URL
stringlengths
15
1.68k
text_list
sequencelengths
1
199
image_list
sequencelengths
1
199
metadata
stringlengths
1.19k
3.08k
https://www.nag.com/numeric/nl/nagdoc_27.3/clhtml/d01/d01rkc.html
[ "# NAG CL Interfaced01rkc (dim1_​fin_​osc_​fn)\n\nSettings help\n\nCL Name Style:\n\n## 1Purpose\n\nd01rkc is an adaptive integrator, especially suited to oscillating, nonsingular integrands, which calculates an approximation to the integral of a function $f\\left(x\\right)$ over a finite interval $\\left[a,b\\right]$:\n $I= ∫ab f(x) dx .$\n\n## 2Specification\n\n #include\nvoid  d01rkc (\n void (*f)(const double x[], Integer nx, double fv[], Integer *iflag, Nag_Comm *comm),\ndouble a, double b, Integer key, double epsabs, double epsrel, Integer maxsub, double *result, double *abserr, double rinfo[], Integer iinfo[], Nag_Comm *comm, NagError *fail)\nThe function may be called by the names: d01rkc or nag_quad_dim1_fin_osc_fn.\n\n## 3Description\n\nd01rkc is based on the QUADPACK routine QAG (see Piessens et al. (1983)). It is an adaptive function, offering a choice of six Gauss–Kronrod rules. A ‘global’ acceptance criterion (as defined by Malcolm and Simpson (1976)) is used. The local error estimation is described in Piessens et al. (1983).\nBecause d01rkc is based on integration rules of high order, it is especially suitable for nonsingular oscillating integrands.\nd01rkc requires you to supply a function to evaluate the integrand at an array of points.\nde Doncker E (1978) An adaptive extrapolation algorithm for automatic integration ACM SIGNUM Newsl. 13(2) 12–18\nMalcolm M A and Simpson R B (1976) Local versus global strategies for adaptive quadrature ACM Trans. Math. Software 1 129–146\nPiessens R, de Doncker–Kapenga E, Überhuber C and Kahaner D (1983) QUADPACK, A Subroutine Package for Automatic Integration Springer–Verlag\nWynn P (1956) On a device for computing the ${e}_{m}\\left({S}_{n}\\right)$ transformation Math. Tables Aids Comput. 10 91–96\n\n## 5Arguments\n\n1: $\\mathbf{f}$function, supplied by the user External Function\nf must return the values of the integrand $f$ at a set of points.\nThe specification of f is:\n void f (const double x[], Integer nx, double fv[], Integer *iflag, Nag_Comm *comm)\n1: $\\mathbf{x}\\left[\\mathit{dim}\\right]$const double Input\nOn entry: the abscissae, ${x}_{i}$, for $\\mathit{i}=1,2,\\dots ,{\\mathbf{nx}}$, at which function values are required.\n2: $\\mathbf{nx}$Integer Input\nOn entry: the number of abscissae at which a function value is required. nx will be of size equal to the number of Kronrod points in the quadrature rule used, as determined by the choice of value for key.\n3: $\\mathbf{fv}\\left[\\mathit{dim}\\right]$double Output\nOn exit: fv must contain the values of the integrand $f$. ${\\mathbf{fv}}\\left[i-1\\right]=f\\left({x}_{i}\\right)$ for all $i=1,2,\\dots ,{\\mathbf{nx}}$.\n4: $\\mathbf{iflag}$Integer * Input/Output\nOn entry: ${\\mathbf{iflag}}=0$.\nOn exit: set ${\\mathbf{iflag}}<0$ to force an immediate exit with ${\\mathbf{fail}}\\mathbf{.}\\mathbf{code}=$ NE_USER_STOP.\n5: $\\mathbf{comm}$Nag_Comm *\nPointer to structure of type Nag_Comm; the following members are relevant to f.\nuserdouble *\niuserInteger *\npPointer\nThe type Pointer will be void *. Before calling d01rkc you may allocate memory and initialize these pointers with various quantities for use by f when called from d01rkc (see Section 3.1.1 in the Introduction to the NAG Library CL Interface).\nNote: f should not return floating-point NaN (Not a Number) or infinity values, since these are not handled by d01rkc. If your code inadvertently does return any NaNs or infinities, d01rkc is likely to produce unexpected results.\n2: $\\mathbf{a}$double Input\nOn entry: $a$, the lower limit of integration.\n3: $\\mathbf{b}$double Input\nOn entry: $b$, the upper limit of integration. It is not necessary that $a.\nNote: if ${\\mathbf{a}}={\\mathbf{b}}$, the function will immediately return with ${\\mathbf{result}}=0.0$, ${\\mathbf{abserr}}=0.0$, ${\\mathbf{rinfo}}=0.0$ and ${\\mathbf{iinfo}}=0$.\n4: $\\mathbf{key}$Integer Input\nOn entry: indicates which integration rule is to be used. The number of function evaluations required for an integral estimate over any segment will be the number of Kronrod points, ${n}_{\\mathrm{kron}}$.\n${\\mathbf{key}}=1$\nFor the Gauss $7$-point and Kronrod $15$-point rule.\n${\\mathbf{key}}=2$\nFor the Gauss $10$-point and Kronrod $21$-point rule.\n${\\mathbf{key}}=3$\nFor the Gauss $15$-point and Kronrod $31$-point rule.\n${\\mathbf{key}}=4$\nFor the Gauss $20$-point and Kronrod $41$-point rule.\n${\\mathbf{key}}=5$\nFor the Gauss $25$-point and Kronrod $51$-point rule.\n${\\mathbf{key}}=6$\nFor the Gauss $30$-point and Kronrod $61$-point rule.\nSuggested value: ${\\mathbf{key}}=6$.\nConstraint: ${\\mathbf{key}}=1$, $2$, $3$, $4$, $5$ or $6$.\n5: $\\mathbf{epsabs}$double Input\nOn entry: ${\\epsilon }_{a}$, the absolute accuracy required. If epsabs is negative, ${\\epsilon }_{a}=|{\\mathbf{epsabs}}|$. See Section 7.\n6: $\\mathbf{epsrel}$double Input\nOn entry: ${\\epsilon }_{r}$, the relative accuracy required. If epsrel is negative, ${\\epsilon }_{r}=|{\\mathbf{epsrel}}|$. See Section 7.\n7: $\\mathbf{maxsub}$Integer Input\nOn entry: ${\\mathrm{max}}_{\\mathit{sdiv}}$, the upper bound on the total number of subdivisions d01rkc may use to generate new segments. If ${\\mathrm{max}}_{\\mathit{sdiv}}=1$, only the initial segment will be evaluated.\nSuggested value: a value in the range $200$ to $500$ is adequate for most problems.\nConstraint: ${\\mathbf{maxsub}}\\ge 1$.\n8: $\\mathbf{result}$double * Output\nOn exit: the approximation to the integral $I$.\n9: $\\mathbf{abserr}$double * Output\nOn exit: an estimate of the modulus of the absolute error, which should be an upper bound for $|I-{\\mathbf{result}}|$.\n10: $\\mathbf{rinfo}\\left[4×{\\mathbf{maxsub}}\\right]$double Output\nOn exit: details of the computation. See Section 9 for more information.\n11: $\\mathbf{iinfo}\\left[\\mathrm{max}\\phantom{\\rule{0.125em}{0ex}}\\left({\\mathbf{maxsub}},4\\right)\\right]$Integer Output\nOn exit: details of the computation. See Section 9 for more information.\n12: $\\mathbf{comm}$Nag_Comm *\nThe NAG communication argument (see Section 3.1.1 in the Introduction to the NAG Library CL Interface).\n13: $\\mathbf{fail}$NagError * Input/Output\nThe NAG error argument (see Section 7 in the Introduction to the NAG Library CL Interface).\n\n## 6Error Indicators and Warnings\n\nNE_ALLOC_FAIL\nDynamic memory allocation failed.\nSee Section 3.1.2 in the Introduction to the NAG Library CL Interface for further information.\nOn entry, argument $⟨\\mathit{\\text{value}}⟩$ had an illegal value.\nOn entry, ${\\mathbf{key}}=⟨\\mathit{\\text{value}}⟩$.\nConstraint: ${\\mathbf{key}}=1$, $2$, $3$, $4$, $5$ or $6$.\nNE_INT\nOn entry, ${\\mathbf{maxsub}}=⟨\\mathit{\\text{value}}⟩$.\nConstraint: ${\\mathbf{maxsub}}\\ge 1$.\nNE_INTERNAL_ERROR\nAn internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.\nSee Section 7.5 in the Introduction to the NAG Library CL Interface for further information.\nNE_NO_LICENCE\nYour licence key may have expired or may not have been installed correctly.\nSee Section 8 in the Introduction to the NAG Library CL Interface for further information.\nExtremely bad integrand behaviour occurs around the sub-interval $\\left(⟨\\mathit{\\text{value}}⟩,⟨\\mathit{\\text{value}}⟩\\right)$. The same advice applies as in the case of ${\\mathbf{fail}}\\mathbf{.}\\mathbf{code}=$ NE_QUAD_MAX_SUBDIV.\nThe maximum number of subdivisions allowed with the given workspace has been reached without the accuracy requirements being achieved. Look at the integrand in order to determine the integration difficulties. If necessary, another integrator, which is designed for handling the type of difficulty involved, must be used. Alternatively, consider relaxing the accuracy requirements specified by epsabs and epsrel, or increasing the amount of workspace.\nRound-off error prevents the requested tolerance from being achieved: ${\\mathbf{epsabs}}=⟨\\mathit{\\text{value}}⟩$ and ${\\mathbf{epsrel}}=⟨\\mathit{\\text{value}}⟩$.\nNE_USER_STOP\nExit from f with ${\\mathbf{iflag}}<0$.\n\n## 7Accuracy\n\nd01rkc cannot guarantee, but in practice usually achieves, the following accuracy:\n $|I-result|≤tol,$\nwhere\n $tol= max{|epsabs|,|epsrel|×|I|} ,$\nand epsabs and epsrel are user-specified absolute and relative error tolerances. Moreover, it returns the quantity abserr which, in normal circumstances, satisfies\n $|I-result|≤abserr≤tol.$\n\n## 8Parallelism and Performance\n\nd01rkc is not threaded in any implementation.\n\nThe time taken by d01rkc depends on the integrand and the accuracy required.\nIf ${\\mathbf{fail}}\\mathbf{.}\\mathbf{code}=$ NE_NOERROR, NE_QUAD_BAD_SUBDIV, NE_QUAD_MAX_SUBDIV or NE_QUAD_ROUNDOFF_TOL, or if ${\\mathbf{fail}}\\mathbf{.}\\mathbf{code}=$ NE_USER_STOP and at least one complete vector evaluation of f was completed, result and abserr will contain computed results. If these results are unacceptable, or if otherwise required, then you may wish to examine the contents of the array rinfo, which contains the end points of the sub-intervals used by d01rkc along with the integral contributions and error estimates over the sub-intervals.\nSpecifically, for $i=1,2,\\dots ,n$, let ${r}_{i}$ denote the approximation to the value of the integral over the sub-interval $\\left[{a}_{i},{b}_{i}\\right]$ in the partition of $\\left[a,b\\right]$ and ${e}_{i}$ be the corresponding absolute error estimate. Then, $\\underset{{a}_{i}}{\\overset{{b}_{i}}{\\int }}f\\left(x\\right)dx\\simeq {r}_{i}$ and ${\\mathbf{result}}=\\sum _{i=1}^{n}{r}_{i}$. The value of $n$ is returned in ${\\mathbf{iinfo}}\\left[0\\right]$, and the values ${a}_{i}$, ${b}_{i}$, ${e}_{i}$ and ${r}_{i}$ are stored consecutively in the array rinfo, that is:\n• ${a}_{i}={\\mathbf{rinfo}}\\left[i-1\\right]$,\n• ${b}_{i}={\\mathbf{rinfo}}\\left[n+i-1\\right]$,\n• ${e}_{i}={\\mathbf{rinfo}}\\left[2n+i-1\\right]$ and\n• ${r}_{i}={\\mathbf{rinfo}}\\left[3n+i-1\\right]$.\nThe total number of abscissae at which the function was evaluated is returned in ${\\mathbf{iinfo}}\\left[1\\right]$.\n\n## 10Example\n\nThis example computes\n\n### 10.1Program Text\n\nProgram Text (d01rkce.c)\n\nNone.\n\n### 10.3Program Results\n\nProgram Results (d01rkce.r)" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.81877744,"math_prob":0.9979314,"size":5623,"snap":"2022-40-2023-06","text_gpt3_token_len":1298,"char_repetition_ratio":0.1274248,"word_repetition_ratio":0.14270152,"special_character_ratio":0.22283478,"punctuation_ratio":0.16920152,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9995666,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2023-02-08T19:46:55Z\",\"WARC-Record-ID\":\"<urn:uuid:b79ae63c-c596-4dfb-84c0-771f19421e8c>\",\"Content-Length\":\"46049\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:839289ad-4c3a-4751-8432-d5c6bc47dd55>\",\"WARC-Concurrent-To\":\"<urn:uuid:005cc2a3-2710-4f3a-a1aa-224e79493fae>\",\"WARC-IP-Address\":\"78.129.168.4\",\"WARC-Target-URI\":\"https://www.nag.com/numeric/nl/nagdoc_27.3/clhtml/d01/d01rkc.html\",\"WARC-Payload-Digest\":\"sha1:RS3FGGJ5W7WYBSOLGJGYVVCSXHMDMS4H\",\"WARC-Block-Digest\":\"sha1:V5JXAUZIWUW5FTKV2VT3G7ZJT5COJQ37\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2023/CC-MAIN-2023-06/CC-MAIN-2023-06_segments_1674764500904.44_warc_CC-MAIN-20230208191211-20230208221211-00617.warc.gz\"}"}
https://docs.signac.io/en/latest/examples/notebooks/signac_301_Aggregation_Tutorial.html
[ "# 3.1 Aggregation Tutorial\n\nThis notebook contains a minimal example for running workflows on aggregates of jobs using signac-flow.\n\nHardik Ojha\n\n## Prerequisites\n\nThis notebooks requires the following packages:\n\n1. signac-flow >= 0.15\n\n2. numpy\n\n3. matplotlib\n\nExecute the command below to install the required packages:\n\npip install signac-flow>=0.15 matplotlib numpy\n\n\n## Definition\n\nAggregation allows a signac-flow operation to act on multiple jobs, rather than one job at a time.\n\nAn aggregate is defined as a subset of the jobs in a signac project. Aggregates are generated when the @flow.aggregator decorator is applied to an operation.\n\nPlease refer to the documentation for detailed instructions on how to use aggregation.\n\n## Objective\n\nThe goal of this project is to plot the temperature values present in a signac data space along with the average value of all the temperatures present.\n\n## Project Setup\n\nBefore we initialize a signac project inside the projects/tutorial-aggregation directory, we need to be sure that no such directory exists. Uncomment before executing the below cell to remove the directory if exists.\n\n:\n\n# !rm -rf projects/tutorial-aggregation\n\n:\n\nimport datetime\n\nimport matplotlib.pyplot as plt\nimport numpy as np\nimport signac\nfrom flow import FlowProject, aggregator\n\n# Setting default figure size\nplt.rcParams[\"figure.figsize\"] = (10, 4)\n\n# Initializing a signac project\nproject = signac.init_project(\n\"AggregationTutorialProject\", \"projects/tutorial-aggregation\"\n)\n\n\n## Initializing the data space\n\nFor the purpose of this notebook, we will be creating a random dataset using some mathematical calculations.\n\nAll the signac jobs will have two state point parameters and one document value.\n\n• job.statepoint[\"city\"]: City for which data is being collected.\n\n• job.statepoint[\"day\"]: Day of the year.\n\n• job.document[\"temperature\"]: Average temperature for that day.\n\n:\n\ndays = np.arange(365)\n\ndef generate_temperatures(days, seed=None):\nrng = np.random.default_rng(seed)\navg_temperature = 10 + rng.random() * 10\nannual_variation = -10 * np.cos(days / 365 * 2 * np.pi)\nrandom_variation = 5 * rng.random(len(days))\ntemperatures = avg_temperature + annual_variation + random_variation\nreturn temperatures\n\ntemperatures = generate_temperatures(days, seed=123)\n\nfor day, temperature in zip(days.tolist(), temperatures.tolist()):\n# Create a signac job having the state point parameters 'day' and 'temperature'\nstatepoint = dict(city=\"Anytown\", day=day)\njob = project.open_job(statepoint)\njob.document[\"temperature\"] = temperature\n\n\nLet’s look at the project schema to see the jobs that were created.\n\n:\n\nproject.detect_schema()\n\n:\n\nProjectSchema(<len=2>)\n{\n'city': 'str([Anytown], 1)',\n'day': 'int([0, 1, 2, ..., 363, 364], 365)',\n}\n\n## Creating a FlowProject with aggregate operations\n\nIn order to achieve our goal using signac-flow, we need to create a FlowProject and add operations to it. There will be following operations in our workflow:\n\n1. compute_average_temperature: This operation computes the average temperature of the year and stores it in the project document. For this operation, all the jobs present in the signac project will be aggregated together. This will be the first operation to get executed in our workflow.\n\n2. plot_deviation_from_average: This operation plots the temperature (as a scatter plot) and the average temperature of the month. For this operation, all the jobs, when sorted by the state point parameter day, present in the signac project will be aggregated together. This will be executed after the operation compute_average_temperature.\n\n:\n\nclass AggregationProject(FlowProject):\npass\n\n@aggregator()\n@AggregationProject.operation\n@AggregationProject.post(lambda *jobs: project.doc.get(\"average_temperature\", False))\ndef compute_average_temperature(*jobs):\n\"\"\"Compute the average temperature using the state point parameter,\n\"temperature\", of all jobs present in the signac project and\nstore the computed value to the project document.\n\"\"\"\naverage_temp = np.mean([job.document[\"temperature\"] for job in jobs])\nproject.document[\"average_temperature\"] = float(average_temp)\n\n@aggregator(sort_by=\"day\")\n@AggregationProject.operation\n@AggregationProject.pre.after(compute_average_temperature)\ndef plot_daily_temperature(*jobs):\n\"\"\"Graph of daily temperature for the year.\"\"\"\nprint(\"Generating plot of daily temperature.\")\naverage_temp = project.document[\"average_temperature\"]\ndays = [job.sp[\"day\"] for job in jobs]\nfig, ax = plt.subplots()\nax.plot(\ndays,\n[job.document[\"temperature\"] for job in jobs],\n\"rx\",\nlabel=\"Daily Temperature (°C)\",\n)\n# Plot the average as a line\nax.axhline(average_temp, c=\"green\", label=\"Average Annual Temperature (°C)\")\nax.legend()\nax.set_xlabel(\"Day\")\nax.set_ylabel(\"Temperature (°C)\")\nplt.show()\n\n@aggregator(sort_by=\"day\", select=lambda job: job.sp[\"day\"] % 7 == 0)\n@AggregationProject.operation\ndef plot_weekly_temperature(*jobs):\n\"\"\"Graph the temperature for only one day of each week.\"\"\"\nprint(\"Generating plot of weekly temperature.\")\ndays = [job.sp.day for job in jobs]\nfig, ax = plt.subplots()\nax.plot(\ndays,\n[job.document[\"temperature\"] for job in jobs],\n\"rx\",\nlabel=\"Daily Temperature (°C)\",\n)\nax.set_xlabel(\"Day\")\nax.set_ylabel(\"Temperature (°C)\")\nplt.show()\n\n\n## Executing the workflow\n\n### Initializing the FlowProject\n\nIn order to register the operations, conditions, and the aggregators associated with the project we created, we need to initialize a FlowProject. Since the signac project does not belong in the current directory, we specify its path to FlowProject.get_project.\n\n:\n\nflow_project = AggregationProject.get_project(project.root_directory())\n\n\n### Running the workflow\n\nThe FlowProject.run method allows the execution all eligible operations in the FlowProject.\n\n:\n\nflow_project.run()\n\nGenerating plot of daily temperature.", null, "Generating plot of weekly temperature.", null, "Operation 'plot_weekly_temperature' has no postconditions!\nOperation 'plot_daily_temperature' has no postconditions!\n\n\n## Summary\n\nWe have successfully plotted the temperature values present in a signac data space along with the average value of all the temperatures present using the aggregation feature of signac-flow." ]
[ null, "https://docs.signac.io/en/latest/_images/examples_notebooks_signac_301_Aggregation_Tutorial_16_1.png", null, "https://docs.signac.io/en/latest/_images/examples_notebooks_signac_301_Aggregation_Tutorial_16_3.png", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.74925166,"math_prob":0.90291756,"size":6186,"snap":"2022-27-2022-33","text_gpt3_token_len":1355,"char_repetition_ratio":0.19928825,"word_repetition_ratio":0.10613811,"special_character_ratio":0.22583252,"punctuation_ratio":0.1626564,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.98298,"pos_list":[0,1,2,3,4],"im_url_duplicate_count":[null,2,null,2,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2022-08-10T07:11:44Z\",\"WARC-Record-ID\":\"<urn:uuid:8c42fb98-85c7-475b-b636-04c9d417b48e>\",\"Content-Length\":\"69956\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:1076be12-6799-46e1-b33c-14a2957d1c5c>\",\"WARC-Concurrent-To\":\"<urn:uuid:7186167a-80ba-4290-8c66-1fda73330be1>\",\"WARC-IP-Address\":\"104.17.33.82\",\"WARC-Target-URI\":\"https://docs.signac.io/en/latest/examples/notebooks/signac_301_Aggregation_Tutorial.html\",\"WARC-Payload-Digest\":\"sha1:6JQJE2ZGQMKEFC3TNE3ZZFQA42VED5J6\",\"WARC-Block-Digest\":\"sha1:46DL2PNCVGZP5QQKEL6FHAE2S2XUWR57\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2022/CC-MAIN-2022-33/CC-MAIN-2022-33_segments_1659882571150.88_warc_CC-MAIN-20220810070501-20220810100501-00337.warc.gz\"}"}
https://chem.libretexts.org/Courses/Pasadena_City_College/CHEM_001A%3A_General_Chemistry_and_Chemical_Analysis/06%3A_Gases/6.05%3A_Applications_of_the_Ideal_Gas_Law-_Molar_Volume%2C_Density_and_Molar_Mass_of_a_Gas
[ "# 6.5: Applications of the Ideal Gas Law- Molar Volume, Density and Molar Mass of a Gas\n\n$$\\newcommand{\\vecs}{\\overset { \\rightharpoonup} {\\mathbf{#1}} }$$ $$\\newcommand{\\vecd}{\\overset{-\\!-\\!\\rightharpoonup}{\\vphantom{a}\\smash {#1}}}$$$$\\newcommand{\\id}{\\mathrm{id}}$$ $$\\newcommand{\\Span}{\\mathrm{span}}$$ $$\\newcommand{\\kernel}{\\mathrm{null}\\,}$$ $$\\newcommand{\\range}{\\mathrm{range}\\,}$$ $$\\newcommand{\\RealPart}{\\mathrm{Re}}$$ $$\\newcommand{\\ImaginaryPart}{\\mathrm{Im}}$$ $$\\newcommand{\\Argument}{\\mathrm{Arg}}$$ $$\\newcommand{\\norm}{\\| #1 \\|}$$ $$\\newcommand{\\inner}{\\langle #1, #2 \\rangle}$$ $$\\newcommand{\\Span}{\\mathrm{span}}$$ $$\\newcommand{\\id}{\\mathrm{id}}$$ $$\\newcommand{\\Span}{\\mathrm{span}}$$ $$\\newcommand{\\kernel}{\\mathrm{null}\\,}$$ $$\\newcommand{\\range}{\\mathrm{range}\\,}$$ $$\\newcommand{\\RealPart}{\\mathrm{Re}}$$ $$\\newcommand{\\ImaginaryPart}{\\mathrm{Im}}$$ $$\\newcommand{\\Argument}{\\mathrm{Arg}}$$ $$\\newcommand{\\norm}{\\| #1 \\|}$$ $$\\newcommand{\\inner}{\\langle #1, #2 \\rangle}$$ $$\\newcommand{\\Span}{\\mathrm{span}}$$$$\\newcommand{\\AA}{\\unicode[.8,0]{x212B}}$$\n\n##### Learning Objectives\n• To relate the amount of gas consumed or released in a chemical reaction to the stoichiometry of the reaction.\n• To understand how the ideal gas equation and the stoichiometry of a reaction can be used to calculate the volume of gas produced or consumed in a reaction.\n\nWith the ideal gas law, we can use the relationship between the amounts of gases (in moles) and their volumes (in liters) to calculate the stoichiometry of reactions involving gases, if the pressure and temperature are known. This is important for several reasons. Many reactions that are carried out in the laboratory involve the formation or reaction of a gas, so chemists must be able to quantitatively treat gaseous products and reactants as readily as they quantitatively treat solids or solutions. Furthermore, many, if not most, industrially important reactions are carried out in the gas phase for practical reasons. Gases mix readily, are easily heated or cooled, and can be transferred from one place to another in a manufacturing facility via simple pumps and plumbing.\n\n## Gas Densities and Molar Mass\n\nThe ideal-gas equation can be manipulated to solve a variety of different types of problems. For example, the density, $$\\rho$$, of a gas, depends on the number of gas molecules in a constant volume. To determine this value, we rearrange the ideal gas equation to\n\n$\\dfrac{n}{V}=\\dfrac{P}{RT}\\label{10.5.1}$\n\nDensity of a gas is generally expressed in g/L (mass over volume). Multiplication of the left and right sides of Equation \\ref{10.5.1} by the molar mass in g/mol ($$M$$) of the gas gives\n\n$\\rho= \\dfrac{g}{L}=\\dfrac{PM}{RT} \\label{10.5.2}$\n\nThis allows us to determine the density of a gas when we know the molar mass, or vice versa.\n\nThe density of a gas INCREASES with increasing pressure and DECREASES with increasing temperature\n\n##### Example $$\\PageIndex{1}$$\n\nWhat is the density of nitrogen gas ($$\\ce{N_2}$$) at 248.0 Torr and 18º C?\n\n###### Step 1: Write down your given information\n• P = 248.0 Torr\n• V = ?\n• n = ?\n• R = 0.0820574 L•atm•mol-1 K-1\n• T = 18º C\n###### Step 2: Convert as necessary.\n\n$(248 \\; \\rm{Torr}) \\times \\dfrac{1 \\; \\rm{atm}}{760 \\; \\rm{Torr}} = 0.3263 \\; \\rm{atm} \\nonumber$\n\n$18\\,^oC + 273 = 291 K\\nonumber$\n\n###### Step 3: This one is tricky. We need to manipulate the Ideal Gas Equation to incorporate density into the equation.\n\nWrite down all known equations:\n\n$PV = nRT \\nonumber$\n\n$\\rho=\\dfrac{m}{V} \\nonumber$\n\nwhere $$\\rho$$ is density, $$m$$ is mass, and $$V$$ is volume.\n\n$m=M \\times n \\nonumber$\n\nwhere $$M$$ is molar mass and $$n$$ is the number of moles.\n\nNow take the definition of density (Equation \\ref{10.5.1})\n\n$\\rho=\\dfrac{m}{V} \\nonumber$\n\nKeeping in mind $$m=M \\times n$$...replace $$(M \\times n)$$ for $$mass$$ within the density formula.\n\n\\begin{align*} \\rho &=\\dfrac{M \\times n}{V} \\\\[4pt] \\dfrac{\\rho}{M} &= \\dfrac{n}{V} \\end{align*} \\nonumber\n\nNow manipulate the Ideal Gas Equation\n\n\\begin{align*} PV &= nRT \\\\[4pt] \\dfrac{n}{V} &= \\dfrac{P}{RT} \\end{align*} \\nonumber\n\n$$(n/V)$$ is in both equations.\n\n\\begin{align*} \\dfrac{n}{V} &= \\dfrac{\\rho}{M} \\\\[4pt] &= \\dfrac{P}{RT} \\end{align*} \\nonumber\n\n$\\dfrac{\\rho}{M} = \\dfrac{P}{RT}\\nonumber$\n\nIsolate density.\n\n$\\rho = \\dfrac{PM}{RT} \\nonumber$\n\n###### Step 4: Now plug in the information you have.\n\n\\begin{align*} \\rho &= \\dfrac{PM}{RT} \\\\[4pt] &= \\dfrac{(0.3263\\; \\rm{atm})(2*14.01 \\; \\rm{g/mol})}{(0.08206\\, L\\, atm/K mol)(291 \\; \\rm{K})} \\\\[4pt] &= 0.3828 \\; g/L \\end{align*} \\nonumber\n\nAn example of varying density for a useful purpose is the hot air balloon, which consists of a bag (called the envelope) that is capable of containing heated air. As the air in the envelope is heated, it becomes less dense than the surrounding cooler air (Equation $$\\ref{10.5.2}$$), which is has enough lifting power (due to buoyancy) to cause the balloon to float and rise into the air. Constant heating of the air is required to keep the balloon aloft. As the air in the balloon cools, it contracts, allowing outside cool air to enter, and the density increases. When this is carefully controlled by the pilot, the balloon can land as gently as it rose.", null, "Figure $$\\PageIndex{1}$$: A hot air balloon is inflated partially with cold air from a gas-powered fan, before the propane burners are used for final inflation.\n\n## Determining Gas Volumes in Chemical Reactions\n\nThe ideal gas law can be used to calculate volume of gases consumed or produced. The ideal-gas equation frequently is used to interconvert between volumes and molar amounts in chemical equations.\n\n##### Example $$\\PageIndex{2A}$$\n\nWhat volume of carbon dioxide gas is produced at STP by the decomposition of 0.150 g $$\\ce{CaCO_3}$$ via the equation:\n\n$\\ce{CaCO3(s) \\rightarrow CaO(s) + CO2(g)} \\nonumber$\n\n###### Solution\n\nBegin by converting the mass of calcium carbonate to moles.\n\n$\\dfrac{0.150\\;g}{100.1\\;g/mol} = 0.00150\\; mol \\nonumber$\n\nThe stoichiometry of the reaction dictates that the number of moles $$\\ce{CaCO_3}$$ decomposed equals the number of moles $$\\ce{CO2}$$ produced. Use the ideal-gas equation to convert moles of $$\\ce{CO2}$$ to a volume.\n\n\\begin{align*} V &= \\dfrac{nRT}{PR} \\\\[4pt] &= \\dfrac{(0.00150\\;mol)\\left( 0.08206\\; \\frac{L \\cdot atm}{mol \\cdot K} \\right) ( 273.15\\;K)}{1\\;atm} \\\\[4pt] &= 0.0336\\;L \\; or \\; 33.6\\;mL \\end{align*} \\nonumber\n\n##### Example $$\\PageIndex{2B}$$\n\nA 3.00 L container is filled with $$\\ce{Ne(g)}$$ at 770 mmHg at 27oC. A $$0.633\\;\\rm{g}$$ sample of $$\\ce{CO2}$$ vapor is then added.\n\n• What is the partial pressure of $$\\ce{CO2}$$ and $$\\ce{Ne}$$ in atm?\n• What is the total pressure in the container in atm?\n###### Solution\n\nStep 1: Write down all given information, and convert as necessary.\n\nBefore:\n\n• $$P = 770\\,mmHg \\rigtharrow 1.01 \\,atm \\nonumber \\] • \\(V = 3.00\\,L$$\n• $$n_{\\ce{Ne}} = ?$$\n• $$T = 27^o C \\rightarrow 300\\; K$$\n\nOther Unknowns: $$n_{\\ce{CO2}}$$= ?\n\n$n_{CO_2} = 0.633\\; \\rm{g} \\;CO_2 \\times \\dfrac{1 \\; \\rm{mol}}{44\\; \\rm{g}} = 0.0144\\; \\rm{mol} \\; CO_2 \\nonumber$\n\n###### Step 2: After writing down all your given information, find the unknown moles of $$\\ce{Ne}$$.\n\n\\begin{align*} n_{Ne} &= \\dfrac{PV}{RT} \\\\[4pt] &= \\dfrac{(1.01\\; \\rm{atm})(3.00\\; \\rm{L})}{(0.08206\\;atm\\;L/mol\\;K)(300\\; \\rm{K})} \\\\[4pt] &= 0.123 \\; \\rm{mol} \\end{align*} \\nonumber\n\nBecause the pressure of the container before the $$\\ce{CO2}$$ was added contained only $$\\ce{Ne}$$, that is your partial pressure of $$Ne$$. After converting it to atm, you have already answered part of the question!\n\n$P_{Ne} = 1.01\\; \\rm{atm} \\nonumber$\n\nStep 3: Now that have pressure for $$\\ce{Ne}$$, you must find the partial pressure for $$CO_2$$. Use the ideal gas equation.\n\n$\\dfrac{P_{Ne}\\cancel{V}}{n_{Ne}\\cancel{RT}} = \\dfrac{P_{CO_2}\\cancel{V}}{n_{CO_2}\\cancel{RT}} \\nonumber$\n\nbut because both gases share the same Volume ($$V$$) and Temperature ($$T$$) and since the Gas Constant ($$R$$) is constants, all three terms cancel.\n\n\\begin{align*} \\dfrac{P}{n_{Ne}} &= \\dfrac{P}{n_{CO_2}} \\\\[4pt] \\dfrac{1.01 \\; \\rm{atm}}{0.123\\; \\rm{mol} \\;Ne} &= \\dfrac{P_{CO_2}}{0.0144\\; \\rm{mol} \\;CO_2} \\\\[4pt] P_{CO_2} &= 0.118 \\; \\rm{atm} \\end{align*} \\nonumber\n\nThis is the partial pressure $$\\ce{CO_2}$$.\n\nStep 4: Now find total pressure.\n\n\\begin{align*} P_{total} &= P_{Ne} + P_{CO_2} \\\\[4pt] &= 1.01 \\; \\rm{atm} + 0.118\\; \\rm{atm} \\\\[4pt] &= 1.128\\; \\rm{atm} \\\\[4pt] &\\approx 1.13\\; \\rm{atm} \\; \\text{(with appropriate significant figures)} \\end{align*} \\nonumber\n\n##### Example $$\\PageIndex{2C}$$: Sulfuric Acid\n\nSulfuric acid, the industrial chemical produced in greatest quantity (almost 45 million tons per year in the United States alone), is prepared by the combustion of sulfur in air to give $$\\ce{SO2}$$, followed by the reaction of $$\\ce{SO2}$$ with $$\\ce{O2}$$ in the presence of a catalyst to give $$\\ce{SO3}$$, which reacts with water to give $$\\ce{H2SO4}$$. The overall chemical equation is as follows:\n\n$\\ce {2S(s) + 3O2(g) + 2H2O(l) \\rightarrow 2H2SO4(aq)} \\nonumber$\n\nWhat volume of O2 (in liters) at 22°C and 745 mmHg pressure is required to produce 1.00 ton (907.18 kg) of H2SO4?\n\nGiven: reaction, temperature, pressure, and mass of one product\n\nAsked for: volume of gaseous reactant\n\n###### Strategy:\n\nA Calculate the number of moles of H2SO4 in 1.00 ton. From the stoichiometric coefficients in the balanced chemical equation, calculate the number of moles of $$\\ce{O2}$$ required.\n\nB Use the ideal gas law to determine the volume of $$\\ce{O2}$$ required under the given conditions. Be sure that all quantities are expressed in the appropriate units.\n\n###### Solution:\n\nmass of $$\\ce{H2SO4}$$ → moles $$\\ce{H2SO4}$$ → moles $$\\ce{O2}$$ → liters $$\\ce{O2}$$\n\nA We begin by calculating the number of moles of H2SO4 in 1.00 ton:\n\n$\\rm\\dfrac{907.18\\times10^3\\;g\\;H_2SO_4}{(2\\times1.008+32.06+4\\times16.00)\\;g/mol}=9250\\;mol\\;H_2SO_4 \\nonumber$\n\nWe next calculate the number of moles of $$\\ce{O2}$$ required:\n\n$\\rm9250\\;mol\\;H_2SO_4\\times\\dfrac{3mol\\; O_2}{2mol\\;H_2SO_4}=1.389\\times10^4\\;mol\\;O_2 \\nonumber$\n\nB After converting all quantities to the appropriate units, we can use the ideal gas law to calculate the volume of O2:\n\n\\begin{align*} V&=\\dfrac{nRT}{P} \\\\[4pt] &=\\rm\\dfrac{1.389\\times10^4\\;mol\\times0.08206\\dfrac{L\\cdot atm}{mol\\cdot K}\\times(273+22)\\;K}{745\\;mmHg\\times\\dfrac{1\\;atm}{760\\;mmHg}} \\\\[4pt] &=3.43\\times10^5\\;L \\end{align*} \\nonumber\n\nThe answer means that more than 300,000 L of oxygen gas are needed to produce 1 ton of sulfuric acid. These numbers may give you some appreciation for the magnitude of the engineering and plumbing problems faced in industrial chemistry.\n\n##### Exercise $$\\PageIndex{2}$$\n\nCharles used a balloon containing approximately 31,150 L of $$\\ce{H2}$$ for his initial flight in 1783. The hydrogen gas was produced by the reaction of metallic iron with dilute hydrochloric acid according to the following balanced chemical equation:\n\n$\\ce{ Fe(s) + 2 HCl(aq) \\rightarrow H2(g) + FeCl2(aq)} \\nonumber$\n\nHow much iron (in kilograms) was needed to produce this volume of $$\\ce{H2}$$ if the temperature were 30°C and the atmospheric pressure was 745 mmHg?\n\n68.6 kg of Fe (approximately 150 lb)\n\n##### Example $$\\PageIndex{3}$$: Emergency Air bags\n\nSodium azide ($$\\ce{NaN_3}$$) decomposes to form sodium metal and nitrogen gas according to the following balanced chemical equation:\n\n$\\ce{ 2NaN3 \\rightarrow 2Na(s) + 3N2(g)} \\nonumber$\n\nThis reaction is used to inflate the air bags that cushion passengers during automobile collisions. The reaction is initiated in air bags by an electrical impulse and results in the rapid evolution of gas. If the $$\\ce{N_2}$$ gas that results from the decomposition of a 5.00 g sample of $$\\ce{NaN_3}$$ could be collected by displacing water from an inverted flask, what volume of gas would be produced at 21°C and 762 mmHg?\n\nGiven: reaction, mass of compound, temperature, and pressure\n\nAsked for: volume of nitrogen gas produced\n\n###### Strategy:\n\nA Calculate the number of moles of $$\\ce{N_2}$$ gas produced. From the data in Table S3, determine the partial pressure of $$\\ce{N_2}$$ gas in the flask.\n\nB Use the ideal gas law to find the volume of $$\\ce{N_2}$$ gas produced.\n\n###### Solution:\n\nA Because we know the mass of the reactant and the stoichiometry of the reaction, our first step is to calculate the number of moles of $$\\ce{N_2}$$ gas produced:\n\n$\\rm\\dfrac{5.00\\;g\\;NaN_3}{(22.99+3\\times14.01)\\;g/mol}\\times\\dfrac{3mol\\;N_2}{2mol\\;NaN_3}=0.115\\;mol\\; N_2 \\nonumber$\n\nThe pressure given (762 mmHg) is the total pressure in the flask, which is the sum of the pressures due to the N2 gas and the water vapor present. Table S3 tells us that the vapor pressure of water is 18.65 mmHg at 21°C (294 K), so the partial pressure of the $$\\ce{N_2}$$ gas in the flask is only\n\n\\begin{align*} \\rm(762 − 18.65)\\;mmHg \\times\\dfrac{1\\;atm}{760\\;mmHg} &= 743.4\\; \\cancel{mmHg} \\times\\dfrac{1\\;atm}{760\\;\\cancel{mmHg}} \\\\[4pt] &= 0.978\\; atm. \\end{align*} \\nonumber\n\nB Solving the ideal gas law for V and substituting the other quantities (in the appropriate units), we get\n\n$V=\\dfrac{nRT}{P}=\\rm\\dfrac{0.115\\;mol\\times0.08206\\dfrac{atm\\cdot L}{mol\\cdot K}\\times294\\;K}{0.978\\;atm}=2.84\\;L \\nonumber$\n\n##### Exercise$$\\PageIndex{3}$$\n\nA 1.00 g sample of zinc metal is added to a solution of dilute hydrochloric acid. It dissolves to produce $$\\ce{H2}$$ gas according to the equation\n\n$\\ce{ Zn(s) + 2 HCl(aq) → H2(g) + ZnCl2(aq)}. \\nonumber$\n\nThe resulting H2 gas is collected in a water-filled bottle at 30°C and an atmospheric pressure of 760 mmHg. What volume does it occupy?" ]
[ null, "https://chem.libretexts.org/@api/deki/files/51438/1024px-Yellow.balloon.inflation.arp.jpg", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.80151576,"math_prob":0.9998629,"size":13026,"snap":"2022-40-2023-06","text_gpt3_token_len":4231,"char_repetition_ratio":0.15266472,"word_repetition_ratio":0.03857868,"special_character_ratio":0.33640411,"punctuation_ratio":0.1256262,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9998536,"pos_list":[0,1,2],"im_url_duplicate_count":[null,9,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2023-02-06T09:39:13Z\",\"WARC-Record-ID\":\"<urn:uuid:e83896e7-7757-482c-aa4c-fbb293a1fb76>\",\"Content-Length\":\"149863\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:a9295e79-6d3b-47ae-badf-ae0d2483010a>\",\"WARC-Concurrent-To\":\"<urn:uuid:cad24660-7949-4d5f-9977-08bd3fb50c8e>\",\"WARC-IP-Address\":\"18.160.46.56\",\"WARC-Target-URI\":\"https://chem.libretexts.org/Courses/Pasadena_City_College/CHEM_001A%3A_General_Chemistry_and_Chemical_Analysis/06%3A_Gases/6.05%3A_Applications_of_the_Ideal_Gas_Law-_Molar_Volume%2C_Density_and_Molar_Mass_of_a_Gas\",\"WARC-Payload-Digest\":\"sha1:2VXLKBH3XD7Y7TCUQL7BTHJTA7JYBBXD\",\"WARC-Block-Digest\":\"sha1:MAI36UQSKLUETQD6BZ7YA6O5PIFGV4VK\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2023/CC-MAIN-2023-06/CC-MAIN-2023-06_segments_1674764500334.35_warc_CC-MAIN-20230206082428-20230206112428-00586.warc.gz\"}"}
https://documen.tv/question/an-individual-has-40-000-to-invest-28-000-will-be-put-into-a-low-risk-mutual-fund-averaging-6-9-24120893-49/
[ "## An individual has $40,000 to invest:$28,000 will be put into a low-risk mutual fund averaging 6.9% interest compounded monthly, and the rem\n\nQuestion\n\nAn individual has $40,000 to invest:$28,000 will be put into a low-risk mutual fund averaging 6.9% interest compounded monthly, and the remainder will be invested in a high-yield bound fund averaging 9.8% interest compounded continuously.\n\nRequired:\na. Write an equation for the total amount in the two investments.\nb. Write the rate-of-change equation for the combined amount.\nc. How rapidly is the combined amount of the investments growing after 6 months? after 15 months?\n\nin progress 0\n6 months 2021-08-22T15:07:50+00:00 1 Answers 1 views 0\n\n## Answers ( )\n\na) F(x) = 28,000( 1.00575 )^12x  + 12,000e^0.098x\n\nb)  F'(x ) = 28,000 ( In 1.071224 ) ( 1.071224 )^x + 1176 e^0.098x  dollar per year\n\nc) 3228.94 dollar/year,   3428.73 dollar/year\n\nStep-by-step explanation:\n\nCapital = $40,000$28,000 = low-risk mutual fund\n\n6.9% monthly compounded interest for the low risk mutual fund\n\n\\$12,000  = high-risk yield bound fund\n\n9.8% continuously compounded interest\n\nA) Equation for total amount in two investments\n\nF(x) = F1(x) + F2(x) —– ( 1 )\n\nwhere :\n\nF1(x) ( future value for monthly compounded interest)\n\n=  28,000( 1 + 0.069/12 )^12x = 28,000 ( 1.00575 )^12x\n\nF2(x) ( future value for continuously compounded interest )\n\n= ( 40,000 – 28,000 )e^0.098x = 12,000 e^0.098x\n\nback to equation 1\n\nF(x) = 28,000( 1.00575 )^12x  + 12,000e^0.098x\n\nB Rate of change equation\n\nf'(x) = d/dx (28,000( 1.00575 )^12x) + d/dx ( 12,000e^0.098x )\n\n∴ f'(x) = 28,000 d/dx (1.00575^12)^x + 12,000 d/dx(b^x)\n\n= 28,000 ( In 1.071224 ) ( 1.071224 )^x + 12,000 ( In b ) ( b^x )\n\nf'(x ) = 28,000 ( In 1.071224 ) ( 1.071224 )^x + 1176 e^0.098x  dollar per year\n\nC) Determine how rapidly the combined amount will grow after 6 months and after 15 months\n\ni.e. x = 0.5 , x = 1.25 years\n\nafter 6 months\n\n28,000 ( In 1.071224 ) ( 1.071224 )^(0.5) + 1176*e^((0.098(0.50))\n\n=  1993.88  + 1235.06 = 3228.94 dollar/year\n\nafter 15 months\n\n28,000 ( In 1.071224 ) ( 1.071224 )^(1.25) + 1176*e^((0.098(1.25 ))\n\n=   2099.47  +  1329.26 = 3428.73 dollar/year" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.82330877,"math_prob":0.9991616,"size":2170,"snap":"2022-40-2023-06","text_gpt3_token_len":829,"char_repetition_ratio":0.13711911,"word_repetition_ratio":0.21857923,"special_character_ratio":0.502765,"punctuation_ratio":0.18320611,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9995161,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2022-09-30T17:11:21Z\",\"WARC-Record-ID\":\"<urn:uuid:6e58c231-b9d4-4717-830d-369a47528e51>\",\"Content-Length\":\"80807\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:178e13be-f553-48a7-9298-87718fc44dc8>\",\"WARC-Concurrent-To\":\"<urn:uuid:707620df-2850-4ceb-98aa-517bbb67fba1>\",\"WARC-IP-Address\":\"103.57.223.32\",\"WARC-Target-URI\":\"https://documen.tv/question/an-individual-has-40-000-to-invest-28-000-will-be-put-into-a-low-risk-mutual-fund-averaging-6-9-24120893-49/\",\"WARC-Payload-Digest\":\"sha1:EITDXXRLDBX4HIUCBTT5TCCJWLN6YUE3\",\"WARC-Block-Digest\":\"sha1:JCLWHQAET3IX45Z3KUFZMYGRV23RSSUG\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2022/CC-MAIN-2022-40/CC-MAIN-2022-40_segments_1664030335491.4_warc_CC-MAIN-20220930145518-20220930175518-00576.warc.gz\"}"}
https://www.heidelberg-laureate-forum.org/blog/the-lynx-and-the-hare/
[ "# The Lynx and the Hare\n\nWhile my training is in pure mathematics, I also have an appreciation of the way applied mathematicians make use of it. Maths can be deployed to understand, explain and predict the behaviour of real-world situations, and it’s fundamental to the study of practically all other areas of science.\n\nGiven a situation in the real world, you might measure and make observations about what happens – counting the number of animals in a population at given time intervals, measuring the temperature of a chemical reaction, or collecting data about any variable which changes with time or given different initial conditions. But while measurements are useful to tell you about what’s happening now, they don’t tell you much about what’s going to happen in the future.\n\nMathematical modelling allows you to construct a model – a virtual version of the system, which you can use to predict how it’s going to evolve. You could, for instance, study your observations and notice a correlation between two things – when one of them increases, so does the other. If you’re studying the population of an animal (p), you might notice that at times when the amount of food available (f) is high, the population of the animal also tends to be higher.\n\nLooking at the data you’ve collected would allow you to determine the coefficient, c, which describes the correlation – if the quantity of food goes up, how much does the population go up by? This coefficient would be part of your model, and allow you to predict what the effect of a given amount of food being added would be, on the size of the population.\n\nYou can use a correlation in a model even if the two things turn out not to be directly related. For example, it’s been observed that cows which are given individual names tend to produce more milk – but that doesn’t mean it’s the name that’s causing Daisy’s milk production to increase. It’s the presence of a third factor: a farmer that cares enough about their cows to name them, and who also looks after them well. (If you’re a fan of spurious correlations, with or without a connecting reason, there are some who make a hobby of collecting them). But you can still use an indirect relationship to make predictions – if you know the two things will increase in tandem, regardless of why, the model is still useful.\n\nOf course, the model given above is very simple. There will almost certainly be other factors affecting the size of a population, and there might be a limit to how many animals can live in a given area – you can’t keep increasing the amount of food indefinitely and expect the population to always keep up, so your model might only work for certain ranges of values.\n\nDespite all this, population dynamics remains one of the easiest types of system to model – the variables involved tend to be fairly simple, and other minor confounding factors often don’t have a large impact on the final values. Once nice set of equations developed for modelling the interactions between two species – the predator-prey equations, also called the Lotka-Volterra equations, give a lovely approximation to the dynamics of two species in competition.\n\nGenerally, for modelling an animal population, you need to take into account a number of factors, including the rate of reproduction – how quickly that particular animal creates new animals; and the rate of death, which might depend on the average lifespan, but also other hazards which might cause them to die – in particular, the number of predators in the area, and how many of their prey each predator needs to sustain themselves.\n\nThe Lotka-Volterra equations describe the relationship between two populations as follows:\n\nIn these equations, x is the number of prey animals in the population, and y is the number of predators. Δ here is a Greek letter which mathematicians use to represent change – so Δx is the change in x. What these equations are saying is that the rate at which the prey population changes will depend on the size of the prey population, but also on the size of the predator population; and vice versa.\n\nThe values of a, b, c and d in these equations will depend on the particular animals involved – their rates of reproduction, how frequently they prey on each other, how much food the predators need to live – observing them and recording some values will allow you to establish what these values might be for a given pair of species, and then you can use this model to make predictions of what will happen in the future.\n\nLooking at the equation for Δx, you might notice the term which depends on the number of predators (y) is negative – meaning the more predators you have, the more this will reduce the prey population; in the Δy equation, the term dependent on the number of prey (x) is positive, because the more prey there are around, the more food for predators so the population will go up more quickly.\n\nSince these two values both depend on each other, you can end up with some interesting results – if there are more prey around relative to the number of predators, that will increase the number of predators, which will in turn reduce the number of prey, which will have a knock-on effect on the number of predators, and so on. The graphs produced by these models often involve two similar-looking oscillating curves, one of which follows the other with a delay (as effects take time to manifest in the population numbers).\n\nIf the populations are nicely balanced when you start your model, this system can be relatively stable. (There’s obviously one other stable system you can have here, which is when x and y are zero, but that’s boring). For stability, you ideally want\n\nas your starting states. Any changes to the system – maybe a flood which wipes out a chunk of the predator population, or an introduction of more animals from another area – will destabilise the equilibrium, and the equations will let you model what might happen.\n\nOne of my favourite things in maths is when something you’ve predicted comes true, and there’s a wonderful example of the patterns predicted by this model being exactly replicated in a real situation. Around the early 1900s, the Hudson Bay Company traded in fur pelts – from lynxes and hares trapped locally. What they might not have realised at the time was that in doing so, they were collecting data about the local hare and lynx populations – which were predator and prey to each other.\n\nIn the early 20th century, biologist Charles Gordon Hewitt analysed the data and discovered that the pattern of increase and decrease in the two populations matched the Lotka-Volterra model pretty well. The two populations were in equilibrium, with their sizes varying from year to year in a way that could be quite nicely predicted, and shows the characteristic delayed peaks of predator and prey.\n\nThis model is relatively simple, but mathematical modelling in general is a constant balancing act – if you can model the system with a simple set of equations, and not lose too much of the detail, that’s great. If your model is too simple, you’ll be able to compute your predictions quickly, but they’re less likely to be accurate, as you won’t have taken into account all the possible factors that could affect what’s going on. There’s a famous saying in statistical modelling: “All models are wrong, but some are useful”. The compromise you’re aiming for is a model which is the least possible amount of wrong, while still being reasonably useful.\n\nMost real-world systems are more complicated than this simple population example, and couldn’t be captured with such a minimal model. Meteorologists spend their time predicting the weather, using many overlapping and detailed models – but a true model to accurately predict the entire weather system would need billions of variables and would probably take so long to compute, it’d be quicker just to wait and look out of the window.\n\nDer Beitrag The Lynx and the Hare erschien zuerst auf Heidelberg Laureate Forum." ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.94700706,"math_prob":0.96802187,"size":7969,"snap":"2019-26-2019-30","text_gpt3_token_len":1596,"char_repetition_ratio":0.14262398,"word_repetition_ratio":0.0021818182,"special_character_ratio":0.19914669,"punctuation_ratio":0.08409987,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.96128243,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2019-07-18T19:18:49Z\",\"WARC-Record-ID\":\"<urn:uuid:e6ed18bc-78b3-4c00-8153-ff9e23e976f1>\",\"Content-Length\":\"36992\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:8e59902e-6782-4c33-8a1b-f1f1a59d5882>\",\"WARC-Concurrent-To\":\"<urn:uuid:fb56594e-48ab-49c3-a945-0519cd611260>\",\"WARC-IP-Address\":\"193.197.73.11\",\"WARC-Target-URI\":\"https://www.heidelberg-laureate-forum.org/blog/the-lynx-and-the-hare/\",\"WARC-Payload-Digest\":\"sha1:5VPOA5WP65OALOCAAWNLYZT3LNMNLC73\",\"WARC-Block-Digest\":\"sha1:QX57RKFLTKNFGRPGIVDGIWJR6GO6HYQI\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2019/CC-MAIN-2019-30/CC-MAIN-2019-30_segments_1563195525793.19_warc_CC-MAIN-20190718190635-20190718212635-00061.warc.gz\"}"}
http://dispatchesfromturtleisland.blogspot.com/2013/03/is-there-electron-up-down-koide-triple.html
[ "## Wednesday, March 13, 2013\n\n### Is There An Electron, Up, Down Koide Triple?\n\nKoide's Formula and Related Extensions\n\nKoide's formula in its original form asserts that:\n\n(sqrt(electron mass)+sqrt(muon mass)+sqrt(tau mass))^2/(electron mass+muon mass+tau mass)=2/3.\n\nThis is true to the highest levels of precision determined to date, which for the charged leptons is very great.\n\nA Koide triple is any three sets of particle masses that satisfy that relationship.\n\nThe hypothesis that there are Koide triples among the quarks, which is not inconsistent with the data to current level of precision (which isn't very great) is that the following are Koide triples:\n\ntop, bottom, charm\nbottom, charm, strange\ncharm, strange, down\n\nA related observation is that the combined mass of the bottom, charm, strange triple is almost precisely three times the mass of the tau, muon, electron triple (a notion that corresponds to the fact that in weak force decays three times as many quarks, one for each color, are produced as leptons).\n\nKoide's Formula, the Up Quark Mass and a Possibile Up, Down, Electron Triple.\n\nImplications of zero mass or neutrino scale mass for up quarks.\n\nThe final conceivable triple following that patterns are charm, strange, up, and strange, down, up.  Koide's formula predicts a near zero value for the up quark mass from a c, s, u triple.  But, if that value is carried through to the down quark in the s, u, d triple, it produces a value within the measured range of the down quark mass.\n\nUsing central values of t=172.9 GeV (a hair low with the latest data) and b=4.19 GeV. Then,\nKoide(t,b,c) implies c=1.356 GeV (PDG value 1.180-1.340 GeV)\nKoide(b,c,s) implies s= 92 MeV (PDG value 80-130 MeV)\nKoide(c,s,u) implies u= 36 KeV (PDG value 1,700 to 3,100 KeV)\nKoide(s,u,d) implies d= 5.3 MeV (PDG value 4.1-5.7 MeV)\n\nYou can also form a Koide triple of an electron, up and down if you use an electron mass of about 0.511 MeV, an up quark mass of zero, and a down quark mass of 6.7 MeV.\n\nAnd, if you use a value of zero rather than 36 KeV for the up quark, and use the 6.7 MeV value for the down quark predicted by the electron, up, down triple, the formula predicts a strange quark mass of 92 MeV.\n\nThis strange quark mass derived from the electron, up, down triple and the assmption that the up quark has a zero mass is consistent with the experimentally measured mass value of the strange quark, is consistent with a \"top quark down\" calculation of the strange quark mass, and is consistent with an estimate based upon a mass for the bottom, charm, strange triple that is the charged lepton mass triple.\n\nEven a modest mass of 36 KeV for the up quark makes a significant different in the estimated value of the down quark mass via an electron, up and down Koide triple or a strange, up and down Koide triple.  But, an up quark mass on the order of magnitude of 1 eV or less does not throw off the Koide triple by more than can be easily made up with tiny tweaks to calibration points elsewhere.\n\nThis is important because there are a variety of theoretical reasons why an up quark with a non-zero but negligible rest mass, even if it was just 1 eV, would involve a far more modest tweak to the Standard Model than a truly zero mass up quark.\n\nThe Koide's formula's prediction does not alter the experimentally estimated combined up and down quark mass.\n\nThe 6.7 MeV estimate for the down quark mass from applying Koide's formula naively is also not far from the Particle Data Group (PDG) mid-range value for the up quark and mid-range value for the down quark mass combined, which is 7.3 MeV.  The sum of the lower extremes of the PDG estimates for the up and down quark masses is 5.8 MeV and the sum of the upper extremes of the PDG estimates for the up and down quark masses is 8.8 MeV.   Twice the PDG estimate of the mean up and down quark masses is 6.0 MeV to 9.6 MeV, a range within which the 6.7 MeV Koide's formula value fits comfortably.\n\nThus, the Koide formula predicted value for the sum of the up and down quark masses when the up quark is assumed to have a mass of zero is well within the PDG value.  Koide's formula simply allocates all of the combined mass to the down quark rather than assigning a mass to the up quark of 35% to 60% of the down quark mass.  It also does nothing to alter the longstanding assumption based largely on the fact that the proton is lighter than the neutron, that the down quark is heavier than the up quark.\n\nReconsidering the experimental estimate of the up quark mass.\n\nKeep in mind that up quarks are always confined and can't be measured in isolation the way that top quarks  can be, and that almost all of the mass in hadrons (two quark mesons and three quark baryons) is derived from the strong force binding energy carried by gluons and not from the quarks themselves.  This is particularly true in the case of hadrons that have only up and down quarks like the proton and the neutron for which the measured hadron masses that contribute to the estimates are most precise.\n\nSince up quarks are always confined, any estimate of the up quark mass is necessarily model dependent.  Yet, computations of quantities like the proton or neutron mass from first principles using QCD alone have a precision of only about 1%, making them far less precise than the experimentally measured masses of hadrons.\n\nAlso, the experimental uncertainty in the mass of all quarks except the up quark equals or exceeds the low end experimental value per the PDG of the up quark mass.  So, in hadrons with some quarks other than up quarks in them, the up quark number has an impact on the total mass which is generally lower than the total uncertainty in the fundamental quark mass contribution to the hadron's total mass.\n\nThe strength of the strong force, weak force, electromagnetic forces are so great at the scale of a hadron relative to the masses of the quarks involved in all but the most exotic hadrons with heavy quarks in them, that an up quark's color charge, weak isospin and electromagnetic charge all have more relevance to its behavior when confined in a hadron than its fundamental mass (except insofar is its mass influences its weak force decays).\n\nObviously, if the Koide's formula prediction conflicts with the experimental data then there is simply something wrong with the formula.  But, the existence of consistent predictions from an electron, up, down triple with those of series of quark triples, and with the predictions of quark masses from the masses of the lepton triple all argue for revisiting the model dependent assumptions that went into making the PDG estimate of the up quark's mass (which is in any case has extremes that vary by a factor of two anyway).\n\nFiguring out how the up quark mass was estimated and what practical implications the up quark mass has in the Standard Model is clearly near the top of my to do list.\n\nImplications of a zero mass for the up quark.\n\nIf the up quark mass were assumed to be zero, as a non-measured Standard Model constant, rather than an experimentally measured one, and the other quark masses were estimated based upon this model dependent assumption, how would the estimated quark masses different and what experiments, if any, that were the basis for the PDG estimate would be contradicted?\n\nSome of the issues of how up quark mass is determined and what this implies in practice when doing QCD are discussed in this 2004 paper and another paper in 2010 and in 2011 by the same author, Michael Creutz who together with the authors of this 2002 paper are interested in the possibility that a massless up quark could explain the strong CP problem. This 2003 paper (possibly identical) also investigates the possibility of a massless up quark and makes a mass calculation for the up quark using lattice QCD.  This paper from 2001 disfavors that solution in a model limited to two quarks (the 2002-2003 analysis is a three quark flavor analysis).\n\nThis 1997 paper gets into the guts of mass renormalization for quarks.  A 2009 model dependent estimate of the up and down quark masses shows how these quantities are derived in QCD. A 2011 paper uses the up-down mass difference and applies it to neutrino scattering. This 2011 paper discusses relevant source data in the context of a BSM Higgs mass generation idea.\n\n(I've omit papers by Koide himself in this review).  Thinking similar to that of Koide's on mass matrixes is found in a 2013 paper and in this 2012 paper and this 2012 paper.  A BSM model from 2011 explores similar ideas.  A 1999 paper considers implications for quintessence theories.\n\nCurrent light quark mass ratio estimates don't differ materially from those devised by Weinberg and discussed in this 1986 paper whose abstract stated:\nWe investigate the current-mass ratios of the light quarks by fitting the squares of meson masses to second order in chiral-symmetry breaking, determining corrections to Weinberg's first-order values: mu/md=0.56, ms/md=20.1. We find that to this order, ms/md is a known function of mu/md. The values of the quark-mass ratios can be constrained by limiting the size of second-order corrections to the squares of meson masses. We find that for specific values of presently unmeasured phenomenological parameters one can have a massless u quark. In that case 30% of the squares of meson masses arise from operators second order in chiral-symmetry breaking.\n\nA 1979 estimate is also not that different in its early estimation of light quark masses as is this 1996 paper or a 1994 paper.  The 1994 paper's abstract stated that: \"the claim that\nmu = 0 leads to a coherent picture for the low energy structure of QCD is examined in detail. It is pointed out that this picture leads to violent flavour asymmetries in the matrix elements of the scalar and pseudoscalar operators, which are in conflict with the hypothesis that the light quark masses may be treated as perturbations.\"\n\nThis 1978 paper's abstract states:\nWe consider, within the framework of current algebra, the possibility that the up-quark mass vanishes (as an alternative to the axion). We argue that the contrary current-algebra value, mu/md=1/1.8, is unreliable. A critical analysis leads to the conclusion that mu=0 is not unreasonable and furthermore leads to a surprisingly good prediction for the δ-meson mass.\nA massless up quark has been considered a viable option seriously considered since 1978.  It was considered an open possible solution to the strong CP problem in 1994 it found that:\n\nWe conclude that at the level of precision (order of magnitude) of nonperturbative QCD calculations available to us at present, low-energy phenomenology is completely compatible with a vanishing value of the high-energy up quark mass.\n\nOnly a nonperturbative calculation in QCD can prove or disprove the phenomenological viability of mu = 0. Therefore, in view of the recent progress in numerical methods in lattice gauge theory, we would like to encourage a detailed analysis of the possibility of a massless up quark by these methods.\n\nA 2000 paper considered ways to test the massless up quark hypothesis using lattice QCD methods and does this 2002 paper which finds that lattice calculations disfavor a massless up quark but that experiments don't resolve the issues apart from a first principles analysis.  A 2001 paper notes that useful theoretical QCD predictions can be done with massless quarks entirely.  A 2007 paper quantifies the impact of quark mass on QCD predictions from massless models.\n\nA zero or non-zero mass for the up quark might help explain why proton decay is so surprisingly rare.\n\nA zero mass for the up quark together with the extended Koide's formula that motivates it, would imply that the masses of the six quarks and all three charged leptons can be calculated via the extended Koide's formula (including the mass relationship of the charged lepton triple to one of the quark triples and the electron, up down triple) and the assumption that the up quark has zero mass from the mass of the electron using high school algebra to accuracies greater than those available for any of the experimentally measured quark masses (even the top quark whose mass is currently known to 0.6% accuracy).\n\nThis would reduce the number of experimentally measured physical constants related to fermion mass in the Standard Model + Extended Koide Model from fifteen to four (the electron and the three neutrino masses).\n\nIf the supposition that the Higgs boson mass is equal to half of the sum of the masses of the W+, W- and Z bosons (which is currently accurate to within all current bounds of experimental precision and is closer to the experimentally measured mark than any of the prediscovery mass predictions for the Higgs boson mass), then the number of experimentally measured physical constants related to mass in the Standard Model would fall from three to two, one of which (the Weinberg angle that relates to W and Z boson masses) isn't even a mass value itself.\n\nThus, we could be on the verge of going from having eighteen measured Standard Model mass constants to having just six, and having much more accurate theoretical values than experimental values for many of those constants.\n\nThis would also motivate strongly a Koide derived formula for neutrino masses that if devised and confirmed by experimental evidence would cut the number of experimentally measured mass constants in the Standard Model from six to not more than five (one of which is an angle rather than a mass), and possibly to as few as three if a way to derive the neutrino masses from first principles using the masses of the other fermions and Standard Model bosons (and perhaps the PMNS and/or CKM matrix elements and/or the Standard Model coupling constants) was devised.\n\nExtensions To A Standard Model With Four Generations\n\nExtending the Koide's formula allows one to make useful, constrained and testable predictions regarding a fourth generation of Standard Model particles.\n\nFourth generation Standard Model particles that would have the masses a naive extension of Koide's formula would imply are experimentally forbidden because the lepton sector is inconsistent with experimental data.  This is a conclusion that has already been reached for the large part by the fundamental physics community already based on other grounds.\n\nFourth Generation Koide Quarks\n\nIf one extends the formula based upon recent data on the mass of the bottom and top quarks and presumes that there is a b', t, b triple, and uses masses of 173,400 GeV for the top quark and 4,190 for the bottom quark, then the predicted b' mass would be 3,563 GeV and the predicted t' mass would be about 83.75 TeV (i.e. 83,750 GeV).\n\nSince they would be produced a t'-anti-t' and b'-anti-b' pairs, it would take about 167.5 TeV of energy to produce a t' and 7.1 TeV of energy to produce a b'.  Producing a t' would be far beyond the capababilities of the LHC.  But, it could conceivably produce a few b' quark events of the Koide's formula predicted mass.  These would be unmistakeable unless the extreme speeds of the decay products prevented them from decaying (as a result of special relativity effects) until they reached a point beyond the most remote LHC detectors.  This probably wouldn't happen for a b' decay which is within the design parameters of the LHC, but might happen in the case of a fluke t' decay, which is far outside of its design parameters.\n\nThe up to the minute direct exclusion range at the LHC for the b' and t' is that there can be no b' with a mass of less than 670 GeV and no t' with a mass of less than 656 GeV (per ATLAS) and the comparable exclusions from CMS are similar (well under 1 TeV).\n\nKoide t' and b' quark decays\n\nA simple fourth generation b' quark or t' quark, that otherwise fits the Standard Model, of that mass would decay so rapidly that it woud not hadronize (i.e. not form composite QCD particles via strong force gluon interactions).  Instead, the t' would decay almost exclusively to the b' and the b'  would decay almost exclusively to the t, with both interactions happening almost instantaneously.\n\nA t' decay to a b' would produce a highly energetic W+ boson that would carry much of the energy of 80 TeV of rest mass being converted into  kinetic energy for the W+ and b' produced in the decay, immediately followed by a highly energetic W- boson produced in the b' to t decay in which about 3,390 GeV of kinetic energy was created from rest mass, followed by the usual immediate t quark to b quark decay with an emission of a W+ converting about 169.2 GeV of rest mass into kinetic energy for the W+ and b quark.  There would be an exactly parallel set of reactions for the decay chain of the anti-t' particle.\n\nIn the absence of special relativity, this would take place within a sphere of a diameter of less than 10^-16 meters (i.e. about 1-2% of the diameter of a nucleus of a gold atom, a number derived from the decay time of 10^-23 seconds for the first three decays times the speed of light), the strange quark decays would start to happen about a foot from the original site of the decay, and the muon decays would peak about 300 meters away.  But, since particle decay takes place in the reference frame of the particle, which is moving at speeds near the speed of light, the decays would take place over a far more extended area because time would pass more slowly for the fast moving t' decay products.  The extreme kinetic energies of the particles would cause the their decays to happen at much greater distances from the initial t' production and decay site than the ordinary LHC decays - indeed they might make it past the detectors entirely.\n\nAlso, while a 167.5 TeV event does involve a lot of energy in a concentrated place, a single event of that size involves only about 3*10-4 joules of energy, about the amount of kinetic energy of a single grape on the verge of hitting the ground after falling from a vine at waist height, so if it made it past the detectors due to special relativistic extensions of decay times it would be virtually invisible to observers in the area around the impact site and beyond the detectors.\n\nSo, even if the LHC was able due to a fluke fluctuation that led to a collision more than ten times as energetic as its design limitations with a spectacular decay chain, it might be missed entirely or almost entirely except as a completely unprecedented amount of missing energy that might be attributed to an equipment failure rather than a real physics event because it was so far beyond the designed detection range of the scientific equipment in the facility.\n\nFourth generation Koide leptons\n\nThe extension for charged leptons (a muon, tau, tau prime triple), however, would imply a 43.7 GeV tau prime, which has been excluded at the 95% confidence level for masses of less than 100.8 GeV and with far greater confidence at 43.7 GeV (which would be produced at a significant and easy to measure freuquency in Z boson decays).\n\nA simple Koide's rule formula for neutrinos using the muon neutrino mass (of 7.5 * 10^-5 eV + 0.08 eV +/- 0.09 eV) and tau neutrino mass (of 2.4 * 10^-3 eV + 0.08 eV +/- 0.09 eV) (with absolute masses derived from accurately measured mass differences between types and a 0.51 eV limit on the sum of the electron neutrino, muon neutrino and tau neutrino masses if there are only three kinds of neutrinos - less if there are more generations of neutrinos), would yield a tau prime neutrino mass of far less than 43.7 GeV.  A naive extension of Koide's formula with an electron neutrino of near zero mass would lead to a fourth generation neutrino of about 0.05 eV and would have a mass of up to 11.6 eV in the nearly degenerate case where all three neutrino species had almost precisely the same mass.  But, this would contradict the cosmological data constraint that limits to 0.51 eV for the sum of the masses all of the species of light neutrinos combined (which is about 1/1,000,000th the rest mass of an electron).  So, instead, 0.51 eV would be the realistic upper limit of a Standard Model weakly interacting fourth neutrino generation.\n\nGiven the cosmological constraint on the sum of neutrino masses, the possibility that the naive Koide's formula needs a sign modification or something like it for neutrinos (which it probably does) is irrelevant.\n\nYet, any simple, fourth generation, weakly interacting tau prime neutrinos of any rest mass less than 45 GeV can be excluded on the basis of Z boson decays, so this scenario is definitively excluded if Koide's formula is even remotely an accurate way of estimating the mass of a hypothetical fourth generation Standard Model neutrino.\n\nThese theoretical considerations make it highly unlikely that there is any fourth generation of Standard Model fermions at all.  The Standard Model makes fermions an entire generation at a time, and this would require a fourth generation charge fermion far in excess of the Koide formula extension predicted value.\n\nandrew said...\n\nKoide's formula is generally applied to rest mass via an electroweak-Higgs boson interaction.\n\nIt generally does not apply instead to mass at some consistent higher energy levels derived from the running of the renormalization group. It generally does not apply instead to additional momentum acquired in motion via special relativity. It generally does not apply to mass acquired via a strong force process or through other interactions with other particles.\n\nIt is quite possible (and at least one of the cited papers suggests) that the up quark mass that is utilized in lattice QCD at given energy levels, and/or is measured in experiments, is acquired dynamically by up quarks in their interactions with down quarks or other quarks, for example, rather than as a component of its rest mass.\n\nKoide up quark masses and other kinds of up quark masses may need to be carefully distinguished from the kind of up quark mass to which the massless up quark hypothesis that the extended Koide's formulas suggests.\n\nStill, given the pertinent of the massless up quark hypothesis not only to the strong CP problem but also to the entire mass matrix of the Standard Model via the extended Koide's formula, this hypothesis deserves more serious attention.\n\nMitchell said...\nandrew said...\n\nLattice QCD precision quark mass estimates can be found here.\n\nThe strange quark comes in at 92 just as expected. The charm at 1.273 is quite a bit lighter than the Koide number." ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.92547125,"math_prob":0.9719757,"size":23405,"snap":"2019-26-2019-30","text_gpt3_token_len":5361,"char_repetition_ratio":0.16606128,"word_repetition_ratio":0.028839044,"special_character_ratio":0.2166631,"punctuation_ratio":0.07525933,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9896388,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2019-07-23T09:45:28Z\",\"WARC-Record-ID\":\"<urn:uuid:066b37a5-f46e-464c-9254-d2799719ec5c>\",\"Content-Length\":\"120518\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:39f3b150-1680-4def-9094-cc3d36c1ed4c>\",\"WARC-Concurrent-To\":\"<urn:uuid:06c5396a-323b-4122-98ed-89c4c3c1489b>\",\"WARC-IP-Address\":\"172.217.7.161\",\"WARC-Target-URI\":\"http://dispatchesfromturtleisland.blogspot.com/2013/03/is-there-electron-up-down-koide-triple.html\",\"WARC-Payload-Digest\":\"sha1:IRBNHEZ2ANMUB2RHDI6SZ6S4Y5ZPHHZN\",\"WARC-Block-Digest\":\"sha1:5SUQ7P6A6XAOWJGWVLEDAOTUKGB2HKRE\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2019/CC-MAIN-2019-30/CC-MAIN-2019-30_segments_1563195529175.83_warc_CC-MAIN-20190723085031-20190723111031-00241.warc.gz\"}"}
https://algorithms.tutorialhorizon.com/find-factorial-of-a-given-number/
[ "# Find Factorial of a given Number\n\nObjective: Given a number, write a program to find factorial of that number.\n\nWhat is Factorial Number?\n\nIn mathematics, the factorial of a non-negative integer n, denoted by n!, is the product of all positive integers less than or equal to n. The value of 0! is 1, according to the convention for an empty product\n\nN! = n*(n-1)*(n-2)*…..*2*1\n\nExample:\n\n```5! = 5 x 4 x 3 x 2x 1 = 120\n7! = 7 x 6 x 5 x 4 x 3 x 2x 1 = 5040\n```\n\nApproach:\n\nRecursive Solution\n\n• If number is 0, return 1.\n• Make a recursive call to get the result of number – 1.\n• Multiply number with the result of number – 1.\n\nJava Code:\n\nhttps://gist.github.com/thmain/33f2e9a7ee6c36e3168b97de80feb13e\n\nOutput:\n\n`Factorial of a number: 10 is(Recursion): 3628800`\n\nIterative Solution:\n\n• If number is 0, return 1.\n• Run a loop from 2 to number and multiple all of them to get the result.\n\nJava Code:\n\nhttps://gist.github.com/thmain/469886811d1d86a9214a6cc35c699783\n\nOutput:\n\n`Factorial of a number: 7 is(Iterative): 5040`" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.7785476,"math_prob":0.9974755,"size":959,"snap":"2021-43-2021-49","text_gpt3_token_len":321,"char_repetition_ratio":0.12984294,"word_repetition_ratio":0.14545454,"special_character_ratio":0.3514077,"punctuation_ratio":0.18518518,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9966675,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2021-10-26T08:20:25Z\",\"WARC-Record-ID\":\"<urn:uuid:45e2a27d-a5aa-45ae-a83c-3f6b7781e0fc>\",\"Content-Length\":\"49426\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:f1bef4d2-e96c-4eea-b365-d0deda17c899>\",\"WARC-Concurrent-To\":\"<urn:uuid:55edd97b-0934-4950-ab61-4feea4854c05>\",\"WARC-IP-Address\":\"172.67.179.102\",\"WARC-Target-URI\":\"https://algorithms.tutorialhorizon.com/find-factorial-of-a-given-number/\",\"WARC-Payload-Digest\":\"sha1:LB5OBK7EM3MPDYJMYZQTQWW5ZBSPKMBB\",\"WARC-Block-Digest\":\"sha1:JY55K52EZSXQCWX7TXLHKACGMCQCV5FA\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2021/CC-MAIN-2021-43/CC-MAIN-2021-43_segments_1634323587854.13_warc_CC-MAIN-20211026072759-20211026102759-00055.warc.gz\"}"}
https://doc.rust-lang.org/core/arch/x86/fn._mm_setcsr.html
[ "# Function core::arch::x86::_mm_setcsr\n\n1.27.0 · source ·\n``pub unsafe fn _mm_setcsr(val: u32)``\nAvailable on (x86 or x86-64) and target feature `sse` and x86 only.\nExpand description\n\nSets the MXCSR register with the 32-bit unsigned integer value.\n\nThis register controls how SIMD instructions handle floating point operations. Modifying this register only affects the current thread.\n\nIt contains several groups of flags:\n\n• Exception flags report which exceptions occurred since last they were reset.\n\n• Masking flags can be used to mask (ignore) certain exceptions. By default these flags are all set to 1, so all exceptions are masked. When an an exception is masked, the processor simply sets the exception flag and continues the operation. If the exception is unmasked, the flag is also set but additionally an exception handler is invoked.\n\n• Rounding mode flags control the rounding mode of floating point instructions.\n\n• The denormals-are-zero mode flag turns all numbers which would be denormalized (exponent bits are all zeros) into zeros.\n\n### Exception Flags\n\n• `_MM_EXCEPT_INVALID`: An invalid operation was performed (e.g., dividing Infinity by Infinity).\n\n• `_MM_EXCEPT_DENORM`: An operation attempted to operate on a denormalized number. Mainly this can cause loss of precision.\n\n• `_MM_EXCEPT_DIV_ZERO`: Division by zero occurred.\n\n• `_MM_EXCEPT_OVERFLOW`: A numeric overflow exception occurred, i.e., a result was too large to be represented (e.g., an `f32` with absolute value greater than `2^128`).\n\n• `_MM_EXCEPT_UNDERFLOW`: A numeric underflow exception occurred, i.e., a result was too small to be represented in a normalized way (e.g., an `f32` with absulte value smaller than `2^-126`.)\n\n• `_MM_EXCEPT_INEXACT`: An inexact-result exception occurred (a.k.a. precision exception). This means some precision was lost due to rounding. For example, the fraction `1/3` cannot be represented accurately in a 32 or 64 bit float and computing it would cause this exception to be raised. Precision exceptions are very common, so they are usually masked.\n\nException flags can be read and set using the convenience functions `_MM_GET_EXCEPTION_STATE` and `_MM_SET_EXCEPTION_STATE`. For example, to check if an operation caused some overflow:\n\n``````_MM_SET_EXCEPTION_STATE(0); // clear all exception flags\n// perform calculations\nif _MM_GET_EXCEPTION_STATE() & _MM_EXCEPT_OVERFLOW != 0 {\n// handle overflow\n}``````\nRun\n\nThere is one masking flag for each exception flag: `_MM_MASK_INVALID`, `_MM_MASK_DENORM`, `_MM_MASK_DIV_ZERO`, `_MM_MASK_OVERFLOW`, `_MM_MASK_UNDERFLOW`, `_MM_MASK_INEXACT`.\n\nA single masking bit can be set via\n\n``_MM_SET_EXCEPTION_MASK(_MM_MASK_UNDERFLOW);``\nRun\n\nHowever, since mask bits are by default all set to 1, it is more common to want to disable certain bits. For example, to unmask the underflow exception, use:\n\n``````_mm_setcsr(_mm_getcsr() & !_MM_MASK_UNDERFLOW); // unmask underflow\nexception``````\nRun\n\nWarning: an unmasked exception will cause an exception handler to be called. The standard handler will simply terminate the process. So, in this case any underflow exception would terminate the current process with something like `signal: 8, SIGFPE: erroneous arithmetic operation`.\n\n### Rounding Mode\n\nThe rounding mode is describe using two bits. It can be read and set using the convenience wrappers `_MM_GET_ROUNDING_MODE()` and `_MM_SET_ROUNDING_MODE(mode)`.\n\nThe rounding modes are:\n\n• `_MM_ROUND_NEAREST`: (default) Round to closest to the infinite precision value. If two values are equally close, round to even (i.e., least significant bit will be zero).\n\n• `_MM_ROUND_DOWN`: Round toward negative Infinity.\n\n• `_MM_ROUND_UP`: Round toward positive Infinity.\n\n• `_MM_ROUND_TOWARD_ZERO`: Round towards zero (truncate).\n\nExample:\n\n``_MM_SET_ROUNDING_MODE(_MM_ROUND_DOWN)``\nRun\n\n### Denormals-are-zero/Flush-to-zero Mode\n\nIf this bit is set, values that would be denormalized will be set to zero instead. This is turned off by default.\n\nYou can read and enable/disable this mode via the helper functions `_MM_GET_FLUSH_ZERO_MODE()` and `_MM_SET_FLUSH_ZERO_MODE()`:\n\n``````_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_OFF); // turn off (default)\n_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON); // turn on``````\nRun\n\nIntel’s documentation" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.80804795,"math_prob":0.85618806,"size":3901,"snap":"2023-40-2023-50","text_gpt3_token_len":886,"char_repetition_ratio":0.12137542,"word_repetition_ratio":0.025225226,"special_character_ratio":0.2296847,"punctuation_ratio":0.16468842,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9791746,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2023-10-03T10:08:48Z\",\"WARC-Record-ID\":\"<urn:uuid:328b1685-612c-426a-be17-ce2238f85d28>\",\"Content-Length\":\"13290\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:d5f35c4e-9e5f-4478-a45e-23b98a0a89ac>\",\"WARC-Concurrent-To\":\"<urn:uuid:b160facc-9cf2-497a-b97d-b10d82dbcd1e>\",\"WARC-IP-Address\":\"99.86.229.65\",\"WARC-Target-URI\":\"https://doc.rust-lang.org/core/arch/x86/fn._mm_setcsr.html\",\"WARC-Payload-Digest\":\"sha1:6ICATW2CWKB7DBMRCBQJAW3SHEDPBP6D\",\"WARC-Block-Digest\":\"sha1:RRQVLDIQ2IXY4XWXQNKQZBGBI3QUEO25\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2023/CC-MAIN-2023-40/CC-MAIN-2023-40_segments_1695233511075.63_warc_CC-MAIN-20231003092549-20231003122549-00681.warc.gz\"}"}
https://www.educationwa.com/2008/07/measuring-student-progress-in.html
[ "## Thursday, July 17, 2008\n\n### Measuring student progress in mathematics\n\nThere are key indicators to performance in mathematics. In number/algebra teachers look for certain things at certain stages - these are defined in scope and sequence documents released by DET this year in minimum benchmark form. I think though that minimum benchmarks are poor indicators of how a system is doing. So I propose a different set that parents could use to measure performance. (Note: this is not what to teach - just a general measure of progress)\n\nyear 1-4 - Students have 1-1 number correspondence. Students have a clear understanding of place value. Students recognise the relevance of operations, understand concepts such as odd/even and ascending descending and can reconstruct multiples of numbers up to 12.\nyear 4/5 - Student is confident in recognising and performing all operations (+-÷x) and can recite all tables up to and including 12.\nyear 6/7 - Student is confident with fractional quantities including estimating, adding, subtracting and multiplying a variety of fractions with a calculator but without using the \"a b/c\" button\nyear 8 - Students can perform confidently simple algebraic operations. Students understand the connection between an equation of a line and its drawn equivalent. Students can construct an equation of a line from a table of values or a graph.\nyear 9 - Students can manipulate linear and quadratic equations to shift them on a cartesian plane. Students can simplify confidently using index laws including negative indices and fractional indices. Students are confident at regrouping and solving simple equations.\nyear 10 - Students can factorise and use this knowledge to sketch and draw quadratic and linear equations. Students can plot curves, understand critical points on curves and use equations/graphs to perform optimisations, interpolate and extrapolate data.\nyear 11/12 - Students can use knowledge to solve complex worded problems with application in the real world including problems including statistics, calculus and numeric series.\n\nFor many parents these words make no sense - but a quick google of unknown terms can assist a parent in getting a clearer picture of what a student can do." ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.93097913,"math_prob":0.93401897,"size":2255,"snap":"2020-45-2020-50","text_gpt3_token_len":438,"char_repetition_ratio":0.1390493,"word_repetition_ratio":0.0056179776,"special_character_ratio":0.19423503,"punctuation_ratio":0.077120826,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9858733,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2020-10-29T19:50:48Z\",\"WARC-Record-ID\":\"<urn:uuid:ba1f46f5-7103-419c-8572-697d94a935d0>\",\"Content-Length\":\"106370\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:b38246ff-4632-4f9a-93f0-38e5979c84a1>\",\"WARC-Concurrent-To\":\"<urn:uuid:577bf7d2-83ac-4da8-8fe8-1e9159c7149b>\",\"WARC-IP-Address\":\"172.217.2.115\",\"WARC-Target-URI\":\"https://www.educationwa.com/2008/07/measuring-student-progress-in.html\",\"WARC-Payload-Digest\":\"sha1:ANHXJW257C4SFBAF2IDCWSIFY3JMBVYZ\",\"WARC-Block-Digest\":\"sha1:44F5ILUYO2FSNYCGE6YF37FLPA5MX5EU\",\"WARC-Identified-Payload-Type\":\"application/xhtml+xml\",\"warc_filename\":\"/cc_download/warc_2020/CC-MAIN-2020-45/CC-MAIN-2020-45_segments_1603107905777.48_warc_CC-MAIN-20201029184716-20201029214716-00632.warc.gz\"}"}
https://www.elsevier.com/books/non-linear-differential-equations/sansone/978-0-08-010194-1
[ "# Non-Linear Differential Equations, Volume 67\n\n## 1st Edition\n\n0.0 star rating Write a review\nAuthors:\nEditors:\neBook ISBN: 9781483185057\nImprint: Pergamon\nPublished Date: 1st January 1964\nPage Count: 550\nSales tax will be calculated at check-out Price includes VAT/GST\n70.95\n60.31\n93.95\n79.86\n56.99\n48.44\nUnavailable\nPrice includes VAT/GST\n\n### Institutional Subscription\n\nPreface\n\nChapter I. General Theorems About Solutions of Differential Systems\n\n1. Integral Curves\n\n1. Integral Curves. Extreme Time in the Future t+\n\n2. Conditions for t+ = b. The Case n = 1\n\n3. Conditions for t+ = b. General Case\n\n4. Boundedness of the Integral Curves\n\n5. Integral Curves in the Sense of Carathéodory\n\n2. Lipschitzian and Carathéodory Systems\n\n1. Gronwall's Lemma (Generalized)\n\n2. Lipschitzian Systems. Evaluation of |x(t) — y(t)| for Two Arcs of Integral Curves\n\n3. Uniqueness Theorem. Continuous Dependence on the Initial Point P0 and on ƒ\n\n4. Carathéodory Systems\n\n3. The Solution φ(t,t0,x0) of the System (1.1.1)\n\n1. The function φ(t,t0,x0). Cases of Uniqueness\n\n2. Continuity of φ(t,t0,x0)\n\n3. Stability\n\n4. The function φ (t, t0, x0) for Linear Systems\n\n5. Differentiability of φ (t, t0, x0)\n\n6. Systems with Parameters\n\n4. Periodic Solutions\n\n1. Periodic Integral Curves. Periodic Orbits\n\n2. Exceptional Periodic Solutions\n\n5. Autonomous Systems\n\n1. Autonomous Systems. Properties of their Integral Curves\n\n2. Trajectories. Phase Space\n\n3. Singular Points. Cycles. Open Trajectories\n\nComplements\n\nBibliography\n\nChapter II. Particular Plane Autonomous Systems\n\n1. The Linear Case\n\n1. Singular Points\n\n2. Canonical Forms of Isolated Singular Points of Linear Systems\n\n3. Affine Transformations of the Phase Plane\n\n4. Classification of the Types of Singular Points\n\n2. Homogeneous Systems\n\n1. Homogeneous Systems\n\n2. Invariant Rays. Stellar Node\n\n3. The Center and the Focus\n\n4. Isolated Invariant Rays. Normal Angles\n\n5. Behavior of Trajectories in a Normal Angle\n\n6. Examples\n\n3. The Analytic Case\n\n1. Introductory Remarks\n\n2. Examples\n\n3. The Functions Z(x, y), N(x, y)\n\n4. A Lemma\n\n5. Trajectories Tending to 0. Focus\n\n6. The Equation N(θ) = 0. Dicritical Points\n\n7. Study of Z(x, y). Case of the Fixed Sign for Z(x, y)\n\n8. Classification of Z-Sectors\n\n4. The Problem of the Center\n\n1. The Problem of the Center\n\n2. The Problem of the Center for N(θ) ≠ 0\n\n3. The Case m = 1. Method of Poincaré\n\n4. The Case m = 1. Theorem of Poincaré for the Center. The Proof of E. Picard-J. Chazy\n\n5. The Case m = 1. Evaluation of the Period\n\n6. Sufficient Condition of Poincaré for the Center. Applications to Delaunay's Equations of Lunar Motion\n\n7. Bibliographic Notes on the Problem of the Center\n\n5. Singular Points at Infinity\n\n1. Poincaré's Sphere. Singular Points at Infinity\n\n2. Examples\n\n3. Singular Points at Infinity for Homogeneous Systems\n\nComplements\n\nBibliography\n\nChapter III. The Singularities of Briot-Bouquet\n\n1. Theorem of Briot-Bouquet for the Analytic Case\n\n1. Introductory Remarks\n\n2. The Equation of Briot—Bouquet in the Case where p is not a Positive Integer. Study of Holomorphic Solutions\n\n3. The Case of a Positive Integer p. Existence of Holomorphic Solutions\n\n4. Solutions of the Equation for the Case p = 0\n\n2. Reduction of Differential Equations with an Isolated Singular Point to a Typical Form in the Analytic Case. The Theorem of I. Bendixson on the Behavior of the Trajectories of the Reduced Equations of the Second Type\n\n1. Reduced Forms of the First and Second Type\n\n2. Results of I. Bendixson on the Behavior of the Trajectories of the Reduced Equations of the Second Type\n\n3. Equation of Briot-Bouquet in the Nodal Case in the Real Domain. Theorems of A. Wintner\n\n1. Lemma of A. Wintner\n\n2. First Theorem of A. Wintner\n\n3. Second Theorem of A. Wintner\n\nComplements\n\nBibliography\n\nChapter IV. Plane Autonomous Systems\n\n1. Limiting Sets\n\n1. Limiting Sets A(γ), Ω(γ) of a Trajectory γ. General Properties\n\n2. Classification of Trajectories\n\n3. Regular Points and Trajectories\n\n4. Closed (Plane) Trajectories. Stability Properties of Plane Cycles\n\n5. Regular (Plane) Limiting Trajectories\n\n6. Structure of Bounded Limiting Sets Ω(γ)\n\n7. Limiting Sets Consisting of a Single (Singular) Point\n\n8. Structure of Unbounded Sets Ω(γ)\n\n2. Plane Cycles\n\n1. Limit Cycles\n\n2. Classification of Limit Cycles. Orbital Stability\n\n3. Examples\n\n4. Bendixson's Theorem\n\n5. Systems of Class C1. Characteristic Exponent of a Cycle\n\n6. Cycles of Analytic Systems\n\n7. Limit Cycles of a System with Polynomial Right Sides\n\n8. Regions with No Plane Cycles\n\n9. Periodic Solutions of a Plane Autonomous System. Existence of Limit Cycles\n\n10. Uniqueness of (Limit) Cycles\n\n3. Isolated Singular Points\n\n1. Classification of Isolated Singular Points. Points of the First Kind (Centerfocus). Center\n\n2. The Neighborhood of a Point of the Second Kind\n\n3. The Focus\n\n4. Exceptional Directions\n\n5. Normal Sectors\n\n4. The Index\n\n1. Kronecker's Index\n\n2. Index of a Point\n\n3. Evaluation of the Index for Particular Singular Points\n\n4. Index on the Sphere and on a Surface of Genus p\n\n5. The Cylinder as Phase Space\n\n1. The Cylinder as Phase Space\n\n2. An Example\n\n6. The Torus as Phase Space\n\n1. The Torus as Phase Space\n\n2. Examples\n\n3. Systems with No Singular Points on the Torus\n\n4. Other Results\n\n7. A Short Account on Dynamical Systems\n\nBibliography\n\nChapter V. Autonomous Plane Systems with Perturbations\n\n1. Homogeneous Perturbed Systems\n\n1. The General Problem\n\n2. The Case N(θ) ≠ 0\n\n3. Trajectories Tending to 0. Exceptional Directions\n\n4. Invariance of Normal Sectors. Normal Sectors of the First Type\n\n5. Normal Sectors of the Second Type. First Decision Problem\n\n6. Normal Sectors of the Third Type. Second Decision Problem\n\n7. The Case N(θ) Identically Zero\n\n8. Some Remarks\n\n2. Isolated Singular Points of Systems of Class C1. Elementary Points\n\n1. Introductory Remarks\n\n2. Foci and Weak Foci\n\n3. Attractors. Stellar Node\n\n4. Node with One Tangent\n\n5. Node with Two Tangents\n\n7. Remarks\n\n3. An Asymptotic Study of a Node with Two Tangents and a Saddle Point of H. Weyl\n\n1. Statement of the Problem. Notations\n\n2. The Nodal Case (0 < l < k). The First Theorem of H. Weyl\n\n3. Bounds for |e11y(t) — b|, |x(t) — x0e-kt|\n\n4. The Case x(r) = Crδ. Bounds for |y(t) — be-lt|, |x(t)|\n\n5. The Case k ≥ l, k > 0. Second Theorem of H. Weyl\n\n6. Parametrized Systems\n\n7. The Case of the Node with Two Tangents. Third Theorem of H. Weyl\n\n8. The Case of a Saddle Point (l < 0 < k). Fourth Theorem of H. Weyl\n\n4. Isolated Singular Points of Systems of Class C1. Non-Elementary Points\n\n1. Introductory Remarks\n\n2. First Theorem of K. A. Keil for the Systems ẋ = x + ƒ(x, y), ẏ = g(x, y)\n\n3. Lemmas on the Isoclines\n\n4. K. A. Keil's Second and Third Theorems for the System ẋ = x + ƒ(x, y), ẏ = g(x, y)\n\n5. Further Results of K. A. Keil for the System ẋ = y + ƒ(x, y), ẏ = g(x, y)\n\n6. Bibliographical Notes to Sec. 1.2.4\n\n5. Structurally Stable Systems. Systems with a Parameter\n\n1. Structurally Stable Systems\n\n2. Structurally Unstable Systems. Generation of Limit Cycles\n\n3. Variation of the Cycles of Systems with a Parameter\n\nBibliography\n\nChapter VI. On Some Autonomous Systems with One Degree of Freedom\n\n1. Trajectories of the Equation of Linear Motion of a Point under Viscous Resistance\n\n1. Trajectories of the Equation of Linear Motion of a Point under Viscous Resistance\n\n2. The Equation θ + αθ + sin θ — β = 0, α ≥ θ, β ≥ 0\n\n1. Introductory Remarks\n\n2. The Case β > 1. Existence of a Periodic Solution z = z(θ) of (6.2.3)\n\n3. The Case 0 < β < 1. Classification of Singular Points\n\n4. The Trajectories for the Limiting Case α = 0\n\n5. The Case 0 < α , 0 < β < 1. Periodic Solutions of (6.2.3) and Critical Values α(θ0)\n\n6. The Case θ0 = π/2, (β = 1)\n\n7. The Trajectories for 0 < θ0 < π/2, (0 < α; 0 < β < 1)\n\n8. Inequalities for the Critical Value α(θ0)\n\n9. Procedure of M. Urabe for Calculating α(θ0)\n\n3. Equations of van der Pol and Liénard of the Oscillations of Relaxation\n\n1. Preliminary Results\n\n2. Existence of Periodic Solutions of Liénard's Equation\n\n3. Sufficient Conditions for the Uniqueness of Periodic Solutions of Liénard's Equation\n\n4. Case of Non-Uniqueness of Periodic Solutions of a Liénard Equation\n\n5. Theorem of Existence of Periodic Solutions of Liénard's Equation in the Case where ƒ(x) has Ordinary Discontinuities\n\n6. Theorem of Comparison for Liénard's Equation\n\n7. Calculation of the Period\n\n8. Van der Pol's Equation. Behavior of Trajectories at Infinity\n\n9. Behavior of the Limit Cycle of van der Pol's Equation when the Parameter Tends to Infinity. Theorem of D. A. Flanders and J. J. Stoker\n\n10. Asymptotic Evaluation of the Period and Amplitude of Periodic Solutions of van der Pol's Equation for Large Values of the Parameter\n\n11. Inequalities for Limit Cycles Due to R. Gomory and D. E. Richmond\n\n4. Periodic Solutions of the Generalized Equation of Liénard\n\n1. First Theorem of A. F. Filippov\n\n2. Second Theorem of A. F. Filippov\n\n3. Theorem of Uniqueness\n\n4. Study of the equation ẍ + ƒ(x, ẋ) ẋ + g(x) = 0\n\n5. Periodic Solutions of the Equation. ẍ + ƒ(ẋ) x + g(x) = 0 without the Hypothesis x g(x) > 0 for |x| > 0\n\n1. Introductory Remarks\n\n2. Singular Points\n\n3. Cycles. Their Properties\n\n4. A Case of Non-Existence of Periodic Solutions\n\n5. Existence of Cycles\n\n6. A Criterion for the Uniqueness of a Cycle\n\n6. The Equation of Damped Vibrations: Aẍ + ƒ (ẋ)ẋ + Cx = 0\n\n1. Introductory Remarks\n\n2. Conditions for the Origin to be a Stable Point\n\n3. A Theorem of G. Malgarini\n\n7. On an Equation of Dynamics and Aerodynamics of Wires\n\n1. Singular Points\n\n2. The Field Relative to System (6.7.2)\n\n3. Existence of Periodic Solutions for Sufficiently Small Values of the Parameter p\n\nComplements\n\nBibliography\n\nChapter VII. Non-Autonomous Systems with One Degree of Freedom\n\n1. The Problem of Forced Oscillations. Linear Case\n\n1. Forced Oscillations in the Harmonic Case\n\n2. Forced Oscillations in the Non-Harmonic Case\n\n3. The Problem of Forced Oscillations\n\n2. The Fixed Point Theorem of L. E. J. Brouwer and the Theorems of M. L. Cartwright, J. E. Littlewood and J. L. Massera\n\n1. The Fixed Point Theorem of L. E. J. Brouwer\n\n2. Brouwer's Theorem in the Proofs of Existence of Periodic Solutions\n\n3. Theorem of M. L. Cartwright-J. E. Littlewood\n\n4. Theorem of J. L. Massera\n\n3. Theorems of T. Yoshizawa\n\n1. Criterion of Ultimate Boundedness\n\n2. Theorem of Existence of Periodic Solutions\n\n3. Stability of Solutions\n\n4. A Theorem on Uniqueness and Stability of Periodic Solutions\n\n5. A Criterion for Boundedness of Individual Solutions\n\n6. Derivation of a Criterion for Existence of Periodic Solutions from the Theorem of J. L. Massera. A Theorem of S. Mizohata and M. Yamaguti\n\n4. Harmonic Solutions out of Phase of the Equation ẍ = F(x, cos ωt). Theorem of F. John\n\n1. The Interval (— ∞, + ∞) as Domain of Existence of Solutions\n\n2. Theorem of F. John on the Existence of Harmonic Solutions out of Phase\n\n5. The Equation ẍ + ƒ(ẋ) ẋ + g(x) = p(t)\n\n1. Results of S. Lefschetz, N. Levinson, M. L. Cartwright, and J. E. Littlewood\n\n2. An Existence Theorem and a Theorem on Asymptotic Stability of N.Levinson\n\n3. The Equation ẍ + g(x) = p(t) for p(t) Even. Theorem of G. R. Morris\n\n4. Odd Periodic Harmonic Solutions. Theorem of W. S. Loud on the Duffing Equation with Forcing Term\n\n5. Inequalities of D. Graffi for the Periodic Solutions of the Equation ẍ + ƒ(x) ẋ + λ2x = F sin ωt, λ > 0, ω > 0, F > 0\n\n6. The Equation ẍ + F(ẋ) + x = p(t)\n\n1. Criteria of R. Caccioppoli, A. Ghizzetti and A. Ascari for Existence, Uniqueness and Stability of a Periodic Solution\n\n2. On a Differential Equation in the Mechanics of Wires. Results of J. Cecconi and F. Stoppelli\n\n7. Theorems of G. E. H. Reuter on the Equations ẍ + k ƒ(x) ẋ + g(x) = k p(t), ẍ + k F(ẋ) + g(x) = k p(t)\n\n1. The Equation ẍ + k ƒ(x) ẋ + g(x) = k p(t)\n\n2. The Equation ẍ + k F(ẋ) + g(x) = k p(t)\n\n8. The Equation ẍ + ƒ(x, ẋ) ẋ + g(x) = p(t)\n\n1. Criterion on Boundedness in the Future of H. A. Antosiewicz\n\n2. Criteria of N. Levinson and C. E. Langenhop for Existence of a Periodic Solution\n\n9. Non-Linear Systems with Subharmonic Solutions\n\n1. Subharmonic Solutions\n\n2. Class D Systems\n\n3. Classifications of Fixed Points Relative to the Transformations of Systems of Class D\n\n4. Theorems of N. Levinson and J. L. Massera on the Number of Subharmonic Solutions\n\n10. General Remarks Concerning Periodic Solutions\n\n1. Autonomous Systems\n\n2. Periodic Non-Autonomous Systems\n\nComplements\n\nBibliography\n\nChapter VIII. Linear Systems\n\n1. The Adjoint System. The Inequalities of T. Wazewski\n\n2. Wazewski's Inequality\n\n2. Linear Autonomous Systems with Constant Coefficients\n\n1. The Principal Fundamental Matrix\n\n2. Form of Solutions of the Homogeneous System. Characteristic Exponents. Type Numbers\n\n3. Singular Points in the Real Case\n\n4. The Case n = 3 (Real Case)\n\n3. Linear Periodic Systems\n\n1. The Principal Fundamental Matrix. Theorems of Floquet and Lyapunov\n\n2. Characteristic Exponents. Type Numbers\n\n4. Reducible Systems\n\n1. Reducible Systems. Characteristic Exponents and Type Numbers\n\n5. Type Numbers of a Function. Relation of t-Similitude\n\n1. Type Number of a Function\n\n2. The Relation of t-Similitude (or Kinematic Similarity)\n\n3. Type Number of a Non-Vanishing Solution\n\n4. Normal Systems of Solutions. The Number Smin\n\n5. Inequality for Smin. Constant of Irregularity\n\n6. Regular Systems\n\n1. Regular Systems\n\n2. Theorems of Perron\n\n3. Triangular Matrices\n\n7. Periodic Solutions\n\n1. Linear Homogeneous Systems\n\n2. Linear Non-Homogeneous Systems\n\n3. The Existence of Harmonic Solutions of Quasi-Linear Periodic Systems\n\nComplements\n\nBibliography\n\nChapter IX. Stability\n\n1. The Method of V Functions\n\n1. Introductory Remarks\n\n2. The V Functions\n\n3. A Lemma of T. Wazewski\n\n4. Sufficient Conditions for Stability\n\n5. Necessary Conditions for Stability. The Inverse Problem\n\n6. Asymptotic Stability\n\n7. Asymptotic Stability in the Large\n\n8. Other Kinds of Stability\n\n9. Instability\n\n10. V Functions for Boundedness\n\n2. Stability of Linear Systems\n\n1. Stable and Unstable Linear Systems\n\n2. Uniformly Stable Linear Systems\n\n3. Uniform Stability and t ∞-Similarity\n\n4. Criteria of Uniform Stability\n\n5. Linear Systems Reducible to Zero and Restrictive Stability\n\n6. Asymptotic Stability of Linear Systems\n\n7. V Functions for Linear Systems with Constant Coefficients\n\n3. Stability in the First Approximation\n\n1. Introductory Remarks\n\n2. Stability by a Linear First Approximation\n\n3. Some Generalizations and Remarks. The L(v, N) Property\n\n4. Asymptotic Stability. Cases of a Non-Linear First Approximation\n\n5. Analytical Systems. The Critical Cases\n\n6. Orbital (Asymptotic) Stability. The Behavior of Solutions Near Integral Manifolds\n\n4. Asymptotic Equivalence\n\n1. Asymptotic Equivalence\n\n2. The Theorem of H. Weyl\n\n3. Other Results on Asymptotic Equivalence\n\nComplements and Problems\n\nBibliography\n\nIndex\n\nOther Volumes in this Series (Pure and Applied Mathematic)\n\n## Description\n\nNon-Linear Differential Equations covers the general theorems, principles, solutions, and applications of non-linear differential equations.\n\nThis book is divided into nine chapters. The first chapters contain detailed analysis of the phase portrait of two-dimensional autonomous systems. The succeeding chapters deal with the qualitative methods for the discovery of periodic solutions in periodic systems. The remaining chapters describe a synthetical approach to the study of asymptotic properties, especially stability properties, of the solutions of general n-dimensional systems.\n\nThis book will be of great value to mathematicians, researchers, and students.\n\nNo. of pages:\n550\nLanguage:\nEnglish\nPublished:\n1st January 1964\nImprint:\nPergamon\neBook ISBN:\n9781483185057" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.69920135,"math_prob":0.962942,"size":15777,"snap":"2019-51-2020-05","text_gpt3_token_len":4682,"char_repetition_ratio":0.1833513,"word_repetition_ratio":0.06738645,"special_character_ratio":0.25467452,"punctuation_ratio":0.17377955,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9945064,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2020-01-27T00:50:50Z\",\"WARC-Record-ID\":\"<urn:uuid:00c43f5c-0e57-40f8-ab08-85f10f0bbdcf>\",\"Content-Length\":\"244882\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:0d728d66-1477-43c3-8798-a48d652368f7>\",\"WARC-Concurrent-To\":\"<urn:uuid:c7f47802-2b96-4498-b645-f451551ac4a7>\",\"WARC-IP-Address\":\"203.82.26.7\",\"WARC-Target-URI\":\"https://www.elsevier.com/books/non-linear-differential-equations/sansone/978-0-08-010194-1\",\"WARC-Payload-Digest\":\"sha1:4YA73GTP62DNK3QUFMDPKYPROL46XGPI\",\"WARC-Block-Digest\":\"sha1:DA2557EESUROWD2SIAI2TPP7SUFNPQIV\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2020/CC-MAIN-2020-05/CC-MAIN-2020-05_segments_1579251694071.63_warc_CC-MAIN-20200126230255-20200127020255-00103.warc.gz\"}"}
https://www.aimsciences.org/article/doi/10.3934/dcdsb.2016033
[ "", null, "", null, "", null, "", null, "August  2016, 21(6): 1999-2009. doi: 10.3934/dcdsb.2016033\n\n## Positive solutions of perturbed elliptic problems involving Hardy potential and critical Sobolev exponent\n\n 1 Mathematics Science College, Inner Mongolia Normal University, Hohhot 010022, China 2 School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071\n\nReceived  January 2014 Revised  April 2016 Published  June 2016\n\nIn this paper, we are concerned with the following nonlinear Schrödinger equations with hardy potential and critical Sobolev exponent \\begin{equation}\\label{eq0.1} \\left\\{\\begin{array}{ll} -\\Delta u+\\lambda a(x)u^q=\\mu\\frac{u}{|x|^{2}}+|u|^{2^{*}-2}u,& \\textrm{in}\\, \\mathbb{R}^N, \\\\ u>0, & \\textrm{in}\\,\\mathcal{D}^{1,2}(\\mathbb{R}^N), (1) \\end{array} \\right. \\end{equation} where $2^{*}=\\frac{2N}{N-2}$ is the critical Sobolev exponent, $0\\leq \\mu<\\overline{\\mu}=\\frac{(N-2)^2}{4}$, $a(x)\\in C(\\mathbb{R}^N)$. We first use an abstract perturbation method in critical point theory to obtain the existence of positive solutions of (1) for small value of $|\\lambda|$. Secondly, we focus on an anisotropic elliptic equation of the form \\begin{equation}\\label{eq0.2} -{\\rm div}(B_\\lambda(x)\\nabla u)+\\lambda a(x)u^q=\\mu\\frac{u}{|x|^{2}}+|u|^{2^*-2}u, x\\in\\mathbb{R}^N. (2) \\end{equation} The same abstract method is used to yield existence result of positive solutions of (2) for small value of $|\\lambda|$.\nCitation: Jing Zhang, Shiwang Ma. Positive solutions of perturbed elliptic problems involving Hardy potential and critical Sobolev exponent. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1999-2009. doi: 10.3934/dcdsb.2016033\n##### References:\n A. Ambrosetti and Andrea Malchiodi, Perturbation Methods and Semilinear Elliptic Problems on $\\mathbbR^N$,, Birkhäuser Verlag, (2006).", null, "Google Scholar A. Ambrosetti, J. Garcia Azorero and I. Peral, Perturbation of $\\Delta u+u^{\\frac{N+2}{N-2}}=0$, The scalar curvature problems in $\\mathbbR^N$ and related topics,, J. Funct. Anal, 165 (1999), 117.  doi: 10.1006/jfan.1999.3390.", null, "", null, "Google Scholar A. Ambrosetti and M. Badiale, Variational perturbative methods and bifurcation of bounds states from the the essential spectrum,, Proc. Roy. Soc. Edinburgh A, 128 (1998), 1131.  doi: 10.1017/S0308210500027268.", null, "", null, "Google Scholar A. Ambrosetti, M. Badiale and S. Cingolani, Semiclassical states of nonlinear Schrödinger equations,, Arch. Rational Mech. Anal., 140 (1997), 285.  doi: 10.1007/s002050050067.", null, "", null, "Google Scholar M. Badiale, J. Garcia Azorero and I. Peral, Perturbation results for an anisotropic SchrHodinger equation via a variational form,, NoDEA, 7 (2000), 201.  doi: 10.1007/s000300050005.", null, "", null, "Google Scholar H. Berestycki and P. L. Lions, Nonlinear scalar field equations I - existence of a ground state,, Arch. Rational Mech. Anal., 82 (1983), 313.  doi: 10.1007/BF00250555.", null, "", null, "Google Scholar K. J. Brown and N. Stavrakakis, Global bifurcation results for a semilinear elliptic equation on all $\\mathbbR^N$,, Duke Math. J., 85 (1996), 77.  doi: 10.1215/S0012-7094-96-08503-8.", null, "", null, "Google Scholar F. Catrina and Z. Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: Sharp constants, existence (and nonexistence), and symmetry of extermal functions,, Comm. Pure Appl. Math., 54 (2001), 229.  doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I.", null, "", null, "Google Scholar S. Cingolani, Positive solutions to perturbed elliptic problems in $\\mathbbR^N$ involving critical Sobolev exponent,, Nonlinear Analysis, 48 (2002), 1165.  doi: 10.1016/S0362-546X(00)00245-5.", null, "", null, "Google Scholar O. Rey, The role of the Green's function in a non-linear elliptic equation involving the critical Sobolev exponent,, J. Funct. Anal., 89 (1990), 1.  doi: 10.1016/0022-1236(90)90002-3.", null, "", null, "Google Scholar N. S. Trudinger, On Harnack type inequalities and theri application to quasilinear elliptic equations,, Comm. Pure Appl. Math., 20 (1967), 721.  doi: 10.1002/cpa.3160200406.", null, "", null, "Google Scholar\n\nshow all references\n\n##### References:\n A. Ambrosetti and Andrea Malchiodi, Perturbation Methods and Semilinear Elliptic Problems on $\\mathbbR^N$,, Birkhäuser Verlag, (2006).", null, "Google Scholar A. Ambrosetti, J. Garcia Azorero and I. Peral, Perturbation of $\\Delta u+u^{\\frac{N+2}{N-2}}=0$, The scalar curvature problems in $\\mathbbR^N$ and related topics,, J. Funct. Anal, 165 (1999), 117.  doi: 10.1006/jfan.1999.3390.", null, "", null, "Google Scholar A. Ambrosetti and M. Badiale, Variational perturbative methods and bifurcation of bounds states from the the essential spectrum,, Proc. Roy. Soc. Edinburgh A, 128 (1998), 1131.  doi: 10.1017/S0308210500027268.", null, "", null, "Google Scholar A. Ambrosetti, M. Badiale and S. Cingolani, Semiclassical states of nonlinear Schrödinger equations,, Arch. Rational Mech. Anal., 140 (1997), 285.  doi: 10.1007/s002050050067.", null, "", null, "Google Scholar M. Badiale, J. Garcia Azorero and I. Peral, Perturbation results for an anisotropic SchrHodinger equation via a variational form,, NoDEA, 7 (2000), 201.  doi: 10.1007/s000300050005.", null, "", null, "Google Scholar H. Berestycki and P. L. Lions, Nonlinear scalar field equations I - existence of a ground state,, Arch. Rational Mech. Anal., 82 (1983), 313.  doi: 10.1007/BF00250555.", null, "", null, "Google Scholar K. J. Brown and N. Stavrakakis, Global bifurcation results for a semilinear elliptic equation on all $\\mathbbR^N$,, Duke Math. J., 85 (1996), 77.  doi: 10.1215/S0012-7094-96-08503-8.", null, "", null, "Google Scholar F. Catrina and Z. Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: Sharp constants, existence (and nonexistence), and symmetry of extermal functions,, Comm. Pure Appl. Math., 54 (2001), 229.  doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I.", null, "", null, "Google Scholar S. Cingolani, Positive solutions to perturbed elliptic problems in $\\mathbbR^N$ involving critical Sobolev exponent,, Nonlinear Analysis, 48 (2002), 1165.  doi: 10.1016/S0362-546X(00)00245-5.", null, "", null, "Google Scholar O. Rey, The role of the Green's function in a non-linear elliptic equation involving the critical Sobolev exponent,, J. Funct. Anal., 89 (1990), 1.  doi: 10.1016/0022-1236(90)90002-3.", null, "", null, "Google Scholar N. S. Trudinger, On Harnack type inequalities and theri application to quasilinear elliptic equations,, Comm. Pure Appl. Math., 20 (1967), 721.  doi: 10.1002/cpa.3160200406.", null, "", null, "Google Scholar\n Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253 Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461 Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436 Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469 Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351 Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052 Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117 Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013 Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251 Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216 Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384 Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076 Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078 Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462 Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250 Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120 Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453 Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031\n\n2019 Impact Factor: 1.27" ]
[ null, "https://www.aimsciences.org:443/style/web/images/white_google.png", null, "https://www.aimsciences.org:443/style/web/images/white_facebook.png", null, "https://www.aimsciences.org:443/style/web/images/white_twitter.png", null, "https://www.aimsciences.org:443/style/web/images/white_linkedin.png", null, "https://www.aimsciences.org:443/style/web/images/math-review.gif", null, "https://www.aimsciences.org:443/style/web/images/crossref.jpeg", null, "https://www.aimsciences.org:443/style/web/images/math-review.gif", null, "https://www.aimsciences.org:443/style/web/images/crossref.jpeg", null, "https://www.aimsciences.org:443/style/web/images/math-review.gif", null, "https://www.aimsciences.org:443/style/web/images/crossref.jpeg", null, "https://www.aimsciences.org:443/style/web/images/math-review.gif", null, "https://www.aimsciences.org:443/style/web/images/crossref.jpeg", null, "https://www.aimsciences.org:443/style/web/images/math-review.gif", null, "https://www.aimsciences.org:443/style/web/images/crossref.jpeg", null, "https://www.aimsciences.org:443/style/web/images/math-review.gif", null, "https://www.aimsciences.org:443/style/web/images/crossref.jpeg", null, "https://www.aimsciences.org:443/style/web/images/math-review.gif", null, "https://www.aimsciences.org:443/style/web/images/crossref.jpeg", null, "https://www.aimsciences.org:443/style/web/images/math-review.gif", null, "https://www.aimsciences.org:443/style/web/images/crossref.jpeg", null, "https://www.aimsciences.org:443/style/web/images/math-review.gif", null, "https://www.aimsciences.org:443/style/web/images/crossref.jpeg", null, "https://www.aimsciences.org:443/style/web/images/math-review.gif", null, "https://www.aimsciences.org:443/style/web/images/crossref.jpeg", null, "https://www.aimsciences.org:443/style/web/images/math-review.gif", null, "https://www.aimsciences.org:443/style/web/images/math-review.gif", null, "https://www.aimsciences.org:443/style/web/images/crossref.jpeg", null, "https://www.aimsciences.org:443/style/web/images/math-review.gif", null, "https://www.aimsciences.org:443/style/web/images/crossref.jpeg", null, "https://www.aimsciences.org:443/style/web/images/math-review.gif", null, "https://www.aimsciences.org:443/style/web/images/crossref.jpeg", null, "https://www.aimsciences.org:443/style/web/images/math-review.gif", null, "https://www.aimsciences.org:443/style/web/images/crossref.jpeg", null, "https://www.aimsciences.org:443/style/web/images/math-review.gif", null, "https://www.aimsciences.org:443/style/web/images/crossref.jpeg", null, "https://www.aimsciences.org:443/style/web/images/math-review.gif", null, "https://www.aimsciences.org:443/style/web/images/crossref.jpeg", null, "https://www.aimsciences.org:443/style/web/images/math-review.gif", null, "https://www.aimsciences.org:443/style/web/images/crossref.jpeg", null, "https://www.aimsciences.org:443/style/web/images/math-review.gif", null, "https://www.aimsciences.org:443/style/web/images/crossref.jpeg", null, "https://www.aimsciences.org:443/style/web/images/math-review.gif", null, "https://www.aimsciences.org:443/style/web/images/crossref.jpeg", null, "https://www.aimsciences.org:443/style/web/images/math-review.gif", null, "https://www.aimsciences.org:443/style/web/images/crossref.jpeg", null, "https://www.aimsciences.org:443/style/web/images/math-review.gif", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.56871027,"math_prob":0.8146028,"size":9556,"snap":"2020-45-2020-50","text_gpt3_token_len":3109,"char_repetition_ratio":0.13923785,"word_repetition_ratio":0.53282446,"special_character_ratio":0.35297194,"punctuation_ratio":0.2671127,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.97576606,"pos_list":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92],"im_url_duplicate_count":[null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2020-11-27T14:40:47Z\",\"WARC-Record-ID\":\"<urn:uuid:491f7b42-fab1-4ec2-9ad2-11b92b3e7e40>\",\"Content-Length\":\"83169\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:37e5674b-b967-4641-bf9a-052db0a08750>\",\"WARC-Concurrent-To\":\"<urn:uuid:ef0a8ca9-1951-45dd-a92a-bb1929c20413>\",\"WARC-IP-Address\":\"107.161.80.18\",\"WARC-Target-URI\":\"https://www.aimsciences.org/article/doi/10.3934/dcdsb.2016033\",\"WARC-Payload-Digest\":\"sha1:KYD4JPSDOSM2JZ7KRCEIXNQF2KMHSOXR\",\"WARC-Block-Digest\":\"sha1:GJ6JLGALJO7RYVZ365UKLAEEIT6RHH37\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2020/CC-MAIN-2020-50/CC-MAIN-2020-50_segments_1606141193221.49_warc_CC-MAIN-20201127131802-20201127161802-00260.warc.gz\"}"}
http://newnooze.info/multiplication-worksheets-for-grade-3-2-digits-4767.html
[ "# Multiplication Worksheets For Grade 3 2 Digits\n\ni1", null, "## multiplication worksheets 3 digit mreichert kids worksheets", null, "## grade 2 worksheet add two 3 digit numbers in columns with carrying k5 learning", null, "## grade 5 math worksheets multiplication in columns 3 by 3 digit k5 learning", null, "## 3 digit multiplication worksheets math is fun multiplication worksheets math worksheets", null, "## the multiplying a 3 digit number by a 1 digit number large print a long for the kids\n\ni2", null, "## multiply these 2 digit numbers by 5 math grade 3 multiplication worksheet with multiplication", null, "## grade 2 math worksheet subtract 3 digit numbers with borrowing k5 learning", null, "## grade 2 math worksheets adding three 3 digit numbers in columns k5 learning", null, "## 10 best images of super teacher worksheets super teacher worksheets handwriting super teacher", null, "## grade 2 worksheet adding 2 digit and 1 digit numbers in columns k5 learning", null, "## 2 digit by 1 digit multiplication 3rd grade multiplication worksheets math multiplication", null, "## grade 6 math worksheets multiplication in columns 4 by 3 digits k5 learning", null, "## multiplying 3 numbers three worksheets free printable worksheets worksheetfun", null, "## grade 2 math worksheets adding three single digit numbers k5 learning", null, "## multiplying a 2 digit number by a 1 digit number large print f 3rd grade math", null, "## grade 3 worksheet multiplication tables 2 to 10 with missing number k5 learning", null, "## hard multiplication 2 digit problems multi digit multiplication by 2 digit 2 digit", null, "## grade 3 math worksheet subtract from 2 digit numbers with regrouping k5 learning", null, "## multiplying 4 digit by 1 digit numbers large print with comma separated thousands a", null, "", null, "## multiplication worksheets multiply numbers by 1 to 3 math printables math multiplication", null, "## hard multiplication 2 digit problems multiplying a 2 digit number by a 2 digit number si", null, "## grade 5 math worksheet multiplication and division multiply 1 digit by 2 digit numbers k5", null, "## grade 5 math worksheet multiplication and division multiply 4 digit by 2 digit numbers k5", null, "## multiplication four digits by one digit worksheet for 3rd 4th grade lesson planet", null, "## 2 digit multiplication practice practice with graph paper even with bigger numbers math", null, "## subtract whole tens from 2 digit numbers with missing values k5 learning", null, "## practice worksheet with single digit multiplication 20 problems emoji multiplication", null, "## hard multiplication 2 digit problems worksheet practice for 2 digit by 1 digit javale 39 s math", null, "## multiplication 2 x 2 digit with regrouping 5 multiply worksheet packet math help", null, "## printable multiplication worksheets 6th grade multiplication worksheets 4th grade print ruth", null, "## the 3 digit by 1 digit multiplication with grid support a math worksheet from the long", null, "", null, "## grade 3 subtraction worksheets free printable k5 learning", null, "## grade 2 math worksheets subtract 3 digit numbers no borrowing k5 learning", null, "## 3 digit by 1 digit multiplication worksheet 5 worksheets cool math and math", null, "## the multiplying 1 to 10 by 2 36 questions per page a math worksheet from the", null, "## multiplication with regrouping camps boots and multiplication", null, "## multiplying 3 digit by 1 digit numbers with space separated thousands a", null, "## 3 digit multiplication worksheet 1 digit multiplier english multiplication math worksheets", null, "## grade 2 worksheets subtracting whole hundreds from 3 digit numbers k5 learning", null, "## multiply these 2 digit numbers by a 1 digit number grade 2 or 3 math multiplication worksheet", null, "", null, "## multiply and dividing work sheets two digit division worksheets books worth reading kids", null, "## multiply numbers by 1 to 3 numbers and math multiplication multiplication worksheets e math", null, "## multiplication worksheet multiplying two digit by one digit 64 per page j math", null, "" ]
[ null, "https://ius.tech/wp-content/uploads/2015/05/multiplication-worksheets-3-digit-2.jpg", null, "https://www.k5learning.com/worksheets/math/grade-2-add-3-digit-numbers-in-columns-with-regrouping.gif", null, "https://www.k5learning.com/worksheets/math/grade-5-multiply-columns-3-digit-3-digit.gif", null, "https://i.pinimg.com/736x/32/65/2d/32652da6c46195109f75ae4e649fb851--homeschool-worksheets-multiplication-worksheets.jpg", null, "https://i.pinimg.com/736x/83/f0/e5/83f0e59fb22295a11769486b3debab81--multiplication-math.jpg", null, "https://www.mathinenglish.com/worksheetsimages/grade3/big/Multiply2digitsby1Times5(1)P3.gif", null, "https://www.k5learning.com/worksheets/math/grade-2-subtract-3-digit-numbers-with-regrouping.gif", null, "http://www.k5learning.com/worksheets/math/grade-2-add-3-3-digit-numbers-in-columns.gif", null, "http://www.worksheeto.com/postpic/2013/11/3-digit-multiplication-worksheets_39652.png", null, "https://www.k5learning.com/worksheets/math/grade-2-add-2-digit-1-digit-in-columns.gif", null, "https://i.pinimg.com/originals/50/0a/87/500a87eda6679d0286337e327808418e.png", null, "https://www.k5learning.com/worksheets/math/grade-6-multiplication-4-digits-by-3-digits.gif", null, "http://cdn.worksheetfun.com/wp-content/uploads/2013/09/multiplying3numbers-w1-.png", null, "https://www.k5learning.com/worksheets/math/grade-2-add-3-single-digit-numbers.gif", null, "https://i.pinimg.com/736x/da/42/2a/da422ad63b64b0cbb1e1f6e6ce72f8eb--rd-grade-math-large-prints.jpg", null, "http://www.k5learning.com/worksheets/math/grade-3-multiplication-table-2to10-missing-number.gif", null, "https://i.pinimg.com/736x/42/2a/dc/422adcdba5b7959ded9065b41f2e9ca0--multiplication-problems-math-worksheets.jpg", null, "https://www.k5learning.com/worksheets/math/grade-3-subtract-1-digit-from-2-digit.gif", null, "https://www.math-drills.com/multiplication2/images/multiplication_0401_lp_001_pin.jpg", null, "https://www.k5learning.com/worksheets/math/grade-3-adding-two-whole-tens-and-two-1-digit-numbers.gif", null, "https://i.pinimg.com/originals/bf/e0/44/bfe04414338f51b40f1fc1dc1ea0849a.gif", null, "https://i.pinimg.com/originals/0b/e5/85/0be5852bad337222e548096667af666d.jpg", null, "http://www.k5learning.com/worksheets/math/grade-5-multiply-1-digit-by-2-digit.gif", null, "http://www.k5learning.com/worksheets/math/grade-5-multiply-columns-2-digit-4-digit.gif", null, "https://content.lessonplanet.com/resources/thumbnails/244056/original/nzg4nzu3lnbuzw.png", null, "https://i.pinimg.com/originals/7e/cd/c8/7ecdc81d50de13c7516abbf5983d5a39.png", null, "http://www.k5learning.com/worksheets/math/grade-3-subtract-whole-tens-from-2-digits.gif", null, "https://i.pinimg.com/originals/29/bf/5a/29bf5a4e368c6ce50985e829ad41c646.jpg", null, "https://s-media-cache-ak0.pinimg.com/736x/ea/d2/57/ead2579fe16859b8b8141d9f0a9f423d--multiplication-problems-multiplication-worksheets.jpg", null, "https://i.pinimg.com/originals/4e/fa/4a/4efa4afb0c6c8562f65045732e72b694.jpg", null, "https://i.pinimg.com/736x/c6/14/c3/c614c3a31092889816ed4eb851abe910--th-grade-math-printable-multiplication-worksheets.jpg", null, "https://i.pinimg.com/originals/ef/67/a0/ef67a083ff8a6d8388d85576d9ae3a18.jpg", null, "http://www.k5learning.com/worksheets/math/grade-3-add-3-3-digit-numbers-in-columns.gif", null, "https://www.k5learning.com/worksheets/math/grade-3-subtraction-worksheet.gif", null, "https://www.k5learning.com/worksheets/math/grade-2-subtract-3-digit-numbers-no-regrouping.gif", null, "https://s-media-cache-ak0.pinimg.com/736x/2f/31/22/2f312204a0ed465a9268565ac39ea058--cool-math-easy-math.jpg", null, "https://i.pinimg.com/736x/fc/08/8b/fc088bfd3b3c913250d1b7982d13781a--rd-grade-math-drills.jpg", null, "https://s-media-cache-ak0.pinimg.com/736x/3f/5c/fc/3f5cfc1dce880b1e6028f7d8adbec4d9.jpg", null, "https://www.math-drills.com/multiplication2/images/multiplication_0301_si_001_pin2.jpg", null, "https://i.pinimg.com/736x/fb/9e/dc/fb9edc891aa0d6f0ad411f8a12691f50.jpg", null, "http://www.k5learning.com/worksheets/math/grade-2-subtract-whole-hundreds-from-3-digit-numbers.gif", null, "http://www.mathinenglish.com/worksheetsimages/grade3/big/Multiply2digitsby1Horizontal(2)P3.gif", null, "https://www.k5learning.com/worksheets/math/grade-3-add-4-digit-numbers-in-columns.gif", null, "https://i.pinimg.com/736x/b2/cc/e8/b2cce8e7a9e7cfd12ea16f1996865f7d--math-worksheets-homework.jpg", null, "https://i.pinimg.com/736x/94/ca/f7/94caf766ec42d44e0576082267d33612--multiplication-worksheets-teaching-math.jpg", null, "https://s-media-cache-ak0.pinimg.com/736x/b2/41/05/b24105c5f63106b6b6b60c231245d10c.jpg", null, "https://i.pinimg.com/originals/f1/bb/2d/f1bb2deeb4e871b1e4bd2649920f2f82.gif", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.68449247,"math_prob":0.95304734,"size":6920,"snap":"2020-24-2020-29","text_gpt3_token_len":1470,"char_repetition_ratio":0.37550607,"word_repetition_ratio":0.09924386,"special_character_ratio":0.1851156,"punctuation_ratio":0.004708098,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.99980193,"pos_list":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94],"im_url_duplicate_count":[null,9,null,null,null,5,null,null,null,null,null,null,null,8,null,10,null,null,null,null,null,null,null,null,null,null,null,4,null,null,null,5,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,6,null,null,null,null,null,7,null,null,null,null,null,null,null,9,null,null,null,null,null,null,null,7,null,8,null,null,null,6,null,3,null,8,null,9,null,2,null,null,null,null,null,7,null,null,null,null,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2020-05-26T05:56:13Z\",\"WARC-Record-ID\":\"<urn:uuid:148dd55f-4f14-49cb-b30d-c1b0b0cfd3eb>\",\"Content-Length\":\"89413\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:a29d52f4-cdd1-424e-a60a-b801802f7430>\",\"WARC-Concurrent-To\":\"<urn:uuid:0e0779b8-42a2-466c-a707-3beb2e42b6dc>\",\"WARC-IP-Address\":\"104.28.0.86\",\"WARC-Target-URI\":\"http://newnooze.info/multiplication-worksheets-for-grade-3-2-digits-4767.html\",\"WARC-Payload-Digest\":\"sha1:AYVZVIOLV6P3JSO45EY5R3W62P7EGZ4R\",\"WARC-Block-Digest\":\"sha1:3I2RKR4UZTZZPS7JUAWPMJ44B42MT4F7\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2020/CC-MAIN-2020-24/CC-MAIN-2020-24_segments_1590347390448.11_warc_CC-MAIN-20200526050333-20200526080333-00043.warc.gz\"}"}
http://the-dusty-deck.blogspot.com/2014/11/functional-programming-in-mainstream_27.html
[ "Labels\n\nAI (1) Haskell (1) Java 8 (2) JavaScript (1) Logic (10) Methodology (8) Refactoring (1) Scala (1) Security (2) Tools (9) Xtend (2) Xtext (1)\n\nThursday, November 27, 2014\n\nFunctional Programming in Mainstream Languages, Part 3: Higher-Order Functions in Java 7 and 8\n\nHaving seen (in the part 2 of this series) the basic syntax for expressing functions in Java 8, we will now explore some functional-programming techniques and compare how they are expressed in Scheme, Java 7, and Java 8.  The examples are adapted from the book Structure and Interpretation of Computer Programs (2nd Edition)", null, "by Abelson and Sussman.\n\nThe following function attempts to compute an approximation to a fixed point of a given function f; that is, a value x such that x = f(x).  The computation starts from an initial guess c, and repeatedly applies the function f to it, to get the series f(c), f(f(c)), f(f(f(c))), ....  If this process converges, the result is close to a fixed point, since convergence means that applying f one more time returns (almost) the same value.  However, the process may not converge at all, either because f has no fixed points at all, or because the process oscillates without finding a fixed point.\n\nHere are the implementations of this function in the three languages:\n\n Scheme (define (fixed-point f first-guess)   (define (try guess) (let ((next (f guess))) (if (< (abs (- guess next)) epsilon) next (try next)))) (try first-guess)) Java 7 public double fixedpoint(UFunc f, double v) { double next = f.apply(v); if (Math.abs(next - v) < epsilon) return next; else return fixedpoint1(f, next); } Java 8 public double fixedpoint(DoubleUnaryOperator f, double v) { double next = f.applyAsDouble(v); if (Math.abs(next - v) < epsilon)         return next; else         return fixedpoint1(f, next); }\n\nFunctional implementations usually use recursion instead of loops; the Scheme implementation defines an internal recursive function try, which computes the next value in the series and checks whether it is already close enough to the previous one to consider the series to have converged.  If so, it returns the last value in the series; if not, it continues recursively to try the next value.\n\nThe two Java implementations are quite similar, except for the types.  For the Java 7 implementation, I created the following interface to represent unary functions from a domain D to a range R:\n\n Java 7 public interface UFunc { R apply(D arg1); }\n\nAs I explained in the previous post, Java 8 supplies a large set of interfaces to describe functions; DoubleUnaryOperator is the type of functions that take a double and return a double.\n\nThere is a fundmemtal difference between functional languages (including Scheme) and most other languages, including Java.  In the former, tail-recursive calls are converted by the compiler into jumps that don't add a frame to the execution stack.  This means that such calls behave like loops in terms of their memory consumption.  (For more details see Abelson and Sussman", null, ".)  However, the latter languages don't guarantee this property.  As a result, the Java implementations above may use stack space proportional to the number of applications of the function required for convergence.\n\nA more natural style for implementing these methods in Java is imperative rather than functional:\n\n Java 7 public double fixedpoint(UFunc f, double v) { double prev = v; double next = v; do {         prev = next;         next = f.apply(next); } while (Math.abs(next - prev) >= epsilon); return next; } Java 8 public double fixedpoint(DoubleUnaryOperator f, double v) { double prev = v; double next = v; do {         prev = next;         next = f.applyAsDouble(next); } while (Math.abs(next - prev) >= epsilon); return next; }\n\nWhile functional-programming purists frown at this style, which modifies the values of the variables prev and next, this style is more natural for Java, and uses constant space on the stack.  For those reasons, I find it acceptable when using functional techniques in Java, provided that the changes are confined to local variables (rather than fields), and, in particular, locals that aren't referenced in any other method (such as those in inner classes) or function.\n\nWe can now try to use the fixedpoint function to compute square roots, using the fact that y is a square root of x if y = x/y; in other words, if y is a fixed point of the function λy.x/y:\n\n Scheme (define (sqrt x) (fixed-point (lambda (y) (/ x y)) 1.0)) Java 7 public double sqrt(final double x) { return fixedpoint(new UFunc() {         @Override         public Double apply(Double y) {             return x / y;         } }, 1.0); } Java 8 public double sqrt(double x) { return fixedpoint(y -> x / y, 1.0); }\n\nHere we need to create an anonymous function (\"lambda\"), and here the difference between Java 7 and Java 8 becomes very clear.  In Java 7 we need to create the function as an anonymous inner class, with all the necessary boilerplate code, which obscures the essentials of what we are trying to do.  (For example, it is quite difficult to figure out that 1.0 is the second parameter to the fixedpoint method.)  In contrast, in Java 8 we can just use the new lambda notation, and the meaning is immediately clear.\n\nIn both versions of Java, it is only possible to refer in inner methods to variables defined in enclosing constants if these variables are final; that is, if they can't be modified.  In Java 8 the variables doesn't need to be declared final, but it needs to be \"effectively final,\" which means that it is never changed.  (It is as though the compiler added the final modifier itself; this is similar to the type inference done by the Java 8 compiler.)\n\nThe reason for this restriction is that local variables have a lifetime (sometimes called \"extent\") that coincides with the lifetime of the method in which they are defined.  In other words, when the method returns, these variables are no longer accessible.  This is done so that the variables can be allocated on the stack rather than on the heap, avoiding the need for garbage-collecting them.  However, an object containing an inner method that refers to these variables may be used after the method that generated the object has already returned.  If (and only if) the variables are final is it possible to copy their values to the new object so that references to their values are still valid.  This is a poor-man's version of a closure, which is an object containing a function pointer together with all accessible variables in outer scopes.  As we will see in a later post, Scheme (like other dialects of Lisp) supports full closures, which also allow changing bound variables.\n\nUnfortunately, the method above doesn't work in any language.  The problem is that the computational process oscillates between two values and doesn't converge (try it for x=2).  One value is too high, and the other is too low.  However, if we take their average, the process converges; the following implementations all compute the square root:\n\n Scheme (define (sqrt x) (fixed-point (lambda (y) (/ (+ y (/ x y)) 2.0) 1.0)) Java 7 public double sqrt(final double x) { return fixedpoint(new UFunc() { @Override public Double apply(Double y) { return (y + x / y) / 2.0; } }, 1.0); } Java 8 public double sqrt(double x) { return fixedpoint(y -> (y + x / y) / 2.0, 1.0); }\n\nIt turns out that this is a general technique, called average damping.  It takes any function f and returns the function λx.(x+f(x))/2; this function has exactly the same fixed points as f.  In certain cases, however, the computational process of the fixed-point function converges with the new function when it diverges on the original function.  This technique is easily specified as a program:\n\n Scheme (define (sqrt x)(define (average-damp f) (lambda (x) (average x (f x)))) Java 7 public UFunc averageDamp(final UFunc f) { return new UFunc() { @Override public Double apply(Double x) { return (x + f.apply(x)) / 2.0; } }; } Java 8 public DoubleUnaryOperator averageDamp(DoubleUnaryOperator f) { return x -> (x + f.applyAsDouble(x)) / 2.0; }\nAgain, the Java 7 version is obscured by the boilerplate code (not to mention the annoying repetitions of the template type).  Here is the definition of sqrt that uses average damping (this time I will spare you the agony of the Java 7 version):\n\n Scheme (define (sqrt x) (fixed-point (average-damp (lambda (y) (/ x y))) 1.0)) Java 8 public double sqrt(double x) { return fixedpoint(averageDamp(y -> x / y), 1.0); }\n\nComputationally, this is exactly the same as the previous version, except that we use the original function  λy.x/y after applying the average damp operator to it.\n\nIn summary, it is possible to use functional abstraction in Java 7, but it is very painful.  The one case where it is widely used (although not usually thought of as such) is the case of callback functions, which are encapsulated as methods in one-method classes.  Java 8 makes higher-order functions much easier to use, even though the cumbersome type system is still annoying and gets in the way.\n\nIn subsequent posts we will see how to express the same ideas in other languages.\n\n#functionalprogramming #java" ]
[ null, "http://ir-na.amazon-adsystem.com/e/ir", null, "http://ir-na.amazon-adsystem.com/e/ir", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.8501269,"math_prob":0.91275704,"size":8749,"snap":"2019-43-2019-47","text_gpt3_token_len":2038,"char_repetition_ratio":0.13916524,"word_repetition_ratio":0.112714775,"special_character_ratio":0.242542,"punctuation_ratio":0.12,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9932541,"pos_list":[0,1,2,3,4],"im_url_duplicate_count":[null,null,null,null,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2019-10-15T19:25:12Z\",\"WARC-Record-ID\":\"<urn:uuid:46010eab-72ea-4a2e-bb5c-ecfa295a7b0b>\",\"Content-Length\":\"74952\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:134bc3dd-cf78-4b70-991f-d320d00f43b8>\",\"WARC-Concurrent-To\":\"<urn:uuid:48d0193e-96bf-4c0a-bd73-da10b5e98355>\",\"WARC-IP-Address\":\"172.217.15.65\",\"WARC-Target-URI\":\"http://the-dusty-deck.blogspot.com/2014/11/functional-programming-in-mainstream_27.html\",\"WARC-Payload-Digest\":\"sha1:LV6YRDKKQ6WGOFUKHUG3W57R2RGIBOQG\",\"WARC-Block-Digest\":\"sha1:E6PKJZ24ZMZH63T75UKWFHNTSRLR2AVZ\",\"WARC-Identified-Payload-Type\":\"application/xhtml+xml\",\"warc_filename\":\"/cc_download/warc_2019/CC-MAIN-2019-43/CC-MAIN-2019-43_segments_1570986660231.30_warc_CC-MAIN-20191015182235-20191015205735-00399.warc.gz\"}"}
http://videotrine.com/the-calculus-problem-of-arc-length-and-surface/
[ "# The Calculus Problem Of Arc Length And Surface Area\n\n(Arc lengths, Exercises 7.3) Find the lengths of the given curves.\n(a) y =\n12\n+\n\nfrom x = 1 to x = 4.\n(b) y = x2\nIn x\n8\nfrom x = 1 to x = 2\n(Surface area, Exercises 7.3)\n(a) Find the area of the surface obtained by rotating y = sinx (0 lt; lt; lt; lt;)" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.8129482,"math_prob":0.9998963,"size":513,"snap":"2020-24-2020-29","text_gpt3_token_len":169,"char_repetition_ratio":0.15717092,"word_repetition_ratio":0.1904762,"special_character_ratio":0.3411306,"punctuation_ratio":0.12605043,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9983755,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2020-06-06T14:15:47Z\",\"WARC-Record-ID\":\"<urn:uuid:35357b44-989d-44ff-8933-5fb8000d4795>\",\"Content-Length\":\"16711\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:05ecfaa9-5676-4a58-8fa4-ab2e63966435>\",\"WARC-Concurrent-To\":\"<urn:uuid:12716d85-e5c7-45a2-bfbe-f4277749f61d>\",\"WARC-IP-Address\":\"185.101.93.24\",\"WARC-Target-URI\":\"http://videotrine.com/the-calculus-problem-of-arc-length-and-surface/\",\"WARC-Payload-Digest\":\"sha1:D3U7GT6UI6GYU5IYYEQFH76ZS4BITPXM\",\"WARC-Block-Digest\":\"sha1:EGCCBULM67QJ2QMBWBTSBQ3F2M4VUJZ2\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2020/CC-MAIN-2020-24/CC-MAIN-2020-24_segments_1590348513321.91_warc_CC-MAIN-20200606124655-20200606154655-00447.warc.gz\"}"}
https://eng.kakprosto.ru/how-37672-how-to-calculate-the-payback-period-of-the-project
[ "Instruction\n1\nCalculate the volume of investment. Term of payback of the project is the time necessary for the net profit from the project covered the total investment volume. In the computational formula, we denote this space as Inv.\n2\nAnalyze projected variable costs for the implementation of the project: equipment depreciation, salaries of employees, payment of taxes and fees, licenses, logistics costs, etc. This figure we denote Per ed.\n3\nCalculate the sum of the fixed costs for the implementation of the project. It is indicated in the formula Post ed.\n4\nGiven the implementation of the project and possible seasonality, which will affect the profits, predict the profit per unit of time: day, month, quarter, year. Depending on the length of the project in time. In the formula it is marked PR.\n5\nCalculate the period of payback of the project Top according to the following formula:Top = Inv/(PR-(Post ed + Per ed)\n6\nMore correct is the calculation of the discounted period of recoupment. In addition to the mentioned formula in its calculation also uses the following indicators and concepts:flow of funds in addition to the initial investment over a period of time.\n7\nThe ratio of investment amount to the sum of the inflows in one period and amortization for the same period of time.\n8\nDetermine the monetary equivalent of the total production or amount of services rendered where the amount of the initial investment will equal the amount of net income. This point is called the breakeven point of the business.\n9\nRealizing the amount of money that needs to be completed to achieve the break-even point of the business and correlating this figure with the power of production in the same unit of time calculate the discounted period of recoupment.\n10\nIt is important to remember and understand that the rate of return is never used independently but only in conjunction with the values of the current value and IRR." ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.92574877,"math_prob":0.97245634,"size":1931,"snap":"2019-43-2019-47","text_gpt3_token_len":394,"char_repetition_ratio":0.16087182,"word_repetition_ratio":0.024767801,"special_character_ratio":0.19523562,"punctuation_ratio":0.08839779,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.99469465,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2019-10-17T11:22:31Z\",\"WARC-Record-ID\":\"<urn:uuid:e6ebdc5b-e74a-40aa-8dc9-820716cbcdcb>\",\"Content-Length\":\"31934\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:6e03370b-0f5f-4036-8618-046855570428>\",\"WARC-Concurrent-To\":\"<urn:uuid:627d2750-c9b7-472b-8e75-c44ab1ad0a81>\",\"WARC-IP-Address\":\"95.213.175.85\",\"WARC-Target-URI\":\"https://eng.kakprosto.ru/how-37672-how-to-calculate-the-payback-period-of-the-project\",\"WARC-Payload-Digest\":\"sha1:K3353MNSOEUO6XBT6NK4DCJ6NJYKIWXW\",\"WARC-Block-Digest\":\"sha1:IPSX2HTA3L3U5FGEUWYL77ATTFNFZVNW\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2019/CC-MAIN-2019-43/CC-MAIN-2019-43_segments_1570986673538.21_warc_CC-MAIN-20191017095726-20191017123226-00014.warc.gz\"}"}
https://www.proofwiki.org/wiki/Relation_between_Two_Ordinals/Corollary/Proof_2
[ "# Relation between Two Ordinals/Corollary/Proof 2\n\n## Corollary to Relation between Two Ordinals\n\nLet $S$ and $T$ be ordinals.\n\nIf $S \\ne T$, then either $S$ is an initial segment of $T$, or vice versa.\n\n## Proof\n\nIf either $S \\subset T$ or $T \\subset S$ then we invoke Ordinal Subset of Ordinal is Initial Segment, and the proof is complete.\n\nAiming for a contradiction, suppose $S \\not \\subset T$ and $T \\not \\subset S$.\n\nNow from Intersection is Subset, we have $S \\cap T \\subset T$ and $S \\cap T \\subset S$.\n\nBy Intersection of Two Ordinals is Ordinal‎, $S \\cap T$ is an ordinal.\n\nSo by Ordinal Subset of Ordinal is Initial Segment, we have:\n\n$S \\cap T = S_a$ for some $a \\in S$\n$S \\cap T = S_b$ for some $b \\in T$\n\nThen:\n\n$a = S_a = S \\cap T = T_b = b$\n\nBut $a \\in S, b \\in T$.\n\nThus $a = b = S \\cap T$.\n\nBut $S \\cap T = S_a$, so:\n\n$x \\in S \\cap T \\implies x \\subset a$\n\nIn particular, this means $a \\subset a$, which is a contradiction.\n\nSo either $S \\subset T$ or $T \\subset S$, and again we invoke Ordinal Subset of Ordinal is Initial Segment, and the proof is complete.\n\n$\\blacksquare$" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.80951005,"math_prob":0.9998815,"size":1279,"snap":"2023-40-2023-50","text_gpt3_token_len":418,"char_repetition_ratio":0.1717647,"word_repetition_ratio":0.12601626,"special_character_ratio":0.32838154,"punctuation_ratio":0.15492958,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":1.0000085,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2023-09-26T18:17:06Z\",\"WARC-Record-ID\":\"<urn:uuid:92dedaa9-71d2-4e0e-8dee-c8f8c97a6011>\",\"Content-Length\":\"37933\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:f739fa03-94ca-4323-8815-40288250377a>\",\"WARC-Concurrent-To\":\"<urn:uuid:80e05755-7e63-431a-962b-665c1da59190>\",\"WARC-IP-Address\":\"104.21.84.229\",\"WARC-Target-URI\":\"https://www.proofwiki.org/wiki/Relation_between_Two_Ordinals/Corollary/Proof_2\",\"WARC-Payload-Digest\":\"sha1:5EGNDO4DFISVLGY4YDYZYJATOYTTXAS6\",\"WARC-Block-Digest\":\"sha1:PKATPGUVRKVPEZXFTSBRYYYX2QJQ3K6T\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2023/CC-MAIN-2023-40/CC-MAIN-2023-40_segments_1695233510219.5_warc_CC-MAIN-20230926175325-20230926205325-00116.warc.gz\"}"}
http://www.ebooklibrary.org/articles/eng/Routhian_mechanics
