e-01 -3.94559294e-01 2.08069310e-02 1.34970576e-01 1.01344027e-01 -1.36987436e+00 2.81608552e-01 -5.94620824e-01 6.93950593e-01 -7.94778883e-01 5.36963463e-01 -1.16063023e+00 6.48121476e-01 4.22772855e-01 2.64659137e-01 4.85932887e-01 2.18909979e-01 4.09773171e-01 -6.20296411e-02 -4.95459557e-01 9.44643319e-01 -5.69379687e-01 -7.35669136e-01 1.86530769e-01 -6.24836862e-01 -2.87472814e-01 1.17387831e+00 -6.74225926e-01 -1.92189366e-01 -4.76001024e-01 -8.67188156e-01 -2.84306079e-01 9.68223929e-01 1.12840027e-01 6.48638129e-01 -1.29203665e+00 -3.01713556e-01 1.66572407e-01 -3.48283976e-01 -4.55147354e-03 2.25837886e-01 9.95184004e-01 -1.19880438e+00 -2.78175116e-01 -5.50211251e-01 -7.32424080e-01 -1.67964113e+00 8.25476408e-01 2.88872480e-01 6.98384494e-02 -7.65788198e-01 3.86424243e-01 4.46350306e-01 4.24383014e-01 2.77469724e-01 -5.78498363e-01 1.08426400e-01 -1.65106997e-01 8.76225054e-01 5.06614804e-01 -8.79611522e-02 -5.26280701e-01 -2.57054389e-01 6.80316269e-01 1.20388441e-01 -3.02856207e-01 8.60112667e-01 -4.97134000e-01 -2.79110432e-01 5.15014946e-01 6.98576748e-01 3.34290236e-01 -1.23414755e+00 1.28298290e-02 -2.80903548e-01 -1.11156511e+00 -1.88400492e-01 -4.00899023e-01 -1.20144546e+00 8.87883961e-01 6.97254002e-01 1.55924156e-01 1.47158074e+00 -4.14843529e-01 7.29372025e-01 2.18055859e-01 6.87198520e-01 -1.11794186e+00 1.99305251e-01 1.45405084e-01 6.15672350e-01 -9.27693963e-01 1.36143640e-01 -7.26322174e-01 -5.98924398e-01 1.33906019e+00 1.12157476e+00 -2.91962363e-02 3.51841539e-01 5.63429952e-01 3.70952159e-01 5.86208850e-02 -4.10550445e-01 -2.01845348e-01 2.23820135e-02 5.74634850e-01 7.33607709e-02 -2.35990494e-01 -1.61094695e-01 -5.35672391e-03 -3.25933506e-04 -2.96465289e-02 8.38120997e-01 8.90230596e-01 -8.28667164e-01 -9.39340413e-01 -9.22948897e-01 2.35430419e-01 -3.52163941e-01 1.35547951e-01 -1.99777767e-01 7.37364411e-01 2.29423404e-01 9.09634709e-01 -7.93108493e-02 -2.94291258e-01 2.19738498e-01 -1.26199841e-01 7.22102046e-01 -2.15740100e-01 -4.07850534e-01 4.45035815e-01 1.96965355e-02 -5.88362217e-01 -7.19809115e-01 -4.73407686e-01 -8.82175565e-01 -6.26633763e-01 -5.95332742e-01 1.28619730e-01 4.15882438e-01 6.54907048e-01 -7.98896775e-02 3.22053909e-01 4.32905614e-01 -1.08515835e+00 1.88839570e-01 -8.22361648e-01 -4.03702050e-01 4.88746494e-01 9.58612263e-02 -8.09915543e-01 -3.39550108e-01 3.91723126e-01]
[10.355294227600098, -1.265811562538147]
cf11c1ab-be79-4ebd-a1a3-a3bb05183763
on-developing-facial-stress-analysis-and
2209.07916
null
https://arxiv.org/abs/2209.07916v2
https://arxiv.org/pdf/2209.07916v2.pdf
On Developing Facial Stress Analysis and Expression Recognition Platform
This work represents the experimental and development process of system facial expression recognition and facial stress analysis algorithms for an immersive digital learning platform. The system retrieves from users web camera and evaluates it using artificial neural network (ANN) algorithms. The ANN output signals can be used to score and improve the learning process. Adapting an ANN to a new system can require a significant implementation effort or the need to repeat the ANN training. There are also limitations related to the minimum hardware required to run an ANN. To overpass these constraints, some possible implementations of facial expression recognition and facial stress analysis algorithms in real-time systems are presented. The implementation of the new solution has made it possible to improve the accuracy in the recognition of facial expressions and also to increase their response speed. Experimental results showed that using the developed algorithms allow to detect the heart rate with better rate in comparison with social equipment.
['Anastasiia Archangelskaya', 'Dmitrii Grigorev', 'Sergei Nikolaev', 'Fabio Cacciatori']
2022-09-16
null
null
null
null
['facial-expression-recognition']
['computer-vision']
[ 9.25133377e-02 -2.28435490e-02 2.61953115e-01 -7.01148450e-01 4.94488746e-01 -2.19310746e-01 9.93510475e-04 -1.90052472e-03 -7.12125421e-01 5.13440609e-01 -4.37652618e-01 8.93937889e-03 -5.13466671e-02 -7.71153927e-01 -1.56768113e-01 -3.83784413e-01 -4.12260108e-02 5.05330153e-02 -5.50817922e-02 -4.02299494e-01 1.68814063e-01 1.04823971e+00 -2.42930102e+00 1.36848658e-01 3.96167040e-01 8.57924461e-01 2.24156063e-02 9.65128005e-01 -1.17829114e-01 8.29246938e-01 -8.08231771e-01 2.06930470e-02 1.83823623e-03 -4.11873937e-01 -4.79780078e-01 2.55160220e-02 2.00303614e-01 -5.49145579e-01 2.94572741e-01 1.05940640e+00 6.21645451e-01 2.53822833e-01 4.08475637e-01 -1.48061562e+00 5.54631874e-02 -1.77535102e-01 -1.36957377e-01 2.31528014e-01 7.61917889e-01 -1.93401784e-01 -2.00227439e-01 -6.82566345e-01 4.86740917e-01 1.11234903e+00 5.25694907e-01 7.10352123e-01 -7.44009256e-01 -9.18723404e-01 -5.38882315e-01 5.54239333e-01 -1.39436579e+00 -3.80655915e-01 8.88474643e-01 -3.19307804e-01 1.05269909e+00 3.57512444e-01 1.22721684e+00 8.35109055e-01 -4.51901741e-02 1.26208693e-01 1.55582857e+00 -7.37637341e-01 4.99230325e-01 8.63575757e-01 4.35256541e-01 9.26234007e-01 2.20369041e-01 -1.07891060e-01 -4.10587281e-01 1.53054848e-01 7.44237721e-01 -1.85345143e-01 1.85792461e-01 1.40991896e-01 2.57461201e-02 5.34095526e-01 -1.22085400e-01 6.69247389e-01 -7.22551048e-01 -8.58408883e-02 5.71086586e-01 5.21983027e-01 1.51031211e-01 1.63170502e-01 -3.78728449e-01 -8.09523940e-01 -8.66249561e-01 -1.28218263e-01 8.81264210e-01 3.19827944e-01 6.75681531e-01 3.48658681e-01 6.76234841e-01 7.43932664e-01 4.70748216e-01 5.67561150e-01 7.42876112e-01 -8.23803663e-01 -5.51208138e-01 8.08051229e-01 -1.95671275e-01 -1.18426096e+00 -5.82334459e-01 1.82454184e-01 -2.24261507e-01 1.25587499e+00 3.56475949e-01 -4.39907283e-01 -6.77444935e-01 1.31286180e+00 4.86157447e-01 3.01544756e-01 8.68946761e-02 7.83612967e-01 7.98129857e-01 7.80875325e-01 4.18432117e-01 -7.01933026e-01 1.28476202e+00 -2.17317328e-01 -1.20452964e+00 4.12122905e-01 6.35445118e-01 -7.47020662e-01 9.31671739e-01 8.07119012e-01 -1.01422763e+00 -7.73162007e-01 -1.30186915e+00 3.24812025e-01 -7.51739502e-01 2.02750668e-01 5.67960560e-01 1.38819230e+00 -1.18853498e+00 6.10104322e-01 -6.26129568e-01 -8.99231136e-01 -1.09319568e-01 7.44310439e-01 -4.56276834e-01 6.77093029e-01 -9.96018589e-01 1.23991072e+00 2.10900038e-01 3.06979388e-01 -2.67211739e-02 -4.10445392e-01 -6.57410622e-01 7.08725899e-02 -3.46700311e-01 -1.10017098e-01 1.13475156e+00 -2.00916171e+00 -2.32000971e+00 1.05613697e+00 4.75454181e-02 1.61096305e-02 2.27068126e-01 -7.34719932e-02 -7.08236694e-01 3.97131711e-01 -5.68795741e-01 2.61922687e-01 3.46108556e-01 -5.84486544e-01 -3.07479143e-01 -5.73032677e-01 -1.67773038e-01 1.24230474e-01 -7.31549263e-01 3.85813087e-01 1.58724606e-01 6.42097369e-02 -2.75906980e-01 -8.99328351e-01 1.68374300e-01 2.13184506e-01 7.27460265e-01 -1.53468758e-01 1.24864888e+00 -7.24240601e-01 1.11502850e+00 -2.13553429e+00 -3.04763973e-01 7.61290133e-01 -5.22905707e-01 7.52230167e-01 2.56067574e-01 7.65730068e-02 -5.34542680e-01 -1.20221972e-01 5.68773270e-01 1.16819285e-01 -2.54945010e-01 4.50001031e-01 5.26679695e-01 2.53372490e-01 -5.55538721e-02 -8.10337737e-02 -4.46320742e-01 -7.35031366e-01 5.60147882e-01 8.26921046e-01 -2.74354309e-01 2.48345301e-01 4.39425439e-01 -5.51842302e-02 -3.09281766e-01 5.99998474e-01 7.25545764e-01 6.82652533e-01 2.00406700e-01 -8.72981697e-02 -1.26667708e-01 -4.36917484e-01 -1.51101542e+00 1.05673015e+00 -5.22122145e-01 8.62496912e-01 8.71984959e-02 -1.04996562e+00 1.45609474e+00 6.28672659e-01 5.27520061e-01 -8.37287188e-01 7.43000627e-01 2.18613014e-01 -3.39617550e-01 -1.34508085e+00 2.35062316e-01 -3.27974707e-01 4.68892246e-01 3.21736753e-01 1.79404423e-01 9.22594666e-02 9.26713869e-02 -3.98795813e-01 4.92178410e-01 1.90497920e-01 5.59243262e-01 -1.24195009e-01 8.62214148e-01 -4.21777934e-01 1.09958000e-01 -1.36136282e-02 -6.01315320e-01 -3.36749077e-01 4.63757485e-01 -5.76795220e-01 -7.40422368e-01 -5.40263116e-01 -1.38801038e-01 1.03329241e+00 -3.72234136e-01 1.04431860e-01 -9.89130914e-01 -3.35188031e-01 -4.05294389e-01 3.64294678e-01 -5.76308131e-01 3.19039226e-02 -1.27455413e-01 -3.60251606e-01 3.46801877e-01 1.54178366e-01 4.04841274e-01 -1.37562501e+00 -1.12078929e+00 6.36053979e-02 4.17133778e-01 -7.15044379e-01 7.06112742e-01 -1.31169319e-01 -1.16058242e+00 -8.47787261e-01 -1.87951639e-01 -8.35789740e-01 7.35871911e-01 -3.69550556e-01 6.76707745e-01 4.47572798e-01 -5.63163638e-01 8.11872900e-01 -4.43598807e-01 -1.06979072e+00 -5.75666785e-01 -2.30776936e-01 2.45942906e-01 -8.93128756e-03 8.93451095e-01 -8.56631160e-01 -2.48786598e-01 -3.90377678e-02 -7.09571660e-01 -4.29250300e-01 2.05934644e-01 1.60815552e-01 5.71948662e-02 -9.02714357e-02 6.63633466e-01 -6.75026000e-01 7.95578003e-01 -2.32786343e-01 -7.92699277e-01 8.05699006e-02 -8.81874204e-01 -2.56772846e-01 2.51476049e-01 -2.48544395e-01 -1.11785936e+00 3.94800216e-01 -3.54775161e-01 -5.33832386e-02 -4.06902850e-01 3.72789383e-01 1.29893750e-01 -5.49696088e-01 