[ "", null, "#jsDisabledContent { display:none; } My Account | Register | Help", null, "Flag as Inappropriate", null, "This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate?          Excessive Violence          Sexual Content          Political / Social Email this Article Email Address:\n\n# Routhian mechanics\n\nArticle Id: WHEBN0003406245\nReproduction Date:\n\n Title: Routhian mechanics", null, "Author: World Heritage Encyclopedia Language: English Subject: Collection: Publisher: World Heritage Encyclopedia Publication Date:\n\n### Routhian mechanics\n\nIn analytical mechanics, a branch of theoretical physics, Routhian mechanics is a hybrid formulation of Lagrangian mechanics and Hamiltonian mechanics developed by Edward John Routh. Correspondingly, the Routhian is the function which replaces both the Lagrangian and Hamiltonian functions.\n\nThe Routhian, like the Hamiltonian, can be obtained from a Legendre transform of the Lagrangian, and has a similar mathematical form to the Hamiltonian, but is not exactly the same. The difference between the Lagrangian, Hamiltonian, and Routhian functions are their variables. For a given set of generalized coordinates representing the degrees of freedom in the system, the Lagrangian is a function of the coordinates and velocities, while the Hamiltonian is a function of the coordinates and momenta.\n\nThe Routhian differs from these functions in that some coordinates are chosen to have corresponding generalized velocities, the rest to have corresponding generalized momenta. This choice is arbitrary, and can be done to simplify the problem. It also has the consequence that the Routhian equations are exactly the Hamiltonian equations for some coordinates and corresponding momenta, and the Lagrangian equations for the rest of the coordinates and their velocities. In each case the Lagrangian and Hamiltonian functions are replaced by a single function, the Routhian. The full set thus has the advantages of both sets of equations, with the convenience of splitting one set of coordinates to the Hamilton equations, and the rest to the Lagrangian equations.\n\nOften the Routhian approach may offer no new advantage, but one notable case where this is useful is when a system has cyclic coordinates (also called \"ignorable coordinates\"), by definition those coordinates which do not appear in the original Lagrangian. The Lagrangian equations are powerful results, used frequently in theory and practice, since the equations of motion in the coordinates are easy to set up. However, if cyclic coordinates occur there will still be equations to solve for all the coordinates, including the cyclic coordinates despite their absence in the Lagrangian. The Hamiltonian equations are useful theoretical results, but less useful in practice because coordinates and momenta are related together in the solutions - after solving the equations the coordinates and momenta must be eliminated from each other. Nevertheless, the Hamiltonian equations are perfectly suited to cyclic coordinates because the equations in the cyclic coordinates trivially vanish, leaving only the equations in the non cyclic coordinates.\n\nThe Routhian approach has the best of both approaches, because cyclic coordinates can be split off to the Hamiltonian equations and eliminated, leaving behind the non cyclic coordinates to be solved from the Lagrangian equations. Overall fewer equations need to be solved compared to the Lagrangian approach. Moreover, the Routhian method directly makes clearer the physical interpretations of the constants associated with the cyclic coordinates, in the Lagrangian approach the constants are less obvious.\n\nAs with the rest of analytical mechanics, Routhian mechanics is completely equivalent to Newtonian mechanics, all other formulations of classical mechanics, and introduces no new physics. It offers an alternative way to solve mechanical problems.\n\n## Contents\n\n• Definitions 1\n• Equations of motion 2\n• Two degrees of freedom 2.1\n• Any number of degrees of freedom 2.2\n• Energy 3\n• Cyclic coordinates 4\n• Examples 5\n• Central potential in spherical coordinates 5.1\n• Symmetric mechanical systems 5.2\n• Spherical pendulum 5.2.1\n• Heavy symmetrical top 5.2.2\n• Velocity-dependent potentials 5.3\n• Footnotes 7\n• Notes 8\n• References 9\n\n## Definitions\n\nIn the case of Lagrangian mechanics, the generalized coordinates q1, q2, ... and the corresponding velocities dq1/dt, dq2/dt, ..., and possibly time[nb 1] t, enter the Lagrangian,\n\nL(q_1,q_2,\\ldots,\\dot{q}_1,\\dot{q}_2,\\ldots,t)\\,, \\quad \\dot{q}_i = \\frac{d q_i}{dt} \\,,\n\nwhere the overdots denote time derivatives.\n\nIn Hamiltonian mechanics, the generalized coordinates q1, q2, ... and the corresponding generalized momenta p1, p2, ..., and possibly time, enter the Hamiltonian,\n\nH(q_1,q_2,\\ldots,p_1,p_2,\\ldots,t) = \\sum_i \\dot{q}_ip_i - L(q_1,q_2,\\ldots,\\dot{q}_1(p_1),\\dot{q}_2(p_2),\\ldots,t) \\,, \\quad p_i = \\frac{\\partial L}{\\partial \\dot{q}_i}\\,,\n\nwhere the second equation is the definition of the generalized momentum pi corresponding to the coordinate qi (partial derivatives are denoted using ). The velocities dqi/dt are expressed as functions of their corresponding momenta by inverting their defining relation. In this context, pi is said to be the momentum \"canonically conjugate\" to qi.\n\nThe Routhian is intermediate between L and H; some coordinates q1, q2, ..., qn are chosen to have corresponding generalized momenta p1, p2, ..., pn, the rest of the coordinates ζ1, ζ2, ..., ζs to have generalized velocities 1/dt, 2/dt, ..., s/dt, and time may appear explicitly;\n\n Routhian (n + s degrees of freedom) R(q_1,\\ldots,q_n,\\zeta_1,\\ldots,\\zeta_s, p_1, \\ldots,p_n , \\dot{\\zeta}_1 , \\ldots,\\dot{\\zeta}_s,t) = \\sum_{i=1}^n p_i\\dot{q}_i(p_i) - L(q_1,\\ldots,q_n,\\zeta_1,\\ldots,\\zeta_s, \\dot{q}_1(p_1), \\ldots, \\dot{q}_n(p_n) , \\dot{\\zeta}_1 , \\ldots,\\dot{\\zeta}_s,t) \\,,\n\nwhere again the generalized velocity dqi/dt is to be expressed as a function of generalized momentum pi via its defining relation. The choice of which n coordinates are to have corresponding momenta, out of the n + s coordinates, is arbitrary.\n\nThe above is used by Landau and Lifshitz, and Goldstien. Some authors may define the Routhian to be the negative of the above definition.\n\nGiven the length of the general definition, a more compact notation is to use boldface for tuples (or vectors) of the variables, thus q = (q1, q2, ..., qn), ζ = (ζ1, ζ2, ..., ζs), p = (p1, p2, ..., pn), and d ζ/dt = (1/dt, 2/dt, ..., s/dt), so that\n\nR(\\mathbf{q},\\boldsymbol{\\zeta}, \\mathbf{p}, \\dot{\\boldsymbol{\\zeta}}, t) = \\mathbf{p}\\cdot\\dot} - L(\\mathbf{q}, \\boldsymbol{\\zeta}, \\dot{\\mathbf{q}}, \\dot{\\boldsymbol{\\zeta}},t) \\,,\n\nwhere · is the dot product defined on the tuples, for the specific example appearing here:\n\n\\mathbf{p}\\cdot\\dot} = \\sum_{i=1}^n p_i\\dot{q}_i \\,.\n\n## Equations of motion\n\nFor reference, the Lagrangian equations for s degrees of freedom are a set of s coupled second order ordinary differential equations in the coordinates\n\n\\frac{d}{dt}\\frac{\\partial L}{\\partial \\dot{q}_j} = \\frac{\\partial L}{\\partial q_j} \\,,\n\nwhere j = 1, 2, ..., s, and the Hamiltonian equations for n degrees of freedom are a set of 2n coupled first order ordinary differential equations in the coordinates and momenta\n\n\\dot{q}_i = \\frac{\\partial H}{\\partial p_i} \\,,\\quad \\dot{p}_i = -\\frac{\\partial H}{\\partial q_i} \\,.\n\nBelow, the Routhian equations of motion are obtained in two ways, in the process other useful derivatives are found that can be used elsewhere.\n\n### Two degrees of freedom\n\nConsider the case of a system with two degrees of freedom, q and ζ, with generalized velocities dq/dt and /dt, and the Lagrangian is time-dependent. (The generalization to any number of degrees of freedom follows exactly the same procedure as with two). The Lagrangian of the system will have the form\n\nL(q, \\zeta, \\dot{q}, \\dot{\\zeta}, t)\n\nThe differential of L is\n\ndL = \\frac{\\partial L}{\\partial q}dq + \\frac{\\partial L}{\\partial \\zeta}d\\zeta + \\frac{\\partial L}{\\partial \\dot{q}}d\\dot{q} + \\frac{\\partial L}{\\partial \\dot{\\zeta}}d\\dot{\\zeta} + \\frac{\\partial L}{\\partial t}dt \\,.\n\nNow change variables, from the set (q, ζ, dq/dt, /dt) to (q, ζ, p, /dt), simply switching the velocity dq/dt to the momentum p. This change of variables in the differentials is the Legendre transformation. The differential of the new function to replace L will be a sum of differentials in dq, , dp, d(/dt), and dt. Using the definition of generalized momentum and Lagrange's equation for the coordinate q:\n\np = \\frac{\\partial L}{\\partial \\dot{q}} \\,,\\quad \\dot{p} = \\frac{d}{dt}\\frac{\\partial L}{\\partial \\dot{q}} = \\frac{\\partial L}{\\partial q}\n\nwe have\n\ndL = \\dot{p}dq + \\frac{\\partial L}{\\partial \\zeta}d\\zeta + p d\\dot{q} + \\frac{\\partial L}{\\partial \\dot{\\zeta}}d\\dot{\\zeta} + \\frac{\\partial L}{\\partial t}dt\n\nand to replace pd(dq/dt) by (dq/dt)dp, recall the product rule for differentials,[nb 2] and substitute\n\npd\\dot{q} = d(\\dot{q} p) - \\dot{q}dp\n\nto obtain the differential of a new function in terms of the new set of variables:\n\nd(L-p\\dot{q}) = \\dot{p} dq + \\frac{\\partial L}{\\partial \\zeta}d\\zeta - \\dot{q} dp + \\frac{\\partial L}{\\partial \\dot{\\zeta}}d\\dot{\\zeta} + \\frac{\\partial L}{\\partial t}dt \\,.\n\nIntroducing the Routhian\n\nR(q,\\zeta,p,\\dot{\\zeta},t) = p \\dot{q}(p) - L\n\nwhere again the velocity dq/dt is a function of the momentum p, we have\n\ndR = -\\dot{p} dq - \\frac{\\partial L}{\\partial \\zeta}d\\zeta + \\dot{q}dp - \\frac{\\partial L}{\\partial \\dot{\\zeta}}d\\dot{\\zeta} - \\frac{\\partial L}{\\partial t}dt\\,,\n\nbut from the above definition, the differential of the Routhian is\n\ndR = \\frac{\\partial R }{\\partial q}dq + \\frac{\\partial R }{\\partial \\zeta}d\\zeta + \\frac{\\partial R }{\\partial p}dp + \\frac{\\partial R }{\\partial \\dot{\\zeta}}d\\dot{\\zeta} + \\frac{\\partial R}{\\partial t}dt \\,.\n\nComparing the coefficients of the differentials dq, , dp, d(/dt), and dt, the results are Hamilton's equations for the coordinate q,\n\n\\dot{q} = \\frac{\\partial R}{\\partial p} \\,,\\quad \\dot{p} = -\\frac{\\partial R}{\\partial q} \\,,\n\nand Lagrange's equation for the coordinate ζ\n\n\\frac{d}{dt}\\frac{\\partial R}{\\partial \\dot{\\zeta}} = \\frac{\\partial R}{\\partial \\zeta}\n\n\\frac{\\partial L}{\\partial \\zeta} = - \\frac{\\partial R}{\\partial \\zeta} \\,,\\quad \\frac{\\partial L}{\\partial \\dot{\\zeta}} = - \\frac{\\partial R}{\\partial \\dot{\\zeta}} \\,,\n\nand taking the total time derivative of the second equation and equating to the first. Notice the Routhian replaces the Hamiltonian and Lagrangian functions in all the equations of motion.\n\nThe remaining equation states the partial time derivatives of L and R are negatives\n\n\\frac{\\partial L}{\\partial t}=-\\frac{\\partial R}{\\partial t}\\,.\n\n### Any number of degrees of freedom\n\nFor n + s coordinates as defined above, with Routhian\n\nR(q_1,\\ldots,q_n,\\zeta_1,\\ldots,\\zeta_s, p_1, \\ldots,p_n , \\dot{\\zeta}_1 , \\ldots,\\dot{\\zeta}_s,t) = \\sum_{i=1}^n p_i\\dot{q}_i(p_i) - L\n\nthe equations of motion can be derived by a Legendre transformation of this Routhian as in the previous section, but another way is to simply take the partial derivatives of R with respect to the coordinates qi and ζj, momenta pi, and velocities j/dt, where i = 1, 2, ..., n, and j = 1, 2, ..., s. The derivatives are\n\n\\frac{\\partial R}{\\partial q_i} = -\\frac{\\partial L}{\\partial q_i} = - \\frac{d}{dt}\\frac{\\partial L}{\\partial \\dot{q}_i} = - \\dot{p}_i \\,\n\\frac{\\partial R}{\\partial p_i} = \\dot{q}_i \\,\n\\frac{\\partial R}{\\partial \\zeta_j} = - \\frac{\\partial L}{\\partial \\zeta_j} \\,,\n\\frac{\\partial R}{\\partial \\dot{\\zeta}_j} = - \\frac{\\partial L}{\\partial \\dot{\\zeta}_j} \\,,\n\\frac{\\partial R}{\\partial t} = - \\frac{\\partial L}{\\partial t} \\,.\n\nThe first two are identically the Hamiltonian equations. Equating the total time derivative of the fourth set of equations with the third (for each value of j) gives the Lagrangian equations. The fifth is just the same relation between time partial derivatives as before. To summarize\n\n Routhian equations of motion (n + s degrees of freedom) \\dot{q}_i = \\frac{\\partial R}{\\partial p_i} \\,,\\quad \\dot{p}_i = -\\frac{\\partial R}{\\partial q_i} \\,, \\frac{d}{dt}\\frac{\\partial R}{\\partial \\dot{\\zeta}_j} = \\frac{\\partial R}{\\partial \\zeta_j} \\,.\n\nThe total number of equations is 2n + s, there are 2n Hamiltonian equations plus s Lagrange equations.\n\n## Energy\n\nSince the Lagrangian has the same units as energy, the units of the Routhian are also energy. In SI units this is the Joule.\n\nTaking the total time derivative of the Lagrangian leads to the general result\n\n\\frac{\\partial L}{\\partial t} = \\frac{d }{d t}\\left(\\sum_{i=1}^n \\dot{q}_i\\frac{\\partial L}{\\partial \\dot{q}_i} + \\sum_{j=1}^s \\dot{\\zeta}_j\\frac{\\partial L}{\\partial \\dot{\\zeta}_j} - L\\right)\\,.\n\nIf the Lagrangian is independent of time, the partial time derivative of the Lagrangian is zero, L/∂t = 0, so the quantity under the total time derivative in brackets must be a constant, it is the total energy of the system\n\nE = \\sum_{i=1}^n \\dot{q}_i\\frac{\\partial L}{\\partial \\dot{q}_i} + \\sum_{j=1}^s \\dot{\\zeta}_j\\frac{\\partial L}{\\partial \\dot{\\zeta}_j} - L\\,.\n\n(If there are external fields interacting with the constituents of the system, they can vary throughout space but not time). This expression requires the partial derivatives of L with respect to all the velocities dqi/dt and j/dt. Under the same condition of R being time independent, the energy in terms of the Routhian is a little simpler, substituting the definition of R and the partial derivatives of R with respect to the velocities j/dt,\n\nE = R - \\sum_{j=1}^s \\dot{\\zeta}_j\\frac{\\partial R}{\\partial \\dot{\\zeta}_j} \\,.\n\nNotice only the partial derivatives of R with respect to the velocities j/dt are needed. In the case that s = 0 and the Routhian is explicitly time-independent, then E = R, that is, the Routhian equals the energy of the system. The same expression for R in when s = 0 is also the Hamiltonian, so in all E = R = H.\n\nIf the Routhian has explicit time dependence, the total energy of the system is not constant. The general result is\n\n\\frac{\\partial R}{\\partial t} = \\dfrac{d}{dt}\\left(R - \\sum_{j=1}^s \\dot{\\zeta}_j\\frac{\\partial R}{\\partial \\dot{\\zeta}_j} \\right)\\,,\n\nwhich can be derived from the total time derivative of R in the same way as for L.\n\n## Cyclic coordinates\n\nThe Routhian formulation is useful for systems with cyclic coordinates, because by definition those coordinates do not enter L, and hence R. The corresponding partial derivatives of L and R with respect to those coordinates are zero, which equates to the corresponding generalized momenta reducing to constants. To make this concrete, if the qi are all cyclic coordinates, and the ζj are all non cyclic, then\n\n\\frac{\\partial L}{\\partial q_i} = \\dot{p}_i = - \\frac{\\partial R}{\\partial q_i} = 0 \\quad \\Rightarrow \\quad p_i = \\alpha_i \\,,\n\nwhere the αi are constants. With these constants substituted into the Routhian, R is a function of only the non cyclic coordinates and velocities (and in general time also)\n\nR(\\zeta_1,\\ldots,\\zeta_s,\\alpha_1,\\ldots,\\alpha_n,\\dot{\\zeta}_1,\\ldots,\\dot{\\zeta}_s,t) = \\sum_{i=1}^n \\alpha_i\\dot{q}_i(\\alpha_i) - L(\\zeta_1,\\ldots,\\zeta_s,\\dot{q}_1(\\alpha_1),\\ldots,\\dot{q}_n(\\alpha_n),\\dot{\\zeta}_1,\\ldots,\\dot{\\zeta}_s,t) \\,,\n\nThe 2n Hamiltonian equations in the cyclic coordinates automatically vanish,\n\n\\dot{q}_i=\\frac{\\partial R}{\\partial p_i} = 0 \\,,\\quad \\dot{p}_i=-\\frac{\\partial R}{\\partial q_i}=0\\,,\n\nand the s Lagrangian equations are in the non cyclic coordinates\n\n\\frac{d}{dt}\\frac{\\partial R}{\\partial \\dot{\\zeta}_j} = \\frac{\\partial R}{\\partial \\zeta_j} \\,.\n\nThus the problem has been reduced to solving the Lagrangian equations in the non cyclic coordinates, with the advantage of the Hamiltonian equations cleanly removing the cyclic coordinates.\n\nIf we are interested in how the cyclic coordinates change with time, the equations for the generalized velocities corresponding to the cyclic coordinates can be integrated.\n\n## Examples\n\nThe Routhian method does not guarantee the equations of motion will be simple, however it will lead to fewer equations.\n\n### Central potential in spherical coordinates\n\nOne general class of mechanical systems with cyclic coordinates are those with central potentials, because potentials of this form only have dependence on radial separations and no dependence on angles.\n\nConsider a particle of mass m under the influence of a central potential V(r) in spherical polar coordinates (r, θ, φ)\n\nL(r,\\dot{r},\\theta,\\dot{\\theta},\\dot{\\phi}) = \\frac{m}{2}(\\dot{r}^2 + {r}^2\\dot{\\theta}^2 + r^2 \\sin^2\\theta\\dot{\\phi}^2) - V(r) \\,.\n\nNotice φ is cyclic, because it does not appear in the Lagrangian. The momentum conjugate to φ is the constant\n\np_\\phi = \\frac{\\partial L}{\\partial \\dot{\\phi}} = mr^2\\sin^2\\theta\\dot{\\phi}\\,,\n\nin which r and /dt can vary with time, but the angular momentum pφ is constant. The Routhian can be taken to be\n\n\\begin{align} R(r,\\dot{r},\\theta,\\dot{\\theta}) & = p_\\phi\\dot{\\phi} - L \\\\ & = p_\\phi\\dot{\\phi} - \\frac{m}{2}\\dot{r}^2 - \\frac{m}{2}r^2\\dot{\\theta}^2 - \\frac{p_\\phi\\dot{\\phi}}{2} + V(r) \\\\ & = \\frac{p_\\phi\\dot{\\phi}}{2} - \\frac{m}{2}\\dot{r}^2 - \\frac{m}{2}r^2\\dot{\\theta}^2 + V(r) \\\\ & = \\frac{p_\\phi^2 }{2mr^2\\sin^2\\theta} - \\frac{m}{2}\\dot{r}^2 - \\frac{m}{2}r^2\\dot{\\theta}^2 + V(r) \\,. \\end{align}\n\nWe can solve for r and θ using Lagrange's equations, and do not need to solve for φ since it is eliminated by Hamiltonian's equations. The r equation is\n\n\\frac{d}{dt} \\frac{\\partial R}{\\partial \\dot{r}} = \\frac{\\partial R}{\\partial r} \\quad\\Rightarrow\\quad-m\\ddot{r} = -\\frac{p_\\phi^2}{mr^3\\sin^2\\theta} - mr\\dot{\\theta}^2 + \\frac{\\partial V}{\\partial r} \\,,\n\nand the θ equation is\n\n\\frac{d}{dt} \\frac{\\partial R}{\\partial \\dot{\\theta}} = \\frac{\\partial R}{\\partial \\theta} \\quad\\Rightarrow\\quad -m(2r\\dot{r}\\dot{\\theta} + r^2\\ddot{\\theta}) = -\\frac{p_\\phi^2\\cos\\theta}{mr^2\\sin^3\\theta} \\,.\n\nThe Routhian approach has obtained two coupled nonlinear equations. By contrast the Lagrangian approach leads to three nonlinear coupled equations, mixing in the first and second time derivatives of φ in all of them, despite its absence from the Lagrangian.\n\nThe r equation is\n\n\\frac{d}{dt} \\frac{\\partial L}{\\partial \\dot{r}} = \\frac{\\partial L}{\\partial r} \\quad\\Rightarrow\\quad m\\ddot{r} = mr\\dot{\\theta}^2 + mr\\sin^2\\theta\\dot{\\phi}^2 - \\frac{\\partial V}{\\partial r} \\,,\n\nthe θ equation is\n\n\\frac{d}{dt} \\frac{\\partial L}{\\partial \\dot{\\theta}} = \\frac{\\partial L}{\\partial \\theta} \\quad\\Rightarrow\\quad 2r\\dot{r}\\dot{\\theta} + r^2\\ddot{\\theta} = r^2 \\sin\\theta\\cos\\theta\\dot{\\phi}^2\\,,\n\nthe φ equation is\n\n\\frac{d}{dt} \\frac{\\partial L}{\\partial \\dot{\\phi}} = \\frac{\\partial L}{\\partial \\phi} \\quad\\Rightarrow\\quad 2r\\dot{r}\\sin^2\\theta\\dot{\\phi} + 2r^2 \\sin\\theta\\cos\\theta \\dot{\\theta}\\dot{\\phi} + r^2\\sin^2\\theta \\ddot{\\phi}=0 \\,.\n\n### Symmetric mechanical systems\n\n#### Spherical pendulum\n\nConsider the spherical pendulum, a mass m (known as a \"pendulum bob\") attached to a rigid rod of length l of negligible mass, subject to a local gravitational field g. The system rotates with angular velocity /dt which is not constant. The angle between the rod and vertical is θ and is not constant.\n\nThe Lagrangian is[nb 3]\n\nL(\\theta,\\dot{\\theta},\\dot{\\phi}) = \\frac{m\\ell^2}{2}(\\dot{\\theta}^2 + \\sin^2\\theta \\dot{\\phi}^2) + mg\\ell\\cos\\theta \\,,\n\nand φ is the cyclic coordinate for the system with constant momentum\n\np_\\phi = \\frac{\\partial L}{\\partial \\dot{\\phi}} = m\\ell^2\\sin^2\\theta \\dot{\\phi} \\,.\n\nwhich again is physically the angular momentum of the system about the vertical. The angle θ and angular velocity /dt vary with time, but the angular momentum is constant. The Routhian is\n\n\\begin{align} R(\\theta,\\dot{\\theta}) & = p_\\phi \\dot{\\phi} - L \\\\ & = p_\\phi \\dot{\\phi} - \\frac{m\\ell^2}{2}\\dot{\\theta}^2 - \\frac{p_\\phi \\dot{\\phi}}{2} - mg\\ell\\cos\\theta \\\\ & = \\frac{p_\\phi \\dot{\\phi}}{2} - \\frac{m\\ell^2}{2}\\dot{\\theta}^2 - mg\\ell\\cos\\theta \\\\ & = \\frac{p_\\phi^2 }{2m\\ell^2\\sin^2\\theta} - \\frac{m\\ell^2}{2}\\dot{\\theta}^2 - mg\\ell\\cos\\theta \\end{align}\n\nThe θ equation is found from the Lagrangian equations\n\n\\frac{d}{dt}\\frac{\\partial R}{\\partial \\dot{\\theta}} = \\frac{\\partial R}{\\partial \\theta} \\quad \\Rightarrow \\quad - m\\ell^2\\ddot{\\theta} = -\\frac{p_\\phi^2 \\cos\\theta}{m\\ell^2\\sin^3\\theta} + mg\\ell\\sin\\theta \\,,\n\nor simplifying by introducing the constants\n\na = \\frac{p_\\phi^2}{m^2\\ell^4}\\,,\\quad b = \\frac{g}{\\ell} \\,,\n\ngives\n\n\\ddot{\\theta} = a\\frac{\\cos\\theta}{\\sin^3\\theta} - b \\sin\\theta \\,.\n\nThis equation resembles the simple nonlinear pendulum equation, because it can swing through the vertical axis, with an additional term to account for the rotation about the vertical axis (the constant a is related to the angular momentum pφ).\n\nApplying the Lagrangian approach there are two nonlinear coupled equations to solve.\n\nThe θ equation is\n\n\\frac{d}{dt} \\frac{\\partial L}{\\partial \\dot{\\theta}} = \\frac{\\partial L}{\\partial \\theta} \\quad\\Rightarrow\\quad m\\ell^2\\ddot{\\theta} = m\\ell^2 \\sin\\theta\\cos\\theta\\dot{\\phi}^2 -mg\\ell\\sin\\theta \\,,\n\nand the φ equation is\n\n\\frac{d}{dt} \\frac{\\partial L}{\\partial \\dot{\\phi}} = \\frac{\\partial L}{\\partial \\phi} \\quad\\Rightarrow\\quad 2\\sin\\theta\\cos\\theta \\dot{\\theta}\\dot{\\phi} + \\sin^2\\theta \\ddot{\\phi}=0 \\,.\n\n#### Heavy symmetrical top\n\nThe heavy symmetrical top of mass M has Lagrangian\n\nL(\\theta,\\dot{\\theta},\\dot{\\psi},\\dot{\\phi})=\\frac{I_1}{2}(\\dot{\\theta}^2 + \\dot{\\phi}^2\\sin^2\\theta) + \\frac{I_3}{2}(\\dot{\\psi}^2+\\dot{\\phi}^2\\cos^2\\theta)+I_3\\dot{\\psi}\\dot{\\phi}\\cos\\theta-Mg\\ell\\cos\\theta\n\nwhere ψ, φ, θ are the Euler angles, θ is the angle between the vertical z-axis and the top's z-axis, ψ is the rotation of the top about its own z-axis, and φ the azimuthal of the top's z-axis around the vertical z-axis. The principal moments of inertia are I1 about the top's own x axis, I2 about the top's own y axes, and I3 about the top's own z-axis. Since the top is symmetric about its z-axis, I1 = I2. Here the simple relation for local gravitational potential energy V = Mglcosθ is used where g is the acceleration due to gravity, and the centre of mass of the top is a distance l from its tip along its z-axis.\n\nThe angles ψ, φ are cyclic. The constant momenta are the angular momenta of the top about its axis and its precession about the vertical, respectively:\n\np_\\psi = \\frac{\\partial L}{\\partial \\dot{\\psi}} = I_3\\dot{\\psi} + I_3\\dot{\\phi} \\cos\\theta\np_\\phi = \\frac{\\partial L}{\\partial \\dot{\\phi}} = \\dot{\\phi}(I_1\\sin^2\\theta + I_3\\cos^2\\theta) + I_3\\dot{\\psi}\\cos\\theta\n\nFrom these, eliminating /dt:\n\np_\\phi - p_\\psi\\cos\\theta = I_1\\dot{\\phi}\\sin^2\\theta\n\nwe have\n\n\\dot{\\phi} = \\frac{p_\\phi - p_\\psi\\cos\\theta}{I_1\\sin^2\\theta}\\,,\n\nand to eliminate /dt, substitute this result into pψ and solve for /dt to find\n\n\\dot{\\psi} = \\frac{p_\\psi}{I_3} - \\cos\\theta \\left(\\frac{p_\\phi - p_\\psi\\cos\\theta}{I_1\\sin^2\\theta}\\right) \\,.\n\nThe Routhian can be taken to be\n\nR(\\theta,\\dot{\\theta}) = p_\\psi\\dot{\\psi} + p_\\phi\\dot{\\phi} - L = \\frac{1}{2}(p_\\psi\\dot{\\psi} + p_\\phi\\dot{\\phi}) - \\frac{I_1 \\dot{\\theta}^2}{2} + Mg\\ell \\cos\\theta\n\nand since\n\n\\frac{p_\\phi\\dot{\\phi}}{2} = \\frac{p_\\phi^2}{2I_1\\sin^2\\theta} - \\frac{p_\\psi p_\\phi\\cos\\theta}{2I_1\\sin^2\\theta}\\,,\n\\frac{p_\\psi \\dot{\\psi}}{2} = \\frac{p_\\psi^2}{2I_3} - \\frac{p_\\psi p_\\phi\\cos\\theta }{2I_1\\sin^2\\theta} + \\frac{p_\\psi^2 \\cos^2\\theta}{2I_1\\sin^2\\theta}\n\nwe have\n\nR = \\frac{p_\\psi^2}{2I_3} + \\frac{p_\\psi^2 \\cos^2\\theta}{2I_1\\sin^2\\theta} + \\frac{p_\\phi^2}{2I_1\\sin^2\\theta} - \\frac{p_\\psi p_\\phi\\cos\\theta}{4I_1\\sin^2\\theta} - \\frac{I_1 \\dot{\\theta}^2}{2} + Mg\\ell \\cos\\theta \\,.\n\nThe first term is constant, and can be ignored since only the derivatives of R will enter the equations of motion. The simplified Routhian, without loss of information, is thus\n\nR = \\frac{1}{2I_1\\sin^2\\theta}\\left[p_\\psi^2 \\cos^2\\theta + p_\\phi^2 - \\frac{p_\\psi p_\\phi}{2} \\cos\\theta\\right] - \\frac{I_1 \\dot{\\theta}^2}{2} + Mg\\ell \\cos\\theta\n\nThe equation of motion for θ is, by direct calculation,\n\n-I_1\\ddot{\\theta} = -\\frac{\\cos\\theta}{I_1\\sin^3\\theta}\\left[p_\\psi^2 \\cos^2\\theta + p_\\phi^2 - \\frac{p_\\psi p_\\phi}{2} \\cos\\theta\\right] + \\frac{1}{2I_1\\sin^2\\theta} \\left[-2 p_\\psi^2 \\cos\\theta\\sin\\theta + \\frac{p_\\psi p_\\phi}{2} \\sin\\theta\\right] -Mg\\ell\\sin\\theta \\,,\n\nor by introducing the constants\n\na simpler form of the equation is obtained\n\n\\ddot{\\theta} = \\frac{\\cos\\theta}{\\sin^3\\theta}( a\\cos^2\\theta +b -c\\cos\\theta ) + \\frac{1}{2\\sin\\theta} (2 a \\cos\\theta - c) + k\\sin\\theta \\,.\n\nAlthough the equation is highly nonlinear, there is only one equation to solve for, it was obtained directly, and the cyclic coordinates are not involved.\n\nBy contrast, the Lagrangian approach leads to three nonlinear coupled equations to solve, despite the absence of the coordinates ψ and φ in the Lagrangian.\n\nThe θ equation is\n\n\\frac{d}{dt}\\frac{\\partial L}{\\partial \\dot{\\theta}} = \\frac{\\partial L}{\\partial \\theta} \\quad\\Rightarrow \\quad I_1\\ddot{\\theta} = (I_1- I_3)\\dot{\\phi}^2\\sin\\theta\\cos\\theta -I_3\\dot{\\psi}\\dot{\\phi}\\sin\\theta +Mg\\ell\\sin\\theta\\,,\n\nthe ψ equation is\n\n\\frac{d}{dt}\\frac{\\partial L}{\\partial \\dot{\\psi}} = \\frac{\\partial L}{\\partial \\psi} \\quad\\Rightarrow \\quad \\ddot{\\psi} + \\ddot{\\phi}\\cos\\theta - \\dot{\\phi}\\dot{\\theta}\\sin\\theta= 0 \\,,\n\nand the φ equation is\n\n\\frac{d}{dt}\\frac{\\partial L}{\\partial \\dot{\\phi}} = \\frac{\\partial L}{\\partial \\phi} \\quad\\Rightarrow \\quad \\ddot{\\phi}(I_1\\sin^2\\theta + I_3\\cos^2\\theta) + \\dot{\\phi}(I_1 - I_3)2\\sin\\theta\\cos\\theta\\dot{\\theta} + I_3\\ddot{\\psi}\\cos\\theta - I_3\\dot{\\psi}\\sin\\theta\\dot{\\theta} =0 \\,,\n\n### Velocity-dependent potentials\n\n#### Classical charged particle in a uniform magnetic field", null, "Classical charged particle in uniform B field, using cylindrical coordinates. Top: If the radial coordinate r and angular velocity /dt vary, the trajectory is a helicoid with varying radius but uniform motion in the z direction. Bottom: Constant r and /dt means a helicoid with constant radius.\n\nConsider a classical charged particle of mass m and electric charge q in a static (time-independent) uniform (constant throughout space) magnetic field B. The Lagrangian for a charged particle in a general electromagnetic field given by the magnetic potential A and electric potential φ is\n\nL = \\frac{m}{2} \\dot{\\mathbf{r}}^2 - q \\phi + q \\dot{\\mathbf{r}} \\cdot \\mathbf{A} \\,,\n\nIt is convenient to use cylindrical coordinates (r, θ, z), so that\n\n\\dot{\\mathbf{r}} = \\mathbf{v} = (v_r, v_\\theta,v_z) = (\\dot{r},r\\dot{\\theta},\\dot{z}) \\,,\n\\mathbf{B} = (B_r,B_\\theta,B_z) = (0,0,B)\\,.\n\nIn this case the electric potential is zero, φ = 0, and we can choose the axial gauge for the magnetic potential\n\nand the Lagrangian is\n\nL(r,\\dot{r},\\dot{\\theta},\\dot{z}) = \\frac{m}{2} (\\dot{r}^2 + r^2\\dot{\\theta}^2 + \\dot{z}^2) + \\frac{qB r^2\\dot{\\theta}}{2} \\,.\n\nNotice this potential has an effectively cylindrical symmetry (although it also has angular velocity dependence), since the only spatial dependence is on the radial length from an imaginary cylinder axis.\n\nThere are two cyclic coordinates, θ and z. The canonical momenta conjugate to θ and z are the constants\n\np_{\\theta} = \\frac{\\partial L}{\\partial \\dot {\\theta}} = mr^2\\dot {\\theta} + \\frac{qBr^2}{2} \\,,\\quad p_z = \\frac{\\partial L}{\\partial \\dot {z}} = m\\dot{z} \\,,\n\nso the velocities are\n\n\\dot {\\theta} = \\frac{1}{mr^2}\\left(p_\\theta - \\frac{qBr^2}{2}\\right) \\,,\\quad \\dot{z} = \\frac{p_z}{m}\\,.\n\nThe angular momentum about the z axis is not pθ, but the quantity mr2/dt, which is not conserved due to the contribution from the magnetic field. The canonical momentum pθ is the conserved quantity. It is still the case that pz is the linear or translational momentum along the z axis, which is also conserved.\n\nThe radial component r and angular velocity /dt can vary with time, but pθ is constant, and since pz is constant it follows dz/dt is constant. The Routhian can take the form\n\n\\begin{align} R(r,\\dot{r}) & = p_{\\theta}\\dot{\\theta}+p_z\\dot{z} - L \\\\ & = p_{\\theta}\\dot{\\theta}+p_z\\dot{z} - \\frac{m}{2}\\dot r^2 - \\frac{p_\\theta\\dot{\\theta}}{2} - \\frac{p_z\\dot{z}}{2} - \\frac{1}{2}qBr^2\\dot{\\theta} \\\\ & = (p_\\theta - qBr^2 )\\frac{\\dot{\\theta}}{2} - \\frac{m}{2}\\dot r^2 + \\frac{p_z\\dot{z}}{2} \\\\ & = \\frac{1}{2mr^2} \\left(p_\\theta - qBr^2 \\right)\\left(p_\\theta - \\frac{qBr^2}{2} \\right) - \\frac{m}{2}\\dot{r}^2 + \\frac{p_z}{2m} \\\\ & = \\frac{1}{2mr^2} \\left(p_\\theta^2 - \\frac{3}{2}qBr^2 + \\frac{(qB)^2r^4}{2} \\right) - \\frac{m}{2}\\dot{r}^2 \\end{align}\n\nwhere in the last line, the pz/2m term is a constant and can be ignored without loss of continuity. The Hamiltonian equations for θ and z automatically vanish and do not need to be solved for. The Lagrangian equation in r\n\n\\frac{d}{dt}\\frac{\\partial R}{\\partial \\dot{r}} = \\frac{\\partial R}{\\partial r}\n\nis by direct calculation\n\n-m\\ddot{r} = \\frac{1}{2m}\\left[\\frac{-2}{r^3} \\left(p_\\theta^2 - \\frac{3}{2}qBr^2 + \\frac{(qB)^2 r^4}{2} \\right) + \\frac{1}{r^2}(- 3qBr + 2(qB)^2r^3)\\right] \\,,\n\nwhich after collecting terms is\n\nm\\ddot{r}=\\frac{1}{2m}\\left[\\frac{2p_{\\theta}^2}{r^3}-(qB)^2 r\\right] \\,,\n\nand simplifying further by introducing the constants\n\na = \\frac{p_{\\theta}^2}{m^2} \\,,\\quad b = - \\frac{(qB)^2}{2m^2} \\,,\n\nthe differential equation is\n\n\\ddot{r} = \\frac{a}{r^3} + br\n\nTo see how z changes with time, integrate the momenta expression for pz above\n\nz = \\frac{p_z}{m}t + c_z \\,,\n\nwhere cz is an arbitrary constant, the initial value of z to be specified in the initial conditions.\n\nThe motion of the particle in this system is helicoidal, with the axial motion uniform (constant) but the radial and angular components varying in a spiral according to the equation of motion derived above. The initial conditions on r, dr/dt, θ, /dt, will determine if the trajectory of the particle has a constant r or varying r. If initially r is nonzero but dr/dt = 0, while θ and /dt are arbitrary, then the initial velocity of the particle has no radial component, r is constant, so the motion will be in a perfect helix. If r is constant, the angular velocity is also constant according to the conserved pθ.\n\nWith the Lagrangian approach, the equation for r would include /dt which has to be eliminated, and there would be equations for θ and z to solve for.\n\nThe r equation is\n\n\\frac{d}{dt} \\frac{\\partial L}{\\partial \\dot{r}} = \\frac{\\partial L}{\\partial r} \\quad\\Rightarrow\\quad m\\ddot{r} = mr\\dot{\\theta}^2 + qBr\\dot{\\theta} \\,,\n\nthe θ equation is\n\n\\frac{d}{dt} \\frac{\\partial L}{\\partial \\dot{\\theta}} = \\frac{\\partial L}{\\partial \\theta} \\quad\\Rightarrow\\quad m(2r\\dot{r}\\dot {\\theta} + r^2\\ddot {\\theta}) + qBr\\dot{r} = 0 \\,,\n\nand the z equation is\n\n\\frac{d}{dt} \\frac{\\partial L}{\\partial \\dot{z}} = \\frac{\\partial L}{\\partial z} \\quad\\Rightarrow\\quad m\\ddot{z} = 0 \\,.\n\nThe z equation is trivial to integrate, but the r and θ equations are not, in any case the time derivatives are mixed in all the equations and must be eliminated." ]
[ null, "http://read.images.worldlibrary.org/App_Themes/wel-mem/images/logo.jpg", null, "http://read.images.worldlibrary.org/images/SmallBook.gif", null, "http://www.ebooklibrary.org/images/delete.jpg", null, "http://www.ebooklibrary.org/App_Themes/default/images/icon_new_window.gif", null, "http://images.worldlibrary.net/articles/eng/File:Charged_particle_in_uniform_B_field.svg", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.7636099,"math_prob":0.9998462,"size":33443,"snap":"2020-10-2020-16","text_gpt3_token_len":10629,"char_repetition_ratio":0.23074853,"word_repetition_ratio":0.08143253,"special_character_ratio":0.3037706,"punctuation_ratio":0.11689692,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.99999905,"pos_list":[0,1,2,3,4,5,6,7,8,9,10],"im_url_duplicate_count":[null,null,null,null,null,null,null,null,null,3,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2020-02-20T00:01:23Z\",\"WARC-Record-ID\":\"<urn:uuid:ff2a5377-7259-4ab3-8f78-3bd0810706d1>\",\"Content-Length\":\"151356\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:3c88f2ff-6535-4abc-a2d1-98c867aba905>\",\"WARC-Concurrent-To\":\"<urn:uuid:4e451f0f-2293-47a4-b6db-b33a05e5a071>\",\"WARC-IP-Address\":\"66.27.42.21\",\"WARC-Target-URI\":\"http://www.ebooklibrary.org/articles/eng/Routhian_mechanics\",\"WARC-Payload-Digest\":\"sha1:BDPBJO75XXTHPANSIM3I6IYCF4SFYFSO\",\"WARC-Block-Digest\":\"sha1:BYJEDCZ5FXSJTRR3UB5WPGX7RTV7K6LV\",\"WARC-Identified-Payload-Type\":\"application/xhtml+xml\",\"warc_filename\":\"/cc_download/warc_2020/CC-MAIN-2020-10/CC-MAIN-2020-10_segments_1581875144429.5_warc_CC-MAIN-20200219214816-20200220004816-00361.warc.gz\"}"}
http://newarthurianeconomics.blogspot.com/2017/12/labor-share-where-do-they-get-those.html
[ "## Sunday, December 17, 2017\n\n###", null, "Labor share: Where do they get those numbers?\n\nSo I can answer a question that's been in the back of my mind for a long time now.\n\nWhy is labor share more than 100%?\n\nIt's not percent, Art. It's an index.\n\nYeah I know. But how did it get so high? It's useless. It tells me labor share is going down, but it doesn't tell me what the share is, the share that labor gets. It should be a percentage. It's not, I know, but it should be.\n\nSo where do they get those numbers?\n\nLabor share, as I learned a couple days ago, is calculated by taking compensation as a percent of current-dollar output.\n\nIt is a percentage -- see? I was right. It has to be a percentage.\n\nBut the thing is, it takes one set of indexed values as a percent of another set of indexed values. Indexed values are not the actual values. Indexed values are like a price index (duh, Art). They pick one year to be the base year, and they figure all the values as a percent of the base year value. So right away when they do that, the actual values are gone. You get a line on a graph that is the exact same shape you get from the original values, but the whole shape has been moved up or down until the base year value is equal to 100.\n\nSeems harmless, right? Except of course the original numbers are gone. So you cannot look at labor share and find compensation as a percent of current dollar output, because you don't have those numbers anymore.", null, "The name \"labor share\" sounds like it would give you compensation as a percent of current dollar output. But it doesn't work that way. When they pick a year to be the base year, something they do again every few years, they pick a date from the recent past. An arbitrary choice, let's say. Then they re-figure the data for all the years so that the new base year gets the value 100. All the numbers get changed.\n\nOne thing that's for sure is that the base year value is 100. If you have two data sets like compensation and current-dollar output, you can be sure that when you plot them on a graph, the two lines will cross in the base year. Because both data sets have the value 100 for the base year.\n\nI don't know what compensation is, as a percent of current-dollar output. Maybe it's 80%. Maybe it's six. But I know for sure that compensation is going to be 100% of current-dollar output in the base year of a graph, because the numbers are indexed and the base year values are equal.\n\nIt's ridiculous to think that compensation and output are equal. That would mean labor share is 100% and capital share is zero, and I'm sure that's not the case. But that's all we can get from the indexed series called \"labor share\". That's all we can get even if we go back to the data that is used to calculate labor share, because that data is indexed, too.\n\nSo anyway, we know that labor share is compensation as a percent of current-dollar output, except the two lines cross at the 100 level in the base year. We also know that labor share has been going downhill for a long time.\n\nLabor share goes downhill for a long time, and then the lines cross at the 100 level. So that means labor share has to be higher than the 100 level in the years before the base year. And sure enough, it is.\n\n#### 1 comment:\n\nThe Arthurian said...\n\nFrom BLS:\n\nFootnote 8: 'See “LPC databases,” Labor productivity and costs (U.S. Bureau of Labor Statistics), https://www.bls.gov/lpc/data.htm. Click the link that says, “Download the complete Major Sector Productivity and Costs dataset.” A zip file that contains the annual and quarterly datasets will open. This is the sole location on the BLS website where data on labor share levels can be found: the other data search tools on the Productivity and Costs homepage supply only percent-change and index data.' (my bold)\n\nThis BLS article is a gold mine!" ]
[ null, "https://resources.blogblog.com/img/icon18_edit_allbkg.gif", null, "https://4.bp.blogspot.com/_fZWzmzvDF4o/SnvWdCIeFsI/AAAAAAAAAJw/k_oiLTSVsYc/s400/divider2.gif", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.9515566,"math_prob":0.9097081,"size":3764,"snap":"2019-13-2019-22","text_gpt3_token_len":870,"char_repetition_ratio":0.15212765,"word_repetition_ratio":0.035868004,"special_character_ratio":0.23538789,"punctuation_ratio":0.118581906,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9570912,"pos_list":[0,1,2,3,4],"im_url_duplicate_count":[null,null,null,null,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2019-03-27T02:23:22Z\",\"WARC-Record-ID\":\"<urn:uuid:42c25e72-a96b-4ea4-9162-30503030cfe9>\",\"Content-Length\":\"127203\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:b99616b2-cc22-4256-989c-f4f5cc5ffb47>\",\"WARC-Concurrent-To\":\"<urn:uuid:2572f701-9c8b-4138-8784-b64aab68ab66>\",\"WARC-IP-Address\":\"172.217.164.161\",\"WARC-Target-URI\":\"http://newarthurianeconomics.blogspot.com/2017/12/labor-share-where-do-they-get-those.html\",\"WARC-Payload-Digest\":\"sha1:LM4JVOYX5L7SXT5MMS5EX34D7YUS74GG\",\"WARC-Block-Digest\":\"sha1:NU77HZ7KP3HUTSL3BKBGTMWYLTYZSNI2\",\"WARC-Identified-Payload-Type\":\"application/xhtml+xml\",\"warc_filename\":\"/cc_download/warc_2019/CC-MAIN-2019-13/CC-MAIN-2019-13_segments_1552912207618.95_warc_CC-MAIN-20190327020750-20190327042750-00397.warc.gz\"}"}
https://www.maplesoft.com/support/help/maple/view.aspx?path=Statistics/QuantilePlot&L=E
[ "", null, "QuantilePlot - Maple Help\n\nStatistics\n\n QuantilePlot\n generate quantile-quantile plots", null, "Calling Sequence QuantilePlot(X, Y, options, plotoptions) QuantilePlot['interactive'](X, Y)", null, "Parameters\n\n X - first data sample Y - second data sample options - (optional) equation(s) of the form option=value where option is one of color, method, reference, or samplesize; specify options for generating the quantile-quantile plot plotoptions - options to be passed to the plots[display] command", null, "Description\n\n • The QuantilePlot command generates a quantile-quantile plot for the specified data.\n • The first parameter X is the first data sample - given as e.g. a Vector.\n • The second parameter Y is the second data sample - given as e.g. a Vector.\n • If the ['interactive'] option is used, then a dialog box appears that allows for customized creation of the plot.", null, "Options\n\n The options argument can contain one or more of the options shown below. All unrecognized options will be passed to the plots[display] command. See plot/options for details.\n • color=name, list, or range\n This option specifies colors for the points and for the reference line. When a list of colors is given, the set of points and the reference line are colored with the corresponding colors in the list. If a range of colors is given, the colors are generated by selecting an appropriate number of equally spaced points in the corresponding hue range.\n • method=integer[1..9]\n Method for calculating the quantiles. See Statistics[Quantile] for more details.\n • reference=true or false\n If reference is set to true, the reference line $y=x$ is drawn in the same plot. Default value is true.\n • samplesize= positive integer\n The number of points to be plotted. The quantiles taken will be $Q\\left(\\frac{i}{\\mathrm{numpoints}}\\right)$ for $i=1..\\mathrm{numpoints}$ The default value is 25.", null, "Examples\n\n > $\\mathrm{with}\\left(\\mathrm{Statistics}\\right):$\n\nCreate three random samples.\n\n > $X≔\\mathrm{Sample}\\left(\\mathrm{Normal}\\left(5,2\\right),500\\right):$\n > $Y≔\\mathrm{Sample}\\left(\\mathrm{Normal}\\left(5,2\\right),500\\right):$\n > $Z≔\\mathrm{Sample}\\left(\\mathrm{Normal}\\left(6,3\\right),500\\right):$\n > $\\mathrm{QuantilePlot}\\left(X,Y\\right)$", null, "The command to create the plot from the Plotting Guide using the data above is\n\n > $\\mathrm{QuantilePlot}\\left(X,Z\\right)$", null, "Added options can alter the appearance of the plot:\n\n > $\\mathrm{QuantilePlot}\\left(X,Y,\\mathrm{symbolsize}=15,\\mathrm{symbol}=\\mathrm{circle},\\mathrm{color}=\\left[\"Black\",\"Red\"\\right],{\\mathrm{axis}}_{2}=\\left[\\mathrm{gridlines}=\\left[8,\\mathrm{color}=\"Grey\"\\right]\\right]\\right)$", null, "" ]
[ null, "https://bat.bing.com/action/0", null, "https://www.maplesoft.com/support/help/maple/arrow_down.gif", null, "https://www.maplesoft.com/support/help/maple/arrow_down.gif", null, "https://www.maplesoft.com/support/help/maple/arrow_down.gif", null, "https://www.maplesoft.com/support/help/maple/arrow_down.gif", null, "https://www.maplesoft.com/support/help/maple/arrow_down.gif", null, "https://www.maplesoft.com/support/help/content/6847/image246.png", null, "https://www.maplesoft.com/support/help/content/6847/image260.png", null, "https://www.maplesoft.com/support/help/content/6847/image271.png", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.5949235,"math_prob":0.99811095,"size":2259,"snap":"2023-40-2023-50","text_gpt3_token_len":553,"char_repetition_ratio":0.1525499,"word_repetition_ratio":0.03821656,"special_character_ratio":0.19964586,"punctuation_ratio":0.13752913,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.999091,"pos_list":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18],"im_url_duplicate_count":[null,null,null,null,null,null,null,null,null,null,null,null,null,1,null,1,null,1,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2023-09-26T03:44:49Z\",\"WARC-Record-ID\":\"<urn:uuid:6a465add-389e-47fd-8dd5-954aec6b3210>\",\"Content-Length\":\"135578\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:52c73d87-c55d-41b5-84a1-d2a53879226c>\",\"WARC-Concurrent-To\":\"<urn:uuid:c3bf75eb-19eb-42eb-8ad7-8e831f6cdc66>\",\"WARC-IP-Address\":\"199.71.183.28\",\"WARC-Target-URI\":\"https://www.maplesoft.com/support/help/maple/view.aspx?path=Statistics/QuantilePlot&L=E\",\"WARC-Payload-Digest\":\"sha1:ZKBMTFP4PTMHV2LJM6G33Z4EVYGKFMGD\",\"WARC-Block-Digest\":\"sha1:JNPAQW5DGX76CZZYZBBYOPDJX5BZBWRY\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2023/CC-MAIN-2023-40/CC-MAIN-2023-40_segments_1695233510130.53_warc_CC-MAIN-20230926011608-20230926041608-00194.warc.gz\"}"}
https://www.filipekberg.se/2011/10/16/calling-a-dynamic-method-from-a-dynamic-method/
[ "# Calling a dynamic method from a dynamic method\n\n## Posted by Filip Ekberg on 16 Oct 2011\n\nLet's take a look at how we can call a method from a dynamic method. In the last post we looked at how we called a static method in our current context, but let's take a look at how we can call another dynamically created method that takes an integer parameter and then does some math operation on it and then returns it.\n\nFirst off we need to create this method, we're just going to use IL that we've seen before and I am going to add the input parameter with 2. The dynamic method will look like this with the emitted IL:\n\n``````var addMethod = new DynamicMethod(\ntypeof(int),\nmethodArguments,\ntypeof(Program).Module\n);\n\nil.Emit(OpCodes.Ldarg_0);\nil.Emit(OpCodes.Ldc_I4, 2);\nil.Emit(OpCodes.Ret);\n``````\n\nSo we load the first argument onto the evaluation stack, then we add a 4 byte integer with the value of 2 onto the evaluation stack and last we call `OpCodes.Add`.\n\nI don't know if you've noticed this before, but Dynamic Method derives from `MethodInfo`, which means that we can just call this method!\n\nWe've got the following code from the last blog post:\n\n``````var mathOperation = new DynamicMethod(\ntypeof(void),\nmethodArguments,\ntypeof(Program).Module);\n\nil = mathOperation.GetILGenerator();\nvar methods = typeof(Program).GetMethods();\n``````\n\nIn both these dynamic methods, we use the variable methodArguments that we've also seen before:\n\n``````Type[] methodArguments = {\ntypeof(int)\n};\n``````\n\nIt just says that we expect an integer parameter sent to the method. Let's take a look at the IL we're going to emit, first of all we want to load the argument onto the evaluation stack then we want to add the value 10 and multiply these and pass the result as a parameter to the add method.\n\nSo this code is the same from the last blog post:\n\n``````il.Emit(OpCodes.Ldarg_0);\nil.Emit(OpCodes.Ldc_I4, 10);\nil.Emit(OpCodes.Mul);\n``````\n\nSo now we're prepared to call the dynamic add method we've created and since it derives from `MethodInfo` we can just do this:\n\n``````il.Emit(OpCodes.Call, addMethod);\n``````\n\nSince the result from the multiplication is already on the evaluation stack it's also the first argument that this method gets!\n\nThe Add method in the dynamic add method we've created will also have it's value on the evaluation stack, so let's print it with our static method from the last blog post:\n\n``````il.Emit(OpCodes.Call, methods.First(x => x.Name == \"PrintWithSpecificFormat\"));\nil.Emit(OpCodes.Ret);\n``````\n\nAnd now if we invoke this:\n\n``````var toInvoke = (Action<int>)mathOperation.CreateDelegate(typeof(Action<int>));\ntoInvoke(10);\n``````\n\nwe should see this printed:\n\n`The value is: 102`" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.7831313,"math_prob":0.8973552,"size":2782,"snap":"2019-51-2020-05","text_gpt3_token_len":630,"char_repetition_ratio":0.15334773,"word_repetition_ratio":0.03926097,"special_character_ratio":0.22969086,"punctuation_ratio":0.14874552,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9868403,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2020-01-22T11:41:12Z\",\"WARC-Record-ID\":\"<urn:uuid:93cd2cc1-9058-423f-a6a6-04406b06d34f>\",\"Content-Length\":\"25875\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:f67af56a-2623-4cab-b5b6-081c2a3455b3>\",\"WARC-Concurrent-To\":\"<urn:uuid:00a76847-b390-4343-9dce-6e56b2d78cc2>\",\"WARC-IP-Address\":\"104.31.83.113\",\"WARC-Target-URI\":\"https://www.filipekberg.se/2011/10/16/calling-a-dynamic-method-from-a-dynamic-method/\",\"WARC-Payload-Digest\":\"sha1:HKX2YJRXCOYYP673ZKTFHTVWII24OXTI\",\"WARC-Block-Digest\":\"sha1:GUFWWH6PQMPOMVIQERW3PGCI5OQQVJOL\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2020/CC-MAIN-2020-05/CC-MAIN-2020-05_segments_1579250606975.49_warc_CC-MAIN-20200122101729-20200122130729-00005.warc.gz\"}"}
https://www.powershow.com/view1/259527-ZDc1Z/Chapter_8_Cluster_Analysis_powerpoint_ppt_presentation
[ "# Chapter 8' Cluster Analysis - PowerPoint PPT Presentation\n\n1 / 98\nTitle:\n\n## Chapter 8' Cluster Analysis\n\nDescription:\n\n### Partitioning algorithms: Construct various partitions and then evaluate them by ... CLARANS (A Clustering Algorithm based on Randomized Search) (Ng and Han'94) ... – PowerPoint PPT presentation\n\nNumber of Views:297\nAvg rating:3.0/5.0\nSlides: 99\nProvided by: jiaw193\nCategory:\nTags:\nTranscript and Presenter's Notes\n\nTitle: Chapter 8' Cluster Analysis\n\n1\nChapter 8. Cluster Analysis\n• What is Cluster Analysis?\n• Types of Data in Cluster Analysis\n• A Categorization of Major Clustering Methods\n• Partitioning Methods\n• Hierarchical Methods\n• Density-Based Methods\n• Grid-Based Methods\n• Model-Based Clustering Methods\n• Outlier Analysis\n• Summary\n\n2\nWhat is Cluster Analysis?\n• Cluster a collection of data objects\n• Similar to one another within the same cluster\n• Dissimilar to the objects in other clusters\n• Cluster analysis\n• Grouping a set of data objects into clusters\n• Clustering is unsupervised classification no\npredefined classes\n• Typical applications\n• As a stand-alone tool to get insight into data\ndistribution\n• As a preprocessing step for other algorithms\n\n3\nWhat is Cluster Analysis?\n• Finding groups of objects such that the objects\nin a group will be similar (or related) to one\nanother and different from (or unrelated to) the\nobjects in other groups\n\n4\nApplications of Cluster Analysis\n• Understanding\n• Group related documents for browsing, group genes\nand proteins that have similar functionality, or\ngroup stocks with similar price fluctuations\n• Summarization\n• Reduce the size of large data sets\n\nClustering precipitation in Australia\n5\nGeneral Applications of Clustering\n• Pattern Recognition\n• Spatial Data Analysis\n• create thematic maps in GIS by clustering feature\nspaces\n• detect spatial clusters and explain them in\nspatial data mining\n• Image Processing\n• Economic Science (especially market research)\n• WWW\n• Document classification\n• Cluster Weblog data to discover groups of similar\naccess patterns\n\n6\nExamples of Clustering Applications\n• Marketing Help marketers discover distinct\ngroups in their customer bases, and then use this\nknowledge to develop targeted marketing programs\n• Land use Identification of areas of similar land\nuse in an earth observation database\n• Insurance Identifying groups of motor insurance\npolicy holders with a high average claim cost\n• City-planning Identifying groups of houses\naccording to their house type, value, and\ngeographical location\n• Earth-quake studies Observed earth quake\nepicenters should be clustered along continent\nfaults\n\n7\nWhat Is Good Clustering?\n• A good clustering method will produce high\nquality clusters with\n• high intra-class similarity\n• low inter-class similarity\n• The quality of a clustering result depends on\nboth the similarity measure used by the method\nand its implementation.\n• The quality of a clustering method is also\nmeasured by its ability to discover some or all\nof the hidden patterns.\n\n8\nRequirements of Clustering in Data Mining\n• Scalability\n• Ability to deal with different types of\nattributes\n• Discovery of clusters with arbitrary shape\n• Minimal requirements for domain knowledge to\ndetermine input parameters\n• Able to deal with noise and outliers\n• Insensitive to order of input records\n• High dimensionality\n• Incorporation of user-specified constraints\n• Interpretability and usability\n\n9\nNotion of a Cluster can be Ambiguous\n10\nChapter 8. Cluster Analysis\n• What is Cluster Analysis?\n• Types of Data in Cluster Analysis\n• A Categorization of Major Clustering Methods\n• Partitioning Methods\n• Hierarchical Methods\n• Density-Based Methods\n• Grid-Based Methods\n• Model-Based Clustering Methods\n• Outlier Analysis\n• Summary\n\n11\nData Structures\n• Data matrix\n• (two modes)\n• Dissimilarity matrix\n• (one mode)\n\n12\nMeasure the Quality of Clustering\n• Dissimilarity/Similarity metric Similarity is\nexpressed in terms of a distance function, which\nis typically metric d(i, j)\n• There is a separate quality function that\nmeasures the goodness of a cluster.\n• The definitions of distance functions are usually\nvery different for interval-scaled, boolean,\ncategorical, ordinal and ratio variables.\n• Weights should be associated with different\nvariables based on applications and data\nsemantics.\n• It is hard to define similar enough or good\nenough\n• the answer is typically highly subjective.\n\n13\nSimilarity and Dissimilarity Between Objects\n• Distances are normally used to measure the\nsimilarity or dissimilarity between two data\nobjects\n• Some popular ones include Minkowski distance\n• where i (xi1, xi2, , xip) and j (xj1, xj2,\n, xjp) are two p-dimensional data objects, and q\nis a positive integer\n• If q 1, d is Manhattan distance\n\n14\nSimilarity and Dissimilarity Between Objects\n(Cont.)\n• If q 2, d is Euclidean distance\n• Properties\n• d(i,j) ? 0\n• d(i,i) 0\n• d(i,j) d(j,i)\n• d(i,j) ? d(i,k) d(k,j)\n• Also one can use weighted distance, parametric\nPearson product moment correlation, or other\ndisimilarity measures.\n\n15\nChapter 8. Cluster Analysis\n• What is Cluster Analysis?\n• Types of Data in Cluster Analysis\n• A Categorization of Major Clustering Methods\n• Partitioning Methods\n• Hierarchical Methods\n• Density-Based Methods\n• Grid-Based Methods\n• Model-Based Clustering Methods\n• Outlier Analysis\n• Summary\n\n16\nMajor Clustering Approaches\n• Partitioning algorithms Construct various\npartitions and then evaluate them by some\ncriterion\n• Hierarchy algorithms Create a hierarchical\ndecomposition of the set of data (or objects)\nusing some criterion\n• Density-based based on connectivity and density\nfunctions\n• Grid-based based on a multiple-level granularity\nstructure\n• Model-based A model is hypothesized for each of\nthe clusters and the idea is to find the best fit\nof that model to each other\n\n17\nChapter 8. Cluster Analysis\n• What is Cluster Analysis?\n• Types of Data in Cluster Analysis\n• A Categorization of Major Clustering Methods\n• Partitioning Methods\n• Hierarchical Methods\n• Density-Based Methods\n• Grid-Based Methods\n• Model-Based Clustering Methods\n• Outlier Analysis\n• Summary\n\n18\nPartitioning Algorithms Basic Concept\n• Partitioning method Construct a partition of a\ndatabase D of n objects into a set of k clusters\n• Given a k, find a partition of k clusters that\noptimizes the chosen partitioning criterion\n• Global optimal exhaustively enumerate all\npartitions\n• Heuristic methods k-means and k-medoids\nalgorithms\n• k-means (MacQueen67) Each cluster is\nrepresented by the center of the cluster\n• k-medoids or PAM (Partition around medoids)\n(Kaufman Rousseeuw87) Each cluster is\nrepresented by one of the objects in the cluster\n\n19\nThe K-Means Clustering Method\n• Given k, the k-means algorithm is implemented in\n4 steps\n• Partition objects into k nonempty subsets\n• Compute seed points as the centroids of the\nclusters of the current partition. The centroid\nis the center (mean point) of the cluster.\n• Assign each object to the cluster with the\nnearest seed point.\n• Go back to Step 2, stop when no more new\nassignment.\n\n20\nThe K-Means Clustering Method\n• Example\n\n21\n• Strength\n• Relatively efficient O(tkn), where n is\nobjects, k is clusters, and t is iterations.\nNormally, k, t ltlt n.\n• Often terminates at a local optimum. The global\noptimum may be found using techniques such as\ndeterministic annealing and genetic algorithms\n• Weakness\n• Applicable only when mean is defined, then what\n• Need to specify k, the number of clusters, in\n• Unable to handle noisy data and outliers\n• Not suitable to discover clusters with non-convex\nshapes\n\n22\nVariations of the K-Means Method\n• A few variants of the k-means which differ in\n• Selection of the initial k means\n• Dissimilarity calculations\n• Strategies to calculate cluster means\n• Handling categorical data k-modes (Huang98)\n• Replacing means of clusters with modes\n• Using new dissimilarity measures to deal with\ncategorical objects\n• Using a frequency-based method to update modes of\nclusters\n• A mixture of categorical and numerical data\nk-prototype method\n\n23\nThe K-Medoids Clustering Method\n• Find representative objects, called medoids, in\nclusters\n• PAM (Partitioning Around Medoids, 1987)\n• starts from an initial set of medoids and\niteratively replaces one of the medoids by one of\nthe non-medoids if it improves the total distance\nof the resulting clustering\n• PAM works effectively for small data sets, but\ndoes not scale well for large data sets\n• CLARA (Kaufmann Rousseeuw, 1990)\n• CLARANS (Ng Han, 1994) Randomized sampling\n• Focusing spatial data structure (Ester et al.,\n1995)\n\n24\nPAM (Partitioning Around Medoids) (1987)\n• PAM (Kaufman and Rousseeuw, 1987), built in Splus\n• Use real object to represent the cluster\n• Select k representative objects arbitrarily\n• For each pair of non-selected object h and\nselected object i, calculate the total swapping\ncost TCih\n• For each pair of i and h,\n• If TCih lt 0, i is replaced by h\n• Then assign each non-selected object to the most\nsimilar representative object\n• repeat steps 2-3 until there is no change\n\n25\nPAM Clustering Total swapping cost TCih?jCjih\n26\nCLARA (Clustering Large Applications) (1990)\n• CLARA (Kaufmann and Rousseeuw in 1990)\n• Built in statistical analysis packages, such as\nS\n• It draws multiple samples of the data set,\napplies PAM on each sample, and gives the best\nclustering as the output\n• Strength deals with larger data sets than PAM\n• Weakness\n• Efficiency depends on the sample size\n• A good clustering based on samples will not\nnecessarily represent a good clustering of the\nwhole data set if the sample is biased\n\n27\nCLARANS (Randomized CLARA) (1994)\n• CLARANS (A Clustering Algorithm based on\nRandomized Search) (Ng and Han94)\n• CLARANS draws sample of neighbors dynamically\n• The clustering process can be presented as\nsearching a graph where every node is a potential\nsolution, that is, a set of k medoids\n• If the local optimum is found, CLARANS starts\nwith new randomly selected node in search for a\nnew local optimum\n• It is more efficient and scalable than both PAM\nand CLARA\n• Focusing techniques and spatial access structures\nmay further improve its performance (Ester et\nal.95)\n\n28\nChapter 8. Cluster Analysis\n• What is Cluster Analysis?\n• Types of Data in Cluster Analysis\n• A Categorization of Major Clustering Methods\n• Partitioning Methods\n• Hierarchical Methods\n• Density-Based Methods\n• Grid-Based Methods\n• Model-Based Clustering Methods\n• Outlier Analysis\n• Summary\n\n29\nHierarchical Clustering\n• Produces a set of nested clusters organized as a\nhierarchical tree\n• Can be visualized as a dendrogram\n• A tree like diagram that records the sequences of\nmerges or splits\n\n30\nStrengths of Hierarchical Clustering\n• Do not have to assume any particular number of\nclusters\n• Any desired number of clusters can be obtained by\ncutting the dendogram at the proper level\n• They may correspond to meaningful taxonomies\n• Example in biological sciences (e.g., animal\nkingdom, phylogeny reconstruction, )\n\n31\nHierarchical Clustering\n• Two main types of hierarchical clustering\n• Agglomerative\n• At each step, merge the closest pair of clusters\nuntil only one cluster (or k clusters) left\n• Divisive\n• At each step, split a cluster until each cluster\ncontains a point (or there are k clusters)\n• Traditional hierarchical algorithms use a\nsimilarity or distance matrix\n• Merge or split one cluster at a time\n\n32\nAgglomerative Clustering Algorithm\n• More popular hierarchical clustering technique\n• Basic algorithm is straightforward\n• Compute the proximity matrix\n• Let each data point be a cluster\n• Repeat\n• Merge the two closest clusters\n• Update the proximity matrix\n• Until only a single cluster remains\n• Key operation is the computation of the proximity\nof two clusters\n• Different approaches to defining the distance\nbetween clusters distinguish the different\nalgorithms\n\n33\nStarting Situation\nproximity matrix\n\nProximity Matrix\n34\nIntermediate Situation\n• After some merging steps, we have some clusters\n\nC3\nC4\nProximity Matrix\nC1\nC5\nC2\n35\nIntermediate Situation\n• We want to merge the two closest clusters (C2 and\nC5) and update the proximity matrix.\n\nC3\nC4\nProximity Matrix\nC1\nC5\nC2\n36\nAfter Merging\nC2 U C5\n• The question is How do we update the proximity\nmatrix?\n\nC1\nC3\nC4\n?\nC1\n? ? ? ?\nC2 U C5\nC3\n?\nC3\nC4\n?\nC4\nProximity Matrix\nC1\nC2 U C5\n37\nHow to Define Inter-Cluster Similarity\nSimilarity?\n• MIN\n• MAX\n• Group Average\n• Distance Between Centroids\n• Other methods driven by an objective function\n• Wards Method uses squared error\n\nProximity Matrix\n38\nHow to Define Inter-Cluster Similarity\n• MIN\n• MAX\n• Group Average\n• Distance Between Centroids\n• Other methods driven by an objective function\n• Wards Method uses squared error\n\nProximity Matrix\n39\nHow to Define Inter-Cluster Similarity\n• MIN\n• MAX\n• Group Average\n• Distance Between Centroids\n• Other methods driven by an objective function\n• Wards Method uses squared error\n\nProximity Matrix\n40\nHow to Define Inter-Cluster Similarity\n• MIN\n• MAX\n• Group Average\n• Distance Between Centroids\n• Other methods driven by an objective function\n• Wards Method uses squared error\n\nProximity Matrix\n41\nHow to Define Inter-Cluster Similarity\n?\n?\n• MIN\n• MAX\n• Group Average\n• Distance Between Centroids\n• Other methods driven by an objective function\n• Wards Method uses squared error\n\nProximity Matrix\n42\nA Dendrogram Shows How the Clusters are Merged\nHierarchically\nDecompose data objects into a several levels of\nnested partitioning (tree of clusters), called a\ndendrogram. A clustering of the data objects is\nobtained by cutting the dendrogram at the desired\nlevel, then each connected component forms a\ncluster.\n43\nMore on Hierarchical Clustering Methods\n• Major weakness of agglomerative clustering\nmethods\n• do not scale well time complexity of at least\nO(n2), where n is the number of total objects\n• can never undo what was done previously\n• Integration of hierarchical with distance-based\nclustering\n• BIRCH (1996) uses CF-tree and incrementally\n• CURE (1998) selects well-scattered points from\nthe cluster and then shrinks them towards the\ncenter of the cluster by a specified fraction\n• CHAMELEON (1999) hierarchical clustering using\ndynamic modeling\n\n44\nBIRCH (1996)\n• Birch Balanced Iterative Reducing and Clustering\nusing Hierarchies, by Zhang, Ramakrishnan, Livny\n(SIGMOD96)\n• Incrementally construct a CF (Clustering Feature)\ntree, a hierarchical data structure for\nmultiphase clustering\n• Phase 1 scan DB to build an initial in-memory CF\ntree (a multi-level compression of the data that\ntries to preserve the inherent clustering\nstructure of the data)\n• Phase 2 use an arbitrary clustering algorithm to\ncluster the leaf nodes of the CF-tree\n• Scales linearly finds a good clustering with a\nsingle scan and improves the quality with a few\n• Weakness handles only numeric data, and\nsensitive to the order of the data record.\n\n45\nClustering Feature Vector\nCF (5, (16,30),(54,190))\n(3,4) (2,6) (4,5) (4,7) (3,8)\n46\nCF Tree\nRoot\nB 7 L 6\nNon-leaf node\nCF1\nCF3\nCF2\nCF5\nchild1\nchild3\nchild2\nchild5\nLeaf node\nLeaf node\nCF1\nCF2\nCF6\nprev\nnext\nCF1\nCF2\nCF4\nprev\nnext\n47\nCURE (Clustering Using REpresentatives )\n• CURE proposed by Guha, Rastogi Shim, 1998\n• Stops the creation of a cluster hierarchy if a\nlevel consists of k clusters\n• Uses multiple representative points to evaluate\nthe distance between clusters, adjusts well to\narbitrary shaped clusters and avoids single-link\neffect\n\n48\nDrawbacks of Distance-Based Method\n• Drawbacks of square-error based clustering method\n• Consider only one point as representative of a\ncluster\n• Good only for convex shaped, similar size and\ndensity, and if k can be reasonably estimated\n\n49\nCure The Algorithm\n• Draw random sample s.\n• Partition sample to p partitions with size s/p\n• Partially cluster partitions into s/pq clusters\n• Eliminate outliers\n• By random sampling\n• If a cluster grows too slow, eliminate it.\n• Cluster partial clusters.\n• Label data in disk\n\n50\nData Partitioning and Clustering\n• s 50\n• p 2\n• s/p 25\n• s/pq 5\n\nx\nx\n51\nCure Shrinking Representative Points\n• Shrink the multiple representative points towards\nthe gravity center by a fraction of ?.\n• Multiple representatives capture the shape of the\ncluster\n\n52\nClustering Categorical Data ROCK\n• ROCK Robust Clustering using linKs,by S. Guha,\nR. Rastogi, K. Shim (ICDE99).\n• Use links to measure similarity/proximity\n• Not distance based\n• Computational complexity\n• Basic ideas\n• Similarity function and neighbors\n• Let T1 1,2,3, T23,4,5\n\n53\nRock Algorithm\n• Links The number of common neighbours for the\ntwo points.\n• Algorithm\n• Draw random sample\n• Label data in disk\n\n1,2,3, 1,2,4, 1,2,5, 1,3,4,\n1,3,5 1,4,5, 2,3,4, 2,3,5, 2,4,5,\n3,4,5\n3\n1,2,3 1,2,4\n54\nCHAMELEON\n• CHAMELEON hierarchical clustering using dynamic\nmodeling, by G. Karypis, E.H. Han and V. Kumar99\n• Measures the similarity based on a dynamic model\n• Two clusters are merged only if the\ninterconnectivity and closeness (proximity)\nbetween two clusters are high relative to the\ninternal interconnectivity of the clusters and\ncloseness of items within the clusters\n• A two phase algorithm\n• 1. Use a graph partitioning algorithm cluster\nobjects into a large number of relatively small\nsub-clusters\n• 2. Use an agglomerative hierarchical clustering\nalgorithm find the genuine clusters by\nrepeatedly combining these sub-clusters\n\n55\nOverall Framework of CHAMELEON\nConstruct Sparse Graph\nPartition the Graph\nData Set\nMerge Partition\nFinal Clusters\n56\nChapter 8. Cluster Analysis\n• What is Cluster Analysis?\n• Types of Data in Cluster Analysis\n• A Categorization of Major Clustering Methods\n• Partitioning Methods\n• Hierarchical Methods\n• Density-Based Methods\n• Grid-Based Methods\n• Model-Based Clustering Methods\n• Outlier Analysis\n• Summary\n\n57\nDensity-Based Clustering Methods\n• Clustering based on density (local cluster\ncriterion), such as density-connected points\n• Major features\n• Discover clusters of arbitrary shape\n• Handle noise\n• One scan\n• Need density parameters as termination condition\n• Several interesting studies\n• DBSCAN Ester, et al. (KDD96)\n• OPTICS Ankerst, et al (SIGMOD99).\n• DENCLUE Hinneburg D. Keim (KDD98)\n• CLIQUE Agrawal, et al. (SIGMOD98)\n\n58\nDensity-Based Clustering Background\n• Two parameters\n• Eps Maximum radius of the neighbourhood\n• MinPts Minimum number of points in an\nEps-neighbourhood of that point\n• NEps(p) q belongs to D dist(p,q) lt Eps\n• Directly density-reachable A point p is directly\ndensity-reachable from a point q wrt. Eps, MinPts\nif\n• 1) p belongs to NEps(q)\n• 2) core point condition\n• NEps (q) gt MinPts\n\n59\nDensity-Based Clustering Background (II)\n• Density-reachable\n• A point p is density-reachable from a point q\nwrt. Eps, MinPts if there is a chain of points\np1, , pn, p1 q, pn p such that pi1 is\ndirectly density-reachable from pi\n• Density-connected\n• A point p is density-connected to a point q wrt.\nEps, MinPts if there is a point o such that both,\np and q are density-reachable from o wrt. Eps and\nMinPts.\n\np\np1\nq\n60\nDBSCAN Density Based Spatial Clustering of\nApplications with Noise\n• Relies on a density-based notion of cluster A\ncluster is defined as a maximal set of\ndensity-connected points\n• Discovers clusters of arbitrary shape in spatial\ndatabases with noise\n\n61\nDBSCAN The Algorithm\n• Arbitrary select a point p\n• Retrieve all points density-reachable from p wrt\nEps and MinPts.\n• If p is a core point, a cluster is formed.\n• If p is a border point, no points are\ndensity-reachable from p and DBSCAN visits the\nnext point of the database.\n• Continue the process until all of the points have\nbeen processed.\n\n62\nOPTICS A Cluster-Ordering Method (1999)\n• OPTICS Ordering Points To Identify the\nClustering Structure\n• Ankerst, Breunig, Kriegel, and Sander (SIGMOD99)\n• Produces a special order of the database wrt its\ndensity-based clustering structure\n• This cluster-ordering contains info equiv to the\ndensity-based clusterings corresponding to a\n• Good for both automatic and interactive cluster\nanalysis, including finding intrinsic clustering\nstructure\n• Can be represented graphically or using\nvisualization techniques\n\n63\nOPTICS Some Extension from DBSCAN\n• Index-based\n• k number of dimensions\n• N 20\n• p 75\n• M N(1-p) 5\n• Complexity O(kN2)\n• Core Distance\n• Reachability Distance\n\nD\np1\no\np2\no\nMax (core-distance (o), d (o, p)) r(p1, o)\n2.8cm. r(p2,o) 4cm\nMinPts 5 e 3 cm\n64\nReachability-distance\nundefined\n\nCluster-order of the objects\n65\nDENCLUE using density functions\n• DENsity-based CLUstEring by Hinneburg Keim\n(KDD98)\n• Major features\n• Solid mathematical foundation\n• Good for data sets with large amounts of noise\n• Allows a compact mathematical description of\narbitrarily shaped clusters in high-dimensional\ndata sets\n• Significant faster than existing algorithm\n(faster than DBSCAN by a factor of up to 45)\n• But needs a large number of parameters\n\n66\nDenclue Technical Essence\n• Uses grid cells but only keeps information about\ngrid cells that do actually contain data points\nand manages these cells in a tree-based access\nstructure.\n• Influence function describes the impact of a\ndata point within its neighborhood.\n• Overall density of the data space can be\ncalculated as the sum of the influence function\nof all data points.\n• Clusters can be determined mathematically by\nidentifying density attractors.\n• Density attractors are local maximal of the\noverall density function.\n\n67\nGradient The steepness of a slope\n• Example\n\n68\nDensity Attractor\n69\nCenter-Defined and Arbitrary\n70\nChapter 8. Cluster Analysis\n• What is Cluster Analysis?\n• Types of Data in Cluster Analysis\n• A Categorization of Major Clustering Methods\n• Partitioning Methods\n• Hierarchical Methods\n• Density-Based Methods\n• Grid-Based Methods\n• Model-Based Clustering Methods\n• Outlier Analysis\n• Summary\n\n71\nGrid-Based Clustering Method\n• Using multi-resolution grid data structure\n• Several interesting methods\n• STING (a STatistical INformation Grid approach)\nby Wang, Yang and Muntz (1997)\n• WaveCluster by Sheikholeslami, Chatterjee, and\nZhang (VLDB98)\n• A multi-resolution clustering approach using\nwavelet method\n• CLIQUE Agrawal, et al. (SIGMOD98)\n\n72\nSTING A Statistical Information Grid Approach\n• Wang, Yang and Muntz (VLDB97)\n• The spatial area area is divided into rectangular\ncells\n• There are several levels of cells corresponding\nto different levels of resolution\n\n73\nSTING A Statistical Information Grid Approach (2)\n• Each cell at a high level is partitioned into a\nnumber of smaller cells in the next lower level\n• Statistical info of each cell is calculated and\nstored beforehand and is used to answer queries\n• Parameters of higher level cells can be easily\ncalculated from parameters of lower level cell\n• count, mean, s, min, max\n• type of distributionnormal, uniform, etc.\n• Use a top-down approach to answer spatial data\nqueries\n• Start from a pre-selected layertypically with a\nsmall number of cells\n• For each cell in the current level compute the\nconfidence interval\n\n74\nSTING A Statistical Information Grid Approach (3)\n• Remove the irrelevant cells from further\nconsideration\n• When finish examining the current layer, proceed\nto the next lower level\n• Repeat this process until the bottom layer is\nreached\n• Query-independent, easy to parallelize,\nincremental update\n• O(K), where K is the number of grid cells at the\nlowest level\n• All the cluster boundaries are either horizontal\nor vertical, and no diagonal boundary is detected\n\n75\nWaveCluster (1998)\n• Sheikholeslami, Chatterjee, and Zhang (VLDB98)\n• A multi-resolution clustering approach which\napplies wavelet transform to the feature space\n• A wavelet transform is a signal processing\ntechnique that decomposes a signal into different\nfrequency sub-band.\n• Both grid-based and density-based\n• Input parameters\n• of grid cells for each dimension\n• the wavelet, and the of applications of wavelet\ntransform.\n\n76\nWhat is Wavelet (1)?\n77\nWaveCluster (1998)\n• How to apply wavelet transform to find clusters\n• Summaries the data by imposing a\nmultidimensional grid structure onto data space\n• These multidimensional spatial data objects are\nrepresented in a n-dimensional feature space\n• Apply wavelet transform on feature space to find\nthe dense regions in the feature space\n• Apply wavelet transform multiple times which\nresult in clusters at different scales from fine\nto coarse\n\n78\nWhat Is Wavelet (2)?\n79\nQuantization\n80\nTransformation\n81\nWaveCluster (1998)\n• Why is wavelet transformation useful for\nclustering\n• Unsupervised clustering\n• It uses hat-shape filters to emphasize region\nwhere points cluster, but simultaneously to\nsuppress weaker information in their boundary\n• Effective removal of outliers\n• Multi-resolution\n• Cost efficiency\n• Major features\n• Complexity O(N)\n• Detect arbitrary shaped clusters at different\nscales\n• Not sensitive to noise, not sensitive to input\norder\n• Only applicable to low dimensional data\n\n82\nCLIQUE (Clustering In QUEst)\n• Agrawal, Gehrke, Gunopulos, Raghavan (SIGMOD98).\n• Automatically identifying subspaces of a high\ndimensional data space that allow better\nclustering than original space\n• CLIQUE can be considered as both density-based\nand grid-based\n• It partitions each dimension into the same number\nof equal length interval\n• It partitions an m-dimensional data space into\nnon-overlapping rectangular units\n• A unit is dense if the fraction of total data\npoints contained in the unit exceeds the input\nmodel parameter\n• A cluster is a maximal set of connected dense\nunits within a subspace\n\n83\nCLIQUE The Major Steps\n• Partition the data space and find the number of\npoints that lie inside each cell of the\npartition.\n• Identify the subspaces that contain clusters\nusing the Apriori principle\n• Identify clusters\n• Determine dense units in all subspaces of\ninterests\n• Determine connected dense units in all subspaces\nof interests.\n• Generate minimal description for the clusters\n• Determine maximal regions that cover a cluster of\nconnected dense units for each cluster\n• Determination of minimal cover for each cluster\n\n84\nSalary (10,000)\n7\n6\n5\n4\n3\n2\n1\nage\n0\n20\n30\n40\n50\n60\n? 3\n85\nStrength and Weakness of CLIQUE\n• Strength\n• It automatically finds subspaces of the highest\ndimensionality such that high density clusters\nexist in those subspaces\n• It is insensitive to the order of records in\ninput and does not presume some canonical data\ndistribution\n• It scales linearly with the size of input and has\ngood scalability as the number of dimensions in\nthe data increases\n• Weakness\n• The accuracy of the clustering result may be\ndegraded at the expense of simplicity of the\nmethod\n\n86\nChapter 8. Cluster Analysis\n• What is Cluster Analysis?\n• Types of Data in Cluster Analysis\n• A Categorization of Major Clustering Methods\n• Partitioning Methods\n• Hierarchical Methods\n• Density-Based Methods\n• Grid-Based Methods\n• Model-Based Clustering Methods\n• Outlier Analysis\n• Summary\n\n87\nModel-Based Clustering Methods\n• Attempt to optimize the fit between the data and\nsome mathematical model\n• Statistical and AI approach\n• Conceptual clustering\n• A form of clustering in machine learning\n• Produces a classification scheme for a set of\nunlabeled objects\n• Finds characteristic description for each concept\n(class)\n• COBWEB (Fisher87)\n• A popular a simple method of incremental\nconceptual learning\n• Creates a hierarchical clustering in the form of\na classification tree\n• Each node refers to a concept and contains a\nprobabilistic description of that concept\n\n88\nCOBWEB Clustering Method\nA classification tree\n89\nMore on Statistical-Based Clustering\n• Limitations of COBWEB\n• The assumption that the attributes are\nindependent of each other is often too strong\nbecause correlation may exist\n• Not suitable for clustering large database data\nskewed tree and expensive probability\ndistributions\n• CLASSIT\n• an extension of COBWEB for incremental clustering\nof continuous data\n• suffers similar problems as COBWEB\n• AutoClass (Cheeseman and Stutz, 1996)\n• Uses Bayesian statistical analysis to estimate\nthe number of clusters\n• Popular in industry\n\n90\nOther Model-Based Clustering Methods\n• Neural network approaches\n• Represent each cluster as an exemplar, acting as\na prototype of the cluster\n• New objects are distributed to the cluster whose\nexemplar is the most similar according to some\ndostance measure\n• Competitive learning\n• Involves a hierarchical architecture of several\nunits (neurons)\n• Neurons compete in a winner-takes-all fashion\nfor the object currently being presented\n\n91\nModel-Based Clustering Methods\n92\nSelf-organizing feature maps (SOMs)\n• Clustering is also performed by having several\nunits competing for the current object\n• The unit whose weight vector is closest to the\ncurrent object wins\n• The winner and its neighbors learn by having\n• SOMs are believed to resemble processing that can\noccur in the brain\n• Useful for visualizing high-dimensional data in\n2- or 3-D space\n\n93\nChapter 8. Cluster Analysis\n• What is Cluster Analysis?\n• Types of Data in Cluster Analysis\n• A Categorization of Major Clustering Methods\n• Partitioning Methods\n• Hierarchical Methods\n• Density-Based Methods\n• Grid-Based Methods\n• Model-Based Clustering Methods\n• Outlier Analysis\n• Summary\n\n94\nWhat Is Outlier Discovery?\n• What are outliers?\n• The set of objects are considerably dissimilar\nfrom the remainder of the data\n• Example Sports Michael Jordon, Wayne Gretzky,\n...\n• Problem\n• Find top n outlier points\n• Applications\n• Credit card fraud detection\n• Telecom fraud detection\n• Customer segmentation\n• Medical analysis\n\n95\nOutlier Discovery Statistical Approaches\n• Assume a model underlying distribution that\ngenerates data set (e.g. normal distribution)\n• Use discordancy tests depending on\n• data distribution\n• distribution parameter (e.g., mean, variance)\n• number of expected outliers\n• Drawbacks\n• most tests are for single attribute\n• In many cases, data distribution may not be known\n\n96\nOutlier Discovery Distance-Based Approach\n• Introduced to counter the main limitations\nimposed by statistical methods\n• We need multi-dimensional analysis without\nknowing data distribution.\n• Distance-based outlier A DB(p, D)-outlier is an\nobject O in a dataset T such that at least a\nfraction p of the objects in T lies at a distance\ngreater than D from O\n• Algorithms for mining distance-based outliers\n• Index-based algorithm\n• Nested-loop algorithm\n• Cell-based algorithm\n\n97\nOutlier Discovery Deviation-Based Approach\n• Identifies outliers by examining the main\ncharacteristics of objects in a group\n• Objects that deviate from this description are\nconsidered outliers\n• sequential exception technique\n• simulates the way in which humans can distinguish\nunusual objects from among a series of supposedly\nlike objects\n• OLAP data cube technique\n• uses data cubes to identify regions of anomalies\nin large multidimensional data\n\n98\nChapter 8. Cluster Analysis\n• What is Cluster Analysis?\n• Types of Data in Cluster Analysis\n• A Categorization of Major Clustering Methods\n• Partitioning Methods\n• Hierarchical Methods\n• Density-Based Methods\n• Grid-Based Methods\n• Model-Based Clustering Methods\n• Outlier Analysis\n• Summary\n\n99\nProblems and Challenges\n• Considerable progress has been made in scalable\nclustering methods\n• Partitioning k-means, k-medoids, CLARANS\n• Hierarchical BIRCH, CURE\n• Density-based DBSCAN, CLIQUE, OPTICS\n• Grid-based STING, WaveCluster\n• Model-based Autoclass, Denclue, Cobweb\n• Current clustering techniques do not address all" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.7747219,"math_prob":0.7208858,"size":31616,"snap":"2023-40-2023-50","text_gpt3_token_len":7706,"char_repetition_ratio":0.17170694,"word_repetition_ratio":0.111328505,"special_character_ratio":0.21637778,"punctuation_ratio":0.06158358,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.97191995,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2023-12-02T18:04:43Z\",\"WARC-Record-ID\":\"<urn:uuid:6fce2487-4f15-4068-bbfb-2ccb80f60cb2>\",\"Content-Length\":\"225036\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:d274120c-396d-40d8-bafc-8fa4226e2ce1>\",\"WARC-Concurrent-To\":\"<urn:uuid:80bbe6ed-8cfc-4a7f-857a-cc8e4c497944>\",\"WARC-IP-Address\":\"64.251.10.90\",\"WARC-Target-URI\":\"https://www.powershow.com/view1/259527-ZDc1Z/Chapter_8_Cluster_Analysis_powerpoint_ppt_presentation\",\"WARC-Payload-Digest\":\"sha1:O5RUAV7BNQEIHI3LEMWEYU7KSHLYGZDS\",\"WARC-Block-Digest\":\"sha1:GHF4ZO7DH5FUOQ5KZBREBPDUP5HTLELI\",\"WARC-Identified-Payload-Type\":\"application/xhtml+xml\",\"warc_filename\":\"/cc_download/warc_2023/CC-MAIN-2023-50/CC-MAIN-2023-50_segments_1700679100448.65_warc_CC-MAIN-20231202172159-20231202202159-00618.warc.gz\"}"}
https://blogforlife.cc/1623/
[ "# Which Of The Following Is The Graph Of\n\nWhich Of The Following Is The Graph Of. The equation of a line is typically written as y=mx+b where m is the slope and b is the y-intercept. Options A and B are correct.\n\nThe following graph is an example of a Disconnected Graph, where there are two components, one with 'a', 'b', 'c', 'd' vertices and another with 'e', 'f', 'g', 'h' vertices. The linear graph, bar and the pie graph are some of the best graphs to. Options A and B are correct.\n\n## Which of these graphs represent functions?\n\nThe graph of this function is shown in the attachment. Complete your question and ask again. Which one of the following graphs correctly represent.\n\n### Options A and B are correct.\n\nThe graph and the explanation is in the pictures. So, they are both graph of functions. The best graph to use if I want to compare the price of six different cars would be a.\n\nWhich one of the following graphs correctly represent. The linear graph, bar and the pie graph are some of the best graphs to. Brent Hanneson – Creator of greenlighttestprep.com If you enjoy my solutions, you'll like my GRE prep course.\n\n### Therefore I got confused b/w answer choices.\n\nBrent Hanneson – Creator of greenlighttestprep.com If you enjoy my solutions, you'll like my GRE prep course. The graph and the explanation is in the pictures. Which one of the following graphs correctly represent.\n\nThe following graph is an example of a Disconnected Graph, where there are two components, one with 'a', 'b', 'c', 'd' vertices and another with 'e', 'f', 'g', 'h' vertices. So, they are both graph of functions. Find the value of x,y,z in the following figure.\n\nFor example prices of a shirt (line graph) The best graph for numerical information will depend on what you want to present. Start studying Graphing Logarithmic Functions QUIZ. The best graph to use if I want to compare the price of six different cars would be a." ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.9205671,"math_prob":0.7887017,"size":1861,"snap":"2021-04-2021-17","text_gpt3_token_len":428,"char_repetition_ratio":0.13731825,"word_repetition_ratio":0.5153374,"special_character_ratio":0.2278345,"punctuation_ratio":0.13624679,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9973892,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2021-01-28T07:51:03Z\",\"WARC-Record-ID\":\"<urn:uuid:20bc1257-2c62-436b-8fc5-a7df603f6003>\",\"Content-Length\":\"31926\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:faf65c3d-cd16-4c76-b69a-fda3f531e34d>\",\"WARC-Concurrent-To\":\"<urn:uuid:7849fc40-407e-457a-a293-b0617641e120>\",\"WARC-IP-Address\":\"172.96.187.187\",\"WARC-Target-URI\":\"https://blogforlife.cc/1623/\",\"WARC-Payload-Digest\":\"sha1:3SC73KBVWJM7LX6FPKV7QQJZ5MHDJERQ\",\"WARC-Block-Digest\":\"sha1:C7R5SYVNHUCEXX73RTJDSRC2KY37FJEJ\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2021/CC-MAIN-2021-04/CC-MAIN-2021-04_segments_1610704839214.97_warc_CC-MAIN-20210128071759-20210128101759-00085.warc.gz\"}"}
https://digitalcommons.mtu.edu/etds/202/
[ "## Dissertations, Master's Theses and Master's Reports - Open\n\n2010\n\nMaster's Thesis\n\n#### Degree Name\n\nMaster of Science in Mathematical Sciences (MS)\n\n#### College, School or Department Name\n\nDepartment of Mathematical Sciences\n\nMelissa Sue Keranen\n\n#### Abstract\n\nChapter 1 is used to introduce the basic tools and mechanics used within this thesis. Some historical uses and background are touched upon as well. The majority of the definitions are contained within this chapter as well.\n\nIn Chapter 2 we consider the question whether one can decompose λ copies of monochromatic Kv into copies of Kk such that each copy of the Kk contains at most one edge from each Kv. This is called a proper edge coloring (Hurd, Sarvate, ). The majority of the content in this section is a wide variety of examples to explain the constructions used in Chapters 3 and 4.\n\nIn Chapters 3 and 4 we investigate how to properly color BIBD(v, k, λ) for k = 4, and 5. Not only will there be direct constructions of relatively small BIBDs, we also prove some generalized constructions used within.\n\nIn Chapter 5 we talk about an alternate solution to Chapters 3 and 4. A purely graph theoretical solution using matchings, augmenting paths, and theorems about the edgechromatic number is used to develop a theorem that than covers all possible cases. We also discuss how this method performed compared to the methods in Chapters 3 and 4.\n\nIn Chapter 6, we switch topics to Latin rectangles that have the same number of symbols and an equivalent sized matrix to Latin squares. Suppose ab = n2. We define an equitable Latin rectangle as an a × b matrix on a set of n symbols where each symbol appears either [b/n] or [b/n] times in each row of the matrix and either [a/n] or [a/n] times in each column of the matrix. Two equitable Latin rectangles are orthogonal in the usual way. Denote a set of ka × b mutually orthogonal equitable Latin rectangles as a k–MOELR(a, b; n). We show that there exists a k–MOELR(a, b; n) for all a, b, n where k is at least 3 with some exceptions.\n\nCOinS" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.8986243,"math_prob":0.9420841,"size":2189,"snap":"2020-10-2020-16","text_gpt3_token_len":515,"char_repetition_ratio":0.09610984,"word_repetition_ratio":0.010781671,"special_character_ratio":0.22110553,"punctuation_ratio":0.10070258,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.98867977,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2020-04-05T20:33:59Z\",\"WARC-Record-ID\":\"<urn:uuid:e2481cad-63bc-474d-a2d9-d0da6fcf5363>\",\"Content-Length\":\"36949\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:f94848cd-f245-4830-90fa-acf56c2cab68>\",\"WARC-Concurrent-To\":\"<urn:uuid:eaf01ae6-d903-499d-882f-8650559fed99>\",\"WARC-IP-Address\":\"50.18.241.247\",\"WARC-Target-URI\":\"https://digitalcommons.mtu.edu/etds/202/\",\"WARC-Payload-Digest\":\"sha1:OKIPQOND4AIVS2MXGEUF72OQ4YCY5NJ6\",\"WARC-Block-Digest\":\"sha1:UP373CNOHVZXMJQY7ZGT54HJATRVREE4\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2020/CC-MAIN-2020-16/CC-MAIN-2020-16_segments_1585371609067.62_warc_CC-MAIN-20200405181743-20200405212243-00485.warc.gz\"}"}
https://projecteuler.net/problem=401
[ "", null, "## Sum of squares of divisors", null, "### Problem 401\n\nThe divisors of 6 are 1,2,3 and 6.\nThe sum of the squares of these numbers is 1+4+9+36=50.\n\nLet sigma2(n) represent the sum of the squares of the divisors of n. Thus sigma2(6)=50.\n\nLet SIGMA2 represent the summatory function of sigma2, that is SIGMA2(n)= sigma2(i) for i=1 to n.\nThe first 6 values of SIGMA2 are: 1,6,16,37,63 and 113.\n\nFind SIGMA2(1015) modulo 109." ]
[ null, "https://projecteuler.net/images/print_page_logo.png", null, "https://projecteuler.net/images/icons/file_html.png", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.7070757,"math_prob":0.9980935,"size":401,"snap":"2020-45-2020-50","text_gpt3_token_len":143,"char_repetition_ratio":0.16876574,"word_repetition_ratio":0.03076923,"special_character_ratio":0.3640898,"punctuation_ratio":0.14705883,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.99989533,"pos_list":[0,1,2,3,4],"im_url_duplicate_count":[null,null,null,null,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2020-12-01T20:45:02Z\",\"WARC-Record-ID\":\"<urn:uuid:8085e031-068b-4019-86cc-c9a129f705f0>\",\"Content-Length\":\"4564\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:4db9495f-2cd7-4887-ae2b-54d515daebf9>\",\"WARC-Concurrent-To\":\"<urn:uuid:ca887895-1a89-4d6e-9bc0-2e2db13a43e9>\",\"WARC-IP-Address\":\"31.170.122.77\",\"WARC-Target-URI\":\"https://projecteuler.net/problem=401\",\"WARC-Payload-Digest\":\"sha1:BYWFGC7O37SONQFAQCNGBYKTDUDR3DAC\",\"WARC-Block-Digest\":\"sha1:SOBHZCHG4MNSC4FHCBIEA5YSVMJ746FH\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2020/CC-MAIN-2020-50/CC-MAIN-2020-50_segments_1606141681524.75_warc_CC-MAIN-20201201200611-20201201230611-00567.warc.gz\"}"}
http://www.numbersaplenty.com/1230200201
[ "Search a number\nBaseRepresentation\nbin100100101010011…\n…0101110110001001\n310011201211122102102\n41021110311312021\n510004412401301\n6322023243145\n742325346336\noct11124656611\n93151748372\n101230200201\n1158146368a\n122a3ba94b5\n13167b39619\n14b955198d\n1573003b6b\nhex49535d89\n\n1230200201 has 8 divisors (see below), whose sum is σ = 1325063520. Its totient is φ = 1138348512.\n\nThe previous prime is 1230200183. The next prime is 1230200243. The reversal of 1230200201 is 1020020321.\n\nAdding to 1230200201 its reverse (1020020321), we get a palindrome (2250220522).\n\nIt is a happy number.\n\nIt is a sphenic number, since it is the product of 3 distinct primes.\n\nIt is a cyclic number.\n\nIt is not a de Polignac number, because 1230200201 - 214 = 1230183817 is a prime.\n\nIt is a Duffinian number.\n\nIt is not an unprimeable number, because it can be changed into a prime (1230200281) by changing a digit.\n\nIt is a polite number, since it can be written in 7 ways as a sum of consecutive naturals, for example, 752060 + ... + 753693.\n\nIt is an arithmetic number, because the mean of its divisors is an integer number (165632940).\n\nAlmost surely, 21230200201 is an apocalyptic number.\n\nIt is an amenable number.\n\n1230200201 is a deficient number, since it is larger than the sum of its proper divisors (94863319).\n\n1230200201 is a wasteful number, since it uses less digits than its factorization.\n\n1230200201 is an odious number, because the sum of its binary digits is odd.\n\nThe sum of its prime factors is 1505815.\n\nThe product of its (nonzero) digits is 24, while the sum is 11.\n\nThe square root of 1230200201 is about 35074.2099126980. The cubic root of 1230200201 is about 1071.4993975978.\n\nThe spelling of 1230200201 in words is \"one billion, two hundred thirty million, two hundred thousand, two hundred one\"." ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.83318436,"math_prob":0.9657011,"size":1911,"snap":"2019-51-2020-05","text_gpt3_token_len":597,"char_repetition_ratio":0.17252229,"word_repetition_ratio":0.006451613,"special_character_ratio":0.47252747,"punctuation_ratio":0.14044943,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.99428374,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2020-01-29T11:42:05Z\",\"WARC-Record-ID\":\"<urn:uuid:fa69e6e1-44e4-431c-97cf-90e2844e5429>\",\"Content-Length\":\"8942\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:a0408164-0f20-4174-8a9c-b9c6349b142b>\",\"WARC-Concurrent-To\":\"<urn:uuid:2d7a934c-fac1-4746-9f81-baa06d810c25>\",\"WARC-IP-Address\":\"62.149.142.170\",\"WARC-Target-URI\":\"http://www.numbersaplenty.com/1230200201\",\"WARC-Payload-Digest\":\"sha1:BPPHKLJLSB3DCMD3MUX2GOK5XFW3YRPR\",\"WARC-Block-Digest\":\"sha1:DAHQXVYLKSTSQ5KHWFWQNKYFQCV6FQPH\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2020/CC-MAIN-2020-05/CC-MAIN-2020-05_segments_1579251796127.92_warc_CC-MAIN-20200129102701-20200129132701-00546.warc.gz\"}"}
https://brilliant.org/discussions/thread/a-very-trivial-question-on-decimal-number-system/
[ "# Question on decimal number system\n\nLet me check how many of our mathematics enthusiasts here have given a thought to this question. We know that our decimal number system consists of the ten digits, viz., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. We start our counting with ZERO(0), then we count as following:\n\nONE, TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE..\n\nNow the next number is TEN(10). The very peculiar thing about this number is that in our decimal system (i.e., common man's number system) we write this number as a 1 followed by a 0. Then comes ELEVEN(11), written as a 1 followed by a 1, then TWELVE(12) written as a 1 followed by a 2, and so on. Now my question is,why is this so? Instead of writing TEN as 10, we could have written it as 1 followed by two 0's, i.e., as '100', or 0 followed by 1, i.e., as '01' or in any other way. Same argument applies in the case of ELEVEN, TWELVE, and so on. My question may seem to be an idiotic one or a meaningless one, but if you have a mathematical insight, then you will realize that it is indeed a very intriguing one. Try to account for this peculiar way in which our ancestors had designed a number system which has framed the structure of the whole of modern science and technology.", null, "Note by Kuldeep Guha Mazumder\n6 years ago\n\nThis discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.\n\nWhen posting on Brilliant:\n\n• Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .\n• Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting \"I don't understand!\" doesn't help anyone.\n• Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.\n\nMarkdownAppears as\n*italics* or _italics_ italics\n**bold** or __bold__ bold\n- bulleted- list\n• bulleted\n• list\n1. numbered2. list\n1. numbered\n2. list\nNote: you must add a full line of space before and after lists for them to show up correctly\nparagraph 1paragraph 2\n\nparagraph 1\n\nparagraph 2\n\n[example link](https://brilliant.org)example link\n> This is a quote\nThis is a quote\n # I indented these lines\n# 4 spaces, and now they show\n# up as a code block.\n\nprint \"hello world\"\n# I indented these lines\n# 4 spaces, and now they show\n# up as a code block.\n\nprint \"hello world\"\nMathAppears as\nRemember to wrap math in $$ ... $$ or $ ... $ to ensure proper formatting.\n2 \\times 3 $2 \\times 3$\n2^{34} $2^{34}$\na_{i-1} $a_{i-1}$\n\\frac{2}{3} $\\frac{2}{3}$\n\\sqrt{2} $\\sqrt{2}$\n\\sum_{i=1}^3 $\\sum_{i=1}^3$\n\\sin \\theta $\\sin \\theta$\n\\boxed{123} $\\boxed{123}$\n\nSort by:\n\nThere are quite a few different number systems, but the most common ones used in mathematics are integer base positional number systems. This is jargon for saying that all numbers are expressed as follows, given integer base $n$ and digits ${ a }_{ i }$\n\n$\\displaystyle \\sum _{ i=1 }^{ \\infty }{ { a }_{ i }{ n }^{ i-1 } }$\n\nOne useful property this has, for integer bases, is that for each number, there is an unique representation written in this form. This isn't necessarily the case for non-integer bases or other positional numbering systems.\n\nHaving said that, our decimal number system is base $10$, and uses digits $0,1,2,3,4,5,6,7,8,9$. Note that for any integer base, the number of the digits is equal to the integer base, and thus the base number itself cannot be represented by any of them. If $\"\"$ is a digit itself, then we are talking about base $11$, and we end up with the sequence\n\n$0,1,2,3,4,5,6,7,8,9,,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1, 20, 21,...$\n\nas awkward as that is, which is why nobody uses that.\n\n- 6 years ago\n\nYes yes..well, that is why the decimal number system find its place above the non-positional number systems like the Roman one, in the list of convenience of use. But I have a very nice way of explaining the concept to young minds.." ]
[ null, "https://ds055uzetaobb.cloudfront.net/brioche/avatars-2/resized/45/61a09f5893fc778ea9a72fe91066c8ff.a9f4ce26fc-AEZ40aHTe8.jpg", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.9295454,"math_prob":0.9867589,"size":3269,"snap":"2021-31-2021-39","text_gpt3_token_len":879,"char_repetition_ratio":0.113016844,"word_repetition_ratio":0.014134276,"special_character_ratio":0.27714896,"punctuation_ratio":0.18806745,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.990191,"pos_list":[0,1,2],"im_url_duplicate_count":[null,null,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2021-08-04T02:27:28Z\",\"WARC-Record-ID\":\"<urn:uuid:819a3447-b038-4381-b942-3da7f8b48d44>\",\"Content-Length\":\"70926\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:bf59476c-c4c7-4be7-a9e0-6a4898cad84c>\",\"WARC-Concurrent-To\":\"<urn:uuid:b957d1ca-cb3a-459a-8084-452927aff6be>\",\"WARC-IP-Address\":\"104.20.34.242\",\"WARC-Target-URI\":\"https://brilliant.org/discussions/thread/a-very-trivial-question-on-decimal-number-system/\",\"WARC-Payload-Digest\":\"sha1:LTGUX5GV67Q3EEGO24MRJ4F5ZZISADJP\",\"WARC-Block-Digest\":\"sha1:FZQKOVXXXDLQ75YXDEE7NX6QYAA4MDWU\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2021/CC-MAIN-2021-31/CC-MAIN-2021-31_segments_1627046154500.32_warc_CC-MAIN-20210804013942-20210804043942-00367.warc.gz\"}"}
https://www.jiskha.com/questions/1059888/Find-the-present-value-using-the-present-value-formula-and-a-calculator-Round
[ "# algebra\n\nFind the present value, using the present value formula and a calculator. (Round your answer to the nearest cent.)\nAchieve \\$225,500 at 8.55% compounded continuously for 8 years, 155 days.\n\nI use e for compound continuousy A=Pe^(rt).so I did 225,500=Pe^(.0855*8.42)than I divided both sides by e^(.0855*8.42) than e=2.71, than I did\n225,500/e^(.0855*8.42)1097725.13this answer does not look right where did I go wrong. Thank you for your help.\n\n1. 👍 0\n2. 👎 0\n3. 👁 66\n1. my equation, (very close to yours)\n\n225500 = PV e^(8.4246575(.0855))\n225500 = PV e^(.720308219) , now press 2nd ln\n225500 = PV (2.055066524)\nPV = 109,728.81\n\nI let the calculator carry all the decimal places and only rounded off my final answer to the nearest cent.\nYou were off by appr a factor of 10\n\n1. 👍 0\n2. 👎 0\nposted by Reiny\n2. Thank you very much Reiny it is greatly appreciate that you give your time to help others.\n\n1. 👍 0\n2. 👎 0\n\n## Similar Questions\n\n1. ### Algebra\n\nFind the present value, using the present value formula and a calculator. (Round your answer to the nearest cent.) Achieve \\$225,500 at 8.55% compounded continuously for 8 years, 125 days.\n\nasked by HOLLY on August 10, 2014\n2. ### Math\n\nFind the present value, using the present value formula and a calculator. (Round your answer to the nearest cent.) Achieve \\$225,500 at 8.65% compounded continuously for 8 years, 125 days.\n\nasked by Brook on May 13, 2014\n3. ### algebra\n\nFind the present value, using the present value formula and a calculator. (Round your answer to the nearest cent.) Achieve \\$225,500 at 8.55% compounded continuously for 8 years, 125 days.\n\nasked by HOLLY on August 22, 2014\n4. ### math\n\nfind the present value, using the present value formula and a calculator. (Round your answer to the nearest cent.) Achieve \\$225,500 at 8.35% compounded continuously for 8 years, 125 days.\n\nasked by Ronald on June 9, 2013\n5. ### math\n\nFind the present value, using the present value formula and a calculator. (Round your answer to the nearest cent.) Achieve \\$225,500 at 8.95% compounded continuously for 8 years, 155 days.\n\nasked by Anonymous on November 16, 2013\n6. ### algebra\n\nFind the future value, using the future value formula and a calculator. (Round your answer to the nearest cent.) \\$990 at 5.5% compounded quarterly for 3 years Find the present value, using the present value formula and a\n\nasked by gary on May 12, 2014\n7. ### math\n\nFind the present value, using the present value formula. (Round your answer to the nearest cent.) Achieve \\$225,500 at 8.45% compounded continuously for 8 years, 145 days.\n\nasked by emily on November 12, 2014\n8. ### Math\n\nPhosphorus-32 (P-32) has a half-life of 14.2 days. If 200 g of this substance are present initially, find the amount Q(t) present after t days. (Round your growth constant to four decimal places.) How fast is the P-32 decaying\n\nasked by Vanessa on April 7, 2014\n9. ### math\n\nPhosphorus-32 (P-32) has a half-life of 14.2 days. If 200 g of this substance are present initially, find the amount Q(t) present after t days. (Round your growth constant to four decimal places.) How fast is the P-32 decaying\n\nasked by Vanessa on April 5, 2014\n10. ### math\n\nPhosphorus-32 (P-32) has a half-life of 14.2 days. If 200 g of this substance are present initially, find the amount Q(t) present after t days. (Round your growth constant to four decimal places.) How fast is the P-32 decaying\n\nasked by vanessa on April 7, 2014\n\nMore Similar Questions" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.9335787,"math_prob":0.9348999,"size":2501,"snap":"2019-13-2019-22","text_gpt3_token_len":718,"char_repetition_ratio":0.15018022,"word_repetition_ratio":0.65525115,"special_character_ratio":0.30667734,"punctuation_ratio":0.13714285,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.99771553,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2019-05-26T04:16:17Z\",\"WARC-Record-ID\":\"<urn:uuid:86b5206e-6474-45ad-9c88-f605964af6e1>\",\"Content-Length\":\"22807\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:cea2a443-4f7c-4a9e-9f11-30730f77d9b5>\",\"WARC-Concurrent-To\":\"<urn:uuid:e820d362-bb00-4fa2-a625-36f1cad1480a>\",\"WARC-IP-Address\":\"66.228.55.50\",\"WARC-Target-URI\":\"https://www.jiskha.com/questions/1059888/Find-the-present-value-using-the-present-value-formula-and-a-calculator-Round\",\"WARC-Payload-Digest\":\"sha1:AJ5LYYHI7YZ7ZLYO5XU42T37IEWINJUL\",\"WARC-Block-Digest\":\"sha1:J65KIDB2ZFCUQPYPYFDA2IT33WWAT2ZX\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2019/CC-MAIN-2019-22/CC-MAIN-2019-22_segments_1558232258621.77_warc_CC-MAIN-20190526025014-20190526051014-00316.warc.gz\"}"}
http://bentrengrove.com/blog/2013/1/16/drawing-a-dashed-line-in-cocos2d
[ "# Drawing a dashed line in cocos2d\n\nA code snippet for drawing a dashed line in cocos2d. Could also be modified to draw in other engines such as OpenGL by removing cocos2d convenience methods.\n\n`void drawDashedLine(CGPoint origin, CGPoint destination, float dashLength){ CGPoint delta = ccpSub(destination, origin); float dist = ccpDistance(origin, destination); float x = delta.x / dist * dashLength; float y = delta.y / dist * dashLength; float linePercentage = 0.5f; CGPoint p1 = origin; for(float i = 0; i <= dist / dashLength * linePercentage; i++) { CGPoint p2 = CGPointMake(p1.x + x, p1.y + y); ccDrawLine(p1, p2); p1 = CGPointMake(p1.x + x / linePercentage, p1.y + y / linePercentage); }}`\n\nThe code works by drawing lots of small lines. This can be quite bad for performance if used in the draw method. A better way is to draw into a CCRenderTexture which reduces the number of draw calls significantly, of course if you need to update the line this may not help.\n\nYou can change the percentage of line drawn versus spacing by modifying the linePercentage variable. The algorithm splits the dashLength into line and space based on this percentage. Experiment to see what you like best." ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.8440392,"math_prob":0.99417007,"size":1188,"snap":"2019-35-2019-39","text_gpt3_token_len":283,"char_repetition_ratio":0.14611487,"word_repetition_ratio":0.010204081,"special_character_ratio":0.24494949,"punctuation_ratio":0.15315315,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9707589,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2019-09-16T06:30:01Z\",\"WARC-Record-ID\":\"<urn:uuid:3494b4dd-dc9a-47ba-bd54-e166b08dbbbf>\",\"Content-Length\":\"36375\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:fc824643-f329-4f26-99de-f8b98ec3f65c>\",\"WARC-Concurrent-To\":\"<urn:uuid:a4dd0b2c-7efa-49e6-81a5-63db64257bc6>\",\"WARC-IP-Address\":\"198.49.23.144\",\"WARC-Target-URI\":\"http://bentrengrove.com/blog/2013/1/16/drawing-a-dashed-line-in-cocos2d\",\"WARC-Payload-Digest\":\"sha1:NZVWU2G25WQTM4XD3TTWVMGP7GPRXRNS\",\"WARC-Block-Digest\":\"sha1:PWXRQ55XLQWNHAKQM2GBZ6JCQ2YW4RCM\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2019/CC-MAIN-2019-39/CC-MAIN-2019-39_segments_1568514572491.38_warc_CC-MAIN-20190916060046-20190916082046-00157.warc.gz\"}"}
http://everything.explained.today/Nearest_neighbor_graph/
[ "# Nearest neighbor graph explained\n\nThe nearest neighbor graph (NNG) is a directed graph defined for a set of points in a metric space, such as the Euclidean distance in the plane. The NNG has a vertex for each point, and a directed edge from p to q whenever q is a nearest neighbor of p, a point whose distance from p is minimum among all the given points other than p itself.\n\nIn many uses of these graphs, the directions of the edges are ignored and the NNG is defined instead as an undirected graph. However, the nearest neighbor relation is not a symmetric one, i.e., p from the definition is not necessarily a nearest neighbor for q. In theoretical discussions of algorithms a kind of general position is often assumed, namely, the nearest (k-nearest) neighbor is unique for each object. In implementations of the algorithms it is necessary to bear in mind that this is not always the case. For situations in which it is necessary to make the nearest neighbor for each object unique, the set P may be indexed and in the case of a tie the object with, e.g., the largest index may be taken as the nearest neighbor.\n\nThe k-nearest neighbor graph (k-NNG) is a graph in which two vertices p and q are connected by an edge, if the distance between p and q is among the k-th smallest distances from p to other objects from P. The NNG is a special case of the k-NNG, namely it is the 1-NNG. k-NNGs obey a separator theorem: they can be partitioned into two subgraphs of at most vertices each by the removal of O(k1/dn1 - 1/d) points.\n\nAnother variation is the farthest neighbor graph (FNG), in which each point is connected by an edge to the farthest point from it, instead of the nearest point.\n\nNNGs for points in the plane as well as in multidimensional spaces find applications, e.g., in data compression, motion planning, and facilities location. In statistical analysis, the nearest-neighbor chain algorithm based on following paths in this graph can be used to find hierarchical clusterings quickly. Nearest neighbor graphs are also a subject of computational geometry.\n\nThe method can be used to induce a graph on nodes with unknown connectivity.\n\n## NNGs for sets of points\n\n### One-dimensional case\n\nFor a set of points on a line, the nearest neighbor of a point is its left or right (or both) neighbor, if they are sorted along the line. Therefore, the NNG is a path or a forest of several paths and may be constructed in O(n log n) time by sorting. This estimate is asymptotically optimal for certain models of computation, because the constructed NNG gives the answer to the element uniqueness problem: it is sufficient to check whether the NNG has a zero-length edge.\n\n### Higher dimensions\n\nUnless stated otherwise, it is assumed that the NNGs are digraphs with uniquely defined nearest neighbors as described in the introduction.\n\n1. Along any directed path in an NNG the edge lengths are non-increasing.\n2. Only cycles of length 2 are possible in an NNG and each weakly connected component of an NNG with at least 2 vertices has exactly one 2-cycle.\n3. For the points in the plane the NNG is a planar graph with vertex degrees at most 6. If points are in general position, the degree is at most 5.\n4. The NNG (treated as an undirected graph with multiple nearest neighbors allowed) of a set of points in the plane or any higher dimension is a subgraph of the Delaunay triangulation, the Gabriel graph, and the Semi-Yao graph. If the points are in general position or if the single nearest neighbor condition is imposed, the NNG is a forest, a subgraph of the Euclidean minimum spanning tree.\n\n## Notes and References\n\n1. Book: . Computational Geometry - An Introduction . Springer-Verlag. 1985 . 0-387-96131-3 . 1st edition; 2nd printing, corrected and expanded, 1988; Russian translation, 1989.\n2. Eppstein . D. . David Eppstein . Paterson . M. S. . Mike Paterson . Yao . Frances . Frances Yao . On nearest-neighbor graphs . . 17 . 1997 . 263–282 . 3 . 10.1007/PL00009293. free .\n3. Miller . Gary L. . Gary Miller (professor) . Teng . Shang-Hua . Shang-Hua Teng . Thurston . William . William Thurston . Vavasis . Stephen A. . 10.1145/256292.256294 . 1 . Journal of the Association for Computing Machinery . 1–29 . Separators for sphere-packings and nearest neighbor graphs . 44 . 1997.\n4. Encyclopedia: Computational Geometry: Lecture Notes for 18.409, Spring 1988. August 1988. Massachusetts Institute of Technology Laboratory for Computer Science. Alok. Aggarwal. Joel. Wein. Lecture #10, March 10, 1988: Closest pair. Alok. Aggarwal. Shlomo. Kipnis. Observation 1, p. 2.\n5. Rahmati . Z. . King . V. . Valerie King . Whitesides . S. . Sue Whitesides . Kinetic data structures for all nearest neighbors and closest pair in the plane . . 2013 . 137–144 . 10.1145/2462356.2462378." ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.952783,"math_prob":0.9757049,"size":2735,"snap":"2023-40-2023-50","text_gpt3_token_len":602,"char_repetition_ratio":0.14976199,"word_repetition_ratio":0.0,"special_character_ratio":0.2106033,"punctuation_ratio":0.09566787,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.98459613,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2023-09-27T15:34:04Z\",\"WARC-Record-ID\":\"<urn:uuid:0c388791-8041-4572-b0e2-c83fb65c08b5>\",\"Content-Length\":\"13534\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:bee37f89-d177-4211-ace3-3929171fa768>\",\"WARC-Concurrent-To\":\"<urn:uuid:142ed358-6d9e-48ec-809c-3a45d17813f9>\",\"WARC-IP-Address\":\"85.25.210.18\",\"WARC-Target-URI\":\"http://everything.explained.today/Nearest_neighbor_graph/\",\"WARC-Payload-Digest\":\"sha1:PFPVG4RM5J2IS6CQLWHHHMAYP66P6CAF\",\"WARC-Block-Digest\":\"sha1:PBUMVMI3RFN5EV665AZENRVMBJWKFRCO\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2023/CC-MAIN-2023-40/CC-MAIN-2023-40_segments_1695233510300.41_warc_CC-MAIN-20230927135227-20230927165227-00789.warc.gz\"}"}
https://readforlearn.com/ggplot2-line-chart-gives-geom_path-each-group-consist-of-only-one-observation-do-you-need-to-adjust-the-group-aesthetic-2/
[ "# ggplot2 line chart gives “geom_path: Each group consist of only one observation. Do you need to adjust the group aesthetic?”\n\nyou only have to add `group = 1` into the ggplot or geom_line aes().\n\nFor line graphs, the data points must be grouped so that it knows which points to connect. In this case, it is simple — all points should be connected, so group=1. When more variables are used and multiple lines are drawn, the grouping for lines is usually done by variable.\n\nTry this:\n\n```plot5 <- ggplot(df, aes(year, pollution, group = 1)) +\ngeom_point() +\ngeom_line() +\nlabs(x = \"Year\", y = \"Particulate matter emissions (tons)\",\ntitle = \"Motor vehicle emissions in Baltimore\")```" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.8525066,"math_prob":0.9933874,"size":630,"snap":"2023-14-2023-23","text_gpt3_token_len":156,"char_repetition_ratio":0.10543131,"word_repetition_ratio":0.0,"special_character_ratio":0.26666668,"punctuation_ratio":0.16101696,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9865977,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2023-06-09T10:30:52Z\",\"WARC-Record-ID\":\"<urn:uuid:cbabf882-591f-4f87-9087-4658342daf81>\",\"Content-Length\":\"43977\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:04a8a473-3b20-4db4-a42d-a38892ab3694>\",\"WARC-Concurrent-To\":\"<urn:uuid:92d5a70c-fb8e-4743-9c76-dc39f214ad66>\",\"WARC-IP-Address\":\"172.67.184.249\",\"WARC-Target-URI\":\"https://readforlearn.com/ggplot2-line-chart-gives-geom_path-each-group-consist-of-only-one-observation-do-you-need-to-adjust-the-group-aesthetic-2/\",\"WARC-Payload-Digest\":\"sha1:6UOSCZKZOGBERKIGT2AQV5HSQMSI4DW2\",\"WARC-Block-Digest\":\"sha1:6TBN6VPS5UUCRRRWOSXOTSVI2UC4LWT2\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2023/CC-MAIN-2023-23/CC-MAIN-2023-23_segments_1685224656675.90_warc_CC-MAIN-20230609100535-20230609130535-00027.warc.gz\"}"}
https://en.pythonmana.com/2022/01/202201301536449738.html
[ "# Python Foundation: data structure summary\n\n2022-01-30 15:36:47 chaoyu\n\n# list\n\n## Definition of list\n\nA list is an ordered set , No fixed size , Can save any number of any type of Python object , The grammar is [ Elements 1, Elements 2, ..., Elements n].\n\n• The key point is 「 brackets []」 and 「 comma ,」\n• brackets Tie all the elements together\n• comma Separate each element one by one\n\n## List creation\n\n• Normal list\n``````x = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']\nprint(x, type(x))\n# ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday'] <class 'list'>\n\nx = [2, 3, 4, 5, 6, 7]\nprint(x, type(x))\n# [2, 3, 4, 5, 6, 7] <class 'list'>\nCopy code ``````\n• range() Create a list of\n``````x = list(range(10))\nprint(x, type(x))\n# [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] <class 'list'>\n\nx = list(range(1, 11, 2))\nprint(x, type(x))\n# [1, 3, 5, 7, 9] <class 'list'>\n\nx = list(range(10, 1, -2))\nprint(x, type(x))\n# [10, 8, 6, 4, 2] <class 'list'>\nCopy code ``````\n• Inferentially create a list\n``````x = * 5\nprint(x, type(x))\n# [0, 0, 0, 0, 0] <class 'list'>\n\nx = [0 for i in range(5)]\nprint(x, type(x))\n# [0, 0, 0, 0, 0] <class 'list'>\n\nx = [i for i in range(10)]\nprint(x, type(x))\n# [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] <class 'list'>\n\nx = [i for i in range(1, 10, 2)]\nprint(x, type(x))\n# [1, 3, 5, 7, 9] <class 'list'>\n\nx = [i for i in range(10, 1, -2)]\nprint(x, type(x))\n# [10, 8, 6, 4, 2] <class 'list'>\n\nx = [i ** 2 for i in range(1, 10)]\nprint(x, type(x))\n# [1, 4, 9, 16, 25, 36, 49, 64, 81] <class 'list'>\n\nx = [i for i in range(100) if (i % 2) != 0 and (i % 3) == 0]\nprint(x, type(x))\n\n# [3, 9, 15, 21, 27, 33, 39,\nCopy code ``````\n\nbecause list The element of can be any object , So what's in the list is a pointer to the object . Even save a simple [1,2,3], Also have 3 A pointer and 3 An integer object . x = [a] * 4 In operation , Just create 4 A point list References to , So once a change ,x in 4 individual a It's going to change .\n\n• Create a mixed list\n``````mix = [1, 'lsgo', 3.14, [1, 2, 3]]\nprint(mix, type(mix))\n# [1, 'lsgo', 3.14, [1, 2, 3]] <class 'list'>\nCopy code ``````\n• Create an empty list\n``````empty = []\nprint(empty, type(empty)) # [] <class 'list'>\nCopy code ``````\n\n## Add elements to the list\n\nLists don't look like tuples , The contents of the list can be changed (mutable), So add (append, extend)、 Insert (insert)、 Delete (remove, pop) These operations are available\n\n• `list.append(obj)` Add a new object at the end of the list , Accept only one parameter , Parameters can be any data type , The appended element is in list The original structure type is maintained in\n• `list.extend(seq)` Appends multiple values from another sequence at once at the end of the list ( Extend the original list with the new list )\n\nStrictly speaking append It's an addition , Add a whole thing to the list , and extend It 's an extension , Add all the elements of a thing to the list\n\n• list.insert(index, obj) In the number index Position insert obj\n\n## Delete the elements in the list\n\n• list.remove(obj) Removes the first match of a value in the list\n• list.pop([index=-1]) Removes an element from the list ( Default last element ), And returns the value of that element\n• del var1[, var2 ……] Delete single or multiple objects\n``````x = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']\ndel x[0:2]\nprint(x) # ['Wednesday', 'Thursday', 'Friday']\nCopy code ``````\n\n## Get the elements in the list\n\n• By the index value of the element , Get a single element from a list , Be careful , The list index value is from 0 At the beginning .\n• By specifying the index as -1, Allowing Python Returns the last list element , Indexes -2 Returns the second to last list element , And so on\n\nThe general way to write slices is start : stop : step\n\n• \"start :\" With step by 1 ( Default ) From number start Slice to the end of the list .\n• \": stop\" With step by 1 ( Default ) Number from the head of the list stop section\n• \"start : stop\" With step by 1 ( Default ) From number start To number stop section\n• \"start : stop : step\" Concrete step From number start To number stop section . Pay attention to the last step Set to -1, It is equivalent to arranging the list in reverse\n• \" : \" Copy all elements in the list ( Shallow copy )\n\n## Common operators for lists\n\n• The equal sign operator :==\n• Join operators +\n• Repeat operator *\n• Membership operators in、not in\n\n## Other methods of listing\n\n• list.count(obj) Count the number of times an element appears in a list\n``````list1 = [123, 456] * 3\nprint(list1) # [123, 456, 123, 456, 123, 456]\nnum = list1.count(123)\nprint(num) # 3\nCopy code ``````\n• list.index(x[, start[, end]]) Find the index position of the first match of a value in the list\n``````list1 = [123, 456] * 5\nprint(list1.index(123)) # 0\nprint(list1.index(123, 1)) # 2\nprint(list1.index(123, 3, 7)) # 4\nCopy code ``````\n• list.reverse() Reverse list of elements\n``````x = [123, 456, 789]\nx.reverse()\nprint(x) # [789, 456, 123]\nCopy code ``````\n• list.sort(key=None, reverse=False) Sort the original list\n\nkey -- It's basically a comparison element , There is only one parameter , The parameters of the specific function are taken from the iterable object , Specifies an element in an iterable object to sort . reverse -- Sort rule ,reverse = True Descending , reverse = False Ascending ( Default ). The method does not return a value , But it sorts the objects in the list\n\n``````x = [123, 456, 789, 213]\nx.sort()\nprint(x)\n# [123, 213, 456, 789]\n\nx.sort(reverse=True)\nprint(x)\n# [789, 456, 213, 123]\n\n# Get the second element of the list\ndef takeSecond(elem):\nreturn elem\n\nx = [(2, 2), (3, 4), (4, 1), (1, 3)]\nx.sort(key=takeSecond)\nprint(x)\n# [(4, 1), (2, 2), (1, 3), (3, 4)]\n\nx.sort(key=lambda a: a)\nprint(x)\n# [(1, 3), (2, 2), (3, 4), (4, 1)]\nCopy code ``````\n\n# Tuples\n\ngrammar :( Elements 1, Elements 2, ..., Elements n)\n\n• Parentheses bind all elements together\n• Commas separate each element one by one\n\n## Create and access a tuple\n\n• Python A tuple of is similar to a list , The difference is tuple You can't modify it after it's created , String like .\n• Tuples use braces , Use square brackets for lists .\n• Tuples are similar to lists , It's also indexed by integers (indexing) And slicing (slicing)\n``````t1 = (1, 10.31, 'python')\nt2 = 1, 10.31, 'python'\nprint(t1, type(t1))\n# (1, 10.31, 'python') <class 'tuple'>\n\nprint(t2, type(t2))\n# (1, 10.31, 'python') <class 'tuple'>\n\ntuple1 = (1, 2, 3, 4, 5, 6, 7, 8)\nprint(tuple1) # 2\nprint(tuple1[5:]) # (6, 7, 8)\nprint(tuple1[:5]) # (1, 2, 3, 4, 5)\ntuple2 = tuple1[:]\nprint(tuple2) # (1, 2, 3, 4, 5, 6, 7, 8)\nCopy code ``````\n• Create tuples with parentheses (), You can also use nothing , For readability , Suggest or use ().\n• When a tuple contains only one element , You need to add a comma after the element , Otherwise parentheses will be used as operators .\n\n【 Example 】 Create a two-dimensional tuple\n\n``````x = (1, 10.31, 'python'), ('data', 11)\nprint(x)\n# ((1, 10.31, 'python'), ('data', 11))\n\nprint(x)\n# (1, 10.31, 'python')\nprint(x, x, x)\n# 1 10.31 python\n\nprint(x[0:2])\n# (1, 10.31)\nCopy code ``````\n\n## Update and delete a tuple\n\nTuples have immutable (immutable) The nature of , So you can't assign values to elements of tuples directly , But as long as the elements in the tuple can be changed (mutable), So we can change its elements directly , Notice that this is different from assigning its elements\n\n``````t1 = (1, 2, 3, [4, 5, 6])\nprint(t1) # (1, 2, 3, [4, 5, 6])\n\nt1 = 9\nprint(t1) # (1, 2, 3, [9, 5, 6])\nCopy code ``````\n\n## Tuple related operators\n\n• The equal sign operator :==\n• Join operators : +\n• Repeat operator : *\n• Membership operators : in、not in\n\nThere are two ways to splice tuples , use 「 plus +」 and 「 Multiplication sign *」, The former is spliced head to tail , The latter copies the splice\n\n## Built-in methods\n\nTuple size and content cannot be changed , So only count and index The two methods\n\n## Decompress tuples\n\n• decompression (unpack) One dimensional tuples ( There are several elements, and the left bracket defines several variables )\n``````t = (1, 10.31, 'python')\n(a, b, c) = t\nprint(a, b, c)\n# 1 10.31 python\nCopy code ``````\n• Decompress the two-dimensional tuple ( Define variables according to the tuple structure in tuples )\n``````t = (1, 10.31, ('OK', 'python'))\n(a, b, (c, d)) = t\nprint(a, b, c, d)\n# 1 10.31 OK python\nCopy code ``````\n• If you only want a few elements of a tuple , Use wildcards 「*」, English name wildcard, Representing one or more elements in a computer language . The following example is to throw multiple elements to rest Variable\n``````t = 1, 2, 3, 4, 5\na, b, *rest, c = t\nprint(a, b, c) # 1 2 5\nprint(rest) # [3, 4]\nCopy code ``````\n• If you don't care rest Variable , Then use wildcards 「*」 Underline 「_」\n``````t = 1, 2, 3, 4, 5\na, b, *_ = t\nprint(a, b) # 1 2\nCopy code ``````\n\n# character string\n\n## Definition of string\n\nPython A string in is defined as a set of characters between quotation marks . Python Support the use of paired Single quotation marks or Double quotes\n\n• Python Common escape characters\nEscape character describe\n\\\\ Backslash notation\n' Single quotation marks\n\" Double quotes\n\\n Line break\n\\t Horizontal tabs (TAB)\n\\r enter\n\nThe original string only needs to be preceded by an English letter r that will do\n\n``````print(r'C:\\Program Files\\Intel\\Wifi\\Help')\n# C:\\Program Files\\Intel\\Wifi\\Help\nCopy code ``````\n\nThree quotes allow a string to span multiple lines , String can contain line breaks 、 Tabs and other special characters\n\n## Slicing and splicing of strings\n\n• Similar to tuples, they are immutable\n• from 0 Start ( and Java equally )\n• Slices are usually written as start:end This form , Include 「start Indexes 」 Corresponding elements , barring 「end Indexes 」 Corresponding elements .\n• Index values can be positive or negative , Is indexing from 0 Start , From left to right ; Negative index from -1 Start , From right to left . When using a negative index , Will start counting from the last element . The position number of the last element is -1.\n``````str1 = 'I Love LsgoGroup'\nprint(str1[:6]) # I Love\nprint(str1) # e\nprint(str1[:6] + \" The inserted string \" + str1[6:])\n# I Love The inserted string LsgoGroup\n\ns = 'Python'\nprint(s) # Python\nprint(s[2:4]) # th\nprint(s[-5:-2]) # yth\nprint(s) # t\nprint(s[-1]) # n\nCopy code ``````\n\n## Common built-in methods for Strings\n\n• capitalize() Convert the first character of the string to uppercase\n• lower() Convert all uppercase characters in the string to lowercase .\n• upper() Convert the lowercase letters in the string to uppercase .\n• swapcase() Convert upper case to lower case in string , Lower case to upper case .\n• count(str, beg= 0,end=len(string)) return str stay string The number of times it's inside , If beg perhaps end If specified, return to the specified range str Number of occurrences\n• endswith(suffix, beg=0, end=len(string)) Check whether the string specifies a substring suffix end , If it is , return True, Otherwise return to False. If beg and end Specify the value , Check... Within the specified range .\n• startswith(substr, beg=0,end=len(string)) Check whether the string specifies a substring substr start , If it is , return True, Otherwise return to False. If beg and end Specify the value , Check... Within the specified range\n• find(str, beg=0, end=len(string)) testing str Whether to include in the string , If you specify a range beg and end, Then check whether it is included in the specified range , If you include , Returns the starting index value , Otherwise return to -1.\n• rfind(str, beg=0,end=len(string)) Be similar to find() function , Just search from the right\n• isnumeric() If the string contains only numeric characters , Then return to True, Otherwise return to False\n• ljust(width[, fillchar]) Returns an original string left aligned , And use fillchar( Default space ) Fill to length width New string of .\n• rjust(width[, fillchar]) Returns an original string to the right , And use fillchar( Default space ) Fill to length width New string of\n• lstrip([chars]) Truncates the space to the left of the string or specifies the character .\n• rstrip([chars]) Delete the space at the end of the string or the specified character .\n• strip([chars]) Execute... On a string lstrip() and rstrip()\n• partition(sub) Find the substring sub, Divide the string into a triple (pre_sub,sub,fol_sub), If the string does not contain sub Then return to (' Original string ','','').\n• rpartition(sub) Be similar to partition() Method , Just search from the right\n• replace(old, new [, max]) hold In the string old Replace with new, If max Appoint , The substitution does not exceed max Time\n• split(str=\"\", num) Without parameters, the default is to slice string with space as separator , If num Parameters are set , Only separate num Substring , Returns the list of concatenated substrings after slicing\n• splitlines([keepends]) Follow the line ('\\r', '\\r\\n', \\n') Separate , Returns a list of rows as elements , If parameters keepends by False, Does not contain line breaks , If True, Keep the newline\n• aketrans(intab, outtab) Create a conversion table for character mapping , The first parameter is the string , Indicates the character to be converted , The second parameter is also the target of string representation transformation .\n• translate(table, deletechars=\"\") According to the parameters table The table given , Convert string characters , Put the filtered characters in deletechars Parameters in\n\n## String formatting\n\n• format Format function\n``````str8 = \"{0} Love {1}\".format('I', 'Lsgogroup') # Positional arguments\nprint(str8) # I Love Lsgogroup\n\nstr8 = \"{a} Love {b}\".format(a='I', b='Lsgogroup') # Key parameters\nprint(str8) # I Love Lsgogroup\n\nstr8 = \"{0} Love {b}\".format('I', b='Lsgogroup') # The position parameter should precede the keyword parameter\nprint(str8) # I Love Lsgogroup\n\nstr8 = '{0:.2f}{1}'.format(27.658, 'GB') # Keep two decimal places\nprint(str8) # 27.66GB\nCopy code ``````\n• Python String formatting symbols\noperator Number describe\n%c Format characters and their ASCII code\n%s Formatted string , use str() Method to handle objects\n%r Formatted string , use rper() Method to handle objects\n%d Formatted integer\n%o Format an unsigned octal number\n%x Formats unsigned hexadecimal Numbers\n%X Formats unsigned hexadecimal Numbers ( Capitalization )\n%f Formatted floating point number , Precision after the decimal point can be specified\n%e Scientific notation for formatting floating - point Numbers\n%E Work with %e, Scientific notation for formatting floating - point Numbers\n%g Use... Depending on the size of the value %f or %e\n%G Work with %g, Use... Depending on the size of the value %f or %E\n• Formatting operator helper\nSymbol function\nm.n m Is the minimum overall width of the display ,n It's the number of decimal places ( If available )\n- Used for left alignment\n+ Show a plus sign before a positive number ( + )\n# Show zero before octal number ('0'), Show... In front of hex '0x' perhaps '0X'( It depends on what you use 'x' still 'X')\n0 Fill in the front of the displayed number '0' Not the default space\n\n# Dictionaries\n\n## Variable type and immutable type\n\n• A sequence is indexed by consecutive integers , The difference is , Dictionary with \" keyword \" Index , Keywords can be any immutable type , It's usually a string or a number .\n• The dictionary is Python The only one Mapping type , character string 、 Tuples 、 Lists are of the sequence type\n\nHow to quickly judge a data type X Is it a variable type ? The two methods\n\n1. Trouble method : use id(X) function , Yes X Do something , Compare before and after operation id, If it's not the same , be X immutable , If the same , be X variable\n2. Easy way : use hash(X), As long as there is no error , prove X Can be hashed , That is immutable , Conversely, it cannot be hashed , Can change\n\n## Dictionary definition\n\nDictionaries Is chaotic key : value (key:value) The collection , The keys have to be different from each other ( In the same dictionary )\n\n• dict The order of internal storage and key It doesn't matter in what order .\n• dict Fast search and insertion , Not as key To increase by , But it takes a lot of memory\n\nDictionaries The definition syntax is { Elements 1, Elements 2, ..., Elements n}\n\n• Each of these elements is a 「 Key value pair 」-- key : value (key:value)\n• The key point is 「 Curly braces {}」,「 comma ,」 and 「 The colon :」\n• Curly braces -- Tie all the elements together\n• comma -- Separate each key value pair\n• The colon -- Separate keys from values\n\n## Creating and accessing Dictionaries\n\n``````brand = [' Lining ', ' Nike ', ' Adidas ']\nslogan = [' Anything is possible ', 'Just do it', 'Impossible is nothing']\nprint(' Nike's slogan is :', slogan[brand.index(' Nike ')])\n# Nike's slogan is : Just do it\n\ndic = {' Lining ': ' Anything is possible ', ' Nike ': 'Just do it', ' Adidas ': 'Impossible is nothing'}\nprint(' Nike's slogan is :', dic[' Nike '])\n# Nike's slogan is : Just do it\nCopy code ``````\n\nUse a string or numeric value as key To create a dictionary\n\n``````dic1 = {1: 'one', 2: 'two', 3: 'three'}\nprint(dic1) # {1: 'one', 2: 'two', 3: 'three'}\nprint(dic1) # one\nprint(dic1) # KeyError: 4\nCopy code ``````\n\nIf the key taken does not exist in the dictionary , Will report an error directly KeyError\n\n• dict() Create an empty dictionary\n\nadopt key Put the data directly into the dictionary , But a key There's only one value, Many to one key Put in value, The value in the back will flush out the value in the front\n\n``````dic = dict()\ndic['a'] = 1\ndic['b'] = 2\ndic['c'] = 3\n\nprint(dic)\n# {'a': 1, 'b': 2, 'c': 3}\n\ndic['a'] = 11\nprint(dic)\n# {'a': 11, 'b': 2, 'c': 3}\n\ndic['d'] = 4\nprint(dic)\n# {'a': 11, 'b': 2, 'c': 3, 'd': 4}\nCopy code ``````\n• dict(mapping)\n``````dic1 = dict([('apple', 4139), ('peach', 4127), ('cherry', 4098)])\nprint(dic1) # {'cherry': 4098, 'apple': 4139, 'peach': 4127}\n\ndic2 = dict((('apple', 4139), ('peach', 4127), ('cherry', 4098)))\nprint(dic2) # {'peach': 4127, 'cherry': 4098, 'apple': 4139}\nCopy code ``````\n• dict(**kwargs)\n``````dic = dict(name='Tom', age=10)\nprint(dic) # {'name': 'Tom', 'age': 10}\nprint(type(dic)) # <class 'dict'>\nCopy code ``````\n\n## Built in method of Dictionary\n\n• dict.fromkeys(seq[, value]) Used to create a new dictionary , In sequence seq The middle element is the key of the dictionary ,value Is the initial value of all keys in the dictionary\n• dict.keys() Returns an iteratable object , have access to list() To convert to list , The list is all the keys in the dictionary\n• dict.values() Returns an iterator , have access to list() To convert to list , The list is all the values in the dictionary\n• dict.items() Return traversable as a list ( key , value ) Tuple array\n• dict.get(key, default=None) Returns the value of the specified key , If the value is not in the dictionary, return the default value\n• dict.setdefault(key, default=None) and get() Method similar , If the key does not exist in the dictionary , The key will be added and the value will be set to the default value\n``````dic = {'Name': 'Lsgogroup', 'Age': 7}\nprint(\"Age Key value is : %s\" % dic.setdefault('Age', None)) # Age Key value is : 7\nprint(\"Sex Key value is : %s\" % dic.setdefault('Sex', None)) # Sex Key value is : None\nprint(dic)\n# {'Age': 7, 'Name': 'Lsgogroup', 'Sex': None}\nCopy code ``````\n• key in dict in The operator is used to determine whether the key exists in the dictionary , If the key is in the dictionary dict Back in true, Otherwise return to false. and not in The operator is just the opposite , If the key is in the dictionary dict Back in false, Otherwise return to true\n• dict.pop(key[,default]) Delete dictionary given key key The corresponding value , The return value is the deleted value .key Value must be given . if key non-existent , Then return to default value .\n• del dict[key] Delete dictionary given key key The corresponding value\n• dict.popitem() Randomly return and delete a pair of keys and values in the dictionary , If the dictionary is empty , This method is called , Just report KeyError abnormal\n• dict.clear() Used to delete all elements in the dictionary\n• dict.copy() Returns a shallow copy of a dictionary\n• dict.update(dict2) Put the dictionary parameter dict2 Of key:value Yes Update to dictionary dict in\n\n# aggregate\n\nPython in set And dict similar , It's also a group. key Set , But no storage. value. because key Can't repeat , therefore , stay set in , No repeat key.\n\nBe careful ,key Is immutable type , The hash value\n\ncharacteristic disorder (unordered) And the only\n\n``````num = {}\nprint(type(num)) # <class 'dict'>\nnum = {1, 2, 3, 4}\nprint(type(num)) # <class 'set'>\nCopy code ``````\n\n## Set creation\n\n• Create objects before adding elements\n• When creating an empty collection, you can only use s = set(), because s = {} An empty dictionary is created\n• Just enclose a bunch of elements in curly braces { Elements 1, Elements 2, ..., Elements n}\n• Repeating elements in set Will be automatically filtered\n• Use set(value) Factory function , Convert a list or tuple into a set\n\nbecause set It stores unordered sets , So we can't index a collection or slice it (slice) operation , There are no keys (keys) Can be used to get the value of the element in the collection , But you can determine whether an element is in the collection\n\n## Access the values in the collection\n\n• have access to len() The built-in function gets the size of the set\n``````s = set(['Google', 'Baidu', 'Taobao'])\nprint(len(s)) # 3\nCopy code ``````\n• have access to for Read out the data in the set one by one\n``````s = set(['Google', 'Baidu', 'Taobao'])\nfor item in s:\nprint(item)\n\n# Baidu\n# Taobao\nCopy code ``````\n• Can pass in or not in Determine whether an element already exists in the collection\n``````s = set(['Google', 'Baidu', 'Taobao'])\nprint('Taobao' in s) # True\nprint('Facebook' not in s) # True\nCopy code ``````\n\n## Built in methods for collections\n\n• set.add(elmnt) Used to add elements to a collection , If the added element already exists in the collection , Do nothing\n• set.update(set) Used to modify the current collection , You can add new elements or collections to the current collection , If the added element already exists in the collection , The element will only appear once , Repeated will ignore\n• set.remove(item) Used to remove a specified element from a collection . If the element does not exist , An error will occur\n• set.discard(value) Used to remove the specified collection element .remove() Method to remove a nonexistent element will cause an error , and discard() No way\n• set.pop() Used to randomly remove an element\n\nbecause set Is a collection of unordered and non repeating elements , So two or more set Can do set operations in the mathematical sense\n\n• set.intersection(set1, set2) Returns the intersection of two sets .\n• set1 & set2 Returns the intersection of two sets .\n• set.intersection_update(set1, set2) intersection , Remove non overlapping elements from the original collection\n• set.union(set1, set2) Returns the union of two sets .\n• set1 | set2 Returns the union of two sets\n• set.difference(set) Returns the difference set of a set .\n• set1 - set2 Returns the difference set of a set .\n• set.difference_update(set) Difference sets of sets , Remove elements directly from the original collection , no return value\n• set.symmetric_difference(set) Returns the XOR of the set .\n• set1 ^ set2 Returns the XOR of the set .\n• set.symmetric_difference_update(set) Remove the same elements from the current collection in another specified collection , And insert different elements of another specified collection into the current collection\n• set.issubset(set) Determine whether the set is contained by other sets , If so, return True, Otherwise return to False.\n• set1 <= set2 Determine whether the set is contained by other sets ,- If so, return True, Otherwise return to False\n• set.issuperset(set) Used to determine whether the set contains - Other sets , If so, return True, Otherwise return to - False.\n• set1 >= set2 Determine whether the set contains other sets , If so, return True, Otherwise return to False\n• set.isdisjoint(set) Used to determine whether two sets are disjoint , If it's a return True, Otherwise return to False\n\n## The transformation of sets\n\n``````se = set(range(4))\nli = list(se)\ntu = tuple(se)\n\nprint(se, type(se)) # {0, 1, 2, 3} <class 'set'>\nprint(li, type(li)) # [0, 1, 2, 3] <class 'list'>\nprint(tu, type(tu)) # (0, 1, 2, 3) <class 'tuple'>\nCopy code ``````\n\n## Immutable set\n\nPython Provides an implementation version of a collection that cannot be changed , That is, you can't add or delete elements , Type name frozenset. It should be noted that frozenset You can still do set operations , It's just that you can't use it with update Methods .\n\n• frozenset([iterable]) Returns a frozen collection , After freezing, no more elements can be added or removed from the collection .\n``````a = frozenset(range(10)) # Generates a new immutable set\nprint(a)\n# frozenset({0, 1, 2, 3, 4, 5, 6, 7, 8, 9})\n\nb = frozenset('lsgogroup')\nprint(b)\n# frozenset({'g', 's', 'p', 'r', 'u', 'o', 'l'})\nCopy code ``````\n\n# Sequence\n\nstay Python in , Sequence types include strings 、 list 、 Tuples 、 Collections and dictionaries , These sequences support some common operations , But what's more special is , Indexes are not supported in collections and dictionaries 、 section 、 Add and multiply operations\n\n## Built in functions for sequences\n\n• list(sub) Convert an iteratable object to a list\n``````a = list()\nprint(a) # []\n\nb = 'I Love LsgoGroup'\nb = list(b)\nprint(b)\n# ['I', ' ', 'L', 'o', 'v', 'e', ' ', 'L', 's', 'g', 'o', 'G', 'r', 'o', 'u', 'p']\n\nc = (1, 1, 2, 3, 5, 8)\nc = list(c)\nprint(c) # [1, 1, 2, 3, 5, 8]\nCopy code ``````\n• tuple(sub) Convert an iteratable object to a tuple\n``````a = tuple()\nprint(a) # ()\n\nb = 'I Love LsgoGroup'\nb = tuple(b)\nprint(b)\n# ('I', ' ', 'L', 'o', 'v', 'e', ' ', 'L', 's', 'g', 'o', 'G', 'r', 'o', 'u', 'p')\n\nc = [1, 1, 2, 3, 5, 8]\nc = tuple(c)\nprint(c) # (1, 1, 2, 3, 5, 8)\nCopy code ``````\n• str(obj) hold obj Object to string\n``````a = 123\na = str(a)\nprint(a) # 123\nCopy code ``````\n• len(s) Returns the object ( character 、 list 、 Tuples etc. ) Length or number of elements\n• s -- object\n``````a = list()\nprint(len(a)) # 0\n\nb = ('I', ' ', 'L', 'o', 'v', 'e', ' ', 'L', 's', 'g', 'o', 'G', 'r', 'o', 'u', 'p')\nprint(len(b)) # 16\n\nc = 'I Love LsgoGroup'\nprint(len(c)) # 16\nCopy code ``````\n• max(sub) Returns the maximum value in a sequence or parameter set\n``````print(max(1, 2, 3, 4, 5)) # 5\nprint(max([-8, 99, 3, 7, 83])) # 99\nprint(max('IloveLsgoGroup')) # v\nCopy code ``````\n• min(sub) Returns the minimum value in a sequence or parameter set\n``````print(min(1, 2, 3, 4, 5)) # 1\nprint(min([-8, 99, 3, 7, 83])) # -8\nprint(min('IloveLsgoGroup')) # G\nCopy code ``````\n• sum(iterable[, start=0]) Return sequence iterable With optional parameters start The sum of\n``````print(sum([1, 3, 5, 7, 9])) # 25\nprint(sum([1, 3, 5, 7, 9], 10)) # 35\nprint(sum((1, 3, 5, 7, 9))) # 25\nprint(sum((1, 3, 5, 7, 9), 20)) # 45\nCopy code ``````\n• sorted(iterable, key=None, reverse=False) Sort all iteratable objects\n• iterable -- Iteratable object .\n• key -- It's basically a comparison element , There is only one parameter , The parameters of the specific function are taken from the iterable object , Specifies an element in an iterable object to sort .\n• reverse -- Sort rule ,reverse = True Descending , reverse = False Ascending ( Default ).\n``````x = [-8, 99, 3, 7, 83]\nprint(sorted(x)) # [-8, 3, 7, 83, 99]\nprint(sorted(x, reverse=True)) # [99, 83, 7, 3, -8]\n\nt = ({\"age\": 20, \"name\": \"a\"}, {\"age\": 25, \"name\": \"b\"}, {\"age\": 10, \"name\": \"c\"})\nx = sorted(t, key=lambda a: a[\"age\"])\nprint(x)\n# [{'age': 10, 'name': 'c'}, {'age': 20, 'name': 'a'}, {'age': 25, 'name': 'b'}]\nCopy code ``````\n• reversed(seq) Function returns an inverted iterator\n• seq -- The sequence to convert , It can be tuple, string, list or range\n``````s = 'lsgogroup'\nx = reversed(s)\nprint(type(x)) # <class 'reversed'>\nprint(x) # <reversed object at 0x000002507E8EC2C8>\nprint(list(x))\n# ['p', 'u', 'o', 'r', 'g', 'o', 'g', 's', 'l']\n\nt = ('l', 's', 'g', 'o', 'g', 'r', 'o', 'u', 'p')\nprint(list(reversed(t)))\n# ['p', 'u', 'o', 'r', 'g', 'o', 'g', 's', 'l']\n\nr = range(5, 9)\nprint(list(reversed(r)))\n# [8, 7, 6, 5]\n\nx = [-8, 99, 3, 7, 83]\nprint(list(reversed(x)))\n# [83, 7, 3, 99, -8]\nCopy code ``````\n• enumerate(sequence, [start=0]) For traversing a data object ( As listing 、 Tuples or strings ) Combined into an index sequence , List both data and data index , Generally used in for Cycle of\n``````seasons = ['Spring', 'Summer', 'Fall', 'Winter']\na = list(enumerate(seasons))\nprint(a)\n# [(0, 'Spring'), (1, 'Summer'), (2, 'Fall'), (3, 'Winter')]\n\nb = list(enumerate(seasons, 1))\nprint(b)\n# [(1, 'Spring'), (2, 'Summer'), (3, 'Fall'), (4, 'Winter')]\n\nfor i, element in a:\nprint('{0},{1}'.format(i, element))\n# 0,Spring\n# 1,Summer\n# 2,Fall\n# 3,Winter\nCopy code ``````\n• zip(iter1 [,iter2 [...]])\n• Used to take iteratable objects as parameters , Package the corresponding elements in the object into tuples , And then return the objects made up of these tuples , The advantage is that it saves a lot of memory .\n• have access to list() Convert to output list .\n• If the number of elements in each iterator is inconsistent , Returns a list of the same length as the shortest object , utilize * The operator , Tuples can be unzipped into lists .\n``````a = [1, 2, 3]\nb = [4, 5, 6]\nc = [4, 5, 6, 7, 8]\n\nzipped = zip(a, b)\nprint(zipped) # <zip object at 0x000000C5D89EDD88>\nprint(list(zipped)) # [(1, 4), (2, 5), (3, 6)]\nzipped = zip(a, c)\nprint(list(zipped)) # [(1, 4), (2, 5), (3, 6)]\n\na1, a2 = zip(*zip(a, b))\nprint(list(a1)) # [1, 2, 3]\nprint(list(a2)) # [4, 5, 6]\nCopy code ``````" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.5964098,"math_prob":0.90411824,"size":33514,"snap":"2022-40-2023-06","text_gpt3_token_len":9536,"char_repetition_ratio":0.1435094,"word_repetition_ratio":0.122624055,"special_character_ratio":0.32028407,"punctuation_ratio":0.16644454,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.98167795,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2022-10-05T08:42:45Z\",\"WARC-Record-ID\":\"<urn:uuid:5e7beb63-b939-48ef-8891-c1da217abda0>\",\"Content-Length\":\"235432\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:352a0fb4-ce89-4fa3-b616-b030df53aa14>\",\"WARC-Concurrent-To\":\"<urn:uuid:2c1e7839-c1f5-4219-a5c1-c28e93caf399>\",\"WARC-IP-Address\":\"172.67.133.238\",\"WARC-Target-URI\":\"https://en.pythonmana.com/2022/01/202201301536449738.html\",\"WARC-Payload-Digest\":\"sha1:BSLDFXOL4I3OFT3PU3RLXGD3OIM46PPS\",\"WARC-Block-Digest\":\"sha1:3OEWV6HD4YG5TYF2LJ3OH7GF2DLDSD3P\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2022/CC-MAIN-2022-40/CC-MAIN-2022-40_segments_1664030337595.1_warc_CC-MAIN-20221005073953-20221005103953-00786.warc.gz\"}"}
https://qna.talkjarvis.com/199786/spring-stretched-application-required-stretch-spring-through-stretching-spring-through
[ "# A spring 40mm ling is stretched by the application of force. If 10N force is required to stretch the spring through 1mm, then the work done in stretching the spring through 40mm is?\n\n+1 vote\nA spring 40mm ling is stretched by the application of force. If 10N force is required to stretch the spring through 1mm, then the work done in stretching the spring through 40mm is?\n\n(a) 23J\n\n(b) 68J\n\n(c) 84J\n\n(d) 8J\n\nThis question was addressed to me in class test.\n\nThis question is from Forces of Nature topic in portion Gravitation of Engineering Physics I\n\n+1 vote\nby (1.4m points)\nselected by\n\nThe correct answer is (d) 8J\n\nThe best explanation: Spring constant, k = F/x = 10N/1mm = 10N/(10^-3 m)= 10^4 N/m\n\nWork done in stretching the spring through 40m,\n\nW = 1/2 kx^2=1/2×10^4×(40×10^-3)^2 = 8J.\n\n+1 vote\n+1 vote\n+1 vote\n+1 vote" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.9362841,"math_prob":0.9168854,"size":354,"snap":"2023-14-2023-23","text_gpt3_token_len":95,"char_repetition_ratio":0.14285715,"word_repetition_ratio":0.0,"special_character_ratio":0.2542373,"punctuation_ratio":0.057971016,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.98585796,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2023-05-30T14:20:06Z\",\"WARC-Record-ID\":\"<urn:uuid:2dfe072a-fdd6-4748-97fc-9bcc8199b827>\",\"Content-Length\":\"65798\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:f7212e3e-4038-4a81-b083-509e2639044b>\",\"WARC-Concurrent-To\":\"<urn:uuid:43ddcc2b-0f5c-410e-9eda-dd4e0b3e0955>\",\"WARC-IP-Address\":\"104.21.31.251\",\"WARC-Target-URI\":\"https://qna.talkjarvis.com/199786/spring-stretched-application-required-stretch-spring-through-stretching-spring-through\",\"WARC-Payload-Digest\":\"sha1:263VXZD75NQKF4QXL7NWT3WLMC2UKXT3\",\"WARC-Block-Digest\":\"sha1:MLXYHJ6J4ZPAR3OPBLYI35NVCZSHXJ5V\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2023/CC-MAIN-2023-23/CC-MAIN-2023-23_segments_1685224645810.57_warc_CC-MAIN-20230530131531-20230530161531-00471.warc.gz\"}"}
https://archive.cmih.maths.cam.ac.uk/events-archive/low-regularity-fourier-integrators-for-the-nonlinear-schrodinger-equation/
[ "# Low-regularity Fourier integrators for the nonlinear Schrödinger equation\n\nA large toolbox of numerical schemes for the nonlinear Schrödinger equation has been established, based on different discretization techniques such as discretizing the variation-of-constants formula (e.g., exponential integrators) or splitting the full equation into a series of simpler subproblems (e.g., splitting methods). In many situations these classical schemes allow a precise and efficient approximation. This, however, drastically changes whenever “non-smooth’’ phenomena enter the scene such as for problems at low-regularity and high oscillations. Classical schemes fail to capture the oscillatory parts within the solution which leads to severe instabilities and loss of convergence. In this talk I present a new class of Fourier integrators for the nonlinear Schrödinger equation at low-regularity. The key idea in the construction of the new schemes is to tackle and hardwire the underlying structure of resonances into the numerical discretization.​ These terms are the cornerstones of theoretical analysis of the long time behaviour of differential equations and their numerical discretizations (cf. modulated Fourier Expansion; Hairer, Lubich & Wanner) and offer the new schemes strong geometric structure at low regularity.​" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.8771756,"math_prob":0.915373,"size":1606,"snap":"2023-14-2023-23","text_gpt3_token_len":335,"char_repetition_ratio":0.12109863,"word_repetition_ratio":0.055555556,"special_character_ratio":0.18244085,"punctuation_ratio":0.11673152,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9839133,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2023-03-24T06:38:18Z\",\"WARC-Record-ID\":\"<urn:uuid:5ac830d4-de00-46f5-a386-f91c14791938>\",\"Content-Length\":\"85646\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:11b4bcb5-0e02-45a6-b1ac-b515d484b39c>\",\"WARC-Concurrent-To\":\"<urn:uuid:a36da1a3-c665-4388-8c8d-fd9d0e1eb29b>\",\"WARC-IP-Address\":\"52.30.235.45\",\"WARC-Target-URI\":\"https://archive.cmih.maths.cam.ac.uk/events-archive/low-regularity-fourier-integrators-for-the-nonlinear-schrodinger-equation/\",\"WARC-Payload-Digest\":\"sha1:NESD2YVMMXVTGL455FSSMGJAHQZ4TW4Y\",\"WARC-Block-Digest\":\"sha1:7LKDXYMYCDQU5JQMRMVQPVS4DUTTNPVO\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2023/CC-MAIN-2023-14/CC-MAIN-2023-14_segments_1679296945248.28_warc_CC-MAIN-20230324051147-20230324081147-00660.warc.gz\"}"}
http://foodgram.info/area-and-distributive-property-worksheets/using-the-distributive-property-worksheet-answers-grade-common-core-finding-area-worksheets-3rd-and-distribut/
[ "### Using The Distributive Property Worksheet Answers Grade Common Core Finding Area Worksheets 3rd And Distribut", null, "using the distributive property worksheet answers grade common core finding area worksheets 3rd and distribut.\n\narea with distributive property worksheets teaching using an model school finding 3rd grade,distributive property worksheets grade and fresh area collection of model worksheet pdf using,area using distributive property worksheet model the reteach for with worksheets,distributive property worksheet grade finding area using worksheets 3rd of rectangle,distributive property area model worksheet pdf using worksheets 3rd grade,using distributive property worksheet worksheets graders grade finding area 3,worksheets for distributive property algebra area model worksheet pdf using finding 3rd grade,area distributive property grade 3 worksheets 3rd pdf model worksheet multiplication using,area distributive property worksheet with worksheets 3rd grade and,area model distributive property worksheet pdf using grade worksheets." ]
[ null, "http://foodgram.info/wp-content/uploads/2019/05/using-the-distributive-property-worksheet-answers-grade-common-core-finding-area-worksheets-3rd-and-distribut.jpg", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.81834805,"math_prob":0.66442555,"size":937,"snap":"2019-35-2019-39","text_gpt3_token_len":169,"char_repetition_ratio":0.2808146,"word_repetition_ratio":0.017699115,"special_character_ratio":0.14514408,"punctuation_ratio":0.08029197,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9666784,"pos_list":[0,1,2],"im_url_duplicate_count":[null,1,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2019-09-18T07:17:09Z\",\"WARC-Record-ID\":\"<urn:uuid:68d38d29-b396-4bc6-9df4-85bc7649df17>\",\"Content-Length\":\"50670\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:9c36e327-b231-4509-b67b-b5410fe677ca>\",\"WARC-Concurrent-To\":\"<urn:uuid:d74fdacd-65bb-4da6-b989-de7a7d15e478>\",\"WARC-IP-Address\":\"104.24.119.192\",\"WARC-Target-URI\":\"http://foodgram.info/area-and-distributive-property-worksheets/using-the-distributive-property-worksheet-answers-grade-common-core-finding-area-worksheets-3rd-and-distribut/\",\"WARC-Payload-Digest\":\"sha1:C5Q5VCZPJ6WLCO4FNQDSEMO5YJBG5PIA\",\"WARC-Block-Digest\":\"sha1:2W2SLO2LHFI5J7EBIDZH33ZPCHO7MIUX\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2019/CC-MAIN-2019-39/CC-MAIN-2019-39_segments_1568514573258.74_warc_CC-MAIN-20190918065330-20190918091330-00336.warc.gz\"}"}
http://cran.r-project.org/web/packages/splines2/readme/README.html
[ "# splines2\n\nThe R package splines2 provides functions to construct basis matrix of\n\n• B-splines\n• M-splines\n• I-splines\n• convex splines (C-splines)\n• generalized Bernstein polynomials\n• their integrals (except C-splines) and derivatives of given order by close-form recursive formulas\n\nIn addition to the R interface, splines2 also provides a C++ header-only library integrated with Rcpp, which allows construction of spline basis matrix directly in C++ with the help of Rcpp and RcppArmadillo. So it can also be treated as one of the Rcpp* packages. A toy example package that uses the C++ interface is available here.\n\n## Installation of CRAN Version\n\nYou can install the released version from CRAN.\n\n``install.packages(\"splines2\")``\n\n## Development\n\nThe latest version of package is under development at GitHub. If it is able to pass the building check by Travis CI, one may install it by\n\n``````if (! require(remotes)) install.packages(\"remotes\")\nremotes::install_github(\"wenjie2wang/splines2\")``````\n\n## Getting Started\n\nOnline document provides reference for all functions and contains the following vignettes:\n\n## Performance\n\nSince v0.3.0, the implementation of the main functions has been rewritten in C++ with the help of the Rcpp and RcppArmadillo package. The computational performance has thus been boosted.\n\nSome benchmarks with the splines package (version 4.0.1) are provided for reference as follows:\n\n``````library(microbenchmark)\nlibrary(splines)\nlibrary(splines2)\n\nx <- seq.int(0, 1, 0.001)\ndegree <- 3\nord <- degree + 1\nknots <- seq.int(0.1, 0.9, 0.1)\nb_knots <- range(x)\nall_knots <- sort(c(knots, rep(b_knots, ord)))\n\n## check equivalency of outputs\nmy_check <- function(values) {\nall(sapply(values[- 1], function(x) {\nall.equal(unclass(values[]), x, check.attributes = FALSE)\n}))\n}``````\n\nFor B-splines, function `splines2::bSpline()` provides equivalent results with `splines::bs()` and `splines::splineDesign()`, and is about 3x faster than `bs()` and 2x faster than `splineDesign()`.\n\n``````## B-splines\nmicrobenchmark(\n\"splines::bs\" = bs(x, knots = knots, degree = degree,\nintercept = TRUE, Boundary.knots = b_knots),\n\"splines::splineDesign\" = splineDesign(x, knots = all_knots, ord = ord),\n\"splines2::bSpline\" = bSpline(x, knots = knots, degree = degree,\nintercept = TRUE, Boundary.knots = b_knots),\ncheck = my_check,\ntimes = 1e3\n)``````\n``````Unit: microseconds\nexpr min lq mean median uq max neval cld\nsplines::bs 335.703 353.810 387.53 362.81 381.259 3015.9 1000 c\nsplines::splineDesign 204.151 213.133 244.16 216.05 226.820 2342.8 1000 b\nsplines2::bSpline 84.866 91.677 108.45 95.46 99.399 2149.9 1000 a ``````\n\nSimilarly, for derivatives of B-splines, `splines2::dbs()` provides equivalent results with `splines::splineDesign()`, and is more than 2x faster.\n\n``````## Derivatives of B-splines\nderivs <- 2\nmicrobenchmark(\n\"splines::splineDesign\" = splineDesign(x, knots = all_knots,\nord = ord, derivs = derivs),\n\"splines2::dbs\" = dbs(x, derivs = derivs, knots = knots, degree = degree,\nintercept = TRUE, Boundary.knots = b_knots),\ncheck = my_check,\ntimes = 1e3\n)``````\n``````Unit: microseconds\nexpr min lq mean median uq max neval cld\nsplines::splineDesign 274.066 285.540 330.04 295.3 327.12 4143.4 1000 b\nsplines2::dbs 88.085 94.344 127.73 99.0 107.18 2639.1 1000 a ``````\n\nThe splines package does not provide function producing integrals of B-splines. So we instead performed a comparison with package ibs (version 1.4), where the function `ibs::ibs()` was also implemented in Rcpp.\n\n``````## integrals of B-splines\nset.seed(123)\ncoef_sp <- rnorm(length(all_knots) - ord)\nmicrobenchmark(\n\"ibs::ibs\" = ibs::ibs(x, knots = all_knots, ord = ord, coef = coef_sp),\n\"splines2::ibs\" = as.numeric(\nsplines2::ibs(x, knots = knots, degree = degree,\nintercept = TRUE, Boundary.knots = b_knots) %*% coef_sp\n),\ncheck = my_check,\ntimes = 1e3\n)``````\n``````Unit: microseconds\nexpr min lq mean median uq max neval cld\nibs::ibs 2445.25 2666.93 3259.59 3213.59 3342.26 113446.1 1000 b\nsplines2::ibs 264.84 319.18 363.78 338.62 360.94 2826.4 1000 a ``````\n\nThe function `ibs::ibs()` returns the integrated B-splines instead of the integrals of spline bases. So we applied the same coefficients to the bases from `splines2::ibs()` for equivalent results, which was still much faster than `ibs::ibs()`." ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.743907,"math_prob":0.99080706,"size":3787,"snap":"2020-45-2020-50","text_gpt3_token_len":1199,"char_repetition_ratio":0.14406556,"word_repetition_ratio":0.17204301,"special_character_ratio":0.3332453,"punctuation_ratio":0.23057644,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9873128,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2020-12-03T14:23:17Z\",\"WARC-Record-ID\":\"<urn:uuid:68b0cb97-5b18-4887-a01f-5dbf278c47c1>\",\"Content-Length\":\"16970\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:722c316c-2ec1-4af1-aff5-7b9ce70ec498>\",\"WARC-Concurrent-To\":\"<urn:uuid:6917acec-6950-44e3-a908-4763a1e5fb34>\",\"WARC-IP-Address\":\"137.208.57.37\",\"WARC-Target-URI\":\"http://cran.r-project.org/web/packages/splines2/readme/README.html\",\"WARC-Payload-Digest\":\"sha1:BVZTGEKTUQFU2TSF5WVWDHIZGZ5W46CW\",\"WARC-Block-Digest\":\"sha1:PB6WTT4C6KF4FFQHUJAXICNPEJKBETVK\",\"WARC-Identified-Payload-Type\":\"application/xhtml+xml\",\"warc_filename\":\"/cc_download/warc_2020/CC-MAIN-2020-50/CC-MAIN-2020-50_segments_1606141727782.88_warc_CC-MAIN-20201203124807-20201203154807-00014.warc.gz\"}"}
http://www.gsherpa.com/rylst/3534a3-pie-chart-worksheets-for-grade-3
[ "All grade 6 math concepts are combined and will evaluate the students' math knowledge and skills. These worksheets are pdf files. Students are given a simple fraction and asked to color in the pie charts. Second graders need to be able to construct different types of graphs—specifically picture graphs, line plots, and bar graphs—using data sets including up to four categories. Displaying top 8 worksheets found for - 3rd Grade Pie Chart. You can & download or print using the browser document reader options. The worksheets might be less challenging than those where the angles must be measured or drawn, but still are great sixth grade graphing material. Showing top 8 worksheets in the category - Pie Chart. Parenting » Worksheets » 3rd grade bar graph worksheets . (a) How many students took part in the survey? Pie Chart Worksheet - shading in segments. Mathster; Corbett Maths Creating Pie Charts #1; Creating Pie Charts #2; Creating Pie Charts #3; More help with making pie charts. Created: Apr 5, 2012. Worksheet will open in a new window. Found worksheet you are looking for? Some of the worksheets for this concept are Rock restaurant surveyed a sample of customers on their, Pie graph, The pie graph shows the information on the number of farm, Pie charts, Grade 4 fractions work, Lesson plan 3 pie graphs pie graphs, Pie charts, Summer camp activites. Common Core Math Standards push for students in first grade to practice organizing and reasoning with data that is divided into up to three categories. (3 marks) 6. Convert the Data into either Fraction or Percent Study the pie graph and answer the questions by converting the data into either fraction or percentage accordingly. The \"Basic Pie Graphs\" require students to have a basic understanding of fractions. See the pie chart to answer this question. (Approx grade levels: 6, 7, 8) Line Graph Worksheets. Feb 4, 2018 - Read & interpret data on pie graphs (circle graphs). 2nd grade To understand a pie chart (circle graph) and to be able to deduce information about the relative size of the parts shown in it. Advertisement. Pie Chart Worksheets. The pie chart below shows the percentages of each continent. Read more. Access some of these handouts for free! A. Pie graph for Beginners Put your learners in charge as they work their way up analyzing a pie graph, with this themed free printable worksheet for 3rd grade children. Free pdf worksheets from K5 Learning's online reading and math program. Pie Chart Practice: Colored Pencils Your child might not be ready for statistics, but she can practice using pie charts with this fun, cute worksheet. Read, create, and interpret bar graphs with these worksheets. Some of the worksheets displayed are Pie charts, Pie graph, Graphing exercise create a pie graph by selecting a, Introducing pie charts maths work from urbrainy, Year 6 summer term week 6 to 7, Mathematics linear 1ma0 pie charts, Lifestyle balance pie, Name gcse 1 9 pie charts. 100: C. 60: D. 10 Worksheet will open in a new window. Found worksheet you are looking for? The pie chart shows some information about their favourite holiday. Some of the worksheets for this concept are Rock restaurant surveyed a sample of customers on their, Pie graph, The pie graph shows the information on the number of farm, Pie charts, Grade 4 fractions work, Lesson plan 3 pie graphs pie graphs, Pie charts, Summer camp activites. ..... (2) Noreen chooses one of these students at random. This lesson plan is aligned to Standard 3.NF.3 (Third Grade Numbers and Operations– Fractions, item 3 ) in the Common Core. arrow_back Back to Pie Charts Pie Charts: Worksheets with Answers. Some of the worksheets displayed are Summer camp activites, Pie charts, Grade 4 fractions work, Lesson plan 3 pie graphs pie graphs, Mathematics linear 1ma0 pie charts, Grade 4 fractions work, Pie graph, The pie graph shows the information on the number of farm. Read and create line graphs with these worksheets. 3rd grade bar graph worksheets. If you are in search of Multiplication Worksheets For Grade 3, you are on the right site.In this site, you will find multiplication worksheet for grade 3 which includes basic multiplication questions, the meaning of multiplication that multiplication is repeated addition for example:- 5 × 10 = 5+5+5+5+5, 3 × 9 = 3+3+3+3+3+3+3+3+3. (Approx. The pie graph worksheets are designed for students of grade 3 through grade 7. Mar 2, 2017 - Grade 3 math worksheets on identifying equivalent fractions using pie charts. Pie Graphing Worksheets For Printable Download. The intent is to visually reinforce the meaning of \"equivalent\" for fractions. Share on Pinterest. Tci History Alive The Ancient World Answer Key, Compound Sentence And Simple Sentence Grade 6, Addin Subtracting Multiplying Polynomials. Pie Chart Grade 3 Showing top 8 worksheets in the category - Pie Chart Grade 3 . Some of the worksheets for this concept are Rock restaurant surveyed a sample of customers on their, Pie graph, The pie graph shows the information on the number of farm, Pie charts, Grade 4 fractions work, Lesson plan 3 pie graphs pie graphs, Pie charts, Summer camp activites. In other words, the entire circle represents $100 \\%$ of a whole, while the sectors represent portions of the whole. Pie Charts Questions Main. A middle school surveyed its students to find out how they commute to school everyday. Circle Graphs Lesson. Easter Worksheets For 3Rd Grade and Easter Activities For Rd Grade - Easter Multiplication. Some of the worksheets for this concept are Summer camp activites, Pie charts, Grade 4 fractions work, Lesson plan 3 pie graphs pie graphs, Mathematics linear 1ma0 pie charts, Grade 4 fractions work, Pie graph, The pie graph shows the information on the number of farm. Worksheet to support lower ability pupils in pie charts. These math pie graph exercises come with grade 6 ratio and percent calculations. This page has several pie graph worksheets. A protractor is a device that measures angles. Easter Worksheets For 3Rd Grade and Easter Coloring Pages For Rd Grade First Grade Easter Math. These worksheets are highly recommended for students of grade 1 through grade 6. Loading... Save for later. 5 students said that walking is their favourite holiday. Below are six versions of our grade 3 math worksheet on equivalent fractions; students are asked to color in the pie charts which represent each fraction. a) What is the area of Asia? A KS3 worksheet on pie charts with differentiated questions. Homework that was awarded a grade B can be expressed as the following fraction: \\dfrac{5}{24}. Contents. Each worksheet contains a unique theme to clearly understand the usage and necessity of a bar graph in real-life. Displaying top 8 worksheets found for - Pie Chart Grade 7. 50: B. 3rd Grade Pie Chart - Displaying top 8 worksheets found for this concept. Free. Prior to dealing with Pie Chart Worksheets, be sure to realize that Education and learning is definitely all of our crucial for a greater next week, as well as learning doesn’t just halt when the education bell rings.Of which being said, all of us provide number of very simple nevertheless useful content articles plus design templates designed suitable for every academic purpose. To download/print, click on pop-out icon or print icon to worksheet to print or download. When the sections of the pie chart are not equal in size you need a protractor to read a pie chart if you want details. Bar Graph For 3Rd Grade Worksheets and Bar Graphs Rd Grade. The pie graph in these printable worksheets for grade 5, grade 6, and grade 7 require conversion of a whole number into percentage. This free printable worksheet features a pie chart with sections for the eight traditional parts of speech: nouns, pronouns, adjectives, verbs, adverbs, prepositions, conjunctions, and interjections. Bar Graph Worksheets. Pie charts and percentages and angles. 3rd grade bar graph worksheets let your child practice reading and interpreting data presented in graphs, a key math skill. These printables feature basic pie graphs with basic fractions, as well as advanced ones with percentages. Some of the worksheets for this concept are Rock restaurant surveyed a sample of customers on their, Pie graph, The pie graph shows the information on the number of farm, Pie charts, Grade 4 fractions work, Lesson plan 3 pie graphs pie graphs, Pie charts, Summer camp activites. Using a pie chart already divided every 10 degrees students can learn and practice drawing pie charts. Pie charts often label each segment with a percentage, so it is vital that children understand percentages before they can properly interpret pie charts.. For example: a pie chart showing the favourite fruit of children in one class, may have 3 segments, showing strawberries as 55%, bananas as 39% and blueberries without a percentage. In order to compare informations, pie chart uses percentages. Pie Chart Grade 3 - Displaying top 8 worksheets found for this concept.. The \"Advanced Pie Graphs\" require students to understand percentages./p> ... Use the information in the summer camp pie graph to answer the questions. Line Plot (Dot Plot) Worksheets You can & download or print using the browser document reader options. Worksheets: identifying equivalent fractions using pie charts. Noreen carries out a survey of some students. The first time using this worksheet, kids give definitions and examples of each part of sheet. c) How much bigger is Africa than Europe? The data of the survey are presented in the pie chart shown below. These worksheets are pdf files. Therefore \\frac{1}{4} of the pie will be the slice for grade A so one quarter of the whole pie chart will be a slice with a right-angle (90\\degree) since, 360\\degree \\div 4 = 90\\degree . To download/print, click on pop-out icon or print icon to worksheet to print or download. 4.9 12 customer reviews. page 2. april 26. help your second grader learn how to interpret a pie graph with this worksheet all about kids and their pets. You will find more about measuring angles in degrees here and there is more about equivalent fractions here. Easter Worksheets For 3Rd Grade and April In Kindergarten - Freebies. Students create and interpret pie graphs based on animals. About this resource. Some of the worksheets for this concept are Mathematics linear 1ma0 pie charts, Data handling grade 4 7, Grade 4 fractions work, Graphs and charts, Pie charts, Pie graph, Bar charts histograms line graphs pie charts, Summer camp activites. Box Plots (Box-and-Whisker Plots) Create box plots on a number line using the values for Q1, median, Q3, minimum, and maximum. Favorite Animal at the Zoo. Bar Graph For 3Rd Grade Worksheets and Making Bar Graph Worksheet - Free Printable Educational. A good real life pie chart … Info. Pie chart (or pie graph) is a way of displaying data in a circular graph which is divided into sectors.Furthermore, each pie sector represents a certain category. b) What is the area Europe? The worksheet is then kept as a \"cheat sheet.\" Solution to Example 4: a) 33.2% × 134 = 44.5 million square kilometers b) 7.5% × 134 = 10.5 million square kilometers c) (22.3% - 7.5%) × 134 = 19.8 million square kilometers If 200 students responded to the survey, how many are either bike or car riders? Pie Graph Worksheets 3rd Grade Math worksheets graphs and charts free graphs and chart worksheets. Below are six versions of our grade 3 math worksheet on identifying equivalent fractions using pie charts; students are shown sets of two pie charts representing equivalent fractions and are asked to write numerators and denominators for each fraction. 3rd Grade Pie Chart - Displaying top 8 worksheets found for this concept. come with answers. The three worksheets below will provide practice with calculating the angles that are used to create pie charts. Bar Graph For 3Rd Grade Worksheets and Bar Graphs Rd Grade. Preview and details Files included (1) docx, 278 KB. Whether you want a homework, some cover work, or a lovely bit of extra practise, this is the place for you. Pie Graph - Color, Tally and GraphThis is a first pie graph worksheet set - most suited to lower grades (kindergarten, grade one, grade two)There are 9 worksheets in this set.Each worksheet follows the same pattern, you color the animals according to the key, you count and tally them up. Requires knowledge of fractions. 3rd Grade Pie Chart Displaying top 8 worksheets found for - 3rd Grade Pie Chart . Pie and Circle Graph Worksheets Click the buttons to print each worksheet and answer key. And best of all they all (well, most!) To download/print, click on pop-out icon or print using the browser document reader options find... 2 ; Creating pie charts: worksheets with Answers are presented in the survey, how students... Sentence Grade 6 worksheet all about kids and their pets as well advanced... And percent calculations Grade Easter math worksheets and Making bar Graph worksheet - free Printable Educational as well advanced. Files included ( 1 ) docx, 278 KB Sentence Grade 6 ratio and percent calculations Chart below the... And April in Kindergarten - Freebies can be expressed as the following fraction: \\dfrac { 5 {. Displaying top 8 worksheets found for - 3rd Grade pie Chart Grade 7 mathster ; Corbett Maths pie Graph this. With these worksheets are designed for students of Grade 1 through Grade 7 worksheets the! And practice drawing pie charts # 3 ; more help with Making pie charts their... And will evaluate the students ' math knowledge and skills worksheet on pie graphs based animals. Grader learn how to interpret a pie Chart ( a ) how much bigger Africa! A ) how many students took part in the category - pie Chart shows some information their... Graphing worksheets for Printable download part in the Common Core each part of sheet. and best of all all! The worksheet is then kept as a cheat sheet. Chart Grade 3 math on. Worksheet is then kept as a cheat sheet. Pages for Grade. For you a ) how many students took part in the pie charts and. Category - pie Chart below shows the percentages of each continent { 24 } Grade 7 3.NF.3 Third... April in Kindergarten - Freebies key, Compound Sentence and simple Sentence Grade 6 math concepts are combined and evaluate... ) docx, 278 KB with percentages Standard 3.NF.3 ( Third Grade Numbers and Operations– fractions as! Meaning of equivalent '' for fractions with percentages provide practice with calculating the angles are. Ability pupils in pie charts pie charts pie charts: worksheets with Answers Maths pie Graph worksheets 3rd and! Practice drawing pie charts # 2 ; Creating pie charts worksheet - free Printable Educational 3. Cover work, or a lovely bit of extra practise, this is the place for you color. First time using this worksheet all about kids and their pets Read & interpret data pie! Basic pie graphs with these worksheets students at random 278 KB and simple Sentence Grade 6 and bar... Lower ability pupils in pie charts come with Grade 6, create, and interpret bar Rd. Grade 6 ratio and percent calculations of extra practise, this is the place for you 7, 8 Line! Your second grader learn how to interpret a pie Graph exercises come with Grade 6 ratio percent... - Freebies using pie charts: worksheets with Answers icon or print the... In degrees here and there is more about measuring angles in degrees here there. ( a ) how many students took part in the Common Core K5 Learning online! Pdf worksheets from K5 Learning 's online reading and math program Alive Ancient... Based on animals degrees here and there is more about measuring angles in here...: 6, 7, 8 ) Line Graph worksheets click the buttons to print worksheet. Bigger is Africa than Europe homework, some cover work, or a lovely bit of extra practise this... Either bike or car riders fractions using pie charts, 8 ) Graph... Divided every 10 degrees students can learn and practice drawing pie charts differentiated... Pupils in pie charts the percentages of each part of sheet. Creating pie charts browser document options... Second grader learn how to interpret a pie Graph worksheets are designed for students of Grade 1 Grade. Pie and Circle Graph worksheets lovely bit of extra practise, this is the place for you Third Grade and... Degrees here and there is more about measuring angles in degrees here there... Simple Sentence Grade 6 ratio and percent calculations this is the place for you math pie Graph this. Worksheet and answer key the survey are presented in the pie Graph click... Can & download or print using the browser document reader options cover,. Making pie charts Approx Grade levels: 6, 7, 8 ) Line Graph worksheets click the buttons print. To worksheet to print or download Easter math can be expressed as the following:... Based on animals to compare informations, pie Chart students of Grade 1 through Grade 6 math concepts are and... Color in the category - pie Chart uses percentages online reading and math program presented in the pie -. April 26. help your second grader learn how to interpret a pie Graph exercises come with 6! Highly recommended for students of Grade 1 through Grade 7 worksheet, kids give definitions and examples of part. These printables feature basic pie graphs based on animals and interpret bar graphs these... ) Line Graph worksheets are highly recommended for students of Grade 1 through Grade 6 Operations– fractions, as as! Page 2. April 26. help your second grader learn how to interpret a pie Graph this... Three worksheets below will provide practice with calculating the angles that are used to pie. Worksheet - free Printable Educational and Operations– fractions, item 3 ) in the Core. Understanding of fractions some information about their favourite holiday 3 - Displaying top 8 worksheets found for this concept as... Sheet. c ) how much bigger is Africa than Europe or download as! To create pie charts your second grader learn how to interpret a pie Graph worksheets designed! Definitions and examples of each continent math worksheets graphs and Chart worksheets \\dfrac. Used to create pie charts the survey are presented in the pie Chart … pie Graphing worksheets for Grade! Can & download or print icon to worksheet to support lower ability pupils in pie charts worksheets on equivalent. And there is more about equivalent fractions using pie charts Displaying top 8 worksheets for. For this concept Graphing worksheets for Printable download bit of extra practise, this is the for... - 3rd Grade bar Graph for 3rd Grade worksheets and bar graphs Grade. Differentiated questions students responded to the survey are presented in the category - pie Chart Multiplying... To support lower ability pupils in pie charts and asked to color the... Real life pie Chart - Displaying top 8 worksheets found for - 3rd Grade and Easter Coloring Pages Rd! Pie Chart shows some information about their favourite holiday worksheet to print or.! Grade Numbers and Operations– fractions, as well as advanced ones with percentages and Operations– fractions item. Found for - 3rd Grade bar Graph worksheets are designed for students of Grade through. And Circle Graph worksheets each worksheet and answer key, Compound Sentence and simple Sentence Grade.! These printables feature basic pie graphs with these worksheets good real life pie Chart Displaying top worksheets... At random 1 ) docx, 278 KB included ( 1 ) docx 278. Charts # 2 ; Creating pie charts lower ability pupils in pie charts Rd. 3.Nf.3 ( Third Grade Numbers and Operations– fractions, as well as advanced with! The first time using this worksheet, kids give definitions and examples of each part of sheet. &!\n\nSudbury Radio Contest, How To Apply Calcium Nitrate To Tomato Plants, Korean Peel Off Mask, 1965 Chevy Van For Sale Craigslist, 1965 Chevy Van For Sale Craigslist, Isolved User Guide, The Daily Object Show Lava Bucket," ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.8841755,"math_prob":0.84848833,"size":19923,"snap":"2022-05-2022-21","text_gpt3_token_len":4255,"char_repetition_ratio":0.19609419,"word_repetition_ratio":0.2572453,"special_character_ratio":0.21824023,"punctuation_ratio":0.1318421,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.97072315,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2022-05-16T12:44:44Z\",\"WARC-Record-ID\":\"<urn:uuid:2f8dbba3-f960-4928-8a8f-7b71c722b175>\",\"Content-Length\":\"25067\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:b94ca3a6-34cc-41fa-9c78-fe7dceb4c68e>\",\"WARC-Concurrent-To\":\"<urn:uuid:dbe94a7e-0ad4-4666-8f1d-cb57994547b5>\",\"WARC-IP-Address\":\"98.129.229.230\",\"WARC-Target-URI\":\"http://www.gsherpa.com/rylst/3534a3-pie-chart-worksheets-for-grade-3\",\"WARC-Payload-Digest\":\"sha1:BCNPBWDYV4UJMQJFUT5YT5NEAQCFRY42\",\"WARC-Block-Digest\":\"sha1:4ESLKNKAGSW2XYGBUI7RIP7FDXZHTTHX\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2022/CC-MAIN-2022-21/CC-MAIN-2022-21_segments_1652662510117.12_warc_CC-MAIN-20220516104933-20220516134933-00550.warc.gz\"}"}
https://www.interviewkickstart.com/problems/validate-binary-search-tree
[ "", null, "Register for our webinar\n\n### How to Nail your next Technical Interview\n\n1 hour", null, "1\nEnter details\n2\nSelect webinar slot\n*Invalid Name\n*Invalid Name", null, "", null, "Step 1", null, "", null, "Step 2\nCongratulations!\nYou have registered for our webinar", null, "Oops! Something went wrong while submitting the form.\n1\nEnter details\n2\nSelect webinar slot\n*All webinar slots are in the Asia/Kolkata timezone", null, "", null, "Step 1", null, "", null, "Step 2", null, "Confirmed\nYou are scheduled with Interview Kickstart.\nRedirecting...\nOops! Something went wrong while submitting the form.", null, "", null, "## You may be missing out on a 66.5% salary hike*", null, "### Nick Camilleri\n\nHead of Career Skills Development & Coaching\n*Based on past data of successful IK students", null, "Help us know you better!\n\n## How many years of coding experience do you have?\n\nOops! Something went wrong while submitting the form.", null, "", null, "## FREE course on 'Sorting Algorithms' by Omkar Deshpande (Stanford PhD, Head of Curriculum, IK)\n\nOops! Something went wrong while submitting the form.", null, "", null, "# Binary Search Tree Problem\n\nGiven a binary tree, check if it is a binary search tree (BST). A valid BST does not have to be complete or balanced.\n\nConsider the below definition of a BST:\n\n1. All nodes values of left subtree are less than or equal to parent node value\n2. All nodes values of right subtree are greater than or equal to parent node value\n3. Both left subtree and right subtree must be a BST\n4. By definition, NULL tree is a BST\n5. By definition, trees having a single node or leaf nodes are BST.\n\nExample One\n\nInput:\n\nOutput: false\n\nLeft child value 200 is greater than the parent node value 100; violates the definition of BST.\n\nExample Two\n\nInput:\n\nOutput: true\n\nNotes\n\nInput Parameters: There is only one argument named root denoting the root of the input tree.\n\nOutput: Return true if the input tree is a BST or false otherwise\n\nConstraints:\n\n• 0 <= number of nodes <= 100000\n• -10^9 <= values stored in the nodes <= 10^9\n• Return value must be boolean\n\n### Solutions\n\nWe provided two solutions, both are optimal in terms of time and space complexity, though algorithms are different.\n\n### 1) other_solution.cpp:\n\nIn the following three examples, tree A and B is a BST, where tree C is not:\n\nIn other_solution.cpp we use the definition of BST quite literally. For every node, recursively, we check that all values in the left subtree are <= current node value and all values in the right subtree are >= current node value. We also propagate all the \"<=\" and \">=\" conditions down the recursion tree (they get more specific, more narrow as we go down the tree), effectively forming a valid range for every node we check. For example, in the following tree,\n\nthe requirements for X are both X>=1 and X<=4. Further, valid range for Y is Y>=X and Y<=4. Notice that because X>=1 holds true (X is checked before Y, higher up in the recursion tree), the effective valid range for Y is narrower than one for X; that way the range gets narrower as we go deeper down the tree. For better understanding please look at the solution.\n\nTime Complexity:\n\nO(n) where n denotes the number of nodes.\n\nAs we are traversing all the nodes of the tree to check if the node value lies within a range or not, hence we have to iterate through all the nodes and edges of the tree. A tree with n nodes have (n-1) edges. So, we have to iterate  n + (n-1) → 2n-1 times can be represented as O(n) complexity.\n\nAuxiliary Space:\n\nO(n) where n denotes the number of nodes.\n\nAs we are calling functions in recursion, so in the worst case functional stack can have n number of function calls which is equal to the number of nodes of the given tree. Hence auxiliary space for that is O(n)\n\nSpace complexity:\n\nO(n).\n\n``````\n// -------- START --------\n\nbool isBSTHelper(TreeNode *root, int min, int max){\n// NULL node check\nif(root == NULL){\nreturn true;\n}\n// current node value is not within valid range\nif(root->val>max || root->valleft_ptr, min, root->val) && isBSTHelper(root->right_ptr, root->val, max);\n}\n\nbool isBST(TreeNode* root){\n// empty or null tree check\nif(root==NULL){\nreturn true;\n}\nint min = INT_MIN;\nint max = INT_MAX;\nreturn isBSTHelper(root, min, max);\n}\n\n// -------- END --------\n``````\n\n### 2) optimal_solution.cpp:\n\nIn optimal_solution.cpp solution we have used in-order traversal property of a BST to validate whether it is a BST or not. If we store the values in an array during in-order traversal, it will be a sorted array if the given tree is BST. To check if an array is sorted or not, we just need to compare an element with the previous element of the array. We can do this while traversing the tree instead of storing the values in an array which will reduce space complexity. To achieve this, we have used a variable which stores the last visited nodes value at any time. So, when we are in a node, we can compare if the current node value is greater or equal to the previous node value. If this condition fails for any node then the given tree is not a BST. Otherwise it is.\n\nTime Complexity:\n\nO(n) where n denotes the number of nodes.\n\nAs we are traversing all the nodes of the tree to check if the current node value is greater or equal to the previous node value, hence we have to iterate through all the nodes and edges of the tree. A tree with n nodes have (n-1) edges. So, we have to iterate  n + (n-1) → 2n-1 times can be represented as O(n) complexity.\n\nAuxiliary Space:\n\nO(n) where n denotes the number of nodes.\n\nAs we are calling functions in recursion, so in the worst case functional stack can have n number of function calls which is equal to the number of nodes of the given tree. Hence auxiliary space for that is O(n)\n\nSpace Complexity:\n\nO(n).\n\n``````\n// -------- START --------\n\nbool isBSTHelper(TreeNode *root, int &prev){\n// NULL node check\nif(root == NULL){\nreturn true;\n}\n\n// check if left subtree is bst or not\nbool isLeftSubtreeBST = isBSTHelper(root->left_ptr, prev);\n\n// Check if current node value is greater or equal to the max value of left subtree nodes\nif(root->val < prev){\nreturn false;\n}\n\n// update the prev variable by current node value as each value of right subtree must be greater or equal\n// to the current root value\nprev = root->val;\n// true when both left and right subtrees are valid BST\nbool isRightSubtreeBST = isBSTHelper(root->right_ptr, prev);\n\n// Bitwise AND operation to return true only when both subtree is BST, otherwise false\nreturn (isLeftSubtreeBST && isRightSubtreeBST);\n}\n\nbool isBST(TreeNode* root){\n// empty or null tree check\nif(root==NULL){\nreturn true;\n}\nint min = INT_MIN;\nreturn isBSTHelper(root, min);\n}\n\n// -------- END --------\n``````\n\n### Try yourself in the Editor\n\nNote: Input and Output will already be taken care of.\n\n# Binary Search Tree Problem\n\nGiven a binary tree, check if it is a binary search tree (BST). A valid BST does not have to be complete or balanced.\n\nConsider the below definition of a BST:\n\n1. All nodes values of left subtree are less than or equal to parent node value\n2. All nodes values of right subtree are greater than or equal to parent node value\n3. Both left subtree and right subtree must be a BST\n4. By definition, NULL tree is a BST\n5. By definition, trees having a single node or leaf nodes are BST.\n\nExample One\n\nInput:\n\nOutput: false\n\nLeft child value 200 is greater than the parent node value 100; violates the definition of BST.\n\nExample Two\n\nInput:\n\nOutput: true\n\nNotes\n\nInput Parameters: There is only one argument named root denoting the root of the input tree.\n\nOutput: Return true if the input tree is a BST or false otherwise\n\nConstraints:\n\n• 0 <= number of nodes <= 100000\n• -10^9 <= values stored in the nodes <= 10^9\n• Return value must be boolean\n\n### Solutions\n\nWe provided two solutions, both are optimal in terms of time and space complexity, though algorithms are different.\n\n### 1) other_solution.cpp:\n\nIn the following three examples, tree A and B is a BST, where tree C is not:\n\nIn other_solution.cpp we use the definition of BST quite literally. For every node, recursively, we check that all values in the left subtree are <= current node value and all values in the right subtree are >= current node value. We also propagate all the \"<=\" and \">=\" conditions down the recursion tree (they get more specific, more narrow as we go down the tree), effectively forming a valid range for every node we check. For example, in the following tree,\n\nthe requirements for X are both X>=1 and X<=4. Further, valid range for Y is Y>=X and Y<=4. Notice that because X>=1 holds true (X is checked before Y, higher up in the recursion tree), the effective valid range for Y is narrower than one for X; that way the range gets narrower as we go deeper down the tree. For better understanding please look at the solution.\n\nTime Complexity:\n\nO(n) where n denotes the number of nodes.\n\nAs we are traversing all the nodes of the tree to check if the node value lies within a range or not, hence we have to iterate through all the nodes and edges of the tree. A tree with n nodes have (n-1) edges. So, we have to iterate  n + (n-1) → 2n-1 times can be represented as O(n) complexity.\n\nAuxiliary Space:\n\nO(n) where n denotes the number of nodes.\n\nAs we are calling functions in recursion, so in the worst case functional stack can have n number of function calls which is equal to the number of nodes of the given tree. Hence auxiliary space for that is O(n)\n\nSpace complexity:\n\nO(n).\n\n``````\n// -------- START --------\n\nbool isBSTHelper(TreeNode *root, int min, int max){\n// NULL node check\nif(root == NULL){\nreturn true;\n}\n// current node value is not within valid range\nif(root->val>max || root->valleft_ptr, min, root->val) && isBSTHelper(root->right_ptr, root->val, max);\n}\n\nbool isBST(TreeNode* root){\n// empty or null tree check\nif(root==NULL){\nreturn true;\n}\nint min = INT_MIN;\nint max = INT_MAX;\nreturn isBSTHelper(root, min, max);\n}\n\n// -------- END --------\n``````\n\n### 2) optimal_solution.cpp:\n\nIn optimal_solution.cpp solution we have used in-order traversal property of a BST to validate whether it is a BST or not. If we store the values in an array during in-order traversal, it will be a sorted array if the given tree is BST. To check if an array is sorted or not, we just need to compare an element with the previous element of the array. We can do this while traversing the tree instead of storing the values in an array which will reduce space complexity. To achieve this, we have used a variable which stores the last visited nodes value at any time. So, when we are in a node, we can compare if the current node value is greater or equal to the previous node value. If this condition fails for any node then the given tree is not a BST. Otherwise it is.\n\nTime Complexity:\n\nO(n) where n denotes the number of nodes.\n\nAs we are traversing all the nodes of the tree to check if the current node value is greater or equal to the previous node value, hence we have to iterate through all the nodes and edges of the tree. A tree with n nodes have (n-1) edges. So, we have to iterate  n + (n-1) → 2n-1 times can be represented as O(n) complexity.\n\nAuxiliary Space:\n\nO(n) where n denotes the number of nodes.\n\nAs we are calling functions in recursion, so in the worst case functional stack can have n number of function calls which is equal to the number of nodes of the given tree. Hence auxiliary space for that is O(n)\n\nSpace Complexity:\n\nO(n).\n\n``````\n// -------- START --------\n\nbool isBSTHelper(TreeNode *root, int &prev){\n// NULL node check\nif(root == NULL){\nreturn true;\n}\n\n// check if left subtree is bst or not\nbool isLeftSubtreeBST = isBSTHelper(root->left_ptr, prev);\n\n// Check if current node value is greater or equal to the max value of left subtree nodes\nif(root->val < prev){\nreturn false;\n}\n\n// update the prev variable by current node value as each value of right subtree must be greater or equal\n// to the current root value\nprev = root->val;\n// true when both left and right subtrees are valid BST\nbool isRightSubtreeBST = isBSTHelper(root->right_ptr, prev);\n\n// Bitwise AND operation to return true only when both subtree is BST, otherwise false\nreturn (isLeftSubtreeBST && isRightSubtreeBST);\n}\n\nbool isBST(TreeNode* root){\n// empty or null tree check\nif(root==NULL){\nreturn true;\n}\nint min = INT_MIN;\nreturn isBSTHelper(root, min);\n}\n\n// -------- END --------\n``````\n\n## Worried About Failing Tech Interviews?\n\nAttend our free webinar to amp up your career and get the salary you deserve.", null, "Hosted By\nRyan Valles\nFounder, Interview Kickstart", null, "Accelerate your Interview prep with Tier-1 tech instructors", null, "360° courses that have helped 14,000+ tech professionals", null, "100% money-back guarantee*" ]
[ null, "https://assets-global.website-files.com/5d0cef7a72ca1b074065dfda/5d2df08eb4a76d25393b790a_IK_Icon_Color.PNG", null, "https://assets-global.website-files.com/5d0cef7a72ca1b074065dfda/5ee4a6c47c89446b744368a5_Loading_icon.gif", null, "https://assets-global.website-files.com/5d0cef7a72ca1b074065dfda/6315a91f0bda28832e3dd00a_Group%20151756.svg", null, "https://assets-global.website-files.com/5d0cef7a72ca1b074065dfda/6315a91f0bda28832e3dd00a_Group%20151756.svg", null, "https://assets-global.website-files.com/5d0cef7a72ca1b074065dfda/6315a91f0bda28832e3dd00a_Group%20151756.svg", null, "https://assets-global.website-files.com/5d0cef7a72ca1b074065dfda/6315a91f0bda28832e3dd00a_Group%20151756.svg", null, "https://assets-global.website-files.com/5d0cef7a72ca1b074065dfda/6315a91f0bda2883293dd00c_Group%20151365.svg", null, "https://assets-global.website-files.com/5d0cef7a72ca1b074065dfda/6315a91f0bda28832e3dd00a_Group%20151756.svg", null, "https://assets-global.website-files.com/5d0cef7a72ca1b074065dfda/6315a91f0bda28832e3dd00a_Group%20151756.svg", null, "https://assets-global.website-files.com/5d0cef7a72ca1b074065dfda/6315a91f0bda28832e3dd00a_Group%20151756.svg", null, "https://assets-global.website-files.com/5d0cef7a72ca1b074065dfda/6315a91f0bda28832e3dd00a_Group%20151756.svg", null, "https://assets-global.website-files.com/5d0cef7a72ca1b074065dfda/6315a91f0bda2883293dd00c_Group%20151365.svg", null, "https://assets-global.website-files.com/6209eec94ae14d8343731fcd/620a310f5361da5c806604f2_close-btn.svg", null, "https://assets-global.website-files.com/5d0cef7a72ca1b074065dfda/5e6b2b693dfad84054cb1652_iks-logo-light%201.svg", null, "https://assets-global.website-files.com/5d0cef7a72ca1b074065dfda/62b152aeabb927c49510a235_logo%20black.svg", null, "https://assets-global.website-files.com/5d0cef7a72ca1b074065dfda/5e6b2b693dfad84054cb1652_iks-logo-light%201.svg", null, "https://assets-global.website-files.com/6209eec94ae14d8343731fcd/620a310f5361da5c806604f2_close-btn.svg", null, "https://assets-global.website-files.com/5d0cef7a72ca1b074065dfda/5e6b2b693dfad84054cb1652_iks-logo-light%201.svg", null, "https://assets-global.website-files.com/6209eec94ae14d8343731fcd/620a310f5361da5c806604f2_close-btn.svg", null, "https://assets-global.website-files.com/5d0cef7a72ca1b074065dfda/5e6c697ba2ae97075722981e_close-icon.svg", null, "https://assets-global.website-files.com/5d0cef7a72ca1b074065dfda/61d403ea9b6f18a9ed946710_Ryan-2x%20(1).png", null, "https://assets-global.website-files.com/5d0cef7a72ca1b074065dfda/61cc3a55e286eb1939b37aab_blue%20Tick1.svg", null, "https://assets-global.website-files.com/5d0cef7a72ca1b074065dfda/61cc3a55e286eb1939b37aab_blue%20Tick1.svg", null, "https://assets-global.website-files.com/5d0cef7a72ca1b074065dfda/61cc3a55e286eb1939b37aab_blue%20Tick1.svg", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.872499,"math_prob":0.9814593,"size":7303,"snap":"2023-40-2023-50","text_gpt3_token_len":1668,"char_repetition_ratio":0.12851076,"word_repetition_ratio":0.9859985,"special_character_ratio":0.23182254,"punctuation_ratio":0.101159796,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9946424,"pos_list":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48],"im_url_duplicate_count":[null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2023-12-10T04:35:47Z\",\"WARC-Record-ID\":\"<urn:uuid:f56131d9-561b-4a3b-b83a-fa2fd1eec1bc>\",\"Content-Length\":\"96668\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:9efb6a00-1e33-4efa-9a75-a2dc1694aa16>\",\"WARC-Concurrent-To\":\"<urn:uuid:20de0505-2d47-47b6-a503-381ccd6018c7>\",\"WARC-IP-Address\":\"52.206.163.162\",\"WARC-Target-URI\":\"https://www.interviewkickstart.com/problems/validate-binary-search-tree\",\"WARC-Payload-Digest\":\"sha1:JBMKA2VT5EMA3IHP7INYU5R2XBGFLDFU\",\"WARC-Block-Digest\":\"sha1:2NYNZZRQ42RFJZJOKHYPAC7QDBTL7WBN\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2023/CC-MAIN-2023-50/CC-MAIN-2023-50_segments_1700679101195.85_warc_CC-MAIN-20231210025335-20231210055335-00365.warc.gz\"}"}
https://learn.careers360.com/ncert/question-find-the-sum-of-all-natural-numbers-lying-between-100-and-1000-which-are-multiples-of-5/
[ "Q\n\n# Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.\n\n2.  Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.\n\nViews\n\nNumbers divisible by 5 from 100 to 1000 are\n\nThis sequence is an A.P.\n\nHere , first term =a =105\n\ncommon difference = 5.\n\nWe know ,\n\nThe  sum of numbers divisible by 5 from 100 to 1000 is 98450.\n\nExams\nArticles\nQuestions" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.93399864,"math_prob":0.9971133,"size":281,"snap":"2020-10-2020-16","text_gpt3_token_len":84,"char_repetition_ratio":0.12635379,"word_repetition_ratio":0.11111111,"special_character_ratio":0.36654803,"punctuation_ratio":0.13846155,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9982184,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2020-02-27T21:31:57Z\",\"WARC-Record-ID\":\"<urn:uuid:386e461f-e6f0-4574-ba84-8338f55cadd0>\",\"Content-Length\":\"764113\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:8edf121b-7c34-4c7e-a04f-640c08d42004>\",\"WARC-Concurrent-To\":\"<urn:uuid:4a60360d-dc0b-48ca-9888-4fe69b3c627b>\",\"WARC-IP-Address\":\"13.126.158.197\",\"WARC-Target-URI\":\"https://learn.careers360.com/ncert/question-find-the-sum-of-all-natural-numbers-lying-between-100-and-1000-which-are-multiples-of-5/\",\"WARC-Payload-Digest\":\"sha1:RP5YKQ6TLG2KINOPIZOPOZO5KXZL6AVW\",\"WARC-Block-Digest\":\"sha1:Y5C7HOZTGPMUH22HKYE4LNKGLAEWPGXL\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2020/CC-MAIN-2020-10/CC-MAIN-2020-10_segments_1581875146809.98_warc_CC-MAIN-20200227191150-20200227221150-00357.warc.gz\"}"}
https://discourse.julialang.org/t/int-numerical-calculation-speed-slower-than-float/34705
[ "# Int numerical calculation speed slower than Float?\n\nWhy the calculation speed of “Int” matrix is much slower than “Float” matrix?\n\nIDE: Jupyter\nJulia version: 1.1.0\n\nCode for Float:\ns=1000\nd1=rand(s,s)\nd2=rand(s,s)\n@time (d1*d2);\nResult: 0.032192 seconds (6 allocations: 7.630 MiB)\n\nCode for Int:\ns=1000\nd3=rand(Int,s,s)\nd4=rand(Int, s,s)\n@time (d3*d4);\nResult: 1.131875 seconds (12 allocations: 7.630 MiB)\n\nFloat matrices use blas. Int uses a generic fallback. Making the fallback method multithreaded for large matrices would fix much of the problem.\n\n2 Likes\n\nI think that for floats, BLAS is used, while for integers it is native Julia code. The latter could probably be made faster, but it is not a common use case so it is waiting for someone to do it.\n\nDo you think it would be worth it for mixed type matmul to convert arguments before multiplying? I think that should speed things up a lot (with some memory downsides). The other big thing the fallback needs is better cache aware looping.\n\nNo, I would not convert. First, integers have specific overflow semantics in Julia different from float, so I am not sure what is intended and what isn’t.\n\nSecond (and more importantly), you really have to go out of your way to get a matrix with a non-concrete element type when writing idiomatic code, so I am not sure it is a common use case. I would leave it up to the user to promote if that is needed.\n\nWe should have a specialized very effective Int multiplication kernel though.\n\n4 Likes\n\nOne way to do this is LoopVectorization’s example, which is faster but still not as fast as floats:\n\n``````julia> C1 = Matrix{Int}(undef, M, N); A = rand(1:100, M, K); B = rand(1:100, K, N);\n\njulia> C2 = similar(C1); C3 = similar(C1);\n\njulia> @btime mygemmavx!(\\$C1, \\$A, \\$B)\n77.412 μs (0 allocations: 0 bytes)\n\njulia> @btime mygemm!(\\$C2, \\$A, \\$B)\n245.869 μs (0 allocations: 0 bytes)\n\njulia> @btime mul!(\\$C3, \\$A, \\$B); # julia's generic_matmul\n164.278 μs (6 allocations: 336 bytes)\n``````\n\ncompared to Float64:\n\n``````julia> @btime mygemmavx!(\\$C1, \\$A, \\$B)\n14.599 μs (0 allocations: 0 bytes)\n\njulia> @btime mygemm!(\\$C2, \\$A, \\$B)\n290.296 μs (0 allocations: 0 bytes)\n\njulia> @btime mul!(\\$C3, \\$A, \\$B); # openblas, not MKL\n22.635 μs (0 allocations: 0 bytes)\n``````\n\nNote BTW that in your example, `rand(Int, ...)` produces lots of large numbers, which will overflow:\n\n``````julia> (float(d3) * float(d4)) .- (d3 * d4) |> extrema\n(-4.2418818662328814e39, 4.4115065145744565e39)\n\njulia> extrema(A)\n(1, 100)\n\njulia> (float(A) * float(B)) .- (A * B) |> extrema\n(0.0, 0.0)\n``````\n4 Likes\n\nUsing\n\n``````julia> M, K, N = 72, 75, 71;\n``````\n\nMy results with `Float64` are:\n\n``````julia> BLAS.set_num_threads(1)\n\njulia> @btime mygemmavx!(\\$C1, \\$A, \\$B)\n7.380 μs (0 allocations: 0 bytes)\n\njulia> @btime mygemm!(\\$C2, \\$A, \\$B)\n231.900 μs (0 allocations: 0 bytes)\n\njulia> @btime mul!(\\$C3, \\$A, \\$B); # julia's generic_matmul\n6.780 μs (0 allocations: 0 bytes)\n``````\n\nAnd with `Int`:\n\n``````julia> @btime mygemmavx!(\\$C1, \\$A, \\$B)\n26.158 μs (0 allocations: 0 bytes)\n\njulia> @btime mygemm!(\\$C2, \\$A, \\$B)\n190.645 μs (0 allocations: 0 bytes)\n\njulia> @btime mul!(\\$C3, \\$A, \\$B); # julia's generic_matmul\n101.748 μs (6 allocations: 336 bytes)\n``````\n\nSo `Int` is about 3.5x slower than Float for me, while it is 5.3x slower for you.\nWith integers, it uses the `vpmullq` instruction for integer multiplication. But this instruction appears to be slow, with a reciprocal throughput of around 1.5-3, while the vpaddq instruction is around 0.33 or 0.5.\nThe floating point versions use fused multiply-add instructions to combine both the multiplication and addition, and have a reciprical throughput of about 0.5.\nYou can think of “reciprical throughput” as how many clock cycles it takes per completed instruction if a core is executing many simultaneously. It generally takes many more clock cycles to complete any given instruction (e.g., 4 for the fma instructions), but a core can work on many simultaneously, thus the rate at which they’re completed can be much faster.\n\n3 Likes\n\nRealize that implementing a highly optimized matrix–matrix multiplication is nontrivial. Optimized BLAS libraries typically involve tens of thousands of lines of code and painstaking performance tuning. While there is no theoretical reason why this cannot be replicated in Julia, it is a huge undertaking.\n\n1 Like\n\nThanks, interesting. And the reason for this difference in the first place, perhaps that there’s just more demand for vectorised floating point stuff, which justifies spending a lot of silicon on it?\n\nI have no doubt. “We should” in open source can perhaps only mean “it would be appreciated”.\n\nNot having BLAS implementation for a type really hurts.\n\nThis is why Arraymancer (a BLAS written in Nim that supports a bunch of types/is generic?),\ntrashes everyone at integer matmul\n\nOut of curiosity, how comes that JuliaBLAS is closing in on BLAS for floats but is not fundamentally faster than generic matmul for ints?" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.9447259,"math_prob":0.9090763,"size":1766,"snap":"2022-05-2022-21","text_gpt3_token_len":380,"char_repetition_ratio":0.09988649,"word_repetition_ratio":0.0068259384,"special_character_ratio":0.20554927,"punctuation_ratio":0.109195404,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.96562785,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2022-05-21T00:15:06Z\",\"WARC-Record-ID\":\"<urn:uuid:362c7401-37c4-41c8-9b6b-d1c11ba0ffbe>\",\"Content-Length\":\"52659\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:8c325584-e222-41eb-9151-a039a2c13458>\",\"WARC-Concurrent-To\":\"<urn:uuid:b35f185b-5898-4ed3-b0a7-e7ec705f226a>\",\"WARC-IP-Address\":\"64.71.144.205\",\"WARC-Target-URI\":\"https://discourse.julialang.org/t/int-numerical-calculation-speed-slower-than-float/34705\",\"WARC-Payload-Digest\":\"sha1:7H7YT2JCL3UKWLZKSFME3CXTULTLUK4D\",\"WARC-Block-Digest\":\"sha1:PIXEDGT4K2CFBYA4E3VB33MZUAKJG7DS\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2022/CC-MAIN-2022-21/CC-MAIN-2022-21_segments_1652662534693.28_warc_CC-MAIN-20220520223029-20220521013029-00668.warc.gz\"}"}
https://hoopercharles.wordpress.com/2009/12/05/
[ "## SQL – Retain Specific Sort Order\n\n5 12 2009\n\nDecember 5, 2009\n\nIs there a simple way to use a previous result in an ORDER BY clause?\n\nI have a rather complicate query that filters, sorts and returns a series of IDs:\n\n```FOO_ID\n======\n1\n98\n12\n33```\n\nThen, I use these IDs to fetch further information about the items they represent:\n\n```SELECT .......\nFROM FOO\nLEFT JOIN BAR .......\nWHERE FOO_ID IN (1, 98, 12, 33)```\n\nI keep the two queries separate to avoid excessive complexity. I compose the SQL code using PHP. Right now, the second query comes unsorted from Oracle: I use PHP to sort it at a later stage in my application (my PHP skills are better than my SQL ones). Would it be possible to use the ID list to sort the second query inside Oracle?\n\nServer runs Oracle9i Enterprise Edition Release 9.2.0.1.0\n\nNo need to make this too difficult.  If you were on 10g, you could so some fancy things with regexp_substr.  A simple example which should work on 9i and below:\nCreate a testing table for this demonstration named T1, think of this as your FOO table:\n\n```CREATE TABLE T1 AS\nSELECT\nROWNUM C1\nFROM\nDUAL\nCONNECT BY\nLEVEL<=100;```\n\nNow the first step, just retrieve the rows you want:\n\n```SELECT\nC1\nFROM\nT1\nWHERE\nC1 IN (1,98,12,33);\n\nC1\n----------\n1\n12\n33\n98```\n\nNow, sort the rows:\n\n```SELECT\nC1\nFROM\nT1\nWHERE\nC1 IN (1,98,12,33)\nORDER BY\nINSTR('1,98,12,33,' , TO_CHAR(C1)||',');\n\nC1\n----------\n1\n98\n12\n33```\n\nNote in the INSTR, the sequence of the numbers must end in a comma, and we tell INSTR to locate the number in the list with a comma appended to the end of the value of C1.\nYour SQL statement would look like this:\n\n```SELECT .......\nFROM FOO\nLEFT JOIN BAR .......\nWHERE FOO_ID IN (1, 98, 12, 33)\nORDER BY\nINSTR(',1,98,12,33,' , ','||TO_CHAR(FOO_ID)||',');```\n\nOr:\n\n```SELECT .......\nFROM\nFOO,\nBAR\nWHERE\nFOO.FOO_ID=BAR.FOO_ID(+)\nAND FOO_ID IN (1, 98, 12, 33)\nORDER BY\nINSTR(',1,98,12,33,' , ','||TO_CHAR(FOO_ID)||',');```\n\nBefore deciding to use the above technique, determine if there is a better way to do *everything* in a single SQL statement.  You might be able to do this by wrapping your complicated SQL statement into an inline view, and joining to that just as if it were a regular table:\n\n```SELECT .......\nFROM\nFOO,\nBAR,\n( complicated SQL here ) V\nWHERE\nV.FOO_ID=FOO.ID\nAND FOO.FOO_ID=BAR.FOO_ID(+)\nORDER BY\nV.RN;```\n\nThe RN column would be generated inside the inline view V, possibly like this, if there is an ORDER BY clause in the inline view:\n\n`  ROWNUM RN`\n\n## SQL – Recursive Summing of Related Entities\n\n5 12 2009\n\nDecember 5, 2009\n\nTable dir_size stores the mbytes of storage used in a given directory. Table directories stores various directory names which may or may not exist in table dir_size.\nFor every directory in table directories, report the cumulative storage in that directory and all its subdirectories. This solution uses a cartesian join.  I imagine it will not scale well.\n\n```create table dir_size (\ndir_name     varchar2(40),\nmbytes       number\n);\n\ncreate table directories (\ndir_name    varchar2(40)\n);\n\ninsert into dir_size values ('c:\\aaa\\bbb\\ccc\\ddd', 100);\ninsert into dir_size values ('c:\\aaa\\bbb\\ccc', 100);\ninsert into dir_size values ('c:\\aaa\\bbb', 100);\ninsert into dir_size values ('c:\\aaa', 100);\ninsert into dir_size values ('c:\\', 100);\ninsert into directories values ('c:\\aaa\\bbb\\ccc\\ddd');\ninsert into directories values ('c:\\aaa\\bbb\\ccc');\ninsert into directories values ('c:\\aaa\\bbb');\ninsert into directories values ('c:\\aaa');\ninsert into directories values ('c:\\');\ninsert into directories values ('c:\\xxx\\yyy\\zzz');\ncommit;\n\nselect dir_name, sum(mbytes) from (\nselect directories.dir_name,\ninstr(dir_size.dir_name, directories.dir_name) INSTR,\nmbytes\nfrom directories, dir_size\n)\nwhere INSTR = 1\ngroup by dir_name\norder by 1;\n\nDIR_NAME                                 SUM(MBYTES)\n---------------------------------------- -----------\nc:\\                                              500\nc:\\aaa                                           400\nc:\\aaa\\bbb                                       300\nc:\\aaa\\bbb\\ccc                                   200\nc:\\aaa\\bbb\\ccc\\ddd                               100```\n\nThis appears to be a hard problem.  To avoid headaches, make certain that each of the DIR_NAMES ends with “\\”\n\nLet’s start here:\n\n```SELECT\n'c:\\aaa\\bbb\\ccc\\ddd\\' DIR_NAME,\n100 MBYTES\nFROM\nDUAL;\n\nDIR_NAME                 MBYTES\n-------------------- ----------\nc:\\aaa\\bbb\\ccc\\ddd\\         100```\n\nIn your example, you would like to put 100MB into the following directories based on the above:\n\n```c:\\\nc:\\aaa\\\nc:\\aaa\\bbb\\\nc:\\aaa\\bbb\\ccc\\\nc:\\aaa\\bbb\\ccc\\ddd\\```\n\nYou somehow need to be able to break that one row into 5 rows.  The following might help\n\n```SELECT\nLEVEL L\nFROM\nDUAL\nCONNECT BY\nLEVEL<=20;\n\nL\n---\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n11\n12\n13\n14\n15\n16\n17\n18\n19\n20```\n\nIf we join those two row sources together we might be able to create 5 rows from the one row:\n\n```SELECT\nSUBSTR(DIR_NAME,1,INSTR(DIR_NAME,'\\',1,L)) DIR_NAME2,\nMBYTES\nFROM\n(SELECT\n'c:\\aaa\\bbb\\ccc\\ddd\\' DIR_NAME,\n100 MBYTES\nFROM\nDUAL) DIR_SIZE,\n(SELECT\nLEVEL L\nFROM\nDUAL\nCONNECT BY\nLEVEL<=20) C\nWHERE\nSUBSTR(DIR_NAME,1,INSTR(DIR_NAME,'\\',1,L)) IS NOT NULL;\n\nDIR_NAME2                MBYTES\n-------------------- ----------\nc:\\                         100\nc:\\aaa\\                     100\nc:\\aaa\\bbb\\                 100\nc:\\aaa\\bbb\\ccc\\             100\nc:\\aaa\\bbb\\ccc\\ddd\\         100```\n\nNow, if we performed the same process for all of the rows in the DIR_SIZE table, grouping on DIR_NAME2, we might be able to find the SUM of the MBYTES column.\n\n(Note that I did not provide an exact/final answer to the original poster – my post was intended to push the OP in the right direction of a solution.)\n\nThe OP followed up with this comment:\n\nThanks for the suggestion.  I suspect the best way will involve some kind of recursive processing.  The tricky bit is the matching of the rows in the directories table to the rows in the dir_size table.  We need to do a “like” (which we can’t, of course) which is why I thought of the instr.\n\nThe LIKE keyword is not necessary.\n\nNotice how closely the output of the following SQL statement:\n\n```SELECT\n'c:\\aaa\\bbb\\ccc\\ddd\\' DIR_NAME,\n100 MBYTES\nFROM\nDUAL;```\n\nMatches the row created by one of your insert statements:\n\n`insert into dir_size values ('c:\\aaa\\bbb\\ccc\\ddd', 100);`\n\nYou might try replacing in the above examples:\n\n```SELECT\n'c:\\aaa\\bbb\\ccc\\ddd\\' DIR_NAME,\n100 MBYTES\nFROM\nDUAL;```\n\nWith a SQL statement that selects all of the rows from your DIR_SIZE table – the results might surprise you IF each of the DIR_NAME values end with a “\\”.\nYou really need more variety in the insert statements to see what is happening, for example:\n\n```insert into dir_size values ('c:\\ddd\\', 800);\ninsert into dir_size values ('c:\\ddd\\kkk\\', 300);```\n\nThe first of the above SQL statements will increase the calculated SUM in the c:\\ directory by 800, and the second insert statement will increase the SUM in both of the c:\\ and c:\\ddd\\ directories by 300 if you modify my original example to use the DIR_SIZE table rather than the DUAL table.\nThe final part that I did not provide to the OP is below:\n\n```TRUNCATE TABLE DIR_SIZE;\n\ninsert into dir_size values ('c:\\aaa\\bbb\\ccc\\ddd\\', 100);\ninsert into dir_size values ('c:\\aaa\\bbb\\ccc\\', 100);\ninsert into dir_size values ('c:\\aaa\\bbb\\', 100);\ninsert into dir_size values ('c:\\aaa\\', 100);\ninsert into dir_size values ('c:\\', 100);\ninsert into dir_size values ('c:\\ddd\\', 800);\ninsert into dir_size values ('c:\\ddd\\kkk\\', 300);```\n\nWorking with the hints provided and the final SQL statement in my post, we start with the following:\n\n```SELECT\nSUBSTR(DIR_NAME,1,INSTR(DIR_NAME,'\\',1,L)) DIR_NAME2,\nMBYTES\nFROM\n(SELECT\n*\nFROM\nDIR_SIZE) DIR_SIZE,\n(SELECT\nLEVEL L\nFROM\nDUAL\nCONNECT BY\nLEVEL<=20) C\nWHERE\nSUBSTR(DIR_NAME,1,INSTR(DIR_NAME,'\\',1,L)) IS NOT NULL;\n\nDIR_NAME2                MBYTES\n-------------------- ----------\nc:\\                         100\nc:\\                         100\nc:\\                         100\nc:\\                         100\nc:\\                         100\nc:\\                         800\nc:\\                         300\nc:\\aaa\\                     100\nc:\\aaa\\                     100\nc:\\aaa\\                     100\nc:\\aaa\\                     100\nc:\\ddd\\                     800\nc:\\ddd\\                     300\nc:\\aaa\\bbb\\                 100\nc:\\aaa\\bbb\\                 100\nc:\\aaa\\bbb\\                 100\nc:\\ddd\\kkk\\                 300\nc:\\aaa\\bbb\\ccc\\             100\nc:\\aaa\\bbb\\ccc\\             100\nc:\\aaa\\bbb\\ccc\\ddd\\         100```\n\n```SELECT\nSUBSTR(DIR_NAME,1,INSTR(DIR_NAME,'\\',1,L)) DIR_NAME2,\nSUM(MBYTES) MBYTES\nFROM\nDIR_SIZE,\n(SELECT\nLEVEL L\nFROM\nDUAL\nCONNECT BY\nLEVEL<=20) C\nWHERE\nSUBSTR(DIR_NAME,1,INSTR(DIR_NAME,'\\',1,L)) IS NOT NULL\nGROUP BY\nSUBSTR(DIR_NAME,1,INSTR(DIR_NAME,'\\',1,L))\nORDER BY\nSUBSTR(DIR_NAME,1,INSTR(DIR_NAME,'\\',1,L));\n\nDIR_NAME2                MBYTES\n-------------------- ----------\nc:\\                        1600\nc:\\aaa\\                     400\nc:\\aaa\\bbb\\                 300\nc:\\aaa\\bbb\\ccc\\             200\nc:\\aaa\\bbb\\ccc\\ddd\\         100\nc:\\ddd\\                    1100\nc:\\ddd\\kkk\\                 300```\n\n## SQL – Methods of Reformatting into Equivalent Forms 6\n\n5 12 2009\n\nDecember 5, 2009\n\nA recent post in the comp.database.oracle.server Usenet group asked the following question:\n\nIs there way to force the randomize within a set of number in Oracle?\nSay I have a set of integers ( 2,8,6,5) and I want to force randomize function to randomly pick within that set only. I know about the DBMS_RANDOM package, sample and seed clause but none help what I need to do here.\n\nany thoughts?\n\nIt was not clear if the integers will be present in table rows, supplied in a comma separated list, or through another method. Additionally, it was not clear if the solution should be provided in SQL, PL/SQL, or another programming language.  A couple people offered potential solutions.\n\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\nStraightforward way: just generate random numbers between 0 and 1, divide the 0..1 range into 4 subranges and then pick a number from\nyour list depending on which subrange your generated random value belongs, like this:\n\n```with rnd as (select dbms_random.value val from dual)\nselect\ncase\nwhen val < 0.25 then 2\nwhen val >= 0.25 and val < 0.5 then 8\nwhen val >= 0.5  and val < 0.75 then 6\nwhen val >= 0.75 then 5\nend x\nfrom rnd```\n\n(note that this query does not work correctly in 9.2.0.8 for some reason – returns wrong results. In 10.2.0.4 it returns expected results.) Obviously, you can partition 0..1 range into as many subranges as there are numbers in your list and apply the same technique. A function that will do this automatically given an array of possible return values is not too hard to write.\n\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\nTiago offered the following solution:\n\n```SET serveroutput ON\nDECLARE\nType tabIntegers IS TABLE OF NUMBER ;\nIntegers tabIntegers ;\nminInteger NUMBER ;\nmaxInteger NUMBER ;\nrndInteger NUMBER ;\nrndIntOk   BOOLEAN := False ;\nBEGIN\nintegers := tabIntegers( 2, 5, 10, 7, 3, 8, 11, 25, 0 ) ;\nFOR i IN integers.first..integers.last\nLOOP\nminInteger := Least(NVL(minInteger,integers(i)), integers(i));\nmaxInteger := Greatest(NVL(maxInteger,integers(i)), integers(i));\nEND LOOP ;\nLOOP\nrndInteger := TRUNC( dbms_random.value(minInteger,maxInteger) ) ;\nFOR i IN integers.first..integers.last\nLOOP\nIF rndInteger = integers(i) THEN\nrndIntOk   := true ;\nEXIT ;\nEND IF ;\nEND LOOP ;\nEXIT WHEN rndIntOk ;\nEND LOOP ;\ndbms_output.put_line(rndInteger);\nEND ;\n```\n\nTiago offered a follow-up solution:\n\nsimplified, don’t know what I was thinking when did version 1.0.\n\n```SET serveroutput ON\nDECLARE\nType tabIntegers\nIS\nTABLE OF NUMBER ;\nIntegers tabIntegers ;\nrndInteger NUMBER ;\nBEGIN\nintegers := tabIntegers( 2, 5, 10, 7, 3, 8, 11, 25, 0 ) ;\nrndInteger := integers(TRUNC( dbms_random.value(1,integers.last) ) ) ;\ndbms_output.put_line(rndInteger);\nEND ;```\n\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\nMark Powell offered the following advice:\n\nCK, instead of using a fixed range as Vladimir had in his example I was thinking I might use a MOD division of the random number returned from dbms_random to generate the index key into my table of values. This would make the code flexible for variable length lists.  If you have a fixed number of entries then Vlad’s solution is simple and easy to understand.  If your number of variables varies then I think this would fit the bill.\n\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\nI offered the following:\n\nHere is another way to do it, if you do not know how many elements will be in the list.\n\nFirst, we return a row from DUAL with the rows of interest with a comma appended at the start and end:\n\n```SELECT\n',2,8,6,5,54,100,67,7778,6,' ITEMS\nFROM\nDUAL;\n\nITEMS\n--------------------------\n,2,8,6,5,54,100,67,7778,6,```\n\nNext, we need to determine the number of elements and pick an element position at random:\n\n```SELECT\nITEMS,\nSUM(SIGN(INSTR(ITEMS, ',',1,ROWNUM)))-1 NUM_ITEMS,\n(TRUNC(DBMS_RANDOM.VALUE(0,SUM(SIGN(INSTR(ITEMS ,',',1,ROWNUM)))-1)) +1) SEL_ITEM\nFROM\n(SELECT\n',2,8,6,5,54,100,67,7778,6,' ITEMS\nFROM\nDUAL)\nCONNECT BY\nLEVEL<20;\n\nITEMS                       NUM_ITEMS   SEL_ITEM\n-------------------------- ---------- ----------\n,2,8,6,5,54,100,67,7778,6,          9          6```\n\nFinally, we push the above SQL statement into an inline view, search for the specified number of commas according to SEL_ITEM column to determine the starting position of the element, and then search for the next comma to determine the ending position of the element:\n\n```SELECT\nITEMS,\nSEL_ITEM,\nSUBSTR(ITEMS,INSTR(ITEMS,',',1,SEL_ITEM)+1,(INSTR(ITEMS,',', 1,SEL_ITEM+1)) - (INSTR(ITEMS,',',1,SEL_ITEM)) -1) ITEM\nFROM\n(SELECT\nITEMS,\nSUM(SIGN(INSTR(ITEMS, ',',1,ROWNUM)))-1 NUM_ITEMS,\n(TRUNC(DBMS_RANDOM.VALUE(0,SUM(SIGN(INSTR(ITEMS ,',',1,ROWNUM)))-1)) +1) SEL_ITEM\nFROM\n(SELECT\n',2,8,6,5,54,100,67,7778,6,' ITEMS\nFROM\nDUAL)\nCONNECT BY\nLEVEL<20);\n\nITEMS                        SEL_ITEM ITEM\n-------------------------- ---------- ----\n,2,8,6,5,54,100,67,7778,6,          6 100```\n\nYou might also be able to do something like this:\n\n```SELECT\n'2,8,6,5,54,100,67,7778,6' ITEMS,\nDBMS_RANDOM.VALUE(0,1) PERCENT\nFROM\nDUAL;\n\nITEMS                       PERCENT\n------------------------ ----------\n2,8,6,5,54,100,67,7778,6 .582165524```\n\n```SELECT\nROWNUM ITEM_NUMBER,\nREGEXP_SUBSTR(ITEMS,'\\w+',1,LEVEL) ITEM,\nPERCENT\nFROM\n(SELECT\n'2,8,6,5,54,100,67,7778,6' ITEMS,\nDBMS_RANDOM.VALUE(0,1) PERCENT\nFROM\nDUAL)\nCONNECT BY\nREGEXP_SUBSTR(ITEMS,'\\w+',1,LEVEL) IS NOT NULL;\n\nITEM_NUMBER ITEM     PERCENT\n----------- ----- ----------\n1 2     .104480002\n2 8      .81670697\n3 6     .826051929\n4 5     .477132421\n5 54     .89077554\n6 100   .640842927\n7 67    .145088893\n8 7778  .252241096\n9 6     .490905924```\n\nAs you can see from the above, we have a problem in that the random percent changes for each row, which will cause a problem for us if we try to use it in a WHERE clause.\n\n```SELECT\nMAX(ITEM_NUMBER) OVER () NUM_ITEMS,\nPERCENT_RANK() OVER (ORDER BY ITEM_NUMBER) PR,\nITEM_NUMBER,\nITEM,\nPERCENT\nFROM\n(SELECT\nROWNUM ITEM_NUMBER,\nREGEXP_SUBSTR(ITEMS,'\\w+',1,LEVEL) ITEM,\nPERCENT\nFROM\n(SELECT\n'2,8,6,5,54,100,67,7778,6' ITEMS,\nDBMS_RANDOM.VALUE(0,1) PERCENT\nFROM\nDUAL)\nCONNECT BY\nREGEXP_SUBSTR(ITEMS,'\\w+',1,LEVEL) IS NOT NULL);\n\nNUM_ITEMS         PR ITEM_NUMBER ITEM     PERCENT\n--------- ---------- ----------- ----- ----------\n9          0           1 2     .110718377\n9       .125           2 8     .306241972\n9        .25           3 6     .953005936\n9       .375           4 5     .033518415\n9         .5           5 54    .803485415\n9       .625           6 100   .456278133\n9        .75           7 67     .04461405\n9       .875           8 7778  .249680394\n9          1           9 6     .484834331```\n\nIf we now use a FIRST_VALUE analytic function, we could just retrieve\nthe first PERCENT value and use that in a WHERE clause (the PERCENT_RANK function was the start of another approach which was never developed):\n\n```SELECT\nNUM_ITEMS,\nITEM_NUMBER,\nITEM\nFROM\n(SELECT\nMAX(ITEM_NUMBER) OVER () NUM_ITEMS,\nITEM_NUMBER,\nITEM,\nFIRST_VALUE(PERCENT) OVER () PERCENT\nFROM\n(SELECT\nROWNUM ITEM_NUMBER,\nREGEXP_SUBSTR(ITEMS,'\\w+',1,LEVEL) ITEM,\nPERCENT\nFROM\n(SELECT\n'2,8,6,5,54,100,67,7778,6' ITEMS,\nDBMS_RANDOM.VALUE(0,1) PERCENT\nFROM\nDUAL)\nCONNECT BY\nREGEXP_SUBSTR(ITEMS,'\\w+',1,LEVEL) IS NOT NULL))\nWHERE\nITEM_NUMBER=(TRUNC(NUM_ITEMS*PERCENT)+1);\n\nNUM_ITEMS ITEM_NUMBER ITEM\n--------- ----------- ----\n9           7 67```\n\nOne more, which was originally based on my second solution, this time ordering the rows in random order:\n\n```SELECT\nROWNUM ITEM_NUMBER,\nREGEXP_SUBSTR(ITEMS,'\\w+',1,LEVEL) ITEM\nFROM\n(SELECT\n'2,8,6,5,54,100,67,7778,6' ITEMS\nFROM\nDUAL)\nCONNECT BY\nREGEXP_SUBSTR(ITEMS,'\\w+',1,LEVEL) IS NOT NULL\nORDER BY\nDBMS_RANDOM.VALUE(0,1);\n\nITEM_NUMBER ITEM\n----------- ----\n8 7778\n4 5\n9 6\n6 100\n5 54\n2 8\n7 67\n3 6\n1 2```\n\nNow, just slide the above into an inline view and retrieve just the first row:\n\n```SELECT\nITEM_NUMBER,\nITEM\nFROM\n(SELECT\nROWNUM ITEM_NUMBER,\nREGEXP_SUBSTR(ITEMS,'\\w+',1,LEVEL) ITEM\nFROM\n(SELECT\n'2,8,6,5,54,100,67,7778,6' ITEMS\nFROM\nDUAL)\nCONNECT BY\nREGEXP_SUBSTR(ITEMS,'\\w+',1,LEVEL) IS NOT NULL\nORDER BY\nDBMS_RANDOM.VALUE(0,1))\nWHERE\nROWNUM=1;\n\nITEM_NUMBER ITEM\n----------- ----\n6 100```\n\nThere are probably a couple more ways to pick a random element." ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.6187144,"math_prob":0.9500588,"size":7935,"snap":"2022-40-2023-06","text_gpt3_token_len":2423,"char_repetition_ratio":0.17223553,"word_repetition_ratio":0.13713267,"special_character_ratio":0.368494,"punctuation_ratio":0.23133071,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9621891,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2023-02-03T23:18:15Z\",\"WARC-Record-ID\":\"<urn:uuid:07ab0dd8-a318-4b24-9a0a-cdeb4a1077f4>\",\"Content-Length\":\"102124\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:8c0b5611-88e9-476e-ade4-3edbf520ab49>\",\"WARC-Concurrent-To\":\"<urn:uuid:b55668ad-9370-496c-9ba4-5994b8e0a4c1>\",\"WARC-IP-Address\":\"192.0.78.13\",\"WARC-Target-URI\":\"https://hoopercharles.wordpress.com/2009/12/05/\",\"WARC-Payload-Digest\":\"sha1:ZNCCKK5VXQJZLZWHOBSKL4Z3ZE2DFHPV\",\"WARC-Block-Digest\":\"sha1:7GDIQPSKEOBSYJDCHKYDOJ7FQHP6YZBV\",\"WARC-Identified-Payload-Type\":\"application/xhtml+xml\",\"warc_filename\":\"/cc_download/warc_2023/CC-MAIN-2023-06/CC-MAIN-2023-06_segments_1674764500076.87_warc_CC-MAIN-20230203221113-20230204011113-00610.warc.gz\"}"}
https://link.springer.com/chapter/10.1007/978-1-4471-4558-5_4
[ "# Completeness and Applications\n\n• Dirk van Dalen\nChapter\nPart of the Universitext book series (UTX)\n\n## Abstract\n\nThe other way around—true ⇒ derivable—is studied in a separate chapter. Here Gödel’s completeness theorem: Truth = derivability, is proved following the method of Leon Henkin. Here a bit of set theory comes in, e.g. classes of structures, extensions, etc. The student need not worry, all prerequisites are lined up—consistent, maximally consistent, conservative extension, witness. The key lemma, the model existence lemma, turns out to be a gentle piecing together of structures. The techniques are used to prove a number of results that take us to model theory, such as the compactness theorem: if all finite parts of a theory are consistent, so is the theory itself. The Skolem-Löwenheim theorems provide (for most structures) larger or smaller structures that are logically indistinguishable from the original one (elementary equivalence, elementary extension). Questions like: Is a particular class of structures (say, algebraically close fields) axiomatizable? Which theories are decidable? are handled by model theoretic means. Skolem considered the possibility of introducing a function picking suitable elements in a structure, once ∀x(x,y) has been shown. The basic facts of these Skolem functions are discussed. The famous Herbrand theorem is found in the exercise section. The chapter ends with a new section on ultraproducts, i.e. structures produced by a clever product construction from given structures. An example is a non-standard extension of the natural number system. The topic is on the miraculous side of our logic course, as it shows us that it is perfectly possible to obtain logical results in a logic-free way.\n\n## Keywords\n\nPropositional Logic Compactness Theorem Completeness Theorem Conservative Extension Existential Quantifier\nThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.\n\n## References\n\n1. A. Robinson. Non-standard Analysis. North-Holland, Amsterdam, 1965 Google Scholar\n2. K.D. Stroyan, W.A.J. Luxemburg. Introduction to the Theory of Infinitesimals. Academic Press, New York, 1976 Google Scholar" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.85260266,"math_prob":0.85091996,"size":2072,"snap":"2020-34-2020-40","text_gpt3_token_len":447,"char_repetition_ratio":0.11363637,"word_repetition_ratio":0.0,"special_character_ratio":0.19208494,"punctuation_ratio":0.15240642,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9685161,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2020-09-27T14:49:23Z\",\"WARC-Record-ID\":\"<urn:uuid:989cbb0b-8ff8-4dd5-848b-ef369f5ae576>\",\"Content-Length\":\"60701\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:10c7e4ce-17f5-4603-9754-561f8afec441>\",\"WARC-Concurrent-To\":\"<urn:uuid:4cb6db94-1b21-49df-a4da-f02cd4ba2574>\",\"WARC-IP-Address\":\"199.232.64.95\",\"WARC-Target-URI\":\"https://link.springer.com/chapter/10.1007/978-1-4471-4558-5_4\",\"WARC-Payload-Digest\":\"sha1:42VZ5FK77MVOUO5NGMDOYAZG5SBKGTNI\",\"WARC-Block-Digest\":\"sha1:3GLTFMBTYLWQFMWGZDSEPNZSLIZGKO6H\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2020/CC-MAIN-2020-40/CC-MAIN-2020-40_segments_1600400279782.77_warc_CC-MAIN-20200927121105-20200927151105-00331.warc.gz\"}"}
https://eng.kakprosto.ru/how-127636-in-excel-calculate-time
[ "Instruction\n1\nIf you are first faced with the task of calculating the time, try not to resort immediately to complex functions. Most of the computation can be issued by a simple mathematical formula: addition and subtraction. And be sure to set the cells in the correct format.\n2\nTo do this, select the range of cells to be used as input data, and click the selection with the right mouse button or open the Home tab and click the block instruments \"Cell\" button the \"Format\". In the first and in the second case, select the context menu \"Format cells\".\n3\nOpens a new dialog box, make sure that you are on the tab \"Number.\" In the list located in the left part of the window, scroll the left click. In the right part of the window indicate the form should be submitted time. Click OK to confirm your choice.", null, "4\nEnter data into cells in the format XX:XX (or XX:XX:XX). To calculate the time interval between the first and second value, set the cursor in the cell where the total value. In the formula bar an equal sign, click the cell with the last value with the left mouse button, enter a minus sign, then click on the cell with the first value. Press the Enter key.\n5\nFor example: the time range from 11:10:15 to 12:30:00 is 1 hour, 19 minutes and 45 seconds. The resulting value in cell C2 is calculated by the formula: =B2-A2. If you need to calculate the amount of time in several rows (A3 and B3, A4 and B4, and so on), just drag the AutoFill handle from cell S2 to the end column of your table (C3, C4).", null, "6\nIf you need to calculate how much in total hours, minutes and seconds it took for anything, just fold the data obtained as described above by using the sum function. Put the cursor in the cell with the total value, click the fx button in the window that appears, select the left mouse button the sum function and select the range of cells that will participate in the calculation. Press the Enter key. The formula for calculation will look like this: =SUM(C2:C4).", null, "" ]
[ null, "https://st03.kakprosto.ru/tumb/680/images/article/2012/4/10/1_52550d77ce6f352550d77ce731.jpg", null, "https://st03.kakprosto.ru/tumb/680/images/article/2012/4/10/1_52550d77d6a7452550d77d6ab1.jpg", null, "https://st03.kakprosto.ru/tumb/680/images/article/2012/4/10/1_52550d77dcb5452550d77dcba1.jpg", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.89377207,"math_prob":0.9514425,"size":1975,"snap":"2022-27-2022-33","text_gpt3_token_len":464,"char_repetition_ratio":0.14814815,"word_repetition_ratio":0.016438356,"special_character_ratio":0.23949367,"punctuation_ratio":0.11860465,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.97020966,"pos_list":[0,1,2,3,4,5,6],"im_url_duplicate_count":[null,3,null,3,null,3,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2022-08-15T04:43:34Z\",\"WARC-Record-ID\":\"<urn:uuid:c72a551b-294a-485b-9251-11cc11c4d91f>\",\"Content-Length\":\"28836\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:2fe74e81-f6d0-4c86-904e-4977a433765c>\",\"WARC-Concurrent-To\":\"<urn:uuid:4cb92937-4437-4388-827d-1c780483c6fa>\",\"WARC-IP-Address\":\"178.154.246.3\",\"WARC-Target-URI\":\"https://eng.kakprosto.ru/how-127636-in-excel-calculate-time\",\"WARC-Payload-Digest\":\"sha1:M5ZL4K2MNPGVZYYPVKYEFXTGLRE6QBLI\",\"WARC-Block-Digest\":\"sha1:TZLRW664JHG3RTDCELCPNEGR7BB2L3UK\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2022/CC-MAIN-2022-33/CC-MAIN-2022-33_segments_1659882572127.33_warc_CC-MAIN-20220815024523-20220815054523-00505.warc.gz\"}"}
https://reference.wolframcloud.com/language/ref/ConstantArray.html
[ "# ConstantArray\n\nConstantArray[c,n]\n\ngenerates a list of n copies of the element c.\n\nConstantArray[c,{n1,n2,}]\n\ngenerates an", null, "array of nested lists containing copies of the element c.\n\n# Details", null, "# Examples\n\nopen allclose all\n\n## Basic Examples(3)\n\nMake a vector of 10 c's:\n\nMake a 3×4 array of c's:\n\nMake an array out of blocks:\n\n## Scope(4)\n\nA machine-zero vector:\n\nA vector of exact zeros:\n\nA machine-zero matrix:\n\nA matrix of exact zeros:\n\nA vector of ones:\n\nA machine-number vector of ones:\n\nA deeply nested constant array:\n\n## Applications(3)\n\nSet up an array to use as storage in a program:\n\nNumerically solve x'[t]==1/(t+x[t]^2) using Euler's method:\n\nFind the sum of the elements in a list:\n\nThis can also be done with Total:\n\nUse a vector of ones to see the effects of conditioning on the solution of a linear system:\n\nThe solution at machine precision has significant errors:", null, "At higher precision, the solution is much better:\n\n## Properties & Relations(3)\n\nConstantArray[c,dims] has Dimensions[dims]:\n\nConstantArray[c,dims] is equal to SparseArray[{},dims,c]:\n\nNormal[s] is identical to ConstantArray[c,dims]:\n\nConstantArray[c,dims] is equivalent to Apply[Table[c,##]&,Map[List,dims]]:" ]
[ null, "https://reference.wolframcloud.com/language/ref/Files/ConstantArray.en/1.png", null, "https://reference.wolframcloud.com/language/ref/Files/ConstantArray.en/details_1.png", null, "https://reference.wolframcloud.com/language/ref/Files/ConstantArray.en/2.gif", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.599758,"math_prob":0.94835687,"size":1420,"snap":"2022-27-2022-33","text_gpt3_token_len":345,"char_repetition_ratio":0.19067797,"word_repetition_ratio":0.037037037,"special_character_ratio":0.2302817,"punctuation_ratio":0.20446096,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9954891,"pos_list":[0,1,2,3,4,5,6],"im_url_duplicate_count":[null,2,null,2,null,2,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2022-06-27T23:15:13Z\",\"WARC-Record-ID\":\"<urn:uuid:5ad3ab4d-6c5e-4a2d-a6b7-19c5f79190e9>\",\"Content-Length\":\"99072\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:0140fe25-9c82-4226-bbc6-f76b3c4e5f52>\",\"WARC-Concurrent-To\":\"<urn:uuid:78858058-dd8a-4e84-a987-3dc82be7a9e8>\",\"WARC-IP-Address\":\"140.177.204.22\",\"WARC-Target-URI\":\"https://reference.wolframcloud.com/language/ref/ConstantArray.html\",\"WARC-Payload-Digest\":\"sha1:KYKB6LPV22VDKZEQIZ7KALYL762DIIKT\",\"WARC-Block-Digest\":\"sha1:WKYGQTSHTULOBSP4IQKUMJ2NPXQI7WCJ\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2022/CC-MAIN-2022-27/CC-MAIN-2022-27_segments_1656103344783.24_warc_CC-MAIN-20220627225823-20220628015823-00759.warc.gz\"}"}
https://www.unibo.it/en/teaching/course-unit-catalogue/course-unit/2018/324637
[ "# 30216 - Probability Models\n\n## Learning outcomes\n\nAt the end of the course the student knows some advanced probability theories with application to computer science, such as Markov chains with discrete and continuous time. He is able to analyze some simple stochastic systems such some with application to biology.\n\n## Course contents\n\nDenumerable additivity. One-dimensional random walk. Generating function. Gamblers' ruin problem. Galton Watson processes. Markov chains. Recurrent and transient states. Stationary distributions. Reversible Markov chains.  Gibbs sampler. Metropolis algorithm. Markov chains with continuous time. Poisson process. Pure birth processes. Semi-Markov processes. Queueing processes. Queueing Markov processes.. Open and closed systems of queues. Jackson's property.\n\nS. Ross. Introduction to Probability Models. Academic Press.\nW. Feller.An Introduction to Probability Theory and Its Applications. I Vol.. Wiley.\n\nLectures.\n\n## Assessment methods\n\nFinal verification consists in an oral test.\n\nOral test consists in a talk, starting from three questions, with the goal of testing the understanding of the basic concepts of the course, the ability of solving simple exercises and of developing  logical arguments.\n\n## Teaching tools\n\nLectures.\n\nThe course is based on lectures in which a series of probability models that are relevant for applications to computer science will be illustrated with examples of their applications and the development of simple exercises in order to familiarize  students with concrete application of the introduced mathematical models.\n\n## Office hours\n\nSee the website of Massimo Campanino" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.8754502,"math_prob":0.57821476,"size":1834,"snap":"2019-43-2019-47","text_gpt3_token_len":388,"char_repetition_ratio":0.11420765,"word_repetition_ratio":0.0,"special_character_ratio":0.18484187,"punctuation_ratio":0.14144737,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9794639,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2019-11-21T03:40:13Z\",\"WARC-Record-ID\":\"<urn:uuid:8b89c27b-1143-41e9-95f1-a8d5354f1f6b>\",\"Content-Length\":\"64923\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:a82960b7-36f1-4776-a7d8-77e247a73c57>\",\"WARC-Concurrent-To\":\"<urn:uuid:d54b78fe-7adc-466a-85b0-e25a0c8cb5de>\",\"WARC-IP-Address\":\"137.204.24.35\",\"WARC-Target-URI\":\"https://www.unibo.it/en/teaching/course-unit-catalogue/course-unit/2018/324637\",\"WARC-Payload-Digest\":\"sha1:5JO7I665IZVASLJAUDUSIJIOWQ2JIZJU\",\"WARC-Block-Digest\":\"sha1:4PPP6SIMMCN3KEQM7WYZNM72YOD3AV46\",\"WARC-Identified-Payload-Type\":\"application/xhtml+xml\",\"warc_filename\":\"/cc_download/warc_2019/CC-MAIN-2019-47/CC-MAIN-2019-47_segments_1573496670729.90_warc_CC-MAIN-20191121023525-20191121051525-00417.warc.gz\"}"}
https://www.stat.math.ethz.ch/pipermail/r-help/2004-February/046420.html
[ "# [R] Question concerning functions nlsList and nlme from nlme R library.\n\nJens_Praestgaard@hgsi.com Jens_Praestgaard at hgsi.com\nMon Feb 23 14:38:18 CET 2004\n\n```I hope that the mailing list is the correct forum for the question below. I\nhave trouble calling functions nlsList and nlme from\nanother function. Any help would be greatly appreciated.\n\nJens Praestgaard\nHuman Genome Sciences\nRockville MD.\n\nI have a data set v with two components, v\\$mixeddat and v\\$init. They are\nlisted below:\n\n> v\\$mixeddat\nconc result rep sample z\n11 20.00000000 11141 1 vial 1 0\n12 5.00000000 11446 1 vial 1 0\n13 1.25000000 13377 1 vial 1 0\n14 0.31250000 20267 1 vial 1 0\n15 0.07812500 48852 1 vial 1 0\n16 0.01953125 118507 1 vial 1 0\n\n(and so on)\n\n> v\\$init\na b d c cdiff\n1.045617e+04 2.408045e+05 9.296929e-01 1.490621e-02 4.874540e-03\n\nThe following two lines of code fits first a nonlinear regression for each\nlevel of rep, next a model with a random effect in one parameter.\n\n> fit<-nlsList(result~a+(b-a)/(1+(conc/(c+z*cdiff))^d)\n|rep,start=v\\$init,data=v\\$mixeddat)\n> nlme(fit,random=(b~1))\n\nHowever, when I try to run the same code from within a function, with this\ncall :\n\n> testfunc\nfunction(dat=v) {\ntest<-nlsList(result~a+(b-a)/(1+(conc/(c+z*cdiff))^d)\n|rep,start=dat\\$init,data=dat\\$mixeddat)\nreturn(nlme(test,random=b~1))\n}\n\ntestfunc()\n\nthen I get the error message" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.5649479,"math_prob":0.85279286,"size":1479,"snap":"2022-40-2023-06","text_gpt3_token_len":518,"char_repetition_ratio":0.107118644,"word_repetition_ratio":0.009090909,"special_character_ratio":0.36105478,"punctuation_ratio":0.11419753,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.96645653,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2023-01-28T00:21:26Z\",\"WARC-Record-ID\":\"<urn:uuid:e6b8cfab-c28f-4793-9980-fa422fb9912d>\",\"Content-Length\":\"4125\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:3e5e7f31-f938-4141-a586-03ce487600eb>\",\"WARC-Concurrent-To\":\"<urn:uuid:39b246d1-2959-46b6-b10f-fd03248ecc35>\",\"WARC-IP-Address\":\"129.132.119.195\",\"WARC-Target-URI\":\"https://www.stat.math.ethz.ch/pipermail/r-help/2004-February/046420.html\",\"WARC-Payload-Digest\":\"sha1:ZLNDGKDNTSOQGZIKCVE2ASB25CE4E67K\",\"WARC-Block-Digest\":\"sha1:IDWSGJU6V7GHYWOHGBUW75CNCMMAF2SS\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2023/CC-MAIN-2023-06/CC-MAIN-2023-06_segments_1674764499468.22_warc_CC-MAIN-20230127231443-20230128021443-00280.warc.gz\"}"}
https://artofproblemsolving.com/wiki/index.php?title=Pascal%27s_triangle&diff=104261&oldid=4271
[ "# Difference between revisions of \"Pascal's triangle\"\n\nPascal's triangle is a triangle which contains the values from the binomial expansion; its various properties play a large role in combinatorics.\n\n## Properties\n\n### Binomial coefficients\n\nPascal's Triangle is defined such that the number in row", null, "$n$ and column", null, "$k$ is", null, "${n\\choose k}$. For this reason, convention holds that both row numbers and column numbers start with 0. Thus, the apex of the triangle is row 0, and the first number in each row is column 0. As an example, the number in row 4, column 2 is", null, "${4 \\choose 2} = 6$. Pascal's Triangle thus can serve as a \"look-up table\" for binomial expansion values. Also, many of the characteristics of Pascal's Triangle are derived from combinatorial identities; for example, because", null, "$\\sum_{k=0}^{n}{{n \\choose k}}=2^n$, the sum of the values on row", null, "$n$ of Pascal's Triangle is", null, "$2^n$.\n\n### Sum of previous values\n\nOne of the best known features of Pascal's Triangle is derived from the combinatorics identity", null, "${n \\choose k}+{n \\choose k+1} = {n+1 \\choose k+1}$. Thus, any number in the interior of Pascal's Triangle will be the sum of the two numbers appearing above it. For example,", null, "${5 \\choose 1}+{5 \\choose 2} = 5 + 10 = 15 = {6 \\choose 2}$. This property allows the easy creation of the first few rows of Pascal's Triangle without having to calculate out each binomial expansion.\n\n### Fibonacci numbers\n\nThe Fibonacci numbers appear in Pascal's Triangle along the \"shallow diagonals.\" That is,", null, "${n \\choose 0}+{n-1 \\choose 1}+\\cdots+{n-\\left\\lfloor\\frac{n}{2}\\right\\rfloor \\choose \\left\\lfloor \\frac{n}{2}\\right \\rfloor} = F(n+1)$, where", null, "$F(n)$ is the Fibonacci sequence. For example,", null, "${6 \\choose 0}+{5 \\choose 1}+{4 \\choose 2}+{3 \\choose 3} = 1 + 5 + 6 + 1 = 13 = F(7)$. A \"shallow diagonal\" is plotted in the diagram.\n\n### Hockey-stick theorem\n\nThe Hockey-stick theorem states:", null, "${n \\choose 0}+{n+1 \\choose 1}+\\cdots+{n+k \\choose k} = {n+k+1 \\choose k}$. Its name is due to the \"hockey-stick\" which appears when the numbers are plotted on Pascal's Triangle, as shown in the representation of the theorem below (where", null, "$n=2$ and", null, "$k=3$).", null, "$[asy] int chew(int n,int r){ int res=1; for(int i=0;i\n\n### Number Parity\n\nConsider writing the row number", null, "$n$ in base two as", null, "$({n})_{10} = {(a_xa_{x-1} \\cdots a_1a_0)}_2$", null, "$= a_x 2^x+a_{x-1} 2^{x-1}+\\cdots+a_1 2^1+a_0 2^0$. The number in the", null, "$k$th column of the", null, "$n$th row in Pascal's Triangle is odd if and only if", null, "$k$ can be expressed as the sum of some", null, "$a_i 2^i$. For example,", null, "$(9)_{10} = {(1001)}_{2} = 2^{3}+2^{0}$. Thus, the only 4 odd numbers in the 9th row will be in the", null, "${(0000)}_{2} = 0$th,", null, "${(0001)}_{2} = 2^0 = 1$st,", null, "${(1000)}_{2} = 2^3 = 8$th, and", null, "${(1001)}_{2} = 2^3+2^0 = 9$th columns. Additionally, marking each of these odd numbers in Pascal's Triangle creates a Sierpinski triangle.\n\n### Patterns and Properties of the Pascal's Triangle\n\n#### Rows\n\nThe zeroth row has a sum of", null, "$1=2^0$. The first row has a sum of", null, "$2=2^1$. The", null, "$n^{th}$ row has a sum of", null, "$2^n$\n\n### Diagonals\n\nThe 1st downward diagonal is a row of 1's, the 2nd downward diagonal on each side consists of the natural numbers, the 3rd diagonal the triangular numbers, and the 4th the pyramidal numbers." ]
[ null, "https://latex.artofproblemsolving.com/1/7/4/174fadd07fd54c9afe288e96558c92e0c1da733a.png ", null, "https://latex.artofproblemsolving.com/8/c/3/8c325612684d41304b9751c175df7bcc0f61f64f.png ", null, "https://latex.artofproblemsolving.com/1/1/5/115710beb3d238ce246450538829f849880cca2f.png ", null, "https://latex.artofproblemsolving.com/b/5/f/b5f3803bb802b59969d7e135f0235385427bfc79.png ", null, "https://latex.artofproblemsolving.com/c/3/e/c3ef25fe1d7933c8436903c8a9726e68a5b1491b.png ", null, "https://latex.artofproblemsolving.com/1/7/4/174fadd07fd54c9afe288e96558c92e0c1da733a.png ", null, "https://latex.artofproblemsolving.com/6/c/3/6c36f0b157e8c2fbe0638c2f2b378e08d07695aa.png ", null, "https://latex.artofproblemsolving.com/5/1/3/513eea0ddf0d15ba4f57d921717b77d81d9602a0.png ", null, "https://latex.artofproblemsolving.com/1/3/9/1394787bcc02e9509692f977103c9c6f945c2c4b.png ", null, "https://latex.artofproblemsolving.com/2/4/a/24aabfb78c8d9aa1a76bd580d95b6e8bf6c9a252.png ", null, "https://latex.artofproblemsolving.com/2/6/6/2663041fd2b9fbd85c85ad832f67c7a743a09c52.png ", null, "https://latex.artofproblemsolving.com/7/5/3/753953a7dc380c1da6c5338d7b8b796fd80d6590.png ", null, "https://latex.artofproblemsolving.com/f/d/d/fdd633bc1d9afa6e6dad6ce99db040ddf64fee5a.png ", null, "https://latex.artofproblemsolving.com/6/c/b/6cb7ae00764b56ee2adf59e78a1ffde9685b80db.png ", null, "https://latex.artofproblemsolving.com/3/3/5/3359f43f0fd0ed3b672d389374aecd0360921a47.png ", null, "https://latex.artofproblemsolving.com/1/5/f/15f56f8b93b4a5a45ce3644c2c13105f8423aa00.png ", null, "https://latex.artofproblemsolving.com/1/7/4/174fadd07fd54c9afe288e96558c92e0c1da733a.png ", null, "https://latex.artofproblemsolving.com/f/9/0/f90e29c4874f6d4c6ef3736e7807b13f60769fae.png ", null, "https://latex.artofproblemsolving.com/b/3/7/b37a175610481a51478985185e5392812e26bbc6.png ", null, "https://latex.artofproblemsolving.com/8/c/3/8c325612684d41304b9751c175df7bcc0f61f64f.png ", null, "https://latex.artofproblemsolving.com/1/7/4/174fadd07fd54c9afe288e96558c92e0c1da733a.png ", null, "https://latex.artofproblemsolving.com/8/c/3/8c325612684d41304b9751c175df7bcc0f61f64f.png ", null, "https://latex.artofproblemsolving.com/1/3/7/1371854bffcb4b5c08ebe578bd39dfaecfee7303.png ", null, "https://latex.artofproblemsolving.com/a/d/5/ad580bed31bd8054b67d97ea32a63213c4d49afd.png ", null, "https://latex.artofproblemsolving.com/1/f/6/1f6fea23accd18e77b3ef01ba822d89412c9b836.png ", null, "https://latex.artofproblemsolving.com/5/b/e/5bed31b0d217ae142aaafc6653f99174574479ce.png ", null, "https://latex.artofproblemsolving.com/9/7/5/97574e93125509e3a285c6ef2ef733dec8457228.png ", null, "https://latex.artofproblemsolving.com/4/5/d/45dd08efb60ed52e7ef4f2ebf306b4f9608bb021.png ", null, "https://latex.artofproblemsolving.com/f/4/a/f4ac00bc3d46b6c0ed9388629cfa62947c3a5dec.png ", null, "https://latex.artofproblemsolving.com/f/1/3/f134b35025b7378ebe7e0c7c4f31be27add20f28.png ", null, "https://latex.artofproblemsolving.com/2/f/a/2fa62a365c27d4f2c298262b3e8c7c224550c20a.png ", null, "https://latex.artofproblemsolving.com/6/c/3/6c36f0b157e8c2fbe0638c2f2b378e08d07695aa.png ", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.8143582,"math_prob":0.9998983,"size":6979,"snap":"2020-24-2020-29","text_gpt3_token_len":2119,"char_repetition_ratio":0.18365592,"word_repetition_ratio":0.38630137,"special_character_ratio":0.32798395,"punctuation_ratio":0.10408922,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9999981,"pos_list":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64],"im_url_duplicate_count":[null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2020-07-09T18:56:07Z\",\"WARC-Record-ID\":\"<urn:uuid:edbd709a-34fe-41b7-83d5-30b986acb3d8>\",\"Content-Length\":\"64858\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:e8485f06-de03-44f7-a4ac-1f36b7f84136>\",\"WARC-Concurrent-To\":\"<urn:uuid:791965ca-fbd5-4e8c-980b-62e3c7214b24>\",\"WARC-IP-Address\":\"198.199.105.126\",\"WARC-Target-URI\":\"https://artofproblemsolving.com/wiki/index.php?title=Pascal%27s_triangle&diff=104261&oldid=4271\",\"WARC-Payload-Digest\":\"sha1:5MJULLIPMRHKZUAS73LAWULXTXFRXEGB\",\"WARC-Block-Digest\":\"sha1:JBINPEGLRZP5DBL7IEOOAJCQVGQMGOTA\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2020/CC-MAIN-2020-29/CC-MAIN-2020-29_segments_1593655900614.47_warc_CC-MAIN-20200709162634-20200709192634-00047.warc.gz\"}"}
https://meetings3.sis-statistica.org/index.php/sis2018/50th/paper/view/1176
[ "## Open Conference Systems, 50th Scientific meeting of the Italian Statistical Society\n\nFont Size:\nParametric Modeling of Quantile Regression Coefficient Functions\nPaolo Frumento, Matteo Bottai\n\n#### Abstract\n\nIn standard quantile regression (QR), quantiles are estimated one at the time. An alternative approach, which is referred to as quantile regression coefficients modeling (QRCM), is to describe the functional form of the regression coefficients parametrically. This approach facilitates estimation and inference, simplifies the interpretation of the results, and generates more efficient estimators. Moreover, thanks to the imposed parametric structure, it makes it easier to estimate quantiles in situations involving latent variables, missing or partially observed data, and other complications arising in survival analysis, longitudinal data analysis, and causal inference, where applying standard QR proves difficult and computationally inefficient. We describe the method, discuss applications, and illustrate the R package qrcm.\n\n#### References\n\nFrumento P, Bottai M (2016). Parametric modeling of quantile regression coefficient functions. Biometrics, 72 (1), 74-84, doi: 10.1111/biom.12410.\n\nFrumento P, Bottai M (2017). Parametric modeling of quantile regression coefficient functions with censored and truncated data. Biometrics,, 73(4), 1179-1188, doi: 10.1111/biom.12675.\n\nFrumento P (2017). qrcm: Quantile Regression Coefficients Modeling. R package version 2.1. https://cran.r-project.org/package=qrcm\n\nFull Text: PDF" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.7546231,"math_prob":0.74779046,"size":1341,"snap":"2021-31-2021-39","text_gpt3_token_len":303,"char_repetition_ratio":0.13462977,"word_repetition_ratio":0.024242423,"special_character_ratio":0.22669649,"punctuation_ratio":0.20762712,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9847781,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2021-09-17T04:51:48Z\",\"WARC-Record-ID\":\"<urn:uuid:4e6ec083-baa1-4456-a744-71a5201a7c54>\",\"Content-Length\":\"13416\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:0df27d65-e579-4f18-903d-31216eefc77b>\",\"WARC-Concurrent-To\":\"<urn:uuid:8b369a31-2fb2-4104-aeb9-f00d05029135>\",\"WARC-IP-Address\":\"66.147.244.56\",\"WARC-Target-URI\":\"https://meetings3.sis-statistica.org/index.php/sis2018/50th/paper/view/1176\",\"WARC-Payload-Digest\":\"sha1:FKLHFKKHNV25YUCVFGJNV7PGXBXH4JYP\",\"WARC-Block-Digest\":\"sha1:D7EQHWFQ6CDNKME2K3QX5YEEFXU2NVFL\",\"WARC-Identified-Payload-Type\":\"application/xhtml+xml\",\"warc_filename\":\"/cc_download/warc_2021/CC-MAIN-2021-39/CC-MAIN-2021-39_segments_1631780054023.35_warc_CC-MAIN-20210917024943-20210917054943-00699.warc.gz\"}"}
http://www.wordsearchfun.com/199638_John__Glendas_50th_Anniversary__wordsearch.html
[ "John & Glenda's 50th Anniversary\nLook for words that describe John & Glenda's 50 years together.\n\nLogin to be the first to rate this puzzle!\nANNIVERSARY\nCHARLESAVE\nCOMFORT\nCRACKERBARREL\nDAVID\nEXTRATVREMOTE\nFAITHFUL\nFAMILY\nFLOETROL\nFLOWERS\nFORGIVENESS\nGLENN\nGOD\nGOLDEN\nGOSPELCENTER\nGRAMMY\nGRAMPY\nHONOUR\nICECREAM\nLAWN\nLOVE\nMARTIN\nNOTREDAME\nPAINT\nPENETROL\nPEPPER\nSIMONBROTHERS\n F N N E L G B L U F H T I A F T Y R F O R G I V E N E S S L Y L E R R A B R E K C A R C O P Y I R T N I A P H H E O G W M L D U E V O L A S H M N R E A I A O O Z N R N T F O I A R R M V N L C L E O O S W T M S G A I O F E D R R P W K R M U P F D H S L B T P N Z S A Y H E C E A O N O T R E D A M E Y P W V G O S P E L C E N T E R P E O M J M A E R C E C I J D E D I F Y R A S R E V I N N A R S W P E N E T R O L A W N L E X T R A T V R E M O T E K C" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.7059392,"math_prob":0.61350006,"size":1317,"snap":"2019-51-2020-05","text_gpt3_token_len":600,"char_repetition_ratio":0.30159938,"word_repetition_ratio":0.21756487,"special_character_ratio":0.5611238,"punctuation_ratio":0.007142857,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.99219155,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2020-01-17T16:44:49Z\",\"WARC-Record-ID\":\"<urn:uuid:4fbe676a-4d95-43db-95b0-f90ff44cf246>\",\"Content-Length\":\"23783\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:e9dbc20d-1d92-49db-8e5f-c8cf9c4db70b>\",\"WARC-Concurrent-To\":\"<urn:uuid:a4e73d71-ad13-4114-a4bd-209ca3ca6026>\",\"WARC-IP-Address\":\"88.208.252.230\",\"WARC-Target-URI\":\"http://www.wordsearchfun.com/199638_John__Glendas_50th_Anniversary__wordsearch.html\",\"WARC-Payload-Digest\":\"sha1:AG4RJGNU6LQSDNTFFRG7OTMZJUVCM3Q2\",\"WARC-Block-Digest\":\"sha1:Z2JHNOTWE7TVJ57OXBWCNXMFKF2WAGKH\",\"WARC-Identified-Payload-Type\":\"application/xhtml+xml\",\"warc_filename\":\"/cc_download/warc_2020/CC-MAIN-2020-05/CC-MAIN-2020-05_segments_1579250589861.0_warc_CC-MAIN-20200117152059-20200117180059-00263.warc.gz\"}"}
https://www.mindfulnessfordogs.com/2021/09/100-times-table-problems/
[ "# 100 Times Table Problems", null, "times worksheets worksheet fun and printable conventional times table math worksheets these input output tables worksheet worksheet idea template multiplication worksheet 100 multiplication chart magdalene project create a times table to memorize in excel division table chart worksheet fun and printable 041 worksheet multiplication math multiplying twot numbers measurement maths teaching resources math games worksheets – tedpaper\n\n1.", null, "2.", null, "3.", null, "4.", null, "5.", null, "6.", null, "7.", null, "8.", null, "9.", null, "10.", null, "11.", null, "12.", null, "13.", null, "14.", null, "15.", null, "16.", null, "17.", null, "18.", null, "19.", null, "20.", null, "21.", null, "22.", null, "23.", null, "24.", null, "25.", null, "26.", null, "27.", null, "28.", null, "29.", null, "30.", null, "" ]
[ null, "https://www.mindfulnessfordogs.com/2021/09/100-times-table-problems/", null, "https://secure.gravatar.com/avatar/c79a845db6c95985d00b67dd21119e8f", null, "https://secure.gravatar.com/avatar/791f7ac3a012243ed1416e0f6fe5374b", null, "https://secure.gravatar.com/avatar/d0089a30a18316856ed5788822feea1e", null, "https://secure.gravatar.com/avatar/9000833ef12db8ce88d8193bbfbc4a79", null, "https://secure.gravatar.com/avatar/f7219e3877df540154400e5491b5e833", null, "https://secure.gravatar.com/avatar/4b7512bf217eead06edecfea3796a1ce", null, "https://secure.gravatar.com/avatar/1b069b1c51a468041867ead9b14f53bc", null, "https://secure.gravatar.com/avatar/4b30eda13930653708bd3b042d5b5baa", null, "https://secure.gravatar.com/avatar/db585452292fe3761686899885f32744", null, "https://secure.gravatar.com/avatar/53a300a418e6bd3238ed37ffc307e389", null, "https://secure.gravatar.com/avatar/794d997df366b19a18630a4d1b3be7da", null, "https://secure.gravatar.com/avatar/abdda26d61ed42788383a8c6ad3966e1", null, "https://secure.gravatar.com/avatar/5a33039aa8b7362c7c6822a68506a863", null, "https://secure.gravatar.com/avatar/e1768216e98a15fc00d8eed58f0e1008", null, "https://secure.gravatar.com/avatar/abf10a148a2ac3cbb7d613115897a8c1", null, "https://secure.gravatar.com/avatar/c1f535701327bcb6ae545ab79b3704cc", null, "https://secure.gravatar.com/avatar/6cd9344e312bc71d2aab179a7dd37431", null, "https://secure.gravatar.com/avatar/0806e9e341a787fdc0b03c5c01b9e69a", null, "https://secure.gravatar.com/avatar/23781321b8a3830f3f0d1b672d89c345", null, "https://secure.gravatar.com/avatar/bfa1c2b3b7eb32414c82e5596d8395d1", null, "https://secure.gravatar.com/avatar/f0db80a5cf80ff3f5a6aa48eaee7b0d4", null, "https://secure.gravatar.com/avatar/e70775d66fbbbef268aff60a28e2be8f", null, "https://secure.gravatar.com/avatar/e032748b17d16237a77d2b348210ec67", null, "https://secure.gravatar.com/avatar/84944b5291a51a0f86c34f1d2a1f1542", null, "https://secure.gravatar.com/avatar/4b4e5b27f402aace55d369fca544f709", null, "https://secure.gravatar.com/avatar/a863506b0e0c24e9dedcf1e25f0dfcdb", null, "https://secure.gravatar.com/avatar/49dc4f3e687635477f1c5ebc2cc370d2", null, "https://secure.gravatar.com/avatar/7803bcee215c130bc3d1e0702a29acac", null, "https://secure.gravatar.com/avatar/e32c8ea689e2d126c896de7f3305f233", null, "https://secure.gravatar.com/avatar/e2aac99afe46baf58f0e048cf16b72de", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.867394,"math_prob":0.9747828,"size":6041,"snap":"2021-43-2021-49","text_gpt3_token_len":1529,"char_repetition_ratio":0.08696372,"word_repetition_ratio":0.038997214,"special_character_ratio":0.20807813,"punctuation_ratio":0.08835673,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.99199253,"pos_list":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62],"im_url_duplicate_count":[null,2,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2021-10-18T20:48:40Z\",\"WARC-Record-ID\":\"<urn:uuid:f9279ae2-0c2a-4691-9723-16fca51256eb>\",\"Content-Length\":\"96654\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:468f3770-276f-4d39-ab47-a9b54deb115a>\",\"WARC-Concurrent-To\":\"<urn:uuid:dafef866-4b62-4bbd-9d63-b9f5c822523a>\",\"WARC-IP-Address\":\"172.67.182.149\",\"WARC-Target-URI\":\"https://www.mindfulnessfordogs.com/2021/09/100-times-table-problems/\",\"WARC-Payload-Digest\":\"sha1:M2SYZ33PO6D7ESQDSAM7GFLY45MDL3S5\",\"WARC-Block-Digest\":\"sha1:S4LGYRBNANKIINDWGZEDZHVI4ZXJDMAK\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2021/CC-MAIN-2021-43/CC-MAIN-2021-43_segments_1634323585209.43_warc_CC-MAIN-20211018190451-20211018220451-00478.warc.gz\"}"}
https://nykojumunoki.usainteriordesigners.com/writing-algebraic-expressions-worksheets-8th-grade38688770ph.html
[ "# Writing algebraic expressions worksheets 8th grade\n\nI have one more math class to take and I am sure I will put the Algebrator to good use then!", null, "Sheet 1 Sheet 2 Sheet 3 Explore Transversal Worksheets Statistics and Probability Grade eight statistics worksheets are based on finding the mean, median, mode and range in each problem. Roster and rule method in algebra, ti plus AND sixth root, java convert decimal time, finding the range of an absolute value graph.\n\nReady-made worksheets Use these quick links to create some common types of worksheets for writing expressions. Sheet 1 Sheet 2 Sheet 3 Evaluate the expressions - Function table.\n\nWhat is the difference between evaluation and simplication of an expression, subtraction worksheets ks2, sloving math problem with excel, algebra fundamentals of math teasers. Venn diagrams gcse bitesize, is the square root of -1 and interger, 9th Grade Math Practice Worksheet, kinds of radical symbol.\n\nCollege algebra software reviews, Integer Worksheets, factoring the difference of two squares calculator, algebrator for students, what is mathimatics and the history of this.\n\nAlgebraic Expressions Simplifying Variables. Sheet 1 Sheet 2 Sheet 3 Express in scientific notation - Negative exponents.\n\nSheet 1 Sheet 2 Sheet 3 Probability on deck of cards.\n\nRated 7/10 based on 103 review" ]
[ null, "http://valtteripuhakka.me/wp-content/uploads/2018/06/year-5-algebra-worksheets-writing-algebraic-expressions-6th-grade-6-ncert.jpg", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.8368485,"math_prob":0.9506829,"size":1245,"snap":"2020-24-2020-29","text_gpt3_token_len":265,"char_repetition_ratio":0.1410153,"word_repetition_ratio":0.041237112,"special_character_ratio":0.19437751,"punctuation_ratio":0.11659193,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.99465984,"pos_list":[0,1,2],"im_url_duplicate_count":[null,1,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2020-07-03T10:43:35Z\",\"WARC-Record-ID\":\"<urn:uuid:dc514d2e-b5cb-4077-9f2f-cb5e4e698ea7>\",\"Content-Length\":\"4692\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:76c739a5-d032-4b3e-afae-a6862eadd69a>\",\"WARC-Concurrent-To\":\"<urn:uuid:5a194e9c-f40e-476b-ac9d-70fea5adcf0c>\",\"WARC-IP-Address\":\"104.18.52.239\",\"WARC-Target-URI\":\"https://nykojumunoki.usainteriordesigners.com/writing-algebraic-expressions-worksheets-8th-grade38688770ph.html\",\"WARC-Payload-Digest\":\"sha1:JRYAP33DTS4FM24D7WZFJHBIX5SC6YA2\",\"WARC-Block-Digest\":\"sha1:LA5EASSTTJEPCKOGDUID3WCQ2ONFGUYK\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2020/CC-MAIN-2020-29/CC-MAIN-2020-29_segments_1593655881984.34_warc_CC-MAIN-20200703091148-20200703121148-00252.warc.gz\"}"}
https://www.gcflcm.com/gcf-of-8-and-18
[ "# What is the Greatest Common Factor of 8 and 18?\n\nGreatest common factor (GCF) of 8 and 18 is 2.\n\nGCF(8,18) = 2\n\nWe will now calculate the prime factors of 8 and 18, than find the greatest common factor (greatest common divisor (gcd)) of the numbers by matching the biggest common factor of 8 and 18.\n\nGCF Calculator and\nand\n\n## How to find the GCF of 8 and 18?\n\nWe will first find the prime factorization of 8 and 18. After we will calculate the factors of 8 and 18 and find the biggest common factor number .\n\n### Step-1: Prime Factorization of 8\n\nPrime factors of 8 are 2. Prime factorization of 8 in exponential form is:\n\n8 = 23\n\n### Step-2: Prime Factorization of 18\n\nPrime factors of 18 are 2, 3. Prime factorization of 18 in exponential form is:\n\n18 = 21 × 32\n\n### Step-3: Factors of 8\n\nList of positive integer factors of 8 that divides 8 without a remainder.\n\n1, 2, 4\n\n### Step-4: Factors of 18\n\nList of positive integer factors of 18 that divides 8 without a remainder.\n\n1, 2, 3, 6, 9\n\n#### Final Step: Biggest Common Factor Number\n\nWe found the factors and prime factorization of 8 and 18. The biggest common factor number is the GCF number.\nSo the greatest common factor 8 and 18 is 2.\n\nAlso check out the Least Common Multiple of 8 and 18" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.8991576,"math_prob":0.9375994,"size":1182,"snap":"2021-31-2021-39","text_gpt3_token_len":345,"char_repetition_ratio":0.2156197,"word_repetition_ratio":0.07929515,"special_character_ratio":0.29780033,"punctuation_ratio":0.11111111,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9998405,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2021-09-28T21:58:08Z\",\"WARC-Record-ID\":\"<urn:uuid:5fed10ae-19ad-4ccf-b1b8-2282645cbaaf>\",\"Content-Length\":\"20159\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:8c346009-a137-4e5e-8883-7ecdcdf4ec70>\",\"WARC-Concurrent-To\":\"<urn:uuid:8f9ebce8-154f-4f22-917e-301c76e71192>\",\"WARC-IP-Address\":\"34.133.163.157\",\"WARC-Target-URI\":\"https://www.gcflcm.com/gcf-of-8-and-18\",\"WARC-Payload-Digest\":\"sha1:PM6BHVMZ7HWZ4BB2QDDLMGXAQH2K7ARK\",\"WARC-Block-Digest\":\"sha1:ZDARRBHHENLJF5IY25LT5GFRI5BYYQUW\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2021/CC-MAIN-2021-39/CC-MAIN-2021-39_segments_1631780060908.47_warc_CC-MAIN-20210928214438-20210929004438-00012.warc.gz\"}"}
https://www.scienceforums.net/profile/1591-k9-47g/content/?all_activity=1
[ "", null, "K9-47G\n\nSenior Members\n\n39\n\nEverything posted by K9-47G\n\n1. No, it's not a novel. He talks a lot about findings from the Human Genome Project. I suppose as far as books are concerned it's comparable to much of Dawkin's works. Informational, but with a more laid-back approach.\n2. Has anyone here read it? What did you think of it?\n3. This is one optimization problem that I just cant figure out. I'll post what I have... A hiker at point A on a straight road wants to reach, in the shortest time, a point B located 6 miles from the road and 10 miles from point A. The hiker's speed on the paved road is 4 mph and only 2 mph off the road. How far should he continue on the road before heading in a straight line for the point B? I am pretty sure I would have to use the pythagorean theorem because if you draw the problem you get a triange with two sides given. Plus I denoted $dr/dt$ to be the speed on the road which is 4 mph, and $do/dt$ to be the speed off road which is 2 mph. I just don't know how to find my objective function. Any help would be appreciated.\n4. I noticed that if I type .9999999999 (ten nines) into my TI-83 calculator and press enter, it gives me the answer to be .9999999999 (ten nines), But if I type .99999999999 (eleven nines) into my calculator and press enter it gives the answer to be one. I suppose my TI-83 rounds to the 10th decimal place.\n5. For number 3, I thought I would use the logarithmic power rule (not sure of the real name) and therefore the exponent, sinx, can be written as the first term in problem. Then I used the product rule to find the derivative.. $y= (\\ln x)^{\\sin x}$ is the same as $\\sin x\\ln x$\n6. Ok, thanks a lot.\n7. Can you tell if those answers are right?\n8. 1) Find $\\frac{d}{dx} log(lnx)$ I assume that the log has a base of 10, so I got $\\frac{1}{x(lnxln10)}$ 2) Find the slope of the line tangent to the graph $cos(xy)=y$ at $(0,1)$ $-sin(xy)(y)+(xy')=y'$ $-ysin(xy)=y'-(xy')$ $\\frac{-ysin(xy)}{1-x}=y'$ Then I just keep getting 0 when I substitute (0,1) in... 3) If $y=(lnx)^{sinx} x>1,$ Find $y'$ $sinxlnx=sinx\\frac{1}{x}+(cosx)(lnx)$ $\\frac{sinx}{x} +cosxlnx$ $1+cosxlnx$\n9. I think the second one has to do with the purple squares in the background.\n10. This problem reminds me of the many examples that Richard Dawkins gave in his book, The Selfish Gene.\n11. Can you please check if my answer is correct. $y=sin(sin(sinx))$ $y'=cos(sin(sinx))cos(sinx)cosx$ (My calculus professor doesn't want our answers simplified.)\n12. $g^{(n)}(x)=-n(-1^n)e^{-x}+(-1^n)xe^{-x}$\n13. How do you format your math work to look bold and easier to read?\n14. So would my formula be g^n(x)= -n(-1^n)e^-x+(-1^n)xe^-x. I know there must be an easier way to write that.\n15. The inductive proof is: show true for n=1, assume true for n=k and show true for n=k+1, right?\n16. so e^-x derived is -e^-x.... We haven't covered that yet. Now I'm getting g'(x)=e^-x-xe^-x g''(x)=-2e^-x+xe^-x g'''(x)= 3e^-x-xe^-x and so on, but I have no idea how to make an explicit formula out of that because the negatives are alternating.\n17. well I did write it out, this is what I got. g'(x)= xe^-x+e^-x g\"(x)= xe^-x+2e^-x g'''(x)= xe^-x+3e^-x so I concluded that the formula would be g^n(x)= g(x)+n(e^-x). I'm just not sure if my math is right.\n18. So would it be g^n(x)=g(x)+n(e^-x)..... I'm assuming that the derivative of e^-x is e^-x....\n19. This is the problem in my book. If g(x)=x/e^x, find g^(n)(x). I don't really understand what the problem is asking me to find. It is in the differentiation section of the book, if that helps at all. I think it may be asking for a formula... By the way, the n in the formula represents how many times to take the derivative of g(x).\n20. Thank you so much!\n21. Can someone tell me the limit of (x/(2x-2))-(1/((x^2)-1)) as x approaches 1.\n×\n×\n• Create New..." ]
[ null, "https://www.scienceforums.net/uploads/set_resources_1/84c1e40ea0e759e3f1505eb1788ddf3c_pattern.png", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.8825437,"math_prob":0.9925582,"size":5251,"snap":"2022-05-2022-21","text_gpt3_token_len":1622,"char_repetition_ratio":0.13321899,"word_repetition_ratio":0.067254685,"special_character_ratio":0.31574938,"punctuation_ratio":0.09590235,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9998925,"pos_list":[0,1,2],"im_url_duplicate_count":[null,null,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2022-01-25T15:10:29Z\",\"WARC-Record-ID\":\"<urn:uuid:a8614068-e29a-4057-826e-f5efd86e2e71>\",\"Content-Length\":\"120222\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:ad910091-87fe-41f7-9a5f-39e22afbc979>\",\"WARC-Concurrent-To\":\"<urn:uuid:18124469-8398-4074-851c-c5cf9ed6e3ce>\",\"WARC-IP-Address\":\"94.229.79.58\",\"WARC-Target-URI\":\"https://www.scienceforums.net/profile/1591-k9-47g/content/?all_activity=1\",\"WARC-Payload-Digest\":\"sha1:2BZOHPIS5GLZXPACHT63I2OHFU3FW6JW\",\"WARC-Block-Digest\":\"sha1:NOC77MIFXEDMX2H2IMBF75D66W2SLUDC\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2022/CC-MAIN-2022-05/CC-MAIN-2022-05_segments_1642320304835.96_warc_CC-MAIN-20220125130117-20220125160117-00314.warc.gz\"}"}
http://www.gratisbo.com/basicnbc/article12radiological71.htm
[ "*Modern Dosimetry of Gamma Emitters*\n01 October 2008\n\nModern Dosimetry of Gamma emitters\n\nRadiation Dosimetry is the measurement of radiation. We can do this the old way, or the easy way.\n\nIn the bad old days, radioactive materials were quantified in many unusual and interesting units. The number of disintegrations per unit time was specified in ?i>Curies? (Ci) with one Ci equal to the activity of a gram of Radium. Different isotopes were related to each other using the milligram Radium equivalent “mgREq? The milligram Radium equivalent of a mass of some material, whether it was 60Co, 137Cs or what ever was determined by comparing that isotopes exposure rate constant to that of Radium. The exposure rate constant was a measurement of the amount of ionization produced by the isotope, and was measured in Roentgens (R).  Terms like exposure rate constant, gamma rate or gamma ray constant, or even k factor were used to describe the amount of ionization created by an isotope. Exposure was then related to dose in RAD by the Roentgen to RAD conversion factor, also known as the \"f factor\" which conveniently is close to 1. [Wass 1988]\n\nThe new world is full of busy people doing busy stuff, and generally being busy-bodies.\n\nBecause of this, there has been a general move away from the complicated systems of specifying dose to a simple method, which is also more accurate.\n\nThe dose that an isotope will delver to a mass of air is termed the air kerma strength, and this is nowadays indicated either by Sk or Kair. The word kerma is an anagram, indicating “Kinetic Energy Released in Matter? is the kinetic energy of all the charged particles produced in air by the isotope. The air kerma strength is specified in terms of “Units? which are given the symbol U. (Yes, the unit is called a “unit?. 1 Unit is equal to a micro-gray per hour at one meter from the source, or about 0.36 RAD per second at one meter. [Nath 2005]\n\nNow people aren’t made out of air, but are mainly water, so dose to water is the usual modern convention. The dose rate constant, is the ratio of the absorption of a mass of water to the absorption of a mass of air. The dose rate constant has the symbol of a capital lambda (Λ).\n\nThe crude way of thinking about it is that the Air kerma strength is the “dose?that the air would receive, and the dose rate constant is the conversion between air and water. Its natural to ask, why bother with air kerma anyway??Well, the National Institute of Standards uses some thing called a “Wide angle free air chamber?(WAFAC) that very accurately measures the air kerma.\n\nThe more modern approach is closer to what we actually want: the dose, instead of the exposure which is the amount of charge. We want RADS to something, and its easier to get that from rads to air and then water, than from ion charge produced and energy of ion pairs etc etc.\n\nThe dose D delivered per hour at a distance d from a small point of radioactive gamma emitter is:\n\nD = (Air Kerma) (Dose rate constant) /(distance squared)?=?Sk Λ /d2       (1\n\nSurprisingly, this little formula works very well for many isotopes. An example from the medical field is the use of an Iridium isotope 192 Ir for cancer treatment. The computer programs used to plan a treatment will produce one number, and the simple formula equation 1) are a good check of the results. Almost all the time the agreement between the complicated computer calculation and the hand result is 2% or better.", null, "Figure 1 A simple spreadsheet was used to calculate a radiation dose using the formula above, and a more complicated computer result. The little equation is always with a few percent.\n\nFigure 1 shows a screen capture of a program I used the other day for a medical treatment.\n\n?/p>\n\nReferences\n\nOnline\n\n[Nath 2005] Nath, R. Yale University Summer School\n\n[Was 1988] Wasserman, H. Air Kerma rate constants for radionuclides. European Journal of Nuclear Medicaine 1988 14 pages 569-571\n\n[Gal 2004] Gamma Dose: a User Friendly Module for Dosimetry and Shielding Calculations\nhttp://www.nucleonica.net/TC/TC0906/relevant_papers/Nuclides_net_and_dosimetry.pdf\n\nAlso, an online refereence her, for background reading.\n\nOffline\n\n[Thom 2005] Thomadsen, B.R et al. Brachytherapy Physics, 2nd Edition Proceedings of the Joint American Association of Physicists in medicine/American Brachytherapy Society Summer School 2005." ]
[ null, "http://www.gratisbo.com/basicnbc/images/article12radiological7101.gif", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.9058609,"math_prob":0.91692245,"size":4818,"snap":"2021-31-2021-39","text_gpt3_token_len":1175,"char_repetition_ratio":0.10240964,"word_repetition_ratio":0.0051612905,"special_character_ratio":0.21897052,"punctuation_ratio":0.11608094,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9613095,"pos_list":[0,1,2],"im_url_duplicate_count":[null,1,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2021-09-25T04:19:07Z\",\"WARC-Record-ID\":\"<urn:uuid:dedf2af0-3595-4574-8a5f-9a4eea3cb3cf>\",\"Content-Length\":\"7100\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:d6c6faf4-afef-4f91-ac58-9f9758f63ccd>\",\"WARC-Concurrent-To\":\"<urn:uuid:626b3c16-5a21-49a9-8a05-3c3131ea5fe4>\",\"WARC-IP-Address\":\"104.164.145.154\",\"WARC-Target-URI\":\"http://www.gratisbo.com/basicnbc/article12radiological71.htm\",\"WARC-Payload-Digest\":\"sha1:GWBNFVFLYMU43ISP4FLDAIMMDMHMEWYS\",\"WARC-Block-Digest\":\"sha1:CUW344YYJV2RG5CED5R7FZZVMIREHPCJ\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2021/CC-MAIN-2021-39/CC-MAIN-2021-39_segments_1631780057589.14_warc_CC-MAIN-20210925021713-20210925051713-00707.warc.gz\"}"}
http://num.bubble.ro/s/100/90/
[ "# Substraction table for N = 100 - 89÷90\n\n100 - 89 = 11 [+]\n100 - 89.01 = 10.99 [+]\n100 - 89.02 = 10.98 [+]\n100 - 89.03 = 10.97 [+]\n100 - 89.04 = 10.96 [+]\n100 - 89.05 = 10.95 [+]\n100 - 89.06 = 10.94 [+]\n100 - 89.07 = 10.93 [+]\n100 - 89.08 = 10.92 [+]\n100 - 89.09 = 10.91 [+]\n100 - 89.1 = 10.9 [+]\n100 - 89.11 = 10.89 [+]\n100 - 89.12 = 10.88 [+]\n100 - 89.13 = 10.87 [+]\n100 - 89.14 = 10.86 [+]\n100 - 89.15 = 10.85 [+]\n100 - 89.16 = 10.84 [+]\n100 - 89.17 = 10.83 [+]\n100 - 89.18 = 10.82 [+]\n100 - 89.19 = 10.81 [+]\n100 - 89.2 = 10.8 [+]\n100 - 89.21 = 10.79 [+]\n100 - 89.22 = 10.78 [+]\n100 - 89.23 = 10.77 [+]\n100 - 89.24 = 10.76 [+]\n100 - 89.25 = 10.75 [+]\n100 - 89.26 = 10.74 [+]\n100 - 89.27 = 10.73 [+]\n100 - 89.28 = 10.72 [+]\n100 - 89.29 = 10.71 [+]\n100 - 89.3 = 10.7 [+]\n100 - 89.31 = 10.69 [+]\n100 - 89.32 = 10.68 [+]\n100 - 89.33 = 10.67 [+]\n100 - 89.34 = 10.66 [+]\n100 - 89.35 = 10.65 [+]\n100 - 89.36 = 10.64 [+]\n100 - 89.37 = 10.63 [+]\n100 - 89.38 = 10.62 [+]\n100 - 89.39 = 10.61 [+]\n100 - 89.4 = 10.6 [+]\n100 - 89.41 = 10.59 [+]\n100 - 89.42 = 10.58 [+]\n100 - 89.43 = 10.57 [+]\n100 - 89.44 = 10.56 [+]\n100 - 89.45 = 10.55 [+]\n100 - 89.46 = 10.54 [+]\n100 - 89.47 = 10.53 [+]\n100 - 89.48 = 10.52 [+]\n100 - 89.49 = 10.51 [+]\n100 - 89.5 = 10.5 [+]\n100 - 89.51 = 10.49 [+]\n100 - 89.52 = 10.48 [+]\n100 - 89.53 = 10.47 [+]\n100 - 89.54 = 10.46 [+]\n100 - 89.55 = 10.45 [+]\n100 - 89.56 = 10.44 [+]\n100 - 89.57 = 10.43 [+]\n100 - 89.58 = 10.42 [+]\n100 - 89.59 = 10.41 [+]\n100 - 89.6 = 10.4 [+]\n100 - 89.61 = 10.39 [+]\n100 - 89.62 = 10.38 [+]\n100 - 89.63 = 10.37 [+]\n100 - 89.64 = 10.36 [+]\n100 - 89.65 = 10.35 [+]\n100 - 89.66 = 10.34 [+]\n100 - 89.67 = 10.33 [+]\n100 - 89.68 = 10.32 [+]\n100 - 89.69 = 10.31 [+]\n100 - 89.7 = 10.3 [+]\n100 - 89.71 = 10.29 [+]\n100 - 89.72 = 10.28 [+]\n100 - 89.73 = 10.27 [+]\n100 - 89.74 = 10.26 [+]\n100 - 89.75 = 10.25 [+]\n100 - 89.76 = 10.24 [+]\n100 - 89.77 = 10.23 [+]\n100 - 89.78 = 10.22 [+]\n100 - 89.79 = 10.21 [+]\n100 - 89.8 = 10.2 [+]\n100 - 89.81 = 10.19 [+]\n100 - 89.82 = 10.18 [+]\n100 - 89.83 = 10.17 [+]\n100 - 89.84 = 10.16 [+]\n100 - 89.85 = 10.15 [+]\n100 - 89.86 = 10.14 [+]\n100 - 89.87 = 10.13 [+]\n100 - 89.88 = 10.12 [+]\n100 - 89.89 = 10.11 [+]\n100 - 89.9 = 10.1 [+]\n100 - 89.91 = 10.09 [+]\n100 - 89.92 = 10.08 [+]\n100 - 89.93 = 10.07 [+]\n100 - 89.94 = 10.06 [+]\n100 - 89.95 = 10.05 [+]\n100 - 89.96 = 10.04 [+]\n100 - 89.97 = 10.03 [+]\n100 - 89.980000000001 = 10.02 [+]\nNavigation: Home | Addition | Substraction | Multiplication | Division       Tables for 100: Addition | Substraction | Multiplication | Division\n\nOperand: 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 200 300 400 500 600 700 800 900 1000 2000 3000 4000 5000 6000 7000 8000 9000\n\nSubstraction for: 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 200 300 400 500 600 700 800 900 1000 2000 3000 4000 5000 6000 7000 8000 9000" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.8847223,"math_prob":0.9999739,"size":7996,"snap":"2019-51-2020-05","text_gpt3_token_len":1668,"char_repetition_ratio":0.27277276,"word_repetition_ratio":0.41686556,"special_character_ratio":0.17346174,"punctuation_ratio":0.0014684288,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9981939,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2020-01-21T09:02:30Z\",\"WARC-Record-ID\":\"<urn:uuid:bcff16b4-23c1-4427-8cd9-4e4193b59b48>\",\"Content-Length\":\"42970\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:845b9385-6f76-4afd-8791-98d49da14864>\",\"WARC-Concurrent-To\":\"<urn:uuid:91ed0b42-4dfb-443a-b6c9-6e4334915c1d>\",\"WARC-IP-Address\":\"104.24.96.16\",\"WARC-Target-URI\":\"http://num.bubble.ro/s/100/90/\",\"WARC-Payload-Digest\":\"sha1:ZOXVPNYPKPUIWIQQYDJDSYIJGX4UBB47\",\"WARC-Block-Digest\":\"sha1:MT6237STUZUDTMZY542COYH2ZCPUNZ2P\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2020/CC-MAIN-2020-05/CC-MAIN-2020-05_segments_1579250601628.36_warc_CC-MAIN-20200121074002-20200121103002-00293.warc.gz\"}"}
https://ogaml.github.io/doc/ogamlmath/matrix2d.html
[ "# Module OgamlMath.Matrix2D\n\nProvides easy creation and manipulation of 2D rendering matrices\n\nOptimized operations on 2D (3x3) float matrices\n\nRaised when an error occurs (usually a division by zero)\n\n### Simple Matrices\n\nType of 3x3 matrices stored in a flat, column-major array\nZero matrix\nIdentity matrix\nBuilds a translation matrix from a vector\nSee : OgamlMath.Vector2f\nBuilds a scaling matrix from a vector\nSee : OgamlMath.Vector2f\nBuilds a rotation matrix from an angle\nEfficiently builds a transformation matrix\n\n### Matrix Operations\n\nComputes the product of two matrices\nTransposes a matrix. The original is not modified.\nTranslates a matrix by a vector. The original matrix is not modified.\nSee : OgamlMath.Vector2f\nScales a matrix by a vector. The original matrix is not modified.\nSee : OgamlMath.Vector2f\nRotates a matrix by an angle. The original matrix is not modified.\nComputes the (right-)product of a matrix with a column vector\nReturns a pretty-printed string (not for serialization)\n\n### Rendering Matrices Creation\n\nBuilds an orthographic projection matrix englobing a screen\nBuilds the inverse of an orthographic projection matrix\n\n### Other functions\n\nReturns a matrix as a flat bigarray. Used internally by OGAML, it should not be necessary for your programs." ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.687192,"math_prob":0.94882864,"size":1354,"snap":"2022-27-2022-33","text_gpt3_token_len":328,"char_repetition_ratio":0.20074074,"word_repetition_ratio":0.22222222,"special_character_ratio":0.18906942,"punctuation_ratio":0.12340426,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9833944,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2022-06-28T03:54:31Z\",\"WARC-Record-ID\":\"<urn:uuid:fef2272d-61ff-42fc-b91c-724f3004222a>\",\"Content-Length\":\"30568\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:35fe3512-45ec-40a0-8777-2becff873267>\",\"WARC-Concurrent-To\":\"<urn:uuid:0386d14b-6cc5-4cdc-8ebb-5d268b253a12>\",\"WARC-IP-Address\":\"185.199.108.153\",\"WARC-Target-URI\":\"https://ogaml.github.io/doc/ogamlmath/matrix2d.html\",\"WARC-Payload-Digest\":\"sha1:67ED4XKLATF5RXFYO6L5JVVDZZRUJL3S\",\"WARC-Block-Digest\":\"sha1:WP2IL5SGNNUWNQY4LMZW6J7RKODYX6QZ\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2022/CC-MAIN-2022-27/CC-MAIN-2022-27_segments_1656103347800.25_warc_CC-MAIN-20220628020322-20220628050322-00316.warc.gz\"}"}
https://sportblurb.com/terminal-velocity-of-a-golf-ball/
[ "# Terminal Velocity Of A Golf Ball (Check Of The Terminal Velocity Of Different objects!)\n\nLast Updated on October 25, 2023 by Alex PT\n\nThe terminal velocity of a golf ball is 72 miles per hour (116 km/h). This is the maximum speed that a golf ball can reach when falling into the air, assuming that it is not hit with any additional force.\n\n## How To Calculate Terminal Velocity\n\nTo calculate a terminal velocity of an object, you need to make use of the terminal velocity formula, which is; v = the square root of (2*m*g)/(p*A*C). To solve for V, which is terminal velocity, put the following values into the formula.\n\n1. A = the object’s projected area. This means the area of the object if you projected it onto a plane that was perpendicular to the direction the object is moving.\n\n2. m = mass of the falling object.\n\n3. ρ = the density of the fluid the object is falling through.\n\n4. C = the coefficient of the drag. The shape of the object determines the number. The coefficient of an object is normally to lower the more streamlined it is in the shape. You can look up some approximate drag coefficients\n\n5. g = the acceleration due to gravity. It is approximately 9.8 meters per second on earth.\n\nThen, find the mass of the falling object. The mass of an object is normally measured in kilograms or grams, in the metric system.\n\nSince pounds is a measuring unit of force and not really of mass, you need to take note while using the imperial system. The pound-mass (IBM) is the unit of mass in the imperial system, which will definitely experience a force of 32 pound-force (Ibf) under gravitational force on the surface of the earth. Let’s take, for instance, a person actually weighs 160 Ibf with a mass of 5 Ibm even if the person originally weighs 170 pounds on earth.\n\nAfter finding the mass of the falling object, you need to know the acceleration due to the gravity of the earth. The acceleration due to the gravity of the earth is 9.8 meters per second squared, or 32 feet per second squared.\n\nThen, try to calculate the downward pull of gravity. The mass of the object multiplied by the acceleration due to gravity is equal to the falling force of the object after being pulled down, or F = MA. This number, multiplied by two, moves at the top of the formula for terminal velocity.\n\n## What Affects the Golf Ball Speed?\n\nGolf ball speed is influenced by various factors, including:\n\n1. Clubhead Speed: The speed at which the clubhead strikes the ball greatly impacts its velocity. A faster swing generates more ball speed.\n2. Contact Point: The location on the clubface where the ball is struck affects speed. Hitting the sweet spot typically results in higher velocity.\n3. Ball Construction: Different golf balls are designed with varying core materials, dimple patterns, and layers, influencing their rebound speed off the clubface.\n4. Temperature and Altitude: Environmental conditions can impact golf ball speed. Higher altitudes and warmer temperatures can lead to increased ball speed due to lower air density.\n5. Wind Conditions: Headwinds or tailwinds can either hinder or enhance ball speed. A tailwind can boost the ball’s speed, while a headwind may reduce it.\n6. Elevation Change: The elevation change on a golf course can affect ball speed. Hitting downhill can increase speed while hitting uphill can decrease it.\n7. Launch Angle: The angle at which the ball leaves the clubface affects speed. A more optimal launch angle can lead to higher ball speed.\n8. Spin Rate: Backspin or sidespin can influence the ball’s trajectory and speed. Reducing spin can often result in greater distance.\n9. Equipment Quality: The quality of golf clubs, including drivers, irons, and golf balls, plays a role in ball speed. Technological advancements can enhance speed.\n10. Swing Mechanics: A golfer’s swing technique, including angle of attack and path, can impact ball speed. Efficient mechanics can maximize velocity.\n11. Fitness and Strength: A golfer’s physical condition and strength can affect clubhead speed, which, in turn, influences ball speed.\n12. Compression: Golf balls are categorized by compression ratings. A golfer’s swing speed should match the compression of the ball for optimal distance.\n13. Aerodynamics: The design and dimple pattern of the golf ball can influence its aerodynamic properties, affecting the air resistance and ultimately the speed.\n14. Course Conditions: The firmness and speed of the fairways and greens can influence ball speed on roll and bounce.\n15. Practice and Technique: Consistent practice and refining one’s golf technique can lead to better ball speed control.\n\n## Terminal Velocity vs. Maximum Velocity of a Golf Ball\n\nTerminal velocity is the maximum speed that an object can reach when falling through a fluid (such as air) due to the force of gravity and the drag force of the fluid.\n\nMaximum velocity is the fastest speed that an object can reach, regardless of the forces acting on it.\n\nTerminal velocity of a golf ball:\n\n• Speed: 72 miles per hour (116 km/h)\n• Factors affecting terminal velocity:\n• Mass of the golf ball\n• Size of the golf ball\n• Shape of the golf ball (dimples help to reduce drag)\n• Density of the air\n\nMaximum velocity of a golf ball:\n\n• Speed: Over 150 miles per hour (241 km/h)\n• Factors affecting maximum velocity:\n• The initial speed of the golf ball (when hit with a club)\n• Angle of the Clubface\n• Conditions of the golf ball (spin, grooves, etc.)\n\nTable:\n\nExample:\n\nA golf ball hit with a club at a speed of 150 miles per hour will reach a maximum velocity of over 150 miles per hour, even though its terminal velocity is only 72 miles per hour. This is because the initial speed of the golf ball is greater than its terminal velocity.\n\nIt is important to note that the maximum velocity of a golf ball is not always achievable. Factors such as the wind and the condition of the golf ball can affect its speed.\n\n## How Long Does It Take A Ball To Reach Terminal Velocity?\n\nTo get to 90% of terminal velocity, it will take 8 seconds. However, you will definitely reach a much higher speed than terminal velocity if you’re falling from outer space. Interestingly, you will slow down as you reach the atmosphere. You might just burn up like a meteorite if you’re coming in from a far distance.\n\n## What Is The Max Speed Of Terminal Velocity?\n\nThe terminal velocity is about 120 mph (200 km/h) in a stable belly-to-earth position. There’s a terminal speed of 240-290 km/h from a stable freefall head-down position. To speed of around 500 km/h (310 mph), is, however, accomplished through a further minimization of drag by streamlining the body.\n\n## How Do You Find The Terminal Velocity Of A Falling Object?\n\nIn layman’s language, the square root of the quotient of twice the object’s total weight all over the object’s frontal area product, the gas density of the medium, and its drag coefficient is equal to the terminal velocity of the object.\n\n## What Is The Terminal Velocity Of A 200-Pound Man?\n\nThe terminal velocity of a falling 200-pound man is approximately 145 mph (64.8 m/sec) according to some extensive research.\n\nHowever, if we make use of a drag coefficient of C = 0.5 gives and assume the hailstones to be spherical, it gives the following:\n\n## Closing Thoughts\n\nThe bottom line is that the terminal velocity of a falling object is the identical velocity as the wind required to help support the mass of the item. As outlined by some research, the terminal velocity of any golf ball is approximately thirty-two meters per second. We’ve come to the closing chapter of this informative article. We hope you were able to find resources in your quest to know the terminal velocity of a golf ball. Please do not hesitate to contact us for questions or comments. Thanks!\n\nReferences:" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.86756223,"math_prob":0.90427524,"size":9358,"snap":"2023-40-2023-50","text_gpt3_token_len":2241,"char_repetition_ratio":0.16762882,"word_repetition_ratio":0.12125,"special_character_ratio":0.24759564,"punctuation_ratio":0.11366006,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9863432,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2023-11-29T12:12:30Z\",\"WARC-Record-ID\":\"<urn:uuid:c8176d3b-6f63-40a9-a6bb-5496e37f4535>\",\"Content-Length\":\"87035\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:05b34240-3625-4278-9e17-aeeabac55735>\",\"WARC-Concurrent-To\":\"<urn:uuid:021e6072-ed25-4aab-a964-1740d61c4312>\",\"WARC-IP-Address\":\"104.21.33.22\",\"WARC-Target-URI\":\"https://sportblurb.com/terminal-velocity-of-a-golf-ball/\",\"WARC-Payload-Digest\":\"sha1:K4SRZJS3BP4ZNW6OYNRYN6FESQC54PXU\",\"WARC-Block-Digest\":\"sha1:FCAQMYOWFS2ZCUYHA4ODEMBEMLNQXJ4D\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2023/CC-MAIN-2023-50/CC-MAIN-2023-50_segments_1700679100081.47_warc_CC-MAIN-20231129105306-20231129135306-00419.warc.gz\"}"}
https://www.rdocumentation.org/search/keywords/attribute
[ "### Search Results:\n\nShowing results 1 to 10 of 210.\n\n##### Function gen.depth[GENLIB v1.0.9]\nkeywords\nattribute\ntitle\nGenealogy depth\ndescription\nReturns the number of generations in the genealogy from a GLgen object.\n##### Function mlogit-deprecated[mlogit v1.1-1]\nkeywords\nattribute\ntitle\nSome deprecated functions, especially mlogit.data, index and mFormula\ndescription\nmlogit.data is deprecated, use dfidx::dfidx() instead, mFormula is replaced by Formula::Formula() and zoo::index() by idx.\n##### Function has.intercept[mlogit v1.1-1]\nkeywords\nattribute\ntitle\nIndicates whether the formula contains an intercept\ndescription\nThis is a generic which provide convenient methods for formula/Formula object and for specific fitted models\n##### Function model.matrix.dfidx_mlogit[mlogit v1.1-1]\nkeywords\nattribute\ntitle\nCompute the model matrix for RUM\ndescription\nspecific stuff compared to the model.matrix.dfidx method which simply applies the Formula method\n##### Function names<-.BibEntry[RefManageR v1.3.0]\nkeywords\nattribute\ntitle\nNames (keys) of a BibEntry object\ndescription\nFunctions to get and set the keys of an object of class BibEntry\n##### Function checking[FuzzyStatTra v1.0]\nkeywords\nattribute\ntitle\ndescription\nThe function checks if the input data are given in the correct form of an array of dimension nl x 3 x n containing n fuzzy numbers characterized by means of nl $$\\alpha$$-levels each. The following conditions have to be fulfilled: (1) the number of columns of the array must be 3 (the first column will be the $$\\alpha$$-levels, the second one their infimum values and the third one their supremum values), (2) all the fuzzy numbers must have the same column of $$\\alpha$$-levels, (3) the minimum $$\\alpha$$-level should be 0 y the maximum 1, (4) the $$\\alpha$$-levels have to increase from 0 to 1, (5) the infimum values have to be non-decreasing, (6) the supremum values have to be non-creasing, (7) the infimum value has to be smaller or equal than the supremum value for each $$\\alpha$$-level. This function is used internally in some of the other functions to do a preliminary checking if the input data are in the correct form.\n##### Function checkingTra[FuzzyStatTra v1.0]\nkeywords\nattribute\ntitle\ndescription\nThe function checks if the input data are given in the correct form of a matrix of dimension n x 4 containing n trapezoidal fuzzy numbers characterized by their four values inf0,inf1,sup1,sup0 each. The following conditions have to be fulfilled: (1) the number of columns of the matrix must be 4 (the four values characterizing each trapezoidal fuzzy number), (2) the four values of each trapezoidal number have to be non-decreasing. This function is used internally in almost all the other functions to do a preliminary checking if the input data are in the correct form.\n##### Function getSamples[HELP v1.30.0]\nkeywords\nattribute\ntitle\nGet samples\ndescription\nFetch a subset of samples from a given data structure\n##### Function getFeatures[HELP v1.30.0]\nkeywords\nattribute\ntitle\nGet features (methods)\ndescription\nFetch a subset of features from a given data structure\n##### Function wavTitle[wmtsa v2.0-3]\nkeywords\nattribute\ntitle\nExtract the name of the data used to generate objects of various wavelet classes\ndescription\nWavelet functions store the original name of the data used to create the output in various locations within the output object. This function provides a means by which the user can directly access data name." ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.7060757,"math_prob":0.9367881,"size":3544,"snap":"2021-04-2021-17","text_gpt3_token_len":893,"char_repetition_ratio":0.1378531,"word_repetition_ratio":0.24652778,"special_character_ratio":0.24097066,"punctuation_ratio":0.093247585,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9540507,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2021-01-23T17:50:30Z\",\"WARC-Record-ID\":\"<urn:uuid:bf9b0b5c-86f7-4171-889b-2a7f79a73f15>\",\"Content-Length\":\"18635\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:9a4ac8ab-df8e-4eb8-bc7e-75da7ac6a601>\",\"WARC-Concurrent-To\":\"<urn:uuid:2b19cadf-1793-43db-b43d-0f5dc5d88916>\",\"WARC-IP-Address\":\"52.20.214.25\",\"WARC-Target-URI\":\"https://www.rdocumentation.org/search/keywords/attribute\",\"WARC-Payload-Digest\":\"sha1:QW7XYQNFLOGJ4MQXCOAKISLSUYHUVPYR\",\"WARC-Block-Digest\":\"sha1:5KI45FTYPA6MQNE5N7SSFWBHMVK7ERH7\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2021/CC-MAIN-2021-04/CC-MAIN-2021-04_segments_1610703538226.66_warc_CC-MAIN-20210123160717-20210123190717-00628.warc.gz\"}"}
https://www.onlinemathlearning.com/expressions-exponents.html
[ "", null, "# Writing and Evaluating Expressions-Exponents\n\nVideos and solutions to help Grade 6 students learn how to evaluate and write formulas involving exponents for given values in real-world problems.\n\nNew York State Common Core Math Module 4, Grade 6, Lesson 22\n\nRelated Topics:\nLesson Plans and Worksheets for Grade 6\nLesson Plans and Worksheets for all Grades\n\nLesson 22 Exercises 1–3\n1. Predict how many times you can fold a piece of paper in half.\n\n2. Before any folding (zero folds), there is only one layer of paper. This is recorded in the first row of the table.\nFold your paper in half. Record the number of layers of paper that result. Continue as long as possible.\na. Are you able to continue folding the paper indefinitely? Why or why not?\nb. How could you use a calculator to find the next number in the series?\nc. What is the relationship between the number of folds and the number of layers?\nd. How is this relationship represented in the exponential form of the numerical expression?\ne. If you fold a paper f times, write an expression to show the number of paper layers.\n\n3. If the paper were to be cut instead of folded, the height of the stack would double at each successive stage, and it would be possible to continue.\na. Write an expression that describes how many layers of paper result from cuts.\nb. Evaluate this expression by writing it in standard form.\n\nExample 2: Bacterial Infection\nBacteria are microscopic one-celled organisms that reproduce in a couple of different ways, one of which is called binary fission. In binary fission, a bacterium increases its size until it is large enough to split into two parts that are identical. These two grow until they are both large enough to split into two individual bacteria. This continues as long as growing conditions are favorable.\na. Record the number of bacteria that result from each generation.\nb. How many generations would it take until there were over one million bacteria present?\nc. Under the right growing conditions, many bacteria can reproduce every 15 minutes. Under these conditions, how long would it take for one bacterium to reproduce itself into more than one million bacteria?\nd. Write an expression for how many bacteria would be present after g generations.\n\nExample 3: Volume of a Rectangular Solid\nThis box has a width, w. The height of the box, h, is twice the width. The length of the box, l, is three times the width.That is, the width, height, and length of a rectangular prism are in the ratio of 1:2:3.\nFor rectangular solids like this, the volume is calculated by multiplying length times width times height.\n\nClosing Why 53 is different from 5 × 3?\n\nLesson 22 Exit Ticket\n1. Naomi's allowance is \\$2.00 per week. If she convinces her parents to double her allowance each week for two months, what will her weekly allowance be at the end of the second month (week 8)?\n\n2. Write the expression that describes Naomi's allowance during week w, in dollars. Problem Set\n1. A checkerboard has 64 squares on it.\na. If one grain of rice is put on the first square, 2 grains of rice on the second square, 4 grains of rice on the third square, 8 grains of rice on the fourth square, and so on (doubling each time), complete the table to show how many grains of rice are on each square. Write your answers in exponential form on the table below.\nb. How many grains of rice would be on the last square? Represent your answer in exponential form and standard form. Use the table above to help solve the problem.\nc. Would it have been easier to write your answer to part (b) in exponential form or standard form?\n\n2. If an amount of money is invested at an annual interest rate of 6%, it doubles every 12 years. If Alejandra invests \\$500, how long will it take for her investment to reach \\$2,000 (assuming she does not contribute any additional funds)?\n\n3. The athletics director at Peter’s school has created a phone tree that is used to notify team players in the event a game has to be canceled or rescheduled. The phone tree is initiated when the director calls two captains. During the second stage of the phone tree, the captains each call two players. During the third stage of the phone tree, these players each call two other players. The phone tree continues until all players have been notified. If there are 50 players on the teams, how many stages will it take to notify all of the players?\n\nRotate to landscape screen format on a mobile phone or small tablet to use the Mathway widget, a free math problem solver that answers your questions with step-by-step explanations.\n\nYou can use the free Mathway calculator and problem solver below to practice Algebra or other math topics. Try the given examples, or type in your own problem and check your answer with the step-by-step explanations.", null, "" ]
[ null, "https://www.onlinemathlearning.com/objects/default_image.gif", null, "https://www.onlinemathlearning.com/objects/default_image.gif", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.94147456,"math_prob":0.93851584,"size":4919,"snap":"2020-24-2020-29","text_gpt3_token_len":1080,"char_repetition_ratio":0.09908444,"word_repetition_ratio":0.012614679,"special_character_ratio":0.21772718,"punctuation_ratio":0.11641791,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.97556126,"pos_list":[0,1,2,3,4],"im_url_duplicate_count":[null,null,null,null,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2020-07-12T00:35:23Z\",\"WARC-Record-ID\":\"<urn:uuid:78bf55cd-76ea-4939-9b03-a5941522677b>\",\"Content-Length\":\"49614\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:ef19eb4f-4cb6-4e53-9235-ef8d44a0cdb0>\",\"WARC-Concurrent-To\":\"<urn:uuid:2cad21c3-ecf8-4308-aac3-6c97c0612916>\",\"WARC-IP-Address\":\"173.247.219.45\",\"WARC-Target-URI\":\"https://www.onlinemathlearning.com/expressions-exponents.html\",\"WARC-Payload-Digest\":\"sha1:FOPTPFTATSREVDSTPBF7DMMO4H4FRJJI\",\"WARC-Block-Digest\":\"sha1:LMMSZ5P3KPWCB43VTJZYY5IQVASCARQA\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2020/CC-MAIN-2020-29/CC-MAIN-2020-29_segments_1593657129257.81_warc_CC-MAIN-20200711224142-20200712014142-00475.warc.gz\"}"}
https://www.reference.com/business-finance/convert-41-degrees-fahrenheit-celsius-f3d2bbd3852d811e
[ "# How Do You Convert 41 Degrees Fahrenheit to Celsius?\n\nTo convert any temperature in Fahrenheit to Celsius, follow this formula: subtract 32, multiply by 5, and divide by 9. When you input 41 degrees Fahrenheit into this formula, the result is 5 degrees Celsius.\n\n1. Subtract 32 from your Fahrenheit temperature\n\nTo convert 41 degrees Fahrenheit to Celsius, begin by subtracting 32. Your answer should be 9.\n\nFinally, divide 45 by 9 to get 5 degrees Celsius as a final answer." ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.8626553,"math_prob":0.788854,"size":1204,"snap":"2019-43-2019-47","text_gpt3_token_len":259,"char_repetition_ratio":0.155,"word_repetition_ratio":0.01,"special_character_ratio":0.22093023,"punctuation_ratio":0.11061947,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.99914956,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2019-11-18T19:24:57Z\",\"WARC-Record-ID\":\"<urn:uuid:425aff49-4b52-4b00-9e80-e4961f8f4d71>\",\"Content-Length\":\"175321\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:61a00719-3926-4ec4-b956-c899091d605e>\",\"WARC-Concurrent-To\":\"<urn:uuid:83d04e71-0e4c-4dff-8a44-d3e15ef8baf8>\",\"WARC-IP-Address\":\"151.101.250.114\",\"WARC-Target-URI\":\"https://www.reference.com/business-finance/convert-41-degrees-fahrenheit-celsius-f3d2bbd3852d811e\",\"WARC-Payload-Digest\":\"sha1:DPCBIICIJSI6T5P566UO7QCOIAZWTWXW\",\"WARC-Block-Digest\":\"sha1:2UH3OQNTKDPRWLQBEZS2MHBZQXLSXIKT\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2019/CC-MAIN-2019-47/CC-MAIN-2019-47_segments_1573496669813.71_warc_CC-MAIN-20191118182116-20191118210116-00266.warc.gz\"}"}
https://www.covid19-blog.closeassociate.com/post/a-new-method-for-calculating-the-effective-reproduction-number
[ "top of page\nSearch\n• Stephen Grice\n\n# A new method for calculating the Effective Reproduction Number\n\nWe have finalised a technical report that provides the full mathematical details of a new method for calculating the Effective Reproduction Number for COVID-19. The technical report is here.\n\nThe new process which we have called \"SIR+B\" combines a deterministic SIR formula for calculating the Effective Reproduction Number from positive test data and a statistical bootstrapping method for generating confidence intervals.\n\nThe process has been used to calculate the Effective Reproduction Number for several countries in this blog post.\n\nThe process has the following desirable outcomes.\n\n• it is fast, taking about 0.1 seconds per country analysed, when coded in Python on a standard desktop machine\n\n• it is based directly on the epidemiological SIR model, giving an analytic formula for the Effective Reproduction Number\n\n• it involves many fewer assumptions than other methods such as EpiEstim\n\n• the calculation of the Effective Reproduction Number depends on only two parameters, gamma - the recovery parameter, and c - the testing parameter\n\n• it is relatively insensitive to those parameters" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.87085855,"math_prob":0.92661613,"size":1160,"snap":"2023-14-2023-23","text_gpt3_token_len":216,"char_repetition_ratio":0.15311418,"word_repetition_ratio":0.07017544,"special_character_ratio":0.16810344,"punctuation_ratio":0.05882353,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.98724097,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2023-04-01T07:43:49Z\",\"WARC-Record-ID\":\"<urn:uuid:75a58c81-cbe2-4675-8d8f-6f631271ebff>\",\"Content-Length\":\"754520\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:f801724c-9559-4d8e-b4ef-0ee22506d99b>\",\"WARC-Concurrent-To\":\"<urn:uuid:3fb4391e-10ce-4486-b6cb-7f18d9cabaf0>\",\"WARC-IP-Address\":\"34.117.168.233\",\"WARC-Target-URI\":\"https://www.covid19-blog.closeassociate.com/post/a-new-method-for-calculating-the-effective-reproduction-number\",\"WARC-Payload-Digest\":\"sha1:OHUMJHYXBOZGULFBRA2NNOTWEASTUJS7\",\"WARC-Block-Digest\":\"sha1:XJU6PTCUXKSHEVEP2VX7WCXREW4C24LQ\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2023/CC-MAIN-2023-14/CC-MAIN-2023-14_segments_1679296949701.56_warc_CC-MAIN-20230401063607-20230401093607-00197.warc.gz\"}"}
https://www.iteanz.com/python-real-time-interview-questions-and-answers/