9.14102316e-01 -2.09295630e-01 8.20544243e-01 -1.49981454e-01 -3.52579772e-01 1.05109990e+00 1.75247997e-01 -8.03863183e-02 7.35047460e-02 -1.10541329e-01 2.99065918e-01 -1.28984714e+00 -2.14548670e-02 -1.36117235e-01 -6.57142878e-01 -1.29663825e+00 9.60940421e-01 -6.57631576e-01 -1.23180497e+00 5.33192456e-01 -8.53217542e-01 4.53296043e-02 2.66615041e-02 5.44460893e-01 -2.71797985e-01 1.20588198e-01 -3.34274977e-01 -1.43087256e+00 -5.38167059e-01 -6.82308495e-01 2.85126537e-01 9.41004515e-01 -5.08837700e-01 -9.69514489e-01 1.93153247e-01 1.22199923e-01 4.19598073e-01 4.80690479e-01 2.91032940e-01 -2.45860666e-01 1.33424506e-01 -6.99607849e-01 3.31916183e-01 5.78498542e-01 -9.70581844e-02 9.19710219e-01 -1.09809482e+00 1.51194304e-01 8.24863240e-02 -3.63602281e-01 -1.31952927e-01 1.23573214e-01 9.42319095e-01 1.05932206e-02 1.14083201e-01 1.46817192e-01 1.57772362e+00 7.52386808e-01 1.03825045e+00 5.27635753e-01 -1.85998604e-01 6.47141218e-01 6.76335454e-01 6.29213154e-01 -2.57848084e-01 4.98623908e-01 2.58491337e-01 -2.31216222e-01 3.33308429e-01 3.91989470e-01 7.11454153e-01 6.03809893e-01 -5.33405423e-01 3.85152340e-01 -6.99803889e-01 -4.66417260e-02 -1.37353063e+00 -1.24527788e+00 -3.00400525e-01 2.12067866e+00 4.91212785e-01 -2.16739982e-01 3.45893741e-01 6.88140333e-01 5.53266644e-01 -3.50715429e-01 6.66926727e-02 -1.50151825e+00 3.28670084e-01 1.08982348e+00 -1.60164610e-01 7.22328842e-01 -6.77241206e-01 4.42066312e-01 6.51299047e+00 -2.87960712e-02 -1.74138641e+00 8.24218150e-03 2.94836283e-01 -3.85291934e-01 5.70382774e-01 -4.65554029e-01 -2.72055715e-01 3.83307844e-01 1.42877936e+00 -3.85064602e-01 3.43646973e-01 1.22625244e+00 5.35409927e-01 -5.87915421e-01 -5.80981851e-01 1.24572635e+00 3.80615264e-01 -6.74532354e-01 -1.75409213e-01 -2.63778657e-01 7.71590918e-02 -4.42956865e-01 -1.33193612e-01 4.04563099e-01 -7.43854403e-01 -8.00073504e-01 5.81628941e-02 8.50626469e-01 4.28847313e-01 -1.18824673e+00 1.01079667e+00 -1.27005816e-01 -5.84113955e-01 -3.22790034e-02 -2.63855904e-01 -6.97874784e-01 -3.33327651e-01 -7.70406798e-02 -1.03683245e+00 -1.21116661e-01 7.96464562e-01 7.49487132e-02 -6.68152630e-01 7.97961891e-01 1.81152478e-01 4.85633373e-01 -5.73162973e-01 -8.46838117e-01 -1.51464790e-01 -4.47339416e-01 2.27916613e-01 1.28792381e+00 5.90496600e-01 3.84821147e-01 -6.20410144e-01 2.95057356e-01 5.26665151e-01 7.50472307e-01 -5.79412699e-01 -7.66732618e-02 1.09565586e-01 1.66317010e+00 -6.43317223e-01 -4.50096428e-01 -2.40143731e-01 9.93789434e-01 -1.06068268e-01 6.69145957e-02 -7.47234464e-01 -6.05778217e-01 7.06225872e-01 4.38979536e-01 -4.00575191e-01 2.09402503e-03 -3.69838923e-02 -5.08662283e-01 -6.28193840e-02 -6.32466912e-01 3.38554412e-01 -1.26362801e+00 -3.78572553e-01 5.41561902e-01 -8.17453191e-02 -8.68328273e-01 -4.45865184e-01 -1.00952542e+00 -5.30951917e-01 8.47345471e-01 -7.97449172e-01 -7.38375485e-01 -8.57284784e-01 6.73051476e-01 9.86239761e-02 -4.34626162e-01 1.37056184e+00 4.87506211e-01 -6.78273082e-01 3.83056909e-01 -3.66009980e-01 -1.05599701e-01 5.76223552e-01 -1.01238966e+00 -1.03204346e+00 6.38591886e-01 -3.33488435e-01 1.82675630e-01 7.77593553e-01 -2.20545918e-01 -9.99342322e-01 -3.78619522e-01 9.42513585e-01 -1.78536549e-01 1.46797255e-01 -1.73013166e-01 -7.78656840e-01 3.26643944e-01 3.63423705e-01 -1.75310850e-01 1.23623633e+00 1.41149417e-01 2.27738723e-01 -6.38845503e-01 -1.53501594e+00 4.42171097e-01 1.90598056e-01 -5.18265128e-01 -3.95095319e-01 2.53647137e-02 -3.16096604e-01 -1.14626102e-01 -8.93218279e-01 4.72727306e-02 1.11703730e+00 -1.37663281e+00 3.90816480e-01 -5.57355464e-01 2.91201800e-01 -6.98328987e-02 3.41191083e-01 -8.82747650e-01 3.64713632e-02 -5.23197293e-01 2.28642508e-01 1.23284674e+00 3.96676362e-01 -5.74196994e-01 1.01066387e+00 1.22554064e+00 4.05160338e-01 -5.15655577e-01 -8.57025146e-01 -1.74935415e-01 -6.11752927e-01 -2.63854295e-01 1.68959692e-01 9.47147548e-01 7.30824709e-01 1.12906307e-01 -2.07772907e-02 2.05051959e-01 1.23366833e-01 -7.01018572e-01 7.94761539e-01 -1.48529780e+00 -2.24228296e-03 -2.57277817e-01 -1.40888107e+00 3.28225940e-01 1.59427896e-01 -3.78241539e-01 -6.37684703e-01 -1.07457054e+00 -1.86626837e-01 1.69161528e-01 -4.69262332e-01 4.87997293e-01 2.15332597e-01 3.43990773e-01 6.36010468e-02 -5.64265966e-01 -1.27987817e-01 6.42989250e-03 5.38777173e-01 7.31337190e-01 -4.50899541e-01 -9.98709947e-02 -7.63244331e-02 8.44199479e-01 8.26957464e-01 -3.20197672e-01 -6.85182214e-01 2.73759812e-01 4.42517728e-01 7.63742477e-02 1.79105237e-01 -1.49450147e+00 2.29336470e-02 -1.10436631e-02 8.33467662e-01 -5.89825697e-02 4.13345605e-01 -1.45355022e+00 5.55495501e-01 6.32851243e-01 8.41284841e-02 2.57006258e-01 3.72822940e-01 -5.77705465e-02 -1.84207201e-01 -6.30084515e-01 1.07121646e+00 1.21522054e-01 -8.44308436e-01 -2.98981607e-01 -1.10280633e+00 -1.05123580e+00 1.55140400e+00 -9.20692742e-01 2.03989148e-01 -5.61577380e-01 -1.21081555e+00 -3.23964149e-01 1.89645395e-01 2.24423081e-01 3.65399301e-01 -1.04749298e+00 -3.81270365e-04 5.34862876e-01 -1.52158186e-01 -9.05997396e-01 3.63669783e-01 6.38047397e-01 -1.27655983e+00 -2.28973284e-01 -1.26010454e+00 -1.79168075e-01 -2.39620137e+00 3.06665689e-01 8.89341354e-01 4.50396687e-01 2.38090213e-02 4.77381140e-01 -9.33519602e-01 1.89515799e-01 1.94908962e-01 -1.14335187e-01 -9.50832129e-01 1.92428142e-01 7.50405371e-01 5.46444297e-01 1.02178387e-01 -4.52929705e-01 -1.96293503e-01 6.37074947e-01 3.03021401e-01 -3.04075480e-01 1.33094370e+00 -3.48276161e-02 -2.40715116e-01 6.13492310e-01 1.05375469e+00 -3.66132557e-02 -5.84536076e-01 4.42093849e-01 -8.77116024e-02 -3.66730422e-01 3.05248797e-01 -9.38418627e-01 -9.44277585e-01 6.67587698e-01 1.59553659e+00 7.90901110e-02 1.69132733e+00 -8.51958513e-01 8.73478651e-02 7.13918209e-01 2.03631464e-02 -1.80546963e+00 3.23665924e-02 1.44777372e-01 6.83104753e-01 -9.39055204e-01 8.18521231e-02 -3.42472792e-01 -4.83657748e-01 1.95784390e+00 8.10751379e-01 -1.27946883e-01 1.07685912e+00 5.64161241e-01 5.33688545e-01 -3.30726445e-01 -4.11711603e-01 -3.55320424e-02 -2.31653929e-01 7.61594772e-01 7.43218899e-01 8.65470059e-03 -8.61152768e-01 5.79028308e-01 -1.84275195e-01 9.43884373e-01 8.03995430e-01 1.08774352e+00 -7.23277807e-01 -9.13741887e-01 -5.13746381e-01 2.04773545e-01 -6.44209266e-01 7.15198994e-01 -5.20436347e-01 9.52677667e-01 3.94957542e-01 7.99063563e-01 1.68957338e-01 -3.22794259e-01 7.01708794e-01 7.52416909e-01 5.73105335e-01 -1.26693144e-01 -7.72278011e-01 -2.97262430e-01 2.89600462e-01 -5.97144663e-01 -7.15210199e-01 -6.71118081e-01 -1.31052661e+00 -4.31932956e-01 4.49749030e-04 1.97676852e-01 1.43906653e+00 5.80505371e-01 3.91452581e-01 3.17742288e-01 6.63280368e-01 -5.54302573e-01 9.24854949e-02 -1.13940871e+00 -7.71735132e-01 4.64900702e-01 -1.36997774e-01 -5.92698753e-01 -2.16689184e-01 3.87713403e-01]
[13.466985702514648, 2.1702709197998047]
56d88bd1-b34b-41db-88c8-725a04586e89
human-saliency-driven-patch-based-matching
2208.03138
null
https://arxiv.org/abs/2208.03138v1
https://arxiv.org/pdf/2208.03138v1.pdf
Human Saliency-Driven Patch-based Matching for Interpretable Post-mortem Iris Recognition
Forensic iris recognition, as opposed to live iris recognition, is an emerging research area that leverages the discriminative power of iris biometrics to aid human examiners in their efforts to identify deceased persons. As a machine learning-based technique in a predominantly human-controlled task, forensic recognition serves as "back-up" to human expertise in the task of post-mortem identification. As such, the machine learning model must be (a) interpretable, and (b) post-mortem-specific, to account for changes in decaying eye tissue. In this work, we propose a method that satisfies both requirements, and that approaches the creation of a post-mortem-specific feature extractor in a novel way employing human perception. We first train a deep learning-based feature detector on post-mortem iris images, using annotations of image regions highlighted by humans as salient for their decision making. In effect, the method learns interpretable features directly from humans, rather than purely data-driven features. Second, regional iris codes (again, with human-driven filtering kernels) are used to pair detected iris patches, which are translated into pairwise, patch-based comparison scores. In this way, our method presents human examiners with human-understandable visual cues in order to justify the identification decision and corresponding confidence score. When tested on a dataset of post-mortem iris images collected from 259 deceased subjects, the proposed method places among the three best iris matchers, demonstrating better results than the commercial (non-human-interpretable) VeriEye approach. We propose a unique post-mortem iris recognition method trained with human saliency to give fully-interpretable comparison outcomes for use in the context of forensic examination, achieving state-of-the-art recognition performance.