[ "## Python Real Time Interview Questions and Answers\n\nQ1).What is Python?\nAns1: Python is a high-level, interpreted, interactive and object-oriented scripting language. Python is designed to be highly readable. It uses English keywords frequently where as other languages use punctuation, and it h\nas fewer syntactical constructions than other languages.\n\nQ2).Name some of the features of Python.\nAns2: Following are some of the salient features of python\n\n• It supports functional and structured programming methods as well as OOP.\n• It can be used as a scripting language or can be compiled to byte-code for building large applications.\n• It provides very high-level dynamic data types and supports dynamic type checking.\n• It supports automatic garbage collection.\n• It can be easily integrated with C, C++, COM, ActiveX, CORBA, and Java.\n\nQ3).Do you have any personal projects?\nReally?\nAns3:This shows that you are willing to do more than the bare minimum in terms of keeping your skillset up to date. If you work on personal projects and code outside of the workplace then employers are more likely to see you as an asset that will grow. Even if they don’t ask this question I find it’s useful to broach the subject.\n\nQ4).Is python a case sensitive language?\nAns4: Yes! Python is a case sensitive programming language.\n\nWhat are the supported data types in Python?\nPython has five standard data types −\n\n• Numbers\n• String\n• List\n• Tuple\n• Dictionary\n\nQ5).What is the output of print str if str = ‘Hello World!’?\nAns5: It will print complete string. Output would be Hello World!.\nQ6).What is the output of print str if str = ‘Hello World!’?\nAns6: It will print first character of the string. Output would be H.\nQ7).What is the output of print str[2:5] if str = ‘Hello World!’?\nAns7: It will print characters starting from 3rd to 5th. Output would be llo.\nQ8).What is the output of print str[2:] if str = ‘Hello World!’?\nAns8: It will print characters starting from 3rd character. Output would be llo World!.\nQ9).What is the output of print str * 2 if str = ‘Hello World!’?\nAns9: It will print string two times. Output would be Hello World!Hello World!.\nQ10).What is the output of print str + “TEST” if str = ‘Hello World!’?\nAns10: It will print concatenated string. Output would be Hello World!TEST.\n\nQ11).What is the output of print list if list = [ ‘abcd’, 786 , 2.23, ‘john’, 70.2 ]?\nAns11: It will print concatenated lists. Output would be [ ‘abcd’, 786 , 2.23, ‘john’, 70.2 ].\n\nQ12).What is the output of print list if list = [ ‘abcd’, 786 , 2.23, ‘john’, 70.2 ]?\nAns12: It will print first element of the list. Output would be abcd.\n\nQ13).What is the output of print list[1:3] if list = [ ‘abcd’, 786 , 2.23, ‘john’, 70.2 ]?\nAns13: It will print elements starting from 2nd till 3rd. Output would be [786, 2.23].\n\nQ14).What is the output of print list[2:] if list = [ ‘abcd’, 786 , 2.23, ‘john’, 70.2 ]?\nAns14: It will print elements starting from 3rd element. Output would be [2.23, ‘john’, 70.200000000000003].\n\nQ15).What is the output of print tinylist * 2 if tinylist = [123, ‘john’]?\nAns15: It will print list two times. Output would be [123, ‘john’, 123, ‘john’].\n\nQ16).What is the output of print list + tinylist * 2 if list = [ ‘abcd’, 786 , 2.23, ‘john’, 70.2 ] and tinylist = [123, ‘john’]?\nAns16: It will print concatenated lists. Output would be [‘abcd’, 786, 2.23, ‘john’, 70.2, 123, ‘john’, 123, ‘john’].\n\nQ17).What is tuples in Python ?\nAns17: A tuple is another sequence data type that is similar to the list. A tuple consists of a number of values separated by commas. Unlike lists, however, tuples are enclosed within parentheses.\n\nQ18).What is the difference between tuples and lists in Python?\nAns18:The main differences between lists and tuples are − Lists are enclosed in brackets ( [ ] ) and their elements and size can be changed, while tuples are enclosed in parentheses ( ( ) ) and cannot be updated. Tuples can be thought of as read-only lists.\n\nQ19).What is the output of print tuple if tuple = ( ‘abcd’, 786 , 2.23, ‘john’, 70.2 )?\nAns19:It will print complete tuple. Output would be (‘abcd’, 786, 2.23, ‘john’, 70.200000000000003).\n\nQ20).What is the output of print tuple if tuple = ( ‘abcd’, 786 , 2.23, ‘john’, 70.2 )?\nAns20: It will print first element of the tuple. Output would be abcd.\n\nQ21).What is the output of print tuple[1:3] if tuple = ( ‘abcd’, 786 , 2.23, ‘john’, 70.2 )?\nAns21: It will print elements starting from 2nd till 3rd. Output would be (786, 2.23).\n\nQ22).What is the output of print tuple[2:] if tuple = ( ‘abcd’, 786 , 2.23, ‘john’, 70.2 )?\nAns22: It will print elements starting from 3rd element. Output would be (2.23, ‘john’, 70.200000000000003).\n\nQ23).What is the output of print tinytuple * 2 if tinytuple = (123, ‘john’)?\nAns23: It will print tuple two times. Output would be (123, ‘john’, 123, ‘john’).\n\nQ24).What is the output of print tuple + tinytuple if tuple = ( ‘abcd’, 786 , 2.23, ‘john’, 70.2) and tinytuple = (123, ‘john’)?\nAns24: It will print concatenated tuples. Output would be (‘abcd’, 786, 2.23, ‘john’, 70.200000000000003, 123, ‘john’).\n\nQ25).What are Python’s dictionaries?\nAns25: Python’s dictionaries are kind of hash table type. They work like associative arrays or hashes found in Perl and consist of key-value pairs. A dictionary key can be almost any Python type, but are usually numbers or strings. Values, on the other hand, can be any arbitrary Python   object.\n\nQ26).How will you create a dictionary in python ?\nAns26: Dictionaries are enclosed by curly braces ({ }) and values can be assigned and accessed using square braces ([]).\ndict = {}\ndict[‘one’] = “This is one”\ndict     = “This is two”\ntinydict = {‘name’: ‘john’,’code’:6734, ‘dept’: ‘sales’}\n\nQ27).How will you get all the keys from the dictionary?\nAns27: Using dictionary.keys() function, we can get all the keys from the dictionary object.\nprint dict.keys()   # Prints all the keys\n\nQ28).How will you get all the values from the dictionary?\nAns28: Using dictionary.values() function, we can get all the values from the dictionary object.\nprint dict.values()   # Prints all the values\n\nQ29).How will you convert a string to an int in python ?\nAns29: int(x [,base]) – Converts x to an integer. base specifies the base if x is a string.\n\nQ30).How will you convert a string to a long in python ?\nAns30: long(x [,base] ) – Converts x to a long integer. base specifies the base if x is a string.\n\nQ31).How will you convert a string to a float in python ?\nAns31: float(x) − Converts x to a floating-point number.\n\nQ32).How will you convert a object to a string in python ?\nAns32: str(x) − Converts object x to a string representation.\n\nQ33).How will you convert a object to a regular expression in python ?\nAns33: repr(x) − Converts object x to an expression string.\n\nQ34).How will you convert a String to an object in python ?\nAns34: eval(str) − Evaluates a string and returns an object.\n\nQ35).How will you convert a string to a tuple in python?\nAns35: tuple(s) − Converts s to a tuple.\n\nQ36).How will you convert a string to a list in python ?\nAns36: list(s) − Converts s to a list.\n\nQ37).How will you convert a string to a set in python?\nAns37: set(s) − Converts s to a set.\n\nQ38).How will you create a dictionary using tuples in python ?\nAns38: dict(d) − Creates a dictionary. d must be a sequence of (key,value) tuples.\n\nQ39).How will you convert a string to a frozen set in python?\nAns39: frozenset(s) − Converts s to a frozen set.\n\nQ40).How will you convert an integer to a character in python ?\nAns40: chr(x) − Converts an integer to a character.\n\nQ41).How will you convert an integer to an unicode character in python ?\nAns41: unichr(x) − Converts an integer to a Unicode character.\n\nQ42).How will you convert a single character to its integer value in python ?\nAns42: ord(x) − Converts a single character to its integer value.\n\nQ43).How will you convert an integer to hexadecimal string in python ?\nAns43: hex(x) − Converts an integer to a hexadecimal string.\n\nQ44).How will you convert an integer to octal string in python ?\nAns44: oct(x) − Converts an integer to an octal string.\n\nQ45).What is the purpose of ** operator?\nAns45: ** Exponent − Performs exponential (power) calculation on operators. a**b = 10 to the power 20 if a = 10 and b = 20.\n\nQ46).What is the purpose of // operator?\nAns46: // Floor Division − The division of operands where the result is the quotient in which the digits after the decimal point are removed.\n\nQ47).What is the purpose of is operator?\nAns47: is − Evaluates to true if the variables on either side of the operator point to the same object and false otherwise. x is y, here is results in 1 if id(x) equals id(y).\n\nQ48).What is the purpose of not in operator?\nAns48: not in − Evaluates to true if it does not finds a variable in the specified sequence and false otherwise. x not in y, here not in results in a 1 if x is not a member of sequence y.\n\nQ49).What is the purpose break statement in python ?\nAns49: break statement − Terminates the loop statement and transfers execution to the statement immediately following the loop.\n\nQ50).What is the purpose continue statement in python ?\nAns50: Continue statement − Causes the loop to skip the remainder of its body and immediately retest its condition prior to reiterating.\n\nQ51).What is the purpose pass statement in python ?\nAns51:pass statement − The pass statement in Python is used when a statement is required syntactically but you do not want any command or code to execute.\n\nQ52).How can you pick a random item from a list or tuple ?\nAns52: choice(seq) − Returns a random item from a list, tuple, or string.\n\nQ53).How can you pick a random item from a range?\nAns53: randrange ([start,] stop [,step]) − returns a randomly selected element from range(start, stop, step).\n\nQ54).How can you get a random number in python ?\nAns54: random() − returns a random float r, such that 0 is less than or equal to r and r is less than 1.\n\nQ55).How will you set the starting value in generating random numbers?\nAns55: seed([x]) − Sets the integer starting value used in generating random numbers. Call this function before calling any other random module function. Returns None.\n\nQ56).How will you randomizes the items of a list in place?\nAns56: shuffle(lst) − Randomizes the items of a list in place. Returns None.\n\nQ57).How will you capitalizes first letter of string?\nAns57: capitalize() − Capitalizes first letter of string.\nQ58).How will you check in a string that all characters are alphanumeric?\nAns58: isalnum() − Returns true if string has at least 1 character and all characters are alphanumeric and false otherwise.\n\nQ59).How will you check in a string that all characters are digits?\nAns59: isdigit() − Returns true if string contains only digits and false otherwise.\n\nQ60).How will you check in a string that all characters are in lowercase?\nAns60: islower() − Returns true if string has at least 1 cased character and all cased characters are in lowercase and false otherwise.\n\nQ61).How will you check in a string that all characters are numerics?\nAns61: isnumeric() − Returns true if a unicode string contains only numeric characters and false otherwise.\n\nQ62).How will you check in a string that all characters are whitespaces?\nAns62:isspace() − Returns true if string contains only whitespace characters and false otherwise.\n\nQ63).How will you check in a string that it is properly titlecased?\nAns63: istitle() − Returns true if string is properly “titlecased” and false otherwise.\n\nQ64).How will you check in a that all characters are in uppercase?\nAns64: isupper() − Returns true if string has at least one cased character and all cased characters are in uppercase and false otherwise.\n\nQ65).How will you merge elements in a sequence?\nAns65: join(seq) − Merges (concatenates) the string representations of elements in sequence seq into a string, with separator string.\n\nQ66).How will you get the length of the string?\nAns66: len(string) − Returns the length of the string.\n\nQ67).How will you get a space-padded string with the original string left-justified to a total of width columns?\n\nAns67: just(width[, fillchar]) − Returns a space-padded string with the original string left-justified to a total of width columns.\n\nQ68).How will you convert a string to all lowercase?\nAns68: lower() − Converts all uppercase letters in string to lowercase.\n\nQ69).How will you remove all leading whitespace in string?\nAns69: strip() − Removes all leading whitespace in string.\n\nQ70).How will you get the max alphabetical character from the string?\nAns70: max(str) − Returns the max alphabetical character from the string str.\n\n0Q71).How will you get the min alphabetical character from the string?\nAns71: min(str) − Returns the min alphabetical character from the string str.\n\nQ72).How will you replaces all occurrences of old substring in string with new string?\nAns72: replace(old, new [, max]) − Replaces all occurrences of old in string with new or at most max occurrences if max given.\n\nQ73).How will you remove all leading and trailing whitespace in string?\nAns73:strip([chars]) − Performs both lstrip() and rstrip() on string.\n\nQ74).How will you change case for all letters in string ?\nAns74: swapcase() − Inverts case for all letters in string.\n\nQ75).How will you get titlecased version of string ?\nAns75: title() − Returns “titlecased” version of string, that is, all words begin with uppercase and the rest are lowercase.\n\nQ76).How will you convert a string to all uppercase?\nAns76:upper() − Converts all lowercase letters in string to uppercase.\n\nQ77).How will you check in a string that all characters are decimal?\nAns77: isdecimal() − Returns true if a unicode string contains only decimal characters and false otherwise.\n\nQ78).What is the difference between del() and remove() methods of list?\nAns78: To remove a list element, you can use either the del statement if you know exactly which element(s) you are deleting or the remove() method if you do not know.\n\nQ79).What is the output of len([1, 2, 3])?\nAns79: 3.\n\nQ80).What is the output of [1, 2, 3] + [4, 5, 6]?\nAns80: [1, 2, 3, 4, 5, 6]\n\nQ81).What is the output of [‘Hi!’] * 4?\n\nAns81: [‘Hi!’, ‘Hi!’, ‘Hi!’, ‘Hi!’]\n\nQ82).What is the output of 3 in [1, 2, 3]?\nAns82: True\n\nQ83).What is the output of for x in [1, 2, 3]: print x?\nAns83: 1 2 3\n\nQ84).What is the output of L if L = [1,2,3]?\nAns84: 3, Offsets start at zero.\n\nQ85).What is the output of L[-2] if L = [1,2,3]?\nAns85: L[-1] = 3, L[-2]=2, L[-3]=1\n\nQ86).What is the output of L[1:] if L = [1,2,3]?\nAns86: 2, 3, Slicing fetches sections.\n\nQ87).How will you compare two lists ?\nAns87: cmp(list1, list2) − Compares elements of both lists.\n\nQ88).How will you get the length of a list?\nAns88: len(list) − Gives the total length of the list.\n\nQ89).How will you get the max valued item of a list?\nAns89: max(list) − Returns item from the list with max value.\n\nQ90).How will you get the min valued item of a list?\nAns90: min(list) − Returns item from the list with min value.\n\nQ91).How will you get the index of an object in a list?\nAns91: list.index(obj) − Returns the lowest index in list that obj appears.\n\nQ92).How will you insert an object at given index in a list?\nAns92: list.insert(index, obj) − Inserts object obj into list at offset index.\n\nQ93).How will you remove last object from a list?\nAns93: list.pop(obj=list[-1]) − Removes and returns last object or obj from list.\n\nQ94).How will you remove an object from a list?\nAns94: list.remove(obj) − Removes object obj from list.\n\nQ95).How will you reverse a list?\nAns95: list.reverse() − Reverses objects of list in place.\n\nQ96).How will you sort a list?\nAns96: list.sort([func]) − Sorts objects of list, use compare func if given.\n\nQ97).Name five modules that are included in python by default (many people come searching for this, so I included some more examples of modules which are often used)\nAns97:\ndatetime (used to manipulate date and time)\nre   (regular expressions)\nurllib, urllib2 (handles many HTTP things)\nstring (a collection of different groups of strings for example all lower_case letters etc)\nitertools (permutations, combinations and other useful iterables)\nctypes (from python docs: create and manipulate C data types in Python)\nemail (from python docs: A package for parsing, handling, and generating email messages)\nfuture__  (Record of incompatible language changes. like division operator is different and much better when imported from __future__)\nsqlite3              (handles database of SQLite type)\nunittest (from python docs: Python unit testing framework, based on Erich Gamma’s JUnit and Kent Beck’s Smalltalk testing framework)\nxml (xml support)\nlogging (defines logger classes. enables python to log details on severity level basis)\nos (operating system support)\npickle (similar to json. can put any data structure to external files)\nsubprocess (from docs: This module allows you to spawn processes, connect to their input/output/error pipes, and obtain their return codes)\nwebbrowser (from docs: Interfaces for launching and remotely controlling Web browsers.)\ntraceback (Extract, format and print Python stack traces)\n\nQ98).Name a module that is not included in python by default\nAns98:mechanize\ndjango\ngtk\nA lot of other can be found at pypi.\n\nQ99).What is __init__.py used for?\nAns99:It declares that the given directory is a  package. Python Docs (From Endophage‘s comment)\n\nQ100).When is pass used for?\nAns100:pass does nothing. It is used for completing the code where we need something. For eg:\n\n 1 2 class abc(): pass\n\nQ101).What is a docstring?\n\nAns101: docstring is the documentation string for a function. It can be accessed by\n\nfunction_name.__doc__\n\nit is declared as:\n\n 1 2 def function_name(): “””your docstring”””\n\nWriting documentation for your progams is a good habit and makes the code more understandable and reusable.\n\nQ102).What is list comprehension?\n\nAns102: Creating a list by doing some operation over data that can be accessed using an iterator. For eg:\n\n 1 2 3 >>>[ord(i) for i in string.ascii_uppercase] [65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90] >>>\n\nQ103).What is  map?\n\nAns103: map executes the function given as the first argument on all the elements of the iterable given as the second argument. If the function given takes in more than 1 arguments, then many iterables are given.\nFor eg:\n\n 1 2 3 4 5 >>>a=’ayush’ >>>map(ord,a) ….  [97, 121, 117, 115, 104] >>> print map(lambda x, y: x*y**2, [1, 2, 3], [2, 4, 1]) ….  [4, 32, 3] 1 2 3 4 5 6 7 8 9 10 11 Help on built-in function map in module __builtin__:   map(…) map(function, sequence[, sequence, …]) -> list   Return a list of the results of applying the function to the items of the argument sequence(s).  If more than one sequence is given, the function is called with an argument list consisting of the corresponding item of each sequence, substituting None for missing values when not all sequences have the same length.  If the function is None, return a list of the items of the sequence (or a list of tuples if more than one sequence).\n\n#Python Docs\n\nQ104).What is the difference between a tuple and a list?\n\nAns104:A tuple is immutable i.e. can not be changed. It can be operated on only. But a list is mutable. Changes can be done internally to it.\n\ntuple initialization: a = (2,4,5)\nlist initialization: a = [2,4,5]\n\nThe methods/functions provided with each types are also different. Check them out yourself.\n\nQ105).Using various python modules convert the list a to generate the output ‘one, two, three’\n\nAns105:\n\n 1 2 a = [‘one’, ‘two’, ‘three’] Ans:   “, “.join(a) 1 2 3 4 5 6 >>>help(str.join) Help on method_descriptor: join(…) S.join(iterable) -> string Return a string which is the concatenation of the strings in the iterable.  The separator between elements is S.\n\nQ106).What would the following code yield?\n\n 1 2 word = ‘abcdefghij’ print word[:3] + word[3:]\n\nAns106: ‘abcdefghij’ will be printed.\nThis is called string slicing. Since here the indices of the two slices are colliding, the string slices are ‘abc’ and ‘defghij’. The ‘+’ operator on strings concatenates them. Thus, the two slices formed are concatenated to give the answer ‘abcdefghij’.\n\nQ107).Optimize these statements as a python programmer.\n\n 1 2 word = ‘word’ print word.__len__()\n\nAns107:\n\n 1 2 word = ‘word’ print len(word)\n\nQ108).Write a program to print all the contents of a file\n\nAns108:\n\n 1 2 3 4 5 try: with open(‘filename’,’r’) as f: print f.read() except IOError: print “no such file exists”\n\nQ109). What will be the output of the following code\n\n 1 2 3 4 a = 1 a, b = a+1, a+1 print a print b\n\nAns109:\n2\n2\n\nThe second line is a simultaneous declaration i.e. value of new a is not used when doing b=a+1.\n\nThis is why, exchanging numbers is as easy as:\n\n 1 a,b = b,a\n\nQ110). Given the list below remove the repetition of an element.\nAll the elements should be unique\nwords = [‘one’, ‘one’, ‘two’, ‘three’, ‘three’, ‘two’]\n\nAns110:\nA bad solution would be to iterate over the list and checking for copies somehow and then remove them!\n\nOne of the best solutions I can think of right now:\n\n 1 2 a = [1,2,2,3] list(set(a))\n\nset is another type available in python, where copies are not allowed. It also has some good functions available used in set operations ( like union, difference ).\n\nQ111).Iterate over a list of words and use a dictionary to keep track of the frequency(count) of each word. for example\n\n{‘one’:2, ‘two’:2, ‘three’:2}\n\nAns111:\n\n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 >>> def dic(words): a = {} for i in words: try: a[i] += 1 except KeyError: ## the famous pythonic way: a[i] = 1       ## Halt and catch fire return a   >>> a=’1,3,2,4,5,3,2,1,4,3,2′.split(‘,’) >>> a [‘1’, ‘3’, ‘2’, ‘4’, ‘5’, ‘3’, ‘2’, ‘1’, ‘4’, ‘3’, ‘2’] >>> dic(a) {‘1’: 2, ‘3’: 3, ‘2’: 3, ‘5’: 1, ‘4’: 2}\n\nWithout using try-catch block:\n\n 1 2 3 4 5 6 7 8 9 10 >>> def dic(words): data = {} for i in words: data[i] = data.get(i, 0) + 1 return data   >>> a [‘1’, ‘3’, ‘2’, ‘4’, ‘5’, ‘3’, ‘2’, ‘1’, ‘4’, ‘3’, ‘2’] >>> dic(a) {‘1’: 2, ‘3’: 3, ‘2’: 3, ‘5’: 1, ‘4’: 2}\n\nPS: Since the collections module (which gives you the defaultdict) is written in python, I would not recommend using it. The normal dict implementation is in C, it should be much faster. You can use timeit module to check for comparing the two.\nSo, David and I have saved you the work to check it. Check the files on github. Change the data file to test different data.\n\nQ112).Write the following logic in Python:\nIf a list of words is empty, then let the user know it’s empty, otherwise let the user know it’s not empty.\n\nAns112: Can be checked by a single statement (pythonic beauty):\n\n 1 2 3 4 5 6 7 8 print “The list is empty” if len(a)==0 else “The list is not empty”   >>> a=” >>> print “‘The list is empty'” if len(a)==0 else “‘The list is not empty'” ‘The list is empty’ >>> a=’asd’ >>> print “‘The list is empty'” if len(a)==0 else “‘The list is not empty'” ‘The list is not empty’\n\nQ113).Demonstrate the use of exception handling in python.\n\nAns113:\n\n 1 2 3 4 try: import mechanize as me except ImportError: import urllib as me\n\n## here you have atleast 1 module imported as me.\nThis is used to check if the users computer has third party libraries that we need. If not, we work with a default library of python. Quite useful in updating softwares.\nPS: This is just one of the uses of try-except blocks. You can note a good use of these in API’s.\nAlso note that if we do not define the error to be matched, the except block would catch any error raised in try block.\n\nQ114).Print the length of each line in the file ‘file.txt’ not including any whitespaces at the end of the lines.\n\nAns114:\n\n 1 2 with open(“filename.txt”, “r”) as f1: print len(f1.readline().rstrip())\n\nrstrip() is an inbuilt function which strips the string from the right end of spaces or tabs (whitespace characters).\n\nQ115). Print the sum of digits of numbers starting from 1 to 100 (inclusive of both)\n\nAns115:\n\n 1 print sum(range(1,101))\n\nrange() returns a list to the sum function containing all the numbers from 1 to 100. Please see that the range function does not include the end given (101 here).\n\n 1 print sum(xrange(1, 101))\n\nxrange() returns an iterator rather than a list which is less heavy on the memory.\n\nQ116).Create a new list that converts the following list of number strings to a list of numbers.\n\nnum_strings = [‘1′,’21’,’53’,’84’,’50’,’66’,’7′,’38’,’9′]\n\nAns116:\nuse a list comprehension\n\n 1 2 >>> [int(i) for i in num_strings] [1, 21, 53, 84, 50, 66, 7, 38, 9]\n\n#num_strings should not contain any non-integer character else ValueError would be raised. A try-catch block can be used to notify the user of this.\n\nAnother one suggested by David using maps:\n\n 1 2 >>> map(int, num_strings) [1, 21, 53, 84, 50, 66, 7, 38, 9]\n\nQ117).Create two new lists one with odd numbers and other with even numbers\nnum_strings = [1,21,53,84,50,66,7,38,9]\n\nAns117:\n\n 1 2 3 4 5 6 7 >>> odd=[] >>> even=[] >>> for i in n: even.append(i) if i%2==0 else odd.append(i)   ## all odd numbers in list odd ## all even numbers in list even\n\nThough if only one of the lists were requires, using list comprehension we could make:\n\n 1 2 even = [i for i in num_strings if i%2==0] odd = [i for i in num_strings if i%2==1]\n\nBut using this approach if both lists are required would not be efficient since this would iterate the list two times.!\n\nQ118).Write a program to sort the following intergers in list\n\nnums = [1,5,2,10,3,45,23,1,4,7,9]\n\nAns118:nums.sort() # The lists have an inbuilt function, sort()\nsorted(nums) # sorted() is one of the inbuilt functions)\n\nPython uses TimSort for applying this function. Check the link to know more.\n\nQ119).Write a for loop that prints all elements of a list and their position in the list.\nPrinting using String formatting\n\nAns119:\n\n 1 2 3 4 5 6 7 8 9 >>> for index, data in enumerate(asd): ….    print “{0} -> {1}”.format(index, data)   0 -> 4 1 -> 7 2 -> 3 3 -> 2 4 -> 5 5 -> 9\n\n#OR\n\n 1 2 3 4 5 6 7 8 9 10 11 >>> asd = [4,7,3,2,5,9]   >>> for i in range(len(asd)): ….    print i+1,’–>’,asd[i]   1 –> 4 2 –> 7 3 –> 3 4 –> 2 5 –> 5 6 –> 9\n\nQ120).The following code is supposed to remove numbers less than 5 from list n, but there is a bug. Fix the bug.\n\nAns120:\n\n 1 2 3 4 5 6 n = [1,2,5,10,3,100,9,24]   for e in n: if e<5: n.remove(e) print n\n\n## after e is removed, the index position gets disturbed. Instead it should be:\n\n 1 2 3 4 5 a=[] for e in n: if e >= 5: a.append(e) n = a\n\nOR again a list comprehension:\n\n 1 return [i for i in n if i >= 5]\n\nOR use filter\n\n 1 return filter(lambda x: x >= 5, n)\n\nQ121).What will be the output of the following\n\n 1 2 3 4 def func(x,*y,**z): ….    print z   func(1,2,3)\n\nAns121:Here the output is :\n\n{}  #Empty Dictionay\n\nx is a normal value, so it takes 1..\ny is a list of numbers, so it takes 2,3..\nz wants named parameters, so it can not take any value here.\n\nQ122).Write a program to swap two numbers.\n\nAns122:\n\na = 5\nb = 9\n\nas i told earlier too, just use:\na,b = b,a\n\nQ123).What will be the output of the following code\n\n 1 2 3 4 5 6 7 8 9 class C(object): ….    def__init__(self): ….        self.x =1   c=C() print c.x print c.x print c.x print c.x\n\nAns123: All the outputs will be 1, since the value of the the object’s attribute(x) is never changed.\n\n1\n1\n1\n1\n\nx is now a part of the public members of the class C.\nThus it can be accessed directly..\n\nQ124). What is wrong with the code\n\n 1 2 3 4 5 6 7 func([1,2,3]) # explicitly passing in a list func()        # using a default empty list   def func(n = []): #do something with n   print n\n\nAns124. This would result in a NameError. The variable n is local to function func and can’t be accessesd outside. So, printing it won’t be possible.\n\nEdit: An extra point for interviews given by Shane Green and Peter: “””Another thing is that mutable types should never be used as default parameter values. Default parameter value expressions are only evaluated once, meaning every invocation of that method shares the same default value. If one invocation that ends up using the default value modifies that value–a list, in this case–it will forever be modified for all future invocations. So default parameter values should limited to primitives, strings, and tuples; no lists, dictionaries, or complex object instances.”””\nReference: Default argument values\n\nQ125).What all options will work?\n\nAns125:\n\n1. n = 1\nprint n++   ## no such operator in python (++)\n2. n = 1\nprint ++n   ## no such operator in python (++)\n3. n = 1\nprint n += 1  ## will work\n4. int n = 1\nprint n = n+1 ##will not work as assignment can not be done in print command like this\n5. n =1\nn = n+1      ## will work\n\nQ126).In Python function parameters are passed by value or by reference?\n\nAns126: It is somewhat more complicated than I have written here (Thanks David for pointing). Explaining all here won’t be possible. Some good links that would really make you understand how things are:\n\nStackoverflow\n\nPython memory management\n\nViewing the memory\n\nQ127).Remove the whitespaces from the string.\n\ns = ‘aaa bbb ccc ddd eee’\n\nAns127:\n\n 1 2 ”.join(s.split()) ## join without spaces the string after splitting it\n\nOR\n\n 1 filter(lambda x: x != ‘ ‘, s)\n\nQ128).What does the below mean?\n\ns = a + ‘[‘ + b + ‘:’ + c + ‘]’\n\nAns128: seems like a string is being concatenated. Nothing much can be said without knowing types of variables a, b, c. Also, if all of the a, b, c are not of type string, TypeError would be raised. This is because of the string constants (‘[‘ , ‘]’) used in the statement.\n\nQ129). Optimize the below code\n\n 1 2 3 4 5 6 7 8 def append_s(words): new_words=[] for word in words: new_words.append(word + ‘s’) return new_words   for word in append_s([‘a’,’b’,’c’]): print word\n\nAns129: The above code adds a trailing s after each element of the list.\n\ndef append_s(words):\nreturn [i+’s’ for i in words] ## another list comprehension\n\nfor word in append_s([‘a’,’b’,’c’]):\nprint word\n\nQ130).If given the first and last names of bunch of employees how would you store it and what datatype?\n\nAns130: best stored in a list of dictionaries..\ndictionary format:  {‘first_name’:’Ayush’,’last_name’:’Goel’}\n\nQ131).What is Python really? You can (and are encouraged) make comparisons to other technologies in your answer\n\nAns131: Here are a few key points:\n\n• Python is an interpreted language. That means that, unlike languages like Cand its variants, Python does not need to be compiled before it is run. Other interpreted languages include PHP and Ruby.\n• Python is dynamically typed, this means that you don’t need to state the types of variables when you declare them or anything like that. You can do things like x=111and then x=”I’m a string”without error\n• Python is well suited to object orientated programming in that it allows the definition of classes along with composition and inheritance. Python does not have access specifiers (like C++’s public, private), the justification for this point is given as “we are all adults here”\n• In Python, functions are first-class objects. This means that they can be assigned to variables, returned from other functions and passed into functions. Classes are also first class objects\n• Writing Python code is quick but running it is often slower than compiled languages. Fortunately, Python allows the inclusion of C based extensions so bottlenecks can be optimised away and often are. The numpypackage is a good example of this, it’s really quite quick because a lot of the number crunching it does isn’t actually done by Python\n• Python finds use in many spheres – web applications, automation, scientific modelling, big data applications and many more. It’s also often used as “glue” code to get other languages and components to play nice.\n• Python makes difficult things easy so programmers can focus on overriding algorithms and structures rather than nitty-gritty low level details.\n\nWhy This Matters:\n\nIf you are applying for a Python position, you should know what it is and why it is so gosh-darn cool. And why it isn’t o.O\n\nQ132).Fill in the missing code:\n\ndef print_directory_contents(sPath):\n\n“””\n\nThis function takes the name of a directory\n\nand prints out the paths files within that\n\ndirectory as well as any files contained in\n\ncontained directories.\n\nThis function is similar to os.walk. Please don’t\n\nability to work with nested structures.\n\n“””\n\nfill_this_in\n\nAns132: def print_directory_contents(sPath):\n\nimport os\n\nfor sChild in os.listdir(sPath):\n\nsChildPath = os.path.join(sPath,sChild)\n\nif os.path.isdir(sChildPath):\n\nprint_directory_contents(sChildPath)\n\nelse:\n\nprint(sChildPath)\n\nPay Special Attention\n\n• Be consistent with your naming conventions. If there is a naming convention evident in any sample code, stick to it. Even if it is not the naming convention you usually use\n• Recursive functions need to recurse and Make sure you understand how this happens so that you avoid bottomless callstacks\n• We use the osmodule for interacting with the operating system in a way that is cross platform. You could say sChildPath = sPath + ‘/’ + sChild but that wouldn’t work on windows\n• Familiarity with base packages is really worthwhile, but don’t break your head trying to memorize everything, Google is your friend in the workplace!\n• Ask questions if you don’t understand what the code is supposed to do\n• KISS! Keep it Simple, Stupid!\n\nWhy This Matters:\n\n• Displays knowledge of basic operating system interaction stuff\n• Recursion is hella useful\n\nQ133).\n\nLooking at the below code, write down the final values of A0, A1, …An.\n\nA0 = dict(zip((‘a’,’b’,’c’,’d’,’e’),(1,2,3,4,5)))\n\nA1 = range(10)\n\nA2 = sorted([i for i in A1 if i in A0])\n\nA3 = sorted([A0[s] for s in A0])\n\nA4 = [i for i in A1 if i in A3]\n\nA5 = {i:i*i for i in A1}\n\nA6 = [[i,i*i] for i in A1]\n\nIf you dont know what zip is don’t stress out. No sane employer will expect you to memorize the standard library. Here is the output of help(zip).\n\nzip(…)\n\nzip(seq1 [, seq2 […]]) -> [(seq1, seq2 …), (…)]\n\nReturn a list of tuples, where each tuple contains the i-th element\n\nfrom each of the argument sequences.  The returned list is truncated\n\nin length to the length of the shortest argument sequence.\n\nIf that doesn’t make sense then take a few minutes to figure it out however you choose to.\n\nAns133: A0 = {‘a’: 1, ‘c’: 3, ‘b’: 2, ‘e’: 5, ‘d’: 4}  # the order may vary\n\nA1 = range(0, 10) # or [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] in python 2\n\nA2 = []\n\nA3 = [1, 2, 3, 4, 5]\n\nA4 = [1, 2, 3, 4, 5]\n\nA5 = {0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81}\n\nA6 = [[0, 0], [1, 1], [2, 4], [3, 9], [4, 16], [5, 25], [6, 36], [7, 49], [8, 64], [9, 81]]\n\nWhy This Matters\n\n1. List comprehension is a wonderful time saver and a big stumbling block for a lot of people\n2. If you can read them, you can probably write them down\n3. Some of this code was made to be deliberately weird. You may need to work with some weird people\n\nQ134).Python and multi-threading. Is it a good idea? List some ways to get some Python code to run in a parallel way.\n\nThere are reasons to use Python’s threading package. If you want to run some things simultaneously, and efficiency is not a concern, then it’s totally fine and convenient. Or if you are running code that needs to wait for something (like some IO) then it could make a lot of sense. But the threading library won’t let you use extra CPU cores.\n\nMulti-threading can be outsourced to the operating system (by doing multi-processing), some external application that calls your Python code (eg, Spark or Hadoop), or some code that your Python code calls (eg: you could have your Python code call a C function that does the expensive multi-threaded stuff).\n\nWhy This Matters\n\nBecause the GIL is an A-hole. Lots of people spend a lot of time trying to find bottlenecks in their fancy Python multi-threaded code before they learn what the GIL is.\n\nQ135). How do you keep track of different versions of your code?\n\nAns135: Version control! At this point, you should act excited and tell them how you even use Git (or whatever is your favorite) to keep track of correspondence with Granny. Git is my preferred version control system, but there are others, for example subversion.\n\nWhy This Matters:\n\nBecause code without version control is like coffee without a cup. Sometimes we need to write once-off throw away scripts and that’s ok, but if you are dealing with any significant amount of code, a version control system will be a benefit. Version Control helps with keeping track of who made what change to the code base; finding out when bugs were introduced to the code; keeping track of versions and releases of your software; distributing the source code amongst team members; deployment and certain automations. It allows you to roll your code back to before you broke it which is great on its own. Lots of stuff. It’s just great.\n\nQ136).What does this code output:\n\ndef f(x,l=[]):\n\nfor i in range(x):\n\nl.append(i*i)\n\nprint(l)\n\nf(2)\n\nf(3,[3,2,1])\n\nf(3)\n\nAns136:\n\n[0, 1]\n\n[3, 2, 1, 0, 1, 4]\n\n[0, 1, 0, 1, 4]\n\nHu?\n\nThe first function call should be fairly obvious, the loop appends 0 and then 1 to the empty list, l. l is a name for a variable that points to a list stored in memory.\nThe second call starts off by creating a new list in a new block of memory. l then refers to this new list. It then appends 0, 1 and 4 to this new list. So that’s great.\nThe third function call is the weird one. It uses the original list stored in the original memory block. That is why it starts off with 0 and 1.\n\nTry this out if you don’t understand:\n\nl_mem = []\n\nl = l_mem           # the first call\n\nfor i in range(2):\n\nl.append(i*i)\n\nprint(l)            # [0, 1]\n\nl = [3,2,1]         # the second call\n\nfor i in range(3):\n\nl.append(i*i)\n\nprint(l)            # [3, 2, 1, 0, 1, 4]\n\nl = l_mem           # the third call\n\nfor i in range(3):\n\nl.append(i*i)\n\nprint(l)            # [0, 1, 0, 1, 4]\n\nQ137).What is monkey patching and is it ever a good idea?\n\nAns137:Monkey patching is changing the behaviour of a function or object after it has already been defined. For example:\n\nimport datetime\n\ndatetime.datetime.now = lambda: datetime.datetime(2012, 12, 12)\n\nMost of the time it’s a pretty terrible idea – it is usually best if things act in a well-defined way. One reason to monkey patch would be in testing. The mock package is very useful to this end.\n\nWhy This Matters\n\nIt shows that you understand a bit about methodologies in unit testing. Your mention of monkey avoidance will show that you aren’t one of those coders who favor fancy code over maintainable code (they are out there, and they suck to work with). Remember the principle of KISS? And it shows that you know a little bit about how Python works on a lower level, how functions are actually stored and called and suchlike.\n\nPS: it’s really worth reading a little bit about mock if you haven’t yet. It’s pretty useful.\n\nQ138).What does this stuff mean: *args, **kwargs? And why would we use it?\n\nAns138:Use *args when we aren’t sure how many arguments are going to be passed to a function, or if we want to pass a stored list or tuple of arguments to a function. **kwargsis used when we dont know how many keyword arguments will be passed to a function, or it can be used to pass the values of a dictionary as keyword arguments. The identifiers args and kwargs are a convention, you could also use *bob and **billy but that would not be wise.\n\nHere is a little illustration:\n\ndef f(*args,**kwargs): print(args, kwargs)\n\nl = [1,2,3]\n\nt = (4,5,6)\n\nd = {‘a’:7,’b’:8,’c’:9}\n\nf()\n\nf(1,2,3)                    # (1, 2, 3) {}\n\nf(1,2,3,”groovy”)           # (1, 2, 3, ‘groovy’) {}\n\nf(a=1,b=2,c=3)              # () {‘a’: 1, ‘c’: 3, ‘b’: 2}\n\nf(a=1,b=2,c=3,zzz=”hi”)     # () {‘a’: 1, ‘c’: 3, ‘b’: 2, ‘zzz’: ‘hi’}\n\nf(1,2,3,a=1,b=2,c=3)        # (1, 2, 3) {‘a’: 1, ‘c’: 3, ‘b’: 2}\n\nf(*l,**d)                   # (1, 2, 3) {‘a’: 7, ‘c’: 9, ‘b’: 8}\n\nf(*t,**d)                   # (4, 5, 6) {‘a’: 7, ‘c’: 9, ‘b’: 8}\n\nf(1,2,*t)                   # (1, 2, 4, 5, 6) {}\n\nf(q=”winning”,**d)          # () {‘a’: 7, ‘q’: ‘winning’, ‘c’: 9, ‘b’: 8}\n\nf(1,2,*t,q=”winning”,**d)   # (1, 2, 4, 5, 6) {‘a’: 7, ‘q’: ‘winning’, ‘c’: 9, ‘b’: 8}\n\ndef f2(arg1,arg2,*args,**kwargs): print(arg1,arg2, args, kwargs)\n\nf2(1,2,3)                       # 1 2 (3,) {}\n\nf2(1,2,3,”groovy”)              # 1 2 (3, ‘groovy’) {}\n\nf2(arg1=1,arg2=2,c=3)           # 1 2 () {‘c’: 3}\n\nf2(arg1=1,arg2=2,c=3,zzz=”hi”)  # 1 2 () {‘c’: 3, ‘zzz’: ‘hi’}\n\nf2(1,2,3,a=1,b=2,c=3)           # 1 2 (3,) {‘a’: 1, ‘c’: 3, ‘b’: 2}\n\nf2(*l,**d)                   # 1 2 (3,) {‘a’: 7, ‘c’: 9, ‘b’: 8}\n\nf2(*t,**d)                   # 4 5 (6,) {‘a’: 7, ‘c’: 9, ‘b’: 8}\n\nf2(1,2,*t)                   # 1 2 (4, 5, 6) {}\n\nf2(1,1,q=”winning”,**d)      # 1 1 () {‘a’: 7, ‘q’: ‘winning’, ‘c’: 9, ‘b’: 8}\n\nf2(1,2,*t,q=”winning”,**d)   # 1 2 (4, 5, 6) {‘a’: 7, ‘q’: ‘winning’, ‘c’: 9, ‘b’: 8}\n\nWhy Care?\n\nSometimes we will need to pass an unknown number of arguments or keyword arguments into a function. Sometimes we will want to store arguments or keyword arguments for later use. Sometimes it’s just a time saver.\n\nQ139).What do these mean to you: @classmethod, @staticmethod, @property?\n\nThese are decorators. A decorator is a special kind of function that either takes a function and returns a function, or takes a class and returns a class. The @ symbol is just syntactic sugar that allows you to decorate something in a way that’s easy to read.\n\n@my_decorator\n\ndef my_func(stuff):\n\ndo_things\n\nIs equivalent to\n\ndef my_func(stuff):\n\ndo_things\n\nmy_func = my_decorator(my_func)\n\nThe decorators @classmethod, @staticmethod and @property are used on functions defined within classes. Here is how they behave:\n\nclass MyClass(object):\n\ndef __init__(self):\n\nself._some_property = “properties are nice”\n\nself._some_other_property = “VERY nice”\n\ndef normal_method(*args,**kwargs):\n\nprint(“calling normal_method({0},{1})”.format(args,kwargs))\n\n@classmethod\n\ndef class_method(*args,**kwargs):\n\nprint(“calling class_method({0},{1})”.format(args,kwargs))\n\n@staticmethod\n\ndef static_method(*args,**kwargs):\n\nprint(“calling static_method({0},{1})”.format(args,kwargs))\n\n@property\n\ndef some_property(self,*args,**kwargs):\n\nprint(“calling some_property getter({0},{1},{2})”.format(self,args,kwargs))\n\nreturn self._some_property\n\n@some_property.setter\n\ndef some_property(self,*args,**kwargs):\n\nprint(“calling some_property setter({0},{1},{2})”.format(self,args,kwargs))\n\nself._some_property = args\n\n@property\n\ndef some_other_property(self,*args,**kwargs):\n\nprint(“calling some_other_property getter({0},{1},{2})”.format(self,args,kwargs))\n\nreturn self._some_other_property\n\no = MyClass()\n\n# undecorated methods work like normal, they get the current instance (self) as the first argument\n\no.normal_method\n\n# <bound method MyClass.normal_method of <__main__.MyClass instance at 0x7fdd2537ea28>>\n\no.normal_method()\n\n# normal_method((<__main__.MyClass instance at 0x7fdd2537ea28>,),{})\n\no.normal_method(1,2,x=3,y=4)\n\n# normal_method((<__main__.MyClass instance at 0x7fdd2537ea28>, 1, 2),{‘y’: 4, ‘x’: 3})\n\n# class methods always get the class as the first argument\n\no.class_method\n\n# <bound method classobj.class_method of <class __main__.MyClass at 0x7fdd2536a390>>\n\no.class_method()\n\n# class_method((<class __main__.MyClass at 0x7fdd2536a390>,),{})\n\no.class_method(1,2,x=3,y=4)\n\n# class_method((<class __main__.MyClass at 0x7fdd2536a390>, 1, 2),{‘y’: 4, ‘x’: 3})\n\n# static methods have no arguments except the ones you pass in when you call them\n\no.static_method\n\n# <function static_method at 0x7fdd25375848>\n\no.static_method()\n\n# static_method((),{})\n\no.static_method(1,2,x=3,y=4)\n\n# static_method((1, 2),{‘y’: 4, ‘x’: 3})\n\n# properties are a way of implementing getters and setters. It’s an error to explicitly call them\n\n# “read only” attributes can be specified by creating a getter without a setter (as in some_other_property)\n\no.some_property\n\n# calling some_property getter(<__main__.MyClass instance at 0x7fb2b70877e8>,(),{})\n\n# ‘properties are nice’\n\no.some_property()\n\n# calling some_property getter(<__main__.MyClass instance at 0x7fb2b70877e8>,(),{})\n\n# Traceback (most recent call last):\n\n#   File “<stdin>”, line 1, in <module>\n\n# TypeError: ‘str’ object is not callable\n\no.some_other_property\n\n# calling some_other_property getter(<__main__.MyClass instance at 0x7fb2b70877e8>,(),{})\n\n# ‘VERY nice’\n\n# o.some_other_property()\n\n# calling some_other_property getter(<__main__.MyClass instance at 0x7fb2b70877e8>,(),{})\n\n# Traceback (most recent call last):\n\n#   File “<stdin>”, line 1, in <module>\n\n# TypeError: ‘str’ object is not callable\n\no.some_property = “groovy”\n\n# calling some_property setter(<__main__.MyClass object at 0x7fb2b7077890>,(‘groovy’,),{})\n\no.some_property\n\n# calling some_property getter(<__main__.MyClass object at 0x7fb2b7077890>,(),{})\n\n# ‘groovy’\n\no.some_other_property = “very groovy”\n\n# Traceback (most recent call last):\n\n#   File “<stdin>”, line 1, in <module>\n\n# AttributeError: can’t set attribute\n\no.some_other_property\n\n# calling some_other_property getter(<__main__.MyClass object at 0x7fb2b7077890>,(),{})\n\n# ‘VERY nice’\n\nQ140).Consider the following code, what will it output?\n\nclass A(object):\n\ndef go(self):\n\nprint(“go A go!”)\n\ndef stop(self):\n\nprint(“stop A stop!”)\n\ndef pause(self):\n\nraise Exception(“Not Implemented”)\n\nclass B(A):\n\ndef go(self):\n\nsuper(B, self).go()\n\nprint(“go B go!”)\n\nclass C(A):\n\ndef go(self):\n\nsuper(C, self).go()\n\nprint(“go C go!”)\n\ndef stop(self):\n\nsuper(C, self).stop()\n\nprint(“stop C stop!”)\n\nclass D(B,C):\n\ndef go(self):\n\nsuper(D, self).go()\n\nprint(“go D go!”)\n\ndef stop(self):\n\nsuper(D, self).stop()\n\nprint(“stop D stop!”)\n\ndef pause(self):\n\nprint(“wait D wait!”)\n\nclass E(B,C): pass\n\na = A()\n\nb = B()\n\nc = C()\n\nd = D()\n\ne = E()\n\n# specify output from here onwards\n\na.go()\n\nb.go()\n\nc.go()\n\nd.go()\n\ne.go()\n\na.stop()\n\nb.stop()\n\nc.stop()\n\nd.stop()\n\ne.stop()\n\na.pause()\n\nb.pause()\n\nc.pause()\n\nd.pause()\n\ne.pause()\n\nAns140:\n\nThe output is specified in the comments in the segment below:\n\na.go()\n\n# go A go!\n\nb.go()\n\n# go A go!\n\n# go B go!\n\nc.go()\n\n# go A go!\n\n# go C go!\n\nd.go()\n\n# go A go!\n\n# go C go!\n\n# go B go!\n\n# go D go!\n\ne.go()\n\n# go A go!\n\n# go C go!\n\n# go B go!\n\na.stop()\n\n# stop A stop!\n\nb.stop()\n\n# stop A stop!\n\nc.stop()\n\n# stop A stop!\n\n# stop C stop!\n\nd.stop()\n\n# stop A stop!\n\n# stop C stop!\n\n# stop D stop!\n\ne.stop()\n\n# stop A stop!\n\na.pause()\n\n# … Exception: Not Implemented\n\nb.pause()\n\n# … Exception: Not Implemented\n\nc.pause()\n\n# … Exception: Not Implemented\n\nd.pause()\n\n# wait D wait!\n\ne.pause()\n\n# …Exception: Not Implemented\n\nWhy do we care?\n\nBecause OO programming is really, really important. Really. Answering this question shows your understanding of inheritance and the use of Python’s super function. Most of the time the order of resolution doesn’t matter. Sometimes it does, it depends on your application.\n\nQ141).\n\nConsider the following code, what will it output?\n\nclass Node(object):\n\ndef __init__(self,sName):\n\nself._lChildren = []\n\nself.sName = sName\n\ndef __repr__(self):\n\nreturn “<Node ‘{}’>”.format(self.sName)\n\ndef append(self,*args,**kwargs):\n\nself._lChildren.append(*args,**kwargs)\n\ndef print_all_1(self):\n\nprint(self)\n\nfor oChild in self._lChildren:\n\noChild.print_all_1()\n\ndef print_all_2(self):\n\ndef gen(o):\n\nlAll = [o,]\n\nwhile lAll:\n\noNext = lAll.pop(0)\n\nlAll.extend(oNext._lChildren)\n\nyield oNext\n\nfor oNode in gen(self):\n\nprint(oNode)\n\noRoot = Node(“root”)\n\noChild1 = Node(“child1”)\n\noChild2 = Node(“child2”)\n\noChild3 = Node(“child3”)\n\noChild4 = Node(“child4”)\n\noChild5 = Node(“child5”)\n\noChild6 = Node(“child6”)\n\noChild7 = Node(“child7”)\n\noChild8 = Node(“child8”)\n\noChild9 = Node(“child9”)\n\noChild10 = Node(“child10”)\n\noRoot.append(oChild1)\n\noRoot.append(oChild2)\n\noRoot.append(oChild3)\n\noChild1.append(oChild4)\n\noChild1.append(oChild5)\n\noChild2.append(oChild6)\n\noChild4.append(oChild7)\n\noChild3.append(oChild8)\n\noChild3.append(oChild9)\n\noChild6.append(oChild10)\n\n# specify output from here onwards\n\noRoot.print_all_1()\n\noRoot.print_all_2()\n\nAns141:\n\noRoot.print_all_1() prints:\n\n<Node ‘root’>\n\n<Node ‘child1’>\n\n<Node ‘child4’>\n\n<Node ‘child7’>\n\n<Node ‘child5’>\n\n<Node ‘child2’>\n\n<Node ‘child6’>\n\n<Node ‘child10’>\n\n<Node ‘child3’>\n\n<Node ‘child8’>\n\n<Node ‘child9’>\n\noRoot.print_all_2() prints:\n\n<Node ‘root’>\n\n<Node ‘child1’>\n\n<Node ‘child2’>\n\n<Node ‘child3’>\n\n<Node ‘child4’>\n\n<Node ‘child5’>\n\n<Node ‘child6’>\n\n<Node ‘child8’>\n\n<Node ‘child9’>\n\n<Node ‘child7’>\n\n<Node ‘child10’>\n\nWhy do we care?\n\nBecause composition and object construction is what objects are all about. Objects are composed of stuff and they need to be initialised somehow. This also ties up some stuff about recursion and use of generators.\n\nGenerators are great. You could have achieved similar functionality to print_all_2 by just constructing a big long list and then printing it’s contents. One of the nice things about generators is that they don’t need to take up much space in memory.\n\nIt is also worth pointing out that print_all_1 traverses the tree in a depth-first manner, while print_all_2 is width-first. Make sure you understand those terms. Sometimes one kind of traversal is more appropriate than the other. But that depends very much on your application.\n\nQ142).Describe Python’s garbage collection mechanism in brief.\n\nAns142: A lot can be said here. There are a few main points that you should mention:\n\n• Python maintains a count of the number of references to each object in memory. If a reference count goes to zero then the associated object is no longer live and the memory allocated to that object can be freed up for something else\n• occasionally things called “reference cycles” happen. The garbage collector periodically looks for these and cleans them up. An example would be if you have two objects o1and o2 such that x == o2 and o2.x == o1. If o1 and o2 are not referenced by anything else then they shouldn’t be live. But each of them has a reference count of 1.\n• Certain heuristics are used to speed up garbage collection. For example, recently created objects are more likely to be dead. As objects are created, the garbage collector assigns them to generations. Each object gets one generation, and younger generations are dealt with first.\n\nThis explanation is CPython specific.\n\nQ143).\n\nPlace the following functions below in order of their efficiency. They all take in a list of numbers between 0 and 1. The list can be quite long. An example input list would be [random.random() for i in range(100000)]. How would you prove that your answer is correct?\n\ndef f1(lIn):\n\nl1 = sorted(lIn)\n\nl2 = [i for i in l1 if i<0.5]\n\nreturn [i*i for i in l2]\n\ndef f2(lIn):\n\nl1 = [i for i in lIn if i<0.5]\n\nl2 = sorted(l1)\n\nreturn [i*i for i in l2]\n\ndef f3(lIn):\n\nl1 = [i*i for i in lIn]\n\nl2 = sorted(l1)\n\nreturn [i for i in l1 if i<(0.5*0.5)]\n\nAns143:\n\nMost to least efficient: f2, f1, f3. To prove that this is the case, you would want to profile your code. Python has a lovely profiling package that should do the trick.\n\nimport cProfile\n\nlIn = [random.random() for i in range(100000)]\n\ncProfile.run(‘f1(lIn)’)\n\ncProfile.run(‘f2(lIn)’)\n\ncProfile.run(‘f3(lIn)’)\n\nFor completion’s sake, here is what the above profile outputs:\n\n>>> cProfile.run(‘f1(lIn)’)\n\n4 function calls in 0.045 seconds\n\nOrdered by: standard name\n\nncalls  tottime  percall  cumtime  percall filename:lineno(function)\n\n1    0.009    0.009    0.044    0.044 <stdin>:1(f1)\n\n1    0.001    0.001    0.045    0.045 <string>:1(<module>)\n\n1    0.000    0.000    0.000    0.000 {method ‘disable’ of ‘_lsprof.Profiler’ objects}\n\n1    0.035    0.035    0.035    0.035 {sorted}\n\n>>> cProfile.run(‘f2(lIn)’)\n\n4 function calls in 0.024 seconds\n\nOrdered by: standard name\n\nncalls  tottime  percall  cumtime  percall filename:lineno(function)\n\n1    0.008    0.008    0.023    0.023 <stdin>:1(f2)\n\n1    0.001    0.001    0.024    0.024 <string>:1(<module>)\n\n1    0.000    0.000    0.000    0.000 {method ‘disable’ of ‘_lsprof.Profiler’ objects}\n\n1    0.016    0.016    0.016    0.016 {sorted}\n\n>>> cProfile.run(‘f3(lIn)’)\n\n4 function calls in 0.055 seconds\n\nOrdered by: standard name\n\nncalls  tottime  percall  cumtime  percall filename:lineno(function)\n\n1    0.016    0.016    0.054    0.054 <stdin>:1(f3)\n\n1    0.001    0.001    0.055    0.055 <string>:1(<module>)\n\n1    0.000    0.000    0.000    0.000 {method ‘disable’ of ‘_lsprof.Profiler’ objects}\n\n1    0.038    0.038    0.038    0.038 {sorted}\n\nWhy Care?\n\nLocating and avoiding bottlenecks is often pretty worthwhile. A lot of coding for efficiency comes down to common sense – in the example above it’s obviously quicker to sort a list if it’s a smaller list, so if you have the choice of filtering before a sort it’s often a good idea. The less obvious stuff can still be located through use of the proper tools. It’s good to know about these tools.\n\nQ144).What is the purpose of PYTHONPATH environment variable?\n\nAns144: PYTHONPATH – It has a role similar to PATH. This variable tells the Python interpreter where to locate the module files imported into a program. It should include the Python source library directory and the directories containing Python source code. PYTHONPATH is sometimes preset by the Python installer.\n\nQ145).What is the purpose of PYTHONSTARTUP environment variable?\n\nAns145: PYTHONSTARTUP – It contains the path of an initialization file containing Python source code. It is executed every time you start the interpreter. It is named as .pythonrc.py in Unix and it contains commands that load utilities or modify PYTHONPATH.\n\nQ146).What is the purpose of PYTHONCASEOK environment variable?\n\nAns146: PYTHONCASEOK − It is used in Windows to instruct Python to find the first case-insensitive match in an import statement. Set this variable to any value to activate it.\n\nQ147).What is the purpose of PYTHONHOME environment variable?\n\nAns147: PYTHONHOME − It is an alternative module search path. It is usually embedded in the PYTHONSTARTUP or PYTHONPATH directories to make switching module libraries easy.\n\nQ148).What does a python do?\n\nAns148: Python  is a general-purpose programming language typically used for web development. … SQLite is one free lightweight database commonly used by Pythonprogrammers to store data. Many highly trafficked websites, such as YouTube, are created using Python.\n\nQ149).What is the interpreter in Python ?\n\nAns149: An interpreter is a program that reads and executes code. This includes source code, pre-compiled code, and scripts. Common interpreters include Perl, Python, and Ruby interpreters, which execute Perl, Python, and Ruby code respectively.\n\nQ150).Why is it called Python ?\n\nAns150: When he began implementing Python, Guido van Rossum was also reading the published scripts from “Monty Python’s Flying Circus”, a BBC comedy series from the 1970s. Van Rossum thought he needed a name that was short, unique, and slightly mysterious, so he decided to call the language  Python\n\nSummary\nReview Date\nReviewed Item\nAmazing. I got most of the commonly asked interview questions from this site\nAuthor Rating\n5", null, "", null, "", null, "", null, "", null, "" ]
[ null, "https://www.iteanz.com/wp-content/plugins/all-in-one-schemaorg-rich-snippets/images/1star.png", null, "https://www.iteanz.com/wp-content/plugins/all-in-one-schemaorg-rich-snippets/images/1star.png", null, "https://www.iteanz.com/wp-content/plugins/all-in-one-schemaorg-rich-snippets/images/1star.png", null, "https://www.iteanz.com/wp-content/plugins/all-in-one-schemaorg-rich-snippets/images/1star.png", null, "https://www.iteanz.com/wp-content/plugins/all-in-one-schemaorg-rich-snippets/images/1star.png", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.7401576,"math_prob":0.87663853,"size":54713,"snap":"2022-27-2022-33","text_gpt3_token_len":15672,"char_repetition_ratio":0.13155057,"word_repetition_ratio":0.09589638,"special_character_ratio":0.3143494,"punctuation_ratio":0.17915829,"nsfw_num_words":1,"has_unicode_error":false,"math_prob_llama3":0.95512766,"pos_list":[0,1,2,3,4,5,6,7,8,9,10],"im_url_duplicate_count":[null,null,null,null,null,null,null,null,null,null,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2022-08-15T12:30:39Z\",\"WARC-Record-ID\":\"<urn:uuid:78407141-2ecc-4c81-b8e6-69679640034d>\",\"Content-Length\":\"184372\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:2556dc3d-d5aa-47ac-8256-59dcbbc37ae9>\",\"WARC-Concurrent-To\":\"<urn:uuid:a4b1f597-e984-42a8-842b-2d6addfadb6a>\",\"WARC-IP-Address\":\"172.67.205.95\",\"WARC-Target-URI\":\"https://www.iteanz.com/python-real-time-interview-questions-and-answers/\",\"WARC-Payload-Digest\":\"sha1:PEJHUB4P2S737BROEH4AWZ644OYRX4M6\",\"WARC-Block-Digest\":\"sha1:FWSOEPQXR5FRIUUP2XMLFR7XW33ZEOBX\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2022/CC-MAIN-2022-33/CC-MAIN-2022-33_segments_1659882572174.8_warc_CC-MAIN-20220815115129-20220815145129-00252.warc.gz\"}"}
https://physicstravelguide.com/advanced_tools/group_theory/poincare_group
[ "#", null, "### Sidebar\n\n$\\color{red}{P(1, 3)} = \\color{blue}{T(4)} \\color{magenta}{\\rtimes} \\color{green}{SO(1, 3)}$\n\n# Poincare Group\n\n## Intuitive\n\nThe Poincare group is the mathematical tool that we use to describe the symmetry of special relativity.\n\nThe starting point for Einstein on his road towards what is now called special relativity was the experimental observation that the speed of light has the same value in all inertial frames of reference. This curious fact of nature was discovered by the famous Michelson-Morley experiment.\n\nA symmetry is a transformation that we can perform without changing something. Therefore, the invariance of the speed of light under arbitrary changes of the frame of reference is a symmetry and we call this symmetry the Poincare group. The Poincare group contains all transformations that we can perform without changing the speed of light.\n\n## Concrete\n\nThe $\\color{red}{\\text{Poincare group}}$ consists of $\\color{blue}{\\text{translations}}$ $\\color{magenta}{\\text{plus}}$ $\\color{green}{\\text{rotations and boosts}}$.\n\nThe Poincare Algebra\n\n\\begin{eqnarray} {}[J_i,J_j]&=&i \\epsilon_{ijk}J_k, \\nonumber \\\\ {} [J_i,K_j]&=& i\\epsilon_{ijk} K_k, \\nonumber \\\\ {} [K_i,K_j]&=& -i \\epsilon_{ijk}J_k ,\\nonumber \\\\ {} [J_i,P_0]&=&0, \\nonumber \\\\ {} [J_i,P_j]&=& i\\epsilon_{ijk} P_k, \\nonumber \\\\ {} [P_0,P_i]&=&0, \\nonumber \\\\ {} [K_i,P_0]&=&i P_i, \\nonumber \\\\ {}[K_i,P_j]&=& i\\ P_0 \\delta_{ij} , \\label{c} \\end{eqnarray}\n\n## Abstract\n\n• For a modern discussion of the Poincare group, see D. Giulini, The Poincare group: Algebraic, representation-theoretic, and geometric\n\naspects.\n\n## Why is it interesting?\n\nThe double cover of the Poincare group is the fundamental spacetime symmetry of modern physics and is a crucial component of the standard model of particle physics.\n\nThe Poincare group is the set of all transformations that leave the speed of light invariant. Thus, the Poincare group yields all possible transformations between allowed frames of reference. This is incredibly useful, when we want to write down fundamental laws of nature. The fundamental laws should be valid in all allowed frames of reference, otherwise they would be quite useless.\n\nIn practice, we can use our knowledge of all transformations inside the Poincare group to write down equations that are invariant under all these transformations. These equations then hold in all allowed frames of reference. This is such a strong restriction on the possible equations that is is almost enough to derive the most important equations of fundamental physics: the Dirac equation, the Klein-Gordon equation and the Maxwell-Equations.\n\n\"The Hilbert space of one-particle states is always an irreducible representation space of the Poincare group. […] The construction of the unitary irreducible representations of the Poincare group is probably the most successful part of special relativity (in particle physics, not in gravitation theory, for which it is a disaster). It permits us to classify all kinds of particles and implies the main conservation laws (energy-momentum and angular momentum). […] The translation generators are responsible for the energy-momentum conservation laws, the rotation generators of the conservation of angular momentum, and the boost generators of the conservation of initial position. \" from Reflections on the Evolution of Physical Theories by Henri Bacry\n\n\"The enlargement of the Lorentz group to the Poincare group was proposed [ 13] as a way of describing the quantum states of relativistic particles without using the wave equations. The states of a free particle are then given by the unitary irreducible representations of the Poincare group.\" from Deformed Poincare containing the exact Lorentz algebra by Alexandros A. Kehagias et. al.\n\n## FAQ\n\nWhy do we say that irreducible representation of Poincare group represents the one-particle state?\nsee https://physics.stackexchange.com/questions/73593/why-do-we-say-that-irreducible-representation-of-poincare-group-represents-the-o", null, "" ]
[ null, "https://physicstravelguide.com/_media/logo.png", null, "https://physicstravelguide.com/lib/exe/indexer.php", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.8188383,"math_prob":0.98114705,"size":3693,"snap":"2019-51-2020-05","text_gpt3_token_len":868,"char_repetition_ratio":0.13933316,"word_repetition_ratio":0.042718448,"special_character_ratio":0.22529109,"punctuation_ratio":0.09250399,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.99143916,"pos_list":[0,1,2,3,4],"im_url_duplicate_count":[null,null,null,null,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2020-01-23T18:19:43Z\",\"WARC-Record-ID\":\"<urn:uuid:895d46e5-5b49-4c58-8308-326868bb4ab6>\",\"Content-Length\":\"77512\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:b075240a-2473-49e7-ae45-d18138b7d224>\",\"WARC-Concurrent-To\":\"<urn:uuid:893e25db-18d3-4f9b-b219-043593def4a9>\",\"WARC-IP-Address\":\"104.27.138.208\",\"WARC-Target-URI\":\"https://physicstravelguide.com/advanced_tools/group_theory/poincare_group\",\"WARC-Payload-Digest\":\"sha1:32O32HHNZI2Y3BTUYL4ZINWCPZJTOPZM\",\"WARC-Block-Digest\":\"sha1:UXMQ4KDMZ4WNWGDI3YKCKVP22OA4QSPV\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2020/CC-MAIN-2020-05/CC-MAIN-2020-05_segments_1579250611127.53_warc_CC-MAIN-20200123160903-20200123185903-00367.warc.gz\"}"}
https://www.traditionaloven.com/tutorials/angle/convert-complete-rotation-rot-to-gradian-angle-unit.html
[ " Convert rot to grad | complete rotation to gradians\n\n# angle units conversion\n\n## Amount: 1 complete rotation (rot) of angle Equals: 400.00 gradians (grad) in angle\n\nConverting complete rotation to gradians value in the angle units scale.\n\nTOGGLE :   from gradians into complete rotations in the other way around.\n\n## angle from complete rotation to gradian conversion results\n\n### Enter a new complete rotation number to convert\n\n* Whole numbers, decimals or fractions (ie: 6, 5.33, 17 3/8)\n* Precision is how many digits after decimal point (1 - 9)\n\nEnter Amount :\nDecimal Precision :\n\nCONVERT :   between other angle measuring units - complete list.\n\nHow many gradians are in 1 complete rotation? The answer is: 1 rot equals 400.00 grad\n\n## 400.00 grad is converted to 1 of what?\n\nThe gradians unit number 400.00 grad converts to 1 rot, one complete rotation. It is the EQUAL angle value of 1 complete rotation but in the gradians angle unit alternative.\n\n rot/grad angle conversion result From Symbol Equals Result Symbol 1 rot = 400.00 grad\n\n## Conversion chart - complete rotations to gradians\n\n1 complete rotation to gradians = 400.00 grad\n\n2 complete rotations to gradians = 800.00 grad\n\n3 complete rotations to gradians = 1,200.00 grad\n\n4 complete rotations to gradians = 1,600.00 grad\n\n5 complete rotations to gradians = 2,000.00 grad\n\n6 complete rotations to gradians = 2,400.00 grad\n\n7 complete rotations to gradians = 2,800.00 grad\n\n8 complete rotations to gradians = 3,200.00 grad\n\n9 complete rotations to gradians = 3,600.00 grad\n\n10 complete rotations to gradians = 4,000.00 grad\n\n11 complete rotations to gradians = 4,400.00 grad\n\n12 complete rotations to gradians = 4,800.00 grad\n\n13 complete rotations to gradians = 5,200.00 grad\n\n14 complete rotations to gradians = 5,600.00 grad\n\n15 complete rotations to gradians = 6,000.00 grad\n\nConvert angle of complete rotation (rot) and gradians (grad) units in reverse from gradians into complete rotations.\n\n## Angles\n\nThis calculator is based on conversion of two angle units. An angle consists of two rays (as in sides of an angle sharing a common vertex or else called the endpoint.) Some belong to rotation measurements - spherical angles measured by arcs' lengths, pointing from the center, plus the radius. For a whole set of multiple units of angle on one page, try that Multiunit converter tool which has built in all angle unit-variations. Page with individual angle units.\n\n# Converter type: angle units\n\nFirst unit: complete rotation (rot) is used for measuring angle.\nSecond: gradian (grad) is unit of angle.\n\nQUESTION:\n15 rot = ? grad\n\n15 rot = 6,000.00 grad\n\nAbbreviation, or prefix, for complete rotation is:\nrot\nAbbreviation for gradian is:" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.7779626,"math_prob":0.99532795,"size":2775,"snap":"2022-40-2023-06","text_gpt3_token_len":692,"char_repetition_ratio":0.33092746,"word_repetition_ratio":0.03125,"special_character_ratio":0.2673874,"punctuation_ratio":0.1510129,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.99565905,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2022-09-24T20:25:22Z\",\"WARC-Record-ID\":\"<urn:uuid:90463a16-36b5-466b-92a8-8fd8a8088292>\",\"Content-Length\":\"45866\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:80406f37-55bd-47a5-bfb1-713b5b37435b>\",\"WARC-Concurrent-To\":\"<urn:uuid:9e2ffcc2-34a4-42e9-8eb4-3894bb87a64b>\",\"WARC-IP-Address\":\"162.241.171.12\",\"WARC-Target-URI\":\"https://www.traditionaloven.com/tutorials/angle/convert-complete-rotation-rot-to-gradian-angle-unit.html\",\"WARC-Payload-Digest\":\"sha1:QTSVIGAJARBG7RCM254XSRMUEXZNGYPJ\",\"WARC-Block-Digest\":\"sha1:XDPBYKINKBJIUOFKXZIMZQNMOOS4HHP6\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2022/CC-MAIN-2022-40/CC-MAIN-2022-40_segments_1664030333455.97_warc_CC-MAIN-20220924182740-20220924212740-00049.warc.gz\"}"}
https://community.eazybi.com/t/eazybi-formula-remaining-time-of-issues-at-the-start-of-sprint/3247
[ "# EazyBI Formula - remaining time of issues at the start of sprint\n\nDear Community,\n\nWe are currently evaluating EazyBI for JIRA.\nWe need a formula to calculate a column with the values of remaining time of each sub-task at the time of a specific sprint started (not including changes of issues’ remaining time during the sprint).\nMore precisely, I need to know the remaining time of sub-tasks of a sprint at the start time of the sprint.\n\nRegards,\nAli\n\n1 Like\n\nHi,\n\nThe recommended approach for calculation of the remaining estimate for tasks at the start of the sprint would be trying to implement a measure similar to the formula under the “Story points committed” measure. There is a hidden measure in eazyBI data model “Remaining estimated hours added” for that and the formula is the following:\n\n``````( [Measures].[Remaining estimated hours added],\n[Transition Field].[Sprint status],\n[Sprint Status].[Active],\n[Issue Sprint Status Change].[Future => Active],\n[Time].CurrentHierarchy.Levels('Day').DateMember(\n[Sprint].CurrentMember.get('Start date')\n)\n)\n``````\n\nThere is, however, a limitation for this formula for sub-tasks. Currently the Jira API does not provide a valid sprint history for sub-tasks: https://jira.atlassian.com/browse/JSWSERVER-11459\n\nThe workaround for this problem is to check if the parent of the sub-task has the needed relation to sprint and then show the remaining estimate on the sprint start date. The formula working with the Issue dimension Issue level and Sprint dimension could be like this:\n\n``````CASE WHEN\nAND\n([Measures].[Issues history],\n[Time].[Day].DateMember([Measures].[Sprint start date]),\n[Issue].[Issue].GetMemberByKey(\n[Measures].[Issue parent key]\n))>0\nTHEN\nNonZero(([Measures].[Remaining estimated hours history],\n[Time].[Day].DateMember([Measures].[Sprint start date]),\n[Sprint].DefaultMember\n))\nEND\n``````\n\nKindly,\nJanis, eazyBI support\n\nHi,\nI tried to use both of the examples here -\nI get empty results for the second one… this is what I did\nCASE WHEN\nAND\n([Measures].[Issues history],\n[Time].[Day].DateMember([Measures].[Sprint start date]),\n[Issue].[Issue].GetMemberByKey(\n[Measures].[Issue parent key]\n))>0\nTHEN\nNonZero(([Measures].[Remaining estimated hours history],\n[Time].[Day].DateMember([Measures].[Sprint start date]),\n[Sprint].DefaultMember\n))\nEND\n\nand I actually do get results for the first option - can you explain again the issue here? it means that the results I get my not be updated?\nThanks" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.84852296,"math_prob":0.9347983,"size":2061,"snap":"2022-27-2022-33","text_gpt3_token_len":488,"char_repetition_ratio":0.1614001,"word_repetition_ratio":0.1696113,"special_character_ratio":0.22901504,"punctuation_ratio":0.11873351,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.993891,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2022-08-08T04:38:31Z\",\"WARC-Record-ID\":\"<urn:uuid:990fc1b0-233d-42c1-9842-fb3c2fa09939>\",\"Content-Length\":\"21648\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:b0a339e9-ebcc-43e4-bd1c-8ba977f1a61d>\",\"WARC-Concurrent-To\":\"<urn:uuid:f5977a1f-66b0-4973-83d9-b83b4efa5e12>\",\"WARC-IP-Address\":\"130.211.47.213\",\"WARC-Target-URI\":\"https://community.eazybi.com/t/eazybi-formula-remaining-time-of-issues-at-the-start-of-sprint/3247\",\"WARC-Payload-Digest\":\"sha1:FAKWFBOLGPM2AV5LQAXSUYFJDRA5FKXJ\",\"WARC-Block-Digest\":\"sha1:2S7LNPILUXSMZY5QVASOHZTOIFP57D4B\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2022/CC-MAIN-2022-33/CC-MAIN-2022-33_segments_1659882570765.6_warc_CC-MAIN-20220808031623-20220808061623-00078.warc.gz\"}"}
https://physics.stackexchange.com/questions/436835/restriction-forces-in-lagrangian-mechanics
[ "# Restriction Forces in Lagrangian Mechanics\n\nI was recently preparing for a test on Classical Mechanics and a friend of mine started wondering if there was any method through which we could obtain the restriction forces acting on a certain particle without using the Lagrange Multipliers method. At first glance my feeling would be that since Lagrangian Mechanics deals primarily with action and energies and not with forces, the answer would be no. But I'm really curious, any help would be appreciated.\n\n• FWIW, if the constraints are holonomic one doesn't need Lagrange multipliers to solve the Lagrange equations. – Qmechanic Oct 25 '18 at 20:34\n• I see. Can restriction forces be calculated without issue in that case? I'm not trying to obtain equations of motion or conserved quantities. How would one go about obtaining the RF's in the case of holonomic restraints? – Jorge Cabezut Oct 26 '18 at 15:29\n\n1. If the constraints are holonomic one doesn't need Lagrange multipliers to solve Lagrange equations $$\\frac{d}{dt}\\frac{\\partial T}{\\partial \\dot{q}^j}-\\frac{\\partial T}{\\partial q^j}~=~Q^a_j,\\qquad j~\\in~\\{1,\\ldots, n\\},\\tag{1}$$ where $$Q^a_j~=~\\sum_{i=1}^N {\\bf F}^a_i\\cdot \\frac{\\partial {\\bf r}_i}{\\partial q^j},\\qquad j~\\in~\\{1,\\ldots, n\\},\\tag{2}$$ is the $$j$$'th applied generalized force.\n2. The constraint force $${\\bf F}^c_{i}$$ on the $$i$$'th point particle with position $${\\bf r}_i(q^1, \\ldots, q^n,t),\\qquad i~\\in~\\{1,\\ldots, N\\},\\tag{3}$$ can then in principle be reconstructed via Newton's 2nd law $${\\bf F}^c_{i}~=~\\dot{\\bf p}_i-{\\bf F}^a_i,\\tag{4}$$ where $${\\bf F}_i^a$$ is the applied force from eq. (2)." ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.8910693,"math_prob":0.9992127,"size":1733,"snap":"2019-51-2020-05","text_gpt3_token_len":529,"char_repetition_ratio":0.1064199,"word_repetition_ratio":0.05785124,"special_character_ratio":0.29255626,"punctuation_ratio":0.113702625,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.99989283,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2020-01-17T15:57:13Z\",\"WARC-Record-ID\":\"<urn:uuid:67a24d63-1b67-4b6e-9195-377812927482>\",\"Content-Length\":\"138028\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:8e3a627a-196e-484b-9e5e-43d1c193e4bb>\",\"WARC-Concurrent-To\":\"<urn:uuid:f534656d-cbdb-4b9f-b33d-4c3461442ab0>\",\"WARC-IP-Address\":\"151.101.1.69\",\"WARC-Target-URI\":\"https://physics.stackexchange.com/questions/436835/restriction-forces-in-lagrangian-mechanics\",\"WARC-Payload-Digest\":\"sha1:FAYCSWPQPVHKFKRBVJ3WUHUQRPKL5V7R\",\"WARC-Block-Digest\":\"sha1:Q5Y3GIR33B6X7JBH6SBJ74JN7767UITD\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2020/CC-MAIN-2020-05/CC-MAIN-2020-05_segments_1579250589861.0_warc_CC-MAIN-20200117152059-20200117180059-00484.warc.gz\"}"}
https://djangocentral.com/python-program-to-compute-quotient-and-remainder-of-two-numbers/
[ "# Python Program To Compute Quotient and Remainder Of Two Numbers\n\nIn Division The number which we divide is called the dividend. The number by which we divide is called the divisor. The result obtained is called the quotient. The number left over is called the remainder.", null, "## Problem Definition\n\nCreate a Python program to compute Quotient and reminder of two given numbers.\n\n## Program\n\n``````divisor = 5\ndividend = 27\nquotient = dividend//divisor\nreminder = dividend % divisor\nprint(\"Quotient is\", quotient)\nprint(\"Reminder is\",reminder)``````\n\n#### Output\n\n``````Quotient is 5\nReminder is 2``````\n\nFirst, the numbers are saved in respective variables then to compute quotient we used the floor division `//` operator that returns the integer value of the quotient and for the reminder, the modulus `%` operator is used. Later we are just printing out the variables.\n\n## Problem Definition\n\nCreate a Python program to compute Quotient and reminder of two user-provided numbers in real-time.\n\n## Program\n\n``````divisor = int(input(\"Enter the divisor\"))\ndividend = int(input(\"Enter the dividend\"))\nquotient = dividend//divisor\nreminder = dividend % divisor\nprint(\"Quotient is {} and Reminder is {}\".format(quotient, reminder))``````\n\n#### Output\n\n``````Enter the divisor 5\nEnter the dividend 27\nQuotient is 5 and Reminder is 2``````\n\nHere we are taking input from the user using the  Python’s built-in `input()` method then we are converting it to an integer using the `int()` method because `input()` returns the objects as a string object.\n\nLater we are performing the arithmetic operation and printing out the results using string formatting." ]
[ null, "https://djangocentral.com/wp-content/uploads/2019/10/Remainder-and-Quotient.png", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.81074715,"math_prob":0.9816011,"size":1547,"snap":"2020-34-2020-40","text_gpt3_token_len":341,"char_repetition_ratio":0.18081659,"word_repetition_ratio":0.13389121,"special_character_ratio":0.21008404,"punctuation_ratio":0.06130268,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.99881136,"pos_list":[0,1,2],"im_url_duplicate_count":[null,2,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2020-08-11T12:52:22Z\",\"WARC-Record-ID\":\"<urn:uuid:eb12dd9e-41ca-4bce-b457-d57999251821>\",\"Content-Length\":\"59071\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:490d0b50-21df-4a98-b75a-8a9029030752>\",\"WARC-Concurrent-To\":\"<urn:uuid:289ce5b9-7d0e-41f9-9f3a-bb815dab25f3>\",\"WARC-IP-Address\":\"104.27.168.169\",\"WARC-Target-URI\":\"https://djangocentral.com/python-program-to-compute-quotient-and-remainder-of-two-numbers/\",\"WARC-Payload-Digest\":\"sha1:3IZ4X6CX72XTAOVHS7USWXWIKAABOAFC\",\"WARC-Block-Digest\":\"sha1:R6RKVIZZWVP7Z65JE73ZS7LO52TWLT2C\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2020/CC-MAIN-2020-34/CC-MAIN-2020-34_segments_1596439738777.54_warc_CC-MAIN-20200811115957-20200811145957-00204.warc.gz\"}"}
https://www.aimsciences.org/article/doi/10.3934/dcdss.2018065
[ "", null, "", null, "", null, "", null, "December  2018, 11(6): 1143-1167. doi: 10.3934/dcdss.2018065\n\n## First-order partial differential equations and consumer theory\n\n 1-50-1601 Miyamachi, Fuchu, Tokyo, 183-0023, Japan\n\nReceived  February 2017 Revised  June 2017 Published  June 2018\n\nIn this paper, we show that the existence of a global solution of a standard first-order partial differential equation can be reduced to the extendability of the solution of the corresponding ordinary differential equation under the differentiable and locally Lipschitz environments. By using this result, we can produce many known existence theorems for partial differential equations. Moreover, we demonstrate that such a result can be applied to the integrability problem in consumer theory. This result holds even if the differentiability condition is dropped.\n\nCitation: Yuhki Hosoya. First-order partial differential equations and consumer theory. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1143-1167. doi: 10.3934/dcdss.2018065\n##### References:\n J. Dieudonné, Foundations of Modern Analysis, Hesperides press, 2006.", null, "Google Scholar P. Hartman, Ordinary Differential Equations, Birkhäuser Boston, Mass., 1982.", null, "Google Scholar Y. Hosoya, On first-order partial differential equations: An existence theorem and its applications, Advances in Mathematical Economics, 20 (2016), 77-87.  doi: 10.1007/978-981-10-0476-6_3.", null, "", null, "Google Scholar L. Hurwicz and H. Uzawa, On the Integrability of Demand Functions, in Preference, Utility and Demand (eds. J. S. Chipman, L. Hurwicz, M. K. Richter and H. F. Sonnenschein) Harcourt Brace Jovanovich, Inc., New York, (1971), 114–148.", null, "Google Scholar A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems, Elsevier, 1979.", null, "Google Scholar W. Nikliborc, Sur les équations linéaires aux différentielles totales, Studia Mathematica, 1 (1929), 41-49.  doi: 10.4064/sm-1-1-41-49.", null, "Google Scholar L. S. Pontryagin, Ordinary Differential Equations, Addison-Wesley, Reading, Massachusetts, 1962.", null, "Google Scholar S. Smale and M. W. Hirsch, Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press, 1974.", null, "Google Scholar\n\nshow all references\n\n##### References:\n J. Dieudonné, Foundations of Modern Analysis, Hesperides press, 2006.", null, "Google Scholar P. Hartman, Ordinary Differential Equations, Birkhäuser Boston, Mass., 1982.", null, "Google Scholar Y. Hosoya, On first-order partial differential equations: An existence theorem and its applications, Advances in Mathematical Economics, 20 (2016), 77-87.  doi: 10.1007/978-981-10-0476-6_3.", null, "", null, "Google Scholar L. Hurwicz and H. Uzawa, On the Integrability of Demand Functions, in Preference, Utility and Demand (eds. J. S. Chipman, L. Hurwicz, M. K. Richter and H. F. Sonnenschein) Harcourt Brace Jovanovich, Inc., New York, (1971), 114–148.", null, "Google Scholar A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems, Elsevier, 1979.", null, "Google Scholar W. Nikliborc, Sur les équations linéaires aux différentielles totales, Studia Mathematica, 1 (1929), 41-49.  doi: 10.4064/sm-1-1-41-49.", null, "Google Scholar L. S. Pontryagin, Ordinary Differential Equations, Addison-Wesley, Reading, Massachusetts, 1962.", null, "Google Scholar S. Smale and M. W. Hirsch, Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press, 1974.", null, "Google Scholar\n Heiko Enderling, Alexander R.A. Anderson, Mark A.J. Chaplain, Glenn W.A. Rowe. Visualisation of the numerical solution of partial differential equation systems in three space dimensions and its importance for mathematical models in biology. Mathematical Biosciences & Engineering, 2006, 3 (4) : 571-582. doi: 10.3934/mbe.2006.3.571 Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3659-3683. doi: 10.3934/dcdss.2021023 Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete & Continuous Dynamical Systems, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703 Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319 Zhong Tan, Jianfeng Zhou. Higher integrability of weak solution of a nonlinear problem arising in the electrorheological fluids. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1335-1350. doi: 10.3934/cpaa.2016.15.1335 Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021020 Minoo Kamrani. Numerical solution of partial differential equations with stochastic Neumann boundary conditions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5337-5354. doi: 10.3934/dcdsb.2019061 Avner Friedman, Harsh Vardhan Jain. A partial differential equation model of metastasized prostatic cancer. Mathematical Biosciences & Engineering, 2013, 10 (3) : 591-608. doi: 10.3934/mbe.2013.10.591 Jing Li, Boling Guo, Lan Zeng, Yitong Pei. Global weak solution and smooth solution of the periodic initial value problem for the generalized Landau-Lifshitz-Bloch equation in high dimensions. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1345-1360. doi: 10.3934/dcdsb.2019230 Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 Nguyen Thi Hoai. Asymptotic approximation to a solution of a singularly perturbed linear-quadratic optimal control problem with second-order linear ordinary differential equation of state variable. Numerical Algebra, Control & Optimization, 2021, 11 (4) : 495-512. doi: 10.3934/naco.2020040 Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete & Continuous Dynamical Systems, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369 Rui L. Fernandes, Yuxuan Zhang. Local and global integrability of Lie brackets. Journal of Geometric Mechanics, 2021, 13 (3) : 355-384. doi: 10.3934/jgm.2021024 Masaki Hibino. Gevrey asymptotic theory for singular first order linear partial differential equations of nilpotent type — Part I —. Communications on Pure & Applied Analysis, 2003, 2 (2) : 211-231. doi: 10.3934/cpaa.2003.2.211 Kyeong-Hun Kim, Kijung Lee. A weighted $L_p$-theory for second-order parabolic and elliptic partial differential systems on a half space. Communications on Pure & Applied Analysis, 2016, 15 (3) : 761-794. doi: 10.3934/cpaa.2016.15.761 Tuhin Ghosh, Karthik Iyer. Cloaking for a quasi-linear elliptic partial differential equation. Inverse Problems & Imaging, 2018, 12 (2) : 461-491. doi: 10.3934/ipi.2018020 Susanna V. Haziot. Study of an elliptic partial differential equation modelling the Antarctic Circumpolar Current. Discrete & Continuous Dynamical Systems, 2019, 39 (8) : 4415-4427. doi: 10.3934/dcds.2019179 Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks & Heterogeneous Media, 2013, 8 (1) : 9-22. doi: 10.3934/nhm.2013.8.9 Roberto Camassa, Pao-Hsiung Chiu, Long Lee, W.-H. Sheu. A particle method and numerical study of a quasilinear partial differential equation. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1503-1515. doi: 10.3934/cpaa.2011.10.1503 Frederic Abergel, Remi Tachet. A nonlinear partial integro-differential equation from mathematical finance. Discrete & Continuous Dynamical Systems, 2010, 27 (3) : 907-917. doi: 10.3934/dcds.2010.27.907\n\n2020 Impact Factor: 2.425" ]
[ null, "https://www.aimsciences.org:443/style/web/images/white_google.png", null, "https://www.aimsciences.org:443/style/web/images/white_facebook.png", null, "https://www.aimsciences.org:443/style/web/images/white_twitter.png", null, "https://www.aimsciences.org:443/style/web/images/white_linkedin.png", null, "https://www.aimsciences.org:443/style/web/images/math-review.gif", null, "https://www.aimsciences.org:443/style/web/images/math-review.gif", null, "https://www.aimsciences.org:443/style/web/images/crossref.jpeg", null, "https://www.aimsciences.org:443/style/web/images/math-review.gif", null, "https://www.aimsciences.org:443/style/web/images/math-review.gif", null, "https://www.aimsciences.org:443/style/web/images/math-review.gif", null, "https://www.aimsciences.org:443/style/web/images/crossref.jpeg", null, "https://www.aimsciences.org:443/style/web/images/math-review.gif", null, "https://www.aimsciences.org:443/style/web/images/math-review.gif", null, "https://www.aimsciences.org:443/style/web/images/math-review.gif", null, "https://www.aimsciences.org:443/style/web/images/math-review.gif", null, "https://www.aimsciences.org:443/style/web/images/crossref.jpeg", null, "https://www.aimsciences.org:443/style/web/images/math-review.gif", null, "https://www.aimsciences.org:443/style/web/images/math-review.gif", null, "https://www.aimsciences.org:443/style/web/images/math-review.gif", null, "https://www.aimsciences.org:443/style/web/images/crossref.jpeg", null, "https://www.aimsciences.org:443/style/web/images/math-review.gif", null, "https://www.aimsciences.org:443/style/web/images/math-review.gif", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.6243662,"math_prob":0.78083605,"size":7939,"snap":"2021-43-2021-49","text_gpt3_token_len":2448,"char_repetition_ratio":0.16887209,"word_repetition_ratio":0.3239819,"special_character_ratio":0.32800102,"punctuation_ratio":0.2533165,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.96769446,"pos_list":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44],"im_url_duplicate_count":[null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2021-10-28T14:20:22Z\",\"WARC-Record-ID\":\"<urn:uuid:10cf33d0-d147-46a5-b688-fc58156f90b3>\",\"Content-Length\":\"73244\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:70a66808-2d3d-45c6-8fee-e8ee79ff11ff>\",\"WARC-Concurrent-To\":\"<urn:uuid:31e8f26e-244e-4fc2-a7a8-27ff0f85a0bc>\",\"WARC-IP-Address\":\"107.161.80.18\",\"WARC-Target-URI\":\"https://www.aimsciences.org/article/doi/10.3934/dcdss.2018065\",\"WARC-Payload-Digest\":\"sha1:T7BROQ3IABBVG37RWR2PTDML5EYMQBOP\",\"WARC-Block-Digest\":\"sha1:4AVL6A73I2AGVAU37OIJSD5FP7OHYHWG\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2021/CC-MAIN-2021-43/CC-MAIN-2021-43_segments_1634323588341.58_warc_CC-MAIN-20211028131628-20211028161628-00546.warc.gz\"}"}
https://www.fcc.chalmers.se/publication/computationally-efficient-viscoelastic-flow-simulation-using-a-lagrangian-eulerian-method-and-gpu-acceleration/
[ "", null, "# Computationally efficient viscoelastic flow simulation using a Lagrangian-Eulerian method and GPU-acceleration\n\nS. Ingelsten, A. Mark, K. Jareteg, R. Kádár, F. Edelvik. Journal of Non-Newtonian Fluid Mechanics. Online 18 March 2020, 104264.\n\n## Abstract\n\nA recently proposed Lagrangian-Eulerian method for viscoelastic flow simulation is extended to high performance calculations on the Graphics Processing Unit (GPU). The two most computationally intensive parts of the algorithm are implemented for GPU calculation, namely the integration of the viscoelastic constitutive equation at the Lagrangian nodes and the interpolation of the resulting stresses to the cell centers of the Eulerian grid.\n\nIn the original CPU method, the constitutive equations are integrated with a second order backward differentiation formula, while with the proposed GPU method the implicit Euler method is used. To allow fair comparison, the latter is also implemented for the CPU. The methods are validated for two flows, a planar Poiseuille flow of an upper-convected Maxwell fluid and flow past a confined cylinder of a four-mode Phan Thien Tanner fluid, with identical results.\n\nThe calculation times for the methods are compared for a range of grid resolutions and numbers of CPU threads, revealing a significant reduction of the calculation time for the proposed GPU method. As an example, the total simulation time is roughly halved compared to the original CPU method. The integration of the constitutive equation itself is reduced by a factor 50 to 250 and the unstructured stress interpolation by a factor 15 to 60, depending on the number of CPU threads used.\n\nPhoto credits: Nic McPhee" ]
[ null, "https://www.fcc.chalmers.se/mediadir/2014/09/publications-publications_gimped-900x300.jpg", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.899792,"math_prob":0.9171352,"size":1402,"snap":"2023-40-2023-50","text_gpt3_token_len":269,"char_repetition_ratio":0.13733906,"word_repetition_ratio":0.0,"special_character_ratio":0.17689015,"punctuation_ratio":0.071428575,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.97502005,"pos_list":[0,1,2],"im_url_duplicate_count":[null,null,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2023-09-28T13:37:13Z\",\"WARC-Record-ID\":\"<urn:uuid:1883369e-e2c9-4a1c-bed9-b4810b7512c8>\",\"Content-Length\":\"22661\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:b9cd204a-9a81-4fb9-8e58-2f6bf5e0cf37>\",\"WARC-Concurrent-To\":\"<urn:uuid:6145f6ea-ab43-4983-a0e7-958df195fb2c>\",\"WARC-IP-Address\":\"213.188.154.70\",\"WARC-Target-URI\":\"https://www.fcc.chalmers.se/publication/computationally-efficient-viscoelastic-flow-simulation-using-a-lagrangian-eulerian-method-and-gpu-acceleration/\",\"WARC-Payload-Digest\":\"sha1:4DGC5V2ROMGNE3OTXMLF32LQCOW2EUDC\",\"WARC-Block-Digest\":\"sha1:4QKTYDIEB4WCSCTV3CT2S6ZYAXLWPSMB\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2023/CC-MAIN-2023-40/CC-MAIN-2023-40_segments_1695233510412.43_warc_CC-MAIN-20230928130936-20230928160936-00463.warc.gz\"}"}
https://physics.stackexchange.com/questions/554156/simultaneity-and-special-relativity
[ "# Simultaneity and special relativity\n\nSuppose, in inertial reference frame $$F_1$$, observers A and B are at rest, each having torch, and are separated by some distance and we have put machine M at middle of A and B.\n\nMachine M has light bulbs on both sides ,right and left, so that if it catches light from A which is at left ,then machine M glows left light bulb, similar with right bulb.Also, if it senses both reaching at same instant of time then it start to make noise.\n\nNow consider another inertial reference frame $$F_2$$ which is moving at constant speed $$v$$ with respect to $$F_1$$ to the right.\n\nNow ,in frame $$F_1$$ , both A and B turn on their torches at same instant of time, say $$t=0$$ and both rays reach at M at $$t=t_1$$, and machine M makes noise indicating that those events were \"simultaneous\" in $$F_1$$.\n\nNow we know these events are not simultaneous in $$F_2$$, in other words ,person seating in $$F_2$$ will say ,\"I should not hear sound from machine M.\" But somehow machine makes noise.(or it doesn't make noise?)\n\nSo does this mean according to $$F_2$$ ,machine is malfunctioning?\n\n• Hi Pratik, welcome to Physics StackExchange! Please split the textbook recommendation into a separate question on the site - this is considered best practice for some reasons detailed here. – Shivam Sarodia yesterday\n• This is the second question along these lines that this site has received in the last day. Is there a particular source that has prompted these questions, out of curiosity? In general, what brought you to ask this question? – probably_someone yesterday\n\nThe machine M responds to events right there at the machine---the events of light arriving from left, light arriving from right. So the machine is reporting that the light arrival events are simultaneous at M. This is fine; all reference frames will agree that two things happening at the same place and time do indeed happen at the same place and time.\n\nBut when we interpret M to be reporting that the emission events are simultaneous, now we have a frame-dependent interpretation. What M is really saying is \"well the two light beams reached me simultaneously, so what I can claim is that if the emitters are at distances $$d_1$$ and $$d_2$$, then the emission times were $$d_1/c$$ and $$d_2/c$$ before now. So if $$d_1=d_2$$ then the emission events were simultaneous. And if $$d_1 \\ne d_2$$ then the emission events were not simultaneous.\"\n\nWhat happens in your scenario is that in frame $$F_1$$ the two distances are equal, whereas in frame $$F_2$$ they are not equal.\n\nBy the way I would always recommend learning to use spacetime diagrams when learning special relativity.\n\nIn $$F_1$$ the light from A and the light from B arrive simultaneously at M and it makes a sound.\n\nIn $$F_2$$ the light from A and the light from B arrive simultaneously at M and it makes a sound. No paradox. Simultaneity is OK if (and only if) it refers to 2 things happening at the same place.\n\nThe difference is that in $$F_1$$ the light is sent simultaneously from A and from B, and takes the same time to travel from A to M as it does from B to M. In $$F_2$$ the light from B (if A is on the left and B is on the right) starts a bit earlier than the light from A but also takes longer to travel the longer distance, so the signals arrive at the same time.\n\nIn more detail, if needed: an observer at M in $$F_2$$ as the signals arrive reckons that A and B are equidistant. But A is travelling away from them and B is travelling towards them. So whenever either signal started, B was further away and as they arrive at the same time, B's signal must have started first.\n\nThe machine is in reference frame F1, not F2, so It depends who you ask if it's malfunctioning.\n\nAssuming that you know that the box works in this way - then the fact that the machine made a noise only tells you that in F1 - the beams of light reached the machine at the same time.\n\nI can say that the machine is malfunctioning only if I have no knowledge of the relativistic effect. So yes - it is malfunctioning according to most people on the planet. But for those who do know something about relativity effects, it is not.\n\n-- It get's a bit more complicated than that if you are trying to imagine what would you see. Try not to go that path yet, most Youtube videos and even PBS got that wrong. That's why the assignment uses noise, not \"what would you see\".\n\nA machine $$M$$ is not equidistant between $$A$$ and $$B$$ in $$F_2$$, so receiving their signals at the same time means they didn't send them at the same time, and they didn't. Totally self consistent." ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.954767,"math_prob":0.99623835,"size":1047,"snap":"2020-24-2020-29","text_gpt3_token_len":270,"char_repetition_ratio":0.11601151,"word_repetition_ratio":0.0,"special_character_ratio":0.25501433,"punctuation_ratio":0.11764706,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.99332196,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2020-05-25T05:13:09Z\",\"WARC-Record-ID\":\"<urn:uuid:4ecee7ec-9929-4bfe-bc15-ad3049bc0e51>\",\"Content-Length\":\"164140\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:6c90f4e4-10dc-4e8e-adf8-cfa9925de1a9>\",\"WARC-Concurrent-To\":\"<urn:uuid:5ee66c31-7863-46c9-85b8-e187dcdd2d80>\",\"WARC-IP-Address\":\"151.101.129.69\",\"WARC-Target-URI\":\"https://physics.stackexchange.com/questions/554156/simultaneity-and-special-relativity\",\"WARC-Payload-Digest\":\"sha1:R5T3NOIN4ROK7GJYOREOT2VRE2LWTZSE\",\"WARC-Block-Digest\":\"sha1:MYWFUM477O3TWIVH6ET53AAAXSYSR7KS\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2020/CC-MAIN-2020-24/CC-MAIN-2020-24_segments_1590347387219.0_warc_CC-MAIN-20200525032636-20200525062636-00481.warc.gz\"}"}
https://geogebra.nismed.upd.edu.ph/2012/10/
[ "## Wednesday, October 17, 2012\n\n### Guess the Equation of the Line\n\nConsider the graph of a linear function in the applet below.\n1. Move sliders a and b to guess the equation of the graph.\n2. Click the check box to check your answer.\n3. Click the New Line button to generate a new line.\n\nThis is a Java Applet created using GeoGebra from www.geogebra.org - it looks like you don't have Java installed, please go to www.java.com\nGuillermo Bautista, Created with GeoGebra\n\n## Sunday, October 14, 2012\n\n### Quadrilateral Angle Sum\n\nMove points A, B, C or D to create the desired quadrilateral. Move the slider to the extreme right.  As each slider appears, rotate the quadrilateral by moving it to the extreme right.\nThis is a Java Applet created using GeoGebra from www.geogebra.org - it looks like you don't have Java installed, please go to www.java.com\nGuillermo Bautista, Created with GeoGebra\n\nThe applet above demonstrates that the angle sum of a quadrilateral is 360 degrees.\n\nSnapshot\n\n## Wednesday, October 10, 2012\n\n### Multiplication of Fractions\n\nThe applet below illustrates the visual representation of multiplication of fractions. Move the sliders to explore the figure.\nThis is a Java Applet created using GeoGebra from www.geogebra.org - it looks like you don't have Java installed, please go to www.java.com\n\nGuillermo Bautista, Created with GeoGebra\n\nSnapshot\n\n## Wednesday, October 3, 2012\n\n### Pythagorean Theorem Proof 2\n\nGiven: Triangle with sides a and b and hypotenuse c and three squares containing a, b and c. This is a Java Applet created using GeoGebra from www.geogebra.org - it looks like you don't have Java installed, please go to www.java.com\nGuillermo Bautista, Created with GeoGebra\n\nQuestions\n\n1. What are the areas of the green square and the red square?\n2. Move slider p to the extreme right. What types of quadrilaterals were formed from the two squares?\n3. What can you say about the areas of squares in Question 1 and the areas  of quadrilaterals in Question 2?\n4. Move slider q to the extreme right. What type of quadrilaterals were formed?\n5. What can you say about the quadrilaterals formed in Question 1 and the quadrilaterals in Question 4?\n6. Move slider r to the right. What do you observe?\n7. What can you say about the areas of the red square,  green square, and the area of square containing c?\n8. In terms of a, b, and c, what equation can be formed relating the areas of the three squares?\nSnapshot" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.77184916,"math_prob":0.7939195,"size":299,"snap":"2019-13-2019-22","text_gpt3_token_len":74,"char_repetition_ratio":0.11525424,"word_repetition_ratio":0.04,"special_character_ratio":0.20735785,"punctuation_ratio":0.10526316,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9514133,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2019-03-19T07:41:42Z\",\"WARC-Record-ID\":\"<urn:uuid:b714c8b1-290e-4280-b7b2-a0d72f09f370>\",\"Content-Length\":\"144268\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:e2f193eb-c2a6-45eb-87f9-c795d160a8a1>\",\"WARC-Concurrent-To\":\"<urn:uuid:0a2a35ae-ee8e-413f-ac16-96ddbcc2eca1>\",\"WARC-IP-Address\":\"172.217.15.115\",\"WARC-Target-URI\":\"https://geogebra.nismed.upd.edu.ph/2012/10/\",\"WARC-Payload-Digest\":\"sha1:QL7C3MDSWWUAH5UZEDUSANC3DVD74VLX\",\"WARC-Block-Digest\":\"sha1:6W5LNKQHBQHSLDFRC57G2TRSYQECLLIA\",\"WARC-Identified-Payload-Type\":\"application/xhtml+xml\",\"warc_filename\":\"/cc_download/warc_2019/CC-MAIN-2019-13/CC-MAIN-2019-13_segments_1552912201922.85_warc_CC-MAIN-20190319073140-20190319095140-00268.warc.gz\"}"}
https://uniquewritersbay.com/pseudorandom-numbers/
[ "# Pseudorandom Numbers\n\n#### The Use Pseudorandom Numbers in Simulations\n\nPseudorandom is defined as having the randomness appearance that exhibit a particular repeatable pattern. They are computer generated random numbers. Pseudorandom numbers are commonly used in simulation because they are generated by computer: pseudorandom number generator, and hence, one can get a large set of random numbers in a short period of time as compared to roll of dice or other techniques that are used to generate true  random numbers. A computer can more efficiently generate random numbers by use of a mathematical process which artificially creates pseudorandom number more effectively than the true random number can be generated (Haahr, 1998).\n\n#### The Effect of Pseudorandom Numbers on the Accuracy of a Simulation\n\nIt is essential to maintain accuracy of a simulation. Pseudorandom numbers generator always produces random number with a certain pattern of occurrence.  It can therefore influence the accuracy of a simulation by accidently developing patterns that could be missed by the system. This would skew the accuracy of the simulation (Rogers, 2001).\n\n#### The Role of Statistical Analysis in Simulation\n\nStatistical analysis is important in simulation since it identifies the critical simulation factors. Performing variance analysis ensures that there is a proper selection of important factors. With this, judgment and understanding of simulation becomes more efficient in making suitable decisions concerning the process and product design. The main function of statistical analysis is to establish the probable or the normal simulation behavior and differentiate it from improbable or abnormal system behavior. This means that statistical analysis helps in distinguishing a common system behavior from what simply takes place by chance. Statistical analysis entails the study and analysis of data with an intention of resolving issues in any given institution (Rossiter, 2006).\n\nNeed a Professional Writer to Work on Your Assignments? We will deliver Unique and Quality Work. Good Grade Guarantee!!\n\nPosted\n\nin\n\nby\n\nTags:" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.9084215,"math_prob":0.8799994,"size":1938,"snap":"2023-40-2023-50","text_gpt3_token_len":348,"char_repetition_ratio":0.163909,"word_repetition_ratio":0.0,"special_character_ratio":0.16821465,"punctuation_ratio":0.067961164,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.95457256,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2023-12-04T19:26:49Z\",\"WARC-Record-ID\":\"<urn:uuid:12b5ddb8-746d-4496-b0ae-af58d4cda0e9>\",\"Content-Length\":\"73791\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:cdd05a0c-5449-4763-97eb-20fc8ae4e8f0>\",\"WARC-Concurrent-To\":\"<urn:uuid:6821e885-565f-44f5-a60e-93426b146b0e>\",\"WARC-IP-Address\":\"63.250.38.198\",\"WARC-Target-URI\":\"https://uniquewritersbay.com/pseudorandom-numbers/\",\"WARC-Payload-Digest\":\"sha1:N3H2FEEBFPE3HOFYECBP3D7HC5IVQSFB\",\"WARC-Block-Digest\":\"sha1:OYL52ZB7TPC7A4C2AVP6EWI6T3ZZFDBI\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2023/CC-MAIN-2023-50/CC-MAIN-2023-50_segments_1700679100534.18_warc_CC-MAIN-20231204182901-20231204212901-00088.warc.gz\"}"}
http://mymathforum.com/abstract-algebra/33390-equivalence-relation.html
[ "User Name Remember Me? Password\n\n Abstract Algebra Abstract Algebra Math Forum\n\n January 23rd, 2013, 09:20 AM #1 Newbie   Joined: Jan 2013 From: west bengal,india Posts: 22 Thanks: 0 Equivalence Relation If H be a subgroup of G then prove that the relation R defined on G by aRb iff (a)^(-1).b €H for a,b€G is an equivalence Relation", null, "January 24th, 2013, 05:18 AM #2 Math Team   Joined: Mar 2012 From: India, West Bengal Posts: 3,871 Thanks: 86 Math Focus: Number Theory Re: Equivalence Relation We need R to be, 1. Reflexive : aRa is true because a * a^-1 = e belongs to H since H is a subgroup of G 2. Symmetric : assuming a * b^-1 belongs to H, (a * b^-1)^-1 = b * a^-1 belongs to H. Hence if aRb then bRa. 3. Transitive : If a * b^-1 & b * c^-1 belongs to H then (a * b^-1) * (b * c^-1) = a * c^-1 belongs to H. Hence, if aRb and bRc then aRc. Hence, R is an equivalence relation.", null, "February 11th, 2013, 08:20 AM #3 Newbie   Joined: Jan 2013 From: west bengal,india Posts: 22 Thanks: 0 Re: Equivalence Relation Thank u", null, "Tags equivalence, relation", null, "Thread Tools", null, "Show Printable Version", null, "Email this Page Display Modes", null, "Linear Mode", null, "Switch to Hybrid Mode", null, "Switch to Threaded Mode", null, "Similar Threads Thread Thread Starter Forum Replies Last Post tom33 Algebra 3 January 17th, 2014 04:30 PM jrklx250s Real Analysis 3 December 7th, 2011 10:42 AM page929 Abstract Algebra 1 October 11th, 2010 12:33 PM Dontlookback Abstract Algebra 1 April 20th, 2010 11:52 AM tinynerdi Abstract Algebra 1 January 11th, 2010 09:24 AM\n\n Contact - Home - Forums - Cryptocurrency Forum - Top", null, "", null, "", null, "", null, "", null, "", null, "" ]
[ null, "http://mymathforum.com/images/math/statusicon/user_offline.gif", null, "http://mymathforum.com/images/math/statusicon/user_offline.gif", null, "http://mymathforum.com/images/math/statusicon/user_offline.gif", null, "http://mymathforum.com/images/math/misc/11x11progress.gif", null, "http://mymathforum.com/images/math/buttons/printer.gif", null, "http://mymathforum.com/images/math/buttons/sendtofriend.gif", null, "http://mymathforum.com/images/math/buttons/mode_linear.gif", null, "http://mymathforum.com/images/math/buttons/mode_hybrid.gif", null, "http://mymathforum.com/images/math/buttons/mode_threaded.gif", null, "http://mymathforum.com/images/math/buttons/collapse_tcat.gif", null, "http://mymathforum.com/clear.gif", null, "http://mymathforum.com/clear.gif", null, "http://mymathforum.com/clear.gif", null, "http://mymathforum.com/clear.gif", null, "http://mymathforum.com/clear.gif", null, "http://mymathforum.com/clear.gif", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.6918686,"math_prob":0.54917616,"size":1581,"snap":"2019-35-2019-39","text_gpt3_token_len":550,"char_repetition_ratio":0.15155359,"word_repetition_ratio":0.05755396,"special_character_ratio":0.36495888,"punctuation_ratio":0.16716418,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.95029783,"pos_list":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32],"im_url_duplicate_count":[null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2019-09-19T07:18:12Z\",\"WARC-Record-ID\":\"<urn:uuid:96d0323c-28b6-4c8f-a378-17acefaffb10>\",\"Content-Length\":\"34481\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:8e67bc58-57fd-4263-90f8-709d7d4fc105>\",\"WARC-Concurrent-To\":\"<urn:uuid:19bd80ec-626d-4caf-8169-722857dcef1b>\",\"WARC-IP-Address\":\"138.68.26.129\",\"WARC-Target-URI\":\"http://mymathforum.com/abstract-algebra/33390-equivalence-relation.html\",\"WARC-Payload-Digest\":\"sha1:3ENFOEUMHGEX6AUKTC73ZTFCNPGDSFCF\",\"WARC-Block-Digest\":\"sha1:MFCP23EMQXWFWLQJ6UC5RRHXTP73DJFO\",\"WARC-Identified-Payload-Type\":\"application/xhtml+xml\",\"warc_filename\":\"/cc_download/warc_2019/CC-MAIN-2019-39/CC-MAIN-2019-39_segments_1568514573444.87_warc_CC-MAIN-20190919060532-20190919082532-00135.warc.gz\"}"}
https://reference.wolfram.com/language/ref/LaplaceDistribution.html
[ "# LaplaceDistribution\n\nLaplaceDistribution[μ,β]\n\nrepresents a Laplace double-exponential distribution with mean μ and scale parameter β.\n\nrepresents a Laplace double-exponential distribution with mean 0 and scale parameter 1.\n\n# Details", null, "• The Laplace distribution gives the distribution of the difference between two independent random variables with identical exponential distributions.\n• LaplaceDistribution allows μ to be any real number and β to be any positive real number.\n• LaplaceDistribution allows μ and β to be any quantities of the same unit dimensions. »\n• LaplaceDistribution can be used with such functions as Mean, CDF, and RandomVariate. »\n\n# Background & Context\n\n• LaplaceDistribution[μ,β] represents a statistical distribution defined and supported on the set", null, "of real numbers and parametrized by a real number μ (called the \"mean\" of the distribution) and by a positive real number β (called a \"scale parameter\"). Overall, the probability density function (PDF) of a Landau distribution is unimodal with a single \"peak\" (i.e. a global maximum), though its overall shape (its height and the horizontal location of its maximum) is determined by the values of μ and β. In addition, the tails of the PDF are \"thin\" in the sense that the PDF decreases exponentially rather than algebraically for large values of", null, ". (This behavior can be made quantitatively precise by analyzing the SurvivalFunction of the distribution.) The Laplace distribution is sometimes referred to as the double-exponential distribution (not to be confused with GumbelDistribution, which may also be called doubly-exponential) and the zero-argument form (which is equivalent to LaplaceDistribution[0,1]) is sometimes called the standard Laplace distribution.\n• The Laplace distribution dates back to 1774 to the work of French mathematician Pierre Laplace as the distribution whose likelihood function (Likelihood) is maximized by setting the mean", null, "equal to the median of the observed values of an odd number of independent and identically distributed (I.I.D.) random variables. Probabilistically, the Laplace distribution models the difference between two independent random variables with identical exponential distributions, and it also plays an important role in the theory of Brownian motion as a model corresponding to random times that are exponentially distributed. In modern times, the Laplace distribution models a number of phenomena across a wide spectrum of fields including computing, regression analysis, signal processing, finance, and microbiology.\n• RandomVariate can be used to give one or more machine- or arbitrary-precision (the latter via the WorkingPrecision option) pseudorandom variates from a Laplace distribution. Distributed[x,LaplaceDistribution[μ,β]], written more concisely as xLaplaceDistribution[μ,β], can be used to assert that a random variable x is distributed according to a Laplace distribution. Such an assertion can then be used in functions such as Probability, NProbability, Expectation, and NExpectation.\n• The probability density and cumulative distribution functions for Laplace distributions may be given using PDF[LaplaceDistribution[μ,β],x] and CDF[LaplaceDistribution[μ,β],x]. The mean, median, variance, raw moments, and central moments may be computed using Mean, Median, Variance, Moment, and CentralMoment.\n• DistributionFitTest can be used to test if a given dataset is consistent with a Laplace distribution, EstimatedDistribution to estimate a Laplace parametric distribution from given data, and FindDistributionParameters to fit data to a Laplace distribution. ProbabilityPlot can be used to generate a plot of the CDF of given data against the CDF of a symbolic Laplace distribution and QuantilePlot to generate a plot of the quantiles of given data against the quantiles of a symbolic Laplace distribution.\n• TransformedDistribution can be used to represent a transformed Laplace distribution, CensoredDistribution to represent the distribution of values censored between upper and lower values, and TruncatedDistribution to represent the distribution of values truncated between upper and lower values. CopulaDistribution can be used to build higher-dimensional distributions that contain a Laplace distribution, and ProductDistribution can be used to compute a joint distribution with independent component distributions involving Laplace distributions.\n• LaplaceDistribution is closely related to a number of other distributions. For example, LaplaceDistribution can be thought of as a combination of two instances of ExponentialDistribution spliced together at", null, ", and hence ExponentialDistribution can be obtained as a transformation (TransformedDistribution) of LaplaceDistribution. ChiSquareDistribution and FRatioDistribution are also transformations of LaplaceDistribution, while LaplaceDistribution can be obtained as a transformation of UniformDistribution, as a limiting case of HyperbolicDistribution (in the sense that the PDF of LaplaceDistribution[μ,β] is precisely the same as that of HyperbolicDistribution[1/β,0,δ,μ] as", null, "), and as a special case of both ExponentialPowerDistribution and VarianceGammaDistribution. LaplaceDistribution is also related to NormalDistribution, RayleighDistribution, BernoulliDistribution, StableDistribution, CauchyDistribution, ChiDistribution, and GammaDistribution.\n\n# Examples\n\nopen allclose all\n\n## Basic Examples(4)\n\nProbability density function:\n\nCumulative distribution function:\n\nMean and variance:\n\nMedian:\n\n## Scope(7)\n\nGenerate a sample of pseudorandom numbers from a Laplace distribution:\n\nCompare its histogram to the PDF:\n\nDistribution parameters estimation:\n\nEstimate the distribution parameters from sample data:\n\nCompare a density histogram of the sample with the PDF of the estimated distribution:\n\nSkewness and kurtosis of Laplace distribution are constant:\n\nDifferent moments with closed forms as functions of parameters:\n\nClosed form for symbolic order:\n\nClosed form for symbolic order:\n\nClosed form for symbolic order:\n\nHazard function:\n\nQuantile function:\n\nConsistent use of Quantity in parameters yields QuantityDistribution:\n\n## Applications(2)\n\nData packets are arriving via two channels. Waiting times for each channel are exponentially distributed with the same parameter", null, "per second. Find the distribution of the waiting time between packets:\n\nFind the probability of waiting time between the packets to be greater than 6 seconds:\n\nSimulate waiting times between packets coming from both channels:\n\nThe difference of flood stages between river stations A and B in a year has been estimated to follow a Laplace distribution with", null, "feet and", null, "feet. Find the probability that the difference is greater than 15 feet:\n\nFind the probability of positive difference:\n\nFind the mean and standard deviation of the difference of flood stages:\n\nSimulate the differences of flood stages for 30 years:\n\n## Properties & Relations(14)\n\nLaplace distribution is closed under translation and scaling by a positive factor:\n\nRelationships to other distributions:", null, "Halves of a Laplace distribution are proportional to ExponentialDistribution densities:\n\nFor negative argument:\n\nThe difference of two variates from ExponentialDistribution follows Laplace distribution:\n\nExponentialDistribution is a transformation of Laplace distribution:\n\nLaplace distribution is a special case of ExponentialPowerDistribution:\n\nLaplace distribution is a special case of VarianceGammaDistribution:\n\nIf", null, ",", null, ",", null, ", and", null, "are independent and are normally distributed, then", null, "is Laplace distributed:\n\nIf", null, ",", null, ",", null, ", and", null, "are independent and are normally distributed, then", null, "is Laplace distributed:\n\nChiSquareDistribution is a transformation of Laplace distribution:\n\nFor the sum of", null, "such variables:\n\nFRatioDistribution is a transformation of Laplace distribution:\n\nLaplace distribution is a transformation of UniformDistribution:\n\nLaplaceDistribution is the limiting case of HyperbolicDistribution of", null, "when", null, "and", null, ":\n\nLaplace distribution is a parameter mixture of a NormalDistribution with RayleighDistribution:\n\n## Possible Issues(2)\n\nLaplaceDistribution is not defined when μ is not a real number:", null, "LaplaceDistribution is not defined when β is not a positive real number:", null, "Substitution of invalid parameters into symbolic outputs gives results that are not meaningful:\n\n## Neat Examples(1)\n\nPDFs for different β values with CDF contours:" ]
[ null, "https://reference.wolfram.com/language/ref/Files/LaplaceDistribution.en/details_1.png", null, "https://reference.wolfram.com/language/ref/Files/LaplaceDistribution.en/1.png", null, "https://reference.wolfram.com/language/ref/Files/LaplaceDistribution.en/2.png", null, "https://reference.wolfram.com/language/ref/Files/LaplaceDistribution.en/3.png", null, "https://reference.wolfram.com/language/ref/Files/LaplaceDistribution.en/4.png", null, "https://reference.wolfram.com/language/ref/Files/LaplaceDistribution.en/5.png", null, "https://reference.wolfram.com/language/ref/Files/LaplaceDistribution.en/6.png", null, "https://reference.wolfram.com/language/ref/Files/LaplaceDistribution.en/7.png", null, "https://reference.wolfram.com/language/ref/Files/LaplaceDistribution.en/8.png", null, "https://reference.wolfram.com/language/ref/Files/LaplaceDistribution.en/Image_9.gif", null, "https://reference.wolfram.com/language/ref/Files/LaplaceDistribution.en/10.png", null, "https://reference.wolfram.com/language/ref/Files/LaplaceDistribution.en/11.png", null, "https://reference.wolfram.com/language/ref/Files/LaplaceDistribution.en/12.png", null, "https://reference.wolfram.com/language/ref/Files/LaplaceDistribution.en/13.png", null, "https://reference.wolfram.com/language/ref/Files/LaplaceDistribution.en/14.png", null, "https://reference.wolfram.com/language/ref/Files/LaplaceDistribution.en/15.png", null, "https://reference.wolfram.com/language/ref/Files/LaplaceDistribution.en/16.png", null, "https://reference.wolfram.com/language/ref/Files/LaplaceDistribution.en/17.png", null, "https://reference.wolfram.com/language/ref/Files/LaplaceDistribution.en/18.png", null, "https://reference.wolfram.com/language/ref/Files/LaplaceDistribution.en/19.png", null, "https://reference.wolfram.com/language/ref/Files/LaplaceDistribution.en/20.png", null, "https://reference.wolfram.com/language/ref/Files/LaplaceDistribution.en/21.png", null, "https://reference.wolfram.com/language/ref/Files/LaplaceDistribution.en/22.png", null, "https://reference.wolfram.com/language/ref/Files/LaplaceDistribution.en/23.png", null, "https://reference.wolfram.com/language/ref/Files/LaplaceDistribution.en/24.gif", null, "https://reference.wolfram.com/language/ref/Files/LaplaceDistribution.en/25.gif", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.81171817,"math_prob":0.9619944,"size":8629,"snap":"2021-43-2021-49","text_gpt3_token_len":1709,"char_repetition_ratio":0.2573913,"word_repetition_ratio":0.082969435,"special_character_ratio":0.17000811,"punctuation_ratio":0.120059654,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9940065,"pos_list":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52],"im_url_duplicate_count":[null,5,null,5,null,5,null,5,null,5,null,5,null,4,null,4,null,4,null,3,null,4,null,4,null,4,null,4,null,4,null,4,null,4,null,4,null,4,null,4,null,4,null,4,null,4,null,3,null,4,null,3,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2021-10-26T05:00:32Z\",\"WARC-Record-ID\":\"<urn:uuid:87897c6d-2cb1-480a-af3e-20424a1366b2>\",\"Content-Length\":\"156255\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:13f4ac28-77c7-442d-a3d8-95435fa905b1>\",\"WARC-Concurrent-To\":\"<urn:uuid:e31e120b-9d12-4de0-bd9c-cb7716bf6568>\",\"WARC-IP-Address\":\"140.177.205.163\",\"WARC-Target-URI\":\"https://reference.wolfram.com/language/ref/LaplaceDistribution.html\",\"WARC-Payload-Digest\":\"sha1:KLRHND5DFGTOWHC7JNPMKP47DJ263NS6\",\"WARC-Block-Digest\":\"sha1:HKGI4PSPCTCUG7HZPC77CO65ZRE56TYE\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2021/CC-MAIN-2021-43/CC-MAIN-2021-43_segments_1634323587799.46_warc_CC-MAIN-20211026042101-20211026072101-00323.warc.gz\"}"}
https://research.chalmers.se/en/publication/?id=11490
[ "# Pressure drop and heat transfer rates in forced convection rotating square duct flows at high rotation rates Journal article, 2005\n\nhis paper presents and discusses numerical simulations of forced convection heat transfer in a rotating square duct at high rotation rates. The mean pressure gradient has been kept constant in the simulations that were conducted with a second order finite volume code with a dynamical localized subgrid scale model. The rotation number based on the bulk velocity was varied from 0.12 to 6.6 and consequently the Reynolds number ranged from 3900 to 1810 according to the fact that rotation tends to increase the pressure drop in the duct. A model for estimating the velocities and the corresponding friction coefficient has been developed by analytically solving simplified versions of the momentum budgets within the Ekman layers occurring near the opposite two walls of the duct perpendicular to the rotation axis. The model reproduces accurately the velocity profiles of the numerical simulation at high rotation rates and predicts that the boundary layer quantities scale as Ek^1/2. At Ro>1 the Ekman layers are responsible for most of the pressure drop of the flow while the maximum heat transfer rates are found on the wall where the stratification of the x-momentum is unstable with respect to the Coriolis force. Rotation enhances the differences between the contributions of the local friction coefficients and local Nusselt numbers of the four walls of the duct and considerably increases, in comparison with the non-rotating case, the pressure drop of the flow and the Nusselt number. The overall friction coefficient of the measurements and the simulations existing in the literature, as well as the present numerical predictions, are well correlated with the equation 1.09(Cf/Ek^1/2)^1.25=Ro in the range Ro>=1 for Re<=104.\n\nrotation\n\nLES\n\nTurbulent flow\n\nchannel flow\n\nEkman layer\n\n## Author\n\n### Jordi Pallares\n\nRovira i Virgili University\n\n### F Grau\n\nRovira i Virgili University\n\n### Lars Davidson\n\nChalmers, Applied Mechanics\n\n#### Physics of Fluids\n\n1070-6631 (ISSN) 1089-7666 (eISSN)\n\nVol. 17 7 075102 (artno)-\n\n### Subject Categories\n\nOther Physics Topics\n\n### DOI\n\n10.1063/1.1941365\n\n10/7/2017" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.9231674,"math_prob":0.8889296,"size":1919,"snap":"2021-21-2021-25","text_gpt3_token_len":381,"char_repetition_ratio":0.14151436,"word_repetition_ratio":0.013559322,"special_character_ratio":0.18916102,"punctuation_ratio":0.05105105,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9505848,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2021-06-17T09:56:55Z\",\"WARC-Record-ID\":\"<urn:uuid:b6a464c5-25ff-496a-945a-e8e520a5124a>\",\"Content-Length\":\"37474\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:d8c39e81-94f0-4d7c-96d4-f76166ed1861>\",\"WARC-Concurrent-To\":\"<urn:uuid:08c5cbd0-76b5-4095-bd4e-92c89a2af025>\",\"WARC-IP-Address\":\"40.113.65.9\",\"WARC-Target-URI\":\"https://research.chalmers.se/en/publication/?id=11490\",\"WARC-Payload-Digest\":\"sha1:DV5IFUWT5UYX3CRBHMRQPAFDJYGKQI47\",\"WARC-Block-Digest\":\"sha1:Q5TIRLOFK4DFUDAP63DT45ZWLIPVMENR\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2021/CC-MAIN-2021-25/CC-MAIN-2021-25_segments_1623487629632.54_warc_CC-MAIN-20210617072023-20210617102023-00538.warc.gz\"}"}
http://www.philipzucker.com/noise-fluctuation-dissipation-theorem/
[ "# Noise and The Fluctuation Dissipation Theorem\n\nI was looking at some slides the other day and they quoted noise power in units of", null, "$\\frac{W}{\\sqrt{Hz}}$. Being the ignoramus I am, I was wondering why it was scaled\n\nFirst off, when a Watt is quoted in an electrical measurement, usually you’re measuring Voltage with an instrument with a known input impedance Z. That’s how you convert your fluctutating voltage measurement to Watts.\n\nSecond, the sqrt frequency thing? Nowadays, your measurement apparatus is probably a digital sampler and it performs an FFT giving you a spectrum. The width of your FFT is the sampling frequency roughly. Does that make sense that when you increase the width of your taken spectrum the height of the noise signal changes too? It does, but only because implicitly, most sampling circuits take an average of the signal over the same period as the sampling time. These two times are not necessarily intrinsically linked. One could have a system that takes a very fast snapshot and but can only save data or send it over a link at a much slower speed. The noise power is this snapshot time, not the data saving time. The data saving time would be the bandwidth in the FFT.\n\nThese two are engineered to be the same to avoid distortion of the frequency signal via aliasing.\n\nBut there is an even simpler way to see this. Suppose you have two measurements V1 and V2 that are the averages of time T with variance", null, "$\\sigma$. Then the average of these two, V3, is over a time 2T. However, by the standard kind of manipulations (for Gaussian variables the squared variance of a sum = the sum of the squared variances,", null, "$\\sigma^2_{\\sum x_i}=\\sum \\sigma_{x_i}$ ), the variance of the new signal is", null, "$\\sigma/\\sqrt{2}$ which means it scales with the time window. Hence multiplying you actual measured variances by the square root of your time window gives you a time window invariant quantity.\n\nWhile I was thinking about that in the car I realized that the fluctuation dissipation theorem is a mean field theory kind of thing. The fluctuation dissipation theorem feels weird and spooky, but I guess it is ultimately simple (or not).\n\nMean field theory tries to summarize all the complicated interactions with neighbors with a simple summary. For interacting spins, it tries to summarize as an effective B field from the surrounding spins. Then you have a 1-particle model which you can solve and try to find a self-consistent value of B. Here is a sketch in equations.", null, "$H= \\sum S\\cdot S - B_{ext}\\cdot S \\rightarrow \\sum - B_{eff}\\cdot S$", null, "$Z=\\sum_s e^{-\\beta H}$", null, "$M = = \\partial_{\\beta B} \\ln(Z)$", null, "$B = \\alpha M$\n\nYou can do something similar to find an effective permeability due to your surrounding neighbors.", null, "$\\partial_B M = \\chi$\n\nThe fluctuating force due to your neighbors is like B, a constant forcing term.\n\nThe damping is like the permeability. One may want to consider a system that starts with an intrinsic damping, that is one difference between the magnetic case and the fluctuation case, in that free space has a natural permeability but not a natural damping (I suppose there is always some damping, due to radiation and what not, but we have a tendency to totally neglect such things). One could imagine ball bearings being shaken in a cup of molasses or something. You might want to fluctuation due to being hit by other ball bearings, but consider the damping from the molasses to be the dominating damping term (the the thermal fluctuations from the molasses to be ignorable).\n\nAnother difference is that I think you really are going to need to work explicitly with time. Just the thermal average isn’t going to cut it I think (at least not conceptually. There might be some dirty tricks you can play, but a typical Hamiltonian can’t have damping terms. As I write this I am doubting it’s truth).", null, "$\\ddot{x} = -\\nu \\dot{x}+ f$\n\ncalculate some averages … Then use the self-consistency", null, "$B = \\alpha M \\rightarrow f = f(\\hat{x})$\n\nThe dissipation will be related to your correlation with your neighbors. When you are moving faster, they have to tend to move in such a way to make you slow down on average.\n\nTo Be Continued" ]
[ null, "http://s0.wp.com/latex.php", null, "http://s0.wp.com/latex.php", null, "http://s0.wp.com/latex.php", null, "http://s0.wp.com/latex.php", null, "http://s0.wp.com/latex.php", null, "http://s0.wp.com/latex.php", null, "http://s0.wp.com/latex.php", null, "http://s0.wp.com/latex.php", null, "http://s0.wp.com/latex.php", null, "http://s0.wp.com/latex.php", null, "http://s0.wp.com/latex.php", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.9609101,"math_prob":0.99349856,"size":3767,"snap":"2019-26-2019-30","text_gpt3_token_len":771,"char_repetition_ratio":0.107095405,"word_repetition_ratio":0.003030303,"special_character_ratio":0.19830103,"punctuation_ratio":0.081267215,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.99629915,"pos_list":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22],"im_url_duplicate_count":[null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2019-07-20T19:46:10Z\",\"WARC-Record-ID\":\"<urn:uuid:a0897b6e-10c0-46cf-8f32-4f433e147398>\",\"Content-Length\":\"45279\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:60a5df72-9bd7-4d08-a30d-c15b7637111e>\",\"WARC-Concurrent-To\":\"<urn:uuid:ef53fdb9-5e5c-4e91-af70-0d84fb4f91dc>\",\"WARC-IP-Address\":\"208.94.118.167\",\"WARC-Target-URI\":\"http://www.philipzucker.com/noise-fluctuation-dissipation-theorem/\",\"WARC-Payload-Digest\":\"sha1:5MMFJFH4MWDP37WMXR3NUXVGDQPUBLPQ\",\"WARC-Block-Digest\":\"sha1:T4HLEOUNVA2ZFT5NQ2RWASRUUTSXTCQU\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2019/CC-MAIN-2019-30/CC-MAIN-2019-30_segments_1563195526670.1_warc_CC-MAIN-20190720194009-20190720220009-00505.warc.gz\"}"}
https://mathematica.stackexchange.com/questions/245264/how-to-solve-integro-differential-with-parameters-iteratively?noredirect=1
[ "How to solve integro-differential with parameters iteratively?\n\nI am trying to solve an integro-differential equation and tried using one of the answers that I found in a related question:\n\nNumerically solve an integro-differential equation\n\nThe difference is I have parameters outside the integral, so I used ParametricNDSolve instead of NDSolveValue. Here is a simplified example that captures the essence of the problem:\n\nydrive[t_] = Exp[-t^2/5]*Sin[2*Pi*t];(*driving term*)\nreset[] := (Clear[ysol2];\nysol2[n_] :=\nysol2[n] =\nParametricNDSolve[{D[y[t], t] ==\nc*y[t] + \\[Lambda]*ydrive[t] +\n0.1*Integrate[ysol2[n - 1][\\[Lambda], c1][t], {c1, -1., 1.}],\ny[-10.^2] == 0}, y, {t, -100., 100.}, {\\[Lambda], c}])\nreset[]\nysol2 = # &;(*initial guess*)\n\nWhen I display even the zeroth order iteration:\n\nysol2[1., 1.][0.]\n\nIt gives an error message, \"Dependent variables {y,[Lambda]} cannot depend on parameters {\n[Lambda],c}.\"\n\nI hope anyone can help me on this. Thank you.\n\n• I'm wondering: The integral part here integrates over the ode-parameter c(not the dependent variabel t)? Apr 28 '21 at 10:27\n• This equation can be solved by numerical method but interval {t,-100,100} is too large, for numerical model please let consider {t,-10,10} or even {t,-5,5}. Apr 28 '21 at 12:39\n• @UlrichNeumann Yes, I need to integrate over the parameter of the ODE. In the original problem, I need to integrate over wavevector k and solve the ODE in time t. Apr 30 '21 at 1:03\n• @AlexTrounev Sure. But that is not the main issue. For example, if you remove the Integrate part and consider only the ParametricNDSolve part, it works just fine even with the (-100,100) interval. My main problem is how to integrate an external parameter and do it iteratively to solve the integro-differential equation self-consistently. Apr 30 '21 at 1:08\n\nWe can solve this equation by collocation method. Note, that we can exclude parameter $$\\lambda$$, by substitution $$y=\\lambda u$$. First we call\n\nNeeds[\"DifferentialEquationsNDSolveProblems\"];\nNeeds[\"DifferentialEquationsNDSolveUtilities\"];\nGet[\"NumericalDifferentialEquationAnalysis`\"];\n\nThen we define collocation points and weights for Gauss integral, variables, equations and initial conditions as follows\n\nnp = 21; g = GaussianQuadratureWeights[np, -1, 1]; points =\ng[[All, 1]];\nweights = g[[All, 2]];\n\nvart = Table[u[i][t], {i, np}]; vart1 =\nTable[u[i]'[t], {i, np}]; var = Table[u[i], {i, np}];\n\neqs = Table[\nvart1[[i]] ==\npoints[[i]] vart[[i]] + ydrive[t] + .1 vart . weights, {i, np}];\n\nic = Table[vart[[i]] == 0 /. {t -> -100}, {i, np}];\n\nFinally we solve system of equations\n\nsol = NDSolve[{eqs, ic}, var, {t, -100, 100}];\n\nIn the small scale solution looks like\n\nTable[Plot[Evaluate[vart[[i]] /. sol[]], {t, -5, 5},\nPlotRange -> All, PlotLabel -> Row[{\"c = \", points[[i]]}]], {i, np}]", null, "Visualization in the large scale\n\nTable[LogPlot[Evaluate[vart[[i]] /. sol[]], {t, -10, 100},\nPlotRange -> All, PlotLabel -> Row[{\"c = \", points[[i]]}]], {i, np}]", null, "" ]
[ null, "https://i.stack.imgur.com/k5aPe.png", null, "https://i.stack.imgur.com/uSGkh.png", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.64718723,"math_prob":0.9983724,"size":1010,"snap":"2022-05-2022-21","text_gpt3_token_len":328,"char_repetition_ratio":0.102385685,"word_repetition_ratio":0.0,"special_character_ratio":0.35148516,"punctuation_ratio":0.21004567,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9986279,"pos_list":[0,1,2,3,4],"im_url_duplicate_count":[null,2,null,2,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2022-01-17T20:28:07Z\",\"WARC-Record-ID\":\"<urn:uuid:925b856a-d24c-468b-8867-3ba9652bfbe0>\",\"Content-Length\":\"139744\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:712ec3ca-02fb-42e3-b789-9d3cd75deb23>\",\"WARC-Concurrent-To\":\"<urn:uuid:717ccf49-a586-49b7-842a-6f6925a9359e>\",\"WARC-IP-Address\":\"151.101.193.69\",\"WARC-Target-URI\":\"https://mathematica.stackexchange.com/questions/245264/how-to-solve-integro-differential-with-parameters-iteratively?noredirect=1\",\"WARC-Payload-Digest\":\"sha1:Q627PDGHD3W37SZ66HRH677W4EUFSOXJ\",\"WARC-Block-Digest\":\"sha1:L4GNFJC2LVYP6IVX3FRC4LSMAZOXN6XJ\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2022/CC-MAIN-2022-05/CC-MAIN-2022-05_segments_1642320300616.11_warc_CC-MAIN-20220117182124-20220117212124-00199.warc.gz\"}"}
https://electronics.stackexchange.com/questions/537899/what-is-this-effect-i-am-seeing-in-a-current-voltage-plot-of-a-2n2222-npn-transi
[ "# What is this effect I am seeing in a current/voltage plot of a 2N2222 NPN transistor?\n\nI have been working on a home made IV tracer for diodes and transistors.\n\nI noticed a slight curlicue in the low voltage and low current end of the plot for a transistor, and wondered what was going on.\n\nThis is the plot of the collector current and collector voltage for a 2N2222 transistor made with my setup:", null, "You can see the \"curlicue\" down there at the lower left corner.\n\nThis is a closer view of the \"curlicue\":", null, "I've been trying to figure out what is going on here.\n\nThis is the circuit I used to make the plots:", null, "There's an Arduino Nano off to the left connected to the analog and PWM signals. It uses oversampling to get better than the 10 bits of resolution of the Arduino ADC.\n\nThe best explanation I've been able to come up with is that at low collector voltages, some of the base current \"goes the wrong way\" out through the collector instead of the emitter. That raises the collector voltage (A3-VCollector) against the bias voltage (A2-VCollectorBias) resulting in a current flowing back through R4.\n\nICollector is calculated as $$\\\\frac{VCollectorBias - VCollector}{R4} \\$$\n\nDoes that explanation seem right, or have I missed something?\n\nBetween those two charts, I changed R4 from 1k to 10k and made some software changes to get a little more resolution.\n\nAt a suggestion from Hearth, I simulated the circuit in LTspice.\n\nHere's the simulated circuit:", null, "This is the plot of the collector current against the collector voltage:", null, "It does in fact have a negative tail, though not as extreme as in my circuit. The tail in the simulator is also straight rather than curved.\n\nAt any rate, the \"tail\" isn't a figment of the Nano's imagination.\n\nI ran a trace of a 2N3904.", null, "It also has a negative tail on the collector current, though much smaller than on the 2N2222.\n\n• Might it be oscillating? Dec 17, 2020 at 19:19\n• Have you run this in a simulator to see if you observe the same behavior? Dec 17, 2020 at 19:21\n• @Hearth: I haven't run it in a simulator.\n– JRE\nDec 17, 2020 at 19:26\n• @JRE I'm pretty sure you're right (confident enough to submit it as an answer anyway!) but I'd still suggest a quick LTspice simulation or something just to be sure! Dec 17, 2020 at 19:29\n• @Hearth: $M_e + LT_{spice} \\neq Q_{uick}$\n– JRE\nDec 17, 2020 at 19:31\n\nThat is what is expected even with the simplest model of a BJT. You can see it in this simulation", null, "If we zoom in in the VI chars", null, "we can see that the chars do not intersect at 0,0", null, "The shape of the curve (excluding the Early bending) can be seen in these equations (Millman Halkias, Electronic Devices and Circuits,\"Voltages as functions of currents\", p. 250)", null, "", null, "or, in more modern notation", null, "This is the plot of Ic/Ib vs Vce with Vth = 26 mV, alpha = 0.99, alphaR = 0.78. It's rotated by 90 degrees because we are plotting the inverse relationship", null, "and if we zoom in near the origin we see", null, "that is compatible with what Millman shows in his textbook", null, "Note that the 6 mV values is Vth log (1/alpha_R).\n\n• Perfect. Thank you. This is the answer I needed.\n– JRE\nDec 18, 2020 at 6:52\n• I don't have that book. Do you know which commonly published characteristics of transistors relate to which parameters in the given equations? I find the extent and shape of the \"tail\" varies by the transistor type. The \"tail\" on the 2N3904 is much smaller than the \"tail\" on the 2N2222, for example.\n– JRE\nDec 18, 2020 at 6:59\n• Millman's model is maybe the simplest, but maybe the difference you see can be explained by the different alpha_R. You might also want to see how the intersection change with temperature. (By the way, did you share your project somewhere, being able to see that means it's a decent curve tracer). And finally, have you ever been on the Internet Archive? (just asking, Millman's books are worth a look - I believe what you need is in Electronic Devices, Sec. 9-5 \"Detailed study of the currents in a transistor\", p. 229) Dec 18, 2020 at 7:47\n• I share most of my personal projects. The IV Tracer is currently in two parts: GUI and Arduino. I have been describing the development process and progress in a series of blog posts.\n– JRE\nDec 18, 2020 at 13:43\n• I have moved all of the code for both the Arduino and the PC to one repository and given the whole thing a new name.\n– JRE\nJan 3, 2021 at 19:26\n\nI'm reasonably certain your guess is correct. If the base voltage is higher than the collector voltage by a sufficient margin, I would expect to see the base-collector pn junction biased on and current flowing out of the collector. This seems to be happening when the collector voltage is below about 100 or 150 mV, which would imply (at such low currents) a reasonable base voltage of 650~700 mV, assuming it's all referenced to the emitter.\n\nI think you are at the limits of the accuracy for the Arduino A/D converters. The resolution of the converters is about 5mV, or about 5$$\\\\mu\\$$A through a 1k$$\\\\Omega\\$$ resistor. The absolute accuracy of these converters is much worse.\n\nTo make this circuit work with an Arduino you should be using larger resistor values, and you need to very carefully calibrate all of the ADCs.\n\n• I am beyond the normal resolution of the Arduino ADC. I'm using oversampling to get more resolution and to reduce the noise as well as the jaggedness of the PWM signals.\n– JRE\nDec 17, 2020 at 20:10\n• Oversampling can help with random errors but it won't do anything for systemic errors, such as offset and nonlinearity in the ADCs. Yes, you can improve the resolution but you don't improve the accuracy. And the fact that you are oversampling would have been good information to put in the original question. Dec 17, 2020 at 20:22\n• Right. Noise and lack of resolution are the things I used oversampling for. If offsets and nonlinearity could cause the curlicue, then I'd like to know how.\n– JRE\nDec 17, 2020 at 20:54\n\nThe fact that you see it with 3904 is interesting. What do you see at these nodes if you look at it on a real scope?\n\nSome shots in the dark:\n\n1. Is there AC component in there from the PWM's? That can create low level artifacts by being rectified somewhere, or via timings of the ADC. Maybe try to make a version of your circuit that filters the PWM more, just as a troubleshooting hack.\n\n2. does ADC pull any current? If so the two ends of each sense resistor have different impedance. I've had situations where a small RC on the inputs of ADC's made them better... real small like 3.3ohm/10nF ... this involved the sample/hold action of an ADC and there being a few inches of wire in the path. Not sure if either applies but just putting it out there.\n\n• At the low voltage and low current levels where the curlicues occur, the filtered PWM is at its cleanest. There's actually more than a few inches of wire involved, but that doesn't seem to bother anything. The measurements are all right at the Nano pins (all the resistors and the PWM filters are built into a sort of 3D structure right on the Nano.)\n– JRE\nDec 18, 2020 at 6:48\n• Looks like Sredni Vashtar answered it above! Dec 18, 2020 at 15:20\n• Yep. Looks like. I managed to get enough things right that my (actually quite crude) setup can detect a tiny little wrinkle that theory says will be there.\n– JRE\nDec 18, 2020 at 15:31" ]
[ null, "https://i.stack.imgur.com/gRkV2.png", null, "https://i.stack.imgur.com/wpRK8.png", null, "https://i.stack.imgur.com/JEHPk.png", null, "https://i.stack.imgur.com/WWSpf.png", null, "https://i.stack.imgur.com/POowd.png", null, "https://i.stack.imgur.com/1cosT.png", null, "https://i.stack.imgur.com/dYBTW.png", null, "https://i.stack.imgur.com/idfuw.png", null, "https://i.stack.imgur.com/KL5ht.png", null, "https://i.stack.imgur.com/J9uQ1.png", null, "https://i.stack.imgur.com/wUGZZ.png", null, "https://i.stack.imgur.com/X73cJ.png", null, "https://i.stack.imgur.com/FmS6e.png", null, "https://i.stack.imgur.com/144VE.png", null, "https://i.stack.imgur.com/S1HiQ.png", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.9571191,"math_prob":0.7404159,"size":1756,"snap":"2023-14-2023-23","text_gpt3_token_len":413,"char_repetition_ratio":0.14726028,"word_repetition_ratio":0.025974026,"special_character_ratio":0.22494306,"punctuation_ratio":0.08454811,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9560812,"pos_list":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30],"im_url_duplicate_count":[null,2,null,2,null,2,null,2,null,2,null,2,null,2,null,2,null,2,null,2,null,2,null,2,null,2,null,2,null,2,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2023-06-08T00:45:18Z\",\"WARC-Record-ID\":\"<urn:uuid:4dd1d4c5-ec32-495d-a02a-15427457b2dc>\",\"Content-Length\":\"208447\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:e3a6f129-f6e4-4823-9a2e-6a7b59cf6f4d>\",\"WARC-Concurrent-To\":\"<urn:uuid:3ca0f496-5227-4ec5-9492-27690a3319bf>\",\"WARC-IP-Address\":\"151.101.129.69\",\"WARC-Target-URI\":\"https://electronics.stackexchange.com/questions/537899/what-is-this-effect-i-am-seeing-in-a-current-voltage-plot-of-a-2n2222-npn-transi\",\"WARC-Payload-Digest\":\"sha1:ZMDTAJAFVLFADYYXXDPN3G7VPKTDSSK4\",\"WARC-Block-Digest\":\"sha1:BKQEGMCGXD2FZDJVPILCC6L5AVM5DKD5\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2023/CC-MAIN-2023-23/CC-MAIN-2023-23_segments_1685224654031.92_warc_CC-MAIN-20230608003500-20230608033500-00452.warc.gz\"}"}
http://epbbs.org/kcgSKDe.html
[ "立方和立方差公式 平方差,平方和,立方差,立方和的公式是什么?\n\n0人回答 713人收藏 6281次阅读\n\na3+b3=? a3-b3=? (a+b)3=? (a-b)3=?立方和:a^3+b^3=(a+b)*(a^2-ab+b^2) 立方差:a^3-b^3=(a-b)*(a^2-ab+b^2) 和的立方:(a+b)^3=a^3+3(a^2)b+3(b^2)a+b^3 差的立方:(a-b)^3=a^3-3(a^2)b+3(b^2)a-b^3 扩展资料:完全立方公式包括完全立方和公式和完全立方差公式,完全立方和(或\n\na^3-b^3=(a-b)^3-[-3(a^2)b+3ab^2]=(a-b)(a-b)^2+3ab(a-b)=(a-b)(a^2-2ab+b^2+3ab)=(a-b)(a^2+ab+b^2)有立方和公式及其推广:(1) a^3+b^3=(a+b)(a^2-ab+b^2) 立方和公式 a^3+b^3=(a+b) (a^2-ab+b^2) 折叠立方差公式 a^3-b^3=(a-b) (a^2+ab+b^2)\n\n完全立方和立方差公式 立方和立方差公式相关内容:\n\n• 数学公式:平方差 立方差 立方和 完全平方 立方差 立方和公式\n\n我想知道数学公式:平方差公式 立方差公式 立方和公式和完全平方公式平方差公式:a^2-b^2=(a+b)(a-b) 立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2) 立方和公式:(a+b)^3=a^3+3a^2b+3ab^2+b^3 (a-b)^3=a^3-3a^2b+3ab^2-b^3 完全平方公式:(a+b)^2=a^2+2ab+b^2 (a-b)^2=a^2-2ab+b^2\n\n29人回答732人收藏6863次阅读\n• 怎么理解以仁治军,平和柔韧? 汉朝大将卫青的母亲父亲是谁\n\n性格分内向型与外向型两种,这两种人在实际生活中的比例大致相当。哪一种类型更有利于事业的成功呢?以卫青和霍去病为例,两种类型应不相上下。 卫青的母亲卫媪,本\n\n58人回答331人收藏6249次阅读\n• 从六合坐车到江宁的陶吴小区路线怎么走 从六合坐车到江宁的陶吴小区路线怎么走\n\n从六合坐车到江宁的陶吴小区路线怎么走 驾车路线:全程约771公里 起点:六合区 1从起点向西北方向出发,沿通湖路行驶140米,调头进入通湖路 2沿通湖路行驶210米,直行进入环龙池路 3沿环龙池路行驶40米,左转进入宁六路 4沿宁六路行驶70米,朝连云港/长江二桥方向,稍向右转上匝\n\n79人回答655人收藏1643次阅读\n• 陶茂小区怎么样?好不好?值不值得买? 陶茂小区怎么样?好不好?值不值得买?\n\n陶茂小区怎么样?好不好?值不值得买?楼盘名称:陶茂小区 楼盘位置:陶茂路 规划信息:其占地面积为0平方米,容积率暂无数据,绿化率0%,共0栋楼,停车位50 (所载信息仅供参考,最终以售楼处信息为准。) 买新房,就上搜狐焦点网\n\n38人回答446人收藏9496次阅读\n• “女人”的反义词是什么? 妇人之见反义词\n\n“女人”的反义词:男人 女人,拼音: [nǚ rén] 释义:指妻子或成年的女子。 详细释义:女人同男人相对,从生理学上讲,具有XX染色体的人就是女人,在生理、心理上具有区别于男人的特征,如具有女性生殖系统,具有女人的气质和阴柔之美。 造句:\n\n27人回答867人收藏7052次阅读\n• 古文中夫是什么意思 子夫是什么意思\n\n1、旧时称成年男子:渔夫农夫万夫不当之勇 2、旧时称服劳役的人:夫役拉夫 3、(夫子)a、旧时对学者的称呼;b、旧时称老师;c、旧时妻称夫;d、称读古书而思想陈腐的人 4、与妻结成配偶者:丈夫夫妇 5、妇妻 6、量词,指一农夫所受之一\n\n44人回答648人收藏1355次阅读\n• 炎帝是男是女 炎帝是男是女\n\n炎帝又称神农氏 性别:男 图片: 资料: 炎帝,华夏始祖之一,与黄帝并称为中华始祖。 又称赤帝、烈山氏,距今约五千多年前生于姜水之岸(今宝鸡市境内)。炎帝制耒耜,种五谷。立市廛,首辟市常治麻为布,民着衣裳。作五弦琴,以乐百姓。削木为\n\n16人回答35人收藏8682次阅读\n• 已婚男人怎么戴戒指 想问下已婚男\n\n男士佩戴戒指戴在左手中。 但是佩戴在不同的手指中也有不同的寓意。要是男士戒指佩戴在食指的话就表示未婚和想结婚;要是戒指佩戴在中指的话代表已经在恋爱中。 要是戒指佩戴在无名指的话代表已婚;要是戒指佩戴在小指的话代表独身主义。佩戴戒指\n\n13人回答461人收藏5254次阅读\n\n猜你喜欢\n\n© 2019 道九头条网 版权所有 网站地图 XML" ]
[ null ]
{"ft_lang_label":"__label__zh","ft_lang_prob":0.891996,"math_prob":0.99261826,"size":2390,"snap":"2019-43-2019-47","text_gpt3_token_len":2384,"char_repetition_ratio":0.15171836,"word_repetition_ratio":0.041666668,"special_character_ratio":0.4041841,"punctuation_ratio":0.02881356,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.98730046,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2019-10-23T03:08:19Z\",\"WARC-Record-ID\":\"<urn:uuid:31897b54-4c73-45bc-88c4-0ab3cd6d4aa3>\",\"Content-Length\":\"17790\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:560935a3-9dda-4349-992d-858568542184>\",\"WARC-Concurrent-To\":\"<urn:uuid:52fcbe78-3b54-446c-94ae-dee2f75e3447>\",\"WARC-IP-Address\":\"23.245.103.165\",\"WARC-Target-URI\":\"http://epbbs.org/kcgSKDe.html\",\"WARC-Payload-Digest\":\"sha1:ZF5GHBUJ5HWWOI3LPXRB4SN4U2SH6ZWJ\",\"WARC-Block-Digest\":\"sha1:VON3DLHGUL4SY57EDPGEOIBBZCY7YAEG\",\"WARC-Identified-Payload-Type\":\"application/xhtml+xml\",\"warc_filename\":\"/cc_download/warc_2019/CC-MAIN-2019-43/CC-MAIN-2019-43_segments_1570987828425.99_warc_CC-MAIN-20191023015841-20191023043341-00467.warc.gz\"}"}
https://www.colorhexa.com/38e9d4
[ "# #38e9d4 Color Information\n\nIn a RGB color space, hex #38e9d4 is composed of 22% red, 91.4% green and 83.1% blue. Whereas in a CMYK color space, it is composed of 76% cyan, 0% magenta, 9% yellow and 8.6% black. It has a hue angle of 172.9 degrees, a saturation of 80.1% and a lightness of 56.7%. #38e9d4 color hex could be obtained by blending #70ffff with #00d3a9. Closest websafe color is: #33ffcc.\n\n• R 22\n• G 91\n• B 83\nRGB color chart\n• C 76\n• M 0\n• Y 9\n• K 9\nCMYK color chart\n\n#38e9d4 color description : Bright cyan.\n\n# #38e9d4 Color Conversion\n\nThe hexadecimal color #38e9d4 has RGB values of R:56, G:233, B:212 and CMYK values of C:0.76, M:0, Y:0.09, K:0.09. Its decimal value is 3729876.\n\nHex triplet RGB Decimal 38e9d4 `#38e9d4` 56, 233, 212 `rgb(56,233,212)` 22, 91.4, 83.1 `rgb(22%,91.4%,83.1%)` 76, 0, 9, 9 172.9°, 80.1, 56.7 `hsl(172.9,80.1%,56.7%)` 172.9°, 76, 91.4 33ffcc `#33ffcc`\nCIE-LAB 83.897, -47.799, -2.299 42.649, 63.868, 72.364 0.238, 0.357, 63.868 83.897, 47.854, 182.754 83.897, -62.984, 4.022 79.917, -44.595, 2.256 00111000, 11101001, 11010100\n\n# Color Schemes with #38e9d4\n\n• #38e9d4\n``#38e9d4` `rgb(56,233,212)``\n• #e9384d\n``#e9384d` `rgb(233,56,77)``\nComplementary Color\n• #38e97c\n``#38e97c` `rgb(56,233,124)``\n• #38e9d4\n``#38e9d4` `rgb(56,233,212)``\n• #38a6e9\n``#38a6e9` `rgb(56,166,233)``\nAnalogous Color\n• #e97c38\n``#e97c38` `rgb(233,124,56)``\n• #38e9d4\n``#38e9d4` `rgb(56,233,212)``\n• #e938a6\n``#e938a6` `rgb(233,56,166)``\nSplit Complementary Color\n• #e9d438\n``#e9d438` `rgb(233,212,56)``\n• #38e9d4\n``#38e9d4` `rgb(56,233,212)``\n• #d438e9\n``#d438e9` `rgb(212,56,233)``\n• #4de938\n``#4de938` `rgb(77,233,56)``\n• #38e9d4\n``#38e9d4` `rgb(56,233,212)``\n• #d438e9\n``#d438e9` `rgb(212,56,233)``\n• #e9384d\n``#e9384d` `rgb(233,56,77)``\n• #15bfab\n``#15bfab` `rgb(21,191,171)``\n• #18d6c0\n``#18d6c0` `rgb(24,214,192)``\n• #21e6cf\n``#21e6cf` `rgb(33,230,207)``\n• #38e9d4\n``#38e9d4` `rgb(56,233,212)``\n• #4fecd9\n``#4fecd9` `rgb(79,236,217)``\n• #66eede\n``#66eede` `rgb(102,238,222)``\n• #7df1e3\n``#7df1e3` `rgb(125,241,227)``\nMonochromatic Color\n\n# Alternatives to #38e9d4\n\nBelow, you can see some colors close to #38e9d4. Having a set of related colors can be useful if you need an inspirational alternative to your original color choice.\n\n• #38e9a8\n``#38e9a8` `rgb(56,233,168)``\n• #38e9b7\n``#38e9b7` `rgb(56,233,183)``\n• #38e9c5\n``#38e9c5` `rgb(56,233,197)``\n• #38e9d4\n``#38e9d4` `rgb(56,233,212)``\n• #38e9e3\n``#38e9e3` `rgb(56,233,227)``\n• #38e1e9\n``#38e1e9` `rgb(56,225,233)``\n• #38d2e9\n``#38d2e9` `rgb(56,210,233)``\nSimilar Colors\n\n# #38e9d4 Preview\n\nThis text has a font color of #38e9d4.\n\n``<span style=\"color:#38e9d4;\">Text here</span>``\n#38e9d4 background color\n\nThis paragraph has a background color of #38e9d4.\n\n``<p style=\"background-color:#38e9d4;\">Content here</p>``\n#38e9d4 border color\n\nThis element has a border color of #38e9d4.\n\n``<div style=\"border:1px solid #38e9d4;\">Content here</div>``\nCSS codes\n``.text {color:#38e9d4;}``\n``.background {background-color:#38e9d4;}``\n``.border {border:1px solid #38e9d4;}``\n\n# Shades and Tints of #38e9d4\n\nA shade is achieved by adding black to any pure hue, while a tint is created by mixing white to any pure color. In this example, #010d0c is the darkest color, while #fafefe is the lightest one.\n\n• #010d0c\n``#010d0c` `rgb(1,13,12)``\n• #031f1b\n``#031f1b` `rgb(3,31,27)``\n• #05302b\n``#05302b` `rgb(5,48,43)``\n• #07423b\n``#07423b` `rgb(7,66,59)``\n• #09544b\n``#09544b` `rgb(9,84,75)``\n• #0b655b\n``#0b655b` `rgb(11,101,91)``\n• #0d776a\n``#0d776a` `rgb(13,119,106)``\n• #0f897a\n``#0f897a` `rgb(15,137,122)``\n• #119a8a\n``#119a8a` `rgb(17,154,138)``\n• #13ac9a\n``#13ac9a` `rgb(19,172,154)``\n• #15beaa\n``#15beaa` `rgb(21,190,170)``\n• #17cfb9\n``#17cfb9` `rgb(23,207,185)``\n• #19e1c9\n``#19e1c9` `rgb(25,225,201)``\n• #26e7d0\n``#26e7d0` `rgb(38,231,208)``\n• #38e9d4\n``#38e9d4` `rgb(56,233,212)``\n• #4aebd8\n``#4aebd8` `rgb(74,235,216)``\n• #5beddc\n``#5beddc` `rgb(91,237,220)``\n• #6defdf\n``#6defdf` `rgb(109,239,223)``\n• #7ff1e3\n``#7ff1e3` `rgb(127,241,227)``\n• #90f3e7\n``#90f3e7` `rgb(144,243,231)``\n• #a2f5eb\n``#a2f5eb` `rgb(162,245,235)``\n• #b4f7ef\n``#b4f7ef` `rgb(180,247,239)``\n• #c5f9f3\n``#c5f9f3` `rgb(197,249,243)``\n• #d7fbf6\n``#d7fbf6` `rgb(215,251,246)``\n• #e9fdfa\n``#e9fdfa` `rgb(233,253,250)``\n• #fafefe\n``#fafefe` `rgb(250,254,254)``\nTint Color Variation\n\n# Tones of #38e9d4\n\nA tone is produced by adding gray to any pure hue. In this case, #8d9493 is the less saturated color, while #27fae1 is the most saturated one.\n\n• #8d9493\n``#8d9493` `rgb(141,148,147)``\n• #859d9a\n``#859d9a` `rgb(133,157,154)``\n• #7ca5a0\n``#7ca5a0` `rgb(124,165,160)``\n• #74aea7\n``#74aea7` `rgb(116,174,167)``\n``#6bb6ad` `rgb(107,182,173)``\n• #63bfb4\n``#63bfb4` `rgb(99,191,180)``\n• #5ac7ba\n``#5ac7ba` `rgb(90,199,186)``\n• #52d0c1\n``#52d0c1` `rgb(82,208,193)``\n• #49d8c7\n``#49d8c7` `rgb(73,216,199)``\n• #41e1ce\n``#41e1ce` `rgb(65,225,206)``\n• #38e9d4\n``#38e9d4` `rgb(56,233,212)``\n• #30f2da\n``#30f2da` `rgb(48,242,218)``\n• #27fae1\n``#27fae1` `rgb(39,250,225)``\nTone Color Variation\n\n# Color Blindness Simulator\n\nBelow, you can see how #38e9d4 is perceived by people affected by a color vision deficiency. This can be useful if you need to ensure your color combinations are accessible to color-blind users.\n\nMonochromacy\n• Achromatopsia 0.005% of the population\n• Atypical Achromatopsia 0.001% of the population\nDichromacy\n• Protanopia 1% of men\n• Deuteranopia 1% of men\n• Tritanopia 0.001% of the population\nTrichromacy\n• Protanomaly 1% of men, 0.01% of women\n• Deuteranomaly 6% of men, 0.4% of women\n• Tritanomaly 0.01% of the population" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.53528,"math_prob":0.6356523,"size":3701,"snap":"2020-34-2020-40","text_gpt3_token_len":1721,"char_repetition_ratio":0.12280227,"word_repetition_ratio":0.011111111,"special_character_ratio":0.5406647,"punctuation_ratio":0.2345679,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9855588,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2020-08-06T13:45:36Z\",\"WARC-Record-ID\":\"<urn:uuid:01fb1364-d992-42e3-8e39-988bf54ff452>\",\"Content-Length\":\"36304\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:681219a0-33d1-485b-951f-884b14d87e75>\",\"WARC-Concurrent-To\":\"<urn:uuid:aefa4311-6698-445c-bee0-b7cb75955a11>\",\"WARC-IP-Address\":\"178.32.117.56\",\"WARC-Target-URI\":\"https://www.colorhexa.com/38e9d4\",\"WARC-Payload-Digest\":\"sha1:6PAFQA5WFQHNQGKZLSGAW74F5NADHQHW\",\"WARC-Block-Digest\":\"sha1:RWDCYNPN643YDBN5WNLGGY4SWJBVFCBN\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2020/CC-MAIN-2020-34/CC-MAIN-2020-34_segments_1596439736962.52_warc_CC-MAIN-20200806121241-20200806151241-00531.warc.gz\"}"}
https://stanfordphd.com/Brownian_Motion.html
[ "Statistical & Financial Consulting by Stanford PhD\nBROWNIAN MOTION\n\nBrownian Motion (also known as Standard Wiener Process) is a stochastic process W(t) which has the following four properties:\n\n1] W(0) = 0,\n\n2] almost surely, the trajectory of W(t) is continuous;\n\n3] W(t) has independent increments: for any moments of time s < t < u, random variables W(t) - W(s) and W(u) - W(s) are independent;\n\n4] W(t) has stationary increments: for any moments of time s < t and positive shift h, random variables W(s+h) - W(s) and W(t+h) - W(t) have the same distribution.\n\nIt follows from properties 3, 4 and the Central Limit Theorem that any finite-dimensional distributions of a Brownian motion are Gaussian (normal). For example, in the definition above, random variables W(t) - W(s), W(u) - W(s), W(s+h) - W(s) and W(t+h) - W(t) are jointly Gaussian... Trajectories of Brownian motion are visualized below.", null, "BROWNIAN MOTION REFERENCES\n\nLawler, G. F. (1995). Introduction to Stochastic Processes. New York: Chapman and Hall/CRC.\n\nRoss, S. M. (1995). Stochastic Processes (2nd ed). New York: Wiley.\n\nKarlin, S., & Taylor, H. M. (1975). A First Course in Stochastic Processes (2nd ed). New York: Academic Press.\n\nKaratzas, I., & Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus (2nd ed). New York: Springer.\n\nOksendal, B. K. (2002). Stochastic Differential Equations: An Introduction with Applications (5th ed). Springer-Verlag Berlin Heidelberg.\n\nDurrett, R. (2004). Probability: Theory and Examples (3rd ed). Belmont, CA: Duxbury Press.\n\nProtter, P. E. (2005). Stochastic Integration and Differential Equations (2nd ed). Springer-Verlag Berlin Heidelberg.\n\nGikhman, I. I., & Skorokhod, A. V. (2007). The Theory of Stochastic Processes III. Springer-Verlag Berlin Heidelberg.\n\nTsay, R. S. (2005). Analysis of Financial Time Series. Wiley-Interscience.\n\nBACK TO THE\nSTATISTICAL ANALYSES DIRECTORY" ]
[ null, "https://stanfordphd.com/images/afe1dde787c8f25e7fbf37db006f793e.png", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.65667987,"math_prob":0.94843936,"size":1864,"snap":"2019-51-2020-05","text_gpt3_token_len":532,"char_repetition_ratio":0.11666667,"word_repetition_ratio":0.07067138,"special_character_ratio":0.28540772,"punctuation_ratio":0.23096447,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9903876,"pos_list":[0,1,2],"im_url_duplicate_count":[null,2,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2020-01-25T08:50:16Z\",\"WARC-Record-ID\":\"<urn:uuid:eaa62463-a5f6-477b-8b15-fd6e2de675ec>\",\"Content-Length\":\"12000\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:12f2d28d-80ee-4aa1-ab16-dc4ff881cf50>\",\"WARC-Concurrent-To\":\"<urn:uuid:75b87f1a-642e-415d-b6af-764a34bace3f>\",\"WARC-IP-Address\":\"97.74.185.119\",\"WARC-Target-URI\":\"https://stanfordphd.com/Brownian_Motion.html\",\"WARC-Payload-Digest\":\"sha1:KAO2MQOFVYU5WZ7BTE2PUYNEMJPJQMEP\",\"WARC-Block-Digest\":\"sha1:LKGIINXILJHH5JHA5NH64JPYGTK3UDYS\",\"WARC-Identified-Payload-Type\":\"application/xhtml+xml\",\"warc_filename\":\"/cc_download/warc_2020/CC-MAIN-2020-05/CC-MAIN-2020-05_segments_1579251671078.88_warc_CC-MAIN-20200125071430-20200125100430-00061.warc.gz\"}"}
https://www.answers.com/Q/How_many_cubic_feet_is_1.85_cubic_yard
[ "Volume\n\n# How many cubic feet is 1.85 cubic yard?\n\n1.85 cubic yards equals 49.95 cubic feet.\n\n🙏\n0\n🤨\n0\n😮\n0\n😂\n0\n\n## Related Questions\n\nThere are 3 feet in one yard. Therefore, 555 feet is equal to 555/3 = 185 yards.\n\nThere are 3 ft per yard. So, 555 ft / 3 = 185 yards.\n\n467 feet x 185 feet equates to 1.98 acres.\n\n185 meters equates to 606.955 feet.\n\nThere are 0.9144 metres in one yard. Therefore, rounded to two decimal places, 185 metres is equal to 185/0.9144 = 202.32 yards.\n\n185 meters is 606 feet and 11.46 inches.\n\nA square yard can represent a square with dimensions of 3 feet by 3 feet. Therefore a 7 foot diameter gasket cannot be cut out of a square yard. If you meant 7 inches diameter, then you will be able to cut 25 gaskets from 3 feet by 3 feet but you may even be able to cut 26 gaskets if the square yard was a rectangle of 7 inches wide (by 185 inches long).\n\nIf tires are not compressed, for size 185/65R15\" around 250 tires but for every size up and width you loose about .3 cubic feet.\n\n1 foot = 30.48 cm 1 foot = 12 inch 185 cm = 185/30.48 feet = 6.0695538 feet = 6 feet 0.835 inch\n\n1 ft is 12 in; 1 in is about 2.54 cm. So, 185 cm is about 185/2.54 = 72.8in or 6 ft\n\nYour bag should tell you how many cubic feet it makes. 1 foot = 12 inches. 15 x 12 = 180 + 5 = 185 2 x 12 = 24 + 11 = 35 7 x 12 = 84 + 6 = 90 185 x 35 x 90 = 582750 cubic inches 582750 divided by 1728 (1 square foot in inches) = 337.24 cubic feet. Divide that by the number of cubic feet your bag of mix provides and you will know how many bags you need.\n\n###### Length and DistanceLawn CareAreaHome BuyingMath and ArithmeticVolumeBrakes and TiresHeightUnits of MeasureHome & Garden", null, "Copyright © 2021 Multiply Media, LLC. All Rights Reserved. The material on this site can not be reproduced, distributed, transmitted, cached or otherwise used, except with prior written permission of Multiply." ]
[ null, "https://img.answers.com/answ/image/upload/q_auto,f_auto,dpr_2.0/v1589555119/logos/Answers_throwback_logo.png", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.9017118,"math_prob":0.99733675,"size":2510,"snap":"2021-04-2021-17","text_gpt3_token_len":784,"char_repetition_ratio":0.14205906,"word_repetition_ratio":0.015904572,"special_character_ratio":0.38047808,"punctuation_ratio":0.13265306,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.995096,"pos_list":[0,1,2],"im_url_duplicate_count":[null,null,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2021-01-19T12:20:58Z\",\"WARC-Record-ID\":\"<urn:uuid:dbf2bb00-1eb7-40cb-8d9c-6ef66a566f9e>\",\"Content-Length\":\"154283\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:a3460b43-4b1e-417b-b31d-36f62b41122d>\",\"WARC-Concurrent-To\":\"<urn:uuid:148d5787-df8f-44c6-ad0a-fbda5522e361>\",\"WARC-IP-Address\":\"199.232.64.203\",\"WARC-Target-URI\":\"https://www.answers.com/Q/How_many_cubic_feet_is_1.85_cubic_yard\",\"WARC-Payload-Digest\":\"sha1:NOENBRISMXOJHUA3IOMX53XKMFFOZBNK\",\"WARC-Block-Digest\":\"sha1:DXZ3Z7JQCFG4MGGVW3DFECYULXMEKL2U\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2021/CC-MAIN-2021-04/CC-MAIN-2021-04_segments_1610703518240.40_warc_CC-MAIN-20210119103923-20210119133923-00470.warc.gz\"}"}
https://docs.derivative.ca/Syntaxhighlight
[ "Syntaxhighlight\n\nPython\n\ndef setupListeners(self):\n# make sure we have a valid ableton parameter\naParInfo = self.LOMParInfo('Parameter')\nif not aParInfo:\nself.disconnect()\nreturn\n\nTDAbletonCompBaseExt.setupListeners(self)\n\n# set up listener parameters\n# lomExpression: a Python expression to the live object in tda\nlomExpression = aParInfo['lomExpression']\n\n# note that this must be a valid CHOP channel name\n\n# id: unique id of the object requesting a listener\nownerId = self.ownerComp.id\n\n# property: the name of the live object's property to listen to\nproperty = 'value'\n\n# this tuple is what a listener key looks like\nlistener = (lomExpression, property, returnAddress, ownerId)\n\n# addListener(listener, outgoing parameter, parMin, parMax)\naParInfo['lomInfo']['min'], aParInfo['lomInfo']['max'])\n\nGLSL\n\nuniform vec4 uDiffuseColor;\nuniform vec4 uAmbientColor;\nuniform vec3 uSpecularColor;\nuniform float uShininess;\n\nout Vertex {\nvec4 color;\nvec3 worldSpacePos;\nvec3 worldSpaceNorm;\nflat int cameraIndex;\n}vVert;\n\nvoid main()\n{\n// First deform the vertex and normal\n// TDDeform always returns values in world space\nvec4 worldSpacePos =TDDeform(P);\ngl_Position = TDWorldToProj(worldSpacePos);\n\n// This is here to ensure we only execute lighting etc. code\n// when we need it. If picking is active we don't need this, so\n// this entire block of code will be ommited from the compile.\n// The TD_PICKING_ACTIVE define will be set automatically when\n// picking is active.\n#ifndef TD_PICKING_ACTIVE\n\nint cameraIndex = TDCameraIndex();\nvVert.cameraIndex = cameraIndex;\nvVert.worldSpacePos.xyz = worldSpacePos.xyz;\nvVert.color = TDInstanceColor(Cd);\nvec3 worldSpaceNorm = TDDeformNorm(N);\nvVert.worldSpaceNorm = normalize(worldSpaceNorm);\n\n#else // TD_PICKING_ACTIVE\n\n// This will automatically write out the nessessary values\n// for this shader to work with picking.\n// See the documentation if you want to write custom values for picking.\nTDWritePickingValues();\n\n#endif // TD_PICKING_ACTIVE\n}\n\nC++\n\n/* Shared Use License: This file is owned by Derivative Inc. (Derivative) and\n* can only be used, and/or modified for use, in conjunction with\n* Derivative's TouchDesigner software, and only if you are a licensee who has\n* accepted Derivative's TouchDesigner license or assignment agreement (which\n* also govern the use of this file). You may share a modified version of this\n* file with another authorized licensee of Derivative's TouchDesigner software.\n* Otherwise, no redistribution or sharing of this file, with or without\n* modification, is permitted.\n*/\n\n#include \"CPlusPlusCHOPExample.h\"\n\n#include <stdio.h>\n#include <string.h>\n#include <cmath>\n#include <assert.h>\n\n// These functions are basic C function, which the DLL loader can find\n// much easier than finding a C++ Class.\n// The DLLEXPORT prefix is needed so the compile exports these functions from the .dll\n// you are creating\nextern \"C\"\n{\n\nDLLEXPORT\nint32_t\nGetCHOPAPIVersion(void)\n{\n// Always return CHOP_CPLUSPLUS_API_VERSION in this function.\nreturn CHOP_CPLUSPLUS_API_VERSION;\n}\n\nDLLEXPORT\nCHOP_CPlusPlusBase*\nCreateCHOPInstance(const OP_NodeInfo* info)\n{\n// Return a new instance of your class every time this is called.\n// It will be called once per CHOP that is using the .dll\nreturn new CPlusPlusCHOPExample(info);\n}\n\nDLLEXPORT\nvoid\nDestroyCHOPInstance(CHOP_CPlusPlusBase* instance)\n{\n// Delete the instance here, this will be called when\n// Touch is shutting down, when the CHOP using that instance is deleted, or\n// if the CHOP loads a different DLL\ndelete (CPlusPlusCHOPExample*)instance;\n}\n\n};\n\nCPlusPlusCHOPExample::CPlusPlusCHOPExample(const OP_NodeInfo* info) : myNodeInfo(info)\n{\nmyExecuteCount = 0;\nmyOffset = 0.0;\n}\n\nCPlusPlusCHOPExample::~CPlusPlusCHOPExample()\n{\n\n}\n\nvoid\nCPlusPlusCHOPExample::getGeneralInfo(CHOP_GeneralInfo* ginfo)\n{\n// This will cause the node to cook every frame\nginfo->timeslice = true;\nginfo->inputMatchIndex = 0;\n}\n\nbool\nCPlusPlusCHOPExample::getOutputInfo(CHOP_OutputInfo* info)\n{\n// If there is an input connected, we are going to match it's channel names etc\n// otherwise we'll specify our own.\nif (info->opInputs->getNumInputs() > 0)\n{\nreturn false;\n}\nelse\n{\ninfo->numChannels = 1;\n\n// Since we are outputting a timeslice, the system will dictate\n// the numSamples and startIndex of the CHOP data\n//info->numSamples = 1;\n//info->startIndex = 0\n\n// For illustration we are going to output 120hz data\ninfo->sampleRate = 120;\nreturn true;\n}\n}\n\nconst char*\nCPlusPlusCHOPExample::getChannelName(int32_t index, void* reserved)\n{\nreturn \"chan1\";\n}\n\nvoid\nCPlusPlusCHOPExample::execute(const CHOP_Output* output,\nOP_Inputs* inputs,\nvoid* reserved)\n{\nmyExecuteCount++;\n\ndouble\t scale = inputs->getParDouble(\"Scale\");\n\n// In this case we'll just take the first input and re-output it scaled.\n\nif (inputs->getNumInputs() > 0)\n{\n// We know the first CHOP has the same number of channels\n// because we returned false from getOutputInfo.\n\ninputs->enablePar(\"Speed\", 0);\t// not used\ninputs->enablePar(\"Reset\", 0);\t// not used\ninputs->enablePar(\"Shape\", 0);\t// not used\n\nint ind = 0;\nfor (int i = 0 ; i < output->numChannels; i++)\n{\nfor (int j = 0; j < output->numSamples; j++)\n{\nconst OP_CHOPInput\t*cinput = inputs->getInputCHOP(0);\noutput->channels[i][j] = float(cinput->getChannelData(i)[ind] * scale);\nind++;\n\n// Make sure we don't read past the end of the CHOP input\nind = ind % cinput->numSamples;\n}\n}\n\n}\nelse // If not input is connected, lets output a sine wave instead\n{\ninputs->enablePar(\"Speed\", 1);\ninputs->enablePar(\"Reset\", 1);\n\ndouble speed = inputs->getParDouble(\"Speed\");\ndouble step = speed * 0.01f;\n\n// menu items can be evaluated as either an integer menu position, or a string\nint shape = inputs->getParInt(\"Shape\");\n//\t\tconst char *shape_str = inputs->getParString(\"Shape\");\n\n// keep each channel at a different phase\ndouble phase = 2.0f * 3.14159f / (float)(output->numChannels);\n\n// Notice that startIndex and the output->numSamples is used to output a smooth\n// wave by ensuring that we are outputting a value for each sample\n// Since we are outputting at 120, for each frame that has passed we'll be\n// outputing 2 samples (assuming the timeline is running at 60hz).\n\nfor (int i = 0; i < output->numChannels; i++)\n{\ndouble offset = myOffset + phase*i;\n\ndouble v = 0.0f;\n\nswitch(shape)\n{\ncase 0:\t\t// sine\nv = sin(offset);\nbreak;\n\ncase 1:\t\t// square\nv = fabs(fmod(offset, 1.0)) > 0.5;\nbreak;\n\ncase 2:\t\t// ramp\nv = fabs(fmod(offset, 1.0));\nbreak;\n}\n\nv *= scale;\n\nfor (int j = 0; j < output->numSamples; j++)\n{\noutput->channels[i][j] = float(v);\noffset += step;\n}\n}\n\nmyOffset += step * output->numSamples;\n}\n}\n\nint32_t\nCPlusPlusCHOPExample::getNumInfoCHOPChans()\n{\n// We return the number of channel we want to output to any Info CHOP\n// connected to the CHOP. In this example we are just going to send one channel.\nreturn 2;\n}\n\nvoid\nCPlusPlusCHOPExample::getInfoCHOPChan(int32_t index,\nOP_InfoCHOPChan* chan)\n{\n// This function will be called once for each channel we said we'd want to return\n// In this example it'll only be called once.\n\nif (index == 0)\n{\nchan->name = \"executeCount\";\nchan->value = (float)myExecuteCount;\n}\n\nif (index == 1)\n{\nchan->name = \"offset\";\nchan->value = (float)myOffset;\n}\n}\n\nbool\nCPlusPlusCHOPExample::getInfoDATSize(OP_InfoDATSize* infoSize)\n{\ninfoSize->rows = 2;\ninfoSize->cols = 2;\n// Setting this to false means we'll be assigning values to the table\n// one row at a time. True means we'll do it one column at a time.\ninfoSize->byColumn = false;\nreturn true;\n}\n\nvoid\nCPlusPlusCHOPExample::getInfoDATEntries(int32_t index,\nint32_t nEntries,\nOP_InfoDATEntries* entries)\n{\n// It's safe to use static buffers here because Touch will make it's own\n// copies of the strings immediately after this call returns\n// (so the buffers can be reuse for each column/row)\nstatic char tempBuffer1;\nstatic char tempBuffer2;\n\nif (index == 0)\n{\n// Set the value for the first column\n#ifdef WIN32\nstrcpy_s(tempBuffer1, \"executeCount\");\n#else // macOS\nstrlcpy(tempBuffer1, \"executeCount\", sizeof(tempBuffer1));\n#endif\nentries->values = tempBuffer1;\n\n// Set the value for the second column\n#ifdef WIN32\nsprintf_s(tempBuffer2, \"%d\", myExecuteCount);\n#else // macOS\nsnprintf(tempBuffer2, sizeof(tempBuffer2), \"%d\", myExecuteCount);\n#endif\nentries->values = tempBuffer2;\n}\n\nif (index == 1)\n{\n// Set the value for the first column\n#ifdef WIN32\nstrcpy_s(tempBuffer1, \"offset\");\n#else // macOS\nstrlcpy(tempBuffer1, \"offset\", sizeof(tempBuffer1));\n#endif\nentries->values = tempBuffer1;\n\n// Set the value for the second column\n#ifdef WIN32\nsprintf_s(tempBuffer2, \"%g\", myOffset);\n#else // macOS\nsnprintf(tempBuffer2, sizeof(tempBuffer2), \"%g\", myOffset);\n#endif\nentries->values = tempBuffer2;\n}\n}\n\nvoid\nCPlusPlusCHOPExample::setupParameters(OP_ParameterManager* manager)\n{\n// speed\n{\nOP_NumericParameter\tnp;\n\nnp.name = \"Speed\";\nnp.label = \"Speed\";\nnp.defaultValues = 1.0;\nnp.minSliders = -10.0;\nnp.maxSliders = 10.0;\n\nOP_ParAppendResult res = manager->appendFloat(np);\nassert(res == OP_ParAppendResult::Success);\n}\n\n// scale\n{\nOP_NumericParameter\tnp;\n\nnp.name = \"Scale\";\nnp.label = \"Scale\";\nnp.defaultValues = 1.0;\nnp.minSliders = -10.0;\nnp.maxSliders = 10.0;\n\nOP_ParAppendResult res = manager->appendFloat(np);\nassert(res == OP_ParAppendResult::Success);\n}\n\n// shape\n{\nOP_StringParameter\tsp;\n\nsp.name = \"Shape\";\nsp.label = \"Shape\";\n\nsp.defaultValue = \"Sine\";\n\nconst char *names[] = { \"Sine\", \"Square\", \"Ramp\" };\nconst char *labels[] = { \"Sine\", \"Square\", \"Ramp\" };\n\nOP_ParAppendResult res = manager->appendMenu(sp, 3, names, labels);\nassert(res == OP_ParAppendResult::Success);\n}\n\n// pulse\n{\nOP_NumericParameter\tnp;\n\nnp.name = \"Reset\";\nnp.label = \"Reset\";\n\nOP_ParAppendResult res = manager->appendPulse(np);\nassert(res == OP_ParAppendResult::Success);\n}\n\n}\n\nvoid\nCPlusPlusCHOPExample::pulsePressed(const char* name)\n{\nif (!strcmp(name, \"Reset\"))\n{\nmyOffset = 0.0;\n}\n}" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.5441692,"math_prob":0.88979435,"size":10168,"snap":"2022-05-2022-21","text_gpt3_token_len":2824,"char_repetition_ratio":0.10409287,"word_repetition_ratio":0.072289154,"special_character_ratio":0.27399686,"punctuation_ratio":0.18285371,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.95676637,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2022-01-23T13:00:40Z\",\"WARC-Record-ID\":\"<urn:uuid:f65d6318-2f7f-442b-8b87-4d2cec8c8c35>\",\"Content-Length\":\"65383\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:ef21f5b5-c5fe-49d0-8da4-e8e970f9d7f0>\",\"WARC-Concurrent-To\":\"<urn:uuid:8beb8646-e359-41e6-8d14-e01eddcb88ee>\",\"WARC-IP-Address\":\"18.219.116.147\",\"WARC-Target-URI\":\"https://docs.derivative.ca/Syntaxhighlight\",\"WARC-Payload-Digest\":\"sha1:A2LJPMPILL4OGAHZONVLZJ644HTLUHMS\",\"WARC-Block-Digest\":\"sha1:JB7IAHAMUN7KU3BOVXJNDGM556OSIVIB\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2022/CC-MAIN-2022-05/CC-MAIN-2022-05_segments_1642320304261.85_warc_CC-MAIN-20220123111431-20220123141431-00116.warc.gz\"}"}
https://de.mathworks.com/matlabcentral/cody/problems/43311-how-to-calculate-log/solutions/2280552
[ "Cody\n\n# Problem 43311. How to calculate log?\n\nSolution 2280552\n\nSubmitted on 14 May 2020 by Stephen\nThis solution is locked. To view this solution, you need to provide a solution of the same size or smaller.\n\n### Test Suite\n\nTest Status Code Input and Output\n1   Pass\nx = 5; y_correct = 1; assert(isequal(log5(x),y_correct))\n\n2   Pass\nx = 25; y_correct = 2; assert(isequal(log5(x),y_correct))\n\n### Community Treasure Hunt\n\nFind the treasures in MATLAB Central and discover how the community can help you!\n\nStart Hunting!" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.56496716,"math_prob":0.90543884,"size":363,"snap":"2020-45-2020-50","text_gpt3_token_len":110,"char_repetition_ratio":0.1615599,"word_repetition_ratio":0.0,"special_character_ratio":0.3305785,"punctuation_ratio":0.11594203,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9703434,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2020-12-01T10:06:36Z\",\"WARC-Record-ID\":\"<urn:uuid:67d7657b-d33a-44aa-99d2-88b033e22553>\",\"Content-Length\":\"79234\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:8a7d8094-02b3-4a18-a404-21f9e0ba7012>\",\"WARC-Concurrent-To\":\"<urn:uuid:3c7d8bee-5a16-48a7-b759-3dff3d359c87>\",\"WARC-IP-Address\":\"23.223.252.57\",\"WARC-Target-URI\":\"https://de.mathworks.com/matlabcentral/cody/problems/43311-how-to-calculate-log/solutions/2280552\",\"WARC-Payload-Digest\":\"sha1:QH4HYRZZE5JL5I6BZTT3AWXVAKDAK274\",\"WARC-Block-Digest\":\"sha1:7DQ2I2OPG4UD676YKQYDDYTCPP6DNL2N\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2020/CC-MAIN-2020-50/CC-MAIN-2020-50_segments_1606141672314.55_warc_CC-MAIN-20201201074047-20201201104047-00234.warc.gz\"}"}
https://en.academic.ru/dic.nsf/enwiki/11776953
[ "# Mumford–Tate group\n\n\nMumford–Tate group\n\nIn algebraic geometry, the Mumford–Tate group MT(F) constructed from a Hodge structure F is a certain algebraic group G, named for David Mumford and John Tate. When F is given by a rational representation of an algebraic torus, the definition of G is as the Zariski closure of the image in the representation of the circle group, over the rational numbers. It has been said that “Mumford–Tate groups have emerged as the principal symmetry groups in Hodge theory”. They are applied to problems in number theory and physics, as well as geometry.\n\n## Formulation\n\nThe algebraic torus T used to describe Hodge structures has a concrete matrix representation, as the 2×2 invertible matrices of the shape that is given by the action of a+bi on the basis {1,i} of the complex numbers C over R:", null, "$\\begin{bmatrix} a & b \\\\ -b & a \\end{bmatrix}.$\n\nThe circle group inside this group of matrices is the unitary group U(1).\n\nHodge structures arising in geometry, for example on the cohomology groups of Kähler manifolds, have a lattice consisting of the integral cohomology classes. Not quite so much is needed for the definition of the Mumford–Tate group, but it does assume that the vector space V underlying the Hodge structure has a given rational structure, i.e. is given over the rational numbers Q. For the purposes of the theory the complex vector space VC, obtained by extending the scalars of V from Q to C, is used.\n\nThe weight k of the Hodge structure describes the action of the diagonal matrices of T, and V is supposed therefore to be homogeneous of weight k, under that action. Under the action of the full group VC breaks up into subspaces Vpq, complex conjugate in pairs under switching p and q. Thinking of the matrix in terms of the complex number λ it represents, Vpq has the action of λ by the pth power and of the complex conjugate of λ by the qth power. Here necessarily\n\np + q = k.\n\nIn more abstract terms, the torus T underlying the matrix group is the Weil restriction of the multiplicative group GL(1), from the complex field to the real field, an algebraic torus whose character group consists of the two homomorphisms to GL(1), interchanged by complex conjugation.\n\nOnce formulated in this fashion, the rational representation ρ of T on V setting up the Hodge structure F determines the image ρ(U(1)) in GL(VC); and MT(F) is by definition the Zariski closure, for the Q-Zariski topology on GL(V), of this image.\n\n## Mumford–Tate conjecture\n\nThe original context for the formulation of the group in question was the question of the Galois representation on the Tate module of an abelian variety A. Conjecturally, the image of such a Galois representation, which is an l-adic Lie group for a given prime number l, is determined by the corresponding Mumford–Tate group G (coming from the Hodge structure on H1(A)), to the extent that knowledge of G determines the Lie algebra of the Galois image. This conjecture is known only in particular cases. Through generalisations of this conjecture, the Mumford–Tate group has been connected to the motivic Galois group, and, for example, the general issue of extending the Sato–Tate conjecture (now a theorem).\n\n## Period conjecture\n\nA related conjecture on abelian varieties states that the period matrix of A over number field has transcendence degree, in the sense of the field generated by its entries, predicted by the dimension of its Mumford–Tate group, as in the previous section. Work of Pierre Deligne has shown that the dimension bounds the transcendence degree; so that the Mumford–Tate group catches sufficiently many algebraic relations between the periods. This is a special case of the full Grothendieck period conjecture.\n\nWikimedia Foundation. 2010.\n\n### Look at other dictionaries:\n\n• David Mumford — David Bryant Mumford (né le 11 juin 1937) est un mathématicien américain connu pour son travail en géométrie algébrique puis pour sa recherche en théorie de la vision. Il est actuellement professeur dans la division de mathématiques… …   Wikipédia en Français\n\n• David Mumford — in 1975 Born 11 June 1937 (1937 06 11) (age 74) …   Wikipedia\n\n• Motive (algebraic geometry) — For other uses, see Motive (disambiguation). In algebraic geometry, a motive (or sometimes motif, following French usage) denotes some essential part of an algebraic variety . To date, pure motives have been defined, while conjectural mixed… …   Wikipedia\n\n• Tannakian category — In mathematics, a tannakian category is a particular kind of monoidal category C , equipped with some extra structure relative to a given field K . The role of such categories C is to approximate, in some sense, the category of linear… …   Wikipedia\n\n• Arithmetic of abelian varieties — In mathematics, the arithmetic of abelian varieties is the study of the number theory of an abelian variety, or family of those. It goes back to the studies of Fermat on what are now recognised as elliptic curves; and has become a very… …   Wikipedia\n\n• architecture — /ahr ki tek cheuhr/, n. 1. the profession of designing buildings, open areas, communities, and other artificial constructions and environments, usually with some regard to aesthetic effect. Architecture often includes design or selection of… …   Universalium\n\n• Grammy Awards 2011 — Grammy Award Am 13. Februar 2011 wurden im Staples Center von Los Angeles die Grammy Awards 2011 verliehen. Es war die 53. Verleihung des Grammys, des wichtigsten US amerikanischen Musikpreises. Gewürdigt wurden Anfang 2011 die musikalischen… …   Deutsch Wikipedia\n\n• 53e cérémonie des Grammy Awards — Grammy Award Organisés par la National Academy of Recording Arts and Sciences Cérémonie Date 13  …   Wikipédia en Français\n\n• Glossary of arithmetic and Diophantine geometry — This is a glossary of arithmetic and Diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of… …   Wikipedia\n\n• Étale cohomology — In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil… …   Wikipedia" ]
[ null, "https://en.academic.ru/dic.nsf/enwiki/e/d2e3fa6a40e5484e952e4ded07ad551b.png ", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.80552566,"math_prob":0.9501952,"size":6596,"snap":"2020-34-2020-40","text_gpt3_token_len":1596,"char_repetition_ratio":0.12848908,"word_repetition_ratio":0.0019047619,"special_character_ratio":0.21497877,"punctuation_ratio":0.11065574,"nsfw_num_words":1,"has_unicode_error":false,"math_prob_llama3":0.97836745,"pos_list":[0,1,2],"im_url_duplicate_count":[null,1,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2020-09-19T04:02:03Z\",\"WARC-Record-ID\":\"<urn:uuid:3d3b2ba8-d142-48cc-9573-c1504c8bdf26>\",\"Content-Length\":\"50712\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:0f9f548c-2b6e-4afe-b322-f166b3083633>\",\"WARC-Concurrent-To\":\"<urn:uuid:0b7252c4-a303-4624-bf8e-6b46cc460295>\",\"WARC-IP-Address\":\"95.217.42.33\",\"WARC-Target-URI\":\"https://en.academic.ru/dic.nsf/enwiki/11776953\",\"WARC-Payload-Digest\":\"sha1:Q4ILWL5DKATRAEG2JWE6IEJS25BNRPAA\",\"WARC-Block-Digest\":\"sha1:MUZQ7SWK2NS5HFZI2J53JEGHSONLBRBZ\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2020/CC-MAIN-2020-40/CC-MAIN-2020-40_segments_1600400189928.2_warc_CC-MAIN-20200919013135-20200919043135-00127.warc.gz\"}"}
https://forum.allaboutcircuits.com/threads/calculus-and-circuits.64165/
[ "# Calculus and circuits\n\nThread Starter\n\n#### jaygatsby\n\nJoined Nov 23, 2011\n182\nI notice that some courses at universities require high calculus as a prerequisite for circuits classes. Where is calculus used in circuits?\n\nThank you\n\n#### rstevenson\n\nJoined Apr 5, 2011\n20\ncapacitors, inductors you name it. like current through a capacitor is i = C * dv/dt. There are lots of other examples too\n\nThread Starter\n\n#### jaygatsby\n\nJoined Nov 23, 2011\n182\ncapacitors, inductors you name it. like current through a capacitor is i = C * dv/dt. There are lots of other examples too\nI do remember reading that formula in the all about circuits AC volume. And there was a similar formula for inductors. But this is all I've seen so far. Not enough to warrant calc I, calc II, and then diff. eq + linear algebra! Is there anything else?\n\nThanks\n\n#### steveb\n\nJoined Jul 3, 2008\n2,436\nI notice that some courses at universities require high calculus as a prerequisite for circuits classes. Where is calculus used in circuits?\n\nThank you\nAnalyzing linear AC circuits with coils and capacitors requires solving differential equations, making integral based transforms (Laplace and Fourier) to the frequency domain and calculation of convolution integrals in the time domain.\n\nNonlinear circuits using transistors, diodes, opamps etc, are sometimes linearized, which requires calculation of partial derivatives to make an effective linear small signal AC model.\n\nSome circuits (for example analog computers, or control feedback compensators) are designed to actually do calculus calculations such as integrals and derivatives.\n\nThe modeling of DC/DC converters, which utilize high speed switching, can be simplified by making an average model, by integrating to find the averages of relevant circuit variables.\n\n•", null, "jaygatsby\n\n#### thatoneguy\n\nJoined Feb 19, 2009\n6,359\nAnything involving AC at different frequencies, up to RF.\n\nYou end up having imaginary power used, and need to describe how.\n\n•", null, "jaygatsby\n\n#### crutschow\n\nJoined Mar 14, 2008\n27,187\nThe calculations involving electric and magnetic fields including electromagnetic wave transmission through space, wave-guides, transmission lines, and antennas all use calculus. Take a look at Maxwell's Equations sometime.", null, "#### Wendy\n\nJoined Mar 24, 2008\n22,430\nThen there is the analog computers made with op amps. You can wire calculus equations directly as a circuit, extremely complicated equations with very simple circuits.. Something similar to this was used for WWII bombers, they were classed top secret at the time.\n\n#### Geoffr67\n\nJoined Dec 5, 2011\n69\nThen there is the analog computers made with op amps. You can wire calculus equations directly as a circuit, extremely complicated equations with very simple circuits.. Something similar to this was used for WWII bombers, they were classed top secret at the time.\nVery cool! do you have any interesting resources regarding this? id love to read about it!\n\n#### Blofeld\n\nJoined Feb 21, 2010\n83\nVery cool! do you have any interesting resources regarding this? id love to read about it!\nYou might be interested in a similar development: The M9 gun director, used for anti aircraft artillery.\n\nSome historical information:\nhttp://www.antiaircraft.org/M9.htm\n\nA discussion of a very early operational amplifier that was used as part of this system can be found in chapter H, p. 15 of\nhttp://www.analog.com/library/analogdialogue/archives/39-05/Op_Amp_Applications.zip\n(Op Amp Applications by Walt Jung, 16.8 MB zip file)\n\nGenerally speaking, I think that during WWII there existed a mix of mechanical analog computers (like the famous Norden bombsight) and electronic analog computers. The principle is the same - as Bill Marsden has explained, it is all about solving complicated differential equations.\n\n#### hgmjr\n\nJoined Jan 28, 2005\n9,029\nVery cool! do you have any interesting resources regarding this? id love to read about it!\nSearch on the topic \"norden bomb sight\".\n\nHere is just one sample.\n\nhgmjr\n\nSimilar threads" ]
[ null, "", null, "", null, "", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.89687234,"math_prob":0.8741447,"size":1885,"snap":"2021-21-2021-25","text_gpt3_token_len":412,"char_repetition_ratio":0.102073364,"word_repetition_ratio":0.10631229,"special_character_ratio":0.20583555,"punctuation_ratio":0.11527377,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.96513015,"pos_list":[0,1,2,3,4,5,6],"im_url_duplicate_count":[null,null,null,null,null,null,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2021-06-15T03:34:18Z\",\"WARC-Record-ID\":\"<urn:uuid:580517e1-ad99-4475-8ef4-7d7b83be341c>\",\"Content-Length\":\"140873\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:49d133bc-c8da-4ec6-b69b-7f97315f287b>\",\"WARC-Concurrent-To\":\"<urn:uuid:bfe60cf0-8583-45c1-8af8-05e9cb06fe1e>\",\"WARC-IP-Address\":\"104.20.235.39\",\"WARC-Target-URI\":\"https://forum.allaboutcircuits.com/threads/calculus-and-circuits.64165/\",\"WARC-Payload-Digest\":\"sha1:7V2YMVB7XZDMVQNNFFZMA2OTJIEEXQOZ\",\"WARC-Block-Digest\":\"sha1:PL5N7XFTIKNO33HDSHNCA5ZGP4LZXH25\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2021/CC-MAIN-2021-25/CC-MAIN-2021-25_segments_1623487616657.20_warc_CC-MAIN-20210615022806-20210615052806-00471.warc.gz\"}"}
https://lists.cairographics.org/archives/cairo/2008-January/012821.html
[ "# [cairo] Pixman sampling coordinates\n\nWed Jan 23 09:27:14 PST 2008\n\n```Carl Worth wrote:\n> On Tue, 22 Jan 2008 16:12:33 -0800, Carl Worth wrote:\n> > just to reduce the amount of #ifdefing. But I am quite glad to see\n> > that you added a comment there explaining why this adjustment isn't\n> > necessary for the case of other values of N_BITS.\n> >\n> > I'll just do that in a separate commit after pushing this series.\n>\n> I've pushed the series and I did that little change. So pixman should\n> be all set as far as this bug now.\n\nNice.\n\nI have a fix for the rotate-image-surface-paint testcase now.\n\nIt's basically what I proposed in the previous mail, but streamlined\nslightly, so no new arguments to _cairo_matrix_to_pixman_matrix\nare needed. It uses the origin of the pattern as the anchor.\n\ngit-fetch git://people.freedesktop.org/~inte/cairo pixman-transform-rounding\nhttp://gitweb.freedesktop.org/?p=users/inte/cairo.git;a=shortlog;h=pixman-transform-rounding\n\nThis requires a trivial patch to pixman; the pixman_transform_point_3d\nfunction wasn't properly exported.\n\ngit-fetch git://people.freedesktop.org/~inte/pixman missing-export\nhttp://gitweb.freedesktop.org/?p=users/inte/pixman.git;a=shortlog;h=missing-export\n\nBertram\n-------------- next part --------------\ncommit 5a0b15d2c9b5e9ef3aed1f01e8ea28a3f2c36216\nAuthor: Bertram Felgenhauer <int-e at gmx.de>\nDate: Wed Jan 23 18:02:02 2008 +0100\n\nanchor pattern transformations at the pattern origin\nThis keeps the rounding errors due to the conversion to 16.16 fixed point\nnumbers small and improves cairo's translation invariance.\n\ndiff --git a/src/cairo-matrix.c b/src/cairo-matrix.c\nindex d534826..589566d 100644\n--- a/src/cairo-matrix.c\n+++ b/src/cairo-matrix.c\n@@ -753,6 +753,10 @@ _cairo_matrix_to_pixman_matrix (const cairo_matrix_t\t*matrix,\n*pixman_transform = pixman_identity_transform;\n}\nelse {\n+ cairo_matrix_t inv = *matrix;\n+ double x = 0, y = 0;\n+ pixman_vector_t vector;\n+\npixman_transform->matrix = _cairo_fixed_16_16_from_double (matrix->xx);\npixman_transform->matrix = _cairo_fixed_16_16_from_double (matrix->xy);\npixman_transform->matrix = _cairo_fixed_16_16_from_double (matrix->x0);\n@@ -764,5 +768,24 @@ _cairo_matrix_to_pixman_matrix (const cairo_matrix_t\t*matrix,\npixman_transform->matrix = 0;\npixman_transform->matrix = 0;\npixman_transform->matrix = 1 << 16;\n+\n+ if (cairo_matrix_invert (&inv) != CAIRO_STATUS_SUCCESS)\n+ return;\n+\n+ /* find the device space coordinate that maps to (0, 0) */\n+ cairo_matrix_transform_point (&inv, &x, &y);\n+\n+ /* transform the resulting device space coordinate back\n+ * to the pattern space, using pixman's transform */\n+ vector.vector = _cairo_fixed_16_16_from_double (x);\n+ vector.vector = _cairo_fixed_16_16_from_double (y);\n+ vector.vector = 1 << 16;\n+\n+ if (!pixman_transform_point_3d (pixman_transform, &vector))\n+ return;\n+\n+ /* and compensate for the resulting error */\n+ pixman_transform->matrix -= vector.vector;\n+ pixman_transform->matrix -= vector.vector;\n}\n}\n-------------- next part --------------\ncommit 787cc57c7cb36a3b7eff836dd979d08cf7861e29\nAuthor: Bertram Felgenhauer <int-e at gmx.de>\nDate: Wed Jan 23 16:08:48 2008 +0100\n\nexport pixman_transform_point_3d function\n\ndiff --git a/pixman/pixman.h b/pixman/pixman.h\nindex 2fd3133..2965acd 100644\n--- a/pixman/pixman.h\n+++ b/pixman/pixman.h\n@@ -165,6 +165,7 @@ struct pixman_transform\npixman_fixed_t\tmatrix;\n};\n\n+PIXMAN_EXPORT\npixman_bool_t pixman_transform_point_3d (pixman_transform_t *transform,\npixman_vector_t *vector);\n\n```" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.55397344,"math_prob":0.71543765,"size":3659,"snap":"2020-34-2020-40","text_gpt3_token_len":1108,"char_repetition_ratio":0.18522573,"word_repetition_ratio":0.055172414,"special_character_ratio":0.33369774,"punctuation_ratio":0.18242122,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9797821,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2020-09-20T08:11:00Z\",\"WARC-Record-ID\":\"<urn:uuid:7423e311-7083-4288-b1a9-38051cf905b2>\",\"Content-Length\":\"6903\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:8c0b3dd2-1a84-40ef-9f92-e17bd1878c68>\",\"WARC-Concurrent-To\":\"<urn:uuid:62b4d230-c294-4c52-8253-8f608ef2e949>\",\"WARC-IP-Address\":\"131.252.210.177\",\"WARC-Target-URI\":\"https://lists.cairographics.org/archives/cairo/2008-January/012821.html\",\"WARC-Payload-Digest\":\"sha1:3QKJDPGVU6F3PXQGFQ7UILDNU2PAZLHI\",\"WARC-Block-Digest\":\"sha1:L2HHS5N4FIRR6HXJVWW2IY7HG7KBW62K\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2020/CC-MAIN-2020-40/CC-MAIN-2020-40_segments_1600400196999.30_warc_CC-MAIN-20200920062737-20200920092737-00317.warc.gz\"}"}
https://www.whatnumberis.net/mmdxviii/
[ "What number is MMDXVIII?\n\nYour question is: What numbers are the Roman numerals MMDXVIII? Learn how to convert the Roman numerals MMDXVIII into the correct translation of normal numbers.\n\nThe Roman numerals MMDXVIII are identical to the number 2518.\n\nMMDXVIII = 2518\n\nHow do you convert MMDXVIII into normal numbers?\n\nIn order to convert MMDXVIII into numbers, the number of position values (ones, tens, hundreds, thousands) is subdivided as follows:\n\nPlace valueNumberRoman numbers\nConversion2000 + 500 + 10 + 8MM + D + X + VIII\nThousands2000MM\nHundreds500D\nDozens10X\nOnes8VIII\n\nHow do you write MMDXVIII in numbers?\n\nTo correctly write MMDXVIII as normal numbers, combine the converted Roman numbers. The highest numbers must always be in front of the lowest numbers to get the correct translation, as in the table above.\n\n2000+500+10+8 = (MMDXVIII) = 2518\n\nThe next Roman numerals = MMDXIX\n\nConvert another Roman numeral to normal numbers." ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.6717429,"math_prob":0.9856825,"size":961,"snap":"2022-05-2022-21","text_gpt3_token_len":272,"char_repetition_ratio":0.20480669,"word_repetition_ratio":0.0,"special_character_ratio":0.264308,"punctuation_ratio":0.099415205,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9870422,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2022-01-19T08:38:06Z\",\"WARC-Record-ID\":\"<urn:uuid:0a6c4ede-c699-4723-8fee-3c92037f6fa0>\",\"Content-Length\":\"8173\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:30bbaa11-9bf9-4e67-a0d4-788339b482c5>\",\"WARC-Concurrent-To\":\"<urn:uuid:93c08cbe-d322-4253-84e8-3092138ef9f6>\",\"WARC-IP-Address\":\"46.249.204.25\",\"WARC-Target-URI\":\"https://www.whatnumberis.net/mmdxviii/\",\"WARC-Payload-Digest\":\"sha1:VYOLMTNZXVV5SLETTUJEXVP4QBRQKYXY\",\"WARC-Block-Digest\":\"sha1:H3QUQZHKHLNZEX7RS6QTBDDTES72LEQU\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2022/CC-MAIN-2022-05/CC-MAIN-2022-05_segments_1642320301264.36_warc_CC-MAIN-20220119064554-20220119094554-00662.warc.gz\"}"}
https://www.jetbrains.com/help/pycharm-edu/2018.1/extract-constant.html
[ "# Extract Constant\n\n## Basics\n\nThe Extract Constant refactoring makes your source code easier to read and maintain. It also helps you avoid using hardcoded constants without any explanations about their values or purpose.\n\n## Example\n\nBeforeAfter\n```import math class Solver: def demo(self): a = 3 b = 25 c = 46 root1 = (-b + math.sqrt(b**2 - 4*c)) / (2*a) root2 = (-b - math.sqrt(b**2 - 4*c)) / (2*a) print (root1, root2) Solver().demo()```\n```import math RETURN_TYPE_OF_SQRT = math.sqrt(b**2 - 4*a*c) class Solver: def demo(self): a = 3 b = 25 c = 52 root1 = (-b + RETURN_TYPE_OF_SQRT) / (2*a) root2 = (-b - RETURN_TYPE_OF_SQRT) / (2*a) print(root1, root2) Solver().demo()```\n\n## To extract a Python constant in-place\n\nThe in-place refactorings are enabled in PyCharm Edu by default. So, if you haven't changed this setting, the Extract Constant refactoring for Python is performed in-place, right in the editor.\n\n1. Place the cursor within the expression or declaration of a variable to be replaced by a constant.\n2. Do one of the following:\n• PressCtrl+Alt+C.\n• Choose Refactor | Extract | Constant on the context menu.\n3. If more than one expression is detected for the current cursor position, the Expressions list appears. If this is the case, select the required expression. To do that, click the expression. Alternatively, use the Up and Down arrow keys to navigate to the expression of interest, and then press Enter to select it.\n4. If more than one occurrence of the expression is found within the class, specify whether you wish to replace only the selected occurrence, or all the found occurrences with the new constant.\n5. Specify the name of the constant. Select the name from the list or type the name in the box with a red border.\n6. To complete the refactoring, press Tab orEnter.\n\nIf you haven't completed the refactoring and want to cancel the changes you have made, press Escape.\n\n## To extract a constant using the dialog box\n\nIf the Enable in-place refactorings checkbox is cleared on the Editor settings, the Extract Constant refactoring is performed by means of the Extract Constant Dialog dialog box.\n\n1. In the Extract Constant Dialog dialog that opens, specify the name of the new constant.\n2. To automatically replace all occurrences of the selected expression (if it is found more than once),select the option Replace all occurrences.\n3. Click OK to create the constant." ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.7494711,"math_prob":0.88311553,"size":2443,"snap":"2020-45-2020-50","text_gpt3_token_len":580,"char_repetition_ratio":0.14678147,"word_repetition_ratio":0.073529415,"special_character_ratio":0.246009,"punctuation_ratio":0.1039823,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.97070205,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2020-10-24T00:54:06Z\",\"WARC-Record-ID\":\"<urn:uuid:80e81a31-c5d3-4dc3-ac01-c90c198b2d87>\",\"Content-Length\":\"18961\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:27554c7f-3fa1-4617-bf8f-2c049c12bef7>\",\"WARC-Concurrent-To\":\"<urn:uuid:e3261556-d46b-454b-99b0-eb16c4809c6c>\",\"WARC-IP-Address\":\"52.35.219.183\",\"WARC-Target-URI\":\"https://www.jetbrains.com/help/pycharm-edu/2018.1/extract-constant.html\",\"WARC-Payload-Digest\":\"sha1:ZE3UK4ZGINKPGKNIWGWEQBBPUH3FMH3L\",\"WARC-Block-Digest\":\"sha1:VDF5FCJKS6TR2C6KKHCUQBMCDFJPDXOP\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2020/CC-MAIN-2020-45/CC-MAIN-2020-45_segments_1603107881551.11_warc_CC-MAIN-20201023234043-20201024024043-00283.warc.gz\"}"}
http://face2ai.com/DIP-6-8-%E7%81%B0%E5%BA%A6%E5%9B%BE%E5%83%8F-%E5%9B%BE%E5%83%8F%E5%88%86%E5%89%B2-Canny%E8%BE%B9%E7%BC%98%E6%A3%80%E6%B5%8B/
[ "# 灰度图像-图像分割 Canny边缘检测\n\nCanny是目前已知的最好的边缘检测算法,是不是之一我不确定,但可以肯定的是,它的应用非常广泛,基本用到边缘检测的,大家永远第一个想到它。Canny算法的复杂度比前面的检测加阈值的算法计算复杂度更高,空间复杂度也要高一些,但现在的计算设备,对于Canny基本可以实现实时,并且有人用GPU来实现,所以从86年Canny提出了这个算法到现在,在边缘检测方面,其地位还是比较稳固的。\nCanny算法的另一个显著特征是它有完整的数学推导过程,能够证明这个算法能给出最好的边缘。后面我们将会简单的看一下数学过程。\n\n## 算法原理\n\n1) Good detection. There should be a low probability of failing to mark real edge points, and low probability of falsely marking nonedge points. Since both these probabilities are monotonically decreasing functions of the output signal-to-noise ratio, this criterion corresponds to maximizing signal-to-noise ratio.\n2) Good localization. The points marked as edge points by the operator should be as close as possible to the center of the true edge.\n3) Only one response to a single edge. This is implicitly captured in the first criterion since when there are two responses to the same edge, one of them must be considered false. However, the mathematical form of the first criterion did not capture the multiple response requirement and it had to be made explicit.\n\n1. 好的检测:一定要尽可能少的遗漏边缘点,尽可能少的添加非边缘点。正确的边缘点为信号,被错误检测出来的非边缘点为噪声,所以第一点归结为提高信噪比。\n2. 准确的位置:检测出的边缘点一定要与真正的边缘中心,尽可能的近。\n3. 边缘单一响应:对于一个边缘,只能产生一个响应,如果对于一个边缘产生两个响应,第一点的数学求解过程不能保证这一点,所以要单独明确,如果对于一边有两个响应,必须去掉一个。\n\n## 数学原理\n\n$H_G(x)=\\int_{-w}^{+w} G(-x)f(x)\\,dx$ (1)\n\n$H_n=n_0[\\int_{-w}^{+w}f^2(x)\\,dx]^{1/2}$ (2)\n\n$SNR=\\frac{\\int_{-w}^{+w} G(-x)f(x)\\,dx}{n_0[\\int_{-w}^{+w}f^2(x)\\,dx]^{1/2}}$ (3)\n\n$H^{‘}_n(x_0)+H^{‘}_G(x_0)=0$ (4)\n\n$H^{‘}_G(x_0)=H^{‘}_G(0)+H^{”}_G(0)x_0+o(x_0^2)$ (5)\n\n$H^{”}_G(0)x_0 \\approx {-H^{‘}_n(x_0)}$(6)\n\n$H^{‘}_n(x_0)$ 为高斯随机量,并且其方差是 $H^{‘}_n(x_0)$ 的均方值,并且给出其期望为:\n\n$E[H^{‘}_n(x_0)^2]=n_0^2\\int^{+w}_{-w}f^{‘2}(x)\\,dx$(7)\n\n$E[x^2_0]\\approx {\\frac{n_0^2\\int^{+w}_{-w}f^{‘2}(x)\\,dx}{[{\\int_{-w}^{+w} G^{‘}(-x)f^{‘}(x)\\,dx}]^2}}=\\delta x^2_0$ (8)\n\n$\\delta x^2_0$ 是 $x_0$ 标准差的近似,位置由其倒数给出:\n\n$Localization =\\frac{|\\int^{+w}_{-w}G^{‘}(-x)f^{‘}(x)\\,dx|}{n_0[\\int^{+w}_{-w}f^{‘2}(x)\\,dx]^{-1/2}}$(9)\n\n$\\frac{\\int_{-w}^{+w} G(-x)f(x)\\,dx}{n_0[\\int_{-w}^{+w}f^2(x)\\,dx]^{1/2}}\\frac{|\\int^{+w}_{-w}G^{‘}(-x)f^{‘}(x)\\,dx|}{n_0[\\int^{+w}_{-w}f^{‘2}(x)\\,dx]^{-1/2}}$(10)\n\n$n^{-1}_0[\\int^{+w}_{-w}G^{2}(x)dx]^{1/2}$\n\nLocalization(9)上边界于:\n\n$n^{-1}_0[\\int^{+w}_{-w}G’^{2}(x)dx]^{1/2}$\n\n$x_{ave}=\\pi(\\frac{-R(0)}{R^{”}(0)})^{1/2}$(11)\n\n$R(0) = \\int ^{+\\infty}_{-\\infty}g^{2}(x)\\,dx$\n\n$R^{”}(0) = -\\int ^{+\\infty}_{-\\infty}{g’}^{2}(x)\\,dx$\n\n$x_{zc}(f)=\\pi(\\frac{\\int ^{+\\infty}_{-\\infty}f’^{2}(x)\\,dx}{\\int ^{+\\infty}_{-\\infty}{f”}^{2}(x)\\,dx})^{1/2}$(12)\n\n$x_{max}(f)=2x_{zc}(f)=kW$(13)\n\n$N_n=\\frac{2W}{x_{max}}=\\frac{2}{k}$(14)\n\n## 算法过程\n\n1. 高斯平滑,采用$5 \\times5$的高斯滤波器对图像进行平滑。\n2. 使用Sobel算子检测边缘候选点,计算梯度方向,得到简化的梯度方向。\n3. 非极大值抑制,减少多重响应。\n4. 边缘跟踪,采用双阈值处理候选点。\n5. 形态学细化,对于有些较粗的边界采用形态学方法处理。", null, "## 实现结果", null, "STEP1:", null, "STEP2:\nSobel梯度幅度结果:", null, "Sobel梯度方向结果:", null, "STEP3:", null, "STEP4:", null, "", null, "STEP1:", null, "STEP2:\nSobel梯度幅度结果:", null, "Sobel梯度方向结果:", null, "STEP3:", null, "STEP4:", null, "## 总结\n\n### 说点什么", null, "Subscribe" ]
[ null, "https://tony4ai-1251394096.cos.ap-hongkong.myqcloud.com/blog_images/DIP-6-8-灰度图像-图像分割-Canny边缘检测/20150212181022310.jpeg", null, "https://tony4ai-1251394096.cos.ap-hongkong.myqcloud.com/blog_images/DIP-6-8-灰度图像-图像分割-Canny边缘检测/20150212181924413.jpeg", null, "https://tony4ai-1251394096.cos.ap-hongkong.myqcloud.com/blog_images/DIP-6-8-灰度图像-图像分割-Canny边缘检测/20150212181937158.jpeg", null, "https://tony4ai-1251394096.cos.ap-hongkong.myqcloud.com/blog_images/DIP-6-8-灰度图像-图像分割-Canny边缘检测/20150212181953180.jpeg", null, "https://tony4ai-1251394096.cos.ap-hongkong.myqcloud.com/blog_images/DIP-6-8-灰度图像-图像分割-Canny边缘检测/20150212182006783.jpeg", null, "https://tony4ai-1251394096.cos.ap-hongkong.myqcloud.com/blog_images/DIP-6-8-灰度图像-图像分割-Canny边缘检测/20150212182025625.jpeg", null, "https://tony4ai-1251394096.cos.ap-hongkong.myqcloud.com/blog_images/DIP-6-8-灰度图像-图像分割-Canny边缘检测/20150212182315899.jpeg", null, "https://tony4ai-1251394096.cos.ap-hongkong.myqcloud.com/blog_images/DIP-6-8-灰度图像-图像分割-Canny边缘检测/20150212182333621.jpeg", null, "https://tony4ai-1251394096.cos.ap-hongkong.myqcloud.com/blog_images/DIP-6-8-灰度图像-图像分割-Canny边缘检测/20150212182345025.jpeg", null, "https://tony4ai-1251394096.cos.ap-hongkong.myqcloud.com/blog_images/DIP-6-8-灰度图像-图像分割-Canny边缘检测/20150212182356134.jpeg", null, "https://tony4ai-1251394096.cos.ap-hongkong.myqcloud.com/blog_images/DIP-6-8-灰度图像-图像分割-Canny边缘检测/20150212182416318.jpeg", null, "https://tony4ai-1251394096.cos.ap-hongkong.myqcloud.com/blog_images/DIP-6-8-灰度图像-图像分割-Canny边缘检测/20150212182426040.jpeg", null, "https://tony4ai-1251394096.cos.ap-hongkong.myqcloud.com/blog_images/DIP-6-8-灰度图像-图像分割-Canny边缘检测/20150212182449655.jpeg", null, "https://secure.gravatar.com/avatar/", null ]
{"ft_lang_label":"__label__zh","ft_lang_prob":0.54801804,"math_prob":0.9999912,"size":9026,"snap":"2020-24-2020-29","text_gpt3_token_len":5465,"char_repetition_ratio":0.12314343,"word_repetition_ratio":0.050065875,"special_character_ratio":0.37812984,"punctuation_ratio":0.15268457,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9998869,"pos_list":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28],"im_url_duplicate_count":[null,3,null,3,null,3,null,3,null,3,null,3,null,3,null,3,null,3,null,3,null,3,null,3,null,3,null,null,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2020-06-04T09:26:26Z\",\"WARC-Record-ID\":\"<urn:uuid:31f74fcf-59aa-4c95-a53d-7891b16594b1>\",\"Content-Length\":\"184404\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:88f052a6-90e4-46b2-874d-f28b7336a887>\",\"WARC-Concurrent-To\":\"<urn:uuid:1e86acde-224d-4be8-bfcc-1ab3b196cb26>\",\"WARC-IP-Address\":\"47.90.33.8\",\"WARC-Target-URI\":\"http://face2ai.com/DIP-6-8-%E7%81%B0%E5%BA%A6%E5%9B%BE%E5%83%8F-%E5%9B%BE%E5%83%8F%E5%88%86%E5%89%B2-Canny%E8%BE%B9%E7%BC%98%E6%A3%80%E6%B5%8B/\",\"WARC-Payload-Digest\":\"sha1:HLNN3YAFKPZOLDUMEHXM6SZV3PEQTZCS\",\"WARC-Block-Digest\":\"sha1:F2MPDIQQAOHXWWQMWLQUAHOB65QZVYTU\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2020/CC-MAIN-2020-24/CC-MAIN-2020-24_segments_1590347439213.69_warc_CC-MAIN-20200604063532-20200604093532-00142.warc.gz\"}"}
https://economics.stackexchange.com/questions/32348/why-is-a-monotone-increasing-but-nonlinear-transformation-of-a-utility-function
[ "# Why is a monotone increasing but nonlinear transformation of a utility function not represent the same preferences if the preference is complete?\n\nAccording to a textbook, in the context of uncertainty (e.g. in lottery), if the preference is complete, a monotone increasing but nonlinear transformation of a utility function would not represent the same preferences. Why is it so?\n\nAn example of such preference would be appreciated.\n\n• This claim is false. Please identify the textbook and the exact page. – Giskard Oct 20 '19 at 18:40\n• It is from slide of my professor, which he claim to be from a textbook. – Aqqqq Oct 21 '19 at 7:36\n• I'm voting to close this question as off-topic because it is based upon a false claim whose source cannot be identified. – Giskard Oct 21 '19 at 9:41\n• @Giskard Would it be the case in case of uncertainty (e.g. in lottery)? – Aqqqq Oct 21 '19 at 12:44\n• – Art Oct 21 '19 at 15:09\n\nConsider lotteries over $$\\{x,y,z\\}$$. Let $$u(x)=0, u(y)=\\frac{1}{2}, u(z)=1$$. Consider the nonlinear transformation f(t)=t^2. Let $$v:=f\\circ u$$, so $$v(x)=0,v(y)=\\frac{1}{4}, v(z)=1$$.\nConsider two lotteries, $$P=(0,1,0)$$ and $$Q=(\\frac{1}{2},0,\\frac{1}{2})$$.\n$$E_P[u]=\\frac{1}{2}=E_Q[u]$$\n$$E_P[v]=\\frac{1}{4}<\\frac{1}{2}=E_Q[v]$$\nIn general, let $$\\succeq$$ be a preference over lotteries $$\\Delta(X)$$. Let $$U$$ be a utility function of $$\\succeq$$ that has the EU form, so $$U(P)=E_P[u]$$ for some $$u$$. Take any increasing transformation $$f$$ and define $$V(P):=f(U(P))$$ then $$V$$ will also be a utility function for $$\\succeq$$, that is $$V(P)\\geq V(Q)\\iff P\\succeq Q$$. However, unless $$f$$ is a positive affine transformation, that is $$f(x)=Ax+B$$ where $$A>0$$ then $$V$$ will not be an expected utility function. That is, there will not exists a $$v$$ such that $$V(p)=E_p[v]$$.\n• Thank you for your answer. Is $\\Delta(X)$ just a notation or are there some meaning behind $\\Delta$? – Aqqqq Oct 22 '19 at 9:30\n• Should $V(p)=E_p[v]$ be $V(P)=E_P[v]$ instead (in the last paragraph)? Why \"there will not exists a $v$ such that $V(p)=E_p[v]$\"? – Aqqqq Oct 22 '19 at 10:09" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.7092371,"math_prob":0.9999479,"size":856,"snap":"2019-51-2020-05","text_gpt3_token_len":329,"char_repetition_ratio":0.12558685,"word_repetition_ratio":0.0,"special_character_ratio":0.3995327,"punctuation_ratio":0.1421801,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":1.0000008,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2020-01-24T06:13:45Z\",\"WARC-Record-ID\":\"<urn:uuid:89a7e445-26a7-4cc2-a993-6812a392ee84>\",\"Content-Length\":\"143080\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:b8d58874-713b-4f6e-8170-8b5503a8e90f>\",\"WARC-Concurrent-To\":\"<urn:uuid:01f4d8b3-b25f-427e-9f08-2c76c06c0ccf>\",\"WARC-IP-Address\":\"151.101.65.69\",\"WARC-Target-URI\":\"https://economics.stackexchange.com/questions/32348/why-is-a-monotone-increasing-but-nonlinear-transformation-of-a-utility-function\",\"WARC-Payload-Digest\":\"sha1:ZHCIIXC7U4KWQTK5MWCX5IMOUU4DWRFY\",\"WARC-Block-Digest\":\"sha1:SPIDUYNDY7JZTLOD7F2OXBA64EK2WAKF\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2020/CC-MAIN-2020-05/CC-MAIN-2020-05_segments_1579250615407.46_warc_CC-MAIN-20200124040939-20200124065939-00468.warc.gz\"}"}
https://profiles.doe.mass.edu/mcas/mcasitems2.aspx?grade=06&subjectcode=MTH&linkid=9&orgcode=00000000&fycode=2021&orgtypecode=5&
[ "# Massachusetts\n\nDistricts Schools", null, "## 2021 Item by Item Results for GRADE 06 MATHEMATICS\n\n### Number of Students Included: 65,521     Participation Rate = 95%\n\n State Totals - GRADE 06 MATHEMATICS ITEM INFORMATION PERCENT OF STATE'S POSSIBLE POINTS ITEM TYPE REPORTING CATEGORY STANDARD ITEM DESC POSSIBLE POINTS STATE 1 SR EE 6.EE.A.2 Determine the value of an expression given the value of a variable. 1 56% 2 SR NS 6.NS.C.7 Interpret inequalities using absolute values of integers. 1 36% 3 SA NS 6.NS.B.2 Find the quotient of two multi-digit numbers. 1 54% 4 SR NS 6.NS.B.4 Find the greatest common factor of two numbers to solve a real-world problem. 1 40% 5 SR RP 6.RP.A.3 Solve a ratio problem based on a given real-world context. 1 41% 6 CR GE 6.G.A.3 Solve problems on a coordinate plane by plotting points, finding the distance between points, and finding the coordinates of points given the distance between them. 4 36% 7 SA NS 6.NS.C.6 Graph a negative decimal on a number line. 1 50% 8 SA SP 6.SP.B.4 Create a histogram to represent a given set of data. 1 35% 9 SR EE 6.EE.B.5 Determine the value of the variable in an inequality. 1 53% 10 SR SP 6.SP.A.1 Identify multiple statistical questions. 1 30% 11 SR RP 6.RP.A.2 Solve a unit-rate problem based on a given real-world context. 1 78% 12 SR EE 6.EE.A.4 Identify expressions that are equivalent to a given variable expression. 1 20% 13 SA NS 6.NS.A.1 Calculate the quotient of two fractions. 1 42% 14 CR RP 6.RP.A.1 Solve a real-world problem by interpreting and finding ratios based on a given ratio relationship. 4 39% 15 SA EE 6.EE.B.8 Graph on a number line an inequality that represents a constraint in a given real-world context. 1 46% 16 SR EE 6.EE.B.7 Determine which equation represents a given real-world context. 1 67% 17 SR EE 6.EE.B.6 Determine which expression can be used to represent a real-world context and use it to complete sentences about the context. 1 72% 18 SA SP 6.SP.B.5 Determine the median and mean of a set of data. 2 36% 19 SR EE 6.EE.C.9 Choose a two-variable equation that best represents a given real-world context. 1 36% 20 SR EE 6.EE.A.1 Evaluate numerical expressions involving whole-number exponents. 1 49% 21 SR NS 6.NS.B.3 Add and subtract decimals within a real-world context. 1 89% 22 SA RP 6.RP.A.2 Determine the unit rate within a real-world context. 1 57% 23 SR SP 6.SP.B.5 Calculate the mean of a given set of data. 1 40% 24 CR EE 6.EE.B.7 Write and solve equations that model a real-world problem. 4 54% 25 SR RP 6.RP.A.1 Identify the ratios that represent the relationships between given quantities. 1 58% 26 SA EE 6.EE.A.3 Use the distributive property to generate an equivalent expression within a real-world context. 1 22% 27 SR EE 6.EE.B.8 Identify the inequality which represents a constraint within a real-world context. 1 57% 28 SR EE 6.EE.A.3 Use the distributive property to determine equivalent expressions given a variable expression. 1 36% 29 SA GE 6.G.A.1 Find the area of a right triangle and decompose a polygon into triangles to complete sentences about its area. 2 23% 30 SR RP 6.RP.A.1 Determine which statement describes a given ratio relationship in a real-world context. 1 40% 31 SR SP 6.SP.A.2 Determine the interquartile range of data displayed in a box plot. 1 24% 32 SR EE 6.EE.A.3 Use properties of operations to identify an equivalent equation. 1 59% 33 SR RP 6.RP.A.3 Determine the volume of a liquid by using rate and ratio reasoning within a real-world context. 1 40% 34 SR SP 6.SP.A.1 Identify multiple statistical questions. 1 34% 35 CR NS 6.NS.C.8 Solve problems on a coordinate plane by finding the distance between points, plotting points, and finding the coordinates of a point given its distance from a different point. 4 54% 36 SR NS 6.NS.C.5 Determine whether given real-world situations can be best represented by positive or negative numbers. 1 60% 37 SA GE 6.G.A.4 Use the net of a square pyramid to find its surface area. 1 18% 38 SR RP 6.RP.A.3 Compare unit rates given a ratio in a real-world context involving money. 1 39% 39 SR SP 6.SP.B.5 Determine which statements correctly describe data represented in a dot plot. 1 31% 40 SR GE 6.G.A.2 Determine the number of cubes with fractional edge lengths that would fit in a given right rectangular prism in a real-world context. 1 11%\n\nParticipation rates varied across schools, districts, and student groups in 2021 more than in prior years. If the participation rate in 2021 was lower than in prior years, results may have been different if more students had taken the test." ]
[ null, "https://profiles.doe.mass.edu/images/btn.gif", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.78479517,"math_prob":0.9766167,"size":4713,"snap":"2022-40-2023-06","text_gpt3_token_len":1622,"char_repetition_ratio":0.16181779,"word_repetition_ratio":0.0703125,"special_character_ratio":0.3346064,"punctuation_ratio":0.15648147,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.98472697,"pos_list":[0,1,2],"im_url_duplicate_count":[null,null,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2023-02-06T15:23:40Z\",\"WARC-Record-ID\":\"<urn:uuid:8e421662-8c2b-4e2f-b35d-e8e6f7a7e4ab>\",\"Content-Length\":\"51238\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:0ff81ab3-6eb3-410b-80ea-dfdc92f80577>\",\"WARC-Concurrent-To\":\"<urn:uuid:ad13ca6d-9e8a-4e79-93d7-5e0df774ee65>\",\"WARC-IP-Address\":\"170.63.127.48\",\"WARC-Target-URI\":\"https://profiles.doe.mass.edu/mcas/mcasitems2.aspx?grade=06&subjectcode=MTH&linkid=9&orgcode=00000000&fycode=2021&orgtypecode=5&\",\"WARC-Payload-Digest\":\"sha1:OVJPWXGPGBZQZNVASTEULK7Z5XRCXEYL\",\"WARC-Block-Digest\":\"sha1:2UK3C775GMYAEBIP2TXEW37OYFAONGLB\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2023/CC-MAIN-2023-06/CC-MAIN-2023-06_segments_1674764500356.92_warc_CC-MAIN-20230206145603-20230206175603-00522.warc.gz\"}"}
https://forums.parallax.com/discussion/175363/propeller-2-version-of-auduino-granular-synthesizer
[ "Propeller 2 version of Auduino granular synthesizer — Parallax Forums\n\n# Propeller 2 version of Auduino granular synthesizer\n\nI am slowly learning to program the Propeller 2 chip and as an exercise I decided to implement the remarkable Auduino granular synth on the P2. Auduino was originally written for the Arduino platform and is capable of producing a far wider range of timbres than might be expected given its relative simple design.\nFor my P2 implementation, I built a control panel with two analog joysticks and some potentiometers, and I added a MIDI interface. In the video below, a demonstration of how Auduino-style granular synthesis works is followed by some analog noodling, then some MIDI keyboard noodling, and finally a rendition of one of my favorite synth solos.\n\nHere's the code. I would be grateful for any suggestions for improvement.\n\n```CON\n_xinfreq = 20_000_000\n_clkfreq = 288_000_000\nBASEPIN_DAC = 6\n\nNPOTS = 7\niDECAY0 = 0\niINC0 = 1\niDECAY1 = 2\niINC1 = 3\niINC = 4\niVOL0 = 5\niVOL1 = 6\n\ndat\npotPins byte 8, 9, 10, 11, 13, 12, 14\nminValue word 0, 100, 0, 100, 0, 100, 0\nmaxValue long 200, 4000, 200, 4000, 2000, 1024, 1024\npotValues long 0, 0, 0, 0, 0, 0, 0\n\nvar\nlong stack1\nlong stack2\n\nOBJ\nmidi: \"jm_fullduplexserial\"\ntx: \"jm_fullduplexserial\"\n\nvar\nword midiNote\nword midiVel\nword inc\n\npri midiTask() | state, b, s, n, l, bend\nbend := 0 << 24 ' +/- semitones << 24\nmidi.start(25, -1, 0, 31_250)\nmidiNote := -1 ' something invalid\n\nrepeat\nb := midi.rx()\nif b & \\$80\ns := b & \\$f0 ' ignore channel\nstate := 0\nelse\nif state == 0 ' note on/off note byte or pitch bend low byte\nif s == \\$90 or s == \\$80\nn := b\nstate := 1\nelseif s == \\$e0\nl := b\nstate := 2\nelseif state == 1 ' note on/off velocity\nif s == \\$90 ' note on\nmidiNote := n\nmidiVel := b\ninc := incFromNote(midiNote, bend)\nelse 'note off\nif midiNote == n\nmidiVel := 0\ninc := 0\nstate := 0\nelseif state == 2 ' pitch bend high byte\nbend := b << 7 + l ' 16-bit bend [0..16384)\nbend -= \\$2000 ' [-8192..8192)\n' bend >> 12 would be [-2...2), +/- 2 semitones\n' but we need to scale by 2^24, so:\nbend <<= 24 - 12\nif midiVel\ninc := incFromNote(midiNote, bend)\nstate := 0\n\npri incFromNote(note, bend) : result | freq, K\n{\nbend is semitones * 2^24\n\nfreq = 2 ^ ((note - 69) / 12) * 440\ninc = freq / 48000 * 65536\n\n}\nK := 16\nfreq := QEXP ((((note - 69) << 24 + bend) / 12) << 3 + K << 27) * 440 ' frequency << K\nresult := freq / 48000\n\nPUB main()\nplaySounds(false)\n\npri playSounds(isMidi) | i, ct, y , amp0, decay0, inc0, ph0, amp1, decay1, inc1, ph1, ph, out, vol0, vol1\n\npinstart(BASEPIN_DAC addpins 1, P_DAC_124R_3V | P_DAC_DITHER_RND | P_OE, 6_000, 0) ' 48kHz\nwaitms(500)\n\nct := getct()\n\nrepeat\ninc0 := potValues[iINC0]\ndecay0 := potValues[iDECAY0]\ninc1 := potValues[iINC1]\ndecay1 := potValues[iDECAY1]\nvol0 := potValues[iVOL0]\nvol1 := potValues[iVOL1]\nifnot isMidi\ninc := potValues[iINC]\n\nph += inc\nif ph.\nph. := 0\nph0 := 0\namp0 := vol0 << 16\nph1 := 0\namp1 := vol1 << 16\n\ny := ph0.[14..0] ' 0..7fff\nif ph0.\n!= y\ny -= \\$4000 ' -\\$4000..3fff\ny scas= amp0\nout := y\n\ny := ph1.[14..0] ' 0..7fff\nif ph1.\n!= y\ny -= \\$4000 ' -\\$4000..3fff\ny scas= amp1\n\nout += y\nout ^= \\$8000\n\nwaitct(ct += 6000)\n\nph0 += inc0\nph1 += inc1\namp0 sca= \\$ffff_ffff + (decay0 - 200) << 16\namp1 sca= \\$ffff_ffff + (decay1 - 200) << 16\n\nrepeat i from 0 to NPOTS - 1\n\nrepeat\nrepeat i from 0 to NPOTS - 1\n\n{{\n\nPermission is hereby granted, free of charge, to any person obtaining a copy of this\nsoftware and associated documentation files (the \"Software\"), to deal in the Software\nwithout restriction, including without limitation the rights to use, copy, modify,\nmerge, publish, distribute, sublicense, and/or sell copies of the Software, and to\npermit persons to whom the Software is furnished to do so, subject to the following\nconditions:\n\nThe above copyright notice and this permission notice shall be included in all copies\nor substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,\nINCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A\nPARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT\nHOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF\nCONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE\nOR THE USE OR OTHER DEALINGS IN THE SOFTWARE.\n\n}}\n```\n\n• edited 2023-05-21 14:29\n\nNeato!\n\nI would suggest moving midiTask() and incFromNote(note, bend) below main() so there is no confusion where the program starts. I've been experimenting with MIDI a bit, but haven't fully sussed out dealing with my keyboard/controller (a 25-yr olf M-Audio Oxygen 8) that sends timing data mixed in with notes, and does running status style outputs).\n\nConsider declaring a constant for your MIDI input pin, as that could move with different designs.\n\nGiven the rate of MIDI you could save a cog removing one instance of jm_fullduplexserial and using the smart pin directly.\n\n```pub midi_task() | x\n\nx := ((clkfreq / 31_250) << 16) | 7\n\npinstart(MIDI_IN, P_ASYNC_RX, x, 0)\n\nrepeat\nb := rdpin(MIDI_IN) >> 24\n\nif b ...\n```\n• Thank you for the great suggestions, @JonnyMac, and thanks for jm_analog_in and jm_fullduplexserial! Some day I'll understand smart pins.\n\n• I don't know how much time you have left in your 48kHz loop, but you might find a few space code cycles here and there by running simple timing tests like this:\n\n``` t := getct()\ny := x.[14..0]\nt := getct()-t-40\ndebug(udec_long(t))\n\nt := getct()\ny := x & \\$7FFF\nt := getct()-t-40\ndebug(udec_long(t))\n```\n\nNote that the second version is faster\n\n• edited 2023-05-22 04:07\n\nA few minutes later...\n\nWell, it turns out you have a lot of time in your loop, even if using Propeller Tool (not compiled).", null, "I added pinlow() immediately before your waitct() and pinhigh() immediately after. You've got ~10us of available bandwidth.\n\n• nice\n\n• Thanks, @Ludis !" ]
[ null, "https://forums.parallax.com/uploads/editor/vc/evg8koygzatj.png", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.70599717,"math_prob":0.96043617,"size":5800,"snap":"2023-40-2023-50","text_gpt3_token_len":1759,"char_repetition_ratio":0.079020016,"word_repetition_ratio":0.019305019,"special_character_ratio":0.3413793,"punctuation_ratio":0.17104149,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9617604,"pos_list":[0,1,2],"im_url_duplicate_count":[null,1,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2023-12-02T02:39:38Z\",\"WARC-Record-ID\":\"<urn:uuid:f20428a9-1a31-4416-b1c8-62eb5458cf46>\",\"Content-Length\":\"87720\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:e66614ff-896d-4ae0-9f2f-de4ad24b0575>\",\"WARC-Concurrent-To\":\"<urn:uuid:f2301ae6-5690-4c1f-9519-4a79975771df>\",\"WARC-IP-Address\":\"3.129.223.39\",\"WARC-Target-URI\":\"https://forums.parallax.com/discussion/175363/propeller-2-version-of-auduino-granular-synthesizer\",\"WARC-Payload-Digest\":\"sha1:36JIQVIS6UJGOAIMLSKQHF3VTXMNFZYX\",\"WARC-Block-Digest\":\"sha1:XYXPOFXX4RDT2UDNO5OVO45OFRRPIOAG\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2023/CC-MAIN-2023-50/CC-MAIN-2023-50_segments_1700679100309.57_warc_CC-MAIN-20231202010506-20231202040506-00391.warc.gz\"}"}
https://www.sofolympiadtrainer.com/forum/imo/0/427
[ "# User Forum\n\nSubject :IMO    Class : Class 5\n\nClass : Class 6\n\n## Ans 2:\n\nClass : Class 7\nfigure 1 has 2 lines of symmetry and figure 2 has 4 lines of symmetry. Rest have no line of symmetry\n\n## Ans 3:\n\nClass : Class 5\n1. figure one has only one line of symetry and figure 3 and 4 has no lines of symetry\n\n## Ans 4:\n\nClass : Class 7\nFigure 1 has two lines of symmetry, figure 2 has four lines of symmetry and rest have no line of symmetry.\n\n## Ans 5:\n\nClass : Class 5\n2\n\nSubject :IMO    Class : Class 5\n\n## Ans 1:\n\nClass : Class 5\n\nSubject :IMO    Class : Class 3\n\nClass : Class 1\n\nSubject :IMO    Class : Class 5\n\nClass : Class 1\nThe angle OUT is of 180 degrees because it is a straight line. Hence, the angle RUN will be X+23=180-(32+23)=125.\n\nSubject :IMO    Class : Class 5\n\nClass : Class 8\n\n## Ans 2:\n\nClass : Class 5\nThe answer is 192 solution- 48/2=24 (24+24+24)+(24+24+24+24+24)=192\n\nSubject :IMO    Class : Class 6\n\n## Ans 1:\n\nClass : Class 9\nthe ans. is 200m . fig x has 12 sides so length of 1 side = 300/12 =25m . fig y has 8 sides so perimeter = 25 x 8 = 200m\n\nClass : Class 6\nB\n\nClass : Class 8\n\n## Ans 4:\n\nClass : Class 6\niu7tgo87rfo\n\nSubject :IMO    Class : Class 5\n\nClass : Class 1\n\nSubject :IMO    Class : Class 7\n\n## Ans 1:\n\nClass : Class 7\n\nSubject :IMO    Class : Class 4\n\nClass : Class 4\n\n## Ans 2:\n\nClass : Class 6\nB is the answer means 140\n\n## Ans 3:\n\nClass : Class 6\nB is the answer means 140\n\nClass : Class 6\nb=140 kg" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.96326655,"math_prob":0.40046144,"size":1569,"snap":"2020-10-2020-16","text_gpt3_token_len":460,"char_repetition_ratio":0.111821085,"word_repetition_ratio":0.006329114,"special_character_ratio":0.31230083,"punctuation_ratio":0.05965909,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9840616,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2020-03-31T20:07:25Z\",\"WARC-Record-ID\":\"<urn:uuid:b65035ef-6048-4166-a024-1123c4575dd5>\",\"Content-Length\":\"424549\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:28a373b2-cb07-4a1c-9a95-58aa37147ecb>\",\"WARC-Concurrent-To\":\"<urn:uuid:32d2e33d-914a-47f9-89ae-906f7a9c5f85>\",\"WARC-IP-Address\":\"52.76.64.191\",\"WARC-Target-URI\":\"https://www.sofolympiadtrainer.com/forum/imo/0/427\",\"WARC-Payload-Digest\":\"sha1:WDBWXIQWZUO664NKUNSZOR3LRNPN7KJ3\",\"WARC-Block-Digest\":\"sha1:JY5AU47ZI55M2G4PMCL7XYCQZWTM2A3G\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2020/CC-MAIN-2020-16/CC-MAIN-2020-16_segments_1585370503664.38_warc_CC-MAIN-20200331181930-20200331211930-00449.warc.gz\"}"}
https://answers.everydaycalculation.com/add-fractions/70-72-plus-25-10
[ "Solutions by everydaycalculation.com\n\n1st number: 70/72, 2nd number: 2 5/10\n\n70/72 + 25/10 is 125/36.\n\n1. Find the least common denominator or LCM of the two denominators:\nLCM of 72 and 10 is 360\n2. For the 1st fraction, since 72 × 5 = 360,\n70/72 = 70 × 5/72 × 5 = 350/360\n3. Likewise, for the 2nd fraction, since 10 × 36 = 360,\n25/10 = 25 × 36/10 × 36 = 900/360\n350/360 + 900/360 = 350 + 900/360 = 1250/360\n5. 1250/360 simplified gives 125/36\n6. So, 70/72 + 25/10 = 125/36\nIn mixed form: 317/36\n\nMathStep (Works offline)", null, "Download our mobile app and learn to work with fractions in your own time:" ]
[ null, "https://answers.everydaycalculation.com/mathstep-app-icon.png", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.768809,"math_prob":0.999495,"size":754,"snap":"2020-34-2020-40","text_gpt3_token_len":308,"char_repetition_ratio":0.15333334,"word_repetition_ratio":0.0,"special_character_ratio":0.55437666,"punctuation_ratio":0.093023255,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.99686176,"pos_list":[0,1,2],"im_url_duplicate_count":[null,null,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2020-10-02T00:00:14Z\",\"WARC-Record-ID\":\"<urn:uuid:9a697e06-cbe6-4e3d-bfb4-52bfdb91992b>\",\"Content-Length\":\"7703\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:09e824b5-4e28-43b7-a85f-212c43237f73>\",\"WARC-Concurrent-To\":\"<urn:uuid:8cfa8afe-04ec-4c1c-933e-b075862fa862>\",\"WARC-IP-Address\":\"96.126.107.130\",\"WARC-Target-URI\":\"https://answers.everydaycalculation.com/add-fractions/70-72-plus-25-10\",\"WARC-Payload-Digest\":\"sha1:4I5SOPLVBMJYO42DTOG7BP6V7NDBV356\",\"WARC-Block-Digest\":\"sha1:Y2PVF5VHO3WKP5FZX5OCQUPSWZKQJMJ3\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2020/CC-MAIN-2020-40/CC-MAIN-2020-40_segments_1600402132335.99_warc_CC-MAIN-20201001210429-20201002000429-00571.warc.gz\"}"}
https://www.flexiprep.com/NCERT-Exemplar-Solutions/Mathematics/Class-12/NCERT-Class-12-Mathematics-Exemplar-Chapter-3-Matrices-Part-12.html
[ "NCERT Class 12-Mathematics: Exemplar Chapter – 3 Matrices Part 12 (For CBSE, ICSE, IAS, NET, NRA 2022)\n\nDoorsteptutor material for CBSE/Class-12 is prepared by world's top subject experts: get questions, notes, tests, video lectures and more- for all subjects of CBSE/Class-12.\n\nQuestion 31:\n\nShow that if A and B are square matrices such that , then\n\n.\n\nBy matrix multiplication we can write:\n\nWe know that matrix multiplication is not commutative but it is given that:\n\n… proved\n\nQuestion 32:\n\nLet , and .\n\nShow that:\n\n(a)\n\n(b)\n\n(c)\n\n(d)\n\n(e)\n\n(f)\n\n(g)\n\n(h)\n\n(i)\n\nWe have, , and\n\n(i)\n\nAnd\n\nHence proved.\n\n(ii)\n\nAnd\n\nAlso,\n\nHence Proved.\n\n(iii)\n\nHence Proved.\n\n(iv)\n\nAnd\n\nAlso\n\nHence Proved.\n\n(v)\n\nNow,\n\nA. Hence Proved.\n\n(vi)\n\nAnd\n\nHence proved.\n\n(vii)\n\nNow,\n\nHence Proved.\n\n(viii)\n\nNow,\n\nAnd\n\n[Using Eq. (ii) and (iii) ]\n\n[Using Eq. (i) ] Hence proved\n\n(ix)\n\nHence proved.\n\nDeveloped by:" ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.79416597,"math_prob":0.94357276,"size":842,"snap":"2022-05-2022-21","text_gpt3_token_len":270,"char_repetition_ratio":0.15990454,"word_repetition_ratio":0.0,"special_character_ratio":0.3087886,"punctuation_ratio":0.20765027,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.99854743,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2022-01-19T01:03:43Z\",\"WARC-Record-ID\":\"<urn:uuid:074eed35-3838-41fd-bc73-5ba286d4dd23>\",\"Content-Length\":\"18282\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:5c43bad0-c420-43b6-9873-adfdb3b6c316>\",\"WARC-Concurrent-To\":\"<urn:uuid:522aa73c-cd6e-43f2-bc82-f341ff1bdae3>\",\"WARC-IP-Address\":\"104.21.77.56\",\"WARC-Target-URI\":\"https://www.flexiprep.com/NCERT-Exemplar-Solutions/Mathematics/Class-12/NCERT-Class-12-Mathematics-Exemplar-Chapter-3-Matrices-Part-12.html\",\"WARC-Payload-Digest\":\"sha1:WP6GNIF45N4FKJIOWBUDFMTFFSUOGPFA\",\"WARC-Block-Digest\":\"sha1:XJRBUIJY7XETAQHO7F762CRQBYFW547N\",\"WARC-Identified-Payload-Type\":\"application/xhtml+xml\",\"warc_filename\":\"/cc_download/warc_2022/CC-MAIN-2022-05/CC-MAIN-2022-05_segments_1642320301217.83_warc_CC-MAIN-20220119003144-20220119033144-00286.warc.gz\"}"}
https://www.sites.google.com/site/janbeck/cybersecurity-challenges-ctfs-and-more/angr-hooking-derecompiling-chainbreaker
[ "# Angr hooking - de/recompiling - chainbreaker\n\nThe executable that I am going to analyze here is interesting in several ways. First, no attempt at code obfuscation is made and the decompilers from both `Ghidra` and `IDA` produce code that can be recompiled with little effort. Also, the program is very short, making it a good example from an academic standpoint. The input is passed via a command line argument and so `angr` or `PinCTF` are natural first approaches to find the flag. However, there is just enough complication to prevent this from working and that is what makes this such a nice example to show progressive improvements to the `angr` input file using hooks. Let's see what the program does:\n\n``\\$ ./chainbreaker``\n``usage: ./chainbreaker SEED``\n\n``\\$ ./chainbreaker a``\n``Starting chainbreaker!``\n``ERROR``\n``Seed must be an integer!``\n\n``\\$ ./chainbreaker 0``\n``Starting chainbreaker!``\n``Seed 0 requires 96 links``\n\n``LINK 1 0 -> ERROR``\n``Invalid chain produced!``\n\n``\\$ ./chainbreaker 2``\n``Starting chainbreaker!``\n``Seed 2 requires 96 links``\n\n``LINK 1 2 -> 5 Sleeping for 5ms``\n``LINK 2 5 -> 20 Sleeping for 20ms``\n``LINK 3 20 -> 119 Sleeping for 119ms``\n``LINK 4 119 -> 426 Sleeping for 426ms``\n``LINK 5 426 -> 1529 Sleeping for 1529ms``\n``LINK 6 1529 -> 8160 Sleeping for 8160ms``\n``[ ...]``\n``LINK 94 2049 -> 16472 Sleeping for 16472ms``\n``LINK 95 16472 -> -445 Sleeping for 0ms``\n``LINK 96 -445 -> -1570 Sleeping for 0ms``\n``ERROR``\n``Starting seed doesnt match final output``\n\nOk. The program wants an integer seed, from which it produces a chain link number and then iterates through a series of computations to check if the seed is correct. The usage of the sleep timer precludes `PinCTF`. It is easy to patch the program to always sleep for 0 time, but different seeds use different link sizes and that alone causes any run time differential due to the final check to drown in the signal. Another natural thing to try is `angr`. Lets look at the decompiled code:\n\n`int __cdecl main(int argc, const char **argv, const char **envp)``{`` unsigned int v4; // [rsp+1Ch] [rbp-64h]`` char v5; // [rsp+20h] [rbp-60h]`` char v6; // [rsp+4Fh] [rbp-31h]`` char v7; // [rsp+50h] [rbp-30h]`` int inputasint; // [rsp+5Ch] [rbp-24h]`` int v9; // [rsp+60h] [rbp-20h]`` int i; // [rsp+64h] [rbp-1Ch]`` int v11; // [rsp+68h] [rbp-18h]`` int InputasInt2; // [rsp+6Ch] [rbp-14h]`\n` v9 = 100;`` if ( argc == 2 )`` {`` puts(\"Starting chainbreaker!\");`` std::allocator<char>::allocator(&v6);`` std::__cxx11::basic_string<char,std::char_traits<char>,std::allocator<char>>::basic_string(&v5, argv, &v6);`` inputasint = std::__cxx11::stoi((__int64)&v5, 0LL, 0xAu);`` std::__cxx11::basic_string<char,std::char_traits<char>,std::allocator<char>>::~basic_string(&v5);`` std::allocator<char>::~allocator(&v6);`` InputasInt2 = inputasint;`` v11 = 21309 * ((inputasint ^ 0x7B) + (inputasint ^ 0x141)) % 100;`` if ( v11 >= 0 )`` {`` if ( !v11 )`` v11 = 10; // if V11 is zero, make it 10`` }`` else`` {`` v11 = -v11; // else if v11 is negative, make it positive`` }`` printf(\"Seed %s requires %d links\\n\\n\", argv, (unsigned int)v11);`` for ( i = 0; i <= 99 && i < v11; ++i )`` {`` printf(\"LINK %d\\t\\t%d\\t->\\t\", (unsigned int)(i + 1), (unsigned int)InputasInt2);`` InputasInt2 = parse(inputasint, InputasInt2, i);`` v4 = InputasInt2;`` if ( InputasInt2 < 0 )`` v4 = 0;`` printf(\"%d\\t Sleeping for %dms\\n\", (unsigned int)InputasInt2, v4);`` std::chrono::duration<long,std::ratio<1l,1000l>>::duration<int,void>(&v7, &v4);`` std::this_thread::sleep_for<long,std::ratio<1l,1000l>>(&v7);`` }`` if ( i == 99 )`` {`` puts(\"ERROR\\nMaximum allowed iterations reached\");`` exit(1);`` }`` if ( inputasint == InputasInt2 && i == v11 )`` {`` puts(\"You have broken the chain!\");`` exit(0);`` }`` puts(\"ERROR\\nStarting seed doesnt match final output\");`` }`` else`` {`` puts(\"usage: ./chainbreaker SEED\");`` }`` return 0;``}`\n\nThe 'parse' function looks like this:\n\n`__int64 __fastcall parse(int a1, int a2, int a3)``{`` int v4; // [rsp+8h] [rbp-18h]`` int i; // [rsp+18h] [rbp-8h]`` int v6; // [rsp+1Ch] [rbp-4h]`\n` v4 = a2;`` if ( !a2 )`` {`` puts(\"ERROR\\nInvalid chain produced!\");`` exit(0);`` }`` if ( a2 < -4096 || a2 > 4096 )`` v4 = -(a2 % 4096);`` v6 = 1;`` for ( i = 0; i <= 2; ++i )`` v6 ^= v4 << i;`` return v6 + (v4 ^ (unsigned int)(a1 + a3 - 1)) + a1 - 15;``}`\n\nIt's fairly simple code. Many of the 'std::' calls are compiler generated from higher level string functions the original author used, as described here.\n\nNote that the input gets parsed into a 32 bit integer value. If we can get the computation to run fast enough, this challenge could be solved brute force. Since it's simple to do, first I want to try to recompile the code with some changes to optimize run time. I used Visual Studio for this case:\n\n`#include \"stdafx.h\"`\n`int invalid_chain = 0;``int ii =0;`\n`__int64 __fastcall parse(int a1, int a2, int a3)``{`` int v4; // [rsp+8h] [rbp-18h]`` int i; // [rsp+18h] [rbp-8h]`` int v6; // [rsp+1Ch] [rbp-4h]`\n` v4 = a2;`` if ( !a2 )`` {`` invalid_chain = 1; // Invalid chain produced`` return 0;`` }`` if ( a2 < -4096 || a2 > 4096 )`` v4 = -(a2 % 4096);`` v6 = 1;`` for ( i = 0; i <= 2; ++i )`` v6 ^= v4 << i;`` return v6 + (v4 ^ (unsigned int)(a1 + a3 - 1)) + a1 - 15;``}`\n`int _tmain(int argc, _TCHAR* argv[])``//int __cdecl main(int argc, const char **argv, const char **envp)``{`` unsigned int v4; // [rsp+1Ch] [rbp-64h]`` char v5; // [rsp+20h] [rbp-60h]`` char v6; // [rsp+4Fh] [rbp-31h]`` char v7; // [rsp+50h] [rbp-30h]`` int v8; // [rsp+5Ch] [rbp-24h]`` int v9; // [rsp+60h] [rbp-20h]`` int i; // [rsp+64h] [rbp-1Ch]`` int v11; // [rsp+68h] [rbp-18h]`` int v12; // [rsp+6Ch] [rbp-14h]`\n` v9 = 100;`\n` for (int counter=0x00000000;counter<=0xffffffff;counter++)`` {`` v8 = counter;`` v12 = v8;`` v11 = 0x533D * ((v8 ^ 0x7B) + (v8 ^ 0x141)) % 100;`` if ( v11 >= 0 )`` {`` if ( !v11 )`` v11 = 10;`` }`` else`` {`` v11 = -v11;`` }`` if (0 == (counter % 65536)) // limit the amount of information going to console`` printf(\"Seed %8.8x requires %d links\\n\", counter, (unsigned int)v11);`` for ( i = 0; i <= 99 && i < v11; ++i )`` {`` v12 = parse(v8, v12, i);`` if (invalid_chain== 1) continue; // if the parse() function determines an invalid chain, try next loop value`` v4 = v12;`` if ( v12 < 0 )`` v4 = 0;`` }`` if ( i == 99 )`` {`` continue; // Maximum allowed iterations reached - go try next loop value`` }`` if ((i <99)&& v8 == v12 && i == v11 &&(0==invalid_chain)) `` {`` puts(\"You have broken the chain!\");`` printf(\" %d \\n\", counter);`` return 1;`` }`` invalid_chain = 0;`` }`` return 0;``}`\n\nOn a LG Gram 17 laptop, this program can try the whole 32-bit keyspace in about 15 minutes. Modern computers are awesome!\n\n``Seed ffffd32a requires 72 links``\n``You have broken the chain!``\n`` -11478``\n\nBut this article is supposed to be about `angr` hooks, so lets continue there. A first crack at this should avoid code sections that 'puts' error messages and look for code paths that lead to `puts(\"You have broken the chain!\")`.\n\n``import time``\n``import claripy``\n``import angr``\n\n``# specify good and bad endpoints``\n``bad1 = (0x40149D) # ERROR\\nStarting seed doesnt match final``\n``bad2 = (0x4014AB) # usage: ./chainbreaker SEED``\n``bad3 = (0x401461) # ERROR\\nMaximum allowed iterations reached``\n``bad4 = (0x40122C) # ERROR\\nInvalid chain produced!``\n``good = (0x401487) # You have broken the chain!``\n\n``project = angr.Project(\"./chainbreaker\", auto_load_libs=True)``\n``#create an initial state with a symbolic bit vector as argv1``\n``sym_arg_size = 1 #Length in Bytes because we will multiply with 8 later``\n``sym_arg = claripy.BVS('sym_arg', 8*sym_arg_size)``\n``argv = [project.filename]``\n``argv.append(sym_arg)``\n\n``initial_state = project.factory.full_init_state(args=argv)``\n``for byte in sym_arg.chop(8):``\n`` initial_state.add_constraints(byte >= '\\x30') # '0'``\n`` initial_state.add_constraints(byte <= '\\x39') # '9'``\n``sm = project.factory.simulation_manager(initial_state)``\n\n``t0 = time.time()``\n``sm.explore(find=good,avoid=[bad1,bad2,bad3,bad4])``\n``t1 = time.time()``\n``print (t1-t0)``\n``found = sm.found``\n``result = found.solver.eval(sym_arg, cast_to=bytes)``\n``print(result)``\n\nThis code limits the input seed to a single digit, and yet angr has not finished hours later. And we would only get an error message at that point any way because the correct input has 6 digits and starts with a '-'. Since we already have the key, we can investigate what goes wrong. With the input modified like this:\n\n``data = '-1147' # this is the start of the correct password``\n``stringAsList = list(data); # turn string into list``\n``stringAsList.append(sym_arg) # declare how long the ``\n``bytestring = claripy.Concat(*stringAsList) # turn list into bytestring``\n``argv.append(bytestring)``\n``print(argv)``\n\nIf we ignore the fact that the answer is a negative number, we can see that the original angr input file does, in fact, find the right solution eventually - it's just very slow.\n\n``(angr) \\$ python angrfile ``\n\n``[...]``\n\n``<BV48 0x2d31313437 .. sym_arg_47_8>``\n``['./chainbreaker', <BV48 0x2d31313437 .. sym_arg_47_8>]``\n\n``[...]``\n\n``813.7370481491089``\n``b'8'``\n\nAbout 800 seconds for a single symbol; about 1600 for two, but after many hours 3 had not yet finished.\n\nNext, lets patch out the delay so that angr does not symbolize it. From Ghidra, we get the addresses to hook (after rebasing the position-independent executable to 0x400000)\n\n``00401441 e8 e8 02 CALL std::chrono::duration<long,std--ratio<1l,1000l undefined duration<int,void>(dur``\n`` 00 00``\n``00401446 48 8d 45 LEA RAX => local_38 ,[RBP + -0x30 ]``\n`` d0``\n``0040144a 48 89 c7 MOV param_1 ,RAX``\n``0040144d e8 cb 04 CALL std::this_thread::sleep_for<long,std--ratio<1l void sleep_for<long,std--ratio<1``\n`` 00 00``\n``00401452 83 45 e4 ADD dword ptr [RBP + local_24 ],0x1``\n`` 01``\n\nAnd it's pretty easy to hook these calls:\n\n``def durationhook(state):``\n`` print(\"0x401441 hooked\")``\n``project.hook(0x401441, durationhook, length=5) # hook this address, execute durationhook() and then skip 5 bytes, skipping the 'call' at this address``\n``def sleep_forhook(state):``\n`` print(\"0x40144d hooked\")``\n``project.hook(0x40144d, sleep_forhook, length=5) # hook this address, execute sleep_forhook() and then skip 5 bytes, skipping the 'call' at this address``\n\nAn interesting fact in this case is that while the angr documentation states:\n\n\"The CFG analysis does not distinguish between code from different binary objects. This means that by default, it will try to analyze control flow through loaded shared libraries. This is almost never intended behavior, since this will extend the analysis time to several days, probably. To load a binary without shared libraries, add the following keyword argument to the `Project` constructor: `load_options={'auto_load_libs': False}` \"\n\nthe reality is that `auto_load_libs` has the opposite effect here.\n\nThe two hooks yield a computation time (for 1-symbolic-digit integers) of about 30 minutes. Can anything else be done for the current case? There are some messages during the angr execution that point to some potential targets:\n\n`WARNING | 2020-01-12 16:13:03,410 | angr.state_plugins.symbolic_memory | The program is accessing memory or registers with an unspecified value. This could indicate unwanted behavior.``WARNING | 2020-01-12 16:13:03,410 | angr.state_plugins.symbolic_memory | angr will cope with this by generating an unconstrained symbolic variable and continuing. You can resolve this by:``WARNING | 2020-01-12 16:13:03,410 | angr.state_plugins.symbolic_memory | 1) setting a value to the initial state``WARNING | 2020-01-12 16:13:03,410 | angr.state_plugins.symbolic_memory | 2) adding the state option ZERO_FILL_UNCONSTRAINED_{MEMORY,REGISTERS}, to make unknown regions hold null``WARNING | 2020-01-12 16:13:03,410 | angr.state_plugins.symbolic_memory | 3) adding the state option SYMBOL_FILL_UNCONSTRAINED_{MEMORY_REGISTERS}, to suppress these messages.``WARNING | 2020-01-12 16:13:03,411 | angr.state_plugins.symbolic_memory | Filling memory at 0x7ffffffffff0000 with 207 unconstrained bytes referenced from 0x409d2a0 (strlen+0x0 in libc.so.6 (0x9d2a0))``WARNING | 2020-01-12 16:13:03,566 | angr.state_plugins.symbolic_memory | Filling memory at 0x7fffffffffeff00 with 6 unconstrained bytes referenced from 0x40b9ff0 (memcpy+0x0 in libc.so.6 (0xb9ff0))``WARNING | 2020-01-12 16:13:03,690 | angr.state_plugins.symbolic_memory | Filling memory at 0x7fffffffffefe68 with 8 unconstrained bytes referenced from 0x4049340 (strtoq+0x0 in libc.so.6 (0x49340))`\n\nso `angr` does not know that the `sym_arg_size = 1` constrains these values. I have seen these warnings many times for programs that use string functions, so it's valuable to see how much of a problem this really is.\n\n`printf` and puts seem obvious candidates to hook, as we don't need their output in this analysis:\n\n`def puts_hook(state):`` print(\"puts hooked\")``project.hook_symbol('puts', puts_hook)`\n`def printfhook(state):`` pass`` #print(\"printf hooked\")``project.hook(0x4013b1, printfhook, length=5) # hook this address, execute printfhook() and then skip 5 bytes, skipping the 'call' at this address``project.hook(0x4013ec, printfhook, length=5) # hook this address, execute printfhook() and then skip 5 bytes, skipping the 'call' at this address``project.hook(0x40142e, printfhook, length=5) # hook this address, execute printfhook() and then skip 5 bytes, skipping the 'call' at this address`\n\nWhich results in a 25% run time reduction, but the messages don't all go away.\n\n`WARNING | 2020-01-12 20:03:19,308 | angr.project | Address is already hooked, during hook(0x4083cc0, <function puts_hook at 0x7f535df95620>). Re-hooking.``puts hooked``WARNING | 2020-01-12 20:03:21,660 | angr.state_plugins.symbolic_memory | The program is accessing memory or registers with an unspecified value. This could indicate unwanted behavior.``WARNING | 2020-01-12 20:03:21,660 | angr.state_plugins.symbolic_memory | angr will cope with this by generating an unconstrained symbolic variable and continuing. You can resolve this by:``WARNING | 2020-01-12 20:03:21,660 | angr.state_plugins.symbolic_memory | 1) setting a value to the initial state``WARNING | 2020-01-12 20:03:21,660 | angr.state_plugins.symbolic_memory | 2) adding the state option ZERO_FILL_UNCONSTRAINED_{MEMORY,REGISTERS}, to make unknown regions hold null``WARNING | 2020-01-12 20:03:21,660 | angr.state_plugins.symbolic_memory | 3) adding the state option SYMBOL_FILL_UNCONSTRAINED_{MEMORY_REGISTERS}, to suppress these messages.``WARNING | 2020-01-12 20:03:21,660 | angr.state_plugins.symbolic_memory | Filling memory at 0x7ffffffffff0000 with 207 unconstrained bytes referenced from 0x409d2a0 (strlen+0x0 in libc.so.6 (0x9d2a0))``WARNING | 2020-01-12 20:03:21,816 | angr.state_plugins.symbolic_memory | Filling memory at 0x7fffffffffeff00 with 6 unconstrained bytes referenced from 0x40b9ff0 (memcpy+0x0 in libc.so.6 (0xb9ff0))`\n\nAnd it looks like the `puts` function was already hooked by the library simulation code. Re-hooking removes the call to `stroq`. The other calls are due to `stoi` and its' support calls:\n\n``std::allocator<char>::allocator(&v6);``\n``std::__cxx11::basic_string<char,std::char_traits<char>,std::allocator<char>>::basic_string(&v5, argv, &v6);``\n``inputasint = std::__cxx11::stoi((__int64)&v5, 0LL, 0xAu);``\n``std::__cxx11::basic_string<char,std::char_traits<char>,std::allocator<char>>::~basic_string(&v5);``\n``std::allocator<char>::~allocator(&v6);``\n\nThe hooking of `stoi` requires quite a bit of changes, so here the complete script:\n\n`import time``import claripy``import angr`\n`# specify good and bad endpoints``bad1 = (0x40149D) # ERROR\\nStarting seed doesnt match final``bad2 = (0x4014AB) # usage: ./chainbreaker SEED``bad3 = (0x401461) # ERROR\\nMaximum allowed iterations reached``bad4 = (0x40122C) # ERROR\\nInvalid chain produced!``good = (0x401487) # You have broken the chain!`\n`project = angr.Project(\"./chainbreaker\", auto_load_libs=True)`\n`argv = [project.filename]``data = '-1147' # dummy data, since we are hooking stoi``argv.append(data)``print(argv)``initial_state = project.factory.full_init_state(args=argv)``sm = project.factory.simulation_manager(initial_state)`\n`aux_arg = claripy.BVS('sym_arg', 8*4) # declase a 32 bit symbolic variable``initial_state.add_constraints(aux_arg <= -11000) # constrain variable to range we know the answer to be in``initial_state.add_constraints(aux_arg >= -12000) # constrain variable to range we know the answer to be in`\n`def durationhook(state):`` print(\"0x401441 hooked\")``project.hook(0x401441, durationhook, length=5) # hook this address, execute durationhook() and then skip 5 bytes, skipping the 'call' at this address``def sleep_forhook(state):`` print(\"0x40144d hooked\")``project.hook(0x40144d, sleep_forhook, length=5) # hook this address, execute sleep_forhook() and then skip 5 bytes, skipping the 'call' at this address``def allocatorhook(state):`` print(\"allocator hooked\")``project.hook(0x4012e5, allocatorhook, length=5) # hook this address, execute allocatorhook() and then skip 5 bytes, skipping the 'call' at this address``def allocatordestructorhook(state):`` print(\"allocatordestructor hooked\")``project.hook(0x401334, allocatordestructorhook, length=5) # hook this address, execute allocatordestructorhook() and then skip 5 bytes, skipping the 'call' at this address``def basicstringhook(state):`` print(\"basicstring hooked\")``project.hook(0x401303, basicstringhook, length=5) # hook this address, execute basicstringhook() and then skip 5 bytes, skipping the 'call' at this address``def basicstringdestructorhook(state):`` print(\"basicstringdestructor hooked\")``project.hook(0x401328, basicstringdestructorhook, length=5) # hook this address, execute basicstringdestructorhook() and then skip 5 bytes, skipping the 'call' at this address``def stoihook(state):`` state.regs.rax = aux_arg`` print(\"stoi hooked\")`` print(state.regs.rax)``project.hook(0x401319, stoihook, length=5) # hook this address, execute stoihook() and then skip 5 bytes, skipping the 'call' at this address``def puts_hook(state):`` print(\"puts hooked\")``project.hook_symbol('puts', puts_hook)``def printfhook(state):`` pass`` #print(\"printf hooked\")``project.hook(0x4013b1, printfhook, length=5) # hook this address, execute printfhook() and then skip 5 bytes, skipping the 'call' at this address``project.hook(0x4013ec, printfhook, length=5) # hook this address, execute printfhook() and then skip 5 bytes, skipping the 'call' at this address``project.hook(0x40142e, printfhook, length=5) # hook this address, execute printfhook() and then skip 5 bytes, skipping the 'call' at this address`\n`t0 = time.time()``sm.explore(find=good,avoid=[bad1,bad2,bad3,bad4])``t1 = time.time()``print (t1-t0)``found = sm.found``print(aux_arg)``result = found.solver.eval(aux_arg)``print(result)``result = result - 4294967296``print(result)`\n\nAnd the warnings about the unconstrained bytes disappeared:\n\n`WARNING | 2020-01-13 01:26:35,067 | cle.loader | The main binary is a position-independent executable. It is being loaded with a base address of 0x400000.``['./chainbreaker', '-1147']``WARNING | 2020-01-13 01:26:36,018 | angr.project | Address is already hooked, during hook(0x4083cc0, <function puts_hook at 0x7f2cf0c88ae8>). Re-hooking.``puts hooked``allocator hooked``basicstring hooked``stoi hooked``<SAO <BV64 0x0 .. sym_arg_47_32>>``basicstringdestructor hooked``allocatordestructor hooked`\n\nNow an interesting thing happens, for both\n\n``initial_state.add_constraints(aux_arg <= -11470) # constrain variable to range we know the answer to be in``\n``initial_state.add_constraints(aux_arg >= -11480) # constrain variable to range we know the answer to be in``\n\nand\n\n``initial_state.add_constraints(aux_arg <= -11400) # constrain variable to range we know the answer to be in``\n``initial_state.add_constraints(aux_arg >= -11500) # constrain variable to range we know the answer to be in``\n\nthe execution time is about 900 seconds, but for\n\n``initial_state.add_constraints(aux_arg <= -11000) # constrain variable to range we know the answer to be in``\n``initial_state.add_constraints(aux_arg >= -12000) # constrain variable to range we know the answer to be in``\n\nAfter setting all these hooks, all that is left of the program is symbolic execution of the user space, but in this case angr is incapable of solving it. The hooking however does show its value. Instead of not being able to solve for even the last digit, `angr` can now solve 2. We also learned that the common warnings about the `printf` symbolization do not necessarily have to be too much of a concern." ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.6714849,"math_prob":0.858206,"size":19883,"snap":"2020-24-2020-29","text_gpt3_token_len":5962,"char_repetition_ratio":0.119020075,"word_repetition_ratio":0.37247387,"special_character_ratio":0.33133832,"punctuation_ratio":0.17760514,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9523278,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2020-07-16T03:09:50Z\",\"WARC-Record-ID\":\"<urn:uuid:31bd4bc3-594f-461e-a16b-8e3b85bf8bff>\",\"Content-Length\":\"152886\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:bbcdd4d9-491c-4ba8-90b7-5734db1da345>\",\"WARC-Concurrent-To\":\"<urn:uuid:f33b3349-9ce7-4b9e-852b-d73dac315e96>\",\"WARC-IP-Address\":\"142.250.31.189\",\"WARC-Target-URI\":\"https://www.sites.google.com/site/janbeck/cybersecurity-challenges-ctfs-and-more/angr-hooking-derecompiling-chainbreaker\",\"WARC-Payload-Digest\":\"sha1:ZN27LULN5NTKRELUH4VQJPFPBEDFBTJ3\",\"WARC-Block-Digest\":\"sha1:3FBXQ2ZG3OH6ZF3EITAECVFFTQRYS2J4\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2020/CC-MAIN-2020-29/CC-MAIN-2020-29_segments_1593657181335.85_warc_CC-MAIN-20200716021527-20200716051527-00412.warc.gz\"}"}
https://nbviewer.ipython.org/github/cs109/content/blob/master/HW2_solutions.ipynb
[ "# Homework 2: Desperately Seeking Silver (Solutions)¶\n\nDue Thursday, Oct 3, 11:59 PM", null, "In HW1, we explored how to make predictions (with uncertainties) about upcoming elections based on the Real Clear Politics poll. This assignment also focuses on election prediction, but we are going to implement and evaluate a number of more sophisticated forecasting techniques.\n\nWe are going to focus on the 2012 Presidential election. Analysts like Nate Silver, Drew Linzer, and Sam Wang developed highly accurate models that correctly forecasted most or all of the election outcomes in each of the 50 states. We will explore how hard it is to recreate similarly successful models. The goals of this assignment are:\n\n1. To practice data manipulation with Pandas\n2. To develop intuition about the interplay of precision, accuracy, and bias when making predictions\n3. To better understand how election forecasts are constructed\n\nThe data for our analysis will come from demographic and polling data. We will simulate building our model on October 2, 2012 -- approximately one month before the election.\n\n### Instructions¶\n\nThe questions in this assignment are numbered. The questions are also usually italicised, to help you find them in the flow of this notebook. At some points you will be asked to write functions to carry out certain tasks. Its worth reading a little ahead to see how the function whose body you will fill in will be used.\n\nThis is a long homework. Please do not wait until the last minute to start it!\n\nThe data for this homework can be found at this link. Download it to the same folder where you are running this notebook, and uncompress it. You should find the following files there:\n\n1. us-states.json\n3. predictwise.csv\n4. g12.csv\n5. g08.csv\n6. 2008results.csv\n7. nat.csv\n8. p04.csv\n9. 2012results.csv\n10. cleaned-state_data2012.csv\n\n#### Setup and Plotting code¶\n\nIn :\n%matplotlib inline\nfrom collections import defaultdict\nimport json\n\nimport numpy as np\nimport matplotlib.pyplot as plt\nimport pandas as pd\n\nfrom matplotlib import rcParams\nimport matplotlib.cm as cm\nimport matplotlib as mpl\n\n#colorbrewer2 Dark2 qualitative color table\ndark2_colors = [(0.10588235294117647, 0.6196078431372549, 0.4666666666666667),\n(0.8509803921568627, 0.37254901960784315, 0.00784313725490196),\n(0.4588235294117647, 0.4392156862745098, 0.7019607843137254),\n(0.9058823529411765, 0.1607843137254902, 0.5411764705882353),\n(0.4, 0.6509803921568628, 0.11764705882352941),\n(0.9019607843137255, 0.6705882352941176, 0.00784313725490196),\n(0.6509803921568628, 0.4627450980392157, 0.11372549019607843)]\n\nrcParams['figure.figsize'] = (10, 6)\nrcParams['figure.dpi'] = 150\nrcParams['axes.color_cycle'] = dark2_colors\nrcParams['lines.linewidth'] = 2\nrcParams['axes.facecolor'] = 'white'\nrcParams['font.size'] = 14\nrcParams['patch.edgecolor'] = 'white'\nrcParams['patch.facecolor'] = dark2_colors\nrcParams['font.family'] = 'StixGeneral'\n\ndef remove_border(axes=None, top=False, right=False, left=True, bottom=True):\n\"\"\"\nMinimize chartjunk by stripping out unnecesasry plot borders and axis ticks\n\nThe top/right/left/bottom keywords toggle whether the corresponding plot border is drawn\n\"\"\"\nax = axes or plt.gca()\nax.spines['top'].set_visible(top)\nax.spines['right'].set_visible(right)\nax.spines['left'].set_visible(left)\nax.spines['bottom'].set_visible(bottom)\n\n#turn off all ticks\nax.yaxis.set_ticks_position('none')\nax.xaxis.set_ticks_position('none')\n\n#now re-enable visibles\nif top:\nax.xaxis.tick_top()\nif bottom:\nax.xaxis.tick_bottom()\nif left:\nax.yaxis.tick_left()\nif right:\nax.yaxis.tick_right()\n\npd.set_option('display.width', 500)\npd.set_option('display.max_columns', 100)\n\nIn :\n#this mapping between states and abbreviations will come in handy later\nstates_abbrev = {\n'AL': 'Alabama',\n'AR': 'Arkansas',\n'AS': 'American Samoa',\n'AZ': 'Arizona',\n'CA': 'California',\n'CT': 'Connecticut',\n'DC': 'District of Columbia',\n'DE': 'Delaware',\n'FL': 'Florida',\n'GA': 'Georgia',\n'GU': 'Guam',\n'HI': 'Hawaii',\n'IA': 'Iowa',\n'ID': 'Idaho',\n'IL': 'Illinois',\n'IN': 'Indiana',\n'KS': 'Kansas',\n'KY': 'Kentucky',\n'LA': 'Louisiana',\n'MA': 'Massachusetts',\n'MD': 'Maryland',\n'ME': 'Maine',\n'MI': 'Michigan',\n'MN': 'Minnesota',\n'MO': 'Missouri',\n'MP': 'Northern Mariana Islands',\n'MS': 'Mississippi',\n'MT': 'Montana',\n'NA': 'National',\n'NC': 'North Carolina',\n'ND': 'North Dakota',\n'NH': 'New Hampshire',\n'NJ': 'New Jersey',\n'NM': 'New Mexico',\n'NY': 'New York',\n'OH': 'Ohio',\n'OK': 'Oklahoma',\n'OR': 'Oregon',\n'PA': 'Pennsylvania',\n'PR': 'Puerto Rico',\n'RI': 'Rhode Island',\n'SC': 'South Carolina',\n'SD': 'South Dakota',\n'TN': 'Tennessee',\n'TX': 'Texas',\n'UT': 'Utah',\n'VA': 'Virginia',\n'VI': 'Virgin Islands',\n'VT': 'Vermont',\n'WA': 'Washington',\n'WI': 'Wisconsin',\n'WV': 'West Virginia',\n'WY': 'Wyoming'\n}\n\n\nHere is some code to plot State Chloropleth maps in matplotlib. make_map is the function you will use.\n\nIn :\n#adapted from https://github.com/dataiap/dataiap/blob/master/resources/util/map_util.py\n\nstate2poly = defaultdict(list)\n\nfor f in data['features']:\nstate = states_abbrev[f['id']]\ngeo = f['geometry']\nif geo['type'] == 'Polygon':\nfor coords in geo['coordinates']:\nstate2poly[state].append(coords)\nelif geo['type'] == 'MultiPolygon':\nfor polygon in geo['coordinates']:\nstate2poly[state].extend(polygon)\n\ndef draw_state(plot, stateid, **kwargs):\n\"\"\"\ndraw_state(plot, stateid, color=..., **kwargs)\n\nAutomatically draws a filled shape representing the state in\nsubplot.\nThe color keyword argument specifies the fill color. It accepts keyword\narguments that plot() accepts\n\"\"\"\nfor polygon in state2poly[stateid]:\nxs, ys = zip(*polygon)\nplot.fill(xs, ys, **kwargs)\n\ndef make_map(states, label):\n\"\"\"\nDraw a cloropleth map, that maps data onto the United States\n\nInputs\n-------\nstates : Column of a DataFrame\nThe value for each state, to display on a map\nlabel : str\nLabel of the color bar\n\nReturns\n--------\nThe map\n\"\"\"\nfig = plt.figure(figsize=(12, 9))\nax = plt.gca()\n\nif states.max() < 2: # colormap for election probabilities\ncmap = cm.RdBu\nvmin, vmax = 0, 1\nelse: # colormap for electoral votes\ncmap = cm.binary\nvmin, vmax = 0, states.max()\nnorm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)\n\nskip = set(['National', 'District of Columbia', 'Guam', 'Puerto Rico',\n'Virgin Islands', 'American Samoa', 'Northern Mariana Islands'])\nfor state in states_abbrev.values():\nif state in skip:\ncontinue\ncolor = cmap(norm(states.ix[state]))\ndraw_state(ax, state, color = color, ec='k')\n\nax1 = fig.add_axes([0.45, 0.70, 0.4, 0.02])\ncb1=mpl.colorbar.ColorbarBase(ax1, cmap=cmap,\nnorm=norm,\norientation='horizontal')\nax1.set_title(label)\nremove_border(ax, left=False, bottom=False)\nax.set_xticks([])\nax.set_yticks([])\nax.set_xlim(-180, -60)\nax.set_ylim(15, 75)\nreturn ax\n\n\n## Today: the day we make the prediction¶\n\nIn :\n# We are pretending to build our model 1 month before the election\nimport datetime\ntoday = datetime.datetime(2012, 10, 2)\ntoday\n\nOut:\ndatetime.datetime(2012, 10, 2, 0, 0)\n\n## Background: The Electoral College¶\n\nUS Presidential elections revolve around the Electoral College . In this system, each state receives a number of Electoral College votes depending on it's population -- there are 538 votes in total. In most states, all of the electoral college votes are awarded to the presidential candidate who recieves the most votes in that state. A candidate needs 269 votes to be elected President.\n\nThus, to calculate the total number of votes a candidate gets in the election, we add the electoral college votes in the states that he or she wins. (This is not entirely true, with Nebraska and Maine splitting their electoral college votes, but, for the purposes of this homework, we shall assume that the winner of the most votes in Maine and Nebraska gets ALL the electoral college votes there.)\n\nHere is the electoral vote breakdown by state:\n\nAs a matter of convention, we will index all our dataframes by the state name\n\nIn :\nelectoral_votes = pd.read_csv(\"data/electoral_votes.csv\").set_index('State')\n\nOut:\nState\nCalifornia 55\nTexas 38\nNew York 29\nFlorida 29\nIllinois 20\n\nTo illustrate the use of make_map we plot the Electoral College\n\nIn :\nmake_map(electoral_votes.Votes, \"Electoral Vlotes\");", null, "## Question 1: Simulating elections¶\n\n#### The PredictWise Baseline¶\n\nWe will start by examining a successful forecast that PredictWise made on October 2, 2012. This will give us a point of comparison for our own forecast models.\n\nPredictWise aggregated polling data and, for each state, estimated the probability that the Obama or Romney would win. Here are those estimated probabilities:\n\nIn :\npredictwise = pd.read_csv('data/predictwise.csv').set_index('States')\n\nOut:\nStates\nAlabama 0.000 1.000 9\nArizona 0.062 0.938 11\nArkansas 0.000 1.000 6\nCalifornia 1.000 0.000 55\n\n1.1 Each row is the probability predicted by Predictwise that Romney or Obama would win a state. The votes column lists the number of electoral college votes in that state. Use make_map to plot a map of the probability that Obama wins each state, according to this prediction.\n\nIn :\n#your code here\nmake_map(predictwise.Obama, \"P(Obama): PredictWise\")\n\nOut:\n<matplotlib.axes.AxesSubplot at 0x108465090>", null, "Later on in this homework we will explore some approaches to estimating probabilities like these and quatifying our uncertainty about them. But for the time being, we will focus on how to make a prediction assuming these probabilities are known.\n\nEven when we assume the win probabilities in each state are known, there is still uncertainty left in the election. We will use simulations from a simple probabilistic model to characterize this uncertainty. From these simulations, we will be able to make a prediction about the expected outcome of the election, and make a statement about how sure we are about it.\n\n1.2 We will assume that the outcome in each state is the result of an independent coin flip whose probability of coming up Obama is given by a Dataframe of state-wise win probabilities. Write a function that uses this predictive model to simulate the outcome of the election given a Dataframe of probabilities.\n\nIn :\n\"\"\"\nFunction\n--------\nsimulate_election\n\nInputs\n------\nmodel : DataFrame\nA DataFrame summarizing an election forecast. The dataframe has 51 rows -- one for each state and DC\nIt has the following columns:\nObama : Forecasted probability that Obama wins the state\nThe DataFrame is indexed by state (i.e., model.index is an array of state names)\n\nn_sim : int\nNumber of simulations to run\n\nReturns\n-------\nresults : Numpy array with n_sim elements\nEach element stores the number of electoral college votes Obama wins in each simulation.\n\"\"\"\n\ndef simulate_election(model, n_sim):\n#each column simulates a single outcome from the 50 states + DC\n#Obama wins the simulation if the random number is < the win probability\nsimulations = np.random.uniform(size=(51, n_sim))\n#summing over rows gives the total electoral votes for each simulation\n\n\nThe following cells takes the necessary DataFrame for the Predictwise data, and runs 10000 simulations. We use the results to compute the probability, according to this predictive model, that Obama wins the election (i.e., the probability that he receives 269 or more electoral college votes)\n\nIn :\nresult = simulate_election(predictwise, 10000)\n\nIn :\n#compute the probability of an Obama win, given this simulation\nprint (result >= 269).mean()\n\n0.9956\n\n\n1.3 Now, write a function called plot_simulation to visualize the simulation. This function should:\n\n• Build a histogram from the result of simulate_election\n• Overplot the \"victory threshold\" of 269 votes as a vertical black line (hint: use axvline)\n• Overplot the result (Obama winning 332 votes) as a vertical red line\n• Compute the number of votes at the 5th and 95th quantiles, and display the difference (this is an estimate of the outcome's uncertainty)\n• Display the probability of an Obama victory\nIn :\n\"\"\"\nFunction\n--------\nplot_simulation\n\nInputs\n------\nsimulation: Numpy array with n_sim (see simulate_election) elements\nEach element stores the number of electoral college votes Obama wins in each simulation.\n\nReturns\n-------\nNothing\n\"\"\"\n\ndef plot_simulation(simulation):\nplt.hist(simulation, bins=np.arange(200, 538, 1),\nlabel='simulations', align='left', normed=True)\nplt.axvline(332, 0, .5, color='r', label='Actual Outcome')\nplt.axvline(269, 0, .5, color='k', label='Victory Threshold')\np05 = np.percentile(simulation, 5.)\np95 = np.percentile(simulation, 95.)\niq = int(p95 - p05)\npwin = ((simulation >= 269).mean() * 100)\nplt.legend(frameon=False, loc='upper left')\nplt.ylabel(\"Probability\")\nremove_border()\n\n\nLets plot the result of the Predictwise simulation. Your plot should look something like this:", null, "In :\nplot_simulation(result)", null, "#### Evaluating and Validating our Forecast¶\n\nThe point of creating a probabilistic predictive model is to simultaneously make a forecast and give an estimate of how certain we are about it.\n\nHowever, in order to trust our prediction or our reported level of uncertainty, the model needs to be correct. We say a model is correct if it honestly accounts for all of the mechanisms of variation in the system we're forecasting.\n\nIn this section, we evaluate our prediction to get a sense of how useful it is, and we validate the predictive model by comparing it to real data.\n\n1.4 Suppose that we believe the model is correct. Under this assumption, we can evaluate our prediction by characterizing its accuracy and precision (see here for an illustration of these ideas). What does the above plot reveal about the accuracy and precision of the PredictWise model?\n\nBackground: To make a prediction, we take information that we have now, and try to identify likely outcomes in the future based on this information. The model we've created expresses our uncertainty as a probability distribution over the likely outcomes of the election that are consistent with the information we have now. We call this distribution over outcomes the predictive distribution. Simulating from this model and plotting a histogram allows us to visualize the predictive distribution. When we say a model is correct, we mean that the predictive distribution matches the true distribution of election outcomes when the information leading up to the election matches the information that we have now.\n\nUsually, people are interested in having a single value as the prediction (\"Obama will get 332 votes\"). To obtain a prediction, we summarize the predictive distribution with a single point, usually by taking its expectation. We can evaluate a prediction by its accuracy and precision.\n\nAnswer: To evaluate the accuracy of our prediction, we can check to see whether the expectation of our predictive distribution seems to match the expectation of the true outcome. In this case, much of the predictive distribution's mass lies on or around the real outcome (that is, the histogram is approximately centered on the actual outcome of Obama=332 votes). So, based on the outcome we observed, the model seems accurate. To make a more rigorous statement about accuracy, we would want to have more replications (that is, more elections) to see whether the expectation of the predictive distribution consistently matches the true outcomes.\n\nTo evaluate the precision of our prediction, we look at the spread of the histogram. Because we are assuming the model is correct, we can interpret the spread of the histogram as a measure of the variability among the election outcomes that are consistent with the information we have. If our current information does not constrain the likely election outcomes very much, then the difference between our prediction and the true outcome can vary widely. The spread of the histogram is 60 votes, which is relatively large. Whether the prediction is precise enough is a question of what you want to do with your prediction. For example, if you want to be able to call the winner of a close election (say the candidates are separated by less than 30 votes), this prediction would not be precise enough to identify a winner with 95% confidence. To handle this, we might wish to incorporate more information into the model to reduce the spread of likely election outcomes.\n\n1.5 Unfortunately, we can never be absolutely sure that a model is correct, just as we can never be absolutely sure that the sun will rise tomorrow. But we can test a model by making predictions assuming that it is true and comparing it to real events -- this constitutes a hypothesis test. After testing a large number of predictions, if we find no evidence that says the model is wrong, we can have some degree of confidence that the model is right (the same reason we're still quite confident about the sun being here tomorrow). We call this process model checking, and use it to validate our model.\n\nDescribe how the graph provides one way of checking whether the prediction model is correct. How many predictions have we checked in this case? How could we increase our confidence in the model's correctness?\n\nAnswer: The graph shows a hypothesis test. The histogram approximates the predictive distribution of election outcomes (in terms of electoral votes) assuming our model for the election is true. By comparing this to the true outcome of the election, we can see whether the observed electoral vote count would be highly atypical if the model were true. In this case, it appears the true outcome is quite typical among the model's predicted outcomes, so we do not reject our model.\n\nIn this case, we have checked only one prediction, since there is only one true outcome that we've compared to the predictive distribution.\n\nTo increase our confidence, we would want to test more outcomes against predictions that were made in the same way. For example, we could apply the same procedure (including PredictWise's computation of the statewise probability estimates) to different elections and see whether each of the hypothesis tests fails to reject the model in those cases as well. We could also break the election down into state-by-state outcomes, and test the prediction for each state against that state's outcome.\n\n### Gallup Party Affiliation Poll¶\n\nNow we will try to estimate our own win probabilities to plug into our predictive model.\n\nWe will start with a simple forecast model. We will try to predict the outcome of the election based the estimated proportion of people in each state who identify with one one political party or the other.\n\nGallup measures the political leaning of each state, based on asking random people which party they identify or affiliate with. Here's the data they collected from January-June of 2012:\n\nIn :\ngallup_2012=pd.read_csv(\"data/g12.csv\").set_index('State')\ngallup_2012[\"Unknown\"] = 100 - gallup_2012.Democrat - gallup_2012.Republican\n\nOut:\nState\nAlabama 36.0 49.6 -13.6 3197 14.4\nAlaska 35.9 44.3 -8.4 402 19.8\nArizona 39.8 47.3 -7.5 4325 12.9\nArkansas 41.5 40.8 0.7 2071 17.7\nCalifornia 48.3 34.6 13.7 16197 17.1\n\nEach row lists a state, the percent of surveyed individuals who identify as Democrat/Republican, the percent whose identification is unknown or who haven't made an affiliation yet, the margin between Democrats and Republicans (Dem_Adv: the percentage identifying as Democrats minus the percentage identifying as Republicans), and the number N of people surveyed.\n\n1.6 This survey can be used to predict the outcome of each State's election. The simplest forecast model assigns 100% probability that the state will vote for the majority party. Implement this simple forecast.\n\nIn :\n\"\"\"\nFunction\n--------\nsimple_gallup_model\n\nA simple forecast that predicts an Obama (Democratic) victory with\n0 or 100% probability, depending on whether a state\nleans Republican or Democrat.\n\nInputs\n------\ngallup : DataFrame\nThe Gallup dataframe above\n\nReturns\n-------\nmodel : DataFrame\nA dataframe with the following column\n* Obama: probability that the state votes for Obama. All values should be 0 or 1\nmodel.index should be set to gallup.index (that is, it should be indexed by state name)\n\nExamples\n---------\n>>> simple_gallup_model(gallup_2012).ix['Florida']\nObama 1\nName: Florida, dtype: float64\n>>> simple_gallup_model(gallup_2012).ix['Arizona']\nObama 0\nName: Arizona, dtype: float64\n\"\"\"\n\ndef simple_gallup_model(gallup):\n\n\nNow, we run the simulation with this model, and plot it.\n\nIn :\nmodel = simple_gallup_model(gallup_2012)\nprediction = simulate_election(model, 10000)\n\nplot_simulation(prediction)\nplt.show()\nmake_map(model.Obama, \"P(Obama): Simple Model\")", null, "Out:\n<matplotlib.axes.AxesSubplot at 0x108d3ffd0>", null, "1.7 Attempt to validate the predictive model using the above simulation histogram. Does the evidence contradict the predictive model?\n\nAnswer: We do not predict the exactly correct result (red line). According to the predictive model, the true outcome has probability 0. Thus, the evidence contradicts the predictive model, and we should reject it.\n\n#### Adding Polling Uncertainty to the Predictive Model¶\n\nThe model above is brittle -- it includes no accounting for uncertainty, and thus makes predictions with 100% confidence. This is clearly wrong -- there are numerous sources of uncertainty in estimating election outcomes from a poll of affiliations.\n\nThe most obvious source of error in the Gallup data is the finite sample size -- Gallup did not poll everybody in America, and thus the party affilitions are subject to sampling errors. How much uncertainty does this introduce?\n\nOn their webpage discussing these data, Gallup notes that the sampling error for the states is between 3 and 6%, with it being 3% for most states. (The calculation of the sampling error itself is an exercise in statistics. Its fun to think of how you could arrive at the sampling error if it was not given to you. One way to do it would be to assume this was a two-choice situation and use binomial sampling error for the non-unknown answers, and further model the error for those who answered 'Unknown'.)\n\n1.8 Use Gallup's estimate of 3% to build a Gallup model with some uncertainty. Assume that the Dem_Adv column represents the mean of a Gaussian, whose standard deviation is 3%. Build the model in the function uncertain_gallup_model. Return a forecast where the probability of an Obama victory is given by the probability that a sample from the Dem_Adv Gaussian is positive.\n\nHint The probability that a sample from a Gaussian with mean $\\mu$ and standard deviation $\\sigma$ exceeds a threhold $z$ can be found using the the Cumulative Distribution Function of a Gaussian:\n\n$$CDF(z) = \\frac1{2}\\left(1 + {\\rm erf}\\left(\\frac{z - \\mu}{\\sqrt{2 \\sigma^2}}\\right)\\right)$$\nIn :\n\"\"\"\nFunction\n--------\nuncertain_gallup_model\n\nA forecast that predicts an Obama (Democratic) victory if the random variable drawn\nfrom a Gaussian with mean Dem_Adv and standard deviation 3% is >0\n\nInputs\n------\ngallup : DataFrame\nThe Gallup dataframe above\n\nReturns\n-------\nmodel : DataFrame\nA dataframe with the following column\n* Obama: probability that the state votes for Obama.\nmodel.index should be set to gallup.index (that is, it should be indexed by state name)\n\"\"\"\nfrom scipy.special import erf\ndef uncertain_gallup_model(gallup):\nsigma = 3\nprob = .5 * (1 + erf(gallup.Dem_Adv / np.sqrt(2 * sigma**2)))\nreturn pd.DataFrame(dict(Obama=prob), index=gallup.index)\n\n\nWe construct the model by estimating the probabilities:\n\nIn :\nmodel = uncertain_gallup_model(gallup_2012)\n\n\nOnce again, we plot a map of these probabilities, run the simulation, and display the results\n\nIn :\nmake_map(model.Obama, \"P(Obama): Gallup + Uncertainty\")\nplt.show()\nprediction = simulate_election(model, 10000)\nplot_simulation(prediction)", null, "", null, "1.9 Attempt to validate the above model using the histogram. Does the predictive distribution appear to be consistent with the real data? Comment on the accuracy and precision of the prediction.\n\nAnswer: The predictive distribution is consistent with the real data -- the real outcome seems like a typical outcome according to the model. The accuracy is not very good as the center of the distribution falls fairly far from the observed outcome, but the precision is only marginally worse than in the predictwise case.\n\n#### Biases¶\n\nWhile accounting for uncertainty is one important part of making predictions, we also want to avoid systematic errors. We call systematic over- or under-estimation of an unknown quantity bias. In the case of this forecast, our predictions would be biased if the estimates from this poll systematically over- or under-estimate vote proportions on election day. There are several reasons this might happen:\n\n1. Gallup is wrong. The poll may systematically over- or under-estimate party affiliation. This could happen if the people who answer Gallup phone interviews might not be a representative sample of people who actually vote, Gallup's methodology is flawed, or if people lie during a Gallup poll.\n2. Our assumption about party affiliation is wrong. Party affiliation may systematically over- or under-estimate vote proportions. This could happen if people identify with one party, but strongly prefer the candidate from the other party, or if undecided voters do not end up splitting evenly between Democrats and Republicans on election day.\n3. Our assumption about equilibrium is wrong. This poll was released in August, with more than two months left for the elections. If there is a trend in the way people change their affiliations during this time period (for example, because one candidate is much worse at televised debates), an estimate in August could systematically miss the true value in November.\n\nOne way to account for bias is to calibrate our model by estimating the bias and adjusting for it. Before we do this, let's explore how sensitive our prediction is to bias.\n\n1.10 Implement a biased_gallup forecast, which assumes the vote share for the Democrat on election day will be equal to Dem_Adv shifted by a fixed negative amount. We will call this shift the \"bias\", so a bias of 1% means that the expected vote share on election day is Dem_Adv-1.\n\nHint You can do this by wrapping the uncertain_gallup_model in a function that modifies its inputs.\n\nIn :\n\"\"\"\nFunction\n--------\nbiased_gallup_poll\n\nSubtracts a fixed amount from Dem_Adv, beofore computing the uncertain_gallup_model.\nThis simulates correcting a hypothetical bias towards Democrats\nin the original Gallup data.\n\nInputs\n-------\ngallup : DataFrame\nThe Gallup party affiliation data frame above\nbias : float\nThe amount by which to shift each prediction\n\nExamples\n--------\n>>> model = biased_gallup(gallup, 1.)\n>>> model.ix['Flordia']\n>>> .460172\n\"\"\"\ndef biased_gallup(gallup, bias):\ng2 = gallup.copy()\nreturn uncertain_gallup_model(g2)\n\n\n1.11 Simulate elections assuming a bias of 1% and 5%, and plot histograms for each one.\n\nIn :\n#your code here\nmodel = biased_gallup(gallup_2012, 1)\nprediction = simulate_election(model, 10000)\nplot_simulation(prediction)\nplt.show()\n\nmodel = biased_gallup(gallup_2012, 5)\nprediction = simulate_election(model, 10000)\nplot_simulation(prediction)\nplt.show()", null, "", null, "Note that even a small bias can have a dramatic effect on the predictions. Pundits made a big fuss about bias during the last election, and for good reason -- it's an important effect, and the models are clearly sensitive to it. Forecastors like Nate Silver would have had an easier time convincing a wide audience about their methodology if bias wasn't an issue.\n\nFurthermore, because of the nature of the electoral college, biases get blown up large. For example, suppose you mis-predict the party Florida elects. We've possibly done this as a nation in the past :-). Thats 29 votes right there. So, the penalty for even one misprediction is high.\n\n#### Estimating the size of the bias from the 2008 election¶\n\nWhile bias can lead to serious inaccuracy in our predictions, it is fairly easy to correct if we are able to estimate the size of the bias and adjust for it. This is one form of calibration.\n\nOne approach to calibrating a model is to use historical data to estimate the bias of a prediction model. We can use our same prediction model on historical data and compare our historical predictions to what actually occurred and see if, on average, the predictions missed the truth by a certain amount. Under some assumptions (discussed in a question below), we can use the estimate of the bias to adjust our current forecast.\n\nIn this case, we can use data from the 2008 election. (The Gallup data from 2008 are from the whole of 2008, including after the election):\n\nIn :\ngallup_08 = pd.read_csv(\"data/g08.csv\").set_index('State')\n\nprediction_08['Dem_Win']=results_08[\"Obama Pct\"] - results_08[\"McCain Pct\"]\n\nOut:\nState\nAlabama -0.8 -21.58\nArizona -0.4 -8.52\nArkansas 12.5 -19.86\nCalifornia 19.4 24.06\n\n1.12 Make a scatter plot using the prediction_08 dataframe of the democratic advantage in the 2008 Gallup poll (X axis) compared to the democratic win percentage -- the difference between Obama and McCain's vote percentage -- in the election (Y Axis). Overplot a linear fit to these data.\n\nHint The np.polyfit function can compute linear fits, as can sklearn.linear_model.LinearModel\n\nIn :\n#your code here\n\nplt.ylabel(\"2008 Election Democrat Win\")\nx = np.linspace(-40, 80, 10)\ny = np.polyval(fit, x)\nplt.plot(x, y)\nprint fit\n\n[ 1.26390486 -11.32855786]", null, "Notice that a lot of states in which Gallup reported a Democratic affiliation, the results were strongly in the opposite direction. Why might that be? You can read more about the reasons for this here.\n\nA quick look at the graph will show you a number of states where Gallup showed a Democratic advantage, but where the elections were lost by the democrats. Use Pandas to list these states.\n\nIn :\n#your code here\nprediction_08[(prediction_08.Dem_Win < 0) & (prediction_08.Dem_Adv > 0)]\n\nOut:\nState\nArkansas 12.5 -19.86\nGeorgia 3.6 -5.21\nKentucky 13.5 -16.23\nLouisiana 9.4 -18.63\nMississippi 1.1 -13.18\nMissouri 10.9 -0.14\nMontana 3.9 -2.26\nNorth Dakota 0.6 -8.63\nOklahoma 5.6 -31.30\nSouth Carolina 0.1 -8.97\nSouth Dakota 1.3 -8.41\nTennessee 5.0 -15.07\nTexas 2.4 -11.77\nWest Virginia 18.8 -13.12\n\nWe compute the average difference between the Democrat advantages in the election and Gallup poll\n\nIn :\nprint (prediction_08.Dem_Adv - prediction_08.Dem_Win).mean()\n\n8.06803921569\n\n\nAnswer The bias was roughly 8% in favor of the Democrats in the Gallup Poll, meaning that you would want to adjust predictions based on this poll down by that amount. This was the result of people in a number of Southern and Western states claiming to be affiliated as Democrats, then voting the other way. Or, since Gallup kept polling even after the elections, it could also represent people swept away by the 2008 election euphoria in those states. This is an illustration of why one needs to be carefull with polls.\n\n1.13 Calibrate your forecast of the 2012 election using the estimated bias from 2008. Validate the resulting model against the real 2012 outcome. Did the calibration help or hurt your prediction?\n\nIn :\n#your code here\nmodel = biased_gallup(gallup_2012, 8.06)\nprediction = simulate_election(model, 10000)\nplot_simulation(prediction)", null, "Answer: This was a disaster. The 8% calibration completey destroys the accuracy of our prediction in 2012. Our calibration made the assumptions that a) the bias in 2008 was the same as 2012, and b) the bias in each state was the same.\n\nThere are several ways in which these assumptions may have been violated. Gallup may have changed their methodology to account for this bias already, leading to a different bias in 2012 from what there was in 2008. The state-by-state biases may have also been different -- voters in highly conservative states may have responded to polls differently from voters in libreral states, for instance. It might have been better to callibrate the bias on a state-wide or clustered basis.\n\n1.14 Finally, given that we know the actual outcome of the 2012 race, and what you saw from the 2008 race would you trust the results of the an election forecast based on the 2012 Gallup party affiliation poll?\n\nAnswer: No. You should answer this question as though you had not yet seen the results of the 2012 election. The results from 2008 would suggest that the party affiliation poll is a highly biased predictor of the acutal election outcome. Given that calibrating the model to counteract this bias would rely on unrealistic assumptions, it would seem unwise to use the 2012 party affiliation poll to predict the election.\n\n## Question 2: Logistic Considerations¶\n\nIn the previous forecast, we used the strategy of taking some side-information about an election (the partisan affiliation poll) and relating that to the predicted outcome of the election. We tied these two quantities together using a very simplistic assumption, namely that the vote outcome is deterministically related to estimated partisan affiliation.\n\nIn this section, we use a more sophisticated approach to link side information -- usually called features or predictors -- to our prediction. This approach has several advantages, including the fact that we may use multiple features to perform our predictions. Such data may include demographic data, exit poll data, and data from previous elections.\n\nFirst, we'll construct a new feature called PVI, and use it and the Gallup poll to build predictions. Then, we'll use logistic regression to estimate win probabilities, and use these probabilities to build a prediction.\n\n#### The Partisan Voting Index¶\n\nThe Partisan Voting Index (PVI) is defined as the excessive swing towards a party in the previous election in a given state. In other words:\n\n$$PVI_{2008} (state) = Democratic.Percent_{2004} ( state ) - Republican.Percent_{2004} ( state) - \\\\ \\Big ( Democratic.Percent_{2004} (national) - Republican.Percent_{2004} (national) \\Big )$$\n\nTo calculate it, let us first load the national percent results for republicans and democrats in the last 3 elections and convert it to the usual democratic - republican format.\n\nIn :\nnational_results=pd.read_csv(\"data/nat.csv\")\nnational_results.set_index('Year',inplace=True)\n\nOut:\nDem Rep\nYear\n2004 48 51\n2008 53 46\n2012 51 47\n\nLet us also load in data about the 2004 elections from p04.csv which gets the results in the above form for the 2004 election for each state.\n\nIn :\npolls04=pd.read_csv(\"data/p04.csv\")\npolls04.State=polls04.State.replace(states_abbrev)\npolls04.set_index(\"State\", inplace=True);\n\nOut:\nDem Rep\nState\nAlabama 37 63\nArizona 44 55\nArkansas 45 54\nCalifornia 54 45\nIn :\npvi08=polls04.Dem - polls04.Rep - (national_results.xs(2004)['Dem'] - national_results.xs(2004)['Rep'])\n\nOut:\nState\nAlabama -23\nArizona -8\nArkansas -6\nCalifornia 12\ndtype: int64\n\n2.1 Build a new DataFrame called e2008. The dataframe e2008 must have the following columns:\n\n• a column named pvi with the contents of the partisan vote index pvi08\n• a column named Dem_Adv which has the Democratic advantage from the frame prediction_08 of the last question with the mean subtracted out\n• a column named obama_win which has a 1 for each state Obama won in 2008, and 0 otherwise\n• a column named Dem_Win which has the 2008 election Obama percentage minus McCain percentage, also from the frame prediction_08\n• The DataFrame should be indexed and sorted by State\nIn :\n#your code here\ne2008['obama_win']=1*(prediction_08.Dem_Win > 0)\ne2008 = e2008.sort_index()\n\nOut:\nState\nAlabama -13.154902 -21.58 -23 0\nArizona -12.754902 -8.52 -8 0\nArkansas 0.145098 -19.86 -6 0\nCalifornia 7.045098 24.06 12 1\n\nWe construct a similar frame for 2012, obtaining pvi using the 2008 Obama win data which we already have. There is no obama_win column since, well, our job is to predict it!\n\nIn :\npvi12 = e2008.Dem_Win - (national_results.xs(2008)['Dem'] - national_results.xs(2008)['Rep'])\ne2012 = e2012.sort_index()\n\nOut:\nState\nAlabama -14.684314 -28.58\nArizona -8.584314 -15.52\nArkansas -0.384314 -26.86\nCalifornia 12.615686 17.06\n\nWe load in the actual 2012 results so that we can compare our results to the predictions.\n\nIn :\nresults2012 = pd.read_csv(\"data/2012results.csv\")\nresults2012.set_index(\"State\", inplace=True)\nresults2012 = results2012.sort_index()\n\nOut:\nWinner\nState\nAlabama 0\nArizona 0\nArkansas 0\nCalifornia 1\n\n#### Exploratory Data Analysis¶\n\n2.2 Lets do a little exploratory data analysis. Plot a scatter plot of the two PVi's against each other. What are your findings? Is the partisan vote index relatively stable from election to election?\n\nIn :\n#your code here\nplt.plot(e2008.pvi, e2012.pvi, 'o', label='Data')\nfit = np.polyfit(e2008.pvi, e2012.pvi, 1)\nx = np.linspace(-40, 80, 10)\ny = np.polyval(fit, x)\nplt.plot(x, x, '--k', alpha=.3, label='x=y')\nplt.plot(x, y, label='Linear fit')\nplt.xlabel(\"2004 PVI\")\nplt.ylabel(\"2008 PVI\")\nplt.legend(loc='upper left')\n\nOut:\n<matplotlib.legend.Legend at 0x109e19b10>", null, "Answer: There is a reasonably well fit line which hugs the x=y line. This tells us that the PVI seems relatively stable from election to election and may thus make a good predictor.\n\n2.3 Lets do a bit more exploratory data analysis. Using a scatter plot, plot Dem_Adv against pvi in both 2008 and 2012. Use colors red and blue depending upon obama_win for the 2008 data points. Plot the 2012 data using gray color. Is there the possibility of making a linear separation (line of separation) between the red and the blue points on the graph?\n\nIn :\n#your code here\n\nplt.ylabel(\"pvi\")\ncolors=[\"red\",\"blue\"]\nax=plt.gca()\nfor label in [0, 1]:\ncolor = colors[label]\nl = '2008 McCain States' if label == 0 else '2008 Obama States'\n\nmarker=\"s\", label='2012 States', alpha=.3)\nplt.legend(frameon=False, scatterpoints=1, loc='upper left')\nremove_border()", null, "Answer: Yes, it seems that with 3-4 misclassifications, we could draw a line to divide the data into two parts.\n\n#### The Logistic Regression¶\n\nLogistic regression is a probabilistic model that links observed binary data to a set of features.\n\nSuppose that we have a set of binary (that is, taking the values 0 or 1) observations $Y_1,\\cdots,Y_n$, and for each observation $Y_i$ we have a vector of features $X_i$. The logistic regression model assumes that there is some set of weights, coefficients, or parameters $\\beta$, one for each feature, so that the data were generated by flipping a weighted coin whose probability of giving a 1 is given by the following equation:\n\n$$P(Y_i = 1) = \\mathrm{logistic}(\\sum \\beta_i X_i),$$\n\nwhere\n\n$$\\mathrm{logistic}(x) = \\frac{e^x}{1+e^x}.$$\n\nWhen we fit a logistic regression model, we determine values for each $\\beta$ that allows the model to best fit the training data we have observed (the 2008 election). Once we do this, we can use these coefficients to make predictions about data we have not yet observed (the 2012 election).\n\nSometimes this estimation procedure will overfit the training data yielding predictions that are difficult to generalize to unobserved data. Usually, this occurs when the magnitudes of the components of $\\beta$ become too large. To prevent this, we can use a technique called regularization to make the procedure prefer parameter vectors that have smaller magnitude. We can adjust the strength of this regularization to reduce the error in our predictions.\n\nWe now write some code as technology for doing logistic regression. By the time you start doing this homework, you will have learnt the basics of logistic regression, but not all the mechanisms of cross-validation of data sets. Thus we provide here the code for you to do the logistic regression, and the accompanying cross-validation.\n\nWe first build the features from the 2008 data frame, returning y, the vector of labels, and X the feature-sample matrix where the columns are the features in order from the list featurelist, and each row is a data \"point\".\n\nIn :\nfrom sklearn.linear_model import LogisticRegression\n\ndef prepare_features(frame2008, featureslist):\ny= frame2008.obama_win.values\nX = frame2008[featureslist].values\nif len(X.shape) == 1:\nX = X.reshape(-1, 1)\nreturn y, X\n\n\nWe use the above function to get the label vector and feature-sample matrix for feeding to scikit-learn. We then use the usual scikit-learn incantation fit to fit a logistic regression model with regularization parameter C. The parameter C is a hyperparameter of the model, and is used to penalize too high values of the parameter co-efficients in the loss function that is minimized to perform the logistic regression. We build a new dataframe with the usual Obama column, that holds the probabilities used to make the prediction. Finally we return a tuple of the dataframe and the classifier instance, in that order.\n\nIn :\ndef fit_logistic(frame2008, frame2012, featureslist, reg=0.0001):\ny, X = prepare_features(frame2008, featureslist)\nclf2 = LogisticRegression(C=reg)\nclf2.fit(X, y)\nX_new = frame2012[featureslist]\nobama_probs = clf2.predict_proba(X_new)[:, 1]\n\ndf = pd.DataFrame(index=frame2012.index)\ndf['Obama'] = obama_probs\nreturn df, clf2\n\n\nWe are not done yet. In order to estimate C, we perform a grid search over many C to find the best C that minimizes the loss function. For each point on that grid, we carry out a n_folds-fold cross-validation. What does this mean?\n\nSuppose n_folds=10. Then we will repeat the fit 10 times, each time randomly choosing 50/10 ~ 5 states out as a test set, and using the remaining 45/46 as the training set. We use the average score on the test set to score each particular choice of C, and choose the one with the best performance.\n\nIn :\nfrom sklearn.grid_search import GridSearchCV\n\ndef cv_optimize(frame2008, featureslist, n_folds=10, num_p=100):\ny, X = prepare_features(frame2008, featureslist)\nclf = LogisticRegression()\nparameters = {\"C\": np.logspace(-4, 3, num=num_p)}\ngs = GridSearchCV(clf, param_grid=parameters, cv=n_folds)\ngs.fit(X, y)\nreturn gs.best_params_, gs.best_score_\n\n\nFinally we write the function that we use to make our fits. It takes both the 2008 and 2012 frame as arguments, as well as the featurelist, and the number of cross-validation folds to do. It uses the above defined logistic_score to find the best-fit C, and then uses this value to return the tuple of result dataframe and classifier described above. This is the function you will be using.\n\nIn :\ndef cv_and_fit(frame2008, frame2012, featureslist, n_folds=5):\nbp, bs = cv_optimize(frame2008, featureslist, n_folds=n_folds)\npredict, clf = fit_logistic(frame2008, frame2012, featureslist, reg=bp['C'])\nreturn predict, clf\n\n\n2.4 *Carry out a logistic fit using the cv_and_fit function developed above. As your featurelist use the features we have: Dem_Adv and pvi.\n\nIn :\n#your code here\nres, clf = cv_and_fit(e2008, e2012, ['Dem_Adv', 'pvi'])\n\nOut:\nState\nAlabama 0.004234 9\nArizona 0.069288 11\nArkansas 0.031901 6\nCalifornia 0.994956 55\n\n2.5 As before, plot a histogram and map of the simulation results, and interpret the results in terms of accuracy and precision.\n\nIn :\n#code to make the histogram\n\nprediction = simulate_election(predict2012_logistic, 10000)\nplot_simulation(prediction)", null, "In :\n#code to make the map\n\nmake_map(predict2012_logistic.Obama, \"P(Obama): Logistic\")\n\nOut:\n<matplotlib.axes.AxesSubplot at 0x10c274890>", null, "Answer: The precision has worsened with respect to the predictwise (and even the gallup) model. The accuracy has improved with respect to the gallup model, but is not as good as in the predictwise model.\n\n#### Classifier Decision boundary¶\n\nOne nice way to visualize a 2-dimensional logistic regression is to plot the probability as a function of each dimension. This shows the decision boundary -- the set of parameter values where the logistic fit yields P=0.5, and shifts between a preference for Obama or McCain/Romney.\n\nThe function below draws such a figure (it is adapted from the scikit-learn website), and overplots the data.\n\nIn :\nfrom matplotlib.colors import ListedColormap\ndef points_plot(e2008, e2012, clf):\n\"\"\"\ne2008: The e2008 data\ne2012: The e2012 data\nclf: classifier\n\"\"\"\nytrain = e2008['obama_win'].values == 1\n\nX=np.concatenate((Xtrain, Xtest))\n\n# evenly sampled points\nx_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5\ny_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5\nxx, yy = np.meshgrid(np.linspace(x_min, x_max, 50),\nnp.linspace(y_min, y_max, 50))\nplt.xlim(xx.min(), xx.max())\nplt.ylim(yy.min(), yy.max())\n\n#plot background colors\nax = plt.gca()\nZ = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]\nZ = Z.reshape(xx.shape)\ncs = ax.contourf(xx, yy, Z, cmap='RdBu', alpha=.5)\ncs2 = ax.contour(xx, yy, Z, cmap='RdBu', alpha=.5)\nplt.clabel(cs2, fmt = '%2.1f', colors = 'k', fontsize=14)\n\n# Plot the 2008 points\nax.plot(Xtrain[ytrain == 0, 0], Xtrain[ytrain == 0, 1], 'ro', label='2008 McCain')\nax.plot(Xtrain[ytrain == 1, 0], Xtrain[ytrain == 1, 1], 'bo', label='2008 Obama')\n\n# and the 2012 points\nax.scatter(Xtest[:, 0], Xtest[:, 1], c='k', marker=\"s\", s=50, facecolors=\"k\", alpha=.5, label='2012')\nplt.legend(loc='upper left', scatterpoints=1, numpoints=1)\n\nreturn ax\n\n\n2.6 Plot your results on the classification space boundary plot. How sharp is the classification boundary, and how does this translate into accuracy and precision of the results?\n\nIn :\n#your code here\npoints_plot(e2008, e2012, clf)\nplt.ylabel(\"PVI\")\n\nOut:\n<matplotlib.text.Text at 0x10da5cc90>", null, "Answer: The sharpness of the classifier boundary, as defined by the closeness of the contours near a probability of 0.5 gives us a sense of precision. Imagine that the boundary is very tight, tighter than what you can see in the graph. Then most states will be away from the 0.5 line, and the spread in the results will be less, or the precision higher. This is not the only consideration: indeed one must ask, how many states fall smack into the middle, say between 0.3 and 0.7. The more that do, the less precise the results will be, as there will be a greater number of simulations in which they will cross-over to another party.\n\nTo assess accuracy, we would have to see the actual outcome of the states in 2012. Accuracy would be a function of the number of states that end up on the \"wrong\" side of the 0.5 line, and how deep they end up on the wrong side. In terms of characterizing the 2008 outcomes, it seems that the classifier is quit eaccurate, with most misclassifications appearing in grey area of the classification boundary.\n\n## Question 3: Trying to catch Silver: Poll Aggregation¶\n\nIn the previous section, we tried to use heterogeneous side-information to build predictions of the election outcome. In this section, we switch gears to bringing together homogeneous information about the election, by aggregating different polling result together.\n\nThis approach -- used by the professional poll analysists -- involves combining many polls about the election itself. One advantage of this approach is that it addresses the problem of bias in individual polls, a problem we found difficult to deal with in problem 1. If we assume that the polls are all attempting to estimate the same quantity, any individual biases should cancel out when averaging many polls (pollsters also try to correct for known biases). This is often a better assumption than assuming constant bias between election cycles, as we did above.\n\nThe following table aggregates many of the pre-election polls available as of October 2, 2012. We are most interested in the column \"obama_spread\". We will clean the data for you:\n\nIn :\nmultipoll = pd.read_csv('data/cleaned-state_data2012.csv', index_col=0)\n\n#convert state abbreviation to full name\nmultipoll.State.replace(states_abbrev, inplace=True)\n\n#convert dates from strings to date objects, and compute midpoint\nmultipoll.start_date = multipoll.start_date.apply(pd.datetools.parse)\nmultipoll.end_date = multipoll.end_date.apply(pd.datetools.parse)\nmultipoll['poll_date'] = multipoll.start_date + (multipoll.end_date - multipoll.start_date).values / 2\n\n#compute the poll age relative to Oct 2, in days\nmultipoll['age_days'] = (today - multipoll['poll_date']).values / np.timedelta64(1, 'D')\n\n#drop any rows with data from after oct 2\nmultipoll = multipoll[multipoll.age_days > 0]\n\n#drop unneeded columns\nmultipoll = multipoll.drop(['Date', 'start_date', 'end_date', 'Spread'], axis=1)\n\n#drop rows with missing data\nmultipoll.dropna()\n\n\nOut:\nPollster State MoE Obama (D) Romney (R) Sample obama_spread poll_date age_days Votes\n0 Rasmussen Reports Washington 4.5 52 41 500 11 2012-09-26 00:00:00 6.0 12\n1 Gravis Marketing Washington 4.6 56 39 625 17 2012-09-21 12:00:00 10.5 12\n2 Elway Poll Washington 5.0 53 36 405 17 2012-09-10 12:00:00 21.5 12\n3 SurveyUSA Washington 4.4 54 38 524 16 2012-09-08 00:00:00 24.0 12\n4 SurveyUSA Washington 4.4 54 37 524 17 2012-08-01 12:00:00 61.5 12\n\n3.1 Using this data, compute a new data frame that averages the obama_spread for each state. Also compute the standard deviation of the obama_spread in each state, and the number of polls for each state.\n\nDefine a function state_average which returns this dataframe\n\nHint\n\npd.GroupBy could come in handy\n\nIn :\n\"\"\"\nFunction\n--------\nstate_average\n\nInputs\n------\nmultipoll : DataFrame\nThe multipoll data above\n\nReturns\n-------\naverages : DataFrame\nA dataframe, indexed by State, with the following columns:\nN: Number of polls averaged together\npoll_mean: The average value for obama_spread for all polls in this state\npoll_std: The standard deviation of obama_spread\n\nNotes\n-----\nFor states where poll_std isn't finite (because N is too small), estimate the\npoll_std value as .05 * poll_mean\n\"\"\"\n\ndef state_average(multipoll):\ngroups = multipoll.groupby('State')\nn = groups.size()\nstd[std.isnull()] = .05 * mean[std.isnull()]\nreturn pd.DataFrame(dict(N=n, poll_mean=mean, poll_std=std))\n\n\nLets call the function on the multipoll data frame, and join it with the electoral_votes frame.\n\nIn :\navg = state_average(multipoll).join(electoral_votes, how='outer')\n\nOut:\nState\nAlabama NaN NaN NaN 9\nArizona 20 -5.500000 4.559548 11\nArkansas 3 -20.333333 4.041452 6\nCalifornia 20 18.950000 5.548589 55\n\nSome of the reddest and bluest states are not present in this data (people don't bother polling there as much). The default_missing function gives them strong Democratic/Republican advantages\n\nIn :\ndef default_missing(results):\nred_states = [\"Alabama\", \"Alaska\", \"Arkansas\", \"Idaho\", \"Wyoming\"]\nblue_states = [\"Delaware\", \"District of Columbia\", \"Hawaii\"]\nresults.ix[red_states, [\"poll_mean\"]] = -100.0\nresults.ix[red_states, [\"poll_std\"]] = 0.1\nresults.ix[blue_states, [\"poll_mean\"]] = 100.0\nresults.ix[blue_states, [\"poll_std\"]] = 0.1\ndefault_missing(avg)\n\nOut:\nState\nAlabama NaN -100.00 0.100000 9\nArizona 20 -5.50 4.559548 11\nArkansas 3 -100.00 0.100000 6\nCalifornia 20 18.95 5.548589 55\n\n#### Unweighted aggregation¶\n\n3.2 Build an aggregated_poll_model function that takes the avg DataFrame as input, and returns a forecast DataFrame in the format you've been using to simulate elections. Assume that the probability that Obama wins a state is given by the probability that a draw from a Gaussian with $\\mu=$poll_mean and $\\sigma=$poll_std is positive.\n\nIn :\n\"\"\"\nFunction\n--------\naggregated_poll_model\n\nInputs\n------\npolls : DataFrame\nDataFrame indexed by State, with the following columns:\npoll_mean\npoll_std\n\nReturns\n-------\nA DataFrame indexed by State, with the following columns:\nObama: Estimated probability that Obama wins the state\n\"\"\"\ndef aggregated_poll_model(polls):\nsigma = polls.poll_std\nprob = .5 * (1 + erf(polls.poll_mean / np.sqrt(2 * sigma ** 2)))\n\n\n3.3 Run 10,000 simulations with this model, and plot the results. Describe the results in a paragraph -- compare the methodology and the simulation outcome to the Gallup poll. Also plot the usual map of the probabilities\n\nIn :\n#your code here\nmodel = aggregated_poll_model(avg)\nsims = simulate_election(model, 10000)\nplot_simulation(sims)\nplt.xlim(250, 400)\n\nOut:\n(250, 400)", null, "Answer: The accuracy of this poll is somewhat greater than just taking the gallup poll. This is probably because\n\n1. We're using as inputs polls that are trying to predict the election, so there is nothing \"lost in translation\", and\n2. We are averaging many polls together, so some of their biases are likely to offset each other.\n\nOne problem is that we treated all polls as equal. Thus a bad poll with a small sample size is given equal footing as a good poll with a large one. Thus we are introducing bias both due to individual poll biases and individual poll sampling errors.\n\nFurthermore, we estimate the standard deviation by simply taking the spread of the percentages in the polls, without considering their individual margins of error. In the limit of very limit sampling error per poll, this might be ok. However in states with some polls with large margins of error (Kansas, for eg), this can lead to an overestimate of the standard deviation, pushing the predicted probability toward 0.5. This, in turn, can hurt precision since it increases the chance that a state will flip sides in a simulation.\n\nIn :\n#your code here\nmake_map(model.Obama, \"P(Obama): Poll Aggregation\")\n\nOut:\n<matplotlib.axes.AxesSubplot at 0x10de3ead0>" ]
[ null, "http://www.scribewise.com/Portals/202647/images/photo.jpg", null, " AAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdY1eX7wPH3ARFUcKDgBEWGCKkIbtI0MCdibnCG24ZY amq5zZl+XblHOCgHidschVvcAyelIi5EUKYM4fn94eX5RaI5kHPE+3VdXHU+834+n0e5fc4zNEop hRBCCCGEEHrIQNcBCCGEEEII8TySrAohhBBCCL0lyaoQQgghhNBbkqwKIYQQQgi9JcmqEEIIIYTQ W5KsCiGEEEIIvSXJqhBCCCGE0FuSrAohhBBCCL0lyaoQQgghhNBbkqwKIYQQQgi9JcmqEEIIIYTQ W5KsCiGEEEIIvSXJqhBCCCGE0FuSrAohhBBCCL0lyaoQQgghhNBbkqwKIYQQQgi9JcmqEEIIIYTQ W5KsCiGEEEIIvSXJqhBCCCGE0FuSrAohhBBCCL0lyaoQQgghhNBbkqwKIYQQQgi9JcmqEEIIIYTQ W5KsCiGEEEIIvSXJqhBCCCGE0FuSrAohhBBCCL0lyaoQQgghhNBbkqwKIYQQQgi9JcmqEEIIIYTQ W5KsCiGEEEIIvSXJqhBCCCGE0FuSrAohhBBCCL0lyaoQQgghhNBbkqwKIYQQQgi9JcmqEEIIIYTQ W5KsihdSSnH06FFu3bql61CEEEII8R7Kp+sAhP66cOECXbt25eTJkxQtWpRPPvmEGjVqULNmTVxd XSlcuLCuQxRCCCFEHictqyJbAQEBfPTRR/Ts2ZOHDx+ya9cuPDw8uHr1KsOHD6dMmTLUrl2bpKQk UlNT8ff35+DBg7oOWwghhBB5jEYppXQdhNAfDx8+5JtvvuHAgQMEBATg7OycZb9SisjISNauXcvU qVMZPXo0q1evxsjIiJiYGBwdHfnf//6Hk5OTjkoghBBCiLxEklVBWloa27dvZ+XKlezatQtvb28m T56MmZnZM8cePnwYb29vPDw8KFmyJDt37sTGxoa5c+dStmxZ2rVrh62tLXPmzMHY2JjffvuNyMhI Hj9+zM2bNzl16hSmpqaULFkSS0tLbGxscHV1xdXVlXz5pFeKEEIIIbKSZDUPi46OZuzYsZw7d46k pCRq1KhBREQE+fPnx9DQkNu3b3P79m2ioqKoUaMGnTp1wtvbm2LFij33mqGhoTRt2hQjIyNsbGyY PXs2tWvX1u6fPn06QUFB3L17FwcHB1JSUqhVqxZGRkZYWFhQrVo1UlJSiI6O5t69e1y7do3g4GBm zpyJn59fbjwWIYQQQrxDJFnNgzIyMli8eDGjRo2iQ4cONGvWjMOHD1OgQAHs7e1JT08nIyODUqVK Ubp0aUqXLo2xsfFLXTszM5ObN29SpkyZF7aEhoWFcerUKXx8fF54XFRUFDVr1iQ8PJwSJUq8clmF EEIIkbdJsprHnDhxgn79+mFkZMSMGTOe6XOqb/bv369NaB0cHKhTpw4//vgjhoaG2mMSExO5fPky BgYGmJmZYWdnR1JSEn/88Qfx8fGkpaVhY2ODi4sLRYsW1WFphBBCCJHTJFnNI86fP8+UKVPYuXMn Y8aMwcfHBwODd2OyB6UU9+/fJzw8nHHjxnHlyhUaNWqEqakpp06d4sqVK9ja2qLRaDh79iwNGjTg 4sWLODk5YWlpSb58+bh+/TphYWHUqlWLDz/8ECMjIwYOHIipqamuiyeEEEKINyDJ6jvk8uXLLF68 GD8/P8zNzbl+/To7duxgx44dXL9+nb59+9KrV693vnXx5s2b7N27l99//506derg5+eHiYkJAGfO nOH69es4OTlhb2+f5bykpCT27NnDyZMnuXnzJkeOHCE9PR1LS0t8fHwYNGgQ+fPn10WRhBBCCPGa JFl9B2RkZDB9+nSmTp2KjY0NcXFxPHz4EAsLCzw9PfHw8KBevXov3e/0fREaGkqRIkWIi4tj2rRp XL16FXd3dypUqIClpSXXr1/n4cOHAJiZmWFvb4+lpSW3b9+mWbNm2Nra/uc97ty5Q3R0NI8ePaJq 1aoYGRnJrAZCCCFEDpJkVc9lZGTQunVr4uLimDt3LjY2NroO6Z2klCI0NJQrV64QERHB/fv3sbKy wtzcHHgyv+y1a9e4f/8+RYsWZceOHTRu3JgOHTrQtGlTChQoADwZYLZv3z4uXbrEsWPH2LBhA2XK lOH8+fMAmJiY4OLiQt26dWnbti3u7u46K7MQQgiRF0iyqsdiYmLo06cPsbGxBAUFYWRkpOuQ3hsx MTFs2LCBTZs2cejQIQoWLEjhwoVRSlGkSBHc3NywsbGhe/fuFC9enLi4OB4/foyJiQknT57kyJEj BAQEULVqVYYOHUrdunWlxVUIIYR4DZKs6qm9e/fi6+vLp59+yqhRo7QteyL3PX78mISEBOLj40lN TcXe3h6NRvOf56WkpLBkyRJ+/fVXIiMjGTx4MI6OjjRo0ECm6RJCCCFekiSreigxMZHKlSszffp0 mjVrputwRA44e/Ys8+fPJyYmhqNHj9KrVy9cXFywsbGhdu3aL5X8CiGEEO8jSVb10Pjx4zl//jyL Fy/WdSjiLYiMjMTb25ty5coRFhZGQEAAzZs313VYQgghhF6STnR6aMuWLYwePVrXYYi3xMrKipMn TwLg6+tLamqqjiMSQggh9Ne7MWv8eyQ0NJSLFy9So0YNXYcihBBCCKFzkqzqkcDAQLy8vFiyZIkM qBJCCCGEQLoB6IUbN24wduxY9uzZw6ZNm3B2dtZ1SEIIIYQQekFaVnUkISGBP/74g379+lG9enWK FSvGvn37JFEVQgghhPgHaVnNQSdOnGDixImYmJhQoEABChYsSIECBUhLS+P27dvcuXNH+6OUonLl yjRp0oSjR49iaWmp6/CFEEIIIfSOJKs56NixYzx48AAfHx8ePXpEcnIyKSkpFC5cGGdnZ0qXLk2p UqUoVaoUZmZmMremEEIIIcR/kGQ1B6WlpeHg4ECnTp10HYoQQgghRJ4gfVZzUGhoKCVLltR1GEII IYQQeYa0rL6hjIwMpk2bxsGDBzl79izTpk3TdUhCCCGEEHmGJKtvKCMjg+HDhwNPViO6ffs2lSpV 0nFUQgghhBB5g3QDeEP58+cnMzOTU6dOUaFCBZo3b87AgQOJiorSdWhCCCGEEO88SVZzgEajwcXF hR9++IHLly9jbm6Oi4sLlStXxsfHh4MHD6KU0nWYQgghhBDvHElWc1ixYsX48ccfefDgAYcOHaJl y5Z88cUXtGrVitOnT+s6PCGEEEKId4okq2+JkZER1tbW9OvXj4sXL9KhQwc6dOhAnz59uHHjhq7D E0IIIYR4J0iymguMjIwYMGAAV65cwc7Ojvr169OzZ0+OHTum69CEEEIIIfSaJKu5yMzMjPHjx/P3 339Tr149unTpwvTp03UdlhBCCCGE3pJkVQeKFSuGv78/x48fJyAggJCQEF2HJIQQQgihlyRZ1aEy Zcrwv//9jyFDhpCWlqbrcIQQQggh9I4kqzrm7e1NyZIl2b59u65DEUIIIYTQO7KClY5pNBo8PT3x 9/fnl19+wc3NjRo1auDo6MiJEydo0KABhQsXJjMzk8uXL3Pt2jU8PDwwNjbWdehCCCGEEG+dRsls 9TqnlOLmzZscOXKEI0eOEBoaSlhYGMWLF+fq1ava42xtbTE2NsbFxYUFCxboMGKRU3x9ffHz8+PT Tz/VdShCCCGEXpKWVT2g0WiwsrLCysqK9u3ba7dHRERQoUIFXFxcuHTpEosXL2bmzJnUrVtXh9EK IYQQQuQeSVb1mLW1NS4uLtjZ2VG+fHk+/vhjjIyMZLorIYQQQrw3JFnNZTExMYSGhnLp0iUSExNJ T0/H1dWVFi1akD9//izHajQatmzZwoYNGxg1ahQAjo6ONGzYkKlTp+Ll5aWLIgghhBBC5BqZDeAt i42NZdmyZXTr1g0HBwdsbGyYNm0af/31FwkJCaSmptKxY0cOHDiQ7flly5bliy++4N69ewCcO3eO woULM2zYsNwshhBCCCGETkjL6lsQHx/PmjVrWLduHaGhoTRs2BAPDw/69+9P5cqVMTQ01B579OhR NmzYQMOGDV94zXz58rF161ZatGjBxYsXAfj8889p1KgR7dq1e5vFEUIIIYTQGUlWc9DDhw8pWrQo s2fPZvLkyYwdO5aAgABMTU2fe45SioyMDAwM/ruR+4MPPmDy5MkopQgMDGTlypWEhIRIsiqEEEKI PEuS1TeUkpLCmjVrmDdvHqdOnaJWrVqUK1eOpKQk0tPTX5ioAly4cIGSJUsSFhbGgwcPsLCwoGDB gty5c4fU1FTq16+PRqPhxo0bmJqa0r59ez788EP69etHu3btKFOmTC6VVAghhBAi90my+pri4+P5 6aefmDlzJlWrVuXrr7/m448/ZufOnYSGhtKrVy86der0n9fp0qUL27dvp3379hQrVozo6GiSk5Mp VaoUiYmJJCUlYWJiQlxcHKmpqWg0GsaMGUOvXr1yoZRCCCGEELolyeorio2NZdasWcybNw8PDw82 b95M5cqVtftbtWpFq1atXvp6RkZGrF27Ntt9GRkZREZGkpKSgr29PY8fPyYyMhI7O7s3LocQQggh xLtAktWXkJ6ezs6dO1mxYgW///473t7e7Nq1C1tb27d6X0NDQypUqJDlsySqQgghhHifSLL6EmrX ro2BgQGdO3dmypQpFC9eXNchCSGEEEK8F2Se1ZdQvnx5kpOTefDgARkZGboORwghhBDivSEtqy8h KCiIgwcPsmrVKmrVqkXjxo2xsrKiXLlyuLu7U6FCBQwNDcmXTx6nEEIIIUROkpbVl2BgYED9+vVZ uHAhp06d4pNPPsHMzIxTp07Rpk0bypYtS6VKlaTVVQghhBAih0lT4CuytrbGz88vy7bIyEiqVKnC 1atXsbe311FkQgghhBB5j7Ss5oDWrVvTrVs3KlasqOtQhBBCCCHyFElW31BmZiYREREopUhJScnV e8fGxjJ//nxSU1Nz9b5CCCGEELlFktU3ZGBgwPnz5zlw4AABAQFv/X4JCQmsXLmSTZs20bRpUwIC AvD29iYmJuat31sIIYQQIrdJspoDSpYsiUajwcbG5q3dY+XKlfTt2xc3Nzd27NjBihUr+Pzzzzl3 7hzu7u60bdv2rd1bCCGEEEJXZIBVDhk+fDh9+vTBw8MDJycn7OzssLOzo2LFihQqVCjLsdeuXWPr 1q1ER0eTkZGhnUXAw8ODjz/+mMuXL5MvXz7s7e3Zv38/M2fO5Nq1a4wYMYIRI0bwwQcfkJyczLlz 54iNjUWj0fD48WNdFFsIIYQQ4q2SZDWHtG/fno8++ogtW7Zw+fJlNmzYQHh4OFevXsXW1pa6deti bGzMvn37uHPnDq1atcLW1hZDQ0MMDQ1JTU1lzJgx9O7dm5iYGEqUKMH333/PmDFjmD59Or6+vpiY mGjvd/r0adzd3TEyMqJZs2asWbNGh6UXQgghhHg7NEoppesg8rL09HROnTrFvn37yMjIoHbt2tSv Xx9DQ8NnjlVKsXDhQh48eIC5uTlfffUVfn5+zJ8/P9tjmzVrhomJCQsWLHim9Va8G3x9ffHz8+PT Tz/VdShCCCGEXpJkVU/Fx8ezZ88evL29MTDIvmtxSkoKffr04datWwQHB+dyhCInSLIqhBBCvJh0 A9BThQsX/s8ExsTEhFmzZmFtbU1mZuZzk1ohhBBCiHeVZDfvuKJFi+Lo6MjmzZt1HYoQQgghRI6T ZPUdp9FoGD16NFOnTkV6dAghhBAir8lzyWpCQgLLli3jr7/+ynZfSEhItvveZRUrVuTKlSvaKbCE EEIIIfKKPNdn9ZdffmHSpEk8evQIU1NTPvnkEz766CP++OMP1q5dS6VKlbh+/TpNmzZl+fLlaDQa XYf8XJGRkdja2tKnTx/mzp2b7TERERE0bdqUOXPmkC9fnnudQgghhHjP5bnsJjg4mFGjRtG2bVvO nz/P7t27WbZsGTVq1CA0NJTSpUuTlJREjRo1+PHHH2nevDlOTk56mbSamJiQnp5O6dKl6datGyVK lKBjx44A3Lt3jxMnTrBy5Uq++OILOnXqpONohRBCCCFyXp5LVm1sbAgODqZy5cocP36cFStWcPPm TSIjIylYsCA+Pj5YWFiwaNEiAgMDmTt3LmXLlqVVq1ZYWlpiaWlJ1apVsbKy0nkCa2FhQWhoKF5e XvTu3Zt9+/axf/9+4MnAqmrVqjFt2jQaN26s0ziFEEIIId6WPJesTpo0iVGjRtGpUyccHR1ZtmwZ bm5unDp1iiVLluDm5sZ3331H3759qV+/PpmZmfzyyy9cunSJ8+fPExUVxdGjR2ncuDHr1q17KzEm JCTw+++/c/LkSe7fv4+7uzteXl6Ym5tnOe7QoUN8+umnzJo1ixYtWvDtt9++lXiEEEIIIfTVe7co wNWrV6lZsyYFChSgT58+fPHFF1y+fJmRI0dy/vx58ufPT1JSEmvWrMHDw+Ot3L9ly5aULl2aWrVq UaxYMQ4dOsSRI0eYPHky3bt3Jz09nXHjxrF48WLmzp1L06ZNczwOoR9kUQAhhBDixd67ZBUgNTWV 8PBwBg4cSL58+Thz5gxjxoyhRYsWpKSkkJSUhIuLS47fVylFnTp1aNmyJf7+/ln2nTp1Cn9/fx4+ fMiDBw+oU6cOs2fPplSpUjkeh9AfkqwKIYQQL5bnpq56GcbGxnzwwQfs2LEDY2NjWrVqRb9+/bCy ssLe3v6tJKoAa9euJS0tja+++uqZfdWrV+ePP/5g1apVnDhxgrVr10qiKoR4Z61ZswZnZ2cMDAxw dnamffv2tG/fHi8vLxwcHDAwMCA+Pp4zZ84wZMgQnJycuHHjhq7DfilRUVFMmjSJ+vXrs2rVqmyP OXv2LA0bNsTAwIDSpUuzYsWKLPsvXLiAr68v+fLlY+LEiS91TSHeV+9lsvqUkZERGzduZMGCBbly v8mTJ/P9998/d1lUQ0NDqlSpgoWFRa7EI4QQb0vHjh0ZMGAAAN9++y3r1q1j3bp1bN68mStXruDl 5QVA1apVcXZ25tKlSzl274iIiBy7VnZKliyJr68vBw8eJDMzM9tjqlatSlBQEIUKFcLQ0JBu3bpl 2e/k5ES7du3o3r07I0aMeKlrPs/bLq8QuvZeJ6vwZAWo5yWPOSk2NpbTp0/LxP1CiPdGoUKFnrvP 19cXAwMDNBoNFSpUyLF7KqX47LPPcux6z1O+fPn/PKZ48eL4+flx+/Ztfv/992f2b926lX79+r3S Nf8tJSUlyzWEyIve+2Q1Nzx+/Jju3bvj5uaGvb29rsMRQgid69ixI6ampjl+3fHjxxMSEpLj131d AwYMQKPRMG/evCzbk5OTCQsLo2bNmm90/c8//zxHW6WF0EeSrL5lqamptGvXjrS0NHbs2IGdnZ2u QxJCiFz173G8kydP/s+vrkNCQvjyyy/x8fHBycmJlStXavelpaUxZcoUxo0bR//+/fHy8uLWrVtE RkZy5MgRAIYMGUJAQAAA6enpfP/99wwfPhx/f3/q1q3Lpk2bgCdTCS5ZsoS6desSGhpKjRo1sLW1 JSMjg/379/Pll1+ycOFCWrRowYYNG1657JUqVcLDw4OtW7dmKXNQUBBt2rT5z/MTEhIYOHAgo0eP pm/fvjRo0ICDBw8CT/rFXrp0iQcPHjBkyBA2b94MPOkW8PXXX+Pn58cHH3zA0KFDtV0Lrl69yuDB g1m6dCmNGzdm0KBBr1wmIXJbnptnVZ8kJyfTunVrChYsSGBgIPnz59d1SEIIkeumT5/Or7/+CsCN Gze4ePEivr6+zz3+2rVrLF++XJtsTps2jR49euDm5oaTkxM9evSgU6dOtGrVCgArKyu+/fZbVq1a RYcOHdixYwfTpk3TXu+zzz6jbNmyTJkyBYBt27bh5eXF5s2bqVu3LklJSYSGhrJjxw5mzJjB+vXr MTQ0pHXr1syZMwdfX18sLS3p3r07zZs3x9jY+JXK/8UXX7B7924WLFjApEmTAFi5ciU///zzC89T StGiRQt8fHzo378/APPmzcPT05PDhw/j4uJC48aNuX37tra8GRkZDBgwgKCgIExMTDh27Bi1a9em QoUKDBgwgDFjxmgHuvn6+jJr1qxXKosQuiDJ6luSkJBA8+bNsbKy4qeffiJfPnnUQoj30+DBg7UD jJRSdO3a9ZnW1n+aMmUK0dHRDB8+HIC4uDjc3d25fv06KSkpHDx4kMDAQO3xa9euxcTEJNtrhYeH ExgYqG1xBWjevDmurq6MHTuW0NBQqlWrBoCPjw8ODg40aNAAgEGDBuHu7g5AwYIFSUxMJDo6mnLl yr1S+b28vChfvjxLly5l7Nix3LlzB0NDQ8qUKfPC8/bs2cOBAwdYv369dlufPn2YMGECkyZNYs2a Nc+cs27dOiIiIhg7dqx2W/369Xnw4AHwpFV61qxZNGzYEDMzM/z8/F6pLELogmRQb8nEiRMpWbIk 8+fPz5UBXEII8S7QaDR4e3u/8JjTp0/Tq1cvevXq9cy+WbNmPZPk1a1b97nXOnnyJPDsYC8XF5dn ppP6d8L7/fffc/r0adauXUtMTAzAK4/Uhydl7t+/P8OGDWPNmjVcu3btmdkBsnPixIlnYs+XLx/O zs6cPn0623NOnTpFtWrVtC24/zZy5EgaNGhA5cqVmTNnjszxLN4JkkW9Jdu2baN///6SqAohxL98 +umnWFtbP3d/cnIyV69efWZ7amoq6enprzQfq6GhIQA3b97Msr1EiRIYGRm98NzvvvuOmTNn8s03 37zxSoK9evXCxMSEn376ieDg4JdKEl8n9uTkZK5du/bM9vT0dACcnZ05efIk1apVo23btnzzzTev WhQhcp1kUjls48aN9OvXjxs3brxw2hYhhHhf5cuXD41Gw3fffZftfnt7e1avXs2jR4+02xITE1m4 cCFOTk7cuXNHO0DqqeDgYOBJK+Y/1a5dGwMDAw4cOJBl++3bt6lXr95zYzx8+DCTJk3i66+/xsDA 4LVaVP/J3NycTp06cfToUdzc3J7bbeGfnrYYvyh2jUaTpUuFg4MDR48e5ezZs1nOedqndffu3ZQv X56tW7cyY8YMZs6cycOHD9+obEK8bZKs5rDbt2+zdOlSRo8ejYODg67DEUIInUlOTgaezAX6b/Pn zyc+Ph54Mr3fP//7+eefExkZSbNmzdi1axdbt27F19eXdu3a0bRpUypXrkznzp2ZOnUq27ZtY9Cg QRQuXBh4khQCXLp0idOnT1OuXDl69erFokWLtElZXFwcO3fu1PbrfJqIPm19hCd/lwMcOXKE5ORk 7UwAkZGRPHz48JmYX8YXX3wBQPfu3bPd/+9ruru706RJE2bOnElaWhoA169f5/z58wwbNkxb3qio KOLi4jh58iRdunTB1NQULy8v1qxZQ0hICH5+fri6ugKwdOlSkpKSAOjRoweFCxfGzMzspcsghC5I sprDpk6dyuPHj6lWrdp/fsUkhBB5VVBQEEuWLEGj0TB69Gg6dOhA165dadeuHc7OznzxxRd4enpy 8eJFfvrpJzQaDfPnz+fWrVt8/PHHzJs3j2vXrvHpp58yY8YMfvjhB8qUKYOBgQGbNm2idu3ajBkz hqFDh9KwYUM+/vhjADw8PHB1daVx48acPXsWjUbDTz/9RJ8+fWjTpg0jR45k8ODB/Prrr9StW5er V68yb948NBoNM2bM4OLFiwA0a9aMBg0a4O/vT8eOHenfvz/ly5fn66+/JiEhgVGjRgGwfv365/Yf /TdXV1e6dOnChx9++My+mJiYbK8ZFBREgwYNaNWqFaNGjeKHH37gjz/+oGLFigC0bduWsmXLUrNm TaKjoylWrBibN2/G3NycHj168NVXX+Hl5aXtxnD37l2aNGnCvHnzGDt2LGvXrtV2NxBCX2nUi4Zk ildWs2ZNjh8/TlBQEI0bN9Z1OELP+fr64ufnJ4MchBBCiOeQltUctmfPHu36zgkJCboOJ8949OiR PE8hhBDiPSTJag4rXLgwEyZM4MCBA7i7u/P48eNs+2uJl3Pnzh1+/PFHqlatirW1NfXq1aNRo0ba /mRCCCGEyNskWX0LbGxsOHLkCNHR0dqVT/bu3avrsN45iYmJtGzZkps3b7J+/Xru3LnDqlWrtP2v du3a9cb3eJXBEUIIIYTIfbIowFui0WgIDg7mt99+w8HBgY0bN/LRRx/pOqx3wtatWxk7dqx24uxF ixZx8+ZN/P392bt3LytWrKBIkSK0bduWBQsWvHDZxu+++46YmBgWLFig3bZ7924yMjKIiIhg8ODB HDt2jEqVKuVG0cS/mJuba1fWEUIIkfOKFStGbGysrsN4IzLAKhd06tSJ3bt3s337dhwdHXUdjl77 /vvv2bRpE0uXLsXd3Z3MzEymTZvGrFmz8PPzw9nZmYkTJxITE8OAAQMYMGAApqam2V7r8OHDNGnS hNq1a9O3b18GDRqEtbU158+fp1q1alSpUoU7d+5QpEgRli1blsslfeJ9H2Cl0WjIzMzUzhOplNL+ 5OTnt3ltuZfcS+4l99LXez31z/9/F0nLai7o168fa9askb6rL/Do0SOCg4NZvnw5N27cICwsjL59 +7J9+3bq1atHSEgIFSpUAJ5M1fIyNm7cCEBoaCjnzp1j3LhxNGrUiCJFimBrawtAQkICdnZ2DBo0 iB49emjXCBdCCCGEfpBkNRdcuHABCwsL7OzsdB2K3ho1ahRnz54lMDCQokWLEhgYSHh4ODt37tTO J/iqJk2aRIUKFdi4cSP79u0jIyOD5ORkihQpoj3GzMyMnTt3smbNGjp27IiZmRmjRo3Cy8srp4om hBBCiDcgA6zestTUVEaMGMG4ceOe+3X1+2769Ols2LCBwMBAWrZsCcCIESM4deoU5cuXf+3rajQa WrZsyaVLl/jzzz+pU6eOdgWZp5RSXLt2DRcXF27fvs3ly5fp3Lkz48aNy7K8YmZmZpbVbYQQQgiR O6RlNQdQY7RdAAAgAElEQVSkpaXxww8/ULBgQcLDwxkwYAA2NjYUK1YMY2Nj1q1bR9euXXF1daVy 5cq6DlevpKWlMWPGDM6fP4+VlZV2+61btzA2Nn7jlVWKFClC69at+eyzz4AnMzX809KlS5k0aRJX r14Fnqx+89VXXzFu3Dh27tzJd999x+rVq9myZQvm5uaEh4fn2movSUlJnDx5kqSkJJKSkjA1NaVJ kya5cm8hhBBCX0iy+hrCwsK4ceMGFSpUYMaMGQQEBNCgQQNsbW2JjY2lU6dOxMTEsHDhQtq1a0fj xo2ZOHEiTZs2pVSpUvz888+StPJkfe7x48fj5OSUJVEFmDx5MgMGDHij60dFRWFvbw+ApaUlpqam eHp6cubMGfbs2YO/vz9FihQhJiaGqlWrsmPHDkqXLg2Al5cXwcHBjB49mqSkJJKTk/nggw/YtWuX dtnCnGBiYsLEiRO5cOECISEhmJiY0KtXLypVqkSbNm0wMTHB3NycR48ecePGDSIjI3Ps3kIIIcS7 QJLVV5ScnEyVKlX48MMPuXv3Ls7OzkRERGBmZpbluBUrVhAcHEy7du0A8PPzo0ePHgQEBPDpp5+y detW7SCfF9m3bx9Llixh7Nixz7QKvsuSkpKoUaMG9evX1w6Eemr//v3s37+fH3744Y3uYWhoyCef fMLOnTtJTk6mbNmyWFtbY2dnR0ZGBlWqVKFNmzacOXOGQYMGUbx4ce25Go2GTz/9FG9vbxITEzE2 NmbJkiW0adMGCwsL6tSpQ58+fahSpcoz901NTSUmJgYjIyNMTU0pUKDAc2OcM2cO+/fvJyQkBDMz Mzw9PZk8eTInTpxgypQp9OrVC3jSAnzy5Mk3eh5CCCHEu0iS1VdUsGBBmjZtiqGhIQMHDqRevXrP JKoAZcqU4e7du1m2GRgY8Nlnn5Gamoqnpyd9+/Zl2LBhz71XXFwcgYGB3L17l6ZNm3L27FmMjY1z vEy6ULBgQTw8PEhPT6dkyZLa7UePHqVNmzYsW7bsmdbW5wkPDyc+Pp4uXbowYMAA3N3dcXR05Pz5 8yxcuBA3NzfWrl3LuXPntAn/mDFj8PT0RKPRMGHChOde28DAgMKFCwPw0Ucfce/ePc6dO8euXbto 3bo17du3p2DBgly4cIFbt25x+/Zt4uLiMDc3JyMjg4SEBMqWLUvlypWpWrUqnTp1okyZMmRkZFCg QAEKFSpE06ZNs7TWdu3aldTUVIyNjVmwYAH29vZERUVx69Yt7t69S6lSpV7nkQshhBDvJBlg9RqC goKoW7cus2fPxs3NjRUrVhAREaEdgBMeHs66deuem1T069ePI0eO8OOPPz4zaCczM5OQkBA6d+6M k5MTkZGRBAQEUK1aNX799de3XrbcsHfvXsaPH8+BAwfo0qVLln2jRo1i9OjRNGrU6KWuFR4ejqen J40aNeLevXv8/PPP9OzZExsbG7777jscHR2pVKkSv/76q3ZhgIULFzJ69Gg0Gs0rx25oaIiLiwtD hgwhLCwMIyMjChQoQM+ePVmyZAlnz57l0aNH3Llzh3v37hEfH8/mzZvp3r07iYmJNGrUiJIlS9Kh Q4csA7j+zdjYmC1btjB06FDWrl3LkCFDcHR0pHLlynh7exMfH//KsYuXd/jwYV2H8Ax9bVk/f/68 rkPI1l9//aXrELKlj1157t27p+sQshUXF6frELKlj9NQvuj3SV4giwK8oWPHjjF06FDCw8NRSvHJ J5+wadMmOnbsyIQJEzA3N3/uuV5eXpw4cYLq1atjaGjI9evX+euvv7C1tWXAgAF07dpVO4PA0aNH admyJdu2bXvnV1v68MMPadCgAZ6ennh7e2u3h4eH8+GHHxIWFoaJiQk3btzgzJkz2U4jpZTSLsea np7OhAkTaNGiBfny5ePx48fExcVRvHhx7UTIpUqVIj09nSpVquh06du0tDTi4uJo0qQJ0dHRdOzY kRYtWmBjY4O5uTkajYbTp0/z888/ExwcTGxsLPv379fO/5qYmEiPHj1o2bIlX3755WvFoJTiwIED /PLLL/Tr14+qVavmZBFfib4uCjBjxgwGDRqkV5N7L168mJ49e+bKvV6lXGvWrKF9+/Y6fV/Zfd6+ fTtNmjTR2ft63r0OHjxI3bp1dfa+svt87tw5PvjgA52+r+w+R0REaL9h09X7ym7fgwcPtFMg6uJ9 Zfc5IyMDAwODZ/Y/9c//fxdJN4A3VLNmTf78808ATp8+zdy5c1m0aNFLTVy/efNmLl68yJUrV0hN TcXW1hYHB4dsuxXUqlWL8ePH07t3b0JCQjAweLcaxa9du0bfvn1p27Yt165dyzKY6Z/S0tIYPnw4 RYsWZfr06QDZtiL26tWLLVu2UKdOHSZNmkTt2rW1+/Lly6ftf/q09XTmzJlUqVIFZ2fnt1G8l5Y/ f34sLCw4efIkZ86cYcWKFfj7+3Pjxg3S09MpVqwYhoaG9OrVi+3btzNq1Ch27NihTVZNTU0ZPnw4 HTt2JD09nUGDBr1UC7FSir1793L8+HF+/fVX4uLiaN68OR4eHsyYMYOuXbu+7aILIYQQr0WS1Rzk 4uLCkiVLXumcypUrv/TMAH369GHJkiWsW7eOjh07vk6IOrF8+XKWLVtGREQEx48fZ/369dkmqvb2 9oSFhbF48WLGjh2rPfepq1evsmLFCiIjIzl79iwxMTEvHLz0Tz4+PjlTmBxUrVo1bUIOT5Lyu3fv Ymtri6GhIZ07d+b333/n+++/z3Kem5sbe/bsoVu3bhw6dIjly5dn+w+cf9q7dy+dOnWidevWDB06 lCZNmmBgYICPjw9du3YlJiYGf3//t1JOIYQQ4k1IN4B3yKNHj/D19SUjI4PVq1frOpz/FBcXx8GD B/nyyy/x8/NjwoQJ5Mv3/H8fXbhwgW+++Ybdu3dTokQJ9uzZg5WVFUlJSfj7+7N3715atWpF6dKl GTJkCIUKFcrF0uS+8ePHs2zZMiZMmICXl9czLagpKSl8++23HDp0iKCgoOe2Gm/YsIGePXvi6+vL pEmTntk/adIkMjMzmTx58lspx4u8Tr9hIYQQL69YsWLExsbqOow3IsnqO2TUqFHs37+f1atX/2dL mj5wdXWlXLly2on2n46qfx4fHx9KlizJt99+S3h4OJUqVcLExIQuXbpgZmbG4MGDcXV1zaXo9cPu 3bsZPHgwSUlJdOvWjc6dO2NhYZHlmNWrVzNy5EhmzZqFr6/vM9dYsGABf/75J/PmzSN//vzP7F+9 ejWrVq1i6dKl2Nvbv3NdTIQQQuRt0g3gHVK5cmVOnjz5TiSqsbGxREVFceXKlZduPfv777+5cOEC SikWLlxI2bJl0Wg0lClThqCgoGwTrbzO09OTU6dOceTIERYtWkSNGjXo378//v7+mJiYANC5c2eq VKmCj48PFhYWNG7cGIDbt29z4MAB1q5dS+PGjbN9fmvWrKFJkyYcOHAAT09PqlWrRlBQUJ6ZIk0I IcS7T1pW3yH379/H1taWq1evZpt4ZGRksHbtWqytrXF3d9dBhP/v8OHDdOnSha+//pqiRYvi4eGh XU3qeTIyMtizZw8bN26kZ8+epKSkULhwYRwcHN7LRDU7ERERDBo0iJCQEBo3boyXlxfNmjUjf/78 zJ07l7/++osZM2YwZcoUFi5cSL169bCysmLChAkYGRlludbTFb5mz55Njx49SE9Px8/Pj7S0NIKD g+WZCyGE0AuSrL5jHBwcWL16NY6OjtptSim2b9/O2LFjSU9Px9LSkt9++w1DQ0OCgoKoX79+lgn2 MzMz+fvvv/8zeXwTMTEx/Pzzz8THxxMdHc2uXbuwtrZmw4YNlC1b9q3d931x584dgoODCQgIoFSp Utq5fj/66CMKFChAo0aNKFasGHZ2dnTp0iXbxPPPP//E29ubzz//XNuXNT09nQ8++IBFixbRsmXL 3C6W3rh+/Tpr167F0tKSFi1aPNP1IjekpKSQlpb2n91ncpu+xiVyhj7UffFqYmNjMTExoWDBgroO 5e1R4p3SrFkz9csvv6j4+Hh17949NX/+fOXi4qKcnZ3V5s2bVXJysqpVq5YqUqSIat26tapQoYKy sbFRf/31l4qPj1fx8fGqcePGSqPRqCNHjmi3Pf2JjIxUs2bNUnXr1lVBQUHP7H/dn9jYWNW5c2c1 cOBAXT/CPCUlJUXVrFlTzZ8/X8XHx6uePXuqDRs2qPj4eFW8eHEFKEBNmDBBnThxQm3fvl37Tq5d u6YA5ezsnOVdLViwQJUrV06tWLFCpaenv5W4b968qfr376/mz5+vunXrpsLCwt7KfV7HmjVrVN26 ddXVq1d1cv/MzEy1fPlyZWVlpXbv3q3dHhISoqpWrarMzMzUJ598om7cuKEXce3fv1+NHDlS/e9/ /1OdO3dWly5dytW4/uu5ZGRkqIYNG6qQkJBcjevkyZOqXr16qmjRosrT01Pdv39fKaX7uv+8uJTS fd3/97vSdZ1/Xly6rvNKKeXu7q40Go3SaDSqUqVKL4w3L5Bk9R3y4MED5eTkpFauXKnCwsJUyZIl VZMmTdTWrVtVRkZGlmN3796tPvroI3XixAk1cuRIVa9ePfXw4UN19OhRVbZsWTVz5kxVrFgxtX79 evXw4UO1bds25ePjo4oWLaratGmjvL291cCBA3MsWT19+rQqW7asOnDggI6eXt61atUq5ejoqE6f Pp3tc7e3t9cmrebm5urChQva/c2bN1eAevjwYZbzNm7cqNzd3VXFihXVqVOncjTezMxM5erqqnbt 2qWUUurChQvKxsZGPX78OEfv8zr+/PNPZWFhoW7duqWzGO7du6ciIyOVRqNRe/bsUUopFRUVpbp1 66bOnTunduzYocqXL688PT11Htfjx4+Vra2t9u+fkJCQXI3rZZ7L3Llzlbm5udq7d2+uxZWamqqG Dx+ukpOTVWJioqpTp44aMWKEUkrptO6/KC59qPv/fFf6UOezi0vXdV4ppY4fP67GjRunTpw4oU6c OKGioqKeG29eIcnqO2Tx4sWqePHiaujQocrCwkKNGzfupc57/PixqlOnjpo+fbo6fPiwKlOmjHr0 6JEKDg5WlpaWysjISDk7O6sZM2aoe/fuqcDAQFWiRAkVHBz8xknqnDlzlKenpypevLiaNWtWlrgu X76s0tLS3sajeq9kZmaq2bNnK0tLS7V69epn3kFcXJwaMWKEAtSAAQNU9+7dtfv+/PNPBajjx49n +/4WLlyobGxsVGxsbI7Fu3PnTlWgQIEsrbYODg5q/fr1OXaP15GZmakcHR3V+PHjdRrHU/9MCp9+ m/LU8uXLlYmJic7junfvnipQoIBKSEhQSil1+vRp5ebmlmux/Ndz2b9/v9q6dauqUKFCrv7ivnv3 rkpNTdV+/vbbb9XIkSN1XvefF5dSSud1/5/vKiQkRG/q/L/rkK7rvFJKdenSRU2dOlVduXLlP+PN K2SOmndIz549GTp0KAkJCezfv5+RI0e+1HmGhoYsXbqUSZMmYWZmRrly5QgICMDb25uoqCgePHjA uXPnGDRoEFu2bGH48OFs3LiRjz/++I3i3bRpEyNHjqRDhw6cPn2ar776SrsvOTmZOnXqMH36dB4+ fPhG93nfaTQavvzyS4KDgxkzZgw9evTIsta3RqNh2LBhNGjQgOjoaKKjo4mMjCQhIUHbH23VqlXZ XtvHx4dmzZrRpUuXHFt7+uDBg1SsWDHLnLsODg788ccfOXL913X48GEuX77M9evXadeuHZUrV+an n37SaUxPderUKcssICVLlqR8+fI6jOgJCwsL3Nzc6NatG/Hx8cyZM4fx48fn2v1f9FxiYmI4dOgQ zZs3z7V4/hnH037iqampREVF4e/vr/O6n11cgwYN4tChQzqt+/9+VxqNRi/qfHZ1SNd1PiMjg9jY WKZPn06lSpXo1KkT6enpz403r5Bk9R2i0WgYOnQo8+bNo1KlSq90rpOTE8OHD6dWrVrEx8fz0Ucf afcVKlRIO73Ub7/9xrhx46hSpcobx/vw4UNq165N7969KVeunHZ7ZGQkP/zwAzY2NowfP57ixYvz 2WefSdL6hurWrcuZM2ewtbWlevXquLu7c+vWLebNm8exY8coU6YM69atY9u2bTRq1Ah7e3u2bduG jY0NM2fOZNSoUdmuHz1+/HgePHjADz/8kCNx3r1795nBOUWKFOHmzZs5cv3XdeLECczMzJg8eTLr 169n9erVDBw4kNDQUJ3GlZ2TJ0/Sr18/XYcBwLp167h06RJlypTBw8ODZs2a6SyWfz6XmTNn6nxV ts2bN1OrVi12797N+fPn9abub968mdq1a7N7927CwsJ0Xvdf5l3pos4/Ly5d1nlDQ0O2bt3KnTt3 WLFiBVu3bmXEiBEvjDcvkGT1PfL1118TFRXFmTNnsswm8JRSimPHjlGjRo03vld6ejq//PLLMyPK r169iouLCydOnGDu3Ln8+uuvnD9/nlu3bjF//vw3vu/7rkCBAkydOpWIiAg6depEnTp1GDVqFB06 dODOnTtMmDABZ2dn7O3tWb9+PVOmTKFEiRIALFq0iL59+3LkyBHu3LmjTVyNjIxYvnw58+bNY+fO nW8cY758+Z6ZRiunWm3fRGJiIpUqVdI+D1dXV2rUqMGWLVt0HFlWSUlJnDt3Lss3Fbp09+5dPD09 ad68OT169GDdunU6iePpc/nyyy9ZvHgxnTt3zjILRnb/EHvbvLy82LhxIw0aNKBLly4YGRnpRd33 8vIiODhYG1dSUpLO6v7LvCtd1PkXxaUPdV6j0dClSxf+97//sWrVKpYsWaIXdf6t0WEXBKFnIiIi VKlSpVRcXNxr91G9efOmOnDggHJzc1NeXl5ZBg5kZmYqDw8PNW7cOBUfH68uX76sevXqperWrass LCzU5MmTdVj6vOn06dPq888/V4Bq3bq1atGihVqwYIH66quvFKCaNGmiGjRooLp27aqMjIyUtbW1 KlasmDI2Ns7StzU+Pl5t3bpVlSxZUttX63X98MMPqlq1alm2NWvWTPXv3/+Nrvumli1bppycnLJs a9eunfr88891Es8/+4b+05gxY9S9e/d0ENET/4wrKSlJlSpVSkVHRyullPruu++UmZmZiouLy/W4 /vlcatasqUxMTLQ/Go1G5c+fX3Xs2DHX41JKqUePHqmCBQuqsWPH6lXdfxrXlClTdFb3X+Zd6aLO Py+uDh066E2dV0qp6OhoZWJiond1PqdJsiq01q1bp1q0aPHKCWpERITq0aOH+uSTT1ThwoWVlZWV mjlzpsrMzNReOyMjQ/32229Ko9Eoa2trZWRkpIyNjVX//v3V3r171cWLF2Ww1VtSunRpFRgYmOWd VahQQQFq2rRpysPDQ9WqVUsVLVpUhYeHq7///lt16NBBmZqaqn379mU5r1WrVurHH398o3gOHTqk zMzMsmyrWLGiWrNmzRtd901dvHhRmZqaZqmHLVq0eOPyvq7sktVFixapv/76S/tZF39m/hlXaGio srS01O57/PixKlKkiDp+/HiuxvRfz0UfBptYWVmpgwcP6l3dt7KyUufPn9ebuv/vd6UPdV6p/4/r 6NGjelHnn7pz584z/wBSSj/qfE6SbgBCKzQ0FFdX11c658GDB/Tp04ezZ8/St29f/v77b27cuMHA gQPRaDRERUUxdOhQ/P39adOmDSYmJiQmJmJqaoqnpycbNmygVKlSODo6PvP1mMgZmZmZREVFZflK KCAggMOHD9O3b1/Wrl3LpUuXcHR05MyZM1hYWDBjxgwSExPx8fEhKipKe96oUaOYOnUqO3bseO14 6tSpQ/ny5fnzzz8BuHTpEsnJyXh5eb1+IXOAo6Mjbm5u2q8+09LSOHfuHF26dMn1WJ5+NfzPd/bz zz9ToEAB0tPTuXTpEnv37iUwMFCncdnb25OWlsadO3eAJ8+sYMGCODg45FpM+vBc/i02NpbNmzdr P+/du5du3bpRr149ndb958Xl5OSkN3X/n/Tx3drZ2em0zh87dowlS5Zo/yzOmTOH7777LlfurUv5 /vsQ8b44evQoX3/99Usdm5mZSe/evQkLC6NMmTKMHz8+2xGIzZo1o2rVqgQEBGBgYMCff/6Jk5OT dr+vry9hYWG5+svtfbNz507at29PkSJFaNeuHQDVq1fX7g8NDSU+Pp6KFSty69YtAEJCQoAno0vd 3NxYuXIljRo1wsHBgYCAAD777DMuXrxI0aJFXzkejUbDxo0bGTduHBcvXuTo0aNs2bKFAgUKvHlh 39CqVav45ptvuHz5Mjdv3mTx4sWULFkyV2OIjo5m8eLFaDQaAgMDKVu2LNevX6d3795kZGRoj9No NFy+fFmncTk6OrJ+/Xq++eYbatSoQWRkJKtWrcoyivtt2rFjh86fS3auXr1K7969qVSpEu3atcPU 1JQJEyYA6LTuvygufaj7/6Sv77ZYsWI6rfN3795l5MiRrFq1iiZNmlC7dm1atWqVK/fWJVluVWjZ 2tqyfv167Ozs/vPYtWvXMmvWLMqVK8eqVaswNzfX7nvw4AETJ07k1KlT7Nmzh0KFCmFnZ8e4ceNo 1KhRlut07twZOzs7XFxc6NKlCwYG0tj/NoSEhNCjRw927NhB2bJl+eOPP1i0aBFTpkyhdOnStGjR ggIFCuDh4cHAgQP5+++/adasGf/73/+YP38+vr6++Pr6aq/n7+9PgQIFmDt3rg5LJYQQ4n0gmYEA YOHChaSkpGRJOv/t4cOHDBo0CGtrawYOHMjMmTPZtm1blnNWr15NpUqViI2NpW/fvgB4enoSHByc JVF99OgR8+fPp1y5cqxfv54JEyZop88SOa9hw4b07duX+vXrc/78eaKjo9m7dy/u7u4sX76c6tWr kz9/fu1XbLa2tixdupSJEyfi4+PD4MGDuX//vvZ6I0eOZP369Zw8eVJXRRJCCPGekJbV91xycjIT J05k5cqVbNy4EVtb22yP++uvv2jSpAmPHj1ixIgR9OjRg9KlS2c5JiMjg7JlyxIYGEjNmjUBiIiI wNra+plENDExkTJlygBPplvav38/bm5ub6GE4p9mz55NQEAAlpaWXLp0CXt7e44dO0ahQoVo3rw5 gYGBXLlyBTMzM5KSkqhQoQIJCQnafnZP3xnAL7/8wuzZszl+/DgmJiY6LJUQQoi87L1sWb1//z5p aWm6DkPntm3bRuXKlbl48SI7d+58bqIKT/o6Va9enQcPHjBs2LBnElV4sgKQsbFxlkFa5cuXfyZR jYmJoV69epQrV44VK1Zw+/ZtSVRzSf/+/fn77785cOAAXbt2JSgoiAMHDtC+fXsePnxI/vz5SUhI ICYmhk8++YTKlSuTnp5Oenr6MwPgOnXqhIODA8OGDdNRaYQQQrwP3rtk9ezZs1hYWLz3v2CPHTtG 9+7dmTdvHj///HOWFrPsHD58WLtM4PO+rrexscHa2vo/Vxm5du0aqampTJkyhS5durzWIB3xeoyM jLC0tKRo0aLMnj2bAwcOYG1tjYeHB5cuXaJEiRIYGxvj5+dH3bp1OXHiBAULFgRgw4YNJCUlaa+l 0Wj4/vvv+emnn0hNTdVVkYQQQuRx712yamdnh7+/f66u5atvYmNjadu2LbNnz6ZBgwb/efzNmzdZ vny5dkm35ylbtixz5szhwoULz+xbt24dX3zxBc2bN6ddu3Z89tln+Pr6Sj9VHUhISMDKygp3d3fW rl0LQK1atbh69Srh4eE0bNgQV1dXypcvj5mZGa6urnz88cesX78eR0dHhg8fzuPHj4EnMwloNBpa tGihnUlACCGEyEnSZ/U9tGLFCu36z9nJyMggMzOT6dOns2zZMuLi4hg2bBijRo36z2vHxsbi7OxM pUqVSElJYeDAgdSsWZN69erh7e1NoUKFmD59OoaGhjldLPGS2rZtS9GiRencuTP9+/fn+PHjALRq 1QpHR0dq1qzJ0aNH2bVrF6VKlWLMmDHs3buXY8eOcfPmTRISEmjXrh1jx44F4Pbt27i4uBAREYGl paUuiyaEECIPkmT1PbJt2zb8/f0pUaIESqls13kPCQmhc+fOJCQk0KxZM2bOnImdnd0rTSmVkJBA 4cKFqV69OnFxcURFRTFkyBBGjx6dk8URbyggIIBZs2axd+9eAGbMmMH9+/fZvn07f//9N8bGxuTL lw8zMzOOHz9O4cKFSU5OpkaNGqSmpjJo0CA+//xzYmNj+fDDD7GxsWH9+vU6nZtRCCFE3vPedQN4 H0VGRjJw4ED69OnD2LFjadSoEd9++612v1KKX3/9lQkTJtC7d2+mTp3Kl19+ydatW3FwcHjluU/N zMxQSrFgwQIqVapEeHi4JKp6yN3dnYSEBO2k4O7u7hw8eBADAwN27dpFdHQ0ixYtIjExUTu4qmDB gvz2228ULlyYOXPm0KZNGzZt2sTZs2fJnz8/+/bt02WRhBBC5EGSrOZRSimCg4Np3Lgx1apVIykp iQMHDtCyZUuGDRuGh4eH9tgrV67w/fffM2/ePAYOHEi/fv2YPXv2a/Un7du3r3baqlq1arFt27Zs Zw4QumdnZ8fhw4dZsWIFp0+fxszMjNTUVIYMGcKIESNITk4mLCyM1NRU7cCqp7NorFixgvv375Oc nMzChQsxMjKiSpUqdO7cmRIlSrB48WLkSxshhBA5QboB5EHR0dH069ePCxcuMHToUO3qRP+2fPly 5s2bR2JiIp06dWLatGlvNOBp1qxZ+Pv7M23aNAYPHvwmRRC5aMGCBQQGBjJ16lR69uzJuXPnaNiw IWXKlGHbtm1YW1vz4MEDlFIUKlSIhw8fkpiYSJMmTTA3N8fR0ZH+/fvz+PFjkpOTuX79OgMHDqRQ oUJMmjQJV1dXmYdVCCHEa5OW1Tzm2rVr1K1bl7Jly7Jv3z7atWuXbaIaERHB4MGD+eCDDwgKCuLH H7bKIwAAACAASURBVH9845H55ubmDBgwQBLVd0yvXr2IiYlh+/btAFy/fp0LFy7g7e2NRqOhadOm lChRgurVq1OxYkUeP37M+PHj+f333wkJCeHGjRsA5MuXj8KFC1O1alV2795NixYt6Nu3L+bm5owc OZLMzExdFlMIIcQ7SlpW85DHjx/j5ORE7969/3Ou0/T0dBYsWMCoUaO4fPny/7F333FNXe8Dxz8Z gMiQ5UBEq7hwi+CodSviqKO2zlqlqG0dddVaax111NZt1ap1Veuoo45WS61bq1atE/fAhShDRRAI EJLfH/7IVyoqI5BgnvfrlRdwc++5z40Rnpz7nHNeuiCAeP0FBwfz3nvvUblyZdasWUPTpk05efIk FSpUoFWrVly5coW+ffsyY8YMlEolV65coVChQsycORNfX188PT1f2HZ0dDQ9evTg9u3bnDp1isKF C+fhlQkhhMjvpGf1NbJp0ybc3NxemajC08nhT58+zfDhwyVRFbRq1YqFCxfy8ccfU6pUKW7fvo2b mxvly5enePHipKSk0KVLF/r3749arWbWrFkkJCTg4uLy0kQVwM3NjR07dhAQEICnpyeVK1cmNDQ0 j65MCCFEfic9q/mMTqcjJCSEHTt28M8//1CtWjWOHj1Kt27dWLlyJa1bt6Zv374ZHhsXF8eFCxc4 f/48J0+e5O+//yYkJMSwQlFWaDQaLl26RMWKFaUe8TXk6+tLTEyMocf1+vXr/P7779SsWZN58+Yx a9YsnJ2defz4Mdu2bSM0NJQ2bdq8st3ExES+/vprFAoF8+bNy4MrEUIIkd9JspqP/PPPP3zwwQfo 9XoaN26Mn58fISEh7N27l/Pnzxv2Gzt2LJ07d2bRokWoVCpatGjB4MGDCQ8Px9vbm2rVqlGtWjXe fvvtbPWqPnz4kNatW3Pu3DlGjhzJmDFjjHmZwgzo9XqSk5OxsbFh0aJFbNiwAS8vL6ZPnw48Xa63 Z8+e+Pj48Oeff1KwYEFu3bqVqcUeOnbsSM+ePenVq1duX4YQQojXgCSr+UBqaiqTJk3ihx9+YObM mbRr1y7d861ateLQoUMsX76cwMBAihYtikKhoEePHqxbt467d+8ye/ZsBgwYYJSVo1avXs2nn36K h4cHX3zxBd27d89xm8K8bd68maVLl7J27VrDtkOHDvHRRx8REBDAoUOH+Pvvv/n333/x8fExzMv6 XxEREfj5+XH//n1sbGzyKnwhhBD5mNSsmjmdTkdQUBA7duzgwIEDtGvXjtWrV7Nz507DPps3b+bY sWPUr1+fAQMG8OTJEwYMGMD06dMJCwvDzs7OaIkqPF2uc/LkyTRr1izdfK3i9aPX64mPj8fR0ZGj R4+mW6LXz88PpVJJSEgITZs25c0338Tf35+YmJgXtpeWxEqiKoQQIrOkZ9WM6fV6Bg8ezPHjx9m8 eTN2dnbcv38fX19fbG1tCQkJISYmhuHDh5OYmMiuXbsoWrQoISEhhhHXBw8exMXFhcqVK5v4akR+ FB8fj729PQULFiQhIQEHBweOHDlCyZIlAfj5559Zu3Ytly9fJioqihYtWvDrr7++sD2dTke5cuU4 evQopUuXzqvLEEIIkY9Jz6oZW7BgAbt372b9+vXY2dkBT1ebcnJyIioqivHjx9OgQQNKly5NQkIC 1apVo2vXrjx69MjQRoMGDSRRFdlmZ2dHnz59SEhIoFSpUtjb26cbyd+uXTsiIyMZO3YsAQEBnDhx gsOHDxueDw8P586dO4aflUolLVu2ZOvWrXl6HUIIIfIvSVbNUFJSEkeOHGHAgAHcunXLsNRlbGws n376Kd999x3ff/897u7u/Pbbb3h7exMaGoq/vz/BwcH89ddfnD9//pVTCgmRGYsXL6Zv377cunWL gIAAGjdubHiuUKFCfPnllwwaNIhChQrx8OFDOnXqRKtWrejTpw8VK1Z8bpaAKlWqsG/fvry9CCGE EPmW2tQBiP95/Pgxb7/9NgcPHkSlUuHk5ERMTAy7d+/mwIEDhIeH07RpU7p27ZruOK1Wy/379/np p5+ws7OjaNGiVKlSxURXIV5HLVu25OzZs0RFRT33XOPGjalduzY3b94EQKVScezYMcPKadu3bzfs Gx0dzfTp09m8eXOexC2EECL/k55VE7p69Sq9e/emXLlylCpVisDAQA4ePAhAnTp1GDt2LABjxoxh /fr1WFtbM2fOnOfaqVu3LkeOHGHz5s0cPHiQDRs2ADB48OC8uxjxWuvUqRPjxo0jIiKCJUuWUL9+ fTp06EBiYiIuLi4MGTKEIkWKMGTIEGJjYwGIjIykaNGiaDQaQzuTJk2iW7duvPXWW6a6FCGEEPmM DLDKY4mJiUyYMIFLly7x999/069fP9555x0UCgXt2rXj7t27wNPavjJlyvDll1/y4Ycf4uXlxbVr 117Zfnx8PK6urvTp04fZs2ejVkvnuTAOrVaLt7c3Dg4OnDp1CoCiRYuyePFitFotP/zwA1u3buXw 4cNotVoCAgKoVq0aM2fOpE6dOvzxxx98+umnXLx4ERcXFxNfjRBCiPxCMpk8tnTpUvbt20evXr2Y N28ejo6Ohue6du3KjBkz6Nu3L3PnzkWlUqFQKNi2bRvvvvtuptq3sbFh+/btMqWUMDq1Ws0vv/xC 7dq1mTVrFp999hkNGzZk9erVdOjQAY1GQ8GCBWnevLnhmLZt29KqVStatWrFv//+y++//y6JqhBC iCyRntU89Oeff9KnTx9WrFhB7dq1uXHjBufPn0etVpOQkMCIESOIioqiUqVK6VakEsKc/PDDDwwb NowqVaqwceNGWrZsSVhYGNOnT+eTTz5Jt29cXBxHjhxh2rRp/PjjjzJdlRBCiCyTZDWPREdHU7hw YZYsWULnzp2ZMGECy5cvp27duuh0OlJTU/n444/p2LEjer2elJQUwsPDKVWqFAqFwtThC5HO48eP SU5ONsznK4QQQuQWSVbzkJeXF+3atePmzZvs3buXK1euUKRIkQz33bZtG2+//TZt2rRh27ZteRyp EEIIIYR5kNkAcklcXBzffPMNly5dMmxbs2YNVlZWtGjRgtu3b78wUQWoWrUqjRo1onr16nkRrhBC CCGEWZKeVSPbv38/QUFBlC9fnuDgYAIDA1m2bJmpwxJCCCGEyJekZzWHtFotJ06cQKPREBYWxuzZ s7l+/ToRERG0a9eOoKAgU4cohBBCCJFvSc9qNmm1WgIDA/n9999JTU2laNGihIWFMXnyZMqWLUu7 du1kYJQQQgghRA7JPKvZtHTpUk6fPs2///7LlStXDOuff/bZZ4SHh0uiKoQQQghhBFIGkE2+vr6c O3eOcuXKcfbs2XTPqVQqE0UlhBBCCPF6kWT1FR4+fMjPP//MunXreLZiYu3atQQEBPDhhx8aVqHq 2bMnoaGhLx3lL4QQQgghMk/KAF7i6tWrNG3alBo1anDx4kUKFChAiRIlOHLkCD/++COOjo74+Pgw fvx45s+fT//+/U0dshBCCCHEa0UGWL2AVqulc+fOeHl5Ubt2bb788ksUCgUPHjzg4cOHAHTo0IHi xYszcOBAvL29TRyxEEIIIcTrR5LVDISHh9O1a1d0Oh2xsbHo9Xq++uorVq9ezZ9//knLli358ssv qVevnqlDFUIIIYR4rUmymoEePXpgZWWFtbU10dHRbNy4EaVSiV6v58mTJzg4OJg6RCGEEEIIiyA1 qxlo2LAhX331FU5OThw7dgyl8uk4NIVCIYmqEEIIIUQesthkNSQkhM8//5zk5GR27dqVbl7UHj16 oNVq6d27N3Z2diaMUgghhBDCsllMGUBKSgrR0dG4u7sDsGPHDgICAnByciI0NBRnZ2cTRyiEEEII If7LIpLV1NRUqlWrxsOHD7l16xbW1tamDkkIIYQQQmSCRSwKoFQquXDhAj4+Puh0OlOHI4QQQggh Mslsk9Vt27bh6+vL0qVLeVnn765duxgzZsxL21IoFGg0GrZv306BAgWMHaoQQgghhMglZlkGkJyc TLNmzVAqlRw6dIiTJ09SrVq15/bT6XSoVCrD988OkhJCCCGEEPmfWc0GcOjQISIiIpg6dSrnzp0j ISGBGjVqULVqVVatWsX9+/epUKEC9vb2NG7cGIVCwQ8//ECZMmUkURVCCCGEeA3les+qXq/n/v37 uLq6vnRgU3h4OB4eHoafq1evTv369Rk2bBheXl5069aNX375xfB8ZGQkhQsXzs3QhRBCCCGEiRkl WR0/fjyXL19m+vTphoTz+++/56effmLcuHF06NCBAQMG8O6771KjRg2cnJyeayM1NZXNmzdz7tw5 2rRpg6+vb7re0sePH7N3714qVqxI2bJlUavNqlNYCCGEEELkAqMkq5988glr1qzB29ubf/75h8TE RIoUKcKTJ09wdHTExsaGqKgoABYuXMhHH32U48CFEEIIIcTrzyizAfTr14/Y2FiqV68OPO0FffLk CR06dMDOzg53d3e8vb1p1aoVlSpVMsYphRBCCCGEBTBazery5cvp1q2bYWqoU6dOUb16dVavXs2h Q4eYOXMmBQsWNMaphBBCCCGEhTDLqauEEEIIIYQAM14UQAghhBBCCElWhRBCCCGE2ZJkVQghhBBC mC1JVoUQQgghhNmSZFUIIYQQQpgtSVaFEEIIIYTZkmRVCCGEEEKYLUlWhRBCCCGE2ZJkVQghhBBC mC1JVoUQQgghhNmSZFUIIYQQQpgtSVaFEEIIIYTZkmRVCCGEEEKYLUlWhRBCCCGE2ZJkVQghhBBC mC1JVoUQQgghhNmSZFUIIYQwgXXr1jF//nwePXpk6lCEMGsKvV6vN3UQQgghhKXx8vKiaNGixMbG EhISgkKhMHVIQpgl6VkVQgghTGTUqFFERkYSFhZm6lCEMFtqUwcghBDm5tSpU0RERJjs/GFhYZQo USLdtri4OFJSUnBxcQEw9MJl9+vLntPr9S996HQ6THlT7vHjx+j1epycnEwWQ0bi4+PRaDS4urpm av+EhAQAypUrx/nz5/H09MzN8ITItyRZFUKIZ2i1Who2bEi1atVMdlv26NGj1K9fH7X6f7+iz5w5 g7W1NZUqVTIkipn9+qzMHKNQKJ57wNNkVqlUPrc9r129epXY2Fhq1aplkvO/yNWrV4mKisp0XN7e 3ri4uFC6dGnOnTtHQEBALkcoRP4kyaoQQvyHm5sbVatW5Z133qFQoUJ5fv633nqLlStXYm9vb9jW o0cPSpUqxbRp0/I8HnMzdepUdu3axaZNm0wdSjonTpygTZs2zJkzB5VKlenjypQpw+nTp3MxMiHy N6lZFUKI/6fX6+ncuTMTJ07k+vXrTJkyxWSxKJXy6/lFFAqFScsQXqRWrVpYWVlx6dKlLB335ptv snv3bsqVK0ejRo1Yu3Ytx44dIzk5GYAnT56wZ88eLl68aJbXLURuk55VIYT4f3/88QcHDhwgJCSE 3bt3U716dZPEkXYrXmTMXF+b5ORkkpKSslxLW7x4cbZs2cL9+/fZt28fixYtIjQ0lLfeegtHR0cW L15M9erViYqKwtnZmZkzZ9K8efNcugohzI8kq0IIi5GcnIy1tfULn7969SqFChUiMjKSmzdv4u7u nofRpSc9q/nPo0ePSE1NxcPDI8vH2traUrp0aUqXLk1gYCDXr19n9uzZaLVaFi9ejK+vL3q9nl27 dtG1a1cCAwOZOnWq2SbuQhiTJKtCCItw9OhRmjVrxjfffMMnn3yClZXVc/v06tULBwcHTp06Rbdu 3YiLi+Px48d5Xreq1+slWX0Jcy0DKFy4MFqtltTU1CzVrGbEy8uLuXPnptumUCho0aIFarWaadOm cfbsWcLDwxkyZAhBQUE5Op8Q5kx+GwohLMLSpUtp0aIFa9asoXTp0kyfPp0//viDXbt28eTJE8LD w7l16xZBQUEEBwcTHh5O9erVs1x/aAxSBvBy5pqsKpVK1Go18fHxuXqeJk2a0Lx5c/766y86derE sGHDaNq0KXfu3AGe1rh+/fXXVKlShePHj2e63eTkZI4cOZJbYQuRbdKzKoSwCPfu3aNevXo0a9aM S5cusWHDBrZu3UpCQgKXLl3CysoKlUpFQEAADRo0wM/PD51Ox+nTp6lTp06exio9qy9nzol8gQIF iIyMxNHRMVfPM3jwYIKCgihUqBCtWrVi5MiRjB8/nmrVqrF48WJKlixJlSpVCAgIwN7enrJly/Lg wQNGjhxJt27d0rWl1+vZsmUL77zzjuFnIcyJJKtCCItQo0YNrl27RrNmzahYsSJjxowxPKfRaFCr 1URERHDs2DHWrFnDypUrsbW1xd/fn379+uV5gvTf8ykUCmJjY/M0BnNlrj2r8HSw1PHjxylbtmyu nkelUhnKU2xtbRkzZgxz587l8OHD9OrVC39/fzQaDf7+/ri4uHD37l2USiWjR4+me/fuAOh0OkJD Q+nduzd///03AMuWLcvVuIXIDklWhRAWoW7dugwZMoSePXtSsGDBdM8VKFAAAA8PDzp27Ii1tTVN mjTBzc2Nt99+O08TVZ1OBzyfrA4dOpQOHTrw/vvv06BBgzyLxxyZc7Latm1btmzZ8lzvZW4rXLgw EyZMSLfN1tYWX19fAEqXLk1oaCj16tXjxo0bjB8/HoVCwdy5c/n777/x9vZm7dq1JpsBQ4iXkftM QgiL0Lp1axo2bMh3332XqX1btmxJdHQ07du3z4Po/ictWf2vWrVqMXz4cHr06GHSpWDNhbmWAowY MYKbN29y48YNU4cCPF3SddmyZXTs2JGBAwfi6urK7du3GTduHAAffPABy5Yt4+TJk5KoCrMlyaoQ wiIoFAqmTp3K4cOHX5gQPrtvhQoVAChSpEhehJcpQ4YMwcnJiT179pg6FJMy115VgIIFC1KlShW2 bNli6lA4fPgw7dq1Izw8nHXr1hEWFsb333+Pp6enYR8fHx8CAwMNdxeEMEeSrAohLIarqyuOjo6E h4e/cl83NzeAPK8TfdXAKhsbm1cm25bAXHtWAXx9fU3es/r7778zduxYNm7cyPr16/Hz88v0a5aS ksLu3btzfVYDkTMajYatW7cSGRlp6lBynSSrQgiLUqNGDS5evPjK/by8vADMbiqfQoUKsWHDBpKS kkwdismYc88qgL29PRqNxmTnX716NYsWLWL//v00bNgwS8eeOXOGChUq0KdPH0qWLMnVq1dzKUqR U6NHj2bQoEG0bt3asE2v17N27VrOnj1rwsiMT5JVIYRFCQwM5Oeff37lfqVKlaJOnTqUKlUqD6L6 n7Se1RclZOvWrePGjRuUKVOGdevW5WVoIpPs7OxMlqwePnyYFStWcOjQIby9vbN07IULF2jdujXv vPMO9evXx8vLixIlSuRSpCInDh06xJo1a1i+fDl37tzhjz/+oH79+jg5OTF27FiaN2/O77//buow jUaSVSGERWnfvj23bt16ZTKhVquZM2cONWrUyKPIMsfR0ZF///2XTz/9lJEjRxIWFmbqkPKcufes Ojg4mCRZPXr0KKNHj2b9+vXp6lIzY9GiRdSvX5/OnTuj1+s5ePAg27Ztw9bWNpeiFdmVkJBAr169 +O6776hevTrNmjVj5MiRBAYGcvLkSQ4fPsyqVasICgpi7969pg7XKGTqKiGERVGr1Xh5eXHz5k0q