['Adam Czajka', 'Kevin Bowyer', 'Andrey Kuehlkamp', 'Daniel Moreira', 'Aidan Boyd']
2022-08-03
null
null
null
null
['iris-recognition']
['computer-vision']
[ 4.79766041e-01 1.69537112e-01 -1.16062872e-01 -4.01390761e-01 -8.09846938e-01 -6.25330389e-01 5.27217567e-01 4.11134422e-01 -5.35845399e-01 1.68919742e-01 1.40511826e-01 -4.99149144e-01 -2.98307598e-01 -2.13489547e-01 -4.50456113e-01 -7.24107146e-01 1.10165156e-01 4.05699164e-01 -3.96946877e-01 2.56984353e-01 6.18829250e-01 8.86250615e-01 -1.62500334e+00 3.40680212e-01 8.75197709e-01 9.33313191e-01 -5.21927178e-01 7.39852011e-01 5.05824268e-01 7.35608459e-01 -4.97722417e-01 -8.35702598e-01 4.80902731e-01 -5.42648435e-01 -7.46928453e-01 3.91331047e-01 1.01035023e+00 -3.74016047e-01 6.27116263e-02 9.12099540e-01 5.12039542e-01 -1.85827255e-01 6.51474714e-01 -6.08437836e-01 -7.42427826e-01 -3.13669406e-02 -9.12000895e-01 5.61444163e-01 4.94006902e-01 8.18885684e-01 7.61564195e-01 -8.18288088e-01 4.05062616e-01 8.21518004e-01 5.09510100e-01 6.34585023e-01 -1.33299971e+00 -4.21865225e-01 -5.05742848e-01 2.01859787e-01 -1.25418341e+00 -9.05317545e-01 6.24893904e-01 -7.04787433e-01 7.53349066e-01 5.58772564e-01 7.42562771e-01 7.02732146e-01 1.10794529e-01 5.84939241e-01 1.56151533e+00 -6.12173796e-01 7.84786791e-02 2.72628456e-01 3.56036909e-02 7.11198211e-01 2.68025935e-01 6.29874587e-01 -5.49320281e-01 -2.35382751e-01 5.59677839e-01 9.63917971e-02 -2.62314379e-01 -1.16152912e-01 -1.12298834e+00 5.43577135e-01 3.81667614e-01 1.18371971e-01 -6.93516493e-01 -3.78747374e-01 1.60672948e-01 9.73825231e-02 4.48462993e-01 7.70399928e-01 6.77065253e-02 1.18627632e-02 -1.41369379e+00 -1.72642827e-01 3.43614161e-01 -1.97978150e-02 5.55947363e-01 -3.06096166e-01 -4.94097799e-01 3.44810337e-01 4.77172673e-01 5.65441608e-01 3.71295750e-01 -3.77836853e-01 -5.49965911e-02 1.00392973e+00 -9.72770602e-02 -9.66718435e-01 -2.70502269e-01 -6.51194811e-01 -6.35685503e-01 6.60474300e-01 5.72254777e-01 2.83933222e-01 -1.06928313e+00 1.15966034e+00 6.73264682e-01 3.08607906e-01 -4.30729873e-02 1.23054242e+00 4.43933368e-01 -1.16832681e-01 1.92362815e-01 -5.54927886e-02 1.73655653e+00 -6.39750242e-01 -1.54033393e-01 2.36263014e-02 2.31475964e-01 -8.10589969e-01 8.52194846e-01 5.86214542e-01 -8.86569262e-01 -3.26048613e-01 -8.50842834e-01 8.12525395e-03 -1.97667092e-01 4.06690508e-01 4.11778718e-01 9.26640451e-01 -9.60519910e-01 3.74308914e-01 -5.88001370e-01 -5.31617701e-01 6.32808805e-01 5.77159643e-01 -5.27247310e-01 1.50367171e-01 -4.57091093e-01 1.07148147e+00 1.03813551e-01 4.25542176e-01 -7.82321930e-01 -6.07139647e-01 -8.03899527e-01 -9.42988843e-02 5.34683801e-02 -6.97473705e-01 7.69836247e-01 -1.23034537e+00 -1.12104189e+00 1.80134463e+00 -5.05320191e-01 -6.41784489e-01 5.62692761e-01 4.35360037e-02 -3.93718362e-01 7.31711626e-01 -1.34855092e-01 3.62379372e-01 1.48250949e+00 -1.06672835e+00 -5.83294153e-01 -6.71552658e-01 -5.97487316e-02 -2.20516339e-01 -1.66676998e-01 6.21841788e-01 -8.71839523e-02 -6.79123282e-01 -1.33354127e-01 -6.89146101e-01 1.19746432e-01 1.88729256e-01 -3.68736088e-01 -2.33469874e-01 5.31783998e-01 -1.00808418e+00 1.07350898e+00 -2.29911160e+00 -2.06929609e-01 4.87696767e-01 7.77970612e-01 7.41012275e-01 -1.04251377e-01 -1.34143189e-01 -2.88895279e-01 7.63200223e-02 -3.54370892e-01 -5.12701511e-01 -1.99985117e-01 -3.67328435e-01 -1.12162985e-01 1.06367731e+00 6.53136432e-01 1.02857327e+00 -8.92605186e-01 -6.04213238e-01 5.50785542e-01 5.20853043e-01 -1.55487448e-01 1.84155494e-01 3.48164022e-01 6.80518568e-01 -1.49541348e-01 1.19409049e+00 5.34251213e-01 -1.61079139e-01 -1.42642215e-01 -2.52072096e-01 5.53864762e-02 -1.61331788e-01 -7.99979270e-01 1.25474203e+00 -2.25091353e-01 8.05915952e-01 2.41225362e-02 -7.86699891e-01 9.06256735e-01 3.72509658e-01 1.11106284e-01 -7.08121061e-01 1.49358526e-01 2.82833010e-01 3.64189669e-02 -7.48809576e-01 2.39475533e-01 -2.91736424e-01 5.82878947e-01 6.41394317e-01 -1.05616227e-01 4.17088896e-01 -4.47059795e-02 -1.60871938e-01 8.84510159e-01 8.37245882e-02 4.98474926e-01 -1.18796445e-01 7.39523113e-01 -1.05914235e-01 3.42207849e-01 5.61262667e-01 -5.83868742e-01 7.79667497e-01 2.64084399e-01 -8.36767137e-01 -1.06296933e+00 -7.57524908e-01 -4.57676291e-01 5.05764604e-01 2.90890504e-02 1.34493127e-01 -9.00704741e-01 -8.85985732e-01 1.90956324e-01 3.54806960e-01 -1.00296044e+00 1.00375917e-02 -4.17018563e-01 -6.18366539e-01 6.89824939e-01 1.48857683e-01 6.10652529e-02 -1.07205248e+00 -1.11025500e+00 -1.09235622e-01 2.48980194e-01 -6.13706231e-01 -5.12383282e-01 -2.95953900e-01 -6.07002854e-01 -1.76589704e+00 -7.80425966e-01 -3.70735824e-01 1.20957220e+00 1.66141897e-01 8.52690399e-01 6.22211158e-01 -8.55574429e-01 5.52510202e-01 -2.11521342e-01 -3.65044385e-01 -3.15099925e-01 -4.74881619e-01 2.37536207e-01 9.18528140e-01 9.17297542e-01 -1.46008715e-01 -9.84515429e-01 1.54344857e-01 -1.02907145e+00 -2.20873237e-01 8.83711994e-01 1.06307101e+00 5.38229704e-01 -3.72017980e-01 6.51815757e-02 -4.97559428e-01 4.43982065e-01 -3.46500203e-02 -5.05429327e-01 5.69642365e-01 -8.03195953e-01 -1.21867165e-01 3.26471359e-01 -2.65153468e-01 -8.09224963e-01 1.97430719e-02 3.64400297e-01 -5.45779407e-01 -4.90135431e-01 2.51658410e-01 3.43480825e-01 -5.60767829e-01 8.63020182e-01 2.80200392e-01 2.59779602e-01 -4.42608774e-01 2.08072234e-02 1.04835606e+00 9.00140226e-01 -4.98190761e-01 8.69017005e-01 6.34126604e-01 1.98800653e-01 -6.22650385e-01 -5.41227937e-01 -7.63247907e-01 -9.08978462e-01 -2.55216211e-01 7.66131520e-01 -5.56427360e-01 -1.08054614e+00 5.10657072e-01 -1.05365109e+00 1.31794199e-01 -3.28299224e-01 5.22692204e-01 -2.29499623e-01 6.21643484e-01 -2.98868835e-01 -1.17883623e+00 -5.97852409e-01 -1.19499290e+00 1.30691707e+00 6.69285893e-01 -3.01251739e-01 -8.13179314e-01 1.36564493e-01 9.61365759e-01 2.39823818e-01 5.77003539e-01 6.57093942e-01 -8.25274348e-01 -4.74929094e-01 -5.40878236e-01 -4.92591202e-01 3.44407439e-01 1.51274148e-02 2.32451543e-01 -1.43106508e+00 -4.46387619e-01 -1.27289882e-02 -8.26181322e-02 7.52581239e-01 2.51008719e-01 7.54769206e-01 -2.39076480e-01 -1.37501612e-01 8.46581459e-01 1.17202020e+00 6.69178292e-02 7.72916734e-01 4.73547131e-01 3.63084435e-01 8.76782000e-01 3.85392785e-01 2.73990870e-01 2.01748535e-01 5.42947888e-01 4.09115523e-01 -7.31250048e-01 -2.34035462e-01 -6.84684142e-02 8.06947947e-02 -1.65182561e-01 -4.69074160e-01 1.03480160e-01 -1.10580313e+00 7.46991515e-01 -1.56516612e+00 -9.99297321e-01 -1.07886024e-01 2.61211705e+00 7.78764307e-01 -2.87567914e-01 2.09382758e-01 7.65520781e-02 9.08517122e-01 -2.29334846e-01 -6.55671954e-01 -3.84828508e-01 -1.63024127e-01 4.64239478e-01 2.73866504e-01 2.63212174e-01 -1.23284495e+00 5.79400957e-01 5.69451189e+00 4.54388350e-01 -1.41276026e+00 -1.05625585e-01 9.49630082e-01 -1.45675257e-01 1.13866746e-01 2.17021834e-02 -4.46171552e-01 4.96622026e-01 8.70907247e-01 1.70613438e-01 3.44621062e-01 4.16855067e-01 4.20674026e-01 -2.73924887e-01 -1.24139726e+00 1.22035456e+00 4.62042212e-01 -1.29527676e+00 -1.75669074e-01 3.77019793e-01 2.91591316e-01 -4.63910758e-01 4.56456065e-01 -4.26226616e-01 -4.26416546e-01 -1.43037212e+00 5.73092639e-01 9.01886642e-01 1.14551163e+00 -6.31540239e-01 8.77344668e-01 -1.02782093e-01 -7.52254307e-01 -5.91135807e-02 7.00025186e-02 -5.61166089e-03 -8.79471898e-02 5.45538008e-01 -1.08578742e+00 3.31722915e-01 4.73883122e-01 6.26791298e-01 -9.23731148e-01 1.34556162e+00 -3.38994026e-01 6.40290439e-01 -7.59900957e-02 4.20136094e-01 6.70138747e-03 2.93768775e-02 7.86906004e-01 1.20882404e+00 1.28918774e-02 1.04734913e-01 -2.38974914e-01 1.07775867e+00 1.60791725e-01 7.87649602e-02 -3.07445586e-01 -1.09133899e-01 5.71888424e-02 1.32511032e+00 -6.82879567e-01 -1.59781769e-01 -1.49867773e-01 9.43021715e-01 5.46375290e-02 2.88948536e-01 -3.72674465e-01 -4.27089065e-01 6.79337323e-01 3.81142557e-01 1.22283384e-01 2.05875412e-01 -3.75372976e-01 -1.16838408e+00 3.07635754e-01 -1.26522148e+00 3.63706291e-01 -5.93209326e-01 -1.31521261e+00 6.53487027e-01 -5.37005663e-01 -1.29216456e+00 -2.24517271e-01 -7.35423923e-01 -6.77271307e-01 1.18918037e+00 -1.75433707e+00 -1.62728953e+00 -2.18877271e-01 4.74367380e-01 2.11171489e-02 -3.35251421e-01 7.76778042e-01 1.02248572e-01 -7.11193025e-01 8.72984588e-01 -2.53355712e-01 3.79135340e-01 8.08912694e-01 -1.17062771e+00 2.43931562e-01 1.37644398e+00 2.93993682e-01 1.10193670e+00 4.73794609e-01 -5.11708438e-01 -1.29078889e+00 -6.21919394e-01 9.97220457e-01 -8.50944519e-01 3.98122251e-01 1.60848171e-01 -8.65257859e-01 2.70271182e-01 2.43768259e-03 2.19988540e-01 1.12501752e+00 6.54470250e-02 -5.24577022e-01 -5.25086522e-02 -1.58192039e+00 1.99266583e-01 4.06637013e-01 -9.53207076e-01 -8.65475237e-01 8.70488063e-02 -4.54778858e-02 -3.71234030e-01 -8.70141864e-01 2.96371460e-01 