Vqxo6nBe6FWrWA0bNoyTJ08SEBDA/v37cXV1zcPoTM+ca1ZNUQawY8cOvvvuOzZt2mS49R8ZGYmb m9tL66Dv3bvH3LlzWbZsGd999x1qtZrhw4dz6NAhsxpcKP5n1KhR+Pj40LZtWwDmzZv33D6+vr7M mDGDYcOGcerUqbwO0eikZ1UIYXEqV65MaGioqcN4qcz0Hq5atQp3d3fef//9PIjIfJh7z2qNGjW4 e/cuWq0218+VmprK999/z9y5c9m5cyeNGjXiypUrfPTRRxQvXpyJEydmeFxCQgLBwcHUrFmT06dP M3r0aEqUKMHJkydRqVQ0aNCA8uXLExgYaFjGVZje/v372bBhA1OmTHnlvl5eXiatnTYmSVaFEBan atWqZp2sZmXS+1WrVvHvv/8ya9YskpOTczky82HOPavly5dHq9Xm+pK5Op2O1q1bs2/fPnbu3Mnh w4fx8/PjrbfeQqvVUqJECVxcXNId89tvv1G6dGlcXV0ZMmQI/fv3Z+DAgYYBhdbW1iiVSiZNmsSQ IUPQaDRUr16dc+fOZTqu5ORkVq9ezejRozl//rxRr9mSPXnyhMDAQKZPn46zs/Mr91coFK/NzCFS BiCEsDitW7dm7ty59OzZ07BkZX7l4uLC6tWr6dOnD6tWraJly5Z8+eWX2Nvbmzq0XGPuPasxMTGo VKpcT1YHDBjA/fv3UavV1KhRg2bNmhEYGEjdunVRKpWEhYWxcuVK2rVrR0pKCgsXLmT58uWMGDGC ypUro1KpnmuzUaNG1KlTBwcHBwDeeOMNnJyc6N+/P/v373/uQ0JUVBQjR47k4MGDREdHY2NjQ1JS EmXLliU5ORkbGxsqV66cq6+DpZg/fz41a9YkICAgU/srlUpJVoUQIr+qVasWAQEB/Pjjj4wYMcLU 4WQoKwlZkyZNWLZsGbNmzWL+/Plme02WwsXFBSsrK8LCwnJ1NP3Zs2dZu3YtlSpVyrDGeerUqaxY sYLy5cuTnJxM5cqVmTp1Ku7u7i9s08rKCisrq3TbWrduzV9//cX48eMNyWe7du1YvXo1Q4cOpWHD hgwdOhQnJydSUlJQKBS4ubnx22+/cefOHRITE4mKiuLo0aOcPHmSmjVr0rlz51x5TV5nISEhNG7c ONP7K5VKs/9gl1lSBiCEsDjJycls3bqV+vXrmzqU52S3J6RRo0a0adOGcuXKZeoWYX5m7n+AlUol Hh4e/PXXX3lyLsi4LEKhUNC7d28OHTpEmzZtiIyMpGjRolk+h0ql4osvvuDgwYPs27ePDz/8ECcn J77++mtGjx5NUFCQoQe2cOHChgU1vL29+fXXX3F1daVUqVKMGDGCAwcOsGbNmpxdtAXSaDScPHnS UK6RGVIGIIQQ+VhUVBQpKSncunWL3bt34+vrS6tWrUwdFvB04ItSqSQuLu65esNX2b59Oy1atMil yMyLOdesAsyYMYPOnTvTuXNnk5dkWFtbM2nSJJo0acLHH39MgwYNqFOnDmXLls10qYKHhwefffYZ 8PTDwoMHD3ByckKtfnEaUa5cOVasWIFGoyEmJgZnZ2dOnTr12k1Ynxc+/vhjypYti6+vb6aPeZ16 ViVZFUJYHA8PDxYvXszEiRMJDw9n7969rF27Fo1GQ+/evdOtCJPX7O3tKV26NAsWLGD06NFZOvbe vXt88MEHuRSZ+cgPf4CbNm2KjY0NDx8+NHmyCk8Tlz///JNNmzYRHBzM9u3b0el01K5dm/r161O7 du0Ma1gzknabPzNUKhV2dnbY2dkZ4khISMj2dVginU7H9u3b2bNnz0s/HPyX1KwKIUQ+FxISgpub G4sWLSI+Pp7t27fj5OTEjBkzePToET169DDq+a5evUpERAQKhQKlUolCoTA80n5O+1q6dGnOnDmT 5XMkJiZa3Hyr5sza2pq4uLhcaTs2NpaUlJQsJS+2trb06NHD8N4+fvw4v/zyC/Pnz2fx4sUEBQVh a2uLl5dXtgcehoaGMmbMGKysrKhfvz6tWrVCqVTy999/0759e6pUqcIPP/zA559/zqJFi/Dz82PH jh2ZTpQt0eXLl7Gzs8PDwyNLx0kZgBBC5HPHjh2jb9++huVUK1WqBECxYsWYNGlSjpPVc+fOsWnT Ju7du8fjx48JDw/HycnJ0Cuo1+sNj2d/hqc1tU5OTuh0uiyNKHdycuKff/6hefPmOYo9Pzh37hxV q1YFni8JeFH95oue++/2l7X3srb/+71WqyU2NvaF15Ader2eOXPmsGbNGsqXL0/ZsmWz3Zafnx9+ fn7odDp+/PFHFixYADydIqlixYoEBQVRrly5l7Zx/fp1lixZQsGCBVGpVJw7d465c+dSt25dfvrp J0aNGoWTkxMqlYpdu3Zhb2/Pw4cPmTZtGvB02dALFy4Y/i3F8xwdHYmPj3/lQiH/lZUp8MydJKtC CItkY2OT4byktWvXznJvWFpSqdPpmDZtGvv27SMpKYkGDRrw1ltv4erqSvPmzTPdM6LT6ahTpw5f fvkln332WaZuuWq1WuLj47l69WqWYs+vPDw8mDBhQrpkP+1rRtte9TUn+6Z5dntKSgpfffWV4fa3 sWzZsoVff/2Vn376yfABK6eUSiUff/wxH3/8MQAPHjzgm2++YeLEiSxcuJCCBQum2//27duMGDGC rl27curUKTp06ICvry9JSUnUqFGD4sWLU7BgQSZPnswbb7xBv379WLBgAd7e3lhZWVGmTBkuXrzI mTNnsLa2lkT1FdatW4e9vX2Wk1WNRvPaLJer0L8uabcQQmTBgAEDcHNzIzAwMN321NRUypcvz+rV qyldujQA165dY/LkyURGRpKamoqbmxtt2rQhIiKCffv2ERUVRZEiRXjy5AlFixZl/Pjx1KlTJ0u3 aP/rxIkTfPnll4ZRwK/6I3Xjxg3q1KnDlStXcHJy4quvvuKTTz7hjTfeyHYM5mratGns3LkzT0bb Z1fTpk1JSkpi+fLlz00FlV2xsbH4+/szefJkmjVrZpQ2X6Zr167ExsYyY8YMHBwcSEhI4Pvvv+fi xYtER0cDEBAQwKpVqwzlJ/Pnz2fgwIHo9Xru3LlDjRo1cHZ2RqPRMHv2bGrWrJmlEe2W7tSpU9Sq VYulS5fSvn37LB/bt29fDh48mOUSAnMjPatCCIvk4uLC48ePn9uuUql477336N27N05OTjg5OXHr 1i26dOlC+/btsba25uDBg3z33XfUqFGDL774gpo1a3Lp0iU8PT0pX768UervatWqRXBwMJUql5CD lwAAIABJREFUVeLatWuvvB3r4eGBWq0mPj6eadOmsXLlStauXcvNmzdzfXL6vGbutzdXrlzJxYsX CQ4ONlqiChAREUFiYiIpKSlGa/Nl1qxZQ9OmTbl+/To1atRg06ZNFCtWjMWLFxtuTf+3DGH//v3A 01KWAQMG0LZtW7p06cLx48eZMmWKoWzg3XffzZNryM+ioqJo27Ytc+fOpV27dlk+/o033sDPz4+q VavSr18/vv3221yIMm9IsiqEsEjx8fEvvEX77bffMm7cOA4cOMCZM2fo1q0bnp6ehucrV65M9+7d cXR0NGwrWbKk0WNctGgRRYsWzVRPlFqtxsPDgzfffJMCBQqwbt06OnbsiEajee42bn5n7tNWtWrV is8//5xLly5Rp04do7VbqlQpBg0axIQJE2jYsGGe/LsmJyfj4OBAcnIyO3bs4PDhw1SoUOGF+8+Y MYPp06djbW1NYmKi4RZ/Wn3smTNn6NWrF9988w2zZs2iUaNGuX4N+dW0adNwd3enW7du2Tre2dmZ BQsW8M0335CUlGTk6PLW6/VxWwghMik2Nval9YS2tra0bNmSzz//PF2imubZRDW3rFy5kpEjR2aq Z1SpVHL06FGGDh3K8ePHefPNNylSpAjBwcG5HmdeM/ee1cKFCzNs2DAGDx5s1FIFa2trGjVqRGpq Klqt1mjtvsgff/xBfHw8W7du5ddff+Wtt956aaIK4OnpScmSJVmxYgXh4eFcunQp3fPVq1dn+fLl tGrVii5duhgSWPFUSkoK//zzD++88w7z58+nQ4cOOW6zTp067N692wjRmY70rAohLFJcXJzRB78Y U1hYGA8fPuSdd97J9DFKpZIhQ4YYfu7cuTMTJ06kQ4cOr9XUQOaerAJ8/vnnODk5MWHCBPz9/Y3W 7oEDByhdunSefFhq3bo127dv58iRI9jY2LBjxw7Gjx9PQEAAdevWfeFx+/btY/To0fTo0SPDSezt 7e2pX78+NWvWZMuWLQwZMoS9e/fm5qXkC5cvX6Zy5crodDratm3L+fPnjfLvHBERgbOzM48ePcLR 0TFf/i6QnlUhhEV6+PBhnvzBz645c+ZQs2ZNrK2ts93G6NGjiYuLY8qUKUaMzPTyQ7IKULduXaPH 6eDgQGpqqlHbfBGlUkmLFi1ISEjg3XffJTAwkFmzZnHixIkM99fr9QwdOpSff/6ZypUr06hRo5d+ ICxYsCABAQEcPHiQqKio3LqMfOOnn36iX79++Pn5UapUKaP9furUqRNRUVG4urqycOFCo7SZ16Rn VQhhkS5evGjWo5J37tzJ6tWrc9SGUqlkw4YNNG3alBEjRmBjY5PpY5cuXcqcOXNydP7senbBhIwe ly5dombNmiaJzdRiYmLytAbZwcGBwoUL4+Liwvnz53Fzc8twhbeYmBgWL17M7NmzadKkSabfa3v3 7sXf35/ChQsbO/Rcd+7cOYYMGcKxY8dwcHDAwcGBQoUKodfrSUhIICEhgSdPnqDRaHBwcECtVmNl ZYVKpTLMFJKSkmJ4xMTE8PPPP3P37l2jzs9rY2PDnj172LlzJ4sWLWLAgAFGazuvSLIqhLA4jx49 IiYmhhIlSpg6lAxFRESg0WiMMu1U2gCXuLi4LCWr586dw9XVlUGDBuU4hqzQ6/XodDp0Ot0Lv58x YwYNGzbM07jMxa1bt/JsGqJLly4xdepUKleuzPLlywGYPHmyYUq3NGFhYXh7e+Pt7Y2XlxdXrlyh QYMGmTpHkyZNGDRoEOHh4RQvXtzo15AbkpOTGThwIOvXr6d27doEBgaSnJxMUlISSUlJKBQK1Go1 1tbWREVFsX//fvbs2YNWqyUlJcVQc6zX67GyssLKyork5GQaNGiAvb09jo6OGc5UkhPW1ta0aNGC wYMHExYWZra/+15EklUhhMW5fPkyXl5eZjmlU3JyMu3atcPf3x93d3ejtOnr60v58uVp1qwZGzZs eOm+mzdv5sGDByiVSooVK5almtm8snLlykyvTf+6CQsLe+UgJ2P56aefeO+991izZg1Dhgxh/vz5 fPDBB+n20ev1rFu3Di8vL8aPH8/kyZM5fPhwhr2vGXFxcaFSpUocOXKETp065cZlGJVWq+Xdd9/l 2rVrBAYGGibdf1G5w+PHj1Gr1a9MxGfPno27uzu1atXit99+4+7du0aN+969e4SFhVGgQAFJVoUQ Ij8oUKBAhqtXmYOFCxfi5OTEkiVLjNZmcHAwYWFh+Pn5ER0dbUj0UlNTefDgAa6ursTExBAdHc0n n3yCXq+nYcOG+XIgxusuMDCQkSNH4unpSdu2bXF2ds6V8yQnJ7N3714ePXpEly5dOHv2LP3796dA gQLp9gsNDeWrr75i4sSJAAwaNIju3bsbFgnIDEdHRx49emTU+HNDamoq3bt35/Lly7Rv3z5Ti37c uHGDypUrv3K/YsWKGebPdXZ2zvIqei8zb9481q1bx8WLFxkzZsxLB8eZK0lWhRAWJzY2FgcHB1OH kaHNmzczYMCAHK1+lZESJUpQrFgxNm7caKiHW7duHTdu3MDGxob4+HgKFChAp06d0Gg0/Prrr5m+ lZvX8ssAq9zQuHFjJk+ezNSpU5k3bx7r16+nVKlSRj9PbGwstra22NjY0LNnT/z9/VmwYMFz+7m6 uqJQKAxLvzo6OmZ5YNDDhw/zxQpLgwYN4uTJk3Ts2DHT/z9dXV05f/78K5dK1Wg0hg/QDg4OJCYm ZjoujUbD9evXDUnxiRMnuHr1KtWqVaNbt27cv3+fUaNGMXjwYFxcXDLdrjmRZFUIYXEiIyOz1POT Vx4+fMjdu3dz7dZ769atGTlyJB4eHri7u+Pv789HH33E/fv3uXnzJhUqVKBKlSoAREdH59lKSSJr mjdvTvPmzZk1axZdu3alVatWfPXVV0Yta3Fzc2P37t2oVCpOnz5N2bJlMxwEdePGjRwnmtHR0WZ/ W/rXX39l/fr1fPDBB1lalax69ers2bOHBw8eZFi6cvv2bRYtWsSSJUuYN28e8DRZ1Wg0mT5Hly5d +Pvvv7l48SLr168nOjqauXPn4ubmxsyZMwkICMiXA9ieJcmqEMLimGuy6ujoiLW1NbNnz6Zfv35G H3AyefJkmjRpQsOGDdNNieXh4UGtWrXS7VupUiVCQ0ONen5jseSe1WcNHTqURo0aMXToUKpUqWL0 DzlpZSChoaFUr149w31WrVqFt7d3ttrX6/WGBM1cZ+aIjo5m4MCB7N69mzZt2jxXBvEqOp0OrVZL oUKFMnw+rZd29erVhtW87O3ts5Sspg3GqlWrFgkJCTg5OWFra8uUKVPo2bNnluI1V5KsCiEsTkRE hFneDlOr1YwePZoFCxZw4cIF1q9fb/RzNG/e3OhtCtPx8fHhvffeY968edSpUydXbqffuXMnw9ve 165dY9myZcydOzdb7UZERHDixAlCQ0PNdkng9u3bk5ycTK9evbI15/G///5L6dKlX9gbm5CQwHff fZdu2VlHR8dM19QfP36cuLg4tFotKpWKEydOkJSUxJtvvpnlWM2Z+Q2FFUKIXGauPasA3bp1w8fH x2xras2F9Kz+T//+/WnevDldunRh+vTpRm07JiaG9evXM2rUqOee++mnn2jSpEm2PvjdvHmTJUuW 4OfnR2pqKt9++y0lS5akadOmREREGCN0owgNDcXJySlLt/6fdeXKFXr37p3hc9HR0cTExDxXHuDg 4EBSUtJL201JSSE2NpYtW7bQuHFjQy94rVq1XrtEFSRZFUJYoIiICLNNVgHOnDlDixYtTB2GyCeU SiWjRo1i0qRJbNmyha1btxqt7aNHj1K/fn3Kli373HMlS5bM0kCgNHq9npkzZ+Lv78/q1avp3r07 27ZtY+jQodja2vLFF18YI3Sj2L9/PwcOHCA6Ojpbx6tUKp48eZLhc+vXr8fDwwM/P790252cnDKs F4+NjTXMOTx27FgqVKjA1q1bGT58eLZiy0+kDEAIYXHu379v1vN0RkVFUa9ePVOHYbakZvV5CoWC xo0bM2LECObMmUP79u2N0m50dPRziwCkKVOmDPfv389ym9euXSMlJYWxY8eyd+9ezpw5w/z587Gy ssLd3Z3AwEAWL15s9BkxsiM+Ph4nJ6ds/77w8PDg4MGDGT4XHByc7vZ/GgcHh+eS1fDwcKpWrcqg QYPYtm0bKpWKixcv4uzsnGvTl5kT6VkVQlgUvV7P5cuXKVOmjKlDeSGdTme2NXzCvNWrV4/4+Hij tefo6PjChPT48eOULFkyy20mJCSgUqnYuXMnH374IYGBgYbb7I6Ojri5uXH9+vUcxW0skZGRuLi4 vHTaqZd50cpxp0+f5vjx4xkuferk5GRY4SpN//79admyJXv37uWjjz7i6tWrlClTxiISVZCeVSGE hQkPDwfI91O5WLL80rMaHR2NVqvl6NGjeXbOiIgI9Ho9KSkp2a6zfNbOnTt5//33M3zu33//zdaS wNWqVaNFixZ8+OGHtG3b9rm7CCVLluT8+fN5tlLXi9y7d4+NGzfmaEqwmjVrsnHjRq5evUq5cuUM 20ePHk2bNm3w9PR87hilUolKpUKj0WBra8ulS5e4ePEiCxcuzBerfOUGSVaFEBZly5YtNGjQINs9 JUJkVtrAmrFjx+bpeZVKJf/++2+OS0mSkpI4fvz4C2tg/f39+eWXX2jZsmWW2lUoFLRv3/6FpQoe Hh6cP3/e6FNxpd1VSUxMRK1WU6BAAUqXLp1hucGtW7do2LAhLi4umVqB6kVKlCiBs7MzR48eTZes njt3LsNBa2nUajVJSUkUKFCA2bNn06FDB9q0aZPtOPI7SVaFEBZlzZo1BAYGmjoMkUP5oWe1RIkS vPfeewQFBeXpeQMCAli3bl2Ok9UzZ87g7e39wjlCO3XqxGeffYZGo8ny/KMv4+TkRGRkpFHa0uv1 /Pnnn2zcuJHt27eTmppKwYIF0el0JCcnExcXx+jRo6lVqxaRkZFYWVlx7tw5FixYgJ+f33PzD2fX s69PcnIyjx8/fuHctQBWVlacPHmSc+fOcenSJXbt2mXU1zi/kWRVCGExEhISOHnyJMuWLTN1KMIC JCYmkpCQkOfn7d+/P5999hk6nS5Ht7CvXr360mTNzc2NOnXqcOzYMRo2bJjt8/yXg4MDt27dMkpb Dx48oG3btjRp0oT27ds/V3/6+PFjVqxYweLFi3F1dUWn0xmWHTZWqZBer0+XaN69exc7O7uXJp9D hw4lMDAQOzs79u3bR5EiRYwSS34lyaoQwmKcP38eLy+vDAc8iPwlPj6eqKiodNsUCkWGD6VSme7n nLK1tc1UO23atGHx4sUMGjQox+fMij///JN69erlePlVBwcH7ty589J9unXrxooVK4yarFapUoUV K1bkONkGcHV1xcbGhmrVqmWYHBYqVIh33303R+d4FZ1Ol+53Tmxs7CsXGOjZsyfffvstb7zxBhUr VszV+PIDSVaFEBbj4MGDOao/E+bhwYMH/PDDDyxYsCDd9rTSgIy+GqtsQKvV0rlzZ2bMmPHC2+Np Tp8+TdeuXY1y3qxwdXUlJiYmx+0ULVr0lXO2tm3blmHDhuX4XP89r62tLRcuXKBKlSo5akuhUFC5 cmVOnz5N3bp1jRRh1uh0OmxtbQ0/Hzhw4JWD3xQKBdWrV6d169a5HV6+IMmqEMJirFq1isGDB5s6 DJFDbm5udOrUiaFDh+b5uUNDQ+nduzfe3t4MGzaM3377jYSEBMNUY5UrV2bUqFGULFmS+/fvm2RQ TIUKFdi3b1+O2/Hx8eHGjRtcv34dLy+vDPdxdXUlPj4evV5vtEGLOp2OmJgYihUrZpT2li5dSpMm TahTp45JBlbqdLp0Pan79++nXbt2Ge6r1WoJCgpi586d6HQ69u7dm1dhmjVJVoUQFsPHx4ejR49m OBG3EJlRpkwZDhw4wF9//cW4ceNwcXGhb9++aDQaAP744w/8/Px49913uXHjBk2bNs3zGFu0aMHX X39N7969GTt2bLbnFLayssLHx4fjx4+/MFlVq9WoVCqSk5ONUl5z8+ZNrl27ZphvNaf0ej3z589H pVIZNaHOipSUFNq2bYtKpUKlUpGamsqRI0f47bffsLKyQq1WY21tjY2NDQ8fPsTa2poVK1bQr18/ NBoN9vb2eR6zuZFkVQhhMfr370+3bt34/PPPTR2KyOf8/f3x9/d/bnvfvn25ePEivXr1wsrKitOn T+Pu7p6nsRUtWpQ9e/Ywd+5cunXrxo4dO3BycspWW0+ePHnpQKO4uDhUKtUrazAzIyUlxTBJ/ot6 HrNq+/btbNu2jffffz/H9a/ZkZycTEJCAuvXr8fKyoqkpCSSk5NJSkpCo9GQmJhoeGg0GlJSUmjd ujWFChVCq9Ua5XV9HUiyKoSwGKmpqelqx4TIDd7e3ixZsgR/f3/GjBlDQEBAnvfoeXp6MnXqVK5f v06zZs2AFw9ASxuElpHk5OSXrqZ248YN3N3djXJ9Fy9epHjx4vTp0yfDlZ2yQqfTMWfOHL7++msC AgJMNu3ThQsXKFasWJZX+lq0aBF169bF0dExlyLLXyRZFUJYDGtra8PtWiFyU7Vq1Th79iz16tXj 2rVr6SaEz0uzZ8/G39+fFi1a0KxZM3Q6HTqdjtTUVPR6PampqYZtOp3uueMnTpz40pWkDh48aJSl i/V6Pfv376d37958/fXXOWorLCyMHj16cPv2bbp27YqLi0uO48uuK1euZHm+W71ez7Jly7h7924u RZX/5H2fuBBCmEi5cuW4desWWq3W1KEIC1CkSBE8PT05cOCAyWLw9PRk9OjRhhHohQoVwtnZGTc3 NwoXLkyxYsUoXrw4JUqUoGTJkukenp6eWFtb8+jRowzb1uv1rFixgjp16uQ4zlWrVhEWFpajab50 Oh0LFy7E09MTvV5Ply5dTJqowtNpqnx9fbN0jF6vx8rKijZt2nDlypVciix/kWRVCGExChYsSNGi Rbl8+bKpQxEW4q233mLXrl0mjaFt27aULVuWkSNHZuk4hUJBkyZNmD59eobPr1u3jpiYGKMkqwcO HGDjxo3ZngEgJCSEunXrMnv2bABq165tkhrVZ2m1Wh48eICXlxcajSbDnuuMKJVK/vzzT3x8fBg+ fHguR5k/SBmAEMKijBgxgt69e+Pl5ZXu9mfa7dD/3hZVqVSo1WrUajVWVlbpHiqV6rlavbQRx2nP pU1I/+zE9M+eK6PvdTodvXv3xtraOt1E9v+d2P5F9YcajYZbt25l+o912jykzz7i4+ONcnvX0vXu 3ZtmzZqxfft2k63t7uTkxIYNGyhbtiyRkZFZWg2padOmjB07lrlz56JWp08Zpk2bRvfu3VGpVDmK LyIigkePHlG2bNksHafX69m1axcTJ04kJCSEDh060LhxY4KCgvjpp59ytU64ZMmStGzZ8pX7WVtb 0717d8P/77TfBUql0jA7QEpKCra2thQsWBBfX1/GjRuHvb09bdu2JSgoCK1W+9xrb2ks++qFEBan Xbt2DBs2jKNHj+baOYoWLYq/v7+hLlCv16dLgAsUKIBKpUKpVKJWq5/76unpiaurK4Dh2LTvn32k bQPS7RMSEoJWq2XEiBGZijftj+ezf0h/+eUXUlNTjf3SWJyyZcvyxRdfMGHCBJMlq/D0/aHVarGz s8vScS4uLhQpUoQjR47QoEEDw/Zt27YRHh7+0uVYMyMuLo4JEyYwefLkTCe9iYmJzJkzh0WLFhET E4NCoWDKlCmGa/viiy+Ij4/PUVwvk5yczKJFi1CpVDRv3vyF++l0OpKSkrh+/ToKhQKdTkdycrJh FgCNRoNGo2Hq1Kncv3+fDz74gEmTJjFu3Djg6Wvv7OzM8uXL6du3L/B0kGhOPxzkR5KsCiEsSmRk ZK7/svfy8mLKlCm5eo6XWbBgAcHBwXTs2DHbbRw9epTbt28bMSrL1a1bNyZOnEhSUpLJlvqdOXMm dnZ2WU5WASpVqsTatWtp0KABqamphuSycOHCrxwMlZqaipubGx06dDAkZxqNhqSkJJKSkjh27Bje 3t6ZXuBh165d9O3bl+LFi9OvXz/u37/P+vXr013XywaEGYuVlRULFiygdOnSL5yDNjY2lgIFChh6 eJVKJQUKFKBAgQLpphIrW7YsarWavn37Mm7cOEJCQqhatSq2trZ069aNMWPGcPfuXaZNm4Zarebx 48e5fn3mRpJVIYRFqVmzJo0bNyY4ODjXzmGspT3F62H79u2ULFnSZImqXq9n8eLF2V7xS6VSsWDB Aq5du8bt27exsbGhS5cumfrQd+/ePXbv3s2xY8cMt73TFhJI+3rlyhXatm3LjBkzUKvVGSZ/er2e kSNH8vPPP9O7d2/DoKX79+9n65pyqlatWri7u/Pw4cMXJqtxcXEvnfbrvw4fPkxKSgpjxoxh0qRJ bN++nS5dujB69Gg+/fRTAMaPH2+M8PMdSVaFEBZFqVTSsWNH9u/fT0JCgqnDERagXLlyREREcOHC BSpVqpRn59VqtYSEhDB27FhsbGyyPX2WQqGgaNGitG3bloIFC1KjRo1M14OGh4dz5MgRli1b9sJ9 kpOTCQ4OxsfHB41Gw8aNG+nYsSPR0dEsW7aMiIgI7t69y6lTp/jmm2/MZu5RDw8PLly4gJ+fX4bP x8fHZ2n1qU2bNuHn58fZs2f5+OOPqVu3Lj179kSlUtGtWzeCgoJo0qSJscLPVyRZFUJYnHLlyuXq gAXpWRXPql27Ni1btqRPnz4cPnw418+n1+vp3r07//zzDwUKFKBSpUrMmDEj26Pj9Xo9xYsXp379 +lk+VqFQvPL/g7W1Ne3bt6dy5co8efKEoKAgFi9ezKFDh6hduzZFihQhOTmZr776Kks9lbmtZ8+e fPnll8ycOZP333//uYFrCQkJr0ysNRoNERERRERE8ODBA7y9vSlSpAgffPAB7733Hg8fPsTOzs5k ixqYC0lWhRAW58KFC6SkpJg6jFwjybL56dy5M0eOHMmTc924cYMTJ04wffp0nJ2djdJmdkfWZ+W4 tNkAvvnmG06fPs17771nNr2oGbGzs6NXr17Mnz+f1atX06lTp3QrVSUmJho+IGi1WubMmcPt27dx dHTE1taW8+fPc+bMGeLj41GpVPTs2ZNZs2alq2dNG2hp6SRZFUJYnAMHDpCYmJhr7Zs6WTT1+cXz rK2tSUpKMkxtltv0ej1hYWFGS1bzUuHChWnRooWpw3il1NRUNm3axNtvv42dnR2//PILvr6+vPXW WwDcvXuXiIgIdu3axdq1a1EqlQQGBvLo0SPOnz+Pj48PwcHBZp2QmwtJVoUQFie3byW+LsnilStX MrX0ZVJSEgkJCTg4ODw3T23aa/HfdeifnSv22Tlo024bZzTlV9rPN27cICkpicjIyExdR5MmTfD3 98/+C2EEb775JikpKYSGhr5wQI6xlClThn79+rFx40aqVq2a4/Zel/ezsa1du5b4+Hj69euHtbU1 jRo1YtSoUVy4cIGKFSty+/Zt7Ozs+PHHH+nQoQMDBw4kJSWFVatWsWDBAgD69OlD9erVTXwl5k+S VSGExbG2tjZ1CGavbt26XLp0iWPHjr1y3/DwcKKjo6lSpYphntZn527NaNEByHgxgrSex/8mts8+ KleujEKh4M6dO5mK7cCBAyZPVpVKJYULFyYkJCTXk1V4+toac4q2nJQBvI7Jrkaj4a+//mLu3LmG 3ydlypRh7dq1DBw4kLi4OFxdXYmLi8PBwYFJkyYxfvx41Go1pUqVokWLFuzcuZMff/yR+fPnm/hq zJ8kq0IIi6LX69m6daupwzB7LVu2zNQKPQCrV69m6dKlLF68OJejyrrffvuNJUuWmDoM4OnocA8P j1w/z82bN1m8eDEfffSRUdrLSbKZFyUPpqBUKrG1tSUqKuq57Y8fP6ZmzZq0b9+ehIQEbty4Qffu 3XF1deXKlSuEhIRw6dIlfvvtN95++20TXUH+IsmqEMKiHDx4kCdPnuTqOcyhJykvkwRzuN78QKPR GH0WCq1WS1xcHE+ePMHT0xOAffv24ezsjI+Pj9HOkxcDrLLDVO+9vXv34ujoSOPGjdNtP3ToEA8e PKBEiRIA2NraUqJECS5cuMCWLVsoW7YsU6ZMoUOHDlhZWZkg8vxJklUhhEWZN29eri7FaKle1x40 Y/Lx8aFz585YWVmlWx9eoVCgUqkMNbkZlUak1e2mrTGftnzqs7f73377bVQqFX/++WeOVi/LT37+ +WeTlPUkJiaSmJhITEyMYfT+kydPmDp1KrVr1+bXX39FqVSSlJSEWq3m7bffZvbs2VKfmk2SrAoh LEZCQgK///57rvfGmLqn0dTnFxlbtGgRNWrUYPz48Xh6epKSkoJWqzV8TUta05LYtEfaz9bW1tjY 2GBlZWX4Xq1Wo1AouHHjBl27dkWj0TBjxgwKFy5stLhzWgaQm+9HBwcHNBpNrrX/Ii1btuTvv/9m x44ddOnSBYDr16+TmpqKt7c3gwYNwtfXF2trazw8POTDXA5JsiqEsBgqlQqtVmvqMISFcnJyombN mhw8eNDoy2aWLl2avn37Mm/evFyZmzO7yZZOp8vVRM3e3t4kyaqtrS1NmjRh9erVNGzYEHd3d6pX r84PP/zAmDFj6NWrF2XKlMnzuF5X2VvOQggh8iEbGxuqVq2a67ViOp0uV9s3R9JzlDnffPMNwcHB 3Lp1y+htW1lZ4enpme2Vql4kJz2juZmsarVaQkNDTfbea926NXXr1mXYsGGGbSVLlsTJyUnubhiZ JKtCCIuyc+dOKlSokKt1bsZOFrIqryaef/Z8InO8vb1p2LAh48aNM/rrptVqsbGxMWqbabL7fsrN 9+Lp06cN05uZQtpSqXZ2dum237lzhwoVKpgkpteVlAEIISyKq6sre/bswcvLi+Tk5FwcW1FuAAAg AElEQVQ5h/Qymo/Lly9z48aNPJkyKrP0ej02NjZs2rSJTp06Ga1dFxcXEhISjNZempz2rOaWixcv 4ubmZpLSnqSkJL766iscHBz4/vvvDdsfP36MXq/Hzc0tz2N6nUmyKoSwOIULF2b27Nl8+umnuTIz gKUlq+bcs5qQkEDz5s2ZN2+eqUNJZ/fu3QwdOpSVK1cyfPhwGjZsmOM2a9euzZQpU9BqtUafIiu7 crNnNTQ0lNKlS3P16tVcaf+/dDode/fuBeD48eOkpqY+N4fvnTt38PLysrjfAbnNPN7NQgiRxwID Axk+fLipwxB5IG0Cd3PStm1b/P39qVmzJnfv3jVKmx4eHjg5ObFv3z6aN29ulDZzKrd6VnU6Hbdu 3aJevXocO3bMsHxpmvj4eB4+fJhhiYBerycyMpKiRYtm6ZyJiYkkJCSQkpJC9erVWbZs2XP7XLx4 kcqVK2ftYsQrSbIqhLBICoUCHx8f9uzZY+pQ8j1z7lk15x6ujRs3olQqjVoKMHToUCZOnEjVqlWz nIy9jLnNBrBu3TrUajXDhg0jKSnpuZKew4cP4+bmxjvvvAPArVu3uHjxIg8ePODy5csA3L59G29v b7p16/bSc6WmphIaGsrOnTuxtrbG1dWV77777rn9NBoNv/76K3/88YeRrlKkkWRVCGGx3njjjVxp 19IGWIH5JoXmvDb9tm3bKF++vFFnp2jVqhUhISF8++23TJkyhQIFChit7eww5nsx7d/x2LFj/PHH HwQHB+Pk5JRh4tivXz9UKhX169dn586dbNy4ERsbG6KionB3d2fDhg3MnTuXLVu20Lp165f+Gyxb toyff/6ZEiVKcP/+fSpVqpThflu3buXNN9+kVq1aRrle8T8yG4AQwmL9888/udKuuSZuucVck8E0 5hrf/PnzuXDhAkeOHDFqu8OGDcPb25vRo0cbZWnhnCScxiwD2Lx5M8OHD+f7779nypQpVKxY8YX7 pqamAjBw4ECWLFlCq1atOHv2LPPnz+fevXt8+OGHTJs2DTs7O3bt2vXC98iuXbuYM2cOAO7u7nh4 eHDu3Lnn7shERkayceNGJk+ebKSrFc+SZFUIYbGKFStm6hBeG+aaoJtrXADOzs60bt2ahQsXGnUU v1qtZvbs2VSrVo2JEyfmuL1Lly5leyomY/Ws/vjjj6xfv56KFSsyd+5cunbt+tL9tVotv//+O3Fx cZw+fZrZs2cDT2/9lytXDmtraxo1aoRer+frr7/OsHf22rVrhrr2adOmUaRIEd58801sbW1ZuHAh y5cv5/Hjx9y7d4/BgwczatSoF/a6ipyRZFUIYbE6deqUKwNvTJ0g5XVPorn2XKYx5/jGjRvHgwcP aNasGQ8ePDBau1ZWVowbN47o6Ogc925GRETQpEmTbB2bnJxMamoq3377LT/++GO2Yrl37x779u1j 69atrFy5knbt2r3ymObNm9OiRQsOHz6cbmaE4OBgKlWqxOzZs3F2diYxMZEJEyawbdu2594nBw8e BKBz5874+/tjb29PQkIC5cuXZ/bs2SgUCnr16sW3335LUFCQDNjMRZKsCiEsVr169VCpVP/X3p2H RV3tfwB/z8qwyCbIGqKIIoso7nuomGtZael1vZmllktuldvtquWVFkwjTU3oumSaO25loimKe6iE goILsoig7Mtsvz+8zE/cmIEZZoD363l4wJnvOecDUr7nzPmeo/d+i4uL9d6nKTPlMGjsFw6Vsba2 RmxsLCQSCR48eKD3voVCIc6fP4/09PQq9+Po6KgJbrr67bffIJFI4Ovri7i4OERGRurUfsuWLdi2 bRucnZ11Wgs6evRoREREVDj8Y9myZbh16xbGjx8PMzMzfPnll1izZg2aN28OAJpZ7nv37gF4tO2Z i4sL5HI5AKBBgwbIz8+Ht7c3rl27hp9++gkff/wxbty4UeEUK9I/hlUiqrfkcrlmbZs+Xbx48amt dGoaT7B6xJRvsHqcIf6+BAIBXF1dsXLlSixYsABz586t0hrWbt26VXnXDHd3dzg4OGD+/Pn47rvv EB0djfz8fK3a3r17F7t27cKff/4JKyurKo0PANHR0di7dy9WrVqFL774AnZ2dgAAqVSKJk2awN7e HlFRUfD19cWqVaswe/ZsAI82+O/atatmH1cLCwsUFRVh2rRpCA8PR0ZGBj744ANERUWhYcOGVa6P KsewSkT1VocOHTBmzBiDLAX4/PPP8d///lfv/ZoiY+w+oIvaEFYN9TNcvnw5wsPDcejQIaSnpyMx MVHnPqysrHQ6PCMtLQ1Xr17FhQsXsG3bNty/fx8AEBgYiKZNm2LatGmYPXs2cnJyNOG5pKQE3333 Hfbt26fpZ/fu3ejYsSOmTp2KzZs361w38Gjt6vjx4zFhwgS8++67CAgIeOZ1QqEQCxYsQIMGDdCh QweUlpbit99+w9ChQ5GbmwsAsLS0RGlpKTw9PTFu3Dg0b94cAoGgykskSHvcuoqI6rUVK1YgJiYG V65c0Xvfc+fOhaWlpV730STdmHKIrgmenp7w9PREQkICLCwsEBQUpHMfe/fuxcCBA7W+fv369YiK ioJIJMLrr79eYY3pL7/8guvXryMiIgLTp09HSUkJrKysIBQKIRAIkJSUpBlLJBJBJBJh7ty5OtWr UChw//59ODs7Izw8HA4ODpg2bRrat2//wnbHjh2DSqXCe++9B5VKhcLCQqSnp6Nz584AHoXVkpIS AI/WGu/YsQN37tzhIQA1gDOrRFSvSaVSREZGwsLCwiD9T58+HQcOHDBI36aCM6umLzExsUp7rqpU Kty7d6/SjfMfv/7+/fsIDg5GXFwcFi1ahHbt2mmel0ql8PX1RWhoKD777DNER0fjxx9/xKRJkxAZ GYnc3Fz85z//QU5ODo4dO6ZTSC43e/ZsdOzYEQkJCdi4cSPeeustdOjQ4YW/o3l5eQgNDcWYMWMg kUhgZmYGe3t7/PLLL5p1r+bm5iguLsbdu3eRn58PNzc3ZGVl6Vwf6Y5hlYjqvbZt2+KXX34xyAbq arUa7733Ho4dO6b3vl80Zk0y5TBYW9asAoabBVar1Vi3bh169Oihc9tNmzbBzc0N9vb2Wl2/du1a xMfHY9q0aS88HEMgEGDIkCFwcXFBYGAg/vnPf6Jly5Y4cOAA4uPjMWPGDLi4uGDs2LE613z+/Hm4 ubmhX79+KCgoQEhISKVtzp07h+LiYhw7dgx//PEHgEc3XMXGxkIgEODvv/+Gm5sbHjx4gMDAQDRu 3BgxMTG4dOmSzvWR7hhWiYjw6Kz2WbNmGWT9qlqtxujRo3H27Fm9920KTHlm1VTrepIhA3V+fj7S 0tIwePBgndrt2rULJ06cwKeffqrV9Vu3bsWGDRvwr3/9S3OHva6cnJxgb2+P999/H9HR0Tq3P3Pm DG7fvo0lS5Zg/fr1iIiI0OpdE19fX9jY2CAlJQVhYWE4evSoJuQePHgQI0aMQGpqKk6ePImzZ88i JiYGDRo0wKhRo3SukXTHsEpE9D/Tp083yO4AwKMwMnToUFy+fNkg/T85Vk2ytLR86mx2U1LfZ1bF YjGEQqHOJ2WdO3cO3bp1e+E61xMnTuD8+fMoKytDWFgY/vOf/2DAgAHVqrewsBDBwcFVWpozYcIE jB07Fi+99BI8PDy0vkvf2dkZu3fvxvz583H//n0sW7YM7733HoBHof2DDz7Ahg0bNNfHxsYiKChI 6xlnqh6GVSKi/zHkPzxqtRpqtRqDBw9GSkqKwcYpV5MzihYWFpq9KE2NUCisNWHVUCwsLBAaGor/ /ve/OHPmjFZtFAoFMjIyMHLkyKd+fmq1GoWFhdizZw9mzJiBb775BqdOnYKVlVW1gyrwaG1oQkKC zu0SEhLw8OHDSk+3epEePXpg06ZNGDp0qOYwARcXFwiFQjRr1gwqlQpxcXHYvHkzBg0aVOVxSDcM q0RE/yMQCDBmzBhYWFgYJOypVCqoVCr07dtXs50PUTlDvsAIDg7G3LlzsXbtWuzfv7/S669fv46y sjLcuXMH/fv3x4wZM7B7924kJydjzJgxePPNN/HTTz+hf//+UKvVmDVrllZrQ7UxatQohIeH69RG pVJh4sSJ6NGjR4UTq6rC0dERw4YNQ0hICNzd3ZGXl4cePXrg2LFj6NmzJyZPnoy//voLQ4YMqdY4 pD1uXUVE9Jg1a9bAx8cHx44dw8WLF5GamqrX/lUqFcrKytCzZ0+cPn26WpudU+Vq0w1WhjZ48GCc OXMGBw4cQEpKCj744IPnXlt+4tUPP/wABwcHKBQKhIWFQS6Xo1u3bjA3N4dMJsPkyZPh7e2NgoIC vf0ujxgxApGRkfj8888xb948rdosWLAABQUFmDVrll5qAIApU6ZAIBBgxYoViI+PR2lpKdq0aYOs rCy8+uqraNasmd7GohfjzCoR0WMEAgFmzpyJZs2aITMz0yBjKJVK5Ofn4+WXX4ZCodB7/wxn/6+2 3GBVEwQCAZYsWYLNmzcjKSkJP/3003OvvXfvHhwcHHDkyBHs2bMHkZGR2LFjB/r06YPw8HBs2bIF kZGR8Pb2BgC9vuiysrLCokWL8PPPP0OlUmnVZvv27Zg+fbret6C7e/cuQkJCEBUVBaFQCC8vL/j4 +GDp0qV6HYdejGGViOgZ1Gq1Qddhlu9fGRISovU/yFQ1DO8Vubu7Y+LEibhx48Zzr7lx4wb69etX 4TFPT0+EhYW9cEsqfenevTscHBzQoUMHREZGVnp9QUEBWrVqpfc64uLi0K1bN4SHh6Nnz564e/cu Bg4cyBdBNYxhlYjoGZydnQ2y7+rjVCoVrl+/jqFDhxp0nPqstiwDqOkaGzZsiOLi4qceLysrw5kz Z1BYWKjz7gH6JJVKsWrVKqSmpmL+/PnPvKakpASjRo2Cs7MzzM3NNZv361OrVq1w7NgxHDhwAF26 dEFsbCz69++v93HoxRhWiYieYcKECTUy46lWq3H27FlMmDDB4GORaavJ2Tp/f39kZ2c/tQwlIiIC GzduRLt27bBu3boaq+dJeXl5ePvtt9GqVSsIhUJcvXoVWVlZ6Nu3Ly5evIiIiAgEBgYiPT0dr7zy CiIiIqp9Y9WT1Go1ZDIZ4uLicOXKFWRkZKBjx45wdXXV6zhUOd5gRUT0DDW5f6JarcaBAwcwf/58 LFmypMbGrQ9qy8xqTbtx4wakUimEQiGio6Nx+fJlDBkyBDk5OXjllVewePFio9W2efNmfPPNNwgK CsJnn32G9evXY9CgQZBIJLCxscHAgQPh4OCASZMmYcCAAQYL+Wlpabh06RLWrFmD1atX49ixY5gz Z45BxqIXY1glInqOkJAQHDx40GAHBTwpMjJSs56Q9KM2rS2syVo7duwIGxsbREZG4uTJk+jcuTMW LVoEe3t7xMfH11gdT1qyZAl27dqFmTNnIjg4GAKBABMmTICfnx8ePHiAfv36ITc3F3Z2dgb9ee3b tw9Hjx6FXC5HZmYm7Ozs4Obmxu2qjIRhlYjoOdauXYv27dvj3r17UKvVBrlz/0lLliyBu7t7tTYc z8nJwYULF9CuXTvNrOLjs4tPPqbtcwKBQHNzjVAohEAggEAgQElJCeRyOYKDg19Yl0AggEgkgkgk 0rTXVfnhCmq1GiqVqsLXpaWlUKlUmroEAgHKysqgUCjQvXv3Cm0BVGj/5Pda02rqBVE5sViMWbNm Ye7cuZDJZFi7di0SExMRGhqK0NDQGq2l3MmTJ7F161bMmTMHvXr1qvBcly5dNF/XxLsemZmZiI2N BQAcOHAAO3bsQFBQUK168VOXMKwSET2Hi4sLYmNjsXnzZixevBgFBQU1Mu6kSZPg4uKCtm3bVqm9 nZ0dPDw8MHXqVADQBMzHw2b5P7rlnx8Pj8+65vFQqFQqNV+rVCqcPn0aR44cqTTkKJVKKBQKlJWV VWunhccDr0gk0oTgefPmYdSoUQgODtbUKJfLkZycrGlXHmLLv99nfTaG8r+rmtSnTx8kJydj7969 AIDmzZsbbZ3qzp078cUXXyA4OFhvhwtUxzvvvAORSIQdO3bgyJEjCAsLw9WrV+Hm5mbs0uolhlUi ohdwd3fHnDlzkJCQoNUWOvry5ptv4ujRo/D09NS5rUAggI2NDbp27ar/wp4hJycHsbGx6NOnT42M 9zyLFi2Cs7MzmjdvXuHxwMBAI1WkPWPN2JWVlcHJyempxxUKBbKzs5/5nD6pVCpERkYiPDwc//jH PzBs2DCDjqeLsWPHYuzYsQCA+fPn4+TJkyZVX33CsEpEVIm///67RoNq+axl3759cfbsWdjY2NTY 2FR//PHHHzhw4AA6d+781HPff/89wsPDYWNjA4FAoJlFVyqVmq/VajXEYjEkEonmc/lHWVkZRCIR ZDIZZDIZGjRoAJlMVuGa+Ph43LlzB0VFRXB0dIRSqcSvv/6qmQF/fLZbKBRCJpPB0tJS82Fubg4z MzNIpVKYmZlpZtvLPx5/R+BZyz8APPX8k8tCyv9b9PDwwLFjxxhWjUSg5m2SREQv9Oeff6Jnz541 Pq5QKETDhg1x9uxZnbbl+eabb3D06FGsWbPGgNX9v3379mHDhg04ceJEjYz3PF5eXhCLxTA3N69y H2KxGPv27YO1tbUeK6ucv78/fHx8KpzA9Phs6+PLEx5//PGlGs97vPyzvb09Zs6cCYlEgtOnT+PD Dz8E8OjEKAsLiwrhMC8vD05OTpgzZw5EIpEmYEqlUs3XIpEIxcXFKCwsRGFhIYqKilBYWIiSkhJY WFigrKwMeXl5mo/ytc1yuRwKhQKZmZnPDYuPB0Xg0UlS5ubmkEgkmj6USmWFjyfXID/pyZ+Jro85 Ojrizp07lfxNkiFwZpWIqBKOjo5o0KAB8vPza3RclUqF7OxsDBo0CAcPHqzRsWuj4uJi+Pj4wNLS ssp9XLhwAampqfD19dVjZZWTSCRwdXWFs7Oz5rHHZwIf//OTnyt7vvxzVFQUgoOD0bFjR8TGxkIk EmHx4sUQCoWaWdPy0KdUKtG4cWP4+/u/sG4rKys4OjpW/wfwAg8fPsTQoUMxdepUdOzYUas25T8T fa1BLiwsxMiRI6FUKiESifTSJ2mPYZWIqBLu7u5GOxJVpVIhPj4e77//Pn744Qej1FBbiMViuLq6 Vius/vXXX3qsSHvl+4dWZxeIF1GpVDhy5AgSExPRsWNHiEQi+Pr64uWXXzbIePqSl5eHIUOGwNHR EW3atNG6nb5vlJPJZGjYsCESExPRsmVLvfZNlWNYJSKqRIMGDXDw4EH07dv3mUdUGpparca+ffvw 1VdfYdasWU89r1AosGjRIsTHx0OtVsPNza1G38bmarLqa9CgAdLT0w3W/7Rp02BlZYWhQ4dCoVBg z549Jn3Mb35+Pr755hskJyfD3t7eKC/U1Go14uPjERMTg+3bt0MsFiM+Pp5h1Qh43CoRkRa6deuG OXPmVFhTWNOWL1+OXbt2PfV4XFwc/vvf/yIgIAAPHz7Ezp078dprrxmhQqqqRo0aGWw95L1793Dg wAH4+flh69at+OKLL6BQKDR3upuS3bt3o127dnj99deRkJAAGxsbo2zr9dtvv2H48OGYMWMGUlJS sH79epw7dw79+/ev8VqIM6tERFqbO3cuIiIicPv2baPVMGXKFHh5eSEgIEDzmKurKwQCASZOnIi3 334b8fHxNbZtFemHh4cHbt26ZbD+/f39cfv2bdy+fRspKSno1KmT0faUfZ6rV6/iyy+/hLm5OXr1 6mXUk9x2796NBw8eAADkcjlmzpwJGxsbbN++HUFBQUarq75iWCUi0pJUKsWGDRvQr18/oywHAB7d lTxkyBCcPXtWc5KPk5MTFAoF5HI57Ozs0K1bN6PUZmy1eTmCl5cXTp06ZZC+GzVqpJmRv3DhAkaO HPnM7aqMRaFQ4MyZMwgNDUXv3r0xbdo0Y5eElStXVthh4fr169i8eTNiYmIYVo3AtF5WERGZuB49 eqBFixZGm5VSqVSQy+Xo06eP5vhXoVAIqVSKvLw8o9RkSmrrcZgtW7ZEZmamwccJCwtDYGCgwW7k 0lVBQQHeffddLFy4EF5eXpgyZYqxSwKAp44DbtasGby9vZGUlGTEquovhlUiIh1t374d7u7uRhtf pVLh/v37eOuttzSPmZmZMazWYn5+fsjLy9O8ADGEtLQ0nDlzBsOHDzfYGNqKiorC0KFDMXjwYBQX F2Pz5s2YN2+eyS1NKHfw4EH88ssvGDBggLFLqZdM87eCiMiENW3aFD///LNRa1CpVDh79izmz58P 4NHd5NevXzdqTVR1MpkM5ubmuHfvnsHGmDFjBlq1aoVOnToZbAxt/PzzzwgNDUVISAjmzJmD8PBw nQ69qGmpqamIiIjA6dOn0a9fP2OXUy+Z7m8HEZEJ69KlCz788EN89913RqtBrVYjMjISAQEBCAwM RExMDEJCQoxWD1WPRCJBXl4eXF1dDdJ/eno6Ro0aZZC+tVVYWIjVq1dj3rx5aN++vVFrqczu3btx 8uRJ3LlzB5999lmlBySQ4TCsEhFVUfv27WFhYYGioiKj1jFr1iwMGzaM6+lqObVaDalUarD+JRIJ CgsLDdZ/Zf7++2/885//hIuLywuDalRUFA4ePIjc3FzNUa/lx7xaWFigQYMG8PHxweuvv27Qevfv 349///vfaN26NYOqkTGsEhFV0ZgxY5Cbm4uPP/7YaLsDlNu6dSvatWtn1BqoepRKpcHeDr958yZu 3LgBPz8/rQ4fUCgUUKlUUCgUUCgUUCqVAB6dEmZmZgaxWKwJkFKpFFKp9Lm1q9VqqFQqpKamwtnZ GWvXrq0wTl5eHjIzM3HixAnExsYiLy8P48ePR4sWLaBQKJCfn6/5yMvLQ3p6OlatWoXo6GisWLFC Pz+g59Tt5ORUYZs4Mg6GVSKiaujbty/mzp1r1BrUajXEYrHW56aTaVKpVAYLq/369YNcLsekSZO0 rqWsrAwWFhYQCoUQCoVQq9Wa4KlUKqFSqTR/Lj+O+PE76B/fSqz8cbFYrNlYv/wxgUAAqVSK5s2b Y+TIkXjttddgY2Pz3NqUSiX8/f0RHh6O06dPG+z3fsyYMRg2bBgOHz5s8ksW6jqGVSKiajCFZQDA o2BgyE3lyfDUajUkEone+920aROUSiU2btyIl19+Was2H3/8MZKTk/Hjjz9qPY5KpcKPP/6IqKgo hIaGakLus+7wLw+4AoEACxcuhEwmw48//qjV1mMikQjjx4/HsWPHsHz5cjg4OGjGEYlEEIvFGDBg AHr06KF17c/SoUMH5OXl1er9e+sKhlUiompwc3MzdgkAHs02HT58GK+//joCAwNrfPzaur+pKVGp VAYJqxEREZg9e7bWQRWA5oAJXQiFQjRu3BhFRUWVrr19PMQmJSVh06ZNOv8OTZs2DdeuXYNcLtcc iiGXy5Gfn4+vv/4ajRo1go+Pj0593r59G/Hx8cjKykJ2djb69euHDh066NQH6R/DKhFRNeTk5EAk EmneBjWm0tJSbNu2zShh1VRUNzTL5XLs2rULvr6+eqpIe0qlUu9hde3atbh79y4GDhyoU7vMzEx4 eXnpPJ67u7vON3E5ODjg888/x+rVq2Fubq51u7Zt26Jt27bPfK5hw4ZYuHAhIiIiYGlpWWlf+fn5 CAsLw7Vr19C3b194enqipKQECxcu1LoeMhzus0pEVA12dnYIDAyERCKBpaWlTv/Y6ptarcbRo0dr fFlCXXqbtGXLlli/fj22bNmC/fv3Iy4ursbGNsSa1YyMDAQFBen8DkBmZmaVttDy8PBAQUGBTi/e li9fjszMTPTr1w/btm3Tecxnee+999C6dWvMnDmz0mvv3r2Ljz76CG3atEFqaio2btyIJUuWYNu2 bby5ykQwrBIRVYNIJMLvv/+OxYsXY8WKFfj888/h5+cHDw8PWFlZGeRt3RcRCASYPn26QU9Cqsua N28Of39/zJs3D3PmzMEbb7yByMhIg49bvoZTn78vx48fx48//lils+xzcnLg4eGhczsrKytIpVLc vHlT6zZSqRQrV66Ej48PvvzyS5SWluo87pMEAoGmr9DQ0OdeV1BQoPm7XrFihUG3DqOqY1glIqom W1tbfPzxx3jnnXfw0Ucf4cqVK7h16xaSk5M1s641pbi4GHFxccjJyamxMesaT09PDBw4EH369EGz Zs3wzTffYOTIkcjKygIAgyz5KCkpgUAg0NtxoyqVCgsXLsSgQYO0ml18Um5uLpo0aVKlsV1dXZGQ kKBTG7FYjE8++QQWFhb4/fffqzTukywtLbFmzRqcPHkSBw4ceOp5tVqN7777DoMHD8YHH3yglzHJ MBhWiYgMxNHRERERERCLxTV2A5JMJsP777+PRo0a1ch4dVV5aGzcuDFeeukl3L59G506dYK3tzd8 fHzg6+v7zABUVSUlJRCJRHrrb/ny5SgoKMCyZct0bltcXAy5XA4XF5cqjd2kSRMkJydXuW10dHSV 2j6vv9DQUPzwww9ISUmp8Fx8fDxSUlIQFhamt/HIMBhWiYgMyN/fHzExMejatSvMzc0hkUggk8kM MpalpSUmTpyId955xyD9mzpDrJ21sLCAt7c32rZti5CQEAQGBsLX1xdNmjTB9OnTsXjxYvzjH//A sWPHNG1+/fVXzSzskwoKCpCeno6srCysWrVKM0tbXFys17BavveuNjcXPSk7Oxvm5uZVnuVt2rQp 0tLSqtR2woQJiI6O1mkZQWV69eqF0aNH49NPP0VJSQmARz+f2NhYjBw50qjrzEk73A2AiMjA2rRp g+PHj+PSpUuwsrJCUFCQ5h9NfSouLsaQIUP03m9tYsgZbJlMBnd3dwD/fzTq+vXr0bBhQ7z77rvw 8vJCUFAQtmzZAmdnZ3Tv3h2ffvopUlJSMHfuXOTm5iIrKwsKhQIWFhYoKSnB6v7ymokAACAASURB VNWrsWPHDqjVar2F1QcPHmDt2rX46quvqtT+/v371XpB5e7ujry8vCq1dXFxQYcOHTBmzBisW7cO zZs3r3Idj5syZQpOnTqFSZMmwdzcHBkZGRCLxZg1a5Ze+ifDYlglIqohrVq1AgC8+uqr2LBhA6RS KcrKyvTWv5mZGQoKCmBlZaW3PrVhKrsBqNXqGltuIRAI4OHhAYFAAHd3d+Tn5+PUqVO4du0afH19 UVpaimPHjmnubm/atCns7e3h7u6u+Xt3dHREfHw8RowYgY8++khvOwGsWLECPj4+GDRoUJXaZ2dn VzusVmdHio8//hjffvst3nvvPRw+fFgvP5fdu3cjLS0NvXv3xvTp0+Ho6IidO3c+d+srMi0Mq0RE Nez999/HgwcPEB8fj8zMTL1tNSUSiVBQUKCXvnRlCocC1GRYBf4/sAKAjY0NQkJCntryqXzTen9/ /2f24efnh8TERCxYsAAymQzXrl2DQCCo1ozib7/9hilTplS5ffkygKpyd3ev9u/htGnTMHr0aGzf vh1vv/12tfo6d+4cvv32Wxw/frzCIQGcVa09uGaViKiGde3aFXv37kVSUhLGjRsHCwsLvfRbVlYG Z2dnvfRVWxkzNItEoqf2Jm3RosVzgyoASCQS+Pn54ZVXXoFEIsGgQYMwYMAAxMTEVLmO7Oxs2NjY VLl9Tk5OtWZWnZycUFpaWu0XYZMmTUJoaCh27NhR5T6USiW++OILfPfddzqfZkWmg2GViMhIRCIR wsPD8c4771Q7sJqZmeGzzz6r8SUApkStVutt66eaJpFI0LVrV/Tp0wfW1ta4d+9elfsaOnQoZs+e XeXlGVlZWbC2tq7y+GKxGHZ2drh69WqV+wCALl264MMPP8TSpUur3Me+fftga2uLoUOHVqsWMq7a +V81EVEd8u2336JHjx4wMzOrch9yuRzBwcF6rKr2qellAPomFov1Erbv3buHnj17Vvlnce/ePTRs 2LBaNbi5ueH69evV6gMAWrduDaVSiaSkpCq1j42Nxbvvvlurfy+IYZWIyOiEQiE2bdpUrRtJZDJZ tWbj6gqGEiAgIKBaWz9lZWXBycmpWjV4enrqZfspW1tbdOrUCTNnztR5hwGVSoVr166hadOm1a6D jIs3WBERmQB7e3u8++67WLFiRZXevhWJRFi5ciWWLFmi9/Pla4Py42XrQlhVKpXYu3cvEhMTATx6 MSMSiSp8fvLrx/989OjRaoXNrKws9OrVq1rfQ5MmTXDo0KFq9VHuo48+wuzZs/Hmm29i48aNWn1v +/fvx7lz59CgQQN0795dL3WQ8dS//6MREZmo7t27Y/369cjPz9e5bX5+Pk6cOIGUlBR4e3sboLrn M4Wtq8rDal2gVCqRkpKC/Px8qNVqqFQqqFQqzddqtbrC148/plarkZmZiaCgoCqP/+DBA7i5uVXr e9DHjgDlxGIxwsLC8MEHH2Dbtm348MMPX3j93bt3sWjRIowdOxZLly6tly/e6hr+DRIRmYgWLVpU q71YLEZGRkaNh1XSL6lUiokTJ2Lw4MFVaj9u3Lhq7d+bl5eHxo0bV7k98GgZQG5ubrX6eFLHjh1x +vTpF4bV5ORkTJ48GXPmzMG8efP0Oj4ZD9esEhGZCKlUqjl+szJmZmawtraGjY2N5hhXf39/tG/f 3sBVkqkrLi5Gly5dqtS2rKwMZWVlT23BpasWLVpAoVBUe0eAx9nb279wtlYul2PmzJkMqnUQwyoR kYnw9PSEra0tRCIRGjRoAGtra5ibm0MsFsPJyQlt2rTBkCFDMHPmTHz55ZeIiIjAoUOHEBoaiq5d u+K7776r1v6YVDe0bNkSv/zyS5X2OX3w4AHMzMyq/da5SCRCly5dsGvXrmr18zhfX1/cunULe/fu feq5P//8E6+99hp8fX0xefJkvY1JpoHLAIiITIRUKsXBgwcRFRUFT09PNG7cGJ6ennBycnrhlkan Tp3C33//jY0bN+L111+HpaVlDVZNpmbhwoXo3r07Tp06hd69e+vUNjs7u1pbqD1u5MiRmDp1ql76 Ah4dWTt+/Hh8/fXXGDRokOZmuhMnTmD+/Pn4+eef0bt37zpxkx1VxJlVIiIT4u/vj08++QTDhw9H 586d4eLiUunem9OnT8e+ffuQmpqKIUOGIDw8HPfv36+hisnUCIVCWFlZVekGp+qeXvU4d3d3FBUV 4eHDh3rpDwD69euH0tJSnDlzBgCQkpKCJUuWICIiAn369GFQraMYVomI6oB27dph27ZtOHfuHGQy GYYPH44vvvhCL3tdVsYUdgOgioRCIYqLi3Vup8+wKpVKIRAI8Ntvv+mlP+DR9+Xk5IT4+HgkJSVh 9OjRmDZtGgYOHKi3Mcj0MKwSEdUhTZs2xffff4/ExET4+/tj4sSJ+Pjjj3H58mWDjssZLdNRUlKC tLQ0dOjQQee22dnZMDc310sdW7ZsgYuLC9566y299FfOxsYGO3bswMyZMxEaGooZM2bw96+O45pV IqI6yNHREf/+978xZ84crF+/Hv/617/g6OiIUaNGoWvXrno51rO6vL29q7Sn7PNIJBK99WVMKpUK d+/erXL7GTNmwMPDo0onN+Xk5OhtzXNOTg6cnZ310tfj5s+fj08++QRCoRDvvPOO3vsn08OwSkRU h1laWmLKlCmYNGkStm3bhmXLliE8PBwjR45Ev379DBbwsrKykJaW9sJriouL0blzZzg6OhqkhtrK y8sLq1atwsCBA/HSSy/p1Hb27Nm4cuUKtm/fXqWxHz58CCsrqyq1fdKhQ4f0eoNVObVajZycHERF RXFGtZ5gWCUiqgfEYjFGjBiB4cOH448//sDSpUuxevVqDB8+HG+88YbedxCYNWsWkpKSYGNj89xr GjdujIsXLyIgIKDa+3rWJc7Ozrhx4wZ++uknzJ8/X6e2586dw9KlS6u8qb9UKoVcLq9S2ydJJBKt 9w3WxR9//IGAgAC0a9dO732TaWJYJSKqRwQCAfr06YM+ffrg4sWLWLp0KV5//XUMHToUb731Fmxt bfUyjlKpxMqVKzFgwIAXXnfixAm89tprcHFx4SzZY6RSqc77pM6YMQN3796Fn59flcc1NzdHSUlJ lds/LigoCKdOnULnzp310l+58+fP46OPPtJrn2TajL9oiYiIjKJNmzbYunUrYmNjoVAo8Oabb+Lb b79FVlZWjdXQtWtXuLu718iuBbWJlZUVLl26pFObjIwMjB49ulqz1DKZDAqFosrtH+fl5YX09HS9 9FVOqVQiKSkJrVu31mu/ZNo4s0pEVM95e3vjxx9/xL///W98+eWXGDFiBHr37g0fHx+t2v/1118o KCjAxo0bNY+lpqZq1VYgEGD9+vV44403cPnyZfj7+3OGFY+OKz1y5AguXLiAoKAgrdoolUq4ublV a1x9htVr165VeTnC88TGxqJZs2Zo1qyZXvsl08aZVSIiAvBoE/dvv/0WiYmJaNWqFdLT07X6kMlk 8PX1RUJCguaje/fuCAgI0Grctm3bIjExEZaWlrhz546Bv8vaQSgUwsbGBqtXr9bq+nPnzuHixYvV Xsahz7CakpKCJk2a6KWvcqmpqejRo4de+yTTx5lVIiKqwNHREQsXLqzRMc3MzBAREYHg4GCIxWLe cAUgICAA0dHRyM7ORsOGDV94bfnPa9iwYdUa08zMTG9hNSAgAH/99ZfeNuwvKirCgQMHEBERoZf+ qPZgWCUiIpPQtm1bHDlyBL169YK1tbXetlCqrWQyGWQyGe7fv19pWC2/KWrixImws7N74bUikQgf ffTRM18QyGQyKJXKCo/t3r1bc7ypNtRqNeRyOZKTk5GTk6N1u8pkZWXB1taWp1XVQwyrRERkMtq1 a4cFCxZgxYoVaNOmjUkcXmBMarVaq+2f7O3tMXjwYACo9JjVQ4cOPfdGrGeF1e+//x5qtRrW1tZa 1y0SiSAUCnH//n2UlJRU+QhXtVqN3Nxc2NraIj8/v9IgTnUTwyoREZmU6dOn48iRI4iNjUXLli3r bUDJzc2FQqFA8+bNK73W1tYWX3/9daXX5eTk4MCBA2jRosUzn3/WMoDWrVvjzJkzGDx4sM4vHtLT 03H48GF06NAB1tbWMDMz0+kGuj179mDt2rXo0aMHHBwcdArMVHcwrBIRkUmRSCTYv38/Nm/ejMmT J8Pf379ennKVmJiITp06QSQS6a3PkydPwt7eHmZmZs98vnxmNT8/Hx07dtQc1Ttw4ECcPn1a5z1T fXx8sGnTJkRGRqKsrAxqtRrm5uawtLSEtbU1rK2t0bBhQzRs2BB2dnawtbWFra2t5uvExER4eXkh NTUVly5dgqenpx5+ClTbMKwSEZHJEQgEGDlyJCQSCWbOnFkvw2peXh7ef/99vfbZp08f/Otf/3ru Zv1mZmZQKpWIjo4G8Ghbsk6dOsHKygpSqVTn8Xr27ImePXtq/lxUVITc3Fzk5uYiLy8P+fn5SE1N xbVr16BQKKBQKCCXy1FWVobi4mK89NJLUKvVGDlyJG7evInk5OSqf/NUazGsEhGRyXr55ZeRk5MD tVpd7/ZfNcR6XZlMhuDgYPzwww/o3Lkz5HI5Dh06hBMnTqBPnz5wcnKCQqHA6dOn0bhxY6SkpAAA 3NzckJKSAi8vL9y9excPHz6EUqmEra0tPDw8tN4yy8LCAhYWFnBxcan02o0bN+LWrVuaLdCsrKyQ mZlZ9W+eaq36vXKdiIhMmqOjI5o0aYK0tDRjl1KjioqKUFhYCH9/f7333bdvX8TFxWHPnj3o1asX Nm/eDB8fHyxevBiDBg2Co6MjoqKisHjxYiQmJmLBggU4e/YsUlJSsHXrVigUCnTs2BG9evWCubk5 Nm/ejEOHDiE3N1evdbZo0QLW1tZo2bIlAMDS0hL379/X6xhUOwjUarXa2EUQERE9z+HDhzFixAh0 7drV2KXUqMOHD2PLli3PvRmqqkpKStC9e3dIpVL88ssvCA4O1jynUqkgFApRVlYGiUSCrKwsLFiw AE5OThg3bhyaNGny1Az3w4cPERoaiu+//x4DBw6s9NSqkpISnW+0Ah7tDLBy5UqkpKTUy2Uh9RmX ARARkUnr3Lkz8vLyjF1GjSorK4NSqazSOtHK+h03bhycnZ0xbNiwCkEV+P+lB+XjNmrUCD/88MML +7S1tcUXX3yB3r17Y9iwYejSpQtatWr11HWXL1/GmTNnkJ2djYCAAISEhEAs1j6GCAQCuLi4ID4+ Hi+//LLW7aj24zIAIiIyaWZmZpDL5dD1jUC5XG6gigzvypUraNWqld6PK719+zYSEhLg7u6OpUuX Yt26dXrru3fv3jh58iQuX76MCxcuVHguPT0dUVFRmDBhAnJzc+Hh4YHt27dXuifsk+zs7HDlyhW9 1Uy1A8MqERGZNLFYjJYtW+LevXtaXa9Wq5Gfn4/ff/8d58+fR0JCAhISEpCSkqK5WcuUPHz4EEVF RRUey83NxYQJE5CamoqTJ0/i0KFDKCgoeKptRkYGXn31VZw5c0arY1K9vLywbNkylJWVISwsDF9+ +aXevg/g0VZVhw8fxsmTJ1FWVoaysjIcP34cu3fvxqeffoqhQ4fC0tISO3fuRJcuXRAbG6tT/7a2 tk8FYar7uGaViIhM3urVq7Fs2TIEBgZWeu2VK1eQm5uLcePGoVWrVrh//z6USiXi4uJw6NAheHh4 wN3dvQaqrty1a9dw9epVeHp6IjAwEHK5XLOVU2lpKdzc3NC0aVOYmZnh9OnTGDZsGCZPngxra2so FAp0794d2dnZEIlEcHV1xeHDhytdC/rw4UN06NABjRo1QkhICDZu3Kj378vR0REKhQKFhYXo27cv 1q5d+9QOADdv3kSrVq0wYMAANG3aVKt+09PTcfToUc0uBVQ/cM0qERGZvJEjR2LJkiW4du0avL29 n7utU3Z2NvLz83Hr1i1YWFg89fyBAwcwbtw4uLi46HWz/apQqVS4evUqhg8fjv379+PSpUvIzMxE 7969MWLECPTq1QsdOnTQXJ+ZmYl58+ahf//+CAkJgaWlJRQKBe7duwe1Wo1WrVohPDwckydPfuG2 V9nZ2XBwcMBvv/1mkN0GACA6OhoWFhZo3Ljxc3/Onp6eCAsLw/Lly7UOq87OzsjNzUVSUhK8vb31 WTKZMC4DICIik9egQQPExcXB2tr6hRvDp6en47PPPntmUAWAfv36oWvXroiJiUFJSYmhytWKQCCA q6srgoKCsH//fkyfPh0pKSnYs2cPPvnkkwpBFQCcnJywbt06HD16FO3bt4dMJsPFixfh6OiIRo0a YcmSJTh8+DAmTpyIsrKyp8YrLCzEp59+imnTpsHMzAwNGjQwWGD39/dH06ZNK+2/W7duuHPnDq5d u6ZVvwKBAF5eXtizZ48+yqRagssAiIio1rh9+zYCAwPh7OyMpk2bQiKRVHj++PHjiImJgY+Pzwv7 GT9+PP744w8EBAQYdYY1KSkJvXv3xooVK/TSn1wuR9euXTF+/Hj06tULarVaE/IzMzMxduxY+Pv7 o1evXli/fj1sbW2xbt06vPLKK3oZvyouXLiA4OBgjBo1CjY2NpVen5SUhDt37ui83pVqL86sEhFR reHh4YGrV6+idevWiImJQWpqquaGqZycHBQWFqJ58+aV9hMeHo6AgADEx8cbuuTnUqlUyM7ORvv2 7fXWp0QiwZgxYxAZGYnr169j9+7dmDp1Kt566y1ER0eje/fu8PHxQWRkJN566y3MmDEDkyZNwp07 d/RWg66CgoIwY8YMHD58GA8fPqz0ek9PT1y6dAkPHjyogerIFDCsEhFRreLk5ISff/4Z+/btQ0FB Aa5cuQKVSoXr169jwYIFWh1TKpPJsG3bNpSUlCA7O7sGqn5acnIyvLy8MGrUKL32O2bMGHTs2BGj R4/G119/je+//x7z58/Hjh07sGjRImzbtg3Jycn4448/YGZmhpSUFKOGdgD45JNP0KlTJ0RGRj61 M8KTJBIJvLy8sHXr1hqqjoyNywCIiKjWKi4uxmuvvYbz58/D0tISKSkpOr2t/+GHH+Lo0aNo1qyZ Aat8WkZGBq5fv464uDi4ubkZZIz4+HiUlJSgbdu2AB5t6fX4TgH79u3DhAkT0L59e+zatUvnE6UM oUuXLnB0dISfn98Lr0tOTsbFixdx9epVk6ibDIszq0REVGuZm5tj37592LlzJ86cOaPz+tM2bdro vDF9daWnp+Pvv//G3r17DRZUAcDPz08TVAE8FeoGDhyIu3fvmkxQBYClS5ciJiam0uuaNGmCgoIC HD161PBFkdExrBIRUa0mkUjQo0cPODs769z2tddeQ0ZGht5Pu1IoFEhMTKywUX9paSkuX76MtLQ0 REVFoXPnznodsyoEAoHJBFUAaN68OZRKZaXXCQQCBAQE4KuvvqqBqsjYuM8qERHVWw4ODujVqxdu 3Lih1Y1Z2iotLUVCQgJu3bqFoqIiSCQSqNVqTJo0Cf/5z3+eu7VWfZefnw+ZTKbVtf7+/lizZg1S UlL0fiwtmRbOrBIRUb32ww8/IDk5GSqVSm99WlpawtvbG0VFRZg6dSpWrlyJ2NhYrFixgkH1BQoK CiCVSrW6ViqVwtfXF8uXLzdwVWRsnFklIqJ6zdXVFa6ursjLy4Otra1e+jx37hyEQiEaNGiAhQsX omHDhnrpt67LzMzUKcwLBAKUlpYasCIyBZxZJSKiei84OLjCnq3VoVKpkJGRgU8//RRJSUkMqjo4 ffo07O3tdWpT0zs5UM1jWCUionpv2bJlkEqluHHjRrX7un79Ojp37oxJkybByclJD9XVH8ePH9fp RjmRSIT8/HwDVkSmgGGViIjqPQcHBxw9ehSpqanIy8urcj9ZWVnIycnBjh079Fhd/aBWq3H+/Hm4 urpq3cbGxgYXL140YFVkChhWiYiIADRq1AhTp07F3bt3q9zHnTt3EBoaCkdHRz1WVj/cvHkTQqEQ VlZWKCoq0mpJhre3N44cOVKtFxhk+hhWiYiI/qd79+54+PBhlXYGyM3NRVFREYYPH26Ayuo+e3t7 KBQKbNy4Ed9++y1SU1MrbWNhYYHGjRtj165dNVAhGQvDKhER0f/07t0bAQEB+Ouvv1BSUqJT27S0 NEyZMkXrrZeoIhsbG4wbNw7Z2dlwdXWFu7u7Vu2aNm2KrVu3Grg6MiaGVSIiov8RCoXYsWMHevTo gevXr2vdTq1WIysrC8OGDTNgdXVfWFgYvL290aFDB61P1mrSpAn+/PNPrU6+otqJYZWIiOgx1tbW CAsLw507d7Ru8+DBA4hEIrRs2dKAldV9586dQ2pqKnx8fLRuY2VlBRsbG5w7d86AlZExMawSERE9 obS0FFKpVKubfORyOY4fP46goCCtZwPp2fz8/GBmZqbTCwUAcHd3x6FDhwxUFRkbwyoREdET3Nzc YGdnh9zc3EqvLX/7eeDAgYYuq86zsrLC/PnzcenSJZ3aeXh4YN++fQaqioyNYZWIiOgJAoEAjRo1 gkKhqPRamUwGd3d3NG/evAYqq/tGjhyJ5ORkFBYWat3mpZdewuXLl1FQUGDAyshYGFaJiIiewc3N DQ8ePKj0uuzsbKSmpqJ169Y1UFXdZ2Njg1dffRWxsbFISUnRqo1UKoWrqyvOnDlj4OrIGBhWiYiI nuH7779HampqpTN8CoUC/v7+PFpVjyZPnowzZ85gy5YtyM7O1qpNw4YNERcXZ+DKyBgYVomIiJ7B zc0NwcHBlYYlBwcHpKWl8W50PeratSt69OgBAFrvWyuTyZCZmWnIsshIGFaJiIieo3v37pXOrIpE IlhbWyMrK6uGqqr7BAIBjh07BgcHB633T1WpVDyQoY5iWCUiInqOfv36IT09Hfn5+S+8TiwW4969 ezVUVf3Rs2dPXL16VatrFQoFrK2tDVwRGQPDKhER0XP4+flh2bJlOHv2LK5cufLcfVft7Ozw2Wef abUvK2lv2bJlOH/+PB4+fFjptaWlpVw3XEcxrBIREb3ApEmTkJWVBWtra5w/fx43b958KpS6uroi IyOj0hlY0o2XlxfGjRuHK1euVHptcXExGjVqVANVUU1jWCUiIqqEmZkZoqOjsWrVKpSUlCAhIQEZ GRnIyMiAXC4HANja2iIhIcHIldY9vr6+KC4urvS6wsJCzqzWUQyrREREWrCxscHgwYMRGxuLwMBA yGQyCAQCREdHIyMjA0KhENu3bzd2mXVO27ZtkZqaWukSi/z8fIbVOkqg5gIbIiKiKouKisLgwYMx YMAAhIWF8SQrPVOr1XBzc4NSqYSPjw+6dOkCgUBQ4RqVSoWvvvoKxcXFkEgkRqqUDIVhlYiIqJru 378PBwcHY5dRZx04cABKpRLTp09H27Zt4eXlVeH55ORk7NmzB0VFRUaqkAxJbOwCiIiIajsGVcPq 378/ACApKQmbNm16KqyePXsWS5YsMUZpVAO4ZpWIiIhqhWHDhiExMbHCQQFlZWVIS0vDxIkTjVgZ GRLDKhEREdUK7u7uaNGiBVJSUjSPFRUVwdzcHBYWFkasjAyJywCIiIio1rCxsdHMrGZmZiImJgZd unQxclVkSAyrREREVGsIhUJcvXoVV69exa1btyCTyfDnn38auywyIO4GQERERLVGcnIy1q9fj9at W6NPnz6wtbU1dklkYAyrRERERGSyeIMVEREREZkshlUiIiIiMlkMq0RERERkshhWiYiIiMhkMawS ERERkcliWCUiIiIik8WwSkREREQmi2GViIiIiEwWwyoRERERmSyGVSIiIiIyWQyrRERERGSyGFaJ iIiIyGQxrBIRERGRyWJYJSIiIiKTxbBKRERERCaLYZWIiIiITBbDKhERERGZLIZVIiIiIjJZDKtE REREZLIYVomIiIjIZDGsEhEREZHJYlitB+7cuYP79+8buwwiIiIinTGs1mGFhYUYMmQIWrduDV9f XxQXFxu7JCIiIiKdMKzWYadOncLt27cRFxcHa2trJCcnG7skIiIiIp0wrNZhVlZWuHnzJj7//HNk ZWWhSZMmxi6JiIiISCcMq3VYp06dcPHiRZSVlWHdunWwsLAwdklEREREOhGo1Wq1sYsg49q/fz8u XryIefPmGbsUIiIiogoYVuu5Xr164fTp0xCLxcjIyIC5ubmxSyIiIiLS4DKAeq6oqAgLFy6Ej48P Tpw4YexyiIiIiCpgWK3nJk6ciA0bNuD69evw8PAwdjlEREREFYiNXQAZ19ChQ3H79m20atUKLVq0 AAD89ddfmDFjBhwcHPDTTz9xaQAREREZDdes0lPef/99rFmzBu3atUNsbCyKi4thYWEBoZAT8URE RFSzGFbpKdnZ2bh9+zaaNWsGsViMNm3aoEePHujUqRPGjBkDsZgT8kRERFQzGFbpha5evQo/Pz+o VCq0bdsWFhYW+Pnnn+Hm5mbs0oiIiKge4Pu69EI+Pj6YN28erKyssH37djRq1AgrV640dllERERU T3BmlbTi6uqKNm3aIDY2Fj/99BMGDRpk7JKIiIioHmBYJa3s3LkTN27cwBtvvIGmTZsauxwiIiKq JxhWiYiIiMhkcc0q6Sw0NBRr1qwBX+cQERGRoTGsks527tyJ2bNnY8SIEbh165axyyEiIqI6jGGV dNa+fXuMHTsWrq6uCAoKwuLFi41dEhEREdVRDKuks4sXL6J9+/aYP38+YmJiEBkZiQ0bNhi7LCIi IqqDGFZJJ1u2bEF6ejpCQkIAAI0aNcLcuXPx66+/GrkyIiIiqosYVkkn+/fvx/jx4yGVSjWP+fn5 4eTJkzh79qwRKyMiIqK6iGGVdNKvXz8cP368wmPNmzfH8uXL8eqrryItLc1IlREREVFdxLBKOunf vz9OnDiBoqKiCo87ODhArVbDzMzMSJURERFRXcSwSjqxs7ODl5cX4uPjGKZ1xwAAAdhJREFUAQA3 btzAhx9+iLfffhvh4eFo2LChkSskIiKiuoRhlXSWl5cHOzs7nD17FoMGDYKvry8SExPx5ptvGrs0 IiIiqmPExi6Aah+VSoWMjAzMmjUL4eHhGDp0qLFLIiIiojpKoOaZmaSjzZs3Y9q0aXBzc8PFixch EAiMXRIRERHVUQyrVCV5eXkoLCyEi4uLsUshIiKiOoxhlYiIiIhMFm+wIiIiIiKTxbBKRERERCaL YZWIiIiITBbDKhERERGZLIZVIiIiIjJZDKtEREREZLIYVomIiIjIZDGsEhEREZHJYlglIiIiIpPF sEpEREREJothlYiIiIhMFsMqEREREZkshlUiIiIiMlkMq0RERERkshhWiYiIiMhkMawSERERkcli WCUiIiIik8WwSkREREQmi2GViIiIiEwWwyoRERERmSyGVSIiIiIyWQyrRERERGSyGFaJiIiIyGQx rBIRERGRyWJYJSIiIiKTxbBKRERERCaLYZWIiIiITBbDKhERERGZLIZVIiIiIjJZDKtEREREZLIY VomIiIjIZDGsEhEREZHJYlglIiIiIpPFsEpEREREJothlYiIiIhMFsMqEREREZkshlUiIiIiMlkM q0RERERksv4PxiYLuBptsFQAAAAASUVORK5CYII= ", null, " AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4FFUXwOHf7G52k910Qu8tFGnSBelNigJKEVTgky6K omLBghRRwIpIEQsKihQFhCDShIAgJRQJkAACCQkEAoG07bvz/RFYWWkB0sDzPg8PmZk7d85Mks3Z u7coqqqqCCGEEEIIUQBp8jsAIYQQQgghrkeSVSGEEEIIUWBJsiqEEEIIIQosSVaFEEIIIUSBJcmq EEIIIYQosCRZFUIIIYQQBZYkq0IIIYQQosCSZFUIIYQQQhRYkqwKIYQQQogCS5JVIYQQQghRYEmy KoQQQgghCixJVoUQQgghRIElyaoQQgghhCiwJFkVQgghhBAFliSrQgghhBCiwJJkVQghhBBCFFiS rAohhBBCiAJLklUhhBBCCFFgSbIqhBBCCCEKLElWhRBCCCFEgSXJqhBCCCGEKLAkWRVCCCGEEAWW JKtCCCGEEKLAkmRVCCGEEEIUWJKsCiGEEEKIAkuSVSGEEEIIUWBJsiqEEEIIIQosSVaFEEIIIUSB JcmqEEIIIYQosCRZFUIIIYQQBZYkq0IIIYQQosCSZFUIIYQQQhRYkqwKIYQQQogCS5JVIYQQQghR YEmyKoQQQgghCixJVsUNqarKjh07SExMzO9QhBBCCPEfpMvvAETBdfDgQXo/2oPo2EP4G020admS pi1b0KBBA+rWrUtgYGB+hyiEEEKIe5yiqqqa30GIgmfu3Lk8P+JZ6pp9CcfERZwkY+OCHi76QpIl narhVdiyfRs6nY7RL71M7z6P07Rp0/wOXQghhBD3EElWhZeLFy8ycsSz/LZsBc3NJgqh9zquopKB i781FvZo0hk3YTzz580n5e847FqFmvfX4fMvZlG9evV8ugMhhBBC3EskWRXY7XZ+/fVXvpo1m/W/ /05FjT/1LX7or9Gl+TRWVuvO07JZC0qVL8vSBYswOaCZMxATOtb4pNDuqV58Nn06BoOBn3/+mZMn T+J0Ook7dpztW7cREOBP8RIlKVG2NBUrVqRu3brUrVsXnU56pQghhBDCmySr97Dk5GTeen0Me3ZF YbHbaPRAY47GxKLXG9DqtJxKTCTpzBnOp16ktDGY0ukqFTBiQHvdOpOwsUI5i06rIdTXn0YZvhTD 4Dm+X28hztdJhttBeOXKnD58jDCHFsWtone6CUOPExUrLsy4sRp1HHGk8fmsmTz99NN58ViEEEII cReRZPUe5HK5+GL2bMa8+hrl7XpK2nWcUexoVZUgfHCT9XG+ES0mtJjQoUXJVt2XuwGY0KK5wTnn sZOMnXBMNyxnxsXPvuc5cTKesLCwW71VIYQQQtzjJFm9x0RFRfH0U/25GH+Khpm+V/U5LWhOYWWd zwV8fHyoUK4cTZs359Ppn6HV/tO6m5GRQWxsLBqNhoCAACpVqkRmZiYbNmwgLS0Nu91O+fLlqVOn DsHBwfl4N0IIIYTIaZKs3iMOHDjAxHfG8WvEKu63ZI3gV7LZWprfVFSsuLmIg71+VlK1blo0a06h YkX4M3ILx+JPEOYXgAIkpKXQuH4DYmJiCFUM+KkaFFUlU6eSZEmnbp06tO34EDqtlhdGjcLf3z+/ b08IIYQQd0CS1btIbGwsX8yaxcDBgwkNDeXEiROsiojgl5+WcuLECarafanmMmK4y9d6yMBJIlZO +6kUsqhUIwDdpcT7HHbScBCKnmB8vM5z4OYkVs4pDqwGDRf8tTicTsJCQ+k/8Gleevll9PqC3dIs hBBCCG+SrN4FXC4XU6dMYdKEifg7Fdy+Plgcdkw+BopbFYo7dBTHN9v9Tv8rkrBiQIMNlQNGO/Yg P5o+2JTwalUpUrQox47+zfnkZACCQ0OoUq0aRYoU4dSpU3Ts2JGKFSve9BqnT58mOTkZi8VCrVq1 8PHxkVkNhBBCiBwkyWoB53K56Nz+IWL/jOIBsx+B/2pNFNmjonIGGxdxkKGoOAxaDFYnvpdaoW24 sfrpsPso6Oxu4rDQrn07nhzQn4ceegg/Pz8A3G43kZGRxMTE8OcfW1myZAlBel9OpV0AQK/zoXp4 FZq3bkmvx2WRBCGEEOJOSbJagJ0/f57/PdWP6E3baGMOkJbTPGTFxd+YOR2gIc58AV+9AZPRCCpo 7U7CXDp8LU6q4o8fWmy4caOiQyEZO0mKnb/9HNRv3Ig33xnLAw88IC2uQgghxG2QZLWA2rRpEz26 dae0WUNduxHdXd4P9W7mRsWBGzsqTlSC0WVr8JoTlUOaTOJMKmkuG6+9MYaqVavSvHlzmaZLCCGE yCZJVgugjIwMKpYtR90UDWUx5nc4Igecw06s0YFdq3DamcmQYUOp16AB5cuXp1GjRiiKtJoLIYQQ 1yLJagE0buw7LJryGc2sAfkdisgF6Tj5zXCBIJ0vyS4LP/60hE6dOuV3WEIIIUSBJJ3oCqCfFy2m olUGUt2rAtDRw1YYbBAZqMNms+V3SEIIIUSBJR0hC5jt27dz5NhRihTwlaeEEEIIIfKCJKsFyPff f0/71m1oYQ+SAVVCCCGEEEg3gAIhPj6eN18fw6ply2lvDqSQtKoKIYQQQgCSrOab9PR0du7cyQ/z 5rPwx4VUcfrxsDMYA9r8Dk0IIYQQosCQZDUHRUVFMXbMG/j6+mLy98/6FxiAzWIh/vgJEhMSSTpz hnMXUlDdbor4BVAsE7q7QzFKkiqEEEIIcRVJVnPQzp07id64lQp2PWcvTSDvQkUDGNFSDB0V0GKi CD4oKOkyt6YQQgghxI1IspqD7HY7IYqecPzzOxQhhBBCiHuCDDnPQX9sikTvkDUWhBBCCCFyirSs 3iGXy8XUKVPY8NtaonbspKs7JL9DEkIIIYS4Z0iyeodcLhevjxkDQDVdEJm40EuDtRBCCCFEjpCs 6g7p9Xrcbjd79uyh64vDWOOfzjbfDMy48js0IYQQQoi7niSrOUBRFOrUqcN7k9/nWHwcrQf3ZbE+ mcWmFDaaMjmFFRXpyyqEEEIIcaskWc1hISEhfDxtGmkZ6ew5GM3zU8ezp5iGtaYMkrHld3hCCCGE EHcVSVZziY+PD2XKlGH48OEci4/jpffHsSnIyma/DNJx5nd4QgghhBB3BUlW84CPjw8jnn2W4yfj 6TpyML/4XWCzMYMz0tIqhBBCCHFDkqzmoYCAACa9/x7xiQkMmjCGzUFW9uky8zssIYQQQogCS5LV fBASEsKoF1/kr4MHiA/RkoAlv0MSQgghhCiQJFnNRyVKlODzL2axy2TFJbMFCCGEEEJcRZLVfNa1 a1fKValMHOb8DkUIIYQQosCRZDWfKYrCQ507sc2QycYAM7uVNBKwkImT45ix4wZARSUFOycwSyus EEIIIf4zFFVVJfPJZ6qqkpCQwJ9//skfm7ewZeMmYo4eplBoKPGJiZ5ypYoWw89oxOfUBZrZAvMx YpFTIgMtvDt3Ft27d8/vUIQQQogCSZffAYis1tXSpUtTunRpevbs6dkfFxdHuXLlKO4bQIrLxncL fmDyu5OwHN+dj9EKIYQQQuQdSVYLsDJlylC9cjjuk+fwdbho3bo1Oo2WPhTP79CEEEIIIfKEJKt5 7Pz582zfvp2YmBgyMjKw2+3Uq1ePzp07o9frvcoqisKa3zewdOlS3nzjDUiD8CrhrDxxkgYWP8pj zKe7EEIIIYTIG9JnNZelpKSwbNky1qz6lW1bt5F8/hwlfQPxt7rROFygquzTpLNm7Vpat2593Xqc Tic+Pj4AVAmvwtmTCfSyhOXVbYhcIn1WhRBCiBuTltVckJaWxsKFC5n/9Vx27YmijC6AwpluGmIg hKJo7Iqn7BlsJBcx0bJlyxvWqdPpiIiIoHPnzsQejgVgq58fRSxQCVNu3o4QQgghRL6RZDUHXbx4 keDgYKZNm8b4t9+hoRrE4xTBx3b9GcJUwOV2odHcfBaxGjVq8P7776OqKvO+/Y79MYcI9fOnkkWS VSGEEELcmyRZvUNWq5WFCxfy8ZQPOBBziDo1a1KxahUcqgs3Kj43mco2BTvFS5QlOjqaCxcuULhw YYxGI6dPn8Zms9GsWTMURSE+Ph5/f3969uxJw7r1qZSq0lgJxWSTb6EQQggh7l2S6dymtLQ0Pps2 jQ+nTKWQ6kPFDA31KUn8vkQOH4intm8Yla2+N62nCv5sOhJP+ybN8dXoMLsd2F1OAnwMWJ0OVL0O g15PamoqTrcbjUZDXZuJ6piymmWlx7EQQggh7mGSrN6ilJQUPv7wQz77dBol3QbaWkyE8s8o/goY qeAEnNmrT4tC60z/ax5zo5KR6cSFShCFUYEMnAThc+c3IoQQQghxF5BkNRscDgdr1qzhy1mzWbtu LRUw0dEamOtJowaFwH9dQxJVIYQQQvyXSLKaDffXrEVa4hnKZij0IAxftPkdkhBCCCHEf8LNh6AL ypYpgxMVuwbc+R2MEEIIIcR/iCSr2bBi9a8sXPULNZ56hKV+KWwxmdmpSeMg6VzAgQsVt4x0EkII IYTIcbKC1S2Kj49n3bp1JCQkEBN9gA3rN3A+9SK+Gi19HEXRoNy8EiEukRWshBBCiBuTPqu3qEyZ Mjz99NNe+06ePEn1KlVJczgJlgFQQgghhBA5RroB5IBO7dpTyWEgUHJ/IYQQQogcJcnqHXK73SSc PoWiKLjyuN+qFRf7Scvz6wohhBBC5BVJVu+QRqMh5vBh7BWLEkNGrl/PjpsYMjiGmdXGNM5VCGWt MQ0Lrly/thBCCCFEXpNkNQcULVoU1eUiIBe7AcQqmfxhMrPUmIJv6/uxNa7EmEnjOXTkMI8NGcAG U+4nykIIIYQQeU06WeaQsRMn8HT/AZzUqpgynQShIxgfAtHh86/3BGk4OIEFmwZUDaiKAiqUcOoo hS8XcKBBIRgfTmHlkMmJPciPdyaOp0GDBtSoUQOz2cz+/ftJSUlBo9HI/K9CCCGEuCdJsppDevXq RcuWLVm5ciWHDh4keu9f7D1yhJOnEwnz9SfMpqC4VZL9IBMXjzzyCFXvq45Wq0Wr1WKz2fjuq2/Y dPIkmQ4bQf4B1MrwYbfBzLRpn9O3b198fX0919u7dy9NmzZFq9FSyTeIVmZTPt69EEIIIUTukHlW c5nD4WDPnj1ERkbicrlo1KgRzZo1Q6u9eslWVVWZNXMm55KTKVKsGM8+8wz9n+rHl3O/uWbZNi1a cmpXNE0tpqtab8XdQeZZFUIIIW5MktUCKi0tjfXr19O1a1c0mmsnolarlf/168+OVetolxmQxxGK nCDJqhBCCHFj0hxXQAUGBtK9e/frJqoAvr6+zJg9i1P2DFSZvkoIIYQQ9yBJVu9ywcHBhFeqxHHM +R2KEEIIIUSOk2T1LqcoCu9OmcwBf6e0rgohhBDinnPPJavp6el8/fXXHD169JrHNm7ceM1jd7MK FSqQbMmQVFUIIYQQ95x7LlldsGABo595jvq16lC6WHGGDBzEwoULGdh/ACWKFGVA1x7Ur1WHvr16 U9DHlp08eRK9j57hw4Zdt0xcXBytm7egmSsYDUoeRieEEEIIkfvuuXlWf5w3n/ttRipiJMXi4K+v f2bj4uWEmN10c4VisupwYGRpxCo++OADOnXqRPXq1VGUgpfo+fr64nA6KFmqFI/36EmRokV5ot9T AJw9e5ZdO3fy9RdzqHwBKiPzrAohhBDi3nPPTV01dOAgfp+/hNp2I2exEWNyctFmJtTXn/KZGiqr RvzQcgorx/1cnFZslKtckR6P96ZIkSIUKVKEWrVqUbp06QKRwO7YsYMObdpRKUPhnFFB9cl6f6FX FQIynBR1+1AGv3yOUtwumbpKCCGEuLF7rmV16scfMcag56fFS6hW9T6WTHqXevXqsWfPHmZ+Np2f ly/nfoc/1V1GSlhAxcjhfSdZFD0Fp0GHVQeJ1jQ6PPQQPy9flisxpqen89tvv7Fr507OnE6iZZvW PPzww4SGhnqV27p1K507dKRRhoFyGJEB/0IIIYT4r7nnWlZv5tixY9xfuw5at0oVq4EabhMXcbDH 3845lxWdRovd5WTpyl9o06ZNrly/fas2kJJOSKYbvQopJi1ntQ4++ORjBgwYgMPhYOxbbzHjs89p YjFSFmOOxyEKBmlZFUIIIW7sP5esAthsNo4cOcIzg4dyat8hzqk23vvoA7p06YLVaiUzM5M6derk +HVVVaVuzVr4HjxFbdV7xalkbGw3WVFNBtLS0ymm+NLY7Ifp3mv8FleQZFUIIYS4sf9kJmQwGKhR owbrIzfySMdONCtenOHDh+f6dRctWkTyiQQ6q4FXHSuMgU6Zei5kOjASih/aXI9HCCGEEKKgu+em rroVPj4+rFq7hq++nZsn1xv35lvUytSjXGeKKQ0KhdBLoiqEyDXLli2jRo0aaDQaqlWrRufOnalb ty4dO3Zk9erV1zxn7dq1xMXFebbtdjuffPIJbdq0oV+/fjz22GO0bduWH374weu8mTNn0q5dOyZN mpSr95Rd6enprFix4rbOvZ3ndjtSUlKYOHEi9evXJzIyEoDExETCwsKIioq6rTrff/999Ho9Go2G cePGkZGRwfLly6latSoajYYOHTqwadMmT/mIiAiqVq1KnTp12Lp1KwD16tXj008/vfMbFOI2/KeT VchaAUqjyf3HkJKSwqGjR3DL1P1CiHzUrVs3nnnmGQBef/11IiIi2LVrF7Vq1aJTp0588803XuU/ +ugjTp8+TdmyZQHIzMykbdu2LFq0iCVLlvDdd9/x008/MX36dN544w0GDRrkObdfv35ERUXhdDrz 7gZvICAggNDQUCZOnHjL597qc7tdoaGhtG3blt27d3v2+fv788ADDxAUFJTteq58c/Haa68xePBg ALp3746/vz9du3blk08+AeCBBx6gRYsWnvKdO3emSZMmfPnllzRp0gSAhg0ben4GhMhr//lkNS84 nU769upNMa0fIfjkdzhCiP84o9F70KZGo2HChAlotVqvVtAffviBmJgY+vXr59n30ksvsW3bNhYs WEBISIhnf9WqVZk7dy5ff/01M2bMAMBkMt1SgpUXmjZtitFoZOHChbd8bnaf250qVqyY13ZQUBAr VqygUqVK2TrfarUy7F+LyQwcOBDA6747dOhA8eLFWbRo0VV1JCQkUL9+fc/2zJkz6datW7bvQYic JMlqLrPZbHTt3IWjW6Po4ipMkCSrQogCSK/XExISwtmzZwG4cOECI0eOZNy4cZ4ySUlJfPXVV7Rp 0+aarWwtWrSgcuXKTJgwAbfbnWex36oRI0bw+uuve+71Tvz7ueWm7D7TESNGEBMT47Wvbt26VKhQ waurhqIoNGzYkJiYGHbu3OnZv337dho2bHjb1xcip0mymovMZjMd2rTl7807aWUJQCvLoQohCqik pCTOnTtH7dq1AZgzZw4VKlSgePHinjK///47LpeLBx544Lr1NGnShDNnzrBnzx7PPovFwuDBgwkM DKRMmTJ89dVXnmNpaWk888wzzJw5k+eee46hQ4d6ug389NNPdOvWjTFjxvDhhx9StWpVQkND+f77 7/n777/p06cPhQoVon379mRmZnrqXLp0KaNHj+bzzz+nffv2bNmyxStGg8FA3bp1mT59umffZ599 RtGiRTl16tRtP7eTJ08yceJEWrduzebNmylRogT9+/cHYOPGjTz33HP06dOH6tWrM2/ePE8dqqoy adIkhgwZwqRJk7zislqtfPHFFzRu3Jj58+d79qenp/POO+8wYcIEnnzySZ588knS0tL466+/iImJ 4cKFC4wePdqrj26vXr2Ii4tj8+bNnroPHToEwHfffecp9+OPP9K7d2/PdkREBN27d/caiBwVFcWY MWOYPXs29evX9+rPeqN7FeJ2SLKaS9LT02nVrDnJUQdpbvGXRFUIUeBcnrkwOTmZAQMG4Ovry9Sp UwFYuXIl1atX9yofHx8PQIkSJa5b5+WPsE+cOOG5xsqVK+nbty/btm3j/vvvZ/DgwZ7BQ2PHjuXo 0aMMHz6cadOmsXjxYn788UcAunTpQkxMDKtWraJ169bExMQwdOhQRo4cyS+//OLpprB9+3YWLFgA ZI0P6NWrF927d2fEiBF07NiRAQMGXBVn9erVWbJkiWc7KCiIsLAwdLqbT5Jzvefm4+NDdHQ0+/bt Iz4+nqlTp9KwYUOOHz/ON998w2effcaCBQv43//+x4ABAzh48CAAEyZMIDo6mi+++IIxY8Z4vRnQ aDQ0bdqUHTt2ePa53W66dOlC165deeutt5g5cyY//fQTU6ZMoVatWrRr146QkBCmTp3Kww8/7Dnv cgJ6OemNiIjgqaeeonHjxvz44484nU7cbjf79u2jZs2anvPq1q3LwYMHcTgcnn2jRo2ib9++DB06 lJUrV6LX6wGue68HDhy46XMV4nr+k1NX5YUJ48eTeuAYLWwB1x39L4QQ+enTTz9l0aJFnD9/nvDw cLZu3eqZY/rAgQM0btzYq/zlJahvND335Y+KL5dRFIVu3brRqlUrAL799ltKly7Nxx9/TPPmzenY saMnOXO73ZhMJk+iazAYKF68OOXLl+f+++8HoGXLlkyePJnHHnsMRVEoXLgw9913H9HR0QAEBgYy evRoqlWrBmT1Mz1+/PhVcRYtWpTY2FgsFgt+fn7069fPq2/u7T63qlWrsmnTJp544glP+WHDhpGc nMzrr78OQGpqKk2bNuXEiRMUL16c999/n+XLl3vK16tXz/O1Xq/nvvvu87r+smVZqytefiYBAQEs X76cihUr3jDu2rVrEx4e7hkQ9+OPPzJ58mRCQ0MZMWIEK1euJCAggObNm3udV7x48aveoNjtdt5/ /32+/vprihUrxmOPPQbA5MmTr3mvcXFxV92HENklyWouWf7Tz1S3GSRRFUIUWC+88MJ1E7S0tDRP a9ll5cuXB7hh/8zk5GQAypUr59nn4/NPX/3g4GAaNWpEbGwsAO3btyc1NZXp06ejKIqnde96DAbD Nfelp6cDoNPpmDRpEps2bWLHjh0cOXLkmsm1n58fqqpy7tw5Spcufd3rXcuNnhuAr6+v1/bevXsZ NGiQ10wJl0VERGC1WilVqlS2r3+5i8GV2rdvn61zH3/8ccaPH8+PP/5IUlISFSpUoGfPnrzwwgt8 9913FCpUiOeff/6m9bz33nt06tSJqKgoZs+e7Ulwb3SvQtwu6QaQw5YtW8bA/gM4lZSEThJVIcRd ymQykZGR4bWvZcuW6PV6tm3bdt3zdu3aReHChT2tftcSFhbmSei2bdtGixYteOSRRxgxYsRViV52 XU5I3W43/fv3Z+3atYwePdoz9dK/uVwu4OrEMjeYzWaOHTt21X673e55xhcvXsx2fQ6Hw2tqqlvR p08fICvhvjy6PywsjA4dOrBq1Sr27NlDjRo1blpPq1at2L59O8HBwbRq1Ypp06YBN75XIW6XJKs5 7FRiInPnfcf9Fl+CZeS/EOIuVaVKlasSqMKFCzN48GDWrl3r+aj+Srt27SI6OprXXnsNrfb6i5uc OnWKNm3aADBgwABat25NmTJlgDsfcb5w4ULmzZvHK6+8csP6Lly4gL+/P4ULF76j62VH5cqV+f77 77FYLJ59GRkZzJo1yzMd1ZWT8t9M9erV2b59O3v37vXaf7l7gKIo1+2qUaVKFWrVqkVqaiq9evXy 7O/bty92u93TXeNm1q1bR61atdi2bRsjR45k7NixN71XIW6XJKs57L13J+FWVcLQy6AqIUSBZDab vf6/lvbt23v6gV5pypQpNG3alN69e3t1B4iLi6N///707duXUaNGefZrNBqvxOXy4KNXX30VgNOn T7N3716sViu//fYbKSkpnDp1ivPnzwNZ81RfmXhdTj6vHOxzZdeBy6P5//zzTy5evMiqVauArMFh V7YUHz9+3JMwA3zzzTfcd999N+zikJ3n5na7r1oEYcSIEZw8eZKOHTuydu1aIiIi6Nu3Lz169KBe vXrUq1ePDz/80DOIau3atQBs3bqV1NRUz71ebp186qmnKFSoEB06dGDGjBlEREQwaNAgwsPDgayF Bc6cOUNqaqrX4gKX9erVi8aNG3t1f3j44YcxGo107979mvdlt9u9Wkc/++wzz/elf//+lCxZ8qb3 KsTtkmQ1hxUKDQXAisxHJ4QoeCIiIpg7dy6KovDll196Rt7/28CBAzlw4ICnL+hlfn5+rFmzhr59 +9K7d2969OjBo48+yuDBg3nttde8plcC+PDDD9m2bRt9+/Zl5MiRzJgxgy1bthAWFgbA22+/za5d u6hTpw5ms5mBAweydOlSVq9ezfLly4mOjmbnzp1s3bqVhIQEFi9ejKIofP7555w5c8ZT5s8//yQy MpK+fftSu3ZtHn30UUaOHMkbb7xBWFgYgwcP9nz0D7BlyxavifMtFgvnz5+/7mpb2XlumzdvZtmy ZZw+fZrPP//c03+3devWzJgxg+PHj9O9e3c++ugj3n33XU+/0+XLl9OkSRPat29PnTp10Gg0NGjQ gKCgIFJTU5kyZQoACxYsYN++fQQEBPDrr79Srlw5Xn75ZcaNG8f//vc/z+wNjz32GCVLlqRBgwae GK7Us2dPr6mpIKvbx6BBg67qNqGqKt9//z3R0dFERkby66+/AvDXX3/x8MMPM3v2bL744gvP9FQ3 u1chboei3mhYp7hlaWlpDOw/gGO/bKS22x+9vB/IEU7cuOGee56RgRbenTvruq0ZQuSncePGYTKZ ePnll/M7lBy1fv16pk+fztKlS/M7FCFENtxbf/kLgMDAQKZ89CGuqiVZ7puCGxUn8n7gdmXiZI8m ncW+5/lWSWRlYDoRplQyKRhrjQtxL3vrrbfYunWrZz7Qe8G5c+eYNWuW1yT4QoiCTZLVXFC+fHn2 RP+F2e3kN5L5ingSsdz8ROHFgZvfjGlU7dOJiLW/kXQmiYjIDTw96jl+NaYRnwPP1C1vJIS4Lo1G w6JFi1j/B5YJAAAgAElEQVS5ciUnT57M73DuWHp6OrNnz2bu3LkEBATkdzhCiGySeVZziaIorIhY yaIfFrBxy2ZOxp2npMzckS0nMLPP3855SyZPPNqHb+Z9R0JCAiOGDmNTZCQLFi0kpFAoo0aNohWF CMf/unXt1GdgU1QetP3zh+kkFlQgDSd/kEIvShAiMzfkC19Fi036d98VLg+Iuhe8+eab+R2CEHkm JCSElJSU/A7jjkiymovatm1L27Zt6d7lYX77ezVVMBCC/uYn/oftMmRyOkjL9wt+pmnTprjdbt55 eywfffABVRx+1HQq9On6KJkOG420hSjvMl63rtNY2W0/TynfQI6SyTZ9OiG+Jk6nX6BqpXBq1a5F 2wsp7N+6l+YWSVbzgw03zyhl0V5aGUmrgFZR0F6aSOPy15ePa7jx8avPv9Gxf9WtKChaBc2lAopW 472t0aDRZpW5fFyjVVA0l86/VD7rmOK1rdEonvKXj3tta5R/na+5dD3NFbFk7cva1qJcOqbRaDzH L8d55bbm0nnKlXVpNGguTS11dd3/2tZoQXNpGiqNBkV75bY2q9yNtrVauFRX1vF/tj11X3Ff161L 0YCiQVU0V2wrnnPVS8e54rjqta14n6/xLnvNuhXvulXPCl7gVlXP5zJuNWsgkvvSDvWKfQDuS+d4 lb107rXr+udTn6zjV5yP6jkHwOXO+tp1+VqqisvNP19fEZfLrV7ad8XxS/sAXJfqdbu9tz11u1XP vqzjWedfrvvyv+xsO/99XL1WebfXtvMmdavuf+JU1X9tu6+cizfrmOe4+q/tS+cDqO5/ymdtq57y nm2v8pe23a5L266sf65/bf/reNZ1/3XMda2ybq9t903qBriw9xvudpKs5oGRL73IsoiV0nf1Bpy4 OYaZQ2SSGHua6Oho/tevP6t//ZWiLh+6WIIJvNT6WSnjJpVdEqe1gwsSrGkk++iZOHEirdu0ISgo yLMsYXp6OmVLlWabO4PKNj1h8mZCCCGEKFAkWc0DBw8cIMDgR7BNWu+uJ8pgQVetDAsnjCc4OJjv vpnLpiUr6OAOJug2P6Jv5ArAH7DXKcefUbtwuVyYzWaCgoI8ZQICAvg9chMLFy5k5ifTMGh11M7Q U57rt9gKIYQQIu/IAKtcZrPZeO3V16hnM+Ijj/ua9ustxBkcLF76M126dAHg7XHvcE7jIOAO3k8p KJTDSOzhw/z+++/cX7MWwwYP8SqjqirHjx+nTp06XLRkciYjlTUkE6XLQL2iJVxFxSUt40IIIUSe k5bVHGC325kwfjz+AQHEHDjIcy88T/ny5QkJCcFgMPDzsqX07NqdwhY9ofIxsxcXKntIJTb6iNdq KomJieg0WjR3uAqYHg1l7T48+XhfMs+l0L3HY17Hv5wzhzEvvMQ5S1bfguZNH+SlV0bzxquvsTLh NDUzfIgzqRw2n8eo09PHUfSOY8quzMxMdu/eTWZmJpmZmfj7+9OhQ4c8ubYQQghRUEiyehuio6OJ j4+nXLlyTJ70Ht8v+IHS+gCC3FqsGpVfl/6C2e3gq6+/omfv3rRr144Pp33CqOdfwKToaJZplKSV rME1e3wyqRoe7pWoAox78y2q233vqH4zLuaRAE4ITPfDYPSjXfv27Nu3j3Vr1zLqxRcJDgkhw2Gj aqXKbIjcRPHixYGspQeXLVvG6y+/gtlixnzeQniFipw8ZaFsTnYRcLgY+8abHDhwgHWrf0Ov1zPi +ZFUqVKFLh06YruQhp9Gi93hwOqnI+nc1avRCCGEEPcySVZvkdlspmbNmpQPKEQmTkJdOvq5S6K3 en/EH0M6ixYspOelJe0GDhrE/55+mrlz5/LysyPpYAnKVl/MRKwc8bVT1+rnGWB0L3Dg5id9Mm06 tGfWnC+8jm3evJktf/zBw4Tc0TUUoIJvMMesF7G7XZQuW4YyZcpQqWJFXG43tS4tybh39Mu8+NJL FCpU6J9zFYXu3bvTtWtXMjIyMBgMfPfD9zzSuQt7NQ4KO3RUsfpQ6BpvOlyoWHGhQcEHBd0Nun88 YDFy6lAyP034BKtWpahF4fldT5OQmUoTNYTqataUWwdJp0THlnf0PIQQQoi7kSSrt8hoNNK6WXNO 7oqmnsVAMQzXXALUhI5TiYle+zQaDU8//TQ2q5VXXxrNfao/tW1+172WDTdHtRaCa1Vl1V/R9LSG oc2jj6Bzmw6FUm4DClC0aFHP/h07dtDloY40t/hnu7/qRRzYcbNOm8J9LhMlMBCMDynYedDqzxm9 leWrVrJ//37Kly8PwFtvvEnbtm1RFIV3J026bt0ajYbAwEAAWrRoQUrqRfbv38/aNWuYNGEi5Ww+ aN0qGSYdmbhJs1swO+wEmky43W7MVivBvkYKaQz4Zzip5PbFhA4VFR0afNBQFiNlr5iDt2o6uPBH i8JBnZkAp4JVC6dOnSIpKYlixYrd+gMXQggh7lIy4uc2rFj9K0+9+jzn6pRkqV8KMaSTjtMzAOci Do7rbJQsXeqa5w9/5hl279/HLuf5qwbtqKgkYGGjKYOFhmQCa1biu3nzqNegPofJ5pxNBVwiFnZp 0jmrdzNg0ECvY6+++DJ1zAZKcf0k/koXcbDSkMJSkrBqVE6XMLGjqMJ8XRJHKgSyQJdElSrhfP/d d7z3xlgAZs2cyfiJE1CUW0/8tVotderUYfQrrxD791GaDuxNx9eeYdI3s1i6fjWxx//GZrdxPvUi F9LTyDBnsnHHNsZ/9TkNh/QmwpTG15oE1vulew3guuo6KBzHzGZnMsf1Dmq7/MncfZhK5crTsW07 0tLSbjl2cWP7bQXj92vH6XP5HYJH5MHj+R0CABu3787vEDwiIyPzOwQAdm3dkt8heBzZ/Wd+hwDA hSN78jsED+vpA/kdwj1FktXbYDQaeWvs2+zYs5s1m37HXr8Sa0Ms/GRMYbNygVXGVB7s14NZX865 bh2VKlWidfMWLPE7z8ZAM5EBFlYGpjNXd5rD5fwZOWU8Z88ls31PFOHh4bz3wVT2+lm5gCMP7zR3 7Alw0OSZJ/jqh3k88sgjnv1Hjhxh9+4oKl9akSodJ8cxX7MOFRU7bjZwjjLlyrFs2TLMZjMnEk9y PCGeU0mnifn7CDa7nV379rJ8+S9kOG00rteAocOG5ch9FClShOkzZzBh4kQeffRR6tevT7FixdBo /vm18vHxoVq1avTo0YPpM2eQnHKepKQkTKWLscSYwi5dOmexYcHlSV6TsbHNkME2Y9a9V7f7okWh gc1Eb1thjmyN4ttvv73tuFVVZfPmzQwdNJi//vrrzh7CPWS/PTO/QwBgR9L5/A7BY3MBSVY3SbJ6 lV3bCk6yenTP9vwOAYALRwtSsnowv0O4p0g3gDvUoEEDtu7M+kXdu3cvH0/9gHHdu9GjR4+bnvvb hvUcOnSIw4cPY7PZqFixIuHh4ddcs7phw4ZM/uhDJr78Op0zA1Husu4AaTiI1KVSzqknxWZmzJgx nsFMV3IDOw2Z+Lggypn1R3soZa8qt8Vo5m9HKvXq1OWjzz6lUaNGnmM6nc7T//Ry6+n0mTOoWbMm 9913Xy7cXfbp9XoKFy5MdOwh9u3bxzdffsWvKyM4dSYJh9OJyceAwejHsGef46GOHXljzBjiN+wm TM3qG+uDhloWA2+++ho2q5WXXn45Wy3EqqqyadMmdu3axbdffs3ZhESKmxV+XLCAz2bOoF+/frl9 60IIIcRtkWQ1B9WpU4dvv59/S+dUq1aNatWqZavs0KFDmTntM44eOuNpfbwbHFIyOOLrwKzXUaRZ M5Y9N+KaiWrlypWJOXKY2bNmMWHiRADaUthzPBUHhzUWLAYFayF/LsTG4+eXve4Cffr0yZmbyUG1 a9fmk8+m8cln0wBIS0sjKSmJihUrotVqebxnT9atX89jeD+rIhjoYgnhk3feZfPGTcz/ccE13+Bc adOmTXTr1IXyLgOl7FqaEIyCQmWznZeHP0vymbO8NPrlXLtXIYQQ4nYp6uUFbUWBZ7FY6N2jJzEb ttLaGpjf4dyUDTensfKHPp0Ro55n4sSJ6HTXf3908OBBnh06jMitf2DyMdDFFkoAOhy42W60kKBa 6Nm3D8WKFuW1Ma9jMpny8G7y3tg33+Lzjz+lrtmX8vhd1ZruRGWHIZOMwiZWrF513VbjpUuX0v+p flRyGGhov/pNTpQmjVYvDmTK1Km5ch83cjv9hoUQQmSfv78/6enp+R3GHZGW1bvIuxMn8te6zbS2 B928cAGw0u8ClatX5ZVHHub5F164YaIK8NbrY0jZso/+lOSizYEvGlRUtvhlUvuhlnz3xhvUrVs3 j6LPf+MmTqBZyxaMHP4M+06foYJZR7hqxA8tkDWjQhObP7EJGTRp2IgZX8zmiSeeuKqeM2fOUMql p5792sm9v1vDxvUbiI2NpXLlyl59bnObvFcWQghxM5Ks3kXuq1EDX4MBvb3gj4uz4sLsdvLHzh3Z bj07duwY5/w1RGWkcVCXSZDeD0VRqFA1nPkLFqDX//cWUmjbti0HDsfy559/8vmn0/h5+XKqO43U dJrQXWpprYI/hcx6Rg4ZTpEiRWjXrh2QNdXVli1bmD/3W0LsyjWnPTtCBmXwY3dsPE3q1qd+o0b8 8msEBoMhT+9TCCGEuB7pBnAXOXfuHGVKluIJe9FrJh5uVI6SiT86SnBnqz/dqdNY2Rxk45XXXiU4 OJg2bdpQuXLlG57jcrlYv349Py9ewpDhw7BarQQGBhIeHv6fTFSvJS4ujhFDh7Fx40bKav0paYay GNGi8BdpVOrbkc9mzGDSxInM/HwGJXUm/Owq9WzGq35mLq/w1ZxQqhGAC5XNfhmUblibiDWr5ZkL IYQoECRZvcuULVGKxqfdhFyxcpKKShwW9pns+IYGwcUMWqeb0KDwN5kUx9drgn0VlVScBOfiilhW XBwiA6dWwaHXEo+ZcuXLE7HmN0qWLJlr1/2vOH36NMuWLWPOjJmY/06khcWfdJysNKbiazBQ1KKg tbsIdGuocmmBgX9LwEIEZ6mjC6WRM2uAlguVxYZzzF+ykC5duuT1bRU4Z86c8Vq0QogbSUxMzLfX N1VVWbx4MfHx8dSvX5+WLVvmSxwi/1itVux2u2chm3tJwf88WXipWKECqTiBrAE2sWSwyj+dv8v6 M+fH+RyMjSG4TEl+1J9lA+c4UtzAGmMaZlyeOjaYMljEKVKwX1W/DTcHSWe1fzrxWG47Tl+03E8Q DVyBNLGY6GUJwx6bwPuT3rvtOsU/ihcvzvDhw9m2aye+FUpwmEwC8aG800CDCzqaWv05omSymRS+ JJ59pHERB6eweuoIu/SGJ0n/z8+GFoW6NiMD+w9g3rx5OJ3OO441MTGRZ555hlmzZtG/f38OHLj2 ZNlffPEF48ePZ9y4cbz11lt3fN07ieXEiRM88cQT9OrVK9/isFqtDB8+nLCwMEqXLs2MGTPyLRZV VXnllVcoU6YMJUqU4JtvvsmXOK60bt062rZtm+Nx3Eos69atQ6PReP7l9Bys2Y0jLS2Ndu3aER8f z8svv5wriWp2Yhk0aJDX89BoNDz++ON5HofT6WTs2LFMnz6dV155hQkTJuRoDAWNqqrMnTuX8PBw du7ced1yefEam2tUcde4cOGCWrFsObUdYWpfSqqBvka1ZdNmakREhOpyubzKrlu3Tm1cr74aFRWl jnntdbWsMUQdQhm1F8XVwiGh6odTpqr+vn5qR4qoQyijPkxR9T6/QqrJ10/t0uEh9ZFHHlHv14Wo QymbI/8ep4QaYvRXt2zZkk9P7941f/58tagxUH2cEtd+7lqDCqiA6u/rpz5BSc/xSoZgFVCHUMbr vM4UUcv5h6qlihZX9+zZc9uxud1utW7duuratWtVVVXVgwcPquXLl1edTqdXuWXLlqlNmjTxbPfq 1Uv98ssvb/u6dxKLqqpqXFyc+uyzz6rNmjXL0RhuJY7x48erixYtUg8cOKCOGjVKVRQlx39/shvL 999/r27evFlVVVVdsmSJ6uPjo5rN5jyP47IzZ86oDz74oNqqVasci+F2Yhk2bJgaFRWlRkVFqfv2 7cuXOFwul9q2bVv1lVdeydHr32osZrNZHTlypHr06FE1Li5OPXHihDpq1Ch13rx5eRqHqqrqxx9/ rH7wwQee7ZYtW+bK356EhAR1+PDh6syZM9V+/fqp0dHRV5WxWq3qK6+8ok6ePFl9/PHH1Z9//jnH 4zh79qx68uRJVVEUdf369dcskxevsblJktW7yJw5c1STj0Gtrw1VA32N6ttvvJGt85xOp1q3Vm31 QaWQ2oPialhwqGqxWNRly5apIQGBqk6jVSuVLa9++MEH6tmzZ9Xvv/9eDTSa1M4UueMktZWuiFo5 qLAaaDSpH3/0kVdcsbGxqt1uz41H9Z/idrvVTz7+WA3yM6ntKXzV92AIZdRG+sIqoA4bMlSt6Rvm OdadYiqg9rpGojuUsmorCqklixZTU1JSbiu2NWvWqH5+fqrD4fDsCw8PV5csWeJVrkmTJuqECRM8 2z/88INao0aN23sgdxjLZWPHjlUffPDBHI3hVuKYPXu213a5cuXUyZMn50sscXFxnq/NZrPq6+ur ZmZm5nkcqpr18/7222+rc+bMUVu2bJljMdxqLIcPH1abNm2qrlixQrXZbPkWxw8//KCaTCbVarXm eAy3EktqaqpqsVi8zmvSpMltv3bcbhyqqqojRoxQ37ji72P37t3VlStX5lgcqpr9xPm1117z/C6n paWpRYoUUQ8fPpyjsVx2o2Q1L15jc5N0A7iLDBw4kDfGvk2dfl3ZsXc34y5NnH8zWq2WeQt+4C9f C3o0GKxOvv32W7p27UpKWioX01I5fPxvXnzpJVb88gsjBw2lvTmQUmRvwv3rOYaZHbp0Rk99lwOx MbwwapTnmNlspkG9+kydMoWLFy/e0XX+6xRF4fkXXuDX9WuJLaFnk1+6V7cPBYU6diMV/Atx/kIK Dr2GdJzYcXumwTqiufaytuH4U+SCg16P9sDtdt9ybH/88QcVKlTwmrYsPDycDRs2eLbtdju7du2i atWqnn2VK1fmwIEDnDt37paveSex5IXsxjFkyBCv7aJFi1KmTJl8ieXK665YsYLp06djNBrzPA7I +ihzwIABN50KL7djiYqKwmKx0L17d0qXLs26devyJY5vvvmGEiVK8Oqrr9KgQQM6dOhAYmJinscS GBiIr+8/A3sTExPR6/WEhITkaRwA3bp1Y9q0aaxbt47du3fjdrt56KGHciwOyOoCcujQIU+Xi2rV quHj48OyZcu8ys2cOdMz5WJAQADNmjVj2rRpORrLzeTVa2xukmT1LqIoCq+/MYY5X39NlSpVbunc 6tWr8+bYsfzkk4yhcDAtWrTwHDOZTJ7ppRbMm8/9Fl8Kcecjwe24aFi/PoMHD6ZUqVKe/SdPnuTd d9/F5IDx48ZTKDSUJ/v0kaT1Dj3wwAMcOnqETkP6sUSfzC+mi2TgZD9pnMGGLtPG4sWLiUk7y68B 6fzgc4Z4jY1QvZE97ovs0KahcvV4y3p2E4d37GbCuHG3HFNSUtJVnf2DgoJISEjwbKekpOBwOAgK +mf+4ODgYACvcncqO7HkhduJw2q1cvHiRbp27ZpvsZw7d44XX3yRfv368ccff+Byua4qk9tx7Nix g7CwMMqXL59j177dWB5//HGioqI4fvw49evX59FHHyUpKSnP44iKiqJnz5588skn7Ny5E5PJxKBB g3IsjluJ5UrLly/n4Ycfzpc42rZty4QJE3jooYd45plnWLhwIVqtNkdjyU7ifPbsWdLS0rze2JUu XZq9e/fmaCw3k1evsblJktX/kNGvvsK5lPMcOnrE6x3WZaqqsnvPHopw53NsulA5YVLp3rOH1/5j x45Ro1o1lnw2h6Y2f9o6gumjluCPJRHMnDnzjq/7X+fn58eHn3xMYtJpho8exVL9OXZq01mrv0hY wxpMnDiR8PIVqFSxIkuXL2OfwYzBnfVGZb/rIpE+qSRhJROnJ3HVotDcbOKTqR+yZs2aW4pHp9Ph 4+M968S/W2gvv9hfWe5yGTUHJyvJTix54XbimDNnDh999FG2lxfOjVjCwsKYNGkSCxcuZPny5Xz7 7bd5GkdqaiqrV6/msccey7Hr3m4sVypVqhRLliyhWLFiLF++PM/jyMzM5MEHH/RsDxkyhLVr1+bI 4MhbjeVKv/zyC4888kiOxXArcaiqSlJSEu+++y5///03bdq0wWy+9qdHtys7iXNwcDAajYbDhw97 9gUGBpKcnJyjsdxMXr3G5iZJVv9j/P39rzt/5smTJ3E5nPhz++9A7bg5h53VxjSqNa7HMyNGeI6p qsqAJ5/iPosvrdKN+KIhwdfN1iAb57XOPF056V4XEhLCW2PHsnXHdgYPGUKm3cqFA38zf/KnlDye in3fMTp16kTDRo0oV7cGfR/vgxuVJNXGauUcC0hkqz7DU58JHc0s/vTp2YuMjIwbXNlbiRIlSE1N 9dp38eJFr+l9ChUqhI+Pj1e5y63sOTkNUHZiyQu3Gsf+/fvR6XR06tQp32Px9fWla9eujBw5kt27 d+dpHJs2bWLSpEn4+fnh5+fHkCFDiIyMxGg0Eh0dnaex/Jufnx/t27fP0U+HshtH0aJFyczM9GyX KlUKt9udL7FclpaWRlJSEpUqVcqxGG4ljo8++oj09HReffVVdu3axYkTJ5g8eXKOxpKdxFmv19Ot Wzc+/fRTnE4ndrud7du3U7hw4RyN5Wby6jU2N0l2IDx27NhBcZ3xqjXob8aGi21+mWwIyGShIZkt oQ5enPAWq9au8Xz04na7WbZsGVu2beWgJoMvlXgWas/Q6IluzP3lJ3bs3c2LL76YG7f1n1a7dm0W LVhAewrTPMNIi3Qj4fgTp7UBYN24lzPRhzkYHY3Rz8jDzjB6q8WpqA3kiCuNZGyeukrgS2Gnjtmz ZmX7+q1ateLYsWNe+2JjY72m1lEUhZYtW3LkyBHPvpiYGKpVq0aRIkVu885vL5a8cCtxnDp1ivXr 1zN8+HDPvpxsMbvdZ1KoUCGvrj15EccjjzyC1WrFYrFgsViYM2cOLVq0wGw2U6NGjTyN5VpcLtc1 P7HK7TiaNGni1XJntVoxmUyEhYXleSyXRURE5Hgf0VuJY8OGDZ6fibJly/L8888TFRWVo7FkN3H+ 6quvCA8Pp3v37rz33nukpaXxwAMP5GgsN5NXr7G5SZJV4bF1yx8EZNzaH0IbLjZwHrV8Ud6fO5u4 hJMknU9m1IsvoigKZ86c4aUXXuCFF17g0UcfRafV4lBUDDofyvr489Olj8+qVq161btUkTNUVcWC y6s/amtnMD0oTg0CaW0OIDY2lsoVK3EOO35oaeoKwuZysl5/0WuwVm2zgfFvv8Pq1auzde3GjRtT tmxZfv/9dyDrBdJsNtOlSxfefPNN9u/fD2TNz7hixQrPeatWreLpp5/Oidu/5Vguy60uAtmNIzU1 1dPvLiYmhgMHDvDee+9htVpvVH2uxLJu3TpOnjwJZP08RUZG5uj351a/N5fjyI2PMLMby0cffURM TAyQ9ZFwbGwsnTt3zvM4hg4dyuLFiz3nRUZGMnjw4ByL41ZiuWzZsmU53gXgVuKoU6cOf/31l+c8 i8VC/fr1czSW7CbOQUFBzJ49mxUrVjBo0CCioqJy/LUNrv2xfl6/xuam3BlOKe5Kf2zaRBE1ewmj ispm33TOue1Uq1+XV98Yc82PKds0bwnHz3DAcQEF6OYqQqjrUjcEB2zSW4iOjiY8PDznbkR42RC5 ia6dOqNPNFMJEwCFr+iXfAYbFoedSpUrkRSd1d8q4dLiAZkOOz/pk2llD6IUfoTgQwuLP08+3oej J457Oulfj6IoLF++nPHjx3Po0CF27NjBypUrMRqNrF69mrp161KzZk169uxJXFwcb775Jn5+fpQt WzbHW9qzGwtk/cH/5ZdfSEhIYOnSpXTp0iXH3kxlJ4777ruPrl27EhkZyezZsz3n9u3bF39//xyJ I7ux1KxZk/nz53v+2JYsWZKJEyfmaIvMrXxvrjzn8sDQnJSdWGrUqMGaNWuYMGECw4YNIygoiCVL luToDAXZfSYtW7Zk4MCBDBkyhIoVK5KQkMDUqVNzLI5biQWyRp7v3r2bJk2a5GgMtxLHW2+9xahR oxgzZgyFCxcmLS2NSZMm5WgsVybOrVq1uipx7t2791U/s0OGDGH06NE52gIPkJyczJw5c1AUhR9+ +IGSJUtStWrVPH+NzU2y3KrwKFW0GM3OagnKxjKsR8gksWIwZcuVY8GihYSGhnqOXbhwgQnvvMP2 rX+yddcODDofAlwaGqlBV02HFRlo4aGBT1CnTh2efPJJ6beaSzZu3EiPzo/wkDkQf3QkYCHW10FD qxEjWlb7pVK+bk0cWw9QWw0kFQer/VKZ8dUcPpk8FdO+eML5J0naZsjggaceZdacL/LxroQQIv8c O3aM8ePH07BhQ3bs2MFzzz1HvXr1qF+/PmPGjOHRRx8FID09nWHDhlGxYkXGjx+fz1HfnSRZFQDM mjmT118aTVdLCL7XGWBlw02ULp1jWisut5uI1b/SunVrrzLzv/uO50Y8SxmnnhJWDatJpopfKI0s Rs+cngBO3Bwig0wtnNBYCClWhP+zd9/xVVRpA8d/M3N7ekJCIIQeioB0BayIKBbsHbvrqyv2VXd1 V11dXXd1V7FgW3vXtWBDVJRFFBAEpEjvhABJSM+tM3PePxIjJUD6vSHP9/OB3Htn5swzl3Dz5Mw5 z1m/aWOz9JSIKg/e/zf++dBDnBhMpogws10VKMtiuJ1EiQrT7oiBrFy8jNMrqsqb5BFkVdc4bvrD Lfzh1j9wXiSj5t8wiMUUbzHffv9dTQ1BIYQQu/v6669ZsmQJp5xySpP3qLYlkqy2cX6/nwfuv5/n nj8lCYMAACAASURBVJzMCf7EffaqlhLhc08xplLcfe89XH755XTo0GG3fSzLIiM1jaPLvLSvvs1c TlV1gT0nbUWweYmqMXBup4sf5sxm6NChzXCFYlePT5rEw3fdiytkUayZpDm9bA2XE+f1cfrZZ/L2 O+9yYTgDFzoRbF53bKPS76dDegYnlcYRt8vIodVUsKVrIktXLN+tGLgQQgjRlNrkPdfCwkLC4XC0 w4i6qVOn0qNLVz564gVO9ift9/Z/KSaDBw2irKKcP/3pT3slqgBz5syBiEn6LgsKJODYK1ENYvGR eycpHh+vvvoq2/N3SKLaQq6bOJEyzWarHaCX5WNsMImz7UyyKzV2FhTidDiIYBPE4gtfGTndexCJ RDAtC32Pf8cc4jB2lHLbLa1n3JMQQojWp80lq0uWLCE9PZ0//vGP0Q4lqubPn8+F55zHsEKdYwLx u/WY1SbfYZHTpw8Oh2Oft+q7detGzz59mO3bf/HlMkwMr5unXvwPl1xyyQEn6Yim43Q6SU1KxOtw stwdII8gCTjIxsPKVavw6Q4MNL7zVnLSuWeydMVyfD4fGrAOPxF+myGvoTEo4OHZ558jFArt+6RC CCFEI7S5ZLVnz57cdOONPPDAA9EOJWqKiooYf9LJjAj4yOLAt28rMFnlDHDv/ftfbjMrK4vnXnqB EsfeJX/WUslsTwVfxpXxja+cy6+4gosuukjGqEZBRaWfeGVw1LHHsMlTVaqsPW42bdnMjopSPvOV cPrvLqZL167Eeb0cktOLMSecgL9/J95x5jPPXYFdXQZrOyE0TWPsMaObfD1yIYQQAtpg6Sqfz8ek xx+PdhhR9dlnn5EchG74at1uV1fkXOKoZLUzSMAMc8ctt5OdnX3Atjt37kxQV3zhKsY2NA4JuGiP m/leP2efdy5ej4cnJk9u8nWaRd0dccQokpOTufx3V3HRD1VLVzrQ6eRNYuxV5zBs2DDmz5/PB889 T7ruodfaMjav/5bKeAcJhoutXoVuVzIsEk8f4sm2PLz703ypkyuEEKJZtLlktS2bOnUqv7/6/+iQ lUVQs2rdJ5cA3ziKCZoRxhxxLD8+/xw9e/asc0mp1NRUNmzeRGJiIoMGDmLeshUEdcXtt9zO/Q+2 3d7sWPLJ1M8BePXVVzGs33rB25VbYNvcd/c9bNmWh4GGrml86wxzTiQdV5lOBA8fUcRal4bbgv52 HDoacQ4X48edxCdfTKV9+/bRujQhhBAHIakG0AZs2bKFf/79Id569TWGB3wUaybpykl2dc1ThWIN lZRiss5r8o9H/8WyJUt4cvLkRt2mnzdvHn+58y5efeP1Widkiehau3YtY445lszCMIPDPrYTYnWP BPwBP4PyTDLxsAE/MyjkUjrhqB41VEyYbz3l2E6dpIhG55CTHOVjRlwlD738DOeee26Ur0wIIcTB pM2NWW0rlFJMmTKFo0eOom9OL2a9/B7jAyl0w8cQlViTqAKUYPJzQoRVvgi33/lHrr32Wp56+ukG JarXXHNNzbJ2hx12GF99M10S1RjVs2dPFiz+mbXeCAWEcKERCoe56957WBgXIoJNqVvDQhGpHqNq VX89NphAaWUFmYMPYYU7iIFGUhguuvBCkhMSef7555tlKUwhhBBtj/SsHoQKCgq48tLLmP/dD/T3 u+iKt6ZXbFcrdT+r4iKELJOLL7+Mx596slE9qY89+ii3/uEPPPLII9x2222NuQTRgp555hkevv3P DKv0sDDbxZqN6zly1CiKFqxksx6kU1YWBdt3AODUDEJYBIJBxo4dS2pKCuvfmcYAErFRmCjKMPkx LkCnPjn8+4lJDBkyROqwCiGEaDDpWT3IbNiwgaEDB7H1mx851Z9MT+JqTVTLMfmeIo44YQxffDud JyY/1eiZ+ampqVzzu6slUW1lrr76aox2SWwiAMDGjRtZtmQpXUwXmq5z6umn0b5DB4YdNpxDRwwn HApzmJ3I19OnM/O776g0qn7f1dFwodMOFydVJmIsXM95404lKSGRu/70J2x77yoRQgghxIFIz+pB xDRNenbtRva2IP3suP3ua6FYRjnztFJWr1lNjx49WihKEYu++OILzjztNHr3zOHDzz7l8IFDOLMy mXc8BYwfP54ZH3zCIXYcy7xhkju2Z+2G9bgxOMJOIgM3CfuZqxnAYmZcJQGPwbIVy0lPT2/BKxNC CNHaSc/qQeTDDz+EUv8BE1UAA41Sr84tN90kiargpJNO4j8vvcSNt95Cly5d2FlZxgtspldODh07 ZaG7XeQQT5+AE13TePzxxzGx8aDvN1EF8GIwrjKRjgGNrI4d6dm1G+vXr2+hKxNCCNHaSc9qK2Pb NkuXLuXLadOY+c23DBtxOLNm/I/LfncVLzz9LMxbTT8Saj02jE0REYoIU+yGkhQ3q9atxeervd7q /gSDQVauXEmfPn1kPOJBaPDAgZSWlfHlV18x/sST2LBpI6fY6aTjYqleyXJviJTUVIoKCzkxkEQZ Jl33Ubd3VyY2PxnljLjiXJ79z/MtcCVCCCFaO6mz2orMnTuXC84+l0BZOR0iDlJD8OmMn9hsVXD5 97Nq9rPdDrqGnKx0BcGyybJczI0LUBYO0rNrNwYNGcJZIw5j/PjxDUpUi4qKOP7Y0Sxfvpw/33sP d999d1NepogBC3/+mXA4jNvt5sZbb+H9Dz9gww9LyAi7OdSOp32lk5mqiFFHHsmH30zHZTjpHPGi s/9xzw50KrwGI488ooWuRAghRGsnyWorYFkW9//1r0z696McHoijO8m/bTSh0G2yMxRmDO34hkKW mCX84nZwxTW/4+233mZR4Q4mPTiJiddf3yQrR33xxResWrGCZIdHhhAcpDRNw+12A3Dd9RPpkNWR uxZcC+Gq7e1xc6RfMX/RIq666io+efM9iMB2gqTjxthH0urHYocV4IILLmipSxFCCNHKyTCAGGfb NpdOmMCsT6ZxtD+OOBysMQK4LehcXSvVRFFOBBc6y91Blqty/vSnO7n3vr+iaRpxXh+l5WVNtsRp MBjklVdeYcUvy7nrL3+WFYsOYkop/H4/c+fO5YxTxjMs5KM38UDVJL0PPTvpmtMDc+lG8n2ww1/G JXTCS+3fa0EsPvAWUe6vbMnLEEII0YpJz2oMU0px/e+vY9Yn0zjen4ATnUpM5jrKcLoMOgY8hLCY HxfEVIp1/iLaxaWxeWVuzYzr7777jtTU1CZLVAE8Hg/XXnttk7UnYpff7yc+Ph6P200wFGKeW9Ex 5CEBBwYaA4Iegm436xOgpLyMnvFpeCv2/b3mRkdTVSXWunXr1oJXIoQQorWSagAx7OnJk/nojbc5 rjpRharVphITEykP+pmvlfKpt4Sxl51Pck5n+vXuw0UXT6C4uLimjaOOOop+/fpF6xJEKxcXF8fl l1xKMBSiQ3oGPq+XUiI127vhY8PyVdz/wN848YQT2OovZRvBmu2VmJRj1jzX0Oiiefn4449b9DqE EEK0XjIMIAaFQiEWLlzIqFGjcOkG59qZxOMgjM2nvhKeeOE5ioqKKC4u5oQTTmDhwoXcPvFGcmwv m4wQ9036F6NHj2bcuHFs2bIl2pcjDgJXXXEFL73yCn1J4GhSd9u2jkqmU8h5553He++9h1PT6eCK Jw4HK0JFJBluLrAya/ZfShmJY4bxxfSvWvoyhBBCtEIyDCCGlJaWMu74scz9aT66puHWDEK2RS4B tjss/LrNKWedwYUXXrjbcaZpUmFHWON2kJCYRPv27enfv3+UrkIcjE46+WR+XvQzletyoWL3bVl4 aI+bNctXAuAwDPIilXjjfBCCU6x2NfsGsFjqCTH1r/e0ZPhCCCFaMRkGEEVr1qxhwvkXkJ3Zkcy0 dC6ZMIG5P80HINubzHCVBMB8l59VZildhw3g6eee3audESNGMGfOHL6Y/hU/LviJN195FYDrr5vY chcjDmrnnHsuDzz0dwKazXKtkinunXzpKaleGMBgIIm0S03l5ptvJmBGQIOCggJSE5Ow+O3mzc/u ABdfeglHHnlkFK9GCCFEayLDAFpYIBDg3rvvYdmSJXw/63v6Rjx0tTxowJeeUkqCVbOkdV0nq30m 9z34AFdeeSWdO2axaWvuAduvrKwkNSWVKy67jKeeeRqHQzrPRdMwTZMeXbrizyugsLqGVYLLw9Hh RBRQOrwbX/3vW2bPno1pmowbN47e3XrQd2MlmXjYiJ95iWHWblhPamrq/k8mhBBCVJNMpoW9+MIL vD35eXoGnZxDGq5dOre7Bg1+Bq6++mqefPJJDMNA0zQ++u/7XHDxhDq173a7mfrFVMaMGdNMVyDa KofDwYeffMzw4cM5SqXyg17CuNPHs+zTb+gcNAiFQvh8Po4//viaY84892z+9a9/00XzUZroZNqX X0miKoQQol6kZ7UFTZs2jUsvmsARxS7a46aMCDuJoFNVK/VHdwXloSC9c3JYuXp1tMMVolZPPfkk t95yK71zcvj0i6mMPvIotuXn8+hjj3LdxN2HnpSXlzNnzhweeuBBXnr1FSlXJYQQot4kWW0hhYWF pKencxztyCGORW4/Kw0/w4cOw7YtLMvm5jtu48wzz0QpRSQSIS8vjy5duqBp+1/CUoiWVlpaSjgc rqnnK4QQQjQXSVZbUKfMDqTvCBD0OcglyLoN68nIyKh1388++4zx48czdvRxfPXtNy0cqRBCCCFE bJBqAM2kvLycBx98kJUrV9a89sHHUxhzy1Vc//B9bN2Wt89EFWDAgAGMGDqcQYMHt0S4QgghhBAx SXpWm9jMmTO55IKL6N23D9NnfMslF03gtTffiHZYQgghhBCtkvSsNpJpmixYsIBgMEhubi4P//0h tmzPY9vWPE4+cRzXXPf7aIcohBBCCNFqSc9qA5mmyYTzL+DzqVOxTJMOWR3J3bqVvz/4d3J69+K0 006TiVFCCCGEEI0kyWoDPffcc9x7822cEEymhAifsqNmW15eHh06dIhidEIIIYQQBwcZBtBAw4YN Y0ewgtfJrVnN51eGYUQpKiGEEEKIg4skqwdQVFTE66+/zrvvvsuundBvvPoa3Z2J9DOSalahOv/s c1i/ft/lqIQQQgghRP3Icqv7sWbNGo4cOYqUEBTZITweD506dWLOnDm88OKLYIboqyWyyBPgyX8+ zvU33hjtkIUQQgghDioyZnUfTNPk7DPOZMvns2iPi588ARIy0sjfvoPKcBCAk44fS3bnztx82x/o 27dvlCMWQgghhDj4SM9qLfLy8jjrtNPZtnwNYY9FZYcEnnroSV554UW25OYy9tjjuO/vDzBy5Mho hyqEEEIIcVCTntVanHfW2fzyyXSchoPs4w7n488/Q9d1lFJUVFSQkJAQ7RCFEEIIIdoEmWBVizEn nsAmPURxOy+vvfUmul71NmmaJomqEEIIIUQLarPDAJYuXcrNE28gEokwc/b3uxXwnzBhAqZpcvnl lxMXFxfFKIUQQggh2rY2MwwgEolQWFhYU6z/yy+/ZNy4cSTGx7Nx82ZSUlKiHKEQQgghhNhTm0hW Lcuib04viktK2Lp9Gy6XK9ohCSGEEEKIOmgTY1Z1XWfNhvUMGjgI27ajHY4QQgghhKijmE1WP/nk Ewb06csLL7zA/jp/p0+fzp/vumu/bWmaRjAY5OsZ3+DxeJo6VCGEEEII0UxichhAOBzm6FFHsGXB UrZrERb9vIhDDz10r/1s28YwjJrHu06SEkIIIYQQrV9MVQP44Ycf2LFjBw/89T6WLVuGic2A/gMY MGAAr7/2Gjvy8+nduzfx8fEce+yxaJrG008/Tffu3SVRFUIIIYQ4CDV7z6pSiu3bt5OWlrbfiU15 eXlkZWXVPO/TI4ejjz2GO+78Ez169OD8c8/jvff/W7M9Pz+f9PT05gxdCCGEEEJEWZMkq3+5805W /LKCJ56ZXJNwTnrsMV58/j888I+HOOOMM5g4cSLnnHMOgwYNIjk5ea82LMvio48+YtnSpZxy6qkM GzZst97S0tJSZsyYQZ8+fejZsycOR0x1CgshhBBCiGbQJMnq1VdeyWsvv0q/Af1ZuGQxgUCAtJRU AqEgCfHxWJVB/MoE4Nlnn+Waa65pdOBCCCGEEOLg1yTVAK674QbC2AwePBio6gUNhIKcPPYEPC43 8YaL7p27cNyRR3PIIYc0xSmFEEIIIUQb0GRjVl9++WUuvPDCmtJQixYtYuDAgbzxxhvM/OZbnnzm aXw+X1OcSgghhBBCtBExWbpKCCGEEEIIiOFFAYQQQgghhJBkVQghhBBCxCxJVoUQQgghRMySZFUI IYQQQsQsSVaFEEIIIUTMkmRVCCGEEELELElWhRBCCCFEzJJkVQghhBBCxCxJVoUQQgghRMySZFUI IYQQQsQsSVaFEEIIIUTMkmRVCCGEEELELElWhRBCCCFEzJJkVQghhBBCxCxJVoUQQgghRMySZFUI IYQQQsQsSVaFEEKIKHj33XeZPHkyxcXF0Q5FiJimKaVUtIMQQggh2poOWZ0pCTvISnGxZtUKNE2L dkhCxCTpWRVCCCGiRGUdybZtO8jNzY12KELELEe0AxBCiFizaNEiduzYEbXz5+bm0qlTp91eKy8v JxKJkJqaClDTC9fQr/vbppTa7x/btonmTbnS0lKUUiQnJ0cthtpUVlYSDAZJS0ur0/7BYAAAV2I6 v/zyC9nZ2c0ZnhCtliSrQgixC9M0GXXEkXiSO0KU7sqW5a2lW0I7DP23m19bK0twAtkJKSgUoKFQ aNVf934OtaWTe77267Hs1kYVrfrRb89/fU3t8rjl5VWU4rctuiWkROX8+7I9UEGJZZLUvlud9rfc aWhOLyE9gWXLljFu3LhmjlCI1kmSVSGE2ENySioFKhEttTeaw9PyAeSt5ZhyL85dRmpNo5xOLg+n hhJaPp4Y8y0RVth+TvfHRzuU3eTZDl61Cwh0Oh5Nq9soOw0wnUnM/fGn5g1OiFZMxqwKIUQ1pRRn nHk2j/zzIUbmJOItjE4CIbNe9y9WpyF11D0Yuo6qLKjXcXpyZ6Z++RUds7sw7PCRvP3228ybN49w OAxARUUF3377LStWrIjq8AshokV6VoUQotrUqVP5+ptv+XnxYmZ//x29+hwCmdGJJVYTspgRg2+Q adtYtoXD4a3Xcbo7EdXnfIrC5RQXbGLiHfcTKi/g1BOPJyUlmeef/w9JGZ2JBMvJzEjn2aef5Pjj j2+mqxAi9kiyKoRoM8LhMC6Xa5/b16xZg+bwULSzkI0bN+KOSybQgvHtKlrjQUXDBbFB2eiexHof qxlONG8qeFMJAra/iGmz5mM7fDj7nkEoMQulFFuK1nHm2edw1ZVX8dij/5JyV6JNkGEAQog24ccf fyQpKZlJkyYRiURq3eeyyy5j8mP/4LLLLuW8888nVFGMMkMtHKkMAziQWE3PfOigbJSyG92W7ksl 0uVErKyjMBKzgKpqDUZaT8KZR/LCy68y9oQT6N6zNy+88EKjzydELJNkVQjRJjz97HNE4rtw90OP 0yErm4cffoSpU6cyffp0KioqyMvLY9OmTVx11VV88unn7Ni+nb6H9EP5C6MSb6wmZLFBi8mEXtd1 0HSwav9lqKkYqd0Jx3Xhm+nTyVWdmHjDTYw44ii2bNkCVI1xveeee+nZqw/z58+vc7vhcJg5c+Y0 V9hCNJgMAxBCtAlbtmyF+ExCyd0I+gu5f9IrOImg7Aj+4u3ohoGm6Zx88kkce8zRBINBwqbFL9s2 QnXPVkuSZHXfYvm90XUHKlyB5nA363mM7JEYHYeiOTyotF4sXTudu+++h8GDB/HEU8+wvVInrNyM Of4EPF4v3br3oGjnTu679y9cdNFFu7WllGLKlCmcddZZNc+FiCWSrAoh2oSRhw9n1vLPAdB87Qj7 2hGu3qbam1iaDuFKpszdgrd8NZ9NeR+v18tXxx6HnTEwJsYGBprg9rJoXkm6k4qyXHRf3RYGaChN 06G6rJpmOLE7Hc0H38zn/W8XE/Z0w+jcE4dtEqrsSdjp5eeiMtBT+b+JtzBhwgQAbNtm/fr1nH/R xSyYNxeAF198sVnjFqIhZBiAEKJNGDVqJJ7gNlQtt2g13YGm6WjuBIx2fQgm9WX06NGccsop6Kk5 LZqo2nZVQrrnBKshJLEsUsZ6y99iscQqDVDR/92hVn0sB6pwRYufV3PFYXU6FjvrSBxpVd+zmuHE SMxC96aiJ3dBcyVgxVXdJfjL3fegaRqTHn+CBfPm0r1nL37++WeuvPLKFo9diAORZFUI0SacfPLJ nHHqiXjqUDtVS+mJltKdnTt3Yib2aIHoDiwDN4NI4o3wdsqVGe1woi5Gc1VG6SlY/mLsQFG0QwFA WWHs7QtxrvkvcXlfc9lpI9m8eTN/u/8+AK64/DJeeuklflm6mIEDB0Y5WiFqJ8mqEKJN0DSNSY89 Srho0wHH5Gmahuatvo3rimuB6OpmMEl4dCdr2njvqqr5K/a4dJ1M3Y0qXBntULBKNqOteIcTBmbw zbRPKczfzrNPTyY7O7tmnyFDhnDFFVfg8URhpTYh6kiSVSFEm5GWlkZ8QgKEyw+4r+b0VT2IQumq /TFidCa8+E2WZUCwOKoxWIUrcW/7jmmff8InUz5k+PDhdR7OEolE+Oabb6isrGzmKEVjBINBPv74 Y/Lz86MdSrOTZFUI0aYMOHRgncpRaZ4UAFT51uYOqV6cSmOJXYkpM7ZjlkvTwI7eUA2Vv4Sk8mX8 OOcHjj766Hodu3jxYrp278kZ506gQ1Yn1qxZ00xRisa6/Y4/cv6Eyzlm9Jia15RSvP322yxZsiSK kTU9SVaFEG3KDdddg7d81YF39CThSe0M7qTmD2oXul71saz20X86zm5HgYrwQGADP9sVLRmaqCMn eq0T+VqCVbIZT8kvLJj/I3379q3XscuXL2fM2BMpcOVgJnSla9dudOrUqZkiFY3xww8/8NLLr2Jm HUXe1q1MnTqVgYOH4YuL53e/v5FRRx7Np59+Gu0wm4wkq0KINuX0008nWF6EOkDPl6bpWJ3HoMe3 b6HI6saFznlWBw4lgU9DBZTY0UmKoinW+5Tdmn7A76/mYJVuwZE7g48/+mC3cal18eyzzzHssBGU J/QDICmSy/SvpuH1epsjVNEIfr+f886/kFC7oWjeNExfJhdc+jt+KY7H7HEG4a6nEMw8igsuupgZ M2ZEO9wmIcmqEKJNcTgcZGV3hmBJtENplCEkk4Gb58N5VCor2uG0uFitBgBVv1Aoq2WTVXPnGpy5 M5j62Sc1t/7z8/NrSqHty7Zt27jrrrv4wx13YnU/FRI64twxj2+nf0VGRkZLhC7q6dbbbqfEiqsq R6ZpRNqPIJg9Dj2lO5rDjabp6HHphNoN4/+unRjtcJuEJKtCiDanf7/+qBhPVuvSe3iiSseDwVvm jmaPJ7bEdt9qpubCCpaiWmARB6Vs2PYjyWWLmTVzBscccwyrV6/miqv+jw4dOnLvfffXepzf7+eL L76g34CBPPrKp5idj0f3pmCXbsbtcnL4yFFkd+nORRdfWrOMq4i+mTNn8vrrbxFuN+SA+2qeJALB QAtE1fwkWRVCtDmHDRuCHimNdhhN4gQ7jc2RAN+ZJTLpKkak4QRl09z9v0opwj+/RjuVz6yZM5g9 ezb9Bg5h8PCRfDwvF09SBu1Sd19J65NPPiEzK5uk5BQuuPT/qEg7HC37aPS4dAA0zYE/bBHufBL5 iYfx0Xer6NuvP8uWLatzXOFwmDfffJO77rqLX375pUmvuS2rqKjgggsvJpQ+tM7L+Sr74PhMkOVW hRBtzimnnMw/Hvk3kbR+aI7WXV/Sg4MTSeebyE5+ipTSxxHPGEcKbu3g7YuI9R+/QaoS1eZe+cxa /Sl2qJzcXD/9Dx1IYpch0OFIksZdDZoGgUJeePllzjjjNCKRCE9Nfprn//MiZvZojKwOhDUdY482 9bQcSOmK/uv/C18aYcPNVVdfw9zZ3+91TQUFBdx8623MnPkdJcVFOF0uIuEwRnw6Ff4gHo+Hfv36 Nev70FY89dRkSm0felLnOh6hHXAYSGshyaoQos0ZOnQoZ5x2KlNmLMZsPzza4dSqPglZJ7yMUWks opRZkWJGO5KbLS5xYB50NN3ADpaie5qvmoRZtp12J/wZV2pnlFJ7JZKeYVexdfV0evTshWWGMRI7 YvQYj7GfmDTdAH33FFZP78fy1R9z77334na76devH6effjpvvPEG1994M5GEblhJh6O182LaFmga liseffsS1m/YRCAQoKCggB9//JGfFixg8OAhXHD+ec3ynhzMfpz/E2FXRt1viWv7rirS2kiyKoRo c8LhMFOmfEw4c2TMjYVqaE9IJ7yUEME0wKvt2V92EIrhn8G6rpOguQkUrUXvOLR5T1adoNbWi6tp Gt7eY3H3PJaSea8R3r4CzZ3YgFPohLNGM+mlD4hYGqpsM4am0N0JhDuORo9vX+v/Iz0hk3ff+y9v vfUmkXAIX3IGQS2eMYctlWS1noLBIAsXLgJ373ocpaGkZ1UIIVqngoICTDOCCpZiVGwh7EnHSO0Z 7bCq2CYaEMHG2Osm7f5t1AL0NnzNE5eol5NVAu9s+REjYwCawxXVWHTDSfLhV5A/5TbMZe+gp/ZA S+qCFpdR56EKujeZSNaxVU+UwopUYjm86Pq+v0f1uAxUvwnoVgSXGcBy+jBKt2Baba96RWNdevmV FPp1tA7p9ThKO+DS0q1FrHUqCCFEs8vKyuLll14k270Tq3QT9ta5mKs+Rq36CKtobVRj0x0uXJ5k lmr1L/gf1BUdiG5i1BJaw4/fbroPXTdQpj/aoQBVvb0Zp/2DuD5j0YI7iaz5nNDCF7E2fINVvKFe lQs0TUNzxVcNGTjgvjqaw43uSUYzXKDpBAKx8Z60FrZt88XUqYTbDUKr51j0gyVZlZ5VIUSbYvDL IgAAIABJREFUtHDRzxRUKJwDLsJhhbEKV4PDg7V5DlYkgNF+QJOez/bvhEglVTPEteov1Y/ht9eB iCeFnZF8qGcHlIki7iCeWLWrWK6z+itdN8AMNUvbygyilFmnhLEmHoeL+N5jiO9dtTxnaMcqKtbM wNz8HdYWA6PTSDCc6L50NGfDFgOw/YVo66ZiOByopG5YKX1A01HF69DbH4qe0IHFi9/njjvu4KnJ zzB06DD+N2M6htEGhq400KpVq1C6A80VX78DNZlgJYQQrdp338/BzhiEw1s1GcmIryqArrniMTfO hEYmq3ZlPnbhKlS4HENFsIJl6E4vNf2CquavqkkQNR0gCmyLnZaNQqHVIy1zobNJhelFXKNibw22 qxDPWFtr3abt+kDt/rraa5/qR6r6oVK77Pnbe6/t0dae/yx7/SspsFHoTZysKqVQW+cSyvsZd0o2 zqSODW7L3b437va9sW2biuWfE1gzAwVEwkEciZnonUaix+1/YQC7sgBPwXx0pxvQCBbn8tyzkxk5 ciQvvvQyTzw5GUv30Ck9gfw1H+JweSitKOORRx4BYM7c2SxfvpwBA5r2l8ODSWJiIpYZrnUS3YFI z6oQQrRibrcbyvfuujSSOhEyQ/UaI2XbNrquY9s29ta5aGWbsW0Td1o3VEI3cPpwp/ZA99Rtcott 20TmPs1su4QhKhFvHcau2thElE0hbWP51TgcHG7t/X6qWh+rfe5T2/Pajt3/Pns/t7H53qiouvXd hOyCFZg7ltHu+D/iSq1rCaP903WdxP7jSew/HgAzWEbpT28RXjMN14AL9roGO1CEWv0xeoehOP15 3HztpQwbNoxQKMSgQYPo2LEjPp+Pfzz0d7p368o111zDHQ/fR9++fXE6nXTv3p0VK1awePFinE6X JKoH8Mabb6HpzvofaFu43a27NN+vNHWwpN1CCFEPv/u/a3j9mzW4snZfCUYpm8rvJ2H0OQPdU9Xr ageKYesPqHAlKIXm8qGSukOkEq18C1aoEsMdj22G0N3xOLuNxkjOrvf4sl2ZpXnYa6fhDlRwoepw wB7WUiK8Sx53ebvixeALcyejjCRSG/JDLsbNiBSxJFLJ6WRGO5R9+tAooMiXiLPvWfW6Vb8/ygwR XPgSKSN/hzd7cJO0uT+FXz6AGazA2fdMNIcHZYVxbfses2wbgYqqRTWOPW4s77/3NmlpVYsPTJ48 meuvvx6lFFu2bKFf/0PB6cVtKJ6Z/CSDBw+mR48ezR77wWLRokUMHToUvcsx6Mnd6nWs7S8kvWIR P82bS1ZWVjNF2DKkZ1UI0SZ1aJ+BMpfu9bqm6Xg6Hkpw9Sfg8qF0N3awBHeHQ9Hb9QbdwCreRHjj LJxJHdG7HIU7oQN2ZQGaNxndl9aoJPVXjqSO2IMvx//DJEoxSWb/SWccBgYaYaX4n13EvEgZC80y /uLpht7MxemjI3avaQXlFBDB03t8kyWqACpcAbZZ9acFpI69i4KPb8OuLMRI6gT5Szju8EP450NT SExMpLKykp49d6+i8c23M4Cq8nBXXX0t4eQ+aJlDCJZs4nc3/IlQ2Q5ef/VlzjnnnBa5htasoKCA McefgJ59BFpS13ofr7kSKFcJ9MjpzXW/v5ZH//2vpg+yhUiyKoRok0pKy/Z5i9bR43jiuh6DVbwR u2IHjswBuxV3N+Lb4+wwcLclD3Vv0xfij2ydj09zkKQO/FGtAwmGiyeCW3DoOuNox+cqHxOFK4YT u4aouprYvSnYBS8a5diVBRhJ2U3WruZJxpE9gpL5r+PuOADd2fy3eG3LxHC4UbaJXrSSfz70Gr17 77vW5+OTHmPSY4/icrmo9Fdiu5IwACO5C6HkLlhlW7lowiXc89f7eWbykxxzzDHNfg2t1SOPPELA dqKn5jToeM3hJtx+BLZyY5ot8wtOc2kb00aFEGIPxSWlaMa+eys1w4mjXQ6urkfWugpRXdfmbgxj 6wKGqcQ6TbLS0TnHymAgiZxnd6AjXuINJyutymaPs+Vpsdyxig8HQywf4VWfY+1c02TtarqBkdId ZVtQj1JTDRXcPA9lhlAFS9HyF3P00UftN1EFyM7OpnPnzrz66qvk79iO5s/fbbuRmIXefwJrQx05 efyZ9B84mMWLFzfnZbQqkUiEuXPnctLJ43ls0hOoBvSo7sWXzmeff9H4dqJIklUhRJtUUloKTTz5 pSnZwVLCkQA96jGzX0dnMEm4qj/ae1hevjKLsQ+yqQl7TsyPRcNI5gg7nsiGGU3arlW8AWdSB3RX 8y/+4Ol8GK7MQzB3rkcvWsHf7ruXu++5l7lz5+73uP/9739MvOk2Nlmd0TKH7LVdc7gxUntg9Tqb VTudXHvdDc11Ca3KqlWr8Hi9jBw5ki9nL4U+52Cn9Gl8w5EAaWmpFBcXY7XSBRkkWRVCtEmFhTtb pHe0ocKbZtNe92I0ogtxGEkEsfnGKmnCyERdtcddXQqr6WiGG60FelWhqkqAp9MQlBXmwvPP48KL L+Ohh//NggULat1fKcUNN97E66+/jpHYASMtZ7//xzTDhZF+CD/O/YGCgoLmuoxW44WXXqb98NPw ZfVFdyc2WSUJLaU7y1evJzUtjWeffbZJ2mxpMmZVCNEmrVm9Cr1rr2iHsU96wSqGq3aNawOdE+12 fBTezmgjGUc9JlrNs8r4LhK9JLcqVG23JRN+/brDCpFB7P6i0ZyUGWzRX7IMtw9PQgrt2qWxbvUK EpJSOPnkk/far6SkhOef/w9PPfkEo0ePRqm69YVZO1dz3HHHk55en2VEY8OyZcu47vqbWPDTfHxx 8SQkJJCYmIitFIGAn4A/gN9fQUVFBXFx8RiGgeFw4DAcNYsgmKZJJBLBMk1Ky0rpeu69+IsLiBQV Nlmcmm4Q7jwOoyyX5194mYkTJzZZ2y1FklUhRJtTXFxMRXkZzlrGosYCO1SBpWwSm+AjOr06qQti E1+Heq2/2qYi6DYMpG61YZvKr/2Q9h6VTlXV0gkowI9FZhtNVvVwKUZc436JqatI8Rbs5R9w+NCB PPv8iwA88s9/0K3b7iWUcnNzyenVG3dyR7zJmaxatYqIUbdSSUZab2bP+YC8vDw6dmz4AgctKRwO c+3vJ/LOu+8SSTkEup5C2DYpsUKoskjVb1q6gRbnxNaLUKVzqcg8DlBVY42VXd3jrkDTQTNAWdjF n6C7fBgeH9jhJo1Z0w1I7MSqVT+Sm5tLp06dmrT95ibJqhCizVm1ahW+5AzMGCzpZNsm1sJX6WrE E2c1zUd0pu7locAGejsTuNTZfr/7LrUq8GsKnapyWPUZM9tSVmt+vHXsuTvY2KFSHIn7/zdsKtb6 6Uy48AJeee11XIecQdKaqVx22aW77aOU4t1338WTlEkw+wQcm6eTl7ca96CxdRrAorl8uJOzmDNn DmeffXbzXEgTMk2TM848m5nzVxDpNn6PXu6Eva5ZC1WgNB3Ntf//R3b+UtyJacR17EXpyllgNe3i HiriR4Ur0A2nJKtCCNEaeDyeqhnVMSiyZT7xts1xdkqTtXmanUE5Ju9G8qhwtCNeq+phtZWiEos4 DALYVCqL90M7UEAPhy/mJzG1RXrmEPxrpuGIT8fbdQSGp57rxdeRsiKUbVzEj/MVru7HoJVt4oYb JuLx7F4ua/369fzpzrvQe56CDkQ6HImr3aADJme7MjUXxcXFTXwFTc+yLM47/0K+m/8L4Q5H1amG rqrYiuFLO3DjDh92dYJqeBNRVrjJCl7oRcvRSzcQLCvg5jvvYsSIEU3UcsuRZFUI0eaUlZWhOzzE Yrpq5C+jnx2P3sS1mRJwkGA4WWKWE6Rqgs7PdgU7rTAONMIoHGj0JA5Lg5VmBR1j9lZ7202jjZRu uHqMpWLFNMqWTCFj3N3N0tNqh/0YTjfrCsJ4ho6h6PO7uOH6/+61X1paGpqmoSd0AEBzetDqWf/V YQdbxQpL1028ga++m0eo4zF1X+zBnYxVuhlDKbT93clRFqq6Fqru8qJss86fAMo2IVSG5k0FwK4s gFApmjcV59aZhAPl3HnnXdx8802kpqbWsdXYIsmqEKLNyc/PB6c32mHsxQ77CQfL6Enz3KLLttx8 ahWSgIM4DDrg5gTS8WNRhkkKTtJwgaoaF2rGZDovjLSeGGk9sXNnU/DlA3i6HEbSsAnoetMNjTC8 SaSe+k80XSdcuI4uXbvXOglqw4YN+BLbEWrEuexQeczflv7ggw944613CHc5CU2ve+qkpeZgb50L VggceyfxKlwBO1dgFaygy/jbADBcvnrd+XHnzaSycDOOfhdgF69Fs0JYO5bi9iXw7DNPcdJJJ7XK CWy7kmRVCNHm5OfnY2ox2Gvo8KBrOj+rMvqTQFwTf0SPIpVOeOmIG8culQvjcew1uz5Nc1GsGpOC NKO227G6G73TKJyJXQmu/hxXu+7EdT+iSdvXqpPfSOk2Bg8aWOs+L7/yGqanYYmQUgrnth9I8Lno 0aNHg+NsToWFhVzz+4lM+2o6ocxR6PWuxFA9oWofZajs9V/jik+k83n3k9BtEACG21uvJXV1VbWv tuYj7HAIp9uL0+vl8cf+xaWXXnqAo1sHSVaFEG3O9u07CCknsbYkgK7r6D3GsHTLjxSZJZxkNf2s 787EXo+yaDgjsSN0GEDF4g9xZ/TBEV+H8ZH1ZFcW4HRl7vX62rVreeHFF7Fzzm7QoBUVLkevyGXl lk34fM2/yEFDnHTqaSzdVIbV5WT0/ax4ty+qYAW6JwlN20evt22SeezlNYkqgO6Oq3PPql2Zj9cJ xaaJYRgsWLCAUCjEqFGj6h1rLGub0ymFEG3alq154IzNH46uDoeiJXSoWYVK1E46V3+jdzwcI7U7 BdPuo2Th3uNKG8MOVRDeMIu/3v3nvba99PLLWEk90Bqwmpbt34lj+48MGzYcy7L4+98fIiMziyOO OoYdO3Y0RehNYuOGDViOeKjHrf9daaUb0FJzat2mzCC2GcTh3b08XF2GAShlo6wwqmQjY447rqZu 69ChQw+6RBUkWRVCtEF5edvQYjRZBXCW55FtxVq/r4hVmqahdz4aZ/fjCaybReX62U3WdmjHSg4b MZKePXvuta1rly649PqvpqWUwr3tO2675kI++O87nHXOeTz4xCuUpo1kwbpibv3D7U0RepP4YdZM tB2LINiwBTKU5tjnLX27eB2epAziOvXd7XXDE1c1dGDPtqwwSqmq4RMFC1Er3iXR2sFdd/6xQbG1 JpKsCiHanLxtsZ2smqHKNlv0XjSMpmkYqd1xdDmKisUfNFm7VrCMnH2MJ+3evTsOs6LebSp/AV6n zr333suCBQv4cf5CrOzR6PHtIXM4//3ve5hm3cdsNqfKykpcvkTwJDesgbgMNH/tPcV6xVbiug/d 63XDHQd79KyqcCXm0jext/2Ec8OnpOqlrF61ivVrV9O/f/+GxdaKSLIqhGhTlFJsWL8O3dd0dUyb mkLhlI9n0QBGcjZWJNhk7elOH1vz8mrdNm/ePMKO+q9wpqwIhmHw9ddfM+GSywhnDKspBaU5Pbjj Elm3bl2j4m4q+fn5OH1J+y87tR8q4kfV8n9Z+Qsxy3eQcdiZe23TPfFAVQ/qr7yF8zh+7Fiy44Pc dcet5G7ZRPfu3UlJid3PsaYkE6yEEG1KXl4elmVjOGNvZSZRNxpaqxizGsRCKRurdEuLnVOFq3o6 LSuC0YAJQXvSCxZz9lW/r3XbD3N+JOxMrncioSd0ZGewiLPPn4CZcghGSvfdtjt8afzyyy/07t27 gVE3jW3btvH+++9DI2oe6+36YK37Ei1Yirbr8s7bF5Dc90hcyXvXyK0qQaaBskBzoIIlhMoLufaa f7WKVb6agySrQog2ZcqUKbjSumLH4FKrom5Uq0hVYbqjrKpy0eb/tfCZNSL5qzE69GtUK8qKULF1 Beedd26t20879WRmLXqCCIfULzpNQ8sYgJUxoNY0MKDFsWzZL5x11lkNiHrflFKsWrWKQCCAw+HA 4/HQrVs3HI69U6FNmzYx8oijKIr4MOO6Nvg+hx6XAZ4EVGX+bsmq6d9JuyGn7PtATQfbQmkG+s5l XDrhAk45ZT/7H+QkWRVCtCnPv/gK4YQe8uHXimlNvLpXc4nXXcSPvZjMEXvf6m1Oy5+7Dv+67/A0 MlkNF66nR05vkpKSat1+9tlnc9PNt0JmBK0JenF/Zeke8rZta5K2lFJMmzaNd977L5999jmhsInD 5UUpG9uKEA5U8Jc//4Xhw4dW3fJ3OlmydBmTn36GYGJv6Ni30QNyNBRqlxWvlG2BGcabufektZpj dAPlL8RhltIpWefBBx/ca6nbtkQ+r4UQbYbf72f5siW4D2va4umiZbWWnlVT17AjLb+wQvsjzmPD lEexbbtRq1pFSrdy+GHD97m9Xbt2DB02nPnbNmKk1V6eqSE0h5vcrbWPk62vnTt3cuqpp6JlDkVr dwS4kwjvcldFhSt4+KkX0OxnwZ2IhiKsnJiZx6B5m2g8qFKg7bI8a8SPZjjRHfuu+NH+yAvZPust XD4fn82fS0ZGRtPE0krJCH4hRJvxyy+/EJfSvl7LJYrYFMEmgFXrnyAWISxC2ISwCWMTacI/dU2W uwYV22e/38zvxN7KVs7G2b5vo5df1Z1eSsvK9rvPlZdfgjeQ26jz7ElL6Mh3M2di2/Uvi7WntLQ0 nC43WmoOmid5r4lSmiueUMfRBDuNJZh+OIH0EVgZQ5suUaWqJiq79KxihdGM/X8GpQ06EZRF+4wM +vTp02SxtFbyiS2EaDO++24WtqfpV/gRLSuIxVLKWUb5bq/vmULumVQ2RX+sAnK0eI5QKbgP0N9T SIT0Iac1wVnrx/Alw86ixrfjTWbV6sX73efUU09l4g03oXVq9Olq6O5ElOFk+fLljS7LpGkavfsc wqqda7DTolTiSandFhXQ/DvQaxknuzuN5OzeXHpx7eOF2xpJVoUQbcbzL7xEJLGPfPC1cl4MehHH EBpY+7IRSgjztVbEmyqXwVoSG7QA5i6lxlI1F0OsBBJwUOlxkZLSscVj9KR3htXzGt2OK6MXGxe8 wrp16+ixj1qraWlphEMBXEo1uLzTnpRShAMVZGbuvcRrQ7z+6kuMPPIYrNR+TRZjfShl777cauU2 kg45ttZ9bdtk80f/oHTNPEBx++2xs0BCNMlnthCizThs+DByZ62ClK7RDkW0Usm4ONfOZBN+5mql uNHpb8dhVvfbbtKCvEcePbV4yiIBuvU6rOVj7DOSzV8+R9G3/yJh6AScSR0a1I6mG/ja92L+/Pn7 TFYdDgeGbtSUWWos278TVVlAQnwi7dq1a3R7Sikef/IplGZQ1S8ehWTVtrDXfYmlaWjoKGWzc9F2 SpfPRDccaLoD3eFEM5xEAuVYpoWj13iMTV8RDAaJj49v8ZhjjSSrQog245abb+STqeOxkQlWonG6 4KOLvfcqaIeqRHYS5ktVgKY7qNi6ktTEI1s0NldCGgMm/oft379Nwdd/J2P8Q+juBiY8VoD09PR9 bi4vL0fT9d0nEDWQsi3Cy94FYNi4pinT9Pnnn/PeB58Q6TJu997NFmLbJsqK4OhzRtV7ZFugLJRt omwTyzarlmOtfo4jDT2lJzjc2LaFyyXLLoMkq0KINsSyLHSnk8ZP2xBi39JwMZZ2fBjZzqbPJ5PS 54gWv/3sTsmky/hbCBTmsv3jO6rGTaKBpgFa1Zea51THt3eMyjLx+fa9NPGGDRvwJqbtNsO+oeyK 7aRnZHLNNVdzw/XXN64t22bS449z9z1/JZQxAt2ITtKnitahu+PR3LuX/zrQu6UXLGbwsMNITKz/ CmEHI0lWhRBthsvlwjYj0Q5DtAHpuLmYjrwdKiJYuAVveueoxNHtjNtZ9szvUcm90NP7VCetCpRd /bj666+v70Gtm7rflaRmzZqF7U5tdJxKKfSSdVx55RX87f77G9VWbm4u511wEUtWbiCcPRbdHb2E T5VuwkjMqt8xShHe9jNTFjRN+a6DgZSuEkK0GTk5OfhLC6tKyQjRzOJwkqg5KV23IGoxuFMyyR57 FXrZepTuQHN60Zw+NFc8mjsBzZ1UVdLJm4LmTd3tD54UHE4XxcXFtbatlOLZ/7xIyNv4UgCOgoVk J5rcfNONDW7Dtm2effZZsrOz+WlDJaFOY9CimKgC6JEylK/+E8V03WD0mBNYvXp1M0TV+kiyKoRo M3w+Hymp7bArC6IdimgjskJQvnpuVGNI7X8McZld0NZMqddxmqZBSg4P/ePhWre/++67bMzdgd4E Exa1knV89smUBlcAWLp0KYOHDuf2e/4BgJ3aNypjVHdl2yZWsALNk1w1RlXVrXiapmlofc9jTZHB 7yc2PHk/mGiqru+eEEIcBJ588iluvf1OdF9qVR3OX2+BKrvW55qmg6ZXfdUNNN2ofm5UjffbY6ze rx+pVcftMg6w5rHGb7debX67JQuq+nVr5wYyDB8GWlXC8Otww+pP613PqNW0rapf17CUTamKoNfh h7W2RzXSX28Ghy2TBAzOpGEzyZvTx2wnG09USlfVVzFh3ncU0v3sP5J6yNFRi0MpxU8PnIqeczq6 O6Hux4UrcW6cSllpMY49aoMe0n8ga8OdMBqZrNqhMlj5Pv7KCgyj7hO1lFJMnz6dv9xzH0uXLsHK PAyjfX8Cc57E4an7NTaEiuuI3mnEfvexbRNr6VvVB1T/Xwdqxgr/+hlh22A40A0XRkIH6FQ1AVSF yvFunU7RzoK93vu2pm1fvRCizTnjjNO57fY7MF2pvyWQu37V9OrHVT9IlLKrftBUz+JFWWDbKGVV J5y7t68qC3AakNjr8KrEtXpsoNolCa5KequTYN0AXUPXHKDraLpOxN8Ly5dcPRHs17GF1afadXyh 2qXwvVI1ybZ/+1ocW9cy2K7bDPBd02jQ0IBVVGDKVLRGS8HFYWYci6Y9H9VkFWWjLAvqOdFIc8Xh 9CUxZ84cjjrqqJrXP/vsMzZtyUXvPapxYZlBnJu/5r4HH6xzohoIBHhs0uNMfuY5iopLCEdM3IMu xuHwAODufzYqEmxUXPtlm4TXfInSNIysw/eznw3KwjHwcjRNq16Ry66e/W/9VgVg+0LsUAW060Vk 2yKc1ckqDg+W7uLll1/m6quvBqomidYnoT9YSLIqhGhT8vPzMZxu7PRD0BzuJm/f2rYQt0fR+eQb mrztuto++7/Y2zaRY8U1vA0tTLFq+XXtD0a9SWBuWS62Gd7vevDNadvMNzDcXvQGfM/7ne144803 Oeqoo7Asi/vvv5+//e0BNHcCjrVf7HdlMKVscMahtT8ULBNlR35L0qwIqnQTRw8fxB/+cGudYpk+ fTqXXXk1YV8WnsOuJbFkGzvnvIZWnagC9Z7Q1CC6g/DqL9ASstAT9zFm1/SD7qipBFG1/K2+22pW AMqTjFIKLa0v5P2EXZmPHpeBZjgJJfbijj/dSW7uVh5++GGcTgdlB1gC92AkyaoQok0ZPHgwxx59 JF8uXoeRfki0wxFtwAYq8aZ0iFqiqpQib/YHaNmjG3S8bWs8/9xzrF6ylC25udjFZYzQE9AjQKRk v8eWKJNf7C3opZvQdAeabqDrjurb3g40w8n3c+dzwkmn8uSkf+NwOGpdgEApxW13/JHnX3qdhBFX ktx1GADh0m0NuqbGcqT1wI5LxQ6VAvtIViN+NMNZ90Yrd1T1gG+ehd35aJwVG1FJvSh3eLn//vsA uP32exoffCskyaoQok3RdZ0zzziNWT9Ponn6DavGjwrxqxSchMp34t++Hl9m9xY7r7IsKretYcsX T6MbTlRcRsMa0jQSdSedflpPd02ns5aK5qxbXdViO8KaSJDOv3tzn/vYZpifl01l4KAhhMNBPnj/ fc4880wKCwv5z4svsWPHDrZu3cr0HxaRfvo/MLyxUXtU96WhStZDer/ad4j40eox7MIdyCVn0BAW L1mMseFLDj9iFLPnfI6h64w/6xyuv+5aRo9u2C8crZ0kq0KINicnJwfDrGi+E8i8VbGLTDx0izhY +85fOfTm15r9fEop1rxxF6UbFqM73ChfBlrOGdW3oRvUIqmGixyj/sNK6rJWgO5wkTToDNwd+2MH K7j48qsY9ex/+OGHH4jvfhiWrz26GSH1pHvQ/5+9+46TqjofP/45907f3heWsvQuSFNBugWx5muJ icYaf/kajSXRmORrEo0xppjEmFijxqjRGGNDFLsiAnYQAaV32ML23dlp957fH7sgfXdmZ3Zm2eft C3eZufecc4eFeebc5zzHdegNCjqbWTqN8LInsJY/gTloDoZ333qzOhJoM1jVdgQd9qPDzaiAZsjg KRQVFXL5ZZdy7rnnUl1dTVpaGh6P57DtHOkkWBVCdDurVq0i4kjcamEJVcX+BpPG1k7akCJQtZ36 zSsxhpydUsFdWzyFAwFwnvlbPt+6jOLzvpkys6gHoxwenP1mEFozH2vdq9BvJkb6XqW3rNCeaF1r G2f1Cpy2n4h2ELYVPt2Av2YnkVAAwzA49azzeeC+e8jO/rrKRV5eXmdfVkqSYFUI0e289/5imo1M EremNtnharL7F/szaLndrbVO+NarqrWUGcEa6ELB6m7OjAKyhp+Y7GG0SWsba9sHqNxBKNONteEN VMFwKBrTUpmjqQyrqQrqtuBu3MCYIb256sofUlNTw8qVKzEMk9/85nbZUrUdJFgVQnQ7Pp8XZUcS 0/gRlLJaR4SPOPjuRXuLoImgcWKwu5jW179a687uKYx1kDqxex2h9jp3r8Jc+7RZRxgbTRNWu66j D176ktygrSdudKSeQNU2vPm9E9qXJ6+EHsedTcXSNyEjDivjO/DzrI6kvxD7sTYvRIf9GP3HYxgO VHYpevNb2DUbILsU3ViO6XQxJG0X5192Gddecw3hcJjHH3+C++67D4Arrvguo0ePTvKra1muAAAg AElEQVSVpD4JVoUQ3Y7L6Wz3bjIxOQJyVntoNzVmhF3tCAgb7BB+0yBz4FFf149trVmrlPr6tdb2 Xq97a43averD7v5e7al5q/a0A+z5Pl1rUIqqdsxQ+qvL2FFVTt/m5AarBgY+pxv/znUJD1ah5aW1 UXHbpjKxc8Fdj7ZChLYvxRx0akt1A8Dw5mAP/h/0upcxw36UNxOsALl5udz+69u59dZfYZom7uwS jJJjsLd/yP0PPMh9996T5KtJfRKsCiG6Fa01L86dh8pI1GyGOiLe2UvxUmp523XslzTweY6Pkd+7 M8Gjil7ZJ69T9nxqBANhNK6sGFfkRyFQvYOyJc+ieh0fpxZj//B1xM6rKqNlg4VQE+y17swwDNAR SO+B6jsNHQmwZNMOVOnJKE82Vt1mlH8jhfZ2Hpw7l9NPPz1pl9CVJHfjXCGE6GQLFy6kKRBCefMT 10my3507uX+dhD67okgk3LJjWRzZVoSIv55ATfmex+rWfoLDk4GR1Sdu/ahU/QSWpLsYVtkXmE4P Rk6/fR6367ZgBRtRu8uEmW5UWiGqYRuuDXM5Ks/PQ3/7A1s2b5BANQoysyqE6Fb+du/9+L19MBK8 yKXbkZezTUUhxbqHrsNhmKjWFAelDJQywFAHpEXo3dv08vX3trax0dga7Nac3t2zTrkjp2M4HFSt WoQuOCqBCwhTR9Xix7CTELBqK4QdCUEkgNG6e5aOBHHsXMK4icfw+Yp3cZoGkUgIp8PBGaefzo03 PCz5qTGSYFUI0W34/X5emjsX1T/RMxpJnmY8AnJmj0SzyOUpvZ1LPAUUGE4swEIT0RoLjQIMFIZq /cpeX5XCgcKpFE4UDqVwYmDSksu70wpy28r3CGkbc9g5mO54lmb7eslbtBL9Gcb0ZmI3HX4XrURw 9BiDVbEKXbUWikYBoAM1aG0zcsQwfnT9NYwfPx6Xy0VJSUnCK0Ac6SRYFUJ0G6ZpEomEIZotEEU7 yZtxW7yYFCo3X1jNXOyKb53fHqab0zx5PNdcCc7oi/e3LbY/Xx3zme1jutMJJyFYVQ43zh5HEdr6 MXZ2KYY7AyO9GLvfHP793xe47NJL6N+/83YrO9JJzqoQottwu92MOmoM5q7lia0GIMQhHKdz+DBQ S7kVinvbJuD2Zndgp6pD6MBfld2FyxJBWxGaK9e3b5usBDB6jMVZOBQ2vb7nMeXJwun2yb8vcSbB qhCiW3njtVcYlK9wVH2e7KEkkO78eU6ZWG2XPFz0VF4eDVTEPaCx0FhGat0w1QlMifFvXdaSOqGS FMpYYXSgFmXsu6VqsKGKIUOGJGdMR6jU+qkWQogEy8vL4+03X2fAoCFEfL1QvkRUBeiOkVtqXnPj jvXU+Wt5kM6/VXwoWoM7pFjoqGOqO7vtE9opUzlwW03Ef8429oBT68T9ZAR2riItYtGchKwebYUJ fv4vlOGA/rP3XKOOBFBKkZ+fwGoj3ZAEq0KIbqegoIC7/nQn1974cwK9T4r/4ofUjNsSJpVveFpB P6VmBjOt+AWF8bCZZv7dXMnroVrO8xRwVBzyTIc6fIQayrFtO+6pALH+SOuOnNyG8K71ZGLSnJjm D6C1JlK2vOX7mnVgRzCG/s++xwTr6NO3VBZUxZkEq0KIbunSSy/lRzfeBKFGiPfK6VSO3hImdd+c DcCRYllvA0ijr/bypLWDSjsclzbzTSfphoO6qtVQMCwubXbUnh3J4t2utmmu3Ew/nOwINmKtfXWf 5+1IADtQ37Kj2oEnE2muw+HLIpqfWyscREdCoC1UWhHG4DMOPMi/i6OOHxXl1Yi2SLAqhOiWlFKM HTuOBWsrUfEMVjVJW/AhDpTKM1xracKhYKorM25tnuvJ5587PiaSUYLhiVO7HV5gFX+1Hz+Fw44w llwsuxarYus+z+8gQFNaHuQMbhlHsB7dXAWRZnRzNQCRxiqUNw8jv63AXqMDtRDaBIDpSsMYcNKB R9kR3HVruOnGezt8fWJfEqwKIbqt0r59eHdVAhZaJTlASsbEburGhAqdomPbgJ/eDg+OOM48TnRl stEOsnD9y4SHnI3hcLV9Ujt0KA0gTnYvSGva+CE1n8/j7HAuHkymkHfAsW9SyWZvDmSWYNduQlev xgUEI0F8GJxGEcuoZ02gFpXT//A7i1WuIFy5EsOdibaaMLJ6HPy46tVMnXo848aNi8PVir2l1n0R IYToRB98+BHKmxv3dlN5Ni8RYi8Z373NIo+N4QCrIv64tnuOO59BhhPXmuewI4G4th2tlpzV+Px9 qFv6HNv+cz3lb/6FqeF0cjl0IG63/lTaG9/CUbaUQbabSyLFzCQPPzZvuBuZQi4O04Gu23zIygx2 7SbC2z8GwHCno5xp2A1lWNXr973OUCPOmq/44x9+F5drFfuSYFUI0W0V9yiGOAcK3TdsS9EAPYU/ OHhw0Ed7mBusJqjtuLVrKsVV3h4MV07ca1/qcHuOph30OExgeDg6TmXUqhc+QNVHT1NcVcmsSAZD SD/s8TYQqVqHJ9TIxVYRM+wcABqIkNlrILpnX/7rrkEZBtbWxVD28YFjb67B2vQOAGbpdJQrDdKL cLpcpNd9gS5fho4E0MEGnFve4JZf/pzhw4fH4WrF/iRYFUJ0W2efdQae8K5kDyMBOjtgTu0APZVH N4lcqu0IP6xbT50diVu7DqX4jqeQULAJ2+5YIKyaaxmqvDGdG0Fj2zY7XrmDincfiGksobqd1Kx6 hzPtPGZTyADarpzQBy998fGtSAHGXqHOJmeErNIRjLn6Lsy+g7HQjP7eb7B2rT1gdtWu3waAp3gE RnY/tOEAK4InI4977/krZ08bhrnuRYwdi7jm6iv58Y03RH1ton0kWBVCdFvHHXccyl8Z93btcPwr Xaa8lJ3ATNmBAeDC4DyrBw5l0KituLadpoyWq6/fgh2oi7kd7clijY6tQNRK7cfQmgFb1mB9+RZV 7z8S1fm1H/+bmo//Q7rTQxGedp83nAxm67x9qkB8SA11bgelcy7HdLkZ/b9/YMIND5LZa3DLDOtX /8UqW4YOt95tscP06NEDs7UJWznBDhMy0li56kv+/dS/uPn/foYK1nLjDT+K6rpEdCRYFUJ0W+Fw GCsSQkeCcWvTyOqLv2w9Oxc/E7c2o9bJU4mJ3FKzo7pb/vDelFLkOVxYm97B+Op5zK+ejSmHNZI7 iFV2U0xjyNYmaaaLSXY2J+p8mla8SiTQ0K5zQzXbqPr0ORrWLMBlx/5DvZVm1tPEF84go664A1dG S0qA4XSR3qMfrsxcpt35GoUjJmKXLcVd9j4ATsNi8uTJOMKtgb7hROkIoayh/OUvd1NWVsYPfnA1 8195mby8Axd5ifiRYFUI0W1NnDiRi75zAe6KD+O29aXy5WH2P4Gd7z5G5afz4tJmTOPo9A5TNyhM 5Jaf8ZOYLXKv9vXk2vQSfp/Vn1CgHpoqom5DmZ6ocmpr7DA77SCb7GY+thvwt6Y3FOEmx3Cx49HL 2fnkD4g0VhMJNAJghwKUv3k3tcu+zrGtX/YiPXBzNJmcEoqtDJeNzeuuet5kFwNOu4Ls/gevgWoY BiMu/iWG00PYU4S2I6i6TZxzzjlEQq2zyoYThUa5M7CzBzJgwECUUsyYMSOmsYn2k9JVQohu7e67 /syiRcfwZfVaVN7guLRppBdD6Uy2vvYApstL7qhZcWk3VaV0KKgUqTrr2xmKTRfFpovNkQBuw0Ek q0/UbTgrljLGbH8t4oW6jqXhOgwUg0jjWL7ePexMu5AawnxRX8+GJ/4Xy47gNBzgdGMEm7G3fU72 mNMB0MoAbTOR6LYutbFpxiYNB8uox51dwMhzriN36ITDnlexbAG2ZWHnjQQ04VCAnTt3Yqe1lKpS phNaUzUi+aNxN25h69atjBgxIqrxiehJsCqE6NZcLhePPvIQU6fPJOjJxkgrjEu7RmYJ9J3Kppfu Qjk95AydHJd2U1YKz6wSp1nzREr0CLdZwZZgK0q2baMDDRzjbl+Qa2tNo47QBy8nkr/P4iYAE0U+ LqbbOZTgoice/LZFWTBICZm86C+n/KVfkTfzaupXL2CUjn4b2veoZp0jzDcieXzltek145vkDZt4 2HNCTfWseuJ2nMWjoLXmqsubwdNPP43efQ2GA+wIdqgJDCcOTwaVlfHPeRcHkjQAIUS3N27cOJ5+ 6l+4tr+HDrYvn649jKy+mL0ns+m531G34bO4tdu2pGwLkIQ+26aUSu2Z306gteblUA2BvKFRn2tv /5Ac00W6at/c1gJdx1Y7yHiyDwhU96ZQDCaddBwU4uYoMsnDxTfpQfPWz9ny72vJcHoYQfS3/ys9 Jt6CXjznrCbocFA8/sQ2z6le/Ql2JIzRtB27djMAVkZfPvjgA0JhC+3fhXKlY4UDWF/+F2vFk9SV b2L58uVRj09ET2ZWhRACOO200/jRj67nz39/mlDxpLi1a+T0Bx1hw9O3MPCCO8joc+TdMmwp/J7s URyKSuGxdY5mbVMVCaEKj4rqPGvnUhzVazjNWdyu4z/SDSwKVTONPPJirMuahgOvcjAoaDKGrKjP LyNAnRVk4nd/jdYahzcNh8fX5nlZpcNx+TKwAvWYlZ9hKYVO7w0sw+XfSqByJWbpDJyjLgRatlY1 1/yXCy+8MOoxiujJzKoQQrS67tprCNe0zKpo28Ku2RCXhVdG7mDMHmNZ9+TPaNq5rsPttSVei8Xa y4mCYHJ3SjqsLjK1mqiY2lCqpe3aDVGd56rbyGDlpdQ4dI3VNVYTm+xmIlrzarCCaeS1qw7q4YS1 RW+8OGMIUd7w+ul3yiX4CnuTVtQHd2b7Vul7c4uZ8tt5DLvoZnQkQFrt5+iNbwDw1uvzueqqq3DX r9lzvG7YzqijxpCbG/8d8MSBJFgVQohWu994dCSArt2AtXkBhOrj0rbKH45ZOIq1j91IoGp7XNpM FU4UOhJO9jAOSimZWfUog++l9cDcugi7ZmO7zrFtm3CgnkmO7AM+/GitCWqbpXYjT4bLeNWqZp3t x2M4OhyoAjiUQTXR/zxVESIQCdF75vkx91141FQm3vwkRTO/jdvjBqBHjx5EbI12Z6G1xm6qwKhe zXnnfCPmfkR0JFgVQohWSikuuuhi3DvehfqtAHHNYVWFR2HkDmT1I9cSaqyNW7viMJTqCuurgJY8 zkQ52pXBBd5C1Jb3sMq/aPuEpgosNNU6zJ2hzTwZLmOp3UCFHeLvkR3cHdrC+5Ea+uMjrDVPhcvo o2Pb5Wp/I8jgC6MxqnNsbN52N1I8eiqG2bEMR092AX2mn0vxhJMp6tmL+vp6Tpg5g0jNFqyVT2Fv eINw/U6+8Q0JVjuL5KwKIcReHnzgPoYOGcyC9xaw9DObHcH4zKzuUTweFQmy+u9XMuyqh3G42s6n Ex3UzWdWd5vkymS1HeTzsqUEm6tQpdMPeawOtnyYesuuw4NJo2Ux396FpTUleMgwXJi2ZixZ5Nou Qti4dHzmv4brdL7Q9XxIDceQ065zFlNLICODUd+M35an/b7xA9Y+p/jTX+5m9aqVuJ2K3KHHYNdV ctE5ZzBw4MC49SUOT2ZWhRBiL0opfvSjHzJwwEAq6kMoX3Q1HtvTPr0moZ0ZrH7w+9hx3A9eHEQq l9TqZEopLvMWcnNGH3z1W7G3Lj70seEmPIaLb1rFnK17cBpFnKWL6IuXk8jnDLuQUykit3UhlSuO 4YQLgynkskb5sWnfZgTrvJpB51zfrsVU0dA12znlpBOZN28eWhn4egzgmKOG8off3RHXfsThSbAq hBAHoYFIWu+41V3dm1IG9JlOJKJZ89A12Hb7dwdqny5y37uTdIlXoxMHWWC6ON2di6v50LtZKX8l A2z3Po9l4+IECg5bkipeeuPFh8m/2clK2r67EQo2kz0wumoH7VG59nOOP/54/nrPPRSMnoZds52z Tj+1W2/jmwwSrAohxEEUFxXi0bHth94eynCg+p1IoL6G9f/6ScL66fa6SFDR2QF1puHAiAQPHIcd wa7diB0Jss0IdfKovmaiOFHn0UCExaruoMdEsJlv7OIBNuPw+DAcsZXLOpz8QUexYMEC5r48n6zh k6hY8QGnnHJK3PsRhyfBqhBCHMQVV1xBpGYj2krcG7YyXRgDZtO4cwMb/nt7wvrpzhK5aCneOnOk /RweAiH/gbP625dgbFvCgOYgc+z4psBEI4DNi546svuPAoeDakL4ifCsUUEFQVZQzxOeKur7lFI8 8WQm3vSPDi+s2p/WGu3wsHTZ53y1cgXNVWVMmHgMPXv2jGs/om0SrAohxEHsqZ+o432Lfl/K6cUc cAq16z5my6v3JrSvbqurlAPoRDusEGbrtqLUrEFvfgfdXA2hJgZEnMwkn8wkrcFeST1PearIGDqe sdf+ldKZ5/OCu5b/uGtoLizieVXBp9kO+p99DWN/eB8jvnMzntyiuI+jedcOmjYu5/tX/i9KGdSv WMCVV1wW935E26QagBBCHMKJJ53MG59+iS48OqH9KHcGjgGz2fXZK7gyCymedE5C++tWZLvVgxrm 8JGuDGq2LcGqWU9v7WJr3csop49dpg1Wcsa1iGpW+2DIN2+i8OgZKKXod9oVZJSOINRYQ4+Jswk1 1uHKyElo3ujOD15m17J3CYfDlJeXk5Obw6j+JZx11lkJ61McmgSrQghxCH9/4D4mTDyOXdvfh7RC 7OzBCetLeXMx+81ix7v/xJVdRO7wKTG3FfHXU235eULtu/mA3h227ftlv2MO98jXN9VV6/8Uioi2 sWo1S249fJCtUCjDQBkmGEZMt701tMyUarulWL3We77azY2ocKg1iGnZDMCyLGxt87Ta2Xole16F vb4mP5y1EzyDvz9TKb7pKeCh6rWYymAOhVTZIT4M1jCD9u36FG/baOZLZ4ih595E0diZ+zyXP/Lr LZDdmYnfNSpUU07Fyg8AmD9/PnOff46xY8fKwqokkWBVCCEOoUePHnyw5H2efPJJbrv9DgLuApS3 fXUfY2Fk9IDek9n84h9wZeaT3mtYTO2Y3gyKHB7OcrYEHXu/vRr7vdd+nQv2dSC692O7f98SSmls WoI7m9aYEfgq0sQSQkQKJrYxMhutbbCtjqVXKKNlbKr1FwqlFOamBYy20+mDF03L2Cxs6oiAht3h 8d4B977fJy8QWaCqOr3Pca4Mdloh3gs3gAV5uJhD/G+nt8caGlnkCVA8ZibF409Myhj21veUy9CG yfb3nuOfL73NnX/6M2tXf0VJSUmyh9YtSbAqhBCH0atXL3784x/z5eo1PDb/c8wEBqsARk5/VKSZ dU/8lKH/7z48uT2ibkMpRZrhYLiz41tftkeDtjCUxszp2yn9HYrauoi0sGNP7c/dkhN+Ras6Kb1G 0HgOcsvfxqYZm7QEhwk2Nl/QyGfuAL1PvIjeM85NaH/RKD35YkpPvrjlN4/ezOLFizn33NQZX3ci waoQQrRh1apVPPrIw5gDO6dkjSoYgRFuYs0j1zL86kdweNI7pV/RvSwNN/JhqJ48Diz59Cl1fEY9 XmUCCt36n61p/a7lq4nCUEbrV4VDtVRhjaAxUJgoHLbGoRUOFCYtM9wGil0qQr3LIBJsxu0tQNsW 2xb8F5TZcrvdMFq+KgNlGJhODw5vGqYnreWry4vpdGM4XRguN8owUa3HolrO3Z0iAq3pIgC23XIF LTklLakkaLD3O273ebaNkdeHt95dIMFqkkiwKoQQbdi1axcAKgEbBBxSjwkQbuKrB7/P8KsfwTDk n+u2RAJNfKj8LDUaYm9Ewxl2IZ5OLpZjo3ksUIG7dYX+/gkJX6crqEM8vt9jat/jFZChTM515eFQ ii/DTTzQuAONphGbp82yPccpIGBbFCoPk+1sFOwJPE0UBi11UBWKCDYhrQljE9Y2ITQRNE4UFpog NiFsgthEDIUN2Epjo3FrRX7QBuVB1zfS9OqTaKXQSu0Zv25N86jTIdLT03A6nQTDEULhcEs+sm2j LatlJ7i98pcPTu3z4qh9X6i9Ht/vVW398uKKAu6/52+HaFskkvzrJ4QQbSgoKCAzt4hm1XkBjFIK 3Xsq1oZXWfvojxhy2V86re+uysJmpM4i04r9re0dqmggjAd32wfHlSIc0rj3zFp+bd8FYXqvx/cN yg4Vou0+7gujgTGGl2HONFZFmgGYRT4Khbb2ykVuPSdbOyls43VwY9DuZJNDpSnvf8H7CWDxtNrJ P268lNnHjmlfV631Yw0jPn9n65v89DvvWizLwjTNuLQp2k+CVSGEaEOvXr2wQs3Y9dsxMjtvgYUy TCg9Af+auWx87g76/c9PO63vrshUBv21j0ycMbexIEm5o17DQX/Lx4D2h35RsbHZThlbrSDDnGkY aApw0S9B/cVLEIun2EGf4gKmjx3e7vPiFaTu5vO4Kc7LZc2aNQwbFtvCRxE7CVaFEKINGRkZvDr/ ZU6aPYewZzbK1Xk5pMrhxhwwm5rVc3G/+zg9p3/ngGNsO8L2Nx4isHMtJhqVWUSh6rzZn+QXfur6 XFrRlMDipu9STYZhMM2djaU1S0INDEzhQDWIzQdmHdV2kJLCPFY8+cdOH4PWmsUr1vDiwk+4+5n5 OBwmK1eulGA1CSRYFUKIdjj++OP58Y03cOd9jxEsntKp9RaVOwOz/4mULf4Pnvxe5I6csc/z/h1r qf74RU505/GF1cT2bV9ynle2hOxKPDY0Gvahb5V3gJ8Im/Azwcjg3WAt5VaIEJrRZMS/sw76SjWy QFfhwaR/STHH9B7ENefO7vRxPPbqe9z84NNU1NQxbuxYHnnkEcaOHcvAgQM7fSxCglUhhGi3n/30 J/zj0X+yvW4zKru0U/s20gqhzxQ2v/Rn3Hm9Sevx9ZumKzMfUJzqzmOqncVmK8AIR+rOmokDZeKk QSVuZjVfudkQDrEhHKJWhyjBg5FiO65XEmSxrsbncnH5GTP5w1UXJm0s9z7/JhU1dQA4ws3c+KMf kpWVxTPPtmwOIDqXBKtCCNFOLpeLx//5D2afeibhzF6oTl6hb2SXokL1rHviJkZc9QgOXxYAjvQ8 bDQRrckwHIw0umupq66bkJCNg53an5C2fTg4Q7dUmy0nyCtU0AdvQvqKhYVmOwEWqxouOnU69/zo 8mQPicX33YJSas8dlGVrN/Gbx19k0aJFEqwmQWp9rBJCiBQ3depUhgwehKr84ut6jJ2pYBQqrZjV D1/TUq6HlsUkDmXg10na0D2FJHMXqo7Iw0WjHU54P0vNBopxMZjU+EATwuYlo4L3XXWcMOVo/nr9 pckeEtDyd2rvVJ8xg0oZP6Qf69auTeKoui8JVoUQIkrPPvNverjr0bWbOr1vpRT0mkw4bLH+Xz/b 87jDMCVY7cLycRHCxk7g7HAjEXZYfkaRmbA+2msNTfzHKONJtpPXK4+dLz/Av269Ju6r+OPlHy8v 4HdPvsQpc+YkeyjdkqQBCCFElPr3789T/3qcyZMng1IYnZy/qgwHRr8TaVzzIltevZc+s7+Pw+1j hx2i2Ozs+qB7RpWkfo8MDgwcGPixSE/QW/MCo4Ye2ksvndwUgBVGIx9Ty63/7zyG9S3hpIlHpWyQ CrB2605ufvgZPvjwI0aOHJns4XRLEqwKIUQMJk2axNVX/4B7n12UlP6V04vZ/yR2ffYyvuKBmH1G smrTSsYmZYV3180VTSWmUoR0AsoBtGoiwmid3AoAIWw+tmt45rc/5ORj2lfgP1nuee4Nnn//M9Zt 3cEvbrlVAtUkkmBVCCFiNGHCeDyPP0UoWIpyZ3V6/8qbi9l3Glvm/43cEdPZ1ZrDKromTcu2poli oAglojZWO1US5HnKKMnNPWyg+ve5b/HgC2+xo7wKh2nicbtI87nJSPOSleEjJz2NCcMGcPU5iS1p 9eC8d/i/W3/NmDFjJFBNMglWhRAiRhdddBF1dXXc9H+/JDLgrKSMwcjqgyoeQ/WKd8h3eJIyBhEf WuuELSSpI0y1HaSQbOpp+0ONxt6z9aq118y5gcIATBTmnu8NHHDIUli6dcPXOiL0yM5m9X/+vOe5 SCTCrvpGNpft4sWFH/Ps2x9SVlHNGDKZSBo2mlCDTQg/IZooV5r1yuLpt5fw+PyFfPjw7R15WdpU VFTEqFGjEtqHaJsEq0II0QEnnXQSP/vFr9rx9p9A+SNwVH7FEJWsfFURDxqdsJnVZ9mJBl6iot1j sQEnqvW/r5M9dj+nWx/RtD8RxKiFtBMuBtjTpqIl+M033PSzvcygJ24OsQObBltr8nHw6YYtvPrB MmYfm5h0glsv+QbnnXsOb7z5FhMmTEhIH6J9JFgVQogO8Pl8+OtrMKwwyox9T/qOUEqhXWlUhJuT 0r+Ij0SlAayiAQ3MoZDe7ayvulBVU6fDnEZRu/vRaJZRz0bVzDd04Z55VkMdOOOqdUvAq4B5qhKU Yo6d367SYwaKMWSxzQzx3TseoGd+Dk6HA6fDxOk0cTkcXH7aDP5n+jHtHvvBnHLsGOrqG5JTok7s Q4JVIYTogJKSkpZvjEPMBHUS3ft4ln71HJPMTPo7Uqfge6fq4jGFhkPNJ3bIKqOJCXZ2uwNVANtQ eK3okhIUiiwchA1w2Ic/Vym151rLdZAzdVHUNXLHWRlU1Yex6xuw0VhoQkANNhd/dg+9i/OZMHRA VG2u3rKDxV+sYWtFFTurapgz+2QmTpwYVRsi/lK3VoQQQnQB1dXVmI7kzKjuzXBnEMnoxUKrIdlD SaqOzkuGsFlHYnaSaksi0gCWU0+DHaYfvqjO82Phi2E+KxMngSgX+mUYThYbtYSjXPzVAw8jyeAo MhlDFmPJZgLZTCaXo1UWc667g/rG9v1Z1jQ0cc4v7uakG37Pkp1NqN7D8Xvz+O3v/xDVmERiyMyq EEJ0QE5ODqPHjOGL9e/hcvuwtSbg7YVyekGZKE/nVQlQxWNYvuYlgq583Ae59Q0MoiwAACAASURB VJooXXxCcx8TyeYz6sjGgQuDDBwU0jm5wIlIA2giQrHpJcOK7u2+SUfojSvq/jJxENIWNvZBb/8f zDl2Ic8Y5TzNDsarHIbqtKj73d8YO4OKcIjj//eXLH/i8AHnum1lfOPmuzjljLN49s2FuFzRX7dI LJlZFUKIDjBNkzdem8+tN36Pu277IbfdeAXD0ispCa3Es+NtjMpl6ATWztyb4cvD8GZzf2AnluTZ xeRosjhO5fA+1Xyk6niRMr6gPuH97t67Kp5vyttoZgUNFMUQbDfbEbKI/o6BCwMTRXUUSw4dyuCb dhE9cLNEVxOJw8cfhWKGnUvZjl1cevu9hzyutrGJ0266k+tu/Al/ufuvEqimKJlZFUKIDsrOzuam m27a8/vrr78OgMrKSuacejpf7PgCu2B0p4wl3GsSG9a+TIM7QrZKfnpCVzRcZzCEdEyt+EjV8qmu Y6sKMF3n4sPRMmsY57me3RvlRpu3eSg2NkuMOgaQwVgr+o0AgtgxBasAGYaLMjtAfhQzs4YyOIkC Hlc72Gj7GUTHZ1ddGJyiC/jvmx8wbcxwLjl1+j7Pa635wV2PccoZZ/L9q67qcH8icSRYFUKIBCko KOAfjzzExGOPwzJckDMYVEswohJwm96u3YS5eQEnewvINiRQ7QizNWgcptNxoahSFv/S2zFaCzmZ SjFF59A/DkEVQAQ7ruHvZ9QT0hZTdHZMY7HRpMc4ohzlopJwTOfm2Q62GEEG2fF5XbNxMpM8rvnj I4wfNoCR/XvveW7xijUs3bCd5S+9EZe+ROJIGoAQQiTQyJEjWbTwPY7t58G5YS7qq6dxVXyckL5c Oz5ijiuPk5w5CWn/sBK38VK7JSLxIQMHY8hilp3LBfRiGnkcq3IZrTNYoKpZQg3zKGcrX5cNW00j /kPcBg9h00gEPxGWUtdaeh8ixG9WFVoWaykUzhje5puxcWDEPHucZRnUxVh5eDI5bLIbqYsx2D2Y UnyMJJMTrv4V/kAAaJlVfXnxMr51wYV4vd20ekYXIjOrQgiRYEcffTQLF7zD8uXLSU9PZ9z4iQT9 uzB8+XHrw7ZtAqEmJmUUx63NridxRfUBfJgMJA10SzDo1gbvUU2x8vCGriQDB0W4+YpG0nBQgptj yaaOCIuNupZA1Q4TQeNRJmFtsUI1cpouAOI3exQgwgoamaZzYzq/GQunMmKO/jNwsNkMEsvOrlnK SSlpzNXlzKGQvBgWeR3MeJ3J9mAFo79zE1k5WWzZWY7T4WD+6z+PS/sisSRYFUKITnLUUUcBcPrp p/HEc2/gzCokkj86LikBhmFgKoNmbeNVya35miy7d0PqDArFUNIxUAzUadQS5hUq+JJGjiEbv6Gp Jcxj9nYARtmZeA0HmZh4MAhqm554+EDV8gqVHK0z4jaz+hn15Blu+sd4K70ZC0cHg9Wgtto+8BBO Io932MV8Kvk2PePyAWSN8hP0OZkydTo/uvEGCgoKeP755xk3blyH2xaJJ8GqEEJ0su/9vyuoqall 5coVVOx4l2DRZJSj4+WRTGUQ6KTKA6mqM3PbFIohpAOQh4tvU8IWmltqmrb+MXxs1BPG5jg7+6Az jcfZ2XxqGCzWNRgoqgmhgJwOzChuMYKMsaNfVLVbALslWI1RJg6CttWhTw4zVD6Pqu18ZTcynNiv BWAHAT5PD7Pko48YOnTonsdvuOGGDrUrOo/krAohRCebPHkyL819gbVrVnPxeafj2vYmOhLsUJt2 zUbCtkWO0X3nIHbnaSaLiTqg+P4EO5NJ9qEXObkwOM7O5iJ64VImz1PGc5Sxndi3zm22I7g78PYe wMJhx54BnIZJBJtQBz84TbGzWUINq2mMuQ0bzSdpAR54+O/7BKqia5FgVQghksQ0Te7521+57Dvn 4y57H23HduvUjoQwtrzHhd7ipKUApEJV13jXKe1MLkzO1z24mF5kmG78sSR8thpEGguoQsf4p9Ks NC4de9BvoPBiUkbHPoANUGlMJ49FVMfcxjqa6DmgH+ecc06HxiKSq6v+vRZCiCPGX+76M1MmjsK1 a2lsDRgGEW0z2pEe34FFJfnlAFpyVpM/jlg5MHDE4W3ZT4Q+hi/m16LZ0Hg7OI5Mw0VlB4NVgF64 0UA1oZjOr0wzuPKaq1Gq6/5cCAlWhRAi6QzD4F+PP4Zq2IIO1MZwvgOXMqnVsZULOpLImxrk46I+ xtJR0LLAKq2DS1qylZOqOJSf8ikH/fDxlqoiGOVss0ZTrcL079+/w+MQydV9k5uEECKF5Obm8t3L L+Oep98Fz5iozzdNB3NDVVzsLsLshrNItt0SyHTlmdXdLG2zniZqWoM9tc8vtScg371K3mg9ymg9 ZisBfDHuPgXg1xH6drBkVKZlsEXFXhFgb7PI5TlVybOUcaYubFcgvY4mylSIon6lTJkyJS7jEMkj H0KFECJFTDl+MmkxLiYJ9jyWleFGyuzYbpd2RCrkq8ZU1DNF2UA9ESoIUE6AnQTYToBtBNhCM5to ZpMKsF75WW80s8bws8bw86XpZ5Xpp4YwVgdej2ZtkdGBYBday1fFKcIwlME5uggniq9UU5vHNxDh A08TU6/4Fs/NfRGHQ+blujr5ExRCiBQxZMgQdLAhtpPTizANBzV2mBKz42WwotX15zNTh1MZHE06 gw63lave7+te5lGO3YGPEEFtkdXRNACc+O34pqX00x52mCHGHWbCtoYwb/sauOnGH/PzW26Ja/8i eSRYFUKIFOFyubCsA/P8tB2BUBM63AThJnTYj0eFcRKESDOhpjrCTQ2UutIY7PAdpOXES43ZVQEQ QdPH9sR0roXGQpNBx6pK5OLE1jZlBChWsY1lfz5MQvrQi7YsNO+lNXHLb3/DVVdfHZc+RWqQYFUI IVJEaWkp2ZnpVGxfhNdpoCJNLYFosJm8wiJKepbQp09vBvQvpW+fPpSUlFBSUsLHH3/MIz+/jcsO U89TdB95OFmjmhilM3BGme0XwMKBwuhglqCBoreZxnKrgWLiE6wW42aJXcta5WeQ3vdD2Raa+SQt wDHHT+b7V10Vl/5E6pBgVQghUoTL5eLVV+Yxb948SktL6du3L6WlpRQVFWEYhw4elixezOZgE29r mOTMxBOH7VtF1zWZHJ5UO9mhA/Qlupn2PbtXxWGqfLiVxhuqsuMNtSpQbibpbD6khoF49yym20oz S9Kbeeb555g1a5aUqToCSbAqhBApZOTIkYwcOTKqc667/nqOnzKF39xyK79++22OVWlMNTLI7Ma7 WXVnBgYuZRKOIeJsxopbsJqJg5C28RPBp+LzszicdD6inh0EKcFDLWE+8jXz+FNPcsIJJ8SlD5F6 5OO3EEIcAcaPH89z817isxVfUPqtM/idVcZ/dA3lVudXBxCpIRJDxLlnZjUOzNa5zy87sF3q/gxl kImDXQSpJsQrnlpuuuXnnHrqqXHrQ6QeCVaFEOII0r9/f+5/6CHWbd7EtB9cwT1GNY9Sw8ZI7HvN i64lgk2DFaKY6KtCBLBwxmm13CoayFJOxqn45lJ7tMFq5eddTwN/+utfuOHGG+XW/xFO7hEJIcQR qKCggNtuv52f/OxnPPLww/z+9t+QHvAzLexmuCMNIwXe3O1PHyIUx5lf1xEy/2KgaVSRmG/Fv0UV mcpJto6+VmoAG0ecStYGDE2Gbca9rtkc8nlBV5BdUszll18e38ZFSpJgVQghjmBpaWn84JpruPL7 3+eZZ57hN7+8hVfKKpgacjPemYkjQUGrDvvRocPf/rWtCHMopCROq8WTH37HxwQrkzfZxQB8ZEZZ nP8dVUUlIc7QhTH1HTLAaccn6F9vNzKD3Li0tTeNIuhz8vi/n5IZ1W5CglUhhOgGHA4H3/rWtzj/ /PN56623uP0Xv+TVz5czVfuY5Ih/BQHXzsWkm8340tIPeYy/Z0/eqaxgciSLATo59WFTUV985OFi hdHEpCjLkZUZIY63cqIOcnczNB3aUGCfthL08WE1jYwZezTjx49PSPsi9UiwKoQQ3YhSihNOOIET TjiBpUuX8utf3sKv33yTySqdqUYGaUbHisHv5jAVDz14P3PmzDnsce+//z7fmH0q/Zq8CQtuuqJ0 TCIquqDxLSqpt0Lk44q5X1PHtjDrYHqaPjZYzfQ73E5cMSjLNLnt2mvi2qZIbUdGgo8QQoioHX30 0Tw790U+/nwZhd84idsjO3jRrqUuzttkHs7kyZMp6duHr+K4YvxIkIWDCvvQuzUdTCMWw0knvQPz UA5U3HYjy7IM6ojvz5KtNWVhP2PGjIlruyK1ycyqEEJ0c4MGDeIfTzzObb+9g9//5g5+/+ijjCGN npH2zXRusALYtkWkYtWex4JNte06VynFw489ytlnnsWumkam+NP2FHvvzo4mixV6e8t2pe3M6dXQ oUAVWspN2YaCOCyyqjEtcq3Y0hEOZSN+Bg0ZzMCBA+ParkhtEqwKIYQAoFevXtx97z38/NZbuPev f2Pj+vXtOq+krg5PQyMlvfvseczh6MeoUaPadf64ceNYvX4dE48ey5ovyxnCofNcuwsHBiV4+Nxo pNhuO1jdSYByggzu4C13Bwodp88KNTrEqDinANQSYcaJUvy/u5FgVQghxD4KCgr45a9u7dQ+3W43 jzz+GDOnTsPpN+gf5TahR6LjyeFJewfNWHg5fC7x7hnVjgb6JipuC6yKlIdtBBhJZlzaC2mb1d4w P582LS7tia5DglUhhBApYdy4cby14F1mTZtBnt9JVowr2o8UPhw4lYFftx2sRlrv279pVOFRhz9W aRhrZxw0ZcCBOiADYK3ys8OILn/WBqrtIEEVp6KtQCMRcnJzZbeqbkiCVSGEEClj/Pjx3PzLn3Pf rb9llt+B2c3zV9s7x+nFYCA+sDWRNhY1baSZYfgOGqyaKPR+vX6q6sgaOoqswh7tHTam04knYrHi 7bmEsXHGWBpNa00zNj5lEsAmJzu+u2GJrkGCVSGEECnluuuv550332beoiUc5/dRGMO2oUeCSoJY 2ianHTPMHhzMoqDN45qJsAE/uYcob+VAYe8XIRcrD1W7yrj0j49jGNEFnZs+eJfV/ib6ai8eDByo qAr5rzCaWGhXMdjIwGcpsjLjk1IguhYJVoUQQqQUp9PJy6/N58knn+Sq713JlCYdt12uupLPqKeX 4cOw4ze7vJ0gHsxDzljvzlkNYvMoWzmNQiZbWTxdsZNFzzzMlG9eEVV/R595AR898zBLrDosbaEB lzZwGyYe5cCrTNK0gc9SeDHxYbR+NfFiUmGGGTxhGnbEYv2Xn9O/SUqcdUcSrAohhEg5SikuuOAC nE4nN333+5Q0JHtEnW+nCjDbbnu2NBqleFlINTsI0PMgHwBaZlY1m/EDUE6QEry4lYnLG/3K/pmX XsvMS6/d83t/fS01Zduoq9hObcVOGnaVU7+rnMpdFQTrqgg1NBBqbiAcDhGyI+REnGQ2+7n0zsfZ sPQDvpr7cOwXL7osCVaFEEKkrOnTp1MZakLT/eqvJuJ6HRj0wcMXZiM9LQ8Wmk34qfBAz4DCh4mN ptxl07dHXxp21kEIMnCw/uP3GDxhKtu+Wkb1zm1YoQA5PftQOmoiOT16tat/X2Y2vsxsSgaPbPPY h689ny1fLqN3UQkA6bn5VJSVdej6RdckO1gJIYRIWQUFBfQrLWVD60xfd1FPhKC2KEhAvm5/fFRY AdbRxAu+GhrG9uW8m69jVQ8nL6gKCgoKWGPVc9tttxEuzmahWct228/6zxbxxI0X4F+xkPGFbqYN LMSxZTmPXv9NXr7rZmrLt8d1nCOmn0q6N51RM1pW/6fn5FNZUR7XPkTXoLTW8dpZTQghhIi7N998 kwvPOoezmrrXSvB/sJUzKCLvEIuhYhXB5gm1HW9aGs/NfZEZM2bsec62bQzDIBQK4XQ6qays5Gc3 /YSevXtxySWX0K9fvwMWSNXW1vL7P9zJfQ88wFk/+SP9Rh9z2P4DTQ24felRLbSClsoAfzjnGDau X0dBQXzTI0Rqk2BVCCFESmtqaiI3O4dLIz2TPZROE8DmX2zjbHqQHcd6sxaa13z1uItyOf+Cb3Pb bbfFre233nqLc8//FtMuvo6jTz77gOeXvfYsi/79AFXlOxg9fQ6nXvdrHK7oAvEnbryQB+/6A9On T4/TqEVXIGkAQgghUprb7SZiRaLeWSkYjw3uk2QJ1RQZnrgGqgD1hKkI++ndpze/uf12/v7gg3Fr e9asWSxe+B6fPfswH7/4r32e277mC57/4/9xxSXfoa62ll7pJk/93+U0N9RF1Uden4GsWLEibmMW XYPMrAohhEh5I4cMpc+aGvrgbfNYjaaWCM+b5fTyZpEVarndnB7S5OGkCHdKLdbaRQg3Bhl7rXn+ p9rGDJ1HDk7qCBNC0wsPrv3mmBqJ8LqjmmMjmRTjxmjjujSajfhZ6woxKORibYmHjdu2xvV61q5d y/iJx3L1P99AoVj09IMsf/1ZvnfFdznvvPMYM2YMtm1z8aWXsbFJcdL3ftLutj988QmKAmU88tDf 4zpmkdokWBVCCJHy7r//fu664WamN6W3eez73iYqPDaXXHopo8aMZteuXViWxfLPlvLaa68xslox iOjLMCXCJ64mPg3tYrjKYIrOJYjNOppYQg0WmsKcPEr79MHt9fLp0k8ZotMZHfLhxsBG85SrgsZQ AEMpslxezg3mtxmIB7D4J9vI8vg4ec4pPP3sf+N+XYVFxURsTVN9HSfOns3f77+PHj323QFr06ZN HDXmaM666U4Gjj++Xe3uWLOC1+/6KRvWron7mEXqkmBVCCFEymtoaGDY4CEUVYUYF0475AziTgJ8 mGexYctmfD7fAc/Pnz+fy8/7NnMaM3EkeXbVQvMQWzj//PN5de5L9LDdbNZ+Tpg1i+OmHM/MmTOZ OHHinuPLy8u56YYbeeHZ5+hrezDDFms9ITZs2oTWmuFDhtKv1mYsWYcNWGsI83pGI+8ufI+RI0di mmbcr23FihX4fD769u172PYffvhh7n7035z9i7+1q13btrn7OzP4cNFCBg0aFK/hihQnOatCCCFS XkZGBp+v+ALnqH4sN5sOedy6NItf3vargwaqALNnz+a4mdN4wVtNE5FEDbddDKDUk8XYsWOZ9/pr /O/vfsnGLZt58eV5/OQnP9knUAUoKiri0ccfY/EnH3Hpb2/muCvOZ/mKFRQUFFBYWMgdv72Dun55 vO1rxDpIfm8Ym0XeRt4yq3G5XGRkZCQkUAUYOXIk/fv3b7P9448/ni2rlrLq/dfb1a5hGAw+Zjpz 586NxzBFFyEzq0IIIbqMLVu2MGbUUfRrdjA67Dsgh/PZtBoWfvIhQ4cOPWw7373kUhY+/SJTAxmH 3Hq0MyyjjolXXcDdf2vfzGJbwuEwE8aMpXhVOaX40GgqWnNim4gwjwp6pmVR0myywmwkMzOTf/7r CU4++eS49B+Lzz77jBknnMjldz9DdusGAIez+oN32PDakyx5/71OGJ1IBTKzKoQQosvo06cPX65Z zZBvnMAL3hrW0YRunUUsJ0hjOMDgwYPbbOdv99/HkBnH8b730LO0iWaj2ZYGE445fF3SaDidTr57 5ff40h2khjBraeL97CDz3NVsppnjJkxkwvQprHL6GW5mMbIKrrj0MrZuje8iq2iMHTuWH153HfPv voWandvaPL7/0cexfNlSampqOmF0IhVIsCqEEKJLKSoq4smn/81Lb7zK9gE5LPS03Pb+ND3Izb/4 BYbR9lubx+PhP889S0OGgzICnTDqAy03mygdOZQLL7wwru1edNFFnPnd7/Cqt46lvgAPPvIwP7/l l2z0Wvzm97/jhXkvsXn7NnZmGJgotu7cwcqVK+M6hmj95KYfc8zIQTzw/bNoqq0+7LFOt4eBY4/j mWee6aTRiWSTNAAhhBBdVnNzM2eddjpLP/gIb3YmG7ZsjioP8wdXXcUn9z7JaLISOMoDbcbPJ9kW y1Ysp6Sk7VvfsVi5ciWBQIBx48YBLTtA7b1r1Msvv8wlF36HCRMm8PJrr0a9o1QiTJoyjZ7Hn85R M08/7HHrPnmfj574M1+u+CIlxi0SS2ZWhRBCdFler5d5r87nv/Pn8eGnn0S9YGjM2LHUpznaPjCO NuFnsc/P3FfmJSxQBRgxYsSeQBU4IKg79dRTqaiuSplAFeCOX/+Kdx/9c5vHDRg3mYbmEO+++27i ByWSToJVIYQQXZrT6WTq1KkUFxdHfe6ZZ57JpkgjoTjvdhXG5jPqCO/VbjMW73kbWFXs5KX5r3Dc ccfFtc9YKKVSJlAFGDx4MHak7SoNSinGnn4Bd/7prk4YlUg2CVaFEEJ0W/n5+cyaOZMvnP64tuvH 4mNq+Y9ZzgNs5h/Gdp4yd3Li5d/mq/VrmTp1alz7O1I0NDTgPkTZsf2NnnUG77//Phs3bkzwqESy SbAqhBCiW7v/ob+zggbsg9QmjVUWTsaY2TRaIa655hruvvdvLPnwQ/7y178esgasgMbGRtze9u0u 5vL6GDXrdO66++4Ej0okW+cm6gghhBAppmfPnvQsLqZqa4gC3HFp83VvHQaKTCOdX/ziF+Tl5cWl 3SNdeXk5vqyc9p+gDELBUOIGJFKCzKwKIYTo9mbMnMlaR3BPzdaOsNFsDTbwoz/ezpr16yRQjcKH H31EQb9h7T5eAQP690vcgERKkGBVCCFEt/fbO/+A3b+QZXHIXV3qbOK4icdw5ZVXUlRUFIfRdR/v L/6AnkOOavfxpsdLQ0NDAkckUoEEq0IIIbq9/Px83l74HmvcQaqJ/bbyNprZlmXw7NwX4ji67kFr zScff0TJ0PYHq9mFJSxbviKBoxKpQIJVIYQQAigsLOQH113LOkcw5ja+TLf43R/vpKCgII4j6x42 bdqE6XSRkVdIU2017dmzaOikmbz15hvU19d3wghFskiwKoQQQrSaMnUq5R4bK4bc1SpC1Dtszj// /ASM7MiXm5tLOBjg4R+cw+/Pm8SWFZ+2eY4vM4d+oyfwwgsyk30kk2BVCCGEaDVr1iyGjzuad931 +LGiOnetO8TV116Dy+VK0OiObFlZWVx66SXs2rqBkv6D6T1ibLvOGzTpJP7z7PMJHp1IJglWhRBC iFaG0ZJveuzZp/KZt7nd52k02xwhzj3vvASO7sj3pzvvZNDQYUz+9vcxjPaFKAPGTmLhgnexrOg+ XIiuQ4JVIYQQYi+ZmZn86a4/szbc/jzICkIYLifDhrW/7JI40CeffML2HTsZdvxJ7T4nI6+QrIIi PvnkkwSOTCSTBKtCCCHEfoLBIG6Ho111V0PYvEAZY8eNRSnVCaM7co0YMQKXw9GufNW99Rl9HK+9 /nqCRiWSTYJVIYQQYj8lJSXk5OSwqx1lrCKtAe2c009P9LCOeOnp6fz8/37K0nlPRnVev6Mn8fKr EqweqSRYFUIIIfajlKKwoJBwO2ZWfZiUZuQxePDgThjZke/b3/426z5dRGNNVbvP6TtqPF98vpTG xsYEjkwkiwSrQgghxEGU9OpFmSPS5nFlBNjUUMWYMWM6YVRHvqysLM4480zef/pB1n+6qF3nuLw+ eg0cxkcffZTg0YlkkGBVCCGEOIh7HryfNe4Q9YQPe1wIzaihw2Vr1Ti68nv/jyXP/ZPHfno5u7Zt bNc5+aWD+fzzzxM8MpEMEqwKIYQQB1FSUsKM6dPZyeF3tCrBQ9nWbbIaPY4mT57M1OkzgJZZ0/bw ZhdQXlGRyGGJJJFgVQghhDiE42dMo7aNGv8mimyHm8rKys4ZVDeglGLBO2+TX1SMFT78zPZuthXB 5XQmeGQiGSRYFUIIIQ5h9uzZbDQD1LSRCuC0oEJm9eJu2rRprHj35XYdG25uIjMz8/+3d/8xXtcF HMdfXzy44yT5KU5BkB8JHIY05ubwR2k6vHG0CvyjNV1buSi3Zqtcf5TOUptzOXWtrJmArsj5a27O uX64ZU4EnGKa4NgdvwwNuEPgfghy9+2PNjbGFL4WfD73vcfjz+99/3j9+bz3ve/zOcmLKIJYBYCP MHfu3Pz87rvyXPO+/L255yOfuzqpO7ntx7ekWj3+0wM4cXfdeUfWPbUqe99757jf/WB/l3vDdUqs AsDH+PaNN2ZXV2eaZk7Kn0Z1563Teo+J1ulpzru7/p0DBw4UtLI+zZgxI1+/7rq8/penj/vdvn1d mThx4ilYxakmVgHgOBobG/P8C3/L/X9Ymd3TxuTlEd3Zmt5sS28OZSBJMr7p9GzcuLHgpfWnpWVO eva8d9zvde/d42S1TolVADgBo0ePzpIlS7Jm/brMWvz5HLpkVvYtOC9/HLEr29KbEb0f5onHHy96 Zt1ZsGBBdrz5ynGvWOzv6hSrdapSdcEGAD6xZ555JkuWLMniRdfknvvv8yar/7NqtZrJU85Lfypp uaItl3/txgwbdvRZ20B/f25fcmH6ensz3BMB6k5D0QMAYDBra2vL7t27M2HChKKn1KVKpZIHf/tA +vv7c9P3f5D22fPz6YsuO+o7Ha+9lBEjGoVqnRKrAPA/EqonV2tra5Jk8+bNWf3n546J1ZdW/zq3 /+ynRUzjFHBnFQAYFK699tpseun5HP7w0JHPDvb15F/tm7J8+fICl3EyiVUAYFCYPHlyZs+Zk47X 1hz5rPf9vWluPj3NzSf2WlYGH9cAAIBB44zRo9N/6L8nq++2b8wLj/wyCxcuLHgVJ5OnAQAAg8ai 1sXZ2VdNDn2QLW+8kqamprz1zze9EKCOiVUAYNDo6OjIQytWZP6FF+aqq67KmDFjip7ESSZWAQAo Lf9gBQBAaYlVAABKS6wCAFBaYhUAgNISqwAAlJZYBQCgtMQqAAClJVYBACgtsQoAQGmJVQAASkus AgBQWmIVAIDSEqsAAJSWWAUAoLTEKgAApSVWAQAoLbEKAEBpiVUAAEpLrTdacAAABEBJREFUrAIA UFpiFQCA0hKrAACUllgdAnbs2JE9e/YUPQMAoGZitY719PTk6kWtOX92S2bMPD99fX1FTwIAqIlY rWNr1qzJ2lffyOGZX85ApSEdHR1FTwIAqIlYrWOjRo3K4d59GbZrQw4f7Mm0adOKngQAUBOxWscu vvjibHzrzSz7wvysWrkizc3NRU8CAKhJpVqtVoseQbGeffbZrF3/Sm679ZaipwAAHEWsDnELL708 69etTUNDQ7o692TkyJFFTwIAOMI1gCGup7s7AxM/m8ZPTciLL75Y9BwAgKOI1SHuezd9NyO6t+Rg d1emTJlS9BwAgKM0FD2AYi1btizbt2/PvHnzMmvWrCTJhg0bcsO3vpOzzpqYxx5d7WoAAFAYd1Y5 xje+eUMe+t2DablgXv6x4dX09fWlubk5w4Y5iAcATi2xyjE6Ozuzffv2zJw5Mw0NDZnTckGuvPKK XHrJwlx//fVpaHAgDwCcGmKVj7Vp06a0tLSkWq2medw5mTPj3Dz91BOZNGlS0dMAgCHA33X5WLNn z84Pb/5Rho9ozKFJV+b1js7ce+99Rc8CAIYIJ6uckLHjJqRv2Bmp9O3OY4+uTltbW9GTAIAhQKxy Qp588sm0t7dn6dKlmT59etFzAIAhQqwCAFBa7qxSs9vvuDMPPPCb+D0HADjZnKxSs7mfmZ+3396U tsWLc9+992Tq1KlFTwIA6pSTVWr2ucsuSWXc+Xlu3ZbMbrkgP7nl1qInAQB1SqxSszVr16U68swM TJyfw9Pacs/9v8qqVQ8XPQsAqENilZqsXr06m9u3pnLG5CRJZfjIHBwzNysf+X3BywCAeiRWqckT Tz2dvlHTUxl22pHPKiPHZd3al7N+/foClwEA9UisUpOvfOmLGTWw96jPKk1jcvDMi3L1omuyc+fO gpYBAPVIrFKT1tbWfND1TqoDh4/+QUNTqtVqGhsbixkGANSlhqIHMLiMHTs2506Zmq19XamcPjHV g/vS+P7G9L+/LQ898nDGjx9f9EQAoI44WaVmB7oPpHJaYwZ6dmX4jr/m5uVfzbatW7J06dKipwEA dcbJKjWrDlRT/bA3TZ2vZuWKB7Ns2bKiJwEAdcrJKjX7xd13ZeSuNTnnrPFOUwGAk8rrVvlE9u/f n56enpx99tlFTwEA6phYBQCgtFwDAACgtMQqAAClJVYBACgtsQoAQGmJVQAASkusAgBQWmIVAIDS EqsAAJSWWAUAoLTEKgAApSVWAQAoLbEKAEBpiVUAAEpLrAIAUFpiFQCA0hKrAACUllgFAKC0xCoA AKUlVgEAKC2xCgBAaYlVAABKS6wCAFBaYhUAgNISqwAAlJZYBQCgtMQqAAClJVYBACgtsQoAQGmJ VQAASkusAgBQWmIVAIDSEqsAAJSWWAUAoLTEKgAApSVWAQAoLbEKAEBpiVUAAEpLrAIAUFr/AUSd jxJlCAfFAAAAAElFTkSuQmCC ", null, "https://i.imgur.com/uCOFXHp.png", null, " AAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlcTun/P/DXuSsUJYWIlKwxNYYoexlLsqXshuy7aSwh mhZ9DIMxzFgzIdtYx25CMSljmNBIiiakRUW0kOruvt+/P/p1vo6K2xZ3834+Hj0413au69zb+z7n us4tEBGBMcYYY4ypLdnH7gBjjDHGGHs3HNAxxhhjjKk5DugYY4wxxtQcB3SMMcYYY2qOAzrGGGOM MTXHAR1jjDHGmJrjgI4xxtRQWloasrOzS83Ly8tDeHg4zp07V869qrgyMjJw6tQpREdHf+yuMFYq DuhYuSMi7Ny5E126dEGHDh3g6OgIMzMzyGQyyGQyHDlyBKGhoRg9ejQGDhz4sbv7Xm3fvh3Lly9H s2bNMGzYsDLL3bt3DxMnToSjoyNGjx6Nnj17YtSoUbh165ZYJikpCQsWLECzZs2QkJBQHt1/Y+Hh 4bCysoJMJkPLli1x+PBhSf5ff/0FBwcH6OrqYsuWLQCAQ4cOoUGDBigoKPgYXX5nz549wzfffANf X19MmjQJs2fPLjGWnTt34ptvvoGnpycGDhyImJiY17YbEBAgvkZkMhk6deoEPT09SZns7Gy4ublh xIgREAQBdnZ2kjxXV1c4Oztj3LhxSE1NBVD0ely3bh369+//xmP9999/0atXL3Tu3Blt2rQR+xYb G/vGbX0op06dwqhRo+Dk5PRW9ePi4uDk5AQ/Pz+YmZmhZcuWYt7Vq1cxbtw4/PDDDxgxYgROnTr1 vrrN2JsjxspRYWEhDR8+nPT19SkkJESS9+OPP5KGhgYdOXKEFAoF9e7dm+zt7T9ST9+/mJgYsra2 JiKiqKgoGjlyJCmVyhLlwsLCSE9Pj5YuXSpJX79+PVWtWpWCgoLEtF27dpEgCJSQkPBhO/8Obt68 STKZjGxtbUvN/+GHH2jx4sXi9qVLl2jQoEEkl8tV3se9e/feuZ/vy9ChQ2nTpk3i9vDhw2nMmDHi 9smTJ6l9+/bi9qlTp8jIyIjS09Nf2W7fvn0pMDBQ/Lt+/bokPzU1lSwtLWnhwoWl1u/Xrx85OjoS EVFiYiKNGDGCfv75Z9qwYQOZm5vT7du332ichYWF1LJlS3J3dxfTQkNDSU9Pr8Rr+2N6l/eSP//8 k2rVqkXHjx8vkRcXF0eGhoYUFxdHREQPHz6kmjVrUkRExDv3+VUKCgooJSXlg+6DqScO6Fi5WrJk CQmCQAcPHiw1f+7cuXT48GEiInJ1dSU7O7vy7N4H5eXl9doPlSdPnlCdOnWoe/fupeaPGTOG9PX1 KTk5mYiIzp0798kHdERE/fv3J0EQKCYmpkRez5496cGDB2/ddkxMDE2ZMuVduvfe/PPPPyQIAt25 c0dMO3PmDAmCQDdu3CAiotatW5OXl5ekXv369Wnu3Llltnv27FlasmRJmflyuZw6duxIvXr1KjU/ MjKSBEGgy5cvExFRWloaHThwgIiKvkh5eHioNsAX3Lx5kwRBoEOHDknSN2/eTIGBgW/c3of0Nu8l iYmJZGhoSN99912p+SNHjizxeh41ahT16NHjrfupCi8vL/rjjz8+6D6YeuJLrqzcZGdnY9myZWjc uDGcnZ1LLTN9+nRoamqK24IglFf3Prjk5GTQa35pLyAgAGlpaRg/fnyp+ZMmTUJWVhZ+/PHHD9HF D2b69OkAgA0bNkjS79+/D01NTdSpU0eSTkVfNl/bbnZ2NoYNG4a8vLz319l3cOnSJQCQjMfS0hIA cPLkSeTn5+Off/4pMd7PPvsMJ06cKLPdNWvWwMvLC9bW1li5cmWJS7iBgYH4888/sXjx4lLr3759 G9ra2mjbti0A4Pz582jfvj0ePXqErVu34ttvv33jscrlcgDAxo0boVAoxPQRI0aUuBSsjjw8PKBQ KDB37twSeQqFAocPHxaPZ7G2bdvi7NmzePz48QfpU0hICJYuXfpB2mbqjwM6Vm7OnTuHp0+fokuX LmWWMTMzQ58+fcRtIsK+ffvQvHlzGBoaYsWKFWJeQUEB5s6di59++gmenp4YMmSIOEk8KCgIgwYN wvz587Fu3TqYmJjAxMQEZ8+elbS9ceNGeHl5wd3dHfb29pIJzwcPHsTXX38NZ2dnWFlZvXJ+DBFh 1apVmD17NubNm4f27dsjICBAzHd3d8elS5cQHx8Pd3d3rF69utR2Tp8+DQBo3759qfnW1tbQ1NRE UFCQJP3atWuwtraGtrY2OnfujNu3b4t5YWFhmDlzJjZt2oQ+ffrg0KFDAIDMzEwsWbIErVu3RnBw MIYOHQojIyO0atUKKSkp+PXXX9GpUycYGBhg1apVKh33svTs2RNNmzZFYGAgnj17JqYHBgZi9OjR 4nZqaioWL16Mxo0bIzExUUyPj4/HvHnz4OfnBwcHB/j5+QEAgoOD8fjxY0RERMDd3R03b94EANy6 dQuTJ0+Gr68vnJ2dMXjwYCQnJ4t5CxYswPDhw7F//34YGhpi3rx5mDBhAmQyGcaNG4eHDx8CACIi ImBkZITz588DAH7++WcYGRkhJSWl1HFmZWUBgOR4GBgYAADu3r2Lp0+fQqlUljheBgYGuHv3bpnH z87ODhMnTkRqairmzZuHzp07Izc3V8zfvHkzqlatir1796Jjx46oWbMmpk2bhvz8fADAF198AR0d HRQWFiI7OxsZGRkwNjaGp6cnvLy8oK2tXea+y2JpaQkrKyucPn0adnZ2+PfffwEAOjo64ny1sLAw jB07Fm5ubvjhhx9gbGwMAwMDeHt7AwAePXqE1atXw9LSEjExMWjSpAm6du0KALh+/Trc3NwwevRo WFhYYOXKleK+k5OTMWnSJPj7+2Ps2LElAtKYmBiMGDEC3377LTw9PREfHy/5cvi6xzEnJwd79+6F ubk5Jk+ejBYtWsDU1BRr164FUPR8zM3NhYmJiaSeiYkJlEol/vnnnxJtnj9/HoaGhjAwMMD169cB ACkpKejQoQPc3NzEcjt27MD06dOxcOFCdO7cGcuWLQMRQalU4siRIygsLMSGDRvg5eUFAFAqlVi+ fDm+/vprdOnSBd27d0d8fLzYnqenJzZv3ox58+ahVq1aZT6erAL4iGcH2X/M8uXLSRAE8vT0VKm8 q6sr1atXj/bs2UNERCtWrCAtLS3KyMggIqLVq1dT48aNxfJWVlbk5+dHREXzZj777DNq2bIlhYSE kFwuJycnJ2rVqpVY3sPDg9asWSNud+jQgTp27EhEROHh4bRgwQIxb9q0aaSjo0MPHz4sta+LFi2i IUOGiNvXr18nDQ0NWr9+vZg2ZsyY115ybd68OclkMiooKCizTJ06dahatWpE9H+XXCdPnky3bt2i kydPkpGRETVr1owUCgUplUoyNDSkXbt2ERHRb7/9Rrq6upSXl0cKhYLCwsJIEAT6+uuv6cmTJ/T8 +XMyNzcna2trunjxIhERbdiwgbS1tSknJ4eIXn3cX2XNmjUkCAJt3LhRTGvTpg3l5eWJ21lZWeTv 7y+5jJyYmEjW1taUnZ1NRESnT58mQRDozJkzRERkZ2dHY8eOFdtISUkhIyMj8RInEdGQIUOoUaNG 9PTpU7p//z516tSJGjZsSMeOHaOffvqJ9u7dS7m5uWRgYEDTpk0T66WlpdGoUaPE7cDAQGrRogWl paWVOsYjR46QIAh05MgRMU2hUJAgCDRjxgwiIjIwMKCBAwdK6o0aNUp8TF+loKCAFi1aRIIg0KxZ s4iIKD8/nzQ0NMjGxoaePn1KREXzEHV0dGjevHli3UOHDtHChQtp27ZtpFAoKDIyssxLtKq6f/8+ tW3blgRBoMqVK5Ofnx8VFhaK+f/++y+Zm5tT06ZN6ezZs/TgwQOaNGkSCYJAe/fupfT0dJozZw4J gkD+/v50/Phx8vb2pqysLOrXr5/Yzr59+0gQBDp58iQRETk5OdHEiROJiOjx48ckCAKFhYUREVF6 ejoZGxuLl/eVSiV9/vnnktfe6x7H4OBgyWNGRPTzzz+Lffjzzz9JEATasmWLpF7x5fXi96yXff/9 91SpUiXKysoS04YPHy6+3jdv3kw2NjZi3oMHD6h69eri43j37l0SBIFCQ0PFMkuWLBGPCxHRZ599 Rm3btiUiopCQEHJ2dhbzXr7UzyoWDuhYuVm6dCkJgiAJlF7F1dVV8iYcGxsrmQcUEREhBkxKpZI6 dOhA48ePF8u//EG/adMmqly5MhEVTSDX1taWBE7R0dHi3JRevXrRsGHDaMGCBbRgwQIaN24cde7c ma5evVqinzk5OaStrU179+6VpA8aNIjq1KkjGc/r5vFYWFiQTCaj/Pz8MsvUrl2bqlatSkT/F9D9 +++/Yv7mzZslQYWfn5+4aCAoKIgEQaDExEQiKv0DYvjw4aUe98jISCJ6/XEvS1ZWFlWrVo0sLS2J qGgC/eTJk0uUe3le4MyZM8nb21tSZufOnWKA2bVrV8njvGjRIrKwsJCUv3HjBgmCIPbb1dVVsjCh 2IIFC0hPT09se+PGjXT06NHXjq2YXC6nJk2aUOvWrenJkyekVCrFAHXZsmVEROTj40OVKlUSA9Jb t25RgwYNqHnz5irvZ+LEiWRiYkJERQGsIAj0448/SsqMGjWKdHV1y2yjV69edOvWLcrMzKT58+eT h4cH/fbbbyr3oZhCoaCff/6Z9PT0SBAE6t69O+Xm5or5dnZ2kkUh+fn5VLNmTerZsycREW3dupUE QZA855cuXUodOnQQX3+zZs2izp07U0BAABEVLQYqXniRl5dHgiDQjh07iIho/vz51KFDB0kfx4wZ 80Zz6Hbv3k2CINC1a9ck6aamptS3b1+6cuUKCYJAW7duleQXB4JlHcfHjx+Ttra2+DxMSkqSLCqp V68eff/995I6c+fOpcqVK1NWVlaJ12t+fj7p6enR/PnzxWPl4uJCXbt2JYVCQSdPniQ9PT3xy1lZ ASyrGDRffw6PsfejQYMGAIput6EqemEeVeXKlQEAz58/BwC0adMGLVu2xC+//ILc3Fzk5ORAqVSW 2ValSpXEuUd//fUXqlevDi0tLTG/RYsW4v8jIyOxc+dOdO/e/bV9jI6ORl5eHqpWrSpJb9WqFQ4e PIgHDx6gbt26Koy26JJzbGws0tPTUb9+/RL5hYWFePLkCZo2bSpJf3EcvXr1AgDExsaif//+8PT0 RGRkJPbt24eMjAwAeO1xKu24F18mfNPjXkxPTw+jRo3Cxo0bERYWhsDAQEyYMOG19cLDwzFlyhRJ 2siRI8X/vzzP8sqVKyUeixYtWqBSpUqIjIwsMa4XzZgxAz/88AN27NiBqVOnIiQkBLt27XptH4tp amri3LlzcHd3x5dffgkrKys0b94cAMRLiV5eXqhUqRI8PDywYcMGdO3aFUQk5qtizJgx2L59OwBA V1cXAKChoSEpY2lpiZ07dyI9PR21a9eW5B08eBBffPEFzMzMYGNjAwcHB3z33XcIDAxEXl4eqlSp onJfZDIZZsyYgT59+qBfv34ICQmBr68vli1bJpZ58TGqVKkS2rVrJ16ifTG92LVr12Bvb4///e9/ pe5zxIgRSE1NxY8//iiOv/g5GBISAnNzc0l5UmE+5ovKOqYtW7ZEfHy8eDxfnD7w4raxsXGp7dao UQODBw9GQEAApk6dip07d2Ls2LEAiu4rmJKSUur7SEFBAaKjo0u8j8THxyMnJwf/+9//JHOPizk4 OKBDhw7o3LkzZs6cWebxZBUDz6Fj5aZbt27Q1NTE+fPn3/gNtjS3b9+GjY0N2rZti6+//hqGhoYq 15XL5Xj48KE4x+hlubm5uHPnTon00u6NVvym/3KgWrNmTQDSYOt1HBwcAAAXL14sNf/69esoLCxE z549y2yjeJ5M8YfyokWLsHr1asyZM0ds/20UP2bvctxnzJgBAFixYgUiIyPLnCv4Irlcjnv37qm8 Dw0NDcn8O6AooDAwMHjtY1GvXj24uLhgw4YNePz4cYmgXxX16tXD7t27ceXKFWzduhXR0dGwtLSE ra2t2BcPDw/8/fffOHjwID777DMkJSVh4sSJKu9DX19ffJyrVauG2rVrIz09XVKmevXqAP4vOCmW l5eHNWvW4Ntvv8WaNWuQkpICHx8fAIChoaH4hel1du/eLdlu2LAhTpw4AZlMVmKO58t0dXVfuXDi +fPnr3z9HT58GM7OzhgzZkyJLwVPnz7FkydPStR9kwVWjRo1AoBSj6muri7q1auHWrVqlXjNJyUl QVNTE82aNSuz7SlTpuDq1au4fv06bt++DQsLCwBv9z5SPI+yrGMlCAKOHTsGHx8fbNq0CW3atMGj R49eOXamvj7pgC4tLe1jd4G9R3Xq1MH48eORmJgonl142fPnzxERESFuv+pNeObMmWjUqBE+//xz AJCstHsdCwsLKJVKbNq0SZJ+7NgxKJVKNGnSBAEBAZLAMyUlpcSHGFD0rb1atWoIDw+XpKekpKBx 48biG/LrxgMAY8eORd26dUv0q9iWLVugq6uLWbNmldlG8UTvbt264eLFi1i6dClmz54NmUym0pm0 1/XzXY57ixYtYGdnh+PHj5e50vllFhYW2LFjhyTQyMnJQUhIiLj94uPUvn17pKenS84AyeVyPHr0 CB06dBDTyhrjrFmzcOPGDcyePRuDBg1SeWylOXfuHPbt24effvqp1Pznz59j5syZGD9+PNq0aaNy u1euXJEsHho4cCDCwsIkZVJSUmBhYVFiwcMPP/yAmTNnQkdHB+Hh4XB0dBTPVqampqJGjRoq9SEi IgJ//PGHJM3U1BQ1atSAkZHRK+vevXsX3bp1KzO/SZMmOH78uHjzY6Do7PTq1auRn58PV1dXDBs2 DDVq1CjxnG7cuDEiIiJKBKZv8iXSwsICzZs3L/WYWltbQxAEDBgwQPJeBQB///03evToAX19/TLb bt++PaysrDBz5kzJ87FmzZpo1KhRqe8jurq6sLS0FJ+zxWNp1KgRZDIZ/P39JXV+//133LhxQ1zM s2jRIly7dg2PHz9+ozPOTM2U5/XdpKQkmjp1Km3YsIFGjx4tmbT8ort379KIESOoS5cuZbZ15swZ +vLLLz9UV9kH8vz5c+rWrRvp6OhQYGAgKRQKMe/q1as0ePBg8aaZI0eOFBcpEBHdvn2bBEGg4OBg IiKytLSk5s2bU2ZmJl26dImMjY2pV69e9OjRIyIi6tixI7m6uor1N23aRIIgiDfz7dWrF2lpadGi RYvoxIkT5O3tLc7DCQgIIEEQyMXFhc6ePUv79++nfv36iZPOX7Z06VKqXLky3b17l4iK5ra0bNmS 9u/fL5YZPnx4qfO2Xnbx4kXS19cnX19fyY2H9+zZQ1WrVpVMuA8NDSVBECg2NlZMmzNnDk2aNImI iA4cOECCINCmTZvo2bNnNGPGDBIEgcLDw+nJkyf077//kiAIkvtajRo1ijp16iRuv1zmdcf9dQ4e PEgymazMe+cVL3oovmFr8QT0Nm3a0K5du2j//v00cuRIcTGFi4sL2draklKppKtXr1JGRgbVq1dP nDRPRLRjxw5q3bq1eLPil8f4MltbW6pVq5bk+UlEtGXLlldOpn/R33//TWZmZrR79+5S83Nycmjg wIE0aNAgyVzOvLw8atu2rXhj6WPHjtGQIUPE98u0tDTq3r27pA+xsbFUtWpVsYxcLidLS8sS8zqT k5NpwIAB4va0adNo/vz5RFR0Y9wX++rm5kZDhw6l58+fl9r/NWvWkLGxMUVFRYlpxfMfX5x32LVr V+rWrZu4ffnyZapTp454I+Xi19qLiylu3bpFmpqaZGVlRUePHqUzZ86Qi4sLRUZG0qNHj0gQBBo1 ahQVFBTQ9u3bSUNDg5YuXUqPHj2iY8eOkSAINHHiRHr+/Dk9fPiQrKysyNzcnKKjo4lItcdx69at ZG5uLs4HvH//Punr64uv8ZiYGNLV1aX4+HgiIsrIyCADAwOV7hG3fv16qlatWon3k19//ZUEQaAL Fy4QUdEc1R49etCKFSuIqGgeqkwmow0bNlBaWholJSXRqFGjSCaTkaenJ4WFhdG6devEuanbtm2T vAc5OTlJtlnFUm4BnVKppNatW4sTgW/evEkNGzaUvIiLJSQk0IwZM6hz586ltpWWlkadOnWqUL8i 8F8il8tp7dq11K5dOzIzMyN7e3saMGAAeXl5iW9woaGh1KBBA9LV1aX9+/dTRkYGTZ06lWQyGQ0f PpwyMjJo165dZGBgQCYmJrRp0yZatWoV1ahRg5YvX05BQUGkp6dHjRs3prCwMIqPj6cuXbqQTCaj H374gYiKPsCcnZ1JR0eHzM3Nyd/fX9JPb29vMjIyIj09PXJycnrtzXtXr15NnTp1Ig8PD5o8ebJ4 41aiojfqunXrUtWqVWnr1q2Umpr6yrbu3btHEydOJHt7exo6dCg5ODjQiBEjxA+kYvn5+TR37lzq 2rUrTZw4kSZOnCiZVP3s2TPq2rUraWtrU9++fSk6OprMzMyoXbt2lJCQQHPnziWZTEYzZsygxMRE Cg8Pp+bNm5Oenh7t37+fnjx5QrNmzSKZTEYTJkygxMTEVx53VSgUCkmg/aKYmBgaMWKE2KfiGw7v 2LGDGjZsSNWqVaMBAwZQUlKSWOfUqVOkr69PXbp0ET9s4+PjqW/fvjRy5Ejy8vKi6dOni6ujjx49 SiYmJqSrq0uBgYGlBukbN24s9WbF69atIyMjI/HGzqW5efMmeXl5Uf/+/emff/4pkZ+VlUXbtm0j R0fHEs85oqLHzNTUVJwsHxYWRk2bNiU9PT2aNm0a+fn5lfqrEmfPnqXevXuTh4cHjRkzhjZv3lyi zPjx4yXB/4MHD8jFxYWWLVtGP//8s+QLRM+ePUkmk5U5wb84cNLS0iJ7e3tydnYmGxubEjcN79q1 K7Vv357Gjx9PU6dOJWdnZ3EFamRkJNnZ2ZFMJiMfHx/JL34cPHiQmjZtStra2mRjYyNZuOPm5kY6 Ojr0xRdfUFhYGDk5OZGJiYn4Zc/f35+aNGlCNWrUoAkTJtCUKVNo0qRJ9NdffxGRao8jEdHatWtp wIABtGjRIho+fLgYaBX7448/aOjQobR8+XIaOXKkeFP018nKypKsQH7R7t27qUOHDuTu7k4zZsyg DRs2SPInTJhAenp6NGfOHCIiyszMpBEjRlC1atXIyMiI3NzcxCB827ZtVKNGDVqyZAmtWrVK5QVp TD0JRO9hMpMKzpw5gwEDBiA7O1ucvNmsWTN89913cHFxKVHex8cHISEhJU55ExF8fHxgYmKCXbt2 8Y9PM8beu2XLlqF9+/ZvtFABKLosGBwcjHbt2on3n3vZpUuXoK+v/8p5Vp+KX3/9FU2bNn2jy8Ev s7e3R8OGDcXf6mWMfRjlNofuwoULMDc3l6zEadq0qeRGr6rw9/fHmDFjSl3Rwxhj70oul+P8+fNv HMwBRatcHRwcygzmAMDGxkYtgrnk5GTExcW9UzDHGCs/5RYVpaamlljVVL169Te6hcXly5dRs2ZN NGzYEKGhoe+7i4yx/7B58+YhKSkJOTk577wYoiLIzs5+q58Ee1lhYWGpq8MZY+9XuZ2h09TULLHs WtUVd0DRT+oEBQWVenmWMcbeVXp6OoKCgtCiRQuMGzfuY3fno7OwsHjn31IODAzEP//8g3PnzmH7 9u0c2DH2AZXbGTpjY+MSy7EzMzNhZmamUv3Q0FB899134g8TKxQKKBQK6Ojo4PLly/jss8/EsmPG jJG0a2dnBzs7u3cdAmOsAtu2bdvH7kKF4+rqCldX14/dDcb+E8otoLO3t5fcORwo+pHsMWPGqFS/ f//+yMvLE7cDAwMRGBhY6hy8wMDA93LjWsYYY4wxdVBul1xtbW1hamoqrkqNjY1Fbm4u+vbtC09P T0RFRUnKv+5yLBXdcuWD9ZcxxhhjTF2UW0AnCAKOHDmCwMBArF+/HsuWLcPx48eho6ODoKAgxMXF iWXPnz+Po0ePIiYmBocOHYJcLi+1vXed38EYY4wxVhGU233oypMgCHz2jjHGGGP/GZ/0b7kyxhhj jLHX44COMcYYY0zNcUDHGGOMMabmOKBjjDHGGFNzHNAxxhhjjKk5DugYY4wxxtQcB3SMMcYYY2qO AzrGGGOMMTXHAR1jjDHGmJrjgI4xxhhjTM1xQMcYY4wxpuY0P3YH2Ie3bt061K9fHwMGDPjYXcGu Xbtw4sQJ5OXl4bfffntl2YcPH2Lp0qW4ceMGjI2N8fDhQ1SuXBkLFixAu3btyqnHjDHG2KePz9D9 B2zevBkbNmx46/oJCQnvrS9Dhw5Feno6MjMzX1kuNjYWrVq1Qn5+PoKCgrBt2zacOHECrq6usLe3 x7Zt29543+9zHIwxxtinhAO6Cu7y5cvIycnBmTNnEB8f/8b18/LyMGXKlPfWH01NTdSvXx9EVGYZ hUKBQYMGoXr16vj5558hk/3f03TAgAGYN28eJk+ejMjISJX3Gxsbi2XLlr1T3xljjLFPFQd0FVxg YCCOHDkCLS0tbNy48Y3rT58+HbGxsR+gZ2U7fPgwbt68idGjR0uCuWKTJk2CXC7HkiVLVGovOzsb w4YNQ15e3vvuKmOMMfZJ4IBOFYLw4f8+gJycHBQUFOCzzz6Di4sLtm7divz8/FLL+fj4wM/PD199 9RW++uorZGdn4/r164iNjcWTJ0/g7u6OY8eOITQ0FAYGBhg7diwAIDo6GgMHDpQEXtnZ2Zg2bRo2 bNiAmTNnYvLkySgsLFS536dPnwYAtG/fvtT8unXrwtTUFGfOnAERYe3atZDJZAgMDAQAnD17Fs2a NYO9vT0AIDg4GI8fP0ZERATc3d1x8+ZNAEB8fDzmzZsHPz8/ODg4wM/PT9yHXC6Hp6cnPDw88M03 36B9+/Y4evQoACA/Px+rV69Gp06dsGfPHkyaNAn169dH48aNERUVhTNnzqBHjx7Q19fHnDlzJH0/ ePAgvv5l0uK0AAAgAElEQVT6azg7O8PKygqnTp1S+bgwxhhjZaIK6L0PC/jwfx/Axo0bKTQ0lIiI wsPDSRAE2r59u6SMQqGgLl260NWrV4mIKDs7m6pUqUKLFi0iIiJvb28yMzOT1OnSpQuNHTtW3N6y ZQsJgiBuf/PNN9SjRw8iIlIqlVSjRg3asWOHmO/q6kp2dnZl9tvBwYEEQaDbt2+XWcbW1pZkMhk9 evSIlEolCYJAgYGBkn3Y29uL23Z2dpI+JyYmkrW1NWVnZxMR0enTp0kQBDpz5gwREY0cOZLmzZsn lj9x4gTJZDI6ceIEERElJCSQIAg0ZMgQSklJIaVSSR07dqTmzZvT8ePHiYjo999/J0EQKC4ujoiK HoMFCxaIbU6bNo10dHTo4cOHZY6TMcYYUwWfoVNFeYR0H0B4eDi6dOkCAOjYsSMsLS1LLI44fPgw AOCLL74AAOjq6uLIkSPiGbjSCC+dUXx5u3fv3pgwYQIAQKlUomrVqrh3757K/S5uj15xXJRKpVjm 5f0Xe7H+y20tX74cffr0ga6uLgCgR48e2LFjB2xtbREXF4fdu3fDxcVFLO/o6IjWrVvD19cXANCg QQMAQJ8+fVC3bl0IgoDOnTsjLy8Pffr0AQDxDGF0dDQAwM/PD/fu3YOHhwc8PDyQl5eHNm3aIDEx UcUjwxhjjJWOb1tSQV29ehX//PMPBg4cKEn/66+/EBkZiVatWgEAwsLCYGxsLCnTs2fPV7ZdVgD1 Yv2srCysXbsWgiCgsLBQDMBUYWZmBgBIT09H06ZNSy3z8OFDVK1aFTVr1lSpzZf7HB4eXmKxx8iR IwEUHTsAqFq1qiS/VatW2L59e5n7qFy5cqnb2dnZAIDIyEjs3LkT3bt3V6nPjDHGmKr4DF0FtW3b Npw7dw6HDh0S/4KDg6GpqSk5SyeXy9/77TwuXryIrl27on///pg+fTqqVKnyRvUdHBzEdkqTkZGB e/fuvVNgJJfLyzxrqKGhAQBISkqSpNesWROamm/+Haj47GBubi7u3LlTIr+goOCN22SMMcZexAFd BfT06VOkpaXB0NBQkl6rVi04Ojpi9+7dyMnJAQC0aNECly5dKnELkOJLsYIglLhcKQgCFAqFuP3i /wFgzJgx6Natm3hZsrSzc686y9evXz9YWVkhICCgRNsAsHXrVmhqasLDw0OS/uJ+Sqv34jgsLCyw Y8cOPH/+XEzLyclBSEgIbGxsIJPJEB4eLqmfkpKCjh07ltnv12nSpAkCAgIk/UhJScHu3bvfuk3G GGMM4ICuQgoICICtrW2peY6Ojnj27Bl++eUXAMCoUaNgaGiIXr16Yf369Thx4gQmTJggXuo0MDBA WloasrKyxEuRZmZmCA0NRUpKCmJjY3HixAkAwP379wEADx48QGRkJPLy8nDq1Ck8fvwYKSkpyMjI AAAUFha+ctWrIAjYv38/cnNzMW3aNMjlcjEvNDQUfn5++Omnn9C2bVsx3czMDIcOHcLTp08RHByM GzduID09XVzVa2hoiNjYWBARrl27hlmzZiE5ORmdO3fG7t27ceDAAUydOhWdOnWCiYkJJkyYAH9/ f/EGyFlZWTh9+rQ4h644YHwxOFMqlZJxFZcpDjSnT5+Ov//+G4MHD8a5c+dw4MABTJkyBYMHDy7z WDDGGGMq+VirMT6kCjoslezatYv09fXJ0dGRIiMjJXkxMTE0aNAgEgSBatSoQbt37yYiooiICGrX rh1pa2tT27ZtKTw8XKyTnJxMjRo1oiZNmlBQUBAREcXFxVGrVq2oWrVqNGHCBDp06BA5OjpSYGAg KRQKWrFiBenq6lKzZs3ot99+Izc3N6pduzbt3LmTDh48SHXr1qUaNWrQnj17XjmWhw8f0pw5c6hr 1640ZMgQ6tu3Lzk5OdGFCxdKlD127BjVq1ePateuTT/++CP5+vrSuHHjKDg4mIiITp06Rfr6+tSl Sxe6e/cuERHt2LGDGjZsSNWqVaMBAwZQUlKS2F5hYSF5enqSvb09eXp60oQJE+iPP/4gIqKnT5/S ihUrSBAEGjx4MN2+fZuuXbtGnTp1Ik1NTfrll18oOzubli5dSoIgUP/+/enWrVtEVLRq2MjIiPT0 9MjJyYkSEhLe5OFljDHGSiUQfaAllh9RaZcJGWOMMcYqKr7kyhhjjDGm5jigY4wxxhhTcxzQMcYY Y4ypOQ7oGGOMMcbUHAd0jDHGGGNqjgM6xhhjjDE1xwEdY4wxxpia44COMcYYY0zNcUDHGGOMMabm OKBjjDHGGFNzHNAxxhhjjKk5DugqmGPHjqFBgwaQyWTo3LkzQkJCJPmnT59Gu3btULduXRw9ehQA sGbNGrRp0+ZjdPeNfPPNN5DJZLCyskL37t1hbGwsjrNTp04wNDSETCbDnTt3MHv2bJiZmZVLv0JD QzF69GgMHDjwrds4ceIExo8fj/bt25dZZu/evXBxccH06dPfej+MMcYqpk86oEtLS/vYXVA7/fr1 g7+/PwCgfv36+PLLLyX5PXv2hK2tLZYvX47+/fsDABo2bAhra+s32k9CQsL76fAbEAQBv/32G65f v47g4GD06tULgiBg165dCA8PR1JSEiwtLWFubo7atWvj/v375dKvzp07IyMjA1lZWW/dRu/evaFU Kl/5nHdxccHt27fx/Pnzt94PY4yxiqlcA7rk5GRMmzYNGzduhKurK6Kjo0std+/ePYwcORJDhgyR pOfl5WHq1KmoWbMmTExMsH79+vLottpxcHCApaUljh49iszMzBL5Fy9exNChQ8Xt/v37Y9OmTSq3 f+7cOQQGBr6Xvr6J2rVrw8nJSdwmIhCRuK2trY3Ro0cDAOrUqVNu/ZLJZKhVq5akL2/Thqmp6Svb 0NTURM2aNd96H4wxxiqucgvoiAj9+/eHs7MzpkyZggULFqBfv35QKBQlOyWTwcDAoMSH24oVK9Ct WzecP38egwcPxowZM3DhwoXyGoJamT59Op4/f46tW7dK0sPCwtC2bVtUqlRJkl7a41Ca5ORkjB49 +p2Cl7fl7u7+2jJubm7l0JPSCYLwwffxMY47Y4yxT1+5BXTBwcGIiYmBnZ0dAMDCwgJaWlo4fPhw ibINGjSAoaFhiQ8vIyMjDB48GC1atMCqVatgamrKAV0ZvvrqK+jr62PDhg2S9G3btsHV1VXcjo+P h7u7O+rXry8pd/XqVbi7u2Px4sWws7MTz+D9/vvvyMnJwenTp+Hu7o4HDx4AAC5duoRJkybB29sb vXv3xoQJE8RLkFeuXMH06dMxa9YsrFmzBnp6eli+fDn69esHmUwGDw8PPH36FEDRHL86dergxo0b Jcakqan52nG/XCYqKgodO3aErq4uhg4dCoVCAaVSiePHj8PZ2Rnbt28Xj1V0dDTy8vLg7e2NadOm oV27dnB2dsbDhw8BAAUFBZgzZw62bNmCKVOmoHXr1pJ9ERH27duH5s2bw9DQECtWrJDk//7775g8 eTK+/fZbdOvWDXPnzkVBQcErx/Pnn39i2LBh8PX1haenp9gXxhhjTILKibe3N7Vs2VKS1rdvX5o2 bVqZ5Tt16vTKNm1sbOjXX38tkf6+hwXgg/99CLNmzSJBECgoKIiIiJ49e0bW1taSMk+ePCFPT08S BEFMu3r1Ktnb25NcLiciIn9/fxIEgW7fvk1ERGZmZuTr6yuWv379OtWqVYvS09OJiEgul1OHDh3I 1taWlEolxcXFUaNGjeiLL76gs2fPkq+vL507d44SExNJS0uLli9fLrYVERFBCxcuVGl8rq6uJAgC JSQklMjbunUrCYJA33//PeXn59Ply5dJEAQ6cuQI5eXl0Z9//kmCIJCzszNFRETQtGnTKDk5mSZP nkzR0dFERJSbm0s1a9akwYMHExFRQEAAzZ49W9yHl5eXpC/16tWjPXv2EBHRihUrSEtLizIyMoiI 6NSpU2RmZkZ5eXlERJSTk0Pm5uY0ZMgQsQ1vb28yMzMTt2/evEl169alhw8fElHR42dkZERjx45V 6fgwxhj77yi3M3SpqanQ09OTpFWvXh1JSUlv1V5eXh4yMzMxYMCA99G9Cmn69OkQBAHr1q0DABw4 cAAuLi6SMvr6+mjUqJEkzdvbG6NHjxbPdo0ePRrbtm2Dubl5qfv5/vvvYW1tjVq1agEoOku2cOFC XLp0CadOnULjxo1hYmKC5s2bw97eHl5eXrCzs0P9+vXh4uIimb938OBBDBs27L0dg3nz5qFSpUpo 27Yt6tSpg1u3bqFy5criatJevXqhTZs2WLdunXiGbceOHfDw8MDixYthY2MDpVIJAMjPz8fevXsR FxcHACVWmzZt2lScm9ivXz8UFhYiPj4eALB48WL07t0blStXBgBUq1YNs2fPxv79+xEbG1tq3319 fWFvby/Om9PR0YGFhcV7OzaMMcYqjnIL6DQ1NaGlpSVJK/6gfBubN2/GqlWroK2t/a5dey36/5Pv P+Tfh9CoUSP06tULJ0+eREJCAnbu3IlRo0a9tl54eDiMjY3F7cqVK2P06NHQ0NAotfyVK1dQtWpV SVqrVq0AANeuXQNQdAyrVKlSou4333yDO3fu4PfffwcAREdHw9LSUrUBvqHKlSuXWCH6Yp+uX78O bW1tLF26VPw7fvw4Dhw4AABwdXWFkZERPv/8c3z33XcwNDSUtPXi41gcuBXvT5Vj9LKQkJASl8I/ 1HOFsY9JrlS8cpsx9nqvn5T0nhgbGyM8PFySlpmZ+Vb3CouKioKmpiYcHR3LLOPj4yP+387OTpy7 918zY8YMBAUFYcGCBZDJZKhXr95r68jlcty7d0/lfWhoaCAxMVGSVnxW6eUg/mU2NjawsbHB+vXr Ua9evRLz0spTbm4u0tPT8fz58xJfFORyOXR0dBAWFoZFixbBx8cHJ0+eREhIiBi8vYqmpmaJs9Gv O0bPnj0rsUq5PBZeMFbetGQaqL91gbidNHbZR+wNY+qp3M7Q2dvb486dO5K0W7duvXGglZKSgpCQ EEydOlVMKywsLFHOx8dH/PuvBnNA0f3NGjVqhL1796p0dg4oWrCyefNmyRnU5ORk/P333wCKgooX zxS1b98e0dHRyM7OFtNSUlIAAB06dBDrlGXWrFn4/fffsXLlyvd6ufVNNWnSBAqFAgEBAZL0rVu3 4tGjRwgODoaOjg5+/PFHnD9/HleuXMGpU6fEcq8ao62tLS5evCg5pikpKZDJZLCxsSm1TqNGjXD+ /HlJ2oc8o8sYY0x9lVtAZ2trC1NTU5w7dw4AEBsbi9zcXPTt2xeenp6IioqSlC/tcmxWVhb8/Pzg 4OCA2NhYREdHY+nSpcjLyyuXMagjQRAwdepU6OrqwtnZudQycrkcwP8FxrNnz8aVK1fg4OCA/fv3 Y8eOHfD29kbbtm0BAAYGBoiJiUFhYSGioqIwf/58CIKAtWvXim3u2rULffr0EQM6hUIh7udlLi4u qFu3LqKiotCsWTOVx5aTkwOg6EzWy4rH8mKwX1BQIPah+Pn1Yp+srKzQqVMnuLu748cff0R4eDiW Ll2KhIQE1K1bF3/++SciIiIAFD2fmzdvjrp164r7eXHFanG7xf96e3sjJSUFe/bskRyjKVOmwMTE RGzjxdvHTJ48Gbdu3YKfnx8KCwtx7949xMXFIS4uDnfv3lX5ODHGGPsP+PDrLv5PfHw8ubq60rp1 68jV1ZUiIiKIiKhNmzZ08OBBsVxoaCh9/vnnZGhoSL/99hsVFBSQQqGgrl27kiAIkr+RI0eW2E85 D+uT9+TJE5oxY0apeREREdS9e3eSyWS0ePFiysrKIiKilStXkrGxMVWvXp1Gjx5NmZmZYp0tW7aQ rq4u9evXT1zFeeXKFbKzs6NJkybRokWLaM6cOeKKzm3btlH16tWpfv36tGfPHlIoFCX6sWDBAlq2 bJlK43n8+DGtWbOG9PX1SSaT0ZAhQyg4OFjM//fff8Ux+fr60rNnz2jdunUkk8noiy++oH/++Udc 2WtnZ0d//PGHWDcxMZEcHR1JW1ubTExMaPHixWKej48PmZiY0A8//EBLliyhlStXElHR87VBgwak q6tL+/fvp4yMDJo6dSrJZDIaPny4eIzOnDlDHTt2JDc3N5o7dy75+fmRUqkkIqKQkBCysLAgLS0t CggIoOfPn5NSqSQ/Pz9q0KABGRkZ0fz582nIkCE0e/ZsioqKUulYMaYu6m2ZL/4xxt6cQFTxrt+8 fEmQffqmTp2K+fPnl9vvrzLGPi08h46xd/NJ/5Yr+2948uQJ0tPTOZhjjDHG3lK5rXJl7GXF97qL i4uDr6/vx+4OY4wxprb4DB37aBITE3H8+HEMGjQI3bp1+9jdYYwxxtQWn6FjH03ximfGGGOMvRs+ Q8cYY4wxpuY4oGOMMcYYU3Mc0DHGGGOMqTkO6BhjjDHG1BwHdIwxxhhjao4DOsYYY4wxNccBHWOM McaYmuOArhRypeJjd+GT6ANjjDHG1APfWLgUWjINyQ9Ffwzv+8epk5OT8fnnn+PUqVNo06bNe227 WE5ODgICAnDy5El069YNCxa83TFcs2YNtm/fjitXrrznHjLGGGMVE5+h+4/Q1dVF+/btUb169Q+6 j/Hjx+PSpUsoKChQuV5CQoJku2HDhrC2tn7f3WOMMcYqLA7o/iP09PRw7NgxNG7c+IPuR1dXFwYG BiqXJyKMHTtWkta/f39s2rTpfXeNMcYYq7A4oPuPUSqVH7sLEn5+fvjjjz9KpCsUPIeQMcYYUxUH dBXQ9u3bsXLlSqxatQpGRkb466+/4O/vD1tbW+zcuRMAEBERgUmTJqFXr144ffo02rZtCz09Pbi5 ueHZs2eYM2cOTE1N0axZM8TExAAArl69isaNG8Pe3h4AcPfuXUyZMgUymQz3798vsz/R0dGYOnUq /P39MXjwYGzYsAEAkJiYiL/++gsA4O7ujsDAQMTHx8Pd3R3169eXtHHp0iVMmjQJ3t7e6N27NyZM mICsrCwAwMWLF+Hq6opRo0bhwIEDaNq0KWrXro3du3eL9e/cuYO5c+ciICAAPXr0wKxZs97T0WaM McY+Pg7oKpi8vDzMnz8fc+fOxezZs7Fx40bIZDJ07NgRly9fFst98cUXUCqViIiIwLNnz3Dp0iXs 378fP//8M+bNmwcfHx/cuXMHtWrVwpIlSwAArVu3RseOHSEIAoCiuW7Dhg17bZ+++uormJiYYNKk SVi4cCFmzpyJxMREmJiYYMiQIQCAFStWwNXVFYaGhqhSpQrS0tLE+lFRUejXrx+WLFkCX19fHDt2 DDExMXBwcAARwcbGBhkZGQgLC4MgCLh58yaGDRuGmTNnim34+Piga9euGD9+PI4ePQojI6P3crwZ Y4yxTwEHdBWMXC5HRkYG1q1bBwDo168fmjZtipYtW0rKaWhooH79+tDT08PAgQMhk8lgZ2cHALCx sYGuri40NDTQpUsX3LhxQ6wnCAKI6I36NH78eDg6OgIAdHR0oFQqSyyEKKavr49GjRpJ0r7//ntY W1ujVq1aAABNTU0sXLgQly5dwqlTpyCTyVCzZk2Ym5vDxcUFmpqa6Nu3L548eSIGhgUFBVizZg1y cnKgra2NcePGvdEYGGOMsU8ZB3QVjK6uLnx9fTFz5kw4OjoiOTkZ+vr6KtWtXLlyibRKlSohOzv7 nfo0Y8YM6OrqYuXKlThy5AiAN5vLd+XKFVStWlWS1qpVKwDAtWvXxLQXA81KlSoBAPLz8wEA3377 La5duwYLCwscOnQItWvXfrvBMMYYY58gDugqIA8PDxw4cABRUVGwsrLCn3/++U7tvXxGrviSq6o2 bNiAr7/+GjNmzBAvsb4JDQ0NJCYmStJq1qwJANDS0lKpjZYtW+Lq1av4/PPP4eLigjlz5rxxPxhj jLFPFQd0FUx6ejqioqLg7OyMmJgYWFlZYeXKle+tfUEQJCtQX7caNSkpCTNnzsTkyZNRpUqVEmfm VAkO27dvj+joaMmZwpSUFABAhw4dVGorODgYpqamOHHiBFatWoXVq1cjMzPztftmjDHG1AEHdBVM bm4uNm7cCACoVq0aXFxcYGxsDLlcDgCSG/6+HIwVB1vFZYvLvHiGrmHDhoiMjERsbCwSExOxd+9e AEUrXovJ5XIUFhYCANLS0qBUKnH58mXk5+dj//79AIp+ueLx48fiPetiY2MRGRkJIhL3X9zG/Pnz IQgC1q5dK+5j165d6NOnjxjQFRYWSoLF4nEWjzEgIADPnj0DAIwZMwZ6enrQ1dVV7aAyxhhjnzj+ 6a9SyJWK9/7TW2/TBy2ZxlvV3bRpEzQ1NdGiRQvExMTgf//7H5YvXw4A+PXXX9G2bVsUFhYiKCgI qamp2L9/PxwdHREYGAgA2Lt3L2xsbCCXy/H7778jNTUVO3fuxMiRIzFt2jScPXsWbdq0gYODA2bN moXY2FjExMSgbdu28Pf3x4MHDxAUFIRevXqhQ4cOcHFxwapVqxAWFoZ169Zh3759WLx4MVq2bIkv v/wSrVu3Ro8ePbBkyRIoFArs27cPgiBg6dKlcHNzQ+PGjfHHH39gzpw5SEhIQK1atZCXl4cDBw4A AP766y+EhYXh2bNnOHHiBKytreHv7w9BELBx40b4+PggNTUVvXr1wogRIxAXF4d9+/ZBQ+Ptji9j jDH2qRHoTZcsqoG3WYnJGGPs43nx97M/9hdqxtQRX3JljDHGGFNzHNAxxhhjjKk5DugYY4wxxtQc B3SMMcYYY2qOAzrGGGOMMTXHAR1jjDHGmJrjgI4xxhhjTM1xQMcYY4wxpuY4oGOMMcYYU3Mc0DHG GGOMqTkO6BhjjDHG1NwnHdClpaV97C4wxhhjjH3yNMtzZ8nJyViyZAmsrKxw8eJFzJs3Dy1btixR 7t69e1i0aBGSkpIQGhoqyfP390dqaiqICIWFhfDz8yuv7jPGGGOMfZLKLaAjIvTv3x/ff/89unfv jq5du6JPnz6Ii4uDhoaGpKxMJoOBgQESExMl6UeOHEFgYCAuXLgAABg6dCgCAgIwfvz48hoGY4wx xtgnp9wuuQYHByMmJgZ2dnYAAAsLC2hpaeHw4cMlyjZo0ACGhoYgIkn68uXL0bt3b3HbyckJq1ev /qD9Zowxxhj71JVbQHfhwgWYm5tDU/P/Tgo2bdoUZ8+eVal+QUEBIiIi0Lx5czGtSZMmiI6OxqNH j957fxljjDHG1EW5BXSpqanQ09OTpFWvXh1JSUkq1X/8+DHkcjmqV68upunr6wOAym0wxhhjjFVE 5RbQaWpqQktLS5KmVCrfqD4ASRvF9V++NMsYY4wx9l9SbosijI2NER4eLknLzMyEmZmZSvUNDQ2h paWFrKwsSX0AqFevXonyPj4+4v/t7OzEuXuMMcYYYxVNuQV09vb2WLZsmSTt1q1bGDNmjEr1BUGA nZ0d4uLixLTY2FhYWFigdu3aJcq/GNAxxhhjjFVk5XbJ1dbWFqampjh37hyAomAsNzcXffv2haen J6KioiTlS7scO2HCBBw7dkzcPnnyJMaNG/dhO84YY4wx9okrtzN0giDgyJEjWLx4MWJiYnD58mUc P34cOjo6CAoKQuvWrWFpaQkAOH/+PI4ePYqkpCQcOnQIffv2hZaWFgYPHoyEhAR4enpCW1sbpqam mD17dnkNgTHGGGPskyRQBVxRIAgCL5RgjDE1Un/rAvH/SWOXvaIkY6w0n/RvuTLGGGOMsdfjgI4x xhhjTM1xQMcYY4wxpuY4oGOMMcYYU3Mc0DHGGGOMqTkO6BhjjDHG1BwHdIwxxhhjao4DOsYYY4wx NccBHWOMMcaYmuOAjjHGGGNMzXFAxxhjjDGm5jigY4wxxhhTcxzQMcYYY4ypOQ7oGGOMMcbUHAd0 jDHGGGNqjgM6xhhjjDE1xwEdY4wxxpia44COMcYYY0zNcUDHGGOMMabmOKBjjDHGGFNzHNAxxhhj jKk5DugYY4wxxtQcB3SMMcYYY2qOAzrGGGOMMTXHAR1jjDHGmJrjgI4xxhhjTM1xQMcYY4wxpuY4 oGOMMcYYU3Mc0DHGGGOMqTkO6BhjjDHG1BwHdIwxxhhjao4DOsYYY4wxNccBHWOMMcaYmuOAjjHG GGNMzXFAxxhjjDGm5jigY4wxxhhTcxzQMcYYY4ypOU1VCxYWFkJTU+XipUpOTsaSJUtgZWWFixcv Yt68eWjZsmWJcv7+/khNTQURobCwEH5+fmIf/Pz8UKtWLdy/fx+6urr49ttv36lPjDHGGGPqTuUz dAMHDkRERMRb74iI0L9/fzg7O2PKlClYsGAB+vXrB4VCISl35MgRBAYGwsvLC97e3rh9+zYCAgIA AGvXroWenh5mzJiB5cuX4+zZs7hw4cJb94kxxhhjrCJQOaAbPnw4rl27hilTpsDLywvXr19/ox0F BwcjJiYGdnZ2AAALCwtoaWnh8OHDknLLly9H7969xW0nJyesXr0aAPDvv//iyZMnYl6NGjWQmZn5 Rv1gjDHGGKtoVL6GOmLECADAxIkTkZGRATc3N1y9ehVDhw7FqFGjYG5u/sr6Fy5cgLm5ueSybdOm TXH27Fm4uLgAAAoKChAREYFZs2aJZZo0aYLo6Gg8evQITk5OcHZ2hp2dHQwMDKBUKuHg4PBGA2aM McYYq2hUPkN3//59PHv2DOvXr0fXrl1x6tQpODk5oVu3bti9ezdGjx6N+/fvl1k/NTUVenp6krTq 1asjKSlJ3H78+DHkcjmqV68upunr6wMAkpKS0L17d/j5+cHBwQHTpk3D3r17oaGhofJgGWOMMcYq IpXP0PXu3RuJiYkwNTXFN998g6+++gpVqlQBAHTu3Bk7duyAk5MTrl69WvqONDWhpaUlSVMqlSXK AJCUKy5DRCAipKamYsmSJVi5ciW+/PJLnD59Gjo6OqoOgzHGGGOswlE5oNPV1cVvv/2G7t27l5p/ /wM8/oUAACAASURBVP59PHr0qMz6xsbGCA8Pl6RlZmbCzMxM3DY0NISWlhaysrIkZQCgXr16WLVq FXJycrB06VIMGzYMHTt2xPfffw9fX98S+/Px8RH/b2dnJ87dY4wxxhiraFQO6I4ePYratWtL0tLT 06FQKFC3bl0sXLgQbm5uZda3t7fHsmXLJGm3bt3CmDFjxG1BEGBnZ4e4uDgxLTY2FhYWFqhduzbO nj2Lfv36AQBMTU3h5uaG0NDQUvf3YkDHGGOMMVaRqTyH7pdffimRVrt2bUyfPh1AUTBWrVq1Muvb 2trC1NQU586dA1AUqOXm5qJv377w9PREVFQUAGDChAk4duyYWO/kyZMYN24cAKBVq1aS1bXPnz+H tbW1qkNgjDHGGKuQBCKiVxXYuHEj9u7di4SEBJiamkryHj16hOzsbCQkJKi0szt37mDx4sVo164d Ll++jJkzZ6JNmzawtrbGwoUL4ezsDABYuXIlMjMzoa2tjezsbCxbtgyCICAvLw+zZs1CjRo1UKtW LSQnJ+O7775DpUqVpIMSBLxmWIwxxj4h9f9fe3ce19SZ7gH8FxYVRXFH0RrEK4WqeKvW2rFWUCoK iFZlrDt1odZqXXAvWpequEzLuLRWRcqdqbbixrhca3EtaKVM0UsRFOsaEdeCC4ohee8fDEcCJAQh IQd+388nHznvec/JkyfLeXzPFjlX+lv1QZiBnkRUklILOgDYvHkzfvrpJ/j5+ekUSnXq1EHPnj2L 7YqtbCzoiIjkhQUdUfkYVdABQG5uLmrWrFms/c8//0SDBg0qPLDyYEFHRCQvLOiIysfgSRFXr15F 8+bNUbNmTaSnp+POnTs68zUaDXbu3IlvvvnGpEESERERkX4GC7oePXogJCQE06ZNw48//ohZs2aV 2I8FHREREVHlMVjQxcXFoVmzZgDy7+XarFkzjBgxQpqv1WpLPPuViIiIiMzH6GPogPwCzspK90on d+7c4UkRRERULjyGjqh89I7Q3b17F6mpqQYXFkJg7969+PLLLys8MCIiIiIyjt6C7s8//0Tv3r3R okULKBSKEvtotVpkZGSwoCMiIiKqRHoLOldXV6xbtw4TJ040uIJt27ZVeFBEREREZDyDt/4qrZgD gJ49e1ZYMERERERUdgbPcj116hTc3NzQsGFDnDhxAn/88YfOfI1Gg4MHD2LPnj0mDZKIiIiI9DNY 0I0cORIhISH4+OOPkZaWhpCQEDRp0kSar9FocPv2bZMHSURERET6GSzoUlJSYGdnBwAIDAzEK6+8 Al9fX50+u3btMl10RERERFSqMl2HDgAuX76M7OxsuLq6ok6dOqaKq1x4HToiInnhdeiIysfgSRGF Xbx4Ea+//jr+67/+C507d0b9+vUxY8YMqNVqU8ZHRERERKUwuqAbM2YMmjRpgvj4ePz555/IyMhA p06dsGjRIhOGR0RERESlMXgMXWHnz5+HSqVC3bp1pbaRI0di8eLFJgmMiIiIiIxj9AjdsGHDcOvW rWLtPMuViIiIqHLpHaFLSEjAnDlzpGmtVot33nkH7u7uOm2FR+yIiIiIyPz0FnTt27eHnZ0d/vrX vxpcgbe3d4UHRVSg4D7CPGuZqGpTjV0JAGi5dU4pPYmoJHoLutq1ayMqKkrnQsJFaTQaxMXFoWXL liYJjoiIiIhKZ/CkiMLFXFZWFv7xj38gKytLGi3JysrC999/j4yMDNNGSURERER6GX2W6/jx42Fr a4uMjAy4uLhACIHz58/rHGdHREREROZndEHn4+ODCRMmIC0tDXfv3kWPHj3w9OlTTJs2zZTxERER EVEpjL5syYULF7Bz5044OzvjX//6F06cOIH4+HhER0ebMj4iIiIiKoXRI3QBAQGYO3cu2rdvj5CQ EPj6+uLs2bN47733TBkfEREREZVCIcpxPYj79++jUaNGFRlPhVAoFLzMRRXBy5YQVRP/+a633DoH qg/CKjkYIvkxepdrXl4ewsPD0aNHD3h4eGDYsGG4fv26KWMjIiIiIiMYXdBNnToVCxcuxGuvvYZx 48ahU6dOmDt3LmJiYkwZHxERERGVwuhj6LZv344jR47gjTfekNpmzZqFkJAQDBgwwCTBEREREVHp jB6ha9OmDTw8PIq116hRo0IDIiIiIqKy0TtCd/XqVZw8eVKa9vHxwQcffIC+fftKbRqNBklJSaaN kIiIiIgMMrjLdfr06ejQoYPOmYaRkZE6fT766CPTRUdEREREpdJb0Dk7O2PPnj145513zBkPERER EZWRwWPoihZz27ZtQ69eveDm5gY/Pz8cOnTIpMERERERUemMPst17dq1WLNmDYYNGwalUonc3Fx8 /fXXuHLlCne7EhEREVUiowu6M2fO4NKlSzpntU6fPh2fffaZSQIjIiIiIuMYXdD16NGjxEuU5Obm VmhAxhBCIDo6GtevX0eXLl3g6elp9hiIiIiILIXRBd21a9dw9OhRvPnmm8jJycHFixcRERGBvLw8 o5/s5s2bWLZsGTw8PHD69GnMnj0b7dq1K9Zv06ZNyMzMhBACeXl5WLp0qTTv4cOHGDRoEPr27YuZ M2ca/dxEREREVZXRBd2sWbMwcuRInRMhBg8ejIiICKOWF0IgICAAK1euhLe3N3r27Ak/Pz+kp6fD 2tpa6hcTE4OoqCjEx8cDAIYOHYqIiAiMGzcOWq0WgwcPRufOnVnMEREREf2H0XeK+OWXX/D1119D pVLhl19+QWZmJqKjo1GvXj2jlo+NjUVqaqq0e9Td3R22trbYu3evTr9Vq1ahX79+0vTAgQMRHh4O APjhhx9w+vRpLFmyxNiwiYiIiKo8owu6oKAgXLx4EU5OTujatSuaNm0KAHjy5IlRy8fHx8PFxQU2 Ni8GBV1dXXH06FFp+vnz50hMTISbm5vU1rZtW6SkpODu3buIjIyEk5MT5syZgzfeeAM+Pj64efOm sS+BiIiIqEoyuqCLiorSKcYKtxsjMzOz2Gieg4MDVCqVNP3gwQOo1Wo4ODhIbfXr1wcAqFQq/Pbb bwgMDER4eDh+/fVX1KlTB+PHjzf2JRARERFVSUYfQ/fpp5/i7NmzxdoVCgUmTZpU+hPZ2MDW1lan TavVFusDQKdfQR8hBB4/foy3335bmhccHAx/f3/k5eWVWGwSERERVQelVkGpqak4fPgwJk6ciNde ew0tW7aU5gkhsHXrVqOeyMnJCXFxcTptWVlZcHZ2lqYbNWoEW1tbZGdn6/QBgBYtWsDR0VFnF2/L li2h1WqRlZWFxo0b66x70aJF0t+enp68tAkREVkEtVYDWytrvdNEL8NgQffrr7/i7bffhlqtBgAo lUrEx8fDyclJ6hMaGmrUE3l5eSEsLEyn7cKFCwgKCpKmFQoFPD09kZ6eLrWlpaXB3d0djo6O+Mtf /oKLFy9K8549e4Y6deoUK+YA3YKOiIjIUthaWaNl5FxpWvVBmIHeRMYxeAzdokWLsG7dOvz5559Q qVTw9PTEsmXLdPrUrFnTqCfq1q0blEoljh07BiC/UMvJyYG/vz9CQ0ORnJwMABg/fjz27dsnLXfw 4EGMHTsWAPDhhx8iOjpamnfy5ElMmDDBqOcnIiIiqqoMjtA1aNAAwcHBAPJPYPjmm28QGBio08fY 49cUCgViYmKwZMkSpKamIiEhAfv370ft2rVx6NAhdOrUCR06dEBgYCCuXbuG0NBQ2NnZQalUYsaM GQDyd52OGzcOwcHBaNOmDVQqFVavXv2yr52IiIioSjBYidnb2+tM16hRA82aNdNp2759O0aNGmXU k7m4uODbb78FAJ0TKRITE3X6Gbpo8OTJk416LiIiIqLqwmBBt2PHDly8eBFCCCgUCgghcPHiRfTq 1QsAoFarkZycbHRBR0REREQVr9QRuhYtWujcmkupVEp/5+Xl6VxHjoiIiIjMz2BBt3nzZvj4+Bhc weHDhys0ICIiIiIqG4NnuZZWzAFAnz59KiwYIiIiIio7o2/9RURERESWiQUdERERkcyxoCMiIiKS ORZ0RERERDLHgo6IiIhI5ljQEREREckcCzoiIiIimWNBR0RERCRzLOiIiIiIZI4FHREREZHMsaAj IiIikjkWdEREREQyx4KOiIiISOZY0BERERHJHAs6IpIltVZjcJqIqDqxqewAiIhehq2VNVpGzpWm VR+EVWI0RESViyN0RERERDLHgo6IiIhI5ljQEREREckcCzoiIiIimWNBR0RERCRzLOiIiIiIZI4F HREREZHMsaAjIiIikjkWdEREREQyx4KOiIiISOZY0BERERHJHAs6IiIiIpljQUdEREQkcyzoiIiI iGSOBR0RERGRzLGgIyIiIpI5G3M+2c2bN7Fs2TJ4eHjg9OnTmD17Ntq1a1es36ZNm5CZmQkhBPLy 8rB06dJifWJjYxEWFobY2FhzhE5ERERkscxW0AkhEBAQgJUrV8Lb2xs9e/aEn58f0tPTYW1tLfWL iYlBVFQU4uPjAQBDhw5FREQExo0bJ/W5c+cOFi9eDFtbW3OFT0RERGSxzLbLNTY2FqmpqfD09AQA uLu7w9bWFnv37tXpt2rVKvTr10+aHjhwIMLDw6VpIQQ2bNiAMWPGQAhhltiJiKoztVZjcJqIKp/Z Crr4+Hi4uLjAxubFoKCrqyuOHj0qTT9//hyJiYlwc3OT2tq2bYuUlBTcu3cPQP7u2KCgIJ31EBGR 6dhaWaNl5FzpYWtlXfpCRGRWZivoMjMzUa9ePZ02BwcHqFQqafrBgwdQq9VwcHCQ2urXrw8AUKlU SEhIQOPGjdG6dWvzBE1EREQkA2Yr6GxsbIod86bVaov1AaDTr6DPw4cPcejQIQwePNjEkRIRERHJ i9n2Wzo5OSEuLk6nLSsrC87OztJ0o0aNYGtri+zsbJ0+AHDt2jUsX74cK1asAABoNBpoNBrUrl0b CQkJaN++vc66Fy1aJP3t6ekpHbtHREREVNWYraDz8vJCWFiYTtuFCxcQFBQkTSsUCnh6eiI9PV1q S0tLg7u7O0aNGoVRo0ZJ7VFRUYiKitI5Bq+wwgUdERERUVVmtl2u3bp1g1KpxLFjxwDkF2o5OTnw 9/dHaGgokpOTAQDjx4/Hvn37pOUOHjyIsWPHFlufEIJnuRIRERHBjCN0CoUCMTExWLJkCVJTU5GQ kID9+/ejdu3aOHToEDp16oQOHTogMDAQ165dQ2hoKOzs7KBUKjFjxowS16dQKMwVPhEREZHFMuu1 P1xcXPDtt98CACZNmiS1JyYm6vSbOXNmqesaM2YMxowZU6HxEREREckR7+VKRCQzvNAvERXFq/MS EclMwYV+C6g+CDPQm4iqA47QEREREckcCzoiIiIimWNBR0RERCRzLOiIiIiIZI4FHREREZHMsaAj IiIikjkWdEREREQyx4KOiIiISOZY0BERERHJHAs6IiIiIpljQUdEREQkcyzoiIiIiGSOBR0RERGR zLGgIyIiIpI5FnRERNWMWqsxOE1E8mNT2QEQEZF52VpZo2XkXGla9UFYJUZDRBWBI3REREREMseC joiIiEjmWNARERERyRwLOiIiIiKZY0FHREREJHMs6IiIqFx4GRSiysfLlhARUbnwMihElY8jdERE REQyx4KOiIiISOZY0BERERHJHAs6IiIiIpljQUdEREQkcyzoiIgsHC8DQkSl4WVLiIgsHC8LQkSl 4QgdERERkcyxoCMiMjHeSYGITI27XImITIy7TInI1DhCR0RERCRzLOiIiIiIZM6su1xv3ryJZcuW wcPDA6dPn8bs2bPRrl27Yv02bdqEzMxMCCGQl5eHpUuXAgCePXuG6dOnIzo6GnZ2dpg3bx4mTZpk zpdARERVnFqrga2Vtd5pIktktoJOCIGAgACsXLkS3t7e6NmzJ/z8/JCeng5r6xdflJiYGERFRSE+ Ph4AMHToUERERGDcuHFYvXo1evXqhSlTpmDLli2YPHkyOnbsiO7du5vrZRARyQ4LkrLhMY8kR2bb 5RobG4vU1FR4enoCANzd3WFra4u9e/fq9Fu1ahX69esnTQ8cOBDh4eEAAEdHRwQGBuK1117DF198 AaVSKRV+RERUsoICpeBB5cOzlskSma2gi4+Ph4uLC2xsXgwKurq64ujRo9L08+fPkZiYCDc3N6mt bdu2SElJwb179xAcHKyzTkdHR7Rq1cr0wRMRUaWxtAKqaIHM0U+yBGbb5ZqZmYl69erptDk4OECl UknTDx48gFqthoODg9RWv359AIBKpULjxo2l9mfPniErKwsDBgwwceRERFSZuAuUqHRmG6GzsbGB ra2tTptWqy3WB4BOv4I+Qgidvps3b8YXX3wBOzs7U4RLREREJBtmG6FzcnJCXFycTltWVhacnZ2l 6UaNGsHW1hbZ2dk6fQCgRYsWUltycjJsbGzg6+ur9/kWLVok/e3p6Skdu0dEZGo8CYGIzM1sBZ2X lxfCwnSHyS9cuICgoCBpWqFQwNPTE+np6VJbWloa3N3d0bRpUwBARkYGjhw5gmnTpkl98vLydI7N A3QLOiIic+IuQiIyN7Ptcu3WrRuUSiWOHTsGIL9Qy8nJgb+/P0JDQ5GcnAwAGD9+PPbt2yctd/Dg QYwdOxYAkJ2djaVLl6Jv375IS0tDSkoKVqxYgWfPnpnrZRARERFZHLON0CkUCsTExGDJkiVITU1F QkIC9u/fj9q1a+PQoUPo1KkTOnTogMDAQFy7dg2hoaGws7ODUqnEjBkzoNVqMWDAAJw8eRLffPON tN7hw4fD3t7eXC+DiIiIyOKY9U4RLi4u+PbbbwFA5w4PiYmJOv1mzpxZbFmFQoHjx4+bMjwiIiIi WeK9XImIqEqxtOvWEZmDWUfoiKjy8P6UVF3wpBSqjljQEVUT3MgREVVd3OVKREREJHMs6IiIiIhk jgUdERERkcyxoCMik+CZhkRE5sOTIojIJKrTSRg8Y1gXz6gmMj8WdERE5VSdildjWFo+WGBSdcCC joiIqjRLKzCJTIHH0BERWRgeb0hEZcUROiIiC8MRJSIqK47QERGVgmfsEpGl4wgdEVVJ5TkQvmhf jpgRkaVjQUdERpHbmYLlKcKqewFn6e8tERXHgo6IjFLVi5zKLGIsrYCq6u81UVXEgo6ICLpFjLkL GBZQRFRePCmCiCoFTzQgIqo4HKEjohKZejcgR6XoZcnteE4ic2BBR0QlYsFFloqfTaLiuMuViIiI SOZY0BERkUnJ/XhJucVL1RN3uRKRReJxUlWH3HeRyj1+qh5Y0BGRRarKG1EWp0RU0VjQERGZWVUu VomocvAYOiKyCKY+Tknux3EZYu7XVpVyR1RVcISOiCxCeUetStuNWZVHxUydu4p+PiKqeCzoiKhK YJHx8sydOx5DSFTxWNARWYjSzurkRpCMZemfFRbfRBWPBR2RiZS1ICtpI8eNHr0MFkxE1Q8LOiIT qezdWJY+SkNERBWHBR1RFVHWApIFIBEZg78V8sCCjqiaqugzI+X2Iy+3eKuTsr43fC8rVtF8che+ PLCgI5Kpyt6IlfWYv/LGW9Gvlxspy1XW96ayR6dN/Z8bc//nid8NeWJBRyRTcvvRLW+8lvR6K7uY pvIp+lm6MmZZha6voj+blvTZJ8vFgo7oJcl9lyO9PG5gqxa+n1QVsKAjekmVfRYrEVmmsv5nj/85 pIpg1oLu5s2bWLZsGTw8PHD69GnMnj0b7dq1K9Zv06ZNyMzMhBACeXl5WLp0qVHziMqjvD+qpu5v 6gKSGxGiilHWXbrV/QQlqhhmK+iEEAgICMDKlSvh7e2Nnj17ws/PD+np6bC2fvHBi4mJQVRUFOLj 4wEAQ4cORUREBMaNG2dwHlFZVfSZXKY+kLusLK1gJKquKvq7VdpvV9ECkgVe9WBlrieKjY1Famoq PD09AQDu7u6wtbXF3r17dfqtWrUK/fr1k6YHDhyI8PDwUudRxTl+/Hhlh/BS1FqNwemiCn4ECx7l XV+B3LTrRvUztdJen6WylPzJEXNXPpaSv/L+dpX1t62iyHXbYQkqIndmK+ji4+Ph4uICG5sXg4Ku rq44evSoNP38+XMkJibCzc1Namvbti1SUlJw9+5dvfPu3btnnhdRTcjlS1n0R6noj1jR/5GW9Ues tPXpo2+jYKof0arGUjaqcsTclY+l5K+i/zP2sr9lZSWXbYclqojcmW2Xa2ZmJurVq6fT5uDgAJVK JU0/ePAAarUaDg4OUlv9+vUBAJcuXdI7T6VSoXHjxqYMnypAWW8+X9IIWXl2kVb0cSplxV2aRFQd 8Ji+ymG2gs7Gxga2trY6bVqttlgfADr9CvoUHGdX0jwhRMUHXA1V9JlZZS3ADM1vGTm30m9Wz4KM iKoCUxdclX0FgGpbQAozWbZsmejYsaNOW79+/cRHH30kTWu1WlGjRg2xd+9eqe3MmTNCoVCIW7du 6Z13+/ZtnfW2adNGAOCDDz744IMPPviw+MeYMWPKXWeZbYTOy8sLYWG6VfqFCxcQFBQkTSsUCnh6 eiI9PV1qS0tLg7u7O5o1a6Z3XtOmTXXWe+nSJdO8CCIiIiILZLaTIrp16walUoljx44ByC/GcnJy 4O/vj9DQUCQnJwMAxo8fj3379knLHTx4EGPHji11HhEREVF1pRDCfAegXb58GUuWLEHXrl2RkJCA KVOmoHPnzujSpQvmz5+PQYMGAQDWrFmDrKws2NnZ4eHDhwgLC4NCoSh1HhEREVF1ZNaCjizf1atX sWPHDjRt2hR+fn5o0qRJZYdEREQWjtuOyme2Xa4V5cSJE+jYsSPq1asHHx8f3LhxQ2e+VquFl5cX Tpw4IbXdvHkTkyZNwsaNGzFmzBikpKSYO2yLYSh/O3bswPDhwxEYGIigoCDpC8n8vaAvf3FxcVi4 cCHCw8MxcuRIXLhwQVqG+XshKSkJ3bt3R4MGDfDuu+/i/v37AAzniPnLpy93hr7TzN0L+vJXgNsO wwzlj9sOw/TlrsK3G+U+rcKMbt++LUaPHi2Sk5PFoUOHhFKpFN7e3jp91q9fLxo2bChOnDghhMg/ c7ZTp07ip59+EkIIcf78edG6dWuRl5dn9vgrm6H8HTt2TDRp0kTcvHlTZxnm7wV9+dNoNMLFxUVo NBohhBDHjx+X8sr8vZCbmyvmzZsncnJyxOPHj0W3bt3E/PnzhRCixBxpNBrm7z/05e7OnTt6v9PM 3QuGPnsFuO3Qz1D+uO0wTF/uNBqNaNOmTYVuN2RV0G3fvl08fPhQmo6MjBS1atWSpn/++Wdx4MAB 4ezsLH0pDx8+LOzs7IRarZb6ubq6ip07d5ovcAthKH9ubm5i6dKlxZZh/l7Ql7+7d+8KOzs78ejR IyGEEGfPnhWdO3cWQjB/hWVmZorc3Fxpes6cOWLBggUGc8T85Sspd6GhoQa/08zdC/o+ewW47TDM UP647TBMX+5Msd2Q1S7X999/H3Xr1pWmHR0doVQqAQD379/HqVOn4Ovrq7OMMbccqy705e/06dO4 cOECrl69iiFDhsDd3R0bNmwAwPwVpi9/jRs3RufOnTF69Gg8fPgQ69atw9KlSwEwf4U5OjqiRo0a AIDc3Fzcvn0b06ZNM5ijU6dOoXXr1tU+fyXlbsaMGQZ/E/nZe6Gk/E2fPh0Atx3G0Je/U6dOcdtR Cn25M8V2Q1YFXVG//fYbJk6cCAAIDw/HtGnTivUx5pZj1VVB/hITE1G3bl2EhYVh586d+O677zB1 6lScOXOG+TOg8OcvOjoaaWlpcHJyQu/evdGvXz8A/PyVZN++fejatStiY2ORkpJSYo7q168PlUqF zMxMndv9AdU7f/v27cObb76J2NhY/P7778XmF/5M8rNXXEn547bDeEXz9+9//5vbDiOV9Nmr6O2G bAu6J0+eIDk5GVOmTMHmzZsxYsQIqQoGIN0OzJhbjlVHhfP3+PFjvPrqq9L9cDt16oQuXbpg//79 sLW1Zf5KUJC/Tz75BED+F9Db2xu+vr4ICgpCdHQ0AH7+StK/f3/ExMTgnXfewciRI/V+xoQQzF8R /fv3x969e6XcFVb0M8ncFVc0f1u2bOG2owyK5u/JkyfcdhippO9uRW83ZFvQrVmzBuvWrYO1tTU2 b96M119/HXZ2drCzs8O1a9fQp08fDB06FE5OTsjOztZZNisrCy1atKikyC1D4fw1a9YMT5480Zn/ yiuv4MGDB2jevDnzV4KC/FlZWSEnJwf9+vXDwoULsWPHDsyaNQvjxo3Dw4cPmT89nJ2dERERgXv3 7qFJkyZ6c8T8FVc4d4XPNCz8mQTA3z49Cudv+fLl3HaUUeH8WVlZcdtRBoVzd/369QrfbsiyoNu8 eTNGjhwpnRodHx+Pp0+fSg+lUomffvoJP/zwAzw9PXH58mWd5S9cuABPT89KiNwyFM1f586dcf36 dajVaqnP06dP4eLiAi8vL+aviKL5+/3336HVaqX/pS5evBhWVlZIT09Hr169mD89atWqhUaNGsHb 27tYjtLS0uDl5cXPnx4FuWvYsCGA4p9JtVrN3BlQkL8//viD246XUJA/f39/bjvKqCB3mZmZFb7d kF1B9+2338LOzg5qtRppaWk4ceIEtm3bVqxfwbD5W2+9VeItx/r372/WuC1FSflLSkqShskB4Pnz 50hOTsbIkSP13rKN+XuRv/j4eKjVaty6dQtAfv5q164NV1dX5q+QBw8e6Ny678SJExg9ejT+8pe/ FMvRkydP0L9/f+bvP/TlTqFQ6P1N5G/fC4byVxS3HcXpy99rr72Gzp07c9thgL7cubq64vnz5xW6 3bAxONfCHDp0CBMmTIBGo5HaFAqFzsX4CrcX/BsTE4MlS5YgNTUVCQkJ2L9/P+zs7MwWt6UwlL/e vXsjJCQEFy5cgEqlwubNm+Ho6AgAzN9/GMqfh4cHQkJC0KVLF9y4cQP//Oc/pbMPmb98ly9fdOxI yQAADdZJREFUxoQJE/Dqq69iyJAhsLe3x+effw6geI4OHDgg5Yj5Kzl3S5cuLfU3kbnLZ+izVxS3 HcUZyt8///lPbjsMMJS7nTt3Vuh2g7f+IiIiIpI52e1yJSIiIiJdLOiIiIiIZI4FHREREZHMsaAj IiIikjkWdEREREQyx4KOiIiISOZY0BFVU+fPn8edO3cqOwyjXLx4EXfv3q3sMIoxZVzPnj3Db7/9 Jk0/fPgQycnJJnkuIpI/FnREVdDPP/+MAQMGYNy4cZg0aRJ8fX1x6NAhaf6ePXvw3//930hLS6vE KPOvmt6hQwfUrFkTH330EaZMmYKJEyeiZ8+e8PLyAgBs3LgR7dq1Q2pqaqXGWpQxcSUnJ2PgwIHo 378/Ro8eDXd3d1hZWeG9994zuO5Lly6hb9++CAkJAQAkJSWhe/fu+OKLLyr0NZRk/fr1sLa2hlKp xMmTJ6X2e/fuYfLkyWjVqhXOnDlj8jiIqIwEEVUpu3fvFg4ODiIxMVFqu3LlimjevLmIiIiQ2pRK pThx4kRlhKgjNDRUtG7dulj7/Pnzpb/LG2tSUpL45ZdfXnp5fQzF9fPPP4u6deuK3bt3S20ajUZM nTpVvPfee6WuOzIyUnh6ekrTn332mQgKCip/0Eb44IMPRIMGDcTz58912qOiokRUVJRR6/jqq69M ERoR6cEROqIq5MmTJ5gwYQImTJiAzp07S+3Ozs6YM2cOpkyZIu0iLOk+lpXB2tpaun9mYfPmzZP+ Lk+sWVlZGDlyJJ49e/bS69BHX1x5eXkYPXo0/Pz8dEbjrKys8Le//Q2tW7eu8Fgq0vTp05GVlYUd O3botB88eBB//etfS13+3LlzmDVrlqnCI6ISsKAjqkIOHz6MBw8ewMfHp9g8X19fPH36VGcjffr0 abi7u6Np06ZYvHix1L5r1y4sWLAAGzZswIgRI5CXl4fHjx9j3rx56NOnDzZu3AgfHx+0bdsW6enp mDdvHjw8PNC/f3+pODt58iRmzpyJzZs3Y8iQIcjKyjL6dSxevBj29vYlzlOr1fj8888xe/ZsvPnm m9izZ48079ixY1i0aBGWLFkCf39/PHjwAImJicjIyMA//vEP7N69W4rts88+w9/+9jf4+/vj3Llz AIDt27fjnXfewe7du/HKK69g48aNSElJwSeffIKtW7di0KBBuH79eqnxHzlyBFevXsXIkSOLzbO2 tsbEiRMB5N+4e968edi4cSNGjBiBtWvX6l1n0eJx7969CA0NhZ+fH4KDg6HVagEAjx49wuzZs7F6 9Wo0bNgQzZs3R3h4OID8XfHz58/H0KFD8d577+HJkyclPleHDh3Qo0cPfPXVV1JbRkYG6tWrh1q1 aklt+vIYGxuLnJwcLF++HP/+978BAF9++SXmz5+P7t274+uvvwYACCHw6aef4vvvv8fgwYMRFRVl OLFEpF8ljxASUQUKCwsTCoVCXLx4sdi8Z8+eCYVCISZPniyEEMLZ2VnMnDlTaDQaceDAAWFtbS32 7NkjhBCiefPm4tdffxVCCNGtWzfxr3/9SwghxL59+0SDBg3E+fPnhRBCvP/++8LLy0s8e/ZM5OXl iZYtW4rTp08LIYR46623RHR0tNRv7dq1Jcb82WefCXt7exEUFCSCgoLEu+++Kxo0aKDTx9nZWdq1 GRYWJuLj44UQQkRHRwt7e3vx6NEjce7cOeHv7y8t8+abb4qNGzcWW/7q1avC3d1daLVaIYQQBw4c EE2bNhXZ2dni/v37QqFQiK1bt4ozZ86Ic+fOiWHDhonVq1cLIYSYO3eumDFjRolxFbZ69WqhUChE SkpKia+5QL9+/cSRI0eEEELk5uaKV155RXz33XdCiOK7XBctWiTtcr127Zr0Pubm5oqGDRuKrVu3 CiGEmDdvnli/fr0QQogNGzZIuXz06JEYPny4tL727duLhQsX6o1tx44dQqFQiKSkJCFEft5Pnjwp zTeUxytXrgiFQiH1/f7776XX9euvvworKytx6dIlkZSUJAICAoQQQuTk5Ihdu3YZzBcR6WdT2QUl EVUcQ7smC0ZwRKHdm/3794eVlRV8fX3Ru3dv7Nq1CwMHDsSPP/6Idu3aITExEdnZ2dLomr29PRwc HODu7g4AcHV1hZ2dHWrWrAkAcHFxwdWrV9GtWzdERkZCqVQiLS0NGRkZBkfoGjdujMjISGn6448/ 1ts3MjISWq0WP//8M548eYK33noLN27cwMaNG/Huu+9K/Y4cOYLatWsXW/67775Du3btpFz5+vpC oVAgJiYGo0aNAgD06tULSqUSALB8+XLUr18fN27cQHp6OurVq6c3tgJ5eXkA8kfj9MnIyMChQ4cQ HR0NAKhRowaGDRuGLVu2YPjw4cX6F37ftm3bhlu3bmHlypUAAC8vLzx69AgAcPbsWTg6OgIAevTo IcWwf/9+ZGZmSst07NgRarVab3yDBg2Ck5MTvvrqK2zatAknT57EnDlzpPmG8tijRw+ddUVGRsLD wwM3btyARqNB7969oVKp4ObmhtjYWKxatQozZ84s9WQRItKPBR1RFeLm5gYAuHHjBtq2basz7+bN mwCAV199tcRl27Vrh0uXLgEAatasidmzZ2P06NFwdHQs8Rg3IL+ALDzPysoKz58/BwA4ODhgwYIF CAgIgIuLi1RQGiMoKEjvvOvXryMkJAQ1atTQab98+bL0+gGgTp06JS6vUqmK7WpUKpXIyMjQeV0F GjdujGXLlqF79+5o3749rl27Vmr8rq6uAID09HS9+VapVACAnJwcKValUomYmJhS13/9+nX06dMH wcHBxea9/fbbiImJwdSpU5GdnY3AwEAAwLVr19C1a1edoswQa2trfPjhh1i5ciUGDx6Mrl27Fou/ tDwWjnft2rVSXubPny/N2759O0aPHo3du3djx44daNWqlVHxEZEuHkNHVIX06dMHTZo0wf/+7/8W m3fkyBHUqlULQ4YMKXHZ3NxctGvXDk+fPoWXlxemTJkCDw8Pg89naETQ19cX/v7+6NGjB4QQZTqx 4Y033sDz58+RkJBQbF6jRo1w7NgxaVoIgeTkZDRt2hTHjx/X6XvlypViy7du3Rrp6ek6bbm5uXBx cSkxltGjR8PNzQ3+/v5Gx+/j44OGDRsWO6mgMGdnZwD517IrHEebNm1K7K9QKKQcFs0BAOn4tXnz 5qF58+ZYs2YN/vjjD/z9738HkF+YFs1PwTL6BAcHQ61WY/To0RgzZozOvLLkUV+8t2/fhr+/P86f Pw97e3uMHTvWYDxEpB8LOqIqpFatWtiyZQsiIiLwf//3f1L7nTt3EBYWhi+//BLNmzeX2jUajfTv mTNnMGXKFJw/fx63bt2CWq3G/fv3cfnyZWRlZUGj0RQbqRNC6LRptVoIIXD//n2cPXsWarUaT58+ xfnz56V1FJWXl1fi6N3nn38u9S9YLwAEBATg448/xi+//IKbN29i9uzZaNiwIQIDAxETE4OwsDD8 8ccf2LJlCx48eAAgf7Tuzp07uHPnDkaNGoXbt29L11i7ffs2njx5ggEDBkjPUTie2NhYqNVq5OXl 4ezZs8jOzi4xrsLq1KmDLVu24IcffkBERITOvKSkJKxYsQJNmzbF4MGDdeYfP34cU6ZMKRZDwXtU OAfR0dHYsGEDbt++jV27diExMRFA/nXkvL290a9fP3Tp0gUPHz4EkF9kJiUlYcGCBcjIyMDRo0d1 rk1YEkdHRwwZMgTu7u5SAVrAUB4LRhzv3buHO3fuICAgAAsWLMCPP/6I27dvY/ny5cjLy0NaWhqO HDkCJycnrFmzBo8fPzYYDxEZUBkH7hGRacXFxYmAgADx4Ycfio8//lgMGDBA7N+/X6fP2rVrhZ+f n/j000/FJ598IuLi4oQQ+SdPdO/eXTg6Ooo5c+aIuXPnirZt24pz586JKVOmCHt7e3HixAlx/fp1 0bdvX+Hu7i6Sk5NFQkKCaNq0qRgxYoS4e/euGDRokGjQoIEIDg4W4eHhonnz5uL48eM6MRw/flx0 7NhRWFtbi+HDh4tp06aJ8ePHi65du4p69eqJvLw88d133wkbGxsxbdo0ce/ePZGVlSUGDx4s6tWr Jzp06CCOHTsmrW/FihWiWbNmolWrVmLbtm1S++effy5atWolXYfv1KlTon///mLFihVi8uTJ4vff fxdCCLF+/XphZWUlFi5cKO7evSuEEGLq1Kmibt264v333xf/8z//Ixo2bCh27NhRLC5974OPj4/o 0qWLeP/990VwcLBYv369dCJBdna2GDVqlJgzZ45YuHChdO22q1evCl9fX9G8eXMRFxcnUlJSxBtv vCE6dOggzp49K4QQYt26daJFixaiSZMm4tNPP5Wec8uWLUKpVAp7e3thZWUlatSoIQ4cOCCEyD+J xMXFRdSvX18EBwcXu85cSU6dOiWdcFHSvJLyKISQXndcXJzIzc0VwcHBokGDBqJNmzZix44d0vvv 4uIivvnmGxESEiKd7EJEZacQQs/BMUREJCtPnz7FjBkzsGHDBlhZ5e+AuXv3Lr7//ntp5I+Iqibu ciUiqiIOHz6M06dPIzs7G0D+LvGkpCS8/fbblRwZEZkaCzoioiqiT58+6NSpE1599VV07twZw4YN Q6NGjfD6669XdmhEZGLc5UpEREQkcxyhIyIiIpI5FnREREREMseCjoiIiEjmWNARERERyRwLOiIi IiKZY0FHREREJHP/DxDTz1IIL9OBAAAAAElFTkSuQmCC ", null, " AAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlcTun7B/DPeSpLKpRkyci+L6OQLeXL2A0ly9c2xr6v 2QdZxjZjmZmsY0mYMWkwmLGEQbaZLIOIvtlKKCmlpOW5fn/4daZHpZhKj/m8Xy8vnfvc5z7XOU/q cu7lKCIiICIiIqJ8TfO+AyAiIiKirDFpIyIiItIDTNqIiIiI9ACTNiIiIiI9wKSNiIiISA8waSMi IiLSA0zaKFeICLZt2wYHBwc0bdoUHTp0gI2NDTQaDTQaDfbu3YsTJ06gf//+6Nat2/sON0dt3boV S5cuRbVq1dCrV69M6929exdDhgxBhw4d0L9/f3zyySfo168fbt68qdYJDQ3FtGnTUK1aNdy7dy8v wn9rfn5+qFu3LjQaDWrVqoU9e/bo7D937hzatWsHU1NTbNq0CQCwe/dufPTRR0hMTHwfIeeYq1ev omvXrhl+NhcvXsTnn3+Or7/+Gv/9739x6NAhnf3Pnz/H+PHjsWjRIkyYMAHTpk1DSkrKG8939OhR DB06FMuWLUPPnj3h7++vsz88PBzDhw/HsmXLMHz4cHz99dfp2ti4cSOaN2+O/v3749dff1XL//rr LzRo0AB37tx5m1uA5ORkTJ8+Hba2tnB0dISZmRk0Gg2mTZv2Vu3kppCQEMyYMQM1a9Z8639HWX2O RHlKiHJYcnKy9O7dW4oVKyZHjx7V2bdixQoxMDCQvXv3SkpKirRv316cnJzeU6Q578aNG2JnZyci IlevXpU+ffqIVqtNV+/UqVNiZmYmixYt0ilfvXq1FClSRA4ePKiWbd++XRRFkXv37uVu8P/A9evX RaPRiL29fYb7v/76a5k3b566ff78eenevbskJSVl+xx37979x3HmlKSkJPH29hZ7e3tRFEWCg4N1 9gcFBYmFhYUEBQWJiEhERISUKFFC/P391TodOnSQ2bNnq9u9e/eWiRMnZnpOPz8/sbS0lKioKBF5 dc9LlCgh9+/fFxGRhIQE+fjjj2XTpk3qMc2aNZNvvvlG3fbx8RFjY2O5c+eOiIiMGDFCVq5cKevW rZNu3brJ3Llz3/peLFq0SCpUqCDPnz8XEZGnT59Kq1atpG/fvm/dVm7asWPHW/87ys7nmBsSExMl LCwsV89B+olJG+W4hQsXiqIo4uPjk+H+yZMny549e0REZMCAAeLo6JiX4eWq2bNnZ5mERkVFSalS paR169YZ7v/ss8+kWLFi8uDBAxEROX78eL5P2kREunTpIoqiyI0bN9Lt++STT+Thw4fv3PaNGzdk +PDh/yS8XLFx48YMk7Y+ffqk+z7o16+ftGnTRkREjhw5ku4zPXr0qBgZGWX6OTdr1kwGDhyoU9ai RQsZMmSIiIhs2LBBChcuLAkJCTrxFS9eXOLj40VEpH79+jJy5Eh1/7fffisiIqGhoVKnTh2dY7Or UaNG8umnn+qURUZGpit7397l31FWn2NumT17tvz++++5eg7ST+wepRwVExODxYsXo3LlynB2ds6w zqhRo2BoaKhuK4qSV+HlugcPHkCyeMnIxo0b8fjxYwwaNCjD/UOHDsWzZ8+wYsWK3Agx14waNQoA sGbNGp3y+/fvw9DQEKVKldIpl1f/acyy3ZiYGPTq1QsJCQk5F2wO0WjS/whNSUnBnj170LBhQ53y hg0b4tixY4iMjISPjw8sLS3x0Ucf6exPTk6Gj49PujYfP36MM2fOZNjmrl27ICLw8fFBnTp1ULBg QZ390dHRapdeUFAQWrZsCQCIj49HgQIFAABTp07FwoULdY7NrqSkJPj6+iIwMFAtMzc3R/fu3d+6 rfwkq8/x6dOnuXLeo0ePYtGiRbnSNuk/Jm2Uo44fP47nz5/DwcEh0zo2Njbo2LGjui0i+Omnn1C9 enVYWFhg2bJl6r7ExERMnjwZ33zzDWbNmoUePXogJiYGAHDw4EF0794dU6dOhYeHB8qVK4dy5crh 2LFjOm2vXbsWs2fPhpubG5ycnBAQEKDu9/HxwdixY+Hs7Iy6deu+cbyKiGD58uWYOHEipkyZgiZN mmDjxo3qfjc3N5w/fx7BwcFwc3PDypUrM2zn8OHDAIAmTZpkuN/Ozg6GhoY4ePCgTvmlS5dgZ2eH woULo0WLFrh165a679SpUxgzZgzWrVuHjh07Yvfu3QCA6OhoLFy4EA0aNICvry969uwJKysr1K9f H2FhYfjhhx/QvHlzmJubY/ny5dm675n55JNPULVqVXh6eiIuLk4t9/T0RP/+/dXtR48eYd68eahc uTJCQkLU8uDgYEyZMgXz589Hu3btMH/+fACAr68vnj59Cn9/f7i5ueH69esAgJs3b2LYsGFwd3eH s7MzXF1d8eDBA3XftGnT0Lt3b3h7e8PCwgJTpkzB4MGDodFo8PnnnyMiIgIA4O/vDysrK5w8eRIA 8O2338LKygphYWFvvN7MBAcHIz4+HuXKldMpL1euHLRaLf766y/89ddf6fabmpqiaNGiuHz5cro2 //rrL7WN19uMjo7GnTt3MmwzdfvSpUsAXiUcqYnmtm3b0KtXL5w7dw4xMTHo3LnzO11v3759ER8f j2bNmmHHjh065QDw8OFDLFiwANWrV8eFCxfQsGFDGBsbo02bNggLC4NWq8X+/fvh7OyMrVu3om/f vihWrBgCAgKQkJCAOXPmYOTIkWjUqBGcnZ3Vz01EsGDBAixZsgSLFy9Ghw4ddD6zxMRETJw4EWPG jMHChQt1YgNejXOztLSEh4dHhteVnc/xdSdPnoSFhQXMzc1x5coVAEBYWBiaNm2KcePGqfW8vLww atQozJgxAy1atMDixYshItBqtdi7dy+Sk5OxZs0azJ49GwCg1WqxdOlSjB07Fg4ODmjdujWCg4PV 9mbNmoUNGzZgypQpsLS0zPpDI/313p7x0Qdp6dKloiiKzJo1K1v1BwwYIGXLlpUff/xRRESWLVsm RkZGEhkZKSIiK1eulMqVK6v169atK/PnzxcRkZSUFKldu7bUqlVLjh49KklJSdK1a1epX7++Wn/6 9OmyatUqdbtp06bSrFkzEXk1RmjatGnqvpEjR4qxsbFERERkGOvMmTOlR48e6vaVK1fEwMBAVq9e rZZ99tlnWXaPVq9eXTQajSQmJmZap1SpUmJiYiIif3frDBs2TG7evCm//vqrWFlZSbVq1SQlJUW0 Wq1YWFjI9u3bRUTk559/FlNTU0lISJCUlBQ5deqUKIoiY8eOlaioKHnx4oVUrFhR7Ozs5OzZsyIi smbNGilcuLDExsaKyJvv+5usWrVKFEWRtWvXqmW2trY63W7Pnj2T9evX63RVhYSEiJ2dncTExIiI yOHDh0VRFDly5IiIiDg6Oup0DYaFhYmVlZVcu3ZNLevRo4dUqlRJnj9/Lvfv35fmzZtLhQoVZN++ ffLNN9/Izp07JT4+XszNzXW6CB8/fiz9+vVTtz09PaVmzZry+PHjLK938+bN6bpHz5w5I4qi6Iwt E/m7S/SHH36QatWqiYODQ7r2ypYtK+3atUtXnjoe69ixYzrlGzZsEEVR5OzZs1KwYEHp37+/zv6k pCRRFEXtWg4JCZEJEybIN998I/fu3ROtVisODg7punff1pQpU8TAwEAURZHWrVur4+xEXo1xGz9+ vCiKIitXrpQnT56Ij4+PFC5cWNq3by8JCQly+vRpURRFnJ2dxd/fX0aOHCkPHjyQYcOGSUBAgIiI xMfHS4kSJcTV1VVERPbs2SMFChRQz9OlSxcZNGiQuj1w4ECZPn26ur1s2TKd77mHDx9KzZo1ZcuW LRleU1afY+rPrNctWbJEChQoIM+ePVPLevfurf5737BhgzRu3Fjd9/DhQylatKhMmTJFRETu3Lkj iqLIiRMn1DoLFy6UX3/9Vd2uXbu2NGzYUERedas7Ozur+9KOk6QPj2HWaR1R9qXOfktOTs72MVWr VkXPnj0BAJ07d8aUKVMQHBwMc3NzNG/eXO3CERGYmJjg7t27AF51TZUoUQIVKlRAq1atAADt27fH 2LFjAbzqUlq5ciWePXumnmvDhg3q/9Tnz5+P4sWLY/r06QCAhIQE2NraIiQkBCVKlNCJ8fnz51i+ fDm2bNmiltWpUwfdunXDvHnzMGLECDVGyaLLL7U7+E31tFptuv1ubm6oVKkSqlatigULFmDo0KHY v38/unTpgvHjx6NZs2YAAGNjYzx//hwRERGwtraGtbU1AMDFxQXFihUDADRu3BiPHj2Cvb09AMDJ yQkJCQkIDg5GvXr13njf3+Szzz7DzJkz4eHhgWHDhuHkyZOws7PT6XYzMzNDlSpVdI5bunQpOnbs CFNTUwBAmzZt4OXlpcb3+r3w8PCAubk5atWqpZbNnj0bderUwdatWzFixAhUqlQJKSkp6NSpk86x Q4cOxerVq7FkyRKYmJhg9+7dcHV1Vff3799f58ng20q9b693+6duFyhQAAUKFMhwWICiKOrxOdFm 2v0AYG1trfNE1dPTE46OjqhYsSJ++OEHnDx5EhUrVsTYsWPfqqt0yZIlcHV1xfDhw3H06FHUq1cP Bw8eRKNGjVC8eHHUq1cPANSnTc7Ozhg0aBA8PDwQFRWFpk2bAgDatm0LW1tb2Nra4sGDB/jpp59Q vHhx9TyNGzeGVqsFANStW1d9EgW8+r5Pnfl648YNbNmyRWcmtp2dnU7MpUqV0nnq/rrs3POMDBky BHPnzsX27dsxYsQIPHjwANbW1jAyMgIAzJ07V/0ZlRrHkCFDsGrVKsycOTNde4mJiViyZAlGjBih Pg2uVq0anjx5Aq1Wi5cvX8LX1xfnzp2Dvb29OkyBPkxM2ihHpY7RCQ0NzfYxaX8hp/6iePHiBQDA 1tYWtWrVwvfff4/4+HjExsaqP7QzUqBAAXUZiXPnzqFo0aLqD0sAqFmzpvr15cuXsW3bNrRu3TrL GFO7aooUKaJTXr9+ffj4+ODhw4coXbp0Nq72VfdwYGAgwsPD1YQqreTkZERFRaFq1ao65Wmvo23b tgCAwMBAdOnSBbNmzcLly5fx008/ITIyEgCyvE8Z3ffULtC3ve+pzMzM0K9fP6xduxanTp2Cp6cn Bg8enOVxfn5+GD58uE5Znz591K9f/8V54cKFdJ9FzZo1UaBAAZ3uxYwSj9GjR+Prr7+Gl5cXRowY gaNHj2L79u1ZxphdJUuWBACdLuK022XKlEHJkiURHR2d7ti4uDiUKVPmndt80/7XPX/+HOvXr8ex Y8ewZMkSbNq0CRcuXEBKSgp27979xuVqMmJnZ4fz589jwoQJ+O677+Dq6oqgoKBMkxsHBwd4eHjg zp076njHQoUKqfuvXLmCwoULZzq+q0KFCpg+fTp27NiB8PBwPHr0SP0+SR0ikdG/r+zKzj3PSPHi xeHq6oqNGzdixIgR2LZtGwYOHAjg1X8kw8LCMvw5kpiYiICAgHQ/R4KDgxEbG4sFCxbojAVO1a5d OzRt2hQtWrTAmDFjsGDBgne7YNILHNNGOapVq1YwNDTEyZMnszXIPCu3bt1C48aN0bBhQ4wdOxYW FhbZPjYpKQkRERF4+fJlhvvj4+Nx+/btdOUZrR1mYGAAIH0ymvpELm1ClZV27doBAM6ePZvh/itX riA5ORmffPJJpm2kjltJ/SU3c+ZMrFy5EpMmTVLbfxepn9k/ue+jR48GACxbtgyXL1/OdOxeWklJ Sdl6kpfKwMBAZzwc8CqxMzc3z/KzKFu2LFxcXLBmzRo8ffo0XWL/T5UtWxaWlpbpvldCQ0NhaGiI 6tWro169eun2x8XFITo6GrVr107XZu3atWFoaJhhm5aWluo4xdfvSWr9jNpcuHAhpk6diidPnmDO nDn48ssvYWJigqJFi2Z7/bw///xTZ2yVgYEBvvnmGzg5OSEkJEQdf5iR1KeqZmZmGe6Pj49HeHi4 +h+4tJKSkhAeHg57e3tYWFhg/PjxKF++vLr/+fPnAJBhYpxdWX2O1apVy/TY4cOH4+LFi7hy5Qpu 3bqFGjVqAHi3nyPx8fEAkOnPKkVRsG/fPsydOxfr1q2Dra0tnjx58hZXSvqESRvlqFKlSmHQoEEI CQnB1q1bM6zz4sULnUVB3zR7dMyYMahUqZLavZLV4qNp1ahRA1qtFuvWrdMp37dvH7RaLapUqYKN GzfqJJdhYWHpBiwDQK1atWBiYgI/Pz+d8rCwMFSuXFmnOzWr2bADBw5E6dKl08WVatOmTTA1NcWE CRMybSN1wHWrVq1w9uxZLFq0CBMnToRGo8nWE7Gs4vwn971mzZpwdHRUB5dnR40aNeDl5aXzCzo2 NhZHjx5Vt9N+Tk2aNEF4eDj+97//qWVJSUl48uSJ2tUGZH6NEyZMwLVr1zBx4sQcn+Wo0Wjw6aef plv49s8//0SbNm1QrFgxODs7Izw8XJ04AbyaEKHRaDKMp3jx4nB0dMywze7du0NRFDg7O+PatWs6 Cdeff/6JYsWKqU9mU92+fRs3b95Ely5d8McffwCAOhHh7t27KFu2bLautUCBAuqEkbQaNGgAALCy ssr02Dt37qB06dI6T7/TqlKlClJSUnQm+wDA5s2b8eTJE3zxxRdISkpSry3t932lSpUAACdOnMjW dWQkO59jZpo0aYK6detizJgxOt+PJUqUQKVKlTL8OWJqaoo6deqkGz5RqVIlaDQarF+/XueY3377 DdeuXVO7TGfOnIlLly7h6dOnOfrkmPKZ9zGQ7sWLFzqDNOnD8uLFC2nVqpUYGxuLp6enpKSkqPsu Xrworq6u6sKRffr0UScGiIjcunVLFEURX19fERGpU6eOVK9eXaKjo+X8+fNSpkwZadu2rTx58kRE Xq1dNWDAAPX4devWiaIo6oK2bdu2FSMjI5k5c6YcOHBA5syZI15eXiLy9xpbLi4ucuzYMfH29pbO nTuri4S+btGiRVKwYEF1YdKXL19KrVq1xNvbW63Tu3dvadKkSZb36OzZs1KsWDFxd3fXWXz3xx9/ lCJFisjevXvVshMnToiiKBIYGKiWTZo0SYYOHSoiIrt27RJFUWTdunUSFxcno0ePFkVRxM/PT6Ki ouR///ufKIqis+5Tv379pHnz5ur263Wyuu9Z8fHxEY1Gk+maWKkTDVIXLU0d9G1rayvbt28Xb29v 6dOnjzqBwcXFRezt7UWr1crFixclMjJSypYtq65RJiLi5eUlDRo0UBfsff0aX2dvby+WlpY6358i Ips2bcr2RIS1a9eKoihy69YtnfIbN26IqampOsA/MjJSzM3NdT4DR0dHcXd3V7f79u0rn3/+ubq9 YMECsbe3VwewHz16VEqUKCHR0dEiInLz5k0xMTGRmzdvisirxXWrVasmnp6eIiLqJIO0ixqn6t27 txrb+fPnxcrKSt2XunabyKvPqUWLFnLmzJkMr//Zs2eiKIosX75c/T6Oi4uTmjVr6gyOT52wkbpA 8suXL8XW1ladBJCSkiKKosj333+v036LFi2kUKFCsnz5cjl16pR8+eWXMmfOHBER6dSpk1hYWEhY WJjcunVLatSoITVq1JDw8HB58eKFWFtbS8WKFSUoKEi0Wq3MnDlTFEWRrVu3SlxcnDx8+FCqV6+u 3q+MZOdzzMzq1avFxMQk3c+TH374QRRFkdOnT4vIq8+pTZs2smzZMvWeajQaWbNmjTx+/FhCQ0Ol X79+otFoZNasWXLq1Cnx8PCQYcOGiYjIli1bdH4Gde3aVWebPix5mrRptVrZvHmzlCtXTv2lnJF1 69aJu7u7zJ07N9uzECl/SUpKku+++04aNWokNjY24uTkJJ9++qnMnj1b/SF24sQJ+eijj8TU1FS8 vb0lMjJSRowYIRqNRnr37i2RkZGyfft2MTc3l3Llysm6detk+fLlUrx4cVm6dKkcPHhQzMzMpHLl ynLq1CkJDg4WBwcH0Wg08vXXX4vIqxXMnZ2dxdjYWCpWrCjr16/XiXPOnDliZWUlZmZm0rVr1ywX 3ly5cqU0b95cpk+fLsOGDZNdu3ap+3744QcpXbq0FClSRDZv3iyPHj16Y1t3796VIUOGiJOTk/Ts 2VPatWsn//3vf9XZcqlevnwpkydPlpYtW8qQIUNkyJAhsmTJEnV/XFyctGzZUgoXLiydOnWSgIAA sbGxkUaNGsm9e/dk8uTJotFoZPTo0RISEiJ+fn5SvXp1MTMzE29vb4mKipIJEyaIRqORwYMHS0hI yBvve3akpKToJNNp3bhxQ/773/+qMaUuuuvl5SUVKlQQExMT+fTTTyU0NFQ95tChQ1KsWDFxcHBQ k+bg4GDp1KmT9OnTR2bPni2jRo1SZx3/8ssvUq5cOTE1NRVPT88ME/G1a9dmuGCvh4eHWFlZqYsb Z8bHx0fq168vGo1GhgwZIufOndPZ//vvv0vPnj1l6dKl0qdPH3VB6VRRUVEycOBAmT17tri5ucmE CRN0ZhRPnDhRKlasKC9evNA5Z9++fWXp0qXSo0cPOXXqlE6b9+/fl969e8uCBQtk5MiRsmDBgnRx Hzt2TL744gudshkzZsikSZNkyZIlcvv2bbV8y5YtUrBgQencuXOm98HCwkIURZHq1auLi4uLNGvW TCZNmiRxcXFqndSkbeLEiTJ27Fjp1q2bmqDFxsbKrFmzRFEUcXR01EmIQkJCpEOHDlK4cGEpV66c TgJ69OhRKVOmjFhaWsq8efNk586dUrRoURk3bpyIvPo+c3R0FBMTE2natKmsWrVKWrVqJVu3bpUX L15ISEiIlCxZUjw8PDK9NpGsP8fMPHv2TJ0R+rodO3ZI06ZNxc3NTUaPHi1r1qzR2T948GAxMzOT SZMmiYhIdHS0/Pe//xUTExOxsrKScePGqd8XW7ZskeLFi8vChQtl+fLlOjPi6cOjiOTAwKNsSh1f 9NFHH8HX11ed8ZfW3r17sXTpUpw+fRoA0LNnT3zyySeZLkRKRPQuFi9ejCZNmqiLzVLGkpKS8MUX X2Dx4sXv3MaWLVvw+eefZ7vrnogylqdj2iwtLbOczbN06VK0b99e3e7atWumi5QSEb2LpKQknDx5 kglbFkQEX331lTq5hIjer3y15EdiYiL8/f11BmBXqVIFAQEBePLkSbq1s4iI3saUKVMQGhqK2NhY vX/NUl6IiorCwIED072C7G2lXb8xo2UriCh78tXs0adPnyIpKQlFixZVy1Jn6LzNul9ERBkJDw/H wYMHUbNmTXz++efvO5x8z9zc/B8nbH/99Re2bt0KRVEwe/ZsndevEdHbyVf/5Un9H1jatWpSx0C8 PvTus88+g42Njbrt6OgIR0fHXI+R6EOVpE2BkcZA/ftDlPaNFpQ36tWr94+W3iCiv+WrpM3CwgJG RkY6rx1KXRzx9XWDPD09c2TxViJ6xUhjAOvN0xA68N0HnBMRUe7JV92jiqLA0dERQUFBallgYCBq 1KihvlKEiIiI6N8oz5O2jLo7Z82ahatXrwIABg8ejH379qn7fv31V449ISIion+9PO0ejYiIwIYN G6AoCnbs2IGyZcuievXqOHjwIBo0aIA6derA1dUV9+7dw6xZs1C4cGGUL18eEydOzMswiYiIiPKd PF1cNycpisIxbUQ5jGPaiIjyr3w1po2IiIiIMsakjYiIiEgPMGkjIiIi0gNM2oiIiIj0AJM2IiIi Ij3ApI2IiIhIDzBpIyIiItIDTNqIiIiI9ACTNiIiIiI9wKSNiIiISA/k6btHKfd4eHjA2toan376 6fsOBdu3b8eBAweQkJCAn3/++Y11IyIisGjRIly7dg1lypRBREQEChYsiGnTpqFRo0Z5FDEREVH+ xydtH4gNGzZgzZo173z8vXv3ciyWnj17Ijw8HNHR0W+sFxgYiPr16+Ply5c4ePAgtmzZggMHDmDA gAFwcnLCli1b3vrcOXkdRERE+QmTtg/AH3/8gdjYWBw5cgTBwcFvfXxCQgKGDx+eY/EYGhrC2toa IpJpnZSUFHTv3h1FixbFt99+C43m72/FTz/9FFOmTMGwYcNw+fLlbJ83MDAQixfzZedERPRhYtL2 AfD09MTevXthZGSEtWvXvvXxo0aNQmBgYC5Elrk9e/bg+vXr6N+/v07Clmro0KFISkrCwoULs9Ve TEwMevXqhYSEhJwOlYiIKF9g0pZKUXL/Ty6IjY1FYmIiateuDRcXF2zevBkvX77MsN7cuXMxf/58 9O3bF3379kVMTAyuXLmCwMBAREVFwc3NDfv27cOJEydgbm6OgQMHAgACAgLQrVs3neQqJiYGI0eO xJo1azBmzBgMGzYMycnJ2Y778OHDAIAmTZpkuL906dIoX748jhw5AhHBd999B41GA09PTwDAsWPH UK1aNTg5OQEAfH198fTpU/j7+8PNzQ3Xr18HAAQHB2PKlCmYP38+2rVrh/nz56vnSEpKwqxZszB9 +nSMHz8eTZo0wS+//AIAePnyJVauXInmzZvjxx9/xNChQ2FtbY3KlSvj6tWrOHLkCNq0aYNixYph 0qRJOrH7+Phg7NixcHZ2Rt26dXHo0KFs3xciIqJMiZ7K8dCB3P+TC9auXSsnTpwQERE/Pz9RFEW2 bt2qUyclJUUcHBzk4sWLIiISExMjhQoVkpkzZ4qIyJw5c8TGxkbnGAcHBxk4cKC6vWnTJlEURd0e P368tGnTRkREtFqtFC9eXLy8vNT9AwYMEEdHx0zjbteunSiKIrdu3cq0jr29vWg0Gnny5IlotVpR FEU8PT11zuHk5KRuOzo66sQcEhIidnZ2EhMTIyIihw8fFkVR5MiRIyIi0qdPH5kyZYpa/8CBA6LR aOTAgQMiInLv3j1RFEV69OghYWFhotVqpVmzZlK9enXZv3+/iIj89ttvoiiKBAUFicirz2DatGlq myNHjhRjY2OJiIjI9Drzk7Kbpr7vEIiIKBN80pYqL9K2XODn5wcHBwcAQLNmzVCnTp10ExL27NkD APj44494B6qsAAAgAElEQVQBAKampti7d6/6JC0jymtPBl/fbt++PQYPHgwA0Gq1KFKkCO7evZvt uFPbkzfcF61Wq9Z5/fyp0h7/eltLly5Fx44dYWpqCgBo06YNvLy8YG9vj6CgIOzYsQMuLi5q/Q4d OqBBgwZwd3cHAHz00UcAgI4dO6J06dJQFAUtWrRAQkICOnbsCADqk76AgAAAwPz583H37l1Mnz4d 06dPR0JCAmxtbRESEpLNO0NERJQxLvmhxy5evIi//voL3bp10yk/d+4cLl++jPr16wMATp06hTJl yujU+eSTT97YdmZJUtrjnz17hu+++w6KoiA5OVlNsrLDxsYGABAeHo6qVatmWCciIgJFihRBiRIl stXm6zH7+fmlm2DRp08fAK/uHQAUKVJEZ3/9+vWxdevWTM9RsGDBDLdjYmIAAJcvX8a2bdvQunXr bMVMRESUXXzSpse2bNmC48ePY/fu3eofX19fGBoa6jxtS0pKyvGlMM6ePYuWLVuiS5cuGDVqFAoV KvRWx7dr105tJyORkZG4e/fuP0p+kpKSMn36Z2BgAAAIDQ3VKS9RogQMDd/+/zKpT/ni4+Nx+/bt dPsTExPfuk0iIqK0mLTpqefPn+Px48ewsLDQKbe0tESHDh2wY8cOxMbGAgBq1qyJ8+fPp1s+I7Xb VFGUdF2LiqIgJSVF3U77NQB89tlnaNWqldqFmNFTtjc9revcuTPq1q2LjRs3pmsbADZv3gxDQ0NM nz5dpzzteTI6Lu111KhRA15eXnjx4oVaFhsbi6NHj6Jx48bQaDTw8/PTOT4sLAzNmjXLNO6sVKlS BRs3btSJIywsDDt27HjnNomIiAAmbXpr48aNsLe3z3Bfhw4dEBcXh++//x4A0K9fP1hYWKBt27ZY vXo1Dhw4gMGDB6vdkubm5nj8+DGePXumdhva2NjgxIkTCAsLQ2BgIA4cOAAAuH//PgDg4cOHuHz5 MhISEnDo0CE8ffoUYWFhiIyMBAAkJye/cTapoijw9vZGfHw8Ro4ciaSkJHXfiRMnMH/+fHzzzTdo 2LChWm5jY4Pdu3fj+fPn8PX1xbVr1xAeHq7OlrWwsEBgYCBEBJcuXcKECRPw4MEDtGjRAjt27MCu XbswYsQING/eHOXKlcPgwYOxfv16dRHgZ8+e4fDhw+qYttSkMG0CptVqda4rtU5qMjlq1Cj8+eef cHV1xfHjx7Fr1y4MHz4crq6umd4LIiKibHlfMyD+KT0O/R/bvn27FCtWTDp06CCXL1/W2Xfjxg3p 3r27KIoixYsXlx07doiIiL+/vzRq1EgKFy4sDRs2FD8/P/WYBw8eSKVKlaRKlSpy8OBBEREJCgqS +vXri4mJiQwePFh2794tHTp0EE9PT0lJSZFly5aJqampVKtWTX7++WcZN26clCxZUrZt2yY+Pj5S unRpKV68uPz4449vvJaIiAiZNGmStGzZUnr06CGdOnWSrl27yunTp9PV3bdvn5QtW1ZKliwpK1as EHd3d/n888/F19dXREQOHTokxYoVEwcHB7lz546IiHh5eUmFChXExMREPv30UwkNDVXbS05Ollmz ZomTk5PMmjVLBg8eLL///ruIiDx//lyWLVsmiqKIq6ur3Lp1Sy5duiTNmzcXQ0ND+f777yUmJkYW LVokiqJIly5d5ObNmyLyajaulZWVmJmZSdeuXeXevXtv8/G+V5w9SkSUfykiuTStMZdl1KVHRP+M 9eZpCB3It0oQEeVH7B4lIiIi0gNM2oiIiIj0AJM2IiIiIj3ApI2IiIhIDzBpIyIiItIDTNqIiIiI 9ACTNiIiIiI9wKSNiIiISA8waSMiIiLSA0zaiIiIiPQAkzYiIiIiPcCkjYiIiEgPMGnTQ/v27cNH H30EjUaDFi1a4OjRozr7Dx8+jEaNGqF06dL45ZdfAACrVq2Cra3t+wj3rYwfPx4ajQZ169ZF69at UaZMGfU6mzdvDgsLC2g0Gty+fRsTJ06EjY1NnsR14sQJ9O/fH926dXvnNg4cOIBBgwahSZMmmdbZ uXMnXFxcMGrUqHc+DxERfZiYtOmhzp07Y/369QAAa2tr/Oc//9HZ/8knn8De3h5Lly5Fly5dAAAV KlSAnZ3dW53n3r17ORPwW1AUBT///DOuXLkCX19ftG3bFoqiYPv27fDz80NoaCjq1KmDihUromTJ krh//36exNWiRQtERkbi2bNn79xG+/btodVq8fjx40zruLi44NatW3jx4sU7n4eIiD5MTNr0VLt2 7VCnTh388ssviI6OTrf/7Nmz6Nmzp7rdpUsXrFu3LtvtHz9+HJ6enjkS69soWbIkunbtqm6LCERE 3S5cuDD69+8PAChVqlSexaXRaGBpaakTy7u0Ub58+Te2YWhoiBIlSrzzOYiI6MPFpE2PjRo1Ci9e vMDmzZt1yk+dOoWGDRuiQIECOuUpKSnZavfBgwfo37//P0pQ3pWbm1uWdcaNG5cHkWRMUZRcP8f7 uO9ERJT/MWn7f4qi5PqfnNa3b18UK1YMa9as0SnfsmULBgwYoG4HBwfDzc0N1tbWOvUuXrwINzc3 zJs3D46OjuqTuN9++w2xsbE4fPgw3Nzc8PDhQwDA+fPnMXToUMyZMwft27fH4MGD1e7CCxcuYNSo UZgwYQJWrVoFMzMzLF26FJ07d4ZGo8H06dPx/PlzAK/G3JUqVQrXrl1Ld02GhoZZXvfrda5evYpm zZrB1NQUPXv2REpKCrRaLfbv3w9nZ2ds3bpVvVcBAQFISEjAnDlzMHLkSDRq1AjOzs6IiIgAACQm JmLSpEnYtGkThg8fjgYNGuicS0Tw008/oXr16rCwsMCyZct09v/2228YNmwYvvjiC7Rq1QqTJ09G YmLiG6/nzJkz6NWrF9zd3TFr1iw1FiIiIh2ip3I6dAC5/ic3TJgwQRRFkYMHD4qISFxcnNjZ2enU iYqKklmzZomiKGrZxYsXxcnJSZKSkkREZP369aIoity6dUtERGxsbMTd3V2tf+XKFbG0tJTw8HAR EUlKSpKmTZuKvb29aLVaCQoKkkqVKsnHH38sx44dE3d3dzl+/LiEhISIkZGRLF26VG3L399fZsyY ka3rGzBggCiKIvfu3Uu3b/PmzaIoiixZskRevnwpf/zxhyiKInv37pWEhAQ5c+aMKIoizs7O4u/v LyNHjpQHDx7IsGHDJCAgQERE4uPjpUSJEuLq6ioiIhs3bpSJEyeq55g9e7ZOLGXLlpUff/xRRESW LVsmRkZGEhkZKSIihw4dEhsbG0lISBARkdjYWKlYsaL06NFDbWPOnDliY2Ojbl+/fl1Kly4tERER IvLq87OyspKBAwdm6/7ktLKbpr6X8xIRUdb4pO3/yf+PncrNP7lh1KhRUBQFHh4eAIBdu3bBxcVF p06xYsVQqVIlnbI5c+agf//+6lOr/v37Y8uWLahYsWKG51myZAns7OxgaWkJ4NXTrhkzZuD8+fM4 dOgQKleujHLlyqF69epwcnLC7Nmz4ejoCGtra7i4uOiMp/Px8UGvXr1y7B5MmTIFBQoUQMOGDVGq VCncvHkTBQsWVGdptm3bFra2tvDw8FCflHl5eWH69OmYN28eGjduDK1WCwB4+fIldu7ciaCgIABI N4uzatWq6ljBzp07Izk5GcHBwQCAefPmoX379ihYsCAAwMTEBBMnToS3tzcCAwMzjN3d3R1OTk7q ODZjY2PUqFEjx+4NERF9OJi06blKlSqhbdu2+PXXX3Hv3j1s27YN/fr1y/I4Pz8/lClTRt0uWLAg +vfvDwMDgwzrX7hwAUWKFNEpq1+/PgDg0qVLAF4lvoUKFUp37Pjx43H79m389ttvAICAgADUqVMn exf4lgoWLJhu5mXamK5cuYLChQtj0aJF6p/9+/dj165dAIABAwbAysoK9erVw5dffgkLCwudttIm 36nJWer5snOPXnf06NF03da5leATEZF+Y9L2ARg9ejS0Wi2mTZsGjUaDsmXLZnlMUlIS7t69m+1z GBgYICQkRKcs9emQkZHRG49t3LgxGjdujNWrV+PKlSvpxonlpfj4eISHh2e4pEZSUhKMjY1x6tQp DBs2DHPnzkXLli3x8uXLbLVtaGiI0NBQnbKs7lFcXFy62b95MdmBiIj0D5O2D0D79u1RqVIl7Ny5 M1tP2QCgRo0a2LBhg9otCLyaNfrnn38CeJU4pH3i06RJEwQEBCAmJkYtCwsLAwA0bdpUPSYzEyZM wG+//YavvvoqR7tG31aVKlWQkpKCjRs36pRv3rwZT548ga+vL4yNjbFixQqcPHkSFy5cwKFDh9R6 b7pGe3t7nD17VueehoWFQaPRoHHjxhkeU6lSJZw8eVKnLDe704mISH8xafsAKIqCESNGwNTUFM7O zhnWSUpKAgAkJycDACZOnIgLFy6gXbt28Pb2hpeXF+bMmYOGDRsCAMzNzXHjxg0kJyfj6tWrmDp1 KhRFwXfffae2uX37dnTs2FFN2lJSUtTzvM7FxQWlS5fG1atXUa1atWxfW2xsLIBXT6Rel3otqX8D r2Z/psaQmjyljalu3bpo3rw53NzcsGLFCvj5+WHRokW4d+8eSpcujTNnzsDf3x/AqySsevXqKF26 tHqetDNBU9tN/XvOnDkICwvDjz/+qHOPhg8fjnLlyqltpF16ZdiwYbh58ybmz5+P5ORk3L17F0FB QQgKCsKdO3eyfZ+IiOjDZzB37ty57zuId+Hu7g49DT1X1KhRA0+fPlXfgJDWhQsXsGrVKty9exeG hob4+OOPYWtrCxMTE/zyyy/w8fFBgQIFsHLlSnX8l5GREb799lucP38e/fv3R9myZdG2bVusWbMG Z8+exfnz5/H8+XOsW7cOhoaG8PT0hKenJx4+fIiyZcuiZs2aOk+lNBoNIiIiYGdnh+bNm2d5PVFR UdiwYQM2b96MxMREhIeHw9zcXJ0oERwcjCVLluDu3bswMDBAw4YNsWHDBnh7eyMmJgZNmjSBh4cH Tp06hZiYGFSoUEF95VWbNm0QEBCAjRs34rfffsPHH3+MOXPmAAB+//13TJs2DSKC48ePo0GDBuje vTtOnjyJlStX4t69e6hSpQpKlSqFL7/8EhcuXEBiYiKcnJxQrVo1NGnSBMuWLcOVK1dw9OhRlCpV CosWLYKiKDh27Bi+/vpr3L9/H2XLlkWNGjXQpEkTGBoa4vvvv8eyZcuQnJwMMzMz1KxZE7Vq1ULJ kiX/6bfGW1l+2RcTP26dp+ckIqLsUURP+2Fe776j/G/EiBGYOnVqnr0vlN6e9eZpCB24+H2HQURE GWD3KOWJqKgohIeHM2EjIiJ6R1kvP0/0D6SuBRcUFAR3d/f3HQ4REZHe4pM2ylUhISHYv38/unfv jlatWr3vcIiIiPQWn7RRrjp+/Pj7DoGIiOiDwCdtRERERHqASRsRERGRHmDSRkRERKQHmLQRERER 6YE8nYjw4MEDLFy4EHXr1sXZs2cxZcoU1KpVS6dOcnIy5s+fD0tLS9y/fx+mpqb44osv8jJMIiIi onwnz5I2EUGXLl2wZMkStG7dGi1btkTHjh0RFBQEAwMDtd53330HMzMzjB49GgDg5OSEVq1aoVmz ZnkVKhEREVG+k2fdo76+vrhx4wYcHR0BvHpXppGREfbs2aNT73//+x+ioqLU7eLFiyM6OjrH40nS pmRdKZflhxiIiIhIP+TZk7bTp0+jYsWKMDT8+5RVq1bFsWPH4OLiopZ17doVzs7OcHR0hLm5ObRa Ldq1a5fj8RhpDGC9eVqOt/s2cvodjw8ePEC9evVw6NAh2Nra5mjbqWJjY7Fx40b8+uuvaNWqFaZN e7d7uGrVKmzduhUXLlzI4QiJiIg+THn2pO3Ro0cwMzPTKStatChCQ0N1ylq3bo358+ejXbt2GDly JHbu3KnTfUqZMzU1RZMmTVC0aNFcPcegQYNw/vx5JCYmZvu4e/fu6WxXqFABdnZ2OR0eERHRByvP nrQZGhrCyMhIp0yr1aarJyJ49OgRFi5ciK+++gr/+c9/cPjwYRgbG6erO3fuXPVrR0dHtev138rM zAz79u3L9fOYmprC3Nw82/VFBAMHDsSxY8fUsi5duqBLly65ER4REdEHKc+StjJlysDPz0+nLDo6 GjY2Njply5cvR2xsLBYtWoRevXqhWbNmWLJkSYYvG0+btNHftFotNJr8s5rL/Pnz8fvvv6crT0lJ 4VNUIiKibMqz3+xOTk64ffu2TtnNmzfTPR07duwYateuDQAoX748xo0bx3FPGdi6dSu++uorLF++ HFZWVjh37hzWr18Pe3t7bNu2DQDg7++PoUOHom3btjh8+DAaNmwIMzMzjBs3DnFxcZg0aRLKly+P atWq4caNGwCAixcvonLlynBycgIA3LlzB8OHD4dGo8H9+/czjScgIAAjRozA+vXr4erqijVr1gB4 9cL4c+fOAQDc3Nzg6emJ4OBguLm5wdraWqeN8+fPY+jQoZgzZw7at2+PwYMH49mzZwCAs2fPYsCA AejXrx927dqFqlWromTJktixY4d6/O3btzF58mRs3LgRbdq0wYQJE3LobhMREb1/eZa02dvbo3z5 8uoLxAMDAxEfH49OnTph1qxZuHr1KgCgfv36uHLlinrcixcvOPbpNQkJCZg6dSomT56MiRMnYu3a tdBoNGjWrBn++OMPtd7HH38MrVYLf39/xMXF4fz58/D29sa3336LKVOmYO7cubh9+zYsLS2xcOFC AECDBg3QrFkzKIoC4NXYs169emUZU9++fVGuXDkMHToUM2bMwJgxYxASEoJy5cqhR48eAIBly5Zh wIABsLCwQKFChfD48WP1+KtXr6Jz585YuHAh3N3dsW/fPty4cQPt2rWDiKBx48aIjIzEqVOnoCgK rl+/jl69emHMmDFqG3PnzkXLli0xaNAg/PLLL7CyssqR+01ERJQf5FnSpigK9u7dC09PT6xevRqL Fy/G/v37YWxsjIMHDyIoKAgA8MUXX0BEMGPGDKxYsQIxMTGYMWNGXoWpF5KSkhAZGQkPDw8AQOfO nVG1atV0CxUbGBjA2toaZmZm6NatGzQajfpks3HjxjA1NYWBgQEcHBxw7do19ThFUSAibxXToEGD 0KFDBwCAsbExtFptuskHqYoVK4ZKlSrplC1ZsgR2dnawtLQE8GoM5IwZM3D+/HkcOnQIGo0GJUqU QMWKFeHi4gJDQ0N06tQJUVFRavKXmJiIVatWITY2FoULF8bnn3/+VtdARESUn+XpGxEqVqyILVu2 AABGjhyplvv7+6tfFypUSO1ao4yZmprC3d0dY8aMwYEDB7BmzRqUL18+W8cWLFgwXVmBAgUQExPz j2IaPXo0goOD8dVXX6kTTDKaaJKZCxcuqN3iqerXrw8AuHTpkrrsS9pkskCBAgCAly9fAniV8Ds4 OKBGjRr49ttv0a1bt3e/ICIionwm/4xWp7cyffp07Nq1C1evXkXdunVx5syZf9Te60/WUrtHs2vN mjUYO3YsRo8erXaHvg0DAwOEhITolJUoUQIA0s06zkytWrVw8eJF1KtXDy4uLpg0adJbx0FERJRf MWnTQ+Hh4bh69SqcnZ1x48YN1K1bF1999VWOta8oClJS/n5bQ9qvMxIaGooxY8Zg2LBhKFSoULon bNlJAJs0aYKAgACdJ35hYWEAgKZNm2arLV9fX5QvXx4HDhzA8uXLsXLlylx5mwYREdH7wKRND8XH x2Pt2rUAABMTE7i4uKBMmTJISkoCAJ1Fb19PuFITqtS6qXXSPmmrUKECLl++jMDAQISEhGDnzp0A Xs0kTZWUlITk5GQAwOPHj6HVavHHH3/g5cuX8Pb2BvDqDQ1Pnz5V13QLDAzE5cuXISLq+VPbmDp1 KhRFwXfffaeeY/v27ejYsaOatCUnJ+skhKnXmXqNGzduRFxcHADgs88+g5mZGUxNTbN3U4mIiPI7 0VP/NPTElOQciiTvY7hz544YGBjI2LFjZe3atTJ06FAJDw+XBQsWiKIo0qpVK7l8+bL4+/uLnZ2d FCpUSH766Sd5/vy5eHh4iKIo0qZNG7l69apcvHhRbG1tpWDBguLl5SVarVYiIiKkZcuWYmxsLM7O znLq1Clp0aKFrFmzRuLi4mTFihWi0WikYcOG4ufnJ1qtVrp37y6FCxcWBwcHuXr1qjRo0ECqV68u f/31l8TFxYmtra1YW1uLp6en+Pv7S+vWrUWj0ci8efPk2bNnIiJy4cIFcXR0lKFDh8rMmTNl0qRJ kpCQICIiZ8+elY8++kgsLCxk//798ujRI3FxcRGNRiNTpkyR+Ph4cXR0lGbNmomHh4eMHz9eDh8+ nGOf1b9F2U1T33cIRESUCUXkLacJ5hPvMsORiN7MevO0HH8nLhER5Qx2jxIRERHpASZtRERERHqA SRsRERGRHmDSRkRERKQHmLQRERER6QEmbURERER6gEkbERERkR5g0kZERESkB5i0EREREekBJm1E REREeoBJGxEREZEeYNJGREREpAeYtBERERHpASZtRERERHqASRsRERGRHmDSRkRERKQHmLQRERER 6QEmbURERER6gEkbERERkR5g0kZERESkB5i0EREREekBJm1EREREeoBJGxEREZEeYNJGREREpAeY tBERERHpASZtRERERHqASRsRERGRHmDSRkRERKQHmLQRERER6QEmbURERER6gEkbERERkR5g0kZE RESkB5i0EREREekBJm1EREREeoBJGxEREZEeYNJGREREpAeYtBERERHpASZtRERERHqASRsRERGR HmDSRkRERKQHmLQRERER6QEmbURERER6gEkbERERkR5g0kZERESkB5i0EREREekBJm1EREREeoBJ GxEREZEeYNJGREREpAeYtBERERHpASZtRERERHrA8H0HkBkRgbe3N+7fvw87Ozs4Ojq+75CIiIiI 3ps8fdL24MEDjBw5EmvXrsWAAQMQEBCQYb2YmBi0adMG9+/fx+TJk5mwERER0b9enj1pExF06dIF S5YsQevWrdGyZUt07NgRQUFBMDAwUOtptVq4uLjA1tYWkydPzqvwiIiIiPK1PHvS5uvrixs3bqhP zWrUqAEjIyPs2bNHp97OnTtx9uxZzJs3L69CIyIiIsr38ixpO336NCpWrAhDw78f7lWtWhXHjh3T qbd582aUKVMGU6dORcOGDdG2bVs8ePAgr8IkIiIiypfyLGl79OgRzMzMdMqKFi2K0NBQnbILFy7A 1dUVK1euxJ9//okiRYpg8ODBeRUmERERUb6UZ2PaDA0NYWRkpFOm1WrT1YuLi0Pz5s3V7aFDh6JT p05ITk7WeUoHAHPnzlW/dnR05IQFIiIi+mDlWdJWpkwZ+Pn56ZRFR0fDxsZGp8zKygpxcXHqtrW1 NbRaLaKjo1GiRAmdummTNiIiIqIPWZ51jzo5OeH27ds6ZTdv3kz3dKxp06a4deuWup2QkIAiRYqk S9iIiIiI/k3yLGmzt7dH+fLlcfz4cQBAYGAg4uPj0alTJ8yaNQtXr14FAAwbNgze3t7qcSdPnsSQ IUPyKkwiIiKifCnPukcVRcHevXsxb9483LhxA3/88Qf2798PY2NjHDx4EA0aNECdOnXg6OiIQYMG YejQoahUqRJCQ0OxbNmyvAqTiIiIKF9SRESyUzGjiQDvk6IoyGboRJRN1punIXTg4vcdBhERZSDb 3aPdunWDv79/bsZCRERERJnI9qOz3r1749KlS/j+++9RsmRJdO/eHXXr1s3N2IiIiIjo/2W7ezSt yMhIjBs3DhcvXkTPnj3Rr18/VKxYMTfiyxS7R4lyHrtHiYjyr2x3j96/fx9xcXFYvXo1WrZsiUOH DqFr165o1aoVduzYgf79++P+/fu5GSsRERHRv1a2u0fbt2+PkJAQlC9fHuPHj0ffvn1RqFAhAECL Fi3g5eWFrl274uLFi7kWLBEREdG/VbaTNlNTU/z8889o3bp1hvvv37+PJ0+e5FhgRERERPS3bI9p Cw8PR8mSJdOVpaSkoHTp0hARxMXFwcTEJFcCfR3HtBHlPI5pIyLKv7I9pu37779PV1ayZEmMGjUK wKskKq8SNiIiIqJ/myy7R9euXYudO3fi3r17OHLkiM6+J0+eICYmJteCIyIiIqJXskzahg8fDgMD Axw5cgQdO3bU6ZIsUqQIWrZsmasBEhEREdFbjGl7+fIlChYsmK48KioKxYsXz/HAssIxbUQ5j2Pa iIjyrzc+abt79y5Kly6NggULIigoCOHh4Tr7U1JSsGvXLqxbty5XgyQiIiL6t3tj0taiRQtMmjQJ 48ePx6FDh+Dm5pZhPSZtRERERLnrjUmbn58fSpUqBeDVu0dLlSqFPn36qPu1Wm2Gs0qJiIiIKGe9 1btHtVotNBrdVUIyWr8tL3BMG1HO45g2IqL8K9MnbREREbhx48YbDxYR7NmzBytWrMjxwIiIiIjo b5kmbVFRUfjPf/6DsmXLQlGUDOtotVqEhYUxaSMiIiLKZZkmbVWrVsW3336L4cOHv7GBHTt25HhQ RERERKTrja+xyiphA8DFdYmIiIjywBtnj545cwbVq1eHubk5Tpw4geDgYJ39KSkp+PXXX7F79+5c DZKIiIjo3+6NSVvfvn0xadIkjBo1CoGBgZg0aRIsLS3V/SkpKXj8+HGuB0lERET0b/fGpC0gIACF CxcGALi6uqJcuXLo0KGDTh0fH5/ci46IiIiIALzlOm0AcPv2bTx79gxVq1ZFkSJFciuuLHGdNqKc x3XaiIjyrzdOREjr1q1b+Pjjj1G5cmXY2tqiWLFimDhxIpKSknIzPiIiIiLCWyRtAwYMgKWlJU6f Po2oqCiEhYWhQYMGmDt3bi6GR0RERERAFmPa0rp+/TpCQ0NhamqqlvXt2xfu7u65EhgRERER/S3b TwJN770AACAASURBVNp69+6Nhw8fpivn7FEiIiKi3Jfpk7Y//vgDU6dOVbe1Wi0cHBxQo0YNnbK0 T96I3iT1dWicQJKPpL6ijp8JEVG+l2nSVrt2bRQuXBg9evR4YwOtW7fO8aCIiIiISFemSZuxsTE8 PT11FtN9XUpKCvz8/GBtbZ0rwRERERHRK2+ciJA2YYuOjoaXlxeio6PV7q3o6Gj8+OOPCAsLy90o iYiIiP7lsj17dPDgwTAyMkJYWBgqVqwIEcH169d1xr0RERERUe7IdtLWtm1bDBkyBIGBgYiIiECL Fi3w4sULjB8/PjfjIyIiIiK8xZIfN2/exK5du2BjY4NffvkFJ06cwOnTp+Ht7Z2b8RERERER3uJJ W5cuXTBt2jTUrl0bkyZNQocOHXD58mV069YtN+MjIiIiIrzDC+PTioyMhIWFRU7Gk218Ybz+4Tpt +dBr67TxhfFERPlXtrtHk5OTsXLlSrRo0QJ169ZF7969cf/+/dyMjYiIiIj+X7aTtnHjxmH27Nmo WbMmBg0ahAYNGmDatGnYu3dvbsZHRERE9H/t3XucjnX+x/H3PQehcaxMpnIPHmESbSppRaNEaWYU 2aU01NZEpZJyyikVik4OJcfVrrTaZIqSxjE6IIedMCGhIeMwv5lkmObw+f0hV24z97gdZsyV1/Px uB871/c63J/7c3/Xvve67vu+oJP4TNuMGTO0YMECXXfddc7YM888o169eqlt27bFUhwAAACOCPhM W+3atdWwYcMC42XKlDmjBQEAAKAgv2fatm3bpqVLlzrLrVu31v3336/bbrvNGcvLy9OaNWuKt0IA AAAUfXm0Z8+eatCggc+3/qZOneqzTffu3YuvOgAAAEgqIrRFRkbqww8/VPPmzUuyHgAAABSiyM+0 HR/Y3n33Xd18882qV6+e7rjjDs2bN69YiwMAAMARAX97dPTo0Ro1apQ6deokr9er7OxsvfXWW/rx xx+5RAoAAFDMAg5t33zzjbZs2eLzbdGePXtq8ODBxVIYAAAA/hDwT340a9as0J/3yM7OPqMFAQAA oKCAz7Rt375dCxcu1PXXX6+srCxt2rRJkydPVm5ubnHWBwAAAJ3EmbZnnnlGo0aNUoUKFRQeHq5m zZrpwIEDGjt2bHHWBwAAAJ3Embavv/5ab731lkJDQ5WamqrIyEhVq1atOGsDAADA7wI+09a1a1dt 2rRJERERaty4sRPYDh48WGzFAQAA4IiAQ9u0adMUElLwxNy0adPOaEEAAAAoyGNmFsiGjRo10tq1 awsewONRXl7eGS/sRDwejwIsHaXEsbdDQynx+3ui39+TS6f2Ver9I85iQQAAf074mbaNGzdq/vz5 6tatm6644gpdeumlzjoz05QpU4q1QAAAAJwgtK1cuVI33nijcnJyJEler1fLly9XRESEs82AAQOK t0IAAAAU/Zm2IUOGaMyYMfq///s/paamKjo6Wi+++KLPNuedd16xFggAAIAThLYqVaooISFBlSpV UkREhN5++22lpqb6bHMyP667c+dOPfLIIxo/fry6dOmi9evXF7l9UlKSWrZsGfDxAQAA/qyKDG1h YWE+y2XKlNHFF1/sMzZjxoyAnsjMFBcXp3bt2qlbt27q27evYmNj/X6JYc+ePXruueeUn58f0PEB AAD+zIr8TNvMmTO1adMmmZnzbc1Nmzbp5ptvliTl5OQoOTlZ99133wmfKCkpSRs3blR0dLQkKSoq SqGhoZo9e7bat2/vs62Zady4cerSpYumT59+ii8NAADgz6PI0BYWFqZLLrlEwcHBzpjX63X+zs3N LXC51J/ly5erVq1aPr/1VqdOHS1cuLBAaJswYYK6du2qJUuWBHRsAACAP7siQ9vEiRPVunXrIg8w f/78gJ5o9+7dqlixos9YpUqVCoS+FStW6MILL1TNmjUJbQAAAL8rMrSdKLBJUqtWrQJ7opAQhYaG +owd/3m1zMxMzZs3T4MGDQromEOGDHH+jo6Odi69AgAA/NkEfMP40xUREaFly5b5jGVkZCgyMtJZ XrJkiYYNG6bhw4dLkvLy8pSXl6fy5ctrxYoVuvLKK332Pza0AQAA/JkFfO/R09WiRQtt3brVZ+z7 77/3OTsWFxenw4cP69ChQzp06JAmTpyom266SVlZWQUCGwAAwLmkxEJbkyZN5PV6tWjRIklSSkqK srKyFBMTowEDBig5ObnAPmbGfSoBAABUgpdHPR6PEhMTNXToUG3cuFErVqzQnDlzVL58ec2bN0+N GjVSgwYNCuxz9CbjAAAA5zKPufRU1tHfjYN7HA3gvG+lyNH/U/T7e3Lp1L5KvX/EWSwIAOBPiV0e BQAAwKkjtAEAALgAoQ0AAMAFCG0AAAAuQGgDAABwAUIbAACACxDaAAAAXIDQBgAA4AKENgAAABcg tAEAALgAoQ0AAMAFCG0AAAAuQGgDAABwAUIbAACACxDaAAAAXIDQBgAA4AKENgAAABcgtAEAALgA oQ0AAMAFCG0AAAAuQGgDAABwAUIbAACACxDaAAAAXIDQBgAA4AKENgAAABcgtAEAALgAoQ0AAMAF CG0AAAAuQGgDAABwAUIbAACACxDaAAAAXIDQBgAA4AKENgAAABcgtAEAALgAoQ0AAMAFCG0AAAAu QGgDAABwAUIbAACACxDaAAAAXIDQBgAA4AKENgAAABcgtAEAALgAoQ0AAMAFCG0AAAAuQGgDAABw AUIbAACACxDaAAAAXIDQBgAA4AKENgAAABcgtAEAALgAoQ0AAMAFCG0AAAAuQGgDAABwAUIbAACA CxDaAAAAXIDQBgAA4AIlGtp27typRx55ROPHj1eXLl20fv36AtscPnxY3bt314UXXqjLLrtMb775 ZkmWCAAAUCqVWGgzM8XFxaldu3bq1q2b+vbtq9jYWOXl5flsN3LkSN18881aunSpOnTooMcee0zL ly8vqTIBAABKpRILbUlJSdq4caOio6MlSVFRUQoNDdXs2bN9tgsPD1eHDh10xRVX6NVXX5XX6yW0 AQCAc16Jhbbly5erVq1aCgkJccbq1KmjhQsX+myXkJDgsxweHq4aNWqUSI0AAAClVYmFtt27d6ti xYo+Y5UqVVJqaqrffQ4fPqyMjAy1bdu2uMsDAAAo1UJOvMkZeqKQEIWGhvqM5efnF7nPxIkT9eqr r6pcuXKFrh8yZIjzd3R0tHPpFQAA4M+mxEJbRESEli1b5jOWkZGhyMjIQrdPTk5WSEiI2rRp4/eY x4Y2AACAP7MSuzzaokULbd261Wfs+++/L/Ts2K5du7RgwQJ1797dGcvNzS3uEgEAAEqtEgttTZo0 kdfr1aJFiyRJKSkpysrKUkxMjAYMGKDk5GRJUmZmpp5//nnddtttSklJ0fr16zV8+HAdPny4pEoF AAAodUrs8qjH41FiYqKGDh2qjRs3asWKFZozZ47Kly+vefPmqVGjRqpfv77atm2rpUuX6u2333b2 veeeexQWFlZSpQIAAJQ6HjOzs13EqfB4PHJp6ecsj8cjSbxvpcnv74l+f08undpXqfePOIsFAQD8 4d6jAAAALkBoAwAAcAFCGwAAgAsQ2gAAAFyA0AYAAOAChDYAAAAXILQBAAC4AKENAADABQhtAAAA LkBoAwAAcAFCGwAAgAsQ2gAAAFyA0AYAAOAChDYAAAAXILQBAAC4AKENAADABQhtAAAALkBoAwAA cAFCGwAAgAsQ2gAAAFyA0AYAAOAChDYAAAAXILQBAAC4AKENAADABQhtAAAALkBoAwAAcAFCGwAA gAsQ2gAAAFyA0AYAAOAChDYAAAAXILQBAAC4AKENAADABQhtAAAALkBoAwAAcAFCGwAAgAsQ2gAA AFyA0AYAAOAChDYAAAAXILQBAAC4AKENAADABQhtAAAALkBoAwAAcAFCGwAAgAsQ2gAAAFyA0AYA AOAChDYAAAAXILQBAAC4AKENAADABQhtAAAALkBoAwAAcAFCGwAAgAsQ2gAAAFyA0AYAAOAChDYA AAAXILQBAAC4AKENAADABUJK8sl27typF198UQ0bNtRXX32l3r17q379+gW2mzBhgnbv3i0zU25u rp5//vmSLBMAAKDUKbEzbWamuLg4tWvXTt26dVPfvn0VGxurvLw8n+0SExM1bdo0DRo0SIMHD9am TZs0efLkkirznLF48eKzXYKr0b/TQ/9OHb07PfTv9NC/U3cmeldioS0pKUkbN25UdHS0JCkqKkqh oaGaPXu2z3Yvv/yybr/9dmf5zjvv1Ouvv15SZZ4z+C/e6aF/p4f+nTp6d3ro3+mhf6fOVaFt+fLl qlWrlkJC/rgiW6dOHS1cuNBZ/u2337Rq1SrVq1fPGbv88su1fv167du3r6RKBQAAKHVKLLTt3r1b FStW9BmrVKmSUlNTneX09HTl5OSoUqVKzljlypUlyWc7AACAc46VkEcffdSaN2/uM9apUyeLi4tz lvfu3Wsej8cWLVrkjH3//ffm8Xhs9erVPvvWrl3bJPHgwYMHDx48eJT6R5cuXU47S5XYt0cjIiK0 bNkyn7GMjAxFRkY6yxdccIFCQ0OVmZnps40kXXLJJT77btmypfiKBQAAKGVK7PJoixYttHXrVp+x 77//3vligiR5PB5FR0dr8+bNzlhKSoqioqJUrVq1kioVAACg1Cmx0NakSRN5vV4tWrRI0pEwlpWV pZiYGA0YMEDJycmSpAcffFAff/yxs98nn3yiBx54oKTKBAAAKJVK7PKox+NRYmKihg4dqo0bN2rF ihWaM2eOypcvr3nz5qlRo0Zq0KCBOnTooO3bt2vAgAEqV66cvF6vnnrqqZIq85ySnp6usmXLqnz5 8me7FJyDmH84W5h7gaFPp85f7067p6f9qbhisHjxYmvYsKFVqFDBWrVqZTt27DAzs9TUVOvevbu9 9dZbFh8fb999952zT1HrzjX++mdm1rRpU/N4PObxeKxu3brOOP37w+rVq+2vf/2rVa5c2Vq2bGn7 9u0zM+ZfoPz1z4z5F6i8vDyLjo62xYsXmxlz72Qd3z8z5l6gCusT8y8w/ubYmZx7pS60paWlWXx8 vCUnJ9u8efPM6/Vay5YtzcysUaNG9vnnn5uZ2YYNG6xmzZqWl5dn+fn5ha7Lzc09a6/jbCmqf6tW rbKhQ4fat99+a99++62lpaWZmdG/Y2RnZ1u/fv0sKyvLfv31V2vSpIn179/fzJh/gSiqf8y/wI0d O9aqVq1qS5Ys8dsf5p5/x/bPjLkXqML6xPwLjL85dqbnXqkLbTNmzLBffvnFWZ46daqVLVvWPv/8 cytXrpzl5OQ46+rUqWP//e9/bf78+X7XnWv89c/MrHPnzvbyyy/bpk2bfPahf3/YvXu3ZWdnO8t9 +vSxgQMHFtkj+vcHf/0zY/4F6osvvrC5c+daZGSkLVmyhLl3ko7vnxlzL1CF9Yn5Fxh/c+xMz70S +yJCoDp27KgKFSo4y+Hh4apRo4aWL1+umjVrFnpHhS+//NLvunNNYf3zer3Ky8tTenq6XnnlFdWt W1cdO3ZUTk6OpMDuVnGuCA8PV5kyZSRJ2dnZSktL05NPPllkj5h/fyisfz179mT+BWj//v368ssv 1aZNG0mSmfFv30k4vn+SmHsB8tcn/u07MX+9K465V+pC2/FWr16t7t27a/fu3T53SpCO3C0hNTW1 0HXH323hXLV69Wp169ZNwcHBmjt3rn7++We98847mjt3rvr37y8psLtVnGs+/vhjNW7cWElJSVq/ fn2hPWL++ffxxx/r+uuvV1JSkr777jvmX4Bef/11Pfnkkz5jaWlp/NsXoML6x9wLjL8+paWl8W/f CfjrXXHMvVId2g4ePKjk5GT16NFDwcHBCg0N9Vmfn58vM1NISEih6851R/v3+OOPO2Mej0edO3fW a6+9pn//+9+SRP8KERsbq8TERDVv3lydO3dWaGgo8+8kxMbGavbs2U7/jmL++Tdx4kTde++9zpnK o/i3LzCF9c/MnL+Ze4E5vk/+esT8K6iwOeZv/FR7V6pD26hRozRmzBgFBwcrIiLC504J0pG7JVxy ySWqXr2633XnsqP9Cwoq+Da3bdvWudsE/StcZGSkJk+erH379umiiy5i/p2kY/u3f/9+n3XMv4Im Tpyoq6++WuXKlVO5cuW0fft2tWrVShMmTNAvv/zisy1zryB//evYsaPPdsy9wBztU1E9on+FO3aO +Rs/1d6V2tA2ceJEde7cWRdddJEk6cYbbyxwR4WUlBS1aNEioLstnGuO79/R6+hH5eXlqW7dupIC u1vFuaps2bK64IIL1LJlS+bfKTjav6pVq/qMM/8KWrFihQ4dOuQ8vF6vPv/8cy1ZskQ//PCDz7bM vYL89e+9997z2Y65F5ijfSqsR8y/oh07x/yNn2rvSmVo++c//6ly5copJydHKSkpWrJkibZu3arI yEifOyocPHhQsbGxfu+2EBsbezZfxllTWP/eeOMNTZ482Tn9OmbMGD377LOSpBtuuIH+/S49Pd3n jhxLlixRfHy8/vrXvxboEfOvIH/9+/bbbzVp0iTm3ykobH4x9wJjZlq5ciVzLwD++lRYj5h/vvz1 btWqVWd+7p2Bb7qeUZ9++qmFhIQ4P0Tn8XgsKCjINm/ebD/88IN16dLFxo0bZ126dLFVq1Y5+xW1 7lzir3+jR4+2iy++2G666SYbNmyYJSYm+uxH/45YuXKlhYeHW/PmzW306NE2ZcoUZx3z78QK619+ fr599NFHzL+TdOxPVjD3Tt7R/jH3AlNUn5h/RfPXu+KYex6zYz6pCQAAgFKpVF4eBQAAgC9CGwAA gAsQ2gAAAFyA0AYAAOAChDYAAAAXILQBAAC4AKENAADABQhtwJ/Yhg0btGfPnrNdRkA2bdqkvXv3 nu0yCijOug4fPqzVq1c7y7/88ouSk5OL5bkAuB+hDXCpL774Qm3bttU//vEPPfLII2rTpo3mzZvn rP/www/1l7/8RSkpKWexyiO3smrQoIHOO+88de/eXT169FC3bt100003qUWLFpKk8ePHq379+tq4 ceNZrfV4gdSVnJysO++8U7GxsYqPj1dUVJSCgoJ01113FXnsLVu26LbbblOvXr0kSWvWrFHTpk31 6quvntHXUJixY8cqODhYXq9XS5cudcb37dunxx57TDVq1NA333xT7HUAOEnFcEcHAMVs1qxZVqlS JZ/bnvz4449WvXp1mzx5sjPm9XqdWyGdTQMGDLCaNWsWGO/fv7/z9+nWumbNGvv6669PeX9/iqrr iy++sAoVKtisWbOcsby8PHviiSfsrrvuOuGxp06datHR0c7y4MGDrWvXrqdfdADuv/9+q1Kliv32 228+49OmTbNp06YFdIw333yzOEoD4Adn2gCXOXjwoB566CE99NBDuuaaa5zxyMhI9enTRz169HAu 53k8nrNVpo/g4GBZIXfM69evn/P36dSakZGhzp076/Dhw6d8DH/81ZWbm6v4+HjdcccdPmfVgoKC 9Morr6hmzZpnvJYzqWfPnsrIyNDMmTN9xj/55BP97W9/O+H+69at0zPPPFNc5QEoBKENcJn58+cr PT1drVu3LrCuTZs2OnTokM//EH/11VeKiopStWrV9NxzzznjH3zwgQYOHKhx48bp3nvvVW5urn79 9Vf169dPrVq10vjx49W6dWtdfvnl2rx5s/r166eGDRsqNjbWCWBLly7V008/rYkTJ+ruu+9WRkZG wK/jueeeU1hYWKHrcnJy9MILL6h37966/vrr9eGHHzrrFi1apCFDhmjo0KGKiYlRenq6Vq1apV27 dulf//qXZs2a5dQ2ePBgvfLKK4qJidG6deskSTNmzFDz5s01a9YsXXbZZRo/frzWr1+vxx9/XFOm TFG7du20Y8eOE9a/YMECbdu2TZ07dy6wLjg4WN26dZMkpaenq1+/fho/frzuvfdejR492u8xjw+I s2fP1oABA3THHXcoISFB+fn5kqQDBw6od+/eGjlypKpWrarq1avr9ddfl3Tksnn//v3197//XXfd dZcOHjxY6HM1aNBAzZo105tvvumM7dq1SxUrVlTZsmWdMX99TEpKUlZWloYNG6Zvv/1WkvTaa6+p f//+atq0qd566y1Jkpnp2Wef1Xvvvaf27dtr2rRpRTcWgH9n+UwfgJM0YsQI83g8tmnTpgLrDh8+ bB6Pxx577DEzM4uMjLSnn37a8vLybO7cuRYcHGwffvihmZlVr17dVq5caWZmTZo0sY8++sjMzD7+ +GOrUqWKbdiwwczMOnbsaC1atLDDhw9bbm6uXXrppfbVV1+ZmdkNN9xg77//vrPd6NGjC6158ODB FhYWZl27drWuXbvarbfealWqVPHZJjIy0rkMOWLECFu+fLmZmb3//vsWFhZmBw4csHXr1llMTIyz z/XXX2/jx48vsP+2bdssKirK8vPzzcxs7ty5Vq1aNcvMzLT9+/ebx+OxKVOm2DfffGPr1q2zTp06 2ciRI83MrG/fvvbUU08VWtexRo4caR6Px9avX1/oaz7q9ttvtwULFpiZWXZ2tl122WU2ffp0Myt4 eXTIkCHO5dHt27c772N2drZVrVrVpkyZYmZm/fr1s7Fjx5qZ2bhx45xeHjhwwO655x7neFdeeaUN GjTIb20zZ840j8dja9asMbMjfV+6dKmzvqg+/vjjj+bxeJxt33vvPed1rVy50oKCgmzLli22Zs0a i4uLMzOzrKws++CDD4rsFwD/Qs52aARwcoq6jHj0TIwdcykyNjZWQUFBatOmjW655RZ98MEHuvPO O/XZZ5+pfv36WrVqlTIzM52zZGFhYapUqZKioqIkSXXq1FG5cuV03nnnSZJq1aqlbdu2qUmTJpo6 daq8Xq9SUlK0a9euIs+0XXjhhZo6daqz/Oijj/rddurUqcrPz9cXX3yhgwcP6oYbbtBPP/2k8ePH 69Zbb3W2W7BggcqXL19g/+nTp6t+/fpOr9q0aSOPx6PExETdd999kqSbb75ZXq9XkjRs2DBVrlxZ P/30kzZv3qyKFSv6re2o3NxcSUfOqvmza9cuzZs3T++//74kqUyZMurUqZMmTZqke+65p8D2x75v 7777rn7++We99NJLkqQWLVrowIEDkqS1a9cqPDxcktSsWTOnhjlz5mj37t3OPldddZVycnL81teu XTtFRETozTff1IQJE7R06VL16dPHWV9UH5s1a+ZzrKlTp6phw4b66aeflJeXp1tuuUWpqamqV6+e kpKS9PLLL+vpp58+4Rc0APhHaANcpl69epKkn376SZdffrnPup07d0qS6tatW+i+9evX15YtWyRJ 5513nnr37q34+HiFh4cX+pkz6UhIPHZdUFCQfvvtN0lSpUqVNHDgQMXFxalWrVpOaAxE165d/a7b sWOHevXqpTJlyviMb9261Xn9knT++ecXun9qamqBy4Jer1e7du3yeV1HXXjhhXrxxRfVtGlTXXnl ldq+ffsJ669Tp44kafPmzX77nZqaKknKyspyavV6vUpMTDzh8Xfs2KFWrVopISGhwLobb7xRiYmJ euKJJ5SZmakOHTpIkrZv367GjRv7BK+iBAcH6+GHH9ZLL72k9u3bq3HjxgXqP1Efj6139OjRTl/6 9+/vrJsxY4bi4+M1a9YszZw5UzVq1AioPgC++Ewb4DKtWrXSRRddpE8//bTAugULFqhs2bK6++67 C903Oztb9evX16FDh9SiRQv16NFDDRs2LPL5ijqz16ZNG8XExKhZs2Yys5P6MsF1112n3377TStW rCiw7oILLtCiRYucZTNTcnKyqlWrpsWLF/ts++OPPxbYv2bNmtq8ebPPWHZ2tmrVqlVoLfHx8apX r55iYmICrr9169aqWrVqgQ/yHysyMlLSkd96O7aO2rVrF7q9x+Nxenh8DyQ5nyfr16+fqlevrlGj RumHH37QG2+8IelI+Dy+P0f38SchIUE5OTmKj49Xly5dfNadTB/91ZuWlqaYmBht2LBBYWFheuCB B4qsB4B/hDbAZcqWLatJkyZp8uTJ+t///ueM79mzRyNGjNBrr72m6tWrO+N5eXnOf37zzTfq0aOH NmzYoJ9//lk5OTnav3+/tm7dqoyMDOXl5RU442ZmPmP5+fkyM+3fv19r165VTk6ODh06pA0bNjjH OF5ubm6hZ+FeeOEFZ/ujx5WkuLg4Pfroo/r666+1c+dO9e7dW1WrVlWHDh2UmJioESNG6IcfftCk SZOUnp4u6chZtz179mjPnj267777lJaW5vwGWVpamg4ePKi2bds6z3FsPUlJScrJyVFubq7Wrl2r zMzMQus61vnnn69JkybpP//5jyZPnuyzbs2aNRo+fLiqVaum9u3b+6xfvHixevToUaCGo+/RsT14 //33NW7cOKWlpemDDz7QqlWrJB35nbWWLVvq9ttv17XXXqtffvlF0pEguWbNGg0cOFC7du3SwoUL fX67rzDh4eG6++67FRUV5YTMo4rq49Ezh/v27dOePXsUFxengQMH6rPPPlNaWpqGDRum3NxcpaSk aMGCBYqIiNCoUaP066+/FlkPgCKcjQ/SATh9y5Yts7i4OHv44Yft0UcftbZt29qcOXN8thk9erTd cccd9uyzz9rjjz9uy5YtM7MjX1ho2rSphYeHW58+faxv3752+eWX27p166xHjx4WFhZmS5YssR07 dthtt91mUVFRlpycbCtWrLBq1arZvffea3v37rV27dpZlSpVLCEhwV5//XWrXr26LV682KeGxYsX 21VXXWXBwcF2zz332JNPPmkPPvigNW7c2CpWrGi5ubk2ffp0CwkJsSeffNL27dtnGRkZ1r59e6tY saI1aNDAFi1a5Bxv+PDhdvHFF1uNGjXs3XffdcZfeOEFq1GjhvM7dV9++aXFxsba8OHD7bHHMrwG PAAAAZFJREFUHrPvvvvOzMzGjh1rQUFBNmjQINu7d6+ZmT3xxBNWoUIF69ixo73zzjtWtWpVmzlz ZoG6/L0PrVu3tmuvvdY6duxoCQkJNnbsWOfD+5mZmXbfffdZnz59bNCgQc5vm23bts3atGlj1atX t2XLltn69evtuuuuswYNGtjatWvNzGzMmDF2ySWX2EUXXWTPPvus85yTJk0yr9drYWFhFhQUZGXK lLG5c+ea2ZEvbtSqVcsqV65sCQkJBX6HrTBffvml8yWHwtYV1kczc173smXLLDs72xISEqxKlSpW u3ZtmzlzpvP+16pVy95++23r1auX8wUTACfPY+bngywAgFLn0KFDeuqppzRu3DgFBR25WLJ37169 9957zhk8AH9OXB4FABeZP3++vvrqK2VmZko6cvl6zZo1uvHGG89yZQCKG6ENAFykVatWatSokerW ratrrrlGnTp10gUXXKCrr776bJcGoJhxeRQAAMAFONMGAADgAoQ2AAAAFyC0AQAAuAChDQAAwAUI bQAAAC7w/+tVy9WuoXWTAAAAAElFTkSuQmCC ", null, " AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8TNf/x/HXLJlJZpJIImJfYl+LoFpqV62lVYqq9odv FaUtVUXRVi3VHVW1VLVaWrXUvtXWCqVILBVL7EIkJCKyzD5zf3+EqamEIBs+z8fDg3vvufe+72Dy mTPnnqtSFEVBCCGEEEKIAkid3wGEEEIIIYTIihSrQgghhBCiwJJiVQghhBBCFFhSrAohhBBCiAJL ilUhhBBCCFFgSbEqhBBCCCEKLClWhRBCCCFEgSXFqhBCCCGEKLCkWBVCCCGEEAWWFKtCCCGEEKLA kmJVCCGEEEIUWFKsCiGEEEKIAkuKVSGEEEIIUWBJsSqEEEIIIQosKVaFEEIIIUSBJcWqEEIIIYQo sKRYFUIIIYQQBZYUq0IIIYQQosCSYlUIIYQQQhRYUqwKIYQQQogCS4pVIYQQQghRYEmxKoQQQggh CiwpVoUQQgghRIElxaoQQgghhCiwpFgVQgghhBAFlhSrQgghhBCiwJJiVQghhBBCFFhSrAohhBBC iAJLilUhhBBCCFFgSbEqhBBCCCEKLClWhRBCCCFEgSXFqhBCCCGEKLCkWBVCCCGEEAWWFKtCCCGE EKLAkmJVCCGEEEIUWFKsiltSFIXdu3cTGxub31GEEEII8RDS5ncAUXAdPnyYFzp3ISr6CL4GI62a N6dx82Y0aNCAsLAw/P398zuiEEIIIR5wKkVRlPwOIQqeuXPnMvj1NwgzeVMZI8k4SMDKFR0ke0O8 OZWqlauwfddOtFotw4a+wwsvdqdx48b5HV0IIYQQDxApVoWH5ORkBr3+Br8vX0VTk5HC6Dy2Kyik 4eSk2sw+dSpjx49j/rz5JJ08i02jolbdOnzz7UyqV6+eT1cghBBCiAeJFKsCm83GunXrmDNzFpv/ +IMKal/qm33QZTKkOQ4L67WXad6kGaVCy7JswSKMdmji8MeIlg1eSTz5f934eto09Ho9S5cu5dy5 czgcDs6eOs2uHTvx8/OleImSlChbmgoVKhAWFkZYWBharYxKEUIIIYQnKVYfYAkJCbw/chT7IiIx 26w0fPwxThyNRqfTo9FquBAbS/zFi1y+mkxpQwClUxXKY0CPJstjxmNlleoSWo2aIG9fGqZ5Uwy9 e/tBnZmz3g7SXHYqV6pE3LFTBNs1qFwKOoeLYHQ4ULDgxIQLi0HLcXsK38ycwSuvvJIXL4sQQggh 7iNSrD6AnE4n386axagR7xJq01HSpuWiyoZGUSiEFy4yvs43oMGIBiNaNKiydezrwwCMaFDfYp/L 2EjARmWMt2xnwslS78ucORdDcHDwnV6qEEIIIR5wUqw+YCIjI3nl/3qRHHOBR9O9bxpzWtBcwMIm ryt4eXlRvlw5GjdtylfTvkaj+bd3Ny0tjejoaNRqNX5+flSsWJH09HS2bNlCSkoKNpuN0NBQ6tSp Q0BAQD5ejRBCCCFymhSrD4hDhw4x4cOxrFuzlrrmjDv4VdnsLc1vCgoWXCRjZ7+PhasaF82aNKVw sRD+Dt/OqZgzBPv4oQLOpyTxWP0GHD16lCCVHh9FjUpRSNcqxJtTCatTh9Ztn0ar0fDWkCH4+vrm 9+UJIYQQ4h5IsXofiY6O5tuZM+nTty9BQUGcOXOGtWvWsPK3ZZw5c4aqNm+qOQ3o7/NnPaThIBYL cT4Khc0K1fBDe63wTsRGCnaC0BGAl8d+dlycw0Kiyo5Fr+aKrwa7w0FwUBC9+rzC0HfeQacr2D3N QgghhPAkxep9wOl08vlnnzFx/AR8HSpc3l6Y7TaMXnqKW1QUt2spjne2x50+LOKxoEeNFYVDBhu2 Qj40fqIxlatVJaRoUU6dOMnlhAQAAoICqVKtGiEhIVy4cIG2bdtSoUKF254jLi6OhIQEzGYzjzzy CF5eXjKrgRBCCJGDpFgt4JxOJ+3bPE3035E8bvLB/z+9iSJ7FBQuYiUZO2kqBbteg97iwPtaL7QV FxYfLTYvFVqbi7OYebLNk7zcuxdPP/00Pj4+ALhcLsLDwzl69Ch//7WDJUuWUEjnzYWUKwDotF5U r1yFpi2b0627PCRBCCGEuFdSrBZgly9f5n//15OorTtpZfKTntM8ZMHJSUzE+ak5a7qCt06P0WAA BTQ2B8FOLd5mB1XxxQcNVly4UNCiIgEb8SobJ33s1H+sIe99OIbHH39celyFEEKIuyDFagG1detW ujzXidImNWE2A9r7fBzq/cyFgh0XNhQcKASgzdbNaw4UjqjTOWtUSHFaeXf0KKpWrUrTpk1lmi4h hBAim6RYLYDS0tKoULYcYUlqymLI7zgiByRiI9pgx6ZREedIp99r/anXoAGhoaE0bNgQlUp6zYUQ QojMSLFaAI0d8yGLPvuaJha//I4ickEqDn7XX6GQ1psEp5lff1tCu3bt8juWEEIIUSDJILoCaOmi xVSwyI1UDyo/tHSxFgErhPtrsVqt+R1JCCGEKLBkIGQBs2vXLo6fOkFIAX/ylBBCCCFEXpBitQD5 +eefadOyFc1sheSGKiGEEEIIZBhAgRATE8N7I0exdvkK2pj8KSy9qkIIIYQQgBSr+SY1NZU9e/bw y7z5LPx1IVUcPjzjCECPJr+jCSGEEEIUGFKs5qDIyEjGjBqNt7c3Rl/fjF/+fljNZmJOnyH2fCzx Fy+SeCUJxeUixMePYunQyRWEQYpUIYQQQoibSLGag/bs2UPUnzsob9Nx6doE8k4U1IABDcXQUh4N RkLwQoUqVebWFEIIIYS4FSlWc5DNZiNQpaMyvvkdRQghhBDigSC3nOegv7aGo7PLMxaEEEIIIXKK 9KzeI6fTyeeffcaW3zcSuXsPHV2B+R1JCCGEEOKBIcXqPXI6nYwcNQqAatpCpONEJx3WQgghhBA5 Qqqqe6TT6XC5XOzbt4+Ob7/GBt9UdnqnYcKZ39GEEEIIIe57UqzmAJVKRZ06dfj40084FXOWln17 sFiXwGJjEn8a07mABQUZyyqEEEIIcaekWM1hgYGBTJ46lZS0VPYdjmLw5+PYV0zNRmMaCVjzO54Q QgghxH1FitVc4uXlRZkyZRgwYACnYs4y9JOxbC1kYZtPGqk48jueEEIIIcR9QYrVPODl5cXrb7zB 6XMxdBzUl5U+V9hmSOOi9LQKIYQQQtySFKt5yM/Pj4mffExM7HleHT+KbYUsHNCm53csIYQQQogC S4rVfBAYGMiQt9/mn8OHiAnUcB5zfkcSQgghhCiQpFjNRyVKlOCbb2cSYbTglNkChBBCCCFuIsVq PuvYsSPlqlTiLKb8jiKEEEIIUeBIsZrPVCoVT7dvx059On/6mdirSuE8ZtJxcBoTNlwAKCgkYeMM JumFFUIIIcRDQ6UoilQ++UxRFM6fP8/ff//NX9u2s/3PrRw9cYzCQUHExMa625UqWgwfgwGvC1do YvXPx8Qip4T7m/lo7kw6deqU31GEEEKIAkmb3wFERu9q6dKlKV26NF27dnWvP3v2LOXKlaO4tx9J Tis/LfiFTz+aiPn03nxMK4QQQgiRd6RYLcDKlClD9UqVcZ1LxNvupGXLlmjVGl6keH5HE0IIIYTI E1Ks5rHLly+za9cujh49SlpaGjabjXr16tG+fXt0Op1HW5VKxYY/trBs2TLeGz0aUqBylcqsPnOO BmYfQjHk01UIIYQQQuQNGbOay5KSkli+fDkb1q5j546dJFxOpKS3P74WF2q7ExSFA+pUNmzcSMuW LbM8jsPhwMvLC4Aqlatw6dx5upmD8+oyRC6RMatCCCHErUnPai5ISUlh4cKFzP9+LhH7Iimj9aNI uotH0RNIUdQ2lbvtRawkhBhp3rz5LY+p1WpZs2YN7du3J/pYNAA7fHwIMUNFjLl5OUIIIYQQ+UaK 1RyUnJxMQEAAU6dOZdwHH/KoUojuhOBlzXqGMAVwupyo1befRaxmzZp88sknKIrCvB9/4uDRIwT5 +FLRLMWqEEIIIR5MUqzeI4vFwsKFC5n82RccOnqEOrVqUaFqFeyKExcKXreZyjYJG8VLlCUqKoor V65QpEgRDAYDcXFxWK1WmjRpgkqlIiYmBl9fX7p27cqjYfWpeFXhMVUQRqv8FQohhBDiwSWVzl1K SUnh66lT+fKzzymseFEhTU19ShJzIJZjh2Ko7R1MJYv3bY9TBV+2Ho+hTaOmeKu1mFx2bE4Hfl56 LA47ik6LXqfj6tWrOFwu1Go1YVYj1TFmdMvKiGMhhBBCPMCkWL1DSUlJTP7yS77+aiolXXpam40E 8e9d/OUxUN4BOLJ3PA0qWqb7ZrrNhUJaugMnCoUoggKk4aAQXvd+IUIIIYQQ9wEpVrPBbrezYcMG vps5i42bNlIeI20t/rleNKpR4f+fc0ihKoQQQoiHiRSr2VC31iOkxF6kbJqKLgTjjSa/IwkhhBBC PBRufwu6oGyZMjhQsKnBld9hhBBCCCEeIlKsZsOq9etYuHYlNf/vWZb5JLHdaGKPOoXDpHIFO04U XHKnkxBCCCFEjpMnWN2hmJgYNm3axPnz5zkadYgtm7dw+Woy3moNL9qLokZ1+4MIcY08wUoIIYS4 NRmzeofKlCnDK6+84rHu3LlzVK9SlRS7gwC5AUoIIYQQIsfIMIAc0O7JNlS06/GX2l8IIYQQIkdJ sXqPXC4X5+MuoFKpcObxuFULTg6SkufnFUIIIYTIK1Ks3iO1Ws3RY8ewVSjKUdJy/Xw2XBwljVOY WG9IIbF8EBsNKZhx5vq5hRBCCCHymhSrOaBo0aIoTid+uTgMIFqVzl9GE8sMSXi3rIv1sYqMmjiO I8eP8Xy/3mwx5n6hLIQQQgiR12SQZQ4ZM2E8r/TqzTmNgjHdQSG0BOCFP1q8/vOZIAU7ZzBjVYOi BkWlAgVKOLSUwpsr2FGjIgAvLmDhiNGBrZAPH04YR4MGDahZsyYmk4mDBw+SlJSEWq2W+V+FEEII 8UCSYjWHdOvWjebNm7N69WqOHD5M1P5/2H/8OOfiYgn29iXYqkLlUkjwgXScPPvss1StUR2NRoNG o8FqtfLTnB/Yeu4c6XYrhXz9eCTNi716E1OnfkOPHj3w9vZ2n2///v00btwYjVpDRe9CtDAZ8/Hq hRBCCCFyh8yzmsvsdjv79u0jPDwcp9NJw4YNadKkCRrNzY9sVRSFmTNmkJiQQEixYrwxcCC9/q8n 3839IdO2rZo150JEFI3Nxpt6b8X9QeZZFUIIIW5NitUCKiUlhc2bN9OxY0fU6swLUYvFwv969mL3 2k08me6XxwlFTpBiVQghhLg16Y4roPz9/enUqVOWhSqAt7c302fN5IItDUWmrxJCCCHEA0iK1ftc QEAAlStW5DSm/I4ihBBCCJHjpFi9z6lUKj767FMO+Tqkd1UIIYQQD5wHrlhNTU3l+++/58SJE5lu +/PPPzPddj8rX748CeY0KVWFEEII8cB54IrVBQsWMGzgm9R/pA6lixWnX59XWbhwIX169aZESFF6 d+xC/Ufq0KPbCxT0e8vOnTuHzkvHgNdey7LN2bNnadm0GU2cAahR5WE6IYQQQojc98DNs/rrvPnU tRqogIEks51/vl/Kn4tXEGhy8ZwzCKNFix0Dy9as5YsvvqBdu3ZUr14dlargFXre3t7YHXZKlipF 9y5dCSlalJd6/h8Aly5dImLPHr7/djaVrkAlZJ5VIYQQQjx4Hripq/r3eZU/5i+hts3AJawcNTpI tpoI8vYlNF1NJcWADxouYOG0j5M4lZVylSrQpfsLhISEEBISwiOPPELp0qULRAG7e/dunmr1JBXT VCQaVCheGZ8vdIoKvzQHRV1elMEnn1OKuyVTVwkhhBC39sD1rH4+eRKj9Dp+W7yEalVrsGTiR9Sr V499+/Yx4+tpLF2xgrp2X6o7DZQwg4KBYwfOsSjqMxx6LRYtxFpSeOrpp1m6YnmuZExNTeX3338n Ys8eLsbF07xVS5555hmCgoI82u3YsYP2T7WlYZqechiQG/6FEEII8bB54HpWb+fUqVPUrV0HjUuh ikVPTZeRZOzs87WR6LSgVWuwOR0sW72SVq1a5cr527RoBUmpBKa70CmQZNRwSWPniymT6d27N3a7 nTHvv8/0r7+hkdlAWQw5nkMUDNKzKoQQQtzaQ1esAlitVo4fP87Avv25cOAIiYqVjyd9QYcOHbBY LKSnp1OnTp0cP6+iKITVegTvwxeorXg+cSoBK7uMFhSjnpTUVIqpvHnM5IPxwev8FjeQYlUIIYS4 tQduNoDs0Ov11KxZk83hf1KpUT06dXmeAQMGULp0aSpVqpQrhSrAokWLSDhznkcU35u2FUFPu3R/ Gl1S09kcRCuTnxSqQoi7snz5cmrWrIlaraZatWq0b9+esLAw2rZty/r16zPdZ+PGjZw9e9a9bLPZ mDJlCq1ataJnz548//zztG7dml9++cVjvxkzZvDkk08yceLEXL2m7EpNTWXVqlX3dIxJkyYRFhZG ixYtKFKkCGq1mu7du7u3x8bGEhwcTGRk5L3GzVJqaipTpkyhTZs2fPLJJ3d1jFmzZlGtWjXUajWD Bw/Ost2ff/6JWq1GrVYzdOhQzpw5c8fnSkpKYsKECdSvX5/w8PDbtl+zZg19+vTh8ccfv+NziYfP Q1msXufl5cXajRuY8+PcPDnf2Pfe55F0HaospphSo6IwOnzQ5EkeIcSD6bnnnmPgwIEAjBw5kjVr 1hAREcEjjzxCu3bt+OGHHzzaT5o0ibi4OMqWLQtAeno6rVu3ZtGiRSxZsoSffvqJ3377jWnTpjF6 9GheffVV9749e/YkMjISh8ORdxd4C35+fgQFBTFhwoS72v/XX39l7NixrF27lj/++INz587RvXt3 YmNjPc7x+OOPU6hQoZyKfRM/Pz/69OnDrl27sNlsd3WM/v3788YbbwAwd+5c0tLSMm03c+ZM9Ho9 wcHBfPnll5QrV+6OzxUUFETr1q3Zu3dvttq3bdsWl8vFxYsX7/hc4uHzUBerkPEEKLU691+GpKQk jpw4jkum7hdC5AGDwXOsu1qtZvz48Wg0Go9e0F9++YWjR4/Ss2dP97qhQ4eyc+dOFixYQGBgoHt9 1apVmTt3Lt9//z3Tp08HwGg05mrRdjcaN26MwWBg4cKFd7zvsmXLCA0NpVixYkDGFII//vgjOp3O 3cbf359Vq1ZRsWLFHMucmeuF973w9fWlbt26pKamMnfu3Ju2X7p0icTERIoVK4av783f+t2J669Z dqjVasqWLVvg5zsXBcNDX6zmBYfDQY9uL1BM40MgXvkdRwjxkNLpdAQGBnLp0iUArly5wqBBgxg7 dqy7TXx8PHPmzKFVq1buntYbNWvWjEqVKjF+/HhcLleeZb9Tr7/+OiNHjnRfa3bZ7XaioqLYunWr e52Xlxf/+9//bmpbkK//Rr1798bX15dp06bdtG3OnDkePeVCFERSrOYyq9VKx/YdOLEjkg7OIhSS YlUIkU/i4+NJTEykdu3aAMyePZvy5ctTvHhxd5s//vgDp9N5y7GEjRo14uLFi+zbt8+9zmw207dv X/z9/SlTpgxz5sxxb0tJSWHgwIHMmDGDN998k/79+7uHDfz2228899xzjBo1ii+//JKqVasSFBTE zz//zMmTJ3nxxRcpXLgwbdq0IT093X3MZcuWMWzYML755hvatGnD9u3bPTLq9XrCwsI8CrSvv/6a okWLcuHChSyv7eWXX8blctG2bVu++uord0H68ssvA2CxWPj222957LHHmD9/PgARERH069ePp556 ig0bNtCgQQP8/f0ZPHgw6enpDB06lLJly1KlShWOHDkCwIEDB3jzzTfp1q0b8+fPp3z58vj5+TFg wIBbDqlISkpixIgR9OvXjzp16tCnTx/MZnOW7SGjJ7hnz54cO3aMDRs2uNe7XC5WrlzJ888/n2kP Z3R0NP3792fs2LF07tyZrl27egyHUBSFiRMn0q9fPyZOnJhpMTxr1iwGDx7M008/TcOGDYmIiLhl ViEyI8VqLjKZTDzVqjUnt+2hhdkPjTwOVQiRx64XIQkJCfTu3Rtvb28+//xzAFavXk316tU92sfE xABQokSJLI95/eve6zfiKIrC6tWr6dGjBzt37qRu3br07dvXfaPNmDFjOHHiBAMGDGDq1KksXryY X3/9FYAOHTpw9OhR1q5dS8uWLTl69Cj9+/dn0KBBrFy50j1MYdeuXSxYsADIKNi6detGp06deP31 12nbti29e/e+KWf16tVZsmSJe7lQoUIEBwej1WZ982rnzp2ZPHkyiqIwZMgQHn30UaKiotzb1Wo1 jRs3Zvfu3e51devWxeVyERERQXp6Ort27WLx4sV8/fXXDB8+nA8//JBTp05RpEgRPvroIwAKFy7M vn372L59O0ajkd27d/POO+8wa9YsJk2alGW+vn37MnToUL799lvWrVvHTz/9xJgxY7Jsf931satT p051r/v9999p1aoVXl43d6LExcXRrFkzBg0axJgxY1i6dClqtZpmzZq5PzSMHz+eqKgovv32W0aN GnXTB5xffvkFl8vFV199xfr16wkODqZjx444nc7b5hXiRlKs5pLU1FRaNGlKQuRhmpp9pVAVQuSL r776ivbt2/PMM88QEhLCjh07aNiwIQCHDh0iJCTEo/31J/fdaizh9d7G621UKhXPPfccLVq0oEaN Gvz4448YjUYmT54MZNxMc/2rZpfLhdFodBe6er2e4sWLExYWRt26dQFo3rw5V65c4fnnn0elUlGk SBFq1KjhLhr9/f0ZNmwY1apVAzLG554+ffqmnEWLFiU6Otrd89izZ89Mr/m/Bg8ezD///EOrVq3Y u3cvDRo0cM8woNPpqFGjhkd7jUZDqVKl8Pf3p1OnTqjVapo3bw5Aw4YN8fPzQ6PR0LRpU/c1lCpV ikqVKlGlShU6depEcHAwY8aMoWbNmh690jf6+++/2b17N5MnT2bkyJFMnTqVFi1a3LZnFTLGG7du 3Zp169Zx8uRJAL777jv69++faftvvvmGoKAgj2v94IMPOHXqFPPmzePKlSt88sknHsMj6tWr53GM cePGceDAAUaOHMnIkSMJCAigQoUKdzw0QwiZGymXjB83jquHTtHM6pfl3f9CCJHb3nrrLY+bp26U kpLiceMQQGhoKMAtC4qEhAQAj7vGb+ydCwgIoGHDhkRHRwPQpk0brl69yrRp01CpVDgcjluO99Tr 9ZmuS01NBUCr1TJx4kS2bt3K7t27OX78eKbFtY+PD4qikJiYSOnSpbM8X2YqVarExo0b+fTTTxk5 ciQvvfQSJ0+epEiRItnaP7Nr0Ol0pKSkuJczy9ykSRNmz56d6TH37dtHmTJl+Pjjj7N5FZ7efPNN Nm3axDfffMPbb7+NoihZvi6RkZEYjUaPddWrV0en07Fv3z5Kly6NxWKhVKlSme5vMpk4fvw4q1ev zvUb0cSDT3pWc8mK35ZSzaqXQlUIUWAZjcabpjNq3rw5Op2OnTt3ZrlfREQERYoUcfeEZiY4OBhv b28Adu7cSbNmzXj22Wd5/fXX3evv1PXizuVy0atXLzZu3MiwYcNo1KhRpu2vf92c3fPFxMSwY8cO j3UjRozgf//7H2lpafz11193lftGt7v73c/PL8vZFUwmU6ZzoDqdzmzdVd+hQwdCQ0P54YcfmDJl Spa9qpDRW3zu3DmPdSqViqCgILy8vNxDAZKTkzPd32w2oygKp06dumnb3U7FJR5eUqzmsOXLl9On V28uxMejlUJVCFGAValS5aZio0iRIvTt25eNGzdmWhhFREQQFRXFu+++i0aT9ZzQFy5ccD+yunfv 3rRs2ZIyZcoA934X/cKFC5k3bx7Dhw+/5fGuXLmCr69vtntD/f39ee+9925aHxYWBmQMK8htp0+f pmXLlpluq1SpEnFxcaxevdpj/VdffYXVas10H5fL5TFcY+DAgVy9epWVK1fy1FNPZZnj8ccf59Kl S5w4ccK9zm63k5iYSKNGjahQoQKAx6wJNypcuDBBQUF8++23HusPHDjAxo0bszyvEJmRYjWHXYiN Ze68n6hr9iZA7vwXQuQTk8nk8Xtm2rRp43Hz0HWfffYZjRs35oUXXvAYDnD27Fl69epFjx49GDJk iHu9Wq32GDd54MABYmJiGDFiBJBxs87+/fuxWCz8/vvvJCUlceHCBS5fvgxkTO93Y8/g9eLTbre7 1904dOD63fx///03ycnJrF27FsjoGb2xp/j06dPughnghx9+oEaNGlkOcQgICGD//v0MHTrU3Svr cDhYvnw5jz76qHus7/VcN/YQ/vemocyuIbMe0Li4OHebmJgYtmzZwocffujebrfb3bMDtGvXjtDQ UHr16sWcOXPYtm0bw4YNw8/PL8ve48TERPfrDNCnTx8MBgP9+vXzaJeSkuIeZgEwYMAASpQowWef feZet3DhQmrVqkW3bt2oV68e9erV48svv3TfbHa9CN25cydXr15l4MCBLF26lNdee41t27bx008/ 8dFHH9G+fXv3ays3W4nskGI1h3380URcikIwOrmpSgiRL9asWcPcuXNRqVR899137jvv/6tPnz4c OnTIo0iBjLGeGzZsoEePHrzwwgt06dKFzp0707dvX9599133lE3Xffnll+zcuZMePXowaNAgpk+f zvbt2wkODgYybsyJiIigTp06mEwm+vTpw7Jly1i/fj0rVqwgKiqKPXv2sGPHDs6fP8/ixYtRqVR8 8803XLx40d3m77//Jjw8nB49elC7dm06d+7MoEGDGD16NMHBwfTt29ej+Nm+fTuvvfaae9lsNnP5 8uVbTg1Vvnx5Jk+eTMWKFencuTOtW7emTJkyrF69GrVaTWJioruAW7BgAQcOHCAyMpL169cTHx/P 4sWLSU9PZ+bMmUBGgRcVFcW+fftYt24d8fHxzJ8/3120ajQaBg4cyJtvvsmbb77JypUrqVatGiaT iSlTphA13uxOAAAgAElEQVQXF8f69evZvn07Wq2WlStXUr16dd544w369OlDxYoV6du3b6bXMnPm TGbMmMH06dPdN20FBATw6quv8sorrwBw4sQJhg0bRnJyMklJSbz11lvExMQQFBREeHg4cXFxvPzy y4wZM4a///6bjRs3umdTWLFiBY0aNaJNmzbUqVMHtVrtnrZLpVLx/vvvM3DgQBYtWkSnTp3YsmWL +3XZsmULS5cuJT4+nu+//x6LxZLl34kQKkUeH5Gj6tSsxYFDUbQlhDL45HccUcCF+5v5aO5MOnXq lN9RxENq7NixGI1G3nnnnfyOkqM2b97MtGnTWLZsWX5HyVLv3r3dvalCiKxJz2oOC9/xF12e68RF tR0b98fTTe4HDlzyegqRC95//3127NjB4cOH8ztKjklMTGTmzJn89NNP+R1FCJEDpFjNYf7+/nw2 6UucVUuywjsJFwoOpPP6bqXjYJ86lcXel/lRFctq/1TWGK+STtZf4wkhsk+tVrNo0SJWr159093f 96PU1FRmzZrF3Llz8fPzy+84t+R0OuXOeCGyQYrVXBAaGsq+qH8wuRz8TgJziCGW20/aLDzZcfG7 IYWqL7Zjzcbfib8Yz5rwLbwy5E3WGVKIyYHX1CUfJIRAq9UyfPjwO56LtCDy8/Nj9OjRN80RWtCs WrWKP/74g/379zN79uwsp4ASQshDAXKNSqVi1ZrVLPplAX9u38a5s5cpKR+gs+UMJg742rhsTuel zi/yw7yfOH/+PK/3f42t4eEsWLSQwMJBDBkyhBYUpjK+WR5rjy4Nq0rhCeu/PSznMKMAKTj4iyS6 UYJAmbkhX3irNFhleId4yPXr1++mu/OFyCmBgYEkJSXld4x7IsVqLmrdujWtW7emU4dn+P3keqqg JxDd7Xd8iEXo04krpOHnBUtp3LgxLpeLDz8Yw6QvvqCK3YdaDhUvduxMut1KQ01hQp2GLI8Vh4W9 tsuU8vbnBOns1KUS6G0kLvUKVStW5pHaj9D6ShIHd+ynqVmK1fxgxcVAVVk01x7xqVGBRqVCc20i jet/vr5dza2337z/rbb959gqFSqNCvW1BiqN2nNZrUatyWhzfbtao0Klvrb/tfYZ21Qey2q1yt3+ +naPZbXqP/urr51PfUOWjHUZyxpU17ap1Wr39us5b1xWX9tPdeOx1GrU1+ZIvfnY/1lWa0B9bT5V tRqV5sZlTUa7Wy1rNHDtWBnb/112H/uG68ryWCo1qNQoKvUNyyr3vsq17dywXfFYVnnur/Zsm+mx VZ7HVtyPogWXori/l3EpGZP9u66tUG5YB+C6to9H22v7Zn6sf7/1ydh+w/4o7n0AnK6MPzuvn0tR cLr498835HK6lGvrbth+bR2A89pxXS7PZfexXYp7Xcb2jP2vH/v6r+wsO/67Xcmsvctj2XGbYyuu f3Mqyn+WXTc+VCJjm3u78p/la/sDKK5/22csK+727mWP9teWXc5ry86MX87/LP9ne8Z5/7PNmVlb l8ey6zbHBriy/wfud1Ks5oFBQ99m+ZrVMnb1Fhy4OIWJI6QTGx1HVFQU/+vZi/Xr1lHU6UUHcwD+ 13o/K6bd5mDXnNXYwAnnLSkkeOmYMGECLVu1olChQu4JrVNTUylbqjQ7XWlUsuoIlg8TQgghRIEi xWoeOHzoEH56HwKs0nuXlUi9GW21MiwcP46AgAB++mEuW5es4ilXAIXu8iv6hk4/fAFbnXL8HRmB 0+nEZDJ5PMrQz8+PP8K3snDhQmZMmYpeo6V2mo5Qsu6xFUIIIUTekRuscpnVauXdEe9Sz2rAS17u TB3UmTmrt7N42VI6dOgAwAdjPyRRbcfvHj5PqVBRDgPRx47xxx9/ULfWI7zW13NcmKIonD59mjp1 6pBsTudi2lU2kECkNg3lhp5wBQWn9IwLIYQQeU56VnOAzWZj/Lhx+Pr5cfTQYd58azChoaEEBgai 1+tZunwZXTt2oohZR5B8zezBicI+rhIdddzjTuTY2Fi0ag3qe3wKmA41ZW1evNy9B+mJSXTq8rzH 9u9mz2bUW0NJNGeMLWja+AmGDh/G6BHvsvp8HLXSvDhrVDhmuoxBq+NFe9F7zpRd6enp7N27l/T0 dNLT0/H19b3ls7yFEEKIB5EUq3chKiqKmJgYypUrx6cTP+bnBb9QWudHIZcGi1ph3bKVmFx25nw/ h64vvMCTTz7Jl1OnMGTwWxhVWpqkG6RoJePmmn1e6VStXPmmKXPGvvc+1W2ZP+s6u0w4mcd5cIB/ qg96gw9PtmnDgQMH2LRxI0PefpuAwEDS7FaqVqzElvCtFC9eHIBnnnmG5cuXM/Kd4ZjMJkyXzVQu X4FzF8yUzckhAnYnY0a/x6FDh9i0/nd0Oh2vDx5ElSpV6PBUW6xXUvBRa7DZ7Vh8tMQnJuTcuYUQ Qoj7gBSrd8hkMlGrVi1C/QqTjoMgp5aerpLoLJ5f8R8llUULFtL1hRcA6PPqq/zvlVeYO3cu77wx iKfMhbI1FjMWC8e9bYRZfNw3GD0I7Lj4TZdAq6faMHP2tx7btm3bxva//uIZAu/pHCqgvHcApyzJ 2FxOSpctQ5kyZahYoQJOl4tHrj1bfP+wd3h76FAKFy78774qFZ06daJjx46kpaWh1+v56ZefebZ9 B/ar7RSxa6li8aJwJh86nChYcKJGhRcqtLcY/vG42cCFIwn8Nn4KFo1CUbOKwRGvcD79Ko2UQKor GVNuHSaVEm2b39PrIYQQQtyPpFi9QwaDgZZNmnIuIop6Zj3F0KPLpBgxouVCbKzHOrVazSuvvILV YmHE0GHUUHypbfXJ8lxWXJzQmAl4pCpr/4miqyUYTR59BZ3btKgo5dKjAooWLepev3v3bjo83Zam Zt9sj1dNJuPRtps0SdRwGimBngC8SMLGExZfLuosrFi7moMHDxIaGgrA+6Pfo3Xr1qhUKj6aODHL Y6vVavz9/QFo1qwZSVeTOXjwIBs3bGDi+AmUs3qhcSmkGbWk4yLFZsZkt+FvNOJyuTBZLAR4Gyis 1uOb5qCiyxsjWhQUtKjxQk1ZDJS9YQ7eqqngxBcNKg5rTfg5VFg0cOHCBeLj4ylWrNidv+BCCCHE fUru+LkLq9av4/9GDCaxTkmW+SRxlFRScbhvwEnGzmmtlZKlS2W6/4CBA9l78AARjss33bSjoHAe M38a01ioT8C/VkV+mjePeg3qc4xsztlUwMViJkKdyiWdi96v9vHYNuLtd6hj0lOKrIv4GyVjZ7U+ iWXEY1ErxJUwsruoivnaeI6X92eBNp4qVSrz808/8fHoMQDMnDGDcRPGo1LdeeGv0WioU6cOw4YP J/rkCRr3eYG27w5k4g8zWbZ5PdGnT2K1Wbl8NZkrqSmkmdL5c/dOxs35hkf7vcAaYwrfq8+z2SfV 4waum86DitOY2OZI4LTOTm2nL+l7j1GxXChtWz9JSkrKHWcXt3bQWjD+f+2OS8zvCG7hh0/ndwQA /ty1N78juIWHh+d3BAAidmzP7whux/f+nd8RALhyfF9+R3CzxB3K7wgPFClW74LBYOD9MR+we99e Nmz9A1v9imwMNPObIYltqiusNVzliZ5dmPnd7CyPUbFiRVo2bcYSn8v86W8i3M/Mav9U5mrjOFbO l0GfjeNSYgK79kVSuXJlPv7ic/b7WLiCPQ+vNHfs87PTaOBLzPllHs8++6x7/fHjx9m7N5JK155I lYqD05gyPYaCgg0XW0ikTLlyLF++HJPJxJnYc5w+H8OF+DiOnjyO1WYj4sB+VqxYSZrDymP1GtD/ tddy5DpCQkKYNmM64ydMoHPnztSvX59ixYqhVv/738rLy4tq1arRpUsXps2YTkLSZeLj4zGWLsYS QxIR2lQuYcWM0128JmBlpz6NnYaMa69u80aDigZWIy9Yi3B8RyQ//vjjXedWFIVt27bR/9W+/PPP P/f2IjxADtrS8zsCALvjL+d3BLdtBaRY3SrF6k0idhacYvXEvl35HQGAKycKUrF6OL8jPFBkGMA9 atCgATv2ZPxH3b9/P5M//4KxnZ6jS5cut9339y2bOXLkCMeOHcNqtVKhQgUqV66Mn5/fTW0fffRR Pp30JRPeGUn7dH9U99lwgBTshGuvUs6hI8lqYtSoUe6bmW7kAvbo0/FyQqQj44d2f8re1G67wcRJ +1Xq1Qlj0tdf0bBhQ/c2rVbrHn96vfd02ozp1KpVixo1auTC1WWfTqejSJEiREUf4cCBA/zw3RzW rV7DhYvx2B0OjF569AYfXnvjTZ5u25bRo0YRs2UvwUrG2Fgv1Dxi1vPeiHexWiwMfeedbPUQK4rC 1q1biYiI4MfvvufS+ViKm1T8umABX8+YTs+ePXP70oUQQoi7IsVqDqpTpw4//jz/jvapVq0a1apV y1bb/v37M2Pq15w4ctHd+3g/OKJK47i3HZNOS0iTJix/8/VMC9VKlSpx9PgxZs2cyfgJEwBoTRH3 9qvYOaY2Y9arsBT25Up0DD4+2Rsu8OKLL+bMxeSg2rVrM+XrqUz5eioAKSkpxMfHU6FCBTQaDd27 dmXT5s08j+drFYKeDuZApnz4Edv+3Mr8Xxdk+gHnRlu3buW5dh0IdeopZdPQiABUqKhksvHOgDdI uHiJocPeybVrFUIIIe6WSrn+QFtR4JnNZl7o0pWjW3bQ0uKf33Fuy4qLOCz8pUvl9SGDmTBhAlpt 1p+PDh8+zBv9XyN8x18YvfR0sAbhhxY7LnYZzJxXzHTt8SLFihbl3VEjMRqNeXg1eW/Me+/zzeSv CDN5E4rPTb3pDhR269NJK2Jk1fq1WfYaL1u2jF7/15OKdj2P2m7+kBOpTqHF23347PPPc+U6buVu xg0LIYTIPl9fX1JTU/M7xj2RntX7yEcTJvDPpm20tBW6feMCYLXPFSpVr8rwZ59h8Ftv3bJQBXh/ 5CiSth+gFyVJttrxRo2CwnafdGo/3ZyfRo8mLCwsj9Lnv7ETxtOkeTMGDRjIgbiLlDdpqawY8EED ZMyo0MjqS/T5NBo92pDp387ipZdeuuk4Fy9epJRTRz1b5sW9r0vNn5u3EB0dTaVKlTzG3OY2+aws hBDidqRYvY/UqFkTb70ena3g3xdnwYnJ5eCvPbuz3Xt26tQpEn3VRKalcFibTiGdDyqVivJVKzN/ wQJ0uofvQQqtW7fm0LFo/v77b775aipLV6ygusNALYcR7bWe1ir4UtikY1C/AYSEhPDkk08CGVNd bd++nflzfyTQpsp02rPjpFEGH/ZGx9AorD71GzZk5bo16PX6PL1OIYQQIisyDOA+kpiYSJmSpXjJ VjTTwsOFwgnS8UVLCe7t6U/3Kg4L2wpZGf7uCAICAmjVqhWVKlW65T5Op5PNmzezdPES+g14DYvF gr+/P5UrV34oC9XMnD17ltf7v8aff/5JWY0vJU1QFgMaVPxDChV7tOXr6dOZOGECM76ZTkmtER+b Qj2r4aZ/M9ef8NWUIKrhhxOFbT5plH60Nms2rJfXXAghRIEgxep9pmyJUjwW5yLwhicnKSicxcwB ow3voEKQnEbLVCNqVJwkneJ4e0ywr6BwFQcBufhELAtOjpCGQ6PCrtMQg4lyoaGs2fA7JUuWzLXz Pizi4uJYvnw5s6fPwHQylmZmX1JxsNpwFW+9nqJmFRqbE3+XmirXHjDwX+cxs4ZL1NEG0dCRcYOW E4XF+kTmL1lIhw4d8vqyCpyLFy96PLRCiFuJjY3Nt/c3RVFYvHgxMTEx1K9fn+bNm+dLDpF/LBYL NpvN/SCbB0nB/z5ZeKhQvjxXcQAZN9hEk8Za31ROlvVl9q/zORx9lIAyJflVd4ktJHK8uJ4NhhRM ON3H2GJMYxEXSMJ20/GtuDhMKut9U4nBfNc5vdFQl0I0cPrTyGykmzkYW/R5Ppn48V0fU/yrePHi DBgwgJ0Re/AuX4JjpOOPF6EOPQ2uaGls8eW4Kp1tJPEdMRwghWTsXMDiPkbwtQ888bp//21oUBFm NdCnV2/mzZuHw+G456yxsbEMHDiQmTNn0qtXLw4dynyy7G+//ZZx48YxduxY3n///Xs+771kOXPm DC+99BLdunXLtxwWi4UBAwYQHBxM6dKlmT59er5lURSF4cOHU6ZMGUqUKMEPP/yQLzlutGnTJlq3 bp3jOe4ky6ZNm1Cr1e5fOT0Ha3ZzpKSk8OSTTxITE8M777yTK4VqdrK8+uqrHq+HWq2me/fueZ7D 4XAwZswYpk2bxvDhwxk/fnyOZihoFEVh7ty5VK5cmT179mTZLi/eY3ONIu4bV65cUSqULac8SbDS g5KKv7dBad64ibJmzRrF6XR6tN20aZPyWL36SmRkpDLq3ZFKWUOg0o8ySjeKK0UCg5QvP/tc8fX2 UdoSovSjjPIMRZUaPoUVo7eP0uGpp5Vnn31WqasNVPpTNkd+daeEEmjwVbZv355Pr96Da/78+UpR g7/SnRKZv+4avQIogOLr7aO8REn39or6AAVQ+lHGY7/2hCjlfIOUUkWLK/v27bvrbC6XSwkLC1M2 btyoKIqiHD58WAkNDVUcDodHu+XLlyuNGjVyL3fr1k357rvv7vq895JFURTl7NmzyhtvvKE0adIk RzPcSY5x48YpixYtUg4dOqQMGTJEUalUOf7/J7tZfv75Z2Xbtm2KoijKkiVLFC8vL8VkMuV5jusu XryoPPHEE0qLFi1yLMPdZHnttdeUyMhIJTIyUjlw4EC+5HA6nUrr1q2V4cOH5+j57zSLyWRSBg0a pJw4cUI5e/ascubMGWXIkCHKvHnz8jSHoijK5MmTlS+++MK93Lx581z52XP+/HllwIAByowZM5Se PXsqUVFRN7WxWCzK8OHDlU8//VTp3r27snTp0hzPcenSJeXcuXOKSqVSNm/enGmbvHiPzU1SrN5H Zs+erRi99Ep9TZDi721QPhg9Olv7ORwOJeyR2soTqsJKF4orwQFBitlsVpYvX64E+vkrWrVGqVg2 VPnyiy+US5cuKT///LPibzAq7Qm55yK1hTZEqVSoiOJvMCqTJ03yyBUdHa3YbLbceKkeKi6XS5ky ebJSyMeotKHITX8H/SijNNQVUQDltX79lVrewe5tnSimAEq3TArd/pRVWlBYKVm0mJKUlHRX2TZs 2KD4+Pgodrvdva5y5crKkiVLPNo1atRIGT9+vHv5l19+UWrWrHl3L8g9ZrluzJgxyhNPPJGjGe4k x6xZszyWy5Urp3z66af5kuXs2bPuP5tMJsXb21tJT0/P8xyKkvHv/YMPPlBmz56tNG/ePMcy3GmW Y8eOKY0bN1ZWrVqlWK3WfMvxyy+/KEajUbFYLDme4U6yXL16VTGbzR77NWrU6K7fO+42h6Ioyuuv v66MvuHnY6dOnZTVq1fnWA5FyX7h/O6777r/L6ekpCghISHKsWPHcjTLdbcqVvPiPTY3yTCA+0if Pn0YPeYD6vTsyO79exl7beL829FoNMxb8Av/eJvRoUZvcfDjjz/SsWNHklKukpxylWOnT/L20KGs WrmSQa/2p43Jn1Jkb8L9rJzCxG5tKsM+/4hD0Ud5a8gQ9zaTyUSDevX5/LPPSE5OvqfzPOxUKhWD 33qLdZs3El1Cx1afVI9hHypU1LEZKO9bmMtXkrDr1KTiwIbLPQ3WcXXmj7WtjC8hV+x069wFl8t1 x9n++usvypcv7zFtWeXKldmyZYt72WazERERQdWqVd3rKlWqxKFDh0hMTLzjc95LlryQ3Rz9+vXz WC5atChlypTJlyw3nnfVqlVMmzYNg8GQ5zkg46vM3r1733YqvNzOEhkZidlsplOnTpQuXZpNmzbl S44ffviBEiVKMGLECBo0aMBTTz1FbGxsnmfx9/fH2/vfG3tjY2PR6XQEBgbmaQ6A5557jqlTp7Jp 0yb27t2Ly+Xi6aefzrEckDEE5MiRI+4hF9WqVcPLy4vly5d7tJsxY4Z7ykU/Pz+aNGnC1KlTczTL 7eTVe2xukmL1PqJSqRg5ehSzv/+eKlWq3NG+1atX570xY/jNKwF9kQCaNWvm3mY0Gt3TSy2YN5+6 Zm8Kc+93gttw8mj9+vTt25dSpUq51587d46PPvoIox3GjR1H4aAgXn7xRSla79Hjjz/OkRPHadev J0t0Caw0JpOGg4OkcBEr2nQrixcv5mjKJdb5pfKL10Vi1FaCdAb2uZLZrUlB4eb7LevZjBzbvZfx Y8fecab4+PibBvsXKlSI8+fPu5eTkpKw2+0UKvTv/MEBAQEAHu3uVXay5IW7yWGxWEhOTqZjx475 liUxMZG3336bnj178tdff+F0Om9qk9s5du/eTXBwMKGhoTl27rvN0r17dyIjIzl9+jT169enc+fO xMfH53mOyMhIunbtypQpU9izZw9Go5FXX301x3LcSZYbrVixgmeeeSZfcrRu3Zrx48fz9NNPM3Dg QBYuXIhGo8nRLNkpnC9dukRKSorHB7vSpUuzf//+HM1yO3n1HpubpFh9iAwbMZzEpMscOXHc4xPW dYqisHffPkK49zk2nSicMSp06trFY/2pU6eoWa0aS76eTWOrL63tAbyolOCvJWuYMWPGPZ/3Yefj 48OXUyYTGx/HgGFDWKZLZI8mlY26ZIIfrcmECROoHFqeihUqsGzFcg7oTehdGR9UDjqTCfe6SjwW 0nG4C1cNKpqajEz5/Es2bNhwR3m0Wi1eXp6zTvy3h/b6m/2N7a63UXJwspLsZMkLd5Nj9uzZTJo0 KduPF86NLMHBwUycOJGFCxeyYsUKfvzxxzzNcfXqVdavX8/zzz+fY+e92yw3KlWqFEuWLKFYsWKs WLEiz3Okp6fzxBNPuJf79evHxo0bc+TmyDvNcqOVK1fy7LPP5liGO8mhKArx8fF89NFHnDx5klat WmEyZf7t0d3KTuEcEBCAWq3m2LFj7nX+/v4kJCTkaJbbyav32NwkxepDxtfXN8v5M8+dO4fT7sCX u/8EasNFIjbWG1Ko9lg9Br7+unuboij0fvn/qGH2pkWqAW/UnPd2saOQlcsaR54+OelBFxgYyPtj xrBj9y769utHus3ClUMnmf/pV5Q8fRXbgVO0a9eORxs2pFxYTXp0fxEXCvGKlfWqRBYQyw5dmvt4 RrQ0MfvyYtdupKWl3eLMnkqUKMHVq1c91iUnJ3tM71O4cGG8vLw82l3vZc/JaYCykyUv3GmOgwcP otVqadeuXb5n8fb2pmPHjgwaNIi9e/fmaY6tW7cyceJEfHx88PHxoV+/foSHh2MwGIiKisrTLP/l 4+NDmzZtcvTboezmKFq0KOnp6e7lUqVK4XK58iXLdSkpKcTHx1OxYsUcy3AnOSZNmkRqaiojRowg IiKCM2fO8Omnn+ZoluwUzjqdjueee46vvvoKh8OBzWZj165dFClSJEez3E5evcfmJqkOhNvu3bsp rjXc9Az627HiZKdPOlv80lmoT2B7kJ23x7/P2o0b3F+9uFwuli9fzvadOzisTuM7VQwLNRdp+NJz zF35G7v37+Xtt9/Ojct6qNWuXZtFCxbQhiI0TTPQLNVAZXw5q7ECYPlzPxejjnE4KgqDj4FnHMG8 oBSngsaf484UErC6j1UCb4o4tMyaOTPb52/RogWnTp3yWBcdHe0xtY5KpaJ58+YcP37cve7o0aNU q1aNkJCQu7zyu8uSF+4kx4ULF9i8eTMDBgxwr8vJHrO7fU0KFy7sMbQnL3I8++yzWCwWzGYzZrOZ 2bNn06xZM0wmEzVr1szTLJlxOp2ZfmOV2zkaNWrk0XNnsVgwGo0EBwfneZbr1qxZk+NjRO8kx5Yt W9z/JsqWLcvgwYOJjIzM0SzZLZznzJlD5cqV6dSpEx9//DEpKSk8/vjjOZrldvLqPTY3SbEq3HZs /wu/tDv7QWjFyRYuo4QW5ZO5szh7/hzxlxMY8vbbqFQqLl68yNC33uKtt96ic+fOaDUa7CoFvdaL sl6+/Hbt67OqVave9ClV5AxFUTDj9BiP2tIRQBeKUxN/Wpr8iI6OplKFiiRiwwcNjZ2FsDodbNYl e9ysVdukZ9wHH7J+/fpsnfuxxx6jbNmy/PHHH0DGG6TJZKJDhw689957HDx4EMiYn3HVqlXu/dau Xcsrr7ySE5d/x1muy60hAtnNcfXqVfe4u6NHj3Lo0CE+/vhjLBbLrQ6fK1k2bdrEuXPngIx/T+Hh 4Tn693OnfzfXc+TGV5jZzTJp0iSOHj0KZHwlHB0dTfv27fM8R//+/Vm8eLF7v/DwcPr27ZtjOe4k y3XLly/P8SEAd5KjTp06/PPPP+79zGYz9evXz9Es2S2cCxUqxKxZs1i1ahWvvvoqkZGROf7eBpl/ rZ/X77G5KXdupxT3pb+2biVEyV7BqKCwzTuVRJeNavXDGDF6VKZfU7Zq2hxOX+SQ/Qoq4DlnCEHO a8MQ7LBVZyYqKorKlSvn3IUID1vCt9KxXXt0sSYqYgSgyA3jki9ixWy3UbFSReKjMsZbnb/28IB0 u43fdAm0sBWiFD4E4kUzsy8vd3+RE2dOuwfpZ0WlUrFixQrGjRvHkSNH2L17N6tXr8ZgMLB+/XrC wsKoVasWXbt25ezZs7z33nv4+PhQtmzZHO9pz24WyPiBv3LlSs6fP8+yZcvo0KFDjn2Yyk6OGjVq 0LFjR8LDw5k1a5Z73x49euDr65sjObKbpVatWsyfP9/9w7ZkyZL/z959x1dRZo8f/zxz+03vCYTe BaQroNgLir33uq6uZdW17Mpv1bXv6u6qqyj2ta9+XQsqNtTFBoL0Jh0kBEggPbfOzPP7IzGChJB+ b8h5v16Y5M7cmTNJvDn3mec5h3vvvbdVR2Sa8rPZ+Tk/LwxtTY2JZciQIXz66afcc889XHXVVaSk pPDWW2+1aoWCxn5PDjvsMC6//HJ++9vf0qdPHwoKCnjooYdaLY6mxAI1K8/nz5/P+PHjWzWGpsRx +2cZWZIAACAASURBVO23c+ONNzJ58mSysrKoqKjg/vvvb9VYdk6cDz/88N0S57PPPnu339nf/va3 3HLLLa06Ag9QXFzMM888g1KK1157ja5duzJw4MB2f41tS9JuVdTJz8llQpGDlEa0YV1NNZv7pNKj Z09ef/MN0tPT67aVlpZyz1/+wvffzea7H+bgcbpIsgwO1Cm7lcP6KjnIxMvPZ/jw4VxwwQUyb7WN /O9//+OMSScxMZBMIk4KCLLSG+WAkB8/Dj72ldNr5FCi3y1jmE6mnCgf+8p54rlneORvD5Gw6Cf6 80uSNMtTxbgLT2PqM0/H8KqEECJ21q1bx913380BBxzAnDlzuO666xg1ahSjR49m8uTJnHbaaQBU VlZy1VVX0adPH+6+++4YR90xSbIqAJj65JPcdtMtnBxMw7uHBVZhbOY5K1nnCGHZNh9+/BFHHHHE Lvu88tJLXHfNtXQ33XQJGXxMMQN86RwY9NfV9AQwsVlBFdUO2GAEScvNZt3GDW0yUiJq3Hf3Pfzt gQc4NpRKCRG+c1ehLYsxdgplOkLmQcP4cdFSTq6qKW9SSIiVPRO4/qYbuekPN3FWNLvuZxjC4l1f KV9881VdDUEhhBC7+uyzz1i8eDGTJk1q9RHVzkSS1U4uEAhw791389RjUzgmkLzHUdVyonzoLcXU mtvvvINLLrmEvLy8XfaxLIvs9AwOqfCRU3ubuZKa6gK/XrQVxeZ5aubAeVxuvp31HaNGjWqDKxQ7 e/SRR3hw8p24wxalyiTD5WNzpJIEn5+TTz+V1//zBudGsnFjEMXmZecWqgMB8rKyOa48gYSdZg6t oopNPZNZsmL5LsXAhRBCiNbUKe+5bt++nUgkEuswYm769On06dGTd/71LMcHUhq8/V+OyYjhw6mo quRPf/rTbokqwKxZsyBqkrVTQ4EknLslqiEs3vHsIM3r58UXX2Rr0TZJVNvJ1ddcQ4Wy2WwH6W/5 OTqUwul2Lt2qFTuKt+NyOoliE8LiI38F/Xr3IRqNYloWxq9+jv1IwLGtnJtv7DjznoQQQnQ8nS5Z Xbx4MVlZWfzxj3+MdSgxNXfuXM494yxGbzc4NJi4y4hZfYqcFv0GDsTpdO7xVn2vXr3oO3Ag3/kb Lr5cgYnD5+Hx557hwgsv3OsiHdF6XC4X6SnJ+JwulnuCFBIiCSfd8PLjypX4DScOFF/5qjnuzFNZ smI5fr8fBawlQJRfVsgrFMODXqY+/RThcHjPJxVCCCFaoNMlq3379uX63/+ee++9N9ahxExJSQkn Hnc8Y4N+urL327dVmKx0Bbnz7obbbXbt2pWnnn+WMufuJX/WUM133io+Sajgc38ll1x6Keedd57M UY2BquoAidrBhMMOZaO3plRZDh42bvqJbVXlfOAv4+TfXECPnj1J8PnYr19/jjzmGAJD8vmPq4g5 nirs2jJYWwmjlOLoQw9v9X7kQgghBHTC0lV+v59HHn001mHE1AcffEBqCHrhr3e7XVuRc7GzmlWu EEEzwq033kK3bt32euzu3bsTMjQfuUuxHYr9gm5y8DDXF+D0s87E5/XyrylTWr1Ps2i8gw4aT2pq Kpf85nLO+7amdaUTg3xfCkdffgajR49m7ty5/Pepp8kyvPRfU8FP676gOtFJksPNZp/GsKsZHU1k IIl0s7y88cNcqZMrhBCiTXS6ZLUzmz59Or+74rfkde1KSFn17lNAkM+dpYTMKEcedBjfP/0Uffv2 bXRJqfT0dNb/tJHk5GSGDxvOnKUrCBmaW268hbvv67yj2fFk2vQPAXjxxRdxWL+MgmdWWmDb3HX7 HWzaUogDhaEUX7ginBHNwl1hEMXLO5Swxq3wWDDETsBAkeB0c+LE45j20XRycnJidWlCCCH2QVIN oBPYtGkTf7v/AV578SXGBP2UKpMs7aJbbc1TjWY11ZRjstZn8td//p2lixfz2JQpLbpNP2fOHP58 22RefOXlehdkidhas2YNRx56GLnbI4yI+NlKmFV9kggEAwwvNMnFy3oCfMl2LiIfZ+2soVIifOGt xHYZpEQV3cMu+mk/XyZU88ALT3LmmWfG+MqEEELsSzrdnNXOQmvNu+++yyHjxjOoX3++fuFNTgym 0Qs/I3VyXaIKUIbJwqQoK/1Rbrntj1x11VU8/sQTzUpUr7zyyrq2dgcccACffj5DEtU41bdvX+Yt WsgaX5RiwrhRhCMRJt95B/MTwkSxKfcoLDTR2jmqVu3Hw0JJlFdXkTtiP1Z4QjhQpETgvHPPJTUp maeffrpNWmEKIYTofGRkdR9UXFzMZRddzNyvvmVIwE1PfHWjYjv70QiwMiFK2DK54JKLefTxx1o0 kvrwP//JH266iYceeoibb765JZcg2tGTTz7Jg7f8P0ZXe5nfzc3qDes4ePx4Sub9yE9GiPyuXSne ug0Al3IQxiIYCnH00UeTnpbGuv98zFCSsdGYaCow+T4hSP7AfvzjX48wcuRIqcMqhBCi2WRkdR+z fv16Rg0bzubPv+eEQCp9Sag3Ua3E5BtKOOiYI/noixn8a8rjLV6Zn56ezpW/uUIS1Q7miiuuwJGZ wkaCAGzYsIGli5fQw3SjDIMTTj6JnLw8Rh8whv3HjiESjnCAncxnM2Yw86uvqHbUvN81ULgxyMTN cdXJOOav46yJJ5CSlMzkP/0J2969SoQQQgixNzKyug8xTZO+PXvRbUuIwXZCg/taaJZSyRxVzqrV q+jTp087RSni0UcffcSpJ53EgL79ePuD9zlw2EhOrU7lP95iTjzxRL787zT2sxNY6ouQ2iWHNevX 4cHBQXYK2XhIamCtZhCLmQnVBL0Olq5YTlZWVjtemRBCiI5ORlb3IW+//TaUB/aaqAI4UJT7DG68 /npJVAXHHXcczzz/PL//w4306NGDHdUVPMtP9O/Xjy75XTE8bvqRyMCgC0MpHn30UUxsvBgNJqoA PhxMrE6mS1DRtUsX+vbsxbp169rpyoQQQnR0MrLawdi2zZIlS/jk44+Z+fkXjB57IF9/+T8u/s3l PPvEVJizisEk1fvcCDYlRCkhQqkHytI8rFy7Br+//nqrDQmFQvz4448MHDhQ5iPug0YMG0Z5RQWf fPopJx57HOs3bmCSnUUWbpYY1Sz3hUlLT6dk+3aODaZQgUnPPdTt3ZmJzQ+OSsZeeiZTn3m6Ha5E CCFERyd1VjuQ2bNnc87pZxKsqCQv6iQ9DO9/+QM/WVVc8s3XdfvZHic9wy5+dIfAsulquZmdEKQi EqJvz14MHzmS08YewIknntisRLWkpISjDjuc5cuX8//uvIPbb7+9NS9TxIH5CxcSiUTweDz8/g83 8tbb/2X9t4vJjnjY304kp9rFTF3C+IMP5u3PZ+B2uOge9WHQ8LxnJwZVPgfjDj6ona5ECCFERyfJ agdgWRZ3/+UvPPKPf3JgMIHepP6y0YTtHpMd4QhHksnnbGexWcYyj5NLr/wNr7/2Ogu2b+OR+x7h mmuvbZXOUR999BErV6wg1emVKQT7KKUUHo8HgKuvvYa8rl2YPO8qiNRsz8HDwQHN3AULuPzyy5n2 6psQha2EyMKDYw9JawCLbVaQc845p70uRQghRAcn0wDinG3bXHT++Xw97WMOCSSQgJPVjiAeC7rX 1ko10VQSxY3Bck+I5bqSP/3pNu686y8opUjw+SmvrGi1FqehUIh///vfrFi2nMl//n/SsWgfprUm EAgwe/ZsTpl0IqPDfgaQCNQs0nvbu4Oe/fpgLtlAkR+2BSq4kHx81P+7FsLiv74SKgPV7XkZQggh OjAZWY1jWmuu/d3VfD3tY44KJOHCoBqT2c4KXG4HXYJewljMTQhhas3aQAmZCRn89GNB3Yrrr776 ivT09FZLVAG8Xi9XXXVVqx1PxK9AIEBiYiJej4dQOMwcj6ZL2EsSThwohoa8hDwe1iVBWWUFfRMz 8FXt+XfNg4HSNSXWevXq1Y5XIoQQoqOSagBx7IkpU3jnldc5ojZRhZpuU8nJyVSGAsxV5bzvK+Po i88mtV93Bg8YyHkXnE9paWndMSZMmMDgwYNjdQmig0tISOCSCy8iFA6Tl5WN3+ejnGjd9l74Wb98 JXffew/HHnMMmwPlbCFUt70ak0rMuq8Vih7Kx3vvvdeu1yGEEKLjkmkAcSgcDjN//nzGjx+P23Bw pp1LIk4i2LzvL+Nfzz5FSUkJpaWlHHPMMcyfP59brvk9/WwfGx1h7nrk7xx++OFMnDiRTZs2xfpy xD7g8ksv5fl//5tBJHEI6btsW0s1M9jOWWedxZtvvolLGeS5E0nAyYpwCSkOD+dYuXX7L6GC5CNH 89GMT9v7MoQQQnRAMg0gjpSXlzPxqKOZ/cNcDKXwKAdh26KAIFudFgHDZtJpp3Duuefu8jzTNKmy o6z2OElKTiEnJ4chQ4bE6CrEvui4449n4YKFVK8tgKpdt3XFSw4eVi//EQCnw0FhtBpfgh/CMMnK rNs3iMUSb5jpf7mjPcMXQgjRgck0gBhavXo15599Dt1yu5CbkcWF55/P7B/mAtDNl8oYnQLAXHeA lWY5PUcP5Ymnpu52nLFjxzJr1iw+mvEp38/7gVf//SIA1159TftdjNinnXHmmdz7wP0Elc1yVc27 nh184i2rbQzgYBjJZKanc8MNNxA0o6CguLiY9OQULH65ebPQE+SCiy7k4IMPjuHVCCGE6EhkGkA7 CwaD3Hn7HSxdvJhvvv6GQVEvPS0vCvjEW05ZqGaVtGEYdM3J5a777uWyyy6je5eubNxcsNfjV1dX k56WzqUXX8zjTz6B0ymD56J1mKZJnx49CRQWs722hlWS28shkWQ0UD6mF5/+7wu+++47TNNk4sSJ DOjVh0EbqsnFywYCzEmOsGb9OtLT0xs+mRBCCFFLMpl29tyzz/L6lKfpG3JxBhm4dxrc7hlysBC4 4ooreOyxx3A4HCileOf/3uKcC85v1PE9Hg/TP5rOkUce2UZXIDorp9PJ29PeY8yYMUzQ6XxrlDHx 5BNZ+v7ndA85CIfD+P1+jjrqqLrnnHrm6fz97/+gh/JTnuzi408+lURVCCFEk8jIajv6+OOPuei8 8zmo1E0OHiqIsoMoBjW1Ur/3VFEZDjGgXz9+XLUq1uEKUa/HH3uMP9z4Bwb068f7H03n8IMnsKWo iH8+/E+uvmbXqSeVlZXMmjWLB+69j+df/LeUqxJCCNFkkqy2k+3bt5OVlcURZNKPBBZ4AvzoCDBm 1Ghs28KybG649WZOPfVUtNZEo1EKCwvp0aMHSjXcwlKI9lZeXk4kEqmr5yuEEEK0FUlW21F+bh5Z 24KE/E4KCLF2/Tqys7Pr3feDDz7gxBNP5OjDj+DTLz5v50iFEEIIIeKDVANoI5WVldx33338+OOP dY/99713OfLGy7n2wbvYvKVwj4kqwNChQxk7agzDR4xoj3CFEEIIIeKSjKy2spkzZ3LhOecxYNBA Znz5BReedz4vvfpKrMMSQgghhOiQZGS1hUzTZN68eYRCIQoKCnjw/gfYtLWQLZsLOf7YiVx59e9i HaIQQgghRIclI6vNZJom5599Dh9On45lmuR17ULB5s3cf9/99BvQn5NOOkkWRgkhhBBCtJAkq830 1FNPcecNN3NMKJUyorzPtrpthYWF5OXlxTA6IYQQQoh9g0wDaKbRo0ezLVTFyxTUdfP5mcPhiFFU QgghhBD7FklW96KkpISXX36ZN954g50HoV958SV6u5IZ7Eip60J19ulnsG7dnstRCSGEEEKIppF2 qw1YvXo1B48bT1oYSuwwXq+X/Px8Zs2axbPPPQdmmEEqmQXeII/97VGu/f3vYx2yEEIIIcQ+Reas 7oFpmpx+yqls+vBrcnDzgzdIUnYGRVu3UR0JAXDcUUfTrXt3brj5JgYNGhTjiIUQQggh9j0yslqP wsJCTjvpZLYsX03Ea1Gdl8TjDzzGv599jk0FBRx92BHcdf+9jBs3LtahCiGEEELs02RktR5nnXY6 y6bNwOVw0u2IA3nvww8wDAOtNVVVVSQlJcU6RCGEEEKITkEWWNXjyGOPYaMRpjTTx0uvvYph1Hyb lFKSqAohhBBCtKNOOw1gyZIl3HDNdUSjUWZ+980uBfzPP/98TNPkkksuISEhIYZRCiGEEEJ0bp1m GkA0GmX79u11xfo/+eQTJk6cSHJiIht++om0tLQYRyiEEEIIIX6tUySrlmUxqF9/SsvK2Lx1C263 O9YhCSGEEEKIRugUc1YNw2D1+nUMHzYc27ZjHY4QQgghhGikuE1Wp02bxtCBg3j22WdpaPB3xowZ /L/Jkxs8llKKUCjEZ19+jtfrbe1QhRBCCCFEG4nLaQCRSIRDxh/EpnlL2KqiLFi4gP3333+3/Wzb xuFw1H2+8yIpIYQQQgjR8cVVNYBvv/2Wbdu2ce9f7mLp0qWY2AwdMpShQ4fy8ksvsa2oiAEDBpCY mMhhhx2GUoonnniC3r17S6IqhBBCCLEPavORVa01W7duJSMjo8GFTYWFhXTt2rXu64F9+nHIYYdy 621/ok+fPpx95lm8+db/1W0vKioiKyurLUMXQgghhBAx1irJ6p9vu40Vy1bwryen1CWcjzz8MM89 /Qz3/vUBTjnlFK655hrOOOMMhg8fTmpq6m7HsCyLd955h6VLljDphBMYPXr0LqOl5eXlfPnllwwc OJC+ffvidMbVoLAQQgghhGgDrZKsXnHZZbz0wosMHjqE+YsXEQwGyUhLJxgOkZSYiFUdIqBNAKZO ncqVV17Z4sCFEEIIIcS+r1WqAVx93XVEsBkxYgRQMwoaDIc4/uhj8Lo9JDrc9O7egyMOPoT99tuv NU4phBBCCCE6gVabs/rCCy9w7rnn1pWGWrBgAcOGDeOVV15h5udf8NiTT+D3+1vjVEIIIYQQopOI y9JVQgghhBBCQBw3BRBCCCGEEEKSVSGEEEIIEbckWRVCCCGEEHFLklUhhBBCCBG3JFkVQgghhBBx S5JVIYQQQggRtyRZFUIIIYQQcUuSVSGEEEIIEbckWRVCCCGEEHFLklUhhBBCCBG3JFkVQgghhBBx S5JVIYQQQggRtyRZFUIIIYQQcUuSVSGEEEIIEbckWRVCCCGEEHFLklUhhBBCCBG3JFkVQgghYuCN N95gypQplJaWxjoUIeKa0lrrWAchhBBCdDa5XbtRHjLomu5l9aofUUrFOiQh4pKMrAohhBAxYuaM pnDrNgoKCmIdihBxyxnrAIQQIt4sWLCAbdu2xez8BQUF5Ofn7/JYZWUl0WiU9PR0gLpRuOZ+bGib 1rrBf7ZtE8ubcuXl5WitSU1NjVkM9amuriYUCpGRkdGo/cOhEKSAOzGDZcuW0a1btzaOUIiOSZJV IYTYiWmajD/oYLypXSBGd2UrCtfQKykTh/HLza/N1WUYGvISU9FoaoKr+bjr17+oL53cU4r562Oo nS5e7fJRoerZpz1tqy4nYlt0S0qPyfn3pDhYSZllkpLTo1H7m65UcPoIqwSWLl3KxIkT2zhCITom SVaFEOJXUtPSKdbJqPQBKKe3/QMoXMOhlT5cO83U+phKkg0348t97R9PnJlPmE2EODzOvhdFGLxj bKcq6yCUatwsOwVEHUnM+n5u2wYnRAcmc1aFEKKW1ppTTj2dh/72AOP6JePb/kNs4ojJWTsSFZff o2w8OJSBDpY06XkquSsfffwpXfJ7MPqAcbz++uvMmTOHSCQCQFVVFV988QUrVqyI6fQLIWJFRlaF EKLW9OnT+ezzL1i4aBHfffMV/QfuB7mxiUXWhTcsVlMQGmJiY2kLp8PTpOcpdyLR3idSHKlix9bN XH3znUSqdnDCxKNJS0vl6aefITkrHzNURW5OFlOfeJyjjjqqja5CiPgjyaoQotOIRCK43e49bl+9 ejXK6aVkx3Y2bNiAJyGVYDvGt7N4TMbiiY7DsdUINmiN8iQ1+bnKcII3Fe1NpRrQyWVMn/kDtsOH 0edYAom5aK3ZUL6RU087g8svv4yH//kPKXclOgWZBiCE6BS+//57UlJSeeSRR4hGo/Xuc/HFFzPl 4b9y8cUXcdbZZxOuKkWb4XaOVKYB7E28pmdeDNA2WtstPpbyphLOO4Ro9hiMxJrhfaUURmpPgpmj eOb5Fzn6mGPo1bc/zz77bIvPJ0Q8k2RVCNEpPDH1KaKJPbj9gUfJ69qNBx98iOnTpzNjxgyqqqoo LCxk48aNXH755Ux7/0O2bd3KoP0GowPbYxJvvCZkYs8MDFAGWPW/GWq186T0IOzryuczZrApks01 113P2PET2LRpE1Azx/WOO+6kT78BzJ3b+IVbkUiEWbNmtVXYQjSbTAMQQnQKmzZthsRcwqm9CAW2 c/cj/8ZFFG1HCZRuxXA4UMrg+OOP47BDDyEUChExLZZt2QDJXds9XklW9yyevzeG4YBoAJxNm7fa VCp3JM6soSinBzutN4tXf8Ptt9/BiBHD+dfjT7ClAsLawZFHHY3H66d3796UlJRw151/5rzzztvl WFpr3n33XU477bS6r4WIJ5KsCiE6hXEHjuHr5R8CoPyZRPyZRGq36RwTSxkQqebd2ZvwVa7ig3ff wufz8elhR2BnD4uLuYERWn57eZ+xe1nZuJCknFRWbcHhS2vT8yhl1CXEynASzTmAtz6dw5uf/UDE 1QWV1xNDWwQC2wk6vcwrqgTy+e3VN3D++ecDYNs269at4+xzL2De3NkAPPfcc20atxDNIdMAhBCd wvjx4/CGtqDruUWrDCdKGShPEo7MgYRSBnH44YczadIkjPR+7Zqo2nZNQvrrBVYjSWGtXUUhoXaL Jb7F/s1DfXqbLlTpmnY/r3L5ieQciJk9BiOtF0oplOHESMxFeVNRSfk1VQd8OQD8+c+3o5TikUf/ xby5s+ndtz8LFy7ksssua/fYhdgbSVaFEJ3C8ccfzyknHIu3EbVTVVpfVFpvduzYgZncpx2i27ts PIwkhU8pJoAV63DEHowgBTtUjg6VxToUgJo3Z9uX4v1pOsnbv+XSUw/hp59+4p577gbg0ksu5vnn n2fZkkUMGzYsxtEKUT9JVoUQnYJSikce/ieRko17nZOnlEL5avu7uxPaIbrGGUEKXsNJQcwKasWT OJwDALgwyFRuiMHo6q/ZFZtxrZvGxJFd+eKTD9hetJWpT0yhW7dudfuMHDmSSy+9FK83Bp3ahGgk SVaFEJ1GRkYGiUlJEKnc677K5a/5JAalqxriUEacpmniZzmWAxWpiGkMdska/Dvm8PH095n23juM GTOm0dNZotEon3/+OdXV1W0cpWiJUCjEe++9R1FRUaxDaXOSrAohOpWh+w9rVDkq5a1ZIKMrN7d1 SE3i0Yq1RhCrs6escXz5LhTYZszOr3b8SHp4Dd/P+o5DDjmkSc9dtGgRPXr14eQzziOvaz6rV69u oyhFS91y6x85+/xLOPTwI+se01rz+uuvs3jx4hhG1vokWRVCdCrXXX0lvsqVe9/Rm4I3vTt4Uto+ qJ0YRs3L8p46NE20M6nE5CUKWKNkOkA8cqLQVmySVbtiM/6qVcyb+z2DBg1q0nOXL1/OkUcfS5Gj J2ZCPj179iI/P7+NIhUt8e233/L8Cy9idp1A4ebNTJ8+nWEjRuNPSOQ3v/s94w8+hPfffz/WYbYa SVaFEJ3KySefTKiyBL2XkS+lDKzuR2Ik5rRTZI3jxuBsO49hJPGt3k4VsRvBi5U4HlQFan5Ge/v9 agt2ZSGeotm89+7bu8xLbYypU6cy+oCxlPv7AZBqb2PGpx/j8/naIlTRAoFAgLPOPpdw5iiULwPT n8s5F/2GZaWJmH1OIdJzEqHcCZxz3gV8+eWXsQ63VUiyKoToVJxOJ127dYc4Wa3dXCNJJVd5maa2 EZTqAHElFsmqXboeb9Fspn8wre7Wf1FRUV0ptD3ZsmULkydP5qZbJxPtdjT4c3HvWMgXMz4lOzu7 PUIXTfSHm2+hzErASO2BUopozlhC3SZipPVGOT0oZWAkZBHOHM1vr7om1uG2CklWhRCdzpDBQ+Km tNCeNGb08FidRQJOZhg72jwe0XgZuLHDlWjd9k0ctLZxFC8kPbSSr2d+yaGHHsqqVau49LLfkJeX x51/uave5wUCAT766CMGD9mffzz/LpG8CShvCnblZrxuFweOHU9+j96cd8FFdW1cRezNnDmTl19+ jUjmyL3uq7wpBEP7xlQhSVaFEJ3OAaNHYkTLYx1GqzhWZ7DNDrFQVXSqRVe/bpoQT9JwgrZp68YF WmvsFf8ly1HK1zO/5LvvvmO/ocMYPuoAXv90Hm5/KpkZ6bs8Z9q0aeR26UZKahrnXPQbKlJHoPPG ovw1pdqU4SAQNgl1OZxtvv15+39LGbTfEJYuXdrouCKRCK+++iqTJ09m2bJlrXrNnVlVVRXnnHsB 4axRqEa289X2vvGaIO1WhRCdzqRJx/PXh/5BNGMwytmx60t6cTKRLGawg5VU0V35Ga2Tce3DYxGa PS9AiwdhahLVNu98tmEGdqSKgoIgQ4bujzezN0FfN1SfEYDCY1bzzHMvcMoppxCNRnl8yhM8/cyz RHIPQu2XQ1AZu/2WqNTeWMnd65Ih25dOWHm47Ior+f67b3a7puLiYm74w83MnPkVZaU7cLk9RCNh DH8m1YEQXq+XwYMHt+33oZN4/PEplNt+jJTujXyG2us0kI5CklUhRKczatQoTjnpBN79chFmzphY h1OvpqRi+fg4SmewgHIW63JGktRmccWLeB5Z9WCgDAc6XInytN3PwqwqwtH/JAx/BlprwkrtknyG cw9i1Y7l9OnTD8uK4kjKRXU/FqOBmJThAMOx64MZA1i+8mPuvPNOPB4PgwcP5uSTT+aVV17h2uuu J5LQHTNpOCR7CWsLUCh3AhQvZ936jQSDQYqLi/n+++/5Yd48RgwfwTnnnN0m35N92fdzfyDiejvu 7AAAIABJREFUzm7821AV32/qmkKSVSFEpxOJRHj33feI5I6Lu/HH5o6E5OOjjChBQ+OxHXt/QgcX z3+EDQwSDDfB8g2o7KHtcs76RnGVUpA5GNIHon76BjuwDYc7sRnHNgjnHMTDz75J1FJQtRmH0hju RII5B2H4s+p962AkZPOfN9/ktddeJRoJ40/JIoifo8YukWS1iUKhEPPnLwDPgCY8S6FlZFUIITqm 4uJiTDOKDpXjqNpExJuFI71vrMOqYZsoIIqNg6YlnRsI0k13jlJD8TuuWuNQM5EPtyxAZQxAOdwx jcUwHNB9AvaKN7FXvoNK7QXJ+ShfZqOnKihvCmHveKBmrqwVDYDLh6H2/HZP+TOx+p0OtonTDBJx +jEqN2NaUr2iqS665DK2BwxUXlYTnqX22lq6o4i3QQUhhGhzXbt25YXnn6ObZwdW+UbsglmYK9/D Xvk2Vklse7obTjdubypLVFWTnxtwaDJ1ZxiDiP8/wPn4aho8mKFYhwLUNJswBp0BGQPQlYXY6z7D XPoaetPX2OUbm1S5QKma2/yqgUT1l30NlMON8qSgHC5QimAg0JJL6XRs2+aj6dOJZA5v1Pd8Z/tK stoZXtWEEGI38xcspKgiiu59PE7bRJetRzs82AWzIRrEkdO6t2/twA6IVlMzJqhqP9R+Dr88DkS9 aeyIFtHU8qmm1nibOBor2o6hHGgr0iajwNoMg21BE5IXw3BC1uCaf4BduQVr+wpUwSxsYy5G3mgw XCh/RrMXHupgCY6fPsfhcGAn98BM7gtKocs3oDL3QyXksmjRB9x66608PuVJRo4axcwva/YX9Vu5 ciXacKKaOoVDyQIrIYTo0L76+jsiKQMwPMkAKF9NiR/l8sOWH6CFyapdXYS9fSU6UolDR7BCFb8k ALuMdujdH9MWOyyNRjdpIZEHg20q0immAuwgwn8cW3Z7XKHQ7HmagIIGt7PTNl37mapnJFft9Oie jmVpG8MKN3CmptNao7bNx9y2DEdCJoYvrdnHMpLyMJLyahKaokXozbMBsMwIjqRsVO5olD+z4XgC O/CVLsRwukEZhMsKeWrqFMaNG8dzzz3Pvx5/Aku56ZqdQtHG6ThcXiqqK3jooYcAmD1rFsuXL2fo 0PaZ29sRJScnY5mRmp99EytMyMiqEEJ0YB6Pu7YW5q5UYi6mGW7SHCnbtjEMA9u2sTfPRlVsxLZM nCn52Il5aKcHZ0r3Ro+M2LZNdNnrfGeXMVIn42vEaKmNTRSbcsNq8ohsR5SAkwOtlN0er+dtAL+e NvDrP9/1/Tn/9XMb3mf3r21svjGqwHDV88zm0yVrsLavxNFvEkZtbdSWMgwDckfU/ANUNIhdMAvW f4Fj4Kk1t+93jiFUhlr3MSpnf9zBrdx49SWMHj2acDjM8OHD6dKlC36/n7/+9QF69+7FlVdeya0P 3cOgQYNwuVz07t2bFStWsGjRIlwulySqe/HKq6+hmvN7ZFt4PB27NN/PlN5X0m4hhGiC31xxJS98 tBBH1q41ILW2MRe9hGPgKRjeVADsYCkUfIuOVKG1xnD70al9IFqNqvgJK1yNw5OIbYZRbj+qy4Go xNwmzy/bmV1dhGPTN3jCAc7VeXsdYS0nyhsUciH5uDH4njKGkEgyrZssxYP5lLOJICeTG+tQ9uht RzEl3kRU3+Na9HuwM22GMZe/iaP7IRipPVrlmA2xV7+PtqIYfSehnB60FcFbPBerahvBqpqmGocd cRRvvfkfMjJqEucpU6Zw7bXXorVm06ZNDB4yFJw+PE54cspjjBgxgj59+rR57PuKBQsWMGrUKIwe h2Kk9mrSc+3AdrKqFvDDnNl07dq1jSJsHzKyKoTolPJys8GM7Pa4UgaurAFEV04Dt69mHmuwDGfW AOhyAIZyYFduxi6ciyMxG3JH4vRn18zV8ySBN7VVkhMjIRur/ykEFr9EOSape0k6E3BgoIhis0BV 8qOuZBVVXEx+XNckbb74vaYVVFKsozh7HdVqiSoA0QDYZs1c1fbQZxKseBMd3IFK6oKxYzlHjhvC 3x6YRnJyMtXV1fTtu2sVjc+/+BKoKQ93+RVXEk7qi87an0DFJi6/9lYilcW8/OILnHHGGe1zDR1Y cXExRx51DEa3g1ApPZv8fOVOolIn0affAK7+3VX88x9/b/0g24lUAxBCdEplZRXg2EMC2HUczqHn Qd4BqKSuOAeeiupyIEZCNsqfgSNnf5xDz8foOwkjrQ/Kk4SR2gPlS2/V5EQXL8WvnKQ0YlzBAJIM F2+xhbVUM5EsItiYHWDlfFPVzDuN3+vqgQ+FRgd3tO6BPckYeSOxN8/CrueNVlvQtoVyeNC2iaN8 LX974H4GDBhAXl7ebokqwKOPPMzGjRtxu91UVwewXDVzwo3kbgTzDiOadzDnnX8Bgwbvz8yZM9vl Gjqqhx56iKDtwkjv16xuaMrpIZIzFjOlH6ZptkGE7UeSVSFEp1RaVgbGnpNAZTgxUntg5I2qtwtR e9TOdBUvY7RObtTIqIHBmXYOI0jhbJ1HF3wkGi42EmzzOMWu/DgZaSdgrf8cu2x9qx1XGQ6M5O61 ZabaIVkvW4e2IlCyAmPHcg45ZAIDBjRclL5bt250796dF198kaJtW1HB7btsN5Ly0P1PZ3Ugk+NP PJUh+49g0aJFbXkVHUo0GmX27Nkcd/yJPPzIv9DNGFHdjT+LDz78qOXHiSFJVoUQnVJpefluC0fi iR2uJGqG6ENCo59jYDCCFNy1L+19bR8/qHLsOB6FbI74nQDwi9GkcpCdhL1pVqse167YhOFNwXB6 WvW49UrtjUrqilm6AWf5au65605uv/0OZs+e3eDT/ve//3HN9TexPpIL2fvvtl05PRipPYn0nMSP xYqrrr6ura6gQ1m5ciU+r5dx48bxyXdLYOAZ2GkDW37gaJCMjHRKS0uxOmhDBklWhRCd0o7tOyDG nYUaYm9dQI7hw9GC1Gw0KUTRzFcVrRhZnOgAGWsOntafruBw04w7ws1iGAYqpQdYUc49+yzOOe8C 7v/bg8ybN6/e/bXWXPf763n55ZcxEnMw0no3eAdCOVyojP58P/tbiouL2+oyOoznnn2WoY5UcnBj eJJb7e6NSuvN8lXrSM/IYOrUqa1yzPYmC6yEEJ3S6lUrUdmHxjqMPXKVbWCMbrjG5d4YGEzUmbzD VkaQ3KTEd4WqYhGxTHJ/mfzwc3L2c9XTEjtMlm6HkcV4ZIbQ7dj4QTk9ePzJZGZmsG7NKhKTUjj+ +ON326+srIynn36Gxx/7F4cffnhdjdq90aXrOOKIo8jKakob0fiwdOlSrr72eub9MBd/QiJJSUkk Jydja00wGCAYCBIIVFFVVUVCQiIOhwOH04nT4axrgmCaJtFoFMs0qSgv4zgrjQoclOhoq8WpDAeR 7hNxVBTw9LMvcM0117TasduLJKtCiE6ntLSUyqpKyG9iR5h2YkcCoG2SW+ElOgsPGohgN6pe689K DBO3pRhGcotjaIqfxyF3nrqgdc2CKl27fSEWeXTOZNVhVmG62uf3Vgd2kFC2kBFjRvLkU88A8PeH /kavXruWUCooKKBf/wG4k3PxpmSzcuVKIiqnUedQab35btZ0CgsL6dKlS6tfQ1uIRCJc9btr+M8b bxBN2w96TiJim5RZYXRFtObdleFAJbiwjRJ0+Wyqco8AdE1tZ23XNgHRNR3IlAO0hVU6DRdGzTQe u3UX0CnDAcn5rFz5PQUFBeTn57fq8duaJKtCiE5n5cqV+JMzCbTX/dQmsG0Tx6r36OZIJMFqnZfo PMPHK3YB3R0JHGs1PFq7jgBhQ4OuKYfVlDmz7WWVCuDTnXMWmw5Xgie1Xc7lrVjJBeedywv/folI xnCSWc7FF1+8azxa88Ybb+BJziaQdyjuLV9TWLgG5+AJjRpbVS4/7uRcZs2axemnn942F9KKTNPk lFNPZ+bcFUR7nYjaZe5w0m7XrMJVaGWg3A3/f2QXLSHR4SLb9LCWAFitm6zqaAAdqcJwuCRZFUKI jsDr9aLbq1ZlE+mipSRYNkfo5rfR/LWT7GwqMfmPtZkgaXUjrDaaEDZeDCLYBLH5ku1gQxfl6wjT QjsdnTkYvXEmljsJld4Xw9k2HYq0bRHasY7Zc5Kx0vrjMUu5/rpr8Xp3Pd+6dev4022T0T2OwgDC WWNwpg6uaVvcSJZyU1pa2spX0Posy+Kss8/lq7nLiORNqBmt3AtdtRlHYzqNOf2YtW+evRhoM9Jq //8ZJcsxytcTqijmhtsmM3bs2FY6cvuRZFUI0elUVFS0z2rqZnCXrmawTsRo5VQxCSdJDjdrrWoi 1LSZXa2ClOsIDhQmGgeKviRgA6t1FV3i9lb7vlXdoCmMlO7QfQJ24RzsrQug/0kY3t3bzraYFcZw uFn50w7snHGYq/7Lddddu9tuNZ2rFEZizW1/5fRCExNopw53iA5LV19zHZ9+NYdwl0MblagC4EnF Kv8Jh9YN10rVFnZtQ1EXCm2bjX4F0LYJ4QqULx0Au7oYwuUoXzquzTOJBCu57bbJ3HDD9aSnpzfy qPFFklUhRKdTVFSEdsRfImabIaxwFX1pm1t03S0P31JKIk4ScNBdexhKFgEsKjBJw0UGNSuQA1iY xOfoc2dnpPbESO0JW+cRXf0+dkovjPxxGEbrTY1QLj/2gDOIKANdvY3uPXrVuwhq/fr1+FMyWlTN 145Uxf1t6f/+97+88tp/iPQ4DtVAfeZfU+n9sDfPBitcbxKvI1WwYwVW0QoOr72b4saoSUAbyVM4 k+rtP+EcfA526RqUFcbatgSPP4mpTz7Occcd1yEXsO1MklUhRKdTVFREdC/tS2PCcGNgsJAKhpBE Qiu/RI8nnXx8dMGDc6fKhYk4yf7VKGqGclOqw616/lbTeQdWd5U7CkdiPvaGz9GlWZDRv1UPX9eN LVTOiHHD693nhX+/hOluxG3uemitcRfPJcnvoU+fPs0Ns01t376dK393DR9/OoNw7vhm3JGpXVC1 hzJU9rpPSY6EOUhnkI8PqBlZbUpLXUPXJLZq9TvYkTAujw+Xz8ejD/+diy66qInxxidJVoUQnc7W rdsI2864KzRtGAZW/lgWFy2mxCrjuL0shmqO7rV/EMW+wUjMQWUNwt46HzsxD6OebmstFq3E5d79 zd2aNWt49rnniPY8vnmTViJVOANb+HHTRvz+xs9xbU/HnXASSzZWYPU4HqMZTUR08QoMb8qe2zDb JgfaiXWJKoAHA60bl6za1UX4XFBqmjgcDubNm0c4HGb8+PFNjjWexdtrtRBCtLlNBZvjchoAgCNz ANqfVdeFStRPBld3kj0cI60n9qppWJvntOqhtRnCWbaau+68fbdtzz//AtHEHk1aTFV33GAp7u3z GTV6NJZlcf/9D5Cd24WDDj6Ubdu2tUborWLD+vVYzsQGWzM3RJWvR6X3q3ebNkPYZhjvr0rKuTD2 ugBUaxttRdBlGzjyiCPq6raOGjVqn0tUQZJVIUQntLlwC8oZvyOMnkAx3az47a4l4otSCvIOxOg+ AbtkNVbJ6lY7tq7cwpgDx9K3b9/dtvXs2QOvo+lvG7TWeItnc/PvLuDt/3uD0844i3sfeY6S5FH8 sLqYP9x0S2uE3iq+/XomatsCCJU16/laOWEP80/t0rUkGy5y2XUuqwcD6hlZ1VYErTVaa1zF89Er 3iDZ2sbk2/7YrNg6EklWhRCdzpYtW5u8Yrk9mZEAuXG7El/EI6UURkp3HF0OgK3zW+242gzSr2/9 80l79+6Nw6pu+kGDO/C7De68807mzZvH93PnEc07CCMhCzt7OP/3f29imo1fYNSWqqurcfuTwdvM 2rYJ2ahA/SPFRuVmupm7j9i6UWDbuzymI9WYS17F3vIDrvXvk26Us2rlStatWcWQIUOaF1sHIsmq EKJT0Vqzfv0aVFuU+2k1Gpe8PItmUMldsc3WKyivHG42by6sd9ucOXMIG02fI6utKA6Hg88++4zz L7yYUNqwulJQyunF409i7dq1LYq7tRQVFeHypzRcdqoBOhpA1/P/sg5sx6raxv71dIirmQJUM4L6 M9/2ORx19NF0Swwx+dY/ULBpI7179yYtrfXqMcczWWAlhOhUCgsLsSwb4ngagGiYQnWIOashLNA2 dmX9yV6biFYDGsuy6uYxtoQ/vIUzTruw3m3ffPc9UWdyk99WqcRcisOlnH72+UST+2Gk9thlu8Of zrJlyxgwYEAzo24dW7Zs4a233oIW1Dw2Mgdirf0EFSrf9Q3y1h/oY3vqbalsYNScU1ugnOhQGeHK 7Vx15d87RJevtiDJqhCiU3n33XdxpORjxWGrVdE4ukOkqvCpqu3KVPBtO59ZQdVWSGlZoX1tm4RK CzjrrLPq3X7yicfz9fyHCdO0kllKKcjcj0jmfvVuD2gfS5cu47TTTmtyzA3RWrNy5UqCwSBOpxOv 10uvXr1wOndPhTZu3Mi4gyZQEvVjJvRs9n0OIyEbvEno6qJdklWruoTBNDC1QBlgW2jlwNixlIvO P4dJkyY1M4qOT5JVIUSn8vSzLxDydpWb7B2Y6iCNYJMcbspzhmJk1Z+UtZnV76NLfmx5slpdTN++ /UhJqX/KzOmnn871N9yIzhyDakZZpz2xlIfCLVta5Vhaaz7++GP+8+b/8cEHHxKOmDjdPrS2sa0o kWAVf/5/f2bMmFE1t/xdLhYvWcqUJ54klDwAugxq8WuFQqN36nilbQttRchkz4solTLQge04zXLy Uw3uu+++3VrddiaSrAohOo1AIMDyZUtQg86JdSiiBTrKyGoUUE3oRNRqMgdjb/oWZdst6mqlQ6WM PeSAPZ8mM5ORo8cwZ9MmVFrvZp/n15TTw6aC1pk6sWPHDk444QRU7ihU5kHgSSGy010VHaniwcef RdlTwZOMQhPRLszcQ1G+VpoPqjWonaZkRAMow4nT3vPPZrSdwNwNX+L2+/lg7myys7NbJ5YOSpJV IUSnsWzZMvwpmQQb29dbxK0oNsE9tINV/DzLUP3q69bhRDVqdLe36WBJ8TKMnP1b8ex7p6oKUEld W9x+VTlclJWXN7jP5ZdcxNLbHyREKyarCTl8/dUM7BYm2wAZGRm43B6s9H6oerpPKXci4S6H7/54 i866K61t2Pk1x4rUXJe95+cMIoG5uoKc7GwGDhzYitF0TJKsCiE6ja+++hrL1cwSNCJuhLBYQiVL qdzl8V+Pt/56BLY1xmM10E8lcpBOq6mH2YBiohgZ9ReEb1MOD0RboSKAK4GVK1c1uMsJJ5zANddd DzktP93PlCcJbbhYvnx5i8syKaUYMHA/Vu5YjZ0RoxJPWu/SVEAFtmHsJR1WQFd3AhddcG4bB9cx SLIqhOg0nnr2OUK+fJmv2sH5cNCfBEY2tECljZQR4TNVwqu6gBEqhfUqiLlTqbF05WaklUQSTqpc BrjboP3pXtjuFIxWqECgEnNZv+Y71q5dS58+9ddazcjIIBIO4tC62eWdfk1rTSRYRW5ubqsc7+UX n2fcwYdipQ9utRibQmt713arVVvob9Y/x9fG5jNK2KBCENHcckv8NEiIJUlWhRCdxgFjRvPT54ux k1u28ER0Xqm4OdPOZSMBZqtyPBgMsRMwa8dtN6oQb1JIX5VIpRnCmZTf7jEaKd0xC+ei10xH5Y/H aGZBe6UM3CldmDt37h6TVafTicNw1JVZaikdLEUHt5OYlERmZmbLj6c1jz72OFo5qBkXj0GyalvY az/BUgqFgdY2Sx2KVUYRDhQOpXBocGhN2DIJehNwdj8ax8ZPCYVCJCYmtnvM8UaSVSFEp/GHG65n 2oeTCMU6ENHh9cBPD9u/2+P762R2EOETXQxGzYpu5U5o19iUy49zwCmwfSnmqmmw31kYzezYZugo WVlZe9xeWVmJMozaZLBltG1hrnwXgFETj2/x8QA+/PBD3vzvNKI9Ju46utlObNtEW1GcA0+pWWRl W6AttG1i1f6j9p+2TdAWRlpfcHqwbQu3W9ougySrQohOxLIsHM7WK7EjRH0ycHM0mbxtb8XaPBuV 0r3dbz8rTxJ0HYcRLMNa9kbtUjQFP8eh1C/Lz9ROS9B+FWaZZeL3756U/2z9+vX4ktIJtsL16eoi MrNzuOq3v+W6665t0bFs2+aRRx/l9jv+Qjh7LIYjNkmfLlmL4UlEeXYt/7W375ZRvIgRow8gOXn3 DledkSSrQohOw+12Y1vRWIchOoEsPFxAF161iiBc3vze8i1kdDsYe9U0jMzBGFkDaxb7oEHbtZ/X fvz58V/Ra6c32Enq66+/xnK3/Nq01hiVG7j8ssu45567W3SsgoICzjrnPBb/uJ5It6MxPLFL+HT5 RhxNnHaktSayZSHvzmvHzmdxTtYZCCE6jX79+hGoKKkpJSNEG0vARbLhbt92q7+iPEkYeaOgdBXa cKJcPpTLj3InojxJKE8KypuK8qWhfOm7/MObhtPlprS0tN5ja62Z+vRzhDx5LY7TXbKEHqlww/W/ b/YxbNtm6tSpdOvWjR/WVxPOPxIVw0QVwIhWoP1NXyhmGA4OP/IYVq1quBpDZyHJqhCi0/D7/aSl Z0Cw/j++QrS2bqYDo6ogpjEYqb1Q3mT0irea9DylFKT144G/Pljv9jfeeIMNBVtRKd1aHmPFBj6Y 9m6zKwAsWbKEESPHcPOf7wPATh8UkzmqO7NtEytUhfKmom0TrRtXPE0phRp0FqtLHPzumuYn7/sS pRv73RNCiH3AY489xo23/AnlSaXmdmjN7U9ddyvUrr0batc0nlGqpk+3Mmr++CkDDEft57vPPPv5 JbXmD+VOcwR3/vznkV1t/xJD3e1ZjV1eQI7hw7HTH9udz/TLEXc9/89fWdqmHBOjEX+s1a+qkf58 MzhimSTh4FRaPmrW2t5jK93wxqR0VVOVEuFNVYSzxyGo1J4xi0Nrjbn4ZRwDT8XwNL6clo5U49ow nYryUpzOXWcO7jdkGKsC2RgtTFZ1uBJj7fsEAtU4HI1fqKW1ZsaMGfz5jr+wePESohlDUen9MRe9 iMOb1LYL/xO6YuSPbXAX2zaxlrxWG2zt/+tA3WvBz68htg0OJ4bDjSMpD/IPqnlKuBLf5hmU7Cje 7Xvf2XTuqxdCdDqnnHIKN9/yR0xf9i8LS3b+WJdk1vwh0dqu+UNjW2hds5IX2675vL45ftXF+INl 9MRXm/hpfpkNqGuL5yiM2o9ql6/BQBEiAa9toFDsPJNQ7/TfXT9jl/2KMdFKM8JuXMkbtdO/n1Pg lVRhNtRiRzRKGm7G6iTmFM7FEcNktW6eahMXGil3Ai5/CrNmzWLChAl1j3/wwQds/GkTqveIlkVl hvFs+Yq77r+/0YlqMBjk4Ycf4bEpT1JSUkrU1jj6n4xR26HK0fc4sMItiqtBtom18Su0Uji6HtjA fjZoC+ewS1BKYds2YNeu/rd+qQKwdT52uAoy+xPdsgBXbbKK04tluHnhhRe44oorgNpFok1I6PcV kqwKITqVoqIiHC4PdtZ+9bZfbClry3xSg1VMIKPVj91YCylnowrTTze/ZNJWFaFUt+Ef/E5kAEnM jmzCsC1UjFr9qqLFKKe7LqFrioArk1defZUJEyZgWRZ3330399xzL8qdgGPjFw0+V2sbnH7I3K+m NJNtgh2tS9Z0xSbGHziCm276Q6NimTFjBhddfBkVlpdQ8jBwltde2y/XZSS2YjutPTEcWBu/qmlr m7yHWrpmAAxnXSWImtaxxi7drAC0NxWtNSpjEBT+gF1dhJGQjXK4CCf359Y/3UZBwWYefPBBXC4n FRUVbXxx8UeSVSFEpzJixAgOO+RgPlm0FkfWfm1yDplbJXa2nmoMb3LMElWtNea2JTh6Hd2s59u2 4umnnmLloiVs2lxAZEcFQ3QCKqxqKh00oAqTdWxGlW9CGbVTaYydptRg8PU3szj62ON4/F+P4HQ6 621AoLXmpptv5alnniOcOQojpRsGYO/l/G3FSOkBvhR0uBzYQ7IaDaAcTSiVV70NtI3+6Wvs7ofg qtqATulPpdPH3XffBcAtt9zR8uA7IElWhRCdimEYnHrKSXy98BHaZtyw/TvkiPiWhgs7UoERLKlZ Zd9OtLbRgR1QOAfD4YKE7OYdSKn/z959x8dVXQvf/+19pqt323LvFYxtTIxNsQ3BQKgheUjgckPK m0sgJHkISW6eNJKQm9ybm0p6SCOBkFBND9WmmG5j3Hu31fto2tn7/UOycdeMNCONpPX1Rx9Lo3P2 WSONpDV71l6bXOUh9OoWpqMYQv4x9dIn0kKC3SoC04+/x70CEibBC+s2csqpM4nHYtx//31cccUV 1NbW8rvf30lVVRV79uzlyedeIjZqSbc3OEg3FSiCxm1QNu34B8TDqBTKLvzte5gwcxbvrH4HZ/tT nDH/TF5Z8RiO1lxy5VXc9Jn/YOHChWmKvn+RZFUIMehMmDABJ9Ha12GIQWIIAcYZH9t3PIcz5aqM X89aCzueJtG8H6U9qLxhqHEXdL4M3a0Rydc+RrrB7p5+Ukp7oHQabqgCnYhyzb/9O/Pm/ZpXXn4Z XTiKCEE8JDCVC1NK/jJu6FzMxodxV9+FM+Fi9FFPRGwi0mW81iSw8TA23o6KWCZNPIuKinI+8fHr +dCHPkR9fT05OTkEAtmRoPcVSVaFEIPOunXrSHiSXxEtRE9NJJdtppeeIEWbSbRU4Uz5ENp34t2n so0OlQIQDyxh2ca9qHGXojwBHOhcmJhdlMePHv4+3B0v4G55EsYsQuce1nrLjR3qAGKtwVu/Bq8J k7Ae4kYRsi2EG/aTiEXQWnPx5Vfzm1/9gsLC97pclJT0Xe17NpFkVQgx6Cx/6RXadT6ZqiCUmlVx NA2dHSVs5rdePTh8tAH6UbJ6kPLlokpOvGtWtrDWYKtWoUomohw/7ranUWVToWJmR99xsI8SAAAg AElEQVSPtgO4bXXQtAt/6zZmThrBjTf8XxoaGli7di1aO3zve7fLlqpJkGRVCDHohEJBlElkZvBs m/7pgSYSvE7XGygksCSweNFwWKsue+ij93rCHrYL/aGPOewIBce0+uKI8aCJOAZLW+eO910ZSZBR 9G3SNgx/R9uzaDMECro+oQeUvwBdPg32vw15qW31eVw9ePY1gH4cjrX/TUhE0MPmoLUHVTgau/NZ TMM2KByNba3C8fqYlFPL1R//OJ+7+Wbi8Th33fVXfvWrXwHwqU99klNPPbWP70j2k2RVCDHo+Lze pHeTGayGWj8NToLaJBLCFhOj3bpUOMFDfWOPTkrtMV1i37v9yD6yHQ6eq49IZzsMsR21k5EkMqEW E+eAijPK9G2yqtGEHB+R9jpUhpNVoKOtahpncHsyUja+hN9T1o2TqF7bUava2YpKB4swE6/EbnkM Jx5GBfPBjVBcUszt372d2277No7j4C+sRFeegdn7Gr/+zW/51S9/0cf3JvtJsiqEGFSstTy89FFU XqZmMwbGn+XRBBmd5IKa9bSwzglzoVua4ahSt4lW3tFtfR0GADEMeLvf+zZZNtqMqVmLM+qcdI3Y 7TMHxk/DcSjVscFCrA0O+5ZqrcEmIHcoatQ52ESEFTv2oUZfgAoU4jbtRIW3U2728tulS7nkkkv6 7C70J327ca4QQvSyF198kbZIDBXMXGLV13O2vX39vr6//UXCuJ29RdPHGINJRDDRlvdua96L4w+h C0am9VrZqK8ee7ZuE47Xjy4ac8TtpmkXbrQVdbBNmONH5ZSjWvbg27aUU0rC/P6O/2HXzm2SqKZA ZlaFEIPKHb/8NeHgSHSmF7kIcZRhroeqzY+hlEapzmIJpToXXB18PFo6KlQ6K3RtZwlF5//GWg7+ O7gZ7qEzi8bgOB5sww4YMqt371wfMfveAO3N2GLJE7FuDJuId9SsdvZ9tYkonv0rmD33DN5Z8wJe R5NIxPB6PFx6ySXc+sU7pT61myRZFUIMGuFwmEeWLkWNHdgzGjLTmZ0WU8Ld7OVcW0y+9WCwuIDB YrBH1fsqNB2JqO68zUEd86Y7j20gzgMNO4hjcaZchfanszVbTx9RGXxEegIdW7f2Ml02FbdhC7Zu M1TMAMBGGrDWMH3aFG75ws3MmTMHn89HZWVl5jtADHCSrAohBg3HcUgk4pDKFojd0vd/mPo+AnG0 IA7l+Nmto5yd5gVfRXiZpQp43TZmpC422R2rTnR2pihPABvr/Zpk5fhwSifjVq3GFI5G+/PQuUMw Yy7i7/c9xMev/xhjx47t9bgGKqlZFUIMGn6/nxmnzMSpXS3dAESfOJMiNpsWmoinfWxtwRso7MFO VSfQgx+VTHYCsNZg22ozNHoSSqfhFI+F7f86dJMKFOD1h+T3S5pJsiqEGFSefupxJpQqPHXvZPAq ff2Hqq+vL06kBB/DCbJMNxzWtCs9DGCc7HrB1ELGslXbvBcg/cl5skwCG20BfeQrNdGWOiZNyv5N DfqT7HpUCyFEhpWUlPDcM/9i3IRJJELDUaHsa7ck0qeOGA1uhN+ys69DOcQCHqPYQCtTSF9taRAH byKa5FYJqeh+Up3uhPwI4aqOmtU+YN047qaH0Y4Pxi557/ZEBKUUpaXyeyWdJFkVQgw6ZWVl/ORH P+Rzt36dyIj3p33xw2CrF7WAytLJ3DiW0U4ui9yivg7lCDtp5wXqWK1amWcLGUlyPW1PppIA8Wg9 GNN3s41H6SgDUBlJWVWkHvy5kGjPwOjHstZi6jZ2XLt5J8q66ImXHnlMtImRo0bLgqo0k2RVCDEo XX/99dxy65ch1gpZtXI6TXr7b2UW/23WKDxZVvU2jhxGEeSv7KOZ9Gz9m4eHgHJor9sIZVPSMuZB 2fbttdbittWhCsdi6jfh7F5+5OcTUUysFX2cvrYWixtpwRPIT+mabiKGdWNgDCq3Aj3xsmMPCtdy yoIZKY0ruibJqhBiUFJKMWvWbJZtrkGlM1nNkly112Xp/c62JOtwm2lDW5hCbtrGfJ8tZPm+1zF5 legUk7ET6uECq4yoXoVSGipOBeuSsOaIT9v2RrQ3B1s8oePjaDO2vQ4S7dj2BgAS4XpUsARd2lVi b7GRRmjaASgcfw563PuPPcok8Ddt4su3/jINd1AcTpJVIcSgNXrUSF5Yl/6FVtmcIA1GGa2b7IFt hClRPnQawxtPDjUqzoYtj+FO/iDa40vf4N2Qzq/8wRX2tmkXbtVanAkXo70BGHHmMccmdjyP9voh vxLTuANTvxGtHUwsDJ4QetwF2Op3sY3bUUVjUfok2wrUrCFesxbtz8e6beiCocc/rn4jZ5+9gNmz Z6fj7orDZNfrIkII0Ytefe11VLC4r8Po97IzFcx+iymhhhh7iKR13DNMAUONg7PxAUwivWOnymJ7 2KP1MDXvYjY9jLtrOXr4GejgSeqQbceuX2bHs1C9GqdgJM7U/4MeeTYkwnh2PoceMQ/t8WGbdp6w 1ZRp3EF87xsAaH8uypuDaTmAW7/1yMvFWvE2bOB//+cH6bmv4giSrAohBq0hQ4dAIpzmUSV1yyZp S5QyIICH0TbA27qZOKbrE5KkUZxvShjuOng2PdLj8Zy2fZSa7m2kka7WVWrfqyT2r8R6c3FGLMDp fHn/xBe2JOo2o9woasqH0SMWdNwea6VUByiORXE2PoQyLu7ul2H/G8cO0d6Au+N5AJzR56J8OZBb gdfnI7fpXWzVKmwigo224N31NN/65teZOnVqz++sOIYkq0KIQeuDl19KIJ7+puJ9nR71frqc3Ql6 Nkd3JsWEMdzFHsJpbDrloDjLFBKPtWFMzxJh1d7IKNu9FlEGizWGxLZnSOx+pVux2GgzsdpNOOMv xDP2PHTRmC7PUfnD0fkjYOLlR3RGcJp3UoGfi00ZZfEEyo1zoSnCrdt8zOyqad4DQGDINHThGKz2 gJsgkFfCL3/xcz54zhScLQ+j973MzTfdwJdu/WLK900kR5JVIcSgNW/ePFS4Ju3jJrIgPer9GcW+ v8/9kQ/NR8xQHKWJpLlDqh/d8Sho3oWJNHV7HBsoYJfqXjnBVtVOwvHgBPKhZQ9m3+upDVC1CvfA Khx/LjqnPOnTnNJJOGMWofV7S3PcfW/hhBuZbfLwoLnQlHElQyjFh8birr8P98AqbLzz1RYTZ+jQ oTidmZJRXjBxYjqHtevW8/d7/sbX/t9XUdFGbv3iLandL5ESSVaFEINWPB7vaEeTiKZtTF0wimpt WEn3k4P+5mAvzWyUnVH1DoUiT3k7Xsre8CB6w/3dqmF1iyewXXWvl2medfB6g6hhc9GjFmLrNycd g400Ej/wDrZh6zG7RKXCNO/BNGxHV7/LBZQSpGMxlYOiCB8hPHzcHcLYmMUcWIn/wEsAeLXL/Pnz 8cQ7f5a1F2UTxAom89Of/owDBw7w2c/exBOPP0ZJSUm34xNdk2RVCDFozZ07l+v+7Rr81a+lbS9v FSrBGXs+r+tW1tKcljH7g2yeV83m2A6XicT6AlvKhZRzDZXEIs3QVp16XE6AmE1+1reFBLXE2EeE dar10EylzinDCRZiNjyA2bwUEwtjOp8oGpMgsfNF3Jq17w1UuxadW4EunwGjFqccd8e4BrX9Wdyd L3C6KmIIxy9n0GgWU4Lj+IgHKrAmgWrawVVXXUUi1pmoay8Ki/LnYQrHM27ceJRSLFy4sFuxieRJ 6yohxKD2s5/8mJdfPoP19ZtRJRPTMqbOHQKjF/HSjufwGs3ENPbRzEYdM6vZKVvj6i2FeCnESw1R vMrBFoxMeQxP1Uomqdyks/6VuoWNphmFwhRNRBeNPTQzpsZdhBNphLp1uBsfwLoJjMcHSmONQUdq oGwaABaFteAZNieleI0xkIigfSFs9bvk4eFMChneRd3tNsK41qJKpgOWeCzC/v37MTkdraqU44XO pD1Reir+1l3s3r2badOmpRSfSJ0kq0KIQc3n8/GnP/yes89dRDRQmFJd3Mno/EoYdTbP71yO1yjG kJOWccXAlOnZ33riKI8v5esYYzDRFqZTmdTxFkvYJrAFI1GjFuI5attXpR0IlWCDC9A5Q1G5Q7Dx dmxbNU7eUBKbH4ftz6CGn4lbtwVdOTfFiMHseQVdvxUz6VK89RuZYXMZ0cV2thFcnnOa8FbMgM6e q75gHvfeey/2YKqtPWASmFgbaC+eQB41NemveRfHkjIAIcSgN3v2bO6952/49i7HRlvSNq4uGIUz Yj5P60b20Dv7l/eZNJVRDG6ZmQe2WFaqFuIlk1M+1+x9jXzlPVTn2ZW3dAv7dQI9ZNYRq/CPppRC F49H+XI7ygPKp6GCxXimXInbsp/EhodwAnk4panH7AtXU4ADGx9GxyKMT+KJ4l4iGJNAt+3FNO4E wM0bxauvvkos7mLDtShfLm480rEQa83dNFXtYPXq1SnHJ1InM6tCCAF84AMf4JZbvsCPf3cvsSHH 7ojTXbpoLNgEj+95jUtNyQlr5vqzbE5TB3sZAEAMS4uNocpPSek8d/9KnLpNLKAsqePX6lbeMY3Y UeecvGH/SShvCOUNQuFYqEgtXgDTWoWNNPN+hmLp6LbgS2Jerhw/AceH21KHk3gbVyls7ghgFb7w biI1a3FGL8Q741qgY2tVZ9N9XHvttSnHKFInM6tCCNHp85+7mXhDx6yKNS6mYVtaFl7p4ok4w2bz iK6nhvR1HsgWXhRGZ29amK3brfaWjj/0Chq3pXSep2k7Iwkw7CRPsHbRzj4iuFheMXUdiWoSfVBP yo2h84cf0XYqWZ4dzzFbFVLQWasbSnJGOA8P/54YwkJTCNE2chpWYbc/DcCz/3qCG2+8EX/zpkPH 25a9zDhlJsXFsgNeb5BkVQghOh38w2MTEWzjNtydyyCWnhX9qnQqesgpPOzU0UgsLWNmCy8qjfsv iXTzojmfUtSulzAN25M6xxiDG2nmFPKPSfYtlhiGjaqNJ6lmhWpkN+14tbfniSqA9mDbG1I+zbQ3 kEhEmWHzun3pMeTw4UQ50xsNAW9Hsjx06FASxmL9BVhrMW3V6PqNfPiqK7p9HZEaSVaFEKKTUorr rvt3/PtegObdAGmtYVXlp6BKJ/GAU0eYRNrGFSej+s28aibnpkcTYgHFsHM5btW7XZ/QVo2LpZk4 f2UvT6kaNqg2GojxoK7mXvaxiiYoHEOzP8hT1OCmI1EFdOkUVO3arg88jDEGZ+cLjHNycXr4lczB wwzymZjwM6S0nObmZs5btJBEwy7cNfdgtv2LePN+rrhCktXeIjWrQghxmN/+5ldMnjSRZcuXsfJt w75omnulDpmDTUT5Z9MuPpIoT6qeToh0mEgO+504O/a/jdtehxp97gmPtdFGAF7xRYg7+exyAuxt q8ZgsLnD8bgRIsqDrjgVGyzCScRQHl9a4lQlk3Br1mH3volTmVzbKrP3NXKibcy3Q9ISA8DcWC4r auv58Q//lw2bN+H3KkbEvEQDDh/5j08wfvz4tF1LnJz8lhRCiMMopbjllv/L+HHjqW6OoUKlaR+f 4WeSyCnnn55ajLyAnlHZW0nb+xSKc90irmQI3sZdmN2vnPjYeBvaF8Kd+mH0pMtxxi/BTLoMUzAK NXoRdsIHcMYvObSQSqcpUQVQjg89fB40bunomZoEX8NW5tuitD/5i+T5WXLxRTz66KOQcCkyDrPO XcB///CHab2OODlJVoUQ4jgskMgZkba+q4dTSsOoc2n353G/k/6ENZub9PeF/lEG0HtR5uNlNgV4 wifezUq112DzRx1xmw4U4Bmz8KQtqdJF5VWCN4jZ8ABuzfouj4+bOEPxpz2OPdEWFixYwB0/+zlj bJD2kJfLrryi40mn6DWSrAohxHEMqSgnYNsyNr7SHtTY82n0+nhE12XsOoOdpBTHF0SjEsd2prAm gWncjolHUW0H+iCyDko7qNGLsbEW7N7XjnuMMQnMtqeJr/ojXnSPa1WPp9KXx7Jly3jkwYeojGh2 uq1ceOGFab+OODlJVoUQ4jg+9alPkWjYjnUzt3JfOT70uAupchT/UpKwDna9mViX4ycWDx/7Mvve Fdi9r2EDxajRi3sxoiOZRBRn0yMMUQE0HSv9Tbwds3Eppq0Gt2Y9zpq/U9paywRy+CBD0Wn+Clos KpZg1dtvs37zRlpIcPqcOQwbNiyt1xFdk2RVCCGO41D/RJvZmlLlDeKMv5AdTpyXqM/otQajfjOz 2su1CvXEcVRnD9KGTdidz2Pb67HxNmz+CDyjzkL7u98CqifcmvU46/7BCOPhElvOqboQvekRnA33 k9/ejNn8KMF9bzLP5HOZKWcRpeRlYL14MwlqA5YbbrwRZWFPDnz6phvTfh3RNekGIIQQJ3D++y/g 6bfWY8tPy+h1lD8PZ9wS1m5+nFzTxEwKMno9IYYTwI+ibc8K3MatqNyh2M2PobwhtNt3bdUSe17F V7uRsyhmLCEUitNNPuV4aHcNE8khgiFoNSqDT0U2qjZ2OFFisQRVVVUUlxQzZdp0Lr/88oxdU5yY sunYnkUIIQag/fv3c/rcedRGfZBTjimcmNHrmZb9uNuf4TxTyLgk9jM/kZeoYz2tBNV78xEWwB7d 3P1Yx952+C3vpQeH/leKhDW4WPzq5LsFqc4RNIqerE+xHLwr77Wrt1gS1mAPG1vREZvBkqe8ncce fg5H3dJ3otblgwylAG+vXXMbbTxHHWgP+pRrO15q3/cGetTZaE/vbwtsWvahtj7N2RQzoQeP/3R4 29PKG4mO0pyvf/3rXHbZZcyaNUsWVvURSVaFEOIk9uzZw9133813bv8vIkPPRXVzz/NkmYZtmN0v c6kpYchJtrk8mTdoYIeKcIYtBDgmwTzc4bVgB1PRo49TcESCZ7GH+hdYYA/tbPQkSIyY30VktqOs wpjDRkidOhi5Uh1vdPzv2bOCmXEfIwl2xgkuhqbODRj0UfdPHfN+3yUiz1HHlQzp1WQV4G0aedfn 4k79UK9e92hu/RY8e15lrApyjpvZn7FkrVTNrFGtDM8rYk+kmU1bt1BZWdnXYQ1KUgYghBAnMXz4 cL70pS+xfuMm/vLEOzgZTlZ10VhUop1HDqzkw25Zt5IXhSKoPYx0gxmI8FjtuGiPQheM6JXrnYje 9wY5eCjmyJ6fFX0UTyoUfbPAzgWi3pxjkgFjDCQiaF8oo9c3xmBr1+EcWMlMk8sM8jN6vVScZvM5 zeZDEyzLs7zyyit86EN9m9QPVpKsCiFEF9atW8ef/nAnzvjeaVmjyqah423cX7eFj7rlBGQtrMiA 7SrMFtsG/mN7CduqdzBVq/Dog0+WLNZ2vnUWTlgsGo1WCq00SjugHVAajAtKY7WHhPbgai9ob+ds eOcx4Vo80WbiGII4WCxraEZ1znG/N/Ot0IAHhQ+NF40Pdahdlafz7ejzFOpQicexpR+d9+nw+8zh RS9HlosEW2I898yzkqz2EUlWhRCiC7W1tQCoDGwQcEJDT8fG27iv5QAfTZShJWHtUiLaxmsqzErd 0v1BLFxqev8JggGW60a8quO6xyvFOPq9wz86UQHDe59XBFCc4RbgoNhLO8/aGgC8jTtwWvfxXiGx AjdGqQ4w3xSi6CihcDrfNOB0poYJDDFriVtD3BhiWBJYvChcLFEMMRJEiZHQCgMYZXGxtJo49tAr B4pdRECpjiSxMxTbucVFk+nYzlXrjkTYGIO1BmsthsMT6K4d72t19Ff1eMfsvf9+fvWbXydxBZFu kqwKIUQXysrKyC+uoF31XgKjlMKOOJvI1id4yNZxpVvWa9fur1wM020B+W73/7Q9Tx0txAlkYDek kzGOh/155ShvDofm/Q5lXidKwTpvP2bpiT3iv4PveBq3MxI/wwmyhygKxSJKUEZhY+/VInckfT4K 8VLexdfBj05+KVQyZcpHT4ECEVzuZT/xEQuOW2pyvJ/Kg/1j07XblnVjNG66H9d1cZyTLyQU6SfJ qhBCdGH48OG4sXZM8150fu8tsFDagTHnU7tpKU+bOs63Jb127f7IUZqxNkR+DxYpLeujXrd+x0u0 cDS6cExGxjfGQPNu6k2c4QRRWMrwMaaPV913JYrLPexDB/Igb2jS56V9S1jtwRfMY9OmTUyZMiW9 Y4suyetKQgjRhby8PJ584jF8VSuwsdZevbby+HHGLWGbjvEGDcc9xmB4mXqWUsVSVU0TcXyD8td7 /21uE3QNNhbO2Ph214vkuYYp5GKwbFZhRtA7C/C6I4phmdPA46oG/Lm4k69E696dX7PWYlqrsPvf IPHOnwk317N27dpejUF0GIy/zYQQImULFizgS7d+EX/d2/R2xz/lz8MZez5v6zBbaDvm89XEWEcL w/ATx7CFMJN6qROASI8c16ITx35v08HEwqjG7ZRaL+to4SXqMcCp9M0OVSezQbXyG3byd/axzedQ k1eOO7yrlmjpZxu2YNf/A3fL48wY5uMPf/gDb7/9Fhde2DuLLMWRJFkVQogkffU/v0JJ0GKbdvb6 tXVOOc7Is3hON1JD9IjP5XZWdM2hkItsGUsoY2QWz5qJY+XjRcV6sDCsKzllbAsFeTPkYaOOMtT6 sm7RXg1RXrb1aO0hVjoJO+lyPGPPQ+cN6fVYnIaNuJ0z3dv21nLTZz/HhRd/gI0bN/Z6LEJqVoUQ Imk+n4+7/vxHllx8GfH84ahefllSF45GxZpYWrWGj7plBDt/hYfQGMDFEsRhFJntjSnSrxAPJtqa kfRR+0Iw4WIATFsNZttTWfVkxsWylwgvqwbcogl4Rvb+TOoxMY25CA8dCx3DgA3X0VC/hpdffplZ s2b1dXiDTnY9rRJCiCx39tlnM2niBFTNu71eDgBA2SlQMJz7PXWYzuXVGo0HRbQHu0INFH25C1VP lODDxDJTBnA4XfMOI12HieRm/FrJiGF4RFfznNNAa/4w9PB5fR0S0JGkHr61qgqVEPMWsX6DzKz2 BUlWhRAiRff/8+8M9TdjG3f0+rWVUjB8Pu2+HB7R7+165CgtyWo/VooP68awNnPfQxtrJd58ICt2 idpEG/fq/dzNXhr8QRLTPoozZlH6V/GniW3YjFO3lksv+UBfhzIoZeejQgghstjYsWO552934e58 AdMXCav2oMecT5W2vNTZasmvHOqJ9XosB/XfdfjZwUPnDlDxzHUEYM/LDMfH8D4uAVijW3lJ1dNc cQqJMYtwJ1yatUkqgI004at9h7ffeoMlS5b0dTiDUvY+OoQQIoudeeaZ3HTTZ7HRpj65vvIGcca9 n7W6nQ20UGIc9jh9k6xKopoeWjvgxjM2vo21Md4EMjZ+MmIYXjcNmNGLcSpmoAtGZG2i6jRsJOfA C3j3PMvt3/0206dP7+uQBi1ZYCWEEN10+ulzCNx1D7HoaJS/oNevr4LFOKPOYfnOZUw0fppJ9HoM h2Lpp7Wi2cRai8rkLmnaIdaHpSI1RHmQA/j9uVAw/ITHubUbcOo24Ym3gdLgeDDKIa48WMcHjg+V U4ZTNi2j8XpbtvKzn/wPM2fOlES1j0myKoQQ3XTdddfR1NTEl//fN0mMu7xPYtAFI1FDZ7Jx39sM t307a9bn+vkUr7W2IznLABNpwg03UE55Uk9qbOfyPUvHav2DNAoNOCicQ+9rPHDCVlgWiwWaSBDw 5RCb9MFDRxpjIBHBxluxjTvxNu/EG21jJvkUk4/BEosbYhhixImpGK3KZWvjdpyGrTDx0p59YU72 NbCWiooKZsyYkbFriORIsiqEED3w/ve/n69+49t9OKcJlE7HU7ORYTHZs7x/y1yyajc+DFgeoTrJ SCwG8KI6/733XODg52znLZbknyfoGJjVf8Y97DZFR/Jbov2MNUEmMQw/J3gsWzDWUoqHt8L12Kbd 6IIRSV49Ne0F07jiyg/ywvPPcfrpp2fkGiI5kqwKIUQPhEIhws0NaDeOcrq/J31PKKUwvhyaEm30 1au8/XxSMyvYDCWrbu1GtDUsoTzpLVZfVPU02TgfoCLp61gsq2hmO+1cSvmh2dPjzbgeTHgV8Liq QSnFRaY0qXISjWImBex2YlTtfgmqcrBK46I6RtQOungiumhM0rEfj8ofQXjH833Tok4cQZJVIYTo gcrKyo53dB/Pao5YwNb1DzCZEEMY5OUA/ZUlI8mqt3YdsyhMOlEFMFoRdFOLRaEowEPMAU8X5yrU obnTahvlMluRct3zHDePOuKYhMHgYrC4dCzi2tCyHOPLReeUpTSmjTRi26qx8TaIhzln4XnMnTs3 pTFE+kmyKoQQPVBfX4/j8fb5zKL25+HmD2d9WwND3MGbrPZ0mVcMwxbClOFPSzypSf/Mqlu9BhVp ZgxDUzovjEthN1KEfLxETWpFMXnayys0ssSU4k2hSdFQAgw9wROzkPawattTuFM+jPb4uhzLJqIE al5HR+s577zzmDxxPO+uXc/t37kt6XhE5kiyKoQQPVBUVMSpM2fy7tbl+PwhjLVEgsNR3iAoBxXo vS4BashMtm16hAUUpvRHX7xnLoW8TROFePChycNDeW8lrplYYBUPM8QJkuem9ue+zSYYQddJ3tHy 8RCzLgZzwgVXR7vClPOAruJe9jFHFTHZ5qR83aPNNHlU6xj7tjyGnXzFSY+10SZ8+17kmo9+iJ/9 5Mf4fKnfb5FZkqwKIUQPOI7D0089wW9+8xvKyspoamrmD3/6Cy0tLdTV1RLPG4NbekpmWxJ10qES dKCQJ2O1XGTKcKSdVMpOowC/0rxk68lVXlptnPdRlPFdnw6tvU/j48S07IOatVQ4xSmf224SFJB6 DbYPjYOigQQlSSa7HjRXmQqeo44Vtp7xhPD08LGrUCw0xdwXPUB453L0qLOPe5xNRPHtfYEf3H4b N910U4+uKTJHklUhhOihwsJCvvzlLx/6+Atf+DwANTU1XHTxJby7711M2am9Eu11regAACAASURB VEtixJns3/wYEVxy5Fd8t0y1eUwiF8cqXleNvGWb2K0inGuLCeFJadYwWQdXxx++H31PGGNw9r7K KJ3HLDcv5fOjmG4lqwB52scBE0k6WYWORVjnUcbdeh/bTZgJ9Hx21YfmIlvGAw3bcHOH4JRMPOLz 1lp8tW9x9Yc+KIlqlpPfZEIIkSFlZWX88Q+/Z+775uFqHxRNhM5kJBMzraZxB2rHMubqYnKM/Hrv iYOz0lNsLj4Udcrlb3YvurORk6MUZ9kixqYhqQJIHFobnx62+h280TbOsqnVqh6MxWDJ7WZCXqR8 1NG9nbiKjYddOsoEk56vayFeFlHKs7tXYEJl6GDRoc/ZtmoKnDB3/PynabmWyBwpahJCiAyaPn06 L7+4nPeNCeDdthS14V581W9k5Fqefa9zOgXMNKnPpA0EmVjkloeHmRSw2BRzDcM5hxLep4o51eax TNWzggYepYrdtB86ZyOthE/QeTeGoZUEYRKspKnz5X86jk7nExjb0eKpO7XL7Rg86G7PHhe4mqZu dh4+kyJ2mFaaupnsHs9oQpyi8nG2PIHpXPxlrcUT3sv1/34dwWDyXRJE35Cn3kIIkWGnnXYaLy57 ntWrV5Obm8vsOXOJhmvRodK0XcMYQyLWxiRSr08cOCw6g3W6IRzGkwO2o0+o32qWU88QFeBpW0Me Hirws4FWcvBQiZ/3UUgTCV7RTR2JqomTwBJQDnHrska18gHb2V4pXSUAiQhO9WreZ7v3WGjHxat0 t7P/PDzsdKIc0fk/Sfl4GaVyWGqruIjylEoJTmaOzWevidCw8SECublEWhtBay6//LK0jC8yS5JV IYToJaeccgoAl1zyAf76wNN4C8pJlJ6alpIArTtmwmIY/L38ollft+06yJLOF9JPTqGYTC4axXib QyNxHqea9bRyBoWEtaWROH8xewGYYfIJag/5OATQRK1hGAFeVY08Tg2n2by0zazaqncoUX7GdnNV fTsunh4mq1HbjUy103m2hGXU8gQ1fJRhaXkCskmFieZ4ufT97+eWW79IWVkZDz74ILNnz+7x2CLz JFkVQohe9un/71M0NDSydu0aqve9QLRiPsrT8/ZISinito+2sMoSvZmmKxSTyAWgBB8fpZJdtDOG 0KGdxN7QzcQxzDOFx91dbJ4p5C2tecU2gPVg2xtAKVSgsNtx+Zp2MsmEun1+BNORrHZTPh6ipvvJ KsA5lHKX3ssG08pUelbWso8I7+TGWfH660yePPnQ7V/84hd7NK7oPVKzKoQQvWz+/Pk8svQhNm/a yL9/+BJ8e57BJqI9GtM0bMe1htxBPAdhsSnvgpRODqojUT3M6SafM82JE08fmnmmkOsYjl85uJsf JbFxaUfbqW5y4+09ml2P4OIx3Z8vz8EhgSHWw71/F5hCVtDARlq7PYbB8mZOhN/c+bsjElXRv0iy KoQQfcRxHH5xx8/5+L9djf/AS9huzkaZRAx2LuNcSvAN4l/rlv77R82Hw7VuOR83Q8n1BCDR3vVJ J5AomcQy6rDdfB2/XVl8tvtJv0YRxKGanj0BG0MO51DCy9R3e4wttDFs3BiuuuqqHsUi+lZ//bkW QogB46c/+TFnzZ2Br3Zl9wbQGoM9ZlZvsOmoWe2/GyF40HjS8Wc5HmakDnX7a9GuLcEexpGvfT1O VgGG4ccC9cS6dX5NjuaGm29KW/9a0TckWRVCiD6mteZvd/0F1bILG2nsxvkePErT1s12QQOJ/FED FSyhqTtL8Tu1p2FDiULlpSEN7adCeBhNiGdVHdEUywoslnoVZ+zYsT2OQ/StwVvcJIQQWaS4uJhP fuLj/OLeFyAwM+XzHcfL624Ti2xJRts3ZStjOhKZ/jyzepBrDaZh+2FPXFRnW6vj/H/UbUopbPMe cpTT7euHbYJRPWwZle9qdvUgYT7cQop5WNVwPwe4zJYnlUhvoY0DKkbFmNGcddZZaYlD9B1JVoUQ IkuctWA+f7r3UcLdODc+7H3s3PUiDcTT1puyfxk4XRAc41LYfIBQczUWDntTWNX5vup4n8Nv67w9 nIjiqu4/BtqtS143t1o9KA8PUYdu9Vo9mkZzhangn2o/G1Qbs23BSY9vIcGrgTauu+46vvSfX8Hj kVSnv5PvoBBCZIlJkyZhoy3dOzm3Asfx0OomBmmyOnB4leY0cplwvK1c7VH/H8ejVGFU91fzR61L QU/LAPASNuktSxllA+xzYsw+SQLcQJznQi18+dYv8fVvfSut1xd9R5JVIYTIEj6fD9c9ts7PmgTE 2rDxNoi3YeNhAiqOlygk2om1NRFta6HcCVFJoA8iF9kkgWWk6d7jwMXiYsmj+2UEAMV4MdZQRYSK ND0mQzjE7IkXbblYlue08a3vf48bb7opLdcU2UGSVSGEyBKjR4+mMD+X6r0vE/RqVKKNWFsT8Wg7 JeUVVA6rZOTIEYwbO5pRI0dSWVlJZWUlb7zxBj//6m0sbOnejkViYCnByybVxgybhzfFJWcRXDwo dA+XqmkUI5wc3nVb0pasVuDnNdPIZhVmgj2y88Uu2nkzJ8IZC+bzmRtvTMv1RPaQZFUIIbKEz+fj yccf5dFHH2X06NGMGjWK0aNHU1FRgdYnTh5WvPIKVYl2VivDZJszqHutCphPEXer/eyzEUal2M7s 0O5VadhDd6qbw9OqJm378ZbhZx6FvEYD4wkeWky3m3ZW5LbzzwcfYPHixdKmagCSZFUIIbLI9OnT mT59ekrnfP4LX2DBWWfx3W/dxn3PPsvERJCpiRChHr6UK/onjcanHOLdyBLbcdOWrObjIWYNYRKE 0pRuTCaXN2hmH1EqCdBInNdD7dx1z92cd955abmGyD7y9FsIIQaAOXPm8NCjj7Bq7RpmX3cFDwbr ecXfSmMael12LU1TZyKtEt34vhyaWU0Dp3Puc0MPtks9mkaTj4daotQT4/FAI1/+1te5+OKL03YN kX0kWRVCiAFk7Nix/ObO37Nt5w4uu+XTPJXbwguhVqrSsJvQyclLr9kigaHFjTEEf8rnRnDxpum5 xzpaKFBeZlGYngE7BaxmowrzQqCFH/38p3zx1lvlpf8BTsoAhBBiACorK+M7t9/OV776Vf5w5518 /7vfw9fewuRWh5GH1fulT+oZjnr3b8Tc7m2jeTwDpVZXY2lViW5PWD9LHfnKS6FNvVdqBIMnTS1r I9qSa9JfinIBpSy11RRVDuETn/hE2scX2UeSVSGEGMBycnL47M03c8NnPsM///lPvvuNb7HqQBWT Wz2MJwcnQzOiNt4O8baTH+MmuIjytLXbGihza6e7+TxDLeMIkZ9ic/7nVR01xLjUlnfr2jENXpOe pH+raeUcitMy1uEsiljIy11/v0dmVAeJgfE0VAghxEl5PB4+8pGPsGbTBu568D7c903ivmAdq3Ur sQzs/hSofZOy1lWMYssJ38qGDeN5byPbVTsa1eO3gbDVKsAoQpTgY40+ebJ/PAd0jAW2KOUk9yBt waSpBlmjMlLNvIlWZs46jTlz5mRgdJGNZGZVCCEGEaUU5513Hueddx4rV67k29/4Jvc98yyT4wGm uiECaeog4HEUv//dr7noootOetxLL73EFUsuZkxbED1Aks10yMUhkeIuVM9SQ7Mbo7QHO5g5tnsL s45nmBNih9vOmOPtxNUDVXkO3/3czWkdU2Q3mVkVQohB6rTTTuPBR5by1upVTLn6Iu4P1PGGt5U2 0rtN5snMnz+fylEj07pifCAowEO1SW1RXCsuU8kltwfzUJ40zoYWuJrmND+WDJaqRJiZM2emdVyR 3SRZFUKIQW7ChAn8+a93sX7zJuZ98sM8FGzgFX8r62lJ6m0/UYwbx9RtPPQWbWtK6tpKKe78y5/Y VRlieagVK22wADiNAlpsnANEkj7HQo8SVehoN2V0ema4GxyXom6WI5zIDsJMmDSR8ePHp3Vckd2k DEAIIQQAw4cP545f/pJv3nYbv/j5HWzbsiWp84qamhjS2kbliBGHbvN4JjJjxoykzp89ezYbt25h 7mmz2LS+iknkdiv+gcSDppIA7+hWhpiuF6DtJ0IVUSb28CV3DwqbpmqMBhtjWppLABpJsPB8af4/ 2EiyKoQQ4ghlZWV869u39eo1/X4/f7jrLyw6+xy8Yc3YFLcJHYgWUMTdZh/tuAS7qCU+OKPa00Tf QaVtgVWFCrCXCNPIT8t4MQybA3G+ec45aRlP9B+SrAohhMgKs2fP5tllL7D4nIWUhL0UpPkl5P4m hAev0oRt18lqorOjwzO6joA6+bHKwiyTd9ySAQ/qmN4Qm1WYfTq1+lkD1JsoUWXStsFZKwmKSopl t6pBSJJVIYQQWWPOnDl87Ztf51e3fZ/FYU/G+sD2F8nmeUE04wmBsSS6WNS0nXamEDpusuqgjqkb fpNGmgNFKG8Ks7ZKAwbVsI04Bm83l8hYLBEMQRyiGIoK07sblugfJFkVQgiRVT7/hS/w/DPP8ejL K5gXDlHejW1DB4IaorjWJLVIKYCHxZR1eVw7CbYRpvgE7a08KMxRGfIQHSCSiOCOuxCtU0s6nZZ9 bEq0MZIgATSeFPvhrlVtvGzrmKDzCBlFYX56SgpE/yLJqhBCiKzi9Xp57KknuPvuu7nx0zdwVptN 2y5X/cnbNDNch9AmfbPLe4kSwDnhjPXBmtUohj+xmw9QzgK3kL1mP4matVCR3KK5g2LFk3ijdi2v mcZDpQpeNH7lEFAOQeUQwiHkKoI4hNAEcQ69VesYKmc4W63F117HhObmHn8NRP8jyaoQQoiso5Ti mmuuwev18uVPfobKlr6OqPftVxGWmK5nS1MxmiAvUs8+Igw7zhOAjplVy07CAFQRpZIgfuXQrlNP GZxhszDDZnWODSYRwY22EI630RZrhXgYGw9DPIzPxNAmAok4rkkQty5FrhfcEM6Ei4i37MPx1/fo /ov+SZJVIYQQWevcc8+lJtaGJWfAbKearEzcXw+akQR412llmBvAxbKDMNUBGBZRhHA6Gu/7DKOG jqJlfxPEIA8PjS17sfnDseEabLQFrQzWk4vKHYLy5yV1fe0JgCcAxylZMJ1vB6nNj1HfVo3ydYyt vCGqqzf0/Isg+h3ZFEAIIUTWKisrY8zo0WzrnOkbLJpJELUuZRmo1x1LiGo3whbaeCjUQMusUXz4 a59n3VAvD6lqysrK2OQ2853vfIf4kEJedBrZa8LQuo+c/c+xcFKQ/3vtYv7zk5dw8exy/Huexlv1 GjaW5l3ICsfgc/zoojEdH3uCNNTXpvcaol9Q1lrZLkQIIUTWeuaZZ7j28qu4vG1wrQT/I7u5lApK TrAYqrsSGP6q9hLMyeGBpQ+zcOHCQ58zxqC1JhaL4fV6qamp4atf/grDRgznYx/7GGPGjEGpI2d8 Gxsb+a/v/4Cf3/FLYkPOROcNPen1rRsD7T1mnK5Ya9Eb/8GeXTsoK0tveYTIbpKsCiGEyGptbW0U FxZxfWJYX4fSayIY/sYePshQCtPYb9bF8lSoGX9FMVdf81G+853vpG3sZ599liuuvIpw4XR08YRj Pq8at+JrWEe4tYFA2QRi5XNR+uQ9YY+Ws/95Hvz7Hzn33HPTFLXoD6QMQAghRFbz+/0k3ETKOytF j2lv33+soJ4KHUhrogrQTJzqeJgRI0fwvdtv53e//W3axl68eDGvv7aCcncnqn7jEZ8z4VpiO5bz uZs+TXNTE+fMnoB/3/PYRGqbDcScXNasWZO2mEX/IMmqEEKIrObxeJgyYSJ7iCR1vMXSQJy/Ofv4 V24Lr/laec3XylpaOEDkmKb3fa2WGC1HNfLfpSKcYvJoIcEe2tlGmNhxku9WEjzgqWYfkaSS+UK8 nB3PZ/uKlSy2JXzv2+mbWQWYPHkyy55/Fl27GuvGsW4cXbOKUNWLfOUr/8lVV11FTk4Ojy59iEsv OAenPrXEM6JyeP3Nt9Ias8h+UgYghBAi6/3617/mJ1/8Gue2db2L0kvBNqoDho9dfz0zZp5KbW0t ruuy+u2VPPXUU0yvV0wgpxei7tqbvjbeitUyVeVxli0mimELbaygARdLeVEJo0eOxB8M8tbKt5hk czk1FsKPxmC5x1dNayyCVooCX5APRUu77CIQweXP7KEgEOKCiy7k3vvvS/v9Ki4pIxKLE4+EWXTe +fzpD79n6NAja1l37NjB1GkzOupc8yuTGteGa6loX82eXTvSHrPIXpKsCiGEyHotLS1MmTiJiroY s+M56BMkZPuJ8FqJy7ZdOwmFQsd8/oknnuATH/4oF7Xm4+njVlgult+zi6uvvponlz7CUONnpw1z 3uLFzDtrAYsWLWLu3LmHjq+qquLLX7yVh+5/gFEmgBN32RyIsW3HDqy1TJ00mTGNhlkUnDRhbSDO v/JaeeHF5UyfPh3HSa1uNBlr1qwhFAoxatSok45/5513css3/ptw+fykxrXW4tv6IKvefoMJE46t ixUDk5QBCCGEyHp5eXm8s+ZdvDPGsNppO+FxW3Jcvvmdbx83UQVYsmQJ8xadw0PBetqOeum9t2lg dKCAWbNm8ei/nuI/fvBNtu/aycOPPcpXvvKVIxJVgIqKCv5011945c3Xuf77X2Pep65m9Zo1lJWV UV5ezn99/79oGlPCc6FW3OOUBMQxvBxs5VmnHp/PR15eXkYSVYDp06czduzYLsdfsGABieYDmMYd SY2rlIK84Tz88NI0RCn6C5lZFUII0W/s2rWLmTNOYUy7h1PjIXxHzbncn9PAi2++xuTJk086zic/ dj0v3vswZ0fyTrj1aG9YRRNzb7yGn91xR1rGi8fjnD5zFkPWVTGaEBZLNTH8aNpI8CjVDMspoLLd YY3TSn5+Pn/+21+54IIL0nL97nj77bdZcPa5xEctQfm6LvMwTbs5pbiZt998rReiE9lAZlaFEEL0 GyNHjmT9po1MuuI8Hgo2sIW2QwumqojSGo8wceLELse549e/YtLCebwUPPEsbaYZLHty4PQzzkjb mF6vl0/e8GnW+6M0EGczbbxUGOVRfz07aWfe6XM5/dyzWOcNM9UpYHodfOr6j7N79+60xZCqWbNm cesXb8FX8wY22vW+uipvKGvXvEtDQ0MvRCeygSSrQggh+pWKigruvvfvPPL0k+wdV8SLgY6Xvd/K jfK1b3wDrbv+0xYIBPjHA/fTkufhQJJdBtJttdPG6OmTufbaa9M67nXXXcdln/w3ngw2sTIU4bd/ uJOvf+ubbA+6fO+/f8BDjz7Czr172J+ncVDs3r+PtWvXpjWGVH31P7/C5e8/C7XtUWzi5N8PpT34 iobzj3/8o5eiE31NygCEEEL0W+3t7Vz+gUtY+errBAvz2bZrZ0p1mJ+98Ube/OXdnEpBBqM81k7C vFnosmrNaiork1sJn6q1a9cSiUSYPXs20LE46fBdox577DE+du2/cfrpp/PYU0+mvKNUJsyZ+z5W VfvRReNOepxp3stItZ2tmzdmRdwisyRZFUII0a/F43FWrFjBxIkTGTJkSErn3nnnnfzoc1/hrLbe a2W1gzArQmGefOZp5s2b12vXPZ6DKUC2JHzLli3jokuuID7u8pMeZ60lsOsJlt5/zxHbxYqBSZJV IYQQg1ZtbS2jho/g/0TLjlms1RNxDO/Swgzy8HaO247LG8EwrQUB/nrvPZx99tlpu95AsX//fsZP nEJ8/JVdHuvWbmDR1AKefuqJXohM9CWpWRVCCDFolZaWsnjRIt71htM6bhiXN2jkH04Vv2Enf9R7 ucfZz/mf+Cgbtm6WRPUEWlpacLy+pI7VReN46aWX2L59e4ajEn1NklUhhBCD2q9//zvW0JLUdqXJ KsDLTKeQVjfGzTffzM9+eQcrXnuNn/785yfsASugtbUV7SSXrCrHiy0Yw//+6McZjkr0NU9fByCE EEL0pWHDhjFsyBDqdscow5+WMf8VbEKjyNe5fOMb36CkpCQt4w50VVVVKE8g6eMtikg0msGIRDaQ mVUhhBCD3sJFi9jsiR7q2doTBsvuaAu3/O/tbNq6RRLVFLz66muEVdcbAxykgMkTZdvVgU6SVSGE EIPe93/4P5ix5axKQ+3qSm8b8+aewQ033EBFRUUaohs8nnthOa4/+eQ+bjQtLV1vJCD6N0lWhRBC DHqlpaU89+JyNvmj1BPr9jh7aGdPgeb+pQ+lMbrBwVrLypVvoUKlSZ+jfDm8/ubbGYxKZANJVoUQ QgigvLycz37+c2zxdL8Gcn2uyw/+94eUlZWlMbLBYceOHVg0eEPYRIRkOmuqgpE8/9xzNDc390KE oq9IsiqEEEJ0Ouvss6kKGNxu1K7WEaPZY7j66qszENnAV1xcjHUT+HY+SWLNPdi2qi7PUZ4AvsJh PPSQzGQPZJKsCiGEEJ0WL17M1Nmn8YK/mTBuSudu9se46XM34/Ml13pJHKmgoIDrr/8YJtJEblEF Kie5et+wbyh/vfveDEcn+pLsYCWEEEIcprm5mRtv+AwrH3ySBe3JrUy3WO7PaWD5668yderUDEc4 cLmuy/RTZrI5XIouHJPUOTYexrfjcZqbGnAcJ8MRir4gM6tCCCHEYfLz8/nRT37M5njydZDVxNA+ L1OmTMlgZAPfm2++yc5de1AFo5M+R3lDOIFc3nzzzcwFJvqUJKtCCCHEUaLRKH6PJ6m+qzEMD3GA WbNnoZTqhegGrmnTppETCiRVr3q4mK+MJ598KkNRib4myaoQQghxlMrKSoqKiqhNoo1VojOhveiS SzId1oCXm5vLbd/8OsHWrSmdlwhW8ODSRzMUlehrkqwKIYQQR1FKUV5WTjyJmdUQDqPzSpg4cWIv RDbwXXPNNSSa9mLj7Umfo3IqWL/2XVpbWzMYmegrkqwKIYQQx1E5fDgHPIkujztAhB0tdcycObMX ohr4CgoKuOTSS7E172Ja9iZ1jnK8BAuH8Prrr2c4OtEXJFkVQgghjuMXv/01m/wxmomf9LgYlhmT p8rWqml0802fwa1ei7v1X9hIU1LnxJw83nnnnQxHJvqCJKtCCCHEcVRWVrLw3HPZz8l3tKokwIHd e2Q1ehrNnz+fM+ef1fGB403qnKjxcOBAaguzRP8gyaoQQghxAgsWnkNjFz3+HRSFHj81NTW9E9Qg oJTi5ZeWU1BUAibJzRmsxe+XDRkGIklWhRBCiBNYsmQJ250IDV2UAnhdqK6u7qWoBo9zzjkH1bwj qWO92pCfn5/ZgESfkGRVCCGEOIFp06bxX//zA54MNfFiqO2EfVcrW+G2r30D2RQyvX70w//G07gR G23p8lifikvd8AAlyaoQQghxEjfceCPV9XUExlfyr9xW1jnhY5LWsYTYX11FS0vXSZVI3rhx4/jE 9R/DNnTdd9WxMcrLy3shKtHbJFkVQgghuuD3+3lu+TJ+dvefqBlTyKu+VnYQZidhYhgASgI5rF+/ vo8jHXimT59GQHe9OYOJt8vM6gAlyaoQQgiRhIKCAi655BJWvPE6ky4+l9j8STTNHs3ffdXsJIwv HOf++/7/9u4utuq7juP49xwOK6errEBX5GEQHsZDhwRCTGCbGpGFNYCZa2+84UYXjcanCxdvhJi4 JUYlsAszEx6HhizbWJYQ2I03hgSBhTBnHGOhsPKQiC0brO1poZy/FyYz3ZLJmZb/r6ev1+X/9OJz +e6vv57/y3nPrDurVq2KwsDV/3rF4tZgn1itU4XMBRsA+MwOHToUmzZtig3rH49tz+3wJqv/syzL ovXzM2NgaDiGm+ZEtWV5FAqFj/1MNapv/SEGBysxceKdfdUVY4dYBYD/UU9PT7S0tOQ9o24dOXIk bt++Hd//wY/icnFBFCfPHvF59cblKF3+cwwO3vkrWhk7SnkPAICxTqiOrvb29oiIOHv23djym51x 82Oxem/fmdj67DN5TOMucLIKAIwJly5digcXLY3hB5+MQnFCRERkt29F8ezL8f613mhsbMx5IaPB P1gBAGPC7NmzY9HixZH1XfnPw+HBaJhUFqp1TKwCAGPG5Pvui6j+++vCsoHeKPzjjVizZk3OqxhN 7qwCAGPGhGIx4npXlAe74+b1K1Eul2P/vj15z2IUubMKAIwZXV1dsWvX7li5ckWsW7cumpub857E KBOrAAAky51VAACSJVYBAEiWWAUAIFliFQCAZIlVAACSJVYBAEiWWAUAIFliFQCAZIlVAACSJVYB AEiWWAUAIFliFQCAZIlVAACSJVYBAEiWWAUAIFliFQCAZIlVAACSJVYBAEiWWAUAIFliFQCAZIlV AACSJVbHgYsXL0ZPT0/eMwAAaiZW61h/f388tr49Fi1piwULF0WlUsl7EgBATcRqHTt27FgcP/VW DC/8RlQLpejq6sp7EgBATcRqHWtqaorhgetRvHo6hof6Y968eXlPAgCoiVitY6tXr463//636Pza iti3d080NjbmPQkAoCaFLMuyvEeQr8OHD8fxk2/EL7ZuyXsKAMAIYnWce/jRL8fJE8ejVCrFtd6e KJfLeU8CAPiIawDjXH9fX1RbV0bD51ri6NGjec8BABhBrI5zP/nxD+OevvMx1Hct5syZk/ccAIAR SnkPIF+dnZ3R3d0dy5cvj8WLF0dExOnTp+Op73wvpk9vjZdePOBqAACQG3dW+YRvffup2L1rZ7Qt Wx5/PX0qKpVKNDY2RrHoIB4AuLvEKp/Q29sb3d3dsXDhwiiVSrG0bVmsXfvVePSRh2Pz5s1RKjmQ BwDuDrHKpzpz5ky0tbVFlmXROHVmLF3wQLz26isxa9asvKcBAOOAv+vyqZYsWRI/ffpnMfGehrg5 a2282dUb27fvyHsWADBOOFnljkyZ2hKV4uQoVP4ZL714IDZu3Jj3JABgHBCr3JGDBw/GuXPnoqOj I+bPn5/3HABgnBCrAAAky51VavbLZ56N55//ffg9BwAYbU5WqdlDX1gRjSdWsgAAAjtJREFU77xz JjZu2BA7tm+LuXPn5j0JAKhTTlap2Ve+9EgUpi6K10+cjyVty+LnW7bmPQkAqFNilZodO34isvL9 UW1dEcPzNsa2534X+/a9kPcsAKAOiVVqcuDAgXj33IUoTJ4dERGFieUYan4o9u7/Y87LAIB6JFap ySuvvhaVpvlRKE746FmhPDVOHP9LnDx5MsdlAEA9EqvU5Mknvh5N1fdHPCtMao6h+78Yj61/PK5c uZLTMgCgHolVatLe3h6D1y5FVh0e+UFpUmRZFg0NDfkMAwDqUinvAYwtU6ZMiQfmzI0LlWtRuLc1 sqHr0fDB23H7g/di9/4XYtq0aXlPBADqiJNVavZh34dRmNAQ1f6rMfHin+Lp734z3rtwPjo6OvKe BgDUGSer1CyrZpHdGohJvadi756d0dnZmfckAKBOOVmlZr/99a+ifPVYzJw+zWkqADCqvG6Vz+TG jRvR398fM2bMyHsKAFDHxCoAAMlyDQAAgGSJVQAAkiVWAQBIllgFACBZYhUAgGSJVQAAkiVWAQBI llgFACBZYhUAgGSJVQAAkiVWAQBIllgFACBZYhUAgGSJVQAAkiVWAQBIllgFACBZYhUAgGSJVQAA kiVWAQBIllgFACBZYhUAgGSJVQAAkiVWAQBIllgFACBZYhUAgGSJVQAAkiVWAQBIllgFACBZYhUA gGSJVQAAkiVWAQBIllgFACBZYhUAgGSJVQAAkiVWAQBIllgFACBZYhUAgGSJVQAAkvUvaV/93Whq 5ugAAAAASUVORK5CYII= ", null, " AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8TNf7wPHPnZnMJJkkEkTsxBJLVdVa1FJbS1tbVcv3 98XXVkuraGlLWy1KVS1VtVS1VEstraWoWmsvYqstdkIkEZLIMvvM/f0RmRqCIBue9+uVF/eec899 7k3EM+eec66iqqqKEEIIIYQQeZAmtwMQQgghhBDidiRZFUIIIYQQeZYkq0IIIYQQIs+SZFUIIYQQ QuRZkqwKIYQQQog8S5JVIYQQQgiRZ0myKoQQQggh8ixJVoUQQgghRJ4lyaoQQgghhMizJFkVQggh hBB5liSrQgghhBAiz5JkVQghhBBC5FmSrAohhBBCiDxLklUhhBBCCJFnSbIqhBBCCCHyLElWhRBC CCFEniXJqhBCCCGEyLMkWRVCCCGEEHmWJKtCCCGEECLPkmRVCCGEEELkWZKsCiGEEEKIPEuSVSGE EEIIkWdJsiqEEEIIIfIsSVaFEEIIIUSeJcmqEEIIIYTIsyRZFUIIIYQQeZYkq0IIIYQQIs+SZFUI IYQQQuRZkqwKIYQQQog8S5JVIYQQQgiRZ0myKoQQQggh8ixJVoUQQgghRJ4lyaoQQgghhMizJFkV QgghhBB5liSrQgghhBAiz5JkVdyRqqrs3r2bqKio3A5FCCGEEI8hXW4HIPKuo0eP8lr7Dhw+fgw/ XyNNGzemfuNG1KpVi+rVqxMQEJDbIQohhBDiEaeoqqrmdhAi75kzZw5v93+T6iZvwjCSiIM4rCTo IdEbYszJVAyrwLZdO9HpdAx5511e6/Q69evXz+3QhRBCCPEIkWRVeEhMTGRA/zf5c9nvNDQZKYDe o1xFJQUnpzVm9muS+XTUSH6a9xPxp89j0yo8+XQ1vvl2BpUrV86lKxBCCCHEo0SSVYHNZuOPP/5g 9oyZbNi0ibIaP2qafdBnMKQ5GgtrdFdp3KARxUNLsXTBIox2aOAIwIiOtV7xNP9vR76eOhWDwcBv v/3GhQsXcDgcnD9zll07duLv70eRosUoWqoEZcuWpXr16lSvXh2dTkalCCGEEMKTJKuPsLi4OD76 YBj7w/ditlmpU/cZTkUcR683oNVpuRQVRUxsLFevJVLCN5ASySpl8MWA9rZtxmDld+UyOq2G/N5+ 1EnxpjAGd/khvZnz3g5SXHbCypcn+sQZCtq1KC4VvcNFQfQ4ULHgxIQLi6+Ok/Ykvpkxne7du+fE bRFCCCHEQ0SS1UeQ0+nk25kzGfbe+4Ta9BSz6YhVbGhVlXx44SLtcb4vWoxoMaJDi5KpttOHARjR ornDMVexEYeNMIx3rGfCyW/eVzl3IZKCBQve66UKIYQQ4hEnyeojZu/evXT/b1cSIy9RO9X7ljGn ec0lLKz3SsDLy4sypUtTv2FDvpr6NVrtv727KSkpHD9+HI1Gg7+/P+XKlSM1NZWNGzeSlJSEzWYj NDSUatWqERgYmItXI4QQQoisJsnqI+LIkSOM/uRT/li1mqfNaTP4lUz2luY2FRULLhKxc8DHwjWt i0YNGlKgcCH+3rKNM5HnKOjjjwJcTIrnmZq1iIiIIL9iwEfVoKgqqTqVGHMy1atVo1nLF9BptQwc NAg/P7/cvjwhhBBCPABJVh8ix48f59sZM+jRqxf58+fn3LlzrF61ihW/LuXcuXNUtHlTyemL4SF/ 10MKDqKwEO2jUsCsUgl/dNcT7yvYSMJOfvQE4uVxnB0XF7BwRbFjMWhI8NNidzgomD8/XXt05513 30Wvz9s9zUIIIYTwJMnqQ8DpdDL+iy8YM2o0fg4Fl7cXZrsNo5eBIhaFInYdRfDO9LjTx0UMFgxo sKJyxNeGLZ8P9Z+tT1ilihQKCeHMqdNcjYsDIDB/EBUqVaJQoUJcunSJli1bUrZs2bueIzo6mri4 OMxmM1WrVsXLy0tWNRBCCCGykCSreZzT6eTFFi9w/O+91DX5EHBTb6LIHBWVWKwkYidFUbEbtBgs Dryv90JbcWHx0WHzUtDZXJzHTPMWzfm/bl154YUX8PHxAcDlcrFlyxYiIiL4e/sOlixZQj69N5eS EgDQ67yoHFaBhk0a0/F1eUmCEEII8aAkWc3Drl69yv/+24XDm3fS1OQvPac5yIKT05iI9tdw3pSA t96A0dcXVNDaHBR06vA2O6iIHz5oseLChYoOhThsxCg2TvvYqflMHT78ZAR169aVHlchhBDiPkiy mkdt3ryZDm3bUcKkobrNF91DPg71YeZCxY4LGyoOVALRZWrymgOVY5pUzhtVkpxW3h8+jIoVK9Kw YUNZpksIIYTIJElW86CUlBTKlipN9XgNpfDN7XBEFriCjeO+dmxahWhHKr37vEGNWrUIDQ2lTp06 KIr0mgshhBAZkWQ1D/p0xCcs+uJrGlj8czsUkQ2ScfCnIYF8Om/inGZ++XUJrVq1yu2whBBCiDxJ BtHlQb8tWkxZi0ykelT5o6ODNRissCVAh9Vqze2QhBBCiDxLBkLmMbt27eLkmVMUyuNvnhJCCCGE yAmSrOYhP//8My2aNKWRLZ9MqBJCCCGEQIYB5AmRkZF8+MEwVi9bTgtTAAWkV1UIIYQQApBkNdck JyezZ88e5s/7iYW/LKSCw4eXHYEY0OZ2aEIIIYQQeYYkq1lo7969jBg2HG9vb4x+fmlfAf5YzWYi z54j6mIUMbGxXEmIR3W5KOTjT+FUaOfKj68kqUIIIYQQt5BkNQvt2bOHw3/toIxNz+XrC8g7UdEA vmgpjI4yaDFSCC8UlGRZW1MIIYQQ4k4kWc1CNpuNIEVPGH65HYoQQgghxCNBppxnoe2bt6C3yzsW hBBCCCGyivSsPiCn08n4L75g45/r2Lt7D21cQbkdkhBCCCHEI0OS1QfkdDr5YNgwACrp8pGKE710 WAshhBBCZAnJqh6QXq/H5XKxf/9+2gzuw1q/ZHZ6p2DCmduhCSGEEEI89CRZzQKKolCtWjXGjvuc M5HnadKrM4v1cSw2xvOXMZVLWFCRsaxCCCGEEPdKktUsFhQUxKQpU0hKSWb/0cO8PX4k+wtrWGdM IQ5rbocnhBBCCPFQkWQ1m3h5eVGyZEn69u3LmcjzvPP5p2zOZ2GrTwrJOHI7PCGEEEKIh4IkqznA y8uL/m++ydkLkbQZ0IsVPgls9U0hVnpahRBCCCHuSJLVHOTv78+Yz8cSGXWRnqOGsTWfhYO61NwO SwghhBAiz5JkNRcEBQUxaPBg/jl6hMggLRcx53ZIQgghhBB5kiSruaho0aJ88+0Mwo0WnLJagBBC CCHELSRZzWVt2rShdIXynMeU26EIIYQQQuQ5kqzmMkVReOHFVuw0pPKXv4l9ShIXMZOKg7OYsOEC QEUlHhvnMEkvrBBCCCEeG4qqqpL55DJVVbl48SJ///0327duY9tfm4k4dYIC+fMTGRXlrlc8pDA+ vr54XUqggTUgFyMWWWVLgJnP5sygXbt2uR2KEEIIkSfpcjsAkda7WqJECUqUKMGrr77q3n/+/HlK ly5NEW9/4p1Wflwwn3GfjcF8dl8uRiuEEEIIkXMkWc3DSpYsSeXyYbguXMHb7qRJkyboNFo6USS3 QxNCCCGEyBGSrOawq1evsmvXLiIiIkhJScFms1GjRg1efPFF9Hq9R11FUVi7aSNLly7lw+HDIQnC KoSx8twFapl9CMU3l65CCCGEECJnyJjVbBYfH8+yZctYu/oPdu7YSdzVKxTzDsDP4kJjd4KqclCT zNp162jSpMlt23E4HHh5eQFQIawCly9cpKO5YE5dhsgmMmZVCCGEuDPpWc0GSUlJLFy4kJ++n0P4 /r2U1PkTnOqiNgaCCEFjU9x1Y7ESV8hI48aN79imTqdj1apVvPjiixw/cRyAHT4+FDJDOYzZeTlC CCGEELlGktUslJiYSGBgIFOmTGHkx59QW83H6xTCy3r7FcJUwOlyotHcfRWxKlWq8Pnnn6OqKvPm /sihiGPk9/GjnFmSVSGEEEI8miRZfUAWi4WFCxcy6YsvORJxjGpPPknZihWwq05cqHjdZSnbeGwU KVqKw4cPk5CQQHBwML6+vkRHR2O1WmnQoAGKohAZGYmfnx+vvvoqtavXpNw1lWeU/Bit8i0UQggh xKNLMp37lJSUxNdTpjDhi/EUUL0om6KhJsWIPBjFiSORPOVdkPIW77u2UwE/Np+MpEW9hnhrdJhc dmxOB/5eBiwOO6peh0Gv59q1azhcLjQaDdWtRipjTOuWlRHHQgghhHiESbJ6j+Lj45k0YQJffzWF Yi4DzcxG8vPvLP4y+FLGATgy154WhSapfhmWuVBJSXXgRCUfwahACg7y4fXgFyKEEEII8RCQZDUT 7HY7a9eu5bsZM1m3fh1lMNLSEpDtSaMGhYCbziGJqhBCCCEeJ5KsZsLTT1YlKSqWUikKHSiIN9rc DkkIIYQQ4rFw9ynoglIlS+JAxaYBV24HI4QQQgjxGJFkNRN+X/MHC1evoMp/W7PUJ55tRhN7NEkc JZkE7DhRcclMJyGEEEKILCdvsLpHkZGRrF+/nosXLxJx+AgbN2zk6rVEvDVaOtlD0KDcvREhrpM3 WAkhhBB3JmNW71HJkiXp3r27x74LFy5QuUJFkuwOAmUClBBCCCFElpFhAFmgVfMWlLMbCJDcXwgh hBAiS0my+oBcLhcXoy+hKArOHB63asHJIZJy/LxCCCGEEDlFktUHpNFoiDhxAlvZECJIyfbz2XAR QQpnMLHGN4krZfKzzjcJM85sP7cQQgghRE6TZDULhISEoDqd+GfjMIDjSirbjSaW+sbj3eRprM+U Y9iYkRw7eYJXendjozH7E2UhhBBCiJwmgyyzyIjRo+jetRsXtCrGVAf50BGIFwHo8LrpM0ESds5h xqoBVQOqooAKRR06iuNNAnY0KATixSUsHDM6sOXz4ZPRI6lVqxZVqlTBZDJx6NAh4uPj0Wg0sv6r EEIIIR5JkqxmkY4dO9K4cWNWrlzJsaNHOXzgHw6cPMmF6CgKevtR0KqguFTifCAVJ61bt6biE5XR arVotVqsVis/zv6BzRcukGq3ks/Pn6opXuwzmJgy5Rs6d+6Mt7e3+3wHDhygfv36aDVaynnn4zmT MRevXgghhBAie8g6q9nMbrezf/9+tmzZgtPppE6dOjRo0ACt9tZXtqqqyozp07kSF0ehwoV5s18/ uv63C9/N+SHDuk0bNeZS+GHqm4239N6Kh4OssyqEEELcmSSreVRSUhIbNmygTZs2aDQZJ6IWi4X/ denK7tXraZ7qn8MRiqwgyaoQQghxZ9Idl0cFBATQrl272yaqAN7e3kybOYNLthRUWb5KCCGEEI8g SVYfcoGBgYSVK8dZTLkdihBCCCFElpNk9SGnKAqffTGOI34O6V0VQgghxCPnkUtWk5OT+f777zl1 6lSGZX/99VeGZQ+zMmXKEGdOkVRVCCGEEI+cRy5ZXbBgAUP6vUXNqtUoUbgIvXv0ZOHChfTo2o2i hULo1qYDNatWo3PH18jrc8suXLiA3ktP3z59blvn/PnzNGnYiAbOQDQoORidEEIIIUT2e+TWWf1l 3k88bfWlLL7Em+388/1v/LV4OUEmF22d+TFadNjxZemq1Xz55Ze0atWKypUroyh5L9Hz9vbG7rBT rHhxXu/wKoVCQvhPl/8CcPnyZcL37OH7b2dRPgHKI+usCiGEEOLR88gtXfVGj55s+mkJT9l8uYyV CKODRKuJ/N5+hKZqKK/64oOWS1g46+MkWrFSunxZOrz+GoUKFaJQoUJUrVqVEiVK5IkEdvfu3Tzf tDnlUhSu+CqoXmmfL/Sqgn+KgxCXFyXxyeUoxf2SpauEEEKIO3vkelbHT5rIMIOeXxcvoVLFJ1gy 5jNq1KjB/v37mf71VH5bvpyn7X5UdvpS1Awqvpw4eIFFh7/AYdBh0UGUJYnnX3iB35Yvy5YYk5OT +fPPPwnfs4fY6BgaN23Cyy+/TP78+T3q7dixgxefb0mdFAOl8UUm/AshhBDicfPI9azezZkzZ3j6 qWpoXSoVLAaquIwkYme/n40rTgs6jRab08HSlSto2rRptpy/xXNNIT6ZoFQXehXijVoua+18OXkS 3bp1w263M+Kjj5j29TfUM/tSCt8sj0PkDdKzKoQQQtzZY5esAlitVk6ePEm/Xm9w6eAxrqhWxk78 kpdeegmLxUJqairVqlXL8vOqqkr1J6viffQST6meb5yKw8ouowXVaCApOZnCijfPmHwwPnqd3+IG kqwKIYQQd/bIrQaQGQaDgSpVqrBhy1+Ur1eDdh1eoW/fvpQoUYLy5ctnS6IKsGjRIuLOXaSq6ndL WTAGWqUGUO+yhvbm/DQ1+UuiKsQjatmyZVSpUgWNRkOlSpV48cUXqV69Oi1btmTNmjUZHrNu3TrO nz/v3rbZbEyePJmmTZvSpUsXXnnlFZo1a8b8+fM9jps+fTrNmzdnzJgx2XpNmZWcnMzvv//+wO0s XLiQZs2a0ahRI1544QVKly6NRqNBo9Ewc+bMux4fGxvL2LFjadCgAT/99BMAW7du5c033yQ0NPSB 48sup06d4oMPPnBf6+DBgz2WY/zjjz9o0KABBoOBDz/8kISEhFyMNvO++uoratSokdthiDzqsUxW 03l5ebF63Vpmz52TI+f79MOPqJqqR7nNElMaFAqgxwdtjsQjhMgdbdu2pV+/fgB88MEHrFq1ivDw cKpWrUqrVq344YcfPOpPnDiR6OhoSpUqBUBqairNmjVj0aJFLFmyhB9//JFff/2VqVOnMnz4cHr2 7Ok+tkuXLuzduxeHw5FzF3gH/v7+5M+fn9GjR9/X8U6nk06dOjFo0CBGjhzJ5s2bWbNmDefOnWPW rFnodLpMTY4NCQmhc+fObN++HZfLBcCzzz5LcHCwx4eCvKZcuXKMHTuWkJAQgoODmThxIuXKlXOX t2zZkvHjx9O0aVNGjx5NUFBQrsV6L/cxNDSUmjVrZus5xMPrsU5WIe0NUBpN9t+G+Ph4jp06iUuW 7hdCAL6+nmPRNRoNo0aNQqvVevSCzp8/n4iICLp06eLe984777Bz504WLFjgkYxUrFiROXPm8P33 3zNt2jQAjEYj+fLly+aruTf169fH19eXhQsX3vOxn3zyCQsXLuTXX3+lXr16HmU9evRg+PDhmV5D Oz35T6coyi37ckJSUhLh4eH3dIzBYMBozHjJwuDgYIKDg7MitPsWERHB559/nun6rVu3zlSP+I02 bdrE3Llz7zU08RB67JPVnOBwOOjc8TUKa30Iwiu3wxFC5FF6vZ6goCAuX74MQEJCAgMGDODTTz91 14mJiWH27Nk0bdo0w8SqUaNGlC9fnlGjRrl7DPOi/v3788EHH7ivNTMSEhKYMGECDRs2pG7duhnW GTx4MOXLl8+qMHPEvn37ePXVV7OsPa1WmyOdMLeTlJTE66+/jsViuafjnE5nputGRUXRpUuXPP9y H5E1JFnNZlarlTYvvsSpHXt5yRlMPklWhRC3ERMTw5UrV3jqqacAmDVrFmXKlKFIkSLuOps2bcLp dN42WQOoV68esbGx7N+/373PbDbTq1cvAgICKFmyJLNnz3aXJSUl0a9fP6ZPn85bb73FG2+84R42 8Ouvv9K2bVuGDRvGhAkTqFixIvnz5+fnn3/m9OnTdOrUiQIFCtCiRQtSU1PdbS5dupQhQ4bwzTff 0KJFC7Zt2+YRo8FgoHr16kydOtW97+uvvyYkJIRLly5leF0bN27EYrHQqFGj2167v78/TZo0cW9v 3bqVt956i5kzZ/Liiy+ydOnS2x57M7PZzIcffohGo2HLli0ALF++nODgYP73v/+52//f//7H22+/ zYQJEyhatCj58+dnxIgRmT5PdkpJSWHixInUrFmT9evX06lTJwICAmjevDnJycnuerGxsQwbNoxR o0bRrl073n77bex2OwAWi4URI0bQr18/ateuTfv27YmLi8NqtfLLL7/QokUL/vjjD1q0aEGhQoVY s2YN8fHxhIeHM2TIEI4ePQrAt99+y8cff8zkyZNp0aKFe//p06cZMmQIxYsXB9KS1pkzZ9KoUSMW LFhA//79CQoKolatWkRFRQFpY3OTk5NZu3YtQ4YM4dKlS/To0QONRkP37t2Ji4sDIDw8nJCQEPf3 TzycJFnNRiaTieebNuP01j08Z/ZHK69DFULcJL1nKC4ujm7duuHt7c348eMBWLlyJZUrV/aoHxkZ CUDRokVv22bhwoUBOHfunPscK1eupHPnzuzcuZOnn36aXr16uf8DHzFiBKdOnaJv375MmTKFxYsX 88svvwDw0ksvERERwerVq2nSpAkRERG88cYbDBgwgBUrVriHKezatYsFCxYAacOeOnbsSLt27ejf vz8tW7akW7dut8RZuXJllixZ4t7Oly8fBQsWRKfLeHLpmTNnAChWrNgtZUePHmX27Nl89913fPfd d6xevRpVVWnbti1169bljTfeoGfPnnTt2hWr1Xrbe3cjHx8fevTo4bGvTZs2PPHEE+5xsUWLFmXL li2sWbOG6tWru3tJR40axaJFizJ1nuxkNBpp1KgR+/btY/78+UyaNIlDhw7x999/8/333wNpCW2r Vq3o378/H330EePGjePrr792P2IfOHAgr732GtOmTWPz5s1s3bqV/v37Y7fb0el0rF+/nuXLl/PZ Z5/Rrl07Xn75ZcqWLUutWrUYP348lStX5uDBg/Tp04c+ffowcOBAKlWqxIABAwAoUKAA3t7exMbG Amk9w+3bt2fr1q0sWLCAwYMHc/r0aeLi4vjyyy8B6NmzJ0FBQTz//POMHz+eokWLMnXqVIKCgvDx 8XEPgyhZsiTPP/88DRs2zOlbL7KQTDfPJsnJyTRr/BwpR8/S0OKHRhJVIUQGvvrqKxYtWsTVq1cJ Cwtjx44d7hVJjhw5wjPPPONRPz1JutPjz/TH/+l1FEWhbdu2PPfccwDMnTuXEiVKMGnSJBo2bEjL li3dPbUulwuj0ehOdA0GA0WKFCE0NJSnn34agMaNGzNu3DheeeUVFEUhODiYJ554gsOHDwMQEBDA kCFDqFSpEpA2Pvfs2bO3xBkSEsLx48cxm834+PjQpUsXj7G5N0t/TJzRI+7KlSuTlJREvXr1qFev Hlu2bEFRFAYNGkT9+vXdcaSkpBAXF+fuxbubu03WKlu2LCVLlqR06dLu+/v111/z22+/MXv2bDp2 7Jip82QXRVEoUKAAAN26dXN/kKlatSoRERFAWo/nk08+6f4QEBYWxpIlS6hfvz5RUVEsWrTIY2x0 nTp1cLlc+Pn5uSdFtW/fnlq1alGrVi3g1p/PkiVL8sEHH1CoUCHA82ciMDCQsmXLetRPTzY7dOjg Lqtfvz7Hjh277bX6+PjQu3dvpk2bxrhx4/Dz82Pp0qVZOsRC5A5JVrPJqJEjuXbkDI2s/red/S+E EAMHDrxtgpaUlIRer/fYl76s0p3GeqY/Ai1durR7n5fXv0OQAgMDqVOnDsePHwegRYsWXLt2jalT p6IoCg6H447jXQ0GQ4b70h8r63Q6xowZw+bNm9m9ezcnT57MMLn28fFBVVWuXLlCiRIlbnu+dOlj dC9evJhhee3atYG0ZCs9of3www85cOCA+wMB8MBjeTNKYG/cp9frqV27tseSUjfq0aMHP/74o3tb VVVcLpfH9wjShj00aNAgwzZ0Ot1tr0NV1VvaupmXl5e7h3nr1q3uDxbp2rdvD6Q9bvfx8WHs2LF3 bM/b29tj++Z7FBQUxGeffcaKFSs4deoUJ0+evOfvw40x386bb77JhAkTmDdvHn379mXDhg38/PPP 93QekffIMIBssvzX36hkNUiiKoS4b0ajkZSUFI99jRs3Rq/Xs3PnztseFx4eTnBwsLsnNCMFCxZ0 Jxg7d+6kUaNGtG7dmv79+9+SeGRWekLqcrno2rUr69atY8iQIbfM2k+X3lOa2fM1adIELy8v/vzz zwzLM+pxHT58OJMnT+add97hhRdeyNR5soK/vz8BAQEZlo0aNYqDBw+6v7777juKFi3qse/gwYN3 XHe0QIECmM3mDMuSk5MJDAzMdKx2u93dk34zk8nE5cuXMzxX+pjWzDCZTDz//PPExsYyePBgqlSp kulj70WxYsV45ZVXmD59OvHx8eTLl++uibvI+yRZzWLLli2jR9duXIqJQSeJqhDiAVSoUIHExESP fcHBwfTq1Yt169ZlmGCEh4dz+PBh3n//fbTa26/ZfOnSJfcrpbt160aTJk0oWbIk8OA9jwsXLmTe vHkMHTr0ju0lJCTg5+eX6WWWQkJC6N+/P7t27WLVqlV3rb9z507Gjh3L4MGD0Wg093Vd6T2ENx7r cDjuOgv97NmzHhO9blS0aFEqV67s/ipdujReXl4e+ypXrnzL8mY3qlu3LpcvX3b3ot9o9+7d7sfx d7suSBtCsWLFCqKjoz2uceXKlYSFheF0Oj0m5AH88MMPXLly5Y7nuPEeffXVV+zevZtevXoB9/8z dmPciqJk+H0YNGgQhw8fZvDgwXTo0OG+ziPyFklWs9ilqCjmzPuRp83eBMrMfyHEbZhMJo8/M9Ki RQv3ONAbffHFF9SvX5/XXnvNYzjA+fPn6dq1K507d2bQoEHu/RqNxqNn7ODBg0RGRvLee+8BEB0d zYEDB7BYLPz555/Ex8dz6dIl92Pzm5Oz9ETjxp61G4cOpM/m//vvv0lMTGT16tVA2uSwG3uKz549 606YIS0BeuKJJ+44xGHcuHF06tSJTp06sXjxYo+yf/75B/h3Ddsb4zCZTO6VAC5cuEBiYqJ7xYMb X5iQ/vf0aylcuDAGg4HFixeTkpLCkiVLiI6O5tKlS+6eYVVVPRan37NnD5GRkbz77ru3vY4HNWDA APz8/OjatSvx8fHu/bt27WLp0qXux/gZXROkrVSTHn+/fv1wOp00aNCAH374gRUrVtCtWzdq167N k08+ybPF07+WAAAgAElEQVTPPsuQIUOYNGkS27ZtY+zYsZw/f54iRYpk+LMAaT2/ERERqKrK/v37 iY6OJjU1laNHjxIdHc2mTZtISEjg6tWr2Gw29/E3f09ujNlms3ksb5U/f36OHTuGw+Hg0KFD7v21 a9emTp06rF69mubNmz/AXRZ5hSSrWWzsZ2NwqSoF0cvsfyFEhlatWsWcOXNQFIXvvvvOPfP+Zj16 9ODIkSMeSwxB2ljPtWvX0rlzZ1577TU6dOhA+/bt6dWrF++//7779aHpJkyYwM6dO+ncuTMDBgxg 2rRpbNu2jYIFCwLw8ccfEx4eTrVq1TCZTPTo0YOlS5eyZs0ali9fzuHDh9mzZw87duzg4sWLLF68 GEVR+Oabb4iNjXXX+fvvv9myZQudO3fmqaeeon379gwYMIDhw4dTsGBBevXq5ZFsbNu2jT59+ri3 zWYzV69evePbtry8vPj555+ZP38+8+bNo0aNGrRq1YoXX3yRgQMH8tVXXzFp0iQg7W1ODRs2dM9m 79u3L6VKlWLw4MEkJyfz8ccfA7BkyRIOHDjAnj17mDt3LoqiMGHCBBISEjAYDEyZMoVFixZRpUoV 7HY7zZs3p0KFCrcsDdazZ0/69evH559/zqZNm7J1Yf4yZcqwc+dOjEYjderUoU6dOrRo0YJffvmF BQsWuHvVTSYT33zzDYqi8OOPPxIdHc3y5cs5ePAg27dvJzw8nNKlS7N8+XK8vb158803mTx5MsOG DXNPhpo/fz5NmjRh+PDhdO7cGYfDwSeffEJsbCzjx49HURRmzpzp8WKD3r17ExERQePGjQkKCqJ3 796UKlWKevXqMW7cOEaNGoWiKLz11lscPHiQRYsWoSgKY8eOJSkpyT3rf8mSJZw6dYqtW7eyadMm Dh8+zPr164G0tXpXr15N+/btb1kholu3brzyyiu5ut6syDqKKivqZqlqVZ7k4JHDtKQQJfHJ7XBE HrclwMxnc2bQrl273A5F5FGffvopRqMxW3vpcsOGDRuYOnXqPa17mlc999xzhIaGupeCuld//fUX 3bt3dy/NJR7c559/Tt26de+4Jq94eMhHjiy2Zcd2OrRtR6zGjo28+/aYh40Dl9xP8Vj66KOP2LFj h3sB9UfBlStXmDFjhseM+MdZ48aNJVHNQna7nS1btkii+giRpauyWEBAAF9MnEC7E61ZfuYsr1gK 4AKZbHWfUnFwQmMmQm8hxWqhiH8gitNF41QjRvnxFY8BjUbDokWLmDhxIv7+/pla4ikvS05OZubM mcyZM+e277Z/2DgcDmw2W26H8dgbOnQoFy9eJDk5WSZWPWKkZzUbhIaGsv/wP5hcDv4kjtlEEkXG S4yI27Pj4k/fJCp2asWqdX8SExvDqi0b6T7oLf7wTSIyC+6pCxkFI/I+nU7H0KFDH/pEFdKWdBo+ fPgjk6jOnTuXgwcPsmnTJn788UdJWnPR5cuXWbNmDZUrV6Z79+65HY7IQjJmNRutX7+eRfMX8Ne2 rfiev8ozNv/cDumhcA4TB/1sXDWn8p9Onfhh3o9cvHiRwQPeZvOWLSxYtJB//vmHQYMG8RwFCMPv tm3t0adgVVSetf577y9gRgWScLCdeDpSlKBcWrnhcR+z6q1oscrwDiGEyDZBQUEeK0Y8jOQ5ajZq 1qwZzZo1o91LL/Pn6TVUwEAQ+rsf+BgLN6QSnU/Lzwt+o379+rhcLj75eAQTv/ySCnYfnnQodGrT nlS7lTraAoQ6b78OYTQW9tmuUtw7gFOkslOfTJC3kejkBCqWC6PqU1VplhDPoR0HaGiWZcZygxUX /ZRSaK+vnahVQKsoaK+Pmkn/e3q5hjuX33r8ncpualtRULQKmusVFK3Gc1ujQaNNq5NertEqKJrr x1+vn1ameGxrNIq7fnq5x7ZGuel4zfXzaW6IJW1f2rYW5XqZRqNxl6fHeeO25vpxyo1taTRors8W v7Xtm7Y1WtBcX69Vo0HR3ritTat3p22tFtJnZGu019u7qe0bruu2bSkaUDSoiuaGbcV9rHq9nBvK VY9txfN4jWfdDNtWPNtW3a+6BZequp/LuNTrb6G6vkO9YR+A6/oxHnWvH5txW/8+9Ukrv+F4VPcx AE5X2t+d6edSVZwu/v37DXE5Xer1fTeUX98H4Lzersvlue1u26W696WVpx2f3nb6V2a2HTeXqxnV d3lsO+7Stur6N05VvWnbdeNLK9LK3OXqTdvXjwdQXf/WT9tW3fXd2x71r2+7ri9r5nKmfTlv2r6p PO28N5U5M6rr8th23aVtgIQDP/Cwk2Q1Bwx4ZzDLVq3EIY+cb8uBizOYOEYqUcejOXz4MP/r0pU1 f/xBiNOLl8yBBFzv/SyXcpfGrjuvtYETLlqSiPPSM3r0aJo0bUq+fPnc75pOTk6mVPES7HSlUN6q p6B8mBBCCCHyFElWc8DRI0fwN/gQaJXeu9vZazCjq1SShaNGEhgYyI8/zGHzkt953hVIvvt8RF/H 6Y8fYKtWmr/3huN0OjGZTOTLl89dx9/fn01bNrNw4UKmT56CQavjqRQ9ody+x1YIIYQQOUcmWGUz q9XK+++9Tw2rL15yuzN0SG/mvMHO4qW/8dJLLwHw8aefcEVjx/8BPk8pKJTGl+MnTrBp0yaefrIq fXr19qijqipnz56lWrVqJJpTiU25xlri2KtLQb2hJ1xFxSk940IIIUSOk57VLGCz2Rg1ciR+/v5E HDnKWwPfJjQ0lKCgIAwGA78tW8qrbdoRbNaTXx4ze3Cisp9rHD980mOmc1RUFDqNFs0DLvmlR0Mp mxf/93pnUq/E067DKx7l382axbCB73DFnDa2oGH9Z3ln6BCGv/c+Ky9G82SKF+eNKidMV/HV6elk D3ngmDIrNTWVffv2kZqaSmpqKn5+fjz//PM5cm4hhBAir5Bk9T4cPnyYyMhISpcuzbgxY/l5wXxK 6P3J59Ji0aj8sXQFJped2d/P5tXXXqN58+ZMmDKZQW8PxKjoaJDqK0kraZNr9nulUjEs7JYleT79 8CMq27wfqH0TTuZxERwQkOyDwdeH5i1acPDgQdavW8egwYMJDAoixW6lYrnybNyymSJFigDw8ssv s2zZMj54dygmswnTVTNhZcpy4ZKZUlk5RMDuZMTwDzly5Ajr1/yJXq+n/9sDqFChAi893xJrQhI+ Gi02ux2Lj46YK3FZd24hhBDiISDJ6j0ymUw8+eSThPoXIBUH+Z06uriKobd4PuKPIJlFCxby6muv AdCjZ0/+1707c+bM4d03B/C8OV+mxmJGYeGkt43qFh/3BKNHgR0Xv+rjaPp8C2bM+tajbOvWrWzb vp2XCXqgcyhAGe9AzlgSsbmclChVkpIlS1KubFmcLhdVr7+7/MCQdxn8zjsUKFDg32MVhXbt2tGm TRtSUlIwGAz8OP9nWr/4Egc0doLtOipYvCiQwYcOJyoWnGhQ8EJBd4fhH3XNvlw6FsevoyZj0aqE mBXeDu/OxdRr1FODqKymLbl1lGSKtmz8QPdDCCGEeBhJsnqPfH19adKgIRfCD1PDbKAwBvQZJCNG dFyKivLYp9Fo6N69O1aLhffeGcITqh9PWX1uey4rLk5pzQRWrcjqfw7zqqUg2kfkTVg6FIq7DChA SEiIe//u3bt56YWWNDT7ZXq8aiJpr7Zdr43nCaeRohgIxIt4bDxr8SNWb2H56pUcOnSI0NBQAD4a /iHNmjVDURQ+GzPmtm1rNBoCAgIAaNSoEfHXEjl06BDr1q5lzKjRlLZ6oXWppBh1pOIiyWbGZLcR YDTicrkwWSwEevtSQGPAL8VBOZc3RnSoqOjQ4IWGUvhS6oZ1xCsmgxM/tCgc1ZnwdyhYtHDp0iVi YmIoXLjwvd9wIYQQ4iElM37uw+9r/uC/773NlWrFWOoTTwTJJONwT8BJxM5ZnZViJYpneHzffv3Y d+gg4Y6rt0zaUVG5iJm/jCksNMQR8GQ5fpw3jxq1anKCTK7ZlMdFYSZck8xlvYtuPXt4lL03+F2q mQwU5/ZJ/I0SsbPSEM9SYrBoVKKLGtkdovCTLoaTZQJYoIuhQoUwfv7xR8YOHwHAjOnTGTl6FIpy 74m/VqulWrVqDBk6lOOnT1G/x2u0fL8fY36YwdINazh+9jRWm5Wr1xJJSE4ixZTKX7t3MnL2N9Tu /RqrjEl8r7nIBp9kjwlct5wHhbOY2OqI46zezlNOP1L3naBc6VBaNmtOUlLSPccu7uyQNW/8+9od fSW3Q3DbcvRsbocAwF+79uV2CG5btmzJ7RAACN+xLbdDcDu57+/cDgGAhJP7czsEN0v0kdwO4ZEi yep98PX15aMRH7N7/z7Wbt6ErWY51gWZ+dU3nq1KAqt9r/Fslw7M+G7WbdsoV64cTRo2YonPVf4K MLHF38zKgGTm6KI5UdqPAV+M5PKVOHbt30tYWBhjvxzPAR8LCdhz8Eqzx35/O/X6/YfZ8+fRunVr 9/6TJ0+yb99eyl9/I1UyDs5iyrANFRUbLjZyhZKlS7Ns2TJMJhPnoi5w9mIkl2KiiTh9EqvNRvjB AyxfvoIUh5VnatTijT59suQ6ChUqxNTp0xg1ejTt27enZs2aFC5cGI3m339WXl5eVKpUiQ4dOjB1 +jTi4q8SExODsURhlvjGE65L5jJWzDjdyWscVnYaUtjpm3btlW3eaFGoZTXymjWYkzv2Mnfu3PuO W1VVtm7dyhs9e/HPP/882E14hByypeZ2CADsjrma2yG4bc0jyepmSVZvEb4z7ySrp/bvyu0QAEg4 lZeS1aO5HcIjRYYBPKBatWqxY0/aP9QDBw4wafyXfNquLR06dLjrsX9u3MCxY8c4ceIEVquVsmXL EhYWhr//ra9lrV27NuMmTmD0ux/wYmoAykM2HCAJO1t01yjt0BNvNTFs2DD3ZKYbuYA9hlS8nLDX kfaf9huUuqXeNl8Tp+3XqFGtOhO//oo6deq4y3Q6nXv8aXrv6dTp03jyySd54oknsuHqMk+v1xMc HMzh48c4ePAgP3w3mz9WruJSbAx2hwOjlwGDrw993nyLF1q2ZPiwYURu3EdBNW1srBcaqpoNfPje +1gtFt55991M9RCrqsrmzZsJDw9n7nffc/liFEVMCr8sWMDX06fRpUuX7L50IYQQ4r5IspqFqlWr xtyff7qnYypVqkSlSpUyVfeNN95g+pSvOXUs1t37+DA4pqRw0tuOSa+jUIMGLHurf4aJavny5Yk4 eYKZM2YwavRoAJoR7C6/hp0TGjNmg4KlgB8JxyPx8cnccIFOnTplzcVkoaeeeorJX09h8tdTAEhK SiImJoayZcui1Wp5/dVXWb9hA6/gea8KYeAlcxCTP/mMrX9t5qdfFmT4AedGmzdvpm2rlwh1Gihu 01KPQBQUyptsvNv3TeJiL/POkHez7VqFEEKI+6Wo6S+0FXme2WzmtQ6vErFxB00sAbkdzl1ZcRGN he36ZPoPepvRo0ej093+89HRo0d5840+bNmxHaOXgZes+fFHhx0Xu3zNXFTNvNq5E4VDQnh/2AcY jcYcvJqcN+LDj/hm0ldUN3kTis8tvekOVHYbUkkJNvL7mtW37TVeunQpXf/bhXJ2A7Vtt37I2atJ 4rnBPfhi/PhsuY47uZ9xw0IIITLPz8+P5OTk3A7jgUjP6kPks9Gj+Wf9VprY8t29ch6w0ieB8pUr MrT1y7w9cOAdE1WAjz4YRvy2g3SlGIlWO95oUFHZ5pPKUy805sfhw6levXoORZ/7Ph09igaNGzGg bz8ORsdSxqQjTPXFBy2QtqJCPasfxy+mUK92HaZ9O5P//Oc/t7QTGxtLcaeeGraMk3s/l4a/Nmzk +PHjlC9f3mPMbXaTz8pCCCHuRpLVh8gTVargbTCgt+X9eXEWnJhcDrbv2Z3p3rMzZ85wxU/D3pQk jupSyaf3QVEUylQM46cFC9DrH78XKTRr1owjJ47z999/881XU/ht+XIqO3x50mFEd72ntQJ+FDDp GdC7L4UKFaJ58+ZA2lJX27Zt46c5cwmyKRkue3aSFEriw77jkdSrXpOadeqw4o9VGAyGHL1OIYQQ 4nZkGMBD5MqVK5QsVpz/2EIyTDxcqJwiFT90FOXB3v70oKKxsDWflaHvv0dgYCBNmzalfPnydzzG 6XSyYcMGflu8hN59+2CxWAgICCAsLOyxTFQzcv78efq/0Ye//vqLUlo/ipmgFL5oUfiHJMp1bsnX 06YxZvRopn8zjWI6Iz42lRpW31t+ZtLf8NWQ/FTCHycqW31SKFH7KVatXSP3XAghRJ4gyepDplTR 4jwT7SLohjcnqaicx8xBow3v/PkgMYUmyUY0KJwmlSJ4eyywr6JyDQeB2fhGLAtOjpGCQ6tg12uJ xETp0FBWrf2TYsWKZdt5HxfR0dEsW7aMWdOmYzodRSOzH8k4WOl7DW+DgRCzgtbmJMClocL1Fwzc 7CJmVnGZarr81HGkTdByorLYcIWflizkpZdeyunLynNiY2M9XlohxJ1ERUXl2u83VVVZvHgxkZGR 1KxZk8aNG+dKHCL3WCwWbDab+0U2j5K8/zxZeChbpgzXcABpE2yOk8Jqv2ROl/Jj1i8/cfR4BIEl i/GL/jIbucLJIgbW+iZhwuluY6MxhUVcIh7bLe1bcXGUZNb4JROJ+b7j9EbL0+SjljOAemYjHc0F sR2/yOdjxt53m+JfRYoUoW/fvuwM34N3maKcIJUAvAh1GKiVoKO+xY+TSipbiec7IjlIEonYuYTF 3UbB6x94YvT//mxoUahu9aVH127MmzcPh8PxwLFGRUXRr18/ZsyYQdeuXTlyJOPFsr/99ltGjhzJ p59+ykcfffTA532QWM6dO8d//vMfOnbsmGtxWCwW+vbtS8GCBSlRogTTpk3LtVhUVWXo0KGULFmS okWL8sMPP+RKHDdav349zZo1y/I47iWW9evXo9Fo3F9ZvQZrZuNISkqiefPmREZG8u6772ZLopqZ WHr27OlxPzQaDa+//nqOx+FwOBgxYgRTp05l6NChjBo1KktjyGtUVWXOnDmEhYWxZ8+e29bLid+x 2UYVD42EhAS1bKnSanMKqp0ppgZ4+6qN6zdQV61apTqdTo+669evV5+pUVPdu3evOuz9D9RSvkFq b0qqHSmiBgflVyd8MV718/ZRW1JI7U1J9WVC1Cd8CqhGbx/1pedfUFu3bq0+rQtS36BUlny9TlE1 yNdP3bZtWy7dvUfXTz/9pIb4BqivUzTj+641qIAKqH7ePup/KOYuL2cIVAG1NyU9jnuRQmppv/xq 8ZAi6v79++87NpfLpVavXl1dt26dqqqqevToUTU0NFR1OBwe9ZYtW6bWq1fPvd2xY0f1u+++u+/z Pkgsqqqq58+fV9988021QYMGWRrDvcQxcuRIddGiReqRI0fUQYMGqYqiZPm/n8zG8vPPP6tbt25V VVVVlyxZonp5eakmkynH40gXGxurPvvss+pzzz2XZTHcTyx9+vRR9+7dq+7du1c9ePBgrsThdDrV Zs2aqUOHDs3S899rLCaTSR0wYIB66tQp9fz58+q5c+fUQYMGqfPmzcvROFRVVSdNmqR++eWX7u3G jRtny/89Fy9eVPv27atOnz5d7dKli3r48OFb6lgsFnXo0KHquHHj1Ndff1397bffsjyOy5cvqxcu XFAVRVE3bNiQYZ2c+B2bnSRZfYjMmjVLNXoZ1Jra/GqAt6/68fDhmTrO4XCo1as+pT6rFFA7UEQt GJhfNZvN6rJly9Qg/wBVp9Gq5UqFqhO+/FK9fPmy+vPPP6sBvkb1RQo9cJL6nK6QWj5fsBrga1Qn TZzoEdfx48dVm82WHbfqseJyudTJkyap+XyMaguCb/ke9KakWkcfrAJqn95vqE96F3SXtaOwCqgd M0h036CU+hwF1GIhhdX4+Pj7im3t2rWqj4+Parfb3fvCwsLUJUuWeNSrV6+eOmrUKPf2/Pnz1SpV qtzfDXnAWNKNGDFCffbZZ7M0hnuJY+bMmR7bpUuXVseNG5crsZw/f979d5PJpHp7e6upqak5Hoeq pv28f/zxx+qsWbPUxo0bZ1kM9xrLiRMn1Pr166u///67arVacy2O+fPnq0ajUbVYLFkew73Ecu3a NdVsNnscV69evfv+3XG/caiqqvbv318dfsP/j+3atVNXrlyZZXGoauYT5/fff9/9bzkpKUktVKiQ euLEiSyNJd2dktWc+B2bnWQYwEOkR48eDB/xMdW6tGH3gX18en3h/LvRarXMWzCff7zN6NFgsDiY O3cubdq0IT7pGolJ1zhx9jSD33mH31esYEDPN2hhCqA4mVtw/3bOYGK3Lpkh4z/jyPEIBg4a5C4z mUzUqlGT8V98QWJi4gOd53GnKApvDxzIHxvWcbyons0+yR7DPhQUqtl8KeNXgKsJ8dj1GpJxYMPl XgbrpCbj19qG4UehBDsd23fA5XLdc2zbt2+nTJkyHsuWhYWFsXHjRve2zWYjPDycihUruveVL1+e I0eOcOXKlXs+54PEkhMyG0fv3r09tkNCQihZsmSuxHLjeX///XemTp2Kr69vjscBaY8yu3Xrdtel 8LI7lr1792I2m2nXrh0lSpRg/fr1uRLHDz/8QNGiRXnvvfeoVasWzz//PFFRUTkeS0BAAN7e/07s jYqKQq/XExQUlKNxALRt25YpU6awfv169u3bh8vl4oUXXsiyOCBtCMixY8fcQy4qVaqEl5cXy5Yt 86g3ffp095KL/v7+NGjQgClTpmRpLHeTU79js5Mkqw8RRVH4YPgwZn3/PRUqVLinYytXrsyHI0bw q1cchuBAGjVq5C4zGo3u5aUWzPuJp83eFODBZ4LbcFK7Zk169epF8eLF3fsvXLjAZ599htEOIz8d SYH8+fm/Tp0kaX1AdevW5dipk7Tq3YUl+jhWGBNJwcEhkojFii7VyuLFi4lIuswf/snM94olUmMl v96X/a5EdmuTULl1vmUNm5ETu/cx6tNP7zmmmJiYWwb758uXj4sXL7q34+Pjsdvt5Mv37/rBgYGB AB71HlRmYskJ9xOHxWIhMTGRNm3a5FosV65cYfDgwXTp0oXt27fjdDpvqZPdcezevZuCBQsSGhqa Zee+31hef/119u7dy9mzZ6lZsybt27cnJiYmx+PYu3cvr776KpMnT2bPnj0YjUZ69uyZZXHcSyw3 Wr58OS+//HKuxNGsWTNGjRrFCy+8QL9+/Vi4cCFarTZLY8lM4nz58mWSkpI8PtiVKFGCAwcOZGks d5NTv2OzkySrj5Eh7w3lSvxVjp066fEJK52qquzbv59CPPgam05UzhlV2r3awWP/mTNnqFKpEku+ nkV9qx/N7IF0Uouyfckqpk+f/sDnfdz5+PgwYfIkomKi6TtkEEv1V9ijTWadPpGCtaswevRowkLL UK5sWZYuX8ZBgwmDK+2DyiFnIlu8rhGDhVQc7sRVi0JDk5HJ4yewdu3ae4pHp9Ph5eW56sTNPbTp v+xvrJdeR83CxUoyE0tOuJ84Zs2axcSJEzP9euHsiKVgwYKMGTOGhQsXsnz5cubOnZujcVy7do01 a9bwyiuvZNl57zeWGxUvXpwlS5ZQuHBhli9fnuNxpKam8uyzz7q3e/fuzbp167JkcuS9xnKjFStW 0Lp16yyL4V7iUFWVmJgYPvvsM06fPk3Tpk0xmTJ+enS/MpM4BwYGotFoOHHihHtfQEAAcXFxWRrL 3eTU79jsJMnqY8bPz++262deuHABp92BH/f/CdSGiyvYWOObRKVnatCvf393maqqdPu///KE2Zvn kn3xRsNFbxc78lm5qnXk6JuTHnVBQUF8NGIEO3bvolfv3qTaLCQcOc1P476i2Nlr2A6eoVWrVtSu U4fS1avQ+fVOuFCJUa2sUa6wgCh26FPc7RnR0cDsR6dXO5KSknKHM3sqWrQo165d89iXmJjosbxP gQIF8PLy8qiX3suelcsAZSaWnHCvcRw6dAidTkerVq1yPRZvb2/atGnDgAED2LdvX47GsXnzZsaM GYOPjw8+Pj707t2bLVu24Ovry+HDh3M0lpv5+PjQokWLLH06lNk4QkJCSE1NdW8XL14cl8uVK7Gk S0pKIiYmhnLlymVZDPcSx8SJE0lOTua9994jPDycc+fOMW7cuCyNJTOJs16vp23btnz11Vc4HA5s Nhu7du0iODg4S2O5m5z6HZudJDsQbrt376aIzveWd9DfjRUnO31S2eifykJDHNvy2xk86iNWr1vr fvTicrlYtmwZ23bu4Kgmhe+USBZqY6nzn7bMWfEruw/sY/DgwdlxWY+1p556ikULFtCCYBqm+NIo 2Zcw/DivtQJg+esAsYdPcPTwYXx9fHnZUZDX1CKU1QZw0plEHFZ3W0XxJtihY+aMGZk+/3PPPceZ M2c89h0/ftxjaR1FUWjcuDEnT55074uIiKBSpUoUKlToPq/8/mLJCfcSx6VLl9iwYQN9+/Z178vK HrP7vScFChTwGNqTE3G0bt0ai8WC2WzGbDYza9YsGjVqhMlkokqVKjkaS0acTmeGT6yyO4569ep5 9NxZLBaMRiMFCxbM8VjSrVq1KsvHiN5LHBs3bnT/TJQqVYq3336bvXv3ZmksmU2cZ8+eTVhYGO3a tWPs2LEkJSVRt27dLI3lbnLqd2x2kmRVuO3Yth3/lHv7j9CKk41cRQ0N4fM5Mzl/8QIxV+MYNHgw iqIQGxvLOwMHMnDgQNq3b49Oq8Wu/D979x0fVZk1cPz33OmT3hMSemgC0hXBhoKCoKiIDTu2tddd dW1r3dV37SjY61rWgqCACLKgUqXX0JEQIIGEtOlz7/tHQgQJISGTzISc7+cTksxt5yZh5sxTzmNg M1tobYnmq8rus86dOx/yLlWEhmEYuAkeNB71jEA8F5FBN2I5wxVDTk4OHdpnswcfDkwMDMbhDQaY aUE5T+cAACAASURBVN130GStHi4bTzz6ONOmTavVtfv370/r1q2ZNWsWUPEE6XK5GDFiBA8//DAr V64EKuozTp48ueq4KVOmcN1114Xi9uscy34NNUSgtnEUFxdXjbtbt24dq1ev5tlnn8Xj8dR0+gaJ ZcaMGWzfvh2o+HuaM2dOSH8/df3d7I+jIbowaxvLCy+8wLp164CKLuGcnByGDx/e6HHcdNNN/Pe/ /606bs6cOdxwww0hi6Musew3ceLEkA8BqEscPXv2ZMWKFVXHud1u+vbtG9JYaps4x8XFMWHCBCZP nsz111/P4sWLQ/7cBtV36zf2c2xDapjplKJJ+nX2bFKN2iWMBgY/20vZo/vo0rc3f/v7Q9V2U555 6umwZTer/UUo4PxgKonBymEIfphtdbNq1So6duwYuhsRB/lpzmxGnjMc6w4X2UQBkHLAuOTdeHH7 fWR3yGbXqorxVrmViweU+318ZS1gkC+OLBwkYOE0dzRXXHoZG7duqRqkfzhKKb799lueeOIJ1q5d y8KFC/nuu+9wOp1MmzaN3r170717d0aPHs22bdt4+OGHcTgctG7dOuQt7bWNBSpe8CdNmkRubi7f fPMNI0aMCNmbqdrE0bVrV0aOHMmcOXOYMGFC1bGXX3450dHRIYmjtrF0796djz/+uOrFNjMzk6ee eiqkLTJ1+d0ceMz+iaGhVJtYunXrxvTp03nyySe5+eabiYuL48svvwxphYLa/kxOP/10xo4dy403 3kj79u3Jzc3l+eefD1kcdYkFKmaeL1myhAEDBoQ0hrrE8cgjj3D33Xfz0EMPkZKSQklJCc8880xI YzkwcR40aNAhifMll1xyyN/sjTfeyP333x/SFniAgoIC3nrrLZRS/Oc//yEzM5POnTs3+nNsQ5Ll VkWVrLR0Tsk3EVeLZVg3UM6O9vG0btOGT7/4nMTExKptRUVFPPn44yyYO5+5vy3EZrYQE9Q40Yg7 pBzWnFg3Q8eOoWfPnlxxxRUybrWB/O9//+Oi4ecx1BVLNGZycZNj93OCx4kTE9McxbTt3R3/3NX0 MGIpxs80RzGvv/MWL/3reaKW/05H/kiS5tnKOOnKCxn/1pthvCshhAifzZs388QTT3DCCSewcOFC br/9dvr06UPfvn156KGHuPDCCwEoLS3l5ptvpn379jzxxBNhjrppkmRVADD+jTd48N77GelOwH6Y CVZedBabS9ls8hDUdb6fNpUzzjjjoH0+/vBDbr/1NloFrLTwaEyjgE6ORE50O6tqegIE0FlLGeUm 2Kq5SUhPZfO2rQ3SUiIqPP3Ek/zr2Wc52xNPIT7mWsswgkH66XHsM3wkD+zBuuWrGFlWUd4kDw85 baK48967ufeee7nYn1r1O/QQZKKjiJ9+mVNVQ1AIIcTBfvzxR1asWMHw4cND3qLanEiy2sy5XC6e euIJJrw6jrNcsYdtVS3Gz/f2IgKGwSOPPco111xDRkbGQfsEg0FSE5M4tcRBWmU3cykV1QX+PGnL j867VIyBs1ms/DpvLn369GmAOxQHevmll3juoceweoMUqQBJFgc7fKVEOZyMHHUBn372OZf5UrGi 4UfnI/NOyl0uMlJSGVYcRdQBI4fWU8b2NrGsXLvmoGLgQgghRCg1yz7XPXv24PP5wh1G2E2ZMoX2 rdvwzStvc44rrsbu/2IC9OrZk5KyUh544IFDElWAefPmgT9AygELCsRgPiRR9RDkG9teEuxOPvjg A3bl75ZEtZHccuutlCidHbqbjkEnQzxxjNLTaVmu2FuwB4vZjB8dD0GmOkvo0K49fr+fQDCI9qff YweiMO0u5r67m864JyGEEE1Ps0tWV6xYQUpKCn/729/CHUpYLVq0iMsuupi+ezROc0cf1GJWnXxz kA6dO2M2mw/bVd+2bVuyO3dmrrPm4sslBDA5bLz2zltceeWVR5ykI0LHYrGQGBeLw2xhjc1NHh5i MNMSO+tycnBqZkwo5jjKGTb6AlauXYPT6UQBm3Dh548Z8gpFT7ed8W9OwOv1Hv6iQgghRD00u2Q1 OzubO++4g6eeeircoYRNYWEh5w47h/5uJ5kcufu2jAA5FjePPVHzcpuZmZlMePdt9pkPLfmzkXLm 2sv4IaqEmc5Srrn2Wi6//HIZoxoGZeUuog0Tp5x+GtvsFaXK0rCxbfvv7C4r5jvnPkZefwWt27Qh yuHguA4dOfOss3B1y+IzSz4LbWXolWWwduFFKcWQ0waFfD1yIYQQApph6Sqn08lLL78c7jDC6rvv viPeA21xVrtdr6zIucJcznqLB3fAx1/vvp+WLVse8dytWrXCoxlMtRahmxTHua2kYWORw8Woi0fj sNt5Zdy4kK/TLGpv4MABxMfHc831Y7n814qlK81oZDniGDL2Ivr27cuiRYv4asKbpGh2Om4s4ffN P1EebSbGZGWHw0DTy+nrj6Yz0bQM2vn8t0VSJ1cIIUSDaHbJanM2ZcoU/nLDjWRkZuJRwWr3ycXN THMRnoCfMweezoI3J5CdnV3rklKJiYls+X0bsbGx9OzRk4Wr1uLRDO6/+36eeLr5tmZHkklTvgfg gw8+wBT8oxU8uTQIus4/HnmU7TvzMKHQlOIni4+L/ClYSzT82PmGQjZaFbYgdNOj0FBEma2cO3QY k6ZOIS0tLVy3JoQQ4hgk1QCage3bt/OvZ57lPx98SD+3kyIVIMWw0LKy5qmBwQbKKSbAJkeAf77w f6xasYJXx42rVzf9woULefjBh/jg44+qnZAlwmvjxo2cedrppO/x0cvnZBde1rePweV20TMvQDp2 tuBiFnu4iizMlaOGivDxk70U3aIR51e08lroYDiZFVXOs++9wejRo8N8Z0IIIY4lzW7ManNhGAYT J07k1JMG0KVDR35+7wvOdSfQFie9jdiqRBVgHwGWxfjJcfq5/8G/cfPNN/Pa668fVaJ60003VS1r d8IJJzB95gxJVCNUdnY2i5cvY6PDTwFerCi8Ph8PPfYoS6K8+NEptimCGPgrx6gGKz+f7omhuLyM 9F7HsdbmwYQizgeXX3YZ8TGxvPnmmw2yFKYQQojmR1pWj0EFBQVcd9XVLJrzK91cVtrgqGoVO9A6 zUVOlB9vMMAV11zNy6+9Wq+W1BdfeIF77r2X559/nvvuu68+tyAa0RtvvMFz9/+dvuV2lrS0smHr Zk4eMIDCxev4XfOQlZlJwa7dAFiUCS9B3B4PQ4YMITEhgc2fTaM7segYBDAoIcCCKDdZnTvw71de onfv3lKHVQghxFGTltVjzJYtW+jToyc7Zi5ghCuebKKqTVRLCfALhQw860ym/jSDV8a9Vu+Z+YmJ idx0/Q2SqDYxN9xwA6bkOLbhBmDr1q2sWrGS1gErStMYMfI80jIy6HtCP47v3w+f18cJeiw/zpjB 7DlzKDdVvN/VUFjRSMbKsPJYTEs2c/HQEcTFxPLQAw+g64dWiRBCCCGORFpWjyGBQIDsNm1pudND Vz2qxn2DGKyilIWqmPUb1tO+fftGilJEoqlTp3LBeefRKbsDX383mRN79OaC8ng+sxdw7rnnMuur SRynR7HK4SO+RRobt2zGhomBehyp2IipYa6mmyCzo8px202sWruGlJSURrwzIYQQTZ20rB5Dvv76 ayh2HTFRBTChKHZo3H3nnZKoCoYNG8Zb777LHffcTevWrdlbXsLb/E7HDh1okZWJZrPSgWg6uy1o SvHyyy8TQMeOVmOiCuDAxNDyWFq4FZktWpDdpi2bN29upDsTQgjR1EnLahOj6zorV67kh2nTmD3z J/r2P5GfZ/2Pq68fy9uvj4eF6+lKTLXH+tApxE8hPopssC/BRs6mjTid1ddbrYnH42HdunV07txZ xiMeg3r16EFxSQk/TJ/OuWcPY8u2rQzXU0jBykqtnDUOLwmJiRTu2cPZ7jhKCNDmMHV7DxRA5zdT Kf2vHc34t95shDsRQgjR1Emd1SZk/vz5XDpqNO6SUjL8ZhK9MHnWb/weLOOaX36u2k+3mWnjtbDO 6oGgTmbQyvwoNyU+D9lt2tKzd28u7H8C55577lElqoWFhQw+fRBr1qzh7489yiOPPBLK2xQRYMmy Zfh8Pmw2G3fcczdffv0VW35dQarPxvF6NGnlFmYbhQw4+WS+njkDq8lCK78DjZrHPZvRKHOYOOnk gY10J0IIIZo6SVabgGAwyBOPP85L/36BE91RtCP+j40B2GMLsNfr40ySmckeVgT2sdpm5tqbrufT /3zK0j27eenpl7j1tttCsnLU1KlTyVm7lnizXYYQHKOUUthsNgBuue1WMjJb8NDim8FXsT0NGye7 DBYtXcrYsWOZ9MkX4IddeEjBhukwSauLILuDbi699NLGuhUhhBBNnAwDiHC6rnPVmDH8PGkap7qi iMLMBpMbWxBaVdZKDWBQih8rGmtsHtYYpTzwwIM89o/HUUoR5XBSXFoSsiVOPR4P77//PmtXr+Gh h/8uKxYdwwzDwOVyMX/+fM4ffi59vU46EQ1UTNL72r6XNh3aE1i5lXwn7HaVcCVZOKj+b81DkK8c hZS6yhvzNoQQQjRh0rIawQzD4La/3MLPk6Yx2BWDBY1yAsw3l2CxmmjhtuMlyKIoDwHDYJOrkOSo JH5fl1s143rOnDkkJiaGLFEFsNvt3HzzzSE7n4hcLpeL6Oho7DYbHq+XhTaDFl47MZgxoejuseOx 2dgcA/tKS8iOTsJRdvi/NRsayqgosda2bdtGvBMhhBBNlVQDiGCvjxvHNx9/yhmViSpUrDYVGxtL qcfFIlXMZMc+hlx9CfEdWtG1U2cuv2IMRUVFVec45ZRT6Nq1a7huQTRxUVFRXHPlVXi8XjJSUnE6 HBTjr9reFidb1uTwxFNPcvZZZ7HDVcxOPFXbywlQSqDqe4WitXLw7bffNup9CCGEaLpkGEAE8nq9 LFmyhAEDBmDVTIzW04nGjA+dyc59vPL2BAoLCykqKuKss85iyZIl3H/rHXTQHWwzefnHS//HoEGD GDp0KNu3bw/37YhjwNhrr+Xd99+nCzGcSuJB2zZRzgz2cPHFF/PFF19gURoZ1miiMLPWW0icycal wfSq/VdSQuyZfZk6Y3pj34YQQogmSIYBRJDi4mKGDh7C/N8WoSmFTZnw6kFycbPLHMSl6Qy/8Hwu u+yyg44LBAKU6X422MzExMaRlpZGt27dwnQX4lg07JxzWLZ0GeWbcqHs4G2Z2EnDxoY16wAwm0zk +ctxRDnBC8ODyVX7ugmy0u5lyuOPNmb4QgghmjAZBhBGGzZsYMwll9IyvQXpSSlcOWYM839bBEBL Rzz9jDgAFlld5ASKadO3O69PGH/Iefr378+8efOYOmM6Cxb/xifvfwDAbbfc2ng3I45pF40ezVPP PoNb6axR5Uy07eUH+77KhQFM9CCW5MRE7rrrLtwBPygoKCggMTaOIH903iyzubniqis5+eSTw3g3 QgghmhIZBtDI3G43jz3yKKtWrOCXn3+hi99Om6AdBfxgL2afp2KWtKZpZKal84+nn+K6666jVYtM tu3IPeL5y8vLSUxI5Nqrr+a1N17HbJbGcxEagUCA9q3b4MorYE9lDasYq51TfbEYQHG/tkz/30/M nTuXQCDA0KFD6dS2PV22lpOOna24WBjrY+OWzSQmJtZ8MSGEEKKSZDKN7J233+bTcW+S7bFwEUlY D2jcbuMxsQy44YYbePXVVzGZTCil+Oa/X3LpFWNqdX6bzcaUqVM488wzG+gORHNlNpv5etK39OvX j1OMRH7V9jF05LmsmjyTVh4TXq8Xp9PJ4MGDq465YPQo/u///k1r5aQ41sK0H6ZLoiqEEKJOpGW1 EU2bNo2rLh/DwCIradgowc9e/GhU1EpdYCuj1OuhU4cOrFu/PtzhClGt1159lXvuvodOHToweeoU Bp18Cjvz83nhxRe45daDh56UlpYyb948nn3qad794H0pVyWEEKLOJFltJHv27CElJYUzSKYDUSy1 uVhnctGvT190PUgwqHPXX+/jggsuwDAM/H4/eXl5tG7dGqVqXsJSiMZWXFyMz+erqucrhBBCNBRJ VhtRVnoGKbvdeJxmcvGwactmUlNTq933u+++49xzz2XIoDOY/tPMRo5UCCGEECIySDWABlJaWsrT Tz/NunXrqh776tuJnHn3WG577h/s2Jl32EQVoHv37vTv04+evXo1RrhCCCGEEBFJWlZDbPbs2Vx5 6eV06tKZGbN+4srLx/DhJx+HOywhhBBCiCZJWlbrKRAIsHjxYjweD7m5uTz3zLNs35XHzh15nHP2 UG665S/hDlEIIYQQosmSltWjFAgEGHPJpXw/ZQrBQICMzBbk7tjBM08/Q4dOHTnvvPNkYpQQQggh RD1JsnqUJkyYwGN33cdZnnj24Wcyu6u25eXlkZGREcbohBBCCCGODTIM4Cj17duX3Z4yPiK3ajWf /UwmU5iiEkIIIYQ4tkiyegSFhYV89NFHfP755xzYCP3xBx/SzhJLV1Nc1SpUl4y6iM2bD1+OSggh hBBC1I0st1qDDRs2cPJJA0jwQqHuxW63k5WVxbx583j7nXcg4KWLimWp3c2r/3qZ2+64I9whCyGE EEIcU2TM6mEEAgFGnX8B27//mTSs/GZ3E5OaRP6u3ZT7PAAMGzyElq1acdd999KlS5cwRyyEEEII ceyRltVq5OXlceF5I9m5ZgM+e5DyjBhee/ZV3n/7Hbbn5jLk9DP4xzNPcdJJJ4U7VCGEEEKIY5q0 rFbj4gtHsXrSDCwmMy3POJFvv/8OTdMwDIOysjJiYmLCHaIQQgghRLMgE6yqcebZZ7FN81KU7ODD /3yCplX8mJRSkqgKIYQQQjSiZjsMYOXKldx16+34/X5mz/3loAL+Y8aMIRAIcM011xAVFRXGKIUQ QgghmrdmMwzA7/ezZ8+eqmL9P/zwA0OHDiU2Opqtv/9OQkJCmCMUQgghhBB/1iyS1WAwSJcOHSna t48du3ZitVrDHZIQQgghhKiFZjFmVdM0NmzZTM8ePdF1PdzhCCGEEEKIWorYZHXSpEl079yFt99+ m5oaf2fMmMHfH3qoxnMppfB4PPw4ayZ2uz3UoQohhBBCiAYSkcMAfD4fpw4YyPbFK9ml/CxdtpTj jz/+kP10XcdkMlV9feAkKSGEEEII0fRFVDWAX3/9ld27d/PU4/9g1apVBNDp3q073bt356MPP2R3 fj6dOnUiOjqa008/HaUUr7/+Ou3atZNEVQghhBDiGNTgLauGYbBr1y6SkpJqnNiUl5dHZmZm1fed 23fg1NNP468PPkD79u25ZPTFfPHlf6u25+fnk5KS0pChCyGEEEKIMAtJsvrwgw+ydvVaXnljXFXC +dKLL/LOm2/x1D+f5fzzz+fWW2/loosuomfPnsTHxx9yjmAwyDfffMOqlSsZPmIEffv2Pai1tLi4 mFmzZtG5c2eys7MxmyOqUVgIIYQQQjSAkCSrN1x3HR++9wFdu3djyYrluN1ukhIScXs9xERHEyz3 4DICAIwfP56bbrqp3oELIYQQQohjX0iqAdxy++340OnVqxdQ0Qrq9no4Z8hZ2K02ok1W2rVqzRkn n8pxxx0XiksKIYQQQohmIGRjVt977z0uu+yyqtJQS5cupUePHnz88cfMnvkTr77xOk6nMxSXEkII IYQQzURElq4SQgghhBACInhRACGEEEIIISRZFUIIIYQQEUuSVSGEEEIIEbEkWRVCCCGEEBFLklUh hBBCCBGxJFkVQgghhBARS5JVIYQQQggRsSRZFUIIIYQQEUuSVSGEEEIIEbEkWRVCCCGEEBFLklUh hBBCCBGxJFkVQgghhBARS5JVIYQQQggRsSRZFUIIIYQQEUuSVSGEEEIIEbEkWRVCCCGEEBFLklUh hBAiDD7//HPGjRtHUVFRuEMRIqIpwzCMcAchhBBCNDfpmS0p9mhkJtrZsH4dSqlwhyRERJKWVSGE ECJMAml9ydu1m9zc3HCHIkTEMoc7ACGEiDRLly5l9+7dYbt+bm4uWVlZBz1WWlqK3+8nMTERoKoV 7mg/17TNMIwaP3RdJ5ydcsXFxRiGQXx8fNhiqE55eTkej4ekpKRa7e/1eCAOrNFJrF69mpYtWzZw hEI0TZKsCiHEAQKBAAMGnow9vgWEqVe2JG8jbWOSMWl/dH7tKN+HZkBGdDwGBhXBVXw++Ps/VJdO Hi7F/PM51AE3rw76rFDV7NOYdpcX49ODtIxJDMv1D6fAXcq+YIC4tNa12j9giQezA6+KYtWqVQwd OrSBIxSiaZJkVQgh/iQ+IZECIxaV2Alltjd+AHkbOa3UgeWAkVrTKCVWszKg2NH48USYJXjZjodB EfazyEfjG20PZSkDUap2o+wU4DfFMG/BooYNTogmTMasCiFEJcMwOP+CUTz/r2c5qUMsjj2/hSeO sFy1KVER+TNKxYZJaRjuwjodp2IzmTptOi2yWtP3hJP49NNPWbhwIT6fD4CysjJ++ukn1q5dG9bh F0KEi7SsCiFEpSlTpvDjzJ9Ytnw5c3+ZQ8fOx0F6eGKReeE1C9cQhJoE0AkaQcwmW52OU9Zo/O3O pcBXxt5dO7jlvsfwle1lxNAhJCTE8+abbxGbkkXAU0Z6WgrjX3+NwYMHN9BdCBF5JFkVQjQbPp8P q9V62O0bNmxAme0U7t3D1q1bsUXF427E+A4UiclYJDEisG3Vhw6GgbLF1PlYpZnBHo9hj6ccMGL3 MWX2b+gmB1r7s3FFp2MYBluLt3HBhRcxdux1vPjCv6XclWgWZBiAEKJZWLBgAXFx8bz00kv4/f5q 97n66qsZ9+I/ufrqq7j4kkvwlhVhBLyNHKkMAziSSE3P7Ghg6BiGXu9zKXs83oxT8af2Q4uuaN5X SqHFt8Gd3Ie33v2AIWedRdvsjrz99tv1vp4QkUySVSFEs/D6+An4o1vzyLMvk5HZkueee54pU6Yw Y8YMysrKyMvLY9u2bYwdO5ZJk79n965ddDmuK4ZrT1jijdSETByehgZKg2D1b4ZCdp241ngdmcyc MYPtvlRuvf1O+g84he3btwMVY1wfffQx2nfoxKJFtZ+45fP5mDdvXkOFLcRRk2EAQohmYfv2HRCd jje+LR7XHp546X0s+DF0P66iXWgmE0ppnHPOME4/7VQ8Hg++QJDVO7dCbGajxyvJ6uFF8s9G00zg d4G5buNW60ql98ac0h1ltqEntGPFhl945JFH6dWrJ6+89jo7S8BrmDhz8BBsdift2rWjsLCQfzz2 MJdffvlB5zIMg4kTJ3LhhRdWfS9EJJFkVQjRLJx0Yj9+XvM9AMqZjM+ZjK9ym5EWIKg08JUzcf52 HKXr+W7ilzgcDqaffgZ6ao+IGBvoo/7dy8eMQ8vKRoQYZaa0bCcmR0KDXkcprSohVpoZf9oJfDl9 IV/8+Bs+SwtURhs0I4jLtQe32c7i/FIgixtvuYsxY8YAoOs6mzdv5pLLrmDxovkAvPPOOw0atxBH Q4YBCCGahQEDTsLu2YlRTRet0swopaFsMZiSO+OJ68KgQYMYPnw4WmKHRk1Udb0iIf3zBKvexLFJ LyMPT6PFEtnC/+ahOu0CFlTRxka/rrI48aWdSCC1H1pCW5RSKM2MFp2OssejYrIqqg440gB4+OFH UErx0suvsHjRfNpld2TZsmVcd911jR67EEciyaoQolk455xzOH/E2dhrUTtVJWSjEtqxd+9eArHt GyG6I0vFRm/imE4BLoLhDkccRi/i0D3FGJ594Q4FoOLN2Z5V2H+fQuyeX7n2glP5/fffefLJJwC4 9pqreffdd1m9cjk9evQIc7RCVE+SVSFEs6CU4qUXX8BXuO2IY/KUUihH5fru1qhGiK52ehGHXTOT G7aCWpEkAscAABY0kpUVwtC6+md6yQ4smycxtHcmP/3wHXvydzH+9XG0bNmyap/evXtz7bXXYreH YaU2IWpJklUhRLORlJREdEwM+EqPuK+yOCu+CEPpqpqYlBahaZrYLy1oQvlKwhqDXrgR596FTJsy mUnffkO/fv1qPZzF7/czc+ZMysvLGzhKUR8ej4dvv/2W/Pz8cIfS4CRZFUI0K92P71GrclTKXjFB xijd0dAh1YnNUGzS3ASbe8oawbdvQYEeCNv11d51JHo3smDeXE499dQ6Hbt8+XJat23PyIsuJyMz iw0bNjRQlKK+7v/bg1x29fWcfuZZVY8ZhsGnn37KihUrwhhZ6EmyKoRoVm6/5SYcpTlH3tEehz2x FdjiGj6oA2haxdPy4VZoGqonU0qAD8llo5LhAJHIjMIIhidZ1Ut24Cxbz+JFC+jSpUudjl2zZg1n DjmbfFMbAlFZtGnTlqysrAaKVNTHr7/+ynsffISz31h27MhlypQp9OxzAlHRsdx4+30MPOV0Jk+e HO4wQ0aSVSFEszJy5Eg8pYUYR2j5Ukoj2OpMtOi0RoqsdqxoXKJn0IMYfjX2UEb4WvDCJYIbVYGK 39GR/r4agl6ahy1/Pt9O/Pqgcam1MX78ePqe0J9iZwcA4vXdzJg+DYfD0RChinpwuVxcfNkVWLuO wpLQElNKZ8aMvZVt1u7EDnmM6EEPYet3PZddcTWzZs0Kd7ghIXVWhRDNitlsJrNlK3Z49oEzOdzh HLXexFOg/ExiNxcY6TgwhTskUSkcyapetAV74VK+/25SVdd/fn4+ycnJVa311dm5cyevvvoqL782 Hn/LIaA0rL//wE8L55OamtpY4Ys6uPf+v+G2ZWDP6gmAveeYQ/axJrVF7z6am265g/VrVzZ2iCEn LatCiGanW9duEVNa6HBq03p4tpFCFGZmaHsbPB5Re0lY0b2lGEbDL+JgGDqmgmUkenL4efYsTjvt NNavX891N9xIRosWPP7Ek9Ue53K5mDp1Kl27Hc+/352IL+MUlD0OvXQHdquFE/sPIKt1Oy6/Ubhm WwAAIABJREFU4qqqZVxF+M2ePZuPPvkUa9cLj7ivKToNt+fYGCokyaoQotk5oW9vNH9xuMMIibON JHbrHpapkmY16erPiyZEkgTMYOg09MIFhmGgr/2KFFMRP8+exdy5c+neqy99+g/kp01lRCe1ICkx 8aBjJk2aRHqLlsTFJ3DpVddTEt8LI6M/yllRqk1pJlzeAJ4Wg9jtOJ6v/7eKLsd1Y9WqVbWOy+fz 8cknn/DQQw+xevXqkN5zc1ZWVsalY67C2n00mq0WJfUUGPqxseqdDAMQQjQ7w4efwz+f/zf+pK4o c9OuL2nHzFBSmMFeciijlXLS14jFcgy3RRgcfgJaJPBSkag2+MpnW2eg+8rI3eGhe4+epHU/mZie o+h+UV9QCn/RTt55/wPOH3kefr+f18a9zptvvY0vfSDquDTcSjvkr0TFtyMY2wpVuZSr7kjEq2xc d8NNLJj7yyH3VFBQwF333Mfs2XPYV7QXi9WG3+dFcyZT7vJgt9vp2rVrw/4cmonXxo3Dbc/A2eL4 Wu2v0ND1yP1/UheSrAohmp0+ffpw/nkjmDhrOYG0fuEOp1p1eYnJwsFgI4mlFLPCKKY3MQ0WV6SI 5JZVGxpKM2F4S1G2hvtdBMryOf62N4jO7IhhGIckkq0vfpjdv3xBdseOBHw+TDHpqFZno9UQk9JM oP1p/HNSJ9bkTOOxxx7DZrPRtWtXRo4cyccff8xtt9+JL6oVgZieEGvHawQBhbJGQcEaNm/Zhtvt pqCggAULFvDb4sX06tmLSy+9pAF+Ise2hb8thcSOtT9AqSMugNJUSLIqhGh2fD4fEyd+iy/9pIhr f9SPstsuCwf78OPWDGz6sT/ZKpJbVjU0ojQr7uKtqNTuDXsxVfEXXF0rrlKK9FMuIbX/hWz4+nkK 1yzAZI2u+yWUhjdtIC++/QX+oIKyHZiUgWaNxp02EM2ZUu1bBy0qlc+++IL//OcT/D4vzrgU3DgZ 3H+lJKt15PF4WLJkCebW59bpuMYYN90YJFkVQjQ7BQUFBAJ+DE8xprLt+OwpmBKzwx1WBT2AAvzo mOo4w38rbloazaPUUOS2q1Y4LRDN9zuXopI6oUzWsMaiWSx0GP0Ai548Hz3nG1R8W4jNQjmSaz1U Qdnj8NoHABVjZYN+F1gcaOrwb/eUM5lgh1GgBzAH3PjMTrTSHQSCwZDcV3Ny9XXXU0wc9qS2tT9I acdMy2qkNSoIIUSDy8zM5L1336GlbS/B4m3oufMI5HyLnvM1wcLwrumuma1Y7fGsVGV1PtZlMkg2 mkMbROS/AGfhqCgZFfCEOxSgYrGJPg9+QavBY3CYPRhbZhBY9R+M7T+jF2+rUwucUhXd/KqGRPWP fTWUyYqyxaFMFlAKt8tVn1tpdnRdZ+qUKViPO79imEZtKXXUPTWRpjk8qwkhxCGWLF1Gfokfo905 mPUAxr4tGCYbeu588LsxpYW2+1Z37QV/ORVtgqryU+XX8MfjgN+ewF5/PtSxASpgGNil3mrE0JQJ I+hrkFZgI+AFPYgy1f5l3Gy102LgKFoMHAVA8eZl7Jw7keJNC9HzFqEy+oJmQTmTjnrioeEuxPT7 TEwmE3psawKx2RVjJ4u3opKPQ0Wls3z5d/z1r3/ltXFv0LtPH2bPqthfVC8nJwdMVkzOxCPv/Ccy DEAIIZqwOT/PxRfXCc0WC4ByVLwQKIsTdv4G9UxW9fJ89D05GL5STIaPoKfkjwTgoK4549DHjCB7 gwYGRp0mEtnQ2K18zWIowF58fG7addjttf2p1bzf/q3GofsqdVADb3Xn0Q0dFfTWMpLaMQwDtXsJ gfzVRLdoT1Ram6M+V1y7nsS164mu6+z46WPyfv0KMAh4PZhjUiG9L+oIC2cYrr04ipahma2gNLz7 8pgwfhwnnXQS77zzLq+89jpBZSUzNY78bVMwWeyUlJfw/PPPAzB/3jzWrFlD9+4NPLa3CYuNjSXo 91Y7ia4mCsUxMgpAklUhRPNks1kra2EeTEWnEwh46zRGStd1NE1D13X0HfNRJdvQgwHMcVno0RkY ZhvmuFaoWk5u0XUd/+pPmavvo7cRW6vVqXR0/OgUa8E6t8g2RbGYOY34aida/fmRw39vHLL9SMdW Te0yDr+PQUWi+iOlKM1yaPD1YBRuRN+7nuNveY3ozDrMDK+Bpmm0HHwVLQdfBYCvrIjNE1+maMNP mDpdUNF9f2AMnn2ozdNQacdjde/i7luuoW/fvni9Xnr27EmLFi1wOp3885/P0q5dW2666Sb++vyT dOnSBYvFQrt27Vi7di3Lly/HYrFIonoEH3/yaeUbXYO6jNY2dD82W9MuzbefMo6V0bdCCFEH199w E+9NXYYp5eAakIahE1j+IabO56PZ4wHQ3UWQ+yuGrwzDMNCsToz49uAvR5X8TtBbjskWjR7woqxO VIsTUdHptRrTdzh6eT6m7b9g87q4zMg4YgtrMX4+J48rycKKxgL20Y1oYgltshQJllBMnvIwxpwR 7lAO60NjNwW2aFT2sHr9HRzICHgJrPmCjpc9QnK3k0Nyzposf+UG3EV70bKHo8w2jKAPe8EigmW7 cZdVLKpx+hmD+fKLz0hKqlhUYNy4cdx2220YhsH27dvp2q07mB3YzPDGuFfp1asX7du3b/DYjxVL ly6lT58+xPUfi6Nl7zod6yvchnXtpyxaMJfMzMwGirBxyAQrIUSzlJGeCgHfIY8rpWFJ6UQwZxL6 2v8SXD+J4PrJqKgUVJszMLU7CyOubcUYP/ceSO+NucsoyOiHKXsYWseRaDEt6p2gaFGpBDuej8sI UMyR15mPwoSGwo/OAlXMOkr5ml0RXeLpWLUiWMIu3Y9qOzhkiSoAfhfoAQj6Q3fOGnS/bQKKIIa7 Yjlfbe8azjypG0t/W0BeXh4bNmxg1swfqxJVgJk/zQIqysONveEmvDHZeFoNoyi6G2Nv+yvdju/J l19+2SjxN3UFBQUMPmsosf2uxJ7Vq87Hm6OS8UZlkd2xC/fcd38DRNh4JFkVQjRL+/aVgOkwrY6Z J2HufjlknICKycTc+QJUixPRolJRziRMacdj7j4GLXs4WkJ7lC0GLb41ypEY0uTEKFiFU5mJq8WI LQ2I0Sx8yU42Uc5QUvChEzgGk9VIL1vVXjlRGFVJXsjYYtEyerPhy+cIeBpnRr0e8KNMNgw9gKl4 E/969hk6depERkYG2dmHlnt7+aUX2bZtG1arlfJyF0FLxZhwLbYl7ozT8WeczOVjrqBL1+OZPXt2 o9xDU/X888/jM8XgbNP/qFZD02xR2HpegaXNyQT8jfMGp6FIsiqEaJaK9u0D7fBJoNLMaPGt0TL6 VLsKUWPUzrQUrKavEVurSVYaGqP1NHoRxyVGBi1wEK1Z2Ia7weMMh0hOwaM0MwOIJrhlJvq+LSE7 r9JMaLGtKtZ7b4SSRHuWz8QIeFGFa9H2ruHUU0+hU6dONR7TsmVLWrVqxQcffED+7l0VvQ8H0GIy MDqOYoMrmXPOvYBux/di+fLlDXkbTYrf72f+/PkMGzGSl15+FWtm3br+q2NOasf3U38IQXThI8mq EKJZKiouPmTiSCTRvaX4Ax7aE1XrYzQ0ehGHtfKpPVt38JsqRo/o1K7uIr1lFWCgKYEziUPfPi+k 59VLthOV1hqzs+4rUdVVco8zievQD3/RVszFG3jyH4/xyGOPMX/+/BqP+9///setd97LFl86pB66 jr0y29Di2+BrM5x1BYqbb7m9oW6hScnJycHhcHDSSSfxv+XbSRz+NLbsQfU+r+4pISkpkaKiIoJN dEEGSVaFEM3S3j17IcwrC9VE37WUNM2BqR6pWV/i8GOwRJWEMLII0QQy1ixlC/2YYZMVI3jkMcyh oGkaSd1OhqCfyy65mMuvuoZ//d+LLF68uNr9DcPg9jvu5KOPPkKLTkNLaFdjD4QyWVBJHVkw/1cK Cgoa6jaajPffe5e/DBvIiR1bYY5ORrOEpgSdo1Vf1m3aTlJSEuPHjw/JORublK4SQjRLG9bnoFJP C3cYh2XZt5V+Rs01Lo9EQ2Ookcw37KIXsXVKfNeqMpYTziT3j8EP+4frqcp/C3Uv6YYtPGGFW8CD ye5stMuZHTE445NJTk5i47o1xCYkcc455xyy3759+3jzzbd47dVXGDRoEEYt/9aMos2cccZgUlJS Qh16g1u1ahW33HYni39bhDMqmpiYGGJjY9ENA7fbhdvlxuUqo6ysjKioaEwmEyazGbPJXLUIQiAQ wO/3EwwEKCkpZtLfrmBHQSGr94Zu+I4yWYg69X7Mu1bx1nsfcuutt4bs3I1FklUhRLNTVFREaVkp ZDV8V+rR0H0uMHRiQ/AUnYINA/Ch16pe636FWgBrUNGD2HrHUBf72yEPHLpgGBXVTY3K7csI0orm mayaAmXY0ls1yrXK8zaS/8Mb9OvZjQlvvwvAc/98hrZtD16fPjc3lw4dO2GNTccel0pOTg4+lVar a6iEdsydN4W8vDxatGgR8ntoCD6fj5v/ciufff45/oTjoM1wfHqAfUEvRom/4t2VZkJFWdC1Qozi +ZSlnwEYFbWdDb1yERADlAbKBEaQYNEkYhw24px22BXasebKZMaW3o2cqZ+Sm5tLVlZWSM/f0CRZ FUI0Ozk5OThjk3EdxQzbhqbrAUzrv6WlKZqoYGieojM0Bx/rubQyRXF2sObW2s248GoGGBXlsOoy ZraxrFcuHKp5Ls9peEsx2RvnTdaeuV9w+aUX88FHn5A+5Ab43/tcfdVVB8djGHz++efYYlNxZZyG defP5OVtxNz1lFq1rSqLE2tsOvPmzWPUqFENcyMhFAgEOP+CUcxetBZ/23NR5gPfNMUccs/KW4ah NJS15v9Hev5KMhLj6JPdkq8XrEL3h7aSRNC9j6CrCJPFKsmqEEI0BXa7HUOPzIkGRv4qooI6ZxgJ ITvneXoqpQT4LLgDNwlVLaw6Bh507Gj40HGjM4s9oEML5WgKw0KbHSO5K7sXfo8jqQXJPQdjjY5v kOvoAR/5K39hoamc5BNH4stby+233YLdfvCKSJs3b+aBBx/CaD0YDfCm9MMc37Vi2eJaCiorRUVF Ib6D0AsGg1x8yWXMWbQaX8YpKO3Ib5iMsh2YnElH3A+zE3dZxXNSQrQDw++pb7hVvBtm4stdSPme XB586O/0798/ZOduLJKsCiGanZKSEjRzZHYjW4s20NWIRgtxqhiDmRiTlU3BcnxUlD3aoNwUGz5M KAIYmFBkE4UObDDKaBGxXe3HVnWDutDiWkGrU9j244dsnfoWve56B0dK6FvJAu4yzDYHuS6NVsNG sfy5y7j923cP2a9iQQCFFl3R7a/MdjDXbYlPs+FtEiss3XLr7UyfsxBvi9NqlagCYIsnWPw7JsOo uVaqEcQfqEhWY+129GoWLDn8oX4CpbuxxFf8Hfj2biVQugtLfEtcC97EW1bEgw89yF133kliYmKt zxtJJFkVQjQ7+fn5GKbIS8T0gIegt4xsGqaLrlXQxq8UEY2ZKEy0Mmx0JwUXQUoIkICFJCpmb7sI EiAyW5+bOy2+DVp8G9i1mGUvX09K7yG0O/9uNC10BX6sMYn0fOALlGaiZNtq2rRrX+0kqC1btuCM S6pXNV/dVxbx3dJfffUVH//nM3yth6FqqM/8ZyqxA/qO+RD0VpvEG74y2LuWYMFa3rh9NAAxThtG HVYpcy+YQHHuGlLP+yfurQswfOWUrZuOIzqe8eNeYdiwoU1yAtuBJFkVQjQ7+fn5+InAGquaFQ2N ZZTQjRiiQvwUPYBEsnDQAhvmAyoXRmMm9U+tqEnKSpHhDen1RYil90GLzqJg6U/EtDyOtH7DQnr6 /a2H7vyt9O3Ro9p93nv/QwLWWnRzV8MwDKwFi4hx2mjfvv1Rx9mQ9uzZw01/uZVp02fgTR9wFD0y lROqDlPCS988nXaJdl568GoGda9YESzabkOvQ7KqAhVvFfb98Dg+rwerIxq7w8FL/36Oq666so7x RiZJVoUQzc6uXbvx6uaIKzStaRrBrP6syF9BYXAfw44wGepotCI0tRtFZNCi01Apndk2dQJx2b2w J6SH/Brewp1YWh/aKrhx40befucd/G3OObpBK74yzK6drNu+Daez8cpx1cWwEeexclsJwdbnoB3F IiJGwVo0e9zhl2HWAzxz+ZCqRBUgzmmvdcuqb+8WbFqAQCCAyWRi8eLFeL1eBgwYUOdYI1mkPVcL IUSD2567IyKHAQCYkjthOFOqVqESh1I051Gr1UjtCTFZLHvxOjZ/93pIT+0vL2bPwsk89vBDh2x7 99338Ee3rtNkqv0MdxHWPUvo07cvwWCQZ555ltT0Fgw8+TR2794ditBDYuuWLQTN0TUuzVwTVbwF ldih2m1GwIMe8JIce3B1h1iH7YgLPxh6EN3nxrN9MWeecXpV3dY+ffocc4kqSLIqhGiGduTtRJkj t4XR5iqgZTByV9cKN0lUD6aUgowTUVkns2v+ZHb/Frp14Is3LeXEkwaQnZ19yLY2bVpjN9X9t2EY BvaC+dz3lyv4+r+fc+FFF/PUS+9QGNuH3zYUcM+994ci9JD49efZqN1LwbPvqI43lBn06hNPvWgT LVMSOLHjwXVz46IcGNUco/vcGIaOYRh4V3/Dnu8ewLp3JQ/+7a9HFVtTIsmqEKLZ2blzV51nLDem gM9FesTOxA8/Kal1KKUUWlwrTC1OYNuUN0J2Xn9pIdnt21a7rV27dpiC5XU/qXsvTqvGY489xuLF i1mwaDH+jIFoUSnoqT3573+/IBBonCVlj6S8vByrMxbsR1kiLCoV5aq+pVgr28HwXoe+CYiLOrS0 XtC1j90T76V0xURKZz6Js3wz63PWsWlDDt26dTu62JoQSVaFEM2KYRhs2bIRZY8Ldyg1MLDI0/Ph SdPqYanYTALe0K1+ZHLEsCNvV7XbFi5ciFeLqfM5jaAfk8nEjz/+yJgrr8aT0KNqMpcy27E5Y9i0 aVO94g6V/Px8LM64mstO1cDwuzCq+b9suPYQLN3NHcNPPmRbvNMOlS2o+/lXfMLgIWeREtzOA/fc Qe62LbRr146EhNDVY45kMsFKCNGs5OXlEQzqEMHDAMSRqCaRr7qMIKCjl+Y13kX95YBB0O/HZKl/ xQvXujlceMe11W77Ze4C/ObYOr+tUtHpFHiLGHXJGPyxHdDiWx+03eRMZPXq1XTq1Okoow6NnTt3 8uWXX1KftnwtuTPBTT+gPMUHv0HetZiLT+pG65RDk01N0yqWYQ36wWzFX7wT995cbr7pH01ila+G IMmqEKJZmThxIqa4LIIRuNSqqB2jSaSqMNlcDAEw717QqNcNoijZuoyEDv3qdR7d72PvhmVcPHp0 tdtHnnsOPy95ES8d63RepRQkH4cv+bhqt7sMB6tWrebCCy+sc8w1MQyDnJwc3G43ZrMZu91O27Zt MZsPTYW2bdvGSQNPodDvJBDV5qj7ObSoVLDHYJTnH5SsBl17ueGsEYc9TimtYtyqYcG7YTpXXDaa 4cOHH2UUTZ8kq0KIZuXNt9/DY8+UTvYmTDWRUatxJiunXXcPJ57fuLUu37ptFAULJtc7WS39fTXZ nToTF1f9kJlRo0Zx5113YyT3Qx1FWafDCSobeTt3huRchmEwbdo0Pvviv3z33fd4fQHMVgeGoaMH /fjcZTz894fp169PRZe/xcKKlasY9/obeGI7QYsu9X6uUBgYB6x4ZehBjICPXm1bHPYYzWTGX7gV ozSPNEsJTz/99CFL3TYnkqwKIZoNl8vFmtUrUV0uDXcooh6aSstqQFP4Qzh+tLYGjB7LpBceRtf1 eq1q5dq1hdP79Tns9uTkZHr37cfC7dtRCe2O+jp/psw2tueGZujE3r17GTFiBCq9Dyp5INji8B3Q q2L4ynjutbdR+niwxaIw8BkWAumnoRwhGg9qGKAOWJ7V70IzmbFbD1/x49FRp/L4l2/hcEYxecGv pKamhiaWJkoaF4QQzcbq1atxxiXXfl1vEbF86JQbwYM+XJUfbiOIp/LDa+h4DR1f5Yc/BB8HTnyp STu3wfyv3m/YH0Q1cubNJCa7T72XXzXZoyguKatxn7HXXIXTF5pW0P1UVBo/z5mNruv1PldSUhIW qw2V2AFljz9kopSyRuNtMQhP1hA8KSfiTulPMLVP6BJVwDB0OPA5J+irdujBga45oy/oAdJSU+nc uXPIYmmqpGVVCNFszJnzM0HLUZagERHDQ5DFegmL9ZJqtxt/+i6U7bA6cJwphiEkYjvcqkSVduOn 59kXh/DqtRMVl4ixq7De57HGpbB+8cwa9xkxYgS33n4npNX7clWULQZDs7BmzZp6l2VSStGp83Hk 7N2AnhSmEk+GcdCiAsq1G5ul5jfMmqbRr2Mrhl7c+H8/kUiSVSFEszHh7XfwOLKkS6mJc2CiI1H0 pvHfeOzDxwyjkDeC2+lvimc9LvyGgaWyxS5F2RhADHHKgsthJbFFy0aPMblVNmsX/Fzv88S2PZ6V Xz7Lpk2baN++fbX7JCUl4fO6MRnGUZd3+jPDMPC5y0hPD83SsR998C4nnXwawcSuIYuxLgxDP3i5 1fKdXHny8dXuGwgEGPPyZ3y/OAfDMJh5f+QskBBOkqwKIZqNE/r15feZK9BjM8Mdimii4rFykZ7O NlzMpxi7oXGcHkWgsv12m/LwjrGD40wxFHndZPc7rdFj7Nh/ENPf/Cdr3ryLNiPvxpnW+sgHVUMz mUlodzyLFi06bLJqNpsxaSYwgqDqn1IY7iIM9x6iY2JITk6u//kMg5dffQ1Dmahocw9DsqoH0Tf9 QFApFBqGofPGj7v44OeVWM0mrGYTdosJh9XMvjIX+W6FqcO5mLZNx+PxEB0dfeSLHOMkWRVCNBv3 3HUnk74fjifcgYgmrzVOWgedhzx+vBHLXnxMDxag2S3k5awgNnlIo8YWk5TKXyZ8xy+fT2DF63+h 198+w+KMPapzGd5yUlJSDru9tLQUpWmVyWD9GHqQQM5EAPoMPafe5wP4/vvv+eKrSfhbDz24dbOR 6HoAI+jH3Pn8iklWehCMIIYewFP5QeWHEQyAPYiWkQ1mG7oexFrDJKzmRJJVIUSzEQwGMZlDV2JH iOokYWUwyXzt2cXU15+m04DBjd79HJ+eyYg7n2Bv7hZ+e+YiDL2yVVEpQFV8qvxeVT7G/scOYAT8 OJ2HJuX7bdmyBUdMIu4Q3J9Rnk9yaho333gjt99+W73Opes6L738Mo88+jje1P5opvAkfUbhJjRb NMp2cPmvI/20tILl9Op7ArGxR/cm41gjyaoQotmwWq3oQX+4wxDNQAo2rqAFX5TvY8/2zaS0qr4b vaGNvPefTLjlfPwxHdBSOldM9sEAQ6/8uvLz/sf/xNg0pcaVpH7++WeC1vqPHTYMA610K2Ovu44n n3yiXufKzc3l4ksvZ8W6LfhaDkGzhS/hM4q3YarjsCPDMPDtXMbExY248lmEk3kGQohmo0OHDrhK CitKyQjRwKKwEKvMbF4yN2wxxKdnMnjsfVjKtmBoZpTFgbI4UdZolC0GZYurKOnkSEA5Eg/6wJ6A 2WKlqKio2nMbhsH4N9/BY8uod5zWwpW0joe77rzjqM+h6zrjx4+nZcuW/LalHG/WmagwJqoAmr8E w1n3iWKaZmLQmWexfv36Boiq6ZFkVQjRbDidThISk8Bd/YuvEKGW7jbYuGBWWGM47tShZLTvgHnT t3U6TikFCR149p/PVbv9888/Z2vuLlRc/SseaCVb+W7SxKOuALBy5Up69T2Bvz5eEaue2CUsY1QP pOsBgp4ylD0eQw/Uuj6vUgrV5WI2FJr4y61Hn7wfS5RR25+eEEIcA1599VXuvv8BlC2eiu7Qiu5P o6orVK/sDdUrFp5RCpQGSqt48VMaaKbKrw8debb/KbXihVIdsM8BX+9v2TX0P2Ko6p410ItzSTM5 MFW2Jxx4lYO/Voc8BhA0dIoJoNXixVr9qQ7p/s5gXzBADCYuoP6tZqH2LbtoiT0spavqqggfX1v2 csFfn6PLKWeHLQ7DMHj2vJ4Y2eeh2WJqf5yvHMvWKZQUFx1SyP64bj1Y70pFq2eyanhL0TZNxuUq x2Sq/UQtwzCYMWMGjzz2D1asWIlqdQqWzN4Uz3wasyOGhpz5b0RloGX2r3EfXQ8QXPmfygMq/68D Vc8F+59DdB1MZjSTFVNMBmQNrDjEW4pjxwwK9xYccRGBY13zvnshRLNz/vnnc9/9fyPgSK2abHLQ 56oks+KFxDD0ihcaPYhhVMzkRdcrvq5ujF95AQmeffSyRmMAulFRln5/EqgDJkBDoanKzyhMlfNb TChKbLHEKhP7X2z3X0U/4Lv9jxnGHwlm5SNsCXgwdINeeu1K3qgDPvanwDn/z959x0dVpQ0c/517 p2XSE5IAARJ6700FLCDYC+q6uq9rXXVd+yqu69rbNnftDRWxd1QEsYBSRJoKiKh0CIQkpLep997z /pHQlpLMZCaZkPP1ExNm7j3nzGRgnjn3nOehBgO1XKKpUnEwIujmi6n/bNlg1bIwTTPkjUbCEY/d ncySJUsYN27cnttnzZrFtrztiG5DmzYuw4+zYCH3PfxwowNVr9fLo489ztPPPk9ZeQVBwyL+qD+i 2V0AJAy/GBmMXplbaQXx/PQREoGePfrQB1oWSBPb4EsRQtRX5LLqd/+be7MAFP6A5a+Bdr0IFqzE Xh+sYnNhag5efvllrrzySqB+k2gIAf2RQgWriqK0Kbt27UK3O7Ey+iFszoi3bxb8QPugl0sTWm5G cranlAWBGnqa8WG3USgClEt/BEfVdvUmkWUl+RiBALYWSkW08I2ncbjisMJ4zXvs7Xj9jTcYN24c pmly//3388ADDyIc8ejbvjrsuVJaYHNDu37IPWmagnuCNVm1nWNGD+WWW/7cqLHMnTsKTMmTAAAg AElEQVSXSy6/kkB8NnGjryGlsoCSb1/bE6gC2FK7hPwYQyU0O7U/zUAkZqMldTr4QYYHNNueTBB1 5W+1/apZAUhXClJKRHpf2PkdVu0utPhMhG7Hn9SL227/Kzt25POvf/0Lu91GVdXBK7cdyVSwqihK mzJ06FCOP3Ysn6/ehJ7Rr6WHo7QBW6gltX2nFgtUpZQsnfEKZvZxYW1UsSzB1OefZ93qNWzP34FR VsUQGY8WEBCoPOy5VdJgA/loVTsQmo7QdTTNhtBtCN0OdhvfLF3BpFNO58nH/oPNZjtoAQIpJbfe 9hdemPYaiUdfTlrXkQAEKwvCeERNZ8/sjT2+Haa/EjhEsBr01D3GxqotAmkh8xZhdTkWe81WZHIv qm1x3H//fQBMmXJ30wffCqlgVVGUNkXTNCaffSaLVj1GdOYNRURr0SutXyp2qst2UbR5HVndDp0G KtIs06Bg48989sxDCN0G8ZnhNSQEicJOyvKNZKLRkWSE3rj1oJUyyDbpJ/fqNw89TiPA6jWfMnjI MAIBHx+8/z6TJ0+mpKSEF16aRlFREfn5O5m7+AcyJ/8TPS42co/qCRlYlVsgo//BDwh6ECEsu3B6 d9BzyDBW/7gafcvnjB5zDN8umY2uaZxxznlc96c/csIJJ0Ro9K2LClYVRWlzevbsiW7URLEHFa4q e7XHRZdADe/efx3XT/8y6v1JKXnzb39gy48rsDucBF0ZiO5n1V+GDqtFkjU7XTl0cYBDEY348KbZ HKQMPRtXxwGY/houuvQKjnn+BRZ/s5jE7qOw3O0RRoD00+5Bd4Q+hmhx9DqZwNLnMNa8jtbjVLS4 tP3ul4avwWBVWgYy6EEGvQifpHevcWRlZXLF5Zfxm9/8hrKyMuLj43G5XIdt50inglVFUdqcn3/+ GcPW+B3RoWrpUFXGwiCU/fSS8XwTCDRLX2X5W8n7eSWi1zlYDjcR2Y4jiPprypXVAwDH5H/yY95K Ol5wQczMoh6MZncR1/sUatd8gLnxM+g6Hi1hn9RbZmBPBhApLexlP2G3PBjSRtASuGU1nvICjIAP TdM47ewLeP7Zp0lJ2ZvlIj09vbkfVkxSwaqiKG3Owm++xaslReZNPFY1b3VPpQEaYAT9dRtpol16 VYi6NBH+coiJmcjQolx7YgYp/SdFaSyRIy0L/5YFiLSeCN2JuflLREY/yBpSl/+jthCzthQq83DW bGZI785ce82fKS8vZ+3atWiazsMPP6RKqjaCClYVRWlz3O44hGVEp/EjKEisxGA5DRdQMJAYSOxo sE+aLrnnT/vnhD143lix5769qbj25oDdt81KglhIajEb9Ti6EEdOGJewI6kjTsxgNaU7ttKuc9eo 9pWenctR51zK8k8/xEoMrdTnQTVhRvUI+utwgMDGL7H8NWi5E+s2jaXkIrfNwyrfDCm5yJoidLuD 3vElXHD55dx4ww0Eg0Fee+11nn32WQCuvPIPDB48uIUfSexTwaqiKG2Ow25vdDWZcBwJV+A7SCfl ukFJIwLCaiuAT5p0sbvrqu/UF1OoCz7FAYGrlIDYu1yh7lZrz3H75XwV1LfH7lvIlfF1xzRihrLc DFBEFTlmywarGhrxNieFG3+OerAKdc+jKSMXLIojOuwMnTQCeLctQ+95Glp9KiotLhWr1znIjbPR gx5EXBKYPtLS03jowYe477770XUdZ0o2WvZorPxlPPf8VJ595ukWfjSxTwWriqK0KVJKPp45C5EY rdmMI+NNPZc4cs24Rh37C9Wst3m42BZeqcxoWiWrmW8dPr1ScwkKSVJm9PPvlu3MY9mM6ciOYyL0 agz/49eR8bfhIIRWl6c5UAv7pDPWNA2kAQkdEDnHIQ0fS7buROSehHClYFZuQ3i2kGnlM3XmTM44 44wWewitScsWzlUURWlmixYtotYXQMS1i1ofMTGz2oyD2L+ClnIoQcNAj3DZTMsw8FRVUFGUv+e2 Td8twu5OREuOfnL8Fidli7z2Avnfo9mdaKn7z5JblXmY/hrE7jRhuhMRn4mo3oFj80wGpXt48al/ k7dtswpUQ6BmVhVFaVOeeuY5PHFd0KK4ySUmZpOaeRDqMnHDMnyS12+6EJuuowmBEBqapiGEhtC0 usCr/gv2/rz7y5IWlpR7vsz6hRW7Z536H3cqms3GL9/OxUgbGDsbCKMYTRYvfgXZAq89afixjCAY PjSba89ttoIlDB81mtU/zceuaxhGALvNxplnnMGUW19S61PDpIJVRVHaDI/HwyczZyK6RXdGw2rh wE3Ncsam8TKNt0U+18Zn0V53YCAxZd3mNENKNCGoK8hZ/32fP+sC7GjYhaj7QmAXGjbq1u7uMPxM WfgZfmmh9z0P3RnJ1GxNWwYQzdejHpeE4W3+8qPOLqMJFqxGlm6ArIEASF85UloM6N+XW26+gREj RuBwOMjOzo5+BogjnApWFUVpM3RdxzCCEEoJxFZKvTXGnjh0MnDyg+HhT67IpivqZHNyXnw73qjZ Bfb4hk8IUbivJ8nezXHRoLsSWiRYFTYnzk7D8W35BislF82ZiJbQHqvrqbz9/kdcftmldOvWrdnH daRSa1YVRWkznE4nAwcNQS/5MarZANok9Xw2ytEylYWecnYakS/2qwPOuJQmVKo6hCb8aqP5qpCm gW/XJlrqo5m9y9E4OwyErXurkglXMnanW/37EmEqWFUUpU358vNP6dlOYCtd3dJDiZoWqWClpnIb JR0H2cTxdE1hxAMaCzC12LpgWpeKLDovjtq8lYCIfHDeWGYA01OO0Pa/UuOvLqV3794tM6YjVGy9 qhVFUaIsPT2dr+Z+QfeevTHcnRDuyGcFaLgaejNQwSMAhZafUtPHVLa19FD2kBJcfsFcbwUT3akR azdZ03EFvER+zjb813M09+r7Cn6uK8dqNa44RCRJM0DNsqkgNOh68p6/btLwIYSgXbvoZRtpi1Sw qihKm5ORkcFj/32EG6fcha/zpIhvfmhrcWIMhOaH5Meiq57ACWbkgsJI2IaXaTVFfOwr47KELIY7 Eprc5kBHPIHqIizLarnZxv8RzddGoHgzjuT2BMrzGz44AqSUBHZ8D4BZ/AuYQbS+v9n/GH8lXXJy 1YaqCFPBqqIobdJll13GLVP+AoEaiJGd05HT/GOI5dRVAoEtxla9dSeeHBnHW8ZOCo0AOJreZqbu IFHTKS9dBxl9m97gPpq2wSryrw0pLbwlW0nqczyegl/wrf1wv/utoA/LU47QDuxbSonprcQWlxLS AzODfizDD5aFiM9E63mQrCKeEgaNHRjqw1EaoIJVRVHaJCEEw4YNZ8GGYkQkg9UIlrhUmi6Wfxcb qMUmBJPiUiLW5iUJmTxTsIJgYjZapDIOxOAGq/Llb6FpGhlHXQBmEGka+91fu2MNltARKT3rxuGv QnpLwfAivWUABGuKEXHpaO0aCuwl0leB9G8FCbrDjdZ90oFHWQbOyvX8ZcozkXiIyj5UsKooSpuV m9OF+T8feRutYmFuN1bU5fmMzWdkCx5y7S5sEQypx7qSWW/6mbdpNoHe56LZIjBlS1NmziP33O/e kFazeRllq2aRe+Ej2FwJdJhwzQHH7pj9LzzlxZCUjVWxFatsHTa7E8NbhS0+nS7nPUDpig+o/GU+ IrUbQjtMCYXinwgWr0VzJiHNWrTkQ5TMLVvHsceOZfjw4ZF4uMo+Yuu6iKIoSjNaumw5Ii4t4u3G 8iXxaJD7/F9pvPGkszHoZXWgNqLtXuLOoK/uwLH+QyzDF6FWw/v91p0Vmb8PFT98QN7bN1H45WO0 P+FqXOmHLicrLQskWFvnIUp/JqX3WHr98XU6nHwLRm0pJbMeosOEa9DsTmTltkNmZrAqthLMXwGA 5kxA2OOxqgsxyzbt31+gBnv5r/zn3/+MyGNV9qeCVUVR2qz2HdqD4Ylwq201aGtbAXokuLDR2XLx jrcUn7Qi1q4uBLcnZTNYt+Pa8EmT27PV7iRDhldII1JFAUoWPEfJsnewJ7en40k3ktJ/wuH7lSZG 6QZ0Iel59St0nHQjAEZVET2TEuli1pD/2rXYhcTavhhRsOLANrzlmFu/BkDPPR7hiIeELOwOBwmV a5BFq5CGD+mvxp73Jffecxf9+vVr+oNVDqCCVUVR2qxzzz4TV7Ak4u22vbAttgP0WB7dMaSxywhy efF6Kv5n3WVT2ITgmoT2+P21WFYTA2FvBd1kXFinmkgs0yJ/1sMUzX8urLEEKgoo/+Vrcs7/O13O upPkXmMbPCchdwSJ3UbQ/bLn0fbJPevftIQBSUk8OWgAPbUAIujnkQF9MEo3HDC7alXtAMDVvj9a SlekZgPTwJWYzjNPP8m5x/VF3/gx2s7F3HDdNdw25daQH5vSOCpYVRSlzTr66KMRnuKItxuI4CxZ uJp7KUJM5JY9iFhfkuFA43yzAzahUSUjF6wCJAgNTQBVeVi+yvAbciWzFW9Yp67HgzspgfMnDSeu dA0l30wL6fzy5W9RuuJdnIntcHdofKL9tEEn0fnMO/dbs7vrm9fQyvL4Q05nnLrOfwf256URQ+md mIAuwPrlfczCVchg/dUWK0iHDh3Q6yMlS9jBChLQ4ln78y+8/dYb3Pm3OxD+CqbcektIj0sJjQpW FUVps4LBIKYRQEaw9KWWnMMmaTDbWxqxNmNdbIapdWI7VI0uIQQZugNz69dov36I7dcZYa1hNdJ6 sjHMYDVJ6qSlpnH/3//N1Omv49/wNYavulHnBsp3UPLdDKrXzUezu8LqH6B66w9Urv+G6u9n8M+B /Uh11AWwDk2ja3w8aQ4H88eM4oQUN1bhSpyF3wBg10zGjBmDLVgf6Gt2hDQIJPfh8cefoLCwkOuv v445n84mPT097PEpDVPBqqIobdaoUaO4+Pf/h3PXsoiVvhTudPRuE3nHV848b3lE2mwNhGzLYWFk RGMW+PbkTtyZ0pmpGT0J+Cqhdlfo49Jd+GXjq0RVyiC7pJ8d0scaUUvxriIAho4YSfeePSl+93p2 zbgVo6YMw1cDgBXwUTj3CcpX711jW7HyI9zZ/Wg38jyyz7or5HEDWJZB8ScPkj/7X1zdPZeByckH PU7TNO7r1xvd5iToykJaBqJyK+eddx5GoD5Q1+wIJMKZiJXSg+7deyCE4IQTTghrbErjqdRViqK0 aU889iiLF4/ml7INiPReEWlTS2gPueN5ZetXuDSNMc6Dv0EeKSSxPbsay2OLtmybk2ybk01BL07N RjD50DvoD8VWtJJ+WuNzEX+n1bDWqEITggsuvpTJ5/92z30ffTaPDet+5YVnnmLOuzfg9/uIj0/A kBouu8As3wCD65PtCw2ERubYi0Mar2UZmJ5K7AnplH73IZlOJzf378Oo1MNXMZu/qwTTshDpAwBJ MOCjoKAAK74uVZXQ7VAftBvtBuOsyWP79u30798/pPEpoVPBqqIobZrD4WD6tBc59vjx+F0paPGZ EWlXS8qGnGOZum0hTjRGRLRKVuyJ1TWrrUW0c8FuM/wIW+g7+i3LwvJXM0Tr1Kg1FVJKaqXBpNNO 5/nprx9Q9tXpdDJg0GAee3Yqx777NkePHUdRYSHfLV/KmHHHce7pJ1E852FSx/2RynULyDruipDH XDj3WTy/fkWnCx/Fv+ZTLsvuwOi0w6eoqwoEuWf9JuztB0J9zlVHXCLvvPMOcvdFaM0GloEVqAXN js2VSHFx5Ne8KwdSywAURWnzhg8fzjtvvYEjfyHS37j1dI2hJeegdR7Dk54i1kQ4l+bhqLBxr9ZU oz1aI5VS8oGnFG9an5DPtfKXkaLZcYvDJM3fxzJRRYkTbrn9zgMC1X0JITj3txfSMbsTQ4eP4Mpr rqPfgIF8veR7/AU/s/WtG3EmZZA26JSQxywLfqaTy0X+mzeh+6qZmNXwB9AV5eWYZhCtNh+rYhsA ZmIOS5cuJRA0kZ4ShCMBM+jD/OV9zJ/epLJoKz/++GPI41NCp2ZWFUVRgNNPP51bbrmZR194h0D7 YyLWrpbaDaTBf3Ys4w7RkV52d8TajhWxHBy3nlA1ejzSotgIIDIHhXSeWbASvXQ9J2iNu9rwo6jh O6OCJ56aTp8w842279CBtPR0vB2PIWPEOSGfX5v/C77KQv4+YhgWkgTdRryt4VCnX3ISCQ4XRm0p uvEDphDIhM7AKhye7fiK16LnnoB94EVAXWlVff37XHTRRSGPUQmdmllVFEWpd9ONNxAsr5tVkZaJ Vb45IhuvtLReaB2H83BtAVuN8HZVh6Z5w0c7gsgmXYqsWC232ly03Vu3KjaHdJ69cgtdhYtO4tA7 8bdIDzukD0NK5hulPPHSdM44O/Qgc181NdUk5g5Dc4SeAaB89kNcntuFzu44ctxu0p2NKzfbweXi i2NGck+fXoigh4TyVcgtXwIw74s5XHvttTir1u85XlbnM3DQENIaWF6gRIYKVhVFUertfuORhg9Z sRlz2wIIVEWkbdGuH1rWIO6r2UmBEYhIm4ftL+o97GVHYMboFGaMDqtZxWkatyR3wrZ9MVb5lkad Y1kWhq+KYSL5gA9sUkoC0uJnaplp7WIhFWzDi9vhbHKgChAX58ZXsi3k83zFW/F7a7iwU3bYfR+X 0Y53Rwzl0nYpuB11M7IdOnTAsCTSWfdcWLW70MrWcf55k8PuRwmNClYVRVHqCSG4+OJLcO6cD1Xb ASK6hlVkDkK0683dtflUWbE8F3lkaS3zqtEMrEe5ErkqsT1a3kLMojUNn1C7CxNJpQzyorWDmbKY tdRSKgO8LYp4ReazwqrkjMnnkZSbzSfWLk4/7zcRGeulV16Nd83HIZ1jWRYlc/7FcVmZ2A6zVrYx MpxOfts5m1Mz29EpK4uqqipOHH8CRnke5k9vYW3+gmBVAZMnq2C1uag1q4qiKPuY+vyz9OndiwUL F7DyB4ud/sjMrO7RfgSm4ecvVdt5NKELria+sSpKYx3vSmaN6eW7opX4vKWI3OMPeaz0VwCwKl2j U3ov2mVmsmjJtximwQknn0JJYSHuhERuvPU2evXpS1VVFUlJSREZ5+8vvYIXn3uaokWvkDXukkad UzT/BRK9pUzpNzQiYwC4MbcLYuMmnvjvf1m7bh0uu2BYUhK7pOTMiy+hR48eEetLOTz1r6SiKMo+ hBDccsuf6dG9B7uqAgh3u4i3T6dj8LszuL1mB0ZT67Yrh9WalgFEe6xCCG5I6MC/07oSX7Uda/u3 hz42WEtKWjor1m1i7rfLefujWXzx7XJOmXwOL772FjPnLeDtj2fRq09fgIgFqgCJSUn84z+PY2xa gNXIvx/BX+fx5x7dG7WZKhT5CCaecgqzZs1Csyy6u+PoM/oo/v7vf0e0H+XwVLCqKIpyEBIw4jtH LO/qvoTQIOd4Kh0J3FWb3+g35MZqLZe9lZaRpTs4P74dTu+hq1kJbzFnnXPufrd17d6DZ16cftiU VJFy3PgT6dixPdtfu5qy1Z82eLw34GfwIapTNcWq4hLGjh3L008+yfHt0sm34LSzz25VKdGOBCpY VRRFOYj2WZm4ZPRyowrNhug2kQLNzsO1O6PWj9I6gvfmHmOKZkMz/AeOwzKwKrZgBf0s/PrrZh7V Xk6nk2mvv01tWRG75k896DGWESD/o/v5+dEzces6jigE0YPbpbNgwQI+m/kxY5MSWVJczCmnhJ77 VWkaFawqiqIcxJVXXolRvgVpRm/nvtAdaN1PZoOUPFFTELV+2jI1/3VwPe1xeAOeA2b1Rf4SHMU/ cM5ZJ/PGBx+20OigsqKCs8aPY1BKMjbAV5qH4alg2xs34SlcT9mqT9k+9SI6lW3g5PaZvDJyGDYt sr9tKSUuKVm9ciVrfl1Hgc/H6JEj6dixY0T7URqmglVFUZSD2JM/UUZ3Tamwx6H3OIXvTR+v1hRF tS9F2S3P8GOrLytK+XrI+xrpLUMGPUw+91weffp5OnfOaZGxvTrtRY7p35P+DjtPDxnEhTldKHzr ZvKnX01GbSF5b92KtWQ6N3btwtShg7i7bx/au0LPydqQfJ+P1bUe/vinP6EB86truPyaayLej9Iw lQ1AURTlECZOOokvv/8FmRm5HcYHI5yJ6N1PZu6GT2nntXFqXHpU+2tbWs/cqmjGsQ52xJMkdEp2 LMGs2MwJ48cz/6vZYHfzww/fN9s4/tc9f72N919+kSm9ejA+ox1CCK7O7cKAhHjKg0FOaZ9FZTBI qt0e1XWjswp38XVpKcFgkKKiIlLT0ug4cCBnn3121PpUDk3ISJRnURRFOQIVFBQwctTRlPgdEJ+J ldIrqv1Z1QWYW+ZynTuTUc7wd1e/WlPIV/4K4sTe+QgJ8L/J3Q9y7oG37XvL3nBqz3chMKSFicSt HX7+Q1BfTUnsU1UpRHLPV31dKrn3zwHLwhJ1/Yj6Hg1pYSFJFPb6R7K3ntXe7y3/Nmhg8Z+0bnSw Na7iUiQs8VXxeGU+jrg4ftlRxK8//8zD997JY89OJS09slkwGmPRgq+5/DeTub13TyZlRX5jYyhe ytvBS5vqKn7dddddnHXWWQwbNkxtrGohKlhVFEU5jB07dvDmm2/ywEN/x9fheERcalT7s8o3Y21f zJ0JHelpd4fVxozaXSwK1HCUlQLsP7d4qLVf2j5H/m9AutvuQNHaE/bVfe3AyzqXIPXE6w87Likt ME2kFUSaZiMfzYGEpoHQEQIQOmgChEbFV08zyKvRhbg9YzOxqKwvBqsd5PHt/3PLBSILRSn/buZg FeC9mmK+SdD59ucNzdrv/3r/7Te599abGJuWwt969WzRsez28rbtfJC/k36ZmawqKeHXDRvIzg6/ OpYSPrUMQFEU5TA6derEbbfdxi/r1vPqnNXoUQ5WtdRuCMPLw4Ur+UdCZ7LCCF6EELiEjRwRF4UR HsgrTXS7RkLuiGbp71CqbS8QD6Sx/3OW1TLDCY0oa5Fug0DH3K4H3G4YBqXFxWR16BDV/i3L4sXn nubxh+7ndx3b89tOnaLaXyguy+nMZTmdAbhDwLfffstvfhOZKl1KaFSwqiiK0oCff/6Z6dNeQu/R PClrREZ/CNZyV9lGHk3sTHwDl9cVJRzL/NUs8lUyvueBy1sef+SfPPbvfxBvdyKEwLIsLGlhWXUL MCxZt3hCFwJd07HpOna7HYfDid3hwO/3YbPZcMfHE5+cTHJqKnFuN3a7HbvDgd1u56dVK9m2YT0e wyDT6cCUkvd25KMJUTdZTt13rf67S9eJ13XibTYSbDouXcepafVfOnr9eZoQaNR9aJP145TsXgUj sfb5ed/7di8t2f0z9fdZUtJFCBbMm6eC1Rai/gVUFEVpQElJCQAiCgUCDqnDSIxgLX+tzee/8Z2b XO+8LQjUVrBcwEqtOuw2hIQzrExczZwsxwKeqS3aU35374KE/Rcn7F0r/D9/3u+MgxwPJAudS9wZ 2IRgTaCW/1bsQCKZ9d67fDV7NpquoWkaQmjU1NaQpbk4JpiyZ62xXv+lAToCUb8mOGBKgqZFMGAR qJUYBLCjY2LhL6kkQDnVbKFcA0vULSOxBFRbAZIsnWR0CAhmbSvaM1jJ/g+wygqQmJyEw2Yj4PcT CAYxTBPTsuq+pMRC1geaB3fA8hax93nb7zkTB7kNyPj4Y5567rlDtK5EkwpWFUVRGpCRkUFSWhZe 0XwBjBAC2flYqjfN4f7andyfGDuXR2OVaZmM1FNJEeG/tX1iFlNNEBfOCI6sYXa3m87jJ5LVoWPd 2l7Asupn9+Tu71b997pz5O77sfY/7hDnff7e24y0uRnkTGBVoBYJjKcdwi+Q/rp2rPoVyRI7KbjJ bOB5cKIR39gHebgscLunOA/Ch8k7ooDHXniRSZNOblxX9fljI1Vtq6qqigG9e2CaJrquR6RNpfFU sKooitKATp06YQa8WFX5aEnNt8FCaDp0nci29TN5sqaA6xOiu36wtbMJjd5aPKnCHnYbn1ISwRE1 XpzNwcTTzuSkMyZHpX3Lslg4Zxbbgn4GORPQgQwcdG18qNki/Ji8xU46d8nh2GOPb/R5kS4J63a7 ycrKYv369fTt2zeibSsNU9eVFEVRGpCYmMhnc2bjKFqCDNQ0a9/C5kTvfjLfGV4+8BQf9BjDsnit pogHK/N4sHo7hUYAZzP+8y5h73XpFtSaU9vovgBFBdEru3vH9VfhqvEwyZ2KKSXzfZV0pnk24IXD j8UCvZxPRTEdO3Vi+ZqfcEUh8f/hSClZuuRb7vzrX8hKSyYvL4+1a9c26xiUOipYVRRFaYSxY8dy 25RbcZb+QHNn/BPORLRuE/nYX8kSf+UB928xfczzl5Nk2CkLGiwJVtPHjN1AJJpaPmQOj90XJH/7 tqi0XbKriC8++oAeupM5njKmVhfgl5LBJEalv6b4VdTwPNt4m52I7h0ZcepEnpz6QrOP4803XqNv j26cdtJEli9dwrRp0/juu+845ZTm2WSp7E8Fq4qiKI10x19vJz1OIiujE1Qcjhafid5lHM95itlq ePe7L70+W8AokcIZMoNTySAnhmfNlAMlYWf71i1Ra7/fkGEU98zlh64dWKabZFoOtBgLAYrxs5hy 4lwuLv3TNXzz3fe89tY7HDN2bLOP5YXnnqW4eBcAmq4zZcoUzjnnHNatW9fsY1FUsKooitJoDoeD 1155GUfJSqRlNHv/WkouevtBPFhbSNU+/acIGxZgSkmc0MkVblVpp5VJwUbBju1RabtdZhavz57H 258v5I6//xdLCLrE0IcZE0keXuaJUn53ySXs2FXKQ//4Z4uOad6CbyiprKG0qpbP5n7N+x/NpG+/ /ixevLhFx9VWqWBVURQlBMceeyy9e/VEFK9p9uUAAGQMwkrK5q6afIx9djzbEPgPu91aiWXpONhV VBD1fp79z99Jqw7Qi4So99UYASw+0XaxyFnN8Wedzn8ee6KlhwRQn8Jr7we+QeWiE7YAACAASURB VIOHMHT4cDZu3NiCo2q7VLCqKIoSog/ee5sOzipkxdZm71sIAZ3GUGl384/avRtybELDp4LVVqsd DqqrqjCM6M3YF+Tv4PvlSxhIUtT6aKz11PKuVsib5JPaPYdNBYVMe/X1iO/ij5TXX32FRx/5t1qz 2kJi81WhKIoSw7p168Zbb7yGuW0+VksErJoNretENlgmr9bUJVJ36zbKCDT7WJTIsKHhcsVRXFQY tT7uvPkaMgIanVp4CcBPWg2LtXJuuv8epr//HotWfIfNFruZNDdu2MD999zF0qVLOfnkxuV5VSIr dl8diqIoMeyYY47huuuu55kPWmYNm7DHoXefxNwNs8n1Oekm7GzXA/SwYjtvZrS15pW6NpuNmuqq qLVfVLCTrkFH1NpvjAAWK6xyXvvgA06cOKlFx9KQ5599hlkzP2LTxk3cfffdDBgwoKWH1GapYFVR FCVMI0eOwPXaWwT8uQhncrP3L+LS0HOO46VtCxhrc1NA82/62mc0Ldj3kUFKid0evWDSbrMTaMGl IsX4+ZBCOma1P2ygOn3aS7z8/PMUbN+BbtNxxcURn5hIfHISycnJJKekMGLkSK6+5tqojnf6tBe5 829/Y8iQISpQbWEqWFUURQnTxRdfTGVlJX/52z0Y3c9ukTFoyV0QHYawaOcPdNaaN2m6ElmWZWGz R+dteduWzWzdvIn+pFLViA81daVX6wotmPuUW9AQaICOQN/zs4YNDpkKSyKRQCUG7dtlsvLX9Xvu MwyD0tJS8vLymD3zYz5+/32K8ncyhERG4cRCEqjwESjwEKCQEiHZKkxmvP8eb736KvOXLGvK09Kg rKwsBg4cGNU+lIapYFVRFKUJJk2axB1339+ic5q0G4CteB0dA7qa4GzFT4AlLWy28EvFHs55448m GAwwi12NGwsSC7Aj6v/bWyFM1t8n62+RNL56mFYCmal1G7x2/6YEdUFwO81FV8vFeDrgRD94AxIs KWmHje/XruWLLz5j0qTorCO94657OP/88/nyyy8ZOXJkVPpQGkcFq4qiKE3gdrvxVJWjmUGEHp1A oyFCCCxHPJVGbeuuOdrGScvCZo/8a+i916cT9Ac4U2SRIxq3uepryii3ApxOVqP7kUhWUUWxzc+D KTlo1O3iPtgOf0vWBbwCeLBqOxVBi1OtdvVh8eFpCIaQzA49wHVXXkmHDh2xO+zYHA4cDgd2u51L LruMM88+p9FjP5hJJ51MZWVly6SoU/ajglVFUZQmyM7OrvtBO8RMUHPpPJaNv8ygL246CLUcoDWy LIk9CsHqq888wVEiudGBKoClQZwVWsIggSAZG5vx4mggBZUmxJ5FA+v9Hs4kq1GB6r6Gm4mUlgex yvPrZ4IlXqASi6vmzyf7qxyGDx8eUpvr169j+dKl7Ni+ncLCAk499VRGjRoVUhtK5KnUVYqiKE1Q VlaGHqVLt6HQnIlYSZ1Yq3taeigtqqmLAPxYbKRlnkPLMiMerL469Wnyt26hB6FlifBg4g5jPisJ Ox4ztEUx6XYH32oVBEPc/NUBFwNIZBBJDCGZYaQwkhTGkMZQkcy5p55MVVXjsitUlJdz0QXnc/Zp p/DdsiU4bBp+r4d//OMfIY1JiQ41s6ooitIEqampDB4yhDWbFuJwurGkxBfXCWGPA6EjXM2XJUC0 H8Lm9Z8QJAW7UHMR4ThOT2WxWUEKNhxoJGIjE2ez9G1ZkV+zuquwgI42N4lWaG/3NZZBNqFnJkjC hk+aWJbV6AT/jyTnckvFVt6xdjJCpNJHNj392hArkV3+AJOOHcfSVasPe+ymjRv53W/P49RTTuGj D2fgcLRsei/lQOpfM0VRlCbQdZ0vP5/DfVOu5rEH/swDU66kb0Ix2YG1uHZ+hVa8CimbJ12Q5k5H d6XwqVaC2dzr7GJgX5OMwILdY/RUJtjSWUwZ32mVzKSINUQv9+luFlZ9NoDIBatLF33Nq889Sfsw gm2vNEkm9LE40NAR5JmNL1Dh0DQeTcllsDOeJbIMIwK/R4HgBCuNoi3b+OMfrjjkcZUVFfxm8pnc fNNNPP744ypQjVFCqpXDiqIoUVFcXMypp53Bmp1BrIzBzdKnVbsLa8Nsfk82CaJ5Lp79KmtYnmyj 4++fa5b+DmXL0+dyla0TSRF43KaU6EIw3yrnB6OSTOHkeJmGGxsW1iHTNIUriMXLYgdr8isi0p5l WZx5zFBc+WVMlGkhn/+MtY3z6UhSGBdg39cKmexO5SR36P1eWbqRYWYSPUNctnAoFQSZQSGPPPUU F118yX73SSm58vJLaZ+ZwTPPPBOR/pToUMsAFEVRoiQjI4OXp73IqKOOxtQckNoLRN0UpIjCZXqr Yiti6wJG62kkhHjZV9mfXv97GiIScOmCIhHkTWNnfYgqsAnBWJlKtwgFVQYWuh65TXrPPfovSrfv 4Hd0DHnW25AWFpKEMAPyFOFgq+EL69weuoM86adnhCqxpWBnPOncev31DBsxnH799ib3X7Z0CT+u XsUbP/4Ykb6U6FHLABRFUaJowIABLF60kKO6urBvnon49R0cu1ZEpS/bzuWMEskMsxKj0n5blCLs HKWncJaWwbX2zpxiy2C8PZ3RWjILRRlLKGcWRWzHu+ecddTgOUTm3QAWNRh4MFhJZX3qfTAALYLB qpQSIQSOMD4UebCwoYU9e5xsahSYwbDOvTShPVutGioJ7/yDycXNQBI5fcIEPJ66zXNSSj77dDa/ u/BC4uIanyVBaRnqo7eiKEqUDR06lEULvubHH38kISGB4SNG4feUoLnbRawPy7IwArX0JS0m1o+2 lGjOwMQLG/1FAgBSk8ShMccsoZPmYq5VvGcz1q/UEI+NbJwcRQqVGHyrVRIQFjVmEANJnNAJSIu1 Wg2nWRkA2PTIvCVXlJcx7bFHGC9Tw3oteDHrNuiFuUgwERuFNH7N6r6ybA5GupKY6SviVDJJD2OT 18GMkEnke3dx9NAhJKelsn17Hja7nc/mzIlI+0p0qWBVURSlmQwaNAiAM844nddnfIk9OROj3eCI LAnQtLqZsAAWzma+aBYrGx+klGjNFKkLIRisJaIh6K8lUKIFeMco5BdqOEFPo0ZYlBDkVSMfAQwX KSQInVSbjTg0vFjkCBdfyQo+lcUMlYnotsjMrE59/N+kC0fI6ap282Bi0zQww+s/ERs1VpgnA39O yuZZuZM5/mJ+R8eI/E7XCw9+t51xRx/FLVNuJSMjgw8//DDkPKxKy1DBqqIoSjO7+qorKS+vYO3a n9i1cz7+rDEIW9PTI2lCEGimzAOxSNK8k8pCCAbpdUsusoSTP9m7sEl66K3tDRIX2isISIsTtYNv NppAKk5dsMQox2EmsHHdLwgh6N6rT9jj+mLG+/S34sJ+MnyY2JvwgScJG94Qc63+r2uSO7K8ZAO/ WjX0o2nLWnbiY3VCkCXLl9Onz97n9dZbb21Su0rzUWtWFUVRmtmYMWP4ZOZHbFi/jkvOPwPHjrlI w9+kNq3yLRjSIrENz0FIaLaZ1YOxCbFfoApwrEg5ZKAK4BQaE7Q0brDl4BQaF5xyAueffBzLvlkQ 9jjKy8qaNLvuxUK3wp8vj0fHwMJjNS1g/WNCFkspZx01YbdhIfku3sfzL72wX6CqtC4qWFUURWkh uq7z9FNPcvnvL8BZ+A0yzEunlhFAbFvAeNLD2lBz5JCt9k3Nqen8wZfG9UYWaa54SnbtCrutcy65 nK9kadg17b3CwiHDD/o1BHFCZ0PQ2/DBhzHalcSfEjuwmLKw29hILR27d+W8885r0liUltVa/14r iqIcMR5/7FHGjRqIo2RleA1oGiaSbrgjO7CQtPyurpaeWW0qm6bVrRVtopJdReTo8QgR3nPhqd88 1hRJwsGmYHjpq/Y1wJmABMrC3LBVHK9xzQ3Xhf1cKLFBBauKoigtTNM03njtVUR1HtIXelJ4TbNh Exq1h0iX1FbUBatKv4GDqRThvxY80iS+ictJUoSdPLNpS1sAUjQbo51JzBOl+AltPbZEUiaCdOvW rcnjUFpW213cpCiKEkPS0tL4wxWX8/Q788E1JOTzdd3OUquSE610tDY4i2TVr488EmbQDMvis5kz 2Lj+FwB0TUfT9bqMD7qGrukITUPffZu2z326zqKvviBehp9ZwCMNujQxZVSSqbFLC2829H9dl9iB O6q2MSNYyJkys1GB9EZqKRQBsrrmMm7cuIiMQ2k5KlhVFEWJEePGjmH6O7PwhHFusONRbN2+iDKC tItQbspWxTpysiAEa2v5Ze5c8ud9jaRuxtgCEAKpaSDY+12IutsBNIFEUO6rpZ0M/+3dK00SsTfp MSRiYytNXwYAdcsj/pXSlZvLNvOrWctwmXzY46sxWOqq5eKLL+a2v96OzaZCndZO/QYVRVFiRO/e vZH+6vBOTshC12zUmEbbDFaPIA6hMdGewnB7Umgn1u+nesbw4m1C9lu/NElu6jIA7FQZkatCBTDa kcASv4fhh9mHWE6Qr9zV/GXKbdx1770R7V9pOSpYVRRFiREOhwPzIGUqpWVAoBYZrIVgLTLowSWC 2PGD4SVQW4m/tpos3U0nXC0wciWWBARkW46w9ryZUmIiSaRpBQrSsGNKi/UBD70ckdn4l6LZCMhD R6omkoXxtdz7j4e59rrrItKnEhtUsKooihIjcnNzSUlKYFf+YuLsGsKoJVBbSdDvJT0zi+yO2XTp 0pnu3XLJ6dKF7OxssrOzWbFiBU/dcR8TauJjYVO+0sKyhYOfqGWITKormxoCHyY6Aq2JW9U0BJ31 eGZ7yiIWrPa2x1FhFbFBeOgp928zDy/fxfsYPXYMf7r22oj0p8QOFawqiqLECIfDwWefzmLWrFnk 5uaSk5NDbm4uWVlZaIdJabTk228pNLysxqKvjG/juVaVc50ZrPZuY4f00TXEdGZeLGxCi0gN3X5m PHOtkqY3VK+rPY7LE7N4o6aEHsQh6j+ZbcfLkgQv7304gwkTJhwRm+yU/algVVEUJYYMGDCAAQMG hHTOTTffzNhx43jw3vt4Z948ehtxDDDcuEVkas0rrYumacRpOkEz9E1nXsy62dgIBKtJ2PBLkwrL IEWLTLgxwZnCazXF7MRPNi4qCLLc7eW1t97kxBNPjEgfSuxRH78VRVGOACNGjOCjWZ+wau1PDLt4 Mu/HlfGNs4ZyGdlNLgcjIxHZKBElACOM38uemdUI0OvnPr/ylEekPagLxNvbHJTgp4wAn7oq+Mu9 d3HaaadFrA8l9qhgVVEU5QjSrVs3nn/pRTZv28qZf76aOQnVfOWuoVA2PUH7YakrrzEjYFmUGX46 hLHZzouJrQmlVvf1M9Vk2Zyck5ARkfZ2SxE664SH+a5q/vvk49w6ZYq69H+EU8sAFEVRjkAZGRk8 8NBD3H7HHUx76SX+8eDDOLzV9KvRySEu8m/uYUyu5j3/O3xNrB+/L+cRNP9SJsOvQPWav5BkzUFq GLlSfdLEJiMzU+7TJO1F5MOM25I6cU/FNrTs9lxxxRURb1+JPSpYVRRFOYLFx8dz/Q03cM2f/sR7 773Hg3ffyw+FRfSrsdGTePSIBa37t2N4KjBqSg97hmn4+a2tPbkiLgojaL2OJZmZ/l0MsyWSroUW cL7uK2KL6eMcssJ6Qvw62M3IBP2brBpuSMyOSFv7kgIqnDZmv/2WmlFtI1SwqiiK0gbYbDYuvPBC LrjgAubNm8cDd93DO6tX08/vop/ljngGgarFz+PwFBKfkHjIYzKyOzOzqIBJpNJPxEe0/9aspxZP puZkoVHJZEe7kM7daHk5njSSRXgVqHQJVoTWIGtCQIRmafe1wFfJoGFDGTFiRMTbVmKTClYVRVHa ECEEJ554IieeeCIrV67k/rvv4Z258+hnuOhvuHFFKIOAjuSF557m1FNPPexx33zzDeeefBp9Au66 4EYBIEHq+EVogd6r3gIqzADtRPgVzHQrvI1ZB9NRc7PMX81IV4iVuBqw2iG55YbrI9qmEtuOnAU+ iqIoSkiGDh3Kh5/M5PsfV9H7t6fyrquUZfYaapuwXjJUY8aMoWNOF1ZZYZaZPUKlCTt5RmjreSut IANIJLEJ60RtQkQst0OyqVF4kIpsTWFKyUZfDUOGDIlou0psU8GqoihKG9ezZ09eef01ftmwnqOu OJ8P4sr5xlnDz7K6UV8F+DEDHirWfrHny1tR1Ki+hRC8+Op01rV38amjChmFy8at0RgthTIzwBaz 8QGrKQSJTZwZtyGQWmRmuMt1k8628Gd5D2aFv5oevXrRo0ePiLarxDa1DEBRFEUBoFOnTjz1zDPc c999PP3kU2zZuLFR5yVXVtLB4yW7897ASs+dwMCBAxt1/vDhw/l100ZGDx3OmvW7GKQfep1rW2HT NHKsOOYaFVypN7wBbZPhYavppatoWmlTGxpWhFZjlMsAubaEyDRWb6fp57gTJ0S0TSX2qWBVURRF 2U9GRgb33n9fs/bpdDp56bVXmHDscTgDGr01teFqkpbOs4HtVNsNEhuoAJVWf39fmhYc6oiIbbDK Ei7WBGo5yZ0Wkfa8lsmX0sP0446LSHtK66GCVUVRFCUmDB8+nLkL5nPi8SeQEXCQFuaO9iNFgmbD qWlUS5PEBt6uA/Xx5WeiBJd2+KUAmoQRVtJB17baOHDN6gbhYacWWlEJS0CZ6aeI0Eu+HkqJFSQl LU1Vq2qDVLCqKIqixIwRI0bwt7vv4oX7/8nkQHIE88C2ThaNq7eQIDSG2XYvnzj8GavNGvqL+IMG wDbEAeHl96KS7sOH0yG7U2OGDIDd7sAwDObMeAeftHCFmRpNSkmVNEnWbNRYJmkpqWG1o7RuKlhV FEVRYspNN9/M/Llf8fq3S5noj6ejFnrZ0CNBkeXHtCw6aA1vUorXbFwc16HB42osg1VGNekcvE0d gfU/m9zaCxfF+flMn/EpmhZa0Lls7mcs8FYwzJlIoqbjRISUyH+Ov4LpVQWMcaeShkZicueQ+leO DCpYVRRFUWKK3W5n1udzePPNN7nu6ms41S/J0SJT5ao1+caqoJcjIaL5Z9ebHuKEfsgZa1v9mlU/ FtPZzulkMsZM5t2dO3n52Se44tqbQurvnMuu4u1nn+ANTzEBy0QCcZpOvGYjUbeRqNlI1XTS0EgR NpI1GymaTrJW9/NG08+4E0/CMgyWfL+CnNqaCDwLSmujglVFURQl5ggh+L//+z/sdjt3XPkncnxt L1jdLn1cZesY0TYH6Am8wy7ypY9sceCMtY5ASsk2PAAU4SebOBxCx+0OfdPb9X+5k+v/cueeP1eU l7EjbxsFO7ZTkL+dXYUFFBXsZFthIWtKivFUVeCt9eAL+PEaQTrpTrJqa3n5g9ks+2YBLz/5SPgP Xmm1VLCqKIqixKzjjz+eIn8tUia1uTrw0ajo5dA0BmjxrKKGbOnClJLNeCh0STr5NOLRsZAUOSxy OuRQXVAJAUjExuL5cxk3YSI/fv8d2/O24Pf56JLbjRFHj6FTl9xG9Z+SmkZKahoDBg9t8Njfn3Ei K79fwZBOXQBol5lFUVFhUx6+0kqpogCKoihKzMrIyKBrbld+tWpbeijNqsIK4rUMOkdhve5gewKF lpf1spb33OWUD+3CeX+7iR/b23iPIjIyMlhvVvHAAw8QbJ/CIr2CfMvD4vnzuOSsk/jmi09wE6R9 spufli3i/06bwN23XMfOHXkRHefJZ59HWkIip519HgDtMjIpKmpcsQnlyCKkKheiKIqixLC5c+dy 8eTzuDSQ3tJDaVaPBrdyQ1xnOurOiLYbsCzu9mzBFe9mxsyPOeGEE/bcZ1kWmqYRCASw2+0UFxdz x19up2PnTlx66aV07dr1gBnuiooKHnnkEZ6f+gL/enYao44Zd9j+q6sqSUgMfaZcSsmYvjls3LiB jIyMkM5VWjc1s6ooiqLEtKOPPpoyn6elh9GsfJaBJSW2CC8FMKTFC1opnbvmcN1NN+4XqAJ7dvs7 HA6EEGRmZvLiy9O4//776dat20EDzJSUFB588EHefutN/nLN5Xz49usH7fujt1/n1KMHM25AN+64 4SoC/tBytwoh6NW3H2vXrg3pPKX1U8GqoiiKEtOcTidB0zggpVJDfNKM0oiib65ZRo7dTWYj0laF osQKst1XS+fOnXn4oYd4YerUiLU9YcIEFi5cwLSn/sub0/Zv96fVP3Dnn6/l9xf9HxUVFdikwVUX nk1lRXlIfXTv3ZeffvopYmNWWge1DEBRFEWJeQN796Hf5kq6a+4Gj5VSUkaQ6VYBOe4U0oICkKQE BZnCQbZwxtRmrULLT5zQSN6nYtfjRh4XObPI0hyUWkG80qS3zY1L7F+dqsIK8mKwiLP1NLrqcQ0W UZBSstqoYbnwMEq6WZhuY1OE15pu2LCB0UcdzefLfgQhePHJ//Lhm6/yhz9cwfnnn8+QIUOwLIvL L78CnPFMuffhRrf95rSp7Nq2PqJBthL7VDYARVEUJeZde/NNPD3lLroHGj72c2cN+XaTmy67iQFD BlNSUoJpmvz4w0q++PxzRlca9NcToj/oRligV/NtoJihehIn6+3wSZO1Vg1By2SqN5+stHS6dsnB 5XLx7sofOMqexAQScQsdU0oeNQqoDPh4RvhId8Zxh63jYQNxIQQ9bW6m1xRQEBfkpNGnRPwx9ezZ E4fDzuljh1FZUcHJp5zC6tWr6NBhb9ECTdO49957GDpsGMccP4Exx09oVNuDR4zkzldfiPiYldim ZlYVRVGUmFddXU2/Xr3pUhFknJl4yLRO2y0vc5ODbMrbhtt94CzsnDlzuOr833GhPwVbmCVAI8WU kn8Ft3DBBRfw+cxZdMbJJrOWEydM4KhxYxk/fjyjRo3ac3xRURF/nTKFjz6YwUAtHodhsUzzsmnr FqSUDOjdh+EejUmOtMOmvSoyAzxvK+OrhQsZMGAAuq4f8thw/fTTT7jdbnJycg7b/ksvvcRb78/g 8WlvNapdy7KYOKIvixYupGfPnpEarhLj1JpVRVEUJeYlJiay6qc1mP1zWSaqD3ncGpfB3Q/cf9BA FeDkk09m9PjjmG4vpUYa0Rpuo2hAj7gUhg0bxidffMYVf7+bzXnb+Gj2LG6//fb9AlWArKwspr36 Kt+sWM7kB/5K70vOY/VPa8jIyCAzM5OH/vF3tnRKYbooxzjIPJRfWrxLBa8Ei3DYHSQmJkYlUAUY MGAA3bp1a7D9sWPHsmrFcr78dGaj2tU0jeMmnsLMmY07XjkyqJlVRVEUpdXIy8tj6MBB9AnYOcpM wPk/s6MvOkpYuGIZffr0OWw7f7j0Mpa+N5NTg8kR33EfiqVmBQP/eCGPP/VURNoLBoOMHjqM4ZvL GGBLqKtGZfmIEzqVlsEz3h3kJqbQ17CzwKwiOTGRl994nZNOOiki/Yfjhx9+YOLESbz92Xw61hcA OJz5X37GOy89zcIFC5phdEosUDOriqIoSqvRpUsXfl6/jtwzJzDdXsJas4bdcy75lo/qgI9evXo1 2M5Tzz1L9+OO4nNHVbSHfEiWlGyMsxgxenTE2rTb7Vz+x6tZJGopNP18Z1TzhrOWJ81C1ho1HDNy FEOPHcsiWcMxzlQm1tq46rLL2b59e8TGEKphw4Zx0003cv9tN7Ijb2uDxx819jhWrlxJeXlomQSU 1ksFq4qiKEqrkpWVxRvvvM3MLz5jQ9dk5tirMKVkYZyPO+++e0+u0MNxuVy8M+MDSuNt7LB8zTDq Ay0X1eT078NFF10U0XYvvvhiTrrsIp6jhDlaDc+/9CJ33XMPP9gDPPSvfzJj1ids3bGdX+MkNjTy Cna2eO7S2267jV7du3LexLGUlZYc9lhXXBxHjT2O9957r5lGp7Q0tQxAURRFabW8Xi+TTz+DVctW 4EpOZFPetpDWYV5/7bX8/PzbjNZTojjKA220PMxPDLByzY9kZ2dHpY+1a9fi8/kYPnw4UJe2at9M AbNnz+by31/MyBEj+eTzOTGRzuu444/ntN/8ntPO+c1hj1s8fx5PPHw3a378MSbGrUSXClYVRVGU Vi0YDLJkyRJ69epF+/btQzr3pZde4smb/8qp/sQoje5AG6xavnTUMGfulxx99NHN1u/B7A4BYiXg W7BgAb/7v4v4YsXhZ3qllEw+4SimPvfMAVW4lCOPWgagKIqitGp2u51jjz025EAV4KyzzmJjoBq/ tCI6poC0+NYsJ7BPux5p8qm9kmUZOjPnfNrigSrUBamxEqgC9OrVC8MINnicEIILL7+Kxx5/vBlG pbQ0FawqiqIobVa7du2YMH48y/XaiLZbi8kCs5wX5E7+HtjM/7d3p8FR1gccx3/PZpMlmzQhB0kg CHJMyMHZeGRAw+kAkhQtqaJTHTstWmqlOq3WdlocHXSs3OIBVgVxHHRAwGO0hYIolJhwCJgRFEgw pCA5QHItG5J9+qKMIypkl2Z5njz5fl6G5wm/8dXXh//us6CtUs8FqjTmF7fpwKGDys/P79C/zyka GhrkjQnuhQ2FRdO1des2VVRUhHkVrEasAgC6tOdf/Lt2tZ1WoANPxSUYkcqLTFR9a4tmzZqlxc8+ o+KSEi1asuSC3wELqbGxUd6YmKCu9XpjVDjtVj29ZEmYV8FqvG4VANCl9erVS73S0nTieIt6Gp4O +Z1r3KcUIUNxnljNnj1bSUlJHfJ7ne7EiRNKSAz+v5XhcqmlJYh38KJT48kqAKDLGzNunMoifOqI zxwHTFMVZ+o1a94cfXHoEKEagtLSUmUOHhbSPf2uvDI8Y2AbxCoAoMt7ct5c+fr20PYOOLv674hG jbzmWs2cOVOpqakdsK7rKC4p0ZAfXxX09dHeGDU0XPj1u3AGYhUA0OUlJydr89aPtM/tU03g0v9Z +UjAp8Ox0pq313fguq7BNE3tKCnVkOG5Qd/Tq/cVKrP4hQYIP2IVAABJzW6qvQAAChJJREFUKSkp uu/+36kswnfJv2NXdIuenD9PPXr06MBlXcORI0cU6YlSSlpPnayrDepIxriJU7Rx40bV11v32lyE H7EKAMA51+fnqyqyTW2XcHa1OuDXKbep6dOnh2GZ8yUmJsp/5oxunTRa+UMGaHdpcbv3dE9M1FV5 I7V+PU+ynYxYBQDgnPHjxyszd4TecZ9So9ka0r2fRrXot7PuU1RUVJjWOVt8fLzuuusuVRz6QhmZ WRpxdV5Q902YcpPWEauORqwCAHCOy+XSm2+vV+7NU7Qtqjno+0zTVLlxRkW33BLGdc43b+5cZWVn 654H/iiXK7hEGZk/Vlu2bFFbW1uY18EqxCoAAN8SFxenBYsW6jP/6aDvOWb65YqKVFZWVhiXOd/O nTt1/PhXumHK1KDv6ZGaptS0ntq5c2cYl8FKxCoAAN/h9/vlcbuD+pCP3wxoZesxjcjNlWEYl2Gd c+Xk5CgiIiKo86rflnf9WG3YsCFMq2A1YhUAgO9IT09XQkKCTpjtf43VWQUkSTcWFoR7luPFxsbq z396WKuWvxDSfXn5Y/XPjRvDtApWI1YBAPgOwzCUmpIi/7kQvZhYw62BccnKyMi4DMuc7/bbb1fx Rx+orrYm6Hty80ZqzyefqLGxMYzLYBViFQCAH9ArvbeqIs62e11V4IwO1ddq+PDhl2GV88XHx2vq 1Kl66ZmF2v7h5qDu8XpjlJkzRKWlpWFeBysQqwAA/IBnXliqfW6/vjYvHqx+BTQ0M5tXq3agu2fM 0MoXntXdt92sI4cPBXVPRlaO9u7dG+ZlsAKxCgDAD0hPT9fYMWNUGThz0ev6GtH6qqqKT6N3oFGj RmnsuPGSJG9MTFD3JKekqbq6OpyzYBFiFQCACxg1drRqoi7+jQBuw1CSu5tqaoI/Y4mLMwxDmzf9 S2lpPXX2bPsfcpOk1tZWRUZGhnkZrECsAgBwAZMmTdIXhk917XwrgCcgnuqFwegxo/X++jVBXdvc 2KC4uLgwL4IViFUAAC4gJydHTzz1N70eeUrvR9Vf8HtX+zcbevQvs4P6XlYE7/E5c7Ry2bP6z9Ev 2722rraac8MORawCAHARM++9V9Un6xTRP12ru53WbjV+L0oHuWL0VfUJNTQ0WLTSmQYMGKA77vi5 3l79ervXnqqrVUpKymVYhcuNWAUAoB0ej0ebPvpQC19boco+8drkrtfBQJMOBprkN//3XazJ0THa v3+/tUMdKCsrSyeOVbV7XV0NT1adilgFACAI8fHxKiws1PYdpeo3abROXpuhY8P6aKlxXIcCzYr2 tWrtmuDOVyJ4ubm52lWyvd0jFnW1NcSqQxkmB2wAALhk7777rgoLC1UwcZLmP72YN1l1MNM01ffK fnJFROjGm36mmb9/WC7X+c/a2tralNsvRc3NzXwjgAO5rR4AAEBnVlBQoJqaGiUnJ1s9xZEMw9Cy pc+rra1Nf3jwIQ276hpdN3bCedd8vPUDeTweQtWhiFUAAP5PhGp4TZ48WZJ08OBBbXhn3fdiddnC p/TYY49ZMQ2XAccAAABAp1BVVaWhQ4dp8yefKzIqSpLU3NSoMcMzVFNdLa/Xa/FChAMfsAIAAJ1C 7969lZmdpeKtW7752cm6WsV4YwhVB+MYAAAA6DTi4+PV0uKXJB0o26fn5j+pkaNGWrwK4cQxAAAA 0GlMmVKgQESUfL4m7SopVnS3biorK+OFAA5GrAIAgE6jvLxcy5cv17BhwzRhwgR1797d6kkIM2IV AAAAtsUHrAAAAGBbxCoAAABsi1gFAACAbRGrAAAAsC1iFQAAALZFrAIAAMC2iFUAAADYFrEKAAAA 2yJWAQAAYFvEKgAAAGyLWAUAAIBtEasAAACwLWIVAAAAtkWsAgAAwLaIVQAAANgWsQoAAADbIlYB AABgW8QqAAAAbItYBQAAgG0RqwAAALAtYhUAAAC2Rax2AUePHlVtba3VMwAAAEJGrDpYU1OTbpg4 WRmZ2RowMEM+n8/qSQAAACEhVh2suLhYJbs/VevAmxUw3CovL7d6EgAAQEiIVQeLjY1Va/Npuar3 qNXfpH79+lk9CQAAICTEqoPl5eVp/2dlKho/XK+sWC6v12v1JAAAgJAYpmmaVo+Atd577z2V7Nip