7.82248199e-01 -1.17800510e+00 8.70097935e-01 -8.74432683e-01 3.81326616e-01 -7.70270944e-01 4.13774014e-01 -6.42025232e-01 -1.48181751e-01 -8.66750002e-01 -1.77302286e-01 9.72056627e-01 2.57653177e-01 -7.25500226e-01 6.57439530e-01 8.78518581e-01 2.40969017e-01 -8.48885298e-01 -1.03757894e+00 -3.97160798e-01 -4.12963599e-01 -7.12839048e-03 6.50637388e-01 9.55142558e-01 -3.37718651e-02 -3.22435170e-01 -3.05229694e-01 3.90492529e-01 8.80952179e-01 1.87807202e-01 6.64867938e-01 -1.20665789e+00 -4.66147393e-01 -4.98806268e-01 -1.02263832e+00 -4.03934717e-01 -7.36502483e-02 -7.60729492e-01 -3.15769017e-01 -8.55734706e-01 4.20314878e-01 -1.80285022e-01 -4.62976396e-01 7.66348600e-01 -4.48136002e-01 8.16271603e-01 2.31167108e-01 4.33878303e-01 -2.92454362e-01 -2.35137299e-01 9.15047884e-01 -3.39605808e-01 -9.95573848e-02 -1.60264149e-02 -8.91260862e-01 4.62778270e-01 4.24717784e-01 -3.28495950e-01 2.65505642e-01 -1.70674369e-01 -2.88777575e-02 -2.22583592e-01 1.04114282e+00 -7.73077548e-01 4.73425537e-01 5.12752589e-03 6.45123065e-01 -1.57959551e-01 -5.80152161e-02 -6.68566167e-01 -7.13341534e-02 4.21616882e-01 -1.48136765e-01 -2.21770123e-01 1.56122014e-01 3.20319682e-01 -2.61926621e-01 -1.29180491e-01 8.79019260e-01 1.46302491e-01 -5.79041779e-01 1.37376681e-01 4.06626500e-02 -3.23345035e-01 1.11356139e+00 -8.08770239e-01 -4.19415236e-01 7.44857863e-02 -6.59924686e-01 -9.74122435e-02 7.86166131e-01 2.56798845e-02 8.33281636e-01 -6.32925332e-01 -1.05217957e+00 6.48940504e-01 4.34326500e-01 -3.23927701e-01 3.02709788e-01 1.43398297e+00 -5.98428130e-01 3.63018900e-01 -8.84040594e-02 -8.52477193e-01 -1.60178351e+00 6.06662631e-01 5.05558491e-01 -8.63216668e-02 -5.78779042e-01 8.09417188e-01 -8.36945549e-02 6.94490969e-02 5.51313199e-02 -4.62843664e-02 -1.52307943e-01 8.80447105e-02 1.07108486e+00 1.97565392e-01 3.30067873e-01 -8.38753998e-01 -3.45036954e-01 7.79703438e-01 -2.05114692e-01 2.13145033e-01 1.16460931e+00 -6.03459356e-03 -4.02799815e-01 -2.92766422e-01 8.35673153e-01 2.16088668e-01 -1.08835304e+00 -2.17616871e-01 2.61741299e-02 -1.01243770e+00 1.52978763e-01 -1.18112350e+00 -1.05662096e+00 9.35162723e-01 1.05155623e+00 -9.22514871e-02 1.40863502e+00 -1.25158295e-01 5.10249078e-01 -3.00845597e-02 2.25848421e-01 -6.32381797e-01 -4.12074089e-01 -3.50960940e-01 5.81377208e-01 -1.58478785e+00 1.15331590e-01 1.77618712e-01 -4.83498156e-01 1.28535056e+00 1.80134267e-01 2.01503336e-01 1.42589688e-01 -1.96888641e-01 3.85830879e-01 -5.33569396e-01 -2.14747339e-01 -3.67468953e-01 9.45157945e-01 8.02262485e-01 4.63557392e-01 9.66249406e-02 -1.43955529e-01 1.19235002e-01 7.78687447e-02 -3.69911343e-02 1.85046554e-01 6.69057071e-01 -1.92498282e-01 -1.01447308e+00 -7.16431677e-01 5.92909694e-01 -5.18700004e-01 -2.09410861e-01 -5.56959689e-01 3.81823927e-01 3.26960683e-01 1.04854929e+00 9.12700668e-02 -2.51474231e-01 1.08472727e-01 -2.01996062e-02 3.42759818e-01 -5.11618793e-01 -1.02820241e+00 -1.57450289e-01 -2.55393386e-01 -5.21647513e-01 -5.58299661e-01 -8.27728331e-01 -6.82899058e-01 -1.99508876e-01 -1.90276384e-01 -6.10322393e-02 5.79948366e-01 1.13425827e+00 5.27408481e-01 2.18865778e-02 6.51836455e-01 -7.37196982e-01 -3.34010035e-01 -6.60858095e-01 -5.28559983e-01 6.55089259e-01 8.89621556e-01 -3.81167918e-01 -4.45714921e-01 3.23787540e-01]
[3.7410690784454346, -3.633040189743042]
5de0881c-9a97-44a5-a766-747440d8de19
msmix-an-interpolation-based-text-data
2305.19617
null
https://arxiv.org/abs/2305.19617v1
https://arxiv.org/pdf/2305.19617v1.pdf
MSMix:An Interpolation-Based Text Data Augmentation Method Manifold Swap Mixup
To solve the problem of poor performance of deep neural network models due to insufficient data, a simple yet effective interpolation-based data augmentation method is proposed: MSMix (Manifold Swap Mixup). This method feeds two different samples to the same deep neural network model, and then randomly select a specific layer and partially replace hidden features at that layer of one of the samples by the counterpart of the other. The mixed hidden features are fed to the model and go through the rest of the network. Two different selection strategies are also proposed to obtain richer hidden representation. Experiments are conducted on three Chinese intention recognition datasets, and the results show that the MSMix method achieves better results than other methods in both full-sample and small-sample configurations.
['Zheqian Chen', 'Haitao Wang', 'Mao Ye']
2023-05-31
null
null
null
null
['intent-detection']
['natural-language-processing']
[ 1.65366456e-01 1.87352002e-01 -4.16170895e-01 -2.58552104e-01 -1.08445197e-01 3.99675548e-01 4.05830473e-01 -6.22463644e-01 -4.03985918e-01 7.58348346e-01 4.12375271e-01 -1.66902065e-01 2.42202654e-01 -6.85247958e-01 -4.62406605e-01 -1.04931319e+00 1.73881546e-01 1.94565207e-01 9.61379111e-02 7.17868954e-02 6.06655031e-02 1.82388704e-02 -1.25304854e+00 2.89704084e-01 1.08276558e+00 9.73493338e-01 3.67647171e-01 5.93486503e-02 -2.37602621e-01 9.29694653e-01 -3.56648922e-01 -1.17958583e-01 4.08898771e-01 -6.10400796e-01 -5.70668995e-01 2.63015687e-01 1.29857704e-01 -5.87021053e-01 -6.72733486e-01 8.32928777e-01 2.82217920e-01 3.93392026e-01 2.22917363e-01 -1.25954580e+00 -9.60722446e-01 8.76192570e-01 -4.13468778e-01 -1.16322488e-01 -1.82171062e-01 -1.48990244e-01 5.23461163e-01 -1.11079991e+00 3.51463377e-01 1.12692380e+00 7.23888814e-01 6.20909929e-01 -1.13385582e+00 -7.69642532e-01 3.70716393e-01 2.84546345e-01 -1.24727774e+00 -4.01088625e-01 9.96172011e-01 -4.15680818e-02 5.00048816e-01 1.07396692e-01 7.56940007e-01 8.63605499e-01 -4.82324809e-02 1.28274024e+00 1.07522070e+00 -5.17901063e-01 -6.38533430e-03 1.95706263e-01 6.38511002e-01 1.00741267e+00 7.80285597e-02 -4.57193702e-02 -4.25157577e-01 1.06259622e-01 8.11548114e-01 4.15436506e-01 -4.84433889e-01 -4.31898981e-02 -1.28216076e+00 9.25663054e-01 9.84347343e-01 4.01960582e-01 -6.79151297e-01 -5.17235398e-02 3.61381955e-02 2.35424176e-01 3.76253247e-01 9.39031243e-02 -4.59122628e-01 2.52287328e-01 -8.79381120e-01 5.33906221e-02 4.36181396e-01 8.73065293e-01 1.11179364e+00 3.23545903e-01 -2.82278419e-01 9.26367640e-01 3.43463212e-01 -1.23256341e-01 1.02069521e+00 -6.71861351e-01 7.05580413e-01 9.51999128e-01 -2.37531543e-01 -1.14647770e+00 -3.75335038e-01 -5.60440660e-01 -1.30251729e+00 -1.18110299e-01 3.73323917e-01 -2.47360185e-01 -1.30990767e+00 1.55696797e+00 1.53833017e-01 4.89566475e-01 7.10926577e-02 8.98410857e-01 9.49346125e-01 9.42452431e-01 -1.24379508e-01 -1.96437817e-02 9.06230330e-01 -1.54150212e+00 -8.04342330e-01 -3.23954731e-01 6.52174652e-01 -4.08755630e-01 9.92509663e-01 1.30847782e-01 -7.56401896e-01 -9.09642994e-01 -1.12588251e+00 -1.30695015e-01 -3.66385490e-01 7.36012101e-01 7.16542900e-01 1.14959970e-01 -7.73842633e-01 7.44481385e-01 -8.71387482e-01 6.50111735e-02 5.11048436e-01 4.13493842e-01 -2.38313481e-01 -3.79469693e-01 -1.10061133e+00 6.43593967e-01 5.85733593e-01 6.66870594e-01 -5.12917340e-01 -3.87862861e-01 -9.30653393e-01 -3.57396826e-02 7.78612718e-02 -3.44336599e-01 7.64542580e-01 -1.29652596e+00 -1.61499095e+00 2.74559468e-01 -3.38958740e-01 -3.46296877e-01 4.58924621e-01 -2.89926887e-01 -2.62357712e-01 -4.12820458e-01 -4.41918038e-02 1.02905750e+00 9.44508791e-01 -1.16774464e+00 -5.04117846e-01 -2.06693888e-01 -3.70432615e-01 1.53306007e-01 -5.56755185e-01 -3.62032652e-01 -9.05326605e-01 -6.91046417e-01 5.91362476e-01 -1.09231138e+00 -3.60447764e-01 -1.04435414e-01 -7.76093066e-01 -5.14681637e-02 1.23253906e+00 -1.11795282e+00 1.18290389e+00 -2.28968668e+00 3.79246086e-01 -1.33478483e-02 1.18586481e-01 5.41326821e-01 -3.45686376e-01 -9.16788727e-02 -1.23126753e-01 -6.93006739e-02 -3.90632004e-01 -7.93799400e-01 -2.02538356e-01 4.19078946e-01 -2.46649105e-02 2.55199760e-01 1.17466666e-01 9.71655190e-01 -5.51304162e-01 -3.45897466e-01 3.45465839e-01 5.37342429e-01 -4.83627588e-01 2.13727623e-01 1.07807748e-01 3.67425680e-01 -3.01049769e-01 4.96032208e-01 9.38607216e-01 -2.60875911e-01 -8.41898285e-03 -2.41366342e-01 -9.99158099e-02 4.10732388e-01 -1.25644982e+00 1.34676158e+00 -2.05210000e-01 7.16225624e-01 -1.81839734e-01 -8.90067518e-01 1.11369288e+00 1.87403277e-01 1.11909257e-02 -4.48825717e-01 1.87393799e-01 8.90832841e-02 2.15214595e-01 -4.84279871e-01 6.26750708e-01 -2.29465198e-02 2.84381181e-01 3.16099733e-01 -1.90526515e-01 6.81553483e-01 -3.20293814e-01 -2.81013519e-01 4.99164253e-01 2.19192550e-01 -1.29480511e-01 -6.49630278e-02 5.62942386e-01 -1.38374284e-01 1.00163436e+00 5.51209211e-01 -3.52686405e-01 7.29616940e-01 3.42974246e-01 -6.15089715e-01 -9.58331227e-01 -4.49040562e-01 4.72811386e-02 8.87201607e-01 7.52488673e-02 9.14549828e-02 -7.59321451e-01 -7.95734882e-01 9.79339257e-02 7.48214602e-01 -9.95568395e-01 -4.28367168e-01 -6.75428987e-01 -9.67302561e-01 3.69239599e-01 7.85225451e-01 1.47404838e+00 -1.29350460e+00 -1.71411112e-01 2.42060006e-01 -3.46987128e-01 -8.78956854e-01 -4.29065496e-01 1.43816590e-01 -1.05088115e+00 -7.83517599e-01 -9.59137857e-01 -1.21209240e+00 1.02105916e+00 3.98023099e-01 3.70391488e-01 5.39358795e-01 3.44639659e-01 -6.14230752e-01 -3.54691386e-01 3.69563065e-02 -3.96578491e-01 3.07638079e-01 -5.77391237e-02 5.27764142e-01 4.68394965e-01 -7.33264834e-02 -3.21120739e-01 2.75904357e-01 -6.86686456e-01 6.99694216e-01 6.97036684e-01 1.29892993e+00 3.87003839e-01 6.07701130e-02 4.71387208e-01 -6.68591440e-01 4.77613002e-01 -4.41953838e-01 -3.98961365e-01 1.02472767e-01 -5.66769779e-01 1.63899437e-01 6.05193973e-01 -7.05286860e-01 -1.10044026e+00 1.58424661e-01 7.92980269e-02 -6.45247161e-01 2.56557316e-02 7.99326301e-01 -4.18161362e-01 1.72749475e-01 4.45037559e-02 4.24188048e-01 3.92561376e-01 -8.52510393e-01 1.00140780e-01 7.71459162e-01 5.84857762e-01 6.50566444e-02 5.33480644e-01 1.66339621e-01 -3.86774838e-01 -8.94210935e-01 -5.53611219e-01 4.93413657e-02 -9.01224852e-01 8.50854889e-02 1.00368810e+00 -6.40302896e-01 -2.30931222e-01 1.12280154e+00 -9.91273105e-01 -5.90789139e-01 -2.23300830e-02 7.29152977e-01 1.05094023e-01 3.70175540e-02 -9.99298811e-01 -5.74370027e-01 -2.34248012e-01 -1.39970779e+00 5.23462892e-01 4.81430680e-01 2.21283779e-01 -9.65642452e-01 -4.09223676e-01 3.91597062e-01 5.18113256e-01 1.84317864e-02 8.07221353e-01 -5.54534614e-01 -7.17331111e-01 -4.86599088e-01 -2.81884223e-01 7.63937712e-01 3.73965621e-01 -2.77224332e-02 -9.16585326e-01 -1.20891772e-01 3.88787407e-03 -4.66506742e-02 1.28481531e+00 4.85049307e-01 1.26252675e+00 -5.35630584e-01 -4.22734857e-01 7.78856277e-01 1.11077189e+00 1.21078543e-01 1.05017531e+00 5.27290702e-01 1.04901159e+00 4.42276418e-01 3.06346983e-01 3.29503007e-02 4.88161474e-01 4.08502221e-01 2.49782771e-01 -4.93675232e-01 -1.58116236e-01 -3.21098953e-01 3.70026767e-01 1.10369909e+00 -8.10329095e-02 2.56493747e-01 -5.27111769e-01 3.88840526e-01 -1.85363686e+00 -8.39253485e-01 -2.43613943e-01 2.13837194e+00 6.55848563e-01 1.93128213e-01 -2.14637108e-02 3.42948049e-01 8.63341272e-01 5.54756708e-02 -5.41669726e-01 1.32012349e-02 -3.00723761e-01 -2.64601469e-01 3.91747504e-01 5.15316844e-01 -1.18572426e+00 1.11245954e+00 6.36027145e+00 4.14831936e-01 -1.40707171e+00 2.98640039e-02 8.16937625e-01 2.57761717e-01 -1.45475134e-01 9.95055884e-02 -7.78518498e-01 6.71287894e-01 6.08739793e-01 4.24075007e-01 5.89563310e-01 6.51654243e-01 1.93453450e-02 -6.50898293e-02 -9.58845437e-01 6.73631012e-01 1.20806217e-01 -1.57866716e+00 -1.53407892e-02 2.32312381e-01 7.11889505e-01 1.41743183e-01 2.40911022e-02 5.03133059e-01 9.20464993e-02 -7.39491045e-01 5.48071444e-01 7.94990003e-01 3.48993599e-01 -7.04124629e-01 8.97134960e-01 5.32396138e-01 -1.03892136e+00 -2.32659355e-01 -4.83912587e-01 -2.82484025e-01 -1.03509203e-01 3.26277912e-01 -6.27224803e-01 3.61070365e-01 5.16470015e-01 8.59177947e-01 -6.81868076e-01 1.00729120e+00 -1.87551185e-01 8.09943974e-01 -2.50976980e-01 -7.43775815e-02 3.29960674e-01 -4.83407974e-01 2.79525608e-01 7.95874894e-01 1.83678493e-01 -1.60449952e-01 1.90002665e-01 1.08366084e+00 -1.75396651e-01 -2.37678573e-01 -5.48658133e-01 1.40752107e-01 5.04561305e-01 1.10531592e+00 -4.06996697e-01 -6.41167223e-01 -5.64403474e-01 1.17835844e+00 4.17199701e-01 5.82999170e-01 -7.94529855e-01 -3.98284465e-01 3.93083513e-01 -2.38713086e-01 3.71078223e-01 -2.00656965e-01 -4.03337061e-01 -1.17082691e+00 -2.23619640e-02 -7.45058835e-01 2.87776619e-01 -7.03406990e-01 -1.01368558e+00 6.17881119e-01 -1.03569120e-01 -1.19391489e+00 -8.93596373e-03 -4.63582039e-01 -8.08257222e-01 1.10040200e+00 -1.43643415e+00 -1.18597674e+00 -5.06721735e-01 4.99392420e-01 4.47414130e-01 -4.22022551e-01 7.67692208e-01 4.33488518e-01 -1.33170521e+00 7.75027871e-01 1.87696964e-01 4.54911858e-01 -8.93628132e-03 -7.97891140e-01 4.07722920e-01 9.34735894e-01 -2.06935838e-01 7.46929169e-01 1.52038902e-01 -6.96274877e-01 -1.21617258e+00 -1.26204967e+00 9.89181638e-01 1.36954010e-01 1.17446795e-01 -2.31953740e-01 -1.37925255e+00 9.88336325e-01 2.54216403e-01 -1.01616636e-01 5.11209786e-01 -9.37232301e-02 1.85900539e-01 -8.66146311e-02 -9.40593839e-01 7.65345812e-01 5.08870363e-01 -1.36900857e-01 -6.95240617e-01 -1.54220611e-01 8.58259082e-01 -2.57743001e-01 -6.07655048e-01 4.00468349e-01 4.24732476e-01 -6.94993317e-01 7.17399120e-01 -5.58792353e-01 3.05966437e-01 -2.71645874e-01 -2.59411871e-01 -1.45224476e+00 -5.66971421e-01 -4.14154172e-01 -1.58265665e-01 1.27293706e+00 5.64626038e-01 -8.28196764e-01 1.03589678e+00 8.47891986e-01 -3.45449090e-01 -7.92069912e-01 -8.40753973e-01 -5.57980299e-01 7.11579174e-02 -1.45841405e-01 8.94635916e-01 1.24833477e+00 -1.30862594e-01 4.68421727e-01 -7.03590155e-01 -5.91443591e-02 4.22396421e-01 4.07917611e-02 7.44217575e-01 -1.02483618e+00 -2.48361491e-02 -4.11417812e-01 -1.06933504e-01 -1.19792891e+00 7.07733482e-02 -1.01914024e+00 3.42098586e-02 -1.67675066e+00 -3.42795998e-03 -7.09023774e-01 -3.54939878e-01 8.14055026e-01 -5.67379177e-01 8.30115750e-02 4.72404838e-01 5.40876448e-01 9.12367553e-02 9.93419766e-01 1.43967366e+00 -6.67732581e-02 -5.71754694e-01 1.39670759e-01 -5.57163477e-01 7.71662354e-01 8.26449215e-01 -2.18976453e-01 -1.67929277e-01 -5.77087581e-01 -5.99212050e-01 -9.43031460e-02 3.53008747e-01 -1.20415795e+00 1.40528874e-02 5.48362993e-02 8.02431285e-01 -7.67681360e-01 3.71102989e-01 -8.67070317e-01 3.51941038e-04 7.62252152e-01 -5.04363894e-01 -2.24661604e-02 1.90736145e-01 2.89179444e-01 1.38686663e-02 -2.47762844e-01 7.49850988e-01 -1.45994434e-02 -7.43957400e-01 2.37078309e-01 -2.37252414e-01 -4.85944241e-01 7.49212146e-01 -3.81383538e-01 -2.30678052e-01 -2.49732196e-01 -7.30401635e-01 3.33638966e-01 2.11737722e-01 5.62393486e-01 8.62866282e-01 -1.82730043e+00 -6.43794239e-01 8.19145381e-01 -3.28341275e-01 1.97052926e-01 -2.46173609e-02 9.91415739e-01 -2.61747688e-01 1.97712332e-01 -2.12160408e-01 -5.73392630e-01 -9.16947424e-01 4.61487234e-01 6.03685439e-01 -1.11764772e-02 -8.94160330e-01 7.88896143e-01 -1.49790913e-01 -8.46229613e-01 4.90842223e-01 -5.47913134e-01 -2.42193744e-01 -4.37562019e-02 5.61203659e-01 5.15634596e-01 -1.42578155e-01 -8.43123376e-01 -2.24805325e-01 1.25387490e-01 -3.04073960e-01 -3.43827903e-02 1.40041971e+00 2.06506848e-02 -9.06283408e-02 5.04363894e-01 1.50918746e+00 -5.15571773e-01 -1.53214705e+00 -6.76213026e-01 -2.59022087e-01 -5.59305668e-01 3.18043053e-01 -5.25515378e-01 -1.60676014e+00 8.32253158e-01 5.44706702e-01 4.50674295e-02 1.13183415e+00 -3.00618768e-01 1.00322938e+00 3.42946082e-01 -1.40726184e-02 -1.22399580e+00 7.46599734e-02 6.61926687e-01 8.37735653e-01 -1.07952535e+00 -1.40755385e-01 -9.77675021e-02 -9.12929356e-01 9.15317178e-01 9.11912978e-01 -2.11946353e-01 7.00359881e-01 -1.55944720e-01 1.10882036e-01 1.69190943e-01 -5.50962806e-01 1.16071917e-01 2.00066015e-01 4.71580237e-01 3.05172652e-01 3.86696756e-02 -1.95378903e-02 5.00719905e-01 3.23928855e-02 3.17740589e-01 3.70803058e-01 9.24414337e-01 -3.51810724e-01 -9.02310073e-01 -4.23884958e-01 7.10891128e-01 9.54549909e-02 -1.17118068e-01 -1.59153074e-01 8.66740167e-01 1.38317332e-01 7.52944112e-01 3.41584027e-01 -8.57342660e-01 1.27256483e-01 3.13487381e-01 -3.24791372e-02 -2.52168089e-01 -3.93228918e-01 2.55007654e-01 -3.52657959e-02 -2.39259139e-01 -3.68708372e-01 -7.05376923e-01 -1.61243296e+00 -3.34822178e-01 -7.90865481e-01 -4.88406457e-02 4.41786647e-01 9.77549195e-01 3.86487395e-01 6.18856609e-01 7.14754820e-01 -1.07500565e+00 -5.41036189e-01 -1.37252545e+00 -4.06724811e-01 3.65297556e-01 5.90502620e-01 -6.39289081e-01 -2.83893317e-01 -2.68483125e-02]
[9.438691139221191, 2.156749725341797]
49f5c6d7-d8a1-4c95-9119-9053a0212f38
sok-privacy-preserving-deep-learning-with
2112.12855
null
https://arxiv.org/abs/2112.12855v2
https://arxiv.org/pdf/2112.12855v2.pdf
SoK: Privacy-preserving Deep Learning with Homomorphic Encryption
Outsourced computation for neural networks allows users access to state of the art models without needing to invest in specialized hardware and know-how. The problem is that the users lose control over potentially privacy sensitive data. With homomorphic encryption (HE) computation can be performed on encrypted data without revealing its content. In this systematization of knowledge, we take an in-depth look at approaches that combine neural networks with HE for privacy preservation. We categorize the changes to neural network models and architectures to make them computable over HE and how these changes impact performance. We find numerous challenges to HE based privacy-preserving deep learning such as computational overhead, usability, and limitations posed by the encryption schemes.
['Peizhao Hu', 'Daniel Takabi', 'Robert Podschwadt']
2021-12-23
null
null
null
null
['privacy-preserving-deep-learning', 'privacy-preserving-deep-learning']
['methodology', 'natural-language-processing']
[ 1.16285659e-01 2.97233671e-01 4.67470437e-02 -9.11795318e-01 -5.71251392e-01 -9.80393231e-01 1.95077449e-01 5.82033535e-03 -1.23423040e+00 5.35631418e-01 2.64699720e-02 -3.37698877e-01 9.14862100e-03 -1.01011491e+00 -9.58103895e-01 -6.86420858e-01 -1.90891296e-01 -1.48915485e-01 -9.45808366e-02 -1.70420930e-01 -3.01428229e-01 8.00308585e-01 -1.53978169e+00 6.09019458e-01 -6.44894838e-02 1.14390051e+00 -2.43751258e-01 5.27729392e-01 3.12759548e-01 8.13577175e-01 -5.58329582e-01 -1.18249333e+00 9.17681992e-01 3.22132468e-01 -1.02026057e+00 -7.34813631e-01 7.23394036e-01 -1.04709268e+00 -8.66122425e-01 1.33481085e+00 2.76786417e-01 -1.11545347e-01 -1.10742949e-01 -1.81569672e+00 -6.33342862e-01 5.90725303e-01 3.36740315e-01 -1.55862495e-01 -3.92914563e-01 6.40084594e-02 6.66164398e-01 -3.96224737e-01 9.45666373e-01 6.64902687e-01 9.88341391e-01 1.03979671e+00 -1.04051733e+00 -9.29723859e-01 -2.14591056e-01 3.22558612e-01 -1.41286004e+00 -7.33884096e-01 2.54388094e-01 -7.00092316e-02 1.19007778e+00 6.02439880e-01 8.71842980e-01 6.66973352e-01 3.55998218e-01 7.46649444e-01 1.06909490e+00 9.19320714e-03 3.30427945e-01 6.78319454e-01 5.05157351e-01 6.21808648e-01 5.97066641e-01 2.77145982e-01 -6.64917886e-01 -4.43496317e-01 4.00582433e-01 2.37401009e-01 -5.41463494e-01 -6.66966200e-01 -4.17651892e-01 6.39704823e-01 5.08541286e-01 5.23099154e-02 7.76903555e-02 5.91838837e-01 8.80047917e-01 9.29306924e-01 8.40088651e-02 3.91434193e-01 -9.89716649e-01 2.23899603e-01 -7.29331136e-01 6.64984167e-01 8.93902183e-01 1.26852548e+00 8.33614171e-01 -2.91472644e-01 1.28994361e-01 -8.81737247e-02 -1.66126311e-01 -7.64882192e-02 2.68329978e-01 -1.14083338e+00 3.59772205e-01 6.65041730e-02 -3.13884109e-01 -7.30535626e-01 9.42534506e-02 -1.13996170e-01 -9.36708927e-01 4.39553052e-01 9.90829766e-02 -4.49117035e-01 -6.03470743e-01 2.01220083e+00 -5.55385500e-02 -4.77754414e-01 6.42768919e-01 5.43716848e-01 5.98798037e-01 2.51063734e-01 -3.09164636e-02 3.07071835e-01 1.47924674e+00 -6.45850539e-01 -8.83229792e-01 1.11855939e-01 8.15443099e-01 -4.40326072e-02 6.05111003e-01 2.49517024e-01 -1.21701670e+00 3.08464885e-01 -1.29662156e+00 -8.97175014e-01 -1.01748598e+00 -4.63194996e-01 1.13753164e+00 1.26436019e+00 -1.60259950e+00 9.43153560e-01 -9.87659454e-01 4.09817994e-02 1.19743598e+00 1.00149632e+00 -1.07355595e+00 3.30924168e-02 -1.39712930e+00 7.45285451e-01 7.24001586e-01 -6.50207549e-02 -8.37524951e-01 -1.05476499e+00 -8.63911629e-01 4.67297614e-01 -3.99996750e-02 -6.94380641e-01 1.35245597e+00 -6.52473807e-01 -1.15249133e+00 1.09881139e+00 2.57848591e-01 -9.65579867e-01 6.44953847e-01 1.33235276e-01 -1.17127113e-01 4.97149231e-05 -7.60351598e-01 8.12856615e-01 4.85936254e-01 -8.70640993e-01 -7.86554635e-01 -9.07049417e-01 3.13266903e-01 1.09054513e-01 -8.21898997e-01 9.63323712e-02 -8.31144303e-02 -4.51139897e-01 -1.08461395e-01 -9.46187317e-01 -4.87712435e-02 8.76313031e-01 -4.33772393e-02 3.12929094e-01 1.18322325e+00 -6.88144743e-01 7.77245879e-01 -2.16940808e+00 -4.06196147e-01 3.41002285e-01 5.78305602e-01 3.16536427e-01 1.35933653e-01 2.03453332e-01 8.93206894e-02 3.42922568e-01 -2.04726845e-01 -5.31541884e-01 4.23624814e-01 5.02990842e-01 -5.26506066e-01 5.64929366e-01 -5.01171649e-01 1.13671505e+00 -3.79034370e-01 5.09663448e-02 -3.13699722e-01 9.01517510e-01 -7.83091366e-01 -1.45730125e-02 1.37172177e-01 -2.42083251e-01 -7.70780519e-02 3.31597149e-01 1.15175760e+00 2.20976651e-01 1.54344603e-01 4.74809436e-03 4.20474913e-03 3.13836098e-01 -6.02833092e-01 1.54122639e+00 -7.33475834e-02 9.31127250e-01 7.40119815e-01 -4.18961227e-01 2.98058957e-01 7.43280947e-01 7.45727345e-02 -2.87246972e-01 2.60746449e-01 -4.67190184e-02 -3.97290856e-01 -2.43080780e-02 5.59763134e-01 3.28997038e-02 -9.07129720e-02 6.54984474e-01 1.43447220e-01 -3.47321923e-03 -9.22476709e-01 -9.72644612e-03 1.13171792e+00 -5.32892108e-01 1.74017996e-02 -4.69874561e-01 3.01777553e-02 -1.07136175e-01 5.22562742e-01 6.33702099e-01 -3.67964953e-01 4.01136316e-02 3.20818961e-01 -8.85392010e-01 -9.83572006e-01 -6.40803695e-01 -1.56012297e-01 1.01640260e+00 -3.77752215e-01 -5.08473635e-01 -1.29158878e+00 -5.15449584e-01 1.22407980e-01 3.29338014e-01 -6.12848401e-01 -3.41725171e-01 -2.19573602e-01 -4.96285468e-01 1.17358768e+00 4.54453528e-01 1.00080729e+00 -8.06193292e-01 -1.28372097e+00 -4.74446088e-01 2.69751608e-01 -9.56992090e-01 -4.10652280e-01 5.88507295e-01 -1.08544552e+00 -6.46782517e-01 -3.42166811e-01 -7.36673057e-01 7.71371186e-01 1.50058344e-01 7.07989633e-01 4.28841636e-02 -2.24026427e-01 3.88077646e-01 2.75033712e-01 -9.12527621e-01 -1.21903747e-01 1.59631953e-01 -1.40914187e-01 -4.44912702e-01 5.91499031e-01 -6.42490447e-01 -5.80492139e-01 -2.43273795e-01 -1.17825854e+00 -2.87014127e-01 1.98595569e-01 5.61743319e-01 7.50170767e-01 5.94062865e-01 -3.79909664e-01 -1.35201061e+00 7.48132288e-01 -7.70981759e-02 -9.14768100e-01 4.13412094e-01 -9.77625012e-01 2.39457965e-01 6.93305254e-01 -1.85792476e-01 -6.04839683e-01 4.57112968e-01 -6.75308183e-02 -6.47899985e-01 -2.75993254e-02 8.23854208e-02 -5.00825703e-01 -8.28213394e-01 2.24734843e-01 2.59896725e-01 1.86217591e-01 -4.36452389e-01 3.19719642e-01 4.17055070e-01 7.95339823e-01 -2.97353864e-01 4.55417603e-01 6.27878308e-01 1.57390967e-01 -3.03757221e-01 -2.30484903e-01 1.11946717e-01 -5.58684051e-01 5.11983216e-01 8.27556908e-01 -1.04797494e+00 -1.23147547e+00 8.27553391e-01 -1.19571924e+00 -2.49394134e-01 -5.73288739e-01 8.38109478e-02 -4.15174812e-01 1.23390198e-01 -9.85629678e-01 -5.74164510e-01 -8.87731433e-01 -1.07458389e+00 2.84515619e-01 -7.95849860e-02 1.26731932e-01 -7.85322487e-01 -3.41182262e-01 3.51189673e-01 7.72764504e-01 1.32823780e-01 9.04301882e-01 -7.85949111e-01 -9.79609907e-01 -6.52041376e-01 -2.90292781e-02 5.67264378e-01 -4.26285207e-01 -7.10125446e-01 -1.62959516e+00 -7.13374794e-01 4.94612128e-01 -3.68655175e-01 7.32583880e-01 -9.62709114e-02 1.96406031e+00 -1.27633011e+00 1.23511538e-01 1.41070282e+00 1.60590017e+00 1.85416676e-02 7.37949610e-01 3.11656594e-01 6.68399155e-01 8.37161660e-01 -3.00075233e-01 3.87200385e-01 4.08204764e-01 2.22547323e-01 5.04721999e-01 6.28427565e-02 6.07967079e-01 -3.71616274e-01 1.23536900e-01 4.40894008e-01 5.17092012e-02 -3.98362800e-02 -5.57424545e-01 4.18749571e-01 -1.78446388e+00 -9.75483477e-01 2.29738057e-01 2.20186377e+00 9.81257021e-01 -2.85860091e-01 -2.54131705e-01 -1.02545083e-01 2.74542212e-01 -8.92759650e-04 -6.51662946e-01 -8.03289056e-01 -6.88039288e-02 4.11688447e-01 1.51279747e+00 5.17196774e-01 -9.76870477e-01 8.74163151e-01 7.10695934e+00 5.76459110e-01 -9.65040922e-01 4.66629416e-01 6.65385604e-01 -5.27290285e-01 -6.11747622e-01 -2.18931697e-02 -6.61572993e-01 5.72986268e-02 1.02570856e+00 -5.37385762e-01 1.05412793e+00 1.01531935e+00 -7.20498383e-01 5.40769696e-01 -1.42421508e+00 1.19338882e+00 -1.62038192e-01 -1.57409894e+00 -4.01564464e-02 4.60346371e-01 4.16549683e-01 1.90956250e-01 3.71107310e-01 1.54730836e-02 5.96283495e-01 -1.22412586e+00 7.03487158e-01 4.46917534e-01 9.16469276e-01 -1.22341061e+00 8.46556008e-01 2.75136560e-01 -7.66716480e-01 -1.12294599e-01 -7.63024271e-01 -8.33189413e-02 -5.54150522e-01 -1.42130226e-01 -5.83975732e-01 4.21825722e-02 1.21722567e+00 3.18286382e-02 -2.53518730e-01 3.64687115e-01 -7.25577995e-02 -8.57259780e-02 -4.77951586e-01 9.49049070e-02 1.31866634e-01 7.35311061e-02 -4.14819680e-02 1.04800677e+00 2.11557388e-01 5.51207066e-01 -5.41154802e-01 9.56112027e-01 -7.51025558e-01 -2.61208296e-01 -9.91701186e-01 5.80370463e-02 7.27163434e-01 9.95494425e-01 -1.62621111e-01 -1.71499029e-01 -2.52079099e-01 1.36454928e+00 4.83424306e-01 1.88914925e-01 -8.61991122e-02 -5.29404700e-01 1.26667881e+00 1.43773910e-02 2.81653851e-01 5.98286428e-02 -4.69434381e-01 -1.04764044e+00 1.12041354e-01 -8.19029868e-01 5.56419969e-01 -3.13139856e-01 -1.15315926e+00 5.38313985e-01 9.88854095e-03 -3.98380190e-01 1.30410671e-01 -5.95829546e-01 -1.88645735e-01 9.09103632e-01 -1.43820989e+00 -1.08619511e+00 1.40075281e-01 1.10010862e+00 -3.77190620e-01 -3.92362148e-01 1.38970721e+00 3.51160258e-01 -2.12132066e-01 1.48095524e+00 2.77920038e-01 3.56829435e-01 3.00377965e-01 -8.89754474e-01 7.11611807e-01 6.47216797e-01 -1.10101551e-01 1.16019654e+00 4.05433744e-01 -2.09613502e-01 -1.74907935e+00 -1.19377613e+00 1.31830955e+00 -5.81620455e-01 1.21512964e-01 -9.11305189e-01 -8.53184700e-01 1.27287221e+00 2.55467623e-01 4.84889418e-01 9.80843186e-01 -2.49937370e-01 -6.99765384e-01 -2.81002790e-01 -1.97765768e+00 4.35517311e-01 8.76204908e-01 -1.39462841e+00 -8.81664604e-02 2.47714341e-01 1.03217113e+00 -4.45829153e-01 -1.08134973e+00 3.08218990e-02 1.03393745e+00 -8.38589609e-01 8.71342778e-01 -8.18473697e-01 -1.13477193e-01 2.16867372e-01 -4.64969218e-01 -5.97546875e-01 -3.43378484e-02 -8.98219109e-01 -5.10041676e-02 6.72387660e-01 2.88138509e-01 -9.80338216e-01 1.39861989e+00 2.05337191e+00 2.90158272e-01 -6.53863490e-01 -1.07242799e+00 -6.53674603e-01 3.05947363e-01 -4.27084893e-01 1.38552618e+00 1.42836010e+00 5.80199547e-02 -5.45551777e-01 -2.86221862e-01 4.03686047e-01 9.36906099e-01 -4.27464366e-01 5.23052335e-01 -1.06732297e+00 -2.55323142e-01 -1.25368424e-02 -7.59209216e-01 -4.77491230e-01 2.26223692e-01 -1.17451835e+00 -2.42738277e-01 -7.81076133e-01 3.61843407e-01 -1.87451541e-01 -5.58717132e-01 1.22837698e+00 6.78599119e-01 1.51621819e-01 4.12714034e-01 2.67284900e-01 -2.53838032e-01 3.33538145e-01 7.55600750e-01 -1.15777738e-01 1.33673221e-01 -9.63161290e-02 -8.86401355e-01 5.81512451e-01 9.72436368e-01 -9.59788740e-01 -7.74783313e-01 -8.88675213e-01 3.69023860e-01 -4.64728512e-02 6.97071373e-01 -9.17453825e-01 8.93699408e-01 3.23269814e-01 2.28839085e-01 -2.74608850e-01 3.27414036e-01 -1.54411399e+00 5.63088775e-01 6.05132639e-01 -7.03036427e-01 4.66998637e-01 3.69046479e-01 3.09694052e-01 -8.40934291e-02 -2.72473395e-01 6.98325992e-01 -4.36845690e-01 -6.79730296e-01 9.24257517e-01 -2.66446322e-01 -3.62889111e-01 9.80299830e-01 -9.96005014e-02 -4.63406384e-01 -4.13578987e-01 -6.81854367e-01 1.27682313e-01 9.23546433e-01 -2.16058567e-02 7.19011247e-01 -8.95608485e-01 -4.17618155e-02 5.98186970e-01 1.60438794e-04 -1.86027773e-02 2.00365141e-01 -9.49236657e-03 -8.06441963e-01 6.33391440e-01 -6.24431014e-01 3.65566671e-01 -1.78814578e+00 5.64054072e-01 5.64795315e-01 -8.98007490e-03 -6.73335552e-01 1.15932953e+00 -7.28426725e-02 -8.26518595e-01 8.02397966e-01 -4.47743416e-01 3.66982162e-01 -2.88111091e-01 6.08137786e-01 2.75974572e-01 3.85988683e-01 -2.14243248e-01 -2.98672467e-01 -1.53757304e-01 -3.88400525e-01 -3.80425811e-01 1.47588587e+00 7.39834532e-02 -5.83595514e-01 -5.58943562e-02 1.79325879e+00 -4.79536831e-01 -1.25380695e+00 -8.53160322e-02 -2.74868578e-01 -5.17592609e-01 6.90260112e-01 -7.34914780e-01 -1.54013479e+00 9.61956024e-01 1.03602493e+00 -3.90686661e-01 1.23136902e+00 -4.59421694e-01 1.17555439e+00 1.16122007e+00 7.03631520e-01 -1.03709161e+00 -1.10696065e+00 3.80062163e-01 4.08684701e-01 -7.10583448e-01 9.20926332e-02 -2.60439873e-01 -4.89585280e-01 9.48339343e-01 3.53583306e-01 1.22035116e-01 1.20047569e+00 7.84035683e-01 6.94058165e-02 -3.48058492e-01 -9.77960706e-01 5.67945361e-01 -3.40350717e-01 6.80815995e-01 -2.03656465e-01 1.22072205e-01 8.17084163e-02 8.27497900e-01 -7.31339395e-01 2.46313512e-01 2.46925354e-01 1.37904477e+00 5.88682666e-02 -1.30692112e+00 5.99120781e-02 2.80889511e-01 -9.18386459e-01 -2.21542969e-01 -5.67566812e-01 6.58774972e-01 3.24804395e-01 2.49026492e-01 1.56889468e-01 -6.33598030e-01 2.47266814e-01 1.83388740e-01 3.63629937e-01 -2.36769602e-01 -1.17719877e+00 -8.29774976e-01 -1.23045601e-01 -8.24526906e-01 1.16329938e-01 -5.76816201e-01 -1.29755545e+00 -1.08907592e+00 -3.56660411e-02 -2.05580339e-01 9.74315345e-01 4.20220405e-01 7.34413385e-01 -6.81018978e-02 2.50526309e-01 -3.49690706e-01 -7.20067799e-01 1.50014535e-01 -8.25961709e-01 2.47120038e-01 7.70544052e-01 4.92175817e-01 -2.28031054e-01 -6.78599179e-02]
[5.8841094970703125, 6.859067916870117]
725ef0a7-c805-451a-b8f1-5afe1119d595
provably-efficient-offline-reinforcement-1
2306.08364
null
https://arxiv.org/abs/2306.08364v1
https://arxiv.org/pdf/2306.08364v1.pdf
Provably Efficient Offline Reinforcement Learning with Perturbed Data Sources
Existing theoretical studies on offline reinforcement learning (RL) mostly consider a dataset sampled directly from the target task. In practice, however, data often come from several heterogeneous but related sources. Motivated by this gap, this work aims at rigorously understanding offline RL with multiple datasets that are collected from randomly perturbed versions of the target task instead of from itself. An information-theoretic lower bound is derived, which reveals a necessary requirement on the number of involved sources in addition to that on the number of data samples. Then, a novel HetPEVI algorithm is proposed, which simultaneously considers the sample uncertainties from a finite number of data samples per data source and the source uncertainties due to a finite number of available data sources. Theoretical analyses demonstrate that HetPEVI can solve the target task as long as the data sources collectively provide a good data coverage. Moreover, HetPEVI is demonstrated to be optimal up to a polynomial factor of the horizon length. Finally, the study is extended to offline Markov games and offline robust RL, which demonstrates the generality of the proposed designs and theoretical analyses.
['Jing Yang', 'Cong Shen', 'Wei Xiong', 'Chengshuai Shi']
2023-06-14
null
null
null
null
['offline-rl']
['playing-games']
[ 9.66121182e-02 3.84790719e-01 -3.75080943e-01 2.43407011e-01 -1.30736780e+00 -7.58547783e-01 8.72574151e-02 3.11422557e-01 -3.53582442e-01 1.10653591e+00 -7.82550275e-02 -2.62107756e-02 -6.86696112e-01 -6.46892786e-01 -1.09374642e+00 -9.02709961e-01 -2.16698214e-01 4.87715811e-01 -1.73926219e-01 -6.31925166e-02 -1.26755998e-01 1.05477244e-01 -1.39340842e+00 -5.72600365e-01 9.50730383e-01 1.46420825e+00 5.16010284e-01 4.43594098e-01 3.65038306e-01 8.29865634e-01 -8.66145790e-01 -7.96809345e-02 7.25563526e-01 -2.65879542e-01 -2.20981166e-01 3.85516524e-01 -5.47527015e-01 -6.20261848e-01 -3.14186096e-01 1.18093133e+00 6.02889299e-01 4.46523577e-01 4.01440591e-01 -1.59593666e+00 -1.04741216e-01 7.38908589e-01 -6.07655883e-01 2.39625946e-03 -5.64415641e-02 1.83006138e-01 7.17418730e-01 -4.53532815e-01 4.28370863e-01 9.67854738e-01 2.88317412e-01 3.75079691e-01 -8.42350483e-01 -5.88738441e-01 3.92552108e-01 -1.17680645e-02 -7.95460224e-01 -2.69491047e-01 7.14478731e-01 -4.15682912e-01 3.23226064e-01 -8.05225745e-02 5.92672765e-01 9.65735674e-01 5.81731871e-02 9.45248842e-01 1.29986596e+00 -3.09680760e-01 7.64523923e-01 1.06150940e-01 2.38821320e-02 3.75817835e-01 5.28811872e-01 5.39503574e-01 -5.66407859e-01 -1.03952676e-01 6.27035379e-01 -1.28350556e-01 -1.90947965e-01 -5.32687306e-01 -9.02915299e-01 1.00316954e+00 1.61119774e-02 -3.27392906e-01 -6.43528938e-01 1.35523707e-01 4.43053454e-01 5.46724081e-01 3.61569345e-01 2.50874102e-01 -2.66641349e-01 -8.56116638e-02 -5.63161075e-01 3.55421007e-01 7.84782052e-01 1.65380514e+00 4.57742214e-01 3.19717467e-01 -3.46768379e-01 3.14817846e-01 9.66108888e-02 9.98988211e-01 -8.42012763e-02 -1.19205821e+00 1.04373920e+00 -4.50181440e-02 9.38631415e-01 -8.22082877e-01 -3.53066057e-01 -5.56890905e-01 -6.48940980e-01 4.12925370e-02 7.54588902e-01 -7.60104001e-01 -3.99555624e-01 2.02375770e+00 4.60175693e-01 -2.40134075e-01 4.42822814e-01 1.01527691e+00 -6.85186163e-02 5.54647863e-01 -5.03965855e-01 -7.36128032e-01 9.45227087e-01 -5.33339858e-01 -1.05134976e+00 -2.46735901e-01 1.78710878e-01 -1.86393008e-01 7.31627822e-01 6.72199190e-01 -1.26108611e+00 -2.53868043e-01 -1.05657637e+00 3.20116073e-01 3.25853080e-02 2.27564409e-01 2.83225000e-01 5.96149981e-01 -4.55643952e-01 3.18363726e-01 -5.97449243e-01 1.08559728e-01 2.95320988e-01 1.18639715e-01 3.15406263e-01 -2.80243695e-01 -1.25613141e+00 5.34475565e-01 5.43703318e-01 3.78079176e-01 -1.59816861e+00 -7.50814140e-01 -5.56164742e-01 -4.61505018e-02 1.44601393e+00 -3.80413115e-01 1.51705337e+00 -7.30758905e-01 -1.45722544e+00 -6.76779971e-02 1.13654874e-01 -6.86327934e-01 1.00303435e+00 -1.03117578e-01 3.27031203e-02 3.87440711e-01 4.68410850e-02 -1.34091213e-01 1.05012846e+00 -1.23816228e+00 -9.36708868e-01 -5.11824012e-01 4.24343795e-01 4.23501045e-01 8.90182517e-03 -3.57351899e-01 -7.20533058e-02 -4.92409736e-01 -4.64869678e-01 -8.93220425e-01 -4.96805489e-01 -3.63017440e-01 -3.62673730e-01 -6.21378385e-02 4.22279000e-01 -6.23918712e-01 8.33278179e-01 -1.94220722e+00 3.12178463e-01 2.32794911e-01 1.27016231e-01 -3.11280936e-01 8.67293496e-03 7.27695882e-01 4.59328771e-01 -6.33246377e-02 -7.34783038e-02 -2.54957139e-01 3.22430700e-01 3.57171386e-01 -7.79497921e-01 4.95467931e-01 -2.31490374e-01 6.44160032e-01 -1.08125186e+00 -1.27356658e-02 9.11311060e-02 -3.80108833e-01 4.94302064e-02 2.07927912e-01 -5.97247481e-01 4.16972220e-01 -1.00541162e+00 3.70875955e-01 6.19086266e-01 6.63746614e-03 1.72242358e-01 2.33009636e-01 6.12043142e-02 -2.94594467e-01 -1.44611990e+00 1.53060675e+00 -5.99925518e-01 2.17240363e-01 6.51277363e-01 -1.25872743e+00 6.60379350e-01 2.46111572e-01 7.47661829e-01 -6.01934135e-01 3.94836634e-01 2.71685600e-01 -2.91066259e-01 -4.01044905e-01 5.28347731e-01 -1.56589016e-01 -4.23331082e-01 5.61377287e-01 -8.59793574e-02 -5.26704974e-02 3.76771957e-01 1.37709573e-01 1.04171586e+00 -1.46816567e-01 3.74290675e-01 -1.96859151e-01 2.77494621e-02 1.56437621e-01 8.72877359e-01 1.07202172e+00 -3.30885977e-01 -2.76575983e-02 7.97548950e-01 2.91338354e-01 -1.01379156e+00 -9.13304389e-01 2.48357162e-01 6.37675047e-01 4.89507735e-01 1.16601162e-01 -7.15615511e-01 -6.14011228e-01 2.40117610e-01 7.34083116e-01 -6.84608579e-01 -8.62324610e-02 1.39431193e-01 -5.31694651e-01 1.08400971e-01 3.46174717e-01 4.29811060e-01 -6.00491107e-01 -9.87204731e-01 4.36162800e-01 -2.63290733e-01 -1.17063451e+00 -4.46396351e-01 3.47922385e-01 -6.78441048e-01 -1.33728838e+00 -8.52103233e-01 -8.58818814e-02 4.68879193e-01 5.10582507e-01 6.21605277e-01 -7.48750210e-01 5.52473590e-02 1.02512729e+00 -3.87207031e-01 -1.16211319e+00 -2.73367733e-01 -1.98639810e-01 1.94588602e-01 1.60755455e-01 -1.45696625e-01 -8.76257718e-02 -2.52466112e-01 2.81660050e-01 -9.42931712e-01 -2.63705701e-01 4.26600307e-01 7.95935392e-01 8.57476652e-01 6.31887257e-01 1.17390883e+00 -4.78722543e-01 7.30192304e-01 -7.98330903e-01 -1.33825290e+00 4.89312708e-01 -3.86974275e-01 6.18660487e-02 8.40505183e-01 -4.91071939e-01 -1.14389503e+00 -1.05275072e-01 7.21747875e-01 -7.59483695e-01 2.37206832e-01 6.83880270e-01 -2.92200238e-01 2.49510333e-01 3.13420504e-01 2.47008279e-01 3.62401456e-01 -9.25947204e-02 2.34948501e-01 4.94066477e-01 1.92070484e-01 -8.85444522e-01 7.34419465e-01 3.86842310e-01 3.20998162e-01 -7.73043036e-01 -1.04498029e+00 -2.58694381e-01 -1.12264812e-01 -5.72990835e-01 4.12206084e-01 -1.06780422e+00 -1.04371715e+00 5.27639031e-01 -7.39862621e-01 -5.26106656e-01 -6.94624662e-01 6.02557302e-01 -1.15546775e+00 1.55654550e-01 -1.82649001e-01 -1.58888173e+00 1.67859212e-01 -1.01280487e+00 6.05003953e-01 1.43265471e-01 7.27449059e-01 -7.98222959e-01 -1.33772358e-01 3.38131100e-01 9.77026671e-02 5.69243610e-01 4.97935742e-01 -3.90274733e-01 -8.95872593e-01 -3.80345471e-02 1.50901228e-01 2.35247657e-01 9.75483134e-02 -5.11101842e-01 -5.40422082e-01 -6.13137126e-01 4.87738132e-01 -7.75270283e-01 5.04971027e-01 6.01260185e-01 1.08039725e+00 -6.20780945e-01 -1.50509581e-01 3.37368585e-02 1.64379525e+00 5.47659278e-01 1.09419353e-01 1.93637148e-01 1.50417432e-01 9.21189427e-01 1.32326758e+00 1.24579394e+00 2.47934610e-01 3.22098166e-01 7.63788462e-01 4.10193861e-01 7.42244661e-01 -3.40953112e-01 3.92786533e-01 3.41567218e-01 2.90714681e-01 -5.24041951e-01 -3.88799578e-01 6.18017673e-01 -2.14532876e+00 -8.36678743e-01 1.65366575e-01 2.81911087e+00 6.41346276e-01 -1.92373455e-01 4.52020526e-01 1.70846313e-01 7.78323233e-01 -8.70641693e-02 -1.40165067e+00 -7.69258738e-02 -1.61416382e-01 -2.66465276e-01 1.09287429e+00 1.49648115e-01 -7.08421111e-01 2.42433712e-01 5.88922691e+00 1.15680015e+00 -6.01764560e-01 6.44108430e-02 6.17843211e-01 -4.66816336e-01 -1.96167141e-01 -2.11692005e-01 -6.95541382e-01 6.64384246e-01 1.03109026e+00 -9.37389493e-01 9.04434562e-01 8.05371106e-01 5.00977695e-01 -5.87300301e-01 -1.06586277e+00 9.00465131e-01 -2.64088005e-01 -8.78372788e-01 -5.59037745e-01 3.91529560e-01 8.35208297e-01 -1.69249162e-01 2.09993884e-01 1.75020844e-01 6.96295500e-01 -6.14313066e-01 1.06749463e+00 6.04460835e-01 6.81818306e-01 -1.36597276e+00 5.64608514e-01 8.37534845e-01 -1.00894403e+00 -8.83311808e-01 -5.49013495e-01 -2.05293112e-02 2.15417922e-01 7.67533660e-01 -5.26895285e-01 1.25508583e+00 3.85597229e-01 4.98871267e-01 3.10430750e-02 9.65364695e-01 -1.40477106e-01 4.99005795e-01 -4.52911884e-01 -1.21454932e-01 1.69913545e-01 -3.14328998e-01 6.12353325e-01 3.45495850e-01 5.72106183e-01 1.90293372e-01 5.89312077e-01 7.36588180e-01 1.13481201e-01 -3.00011069e-01 -7.72940814e-01 -2.62557954e-01 7.89912939e-01 1.00371385e+00 -3.53018284e-01 -1.37067621e-03 -2.70098537e-01 5.47735751e-01 1.74887240e-01 6.36435986e-01 -9.56965804e-01 -4.40255135e-01 4.15846109e-01 -3.40472341e-01 2.46585310e-01 -2.85577357e-01 -9.45860967e-02 -8.26477170e-01 3.40073407e-01 -7.88635969e-01 4.21155065e-01 -5.26500165e-01 -1.38572264e+00 -4.74885553e-02 1.67043597e-01 -1.41014600e+00 -3.51428211e-01 -2.30412439e-01 2.79076826e-02 8.32578123e-01 -1.40430748e+00 -5.47317445e-01 1.74326368e-03 6.68692470e-01 4.30499166e-01 -1.78848729e-01 2.62684494e-01 -1.33152023e-01 -7.46767581e-01 3.08638394e-01 8.32818747e-01 -2.76044339e-01 2.73215383e-01 -1.24843729e+00 -3.59600455e-01 8.66938710e-01 -5.21744728e-01 4.21566963e-02 7.49193370e-01 -6.29653215e-01 -1.82421291e+00 -1.28952146e+00 -1.00304015e-01 1.49347782e-02 8.76960397e-01 -4.03703839e-01 -3.31292272e-01 4.54440385e-01 -1.06183272e-02 -1.62956297e-01 2.62575358e-01 -4.45353627e-01 1.56299129e-01 -2.92541534e-01 -1.36793423e+00 3.86322737e-01 9.12172616e-01 -2.20280305e-01 -3.00812513e-01 3.14827263e-01 9.00547326e-01 -6.25326276e-01 -8.86700928e-01 1.54077768e-01 1.13329805e-01 -5.71411550e-01 6.29918396e-01 -4.53098536e-01 2.15109885e-01 -5.75001650e-02 -2.99357027e-01 -1.60746276e+00 2.12444931e-01 -9.74957347e-01 -4.95427489e-01 1.21742177e+00 1.01427525e-01 -7.17607498e-01 5.39347053e-01 6.05837643e-01 -1.22459400e-02 -4.94702309e-01 -1.25759351e+00 -1.45554757e+00 1.50580212e-01 -4.81122524e-01 3.52469563e-01 3.61637861e-01 1.51549634e-02 -8.66535306e-02 -7.76263893e-01 3.75983238e-01 1.27654111e+00 1.81089282e-01 5.95123410e-01 -9.46434677e-01 -5.25457859e-01 1.63058266e-01 4.46233094e-01 -1.10732365e+00 2.03670323e-01 -3.81269723e-01 5.64889371e-01 -1.39346254e+00 5.54520637e-03 -7.60677457e-01 -2.10512161e-01 3.78756202e-03 -3.19116898e-02 -6.94241822e-01 5.12743950e-01 7.81890750e-02 -5.74415803e-01 1.00127494e+00 1.47758210e+00 -1.47201180e-01 -2.35887513e-01 4.83103395e-01 -7.01671839e-01 3.41138691e-01 8.25740039e-01 -3.86218786e-01 -1.20301151e+00 -3.23511690e-01 2.23766163e-01 1.00393617e+00 1.62144586e-01 -8.34957242e-01 8.09498206e-02 -6.44065499e-01 -5.95797338e-02 -7.35729694e-01 3.44013751e-01 -1.04442322e+00 4.58933488e-02 3.78584683e-01 -6.07103705e-01 -3.64839792e-01 1.24826975e-01 1.52560163e+00 1.83885053e-01 -4.83942062e-01 5.42774796e-01 -1.44101799e-01 -2.87409991e-01 4.64943528e-01 -6.14688218e-01 4.93057966e-01 1.51644266e+00 2.67413199e-01 -2.32958272e-01 -7.11669207e-01 -7.42250621e-01 9.17727172e-01 -1.06766529e-01 1.60978124e-01 3.95589232e-01 -1.04432523e+00 -3.48299533e-01 -2.42763638e-01 -1.16489552e-01 2.39387050e-01 5.42154908e-01 9.02156651e-01 5.14814019e-01 5.02562881e-01 -4.45427420e-03 -3.79049152e-01 -7.85849571e-01 1.10452116e+00 2.60757625e-01 -4.09619421e-01 -2.84892052e-01 2.50533342e-01 -3.97397988e-02 -1.22535169e-01 5.69600999e-01 -5.49560428e-01 1.00880153e-01 4.17326748e-01 4.36424911e-01 1.01664472e+00 -1.65479124e-01 8.13081786e-02 1.89475343e-01 2.81221360e-01 3.59816045e-01 -5.24233043e-01 1.03118265e+00 -7.84058928e-01 5.42078912e-01 7.54136562e-01 6.70814037e-01 -1.42303512e-01 -1.94160688e+00 -6.59862757e-01 -1.38021171e-01 -4.53483164e-01 -9.09363404e-02 -8.71738493e-01 -1.17733288e+00 6.64565742e-01 2.92166531e-01 3.87653857e-01 1.36737657e+00 -2.48053804e-01 4.58283693e-01 4.89770323e-01 1.22516882e+00 -1.47583234e+00 1.36318922e-01 3.74438107e-01 9.94522750e-01 -1.06826198e+00 -2.95912743e-01 -1.62680104e-01 -9.39606309e-01 8.84059429e-01 3.18309665e-01 -1.77771628e-01 4.74910796e-01 3.09688240e-01 -5.54204524e-01 2.68979728e-01 -8.16219449e-01 -4.48453069e-01 -2.55518675e-01 7.51681328e-01 -6.74406111e-01 1.72166824e-01 -3.46365660e-01 1.08994973e+00 8.53382573e-02 2.27218717e-01 1.06885326e+00 1.01476669e+00 -4.58831638e-01 -7.79112816e-01 -6.03616297e-01 4.47246909e-01 -4.15898442e-01 3.97220492e-01 -4.63475771e-02 7.62166202e-01 -1.92863613e-01 1.43311179e+00 -1.26423180e-01 2.04980746e-02 3.18383127e-01 -4.08827841e-01 5.64757288e-01 -3.70346904e-01 -6.71151727e-02 2.76703387e-01 -5.01525030e-02 -5.96518040e-01 -3.10159892e-01 -6.82310283e-01 -1.14026415e+00 -1.02388576e-01 -2.03502163e-01 3.94271195e-01 5.53847253e-01 1.02014101e+00 2.73216814e-01 6.36939943e-01 1.19090748e+00 -7.17815518e-01 -1.47516036e+00 -8.47021103e-01 -1.17812395e+00 -2.86200792e-01 5.81657290e-01 -9.28573489e-01 -5.22667944e-01 -3.52654725e-01]
[4.388525009155273, 2.753044366836548]