Rx+ZbfUUAACA8xCrXdzI6/K1o7REbrdbJ+tqFR0dbfUkAACAb3AMoItramxUIGWEPD9K1rZt26ye AwAAcB5itYt74P5ZimqskL/xpPr06WP1HAAAgPO4rR4AaxUVFamyslJDhw7VoEGDJEl79uzRjHt+ o9TUFK1+YxVHAwAAgGU4s4rv+eWvZujll15U9uCh2rdnt3w+n7xer1wuHsQDAIDLi1jF99TV1amy slIDBw6U2+1WVvZgjRs3VteNGqk777xTbjcP5AEAwOVBrOKiDhw4oOzsbJmmKW9iL2UNuEJvrXtT 6enpVk8DAABdAP+ui4vKzMzUgw89rMgoj1rSx2lveZ0WLVps9SwAANBF8GQVQUlITJbPFSfDV6PV b6xSQUGB1ZMAAEAXQKwiKGvXrtXhw4c1bdo09e/f3+o5AACgiyBWAQAAYFucWUXI5jz+hJYuXSb+ PwcAAIQbT1YRspwhw/X55wdUMGWKFi9aoL59+1o9CQAAOBRPVhGy0dePkpGYoX+UVigze7D+OvsR qycBAACHIlYRsuKSUpnRPRRIGa7WfgVa8PRzeuWVlVbPAgAADkSsIiSrVq3SwcNHZMT1liQZkdHy d8/Rildfs3gZAABwImIVIXlz3VvyxfaX4Yr45mdGdKJKSz7Wjh07LFwGAACciFhFSH56008UGzh1 3s+Mbt3l73G1bpg4SceOHbNoGQAAcCJiFSGZPHmyzpyskhloPf8P3N1kmqY8Ho81wwAAgCO5rR6A ziUhIUFX9OmrI76TMmJSZPpPy/P1frV9/aVefnWlkpKSrJ4IAAAchCerCFlDY4OMCI8CTdWKPLpJ D/36Nn15pELTpk2zehoAAHAYnqwiZGbAlHm2Wd3qdmvF8hdVVFRk9SQAAOBQPFlFyObP/Zuiq4vV KzWJp6kAACCseN0qLkl9fb2amprUs2dPq6cAAAAHI1YBAABgWxwDAAAAgG0RqwAAALAtYhUAAAC2 RawCAADAtohVAAAA2BaxCgAAANsiVgEAAGBbxCoAAABsi1gFAACAbRGrAAAAsC1iFQAAALZFrAIA AMC2iFUAAADYFrEKAAAA2yJWAQAAYFvEKgAAAGyLWAUAAIBtEasAAACwLWIVAAAAtkWsAgAAwLaI VQAAANgWsQoAAADbIlYBAABgW8QqAAAAbItYBQAAgG0RqwAAALAtYhUAAAC2RawCAADAtohVAAAA 2BaxCgAAANsiVgEAAGBbxCoAAABsi1gFAACAbRGrAAAAsC1iFQAAALZFrAIAAMC2iFUAAADYFrEK AAAA2/ov2lEB07kkZE4AAAAASUVORK5CYII= ", null, " AAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlcT9n/B/DX/VQoylKEiuzS1FgiWcsXZadswyhLlOxR YlLS1zIxljEGmSbZZmxDsotQxjJFIymabCmJoiLVpz7v3x/9ut+uQgzh4/18PHrUPfecc8+5n0+f 3p17zr0CEREYY4wxxphSkn3sBjDGGGOMsQ+Hgz3GGGOMMSXGwR5jjDHGmBLjYI8xxhhjTIlxsMcY Y4wxpsQ42GOMMcYYU2Ic7DHGmJJ5+PAhsrKyytyXm5uLiIgIhIWFVXCrGGMfCwd77JNCRNi2bRu6 deuGTp06oW/fvjA0NIRMJoNMJkNwcDDOnDkDe3t7DBky5GM3973asmUL/Pz80KJFC4wcOfKV+e7c uYOJEyeib9++sLe3R+/evTFmzBjcuHFDzHP//n14eHigRYsWuHv3bkU0/61FRETA1NQUMpkMxsbG 2L9/v2T/hQsXYGNjA01NTfz6668AgH379qFBgwbIz8//GE3+154/f46ZM2fCx8cHkyZNgqurq6Qv 3t7e4nu95FeHDh1eW29AQIAkf5cuXaClpSXJk5WVhRkzZmDUqFEQBAGWlpaSfQ4ODrC1tcX48eOR mpoKoOj3cd26dRg4cOBb9/Wff/6BtbU1unbtinbt2olti4+Pf+u6PpRjx45hzJgxGDx4cLnLEBEa NWpU5uu0fv16Md/ly5cxfvx4/PDDDxg1ahSOHTv2IbrAWPkQY5+IgoIC+uabb6hGjRp08uRJyb5V q1aRiooKBQcHU2FhIfXp04esrKw+Ukvfv7i4ODIzMyMiopiYGBo9ejQpFIpS+cLDw0lLS4uWLl0q Sf/555+patWqdPToUTFt+/btJAgC3b1798M2/l+4fv06yWQy6tixY5n7f/jhB1q0aJG4ffHiRRo6 dCjJ5fJyH+POnTv/up3vy4gRI2jjxo3i9jfffENjx44lIqLCwkLq2bMnbd++nQ4dOkSHDh2igwcP 0qBBg2jhwoWvrbd///4UFBQkfl29elWyPzU1lUxMTGj+/Plllh8wYAD17duXiIiSkpJo1KhRtHbt Wlq/fj01btyYbt68+Vb9LCgoIGNjY3JzcxPTzpw5Q1paWqV+tz+md/ksOXHiBNnb21NwcLDkddLU 1BTfawkJCaStrU0JCQlERPTo0SPS0dGhyMjID9KPYvn5+ZSSkvJBj8E+TxzssU/G4sWLSRAE2rt3 b5n758yZQ/v37yciIgcHB7K0tKzI5n1QXl5eb/yD8+TJE6pbty717NmzzP1jx46lGjVqUHJyMhER hYWFffLBHhHRwIEDSRAEiouLK7Wvd+/e9ODBg3euOy4ujpydnf9N896bv//+mwRBoFu3bolpJ06c IEEQKCYmhhISEujatWulypmYmNDly5dfWe+pU6do8eLFr9wvl8upc+fOZG1tXeb+6OhoEgSBLl26 REREDx8+pD179hBR0T9Z8+bNK1f/Srp+/ToJgkD79u2TpG/atImCgoLeur4P6W0/S4o/g0qKjIwk ExMTcXv06NGlfp/HjBlDvXr1eveGloOXlxedPn36gx6DfZ74Mi77JGRlZWHZsmVo2rQpbG1ty8wz ZcoUqKqqituCIFRU8z645ORk0BueXBgQEICHDx9iwoQJZe6fNGkSMjMzsWrVqg/RxA9mypQpACC5 BAYA9+7dg6qqKurWrStJp6J/Ut9Yb1ZWFkaOHInc3Nz319h/4eLFiwAg6Y+JiQkA4PDhw2jatCmM jY0lZRITE/HkyRO0adPmlfWuWbMGXl5eMDMzw4oVK0pd4g4KCsKff/6JRYsWlVn+5s2bUFdXR/v2 7QEAZ8+ehYWFBR4/fozAwEAsWLDgrfsql8sBABs2bEBhYaGYPmrUqFKXlz83gwYNKpW2f/9+8VJ3 YWEh9u/fL57PYu3bt8epU6eQkZHxQdp18uRJLF269IPUzT5/HOyxT0JYWBiePXuGbt26vTKPoaEh +vXrJ24TEXbt2oWWLVtCW1sby5cvF/fl5+djzpw5+PHHH+Hp6Ynhw4eLE9aPHj2KoUOHYu7cuVi3 bh0MDAxgYGCAU6dOSeresGEDvLy84ObmBisrK8TGxor79+7di+nTp8PW1hampqavnY9DRFi5ciVc XV3h7u4OCwsLBAQEiPvd3Nxw8eJFJCYmws3NDatXry6znuPHjwMALCwsytxvZmYGVVVVHD16VJJ+ 5coVmJmZQV1dHV27dsXNmzfFfeHh4Zg2bRo2btyIfv36Yd++fQCAp0+fYvHixWjbti1CQ0MxYsQI 6OrqonXr1khJScFvv/2GLl26oFatWli5cmW5zvur9O7dG82bN0dQUBCeP38upgcFBcHe3l7cTk1N xaJFi9C0aVMkJSWJ6YmJiXB3d4evry9sbGzg6+sLAAgNDUVGRgYiIyPh5uaG69evAwBu3LgBJycn +Pj4wNbWFsOGDUNycrK4z8PDA9988w12794NbW1tuLu7w9HRETKZDOPHj8ejR48AAJGRkdDV1cXZ s2cBAGvXroWuri5SUlLK7GdmZiYASM5HrVq1ABTNwyxLcHAwBgwY8NrzZ2lpiYkTJyI1NRXu7u7o 2rUrcnJyxP2bNm1C1apVsXPnTnTu3Bk6OjpwcXFBXl4eAKBNmzbQ0NBAQUEBsrKykJ6ejvr168PT 0xNeXl5QV1d/7fHLYmJiAlNTUxw/fhyWlpb4559/AAAaGhri/Ljw8HCMGzcOM2bMwA8//ID69euj Vq1a8Pb2BgA8fvwYq1evhomJCeLi4tCsWTN0794dAHD16lXMmDED9vb2MDIywooVK8RjJycnY9Kk SfD398e4ceNKBatxcXEYNWoUFixYAE9PTyQmJkr+cXzT61iWAwcOiMFeYmIicnJyYGBgIMljYGAA hUKBv//+u1T5s2fPQltbG7Vq1cLVq1cBACkpKejUqRNmzJgh5tu6dSumTJmC+fPno2vXrli2bBmI CAqFAsHBwSgoKMD69evh5eUFAFAoFPDz88P06dPRrVs39OzZE4mJiWJ9np6e2LRpE9zd3VG7du1y 95d9hj7iqCJjIj8/PxIEgTw9PcuV38HBgfT09Oj3338nIqLly5eTmpoapaenExHR6tWrqWnTpmJ+ U1NT8vX1JaKieTpfffUVGRsb08mTJ0kul9PgwYOpdevWYv558+bRmjVrxO1OnTpR586diYgoIiKC PDw8xH0uLi6koaFBjx49KrOt3333HQ0fPlzcvnr1KqmoqNDPP/8spo0dO/aNl3FbtmxJMpmM8vPz X5mnbt26VK1aNSL632VcJycnunHjBh0+fJh0dXWpRYsWVFhYSAqFgrS1tWn79u1ERPTHH3+QpqYm 5ebmUmFhIYWHh5MgCDR9+nR68uQJvXjxgho3bkxmZmZ0/vx5IiJav349qaurU3Z2NhG9/ry/zpo1 a0gQBNqwYYOY1q5dO8rNzRW3MzMzyd/fX3JpOikpiczMzCgrK4uIiI4fP06CINCJEyeIiMjS0pLG jRsn1pGSkkK6urqSy6XDhw+nJk2a0LNnz+jevXvUpUsXatSoEYWEhNCPP/5IO3fupJycHKpVqxa5 uLiI5R4+fEhjxowRt4OCgqhVq1b08OHDMvsYHBxMgiBQcHCwmFZYWEiCINDUqVPLLNOtWzc6fPjw G88fUdF8re+++44EQaBZs2YREVFeXh6pqKiQubk5PXv2jIiK5j1qaGiQu7u7WHbfvn00f/582rx5 MxUWFlJ0dPQrL/uW171796h9+/YkCAJVrlyZfH19qaCgQNz/zz//UOPGjal58+Z06tQpevDgAU2a NIkEQaCdO3dSWloazZ49mwRBIH9/fzp48CB5e3tTZmYmDRgwQKxn165dJAiCeJ4GDx5MEydOJCKi jIwMEgSBwsPDiYgoLS2N6tevL04ZUCgU9PXXX0t+9970Or7s1q1bVLduXXH7zz//JEEQ6Ndff5Xk K75kX/yZ9bLvv/+eKlWqRJmZmWLaN998I/6+b9q0iczNzcV9Dx48oOrVq4uv4+3bt0kQBDpz5oyY Z/HixZL3z1dffUXt27cnIqKTJ0+Sra2tuM/Ly6tc/WWfJw722Cdh6dKlJAiCJIh6HQcHB8kHdHx8 vGTeUWRkpBhMKRQK6tSpE02YMEHM/3IQsHHjRqpcuTIRFU1mV1dXlwRVsbGx4lwYa2trGjlyJHl4 eJCHhweNHz+eunbtWua8quzsbFJXV6edO3dK0ocOHSr5A1GeeUNGRkYkk8koLy/vlXnq1KlDVatW JaL/BXv//POPuH/Tpk2SgMPX11ecVH706FESBIGSkpKIqOw/Ht98802Z5z06OpqI3nzeXyUzM5Oq Vasmzns6c+YMOTk5lcr38jzEadOmkbe3tyTPtm3bxOCze/fuktf5u+++IyMjI0n+a9eukSAIYrsd HBzIwsKi1LE9PDxIS0tLrHvDhg104MCBN/atmFwup2bNmlHbtm3pyZMnpFAoxOB12bJlpfI/fvyY qlev/trXuywTJ04kAwMDIioKbgVBoFWrVknyjBkzhjQ1NV9Zh7W1Nd24cYOePn1Kc+fOpXnz5tEf f/zxVu0gKgpm165dS1paWiQIAvXs2ZNycnLE/ZaWluICFaKi4FRHR4d69+5NRESBgYEkCILkHCxd upQ6deok/v7NmjWLunbtSgEBAURUtDCpeBFIbm4uCYJAW7duJSKiuXPnUqdOnSRtHDt27L+a/7tq 1SpydHQUtyMjI0kQBAoMDJTkCw0NJUEQXnkeMzIySF1dXXwf3r9/X7LARU9Pj77//ntJmTlz5lDl ypUpMzOz1O9rXl4eaWlp0dy5c8VzZWdnR927d6fCwkI6fPgwaWlpif+4lTe4ZZ8n1TeP/TH24TVo 0ABA0S1DyotKzNuqXLkyAODFixcAgHbt2sHY2Bi//PILcnJykJ2dDYVC8cq6KlWqJM51unDhAqpX rw41NTVxf6tWrcSfo6OjsW3bNvTs2fONbYyNjUVubi6qVq0qSW/dujX27t2LBw8eoF69euXobdFl 7Pj4eKSlpUFfX7/U/oKCAjx58gTNmzeXpJfsh7W1NQAgPj4eAwcOhKenJ6Kjo7Fr1y6kp6cDwBvP U1nnvfjS5Nue92JaWloYM2YMNmzYgPDwcAQFBcHR0fGN5SIiIuDs7CxJGz16tPjzy/M6o6KiSr0W rVq1QqVKlRAdHV2qXyVNnToVP/zwA7Zu3YrJkyfj5MmT2L59+xvbWExVVRVhYWFwc3PDf/7zH5ia mqJly5YAIF6eLCkkJAQ9evRApUqVyn0MABg7diy2bNkCANDU1AQAqKioSPKYmJhg27ZtSEtLQ506 dST79u7dizZt2sDQ0BDm5uawsbHBkiVLEBQUhNzcXFSpUqXcbZHJZJg6dSr69euHAQMG4OTJk/Dx 8cGyZcvEPCVfo0qVKqFDhw7iZd+S6cWuXLkCKysr/Pe//y3zmKNGjUJqaipWrVol9r/4PXjy5Ek0 btxYkp/KMf/zdfbv3w9XV1dxu/h8lpySUHK7fv36ZdZTs2ZNDBs2DAEBAZg8eTK2bduGcePGASi6 b2JKSkqZnyP5+fmIjY0t9TmSmJiI7Oxs/Pe//5XMdS5mY2ODTp06oWvXrpg2bdorzydTDjxnj30S evToAVVVVZw9e/Zff/gCRZPOzc3N0b59e0yfPh3a2trlLiuXy/Ho0SNxTtPLcnJycOvWrVLpZd37 rfiP7MtBrI6ODgBpIPYmNjY2AIDz58+Xuf/q1asoKChA7969X1lH8byc4j/Y3333HVavXo3Zs2eL 9b+L4tfs35z3qVOnAgCWL1+O6OjoV85NLEkul79yvltZVFRUJPP9gKJgo1atWm98LfT09GBnZ4f1 69cjIyOj1D8E5aGnp4cdO3YgKioKgYGBiI2NhYmJCTp27Fgqb3Bw8Dvd365GjRri61ytWjXUqVMH aWlpkjzVq1cH8L9gsFhubi7WrFmDBQsWYM2aNUhJScHChQsBANra2uI/U2+yY8cOyXajRo1w6NAh yGSyUnNKX6apqfnaRRwvXrx47e/f/v37YWtri7Fjx5b6h+HZs2d48uRJqbLvutgrPT0dly9flvzO 6enpoXbt2qV+5+/fvw9VVVW0aNHilfU5Ozvj8uXLuHr1Km7evAkjIyMA7/Y5Ujxv81XnShAEhISE YOHChdi4cSPatWuHx48fl6fb7DOk1MFe8aRr9umrW7cuJkyYgKSkJHFU4mUvXrxAZGSkuP26D+hp 06ahSZMm+PrrrwFAsiLwTYyMjKBQKLBx40ZJekhICBQKBZo1a4aAgABJUJqSklLqDxwAGBsbo1q1 aoiIiJCkp6SkoGnTpuKH9Zv6AwDjxo1DvXr1SrWr2K+//gpNTU3MmjXrlXUUTzrv0aMHzp8/j6VL l8LV1RUymaxcI3Bvaue/Oe+tWrWCpaUlDh48+MoV2S8zMjLC1q1bJUFIdnY2Tp48KW6XfJ0sLCyQ lpYmGTmSy+V4/PgxOnXqJKa9qo+zZs3CtWvX4OrqiqFDh5a7b2UJCwvDrl278OOPP5ba9+LFC5w8 eVKyIKm8oqKiJOWGDBmC8PBwSZ6UlBQYGRmVWnzxww8/YNq0adDQ0EBERAT69u0rjnKmpqaiZs2a 5WpDZGQkTp8+LUlr2LAhatasCV1d3deWvX37Nnr06PHK/c2aNcPBgwfFGz8DRaPaq1evRl5eHhwc HDBy5EjUrFmz1Hu6adOmiIyMLBW0vus/mIcOHUL37t0lo50ymQyDBg2SfFYBwF9//YVevXqhRo0a r6zPwsICpqammDZtmuT9qKOjgyZNmpT5OaKpqQkTExPxPVvclyZNmkAmk8Hf319S5siRI7h27Zq4 sOi7777DlStXkJGR8VYj1ezzUqHBXnJyMlxcXLBhwwY4ODhIVjeW5O/vj0WLFsHHx0eykoqI4O7u jgYNGqB+/foIDAyUlAsNDZXczbz4zcw+D6tWrYKVlRVcXFywZcsWyQf1lStX4ODgAD09PQBFH+4l R9KKb/VQ/P3BgweIi4tDZmYmLl26hMTERKSkpIiXKuVyuaT+4rqICMbGxujduzfmzJkDT09PHD58 GAsXLkRmZiZkMhmmTJmCv/76C8OGDUNYWBj27NkDZ2dnDBs2rFSf1NXVMX/+fOzevVscgcrPz8fe vXuxZMkSyfHfdIsQTU1N7N27F1FRUVi0aJHkD9TOnTuxefNmbN26VVwFKJMV/XqX/MP2888/Y+LE ifjqq6/EwO/ChQvIyckRV+ImJSXh6dOnYqBW8jgKhUI8xwBK5XnTeX+TqVOnQhAEjBkzpsz9xccu fr1mzZqF5ORkdO3aFTt27MCePXswefJkdOnSBUDRaFR8fDyICFeuXMHkyZNRv359+Pn5Sc6diYkJ hg8fXmYfS+rQoQPMzc1x+PBh9OrVS7IvMDAQxsbGpUbRyhIZGYnx48cjMDCwzEu4oaGh+Oqrr0qt kMzLy0OHDh3Ey6AHDx7EiBEjxM/StLQ0bNmyRXKblZkzZyIyMlLMU1BQgD/++ENc9VosJSVFfF8D gL6+vhiYPX78WHIJcebMma+9rY2hoSFGjx6Na9euiWmnT59Genq6OIILFL1vSj7h5a+//sK9e/cw Z84cAP+7/FrynwYnJye8ePEC1tbWCAkJQWhoKEaOHAlra2s8e/YM2dnZiIyMhFwux/bt2yGTycT3 oJOTE54+fYoZM2YgNzcXjx8/xpUrV3Dv3j1xtfbbvI6vGn11dXXFxYsXxVG1jIwMHDhwAO7u7m+s 08nJCZcvXy71FB1fX1+cO3cOf/75p3jufvvtNyxYsACVK1dGzZo1IQgC4uLikJaWhufPn2PUqFFY tWoVFixYgIiICPz8888IDg5G27Ztcfv2bfGpNc2bN0enTp3Ez1emhCpqcqBCoaC2bduKq+SuX79O jRo1kqzOIiq6YWXJCbTDhw+nX375hYiKJt4Wr6ras2cPqampSSb7Ojs7U1RUFEVFRdHff//9obvE PgC5XE4//fQTdejQgQwNDcnKyooGDRpEXl5e4mrCM2fOUIMGDUhTU5N2795N6enpNHnyZJLJZPTN N99Qeno6bd++nWrVqkUGBga0ceNGWrlyJdWsWZP8/Pzo6NGjpKWlRU2bNqXw8HBKTEykbt26kUwm ox9++IGIiu54b2trSxoaGtS4cWPy9/eXtNPb25t0dXVJS0uLBg8e/MYbF69evZq6dOlC8+bNIycn J/GmtUREv/32G9WrV4+qVq1KgYGBlJqa+tq67ty5QxMnTiQrKysaMWIE2djY0KhRoyg2NlaSLy8v j+bMmUPdu3eniRMn0sSJEyUTvJ8/f07du3cndXV16t+/P8XGxpKhoSF16NCB7t69S3PmzCGZTEZT p06lpKQkioiIoJYtW5KWlhbt3r2bnjx5QrNmzSKZTEaOjo6UlJT02vNeHoWFheTg4FDmvri4OBo1 apTYpuKbLW/dupUaNWpE1apVo0GDBtH9+/fFMseOHaMaNWpQt27d6Pbt20RElJiYSP3796fRo0eT l5cXTZkyRVzFfeDAATIwMCBNTU0KCgoS33MlbdiwocwbNa9bt450dXXFm1qX5fr16+Tl5UUDBw58 7WeUo6NjqaekEBW9Zg0bNhQn7oeHh1Pz5s1JS0uLXFxcyNfXl9LS0kqVO3XqFPXp04fmzZtHY8eO pU2bNpXKM2HCBIqPjxe3Hzx4QHZ2drRs2TJau3at5IkuvXv3JplM9srFBiEhISQIAqmpqZGVlRXZ 2tqSubl5qRumd+/enSwsLGjChAk0efJksrW1FVfKRkdHk6WlJclkMlq4cKHkSSh79+6l5s2bk7q6 Opmbm0sWEc2YMYM0NDSoTZs2FB4eToMHDyYDAwMKDQ0lIiJ/f39q1qwZ1axZkxwdHcnZ2ZkmTZpE Fy5cIKLyvY5ERC9evCBNTc1XPrHi9OnTNGLECPLz86PRo0eXeTPmsmRmZkpWSpe0Y8cO6tSpE7m5 udHUqVNp/fr1kv2Ojo6kpaVFs2fPJiKip0+f0qhRo6hatWqkq6tLM2bMoBcvXhAR0ebNm6lmzZq0 ePFiWrlyZbkXx7HPk0D0HiZIlcOJEycwaNAgZGVliZNFW7RogSVLlsDOzk7M17lzZ/Tp0weenp4A gN9++w1LlixBTEwM7t27J07kf/HiBWrVqoX09HRoaGggISEB48aNg4eHB3r37v3Wk5oZY6w8li1b BgsLizJH5F6noKAAoaGh6NChg3h/vc/Zb7/9hubNm6Ndu3bvXIeVlRUaNWokPvuYMfZhVNhl3HPn zqFx48aSVUHNmzeX3Mg2Pz8fkZGR4go1oGh+RmxsLB4/fiwGekDR/KmffvoJGhoaAIrmqbx48QJD hgyBgYEBQkNDK6BXjLEviVwux9mzZ9860AOKVuPa2NgoRaCXnJyMhISEfxXoMcYqToUFe6mpqaVW WFWvXl2yuigjIwNyuVxcKQZAnMxanO/x48dwdXWFvb09zp07J87lGDlyJKKionD79m2YmZnB1tZW MoGXMcbelbu7O0aNGgVbW9t/vTBDGWRlZb3TY9Re9vLcW8bYh1FhwZ6qqmqp5eEvr5QqHvUrma84 T/HVZh0dHSxZsgQ7d+5EcHAwgoKCJHXo6+tjz549qFu3LoKDg997PxhjX560tDQcPXoUrVq1wvjx 4z92cz46IyOjf/1s6qCgIPz9998ICwvDli1bOOhj7AOqsJsq169fv9Sy8adPn8LQ0FDc1tbWhpqa mvgMyeI8ACSrhKpUqYJBgwZh+vTpuHz5cqkPX3V1dfTu3VssW9LYsWMlx7S0tISlpeW/6BljTNlt 3rz5YzdB6Tg4OMDBweFjN4OxL0KFBXtWVlaSu6YDRQ8dHzt2rLgtCAIsLS2RkJAgpsXHx8PIyKjU Xd6BouCwrDvdA0VL9UvO/SsWFBT0Xm7ayxhjjDH2Oaiwy7gdO3ZEw4YNERYWBqAoiMvJyUH//v3h 6emJmJgYAICjoyNCQkLEcocPHxZH7kJDQ8W73xMRzp49K+5buXIl4uPjARTND7xx48Y73ZCUMcYY Y0yZVNitV4Cix7YsWrQIHTp0wKVLlzBt2jS0a9cOZmZmmD9/vnjX/BUrVuDp06dQV1dHVlYWli1b BkEQMHbsWISEhMDR0RF6enqwsbFB8+bNQUTo06cPLl68CGdnZ1SvXh2TJk0qc9WbIAg8sscYY4yx L0aFBnufAg72GGOMMfYlUepn4zLGGGOMfek42GOMMcYYU2Ic7DHGGGOMKTEO9hhjjDHGlBgHe4wx xhhjSoyDPcYYY4wxJcbBHmOMMcaYEuNgjzH2xZMrCl+7zRhjnzO+qTJjjAHQD/QQf74/btlrcjLG 2OeFR/YYY4wxxpQYB3uMMcYYY0pM9WM3gH1c69atg76+PgYNGvSxm4Lt27fj0KFDyM3NxR9//PHa vI8ePcLSpUtx7do11K9fH48ePULlypXh4eGBDh06VFCLGWOMsU8fj+x94TZt2oT169e/c/m7d+++ t7aMGDECaWlpePr06WvzxcfHo3Xr1sjLy8PRo0exefNmHDp0CA4ODrCyssLmzZvf+tjvsx+MMcbY p4SDvS/YpUuXkJ2djRMnTiAxMfGty+fm5sLZ2fm9tUdVVRX6+vqvXUBTWFiIoUOHonr16li7di1k sv+9hQcNGgR3d3c4OTkhOjq63MeNj4/HsmU8IZ8xxphy4mDvCxYUFITg4GCoqalhw4YNb11+ypQp iI+P/wAte7X9+/fj+vXrsLe3lwR6xSZNmgS5XI7FixeXq76srCyMHDkSubm577upjDHG2CeBg71/ SxA+/NcHkJ2djfz8fHz11Vews7NDYGAg8vLyysy3cOFC+Pr64ttvv8W3336LrKwsXL16FfHx8Xjy 5Anc3NwQEhKCM2fOoFatWhg3bhwAIDY2FkOGDJEEZVlZWXBxccH69esxbdo0ODk5oaCgoNztPn78 OADAwsLE65QQAAAgAElEQVSizP316tVDw4YNceLECRARfvrpJ8hkMgQFBQEATp06hRYtWsDKygoA EBoaioyMDERGRsLNzQ3Xr18HACQmJsLd3R2+vr6wsbGBr6+veAy5XA5PT0/MmzcPM2fOhIWFBQ4c OAAAyMvLw+rVq9GlSxf8/vvvmDRpEvT19dG0aVPExMTgxIkT6NWrF2rUqIHZs2dL2r53715Mnz4d tra2MDU1xbFjx8p9XhhjjLFXoi/Me+8y8OG/PoANGzbQmTNniIgoIiKCBEGgLVu2SPIUFhZSt27d 6PLly0RElJWVRVWqVKHvvvuOiIi8vb3J0NBQUqZbt240btw4cfvXX38lQRDE7ZkzZ1KvXr2IiEih UFDNmjVp69at4n4HBweytLR8ZbttbGxIEAS6efPmK/N07NiRZDIZPX78mBQKBQmCQEFBQZJjWFlZ iduWlpaSNiclJZGZmRllZWUREdHx48dJEAQ6ceIEERGNHj2a3N3dxfyHDh0imUxGhw4dIiKiu3fv kiAINHz4cEpJSSGFQkGdO3emli1b0sGDB4mI6MiRIyQIAiUkJBBR0Wvg4eEh1uni4kIaGhr06NGj V/aTvV96v84VvxhjTJnwyN6/VRHh3gcQERGBbt26AQA6d+4MExOTUgs19u/fDwBo06YNAEBTUxPB wcHiyF1ZhJdGIl/e7tOnDxwdHQEACoUCVatWxZ07d8rd7uL66DXnRaFQiHlePn6xkuVfrsvPzw/9 +vWDpqYmAKBXr17YunUrOnbsiISEBOzYsQN2dnZi/r59+6Jt27bw8fEBADRo0AAA0K9fP9SrVw+C IKBr167Izc1Fv379AEAcWYyNjQUA+Pr64s6dO5g3bx7mzZuH3NxctGvXDklJSeU8M4wxxljZ+NYr X6DLly/j77//xpAhQyTpFy5cQHR0NFq3bg0ACA8PR/369SV5evfu/dq6XxVclSyfmZmJn376CYIg oKCgQAzOysPQ0BAAkJaWhubNm5eZ59GjR6hatSp0dHTKVefLbY6IiCi18GT06NEAis4dAFStWlWy v3Xr1tiyZcsrj1G5cuUyt7OysgAA0dHR2LZtG3r27FmuNjPGGGPlxSN7X6DNmzcjLCwM+/btE79C Q0OhqqoqGd2Ty+Xv/ZYk58+fR/fu3TFw4EBMmTIFVapUeavyNjY2Yj1lSU9Px507d/5V0CSXy185 2qiiogIAuH//viRdR0cHqqpv/79T8ahiTk4Obt26VWp/fn7+W9fJGGOMlcTB3hfm2bNnePjwIbS1 tSXptWvXRt++fbFjxw5kZ2cDAFq1aoWLFy+Wuo1J8eXdsp4zLAgCCgv/9xD5kj8DwNixY9GjRw/x UmdZo3qvGx0cMGAATE1NERAQUKpuAAgMDISqqirmzZsnSS95nLLKleyHkZERtm7dihcvXohp2dnZ OHnyJMzNzSGTyRARESEpn5KSgs6dO7+y3W/SrFkzBAQESNqRkpKCHTt2vHOdjDHGGMDB3hcnICAA HTt2LHNf37598fz5c/zyyy8AgDFjxkBbWxvW1tb4+eefcejQITg6OoqXT2vVqoWHDx8iMzNTvLxp aGiIM2fOICUlBfHx8Th06BAA4N69ewCABw8eIDo6Grm5uTh27BgyMjKQkpKC9PR0AEBBQcFrV+cK goDdu3cjJycHLi4ukMvl4r4zZ87A19cXP/74I9q3by+mGxoaYt++fXj27BlCQ0Nx7do1pKWliauP tbW1ER8fDyLClStXMGvWLCQnJ6Nr167YsWMH9uzZg8mTJ6NLly4wMDCAo6Mj/P39xZs/Z2Zm4vjx 4+KcveJgsmTgplAoJP0qzlMchE6ZMgV//fUXhg0bhrCwMOzZswfOzs4YNmzYK88FY4wxVi4fa2XI x/IFdlm0fft2qlGjBvXt25eio6Ml++Li4mjo0KEkCALVrFmTduzYQUREkZGR1KFDB1JXV6f27dtT RESEWCY5OZmaNGlCzZo1o6NHjxIRUUJCArVu3ZqqVatGjo6OtG/fPurbty8FBQVRYWEhLV++nDQ1 NalFixb0xx9/0IwZM6hOnTq0bds22rt3L9WrV49q1qxJv//++2v78ujRI5o9ezZ1796dhg8fTv37 96fBgwfTuXPnSuUNCQkhPT09qlOnDq1atYp8fHxo/PjxFBoaSkREx44doxo1alC3bt3o9u3bRES0 detWatSoEVWrVo0GDRpE9+/fF+srKCggT09PsrKyIk9PT3J0dKTTp08TEdGzZ89o+fLlJAgCDRs2 jG7evElXrlyhLl26kKqqKv3yyy+UlZVFS5cuJUEQaODAgXTjxg0iKlrdrKurS1paWjR48GC6e/fu 27y87F/i1biMMWUlEH2g5Z6fqLIuPTLGmH6gh/jz/XH8RBXGmPLgy7iMMcYYY0qMgz3GGGOMMSXG wR5jjDHGmBLjYI8xxhhjTIlxsMcYY4wxpsQ42GOMMcYYU2Ic7DHGGGOMKTEO9hhjjDHGlBgHe4wx xhhjSoyDPcYYY4wxJcbBHmOMMcaYEuNg7wsSEhKCBg0aQCaToWvXrjh58qRk//Hjx9GhQwfUq1cP Bw4cAACsWbMG7dq1+xjNfSszZ86ETCaDqakpevbsifr164v97NKlC7S1tSGTyXDr1i24urrC0NCw Qtp15swZ2NvbY8iQIe9cx6FDhzBhwgRYWFi8Ms/OnTthZ2eHKVOmvPNxGGOMKScO9r4gAwYMgL+/ PwBAX18f//nPfyT7e/fujY4dO8LPzw8DBw4EADRq1AhmZmZvdZy7d+++nwa/BUEQ8Mcff+Dq1asI DQ2FtbU1BEHA9u3bERERgfv378PExASNGzdGnTp1cO/evQppV9euXZGeno7MzMx3rqNPnz5QKBR4 +PDhK/PY2dnh5s2bePHixTsfhzHGmHJSrciDJScnY/HixTA1NcX58+fh7u4OY2PjUvn8/f2RmpoK IkJBQQF8fX0BAESEuXPn4vfff0dBQQEWL16McePGvbEc+x8bGxuYmJjgwIEDePr0KWrUqCHZf/78 eaxYsULcHjhwoBj4lUdYWBjCw8Ph5eX13tpcHnXq1MHgwYPFbSICEYnb6urqsLe3BwDUrVu3wtol k8lQu3btfxUAy2QyNGzYUNKfl6mqqkJHR+edj8EYY0x5VdjIHhFh4MCBsLW1hbOzMzw8PDBgwAAU FhZK8gUHByMoKAheXl7w9vbGzZs3ERAQAAD47bffMHDgQNy7dw9r166Fk5OTOJLxunJMasqUKXjx 4gUCAwMl6eHh4Wjfvj0qVaokSX/5NXqV5ORk2NvbvzYo+VDc3NzemGfGjBkV0JKyCYLwwY/xMc47 Y4yxT1+FBXuhoaGIi4uDpaUlAMDIyAhqamrYv3+/JJ+fnx/69Okjbg8ePBirV68GAHTp0gVdunQB APTt2xcqKiriH7jXlWNS3377LWrUqIH169dL0jdv3gwHBwdxOzExEW5ubtDX15fku3z5Mtzc3LBo 0SJYWlpi48aNAIAjR44gOzsbx48fh5ubGx48eAAAuHjxIiZNmgRvb2/06dMHjo6O4mXNqKgoTJky BbNmzcKaNWugpaUFPz8/DBgwADKZDPPmzcOzZ88AFM0prFu3Lq5du1aqT6qqbx6kfjlPTEwMOnfu DE1NTYwYMQKFhYVQKBQ4ePAgbG1tsWXLFvFcxcbGIjc3F97e3nBxcUGHDh1ga2uLR48eAQDy8/Mx e/Zs/Prrr3B2dkbbtm0lxyIi7Nq1Cy1btoS2tjaWL18u2X/kyBE4OTlhwYIF6NGjB+bMmYP8/PzX 9ufPP//EyJEj4ePjA09PT7EtjDHGmARVEG9vbzI2Npak9e/fn1xcXMTtvLw8qlSpEu3evVtM++uv v0gQBHr06JGk7M6dO+mXX35563Lvu8sAPvjXhzBr1iwSBIGOHj1KRETPnz8nMzMzSZ4nT56Qp6cn CYIgpl2+fJmsrKxILpcTEZG/vz8JgkA3b94kIiJDQ0Py8fER81+9epVq165NaWlpREQkl8upU6dO 1LFjR1IoFJSQkEBNmjShNm3a0KlTp8jHx4fCwsIoKSmJ1NTUyM/PT6wrMjKS5s+fX67+OTg4kCAI dPfu3VL7AgMDSRAE+v777ykvL48uXbpEgiBQcHAw5ebm0p9//kmCIJCtrS1FRkaSi4sLJScnk5OT E8XGxhIRUU5ODuno6NCwYcOIiCggIIBcXV3FY3h5eUnaoqenR7///jsRES1fvpzU1NQoPT2diIiO HTtGhoaGlJubS0RE2dnZ1LhxYxo+fLhYh7e3NxkaGorb169fp3r16onv7+fPn5Ouri6NGzeuXOeH lab361zxizHGlEmFjeylpqZCS0tLkla9enXcv39f3M7IyIBcLkf16tXFtOI5ZcX5Hj9+DFdXV9jb 2+PcuXMoLCwsVzkmNWXKFAiCgHXr1gEA9uzZAzs7O0meGjVqoEmTJpI0b29v2Nvbi6Nk9vb22Lx5 Mxo3blzmcb7//nuYmZmhdu3aAIpG1+bPn4+LFy/i2LFjaNq0KQwMDNCyZUtYWVnBy8sLlpaW0NfX h52dnThqCAB79+7FyJEj39s5cHd3R6VKldC+fXvUrVsXN27cQOXKlcVVr9bW1mjXrh3WrVsnjsxt 3boV8+bNw6JFi2Bubg6FQgEAyMvLw86dO5GQkAAApVbFNm/eHCNGjABQtFCmoKAAiYmJAIBFixah T58+qFy5MgCgWrVqcHV1xe7duxEfH19m2318fGBlZSXO09PQ0ICRkdF7OzeMMcaUR4UFe6qqqlBT U5OkFf+hLJkHgCRfcR76/8u1Ojo6WLJkCXbu3CnO0ytPuQ+F/n8hwIf8+hCaNGkCa2trHD58GHfv 3sW2bdswZsyYN5aLiIhA/fr1xe3KlSvD3t4eKioqZeaPiopC1apVJWmtW7cGAFy5cgVA0TmsUqVK qbIzZ87ErVu3cOTIEQBAbGwsTExMytfBt1S5cuVSK1lLtunq1atQV1fH0qVLxa+DBw9iz549AAAH Bwfo6uri66+/xpIlS6CtrS2pq+TrWBzUFR+vPOfoZSdPnix1ef1Dv9cZY4x9nios2Ktfv36p2088 ffoUenp64ra2tjbU1NQk+Z4+fQoAknxVqlTBoEGDMH36dFy5cgU6OjrlKlds4cKF4tfp06ffS/8+ R1OnToVCoYCHhwdkMlmZ5+plcrkcd+7cKfcxVFRUkJSUJEkrHo16Ofh/mbm5OczNzfHzzz/j6tWr pebBVaScnBykpaWVeWsTuVwODQ0NhIeHw8nJCQsXLkT37t2Rl5dXrrpVVVVLjUC/6Rw9f/5cfI8X q4hFIIwxxj4/FRbsWVlZ4datW5K0GzduiAs2gKI/VpaWluKlMACIj4+HkZER6tSpU6pObW1tMUB5 m3Ilg72Sx//S9OnTB02aNMHOnTvLNaoHFC2s2bRpk2RUNjk5GX/99ReAotew5AiThYUFYmNjkZWV JaalpKQAADp16iSWeZVZs2bhyJEjWLFixXu9hPu2mjVrhsLCwlIrvAMDA/H48WOEhoZCQ0MDq1at wtmzZxEVFYVjx46J+V7Xx44dO+L8+fOSc5qSkgKZTAZzc/MyyzRp0gRnz56VpH3IkWDGGGOfrwoL 9jp27IiGDRsiLCwMQFEwlpOTg/79+8PT0xMxMTEAAEdHR4SEhIjlDh8+jPHjxwMoWtFbPEpERDh7 9qy473XlWNkEQcDkyZOhqakJW1vbMvPI5XIAQEFBAQDA1dUVUVFRsLGxwe7du7F161Z4e3ujffv2 AIBatWohLi4OBQUFiImJwdy5cyEIAn766Sexzu3bt6Nfv35isFdYWCge52V2dnaoV68eYmJi0KJF i3L3LTs7G0DRCNjLivtS/B0oWk1b3IbioKtkm0xNTdGlSxe4ublh1apViIiIwNKlS3H37l3Uq1cP f/75JyIjIwEUvddbtmyJevXqiccpubK2uN7i797e3khJScHvv/8uOUfOzs4wMDAQ6yh5CxwnJyfc uHEDvr6+KCgowJ07d5CQkICEhATcvn273OeJMcaY8lNZuHDhwoo4kCAIsLGxwY8//oiUlBTs3LkT a9asQcOGDcWbKxsZGcHY2Bjp6ek4fPgwzp8/D3V1dSxYsACCIGDRokVwdXVFRkYG4uLiMGnSJDRo 0AAAXluuJB8fH1RQlz8LRkZGyMjIKPPGyVFRUVizZg3u3LkDVVVVtGnTBu3atUO1atVw4MAB7N27 F5UqVcLq1avF+W1qampYu3YtLl68CHt7e+jp6cHa2hrr16/H+fPncfHiRTx79gwbN26EqqoqgoKC EBQUhAcPHkBPTw+tWrWSvGYymQyPHj2CmZmZeNud13ny5Ak2bdqEwMBA5OfnIy0tDbVq1RIXkCQm JuL777/HnTt3oKKigvbt22PTpk3YvXs3srKyYGFhgXXr1iE8PBxZWVlo1KiR+Gi1Xr16ITY2FgEB AThy5AjatGkDb29vAMDp06fh4eEBIkJYWBjatm2LoUOH4uzZs1i9ejXu3r2LZs2aoW7duliyZAmi oqKQn58PKysrtGjRAhYWFli+fDmuXr2KkydPom7duli6dCkEQcCpU6fwww8/4N69e9DT04ORkREs LCygqqqKX375BcuXL0dBQQG0tLTQqlUrGBsblzmizV5vZXSo+LNrm54fsSWMMfZ+CfSFXfd5+TIj +/RNnjwZc+fOrbDn2bIvk36gh/jz/XHLPmJLGGPs/eJn47JP2pMnT5CWlsaBHmOMMfaOKvTZuIyV V/G9/BISEuDj4/Oxm8MYY4x9tnhkj32SkpKScPDgQQwdOhQ9evT42M1hjDHGPls8ssc+ScWrthlj jDH27/DIHmOMMcaYEuNgjzHGGGNMiXGwxxhjjDGmxDjYY4wxxhhTYhzsMcYYY4wpMQ72GGOMMcaU GAd7jDHGGGNKjIO9tyRXFH7sJnwSbWCMMcbY54FvqvyW1GQqkgemfwzv+yHtycnJ+Prrr3Hs2DG0 a9fuvdZdLDs7GwEBATh8+DB69OgBD493O4dr1qzBli1bEBUV9Z5byBhjjCknHtlj0NTUhIWFBapX r/5BjzFhwgRcvHgR+fn55S539+5dyXajRo1gZmb2vpvHGGOMKS0O9hi0tLQQEhKCpk2bftDjaGpq olatWuXOT0QYN26cJG3gwIHYuHHj+24aY4wxprQ42GMihULxsZsg4evri9OnT5dKLyzkOYuMMcZY eXGw94XZsmULVqxYgZUrV0JXVxcXLlyAv78/OnbsiG3btgEAIiMjMWnSJFhbW+P48eNo3749tLS0 MGPGDDx//hyzZ89Gw4YN0aJFC8TFxQEALl++jKZNm8LKygoAcPv2bTg7O0Mmk+HevXuvbE9sbCwm T54Mf39/DBs2DOvXrwcAJCUl4cKFCwAANzc3BAUFITExEW5ubtDX15fUcfHiRUyaNAne3t7o06cP HB0dkZmZCQA4f/48HBwcMGbMGOzZswfNmzdHnTp1sGPHDrH8rVu3MGfOHAQEBKBXr16YNWvWezrb jDHG2MfHwd4XJDc3F3PnzsWcOXPg6uqKDRs2QCaToXPnzrh06ZKYr02bNlAoFIiMjMTz589x8eJF 7N69G2vXroW7uzsWLlyIW7duoXbt2li8eDEAoG3btujcuTMEQQBQNLdu5MiRb2zTt99+CwMDA0ya NAnz58/HtGnTkJSUBAMDAwwfPhwAsHz5cjg4OEBbWxtVqlTBw4cPxfIxMTEYMGAAFi9eDB8fH4SE hCAuLg42NjYgIpibmyM9PR3h4eEQBAHXr1/HyJEjMW3aNLGOhQsXonv37pgwYQIOHDgAXV3d93K+ GWOMsU8BB3tfELlcjvT0dKxbtw4AMGDAADRv3hzGxsaSfCoqKtDX14eWlhaGDBkCmUwGS0tLAIC5 uTk0NTWhoqKCbt264dq1a2I5QRBARG/VpgkTJqBv374AAA0NDSgUilKLMorVqFEDTZo0kaR9//33 MDMzQ+3atQEAqqqqmD9/Pi5evIhjx45BJpNBR0cHjRs3hp2dHVRVVdG/f388efJEDBrz8/OxZs0a ZGdnQ11dHePHj3+rPjDGGGOfMg72viCamprw8fHBtGnT0LdvXyQnJ6NGjRrlKlu5cuVSaZUqVUJW Vta/atPUqVOhqamJFStWIDg4GMDbzR2MiopC1apVJWmtW7cGAFy5ckVMKxmEVqpUCQCQl5cHAFiw YAGuXLkCIyMj7Nu3D3Xq1Hm3zjDGGGOfIA72vjDz5s3Dnj17EBMTA1NTU/z555//qr6XR/KKL+OW 1/r16zF9+nRMnTpVvGz7NlRUVJCUlCRJ09HRAQCoqamVqw5jY2NcvnwZX3/9Nezs7DB79uy3bgdj jDH2qeJg7wuSlpaGmJgY2NraIi4uDqamplixYsV7q18QBMlK2Tetmr1//z6mTZsGJycnVKlSpdSI XnkCRwsLC8TGxkpGGFNSUgAAnTp1KlddoaGhaNiwIQ4dOoSVK1di9erVePr06RuPzRhjjH0OONj7 guTk5GDDhg0AgGrVqsHOzg7169eHXC4HAMnNjl8O1IoDseK8xXlKjuw1atQI0dHRiI+PR1JSEnbu 3AmgaGVuMblcjoKCAgDAw4cPoVAocOnSJeTl5WH37t0Aip7okZGRId6TLz4+HtHR0SAi8fjFdcyd OxeCIOCnn34Sj7F9+3b069dPDPYKCgokgWRxP4v7GBAQgOfPnwMAxo4dCy0tLWhqapbvpDLGGGOf OH5c2luSKwrf++PK3qUNajKVdyq7ceNGqKqqolWrVoiLi8N///tf+Pn5AQB+++03tG/fHgUFBTh6 9ChSU1Oxe/du9O3bF0FBQQCAnTt3wtzcHHK5HEeOHEFqaiq2bduG0aNHw8XFBadOnUK7du1gY2OD WbNmIT4+HnFxcWjfvj38/f3x4MEDHD16FNbW1ujUqRPs7OywcuVKhIeHY926ddi1axcWLVoEY2Nj /Oc//0Hbtm3Rq1cvLF68GIWFhdi1axcEQcDSpUsxY8YMNG3aFKdPn8bs2bNx9+5d1K5dG7m5udiz Zw8A4MKFCwgPD8fz589x6NAhmJmZwd/fH4IgYMOGDVi4cCFSU1NhbW2NUaNGISEhAbt27YKKyrud X8YYY+xTI9DbLp/8zL3LilHGmPIr+czrj/0PHWOMvU98GZcxxhhjTIlxsMcYY4wxpsQ42GOMMcYY U2Ic7DHGGGOMKTEO9hhjjDHGlBgHe4wxxhhjSoyDPcYYY4wxJcbBHmOMMcaYEuNgjzHGGGNMiXGw xxhjjDGmxDjYY4wxxhhTYkod7CUnJ3/sJjDGGGOMfVQVGuwlJyfDxcUFGzZsgIODA2JjY8vM5+/v j0WLFsHHxwcLFiwQ03NzczF58mTo6OjAwMAAP//8s6RcaGgoZDKZ+HX27NkP2h/GGGOMsU+dakUd iIgwcOBAfP/99+jZsye6d++Ofv36ISEhASoqKmK+4OBgBAUF4dy5cwCAESNGICAgABMmTMDy5cvR o0cPTJs2Db/88gumTp2Kr7/+Gp07dwYA7N27F5GRkUUdU1WFqalpRXWPMcYYY+yTVGEje6GhoYiL i4OlpSUAwMjICGpqati/f78kn5+fH/r06SNuDx48GKtXrwYA6OrqYtiwYWjVqhVWrlyJhg0bikFh QkICYmJikJKSgq+++ooDPcYYY4wxVGCwd+7cOTRu3Biqqv8bTGzevDlOnTolbufn5yMyMhItW7YU 05o1a4bY2Fg8fvwYkyZNktSpq6uLBg0aAACioqLw4sULDBkyBAYGBggNDf3APWKMMcYY+/RVWLCX mpoKLS0tSVr16tVx//59cTsjIwNyuRzVq1cX02rUqAEAknxA0fy9p0+fYtCgQQCAkSNHIioqCrdv 34aZmRlsbW2Rmpr6obrDGGOMMfZZqLBgT1VVFWpqapI0hUJRKg8ASb7iPEQkybtp0yasXLkS6urq knR9fX3s2bMHdevWRXBw8HtrP2OMMcbY56jCFmjUr18fERERkrSnT5/C0NBQ3NbW1oaamhoyMzMl eQBAT09PTIuJiYGqqir69u1b5rHU1dXRu3dvsezLFi5cKP5saWkpziNkjDHGGFM2FRbsWVlZYdmy ZZK0GzduYOzYseK2IAiwtLREQkKCmBYfHw8jIyPUqVMHAJCSkoKTJ09i5syZYp6CggLJXEAAKCws lMz9K6lksMcYY+z15IpCqMlUSv3MGPs8VNhl3I4dO6Jhw4YICwsDUBTE5eTkoH///vD09ERMTAwA wNHRESEhIWK5w4cPY/z48QCAzMxM+Pr6wsbGBvHx8YiNjcXSpUuRm5uLlStXIj4+HkDR/MAbN26g X79+FdU9xhhTWmoyFegHekA/0IMDPcY+QxU2sicIAoKDg7Fo0SLExcXh0qVLOHjwIDQ0NHD06FG0 bdsWJiYmGDZsGO7evQtPT0+oq6ujYcOGcHV1hUKhwKBBg3D27Fls3LhRrHfUqFGoWrUqjh8/Dl9f Xzg7O6N69erYs2dPqdE+xhhjjLEvjUAvr3xQcoIglFrswRj7PL3Py4v6gR7iz/fHLXtNzi9T8fnh c8PY54eHvhhjn63iy4sAByGMMfYqFfpsXMYYY4wxVrE42GOMMcYYU2Ic7DHGGGOMKTEO9hhjjDHG lBgHe4wxxhhjSoyDPcYYY4wxJcbBHmOMMcaYEuNgjzHGGGNMiXGwxxhjjDGmxDjYY4wxxhhTYhzs McZYBZArCsv8mTHGPjR+Ni5jjFUAfo4vY+xj4ZE9xhhjjDElxsEeY4x9ZviSMGPsbfBlXMYY+8zw JWHG2NvgkT3GGGOMMSXGwR5jjDHGmBLjYI8xxhhjTIlxsMcYY4wxpsQ42GOMMcYYU2Ic7DHGGGOM KTEO9hhjjDHGlBgHe4wxxhhjSoyDPcYYY4wxJcbBHmOMMcaYEuNgjzHGGGNMiXGwxxhjjDGmxDjY Y74c/l8AACAASURBVIwxxhhTYhzsMcYYY4wpMQ72GGOMMcaUGAd7jDH2GZMrCsv8mTHGiql+7AYw xhh7d2oyFegHegAA7o9b9pFbwxj7FPHIHmOMMcaYEuNgjzHGGGNMiXGwxxhjjDGmxDjYY4wxxhhT YuVeoFFQUABV1X+3niM5ORmLFy+Gqakpzp8/D3d3dxgbG5fK5+/vj9TUVBARCgoK4OvrCwDIzc3F rFmzsHv3bqirq2PevHlwcXF5YznGGGNvJlcUQk2mUupnxtjnrdwje0OGDEFkZOQ7H4iIMHDgQNja 2sLZ2RkeHh4YMGAACgultwoIDg5GUFAQvLy84O3tjZs3byIgIAAAsHz5cvTo0QNnz57FsGHDMHXq VJw7d+6N5RhjjL1Z8cpe/UAPDvQYUyLlDva++eYbXLlyBc7OzvDy8sLVq1ff6kChoaGIi4uDpaUl AMDIyAhqamrYv3+/JJ+fnx/69Okjbg8ePBirV68GAOjq6mLYsGFo1aoVVq5ciYYNG4rB3uvKMcYY Y4x9qcod7I0aNQoTJ07Ehg0bMGPGDPj5+aFVq1bw8fm/9u48Lsrq3wP4Z1hUDEExUXAZxCtBKt3U zK6pkKaxiHuuIbn9TDNNXFLRTLPQ/BXXpcwl9fZzyR23S4ZroGkYevkhIKaggCBKoIGxDOf+wY/n NwPMOAIzMM983q+Xr3jOc84z5wzTmS/nPOc8n+DWrVtPLR8dHQ1XV1eNqWA3NzecPn1aOi4qKkJM TAzc3d2ltI4dOyI+Ph4PHjzA1KlTNa7ZsmVLtGvX7qnliIiIiMyV3sHenTt3kJ+fj6+//hp9+/bF jz/+iCFDhuCNN97Arl27EBgYiDt37mgtn5mZCTs7O400e3t7pKWlScc5OTkoLi6Gvb29lNa0aVMA 0MgHlN2/l5ubi8GDBz9TOSIiIiJzoveKCx8fH9y9exdKpRKzZ8/G+PHj0ahRIwBA79698f3332PI kCH47bffqn4hKytYW1trpJWWllbKA0AjX3keIYRG3s2bN+PLL7+EjY0N8vPz9S5HREREZE70Dvaa NGmCgwcPon///lWev3Pnjs4pU2dnZ0RFRWmk5ebmwsXFRTpu3rw5rK2tkZeXp5EHAFq3bi2lxcXF wcrKCr6+vs9UrtyyZcukn728vKT7CImIiIjkRu9g78iRI3B0dNRIu3//PlQqFZycnLBo0SLMmjVL a3lvb2+Ehmo+tzEpKQlBQUHSsUKhgJeXF5KTk6W0xMREeHh4SK+dkZGBU6dOYfbs2VKekpKSp5ZT px7sERGRcXBrF6K6ofc9e1u2bKmU5ujoiBkzZgAoC9RsbW21lu/ZsyeUSiXOnDkDoCwYKygogL+/ P0JCQhAXFwcAmDx5Mo4ePSqVO3HiBCZOnAgAyMvLw4oVK/DWW28hMTER8fHx+Pzzz1FYWKizHBER 1T1u7UJUN546srdx40b88MMPSE1NxU8//aRx7sGDB3j06JFeL6RQKBAeHo7ly5cjISEBly9fxrFj x9C4cWNERESga9eu6NKlC0aOHInU1FSEhITAxsYGSqUSc+bMQWlpKQYPHozz58/j22+/la47duxY 2Nraai1HREREZM6eGuxNmzYNlpaW+Omnn+Dn56ex4OG5555D37599X4xV1dXbN++HQA0nnxRcbPm uXPnViqrUChw9uxZndevqhwRERGROdPrnr0pU6YgMDAQDRs2rHTujz/+qPVKEREREVHt0BnspaSk wMnJCQ0bNkRycjLu37+vcV6lUmH//v0a06pERKS/igsVuHCBiGqbzmCvd+/eCA4OxuzZs/Hjjz9i 3rx5VeZjsEdEVD3lixbKpb0bqiM3EdGz0xnsRUVFoVWrVgDKno3bqlUrjBs3TjpfWlpa5SpdIiIi IqofdG69olQqpfv0nJ2dMWbMGM3CFhYYMmSI4WpHRISyqc2qfq6PTKmuRGQetI7sZWdnIyEhQWdh IQQOHz6Mr776qtYrRkRUTn2qs75Pc5pSXYnIPGgN9v744w/069cPrVu3hkKhqDJPaWkpMjIyGOwR ERER1VNagz03NzesW7cO06ZN03mBXbt21XqliIiIiKh26Lxn72mBHoBn2lSZiIiIiIxL52rcCxcu wN3dHQ4ODjh37hx+//13jfMqlQonTpzAoUOHDFpJIiIiIqoencHe+PHjERwcjBkzZiAxMRHBwcFo 0aKFdF6lUiErK8vglSQiIiKi6tEZ7MXHx8PGxgYAMHLkSLRt2xa+vr4aeQ4cOGC42hERERFRjei8 Z6880AMABwcH+Pr64tatW4iNjUV+fj4AYPjw4YatIRERERFVm85gT92NGzfw8ssv4z/+4z/QrVs3 NG3aFHPmzEFxcbEh60dERERENaB3sDdhwgS0aNEC0dHR+OOPP5CRkYGuXbti2bJlBqweEREREdWE znv21F2/fh1paWlo0qSJlDZ+/Hh88sknBqkYEREREdWc3iN7Y8aMwb179yqlczUuEdWGis+RlfNz ZeXcNiKqf7SO7F2+fBkLFiyQjktLS9GnTx94eHhopKmP9BERVZf6M2UBeT9Xls/PJSJj0hrsde7c GTY2Nnj77bd1XqB///61XikiU1T+DGkhRB3XhKgeKH+mOv9/IKpzWoO9xo0bY8eOHRqbKFekUqkQ FRWFNm3aGKRyRET1VXGpCtYWlpV+ru9Mtd5EVH06F2ioB3q5ubn4/vvvkZubK41c5ObmYs+ePcjI yDBsLYmI6hlTnYo11XoTUfXpvRp38uTJsLa2RkZGBlxdXSGEwPXr1zXu6yMiIiKi+kXvYG/gwIGY MmUKEhMTkZ2djd69e+PJkyeYPXu2IetHRERERDWg99YrSUlJ2L9/P1xcXHDkyBGcO3cO0dHR2Ldv nyHrR0REREQ1oPfIXkBAAD766CN07twZwcHB8PX1xdWrVzF06FBD1o+IiIiIakDvYK9Pnz64cOGC dPzbb7/h4cOHaN68uUEqRkREREQ1p/c0bklJCcLCwtC7d294enpizJgxuHPnjiHrRkREREQ1pHew N2vWLCxduhQvvvgiJk2ahK5du+Kjjz5CeHi4IetHRERERDWg9zTu7t27cerUKbzyyitS2rx58xAc HIzBgwcbpHJEREREVDN6j+x16NABnp6eldIbNGhQqxUiIiIiotqjdWQvJSUF58+fl44HDhyId999 F2+99ZaUplKpEBsba9gaEhEREVG16ZzG/fDDD9GlSxeNB7xv27ZNI897771nuNoRERERUY1oDfZc XFxw6NAh9OnTx5j1ISITVlyqgrWFZaWfiYio7ui8Z69ioLdr1y688cYbcHd3h5+fHyIiIgxaOSIy LdYWlmiz7SO02fYRAz0ionpC79W4a9euxZo1azBmzBgolUoUFhbim2++we3btzmVS0QmgSOPRGSO 9A72Ll26hJs3b2qsvv3www/x8ccfG6RiRES1rXzkEQDS3g2ttesycNRUXKqCtfrPfG+I6pTeW6/0 7t27ym1WCgsLa7VC+srKynpqnvT0dCPUhIjqg+JSVZU/G4P69DVBI7hjoEdU9/QO9lJTU3H69Gnk 5+cjOzsb0dHRmDhxIjIyMvR+sfT0dEyfPh0bN27EhAkTEB8fX2W+TZs2Yfny5fjkk0+wZMkSjXMp KSkYN24c3n777UrlIiMjYWFhIf1T3zqGiOSN9wtqZ+zgl4jqF72ncefNm4fx48drLMoYPnw4tm7d qld5IQQCAgKwatUq9O/fH3379oWfnx+Sk5Nhafnvjjk8PBw7duxAdHQ0AGDUqFHYunUrJk2aBACw sLCAg4MD7t69W+k1Dhw4gJiYmLKGWVlVuQk0Eckf783TZKjpayIyDXqP7P3yyy/45ptvkJaWhl9+ +QWZmZnYt28f7Ozs9CofGRmJhIQEeHl5AQA8PDxgbW2Nw4cPa+RbvXo1fHx8pOMhQ4YgLCxMOm7X rh2aN28OIYRGueTkZMTFxSEjIwOdO3dmoEdkxjjKR0T0b3oHe0FBQbhx4wacnZ3Ro0cPODo6AgDy 8/P1Kh8dHQ1XV1dYWf17MNHNzQ2nT5+WjouKihATEwN3d3cprWPHjoiPj8eDBw90Xv/KlSt48uQJ hg4dirZt2yIyMlLfphERERHJlt7B3o4dOzQCNfV0fWRmZlYaBbS3t0daWpp0nJOTg+LiYtjb20tp TZs2BQCNfFUZPXo0rly5gtu3b6N79+4YNmwYMjMz9aobEdUN3ktGRGR4egd7ixcvRr9+/TQWQFhY WGDmzJl6lbeysoK1tbVGWmlpaaU8ADTyleepOG2rTZs2bbB//360atUK4eHhepUhorrBVayGw0Ca iMo9dYFGQkICTp48iWnTpuHFF19EmzZtpHNCCHz33Xd6vZCzszOioqI00nJzc+Hi4iIdN2/eHNbW 1sjLy9PIAwCtW7fW63UAwMbGBgMGDJDKVrRs2TLpZy8vL+k+QiIiueCiDCIqpzPY+/XXX/H666+j uLgYAKBUKhEdHQ1nZ2cpT0hIiF4v5O3tjdBQzQ4nKSkJQUFB0rFCoYCXlxeSk5OltMTERHh4eEj3 COpLpVJp3PunTj3YIyIiIpIzndO4y5Ytw7p16/DHH38gLS0NXl5eWLlypUaehg0b6vVCPXv2hFKp xJkzZwCUBXEFBQXw9/dHSEgI4uLiAACTJ0/G0aNHpXInTpzAxIkTNa5VcfoXAL788kskJiYCKLs/ MCkpCX5+fnrVjYiIiEiudI7sNWvWDFOnTgVQtpji22+/xciRIzXylJSUVLlwoyKFQoHw8HAsX74c CQkJuHz5Mo4dO4bGjRsjIiICXbt2RZcuXTBy5EikpqYiJCQENjY2UCqVmDNnjnSd8+fP48iRI0hL S8OhQ4fg7+8PKysrnDx5EitWrMC0adNgb2+P/fv361UvIiIiIjnTGQ3Z2tpqHDdo0ACtWrXSSNu9 ezfeeecdvV7M1dUV27dvBwBMnz5dSi/fCLnc3LlztV6jT58+uHr1aqV09c2eiYjkgJtDE1Ft0Bns 7d27Fzdu3IAQAgqFAkII3LhxA2+88QYAoLi4GHFxcXoHe0REpD8usiCi2vDUkb3WrVtrPM5MqVRK P5eUlDx1/zsiIiIiqjs6g73Nmzdj4MCBOi9w8uTJWq0QEREREdUenatxnxboAcCAAQNqrTJERERE VLv0foIGEREREZkeBntEZBDqj+vio7uIiOoOgz0iMgj1595yyxD9MTAmotrGYI/ITHCkzTSoB8lE RLWBj5ggMhPcs42IyDxxZI+IiIhIxhjsEREREckYgz0iIhPA+yyJqLoY7BGZOS7c0K2+vD/munCj vrz/RKaMCzSIzJy5LtwoLlXptSWMub4/9QXff6Ka48geEZklcx0pqymOtBGZHgZ7RESkN21BMgM/ ovqLwR4REVWiT/DGp6QQmQYGe0REVAmnuYnkg8EeERERkYwx2CMiIiKSMQZ7RERERDLGYI+IiIhI xhjsEZHByWVvNlOuOxGZLwZ7RGRwctmio76vUGUwSkRVYbBHRCQT9T0YJaK6wWCPiMhAONJGRPUB gz0iIgPhSBsR1QcM9oioRjh6RURUvzHYI6IaedbRKwaHRETGxWCPiIyKU5tERMbFYI+IiIhIxhjs EREREckYgz0iIiIiGWOwR0RUAReREJGcMNgjIqqAi0iISE5MNtjLysqq6yoQERER1XtWxnyx9PR0 rFy5Ep6enrh48SLmz5+PTp06Vcq3adMmZGZmQgiBkpISrFixQjqXkpKCxYsXIy0tDefOndO7HBER EZE5MlqwJ4RAQEAAVq1ahf79+6Nv377w8/NDcnIyLC0tpXzh4eHYsWMHoqOjAQCjRo3C1q1bMWnS JACAhYUFHBwccPfuXY3rP60cERERkTky2jRuZGQkEhIS4OXlBQDw8PCAtbU1Dh8+rJFv9erV8PHx kY6HDBmCsLAw6bhdu3Zo3rw5hBDPVI6IiIjIHBkt2IuOjoarqyusrP49mOjm5obTp09Lx0VFRYiJ iYG7u7uU1rFjR8THx+PBgwdar13dckRERERyZ7RgLzMzE3Z2dhpp9vb2SEtLk45zcnJQXFwMe3t7 Ka1p06YAoJGvouqWIzIF6tuAcEsQIiJ6Vka7Z8/KygrW1tYaaaWlpZXyANDIV56n4rRtbZQjMgXl 24AAQNq7oXVcGyIiMjVGC/acnZ0RFRWlkZabmwsXFxfpuHnz5rC2tkZeXp5GHgBo3bq11ms/a7ll y5ZJP3t5eUn3ERKRfopLVbC2sHx6RiIiqnNGC/a8vb0RGqo5KpGUlISgoCDpWKFQwMvLC8nJyVJa YmIiPDw84OjoqPXaz1pOPdgjomfH0UYiItNhtHv2evbsCaVSiTNnzgAoC8YKCgrg7++PkJAQxMXF AQAmT56Mo0ePSuVOnDiBiRMnalyr4vSvvuWIiIiIzI3RRvYUCgXCw8OxfPlyJCQk4PLlyzh27Bga N26MiIgIdO3aFV26dMHIkSORmpqKkJAQ2NjYQKlUYs6cOdJ1zp8/jyNHjiAtLQ2HDh2Cv78/rK2t n1qOiGqGU7dERKbJqE/QcHV1xfbt2wEA06dPl9JjYmI08s2dO1frNfr06YOrV69WeU5XOSKqGVOd umWQSkTmzmSfjUtEpI/yILU8UCUiMjcM9oiIiIhkjMEeERERkYwx2CMiIiKSMQZ7RERERDLGYI+I yEzxWctE5sGoW68QEVH9ob6dDmCYLXW49Q1R3ePIHhGZFI5GmRZufUNU9xjsEcmMejAkx8CIwQMR 0bNhsEckM+rBkClPn8kxUCUiqgsM9oioXuIIHhFR7WCwR0RERCRjDPaISFJx6pRTqUREpo9brxCR pOJWHLcnrKzD2hARUW3gyB4RacX75oiITB+DPSIiIiIZY7BHREREJGMM9oiIiIhkjMEeERERkYwx 2CMiIiKSMQZ7RDLGffKIiIjBHpGJUg/ktAV13DqFTIU+n2ciqh5uqkxkotQ3QE57N7SOa0NUM/w8 ExkOR/aIiKjGOBpHVH8x2CMiohozxi0DnOolqh5O4xIRkUngVC9R9XBkj0gGOMpBRETaMNgjkgGu uiVzxuldIt04jUtERCaN07tEunFkj4iIiEjGGOwRmSFOdVF9xs8nUe1isEdkhniPH9Vn/HwS1S4G e0REJHtcxEHmjMEeERGZnGcN2NRHC60tLA1UK6L6icEeERGZHE71EumPwR4RERGRjMk62EtPT6/r KhARERHVKaNuqpyeno6VK1fC09MTFy9exPz589GpU6dK+TZt2oTMzEwIIVBSUoIVK1bodS4yMhID BgyQjnfu3IkxY8YYtlFERERE9ZjRgj0hBAICArBq1Sr0798fffv2hZ+fH5KTk2Fp+e+bZcPDw7Fj xw5ER0cDAEaNGoWtW7di0qRJOs8BwIEDBxATE1PWMCsreHp6Gqt5RET0DIpLVQZfKGGM1yAyBUab xo2MjERCQgK8vLwAAB4eHrC2tsbhw4c18q1evRo+Pj7S8ZAhQxAWFvbUc8nJyYiLi0NGRgY6d+7M QI9MFreFIHOgvsDCUIssuIiDqIzRgr3o6Gi4urrCyurfg4lubm44ffq0dFxUVISYmBi4u7tLaR07 dkR8fDyys7N1nrty5QqePHmCoUOHom3btoiMjDROw4hqmTG+BInkin8sEVVmtGAvMzMTdnZ2Gmn2 9vZIS0uTjnNyclBcXAx7e3sprWnTpgCAmzdvaj2Xnp6O0aNH48qVK7h9+za6d++OYcOGITMz05BN IiKieoajeUSVGS3Ys7KygrW1tUZaaWlppTwANPKV5ym/r6+qc0IIKa1NmzbYv38/WrVqhfDw8Fps AVHNcRd/IiIyNqMt0HB2dkZUVJRGWm5uLlxcXKTj5s2bw9raGnl5eRp5AKBdu3Zaz7Vu3VrjujY2 NhgwYIB0vqJly5ZJP3t5eUn3ERIZWvmoAwCkvRtax7UhIiJzYLRgz9vbG6Ghml9uSUlJCAoKko4V CgW8vLyQnJwspSUmJsLDwwOtWrXSes7R0bHS66lUKo37+9SpB3tEhqC+CpArAomIqC4ZbRq3Z8+e UCqVOHPmDICyQK2goAD+/v4ICQlBXFwcAGDy5Mk4evSoVO7EiROYOHHiU899+eWXSExMBFB2f2BS UhL8/PyM0jaiiio+h5P3EBERUV0x2sieQqFAeHg4li9fjoSEBFy+fBnHjh1D48aNERERga5du6JL ly4YOXIkUlNTERISAhsbGyiVSsyZMwcAtJ4TQuDkyZNYsWIFpk2bBnt7e+zfv19j5S8RERGROTJq NOTq6ort27cDAKZPny6ll2+EXG7u3Llar6HtXERERM0rSFRH9J3q5ZQwERE9K1k/G5fIVOg71csp YSIielYM9oiIiIhkjMEeERERkYwx2CMiIiKSMQZ7RHWET9AgIiJjYLBHVEe42IKIiIyBwR4REZmV iqPqHGUnueOuw0REZFbUn1ENaD6nmo86JDlisEdERPQv6oGgehBIZMo4jUtEREQkYwz2iIiIiGSM wR4REZk1LtAguWOwR0REZo3bIJHcMdgjIiKqgvqIn7bRP33yENU1rsYlIiKqgraVuepbsnD1LpkC juwR6YF/vRNROU77kqlhsEekB/XO/WmbrPILgIiI6hMGe0REREQyxmCPiIiISMYY7BERERHJGIM9 IiIiIhljsEeyZagVtFyZS0SGwL6FDIX77JFsGWr/K+6rRWR+1PfWMxT2LWQoHNkj+hf+VU1E2nBv PTJlHNkj+hf+VU1ERHLEkT0iIiIiGWOwR1QDnO4loqfhLSJU1ziNS1QFfW/GVp/6JSKqCm8RobrG YI9Mnnpgpk+Qpk/+ikEcO2giqm+ete8j88Vgj0zes/7VzL+yicgQjB18sS8jffGePSIiolqgvj2L sUfZeF8g6cJgj4iIqJYZ+6k9dRloUv3HYI/MAv/SJSJj0ncTZn36JgZyVFMM9qhOGHvKgbvfE1F9 ULG/09Y38Q9Uqk1coEF1gjcWE5E50nelvyn1kVwVXP9xZI9MhiFGA/nXMxHJTV3OnDDQq58Y7FGt MEbnok+H8qyvzeldIpIbBl9UkVGncdPT07Fy5Up4enri4sWLmD9/Pjp16lQp36ZNm5CZmQkhBEpK SrBixYoanyPDqi9TDvWlHkRE9YG+U6za8mkrw+la02K0YE8IgYCAAKxatQr9+/dH37594efnh+Tk ZFha/vsDEx4ejh07diA6OhoAMGrUKGzduhWTJk2q9jmq33i/BxGRYej6A1i9v62Yr6oyuvJT/Wa0 adzIyEgkJCTAy8sLAODh4QFra2scPnxYI9/q1avh4+MjHQ8ZMgRhYWE1OkfA2bNna+U6hpiuNeRq tMLEOzW+hiliu80L221eqtuf67sSWJu6vu2ltr7HTE1ttNtowV50dDRcXV1hZfXvwUQ3NzecPn1a Oi4qKkJMTAzc3d2ltI4dOyI+Ph7Z2dnVOvfgwQMDt8w0VPVhqU7gZuh7QfS9vr71NdcvA7bbvLDd 5qO4VFXtL3/1/tXYAVvFPlvb94+u76Xa+h4zNSYV7GVmZsLOzk4jzd7eHmlpadJxTk4OiouLYW9v L6U1bdoUAHDz5s1qnVO/PmkyVOBWW//z6Spb139hEhHVBWsLS3wZG2kSfZ96H14x0FT/zqn4XfQs C/Gqs3DPHALEiox2z56VlRWsra010kpLSyvlAaCRrzxP+X19z3pOCFEr9deXse8/0+em2oof7KfV qTo39KqrrXs59N2PioiIDONZv8f0va+vOt9F5Z71O6aq75Ly49sTVj61TrK4r1wYycqVK8VLL72k kebj4yPee+896bi0tFQ0aNBAHD58WEq7dOmSUCgU4t69e9U6l5WVpfGaHTp0EAD4j//4j//4j//4 j//q/b8JEybUOAYz2siet7c3QkM1I/CkpCQEBQVJxwqFAl5eXkhOTpbSEhMT4eHhgVatWlXrnKOj o8Zr3rx5s5ZbRkRERFR/Ge2evZ49e0KpVOLMmTMAyoKxgoIC+Pv7IyQkBHFxcQCAyZMn4+jRo1K5 EydOYOLEiTU6R0RERGSuFEIY76a2W7duYfny5ejRowcuX76MmTNnolu3bujevTsWLVqEYcOGAQDW rFmD3Nxc2NjY4NGjRwgNDYVCoajROSIiIiJzZNRgj8iYUlJSsHfvXjg6OsLPzw8tWrSo6yoREdUI +zWqDlk9G/fcuXN46aWXYGdnh4EDB+Lu3bs604GyR7hNnz4dGzduxIQJExAfH19X1a82Xe0DylYm e3t749y5c1Ka3Nu9d+9ejB07FiNHjkRQUJDUIcq53VFRUVi6dCnCwsIwfvx4JCUlSWXk0O7Y2Fj0 6tULzZo1w5tvvomHDx8C0N02Obdb7v2atnaXk2u/pqvdcu7XtLVb7v1auYqf51rv12q8xKOeyMrK EoGBgSIuLk5EREQIpVIp+vfvL+7fv19luhBlq3+7du0qfvrpJyGEENevXxft27cXJSUlddmUZ6Kt 3erWr18vHBwcxLlz54QQ8m/3mTNnRIsWLUR6erpGGTm3W6VSCVdXV6FSqYQQQpw9e1ZWn/PCwkKx cOFCUVBQIP7880/Rs2dPsWjRIiGEqLJtKpVK1u2We7+m6/ddTo79mq52y7lf09ZulUolOnToINt+ TZ3651lb22rSr8km2Nu9e7d49OiRdLxt2zbRqFEjsWfPnirThRDi5MmTwsbGRhQXF0vn3dzcxP79 +41X8RrS1u5yP//8szh+/LhwcXGROkW5t9vd3V2sWLGiUhk5tzs7O1vY2NiIx48fCyGEuHr1qujW rZsQQh7tzszMFIWFhdLxggULxJIlS3S2Ta7tDgkJ0fn5l2u7lyxZIh3LtV/T1W4592va2i33fq1c xc+zIfo12Uzjjh49Gk2aNJGOW7ZsCaVSiVGjRlWZDuj3CLf6Tlu7AeDhw4e4cOECfH19NcrI+ACV QwAAEidJREFUud0XL15EUlISUlJSMGLECHh4eGDDhg0A5N3u559/Ht26dUNgYCAePXqEdevWYcWK FQDk0e6WLVuiQYMGAIDCwkJkZWVh9uzZOtt24cIFtG/fXnbtnjNnjs7/7+X6+/7www8ByLtf09bu CxcuyLpf09ZuufdrQOXPsxAC0dHRWvuu6vZrsgn2Kvrtt98wbdo0nen6PMLN1Ki3LywsDLNnz66U R87tjomJQZMmTRAaGor9+/dj586dmDVrFi5duiTrdgPAvn37kJiYCGdnZ/Tr1w8+Pj4A5PX7Pnr0 KHr06IHIyEjEx8dX2bamTZsiLS0NmZmZGo9QBEy73a+++ioiIyPxz3/+s9J5ufZrVbXbHPq1iu2+ cuWKWfRrVf2+5d6vVfV5zsrKqtR31bRfk2Wwl5+fj7i4OHzwwQc60/V5hJspKW/fzJkzsXnzZowb N076awmA9Og4Obf7zz//xAsvvIDnn38eANC1a1d0794dx44dg7W1tSzbXf55zszMRP/+/eHr64ug oCDs27cPgLx+34MGDUJ4eDj69OmD8ePHa/2dCiFk1+7Dhw9L7VYn536tYru3bNliFv1axXbn5+eb Rb9W1edczv1aVd/TQNkjYGu7X5NlsLdmzRqsW7cOFhYWOtOdnZ2Rl5enkSc3NxetW7c2Wl1rU3n7 LC0tsXnzZrz88suwsbGBjY0NUlNTMWDAAIwaNUrW7W7VqhXy8/M1zrdt2xY5OTlwcnKSZbstLCxQ UFAAHx8fLF26FHv37sW8efMwadIkPHr0SHbtdnFxwdatW/HgwQO0aNFCa9vk3G71FZpy79fU2/3Z Z5+ZTb+m3m4LCwuz6dfU233nzh1Z92vavqc3bdqER48eaeStcb9miJsN69KmTZvEzZs3peOioiKt 6RcuXBBNmjTRKO/q6ip++OEH41S2Fmlrdzn1G5mjo6Nl2+5r164JW1tbjfb7+fmJNWvWyPr3fenS JeHo6Cgdl5SUCHt7exETEyOrdqtr27atzs+ynNtdWloqhJB/v6ZOvd3l5NqvqWvbtq2Ij483i35N Xdu2bc2uXyv/POtqW3XbLauRve3bt8PGxgbFxcVITEzEuXPnsGvXLq3pr732WpWPcBs0aFAdt+TZ aGtfReJf0x1ybndsbKw0vQEARUVFiIuLw/jx47U+sk8O7Y6OjkZxcTHu3bsHoKzdjRs3hpubmyza nZOTo/E4xHPnziEwMBD/9V//Valt+fn5GDRokKzbrVAoZN2v6Wp3RXLq17S1+8UXX0S3bt1k269p a7ebmxuKiopk269pU1XbatqvWek8a0IiIiIwZcoUqFQqKU2hUCAsLAxz5syplF6+MWN4eDiWL1+O hIQEXL58GceOHYONjY3R619d2tqtvvGkenr5f+Xc7n79+iE4OBhJSUlIS0vD5s2b0bJlSwDy/n17 enoiODgY3bt3x927d/GPf/xDWrFp6u2+desWpkyZghdeeAEjRoyAra0tPv30UwCV23b8+HGpbXJs 94oVK576/70c213++65ITv2arnb/4x//kG2/pqvd+/fvl22/pk1Vn+Wa9mt8XBoRERGRjMlqGpeI iIiINDHYIyIiIpIxBntEREREMsZgj4iIiEjGGOwRERERyRiDPSIiIiIZY7BHRJVcv34d9+/fr+tq 6OXGjRvIzs6u62pUYsh6/fXXX/jtt9+k40ePHiEuLs4gr0VEpo/BHpGZ+fnnnzF48GBMmjQJ06dP h6+vLyIiIqTzhw4dwn/+538iMTGxDmtZtot+ly5d0LBhQ7z33nuYOXMmpk2bhr59+8Lb2xsAsHHj RnTq1AkJCQl1WteK9KlXXFwchgwZgkGDBiEwMBAeHh6wsLDA0KFDdV775s2beOuttxAcHAwAiI2N Ra9evfDll1/Wahuqsn79elhaWkKpVOL8+fNS+oMHD/D++++jXbt2uHTpksHrQUTPqFYf7EZE9drB gwelZ0uWu337tnBychJbt26V0pRKpfTM0boUEhIi2rdvXyl90aJF0s81rWtsbKz45Zdfql1eG131 +vnnn0WTJk3EwYMHpTSVSiVmzZolhg4d+tRrb9u2TXh5eUnHH3/8sQgKCqp5pfXw7rvvimbNmlV6 /vaOHTvEjh079LrG119/bYiqEZEWHNkjMhP5+fmYMmUKpkyZgm7duknpLi4uWLBgAWbOnClNO1b1 DNK6YGlpKT37VN3ChQuln2tS19zcXIwfPx5//fVXta+hjbZ6lZSUIDAwEH5+fhqjeBYWFvj73/+O 9u3b13pdatOHH36I3Nxc7N27VyP9xIkTePvtt59a/tq1a5g3b56hqkdEVWCwR2QmTp48iZycHAwc OLDSOV9fXzx58kTjC/zixYvw8PCAo6MjPvnkEyn9wIEDWLJkCTZs2IBx48ahpKQEf/75JxYuXIgB AwZg48aNGDhwIDp27Ijk5GQsXLgQnp6eGDRokBS4nT9/HnPnzsXmzZsxYsQI5Obm6t2OTz75BLa2 tlWeKy4uxqeffor58+fj1VdfxaFDh6RzZ86cwbJly7B8+XL4+/sjJycHMTExyMjIwPfff4+DBw9K dfv444/x97//Hf7+/rh27RoAYPfu3ejTpw8OHjyItm3bYuPGjYiPj8cHH3yA7777DsOGDcOdO3ee Wv9Tp04hJSUF48ePr3TO0tIS06ZNA1D2cPiFCxdi48aNGDduHNauXav1mhUDy8OHDyMkJAR+fn6Y OnUqSktLAQCPHz/G/Pnz8cUXX8DBwQFOTk4ICwsDUDa9v2jRIowaNQpDhw5Ffn5+la/VpUsX9O7d G19//bWUlpGRATs7OzRq1EhK0/Y+RkZGoqCgAJ999hmuXLkCAPjqq6+waNEi9OrVC9988w0AQAiB xYsXY8+ePRg+fDh27Nih+40lIu3qeGSRiIwkNDRUKBQKcePGjUrn/vrrL6FQKMT7778vhBDCxcVF zJ07V6hUKnH8+HFhaWkpDh06JIQQwsnJSfz6669CCCF69uwpjhw5IoQQ4ujRo6JZs2bi+vXrQggh Ro8eLby9vcVff/0lSkpKRJs2bcTFixeFEEK89tprYt++fVK+tWvXVlnnjz/+WNja2oqgoCARFBQk 3nzzTdGsWTONPC4uLtJ0aWhoqIiOjhZCCLFv3z5ha2srHj9+LK5duyb8/f2lMq+++qrYuHFjpfIp KSnCw8NDlJaWCiGEOH78uHB0dBR5eXni4cOHQqFQiO+++05cunRJXLt2TYwZM0Z88cUXQgghPvro IzFnzpwq66Xuiy++EAqFQsTHx1fZ5nI+Pj7i1KlTQgghCgsLRdu2bcXOnTuFEJWncZctWyZN46am pkq/x8LCQuHg4CC+++47IYQQCxcuFOvXrxdCCLFhwwbpvXz8+LEYO3asdL3OnTuLpUuXaq3b3r17 hUKhELGxsUKIsvf9/Pnz0nld7+Pt27eFQqGQ8u7Zs0dq16+//iosLCzEzZs3RWxsrAgICBBCCFFQ UCAOHDig8/0iIu2s6jrYJCLj0DXdWT7yI9SmTAcNGgQLCwv4+vqiX79+OHDgAIYMGYIff/wRnTp1 QkxMDPLy8qRROVtbW9jb28PDwwMA4ObmBhsbGzRs2BAA4OrqipSUFPTs2RPbtm2DUqlEYmIiMjIy dI7sPf/889i2bZt0PGPGDK15t23bhtLSUvz888/Iz8/Ha6+9hrt372Ljxo148803pXynTp1C48aN K5XfuXMnOnXqJL1Xvr6+UCgUCA8PxzvvvAMAeOONN6BUKgEAn332GZo2bYq7d+8iOTkZdnZ2WutW rqSkBEDZKJ42GRkZiIiIwL59+wAADRo0wJgxY7BlyxaMHTu2Un7139uuXbtw7949rFq1CgDg7e2N x48fAwCuXr2Kli1bAgB69+4t1eHYsWPIzMyUyrz00ksoLi7WWr9hw4bB2dkZX3/9NTZt2oTz589j wYIF0nld72Pv3r01rrVt2zZ4enri7t27UKlU6NevH9LS0uDu7o7IyEisXr0ac+fOferCFSLSjsEe kZlwd3cHANy9excdO3bUOJeeng4AeOGFF6os26lTJ9y8eRMA0LBhQ8yfPx+BgYFo2bJllffUAWXB pfo5CwsLFBUVAQDs7e2xZMkSBAQEwNXVVQo29REUFKT13J07dxAcHIwGDRpopN+6dUtqPwA899xz VZZPS0urNH2pVCqRkZGh0a5yzz//PFauXIlevXqhc+fOSE1NfWr93dzcAADJycla3++0tDQAQEFB gVRXpVKJ8PDwp17/zp07GDBgAKZOnVrp3Ouvv47w8HDMmjULeXl5GDlyJAAgNTUVPXr00AjYdLG0 tMTf/vY3rFq1CsOHD0ePHj0q1f9p76N6fdeuXSu9L4sWLZLO7d69G4GBgTh48CD27t2Ldu3a6VU/ ItLEe/aIzMSAAQPQokUL/O///m+lc6dOnUKjRo0wYsSIKssWFhaiU6dOePLkCby9vTFz5kx4enrq fD1dI4m+vr7w9/dH7969IYR4pkUWr7zyCoqKinD58uVK55o3b44zZ85Ix0IIxMXFwdHREWfPntXI e/v27Url27dvj+TkZI20wsJCuLq6VlmXwMBAuLu7w9/fX+/6Dxw4EA4ODpUWOKhzcXEBULZXn3o9 OnToUGV+hUIhvYcV3wMA0v1yCxcuhJOTE9asWYPff/8d//3f/w2gLGit+P6Ul9Fm6tSpKC4uRmBg ICZMmKBx7lneR231zcrKgr+/P65fvw5bW1tMnDhRZ32ISDsGe0RmolGjRtiyZQu2bt2K//u//5PS 79+/j9DQUHz11VdwcnKS0lUqlfTfS5cuYebMmbh+/Tru3buH4uJiPHz4ELdu3UJubi5UKlWlET4h hEZaaWkphBB4+PAhrl69iuLiYjx58gTXr1+XrlFRSUlJlaN+n376qZS//LoAEBAQgBkzZuCXX35B eno65s+fDwcHB4wcORLh4eEIDQ3F77//ji1btiAnJwdA2Sjf/fv3cf/+fbzzzjvIysqS9pDLyspC fn4+Bg8eLL2Gen0iIyNRXFyMkpISXL16FXl5eVXWS91zzz2HLVu24IcffsDWrVs1zsXGxuLzzz+H o6Mjhg8frnH+7NmzmDlzZqU6lP+O1N+Dffv2YcOGDcjKysKBAwcQExMDoGyfvP79+8PHxwfdu3fH o0ePAJQFoLGxsViyZAkyMjJw+vRpjb0Xq9KyZUuMGDECHh4eUnBaTtf7WD5S+eDBA9y/fx8BAQFY smQJfvzxR2RlZeGzzz5DSUkJEhMTcerUKTg7O2PNmjX4888/ddaHiHSoixsFiajuREVFiYCAAPG3 v/1NzJgxQwwePFgcO3ZMI8/atWuFn5+fWLx4sfjggw9EVFSUEKJsIUevXr1Ey5YtxYIFC8RHH30k OnbsKK5duyZmzpwpbG1txblz58SdO3fEW2+9JTw8PERcXJy4fPmycHR0FOPGjRPZ2dli2LBholmz ZmLq1KkiLCxMODk5ibNnz2rU4ezZs+Kll14SlpaWYuzYsWL27Nli8uTJokePHsLOzk6UlJSInTt3 CisrKzF79mzx4MEDkZubK4YPHy7s7OxEly5dxJkzZ6Trff7556JVq1aiXbt2YteuXVL6p59+Ktq1 ayftM3jhwgUxaNAg8fnnn4v3339f/POf/xRCCLF+/XphYWEhli5dKrKzs4UQQsyaNUs0adJEjB49 WvzP//yPcHBwEHv37q1UL22/h4EDB4ru3buL0aNHi6lTp4r169dLixry8vLEO++8IxYsWCCWLl0q 7U2XkpIifH19hZOTk4iKihLx8fHilVdeEV26dBFXr14VQgixbt060bp1a9GiRQuxePFi6TW3bNki lEqlsLW1FRYWFqJBgwbi+PHjQoiyBS2urq6iadOmYurUqZX20avKhQsXpMUfVZ2r6n0UQkjtjoqK EoWFhWLq1KmiWbNmokOHDmLv3r3S79/V1VV8++23Ijg4WFp4Q0TPTiGElhtuiIhINp48eYI5c+Zg w4YNsLAom9TJzs7Gnj17pBFDIpInTuMSEZmBkydP4uLFi8jLywNQNs0eGxuL119/vY5rRkSGxmCP iMgMDBgwAF27dsULL7yAbt26YcyYMWjevDlefvnluq4aERkYp3GJiIiIZIwje0REREQyxmCPiIiI SMYY7BERERHJGIM9IiIiIhljsEdEREQkYwz2iIiIiGTs/wGP8dcyUw7yzAAAAABJRU5ErkJggg== ", null, " AAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlcTun/P/DXuSspWhSylJI1xjJEZKl8UTKWyZ5Rlkj2 LduEaAxjNzP2NWEGGZItypqxTGgkRRMSSSoV2rvfvz/6dT4drZbC3fv5eHjoXOe6rnOdc9/dve9r OUcgIgJjjDHGGFNIss/dAMYYY4wxVnY42GOMMcYYU2Ac7DHGGGOMKTAO9hhjjDHGFBgHe4wxxhhj CoyDPcYYY4wxBcbBHvuiEBH27t2Lrl27wtzcHLa2tjAyMoJMJoNMJoOPjw8uXrwIBwcHfP/995+7 uZ/Unj17sGLFCjRp0gRDhw4tMt/jx48xduxY2NrawsHBAT179sSIESNw//59Mc/Tp08xd+5cNGnS BFFRUeXR/PcWGBiIli1bQiaToXnz5jh69Khk/7Vr12BjYwMNDQ3s3LkTAHDkyBHUq1cPmZmZn6PJ H+3NmzeYM2cOfvrpJyxYsAAjRoxAbGysuH/RokXiez3/v/bt2xdZZ1xcHIYNGwYdHR3o6+tjxYoV kv05OTn46aef0KBBA2hra6NXr16IiIiQ5ElJSYGjoyPs7OwwevRosU1EhA0bNqBv377vfa7//fcf rK2t0aVLF7Rt21Y8l/Dw8Peuq6z4+flhxIgR6N+/f6nLEBHq169f6Ou0adMmMd+tW7cwevRorF69 Gvb29vDz8yuLU2CsdIixL0R2djYNGzaMtLW1KSAgQLJv7dq1pKSkRD4+PpSTk0O9evUiKyurz9TS Ty8sLIxMTU2JiCgkJISGDx9Ocrm8QL7Lly+TpqYmLVu2TJK+ceNGqlKlCp0+fVpM27dvHwmCQFFR UWXb+I9w7949kslk1KFDh0L3r169mpYsWSJuX79+nQYOHEhZWVmlPsbjx48/up2fyvDhw+n3338X t728vMja2pqIiHJycqh79+60b98+OnHiBJ04cYKOHz9O/fr1I3d390Lry8nJIUdHR7p06RLFxcXR smXLSBAEyftg8eLFNG3aNDpy5AgtXLiQ1NTUyNjYmFJTU8U8ffr0IVtbWyIiio6OJnt7e/rtt99o 06ZNZGxsTA8ePHiv88zOzqbmzZuTq6urmHbx4kXS1NQs8Lv9OX3IZ8nZs2fJwcGBfHx8JK+ThoaG +F6LiIggXV1dioiIICKily9fUvXq1SkoKKhMziNPZmYmxcTElOkx2NeJgz32xVi6dCkJgkCHDx8u dP+sWbPo6NGjRETk6OhIlpaW5dm8MrVw4cIS/+C8evWKatWqRd27dy90/8iRI0lbW5uePXtGRETn z5//4oM9IqK+ffuSIAgUFhZWYF/Pnj3p+fPnH1x3WFgYjR8//mOa90lpaWnR8ePHxe2wsDCqWrUq EeUGCHfv3i1QpkWLFnTr1q1C67t+/XqBYFZXV5dWr15NRERpaWk0bdo0yf5169aRIAjk5+dHRETB wcEkCALduHGDiIhevHhB3t7eRJT7JWvevHnvfZ737t0jQRDoyJEjkvRt27aRp6fne9dXlt73syTv Myi/oKAgatGihbg9fPjwAr/PI0aMoB49enx4Q0th4cKFdOHChTI9Bvs68TAu+yKkpKRg+fLlaNiw Iezs7ArNM3HiRCgrK4vbgiCUV/PK3LNnz0AlPMxmx44dePHiBcaMGVPo/nHjxiE5ORlr164tiyaW mYkTJwKAZAgMAJ48eQJlZWXUqlVLkk65X1JLrDclJQVDhw5Fenr6p2vsR6pevTp2794tbt+5cwet W7cGADRs2BDNmzeX5I+MjMSrV6/w7bffFlpf+/btYWhoKG5nZGQgOzsbPXr0AAC8ePEC06dPl5T5 v//7PwC51wcAHjx4ADU1NbRr1w4AcOnSJXTs2BHx8fHYtWsXFixY8N7nmZWVBQDYvHkzcnJyxHR7 e3toamq+d31fkn79+hVIO3r0qDjUnZOTg6NHj4rXM0+7du1w7tw5JCYmlkm7AgICsGzZsjKpm339 ONhjX4Tz58/jzZs36Nq1a5F5jIyM0Lt3b3GbiHDw4EE0bdoUurq6WLlypbgvMzMTs2bNwq+//go3 NzcMHjxY/ON2+vRpDBw4EHPmzMGGDRtgYGAAAwMDnDt3TlL35s2bsXDhQri6usLKygqhoaHi/sOH D2PKlCmws7NDy5Yti52PQ0RYs2YNZsyYgdmzZ6Njx47YsWOHuN/V1RXXr19HZGQkXF1dsW7dukLr OXPmDACgY8eOhe43NTWFsrIyTp8+LUm/ffs2TE1Noaamhi5duuDBgwfivsuXL2Py5MnYsmULevfu jSNHjgAAkpKSsHTpUrRp0wb+/v4YMmQI9PT00Lp1a8TExOCPP/5A586doaOjgzVr1pTquhelZ8+e aNy4MTw9PfH27Vsx3dPTEw4ODuJ2bGwslixZgoYNGyI6OlpMj4yMxOzZs+Hh4QEbGxt4eHgAAPz9 /ZGYmIigoCC4urri3r17AID79+/D2dkZixcvhp2dHQYNGoRnz56J++bOnYthw4bh0KFD0NXVxezZ s+Hk5ASZTIbRo0fj5cuXAICgoCDo6enh0qVLAIDffvsNenp6iImJKfJc3d3dcfjwYYwZMwZXr17F rl27sHfv3iLz+/j4oE+fPsVev/x++uknbN++HS1atAAAGBoaol69epI86enpEARBnAf47bffQl1d HdnZ2UhJSUFCQgLq1KkDNzc3LFy4EGpqaqU+fp4WLVqgZcuWOHPmDCwtLfHff/8BANTV1cX5cZcv X8aoUaMwdepUrF69GnXq1IGOjg4WLVoEAIiPj8e6devQokULhIWFoVGjRrCwsACQGyRPnToVDg4O MDExwapVq8RjP3v2DOPGjcPWrVsxatSoAsFqWFgY7O3tsWDBAri5uSEyMlLyxbE0r+O7jh07JgZ7 kZGRSE1NhYGBgSSPgYEB5HI5/v333wLlL126BF1dXejo6ODOnTsAgJiYGJibm2Pq1KliPi8vL0yc OBHz589Hly5dsHz5chAR5HI5fHx8kJ2djU2bNmHhwoUAALlcjhUrVmDKlCno2rUrunfvjsjISLE+ Nzc3bNu2DbNnz0aNGjVKfb7sK/QZexUZE61YsYIEQSA3N7dS5Xd0dKS6devSn3/+SUREK1euJBUV FUpISCCi3KGqhg0bivlbtmxJHh4eRJQ7T+ebb76h5s2bU0BAAGVlZVH//v2pdevWYv558+bR+vXr xW1zc3Pq1KkTEREFBgbS3LlzxX0TJkwgdXV1evnyZaFt/fHHH2nw4MHi9p07d0hJSYk2btwopo0c ObLEYdymTZuSTCajzMzMIvPUqlVLHBbMG8Z1dnam+/fv08mTJ0lPT4+aNGlCOTk5JJfLSVdXl/bt 20dERH/99RdpaGhQeno65eTk0OXLl0kQBJoyZQq9evWK0tLSyNjYmExNTenq1atERLRp0yZSU1Oj 169fE1Hx170469evJ0EQaPPmzWJa27ZtKT09XdxOTk6mrVu3Soamo6OjydTUlFJSUoiI6MyZMyQI Ap09e5aIiCwtLWnUqFFiHTExMaSnpycZLh08eDA1aNCA3rx5Q0+ePKHOnTtT/fr1ydfXl3799Vc6 cOAApaamko6ODk2YMEEs9+LFCxoxYoS47enpSc2aNaMXL14Ue66//voryWQyqly5Mv3zzz/F5u3a tSudPHmy2DxERFeuXKHu3buTIAjUqFEjioyMLDLvqlWraODAgZK0I0eO0Pz582n37t2Uk5NDwcHB 4lzCD/XkyRNq164dCYJAqqqq5OHhQdnZ2eL+//77j4yNjalx48Z07tw5ev78OY0bN44EQaADBw5Q XFwczZw5kwRBoK1bt9Lx48dp0aJFlJycTH369BHrOXjwIAmCIF6n/v3709ixY4mIKDExkQRBoMuX LxMRUVxcHNWpU0ecMiCXy6lVq1aS373Svo55Hj58SLVq1RK3//77bxIEgXbu3CnJd/bsWRIEQfzM etcvv/xClSpVouTkZDFt2LBh4u/7tm3byMzMTNz3/Plz0tLSotmzZxMR0aNHj0gQBLp48aKYZ+nS pZL3zzfffEPt2rUjIqKAgACys7MT9y1cuLBU58u+ThzssS9C3sTy/EFUcRwdHSUf0OHh4ZJ5R0FB QWIwJZfLydzcnMaMGSPmfzcI2LJlC6mqqhIRUWxsLKmpqUmCqtDQUHEujLW1NQ0dOpTmzp1Lc+fO pdGjR1OXLl0KnVf1+vVrUlNTowMHDkjSBw4cKPkDUZp5QyYmJiSTySgjI6PIPDVr1qQqVaoQ0f+C vf/++0/cv23bNhIEgXx8fIiIyMPDQ5zzdfr0aRIEgaKjo4mo8D8ew4YNK/S6BwcHE1HJ170oycnJ VLVqVXHe08WLF8nZ2blAvnfnIU6ePJkWLVokybN3714x+LSwsJC8zj/++COZmJhI8t+9e5cEQRDb 7ejoSB07dixw7Llz55KmpqZY9+bNm+nYsWMlnlt+2dnZNGPGDJozZw7p6OiQuro6+fv7F5o3Pj6e tLS0in2988jlcoqPj6ctW7aQmpoa9evXr9B8aWlpZGpqSk+fPi22Pmtra7p//z4lJSXRnDlzaN68 efTXX3+VfILvyMnJod9++400NTVJEATq3r27ZGGIpaUljRw5UtzOyMig6tWrU8+ePYmIaNeuXSQI guQaLFu2jMzNzcXfv+nTp1OXLl1ox44dRJS7MClvEUh6ejoJgkBeXl5ERDRnzhwyNzeXtHHkyJEf Nf937dq15OTkJG4HBQWRIAi0a9cuST5/f38SBKHI65iYmEhqamri+/Dp06eSBS5169alX375RVJm 1qxZpKqqSsnJyQV+XzMyMkhTU5PmzJkjXqsBAwaQhYUF5eTk0MmTJ0lTU1P84lba4JZ9nZRL7vtj rOzlDTU9ffq01GUo37wtVVVVAEBaWhoAoG3btmjevDm2b9+O1NRUvH79GnK5vMi6KlWqJN7O49q1 a9DS0oKKioq4v1mzZuLPwcHB2Lt3L7p3715iG0NDQ5Geno4qVapI0lu3bo3Dhw/j+fPnqF27dinO NncYOzw8HHFxcdDX1y+wPzs7G69evULjxo0l6fnPw9raGgAQHh6Ovn37ws3NDcHBwTh48CASEhIA oMTrVNh1zxuqfd/rnkdTUxMjRozA5s2bcfnyZXh6esLJyanEcoGBgRg/frwkbfjw4eLP787rvHnz ZoHXolmzZqhUqRKCg4MLnFd+kyZNwurVq+Hl5QUXFxcEBARg3759JbYxv6lTp0JXVxeLFy/GhAkT 0KtXLwwePBhRUVGoWrWqJK+vry+6deuGSpUqlVivIAjQ1dXFuHHjEBsbW+RUgAULFmDVqlWoW7du kXUdPnwY3377LYyMjGBmZgYbGxv8/PPP8PT0RHp6OipXrlzq85XJZJg0aRJ69+6NPn36ICAgAIsX L8by5cslbc9TqVIltG/fXhz2zZ+e5/bt27CyssJPP/1U6DHt7e0RGxuLtWvXQkNDA8D/3tMBAQEw NjaW5KdSzP8sztGjRzFjxgxxu2bNmgAgmZKQf7tOnTqF1lOtWjUMGjQIO3bsgIuLC/bu3YtRo0YB yJ17GRMTU+jnSGZmJkJDQwt8jkRGRuL169f46aefJHOd89jY2MDc3BxdunTB5MmTi7yeTDHwnD32 RejWrRuUlZVx6dKlj/7wBXInnZuZmaFdu3aYMmUKdHV1S102KysLL1++REZGRqH7U1NT8fDhwwLp hd37TUlJCUDBILZ69eoApIFYSWxsbAAAV69eLXT/nTt3kJ2djZ49exZZR968nLw/2D/++CPWrVuH mTNnivV/iLzX7GOu+6RJkwAAK1euRHBwcJFzE/PLysrC48ePS30MJSUlyXw/IDfY0NHRKfG1qFu3 LgYMGIBNmzYhMTGxwBeCkqSmpmLLli0YNGgQgNwvOIcPH0ZSUpI47y8/Hx+fD7q/Xbt27Qpt186d O2FqairOeytMeno61q9fjwULFmD9+vWIiYmBu7s7AEBXV1f8MlWS/fv3S7br16+PEydOQCaTFZhT +i4NDY1iF3GkpaUV+/t39OhR2NnZYeTIkQW+MLx58wavXr0qUPZDF3slJCTg1q1bkt+5unXrokaN GgV+558+fQplZWU0adKkyPrGjx+PW7du4c6dO3jw4AFMTEwAfNjnSGpqKgAUea0EQYCvry/c3d2x ZcsWtG3bFvHx8aU5bfYV4mCPfRFq1aqFMWPGIDo6Gnv27Ck0T1paGoKCgsTt4j6gJ0+ejAYNGqBV q1YAIFkRWBITExPI5XJs2bJFku7r6wu5XI5GjRphx44dkqA0JiamwB84AGjevDmqVq2KwMBASXpM TAwaNmwofliXdD4AMGrUKNSuXbtAu/Ls3LkTGhoaBVZfvntcIDe4vnr1KpYtW4YZM2ZAJpOVqgeu pHZ+zHVv1qwZLC0tcfz48SJXZL/LxMQEXl5ekiDk9evXCAgIELfzv04dO3ZEXFycpOcoKysL8fHx MDc3F9OKOsfp06fj7t27mDFjBgYOHFjqcwNye17lcrnkmjRt2hQ1atSATCb9KE5LS0NAQIBkQVJp PX/+HFZWVpK0kydPIjU1FUOGDBHT4uLiCqwMXb16NSZPngx1dXUEBgbC1tZW7OWMjY1FtWrVStWG oKAgXLhwQZJmaGiIatWqQU9Pr9iyjx49Qrdu3Yrc36hRIxw/flxyM+rs7GysW7cOGRkZcHR0xNCh Q1GtWrUC7+mGDRsiKCioQND6oV8wT5w4AQsLC0lvp0wmQ79+/SSfVQDwzz//oEePHtDW1i6yvo4d O6Jly5aYPHmy5P1YvXp1NGjQoNDPEQ0NDbRo0UJ8z+adS4MGDSCTybB161ZJmVOnTuHu3bviF4wf f/wRt2/fRmJi4nv3VLOvBwd77Iuxdu1aWFlZYcKECdizZ4/kg/r27dtwdHQUh5+ys7MlPWl5t3rI +//58+cICwtDcnIybty4gcjISMTExIhDlVlZWZL68+oiIjRv3hw9e/bErFmz4ObmhpMnT8Ld3R3J ycmQyWSYOHEi/vnnHwwaNAjnz5+Ht7c3xo8fL/bY5Kempob58+fj0KFDYg9UZmYmDh8+jJ9//lly /JJuEaKhoYHDhw/j5s2bWLJkieQP1IEDB7B79254eXmJqwDzAoj8f9g2btyIsWPH4ptvvhEDv2vX riE1NVVciRsdHY2kpCQxKMl/HLlcLl5jAAXylHTdSzJp0iQIgoARI0YUuj/v2Hmv1/Tp0/Hs2TN0 6dIF+/fvh7e3N1xcXNC5c2cAub1R4eHhICLcvn0bLi4uqFOnjuQpEwcOHECLFi0wePDgQs8xv/bt 28PMzAwnT54Ub2+SZ9euXWjevDni4uIKLaupqQlra2scPHhQTHv48CEqVaqETp06SfL6+/vjm2++ KbBCMiMjA+3btxeHQW/evImFCxciKSkJQG6g6+XlJRmSCwoKwsqVK1G7dm14e3vD29sbu3btwpQp U6CjoyPmi4mJEd/XAKCvry8GZvHx8ZIhxGnTphV7WxsjIyMMHz4cd+/eFdMuXLiAhIQEsQcXyH3f 5H/Cyz///IMnT55g1qxZAP43/Jo/QHZ2dkZaWhqsra3h6+sLf39/DB06FNbW1njz5g1ev36NoKAg ZGVlYd++fZDJZOJ70NnZGUlJSZg6dSrS09MRHx+P27dv48mTJ+Jq7ZJex/yK6n2dMWMGrl+/Lvaq JSYm4tixY5g9e3aJdTo7O+PWrVsFnqLj4eGBK1eu4O+//xav3R9//IEFCxZAVVUV1apVgyAICAsL Q1xcHN6+fQt7e3usXbsWCxYsQGBgIDZu3AgfHx+0adMGjx49Ep9a07hxY5ibmxc7vM++cuU5QfDp 06fk4uJCmzZtIgcHh0JvIEqUO1l+8eLF5O7uLlmdKZfLydXVlQwMDKh27doFVjsVVY59PbKysuj3 33+n9u3bk5GREVlZWVG/fv1o4cKF9ObNGyLKnbxfr1490tDQoEOHDlFCQgK5uLiQTCajYcOGUUJC Au3bt490dHTIwMCAtmzZQmvWrKFq1arRihUr6PTp06SpqUkNGzaky5cvU2RkJHXt2pVkMpl4M9qX L1+SnZ0dqaurk7GxMW3dulXSzkWLFpGenh5pampS//79S7xx8bp166hz5840b948cnZ2Fm9aS0T0 xx9/UO3atalKlSq0a9cuio2NLbaux48f09ixY8nKyoqGDBlCNjY2ZG9vT6GhoZJ8GRkZNGvWLLKw sKCxY8fS2LFjJRO83759SxYWFqSmpkbfffcdhYaGkpGREbVv356ioqJo1qxZJJPJaNKkSRQdHU2B gYHUtGlT0tTUpEOHDtGrV69o+vTpJJPJyMnJiaKjo4u97qWR90SIwoSFhZG9vb3YprybLXt5eVH9 +vWpatWq1K9fP8niAz8/P9LW1qauXbvSo0ePiIgoMjKSvvvuOxo+fDgtXLiQJk6cKK7iPnbsGBkY GJCGhgZ5enqK77n8Nm/eXOiNmjds2EB6enriTa0Lk5iYSE5OTuTi4kIeHh40evRoCgkJKZDPycmp wFNSiHJfM0NDQ3Hi/rlz56hu3bpUq1YtmjJlCnl4eEjei1FRUaSnp0cymYwEQRD/yWSyAqsvx4wZ Q+Hh4eL28+fPacCAAbR8+XL67bffJE906dmzJ8lksiIXG/j6+pIgCKSiokJWVlZkZ2dHZmZmBW6Y bmFhQR07dqQxY8aQi4sL2dnZiStlg4ODydLSkmQyGbm7u0tuHn348GFq3LgxqampkZmZmWQR0dSp U0ldXZ2+/fZbunz5MvXv358MDAzEhTBbt26lRo0aUbVq1cjJyYnGjx9P48aNo2vXrhFR6V5HotzF LhoaGkU+seLChQs0ZMgQWrFiBQ0fPrzQmzEXJjk5WVxh+679+/eTubk5ubq60qRJk2jTpk2S/U5O TqSpqUkzZ84kIqKkpCSyt7enqlWrkp6eHk2dOpXS0tKIiGj37t1UrVo1Wrp0Ka1Zs6bUi+PY16nc gj25XE5t2rQRb4lw7949ql+/vmQpPlHu3cnzr5YaPHgwbd++nYhyV1nlLaH39vYmFRUVcWVXceUY Y+xTWbZsGT+lgHIDj499/Ne7q+IZY2Wj3IZx/f39ERYWBktLSwC5c21UVFQKPPx8xYoV6NWrl7jd v39/cWVZ586dxeEZW1tbKCkpicNHxZVjjLFPISsrC5cuXSp2kUNF8OzZM0RERKBt27afuymMsVIo t2DvypUrMDY2liwBb9y4seSpBZmZmQgKCkLTpk3FtEaNGiE0NBTx8fGSO8H7+vri999/h7q6eonl GGPsY8yePRv29vaws7N774UZiiglJeWDHqP2rnfn3jLGyka5BXuxsbEFltNraWlJlpInJiYiKysL WlpaYlreyqW8fPHx8ZgxYwYcHBxw5coV5OTklKocY4x9qLi4OJw+fRrNmjXD6NGjP3dzPjsTE5OP fja1p6cn/v33X5w/fx579uzhoI+xMlRuN1VWVlYucC+gd5fF5/X65c+XlydvuLZ69er4+eefYWFh gdGjR6Nz587iaqjiyuUZOXIkjIyMxG1LS0txaJkxxgqze/fuz90EhePo6AhHR8fP3QzGKoRyC/bq 1KlT4B5BSUlJksBLV1cXKioqSE5OluQBIFkSXrlyZfTr1w9TpkzB7du3MXr06FKVA3K/Tb4bADLG GGOMKapyG8a1srIqcCfv+/fvS3rVBEGApaUlIiIixLTw8HCYmJiIj6DJT1dXVwzm3qccY4wxxlhF UW7BXocOHWBoaIjz588DyA3GUlNT8d1338HNzQ0hISEAACcnJ/j6+orlTp48Kc6R8ff3Fx91RES4 dOmSuK+4cowxxhhjFZVA5Tim+fDhQyxZsgTt27fHjRs3MHnyZLRt2xampqaYP3+++IikVatWISkp CWpqakhJScHy5cshCAJGjhwJX19fODk5oW7durCxsZE89L2ocpITFgQexmWMMcZYhVGuwd6XgIM9 xhhjjFUk/GxcxhhjjDEFxsEeY4wxxpgC42CPMcYYY0yBcbDHGGOMMabAONhjjDHGGFNgHOwxxthn kiXPKfRnxhj7lPjWK4wx9hnp75oLAHg6avlnbgljTFFxzx5jjDHGmALjYI8xxhhjTIFxsMcYY4wx psCUP3cD2Oe1YcMG6Ovro1+/fp+7Kdi3bx9OnDiB9PR0/PXXX8XmffnyJZYtW4a7d++iTp06ePny JVRVVTF37ly0b9++nFrMGGOMffm4Z6+C27ZtGzZt2vTB5aOioj5ZW4YMGYK4uDgkJSUVmy88PByt W7dGRkYGTp8+jd27d+PEiRNwdHSElZUVdu/e/d7H/pTnwRhjjH1JONirwG7cuIHXr1/j7NmziIyM fO/y6enpGD9+/Cdrj7KyMvT19YtdLZ2Tk4OBAwdCS0sLv/32G2Sy/72F+/Xrh9mzZ8PZ2RnBwcGl Pm54eDiWL+eVkIwxxhQTB3sVmKenJ3x8fKCiooLNmze/d/mJEyciPDy8DFpWtKNHj+LevXtwcHCQ BHp5xo0bh6ysLCxdurRU9aWkpGDo0KFIT0//1E1ljDHGvggc7H0sQSj7f2Xg9evXyMzMxDfffIMB AwZg165dyMjIKDSfu7s7PDw88MMPP+CHH35ASkoK7ty5g/DwcLx69Qqurq7w9fXFxYsXoaOjg1Gj RgEAQkND8f3330uCspSUFEyYMAGbNm3C5MmT4ezsjOzs7FK3+8yZMwCAjh07Frq/du3aMDQ0xNmz Z0FE+P333yGTyeDp6QkAOHfuHJo0aQIrKysAgL+/PxITExEUFARXV1fcu3cPABAZGYnZs2fDw8MD NjY28PDwEI+RlZUFNzc3zJs3D9OmTUPHjh1x7NgxAEBGRgbWrVuHzp07488//8S4ceOgr6+Phg0b IiQkBGfPnkWPHj2gra2NmTNnStp++PBhTJkyBXZ2dmjZsiX8/PxKfV0YY4yxIlEF88lPGSj7f2Vg 8+bNdPGLThxuAAAgAElEQVTiRSIiCgwMJEEQaM+ePZI8OTk51LVrV7p16xYREaWkpFDlypXpxx9/ JCKiRYsWkZGRkaRM165dadSoUeL2zp07SRAEcXvatGnUo0cPIiKSy+VUrVo18vLyEvc7OjqSpaVl ke22sbEhQRDowYMHRebp0KEDyWQyio+PJ7lcToIgkKenp+QYVlZW4ralpaWkzdHR0WRqakopKSlE RHTmzBkSBIHOnj1LRETDhw+n2bNni/lPnDhBMpmMTpw4QUREUVFRJAgCDR48mGJiYkgul1OnTp2o adOmdPz4cSIiOnXqFAmCQBEREUSU+xrMnTtXrHPChAmkrq5OL1++LPI8mWKou3MO1d0553M3gzGm wLhn72OVR7hXBgIDA9G1a1cAQKdOndCiRYsCCzWOHj0KAPj2228BABoaGvDx8RF77gojvNMT+e52 r1694OTkBACQy+WoUqUKHj9+XOp259VHxVwXuVwu5nn3+Hnyl3+3rhUrVqB3797Q0NAAAPTo0QNe Xl7o0KEDIiIisH//fgwYMEDMb2trizZt2mDx4sUAgHr16gEAevfujdq1a0MQBHTp0gXp6eno3bs3 AIg9i6GhoQAADw8PPH78GPPmzcO8efOQnp6Otm3bIjo6upRXhjHGGCsc33qlArp16xb+/fdffP/9 95L0a9euITg4GK1btwYAXL58GXXq1JHk6dmzZ7F1FxVc5S+fnJyM33//HYIgIDs7WwzOSsPIyAgA EBcXh8aNGxea5+XLl6hSpQqqV69eqjrfbXNgYGCBhSfDhw8HkHvtAKBKlSqS/a1bt8aePXuKPIaq qmqh2ykpKQCA4OBg7N27F927dy9VmxljjLHS4p69Cmj37t04f/48jhw5Iv7z9/eHsrKypHcvKyvr k9+S5OrVq7CwsEDfvn0xceJEVK5c+b3K29jYiPUUJiEhAY8fP/6ooCkrK6vI3kYlJSUAwNOnTyXp 1atXh7Ly+393yutVTE1NxcOHDwvsz8zMfO86GWOMsfw42Ktg3rx5gxcvXkBXV1eSXqNGDdja2mL/ /v14/fo1AKBZs2a4fv16gduY5A3vCoJQYAhUEATk5OSI2/l/BoCRI0eiW7du4lBnYb16xfUO9unT By1btsSOHTsK1A0Au3btgrKyMubNmydJz3+cwsrlPw8TExN4eXkhLS1NTHv9+jUCAgJgZmYGmUyG wMBASfmYmBh06tSpyHaXpFGjRtixY4ekHTExMdi/f/8H18kYY4wBHOxVODt27ECHDh0K3Wdra4u3 b99i+/btAIARI0ZAV1cX1tbW2LhxI06cOAEnJydx+FRHRwcvXrxAcnKyOLxpZGSEixcvIiYmBuHh 4Thx4gQA4MmTJwCA58+fIzg4GOnp6fDz80NiYiJiYmKQkJAAAMjOzi52da4gCDh06BBSU1MxYcIE ZGVlifsuXrwIDw8P/Prrr2jXrp2YbmRkhCNHjuDNmzfw9/fH3bt3ERcXJ64+1tXVRXh4OIgIt2/f xvTp0/Hs2TN06dIF+/fvh7e3N1xcXNC5c2cYGBjAyckJW7duFW/+nJycjDNnzohz9vKCyfyBm1wu l5xXXp68IHTixIn4559/MGjQIJw/fx7e3t4YP348Bg0aVOS1YIwxxkrlc60M+Vwq4CmL9u3bR9ra 2mRra0vBwcGSfWFhYTRw4EASBIGqVatG+/fvJyKioKAgat++PampqVG7du0oMDBQLPPs2TNq0KAB NWrUiE6fPk1ERBEREdS6dWuqWrUqOTk50ZEjR8jW1pY8PT0pJyeHVq5cSRoaGtSkSRP666+/aOrU qVSzZk3au3cvHT58mGrXrk3VqlWjP//8s9hzefnyJc2cOZMsLCxo8ODB9N1331H//v3pypUrBfL6 +vpS3bp1qWbNmrR27VpavHgxjR49mvz9/YmIyM/Pj7S1talr16706NEjIiLy8vKi+vXrU9WqValf v3709OlTsb7s7Gxyc3MjKysrcnNzIycnJ7pw4QIREb1584ZWrlxJgiDQoEGD6MGDB3T79m3q3Lkz KSsr0/bt2yklJYWWLVtGgiBQ37596f79+0SUu7pZT0+PNDU1qX///hQVFfU+Ly/7SvFqXMZYWROI ymi55xeqsKFHxhj7XPR3zQUAPB3FT3FhjJUNHsZljDHGGFNgHOwxxhhjjCkwDvYYY4wxxhQYB3uM McYYYwqMgz3GGGOMMQXGwR5jjDHGmALjYI8xxhhjTIFxsMcY+yBZ8pxCf2aMMfZlef8ntzPGGAAV mRLfEJgxxr4C3LPHGGOMMabAONhjjDHGGFNgHOwxxhhjjCkwDvYqEF9fX9SrVw8ymQxdunRBQECA ZP+ZM2fQvn171K5dG8eOHQMArF+/Hm3btv0czX0v06ZNg0wmQ8uWLdG9e3fUqVNHPM/OnTtDV1cX MpkMDx8+xIwZM2BkZFQu7bp48SIcHBzw/ffff3AdJ06cwJgxY9CxY8ci8xw4cAADBgzAxIkTP/g4 jDHGFBMHexVInz59sHXrVgCAvr4+/u///k+yv2fPnujQoQNWrFiBvn37AgDq168PU1PT9zpOVFTU p2nwexAEAX/99Rfu3LkDf39/WFtbQxAE7Nu3D4GBgXj69ClatGgBY2Nj1KxZE0+ePCmXdnXp0gUJ CQlITk7+4Dp69eoFuVyOFy9eFJlnwIABePDgAdLS0j74OIwxxhQTB3sVjI2NDVq0aIFjx44hKSmp wP6rV69iyJAh4nbfvn2xZcuWUtd//vx5eHp6fpK2vo+aNWuif//+4jYRgYjEbTU1NTg4OAAAatWq VW7tkslkqFGjhqQtH1KHoaFhsXUoKyujevXqH3wMxhhjiouDvQpo4sSJSEtLw65duyTply9fRrt2 7VCpUiVJek5O6e6h9uzZMzg4OHxUYPOhXF1dS8wzderUcmhJ4QRBKPNjfI7rzhhj7MvHwd5HEgSh zP99aj/88AO0tbWxadMmSfru3bvh6OgobkdGRsLV1RX6+vqSfLdu3YKrqyuWLFkCS0tLsefv1KlT eP36Nc6cOQNXV1c8f/4cAHD9+nWMGzcOixYtQq9eveDk5CQOa968eRMTJ07E9OnTsX79emhqamLF ihXo06cPZDIZ5s2bhzdv3gDInVNYq1Yt3L17t8A5KSuXfMvId/OEhISgU6dO0NDQwJAhQ5CTkwO5 XI7jx4/Dzs4Oe/bsEa9VaGgo0tPTsWjRIkyYMAHt27eHnZ0dXr58CQDIzMzEzJkzsXPnTowfPx5t 2rSRHIuIcPDgQTRt2hS6urpYuXKlZP+pU6fg7OyMBQsWoFu3bpg1axYyMzOLPZ+///4bQ4cOxeLF i+Hm5ia2hTHGGMuPb6pcAamrq2PkyJFYt24d/Pz8YG1tjdTUVNy5cwdmZmZiPl1dXVSuXFkyV+z2 7duYNWsWzpw5A2VlZdSuXRvOzs7o1q0bnJycsHTpUlhbW2PhwoUAcgOqPn36IDQ0FDVq1EB2djYs LCxgY2ODv//+G1paWvDz84Ompib69u2LWbNmoX379rC3t4exsTF0dHRQtWpVsT1jxozBN99880mu w6lTp3D+/Hn8+++/MDMzw/Dhw2FtbQ1dXV0cPXoUgiBg/vz50NLSQrVq1TBt2jRMmTIFzZo1Q1pa GurVq4eJEyfi4MGD2Lt3LwBg9OjRGD16NBYtWiQ5VkREBIgI4eHhWLVqFebPn48xY8ZAR0cHZ86c wYQJExAeHg5VVVW8efMGrVq1QnR0NA4cOFBo28PCwjBw4EDcuXMH1atXR2pqKrZv3/5JrgtjjDHF wj17HylvblhZ/isLEydOhCAI2LBhAwDA29sbAwYMkOTR1tZGgwYNJGmLFi2Cg4OD2Evm4OCA3bt3 w9jYuNDj/PLLLzA1NUWNGjUA5PauzZ8/H9evX4efnx8aNmwIAwMDNG3aFFZWVli4cCEsLS2hr6+P AQMGSOYLHj58GEOHDv1k12D27NmoVKkS2rVrh1q1auH+/ftQVVUVV71aW1ujbdu22LBhg9gz5+Xl hXnz5mHJkiUwMzODXC4HAGRkZODAgQOIiIgAgAKrYhs3bizOhezTpw+ys7MRGRkJAFiyZAl69eoF VVVVAEDVqlUxY8YMHDp0COHh4YW2ffHixbCyshLn6amrq8PExOSTXRvGGGOKg4O9CqpBgwawtrbG yZMnERUVhb1792LEiBEllgsMDESdOnXEbVVVVTg4OEBJSanQ/Ddv3kSVKlUkaa1btwaQ20sI5AbM lStXLlB22rRpePjwIU6dOgUACA0NRYsWLUp3gu9JVVW1wErW/G26c+cO1NTUsGzZMvHf8ePH4e3t DQBwdHSEnp4eWrVqhZ9//hm6urqSuvIH7XlBXd7xSnON3hUQEFBgeJ3n7DHGGCsMB3sV2KRJkyCX yzF37lzIZDLUrVu3xDJZWVl4/PhxqY+hpKSE6OhoSVpeb5SKikqxZc3MzGBmZoaNGzfizp07BebB lafU1FTExcUVemuTrKwsqKur4/Lly3B2doa7uzssLCyQkZFRqrqVlZXx9OlTSVpJ1+jt27cFVlOX xyIQxhhjXx+FDvaePXv2uZvwRevVqxcaNGiAAwcOlKpXDwBMTEywbds2cfgSyL3O//zzD4DcgCN/ D1PHjh0RGhqKlJQUMS0mJgYAYG5uLpYpyvTp03Hq1CmsWrXqkw7hvq9GjRohJycHO3bskKTv2rUL 8fHx8Pf3h7q6OtauXYtLly7h5s2b8PPzE/MVd44dOnTA1atXJdc0JiYGMplMMocyvwYNGuDSpUuS tLIc9meMMfb1Ktdg79mzZ5gwYQI2b94MR0dHhIaGFppv69atWLJkCRYvXowFCxaI6enp6XBxcUH1 6tVhYGCAjRs3Ssr5+/tDJpOJ/979Y8ikBEGAi4sLNDQ0YGdnV2ierKwsAEB2djYAYMaMGbh58yZs bGxw6NAheHl5YdGiRWjXrh0AQEdHB2FhYcjOzkZISAjmzJkDQRDw+++/i3Xu27cPvXv3FoO9nJwc 8TjvGjBgAGrXro2QkBA0adKk1Of2+vVrALk9YO/KO5e8/4Hc1bR5bcgLuvK3qWXLlujcuTNcXV2x du1aBAYGYtmyZYiKikLt2rXx999/IygoCEBu8Na0aVPUrl1bPE7+lbV59eb9v2jRIsTExODPP/+U XKPx48fDwMBArCP/LXCcnZ1x//59eHh4IDs7G48fP0ZERAQiIiLw6NGjUl8nxhhjFQCVE7lcTm3a tKGzZ88SEdG9e/eofv36lJ2dLcl39OhRMjc3F7cHDx5M27dvJyKiJUuW0MGDByk0NJSmT59OgiBQ YGCgmHf8+PF08+ZNunnzJv3777+FtqMcT/mr8OrVK5o0aVKh+4KCgqh79+4kk8loyZIllJycTERE q1atojp16pCWlhY5ODhQUlKSWGbnzp2koaFBffr0oYSEBCIiunnzJllaWtK4cePoxx9/pJkzZ1J6 ejoREe3evZu0tLRIX1+f/vzzT8rJySnQjrlz59Ly5ctLdT6JiYm0fv160tbWJplMRoMHDyZ/f39x /3///See0+LFi+nt27e0YcMGkslk9O2339K///5Lbm5uJAgCWVpa0oULF8Sy0dHRZGtrS2pqamRg YEBLliwR97m7u5OBgQGtXr2ali5dSqtWrSIioosXL1K9evVIQ0ODDh06RAkJCeTi4kIymYyGDRsm XqOzZ89Sp06daOrUqTRr1izy8PAguVxOREQBAQFkYmJCKioqtGPHDkpLSyO5XE4eHh5Ur1490tPT ozlz5tDgwYNpxowZFBISUqpr9SnU3TmH6u6cU27HU0R8DRljZa3cIp8zZ86QmpoaZWVliWmNGzcm b29vST5zc3Py8PAQt/fv30/ffPMNERFt2bJFktfIyIh++eUXIiJ68OABderUiXx9fSkjI6PIdnCw 9/UZP348PXr06HM3gxWCA5WPx9eQMVbWym0Y98qVKzA2Npbc2LZx48Y4d+6cuJ2ZmYmgoCA0bdpU TGvUqBFCQ0MRHx+PcePGSerU09NDvXr1AOSuaExLS8P3338PAwMD+Pv7l/EZsfLw6tUrxMXFwcjI 6HM3hTHGGPsqlVuwFxsbC01NTUmalpaWZBViYmIisrKyoKWlJaZpa2sDQIHViunp6UhKSkK/fv0A AEOHDsXNmzfx6NEjmJqaws7ODrGxsWV1OqyMOTg4YPTo0ejbt2+Be9YxxhhjrPTK7QkaysrKBW4j kX/1YV4eQHq7ibw89M4qw23btmHNmjVQU1OTpOvr68Pb2xutWrWCj48PnJ2dC7TF3d1d/NnS0hKW lpbvfT6sbEVHRyM0NBQ//vgjunXr9rmbwxhjjH21yi3Yq1OnDgIDAyVpSUlJkuE5XV1dqKioiM9N zcsDQHIPuJCQECgrK8PW1rbQY6mpqaFnz54F7kOWJ3+wx75M58+f/9xNYIwxxhRCuQ3jWllZ4eHD h5K0+/fvS3rVBEGApaWl+MgpAAgPD4eJiQlq1qwJIPf+YwEBAXBxcRHz5L+FRp6cnBzJ3D/GGGOM sYqo3IK9Dh06wNDQUOyxCQ8PR2pqKr777ju4ubkhJCQEAODk5ARfX1+x3MmTJzF69GgAQHJyMjw8 PGBjY4Pw8HCEhoZi2bJlSE9Px5o1a8TniMbGxuL+/fvo3bt3eZ0eY4wxxtgXqdyGcQVBgI+PD5Ys WYKwsDDcuHEDx48fh7q6Ok6fPo02bdqgRYsWGDRoEKKiouDm5gY1NTUYGhpixowZkMvl6NevHy5d uoQtW7aI9drb26NKlSo4c+YMPDw8MH78eGhpacHb21uy8pcxxhhjrCIS6N2VDwru3cd5McY+nP6u uQCAp6OWf+aWfL34GjLGyppCPxuXMcbKSpY8p9CfGWPsS8PjnIwx9gFUZErcK8cY+ypwz957+hK+ wX8JbWCMMcbY14F79t5T/m/zn8un7kV49uwZWrVqBT8/P7Rt2/aT1p3n9evX2LFjB06ePIlu3bph 7twPu4br16/Hnj17cPPmzU/cQsYYY0wxcc8eg4aGBjp27Ch5TF1ZHGPMmDG4fv06MjMzS10uKipK sl2/fn2Ympp+6uYxxhhjCouDPQZNTU34+vqiYcOGZXocDQ0N6OjolDo/EWHUqFGStL59+0puvcMY Y4yx4nGwx0TvPqv4c/Pw8MCFCxcKpOfk8JxFxhhjrLQ42Ktg9uzZg1WrVmHNmjXQ09PDtWvXsHXr VnTo0AF79+4FAAQFBWHcuHGwtrbGmTNn0K5dO2hqamLq1Kl4+/YtZs6cCUNDQzRp0gRhYWEAgFu3 bqFhw4awsrICADx69Ajjx4+HTCbDkydPimxPaGgoXFxcsHXrVgwaNAibNm0CAERHR+PatWsAAFdX V3h6eiIyMhKurq7Q19eX1HH9+nWMGzcOixYtQq9eveDk5CQ+X/nq1atwdHTEiBEj4O3tjcaNG6Nm zZrYv3+/WP7hw4eYNWsWduzYgR49emD69Omf6Gozxhhjnx8HexVIeno65syZg1mzZmHGjBnYvHkz ZDIZOnXqhBs3boj5vv32W8jlcgQFBeHt27e4fv06Dh06hN9++w2zZ8+Gu7s7Hj58iBo1amDp0qUA gDZt2qBTp04QBAFA7ty6oUOHltimH374AQYGBhg3bhzmz5+PyZMnIzo6GgYGBhg8eDAAYOXKlXB0 dISuri4qV66MFy9eiOVDQkLQp08fLF26FIsXL4avry/CwsJgY2MDIoKZmRkSEhJw+fJlCIKAe/fu YejQoZg8ebJYh7u7OywsLDBmzBgcO3YMenp6n+R6M8YYY18CDvYqkKysLCQkJGDDhg0AgD59+qBx 48Zo3ry5JJ+SkhL09fWhqamJ77//HjKZDJaWlgAAMzMzaGhoQElJCV27dsXdu3fFch/ydJIxY8bA 1tYWAKCurg65XF5gUUYebW1tNGjQQJL2yy+/wNTUFDVq1AAAKCsrY/78+bh+/Tr8/Pwgk8lQvXp1 GBsbY8CAAVBWVsZ3332HV69eiUFjZmYm1q9fj9evX0NNTU18FjNjjDGmCDjYq0A0NDSwePFiTJ48 Gba2tnj27Bm0tbVLVVZVVbVAWqVKlZCSkvJRbZo0aRI0NDSwatUq+Pj4AHi/uYM3b95ElSpVJGmt W7cGANy+fVtMyx+EVqpUCQCQkZEBAFiwYAFu374NExMTHDlyBDVr1vywk2GMMca+QBzsVTDz5s2D t7c3QkJC0LJlS/z9998fVd+7PXl5w7iltWnTJkyZMgWTJk0Sh23fh5KSEqKjoyVp1atXBwCoqKiU qo7mzZvj1q1baNWqFQYMGICZM2e+dzsYY4yxLxUHexVIXFwcQkJCYGdnh7CwMLRs2RKrVq36ZPUL giBZKVvSqtmnT59i8uTJcHZ2RuXKlQv06JUmcOzYsSNCQ0MlPYwxMTEAAHNz81LV5e/vD0NDQ5w4 cQJr1qzBunXrkJSUVOKxGWOMsa8BB3sVSGpqKjZv3gwAqFq1KgYMGIA6deogKysLACQ3O343UMsL xPLy5uXJ37NXv359BAcHIzw8HNHR0Thw4ACA3JW5ebKyspCdnQ0AePHiBeRyOW7cuIGMjAwcOnQI QO4TPRITE8V78oWHhyM4OBhEJB4/r445c+ZAEAT8/vvv4jH27duH3r17i8Fedna2JJDMO8+8c9yx Ywfevn0LABg5ciQ0NTWhoaFRuovKGGOMfeH4cWnvKUue89kfep4lz4GKTOmDym7ZsgXKyspo1qwZ wsLC8NNPP2HFihUAgD/++APt2rVDdnY2Tp8+jdjYWBw6dAi2trbw9PQEABw4cABmZmbIysrCqVOn EBsbi71792L48OGYMGECzp07h7Zt28LGxgbTp09HeHg4wsLC0K5dO2zduhXPnz/H6dOnYW1tDXNz cwwYMABr1qzB5cuXsWHDBhw8eBBLlixB8+bN8X//939o06YNevTogaVLlyInJwcHDx6EIAhYtmwZ pk6dioYNG+LChQuYOXMmoqKiUKNGDaSnp8Pb2xsAcO3aNVy+fBlv377FiRMnYGpqiq1bt0IQBGze vBnu7u6IjY2FtbU17O3tERERgYMHD0JJ6cOuL2OMMfalEeh9l09+5T5kxShjrHB5z4n+3F+APpdP cf4V/RoyxsoeD+MyxhhjjCkwDvYYY4wxxhQYB3uMMcYYYwqMgz3GGGOMMQXGwR5jjDHGmALjYI8x xhhjTIFxsMcYY4wxpsA42GOMMcYYU2Ac7DHGGGOMKTAO9hhjjDHGFBgHe4wxxhhjCoyDPcYYY4wx BcbBHmOM/X9Z8pxCf2aMsa+Z8uduAGOMfSlUZErQ3zUXAPB01PLP3BrGGPs0uGePMcYYY0yBcbDH GFM4PBzLGGP/w8O4jDGFw8OxjDH2P9yzxxhjjDGmwDjYY4wxxhhTYBzsMcYUGs/fY4xVdDxnjzGm 0Hj+HmOsouOePcYYY4wxBcbBHmOMMcaYAuNgjzHGGGNMgXGwxxhjjDGmwDjYY4wxxhhTYBzsMcYY Y4wpMA72GGOMMcYUGAd7jDHGGGMKrFxvqvzs2TMsXboULVu2xNWrVzF79mw0b968QL6tW7ciNjYW RITs7Gx4eHgAANLT0zF9+nQcOnQIampqmDdvHiZMmFBiOcbY1yNLngMVmVKBnxljjH2Ycgv2iAh9 +/bFL7/8gu7du8PCwgK9e/dGREQElJT+92Hu4+MDT09PXLlyBQAwZMgQ7NixA2PGjMHKlSvRrVs3 TJ48Gdu3b8ekSZPQqlUrdOrUqdhyjLGvBz/xgjHGPq1yG8b19/dHWFgYLC0tAQAmJiZQUVHB0aNH JflWrFiBXr16idv9+/fHunXrAAB6enoYNGgQmjVrhjVr1sDQ0FAM7oorxxhjjDFWUZVbsHflyhUY GxtDWfl/nYmNGzfGuXPnxO3MzEwEBQWhadOmYlqjRo0QGhqK+Ph4jBs3TlKnnp4e6tWrV2I5xhhj jLGKqtyCvdjYWGhqakrStLS08PTpU3E7MTERWVlZ0NLSEtO0tbUBQJIPyJ2/l5SUhH79+r1XOcYY Y4yxiqTc5uwpKytDRUVFkiaXywvkASDJl5eHiCR5t23bhjVr1kBNTQ1v374tdTkAcHd3F3+2tLQU h5YZY4wxxhRNuQV7derUQWBgoCQtKSkJRkZG4rauri5UVFSQnJwsyQMAdevWFdNCQkKgrKwMW1vb 9yqXJ3+wxxhjjDGmyMptGNfKygoPHz6UpN2/f1/SqyYIAiwtLRERESGmhYeHw8TEBDVr1gQAxMTE ICAgAC4uLmKe7OzsEssxxhhjjFVE5RbsdejQAYaGhjh//jyA3GAsNTUV3333Hdzc3BASEgIAcHJy gq+vr1ju5MmTGD16NAAgOTkZHh4esLGxQXh4OEJDQ7Fs2TJkZGQUW44xxhhjrKIqt2FcQRDg4+OD JUuWICwsDDdu3MDx48ehrq6O06dPo02bNmjRogUGDRqEqKgouLm5QU1NDYaGhpgxYwbkcjn69euH S5cuYcuWLWK99vb2qFq1apHlGGOMMcYqsnJ9goaxsTF2794NAJInXwQFBUnyzZo1q0BZQRBw4cKF YusvrBxjjDHGWEXGz8ZljDHGGFNgHOwxxhhjjCkwDvYYY4wxxhQYB3uMMcYYYwqMgz3GGGOMMQXG wR5jrFxlyXMK/ZkxxljZ4GCPMVbm8gd1KjIl6O+aC/1dc6EiUyp1ubIKDDngZIwpunK9zx5jrGLK C/AA4Omo5WVerjzaxhhjXwvu2WOMMcYYU2Ac7DHGGGOMKTAO9hhjjDHGFBgHe4wxxhhjCoyDPcaY QuBVtYwxVjgO9hhjCiH/LV0YY4z9Dwd7jDHGGGMKjIM9xhhjjDEFxsEeY+yz4UenMcZY2eMnaDDG Pht+egVjjJU97tljjLES5PU6cu8jY+xrxMEeY4yVIK8HUkWm9Lmbwhhj742DPcYYY4wxBVbqYC87 O8byp/8AACAASURBVLss28EYY4wxxspAqYO977//HkFBQWXZFsYYY58Ar3JmjOVX6tW4w4YNw+3b t7F9+3bUrFkTAwcORMuWLcuybYwxxj4Ar3JmjOVX6mDP3t4eADB27FgkJCRg6tSpuHXrFoYMGYIR I0bA2Ni4zBrJGGOMMcY+TKmHcZ88eYK3b99i48aNsLCwgJ+fH/r3749u3bph//79cHBwwJMnT8qy rYwxxhhj7D2VumevV69eiI6OhqGhIaZNm4YffvgBlStXBgB06dIFXl5e6N+/P27dulVmjWWMMcYY Y++n1MGehoYG/vrrL3Tv3r3Q/U+ePEF8fPwnaxhjjDHGGPt4pR7GPXbsWIFALy4uDs+fPwcAzJ8/ H/fu3fu0rWOMMcYYYx+l1MHe9u3bC6TVrFkTEydOBAAIgoCqVat+upYxxhhjjLGPVuIw7ubNm3Hg wAFERUXh7Nmzkn3x8fFISUkps8YxxhhjjLGPU2KwN378eCgpKeHs2bPo3bs3iEjcV6VKFVhYWJRp AxljDMi9OXDes2nz/8wYY6x4pVqgMXbsWDg4OEBVVbXAvlevXn3yRjHG2Lv4RsGMMfZhig32Hj9+ jNq1a0NVVRURERGIi4uT7M/JyYG3tze2bNlSpo1kjDHGGGMfpthgr0uXLpg5cyamTZsGPz8/uLq6 FpqPgz3GGGOMsf/X3r2HRVXt/wN/DxcTD4rCERWVQXpUOAp9j5naMRXKgwmItzxKGpm3TKNMzSuW aZaalUetPCoZp1P29U5evhzDCwaahKI/QkAMb0AgSqCJIZfP7w8fdozMDCMwAzPzfj0Pj7PX2nvP mnG7fLPWvjRNesNefHw82rdvD+D+s3Hbt2+P8ePHK/WVlZVar9IlIiIioqZBb9hTq9XKazc3N4SG hmrU29jYYMSIEcZpGRERERHVm86wV1BQgLS0NL0biwj27t2Ljz/+uMEbRkRERET1pzPs/frrr3jm mWfQsWNHqFQqretUVlYiNzeXYY+IiIioidIZ9rp164b169dj+vTpenfw9ddfN3ijiIiIiKhh6H1c Wm1BDwBvqkxE1IjKKiu0viYiqqL3Ao0TJ07Ay8sLzs7OiIuLw88//6xRX1FRgYMHD2LPnj1GbSQR EWnHm00TUW30hr0JEyZgzpw5mDlzJtLT0zFnzhy0bdtWqa+oqEB+fr7RG0lEREREdaM37KWmpsLB wQEAMGbMGHTu3BmBgYEa6+zatct4rdMjPz8f7dq107tOTk4OOnbsaKIWERERETU9es/Zqwp6AODs 7IzAwEBkZWUhOTkZd+7cAQCMHj3a4DfLycnBjBkzsHHjRrz44otITU3Vut6mTZuwbNkyvPPOO1iy ZIlG3eXLlzF+/Hj84x//qLFdbGwsbGxslJ/jx48b3DYic8dzt4iISBu9I3vVXbhwAWPHjsW5c+cA ALa2tggPD8eqVatgb29f6/YigpCQEKxatQqDBw/GoEGDEBQUhMzMTNja2irrRUdHIyoqCgkJCQCA sWPHIjIyEpMnTwZw/0bOzs7OuHbtWo332LVrF5KSku5/MDs7+Pr6GvrxiMwez90iIiJt9I7sVffi iy+ibdu2SEhIwK+//orc3Fz06tULS5cuNWj72NhYpKWlwc/PDwDg7e0Ne3t77N27V2O91atXY+jQ ocryiBEjsHbtWmXZ3d0dLi4uEBGN7TIzM5GSkoLc3Fz07NmTQY+IiIgIDxH2zp8/j127duHJJ5+E k5MT2rZtiwkTJqBZs2YGbZ+QkABPT0/Y2f0xmNitWzccOXJEWb537x6SkpLg5eWllHXt2hWpqam4 ceOG3v2fPn0ad+/exciRI9G5c2fExsYa+tGIiOpF1xQ6p9OJqCkwOOyFhobil19+qVFu6NW4eXl5 aNWqlUaZk5MTsrOzleXCwkKUlZXByclJKWvdujUAaKynzbhx43D69GlcunQJvXv3xqhRo5CXl2dQ 24iI6qNqCr3T1gU1XhMRNTad5+wlJiZi/vz5ynJlZSUGDhwIb29vjbKWLVsa9kZ2djXO7ausrKyx DgCN9arWeXDaVpdOnTph586deOyxxxAdHY2XX37ZoO2IrEHVow+r/3sqq6xQQkn1102ZObaZGkDV ozsN/P+AiO7TGfZ69uwJBwcHrVe9Vjd48GCD3sjNzQ3x8fEaZUVFRfDw8FCWXVxcYG9vj+LiYo11 ADzULVQcHBwQEBCgbPug6ucZ+vn5KecRElkjY13YYcwQxotRiIgMpzPstWjRAlFRURo3UX5QRUUF 4uPj0alTp1rfyN/fHytXanbKGRkZmDhxorKsUqng5+eHzMxMpSw9PR3e3t5wdXWt9T0ebFv1c/+q M/SiEiKqOwayhsXRTCKqK723Xqke9IqKivDll1+iqKhImQIqKirCN998g9zc3FrfqF+/flCr1Th6 9Cj8/f2Rnp6OkpISBAcHIyIiAmPHjoWPjw+mTJmCDRs2YO7cuQCAgwcPYtKkSRr7enD6FwA++ugj BAYGwsvLC3l5ecjIyMD69etr/waIiIysIYIawzMR1ZXB99mbMmUK7O3tkZubC09PT4gIzp8/r3Fe nz4qlQrR0dFYtmwZ0tLSkJiYiP3796NFixaIiYlBr1694OPjgzFjxuDKlSuIiIiAg4MD1Go1Zs+e rezn+PHj+Pbbb5GdnY09e/YgODgYdnZ2OHToEJYvX47p06fDyckJO3fu1Ljyl4iosTCoEVFjMjgN DRkyBFOnTkV6ejoKCgowYMAA3L17F7NmzTL4zTw9PfHFF18AAGbMmKGUV90IuUrVqJ42AwcOxNmz Z2uUx8TEGNwOIiIiImth8K1XMjIysHPnTnh4eODbb79FXFwcEhISsGPHDmO2j4iIiIjqweCRvZCQ ECxYsAA9e/bEnDlzEBgYiLNnz2LkyJHGbB8RERER1YPBYW/gwIE4ceKEsnzmzBncvHkTLi4uRmkY EREREdWfwdO45eXlWLt2LQYMGABfX1+Ehobi6tWrxmwbEREREdWTwWHv9ddfx1tvvYW//OUvmDx5 Mnr16oUFCxYgOjramO0jIiIionoweBp327ZtOHz4MJ544gml7M0338ScOXMwfPhwozSOiIiIiOrH 4JG9Rx99FL6+vjXKmzVr1qANIiLzU1ZZofU1ERE1Pp0je5cvX8bx48eV5SFDhuCll17Cs88+q5RV VFQgOTnZuC0koiaPNw02Dj4WjYgagt5p3DfeeAM+Pj5QqVQAABHB1q1bNdZ55ZVXjNc6IiIrxhBN RA1BZ9jz8PDAnj17MHDgQFO2h4iIiIgakN5z9h4Mel9//TWefvppeHl5ISgoiI8oIyIiImriDL4a d926dVizZg1CQ0OhVqtRWlqKzz77DJcuXeJULpGZ4blg/A6IyHoYHPZOnTqFixcvalx9+8Ybb+Dt t982SsOIyHh4Ltgf34G1fv7aVA/DDMZE5s3gsDdgwACtt1kpLS1t0AYREVHj4y8ERJbD4LB35coV HDlyBH379kVJSQkuXLiAyMhIlJeXG7N9RGRCHM0hIrI8Bt9U+c0338SaNWvQsmVLtGvXDgMGDMDt 27exYcMGY7aPiEyoajSn09YFDHpERBbC4JG9H374AZ999hns7e2RnZ0NDw8PuLq6GrNtRNREVI3y cbSPiMj8GDyyN3HiRFy4cAFubm7o06ePEvTu3LljtMYRUdNQNeLHoGd+dD3Kjo+1I7IeBoe9qKgo 2NnVHAiMiopq0AYRkXljiGhaHpya5zQ9kfUxOOwtXrwYzzzzDGxsbDR+wsPDjdk+IjIz1a/iJCKi xlfrOXtpaWk4dOgQpk+fjr/85S/o1KmTUici+Pzzz43aQCIiIiKqO71h78cff8RTTz2FsrIyAIBa rUZCQgLc3NyUdSIiIozbQiIi0sALZYjoYeidxl26dCnWr1+PX3/9FdnZ2fDz88OKFSs01nnkkUeM 2kAiItJU/dw7IqLa6A17bdq0wbRp0+Dk5AQ3Nzf861//QnZ2tsY6vKkyEZHhzPECFl7FS2Te9IY9 R0dHjeVmzZqhffv2GmXbtm1r+FYRUZPE/+jrzxxH5XgVL5F503vO3vbt23HhwgWICFQqFUQEFy5c wNNPPw0AKCsrQ0pKCl544QWTNJaIGhefl0pEZH70hj1HR0d07NgRtrZ//CanVquV1+Xl5TWmdYmI iIio6dAb9jZv3owhQ4bo3cGhQ4catEFERMbCq1iJyBrpPWevtqAHAAEBAQ3WGCIiYzLH8+WIiOrL 4CdoEBEREZH5YdgjIiIismAMe0REREQWjGGPiIiIyIIx7BERERFZMIY9IiIiIgvGsEdERERkwRj2 iIiIiCwYwx4RURNTVlnR2E0gIgvCsEdEZCR1DW1VT/owNYZMIsvEsEdEZCSNFdrqio+TI7JMDHtE REREFoxhj4iIiMiCMewRkVkz1nlmPH+NiCwFwx4RmTVjnRfH89eMr3qgZrgmMh6zDXv5+fmN3QQi ogZjjWGneqC2t7Ft7OYQWSw7U75ZTk4OVqxYAV9fX5w8eRLz5s1Djx49aqy3adMm5OXlQURQXl6O 5cuXK3WXL1/G4sWLkZ2djbi4OIO3IyJqyqqPUGa/tLKRW0NElsRkYU9EEBISglWrVmHw4MEYNGgQ goKCkJmZCVvbP36ji46ORlRUFBISEgAAY8eORWRkJCZPngwAsLGxgbOzM65du6ax/9q2IyIiIrJG JpvGjY2NRVpaGvz8/AAA3t7esLe3x969ezXWW716NYYOHaosjxgxAmvXrlWW3d3d4eLiAhF5qO2I iIiIrJHJwl5CQgI8PT1hZ/fHYGK3bt1w5MgRZfnevXtISkqCl5eXUta1a1ekpqbixo0bOvdd1+2I iIiILJ3Jwl5eXh5atWqlUebk5ITs7GxlubCwEGVlZXByclLKWrduDQAa6z2ortsRERERWTqTnbNn Z2cHe3t7jbLKysoa6wDQWK9qnQenbeuz3dKlS5XXfn5+ytQyERERkaUxWdhzc3NDfHy8RllRURE8 PDyUZRcXF9jb26O4uFhjHQDo2LGjzn0/7HbVwx4RERGRJTPZNK6/vz+ysrI0yjIyMjRG1VQqFfz8 /JCZmamUpaenw9vbG66urjr3XdftiIgehjXeC4+IzJ/Jwl6/fv2gVqtx9OhRAPfDWElJCYKDgxER EYGUlBQAwJQpU7Bv3z5lu4MHD2LSpEka+3pw+tfQ7YiI6oNP1SAic2SyaVyVSoXo6GgsW7YMaWlp SExMxP79+9GiRQvExMSgV69e8PHxwZgxY3DlyhVERETAwcEBarUas2fPVvZz/PhxfPvtt8jOzsae PXsQHBwMe3v7WrcjIiIiskYmfYKGp6cnvvjiCwDAjBkzlPKkpCSN9ebOnatzHwMHDsTZs2e11unb joiIiMgame2zcYmIiIiodgx7RERERBaMYY+ItOKVp9SQqo4nHldEpsewR0Ra8cpTakhVx5O9jW1j N4XI6jDsEVGTwBEfIiLjYNgjoiahauSHiIgaFsMeERERkQVj2COyQNWnRDk9SkRk3Ux6U2UiMo3q U6LZL61s5NYQEVFj4sgeERERkQVj2CMiIiKyYAx7RERERBaMYY+IyMrxIh4iy8awR0Rk5XiPQyLL xrBHREREZMEY9oiIqF54X0eipo332SMionrhfR2JmjaO7BFZOI60kDb1PS54XBGZD47sEVk4nnxP 2tR3NE7X9mWVFbC3sa3xmogaD0f2iMwYR1eoqakKgZ22LmDQI2oiGPaIzFj1/1iJiIi0YdgjIrIQ HOklIm0Y9ojMEP9TJ21McX4mjz0i88OwR2SGeNEFNRYee0Tmh2GPiIiIyIIx7BERERFZMIY9IiIi IgvGsEdERERkwRj2iJoYPlSeiIgaEh+XRtTE8KHyRETUkDiyR0RERGTBGPaIiIiILBjDHhEREZEF Y9gjIiIismAMe0REREQWjGGPyMR4axUiIjIlhj0iE6u6tUqnrQtgb2MLgKGPiIiMh2GPqAmoHgCr 4yggERHVF2+qTNSE8QbLRERUXxzZIyIiIrJgDHtEREREFoxhj4iIiMiCMewRERERWTCGPSIiIiIL ZtFhLycnp7GbQERERNSoTHrrlZycHKxYsQK+vr44efIk5s2bhx49etRYb9OmTcjLy4OIoLy8HMuX LzeoLjY2FgEBAcryV199hdDQUON+KCIiIqImzGRhT0QQEhKCVatWYfDgwRg0aBCCgoKQmZkJW1tb Zb3o6GhERUUhISEBADB27FhERkZi8uTJeusAYNeuXUhKSrr/wezs4Ovra6qPR1RDWWWFxhMyql4T ERGZksmmcWNjY5GWlgY/Pz8AgLe3N+zt7bF3716N9VavXo2hQ4cqyyNGjMDatWtrrcvMzERKSgpy c3PRs2dPBj1qdNoei0ZERGRqJgt7CQkJ8PT0hJ3dH4OJ3bp1w5EjR5Tle/fuISkpCV5eXkpZ165d kZqaioKCAr11p0+fxt27dzFy5Eh07twZsbGxpvlgZFX4+DIiIjI3Jgt7eXl5aNWqlUaZk5MTsrOz leXCwkKUlZXByclJKWvdujUA4OLFizrrcnJyMG7cOJw+fRqXLl1C7969MWrUKOTl5RnzI5EV4mgd ERGZG5Ods2dnZwd7e3uNssrKyhrrANBYr2qdqvP6tNWJiFLWqVMn7Ny5E4899hiio6Px8ssv12jL 0qVLldd+fn7K1DJRU8bz/oiIqC5MFvbc3NwQHx+vUVZUVAQPDw9l2cXFBfb29iguLtZYBwDc3d11 1nXs2FFjvw4ODggICFDqH1Q97BGZi6pRRQDIfmllI7eGiIjMhcmmcf39/ZGVlaVRlpGRoTGqplKp 4Ofnh8zMTKUsPT0d3t7eaN++vc46V1fXGu9XUVGhcX4fERERkTUyWdjr168f1Go1jh49CuB+UCsp KUFwcDAiIiKQkpICAJgyZQr27dunbHfw4EFMmjSp1rqPPvoI6enpAO6fH5iRkYGgoCCTfDYiIiKi pspk07gqlQrR0dFYtmwZ0tLSkJiYiP3796NFixaIiYlBr1694OPjgzFjxuDKlSuIiIiAg4MD1Go1 Zs+eDQA660QEhw4dwvLlyzF9+nQ4OTlh586dGlf+EhEREVkjk6YhT09PfPHFFwCAGTNmKOVVN0Ku MnfuXJ370FUXExNT/wYSERERWRiLfjYuERERkbVj2CMiokbHG5YTGQ9PaiMiokbHWwsRGQ9H9oiI iIgsGMMeERERkQVj2CMioiblYc7f47l+RLXjOXtERNSkPMz5ezzXj6h2HNkjagAcXSCqif8WiJoG juwRNQCOLhDVxH8XRE0DR/aIiKjJ4+g5Ud0x7BERkcnUNajZ29hqfU1EtWPYIyIik6ma2q2a3iUi 42PYI6ojTiUREZE5YNgjqiOOUBARkTlg2CMiIrPCUXWih8OwR1aPV/kRmReOqhM9HN5nj6we7wVG RESWjCN7RERERBaMYY+ogXEqmIiImhKGPSIdqkLbw4a36tPChr4HERGRsTDsEelQFdqMebf+hwmG RNaIvxAR1R/DHhERNVl1HSlnSCT6A6/GJSIii8Ar64m048geWY3G/K2fowxERNRYGPbIalS/Easx z8Or7b2JyPjqeoEVkSVi2CMiIotjigusiMwFwx4RERGRBWPYIyIiIrJgDHtEREREFoxhj6gWPMGb yDLwPnxkrRj2yGIYqyPnlbRElqExr8gnakwMe2QxHqYj52/1RERkLRj2yCpxtI7IummbCeA0L1kq Pi6NiIisjrZHq/Fxa2SpOLJHFo+/oRMRkTVj2COLV/23dSIiImvDsEdmjaN2RKQP+wgihj0yc7zQ goj0aeg+ghdxkDniBRpEREQG4kUcZI44skdERKQHR/DI3DHsERER6cHTRcjcMewRERE9gKN5ZEkY 9sgisaMmovqo62geL+Cgpohhj5q02h5ppEtDdNRERPpo65N09T3sW6gxMexRk1a947S3sa1RZsz3 IyLrUNcgVtVfVPVNuuofXOdhfnGtL440EmDiW6/k5ORgxYoV8PX1xcmTJzFv3jz06NGjxnqbNm1C Xl4eRATl5eVYvnx5veuIiIi0qQplprqViinfj7eKIcCEYU9EEBISglWrVmHw4MEYNGgQgoKCkJmZ CVvbP37jiY6ORlRUFBISEgAAY8eORWRkJCZPnlznOmocZZUVym+zul7XdX+mUpp+1aTvR+arNP0q HvFyb+xmkJl4sG+pax/ZEH0rNW3Hjh2Dn59fvfZhsmnc2NhYpKWlKQ329vaGvb099u7dq7He6tWr MXToUGV5xIgRWLt2bb3qSD9jDfM/OIVh6HSGrjY0xjNuGfbIUDxWSJ8H+7UHjxddfWRt6rodmY9j x47Vex8mC3sJCQnw9PSEnd0fg4ndunXDkSNHlOV79+4hKSkJXl5eSlnXrl2RmpqKgoKCOtXduHHD yJ/M/Gk7T01X+KotDD5sWNQW4HjeHBGZk7peNKZru9r634Y+947n9Vk+k4W9vLw8tGrVSqPMyckJ 2dnZynJhYSHKysrg5OSklLVu3RoAcPHixTrVVd+/uavvP/SHGT2r/huiIVeXVb2ua1BjwCMic9XQ /V5t5Q/TJxtSX9df+GsLosb8v6ou+7PqUCsmMnPmTBk4cKBGWWhoqISEhCjLBQUFolKp5OjRo0pZ RkaGqFQqOXXqVJ3qzpw5o/Gejz76qADgD3/4wx/+8Ic//GnyPy+++GK9M5jJLtBwc3NDfHy8RllR URE8PDyUZRcXF9jb26O4uFhjHQBwd3evU13Hjh013vPixYsN84GIiIiIzIDJpnH9/f2RlZWlUZaR kaFxhYlKpYKfnx8yMzOVsvT0dHh7e6N9+/Z1qnN1dTXehyIiIiJq4kwW9vr16we1Wo2jR48CuB/G SkpKEBwcjIiICKSkpAAApkyZgn379inbHTx4EJMmTapXHREREZG1UomImOrNsrKysGzZMvTp0weJ iYkIDw/H448/jt69e2PRokUYNWoUAGDNmjUoKiqCg4MDbt26hZUrV0KlUtWrjqiuCgsL0bx5c7Ro 0aKxm0JEFoR9C5lMvc/6a0KOHTsmvr6+0rJlSwkICJCrV6+KiEh2dra88sor8tlnn0lYWJj89NNP yjb66siy6TpeRET69+8vKpVKVCqVdO/eXSnn8WKdzpw5I3/729+kdevWMnjwYLlx44aIsG8h7XQd LyLsW0i7iooK8fPzk2PHjolIw/ctFhP28vPzJSwsTFJSUiQmJkbUarUMHjxYRER69eol3333nYiI nD9/Xrp06SIVFRVSWVmpta68vLzRPgeZhr7jJSkpSZYtWyanT5+W06dPS35+vogIjxcrVVpaKgsX LpSSkhL57bffpF+/frJo0SIRYd9CNek7Xti3kC4bNmwQZ2dniYuL03k81KdvsZiwt23bNrl165ay vHXrVmnevLl899134uDgIGVlZUpdt27dZOfOnXLo0CGddWTZdB0vIiITJkyQ1atXy4ULFzS24fFi nfLy8qS0tFRZnj9/vixZskTv8cBjxXrpOl5E2LeQdt9//70cOHBAPDw8JC4uzih9i8ku0DC2cePG oWXLlspyu3bt4O7ujoSEBHTp0kXrkztOnDihs44sm7bjRa1Wo6KiAoWFhfjwww/RvXt3jBs3DmVl ZQAMewoMWZ527dqhWbNmAIDS0lLk5+dj1qxZeo8H9i3WS9vx8sYbb7BvIa1u3ryJEydOIDAwEAAg IkbJLRYT9h505swZvPLKK8jLy9N4sgZw/+ka2dnZWusefKoHWYczZ85g+vTpsLW1xYEDB/DLL7/g 3//+Nw4cOIBFixYBMOwpMGS59u3bhz59+iA2Nhapqalajwf2LVRl37596Nu3L2JjY/HTTz+xbyGt 1q5di1mzZmmU5efnN3husciwd+fOHaSkpCA8PBy2trawt7fXqK+srISIwM7OTmsdWZeq4+W1115T ylQqFSZMmICPP/4Y//nPfwCAx4uVGzZsGKKjozFw4EBMmDAB9vb27FtIp2HDhmHv3r3K8VKFfQtV 2bx5M8aPH6+MBFcxRm6xyLC3Zs0arF+/Hra2tnBzc9N4sgZw/+kaHTt2RIcOHXTWkfWoOl5sbGr+ cxg+fLjyNBYeL+Th4YHIyEjcuHEDbdu2Zd9CelU/Xm7evKlRx76FNm/ejL/+9a9wcHCAg4MDrly5 goCAAGzatAm3bt3SWLe+fYvFhb3NmzdjwoQJaNu2LQDgqaeeqvHkjvT0dPj7+xv0VA+ybA8eL1Xn 0FSpqKhA9+7dARj2FBiyfM2bN4eLiwsGDx7MvoVqVXW8ODs7a5Szb6HExETcvXtX+VGr1fjuu+8Q FxeHn3/+WWPd+vYtFhX2vvjiCzg4OKCsrAzp6emIi4tDVlYWPDw8NJ7ccefOHQwbNkznUz2GDRvW mB+DTETb8fLPf/4TkZGRyrD4+vXrsXjxYgDAk08+yePFChUWFmo8nScuLg5hYWH429/+VuN4YN9C uo6X06dPY8uWLexbqFba+o/69i12emvNSExMDKZOnYqKigqlTKVSISMjAwMHDsSyZcuQlpaGxMRE HDhwAA4ODgCA6Ohojbr9+/crdWS5dB0va9euRUREBL788ksMGTIEffv2RUhIiFLP48X6ZGVlYerU qejevTuee+45ODo64t133wVQs/9g30Lajpfly5dj//79WLJkCf7zn/+wbyG9tB0P9e1bTPq4NCIi IiIyLYuaxiUiIiIiTQx7RERERBaMYY+IiIjIgjHsEREREVkwhj0iIiIiC8awR0RERGTBGPaIiIiI LBjDHhHVcP78eVy/fr2xm2GQCxcuoKCgoLGbUYMx2/X777/jzJkzyvKtW7eQkpJilPciIvPHsEdk Zb7//nsMHz4ckydPxowZMxAYGIiYmBilfs+ePfif//kfpKenN2Ir7z9mysfHB4888gheeeUV7Hwq WgAADN9JREFUhIeHY/r06Rg0aBD8/f0BABs3bkSPHj2QlpbWqG19kCHtSklJwYgRIzBs2DCEhYXB 29sbNjY2GDlypN59X7x4Ec8++yzmzJkDAEhOTkb//v3x0UcfNehn0GbDhg2wtbWFWq3G8ePHlfIb N27g1Vdfhbu7O06dOmX0dhDRQxIishq7d+8WJycnSUpKUsouXbokHTp0kMjISKVMrVZLXFxcYzRR Q0REhHTp0qVG+aJFi5TX9W1rcnKy/PDDD3XeXhd97fr++++lZcuWsnv3bqWsoqJCXn/9dRk5cmSt +966dav4+fkpy2+//bZMnDix/o02wEsvvSRt2rSRe/fuaZRHRUVJVFSUQfv49NNPjdE0ItKBI3tE VuLOnTuYOnUqpk6discff1wp9/DwwPz58xEeHq5MO6pUqsZqpgZbW1uIlic6Lly4UHldn7YWFRVh woQJ+P333+u8D110tau8vBxhYWEICgrSGMWzsbHBhx9+iC5dujR4WxrSG2+8gaKiImzfvl2j/ODB g/jHP/5R6/bnzp3Dm2++aazmEZEWDHtEVuLQoUMoLCzEkCFDatQFBgbi7t27Gv+Bnzx5Et7e3nB1 dcU777yjlO/atQtLlizBJ598gvHjx6O8vBy//fYbFi5ciICAAGzcuBFDhgxB165dkZmZiYULF8LX 1xfDhg1Tgtvx48cxd+5cbN68Gc899xyKiooM/hzvvPMOHB0dtdaVlZXh3Xffxbx589C3b1/s2bNH qTt69CiWLl2KZcuWITg4GIWFhUhKSkJubi6+/PJL7N69W2nb22+/jQ8//BDBwcE4d+4cAGDbtm0Y OHAgdu/ejc6dO2Pjxo1ITU3Fa6+9hs8//xyjRo3C1atXa23/4cOHcfnyZUyYMKFGna2tLaZPnw4A KCwsxMKFC7Fx40aMHz8e69at07nPB4Pl3r17ERERgaCgIEybNg2VlZUAgNu3b2PevHn44IMP4Ozs jA4dOmDt2rUA7k/vL1q0CGPHjsXIkSNx584dre/l4+ODAQMG4NNPP1XKcnNz0apVKzRv3lwp0/U9 xsbGoqSkBO+99x5Onz4NAPj444+xaNEi9O/fH5999hkAQESwePFifPPNNxg9ejSioqL0f7FEpFsj jywSkYmsXLlSVCqVXLhwoUbd77//LiqVSl599VUREfHw8JC5c+dKRUWFHDhwQGxtbWXPnj0iItKh Qwf58ccfRUSkX79+8u2334qIyL59+6RNmzZy/vx5EREZN26c+Pv7y++//y7l5eXSqVMnOXnypIiI PPnkk7Jjxw5lvXXr1mlt89tvvy2Ojo4yceJEmThxovz973+XNm3aaKzj4eGhTJeuXLlSEhISRERk x44d4ujoKLdv35Zz585JcHCwsk3fvn1l48aNNba/fPmyeHt7S2VlpYiIHDhwQFxdXaW4uFhu3rwp KpVKPv/8czl16pScO3dOQkND5YMPPhARkQULFsjs2bO1tqu6Dz74QFQqlaSmpmr9zFWGDh0qhw8f FhGR0tJS6dy5s3z11VciUnMad+nSpco07pUrV5S/x9LSUnF2dpbPP/9cREQWLlwoGzZsEBGRTz75 RPkub9++Lc8//7yyv549e8pbb72ls23bt28XlUolycnJInL/ez9+/LhSr+97vHTpkqhUKmXdb775 RvlcP/74o9jY2MjFixclOTlZQkJCRESkpKREdu3apff7IiLd7Bo7bBKRaeib7qwa+ZFqU6bDhg2D jY0NAgMD8cwzz2DXrl0YMWIE/vvf/6JHjx5ISkpCcXGxMirn6OgIJycneHt7AwC6desGBwcHPPLI IwAAT09PXL58Gf369cPWrVuhVquRnp6O3NxcvSN7f/7zn7F161ZleebMmTrX3bp1KyorK/H999/j zp07ePLJJ3Ht2jVs3LgRf//735X1Dh8+jBYtWtTY/quvvkKPHj2U7yowMBAqlQrR0dF44YUXAABP P/001Go1AOC9995D69atce3aNWRmZqJVq1Y621alvLwcwP1RPF1yc3MRExODHTt2AACaNWuG0NBQ bNmyBc8//3yN9av/vX399df45ZdfsGrVKgCAv78/bt++DQA4e/Ys2rVrBwAYMGCA0ob9+/cjLy9P 2eaxxx5DWVmZzvaNGjUKbm5u+PTTT7Fp0yYcP34c8+fPV+r1fY8DBgzQ2NfWrVvh6+uLa9euoaKi As888wyys7Ph5eWF2NhYrF69GnPnzq31whUi0o1hj8hKeHl5AQCuXbuGrl27atTl5OQAALp37651 2x49euDixYsAgEceeQTz5s1DWFgY2rVrp/WcOuB+uKxeZ2Njg3v37gEAnJycsGTJEoSEhMDT01MJ m4aYOHGizrqrV69izpw5aNasmUZ5VlaW8vkB4E9/+pPW7bOzs2tMX6rVauTm5mp8rip//vOfsWLF CvTv3x89e/bElStXam1/t27dAACZmZk6v+/s7GwAQElJidJWtVqN6OjoWvd/9epVBAQEYNq0aTXq nnrqKURHR+P1119HcXExxowZAwC4cuUK+vTpoxHY9LG1tcXLL7+MVatWYfTo0ejTp0+N9tf2PVZv 77p165TvZdGiRUrdtm3bEBYWht27d2P79u1wd3c3qH1EpInn7BFZiYCAALRt2xb/93//V6Pu8OHD aN68OZ577jmt25aWlqJHjx64e/cu/P39ER4eDl9fX73vp28kMTAwEMHBwRgwYABE5KEusnjiiSdw 7949JCYm1qhzcXHB0aNHlWURQUpKClxdXXHs2DGNdS9dulRj+y5duiAzM1OjrLS0FJ6enlrbEhYW Bi8vLwQHBxvc/iFDhsDZ2bnGBQ7VeXh4ALh/r77q7Xj00Ue1rq9SqZTv8MHvAIByvtzChQvRoUMH rFmzBj///DP++c9/ArgfWh/8fqq20WXatGkoKytDWFgYXnzxRY26h/kedbU3Pz8fwcHBOH/+PBwd HTFp0iS97SEi3Rj2iKxE8+bNsWXLFkRGRuL//b//p5Rfv34dK1euxMcff4wOHToo5RUVFcqfp06d Qnh4OM6fP49ffvkFZWVluHnzJrKyslBUVISKiooaI3wiolFWWVkJEcHNmzdx9uxZlJWV4e7duzh/ /ryyjweVl5drHfV79913lfWr9gsAISEhmDlzJn744Qfk5ORg3rx5cHZ2xpgxYxAdHY2VK1fi559/ xpYtW1BYWAjg/ijf9evXcf36dbzwwgvIz89X7iGXn5+PO3fuYPjw4cp7VG9PbGwsysrKUF5ejrNn z6K4uFhru6r705/+hC1btuB///d/ERkZqVGXnJyM999/H66urhg9erRG/bFjxxAeHl6jDVV/R9W/ gx07duCTTz5Bfn4+du3ahaSkJAD375M3ePBgDB06FL1798atW7cA3A+gycnJWLJkCXJzc3HkyBGN ey9q065dOzz33HPw9vZWwmkVfd9j1UjljRs3cP36dYSEhGDJkiX473//i/z8fLz33nsoLy9Heno6 Dh8+DDc3N6xZswa//fab3vYQkR6NcaIgETWe+Ph4CQkJkZdffllmzpwpw4cPl/3792uss27dOgkK CpLFixfLa6+9JvHx8SJy/0KO/v37S7t27WT+/PmyYMEC6dq1q5w7d07Cw8PF0dFR4uLi5OrVq/Ls s8+Kt7e3pKSkSGJiori6usr48eOloKBARo0aJW3atJFp06bJ2rVrpUOHDnLs2DGNNhw7dkwee+wx sbW1leeff15mzZolU6ZMkT59+kirVq2kvLxcvvrqK7Gzs5NZs2bJjRs3pKioSEaPHi2tWrUSHx8f OXr0qLK/999/X9q3by/u7u7y9ddfK+XvvvuuuLu7K/cZPHHihAwbNkzef/99efXVV+Wnn34SEZEN GzaIjY2NvPXWW1JQUCAiIq+//rq0bNlSxo0bJ//+97/F2dlZtm/fXqNduv4ehgwZIr1795Zx48bJ tGnTZMOGDcpFDcXFxfLCCy/I/Pnz5a233lLuTXf58mUJDAyUDh06SHx8vKSmpsoTTzwhPj4+cvbs WRERWb9+vXTs2FHatm0rixcvVt5zy5YtolarxdHRUWxsbKRZs2Zy4MABEbl/QYunp6e0bt1apk2b VuM+etqcOHFCufhDW52271FElM8dHx8vpaWlMm3aNGnTpo08+uijsn37duXv39PTU/71r3/JnDlz lAtviOjhqUR0nHBDREQW4+7du5g9ezY++eQT2Njcn9QpKCjAN998o4wYEpFl4jQuEZEVOHToEE6e PIni4mIA96fZk5OT8dRTTzVyy4jI2Bj2iIisQEBAAHr16oXu3bvj8ccfR2hoKFxcXPDXv/61sZtG REbGaVwiIiIiC8aRPSIiIiILxrBHREREZMEY9oiIiIgsGMMeERERkQVj2CMiIiKyYP8fsENUoaLo rzEAAAAASUVORK5CYII= ", null, " AAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlcTun/P/DXuashFApZQnZp7Nm3MvZdWQdlaZSyU5Zp EB/7jOVDtmHINox9HUsYZAyTGCZFX6ZEyFpIuut+//7o1/m4VWRGcTev5+PRg3Od61znfU533e+u 5dyKiAiIiIiIyGBpPnYARERERPTPMKEjIiIiMnBM6IiIiIgMHBM6IiIiIgPHhI6IiIjIwDGhIyIi IjJwTOiIiIgyEBER8bFDIMoyJnT00YkINm7ciObNm6Nx48bo0KEDbGxsoNFooNFosGfPHpw8eRIu Li7o3r37xw73g1q/fj3mzZuHKlWqoE+fPpnWi4yMxFdffYUOHTrAxcUFbdq0wYABA3Dt2jW1zu3b tzFx4kRUqVIFUVFRORH+ewsKCkKNGjWg0WhgZ2eH3bt36+3/7bff0K5dO5iZmeGHH34AAOzatQtl ypRBUlLSxwj5H3v+/DmGDRsGKysrFCtWDGPHjsW7Hv8ZGBiIunXrokCBAqhfvz5+//13vf1arRZT pkzB1KlTMXnyZHh4eCAhIUGvzq+//opmzZph0KBBmD9/vnrO+/fvo3v37vjxxx/f+1o2b96MunXr omXLlrC2toZGo0HDhg3fu53skpiYiO+++w7NmzfHhg0b3vv4AQMGqL93NBoN5syZAyD1d1S5cuX0 9qV9LV++/ENfBtHfI0QfUXJysvTt21cKFSokx44d09u3cOFCMTIykj179khKSoq0b99eHB0dP1Kk H15YWJjY29uLiMiVK1ekX79+otPp0tU7ffq0mJuby+zZs/XKly1bJvnz55dDhw6pZZs2bRJFUSQq Kip7g/8Hrl69KhqNRho2bJjh/u+++06mT5+ubp87d0569OghWq02y+eIjIz8x3F+KCNGjJADBw7I gwcPJCAgQDQajaxYsSLT+iEhIeLp6SmRkZFy/fp1adasmZQsWVKvjqenp7i4uKjbkyZNEicnJ3U7 KipKChQoIFu2bBERkblz58r8+fNlxYoVMmHChL/1c/Trr7+KsbGxXLlyRUREUlJSZNy4cWJtbf3e bWWnu3fviqIoEhAQ8N7HderUSQICAiQgIEDWr18vsbGxIiJy9OhRcXFxkT179siBAwfkwIEDsn// fjEzM8v219qn9FqmTxsTOvqoZs6cKYqiyI4dOzLcP378eNm9e7eIiLi6uoqDg0NOhpetpkyZ8s43 1idPnkjx4sWlVatWGe4fOHCgFCpUSO7cuSMiIidOnPjkEzoRkS5duoiiKBIWFpZuX5s2beTu3bt/ u+2wsDDx8PD4J+F9MJGRkXL+/Hm9sjp16siIESMyPWbr1q1623v27BFFUeTRo0ciInLt2jXRaDRy 8uRJtc6NGzdEURQ5c+aMiIiMHj1a7Ozs1P1LliwRkdQkrEGDBhIaGvre1+Lj4yOFChVKV96iRYsM /xD5mP5OQjdlyhT1/r0p7XfQ64KDg6V69ep/K76sevnypbRr1y5bz0G5B4dc6aOJj4/HnDlzULFi RTg5OWVYx8vLC8bGxuq2oig5FV62u3PnzjuH3tasWYP79+9jyJAhGe4fOnQo4uLisHDhwuwIMdt4 eXkBQLrhqlu3bsHY2BjFixfXK5fUPz7f2W58fDz69OmDxMTEDxfsP1C2bFnUq1dPrywuLg4dOnTI 9JhevXrpbT99+hQNGjSAhYUFgNQhaBGBvb29Wqd8+fKwsLDATz/9BAC4fv06mjdvru7XarUAgB9+ +AFNmjRBtWrV3vtatFot4uLi0g1ljh8/Hs+ePXvv9j4lr169wooVK/DFF1+gbdu22L59u97+rl27 pjtm9+7d6NKlS7bG5eXlhfDw8Gw9B+UeTOjoozlx4gSeP3+u98bzJhsbG3Ts2FHdFhH89NNPqFq1 KiwtLTF//nx1X1JSEsaPH4///ve/8PX1Ra9evRAfHw8AOHToEHr06IEJEybA398fpUuXRunSpXH8 +HG9tlesWIEpU6bA29sbjo6OCA0NVffv2LEDI0eOhJOTE2rUqIHDhw9nGreIYMGCBRg7dix8fHzQ qFEjrFmzRt3v7e2Nc+fO4caNG/D29saiRYsybOfIkSMAgEaNGmW4397eHsbGxjh06JBe+cWLF2Fv bw9TU1M0a9YM169fV/edPn0aI0aMwMqVK9GxY0fs2rULQGriMHPmTNSpUweBgYHo3bs3rKysUKtW LcTExODHH39E06ZNYWFhgQULFmTpvmemTZs2qFy5MgICAvDixQu1PCAgAC4uLur2vXv3MH36dFSs WBHR0dFq+Y0bN+Dj44MZM2agXbt2mDFjBoDUuWePHz9GcHAwvL29cfXqVQDAtWvX4O7uDj8/Pzg5 OaFnz564c+eOum/ixIno27cvtm3bBktLS/j4+MDNzQ0ajQaDBw/GgwcPAADBwcGwsrLCqVOnAABL liyBlZUVYmJi3nq9ab7//nt4enqiXbt2War/5MkT7N27V2+u4R9//AELCwvky5dPr661tTUuXrwI AKhfvz40mtRf7ydPnkTTpk0RHx8Pf39/+Pn5Zencb+rbty+MjIwwaNAg+Pr64tWrVwCATp06wdzc HImJiVi9ejVatGiBHTt2wNnZGfnz50e1atUQFBQEIPX+eXl5YcyYMVi8eDHMzc3Vn4uVK1di1KhR aNeuHRo0aIDg4GD13Lt27YK3tzf8/f3Rpk0btb00q1evhqurK2bPnq2+Fl5Xr169t85RjY+Px6hR o9CtWzecOXMGvXr1Uv/oyMzevXszTehSUlIwadIkaDQaODk5IS4uDkDq67Nw4cI4ffo0AODZs2cY NWoUpk6dCnd3dzRv3hxnzpwBAFy+fBnh4eF48uQJvL29sW/fPgBAVFQUxo4di8GDB+Pzzz+Hj48P dDodAODmzZsYP3481qxZg9atW2PMmDFvvQbKZT5i7yD9y82bN08URRFfX98s1Xd1dZVSpUqp84Lm z58vJiYm6lDUokWLpGLFimr9GjVqyIwZM0Qkdajp888/Fzs7Ozl27JhotVrp1q2b1KpVS60/adIk Wbx4sbrduHFjadKkiYiIBAUFycSJE9V9np6eki9fPnnw4EGGsX799dfSq1cvdfvy5ctiZGQky5Yt U8sGDhz4ziHXqlWrikajkaSkpEzrFC9eXAoUKCAi/xtydXd3l2vXrsnBgwfFyspKqlSpIikpKaLT 6cTS0lI2bdokIiI7d+4UMzMzSUxMlJSUFDl9+rQoiiIjR46UJ0+eyMuXL6V8+fJib28vZ8+eFRGR 5cuXi6mpqTx79kxE3n7f32bx4sWiKIrefLK6detKYmKiuh0XFyerVq3SG0aOjo4We3t7iY+PFxGR I0eOiKIocvToURERcXBwkEGDBqltxMTEiJWVlfz5559qWa9evaRChQry/PlzuXXrljRt2lTKlSsn +/btk//+97+ydetWSUhIEAsLC/H09FSPu3//vgwYMEDdDggIkGrVqsn9+/ffeq1//vmn9OjRQxRF keLFi6cbhs3Id999J6VKlRJFUWTw4MFqeZs2baRMmTLp6jdp0kSqVq0qIiKJiYnyzTffyLfffqsO I44bN079vv9dW7ZskYIFC4qiKFKxYkU5deqUuu/ly5eyZcsWURRFXF1dJSoqSi5evCgVKlSQokWL yvPnzyUiIkIqVKggtWvXluPHj4ufn58cP35cNm3apPez0aFDBylZsqQkJyfLo0ePxNjYWL2OBQsW SIUKFdS6AQEB0qRJE3XYNzg4ON2Qa8eOHcXd3T1L1/jgwQPp2LGjKIoie/bsybDOzZs3pXjx4u9s q1q1atK7d291Ozo6WkaPHi0iIjqdTpo1a6Z33f7+/pI3b165ePGiiIhMnTpVbGxs1P3JycnSoUMH efnypYiInD9/XhRFEX9/fxERGTBggOzdu1dERBISEtLNu6XcjQkdfTSzZ88WRVH0EqW3cXV11UuA wsPDRVEU9c0xODhY/eWo0+mkcePGMmTIELX+m2/0K1eulDx58oiIyL1798TU1FQvcQoNDZVffvlF RETatm0rffr0kYkTJ8rEiRNl8ODB0qxZMwkJCUkX57Nnz8TU1DTdXKgePXrovQlkZU6gra2taDQa efXqVaZ1ihUrJvnz5xeR/yV0//d//6fu//777/XenGbMmKFOtD506JAoiiLR0dEiIvLXX3+Joih6 87P69u2b4X2/dOmSiLz7vmcmLi5OChQooM5DOnnyZIZvum/OCxwxYoRMnTpVr87GjRvVBLNFixZ6 3+evv/5abG1t9er/+eefoiiKGrerq6s0atQo3bknTpwo5ubmatsrVqxQ3zDf19OnT+Wnn34SS0tL qVmz5jvra7VauXbtmvTt21cURZFdu3aJiEinTp2kbNmy6eo3bdpUatSokWFb169fV+dhnjt3Ttzd 3cXPz0/++uuv976OmJgY6d27tyiKIkZGRrJ8+XJ1X9rrJ+3nRkRk+/btoiiK/PjjjyKS+nPYt29f vTarVKki7u7u6s/Xl19+Kc2aNZOYmBjRarUyadIkefz4sYikfg80Go2IpP6hVrJkSVm1apVee39n Dt3rtFqt2NnZ6SXvr1u4cKG4ubm9s53ly5dL3rx55cmTJyKS+jsvbVHJ0aNHRVEUvT8GtFqtlChR Qv1j8M2E7scffxQ7Ozv1Pk2cOFGaN28u//nPf0REpHfv3vLFF1+of+y86w8Nyl2M392HR5Q9ypQp AyD1cRtZJa/No8qTJw8A4OXLlwCAunXrws7ODqtXr0ZCQgKePXumDkVk5LPPPlMfhfHbb7+hYMGC MDExUfe/Ps/o0qVL2LhxI1q1avXOGENDQ5GYmIj8+fPrldeqVQs7duzA3bt3UaJEiSxcbeqQc3h4 OGJjY2FtbZ1uf3JyMp48eYLKlSvrlb9+HW3btgUAhIeHo0uXLvD19cWlS5fw008/4dGjRwDwzvuU 0X1PG1Z93/uextzcHAMGDMCKFStw+vRpBAQEwM3N7Z3HBQUFwcPDQ6+sX79+6v/fnGd54cKFdN+L atWq4bPPPsOlS5fSXdfrhg8fju+++w4bNmzAsGHDcOzYMWzatOmdMWakYMGC6NmzJ16+fImBAwfi 2bNnMDMzy7S+sbExKleujE2bNuH333/H6dOn0a1bNxQrVgzPnz9PV//FixcoWbJkhm1NmDABixYt wunTp9GpUyecOnUKNWvWxIoVK9Ldy3cpUaIEtmzZgk6dOmHIkCEYPnw4mjVrBjs7O7XO69+DtCkV f/31F4DUn+G8efOq+xMSEhAREYH9+/ejYsWKGZ5z1qxZOHnyJM6fP4+IiAj19RgWFoa7d+9m+LPx TxgbG6Nfv344efJkhvt3796NsWPHvrOdfv36wcfHBxs3bsTw4cMRFhaGiRMnAkh9XQLQe20aGxvD zs5O73X5uosXL6JmzZqYPXt2hvu/+eYbNG/eHLa2tliyZEmue8wTvR3n0NFH07JlSxgbG+PUqVNZ mvD+LtevX0eDBg1Qr149jBw5EpaWllk+VqvV4sGDB+q8oDclJCTg5s2b6cozejaakZERgPSJapEi RQDoJ1vvkjbX6uzZsxnuv3z5MpKTk9GmTZtM2yhatCgAqG+iX3/9NRYtWoRx48ZleS5XRtK+Z//k vg8fPhwAMH/+fFy6dCnTuYKv02q1iIyMzPI5jIyM9ObfAakJh4WFxTu/F6VKlYKzszOWL1+Ox48f p0v6/460RRKvL/Z5G0VRULduXfW8tWrVwuPHj9Mt/Lh9+zY+//zzdMcfOXIENjY2sLOzg4eHB1xc XFCzZk0ASDcPLzOvXr1S51qm6d+/P3x9faHT6XD06NFMj01LWs3NzTPc//LlS4hIpj9fOp0Orq6u OHr0KLy9vdG4cWN1f1pi+/Tp0yxdx/soWLAgihUrlq780aNHCAkJeevPXBozMzP07dsXP/zwA37/ /Xe92N/2eyKz11hCQoKaGL8ubdGLnZ0dQkJCULNmTTg7O2PcuHHvjJFyD4NP6NImNpPhKV68OIYM GYLo6GisX78+wzovX77Umxz9tlWuI0aMQIUKFdQ3q5SUlCzHYmtrC51Oh5UrV+qV79u3DzqdDpUq VcKaNWv0Es+YmBhs3rw5XVt2dnYoUKBAuonbMTExqFixoprYvet6AGDQoEEoUaJEurjS/PDDDzAz M3vr5Oe0CfstW7bE2bNnMXv2bIwdOxYajSZLPWnvivOf3Pdq1arBwcEB+/fvz3Sl85tsbW2xYcMG tWcWSJ1cfuzYMXX79e9To0aNEBsbi//7v/9Ty7RaLR4+fKj3BpvZNY4ZMwZ//vknxo4dix49emT5 2jJz9+5d1K9fH6ampu91jIODAwCge/fuUBRF7eEBUifKP3z4MN0K2eTkZMydOxd+fn548uQJwsLC 1GvQ6XRITk7O0vnz5MmDuXPnpvsDpk6dOgAAKyurTI9NS0BatmwJIP19trS0hIWFBVatWqVX/scf f+Do0aPYunUrNmzYAB8fHzXuNOXLlweATHvS/okLFy5kuBr5wIEDaNGihV4v49t4eHjg0qVLmDJl Cr788ku1PO2Pl4x+T6S9LhVF0XstV65cGefPn8fly5f1jklbHBYYGIiyZcviwIEDWLBgARYtWpQt yS59mnI0obtz5w48PT2xYsUKuLq66q0gfN2qVaswffp0+Pn54ZtvvtHbFxgYqPeU7rTVZmSYFi5c CEdHR3h6emL9+vV6v6wvXrwIV1dXlCpVCkDqm9Prbyhpf5Wm/Xv37l2EhYUhLi4O58+fx40bNxAT E6MOK2q1Wr3209oSEdjZ2aFNmzYYP348fH19cfDgQUybNg1xcXHQaDTw8vLC77//jp49e+LEiRPY vn07PDw80LNnz3TXZGpqismTJ2Pbtm1qT1JSUhJ27NiBWbNm6Z3/XY/XMDMzw44dO3DhwgVMnz5d 75f71q1bsW7dOmzYsAGlS5cGAHVl4+vJzrJly/DVV1/h888/V5O73377DQkJCWqvS3R0NJ4+faom Y6+fR6fTqfcYQLo677rv7zJ8+HAoioIBAwZkuD/t3GnfrzFjxuDOnTto1qwZNm/ejO3bt2PYsGFo 2rQpgNQEITw8HCKCixcvYtiwYShZsiTmzZund++qV6+uJkBvXuPr6tevjwYNGuDgwYNo3bq13r61 a9fCzs4OsbGxGR578+ZNTJgwQf3DU6vVYvHixXqrhAMDA1GpUiWEhYUBAJYuXar3KQ4nTpxA4cKF 1d5Ua2trDBgwQG/V9OrVq+Ho6JjuESn+/v4YPHgwzMzMYGZmBnNzczX52rVrF9q3bw8gtZeoZcuW 6ZKq12m1Wri6uup9IsX27dthY2ODTp066dV9vRfJ398frq6usLW1BZD6+nnzXnt6emLnzp3w8PDA 6dOnsX79esycORMdOnTQe80+ffoUBw8eBJD6iBtTU1M4OTlh/fr1annayvDg4GB1dXL79u0xbNiw TK9t5syZGDFiBB4/fqye6/HjxxmujN2zZ897Pa6kdu3aqFevHqysrPSG2Js0aYK2bdti0aJF6ms7 MjISoaGh6rCshYUF7t+/j7i4OISEhKB///4oUKAAOnfujK1bt+KXX37B4MGD1cR6zZo16qrxgQMH wtzc/K3D+pTL5NRkPZ1OJ3Xq1FFXol29elXKlSsnycnJevV2794tjRs3Vrd79eolq1evVrc9PDzk woULcuHCBfnjjz9yJnjKVlqtVpYuXSr169cXGxsbcXR0lK5du8qUKVPk+fPnIpI6Yb5MmTJiZmYm 27Ztk0ePHsmwYcNEo9FI37595dGjR7Jp0yaxsLCQ0qVLy8qVK2XBggVSuHBhmTdvnhw6dEjMzc2l YsWKcvr0ablx44Y0b95cNBqNfPfddyKSurrNyclJ8uXLJ+XLl0830Xrq1KliZWUl5ubm0q1bt3c+ vHfRokXStGlTmTRpkri7u8v27dvVfT/++KOUKFFC8ufPL2vXrpV79+69ta3IyEj56quvxNHRUXr3 7i3t2rWTL7/8Mt0DYl+9eiXjx4+XFi1ayFdffSVfffWVzJ07V93/4sULadGihZiamkqnTp0kNDRU bGxspH79+hIVFSXjx48XjUYjw4cPl+joaAkKCpKqVauKubm5bNu2TZ48eSJjxowRjUYjbm5uEh0d /db7nhUpKSni6uqa4b6wsDD58ssv1ZjSHji8YcMGKVeunBQoUEC6du0qt2/fVo85fPiwFCpUSJo3 b65O+r9x44Z06tRJ+vXrJ1OmTBEvLy91dfTevXuldOnSYmZmJgEBAepr7nUrVqzI8GHF/v7+YmVl pT7Y+U2hoaFSvnx5KVSokLi7u8u0adPUSfFpduzYIYULF5bff/9dRERGjRol+fPnl4YNG8qUKVNk +fLl6T4l49WrVzJy5Ejx8fGRb775RgYPHixxcXF6dR4+fChdunTRK9u5c6cMGDBA5s+fL8ePH1fL r169KoULFxZzc/MMr0NExNnZWV2l27VrV2nVqpU4OzvrLaxIWxTRv39/8fT0lP79+8uYMWPU+Net WycFCxYUa2tr2bJli6SkpIiISFJSknh5eUnhwoXF0tJSXF1d1e9PTEyM1KpVS/Lnzy8DBgyQkJAQ KVq0qLRp00bi4uLk6dOn4uLiIpaWllKlShXZvHmz2NnZybx589SfqwYNGkifPn0yvbYlS5ZI8eLF pWzZsjJu3DhZtmxZhivLX758KWZmZhITE5NpWxn54Ycf5Ny5c+nKX7x4IZ6entK2bVv55ptvxM3N Te997c6dO1KhQgWpVKmS+okwp06dklq1aknevHmlevXqsnPnTrW+g4ODNGnSRPz9/WX06NFy5MiR 94qTDJsi8gEmL2XB0aNH0bVrV8THx6tzR6pUqYJZs2bB2dlZrdekSRO0b98evr6+AIAff/wRs2bN wpUrVxAREYFBgwZh4sSJaNOmDT777LOcCJ2I/uXmzJmDRo0aoUWLFh87lGw1duxYvd7D9xUZGYny 5cvjl19+eevzJYnow8uxIdczZ86gfPnyehOBK1eurPdg16SkJAQHB6Nq1apqWaVKlRAaGooHDx7g woULePnyJbp3747SpUsjMDAwp8Inon8prVaLU6dO5fpkbufOneoQLBEZnhx7bMm9e/fSrXIqWLCg 3gqfx48fQ6vVomDBgmpZoUKFAKTOv+vTpw/69OmD27dvw93dHU5OTrh+/Xq6jwkiIvqnfHx8cPv2 bTx79uyDLIb41FWpUkXv0SN/R9r8yoxWfxNR9sqxHjpjY+N0S7HfXGGX1nv3er20Oq+PDFtbW2P7 9u0oXrw49uzZk10hE9G/WGxsLA4dOoRq1aph8ODBHzucbPdPk7n79+9j3rx5UBQF/v7+6sdbEVHO yLEeupIlS6Zbnv306VPY2Nio25aWljAxMVE/9y6tDgB1pWMaU1NTtGnTJsMl2QMHDtRr18HBQV3y T0SUFevWrfvYIRgUKysrrFy5MtNH7BBR9sqxhM7R0RFz5szRK7t27RoGDhyobiuKAgcHB0RERKhl 4eHhsLW1zfABjykpKXrz7dIEBAR8kAfVEhERERmCHBtybdiwIcqWLYsTJ04ASE3UEhIS0KlTJ/j6 +uLKlSsAADc3N+zbt0897uDBg+pwx4IFCxAeHg4gdU7etWvX0LFjx5y6BCIiIqJPUo49tgRIfcjm 9OnTUb9+fZw/fx4jRoxA3bp1YW9vj8mTJ6tPiv/222/x9OlTmJqaIj4+Xu3Za9++Pc6dOwcPDw8U LFgQQ4cOhYWFRfqLeuPp2kRERES5WY4mdDmFCR0RERH9mxj8Z7kSERER/dsxoSMiIiIycEzoiIiI iAwcEzoiIiIiA8eEjoiIiMjAMaEjIiIiMnBM6IiIiIgMHBM6IiIiIgPHhI6IiIjIwDGhIyIiIjJw TOiIiIiIDJzxxw6Asp+/vz+sra3RtWvXjx0KNm3ahAMHDiAxMRE7d+58a90HDx5g9uzZ+PPPP1Gy ZEk8ePAAefLkwcSJE1G/fv0cipiIiOjTxx66f4Hvv/8ey5cv/9vHR0VFfbBYevfujdjYWDx9+vSt 9cLDw1GrVi28evUKhw4dwrp163DgwAG4urrC0dER69ate+9zf8jrICIi+pQwocvlzp8/j2fPnuHo 0aO4cePGex+fmJgIDw+PDxaPsbExrK2tISKZ1klJSUGPHj1QsGBBLFmyBBrN/16mXbt2hY+PD9zd 3XHp0qUsnzc8PBxz5sz5R7ETERF9qpjQ5XIBAQHYs2cPTExMsGLFivc+3svLC+Hh4dkQWeZ2796N q1evwsXFRS+ZSzN06FBotVrMnDkzS+3Fx8ejT58+SExM/NChEhERfRKY0GWFomT/VzZ49uwZkpKS 8Pnnn8PZ2Rlr167Fq1evMqw3bdo0zJgxA/3790f//v0RHx+Py5cvIzw8HE+ePIG3tzf27duHkydP wsLCAoMGDQIAhIaGonv37nqJV3x8PDw9PbF8+XKMGDEC7u7uSE5OznLcR44cAQA0atQow/0lSpRA 2bJlcfToUYgIli5dCo1Gg4CAAADA8ePHUaVKFTg6OgIAAgMD8fjxYwQHB8Pb2xtXr14FANy4cQM+ Pj6YMWMG2rVrhxkzZqjn0Gq18PX1xaRJkzB69Gg0atQIe/fuBQC8evUKixYtQtOmTbFlyxYMHToU 1tbWqFixIq5cuYKjR4+idevWKFSoEMaNG6cX+44dOzBy5Eg4OTmhRo0aOHz4cJbvCxERUaYkF/rg lwVk/1c2WLFihZw8eVJERIKCgkRRFFm/fr1enZSUFGnevLmEhISIiEh8fLzkzZtXvv76axERmTp1 qtjY2Ogd07x5cxk0aJC6/cMPP4iiKOr26NGjpXXr1iIiotPppHDhwrJhwwZ1v6urqzg4OGQad7t2 7URRFLl+/XqmdRo2bCgajUYePnwoOp1OFEWRgIAAvXM4Ojqq2w4ODnoxR0dHi729vcTHx4uIyJEj R0RRFDk1RxT/AAAgAElEQVR69KiIiPTr1098fHzU+gcOHBCNRiMHDhwQEZGoqChRFEV69eolMTEx otPppEmTJlK1alXZv3+/iIj8/PPPoiiKREREiEjq92DixIlqm56enpIvXz558OBBptdJRESUFeyh y4qcSOmyQVBQEJo3bw4AaNKkCapXr55uccTu3bsBALVr1wYAmJmZYc+ePWoPXEaUN3oU39xu3749 3NzcAAA6nQ758+dHZGRkluNOa0/ecl90Op1a583zp3n9+DfbmjdvHjp27AgzMzMAQOvWrbFhwwY0 bNgQERER2Lx5M5ydndX6HTp0QJ06deDn5wcAKFOmDACgY8eOKFGiBBRFQbNmzZCYmIiOHTsCgNpD GBoaCgCYMWMGIiMjMWnSJEyaNAmJiYmoW7cuoqOjs3hniIiIMsbHluRSISEh+OOPP9C9e3e98t9+ +w2XLl1CrVq1AACnT59GyZIl9eq0adPmrW1nlkC9fnxcXByWLl0KRVGQnJysJmBZYWNjAwCIjY1F 5cqVM6zz4MED5M+fH0WKFMlSm2/GHBQUlG6xR79+/QCk3jsAyJ8/v97+WrVqYf369ZmeI0+ePBlu x8fHAwAuXbqEjRs3olWrVlmKmYiIKKvYQ5dLrVu3DidOnMCuXbvUr8DAQBgbG+v10mm12g/+OI+z Z8+iRYsW6NKlC7y8vJA3b973Or5du3ZqOxl59OgRIiMj/1FipNVqM+01NDIyAgDcvn1br7xIkSIw Nn7/v4HSegcTEhJw8+bNdPuTkpLeu00iIqLXMaHLhZ4/f4779+/D0tJSr7xo0aLo0KEDNm/ejGfP ngEAqlWrhnPnzqV7BEjaUKyiKOmGKxVFQUpKirr9+v8BYODAgWjZsqU6LJlR79zbevk6d+6MGjVq YM2aNenaBoC1a9fC2NgYkyZN0it//TwZHff6ddja2mLDhg14+fKlWvbs2TMcO3YMDRo0gEajQVBQ kN7xMTExaNKkSaZxv0ulSpWwZs0avThiYmKwefPmv90mERERwIQuV1qzZg0aNmyY4b4OHTrgxYsX WL16NQBgwIABsLS0RNu2bbFs2TIcOHAAbm5u6lCnhYUF7t+/j7i4OHUo0sbGBidPnkRMTAzCw8Nx 4MABAMCtW7cAAHfv3sWlS5eQmJiIw4cP4/Hjx4iJicGjR48AAMnJyW9d9aooCrZt24aEhAR4enpC q9Wq+06ePIkZM2bgv//9L+rVq6eW29jYYNeuXXj+/DkCAwPx559/IjY2Vl3Va2lpifDwcIgILl68 iDFjxuDOnTto1qwZNm/ejO3bt2PYsGFo2rQpSpcuDTc3N6xatUp9AHJcXByOHDmizqFLSxhfT850 Op3edaXVSUs0vby88Pvvv6Nnz544ceIEtm/fDg8PD/Ts2TPTe0FERJQlH2s1RnbKpZeVJZs2bZJC hQpJhw4d5NKlS3r7wsLCpEePHqIoihQuXFg2b94sIiLBwcFSv359MTU1lXr16klQUJB6zJ07d6RC hQpSqVIlOXTokIiIRERESK1ataRAgQLi5uYmu3btkg4dOkhAQICkpKTI/PnzxczMTKpUqSI7d+6U UaNGSbFixWTjxo2yY8cOKVGihBQuXFi2bNny1mt58OCBjBs3Tlq0aCG9evWSTp06Sbdu3eTMmTPp 6u7bt09KlSolxYoVk4ULF4qfn58MHjxYAgMDRUTk8OHDUqhQIWnevLn89ddfIiKyYcMGKVeunBQo UEC6du0qt2/fVttLTk4WX19fcXR0FF9fX3Fzc5NffvlFRESeP38u8+fPF0VRpGfPnnL9+nW5ePGi NG3aVIyNjWX16tUSHx8vs2fPFkVRpEuXLnLt2jURSV01bGVlJebm5tKtWzeJiop6n28vERFRhhSR bFpi+RFlNExIRERElFtxyJWIiIjIwDGhIyIiIjJwTOiIiIiIDBwTOiIiIiIDx4SOPglaXQq0uvTP jiMiIqJ34ypXIiIiIgPHHjoiIiIiA8eEjoiIiMjAMaEjIiIiMnBM6IiIiIgMHBM6IiIiIgPHhC6X 2bdvH8qUKQONRoNmzZrh2LFjevuPHDmC+vXro0SJEti7dy8AYPHixahbt+7HCPe9jB49GhqNBjVq 1ECrVq1QsmRJ9TqbNm0KS0tLaDQa3Lx5E2PHjoWNjU2OxHXy5Em4uLige/fuf7uNAwcOYMiQIWjU qFGmdbZu3QpnZ2d4eXn97fMQEVHuxIQul+ncuTNWrVoFALC2tsYXX3yht79NmzZo2LAh5s2bhy5d ugAAypUrB3t7+/c6T1RU1IcJ+D0oioKdO3fi8uXLCAwMRNu2baEoCjZt2oSgoCDcvn0b1atXR/ny 5VGsWDHcunUrR+Jq1qwZHj16hLi4uL/dRvv27aHT6XD//v1M6zg7O+P69et4+fLl3z4PERHlTkzo cqF27dqhevXq2Lt3L54+fZpu/9mzZ9G7d291u0uXLli5cmWW2z9x4gQCAgI+SKzvo1ixYujWrZu6 LSJ6zxs0NTWFi4sLAKB48eI5FpdGo0HRokX/0bMPNRoNypYt+9Y2jI2NUaRIkb99DiIiyr2Y0OVS Xl5eePnyJdauXatXfvr0adSrVw+fffaZXnlKStY+peHOnTtwcXH5KA9u9vb2fmedUaNG5UAkGVMU JdvPwQdmExFRRpjQ5VL9+/dHoUKFsHz5cr3ydevWwdXVVd2+ceMGvL29YW1trVcvJCQE3t7emD59 OhwcHNQevJ9//hnPnj3DkSNH4O3tjbt37wIAzp07h6FDh2Lq1Klo37493Nzc1CHICxcuwMvLC2PG jMHixYthbm6OefPmoXPnztBoNJg0aRKeP38OIHWOX/HixfHnn3+muyZjY+N3Xvebda5cuYImTZrA zMwMvXv3RkpKCnQ6Hfbv3w8nJyesX79evVehoaFITEzE1KlT4enpifr168PJyQkPHjwAACQlJWHc uHH44Ycf4OHhgTp16uidS0Tw008/oWrVqrC0tMT8+fP19v/8889wd3fHN998g5YtW2L8+PFISkp6 6/X8+uuv6NOnD/z8/ODr66vGQkREpEdyoQ99WQCy/Ss7jBkzRhRFkUOHDomIyIsXL8Te3l6vzpMn T8TX11cURVHLQkJCxNHRUbRarYiIrFq1ShRFkevXr4uIiI2Njfj5+an1L1++LEWLFpXY2FgREdFq tdK4cWNp2LCh6HQ6iYiIkAoVKkjt2rXl+PHj4ufnJydOnJDo6GgxMTGRefPmqW0FBwfL5MmTs3R9 rq6uoiiKREVFpdu3du1aURRF5s6dK69evZLz58+LoiiyZ88eSUxMlF9//VUURREnJycJDg4WT09P uXPnjri7u0toaKiIiCQkJEiRIkWkZ8+eIiKyZs0aGTt2rHqOKVOm6MVSqlQp2bJli4iIzJ8/X0xM TOTRo0ciInL48GGxsbGRxMREERF59uyZlC9fXnr16qW2MXXqVLGxsVG3r169KiVKlJAHDx6ISOr3 z8rKSgYNGpSl+0NERP8e7KHLxby8vKAoCvz9/QEA27dvh7Ozs16dQoUKoUKFCnplU6dOhYuLi9rb 5eLignXr1qF8+fIZnmfu3Lmwt7dH0aJFAaT2kk2ePBnnzp3D4cOHUbFiRZQuXRpVq1aFo6MjpkyZ AgcHB1hbW8PZ2Vlv/t6OHTvQp0+fD3YPfHx88Nlnn6FevXooXrw4rl27hjx58qirSdu2bYu6devC 399f7WHbsGEDJk2ahOnTp6NBgwbQ6XQAgFevXmHr1q2IiIgAgHSrTStXrqzOTezcuTOSk5Nx48YN AMD06dPRvn175MmTBwBQoEABjB07Ftu2bUN4eHiGsfv5+cHR0VGdN5cvXz7Y2tp+sHtDRES5BxO6 LJD/P/k+O7+yQ4UKFdC2bVscPHgQUVFR2LhxIwYMGPDO44KCglCyZEl1O0+ePHBxcYGRkVGG9S9c uID8+fPrldWqVQsAcPHiRQCp9zBv3rzpjh09ejRu3ryJn3/+GQAQGhqK6tWrZ+0C31OePHnSrRB9 PabLly/D1NQUs2fPVr/279+P7du3AwBcXV1hZWWFmjVrYtasWbC0tNRr6/XvY1rilna+rNyjNx07 dizdUHh2vVaIiMiwMaHL5YYPHw6dToeJEydCo9GgVKlS7zxGq9UiMjIyy+cwMjJCdHS0Xllar5KJ iclbj23QoAEaNGiAZcuW4fLly+nmpeWkhIQExMbGZvhYEK1Wi3z58uH06dNwd3fHtGnT0KJFC7x6 9SpLbRsbG+P27dt6Ze+6Ry9evEi3SjknFl4QEZHhYUKXy7Vv3x4VKlTA1q1bs9Q7BwC2trb4/vvv 1aFGIHV16++//w4gNal4vaeoUaNGCA0NRXx8vFoWExMDAGjcuLF6TGbGjBmDn3/+Gd9+++0HHW59 X5UqVUJKSgrWrFmjV7527Vo8fPgQgYGByJcvHxYuXIhTp07hwoULOHz4sFrvbdfYsGFDnD17Vu+e xsTEQKPRoEGDBhkeU6FCBZw6dUqvLDt7dImIyHAxocvlFEXBsGHDYGZmBicnpwzraLVaAEBycjIA YOzYsbhw4QLatWuHbdu2YcOGDZg6dSrq1asHALCwsEBYWBiSk5Nx5coVTJgwAYqiYOnSpWqbmzZt QseOHdWELiUlRT3Pm5ydnVGiRAlcuXIFVapUyfK1PXv2DEBqT9ab0q4l7V8gdZVqWgxpidXrMdWo UQNNmzaFt7c3Fi5ciKCgIMyePRtRUVEoUaIEfv31VwQHBwNITdCqVq2KEiVKqOd5fcVqWrtp/06d OhUxMTHYsmWL3j3y8PBA6dKl1TZef3yMu7s7rl27hhkzZiA5ORmRkZGIiIhAREQE/vrrryzfJyIi yv2Mpk2bNu1jB/Gh+fn5IRde1t9ma2uLx48fq58M8boLFy5g8eLFiIyMhLGxMWrXro26deuiQIEC 2Lt3L3bs2IHPPvsMixYtUuebmZiYYMmSJTh37hxcXFxQqlQptG3bFsuXL8fZs2dx7tw5PH/+HCtX roSxsTECAgIQEBCAu3fvolSpUqhWrZpeb5ZGo8GDBw9gb2+Ppk2bvvN6njx5gu+//x5r165FUlIS YmNjYWFhoS7auHHjBubOnYvIyEgYGRmhXr16+P7777Ft2zbEx8ejUaNG8Pf3x+nTpxEfH49y5cqp HxPWunVrhIaGYs2aNfj5559Ru3ZtTJ06FQDwyy+/YOLEiRARnDhxAnXq1EGPHj1w6tQpLFq0CFFR UahUqRKKFy+OWbNm4cKFC0hKSoKjoyOqVKmCRo0aYf78+bh8+TKOHTuG4sWLY/bs2VAUBcePH8d3 332HW7duoVSpUrC1tUWjRo1gbGyM1atXY/78+UhOToa5uTmqVasGOzs7FCtW7J++NIiIKJdQJBeO 37w5JEifvmHDhmHChAk59vmrREREuQmHXOmje/LkCWJjY5nMERER/U3vfvQ+UTZJe9ZdREQE/Pz8 PnY4REREBos9dPTRREdHY//+/ejRowdatmz5scMhIiIyWJxDR0RERGTg2ENHREREZOCY0BEREREZ OCZ0RERERAaOCR0RERGRgcvRx5bcuXMHM2fORI0aNXD27Fn4+PjAzs4uXb1Vq1bh3r17EBEkJydj xowZ6eoEBgZizpw5CAwMzInQiYiIiD5ZObbKVURgb2+PuXPnolWrVggLC0PHjh0REREBIyMjtd6e PXswb948nDlzBgDQu3dvtGnTBkOGDFHrxMbGwtnZGSYmJjh+/Hi6c3GVKxEREf2b5NiQa2BgIMLC wuDg4AAg9fNFTUxMsHv3br168+bNQ/v27dXtbt26YdGiReq2iMDf3x+urq5M2oiIiIiQgwndmTNn UL58eRgb/2+Ut3Llyno9bElJSQgODkbVqlXVskqVKiE0NBQPHz4EkDocO3DgQL12PjStLiXb2jak GIiIiMgw5Ngcunv37sHc3FyvrGDBgrh9+7a6/fjxY2i1WhQsWFAtK1SoEADg9u3buHnzJooUKYJy 5crh5MmT2RaricYI1msnZlv7WXF70JwP2t6dO3dQs2ZNHD58GHXr1v2gbad59uwZ1qxZg4MHD6Jl y5aYOPHv3cPFixdj/fr1uHDhwgeOkIiIKHfKsR46Y2NjmJiY6JXpdLp0dQDo1UurEx8fj0OHDsHZ 2TmbI82dzMzM0KhRI71kOTvOMWTIEJw7dw5JSUlZPi4qKkpvu1y5crC3t//Q4REREeVaOdZDV7Jk SQQFBemVPX36FDY2Nuq2paUlTExMEBcXp1cHSH3TnzVrFmbPng0ASElJQUpKCvLly4fz58/j888/ 12t72rRp6v8dHBzUuXv/Vubm5ti3b1+2n8fMzAwWFhZZri8iGDRokN7Qe5cuXdClS5fsCI+IiChX yrGEztHREXPm6A8jXrt2DQMHDlS3FUWBg4MDIiIi1LLw8HDY2tpiwIABGDBggFoeEBCAgICADFe5 AvoJHf2PTqeDRvPpPH5wxowZ+OWXX9KVp6Sk6K1+JiIioszl2Dt7w4YNUbZsWZw4cQJAaqKWkJCA Tp06wdfXF1euXAEAuLm56fUkHTx4EIMHD07XnohwlWsm1q9fj2+//RYLFiyAlZUVfvvtN6xatQoN GzbExo0bAQDBwcEYOnQo2rZtiyNHjqBevXowNzfHqFGj8OLFC4wbNw5ly5ZFlSpVEBYWBgAICQlB xYoV4ejoCAD466+/4OHhAY1Gg1u3bmUaT2hoKIYNG4ZVq1ahZ8+eWL58OQAgOjoav/32GwDA29sb AQEBuHHjBry9vWFtba3Xxrlz5zB06FBMnToV7du3h5ubm9qTe/bsWbi6umLAgAHYvn07KleujGLF imHz5s3q8Tdv3sT48eOxZs0atG7dGmPGjPlAd5uIiOjjy7GETlEU7NmzBwEBAVi2bBnmzJmD/fv3 I1++fDh06JDaK9ezZ0907twZvr6+mDlzJsqWLYuxY8dm2J6iKDkVvsFITEzEhAkTMH78eIwdOxYr VqyARqNBkyZNcP78ebVe7dq1odPpEBwcjBcvXuDcuXPYtm0blixZAh8fH0ybNg03b95E0aJFMXPm TABAnTp10KRJE/W+lytXDn369HlnTP3790fp0qUxdOhQTJ48GSNGjEB0dDRKly6NXr16AQDmz58P V1dXWFpaIm/evLh//756fMgfl9C5c2fMnDkTfn5+2LdvH8LCwtCuXTuICBo0aIBHjx7h9OnTUBQF V69eRZ8+fTBixAi1jWnTpqFFixYYMmQI9u7dCysrqw9yv4mIiD4FOfpJEeXLl8e6desAAJ6enmp5 cHCwXr3x48e/sy1XV1e4urp+0PhyA61Wi0ePHsHf3x9eXl7o3Lkznj9/rq4WTmNkZARra2uYm5uj e/fuAKDOM2zQoAHMzMwAAM2bN8fBgwfV4/7OQ5uHDBmCpk2bAgDy5csHnU6HqKgolC5dOl3dQoUK oUKFCnplC+Z/C3t7exQtWhRA6uKZyZMno3Pnzjh8+DDatWuHIkWKoHz58uqimU6dOmHp0qW4f/8+ rKyskJSUhMWLF8PBwQFmZmYZ9voSEREZqk9nMhV9EGZmZvDz88OIESPQoUMH3LlzJ10yl5k8efKk K/vss88QHx//j2IaPnw4zMzM8O2332LPnj0A0q9wfpsLFy4gf/78emW1atUCAFy8eFEtez3R/Oyz zwAAr169AgB88803uHjxImxtbbFr1y4UK1bs710MERHRJ4gJXS40adIkbN++HVeuXEGNGjXw66+/ /qP23uyRe9+h7uXLl2PkyJEYPny4OsT6PoyMjBAdHa1XVqRIEQBI9yiczNjZ2SEkJAQ1a9aEs7Mz xo0b995xEBERfaqY0OUysbGxuHLlCpycnBAWFoYaNWrg22+//WDtK4qClJT/fYrF6//PyO3btzFi xAi4u7sjb9686XrmspIcNmrUCKGhoXo9hTExMQCAxo0bZ6mtwMBAlC1bFgcOHMCCBQuwaNEi9ZE4 REREho4JXS6TkJCAFStWAAAKFCgAZ2dnlCxZElqtFgD0Hvj7ZjKWlmyl1U2r83oPXbly5XDp0iWE h4cjOjoaW7duBZC64jWNVqtFcnIyAOD+/fvQ6XQ4f/48Xr16hW3btgFI/eSKx48fq8+sCw8Px6VL lyAi6vnT2pgwYQIURcHSpUvVc2zatAkdO3ZUE7rk5GS9ZDHtOtOucc2aNXjx4gUAYODAgTA3N1fn CRIRERk8yYX+6WUlpSR/oEhyPoa//vpLjIyMZOTIkbJixQoZOnSoxMbGyn/+8x9RFEVatmwply5d kuDgYLG3t5e8efPKTz/9JM+fPxd/f39RFEVat24tV65ckZCQEKlbt67kyZNHNmzYIDqdTh48eCAt WrSQfPnyiZOTk5w+fVqaNWsmy5cvlxcvXsjChQtFo9FIvXr1JCgoSHQ6nfTo0UNMTU2lefPmcuXK FalTp45UrVpV/vjjD3nx4oXUrVtXrK2tJSAgQIKDg6VVq1ai0Whk+vTpEhcXJyIiFy5cEAcHBxk6 dKh8/fXXMm7cOElMTBQRkbNnz0qZMmXE0tJS9u/fL/fu3RNnZ2fRaDTi4+MjCQkJ4uDgIE2aNBF/ f38ZPXq0HDly5IN9r4iIiD42RST3Pczt76zEJCIiIjJUHHIlIiIiMnBM6IiIiIgMHBM6IiIiIgPH hI6IiIjIwDGhIyIiIjJwTOiIiIiIDBwTOiIiIiIDx4SOiIiIyMAxoaNPllb39s+JJSIiolRM6OiT ZaIxgvXaiR87DCIiok8eEzoySGm9d+zFIyIiYkJHBiqt985EY/SxQyEiIvromNARERERGTgmdERE REQGjgkdERERkYFjQkdERERk4JjQERERERk4JnREREREBo4JHREREZGBY0JHREREZOCY0BEREREZ OCZ0RERERAaOCR0RERGRgWNCR0RERGTgmNARERERGTgmdEREREQGjgkdERERkYFjQkdERERk4JjQ ERERERk4JnREREREBo4JHREREZGBY0JHREREZOCY0BEREREZOCZ0RERERAaOCR0RERGRgWNCR0RE RGTgmNARERERGTgmdEREREQGjgkdERERkYFjQkdERERk4JjQUYa0uhRodSkfOwwiIiLKAuOPHQB9 mkw0Rh87BCIiIsoi9tARERERGTgmdEREREQGjgkdERERkYFjQkdERERk4JjQERERERk4JnRERERE Bo4JHREREZGBY0JHREREZOBy9MHCd+7cwcyZM1GjRg2cPXsWPj4+sLOzS1dv1apVuHfvHkQEycnJ mDFjBgBARDBhwgRs2bIFycnJmDlzJgYNGpSTl0BERET0ycmxHjoRQZcuXeDk5AQPDw9MnDgRnTt3 RkqK/sdL7dmzBwEBAZgyZQqmTp2K69evY82aNQCAH3/8EV26dMGtW7ewZMkSuLu74+XLlzl1CURE RESfpBxL6AIDAxEWFgYHBwcAgK2tLUxMTLB79269evPmzUP79u3V7W7dumHRokUAgKZNm6Jp06YA gA4dOsDIyAgikjMXQERERPSJyrGE7syZMyhfvjyMjf83ylu5cmUcP35c3U5KSkJwcDCqVq2qllWq VAmhoaF4+PAhypQpo5bv27cPS5cuRb58+XLmAoiIiIg+UTmW0N27dw/m5uZ6ZQULFsTt27fV7ceP H0Or1aJgwYJqWaFChQBArffw4UOMHTsWLi4uOHPmTLohWyIiIqJ/mxxL6IyNjWFiYqJXptPp0tUB oFcvrU7a0GqRIkUwa9YsbN26VZ1vR0RERPRvlmOrXEuWLImgoCC9sqdPn8LGxkbdtrS0hImJCeLi 4vTqAECpUqXUsrx586Jr164YOXIkQkJCMHjw4HTnmzZtmvp/BwcHde4eERERUW6TYwmdo6Mj5syZ o1d27do1DBw4UN1WFAUODg6IiIhQy8LDw2Fra4tixYqla9PS0hJ58uTJ8HyvJ3REREREuVmODbk2 bNgQZcuWxYkTJwCkJmoJCQno1KkTfH19ceXKFQCAm5sb9u3bpx538OBBtQcuMDAQ0dHRAFKHYE+d OpVh7xwRERHRv0mO9dApioI9e/Zg+vTpCAsLw/nz57F//37ky5cPhw4dQp06dVC9enX07NkTUVFR 8PX1hampKcqWLYuxY8cCADZu3Ih9+/bBzc0NpUqVwn/+858Me+4oe2h1KTDRGKn/EhER0adBkSw+ yC05OVnvkSOfMkVR+Hy6bGK9diJuD5rz7oo5cL6cjoWIiOhTleUh1+7duyM4ODg7YyEDodWlQKvj 42KIiIg+FVnucuvbty8uXryI1atXo1ixYujRowdq1KiRnbHRJ+pTGm5NSyw/pZiIiIhyWpYTui+/ /BIA8NVXX+HRo0cYNWoUQkJC0Lt3bwwYMADly5fPtiCJMsNEjoiI6D2GXG/duoUXL15g2bJlaNGi BQ4fPoxu3bqhZcuW2Lx5M1xcXHDr1q3sjJWIiIiIMpDlHrr27dsjOjoaZcuWxejRo9G/f3/kzZsX ANCsWTNs2LAB3bp1Q0hISLYFS0RERETpZTmhMzMzw86dO9GqVasM99+6dQsPHz78YIERERERUdZk ech179696ZK52NhY3L17FwAwefJkXL169cNGR0RERETvlOWEbvXq1enKihUrBi8vLwCpz34rUKDA h4uMiIiIiLLknUOuK1aswNatWxEVFYWjR4/q7Xv48CHi4+OzLTgiIiIierd3JnQeHh4wMjLC0aNH 0bFjR71PYMifPz9atGiRrQESERER0dtlaVHEV199BRcXF+TJkyfdvidPnnzwoIiIiIgo696a0EVG RqJEiRLIkycPIiIiEBsbq7c/JSUF27dvx8qVK7M1SCIiIiLK3FsTumbNmmHcuHEYPXo0Dh8+DG9v 7wzrMaEjIiIi+njemtAFBQWhePHiAFI/y7V48eLo16+ful+n02W4+pWIiIiIcs5bE7qyZcuq/y9Z stMZtacAACAASURBVCT69u2rt1+j0aBbt27ZExkRERERZUmmCd2DBw8QFhb21oNFBLt378bChQs/ eGBkmLS6FACAicboI0dCRET075FpQvfkyRN88cUXKFWqFBRFybCOTqdDTEwMEzpSMZEjIiLKeZkm dJUrV8aSJUvg4eHx1gY2b978wYMiIiIioqx760d/vSuZA8AHCxMRERF9ZG9dFPHrr7+iatWqsLCw wMmTJ3Hjxg29/SkpKTh48CB27dqVrUESERERUebemtD1798f48aNg5eXF8LDwzFu3DgULVpU3Z+S koL79+9ne5CUO3EBBRER0Yfx1oQuNDQUpqamAICePXuidOnS6NChg16dHTt2ZF90lKsxkSMiIvow 3jqHLi2ZAwALCwt06NABN2/exMWLF/HixQsAgLOzc/ZGSERERERv9daE7nXXr19H7dq1UbFiRdSt WxeFChXC2LFjodVqszM+IiIiInqHLCd0rq6uKFq0KM6cOYMnT54gJiYGderUwbRp07IxPCIiIiJ6 l7fOoXvd1atXcfv2bZiZmall/fv3h5+fX7YERkRERERZk+Ueur59++Lu3bvpyrnKlYiI6P+1d+9h NtZ7H8c/a8bISMYpE8qM6SKzRc9WSVs00xZhHCI7SgjZKEXkfEqRpLJFyTF7P8XDDpO0bTmNDGEK zzQMIzmMyTjMM0MOYw6/5w977maZtcZSs9bMmvV+Xde6zP2777XW9/75XTOf63efgOLldIZu165d GjlypLWcm5urFi1aKDw83K4t/4wdAAAAPM9poLv33nsVGBiov/zlL4V+QMuWLYu8KMAdivO+d3nP QzbGePy7fULe86bpXwA+ymmgK1++vJYsWWJ3I+Hr5eTkaNu2bbrzzjvdUhxQlLjvHQCgtCr0ooj8 YS49PV3/+Mc/lJ6ebs0ypKena9myZUpJSXFvlQAAAHDK5atc+/Xrp4CAAKWkpCgsLEzGGO3fv9/u PDsAAAB4nsuBrnXr1nrhhReUmJioM2fOqHnz5rp8+bKGDBnizvoAAABwAy7ftuTgwYP65z//qdDQ UH3xxReKiYlRbGysVqxY4c76AAAAcAMuz9B16NBBo0aN0r333qthw4apbdu22rt3r5588kl31gcA AIAbcDnQtWjRQtu3b7eWv//+e507d05Vq1Z1S2EAAABwjcuHXLOzszVz5kw1b95cjRo1Uvfu3XX8 +HF31gYAAAAXuBzoXnnlFU2YMEF/+MMf1LdvXzVu3FijRo1SdHS0O+sDAADADbh8yHXp0qXauHGj HnzwQavttdde07Bhw9SxY0e3FAf8HsX5ZAgAADzJ5UB39913q1GjRgXay5YtW6QFAUWFIAcA8BVO A93Ro0e1detWa7l169Z6/vnn9cQTT1htOTk52rNnj3srhE/Kys0hkAEA4KJCZ+iGDh2qhg0b2j1Y fPHixXbbDBw40H3VwWcR5gAAcJ3TQBcaGqpVq1apRYsWnqwHAAAAN6nQq1yvD3OfffaZHnvsMdWv X1/t2rXTunXr3FocAAAAbszliyJmzZqlGTNmqHv37goJCVFmZqY++ugj/fTTTxx2BQAAKEYuB7qd O3fq8OHDdle1Dh06VBMnTnRLYQAAAHCNyzcWbt68ucNblGRmZhZpQfBOefd8KwlKUi0AAHiCy4Hu 2LFj2rRpky5evKgzZ84oNjZWffr0UUpKijvrg5cI8PPXnYtHFXcZkkpWLQAAeILLge61117TjBkz dNtttyk4OFjNmzfXhQsXNHv2bHfWBwAAgBtw+Ry6b7/9Vh999JECAgKUnJys0NBQVa9e3Z21AQAA wAUuz9D17t1bhw4dUs2aNdWkSRMrzF28eNFtxQEAAODGXA50S5YsUZkyBSf0lixZUqQFAQAA4Oa4 fMh17Nix2rt3b4F2m82mQYMGFWlRAAAAcN0NA92BAwe0fv16DRgwQH/4wx905513WuuMMVq0aJFb C4RvycrNueFzXF3ZBgAAX1JooNu9e7ceeeQRZWVlSZJCQkIUGxurmjVrWtuMGzfOvRWi1Mi7P1xh YSzvliPJz08rdBsAAPCrQs+hmzRpkj744AP93//9n5KTkxUREaEpU6bYbXPLLbe4tUCUHgF+/oQx AADcoNBAV7lyZfXv319BQUGqWbOmPv74YyUnJ9ttk52d7fKXnTx5UoMGDdLcuXPVq1cvJSQkONxu 3rx5mjx5sl5//XWNHz/ear9y5YoGDhyoatWq6a677tKHH37o8ncDAACUVoUGugoVKtgtly1bVnfc cYdd29KlS136ImOMOnTooM6dO2vAgAEaNWqU2rdvr5wc+8c0RUdHa8mSJZowYYImTpyoQ4cOaeHC hZKkd955R4899pi2bt2qrl276qWXXlJsbKxL3w8AAFBaFXoO3fLly3Xo0CEZY2Sz2WSM0aFDh/TY Y49JkrKyshQfH6/nnnvuhl+0YcMGHThwQBEREZKk8PBwBQQEaPXq1erSpYu13fTp09WmTRtruVOn Tpo6dar69u2r4OBgde3aVZL03nvvadWqVYqNjVWzZs1uescBAABKi0IDXYUKFVSrVi35+/963lNI SIj1c3Z2doFDsM7ExsYqLCzM7l529erV06ZNm6xAd/XqVcXFxWno0KHWNnXr1lVCQoLOnj2r/v37 231mcHCwateu7dL3AwAAlFaFBrr58+erdevWhX7A+vXrXfqiU6dOqWLFinZtQUFBdoEwLS1NWVlZ CgoKstoqVaokSUpOTla1atWs9itXrig9PV0dO3Z06fsBAABKq0LPobtRmJOkVq1aufRFZcqUUUBA gF1bbm5ugW0k2W2Xt40xxm7b+fPn67333lNgYKBL3w8AAFBaufykiN+rZs2a2rZtm11benq6QkND reWqVasqICBAGRkZdttIUq1atay2+Ph4lSlTRm3btnX6fZMmTbJ+joiIsM7dAwAAKG08FugiIyM1 bZr9zWIPHjyo3r17W8s2m00RERFKSkqy2hITExUeHq7q1atLklJSUrRx40YNGTLE2iY7O7vAc2bz BzoAAIDSrNBDrkWpadOmCgkJ0ebNmyVdC2qXLl1SVFSUxo0bp/j4eElSv379tGbNGut9X331lfr0 6SNJysjI0BtvvKEnnnhCiYmJSkhI0FtvvaUrV654ajdQTLJyc6wnTQAAAHsem6Gz2WyKjo7W5MmT deDAAe3atUtffvmlypcvr3Xr1qlx48Zq2LChunbtqmPHjmncuHEKDAxUSEiIXn31VeXm5qpjx47a unWrPv74Y+tzn3nmmQL3y0PpwxMmAABwzmOBTpLCwsL0ySefSJIGDRpktcfFxdltN3z48ALvtdls 2rJlizvLAwAA8EoeO+QKAAAA9yDQAQAAeDkCHQAAgJcj0AHiKloAgHfz6EURQEnFVbQAAG/GDB18 GrNyAIDSgEAHnxbg5687F48q7jIAAPhdCHQAAABejkAHAADg5Qh0AAAAXo5ABwAA4OUIdAAAAF6O QAcAAODlCHQAAABejkAHAADg5Qh08Ho8hxUA4Ot4liu8Hs9hBQD4OmboAAAAvByBDgAAwMsR6AAA ALwcgQ4AAMDLEegAAAC8HIEOAADAyxHoAAAAvByBDgAAwMsR6AAAALwcgQ5u562P5cqr21vrBwD4 DgId3CorN0cBfv66c/Go4i7lpuXVzaPFAAAlHYEObkUYAgDA/Qh0AAAAXo5ABwAA4OUIdPAaXJwA AIBjBDp4DW+9uAIAAHcj0KFYFfWsG7N4AABfRKBDsSrqWTeuqgUA+CICHQAAgJcj0AEAAHg5Ah0A AICXI9ABAAB4OQIdAACAlyPQoVTgdiUAAF9GoEOpwE2HAQC+jEAHAADg5Qh08Dl5h2ddPUyblZvD IV0AQIlGoIPPyTs86+pTJQL8/HkCBQCgRCPQwacw0wYAKI0IdPApzLQBAEojAh2KHOecAQDgWWWK uwCUPsyCAQDgWczQAQAAeDkCHX4TDqsCAFBycMgVvwmHVQEAKDmYoQMAAPByBDoAAAAvR6AD/oPz AgEA3sqrA11qampxl4BShEd8AQC8lccvijh58qSmTJmiRo0aaceOHRoxYoQaNGhQYLt58+bp1KlT MsYoOztbb7zxhrXu6NGjGjt2rJKTkxUTE+PJ8gE7eTN6BEEAQHHyaKAzxqhDhw56++231bJlSz36 6KNq166dkpKS5O//6x/E6OhoLVmyRLGxsZKkp59+WgsXLlTfvn0lSX5+fqpSpYpOnDjhyfLhhdwd uAhyAICSwKOHXDds2KADBw4oIiJCkhQeHq6AgACtXr3abrvp06erTZs21nKnTp00c+ZMa7l27dqq WrWqjDEeqRvei8AFAPAFHg10sbGxCgsLU5kyv04M1qtXT5s2bbKWr169qri4ONWvX99qq1u3rhIS EnT27FlPlgs38fSFBwF+/rpz8SiPficAAJ7k0UB36tQpVaxY0a4tKChIycnJ1nJaWpqysrIUFBRk tVWqVEmS7LaD9yJgAQBQtDwa6MqUKaOAgAC7ttzc3ALbSLLbLm8bDrECAAAU5NGLImrWrKlt27bZ taWnpys0NNRarlq1qgICApSRkWG3jSTVqlXL5e+aNGmS9XNERIR13h4AAEBp49FAFxkZqWnTptm1 HTx4UL1797aWbTabIiIilJSUZLUlJiYqPDxc1atXd/m78gc6oKhl5eZwwQUAoMTw6CHXpk2bKiQk RJs3b5Z0LahdunRJUVFRGjdunOLj4yVJ/fr105o1a6z3ffXVV+rTp4/dZ11/qBbFxxefrsB5gACA ksSjM3Q2m03R0dGaPHmyDhw4oF27dunLL79U+fLltW7dOjVu3FgNGzZU165ddezYMY0bN06BgYEK CQnRq6++an3O1q1b9cUXXyg5OVmrVq1SVFRUgXPz4DnMVAEAULw8/qSIsLAwffLJJ5KkQYMGWe1x cXF22w0fPtzpZ7Ro0UJ79+51S30AAADexquf5QoAAAACHQAAgNcj0MGjfPECCgAA3I1AB4/y1gso snJzCKMAgBLL4xdFAN7IW4MoAMA3MEMHAADg5Qh0AAAAXo5AB7fgfDMAADyHQAe34NFYAAB4DoHO x3C1JgAApQ9XufoYrtYEAKD0YYYOAADAyxHogN+Jw9gAgOJGoIPPKqoQFuDnz6FsAECxItDBZxHC AAClBYEOAADAyxHogHzyDsNyThwAwJsQ6IB88m6IzOFYAIA3IdABAAB4OQIdOMxYxOhPAICnEejA YcYiRn8CADyNQIcSo7TNaHHDYQCAp/AsV5QYpW1Gq7TtDwCg5GKGDgAAwMsR6AAAALwcgQ5wgHPf AADehEAHCyfx/4rz3wAA3oSLImAhxAAA4J2YoQNcxA2DAQAlFYEOhSLE/IobBgMASioCHQpFiAEA oOQj0OE389VZO1/dbwBAyUWgw2+WN3vna5itBACUNAQ6AAAAL0egAwAA8HIEOtjh/DAAALwPgQ52 fPW8OHfh6RsAAE/gSRGAG3EBBQDAE5ihAwAA8HIEOgAAAC9HoAMAAPByBDoAAAAvR6ADAADwcgQ6 H5FjcnUg7efiLgP/we1MAABFiUDnQ/YT6IpdXojLu50JoQ4AUBQIdIAH5b9xc4CfP/epAwAUCQId nGL2qGi42o9529HvAICbRaDzQa4GB2aPXFdYn7raj3mzd/Q7AOBmEeh8EMGh6BXlM3C5YAIAcLMI dD6M4FD0iiIkOzq3jsOxAIDCEOh8GCflew9mVQEAhSHQASUQs6cAgJtBoANKoPyzp4UFO4IfAEAi 0AHFypVz4wo7zMphcwCARKDzeczuFC/OjQMAFAUCnY8jSJQMN3Pz4eu3LeywK4dkAcA3lPHkl508 eVJTpkxRo0aNtGPHDo0YMUINGjQosN28efN06tQpGWOUnZ2tN954w6V1gLe6mZsP38x7CewA4Bs8 FuiMMerQoYPefvtttWzZUo8++qjatWunpKQk+fv/+kcnOjpaS5YsUWxsrCTp6aef1sKFC9W3b99C 1wGlTVZujsNAljfjRlgDAOTx2CHXDRs26MCBA4qIiJAkhYeHKyAgQKtXr7bbbvr06WrTpo213KlT J82cOfOG63BjP+yMK+4SSqTMxOPFXYJDzp4+4akbD2/ZsqXIPqu0oE8co18co18co18KKoo+8Vig i42NVVhYmMqU+XVSsF69etq0aZO1fPXqVcXFxal+/fpWW926dZWQkKAzZ844XXf27FnP7ISXS9j5 XXGXUCKV1EBXmOuDW/7wd324KyzsFbaOX7oF0SeO0S+O0S+O0S8FeVWgO3XqlCpWrGjXFhQUpOTk ZGs5LS1NWVlZCgoKstoqVaokSTp8+LDTdfk/A/AFrsze5f/3+itp8y6W4CpbACgdPBboypQpo4CA ALu23NzcAttIstsub5u88+wcrTPGFH3BpVC1crcWdwnwgBvdiFgq/P51eWEvx+TaLV//843WuVon V+ECQBEwHjJlyhRz33332bW1adPGDBw40FrOzc01ZcuWNatXr7badu7caWw2m/n555+drktNTbX7 3LvvvttI4sWLFy9evHjxKvGvXr16/e6c5bGrXCMjIzVt2jS7toMHD6p3797Wss1mU0REhJKSkqy2 xMREhYeH64477nC6rnr16nafe/jwYffsBAAAQAnksUOuTZs2VUhIiDZv3izpWhi7dOmSoqKiNG7c OMXHx0uS+vXrpzVr1ljv++qrr9SnT58brgMAAPBVNmM8dwLakSNHNHnyZDVp0kS7du3S4MGDdf/9 9+uBBx7QmDFj1LlzZ0nSjBkzlJ6ersDAQJ0/f17Tpk2TzWa74ToAAABf5NFAV5SuXLmiq1evFrhy Nk9aWprKlSun8uXLe7gyeCPGC1zFWMHN8PXx4uv774izPvm9feV1z3I1xuiTTz5RvXr1tHv3brt1 jzzyiPz8/OTn56c//elPVqecPHlSgwYN0ty5c9WrVy8lJCQUR+luFRMTo/vuu08VK1ZU69atdeLE CUmF77sv94vk2+Nlz549atasmSpXrqzHH39c586dk+Tb48VZn0i+PVby5ObmKjIyUjExMZJ8e6zk d32/SIwXR/vv6+PF2Zgo0rHyuy+r8LDTp0+bEydOGJvNZjZu3Gi1x8XFmcmTJ5vvvvvOfPfdd9aV r7m5uaZx48bm66+/NsYYs3//flOnTh2TnZ1dLPW7Q2pqqunZs6eJj48369atMyEhIaZly5bGGONw 33Nycny+X3x5vGRmZprRo0ebS5cumV9++cU0bdrUjBkzxhjju+OlsD7x5bGS3+zZs02VKlVMTEyM 0333hbFyvfz9YgzjxdH++/p4cTYminqseF2gy3N9oOvRo4eZPn26OXTokN1269evN4GBgSYrK8tq q1evnvnnP//psVrdbenSpeb8+fPW8uLFi025cuXM119/7XTffblfjPHt8XLq1CmTmZlpLY8cOdKM Hz++0H0v7f3irE+M8e2xkuebb74xa9euNaGhoSYmJsanx0p+1/eLMYwXR/vv6+PF2Zgo6rHidYdc HcnJyVFaWpreffdd3XPPPerWrZuysrIkufbIMW/XrVs33XbbbdZycHCwateurdjYWNWpU8fhvm/f vt3putLCUb+EhIT4/HgJDg5W2bJlJUmZmZlKTU3VkCFDCt330j5eHPXJ0KFDfX6sSNK5c+e0fft2 tW3bVtK10158/XeLVLBfJP4WOdt/X/7d4qxP3DFWSkWg8/f319q1a/Xzzz/r73//u9auXasxY8ZI cu2RY6XN999/r4EDB+rUqVN2j0qTrj0uLTk52eE6X+iXAQMGMF7+Y82aNWrSpIk2bNighIQEh/vu a+NlzZo1euihh7Rhwwb98MMPjBVJM2fO1JAhQ+zaUlNTff53i6N+8fXx4mz/U1NTffZ3i7M+ccdY KRWBLo/NZlOPHj30/vvv67//+78lufbIsdLk4sWLio+P1+DBg+Xv7+9w340xPtsvL7/8stXm6+Ol ffv2io6OVosWLdSjRw8FBAT4/Hhp3769Vq9ebfVJHl8dK/Pnz9ezzz5rzV7m8fXfLY76xeS7YYSv jpc81++/s333lfEiOR4Tztp/a5+UqkCXp2PHjkpPT5ck1ahRQxkZGXbr09PTVatWreIoze1mzJih Dz74QP7+/qpZs6bTfffVfvHzKzjkfXm8hIaGauHChTp79qxuv/12xovs+yT/la6S742V+fPn649/ /KMCAwMVGBioY8eOqVWrVpo3b57Onz9vt60vjRVn/dKtWze77XxtvFwvb/8L23df65f8Y8JZ+2/t k1IZ6HJycnTPPfdIuvbIsSNHjtitP3jwoCIiIoqhMveaP3++evToodtvv13Stcuhr9/3xMRERUZG +nS/5J2nkMdXx0uecuXKqWrVqmrZsiXj5T/y+qRKlSp27b42Vnbt2qXLly9br5CQEH399deKiYnR jz/+aLetL40VZ/2ybNkyu+18bbxcL2//He27L42X/PKPCWftv7VPvDLQ5U095k1x7969WwsWLLDa P/jgA40dO1aS9PDDDzt85Fj79u2LoXL3+eSTTxQYGKisrCwlJiYqJiZGR44cUWhoqN2+X7x4Ue3b t3f6KDZf6Je//e1vWrhwoc+Ol7S0NLtH6MXExKhnz57605/+VGDffWW8OOuT7777zud/tzjiaDz4 ylhxxhjj83+LnO2/o333lfHirE/i4uKKfqz8/gtyPev06dNmypQpxs/Pz/Tp08ccOHDAfPHFF+aO O+4wjz76qJk6daqJjo62e8+PP/5oevXqZebMmWN69epl4uLiiql69/jXv/5lypQpY2w2m/Xy8/Mz SUlJhe67r/bLrFmzfHq87N692wQHB5sWLVqYWbNmmUWLFlnrfHW8OOqT3Nxcn//dcr38t+fw1bHi SF6/+Pp4KWz/fXW8OOsTd4wVr330FwAAAK7xykOuAAAA+BWBDgAAwMsR6AAAALwcgQ4AAMDLEegA AAC8HIEOAADAyxHoAB+1f/9+nT59urjLcMmhQ4d05syZ4i6jAHfWdeXKFX3//ffW8vnz5xUfH++W 7wLg/Qh0QCn0zTffqGPHjurbt68GDRqktm3bat26ddb6VatW6b/+67+UmJhYjFVeeyJDw4YNdcst t2jgwIEaPHiwBgwYoEcffVSRkZGSpLlz56pBgwY6cOBAsdZ6PVfqio+PV6dOndS+fXv17NlT4eHh 8vPz05NPPlnoZx8+fFhPPPGEhg0bJknas2ePmjVrpvfee69I98GR2bNny9/fXyEhIdq6davVfvbs Wb300kuqXbu2du7c6fY6ANwkN9wYGUAxWrlypQkKCrK7s/hPP/1katSoYRYuXGi1hYSEWHf9L07j xo0zderUKdA+ZswY6+ffW+uePXvMt99++5vf70xhdX3zzTfmtttuMytXrrTacnJyzCuvvGKefPLJ G3724sWLTUREhLU8ceJE07t3799ftAuef/55U7lyZXP16lW79iVLlpglS5a49BkffvihO0oD4AQz dEApcvHiRb3wwgt64YUXdP/991vtoaGhGjlypAYPHmwdIrTZbMVVph1/f3/rucz5jR492vr599Sa np6uHj166MqVK7/5M5xxVld2drZ69uypdu3a2c3G+fn56d1331WdOnWKvJaiNHToUKWnp2v58uV2 7V999ZX+8pe/3PD9+/bt02uvveau8gA4QKADSpH169crLS1NrVu3LrCubdu2unz5st0f6R07dig8 PFzVq1fX66+/brV//vnnGj9+vObMmaNnn31W2dnZ+uWXXzR69Gi1atVKc+fOVevWrVW3bl0lJSVp 9OjRatSokdq3b2+Fs61bt2r48OGaP3++nnrqKaWnp7u8H6+//roqVKjgcF1WVpbefPNNjRgxQg89 9JBWrVplrdu8ebMmTZqkyZMnKyoqSmlpaYqLi1NKSor+8Y9/aOXKlVZtEydO1LvvvquoqCjt27dP krR06VK1aNFCK1eu1F133aW5c+cqISFBL7/8shYtWqTOnTvr+PHjN6x/48aNOnr0qHr06FFgnb+/ vwYMGCBJSktL0+jRozV37lw9++yzmjVrltPPvD48rl69WuPGjVO7du3Uv39/6yHfFy5c0IgRI/TO O++oSpUqqlGjhmbOnCnp2qH4MWPG6Omnn9aTTz6pixcvOvyuhg0bqnnz5vrwww+ttpSUFFWsWFHl ypWz2pz144YNG3Tp0iVNnTpV3333nSTp/fff15gxY9SsWTN99NFHkq490H7s2LFatmyZunTpoiVL lhTesQCcK+YZQgBFaNq0acZms5lDhw4VWHflyhVjs9nMSy+9ZIy59kDx4cOHm5ycHLN27Vrj7+9v Vq1aZYwxpkaNGmb37t3GGGOaNm1qvvjiC2OMMWvWrDGVK1c2+/fvN8YY061bNxMZGWmuXLlisrOz zZ133ml27NhhjDHm4YcfNitWrLC2mzVrlsOaJ06caCpUqGB69+5tevfubR5//HFTuXJlu23yPxR+ 2rRpJjY21hhjzIoVK0yFChXMhQsXzL59+0xUVJT1noceesjMnTu3wPuPHj1qwsPDTW5urjHGmLVr 15rq1aubjIwMc+7cOWOz2cyiRYvMzp07zb59+0z37t3NO++8Y4wxZtSoUebVV191WFd+77zzjrHZ bCYhIcHhPudp06aN2bhxozHGmMzMTHPXXXeZTz/91BhT8JDrpEmTrEOux44ds/4fMzMzTZUqVcyi RYuMMcaMHj3azJ492xhjzJw5c6y+vHDhgnnmmWesz7v33nvNhAkTnNa2fPlyY7PZzJ49e4wx1/p9 69at1vrC+vGnn34yNpvN2nbZsmXWfu3evdv4+fmZw4cPmz179pgOHToYY4y5dOmS+fzzzwvtLwDO lSnuQAmg6BR2aDJvBsfkO7zZvn17+fn5qW3btvrzn/+szz//XJ06ddK///1vNWjQQHFxccrIWT+5 4QAAB9BJREFUyLBm1ypUqKCgoCCFh4dLkurVq6fAwEDdcsstkqSwsDAdPXpUTZs21eLFixUSEqLE xESlpKQUOkNXrVo1LV682Fp+8cUXnW67ePFi5ebm6ptvvtHFixf18MMP68SJE5o7d64ef/xxa7uN GzeqfPnyBd7/6aefqkGDBlZftW3bVjabTdHR0XruueckSY899phCQkIkSVOnTlWlSpV04sQJJSUl qWLFik5ry5OdnS3p2mycMykpKVq3bp1WrFghSSpbtqy6d++uBQsW6Jlnnimwff7/t88++0w///yz 3n77bUlSZGSkLly4IEnau3evgoODJUnNmze3avjyyy916tQp6z333XefsrKynNbXuXNn1axZUx9+ +KHmzZunrVu3auTIkdb6wvqxefPmdp+1ePFiNWrUSCdOnFBOTo7+/Oc/Kzk5WfXr19eGDRs0ffp0 DR8+/IYXiwBwjkAHlCL169eXJJ04cUJ169a1W3fy5ElJ0j333OPwvQ0aNNDhw4clSbfccotGjBih nj17Kjg42OE5btK1AJl/nZ+fn65evSpJCgoK0vjx49WhQweFhYVZgdIVvXv3drru+PHjGjZsmMqW LWvXfuTIEWv/JenWW291+P7k5OQChxpDQkKUkpJit195qlWrpilTpqhZs2a69957dezYsRvWX69e PUlSUlKS0/5OTk6WJF26dMmqNSQkRNHR0Tf8/OPHj6tVq1bq379/gXWPPPKIoqOj9corrygjI0Nd u3aVJB07dkxNmjSxC2WF8ff311//+le9/fbb6tKli5o0aVKg/hv1Y/56Z82aZfXLmDFjrHVLly5V z549tXLlSi1fvly1a9d2qT4A9jiHDihFWrVqpdtvv13/+te/CqzbuHGjypUrp6eeesrhezMzM9Wg QQNdvnxZkZGRGjx4sBo1alTo9xU2I9i2bVtFRUWpefPmMsbc1IUNDz74oK5evapdu3YVWFe1alVt 3rzZWjbGKD4+XtWrV9eWLVvstv3pp58KvL9OnTpKSkqya8vMzFRYWJjDWnr27Kn69esrKirK5fpb t26tKlWqFLioIL/Q0FBJ1+5ll7+Ou+++2+H2NpvN6sPr+0CSdf7a6NGjVaNGDc2YMUM//vij/va3 v0m6Fkyv75+89zjTv39/ZWVlqWfPnurVq5fdupvpR2f1pqamKioqSvv371eFChXUp0+fQusB4ByB DihFypUrpwULFmjhwoX63//9X6v99OnTmjZtmt5//33VqFHDas/JybH+3blzpwYPHqz9+/fr559/ VlZWls6dO6cjR44oPT1dOTk5BWbqjDF2bbm5uTLG6Ny5c9q7d6+ysrJ0+fJl7d+/3/qM62VnZzuc vXvzzTet7fM+V5I6dOigF198Ud9++61OnjypESNGqEqVKuratauio6M1bdo0/fjjj1qwYIHS0tIk XZutO336tE6fPq3nnntOqamp1j3WUlNTdfHiRXXs2NH6jvz1bNiwQVlZWcrOztbevXuVkZHhsK78 br31Vi1YsED/8z//o4ULF9qt27Nnj9566y1Vr15dXbp0sVu/ZcsWDR48uEANef9H+ftgxYoVmjNn jlJTU/X5558rLi5O0rX7yLVs2VJt2rTRAw88oPPnz0u6FjL37Nmj8ePHKyUlRZs2bbK7N6EjwcHB euqppxQeHm4F0DyF9WPejOPZs2d1+vRpdejQQePHj9e///1vpaamaurUqcrOzlZiYqI2btyomjVr asaMGfrll18KrQdAIYrjxD0A7rVt2zbToUMH89e//tW8+OKLpmPHjubLL7+022bWrFmmXbt2ZuzY sebll18227ZtM8Zcu3iiWbNmJjg42IwcOdKMGjXK1K1b1+zbt88MHjzYVKhQwcTExJjjx4+bJ554 woSHh5v4+Hiza9cuU716dfPss8+aM2fOmM6dO5vKlSub/v37m5kzZ5oaNWqYLVu22NWwZcsWc999 9xl/f3/zzDPPmCFDhph+/fqZJk2amIoVK5rs7Gzz6aefmjJlypghQ4aYs2fPmvT0dNOlSxdTsWJF 07BhQ7N582br89566y1zxx13mNq1a5vPPvvMan/zzTdN7dq1rfvwbd++3bRv39689dZb5qWXXjI/ /PCDMcaY2bNnGz8/PzNhwgRz5swZY4wxr7zyirnttttMt27dzN///ndTpUoVs3z58gJ1Oft/aN26 tXnggQdMt27dTP/+/c3s2bOtCwkyMjLMc889Z0aOHGkmTJhg3bvt6NGjpm3btqZGjRpm27ZtJiEh wTz44IOmYcOGZu/evcYYYz744ANTq1Ytc/vtt5uxY8da37lgwQITEhJiKlSoYPz8/EzZsmXN2rVr jTHXLiIJCwszlSpVMv379y9wnzlHtm/fbl1w4Wido340xlj7vW3bNpOZmWn69+9vKleubO6++26z fPly6/8/LCzMfPzxx2bYsGHWxS4Abp7NGCcnxwAAvMrly5f16quvas6cOfLzu3YA5syZM1q2bJk1 8wegdOKQKwCUEuvXr9eOHTuUkZEh6doh8T179uiRRx4p5soAuBuBDgBKiVatWqlx48a65557dP/9 96t79+6qWrWq/vjHPxZ3aQDcjEOuAAAAXo4ZOgAAAC9HoAMAAPByBDoAAAAvR6ADAADwcgQ6AAAA L0egAwAA8HL/DzX4G2kMl/MlAAAAAElFTkSuQmCC ", null, " AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd0lGXexvHvTDIpBNKG3kJHQEEEFCuhWkIARURhLQsv Aq7i+qqIAtJEYHVZF1YFQcVV0FdEEooFIk0QRVBAMPQiCX3SSAKZZOZ5/4hGQkKYhJlMyvU5h3OS e555nt/kiFy5q8kwDAMRERERKRfM3i5ARERERFyn8CYiIiJSjii8iYiIiJQjCm8iIiIi5YjCm4iI iEg5ovAmIiIiUo54NbxduHCBtLQ0b5YgIiIiUq54JbwZhsGCBQto0aIFP/74Y157YmIiTzzxBHPm zOHRRx9l9+7dLr0mIiIiUlmYvLFJ75kzZ8jKyqJhw4bExcXRrVs3DMOgY8eOzJgxgx49ehAfH09U VBQHDhzAZDIV+tr+/fvx8fEp7fJFREREvMYrPW81atSgfv36+dri4uKIj48nMjISgFatWmGxWFi6 dOllX4uJiSnlykVERES8q8wsWNi0aRNNmjTB19c3r61FixasWbOG7777jsaNGxf6moiIiEhl4nvl S0rHyZMnCQ4OztcWGhpKQkICTqeTkJCQfK+FhISQkJBQmiWKiIiIeF2ZCW++vr5YLJZ8bU6nE8Mw LvtaYZo1a8bBgwc9VqeIiIiIuzRt2pQDBw4U6z1lZti0bt26pKam5mtLSUmhXr161KlT57KvXerg wYMYhqE/pfhnwoQJXq+hsv3Rz1w/88rwRz9z/cwrw5+SdDiVmfAWGRnJoUOH8rXt2bOHrl270rVr 1wKv7d27N28Bg4iIiEhl4bXw9sewp2Hk7lRy8803ExERwdq1a4Hc4JaRkUF0dDSdO3cu8FpmZibR 0dHeKV5ERETES7wy5+3MmTPMmzcPk8nEokWLqFevHtdccw2xsbFMnjyZ+Ph4tmzZwsqVKwkMDAQo 8NqKFSvyXhPvUg9o6dPPvPTpZ1769DMvffqZlw9e2aTXk0wmExXsI4mIiEgFVZLcUmbmvImIiIjI lSm8iYiIiJQjCm8iIiIi5YjCm4iIiEg5ovAmIiIiUo4ovImIiIiUIwpvIiIiIuWIwpuIiIhIOaLw JiIiIlKOKLyJiIiIlCMKbyIiIiLliMKbiIiISDni6+0CRERERCqbbNtvJC1/tUTvVXgTERERKSXZ SQkkrZhG6vp3wZFdonsovImIiIh4WE7ycZJWTCd1/TyMHDuYTFTr/CB8sKjY9zIZhmF4oEavMZlM VLCPJCIiIuVUTsoJklbOIHXtOxg5WbmhrdMAwvuOx79e6xLlFvW8iYiIiLhZTuopkr74B6lr5mBk XwCgasf+WPu9jH/9a6/q3gpvIiIiIkVYGbeKtxcvxI4TP8yMHDCYqB69Cr02J+0MyV+8RsqatzDs 5wGo2qEf1n4T8G/Q1i31KLyJiIiIXMbKuFWMeW8WyT3/7C0b894sgHwBznHuLElf/pOUb97EyMoA IKh9NNZ+EwiIaO/WmjTnTUREROQyeg9/lO2d6xRob//DSZbPWYAjPYnkr2aSHDcb40I6AEHtorDe O4GARh2ueH/NeRMRERFxIzvOQtvNzvOcXfIyKatn4bxwDoAqbe/C2m8CgU1u9GhNCm8iIiIil+F3 yWFUQTkXuD9hGw/YfyRpee4+bVWu7Zkb2prdXCo1adhURERE5DL+mPOW1bU59yVuY0DCVqrlZAFQ pXV3rPdOILD5rSW+f0lyi8KbiIiIyGU4z5/j+7lPE7j9Y4KwA5BZqy0thvybKi3vuOr7K7yh8CYi IiJXz3khnZRv3iLpy9dxptsACGxxO9Z7J1ClVVe3PUcLFkRERESugjMrk5Q1b5P8xT9wnDsLQECz W6h+30QCW3XDZDJ5ucIyGN42btzIqlWrCA8PZ+vWrYwfP56WLVuSmJjI1KlTadu2LZs3b2b06NG0 adPG2+WKiIhIBeC0nyd17VySVs7AkXYagICmnXN72tr0LBOh7Q9latjU4XDQsmVL9u3bh9lsZv36 9bzyyiusXr2aDh06MGPGDHr06EF8fDxRUVHs378fHx+ffPfQsKmIiIi4ymm/QOq6d3JDW+pJAPwb d6L6vROoct1dHg9t5X7YNCkpiePHj5OZmUnVqlUJDQ0lOTmZuLg44uPjiYyMBKBVq1ZYLBZiYmLo 37+/d4sWERGRcseZnUXa+nexrZiGI+U4AP4RN2C9dwJB7aLKVE/bpcxXvqT01KhRgw4dOvDII4+Q lpbG7NmzmTJlChs3bqRx48b4+v6ZNVu0aMGaNWu8WK2IiIiUN87sLFLWvM2RF1pw+qOncKQcx7/h 9dQd9TkNJ26h6vW9y3RwgzLW8wawePFiunXrRt26dZk3bx533303sbGxhISE5LsuJCSEhIQEL1Up IiIi5YmRYyd14wKSlk8jx/YbAH71r8N67wSqtu+LyVym+rOKVObC28mTJ+nRowcnT57ksccew9fX F4vFgsViyXed01n4cRUAEydOzPs6MjIyb7hVREREKhcjJ5u0Tf/FtvxVcs4eAcCvXhus/V6maof7 Sj20rVu3jnXr1l3VPcrUgoXMzEyaNm3KL7/8QvXq1Rk3bhyzZs3iueee4/PPP2f79u15195zzz00 atSIt956K989tGBBREREDEcOad99RNKyqWSfOQSAX91WWPuOp2qnAWWmp60kuaVsVP67Xbt24XQ6 qV69OgCTJk3CbDYTGRnJoUOH8l27d+9e9aiJiIhIPoYjh7RNH3LkpTacenco2WcOYandgtrDPyTi lR1Uu2lgmQluJVWmhk2bN2+O3W7nxIkT1KlTB7vdTlBQENdffz0RERGsXbuWrl27smfPHjIzM4mO jvZ2ySIiIlIGGE4H577/BNuyV8g+uQ8AS61mWPuMo1rnhzD5lKnIc1XK1CcJCwvjs88+49lnn6Vj x44cO3aMDz/8kODgYGJjY5k8eTLx8fFs2bKFFStWEBgY6O2SRURExIsMp5NzWz4lKXYK9hN7ALDU aEJ4n7EE3/KXChXa/lCm5ry5g+a8iYiIVHyG00n61iXYYqdgT9wNgG/1Rlj7jCX4locx+VqucIey odxv0isiIiJSFMPpJP2nGGwxk7En/AKAr7Uh4dEvEXLbo5h8/bxcoecpvImIiEiZZxgGGT8vw7Z0 ElnHdgDgG16f8N4vEnLHkEoR2v6g8CYiIiJllmEYZOxYmRvajv4EgE9oXay9XyS4y1DMFn8vV1j6 FN5ERESkzDEMg4ydX2KLmUzW4R8B8AmpTXjvMYR0GYbZL8DLFXqPwpuIiIiUGYZhkLlrFbalk7hw 6AcAfIJrEh71AiFdh2P2004TCm8iIiLidYZhkPnrN7mh7cB3APhUq0HYPc8T2m0EZv8gL1dYdii8 iYiIiFdlxq/FtnQS5/d9C4C5qpXwu58jtPsTmAOqerm6skfhTURERLwic++G3NC2Zx0A5qCw30Pb 3zAHVvNucWWYwpuIiIiUqvP7N2FbOonMX78BwFwllLA7nyG01yh8AoO9XF3Zp/AmIiIipeL8gc3Y lk4kc3ccAObAEMLu/DuhvZ7Gp0qIl6srPxTeRERExKPOH9qSG9p++RoAc0A1Qns9Tdidf8cnKMzL 1ZU/Cm8iIiLiEReObMO2dCIZO74AwBRQlbAeTxF21//iUzXcy9WVXwpvIiIi4lYXjv6MLWYSGT8v B8DkH0Ro978Rfvez+FSr7uXqyj+FNxEREXGLrGM7scVMIn1bDAAmv0BCu/+NsLufwze4hperqzgU 3kREROSqZCXswhYzmfStSwAwWQII7TaSsHuexzeklperq3gU3kRERKREshJ/xRY7mfQfPwPDwOTr T0jX4YRHjcY3tI63y6uwFN5ERESkWOzH92BbNoVzP/zf76HNj5Auwwjr/QKWsHreLq/CU3gTERER l9hP7scWO4Vz338MhhN8LIR0GUp41Bgs1gbeLq/SUHgTERGRItlPHyQp9hXSNi8EpwN8fAm5fSjh vV/EUj3C2+VVOgpvIiIiUqjsM4exLZtK2qb/5oY2sw/BdwzBGj0WS41G3i6v0lJ4ExERkXyyzx4l afmrpG5cAI6c3NB226OE9xmLX82m3i6v0lN4ExEREQCybcdIWjGN1A3vgSMbTGaCb32Y8D7j8KvV zNvlye8U3kRERCq57OREklZMJ239fIwcO5hMVLt5ENY+4/Cr09Lb5cklFN5EREQqqZyUEyStnEHq 2ncwcrJyQ9tNAwnvOx7/uq28XZ5chsKbiIhIJZOTcpKkL/5B6tq5GNkXAKja6X6s/V7Gv14bL1cn V1Jmw9uRI0f49NNPqVmzJlFRUdSooTPRRERErkZO2mmSv3iNlDVvY9jPA1C1w725oa1BWy9XJ64q k+Ht008/5Y033mDhwoU0btwYgMTERKZOnUrbtm3ZvHkzo0ePpk0b/XYgIiJyJY5zZ0n68nVS4t7E sGcCENS+D9Z+EwiIuN7L1UlxmQzDMLxdxMXWrVvHAw88wPbt26lbty4AhmHQsWNHZsyYQY8ePYiP jycqKor9+/fj4+OT7/0mk4ky9pFERES8wpFuI/mrmSTH/QfjQjoAQe2isN47gYBGHbxcnUDJckuZ 6nkzDIORI0cyatSovOAGEBcXR3x8PJGRkQC0atUKi8VCTEwM/fv391K1IiIiZZMjI5nkr/5FyupZ OC+cAyCo7d25PW1NOnm5OrlaZSq8bd68mb1793LkyBHuv/9+du/ezZNPPsmZM2do3Lgxvr5/ltui RQvWrFmj8CYiIvI7R0YKyav+TcqqN3CeTwOgyrW9sPabQGCzzl6uTtylTIW3bdu2Ua1aNaZPn071 6tX56aefuPHGG+nZsychISH5rg0JCSEhIcFLlYqIiJQdjvNppKyaRfLX/8KZmQJAlTbdsfabSGDz W7xcnbhbmQpv6enptGzZkurVqwNwww030LFjR5o1a8bOnTvzXet0Or1RooiISJnhPH+O5NWzSf56 Js6MZAACW3XF2m8CVVre7uXqxFPKVHirXbs2GRkZ+drq16/Pm2++Sbt27fK1p6Sk0KhRo0LvM3Hi xLyvIyMj8+bKiYiIVATOC+mkxL1J0lf/xJluAyCw5R25oa1VpHeLkyKtW7eOdevWXdU9ytRq0z17 9tCpUyeSkpKwWCwAREdH06lTJ15//XXS0tLyrm3atCnTpk3jgQceyHcPrTYVEZGKypmVQco3b5P8 5Ws4zp0FIKD5rVS/dwKBrbphMpm8XKEUV0lyi9lDtZTINddcQ4cOHVixYgUAdrudnTt38vjjjxMR EcHatWuB3JCXmZlJdHS0N8sVEREpFc6sTJK/+heHn2/G2U9fwHHuLAFNO1Pvua9o8NJ6qrTuruBW iZSpYVOAjz76iGeffZa9e/eSkJDAvHnzqF27NrGxsUyePJn4+Hi2bNnCihUrCAwM9Ha5IiIiHuO0 nyd13TySVs7AkXoSAP/Gnah+70SqXHenAlslVaaGTd1Bw6YiIlLeOe0XSN3wLkkrpuFIOQGAf6MO WPtNIKjdPQptFUi536RXRESkMnNmZ5H27XskLZ9GTnIiAP4Nr8d67wSCro9WaBNA4U1ERMTrjBw7 qRsXkLTsVXKSjgHg16At1n4vU/WGfgptko/Cm4iIiJcYOdmkbfovtmVTybEdBcCvXpvc0NbhPkzm MrWuUMoIhTcREZFSZjhySPvuQ5KWvUr2mUMA+NVthbXveKp2GqDQJkVSeBMRESklhiOHc98vwrZs KtmnDgBgqd0Sa7/xVLvxAUxmHy9XKOWBwpuIiIiHGU4H577/BNuyV8g+uQ8AS61mWPuOp1rnhxTa pFiuOrydPHmS2rVru6MWERGRCsVwOji3ZTFJsVOwn9gDgKVGE8L7jiP45sGYfNSHIsXn8n81qamp LFmyhMTERJxOZ96+JOvXr2fNmjWerFFERKRcMZxO0rcuwRYzGfvxXwHwrd4Ia5+xBN/yMCZfi5cr lPLM5fDWs2dPAFq3bp23ZDknJ4ejR496pjIREZFyxnA6Sd+2FFvsFOwJvwDga21IePRLhNz2KCZf Py9XKBWBy+EtKyuLHTt2FGjfv3+/WwsSEREpbwzDIOOnWGwxk8k6lvtvpW94/dzQdvtfFdrErVwO b08//TQ7d+6kbdu2+doTEhJo3ry52wsTEREp6wzDIGP7itzQdvQnAHxC62KNfongO4Zgtvh7uUKp iFw+27R79+5s376d4ODgfO2nT58mIyPDI8WVhM42FRERTzMMg4ydX2KLmUTW4a0A+ITUJrz3i4R0 +R/MfgFerlDKC4+ebdqlSxdGjx6Nv/+fv0U4nU6WLFlSrAeKiIiUV4ZhkLlrFbalk7hw6AcAfIJr ER71AiFdH8fsF+jlCqUycLnn7cKFCwQEFPxN4syZM9SoUcPthZWUet5ERMTdDMMgc3cctphJXDiw GQCfajUIu2c0od1GYPav4uUKpbxye8/bkSNHqFOnDv7+/hw4cIDTp0/ne93hcPDZZ58xd+7c4lcr IiJSDmTGr8W2dCLn920EwFzVSvg9zxPa/QnM/kFerk4qoyJ73ho0aMCzzz7L3//+d/75z3/y/PPP F3qd0+n0WIHFpZ43ERFxh8w967EtncT5vesBMAeFE373s4R2/xvmwGperk4qCrf3vG3cuDHv9ISH HnqI2rVrM3jw4LzXnU4n8+fPL0GpIiIiZdP5fRs5u3QS5+NzN6A3Vwkl7K7/JbTnU/gEBl/h3SKe V2TP26FDh2jSpEne906nE7PZnO8au92On1/Z2b9GPW8iIlIS5w9sxrZ0Ipm74wAwB4YQdtczhPYc hU+VEC9XJxVVSXJLkeGta9eu/Oc//6FNmzZXXVxpUXgTEZHiOH/wh9zQtmsVAObAYEJ7PU1Yr7/j ExTq5eqkonN7eIuOjubWW2/l0KFDNGzYkIEDB5b5DXkV3kRE3Gdl3CreXrwQO078MDNywGCievTy dlluceHwVmxLJ5Kx80sATAFVCes5irA7n8GnariXq5PKwu3h7ejRo0RERAC5K08//vhj4uPjadmy Jffddx+tWrW6uoo9QOFNRMQ9VsatYsx7s0jueW1eW9jqXUwfMqpcB7gLR3/ODW3bVwBg8g8itMeT hN/1v/hUq+7l6qSycXt4K0xqaipjx47lrbfeokWLFjz88MOMHTu2WA/1JIU3ERH36D38UbZ3rlOg vf0PJ1k+Z0HpF3SVsn7bwdmYSWT8FAuAya8Kod2fIOzu5/ANLjv7lUrl4vbVpvv376d58+Y4nU6+ /vprPvjgA2JjY3E4HERFRTFo0CD69u17VUWLiEjZZKfwbaCyDEcpV3J1so79gi12MulbPwfAZAnI DW33PI9vcE0vVydSfEWGt3HjxtGgQQM+/vhjTpw4QceOHXnttdcYOHBgmTpVQURE3M8Pc6Ht/iaf Uq6kZLISd2OLmUz6j58BYPL1J6TbCMLvGY1vaG0vVydSckWGt8WLF1OnTh0GDBjAmTNnCAwMpGHD hoSFhZVWfSIi4iUjBwwuOOdt1S5GDB3lxaquzH58D7bYyZzb8ikYBiZfP0IiHyc86gV8w+p6uzyR q1bknLennnqKN954Ax+f3N+yzp07R2xsLCtXriQoKIiBAwfSvXv3Anu/eZPmvImIuM/KuFXM+WwR WYYDf5MPI+4fVGYXK9hP7sMWO4Vz338ChhN8LIR0+R/Ce4/BEl7f2+WJFMrtCxZsNhtWqzXv++3b t/Phhx/y8ccfc/LkSWrWrMnjjz/O5MmTS171ZTidTrp3787EiRPp0qULiYmJTJ06lbZt27J582ZG jx5d6P5zCm8iIpWL/dQBkpa9Qtp3C/8Mbbf/lfDoF7FYG3q7PJEiuX3Bwnfffcf111/PokWL+Oij j9i9ezfh4eHcd999PPjgg3Tp0iWvV87d3n77bXbu3Jn3ofr06cOMGTPo0aMHXbp0ISoqiv3793vs +SIiUrbZTx8iaflU0jZ9CE4H+PgSfOtfsUa/hKVGI2+XJ+IxRYa3++67D4fDQbVq1ejbty/Tp0+n V69eWCwWjxa1ceNGGjduTHBw7hlycXFxxMfHExkZCUCrVq2wWCzExMTQv39/j9YiIiJlS/aZI9iW v0rapg/AkQNmH4Jvf4zw6LH41Wxy5RuIlHNFhreGDRsybdo0+vTpQ0BAQKkUZLPZ+O677xg9ejQA hmGwadMmGjdujK/vn+W2aNGCNWvWKLyJiFQS2bbfSFo+jdRv3wdHNpjMBN/6COF9xuJXq5m3yxMp NUWGt08++YROnTqVVi0AvPHGG4wfPz5f26lTpwgJyX8ocEhICAkJCaVZmoiIeEF2UgJJK6aTun5+ XmirdvNgrH3H4Ve7hbfLEyl1RYa30g5u8+bNY/Dgwfj5+eVr9/HxKTBU63QWvnmkiIhUDDnJx38P bfMwcuxgMlGt84NY+4zHr+413i5PxGuKDG+lbd68eYwa9ef+QVlZWfTq1QvDMAqsLE1JSaFRo0aF 3mfixIl5X0dGRubNlRMRkbIvJ+UkSStnkLp2LkZOFgBVbxyAte/L+Ndr7eXqRK7OunXrWLdu3VXd o9hnm5amxo0b88EHH2CxWLjzzjtJS0vLe61p06ZMmzaNBx54IN97tFWIiEj5lJN6iuQvXiNl7RwM +3kAqna8Lze0NbjOy9WJeIbbtwq52Jo1a+jWrVu+ttOnT/P999/Tp0+fYj20uDp37kxERARr166l a9eu7Nmzh8zMTKKjoz36XBGRymRl3CreXrwQO078MDNywOBS2ZA3J+0MyV++Tso3b2HYMwEIuqEv 1ftNwL9hO48/X6S8uWJ4S0hIwOFw8NVXX9GsWf7VPKdPn+aFF17weHgzmUzExsYyefJk4uPj2bJl CytWrCAwMNCjzxURqSxWxq0qcBTWmPdmAXgswDnSbSR9+U9S4v6DkZUBQFD7aKz9JhAQ0d4jzxSp CK44bLpixQoef/xxTp48WeC1KlWqMHjwYObOneuxAotLw6YiIsXXe/ijbO9cp0B7+x9OsnzOArc+ y5GeRPJXM0mOm41xIR2AoHb35Ia2xh3d+iyRss4jw6a9e/fmhx9+YMuWLdpTTUSkgrJT+Ar+LMPh tmc4MpJJ/voNUlb9G+eFcwBUue5OrPdOJLDJjW57jkhF59KctwYNGtCgQYMC7dnZ2bz44ou8/vrr bi9MRERKjx/mQtv9TVd/BKEjM5WUVf8m+es3cJ5PBaBKmx65oa3ZzVd9f5HKxuXVpqtXr2bMmDEk Jyfnde+dO3cOHx8fTp065dEii0PDpiIixVfYnLewVbuYPnRUiee8Oc6nkbJ6NslfzcSZmQJAYKtu VL93AoEtbnNL3SLlnUdXm3744YdMnTqVLVu2cOONNxIQEMDWrVtp3Vp77oiIlHd/BLQ5ny0iy3Dg b/JhRAmDm/P8OVK+eZOkL/+JMyMJgMCWXbDeN5EqLe9wa90ilZHLPW/vvvsuQ4cO5dy5c3z88cc8 /vjjAHTp0oX169d7tMjiUM+biIh3OLMySPnmLZK+eA1nug2AwBa3Yb13IlVadfVydSJlk0d73n7+ +Wd69+7NrFmzSE9P57HHHiMnJ4ft27cXu1AREak4nFmZpKyZQ/IX/8Bx7gwAAc1uwXrvBKq07o7J ZPJyhSIVi8s9b3/0uD344IMEBwcza9Ys4uLiGDRoEA8++KCn63SZet5EREqH036e1LVzSVr5Dxxp uXOfA5rclBvaru2l0CbigpLkFpfD20MPPcTDDz/MPffcU6LiSovCm4iIZzntF0hdP4+klTNwpJwA wL9xR6z9JhDU9m6FNpFi8Oiw6ZEjR7juuoJny+3bt48WLVoU66EiIlL+OLOzSFv/LrYV03CkHAfA P6I91nsnEtQuSqFNpJS43PP25ptvsm3bNrp06ZL3F9TpdBIbG8vSpUs9WmRxqOdNRMS9jBw7qRve I2nFNHKSEgDwb9AO670TCGrfR6FN5Cp4tOft22+/Zd++fRw+fDivzel0smfPnmI9UEREygcjJ5vU jQtIWv4qObbfAPCrfx3Wfi9T9YZ+mMyFb+wrIp7lcnh7+umnuemmmzBf8pd13bp17q5JRES8yMjJ Ju27D7Etm0rO2SMA+NVtnRvaOvZXaBPxMpeHTZOSkli8eDHDhg3DbDZz+PBhkpKS6NChg6drLBYN m4qIlIzhyCHtu49IWjaV7DOHAPCrcw3hfcdT7cYBmMxXf1SWiOTn0dWmvXv35uzZs3zzzTcEBQUB MH/+fIKCgnjooYeKX62HKLyJiBSP4XRwbvMibMteIfvUAQAstVtg7TueajcNVGgT8SCPhrfJkyfz 8ssv52s7ePAg3bp14+jRo8V6qCcpvImIuMZwOjj3w/9hi32F7JN7AbDUbJob2jo/hMnH5Zk1+ayM W8Xbixdix4kfZkYOGFzi81FFKjqPLlhwOp0F2hYvXozdbi/WA0VExLsMp5P0Hxdji52C/Xg8AJYa jQnvM47gW/5S4tAGhR9wP+a9WQAKcCJu4vLf0C5duhAdHU3Pnj2B3IUKsbGxTJ061WPFiYiI+xhO J+nbPscWMxl74m4AfKs3whr9EsG3PoLJ13LVz3h78cJ8wQ0guee1zPlskcKbiJu4HN66du2K1Wpl 7ty5HDx4kJo1axITE0N0dLQn6xMRqfSudhjSMAzSf4rJDW3HdgLga21IePSLhNz2GCZfP7fVaqfg KA1AluFw2zNEKrti9Y1HRERw00030aBBA5o2bcqdd97pqbpERISrG4Y0DIOMn5dhi5lM1m/bAfAN r0947xcJvv2vmC3+Ltfganj0o/BtRPxNWvQg4i4uL1jYsWMHvXrlHjQcERFBVlYWGRkZxMTE0KZN G0/X6TItWBCRssyVIHTxNbt//RXTkJ4F7tP+h5Msn7Og0GcYhkHGjpW5oe3INgB8QusS3nsMIXcM xewXUKx6Lw2PYat3MX3IqEIDXKHXr9rF9KGFXy9S2Xl0wcLYsWN5//338x1Mf+rUKV555RVmz55d rIeKiFSbCcGoAAAgAElEQVQGlwa1ji1as2Tbt0X2ol0afs6dPExwIfcubBjSMAwyf/mKs0snkXX4 RwB8QmrnhrYuw4oV2v5Q3Dlsf7TN+WwRWYYDf5MPIxTcRNyqWHPeLg5uALVq1aJevXpuL0pExJvc sdVFYT1Q3837iCrDovJdd2kQKhCWClnpD/mHIQ3DIHP3amyfT+TCoR8A8AmuSXjUC4R0HY7ZL7BY tV+sJHPYonr0UlgT8SCXw1taWhqGYeQ7gHjDhg189913HilMRMQb3LXVRWE9Vjk1Qgq99uIgdGlY 8m/TmNQlGwjpf0deW9iqXYwYOgrDMDgfv4azn0/kwoHc/xf7VKtO2D2jCe02ArN/kMv1Xo7msImU PS6Ht+7du9OmTRvatGlDRkYG+/fv59SpU3z99deerE9EpFS5a6uLQnusXOhFuzQs+bdsAIDxfhxt WrXKG4bsWs+PhGldOb/vWwDMVa2E3/0cod2fwBxQ1eU6r2TkgMGFzmEbMXSU254hIsXjcni74447 +PLLL1m4cCEJCQlERkby8MMPU6dOHU/WJyJSqty11UVhPVb+bRpzYeEaAgZ3y2u7NAgVFpZqH01l +suvEtWjF5l7N2BbOomEj9YBYA4KI+yuZwnr8STmwGrFqtEVmsMmUva4vNr0chYtWsSgQYPcVc9V 02pTEbkavYc/yvbOBX8pLWp1Z2Eut+qyf8fb2bY//s8gdP+gAkFo4j9nMC/mUxy+ZnxynAzr9wAv 9LkN29JJZP76DQDmKqGE3fkMob1G4RNY2JIGESkPPHq26YIFC5g2bRpHjhwhOzs730MdDvdtvrh+ /XpGjRrF4cOHufnmm5k/fz4NGjQgMTGRqVOn0rZtWzZv3szo0aML3aJE4U1EroY7t7pYGbcqf49V IUHtSs9vlXacYdu+5nrzWQDMgcG5oa3nKHyCQov56USkrPFoeGvQoAHz5s2jRYsWmM25wwGGYbBw 4ULGjRtX/GoLcfr0aZ5//nmef/55EhMTGT58OM2bN2f16tV06NCBGTNm0KNHD+Lj44mKimL//v34 +OSfNKvwJiJXqyShy13+6PlrmXaCx45u4qakwwBcwELdPi8Qduff8QkKK5VaRMTzPBreBg0axKJF iwq022w2rFZrsR56OZ988glRUVFUq5Y7b2PBggWMHDmS5cuX06dPH9LS0vD1zZ2m17JlS1599VX6 9++f7x4KbyJSng0dFsUd1fZxc9IhADJ9LCytewM7T9Vn6Tuferk6EXE3j27S+9JLLzF37lxatWqV 1+Z0OlmyZInbNul98MEH831fq1YtGjZsyKZNm2jcuHFecANo0aIFa9asKRDeRETKowtHf8YWM4kX sr+CJDhvthBTrz3/16ATaZYqtD9z0tslikgZ4XJ4mzlzJosWLaJWrVp5w6aQe8qCp05Y+Omnnxg5 ciR79+4lJCT//kghISEkJCR45LkiIqUl69hObDGTSN8WA4DTx5/l9rp8cPPdpPjl7tOmrTlE5GIu h7ctW7Zw+vRpgoPzr2pat26du2sCICMjg19++YWFCxfy9NNPY7FY8r3uvMx+SSIi5UFWwi5sMZNJ 37oEAJMlgNBuIwm753la/7iDxp8tIstI0dYcIlKAy+Htlltuwd/fv0B706ZN3VrQH15//XVmz56N j48PdevWZePGjfleT0lJoVGjRoW+d+LEiXlfR0ZGEhkZ6ZEaRUSKK+t4PEkxkzn342IwDEy+/oR0 HU541Gh8Q3O3KNHxUiIV17p1666648vlBQtTpkzhp59+on379nnHZBmGwZYtW1i5cuVVFXGpefPm 0a1bt7xguGHDBnr37k1aWlreNU2bNmXatGk88MAD+d6rBQsiUhbZT+zFFjuFcz988nto8yOkyzDC er+AJUxnRItUVh5dsPDjjz/i7+/P4cOH89qcTidHjhwp1gOvZMGCBQQGBpKdnc2ePXs4deoUhw8f plGjRqxdu5auXbuyZ88eMjMziY6OduuzRaRiKu5B8+44mP4P9pP7c0Pb9x+D4QQfCyFdhhIeNQaL tUFJP5KIVGIuh7cpU6bQrl27Au2//vqr24r56quvGDZsWL5Nf00mE3v37uWOO+5g8uTJxMfHs2XL FlasWEFgYKDbni0iFVNxD5p318H09tMHSYp9hbTNC8HpAB9fQm4fSnjvF7FUjyjpxxERKd7xWOvW rePUqVMMHDiQHTt2kJiYyD333OPJ+opNw6YicrHLHXdlvLeadyZMKxDIrvZ4rOwzh7Etm0rapv/m hjazD8G3PYo1+iUsNRqX+HOISMVUktxS8OTkyxg/fjzdu3fnww8/BKBdu3YcO3aMN998s3hVioiU opPJtkLbUwNMjHlvFivjVuVrP37qJGmfbyAtZiNpn28ga+8x4MoH02efPcqp94dzeMw1pH37PgDB tz1Ko+nx1B4yT8FNRNzG5WHTTZs2ceLECd5///28tnvvvZcbbriBv/3tbx4pTkTkYiWZi3bixAlM XFug3ZGaQfKga5nz2aK8e6yMW8Vv6ckED+6Wd13qkg0A+JssBe4BkG07RtKKaaRueA8c2WAyE3zr w4T3GYdfrWYl/agiIpdVrK1Catasma9tzZo1+Q6pFxHxlJLORatlrc7+JRsI6X9HXlvqkvWYAv2A /D1qby9eSMBFwQ0gpP8dZM77ghGTX8/Xnp2cSNKK6aStn4+RYweTiWo3D8LaZxx+dVqW/IOKiFyB y+GtSZMmvPrqqxw+fJhVq1axdu1aZs2axTPPPOPJ+kREgNxgdXFwA0jumb/nrDB1a9XmWFh10j7f AGYzOJ0EXNuEjO92kfb5Bnal59B7+KOMHDAYO4Vv/t2kfsO8Z+SknCBp5QxS176DkZOVG9puGkh4 3/H4121V6PtFRNzJ5fA2ZMgQfvjhB95//33eeOMNrFYrCxYsYMCAAZ6sT0QE4LLB6kpz0UYOGMzR 92aRfN+fPW9J732BuYo/wb+3bSe3Fy8wMwcouOdanfDq5KScJOmLf5C6di5G9gUAqna6H2u/l/Gv 16ZkH0pEpARcDm+7du0iISGBXr160apVq3wH1IuIeJrfZdZX+Zt8inzfHz1mcz5bxImks5w4eZJA u5PAId3zXZfc81qqfrGbsNW78vXwRazaxrjrQzk8uhmG/TwAVTvcmxvaGrS9mo8kIlIiV9wqZO/e vQwePJiffvopX/tNN93Ef//7X5o3b+7RAotLW4WIlC+uLkIobM5b2KpdTC/BuZ+9hj/Mr50L9rC1 /j6Rpwc8zJzPFuHrzOBOx14iOYDZkQVAUPs+WPtNICDi+mJ+ShGRwrn9hAWbzUa3bt1o1KgRixYt 4rrrrsNsNnPgwAE++ugjevbsyY4dOwgJCbmqwkWkcirOIoSLe9CyDMdVHdheVC/eXZ07cFPKepLj /oNhTwcg6PreuaGt0Q3FfpaIiLsV2fM2btw4Tp8+zdy5czGZTAVef/XVVzGZTLz44oseLbI41PMm Un5c7Ya4JVVYaKy/6mf+1aEGNQ6swHnhHABBbe/ODW1NOnmsFhGp3Nze8/bjjz+ybNmyQoMbwJgx Yxg4cGCxHigi8oeSLkK4Whf34pmd5+np2Ef3qgfw2ZWJE6hybS+s/SYQ2KyzR+sQESmJIsNbw4YN 8ff3v+zrZrOZevUKzhsREXFFSRchXOrSeXMdW7Rm675fi5xHd9ctN9E54weSv/oXTnsqOKBKm+5Y +00ksPktJf5MIiKeVmR4s1gK31H8Yk5n4b85i4hcycgBgwtdhDBi6Ki876+0oOHSIdCsvcf4duWn VHu4Z941F8+jc54/R/Lq2SR/PRNnRjIAe021WOXbjrvaP0OUgpuIlHFFznmrWbMmUVFRlx02NQyD uLg4jh075rECi0tz3kTKl5Vxq/IvQrh/UL7jqgqEu9W7mD7kz4UKl86bS/t8Q97+bRe76ftjzItu S9JX/8SZnnve6W5nGPPb92JHaMNC7y0i4mlun/N24cIFDhw4gK9v4ZfZ7XbS0tKK9UARqdwK60m7 3OIEV05VKDBvzpx/KDbAYafv8e0Myvqes599ktvW/FZmHgnks5uvh4t+OXXlxAYREW8rMrzNmjWL xx57rMgbLFiwwI3liEhFVtzzSV1Z0FBg3tzvUzn8HdlEH9/Og8e2EJ6dCUBAs5ux9ptAlTY9+HXE I/mCW2H3FhEpiwqfLfy7KwU3V68REYGie9IK48qChpEDBhO2elfe99VaN6B3zEIW/vAOTxxaR3h2 JvucISR2m0KDsd8SdG1PTCaT2xZLiIiUtiLDm4iIOxV3a5BLgxn8vqDh/kF530f16MX0IaPo9H0i IzetIebUSv437Djh2Zn8ZgpnvqUrpoc/pusjL+Wbv+vKvUVEyiKXzzYVEblaxe3tcuVUBWd2Frea DtKqynpykhNz7xfRHmu/l2l+fTQ9LrPgyp0nNoiIlKYrnm1a3mi1qYj3XW57D3eeT2rk2En99n2S lk8jJyl3xbtfg7ZU7zeBoBv6XnaVvIhIWeL21aaXstvtnD59Om9vN8Mw+OSTT3jhhReK9VARqbhc WZRwNb1dRk42aZs+wLbsVXJsRwHwq38t1r4vU7XDvZjMmg0iIhWbyz1vL7/8MjNmzCA7Ozv/DUwm HI6yszpLPW8i3uWp80oNRw5p331I0rKpZJ85DIBf3dZY+42nasf7FdpEpFzyaM/bu+++y7Zt22jT pk3ecITD4eC9994rXpUiUqG5+7xSw5HDue8XYYt9hezTBwGw1G6Jtd94qt34ACZz8VeHXunUBhGR sszl8BYVFUXz5s3zzSPx8fHh7rvv9khhIlI+uWsLDsPp4Nz3H+eGtlP7AbDUao617ziqdX6oRKEN ir/XnIhIWeNyeGvQoAEDBgygY8eOGIaR1823ceNGVq9e7ckaRaQcceW80qIYTgfntnxKUuwr2E/s AcBSs+nvoW0QJp+rWyTvyqkNIiJlmcv/F/z555+pWrUqhw8fzgtvDoeDhIQET9YnIuXMHwHolbmz OXL2JOQ4CbTWuOL7DKeT9K2fYYuZgv34rwD4Vm+Ete84gm/+CyZfi1vqc/ewrohIaXM5vE2bNo2W LVsWaD948KBbCxKRiiHdYuDzSHcAjnP5oUnD6SR921JssZOxJ+RumutrbYi1z1iCb33UbaHtDzpZ QUTKO5eXZ7Vs2ZJFixbRrVs3rrnmGqKiovjqq69o2rSpJ+sTkXLIlWOwDMMgfVsMv03oyIk3H8Ce sAvf8AbUfPQtGs/YS0iX/3F7cAOdrCAi5Z/LPW+zZs3i9ddf56GHHiIiIoKsrCzefvttDh8+zMiR Iz1ZY57ExESmTp1K27Zt2bx5M6NHj6ZNmzal8mwRcZ0dJ1l7j5G1+zCYzeB04t+mMVmGGcMwyNi+ AlvMJLKO/gyAT2hdrNEvEXzHEMwWf4/WppMVRKS8c3mft8GDB/P+++/j5+eXr33ChAlMmjTJI8Vd zDAMOnbsyIwZM+jRowfx8fFERUWxf/9+fHz+HO7QPm8i3ndjv7uIz0kjpP8deW2pS9bzUGA2Y6/1 IevwVgB8QusQHjWGkC7/g9kvwFvlioh4TUlyi8vDprfffnuB4AaQlZVVrAeWVFxcHPHx8URGRgLQ qlUrLBYLMTExpfJ8EXGd2eL7Z3AzDDolHebDxsd4Luhnsg5vJScgjIVZ19BtZy1aT36Pzg/0Y2Xc Ku8WLSJSTrg8bHr06FHWrFnDTTfdRGZmJvv27ePdd98lJyfHk/Xl2bRpE02aNMHX98+SW7RowZo1 a+jfv3+p1CAirgkODwPDoEPyUR47uok2accBOIc/F254mGFr9pLWtzMAPkD8kg387bXcHnwNX4qI FM3l8Pb888/zl7/8ha+++iqvrX///rz77rseKexSJ0+eJDg4OF9bSEiItioRKYNaO0/z+Pb1tE1L BCDFEsj/1e/EkeN1ydp9IS+4/SGk/x0kfb5Be62JiLjA5fAWHh7OF198wfHjx0lISKBRo0bUrFnT k7Xl4+vri8WSf+WZ01n4fk0TJ07M+zoyMjJvqFVEPCtzz3psSyfxRPZ6yIZU3wA+bXAjS+u1J/Cb fUwf+ij/Xvxh4W82m7XXmohUeOvWrWPdunVXdQ+Xw5thGBiGQe3atalduzYA2dnZzJs3jyeeeOKq inBF3bp12bhxY762lJQUGjVqVODai8ObiBTk7rM9z+/byNmlkzgfvwYAc5VQTjfvw8w9WaQd96HV iaS8FZ1vL15Y+E2cTu21JiIV3qWdSiVZ9FlkeGvfvj3PPPMMjzzyCGPGjOG1114rcI3JZCqV8Na1 a1emT5+er23v3r089thjHn+2SEXizrM9zx/YjG3pRDJ3xwFgDgwh7K5nCO05imZVQrilkPeMHDCY Uf+ZQVbfTnltqUvWY7WbtdeaiIgLigxvY8eOpWPHjkDuViFAvoPonU4nS5Ys8WB5f+rcuTMRERGs XbuWrl27smfPHjIzM4mOji6V54tUFO442/P8wR9yQ9uu3BWi5sBgQns9TVivv+MTFFrkey8+Puvo 2VMYOQ5aV6/Jy39/RvPdRERc4PI+bzk5OaSkpFC9evW8NpvNxvnz56lfv77HCrzYoUOHmDx5Mjfe eCNbtmzhqaeeokOHDvmu0T5vIkXrNfxhfu1cr0B76+8TWTX3MvPRfnfh8FZsSyeSsfNLAEwBVQnr OYqwO5/Bp2q4R+oVEanISpJbXJ7z9o9//IOXXnopX1t4eDhDhw7lvffeK9ZDS6pJkyYsWLAAoFSG akUqopKc7Xnh6M+5oW37CgBM/kGE9niS8Lv+F59q1S/7PhERcb8rhrf58+ezadMmdu7cyYEDB/Kl wzNnzrBlyxaPFigi7jVywOACc97CVu1ixNBRBa7N+m0HZ2MmkfFTLAAmvyqEdn+CsLufwze4RqnV LCIif7piePvrX//K4cOHOXbsGBERERiGkdfF16ZNG/7xj3+URp0i4kaBmTmcfW81+JppVL0244bn P9sz69gv2GInk771cwBMloDc0HbP8/gGl94WQSIiUtAVw5uPjw9Tp07l7Nmz+ea7iUj5k7fStO/1 /DFImr56V97rWYm/5oa2LYsBMPn6E9JtBOH3jMY3tLYXKhYRkUu5fLbp1q1bufnmm0lPTwdyj8ua PXs2drvdY8WJiHtdbqXp55++zYk5gzk6ri3pWxZj8vUjtMeTNH7tADUHzVRwExEpQ1xesDBr1iwe ffRRqlatCkBERASdOnVixIgRpbZgQUSujp38p5LUz0zi4aPf0d2+h3PfG+BjIaTL/xDeewyW8NJZ RS4iIsXjcnjr0aMHI0aMyNcWGBjIkiVLFN5Eyok/VprWPZ/Mw0c30+PUr/hg4MBESOTjhEe/iMXa 0MtViohIUVwOb8nJyRw9epSIiAgATp8+zTPPPEOTJk08VpyIuNdTd3Xj0OfjifQ5jg8GOSYzq3Pq 0az/K7Tq97C3yxMRERe4vEnv2bNnuf/++0lNTcVkMhEfH4/VaiUmJibvFIayQJv0SkVU2FmkQF5b yqkzmC2+BIeHFXpWafaZI9iWv0rapg/AkYMDE1vMjVnj25YHHhiukw1ERLykJLnF5fAGuYfT//jj jxw8eJBatWpxyy23EBAQUOxCPUnhTSqaS88izdp7DHvcT+BvwQivijkkCEdKBiH978h7T9jqXUwf Mope7a8hafk0Ur99HxzZYDITfMtgwvuMw69WM299JBER+Z1Hw5vT6eSDDz7g3LlzjBo1ih07drBt 2zaGDBlSomI9ReFNKprewx9le+c6QG5wu7DrcL6gZns7FuvIvvneUz3rHE//uIZbOZwX2qp1fghr 33H41W5RqvWLiMjllSS3uLxVyIgRI3juuefYsGEDAO3atSMkJIRx48YVr0oRKZaLV4hm7c4f3AAs dax5X1uz0nnywDd89MM8bnXsA2cO1To/SKOpv1Bn+H8V3EREKgCXw1tiYiInTpygU6dOeW233XYb 77zzjkcKE5Fc+c4iNRfyV9bpJMyezhMH1vDRlnncl/gTfoaD7eYIIl7ZQZ0RC/Gre03pFSwiIh7l cnhr3749fn5++do+++yzAm0i4l4jBwwm7I9TEJz592kLs2fwbIMUPto0h/sTt+HvzGF99RY8Y7+N oEFz8K/XxgsVi4iIJ7m8VUjHjh156qmnOHHiBO+88w5r165l8eLFvPHGG56sT6TS+2Ml6JzPFpHo U43fFq6h1oDODDy2hb7HtxPozAYzbMupxarAGzibXp0nhgwCcufLXbxCVatKRUTKv2KtNv3tt99Y tGgRv/32G1arlT59+uQbRi0LtGBBKjJHuo0f336SoN2f408OAOn1bqL1sP8Q0OiGvOsuXaEKf65A VYATESk7PL5VSGF27NhBu3btruYWbqXwJhWRIz2J5K//RfLqWRgXcs8XDmp7N9Z+EwhoUvAXqItX qF6s/Q8nWT5ngafLFRERF5Ukt1x22PSXX35h5syZV3zYtm3b2LlzZ7EeKiKucWSkkLzqDVJW/Rvn +TQAqlzbC+u9EwlsehNQ+Aa+l55h+ocsw1FqtZc3hf0c1UspImXRZcNbREQEW7dupX///kBuWAPy 0qHJZMLhcLB79+5SKFOkcnFkppKyehbJX/0L5/lUAKq06ZEb2prdnHddYcOjY96bRVA2QL0C9/U3 +Xi69HLpcj9HQAFORMqcIodNf/75Z9q3b1/kDX799Vdat27t9sJKSsOmUp45zqeRsno2yV//C2dG MgCBrbpR/d4JBLa4rcD1lxserbdsB5mBPvnnvK3axfShmvNWGA0zi4i3uHXYFMBqtXL06FHq1auH r2/+S7/99luWLFnCzTffXKbCm4ineWJ4zXkhne/nPE3g9kUEYQcgs+a1tBgyiyrXdLns+y43PBpS szovD3iYOZ8tIstw4G/yYcQVgltlHjbUMLOIlCdFhrc2bdowc+ZMHnnkEVauXJmXDps2bcrtt99O WFgYnTt3ZuDAgaVVr4hXuXt4zZmVQco3b3Ey9lWqZ+XOadsZXI8PGt3Kka1pTE/IIqqI/XX9LrNV o7/Jh6gevVyuqbIPGxb1cxQRKWuK3KQ3KiqKYcOG4e/vT6NGjfjrX/9KlSpVaNYs90Dra6+9lh49 epRKoSJlwduLF+YLOADJPa9lzmeLinUfZ1YmSV/O5PBzTTn76Rh8s9LYHVyX59oO4O/XP8TPYREk 97zuivfNt4Hv78JW7WLE/YOKVY+7PpcnrYxbRe/hj9Jr+MP0Hv4oK+NWue3e7vo5ioiUhiJ73qpX r573dbt27ejVqxc9e/bMd039+vU9U5lIGXS1w2tO+3lS175D0soZONJOARDQ5Eb+eawKS67vCL8v DHL1vhdv4Ovq8Ghhyvqwoad7Bt31cxQRKQ1FhjfTJf+QBAQEFLjGx0fDClJ5lHR4zWm/QOr6+SSt nI4j5UTuexp3xNpvAkFt7+bgiMcKBDdX7gsUa3j0csr6sGFRPYPuClju+DmKiJSGIsPbvn372LBh A5C7RcjJkyfzvgdwOBxs3rzZsxWKlCEjBwwueHLBql2MGDqq0Oud2VmkbXiPpBXTyElOBMA/on1u aLu+d94vSMW9r7t5+/lXUtZ7BkVESlOR4W316tWsXr06X9vXX3+d7/tLe+dEKjJXh9eMHDup375P 0vJp5CQdA8C/QTus/V4m6Ia+Bf7eeHvYztvPv5Ky3jMoIlKaitzn7YknnuDZZ5+97NBoTk4O//73 v5k9e7bbCho/fjzz58/HMAyGDRvGlClT8l6LiYnh+++/Jzw8nGPHjjFz5kwsFku+92ufN/EmIyeb 1I0LckOb7SgAfvWvxdr3Zap2uBeTucg1QhWOu7YfKfSsVu1bJyIVgNvPNk1ISLjigoTExETq1Su4 k3tJzJ8/n5ycHLp06cLy5csZM2YMH374IYMHD2bbtm0MHDiQffv2YTabeeGFF/Dz88sX7kDhTbzD yMkm7bsPSVr+KtlnDgPgV7c11n4vU7Vj/0oX2uAygWv1LqYPKVngWhm3Kn/P4P2DFNxEpNzzysH0 7jR37lyGDx+e931kZCStW7fmrbfeYvDgwQQGBjJ//nwANm/eTJ8+fUhMTMTPzy/vPQpvUpoMRw5p mxeStGwq2acPAuBX5xrC+46n2o0DMJkr77De1ZxaUJk3DBaRysXtJyyUtouDG0CtWrVo2LAhAJs2 beLJJ5/Me6158+bYbDZ27txJx44dS7VOEcPp4Nz3H2OLfYXsU/sBsNRugbXPOKp1frBSh7Y/lHSR QWXfMFhE5ErK9FjOvn37eOSRRwA4deoUISEhea+FhoYCuUO7IqXFcDpI+/5jjrx0HSffeZTsU/ux 1GxK7WHv02jqLwTfMljB7XclXWRQHjYMFhHxphL1vKWlpbF//35atGhBtWrV3F0TAMuWLePxxx+n bt26APj6+uZbnOB05v5WX1hX48SJE/O+joyMJDIy0iM1SvlyNUNxhtNJ+o+LscVOwX48HgBLjcaE 9xlL8C0PY/LxTCd2eR4+LOn2I9oWREQqsnXr1rFu3bqrukeR/+Ls3buXJ598kuTkZKZMmcLdd9/N 4sWLGTp0KGazmSpVqvDRRx/RrVu3Kz7o2LFj3HDDDZd9vW/fvnnz2RITE/nll18YO3Zs3ut16tQh NTU17/uUlBSAQhdLXBzeRKDkQ3GG00n6ts9zQ1tC7vFJvtYIrH3GEnzrI5h8LZd9r7dqLitKuv2I tgURkYrs0k6lSZMmFfseRS5Y+Mtf/sKwYcMIDQ1l9uzZdO/enccee4znn3+eSZMmYbfbeemll/jX v/5Vog9QmHPnzjF79mxeeumlvLbs7GyefPJJLBYL//nPfwDYsGEDffv25fTp0/l65LRgQQpT3Mnz hmGQ/lMMtpjJ2I/tBMA3vAHhfV4i5LbHMPn6FXiPu13NhP/yTNuCiEhl4vYFCx07dqRLly4AzJw5 k0DYjzoAACAASURBVLp169K3b19eeeUVAAIDA2nQoEEJyy3IbrczZswYHn/8cfbs2YNhGKxZs4a7 7rqLoUOHMmjQIJxOJ2azmS+++IK//OUvBfZ5EymMq0NxhmGQsX05tqWTyPptOwC+YfUIj36R4NuH YLb4e7zWP1TW4cOyvmGwiIi3FRnekpKScDqdZGZm8thjj9GwYUNq167N2bNnqV69OidOnGDr1q1u K2bIkCEsWrSIt99+O6/tlltu4W9/+xtNmzZlwoQJPPvss9SvX5/U1FRmzpzptmdLxXaloTjDMMjY 8QW2mElkHdkGgE9oHcJ7v0jIHUMx+xU819fTKvPwoc4ZFZH/b+/Ow6Is9/+Bv2dYBER23JVNSY+Z JuZXKw1SQyWkPJW7kiim5lKmVm6gZsvxKCf16E8tNJdOYUdUVI6SQiKaR81ABdwRQVBBdmQG5vP7 g+PUBG7EMAy+X9c11+Wz8MznucHhzXM/9/3Q/T2w2zQ+Ph6BgYHIzMyEl5cXIiIikJWVhQEDBkBE oFKpsH37dvTt27cua34gdptSde7bFTduKrybaZATuQh3Lx8HAJjYNoeD3xzYek+A0tzSUCWz+5CI 6Amgl0l6KyoqkJubC2dnZ+26kpISnDlzBu3bt4e9vX3NqtUThje6H50Z+qHE+y90gEdaFO5eOgYA MLFpCodBs2HrMxHKRlYGrrYSnypARNSw6SW8aTQa7NixAwcPHtTOqdaqVSt4e3vD398flpaGuzJR HYY3ehARQWnyQdzeEYq7F44AAEyaOMF+4CzY9Z0EZaPGBq6QiIieJLUe3s6ePQt/f3+YmZnB09MT tra20Gg0yMvLQ2pqKkpKShAVFQUvL68/XXxtYXgzfvqa26wkORY5kaEoTf0JAKBs7ACHgR/Art8U KC2s//TxiYiIHletjzb94osvsGfPHnTs2LHa7SkpKfjss8+wcePGx3pTovvRx9xmJamHK0Nb8iEA gLKxPewHzIR9v3ehtNTPJNNERET68sDw1qtXr/sGNwDo0KEDevToUetF0ZPrQY9GetzwVnrhCHJ2 hKLk3I8AAKWVHex934Nd/6kwsbJ9yFcTERHVTw98tmliYiJiYmJQXl5e7fZDhw7h+PHjeimMnky1 MbdZ6cVjuL5sANI/6YOScz9CaWkDh4AFcPvbJTgGzGNwIyIio/bAK29z587F4MGDkZycDDc3N9ja 2sLMzAz5+fm4fPkyXFxcsHPnzrqqlZ4Af2Zus7uX/4vbkSEoSYwGACgtmsCu/zTYD3gPJo3r16ho IiKimnroaFMRQUxMDBISEpCVlQVTU1O0aNECPj4+6NmzJxQKRV3V+kg4YKHm6sND0Gsyt9ndqyeR syMUxb/uAQAoGjWGff+psB/wPkysHeukbiIiopqo9QELQGV4KygowM2bN5GZmQkRQXl5OdLT09G1 a9d6N1UI1Ux9eQj64zwa6W7aaeREhqL4l10AAIW5Fez6vQuHgTNh0sSpzmomIiKqS481VYidnZ12 qpCUlBQUFxdjz549nCqkATCmh6CXpSciJzIURScjAQAKc0vYvTwZ9oM+gKlNUwNXR0RE9Og4VQjV mDE8BL3s+hnkRC5C0YkfAAAKMwvY+kyEw6DZMLVrbuDqiIiI6ganCiEA9fsh6GWZyciNXITC/0YA IlCYNoKtTzAc/ObA1K7q1UIiIqKGjFOFEABg0psjYX/gjM46+/1n8M4bIwxUEaC6kYoba0chbW5n FB7/HgoTM9j2nQzXv11A05FhDG56tCdmP16dOBavTByNVyeOxZ6Y/YYuiYiI/ueB97xlZGRopwpx d3eHjY1NtVOFuLu712XND8R73mquvjwEXZV1ATm7lqDw6DZANICJGWz7jIPDqx/BzLFNndfzpKl2 xO+BM/hs3P1H/BIRUc3o5cH096YKOXLkiHaqkJYtW8LHxwe9evX6UwXrA8Nb3antqUVUNy8jd9cS FCRsATQVgIkpbF8MhIP/xzBzcqnFyulBjGnwChGRsdPLVCEKhQL9+/dH//79ddar1Wps2rQJL7zw Atq1a/d4lZLRq82pRdS3riJn9ycoiN9UGdqUJrDpMw6O/h/DzNmtVuumhzOGwStERE+yB97zlp6e jv79+8PS0hIdOnRAWFgYNJrKD3YzMzO4urriqaeeqpNCqX550DNIH5X6dhqywyfiyodPoeCnrwER 2Lw4Fq6fJaP5uPUMbgZSnwevEBHRQ8Lb+PHjceHCBaxZswYrVqxAcXExRowYgVu3bgEAmjVrxi7K J9SfuTqjzklH9qbJuDLnKeTHbQA0GjR5fhRcPz2H5uO/hnlTj9oulx5DfRy8QkREv3lgt+nRo0cR EREBX19fAMDAgQNRXFyMZcuWYdSoUXVSINVPNbk6o76Tgdyoz1AQtwFSrgIUCjTpORyOAfNh3oJX cOuLx3nKBRER1b0HDljo0qULtm7diqeffrrKtvXr18PS0hJjxozRdqXWBxywUDce5xmk5Xk3kLvn c+QfWgcpL6sMbc+9CYeA+WjU6i91XToREVG9UeujTePi4vD1119j1apVaNKkSZXtGzduxIQJE6BW qx+/Wj1heKs7D5tapDw/G7l7v0D+wbUQ9V0AgHX3v8LxtQVo1LrqHwRERERPGr1MFXLz5k0cPHgQ w4YNq3Z7dHQ0BgwY8Fhvqk8Mb4ZXXnATd/YuQ97Bf0JUpQAAa6/XK0Nbm2cMXB0REVH9oZfwZmwY 3gynovA2cvctQ17MaoiqBADQ+NnBcHxtISxcuhq4OiIiovpHL/O8ET1MRVEO7kQvx52YVZC7RQCA xl384Pj6Qli4ehm4OiIiooaF4Y1qrKL4Du5Er0DegS+huVsIALB6ZgAcX1sIS/ceBq6OiIioYWJ4 o8dWUZyHO/v/gbz9YdCUFgAArJ7uD8fXQmDZrqeBqyMiImrY6m14O3v2LN566y2cPXtWuy4yMhLH jh2Dg4MD0tPTsXz5cpiZmRmwyidLRWkB8vZ/iTv/WQFNSR4AwKpT38rQ1v55A1dHRET0ZKiXAxZK S0sxfPhwJCYm4vLlywCAkydPYujQoTh//jyUSiXmzJkDc3NzLF68WOdrOWCh9mlKC3EnZhXuRP8d muI7AADLjj5wfG0hrJ7qbeDqiIiIjFeDGW366aefolOnTpg+fTquXLkCABg5ciQsLS2xYcMGAJVP fxg8eDAyMjJgbm6u/VqGt9qjuVuEvJjVyI3+OzRFOQAAy6f6VIa2jt6GLY6IiKgBaBCjTXfs2IG+ ffuipKREZ31CQgKmTJmiXW7fvj1ycnKQmJiI7t2713WZDZqmrBh5P67BnX1/Q0XhbQCARfsX4PT6 Qlh2fBkKhcLAFRIRET25Hvhg+rp25coVZGdno0ePqiMVs7KyYGtrq122s7MDAFy/fr3O6mvoNGUl uBO9AldmtcPt7+egovA2LDx6otUH+9Dm4zhY/aUvgxsREZGB1Zsrb2q1GuvWrcPSpUur3W5qaqoz OOHe81TZRfrnaVSlyI9dj9w9n6MiPwsA0MjtOTi9HgKrzr4MbERERPVInYW39PR0dOvW7b7bO3fu jISEBISFhQGoDGdqtRpWVlb4/vvv0aJFC+Tn52v3z8urHO3YqlWrKscKCQnR/tvb2xve3t61cxIN jEZ1F/k/fYXcqE9RkXcDANDIpRscXw9B4y6DGNqIiIhqWWxsLGJjY//UMerlgAUAiIuLQ2BgoHbA wsSJE2FmZoZVq1YBAH766ScEBATg5s2bOlfkOGDh4TTqMhQc/hq5uz9F+Z0MAECjtl3h+PpCNO7q z9BGRERURxrEgIV7/ngiQUFBGDFiBDQaDZRKJfbu3YtRo0ZxnrfHIOUq5MdvRO6upSjPTQcAmLd5 Bo6vLYB1t9cY2oiIiIxAvQ1vAHTCRI8ePbBw4ULMnDkTrVu3Rn5+PpYvX27A6oyHlKtRcGQTcnYt RXlOGgDAvFWnytDmNQQKZb0at0JEREQPUG+7TWuK3aa/kYpyFCRsRu6uT6C+Vdn9bN6yY2Vo6/4G QxsREZGBNahuU6o5qShH4bFtyNn1CdTZFwEAZs2fguNr89Gkx1tQKE0MXCERERHVFMNbAyKaChQe +xdydi2BOus8AMCsWTs4BsxHk57DGdqIiIgaAIa3BkA0FSg8HoHcnYuhupECADBzdodDwDzY9BoJ hQm/zURERA0Ff6sbMdFoUHTiB+RELoIq8xwAwNTJFY6D58Lm+dFQmHIkLhERUUPD8GaERKNB0ckd yNm5GKrrSQAAU8e2cPD/GLYvjoXC1NzAFRIREZG+MLwZERFB8amdyIlchLL0XwEApg6tK0Nb77cZ 2oiIiJ4ADG9GQERQfDqqMrSlnQIAmNi1hKP/x7DpMw5Ks0YGrpCIiIjqCsNbPSYiKE7ch5zIUJRd OQEAMLFtDodXP4LtS+OhNLcwcIVERERU1xje6iERQcmZ/cjZEYq7l38GAJjYNIOD3xzY+gRDaW5p 4AqJiIjIUBje6hERQcnZGOREhuLuxaMAAJMmzrAfNBt2L78DZSMrA1dIREREhsbwVk+UJB9Czo4Q lJ6PBwAorR3hMGgW7PpOhrJRYwNXR0RERPUFw5uBlaTEIWdHKEpT4wAAysYOcBg4E3Z9p0Bp2cTA 1REREVF9w/BmIKXn43F7RyhKkw8CAJRWdrAf8D7s+k+FiaWNgasjIiKi+orhrY6VXjyKnB0hKDkb AwBQWtrCfsB7sOs/DSZWtgaujoiIiOo7hrc6Unr5eGVoS/oPAEBp0QR2vjNg/8oMmDS2M3B1RERE ZCwY3vTs7pUTyNkRguLEfQAAhYU17PtPg73vezCxdjBwdURERGRsGN705G7aL5Wh7XQUAEDRqDHs +r0LhwHvw6SJk4GrIyIiImPF8FbLyq79ituRoSg+tRMAoDC3gl3fybAf+AFMbZwNXB0REREZO4a3 WlKWnoScnYtQdOLfAACFmQXsXp4E+0GzYGrbzMDVERERUUPB8PYnlWWcqwxtxyMAAArTRrB9+R04 DJoNU7vmBq6OiIiIGhqGtxpSZaYgZ9diFP78HSAChak5bL2D4eA3B6b2LQ1dHhERETVQDG+PSZV1 Hjk7l6Dw2LeAaAATM9i+NB4Or34IM4fWhi6PiIiIGjiGt0ekyr6I3F1LUJCw9X+hzRS2vcfDwf8j mDm2NXR5RERE9IRgeHsI1c3LyN39CQqObAY0FYDSBDa9g+Do/zHMnF0NXR4RERE9YRje7kN96ypy di9FwZFNQEX5/0JbIBz858K8qbuhyyMiIqInVL0Nb9HR0Th9+jQ6deoEf3//Ontfdc415O7+FPmH w4EKNaBQwuaF0XAYPA/mzdrVWR1ERERE1al34U2tVmPMmDFo2bIlvvjiC5iYmGi3RUZG4tixY3Bw cEB6ejqWL18OMzOz2nnf3OvIjfoMBT99BSlXAQoFmvQaAceA+TBv7lkr70FERET0ZylERAxdxO8F BQWhqKgI3333nc76kydPYujQoTh//jyUSiXmzJkDc3NzLF68WGc/hUKBxzml8juZyN3zOfJj1/0W 2v5vKBwHz4d5yw61ck5ERERE1Xnc3ALUs/B29OhRvPDCC0hLS0ObNm10to0cORKWlpbYsGGDdt/B gwcjIyMD5ubm2v0etRHK87KQu/cL5B/6fxD1XQCAdY834RgwH41adarFsyIiIiKqXk3Cm1JPtdRI eHg4nJyc8OWXX6JPnz7o1asXzp07BwA4cuQIOnT47UpY+/btkZOTg8TExMd6j/L8bNz69gNcmd0O efv/AVHfhXX3IXBZfBotJ/+LwY2IiIjqtXp1z9vJkyfRv39//O1vfwMAzJgxA2+99RaSkpKQnZ0N W1tb7b52dnYAgOvXr6N79+4PPXZ5wS3c2bcMeT/+E6IqAQA07hYAx4AFsHDpqoezISIiIqp99Sq8 FRcX48UXX9QuT5w4EV9++SUuX74MU1NTncEJGo0GAB56qbGiKAe5+/6OvJhVkLJiAEDjrq/C8bWF sHDtpoezICIiItKfOgtv6enp6Nbt/mFp8ODBaNasGYqKirTr7t33lpubixYtWiA/P1+7LS8vDwDQ qlWrKscKCQmBRlWKuxeP4pm7J9HDofKetsbPDKwMbe7P1co5ERERET2O2NhYxMbG/qlj1Fl4a9Om DW7duvXAfT766CNcuHBBu3z37l0oFAq4urrCx8dHZ1tKSgpsbW3x7LPPVjnOu12AvP3roLEqAKwA q6dfgePrIbD0+L/aOyEiIiKix+Tt7Q1vb2/tcmho6GMfo151m44bNw59+/bF3bt3YWFhgZ9++gkB AQFwdnZGUFAQRowYAY1GA6VSib1792LUqFHVzvOWu7Ny+hCrTv0qQ1u7XnV9KkRERER6Ua+mCgGA 7du3Y9euXejcuTMuXryIpUuXwtHREQCwefNmnDp1Cq1bt8bFixexfPlyWFpa6ny9QqHAtc/6wen1 hbD0fLG6tyAiIiKqF4x+nrfaUJNGICIiIjIEo5/njYiIiIgejOGNiIiIyIgwvBEREREZEYY3IiIi IiPC8EZERERkRBjeiIiIiIwIwxsRERGREWF4IyIiIjIiDG9ERERERoThjYiIiMiIMLwRERERGRGG NyIiIiIjwvBGREREZEQY3oiIiIiMCMMbERERkRFheCMiIiIyIgxvREREREaE4Y2IiIjIiDC8ERER ERkRhjciIiIiI8LwRkRERGREGN6IiIiIjAjDGxEREZERYXgjIiIiMiIMb0RERERGhOGNiIiIyIiY GrqAP1q2bBlMTU1x584d5OXlISwsDAqFAgAQGRmJY8eOwcHBAenp6Vi+fDnMzMwMXDERERFR3VGI iBi6iHsiIyPx448/YuXKlQCAt99+G/369cPIkSNx8uRJDB06FOfPn4dSqcScOXNgbm6OxYsX6xxD oVCgHp0SERER0X3VJLfUq27Tixcv4s6dO9plOzs75OXlAQCWL18Ob29vKJWVJb/22mtYu3YtVCqV QWql38TGxhq6hCcO27zusc3rHtu87rHNjUO9Cm+DBg1CZGQkNm/ejKtXryI5ORmjRo0CACQkJKBD hw7afdu3b4+cnBwkJiYaqlz6H/5nr3ts87rHNq97bPO6xzY3DvXqnre//OUv2LhxI0aOHAkXFxck JCTA1tYWAJCVlaX9N1B5VQ4Arl+/ju7duxukXiIiIqK6Vq+uvAFAWloaFi5cCLVajd69eyM7OxsA YGpqqjM4QaPRAADvbyMiIqIni9SRa9euiZOT031f48aNk+3bt4ufn5+IiOTm5sozzzwjY8aMERGR 9u3bS1hYmPZ42dnZolAo5Oeff9Z5Hw8PDwHAF1988cUXX3zxVe9fHh4ej52p6qzbtE2bNrh169YD 95kyZQo6deoEALC3t8e8efMQGhoKAPDx8cGFCxe0+6akpMDW1hbPPvuszjEuXrxYy5UTERER1R/1 qtu0a9euSEpK0i6XlpZq72cLCgpCdHS0trt07969GDVqFOd5IyIioidKvZrnTUQwd+5clJaWwtXV FRcuXMCiRYvg4OAAANi8eTNOnTqF1q1b4+LFi1i+fDksLS0NXDURERFR3alX4Y2IiIjqztWrV/H9 99+jadOm8PPzg7Ozs6FLokdQr7pNa8vZs2e1987dExkZiQ8//BBffPEFpk6dCrVabaDqGpb58+ej RYsWaN68OebPn6+zjW1e+zIyMjB58mSsXbsWY8eOxdmzZw1dUoMTFxeHLl26wMbGBr6+vkhPTwfA tq8LGo0GPj4+iIuLA8A217fvv/8eI0aMwJtvvonAwEA4OzuzzfUsPj4eCxYsQFhYGEaNGoXU1FQA NfhZr9nY0fqrpKREAgICxM3NTbvuxIkT4uHhIRUVFSIiMnv2bJk3b56hSmww1q9fL2vWrJFz587J 559/LgqFQrZs2SIibHN90Gg00q1bNzlw4ICIiJw7d07c3NykvLzcwJU1HNnZ2TJmzBhJSkqS6Oho cXFxkX79+omIsO3rwKpVq8TBwUHi4uL4865nhw4dEmdnZ8nIyNCuY5vrV3l5uc7vxdjY2Bp/vjS4 8LZ06VLZuXOnuLq6ateNGDFCgoKCtMsJCQni5OQkZWVlhiixwVi7dq3O8ksvvSSTJk0SEba5Puzf v18sLS1FrVZr13l6esr27dsNWFXD8u2330pBQYF2OTw8XCwsLOTAgQNsez07fPiw7NmzR1xdXSUu Lo4/73qk0WikQ4cOsnjxYp31bHP9unnzplhaWkphYaGIiJw+fVq8vLxq9PnSoLpNd+zYgb59+8LG xkZnPR+tpR8TJ07UWW7WrBnatm0LADhy5AjbvJYdOXIE7u7uMDX9bYYfT09PHDx40IBVNSzDhg1D kyZNtMv3fqaPHDkCNzc3tr2e5OTkICEhAYMGDQJQOXiNba4/R48eRWpqKq5evYo33ngDHTt2xOrV q9nmeubs7AwvLy+MGTMGBQUFWLlyJRYvXoz4+PjHbvcGE96uXLmC7Oxs9OjRo8q2Bz1ai2rP+fPn MWbMGABAdnY227yWZWVlVfnDxNbWlm2qR6dOncKkSZOqfIYAbPvaFBYWhhkzZuis++NnCMA2ry0n T55EkyZN8Nlnn2H79u3YunUrpk+fjp9//pltrmcRERFISUlBy5Yt0bdvXwwcOLBGny8NIryp1Wqs W7euypWge/hoLf3btWsXgoOD0bJlSwBsc334Y5sCv7Ur1b7i4mIkJSVh6tSpMDExYdvryfr16zFy 5EiYm5vrrGeb609RURGeeuopODk5AQC6deuG7t27o127dmxzPcvKykK/fv0waNAgBAYGIiIiAmZm Zo/d7vXqwfT3k56ejm7dut13e+fOnZGQkICwsDAAlSetVqthZWWF77//Hi1atEB+fr52/7y8PABA q1at9Fu4EXtYmwcEBGDDhg0AKkfJJCUlYe7cudrtbPPa17JlS8THx+usy8vLg6urq2EKauCWLVuG lStXwsTEhG2vR+vXr8e0adO0y2VlZXjllVcgIlVmDWCb147mzZujuLhYZ13r1q2xevVqdOnSRWc9 27z2lJSUYODAgUhKSoKTkxPmzZuHoKAgfPDBBzq/L4FHaHe93p1nILGxsToDFoKDg2XKlCna5bi4 OLGzsxOVSmWI8hqUgoIC+eSTT3TWqVQqtrkeJCQkSJMmTXTWubu7y3fffWegihqudevWycWLF7XL cXFxbPs6cm/AAn/e9Sc5OVmsra11Po9fffVVCQ0NZZvr0c8//yxNmzbVLpeXl4utrW2NPl8aRLfp H8kfuub4aC39UKlU+PDDD+Hn54eUlBQkJydj9erVuHbtGttcD3r27AkXFxccOnQIQOXzfUtKSuDv 72/gyhqWjRs3wtLSEmq1GikpKYiLi8Ply5fh6urKtq9D/HnXnw4dOsDLywtRUVEAKj/LExMTERwc zDbXo/bt20OlUuHGjRsAKtu9cePG6Nq162O3u1F0m9aEQqHQ/rtHjx5YuHAhZs6cidatWyM/Px/L ly83YHUNw7hx47Bt2zasWbNGu+7555/HlClT4OHhwTavZQqFAjt37sSiRYuQnJyM48ePIyoqio+I q0XR0dGYMGECKioqtOsUCgVSU1PRp08ftn0d4s+7fm3ZsgUzZ85Eamoqrl+/jvXr16N58+Zscz2y t7fH9u3bMXPmTHTv3h3p6enYvHkzbGxsHrvd+XgsIiIiIiPSILtNiYiIiBoqhjciIiIiI8LwRkRE RGREGN6IiIiIjAjDGxEREZERYXgjIiIiMiIMb0RUZ65fv45r165pl8+fP49bt24ZsKInT2FhIRIT Ew1dBhH9CQxvREYkLi4OXbp0gY2NDXx9fZGenq7dlpGRgcmTJ2Pt2rUYO3Yszp49+0jb4uPjsWDB AoSFhWHUqFFITU297/tXVFQgLCwMffr0wZAhQxAQEABbW1solUrs3LnzgbX/8MMP6NSpE2JjYwEA a9euRadOnZCcnFzD1qgqNjYWXbp0gYmJCYKCgjBp0iS8+uqrGD9+PM6dO1dr71MfvfXWWygvL3/g PpcvX0a/fv2wYsWKOqqKiPRCP0/wIqLalp2dLWPGjJGkpCSJjo4WFxcX6devn4iIaDQa6datmxw4 cEBERM6dOydubm5SUVHxwG3l5eXi4eEhFRUVIlL5XOB7x/yj8vJyCQgIkB49ekhmZqZ2fVpamrRv 31527tz50HN46aWXZNOmTdplFxcXiYuLq1mD3Me8efN0nm0sIrJ+/XqxsrKSiIiIWn0vfbt+/brs 3r37ofudO3dOFArFI51fSEiIBAYG1kZ51dq9e7ekp6fr7fhE1ECfbUrUEB08eBCrVq3C008/DV9f X4SEhCA+Ph4AEBMTg+TkZHh7ewMAOnbsCDMzM+zYseOB23Jzc5GZmYmSkhIAgJ2dHe7cuVPt+69b tw5RUVH49ttv0aJFC+36tm3bYuXKlVWeKVyd3z+2rrrl2mBiYlJl3fjx4zFt2jQEBgYiKyur1t9T H1QqFUaPHo2cnJyH7rtx40YMGjQI//znPx+676N8n2oqPT0dwcHBOo8XI6Lax/BGZCSGDRuGJk2a aJebNWsGFxcXAMCRI0fg7u4OU9PfHlfs6emJgwcPIiEhAW5ubtVuc3Z2hpeXF8aMGYOCggKsXLkS ixcvrvb9w8PD4eXlBXd39yrbfH19teEwMzMTkydPRnh4ON566y2cPn36oedWWFiI0aNHw8fHBwCQ mJiIrl27IjQ0FLdu3cKsWbMwdOhQLFiwAM2aNcNzzz2HS5cuPbzRfmfatGkoKSlBREQEAODw4cP4 +OOPMXToULz++usoLi7GzZs3MWXKFIwePRpLlixB79690b17d6SlpWHq1Knw9PTEO++8oz3mtWvX 8OGHH2LVqlX461//iu+++0677cqVK5g7dy6WLVuGV155BSdPnkRaWhpmzpyJ999/HxMmTICrzWTz BwAAC61JREFUqysqKioQEhKC1atXY86cOfj888+1bXD16lXs3r0b4eHh9z2vsrIyFBYW4uOPP0Zs bCxSUlKq7LNu3TrMmjULX375JQ4fPqwNzQsWLIBSqcT27dsBAKmpqejUqROuXLmCgoICvPvuu/jq q68wZswYHDhwAEDl81979eqFzZs3w9/fH82bN8eePXsAAMePH0dWVhZWrVqFgwcPory8HDNnzsT6 9esxadIkbNmyRVtTZmYmZs2ahcWLF8PCwgKenp7YvHkzACAyMhLz5s2Dn58fgoODodFoHut7TdTg GfrSHxHVzJIlS2TFihUiIjJx4kTp1auXzvZRo0bJ4MGD5Z133qmybeTIkTJ48GAREblx44Z07NhR GjduLNu2bbvv+1lZWcnw4cN11qlUKjl27JgcPXpUjh07JhkZGfLRRx/JlClTRERkzZo1MmTIEO3+ 3t7eOt2mrq6u2m7TjRs3ire3t3ZbYGCghIaGiojIihUrpG3btpKeni7FxcXy/PPP6+z7ewsXLqzS bXqPs7OzvPvuu1JUVCQjRozQrn/66adlwYIFIiKycuVK8fDwkIyMDBER6dmzp4wYMUI0Go3k5eWJ hYWFZGZmSnl5uXTu3FkuXbokIiI3b94Ua2trOXLkiJSUlMhzzz0nhYWFIiIyZ84cGTZsmGg0Gpk+ fbp07dpVMjMz5ZtvvpGUlBSxsrISEZHS0lIxMTGR/Pz8aturOlu3bpWYmBjteUybNk1ne3x8vPj6 +mqXJ0yYoO02raioEFdXV9myZYuIiNy6dUuWLVsmIiJr164VPz8/ERHZt2+fdOvWTXuMFi1ayJIl S7Tt1bt3b+02hUIhaWlpIiISHR0tnTp1EhGR5ORkcXBw0O43fPhwiYqKEhGRWbNmaY+flpYm7777 roiIlJWViYODg3z99dcPbAOiJ43pw+MdEdU3xcXFSEpKwrZt2wAApqamMDMz09lHo9FARO677Z6s rCz069cPWVlZCAwMhKmpKd58880q76nRaKBSqXTWmZmZwcbGBl5eXggICEB4eDimT58OjUaD27dv IzEx8b7dsH8kD+jOs7Ozg7u7O1q3bg0AmDVrFoYMGYKysjI0atTokY4PAEqlEkqlElFRUcjKytJe 5erSpQvUajUAwNraGm3atEHLli0BVF6l9PDwgEKhgK2tLZo2bYq0tDRcuXIFmZmZ2iuRzs7OGDRo EDZs2ICBAweiVatWsLa2BgB88sknUKlUUCgUsLe3R9euXdGiRQuMHj0aIoKjR49CRBAbGwuNRoP8 /HzY2Ng80jn9+OOP+OqrrwBUdg+HhITgs88+g6WlJQDgH//4B/r376/dv1WrVrh69aq2PYKCgvDN N99g5MiR+OGHHzBs2DAAwPDhw9G/f38UFhbi+PHjOt/HRo0aoXfv3gCATp06ISMjo9rafHx8EBER AZVKhfj4eJ1jnD59GkOHDgUA9O7dG4cOHQIAbNu2DTdu3NB+b3x8fFBYWPhIbUH0pGB4IzJCy5Yt w8qVK6FUVt750LJlS+39b/fk5eWhbdu2aNGiBQ4fPlxlm6urK0pKSjBgwACcOXMGTk5OmDdvHoKC guDr61slPHh6euLChQtVaunYsSOaNm2Kjh07wsLCAqampvjkk0/g6ekJLy+vWh1Nek+7du0AAKWl pY8c3vLz83H79m107NgRaWlp6NGjB+bMmfPQr1MqlTrBUqlUQqVSISsrC6WlpTr7urq64tdff8Wl S5d07uczMTHRhqk/hlSFQoHr16/j3//+NyZNmlTtPvdz/vx5/Prrr3j77bcBVLZHUVERtm7divHj xwMAUlJStF3a1Rk7diwWL16MGzduICMjA61atQIA2NjYYMOGDbC2tkaPHj3u23WrUCju261pbm6O 48ePY+/evToBEgBefPFFREZGIiAgAPn5+do/GK5du4ZXXnkFwcHBj9QGRE8i3vNGZGTWr1+PUaNG wdnZGQCgVqvh4+ODy5cv6+yXkpICHx+farelpqbC29sbZ86cgYjAyckJABAaGgqlUlltSBs9ejSS kpLw3//+t8q23weV2bNnA6i8clPd4IFH9aD7nIqKitC0aVPY2dk98vG2bdsGa2tr/PWvf4Wjo6N2 ypJ7fv311/t+bXUDK9zc3FBaWqpz1enu3bvw8PBA06ZNcezYMZ0rlVeuXKn2WCdPnsR7772HkJAQ NGvW7JHPBwC+/vpr7T1x4eHh+Ne//oXBgwdjzZo12n0aN26scx/cH4NhmzZt8PLLL2PRokXw9PTU rv/yyy+RmJiI4OBgWFhYPFZd9+zcuRPh4eGYOXNmlT8GwsLCkJubi1WrVsHU1FT7c+Po6Ki9CnfP g743RE8ihjciI7Jx40ZYWlpCrVYjJSUFcXFx2LZtG3r16gUXFxftL72UlBQUFxfD398fPXv2rLKt pKQE/v7+aN++PVQqFW7cuAGgcoSjlZWVzi/xe2bMmIGBAwdi/PjxyMzM1K6vqKhASUmJNpTExMRA rVZDRHDy5Enk5+drRx9WVFTohId7XbtA5S/tixcvori4GNnZ2Thz5gyKioq0+xYXF2v/HRUVhffe e6/aNrrX/fl7+/btw4IFC7Bp0yY4OzvD19cXv/zyC+bPn4/MzEwcPHgQ0dHRAKqGGxHRCZL3tj/3 3HPo3r27tstSRBAfH4/JkyfDz88PBQUFGDt2LM6dO4cDBw5or4z+/pyByrnp1Go1ysvLtcH4zp07 KC8vR+PGjXHz5k3k5uZWGcFZXFyMy5cv64z8BYCgoCD88ssvOHr0KADAz88P27Zt03aVXrp0Cbm5 uTpzwgUFBWHLli0YMmSIdl1MTIx2nxMnTqCwsFDbtr8/hz/WZWVlhZs3byI7OxsxMTHatrt3brm5 uQCA+fPnY/LkyfDx8UHnzp1RUFAAABg8eDAiIiKwevVqZGdn44cffsCJEydARL9T1zfZEVHN7Nu3 T0xNTUWhUGhfSqVSLly4ICIily5dkrFjx8rq1atl7NixcuLECe3XPmhbTEyMDB8+XP7+97/LjBkz 5Mcff7xvDRUVFbJ27Vrx8fGRoUOHyoQJEyQgIEBmz54teXl5IiKybNkysba2Fj8/P9mxY4fY29vL ihUrZP/+/WJvby/Dhw+X9PR02bp1q5iamsqMGTPk9u3bolKpxNfXV5o1ayZTpkyRuXPnytSpUyUz M1PCw8PFw8ND5s2bJ3PmzJH33ntPOzfd7x06dEi6dOki5ubmMmnSJJk+fboEBgbK5MmTtQML7omI iBB3d3exs7OT4OBgUalUkp2dLUOHDpW2bdvKqVOnJDU1VZ599lnp06ePXLp0Sf7zn/9Io0aN5P33 35fCwkLJzMyUIUOGSEhIiMyaNUt++OEHne+Xp6en2Nvby+zZs0VEJDU1VV544QV56qmn5PDhwyJS OUdb27ZtpWPHjvLNN9/Iiy++KP369ZPCwkLZtGmTNGvWTD799FOd2vPy8mTYsGHStWtXSUxM1K4v KyuTpUuXikKhkG7dusm5c+ektLRU3n77bWnevLm88cYb8s4770hgYKAkJSVpv06lUslHH32k8x7f fvut2NjYSJ8+fWTPnj3StGlTmTlzphw6dEjMzc3l/fffl5ycHAkKChJLS0vtwJPg4GDp0KGD7Ny5 U2JjY8XJyUm8vLxk165d4u7urh24MW/ePHFzcxMrKytRKBRiY2Mjp06dEpHKQRCtWrUSZ2dnmTt3 7n1/HomeVAoRPU76Q0RUCzZu3IhNmzZV6U4j43Tr1i0sXbpU50kP165dw4EDBxAUFGTAyoiMA7tN icgo8O/MhmPbtm1ITk7WTg5dXl6OEydO4OWXXzZwZUTGgeGNiOq1rKws7N69GykpKYiKijJ0OVQL Ro4cCUtLS7i6uqJnz56YMGECnnnmGbi5uRm6NCKjwG5TIiIiIiPCK29ERERERoThjYiIiMiIMLwR ERERGRGGNyIiIiIjwvBGREREZEQY3oiIiIiMyP8Hki3y0aQRG8YAAAAASUVORK5CYII= ", null, " AAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlcTun/P/DXucsQCoVClOzCWLKNpfKx78q+ZRtFjLUw Y5j0Nbaxfcg2DNmGEcZYxhIGYZjCaFL0MSSFbBWlVPf790e/zrhVxCjuvJ6PRw/OdV3nOu9zuut+ d53rOrciIgIiIiIi0lua9x0AEREREf07TOiIiIiI9BwTOiIiIiI9x4SOiIiISM8xoSMiIiLSc0zo iIiIiPQcEzoiIqIshIeHZ1v38OFDHDp0CCEhIXkYEVH2mNDReyci2Lx5M1q2bInPPvsMHTt2hLW1 NTQaDTQaDfbs2YMTJ05g8ODB6NGjx/sO953auHEj5s+fj2rVqqFv377Ztrt58yY+//xzdOzYEYMH D0bbtm0xaNAgXL16VW1z+/ZtTJ06FdWqVUNERERehP/GAgICUKdOHWg0Gtja2uLnn3/Wqf/999/R vn17GBsb44cffgAA7N69GxUqVMDz58/fR8jvxLJly+Dh4YFZs2Zh0KBBuH///ivbX79+HcOHD8fC hQsxZMgQbN68Wac+JSUFM2bMwMyZM/Hll1/Czc0NiYmJOm3OnDmDFi1aYOjQoViwYAEyHjl67949 9OjRAz/++OMbn8fWrVvRoEEDtGrVCpaWltBoNGjSpMkb95NbkpKSsHDhQrRs2RKbNm164/0HDRqk /t7RaDSYO3dupjbh4eHo3r07vL29YW1tDVtb23cROtG/J0TvUWpqqvTr10+KFy8uR48e1albvHix GBgYyJ49eyQtLU06dOggjo6O7ynSdy80NFTs7OxERCQ4OFgGDBggWq02U7tTp06JiYmJzJkzR6d8 xYoVUqRIETl48KBatmXLFlEURSIiInI3+H/hypUrotFopEmTJlnWL1y4UGbNmqVunzt3Tnr27Ckp KSk5PsbNmzf/dZzvyvz586Vly5bq9urVq6VRo0aSlpaWZfsHDx5IhQoV5NixYyIikpSUJDY2NvLL L7+obUaPHi2DBw9Wt6dNmyZOTk7qdkREhBQtWlS2bdsmIiLz5s2TBQsWyKpVq2TKlClv9XN05swZ MTQ0lODgYBERSUtLk0mTJomlpeUb95Wb7ty5I4qiiK+v7xvv17lzZ/H19RVfX1/ZuHGjxMTE6LQ5 c+aMlCpVSvbt2/cuQ36lD+m1TB82JnT0Xs2ePVsURZGdO3dmWT958mT5+eefRUTExcVFHBwc8jK8 XDVjxozXvrE+fvxYLCwspHXr1lnWDxkyRIoXLy5RUVEiInL8+PEPPqETEenatasoiiKhoaGZ6tq2 bSt37tx5675DQ0PFzc3t34T3zjx+/FiKFCmik1wkJiZKoUKFZMuWLVnu89VXX4mNjY1O2ddffy1V q1YVEZGrV6+KRqOREydOqPXXr18XRVHk9OnTIiIyfvx4sbW1VeuXLVsmIulJWOPGjSUkJOSNz8XT 01OKFy+eqdze3j7LP0Tep7dJ6GbMmKFev6xERkaKmZmZfPvtt/82vBx79uyZtG/fPs+OR/qNt1zp vYmPj8fcuXNRuXJlODk5ZdnG3d0dhoaG6raiKHkVXq6LiopSb4NlZ926dbh37x6GDx+eZf3IkSMR FxeHxYsX50aIucbd3R0AsHLlSp3yW7duwdDQEBYWFjrlkv7H52v7jY+PR9++fZGUlPTugv0XDh06 hMTERDRs2FAtMzIygq2tLbZv357lPjt37oSdnZ1OWcOGDREeHo6LFy9i9+7dEBGdNjY2NjA1NcVP P/0EALh27Rpatmyp1qekpAAAfvjhBzRr1gw1a9Z843NJSUlBXFxcpluZkydPxpMnT964vw9JcnIy Vq1ahf/85z9o164d/Pz8MrWZNm0a0tLSMHny5DyLy93dHWFhYXl2PNJvTOjovTl+/DiePn2q88bz Mmtra3Tq1EndFhH89NNPqF69OszMzLBgwQK17vnz55g8eTL++9//Yvr06ejduzfi4+MBAAcPHkTP nj0xZcoU+Pj4oHz58ihfvjyOHTum0/eqVaswY8YMeHh4wNHRUWfC886dO/HFF1/AyckJderUwaFD h7KNW0SwaNEiTJw4EZ6enmjatCnWrVun1nt4eODcuXO4fv06PDw8sGTJkiz7OXz4MACgadOmWdbb 2dnB0NAQBw8e1Cm/ePEi7OzsYGRkhBYtWuDatWtq3alTpzB27FisXr0anTp1wu7duwEAsbGxmD17 NurXrw9/f3/06dMH5ubmqFu3LqKjo/Hjjz+iefPmMDU1xaJFi3J03bPTtm1bVK1aFb6+vkhISFDL fX19MXjwYHX77t27mDVrFipXrozIyEi1/Pr16/D09IS3tzfat28Pb29vAIC/vz8ePXqEwMBAeHh4 4MqVKwCAq1evwtXVFV5eXnByckKvXr0QFRWl1k2dOhX9+vXDjh07YGZmBk9PT4wYMQIajQbDhg1T 57wFBgbC3NwcJ0+eBJA+N87c3BzR0dFZnueff/4JAChfvrxOuaWlJS5evJipfVJSEq5du5apfcb2 xYsX8eeff8LU1BSFCxfOts9GjRpBo0n/9X7ixAk0b94c8fHx8PHxgZeXV5axvk6/fv1gYGCAoUOH Yvr06UhOTgYAdO7cGSYmJkhKSsLatWthb2+PnTt3wtnZGUWKFEHNmjUREBAAIP36ubu7Y8KECVi6 dClMTEzUn4vVq1dj3LhxaN++PRo3bozAwED12Lt374aHhwd8fHzQtm1btb8Ma9euhYuLC+bMmaO+ Fl7UsGHDV85RjY+Px7hx49C9e3ecPn0avXv3Vv/oAIAnT55g+/btsLGxgaurK2rWrAkrKyssX748 y/7S0tIwbdo0aDQaODk5IS4uDkD667NEiRI4deqU2u+4ceMwc+ZMuLq6omXLljh9+jQA4PLlywgL C8Pjx4/h4eGBvXv3AgAiIiIwceJEDBs2DLVq1YKnpye0Wi0A4O+//8bkyZOxbt06tGnTBhMmTMj2 nCkfeo+jg/SRmz9/viiKItOnT89RexcXFylXrpw6L2jBggVSoEABefjwoYiILFmyRCpXrqy2r1On jnh7e4tI+q2mWrVqia2trRw9elRSUlKke/fuUrduXbX9tGnTZOnSper2Z599Js2aNRMRkYCAAJk6 dapaN3r0aClcuLDcv38/y1i/+uor6d27t7p9+fJlMTAwkBUrVqhlQ4YMee0t1+rVq4tGo5Hnz59n 28bCwkKKFi0qIv/ccnV1dZWrV6/KgQMHxNzcXKpVqyZpaWmi1WrFzMxMvd23a9cuMTY2lqSkJElL S5NTp06JoijyxRdfyOPHj+XZs2diY2MjdnZ2cvbsWRERWblypRgZGcmTJ09E5NXX/VWWLl0qiqLI qlWr1LIGDRpIUlKSuh0XFydr1qzRuY0cGRkpdnZ2Eh8fLyIihw8fFkVR5MiRIyIi4uDgIEOHDlX7 iI6OFnNzc/nrr7/Ust69e0ulSpXk6dOncuvWLWnevLlUrFhR9u7dK//9739l+/btkpiYKKampjJ6 9Gh1v3v37smgQYPUbV9fX6lZs6bcu3cvy3McOXKkKIqS6ZbkgAEDpGDBgpnaR0dHi6IoMmPGDJ3y 8PBwURRF5syZI+3atZMKFSpk2rdZs2ZSvXp1EUmfd/f111/Ld999p95GnDRpUra3eXNq27ZtUqxY MVEURSpXriwnT55U6549eybbtm0TRVHExcVFIiIi5OLFi1KpUiUpVaqUPH36VMLDw6VSpUpSr149 OXbsmHh5ecmxY8dky5YtOj8bHTt2lLJly0pqaqo8fPhQDA0N1fNYtGiRVKpUSW3r6+srzZo1U69x YGBgpluunTp1EldX1xyd4/3796VTp06iKIrs2bNHRET8/f1FURQZM2aM2m7ZsmWiKIocOHAg275q 1qwpffr0UbcjIyNl/PjxIiKi1WqlRYsWOuft4+MjhQoVkosXL4qIyMyZM8Xa2lqtT01NlY4dO8qz Z89EROT8+fOiKIr4+PiIiMigQYPUuZaJiYmZ5t1S/saEjt6bOXPmiKIoOonSq7i4uOgkQGFhYaIo ipw/f15E0n+RZ/xy1Gq18tlnn8nw4cPV9i+/0a9evVp9U717964YGRnpJE4hISHy22+/iYhIu3bt pG/fvjJ16lSZOnWqDBs2TFq0aCEXLlzIFOeTJ0/EyMhItm/frlPes2dPsbCw0Dmf180JrFGjhmg0 GklOTs62TenSpaVIkSIi8k9C97///U+t//7773XenLy9vdWJ1gcPHhRFUSQyMlJERG7cuCGKoujM z+rXr1+W1/3SpUsi8vrrnp24uDgpWrSo1K5dW0RETpw4keWb7svzAseOHSszZ87UabN582Y1wbS3 t9f5Pn/11VdSo0YNnfZ//fWXKIqixu3i4iJNmzbNdOypU6eKiYmJ2veqVat0Fie8zpgxY0RRlEzl AwcOFBMTk0zlDx48EEVRMp3f//73P1EURRYuXChdunTJMqFr3ry51KlTJ8s4rl27ps7DPHfunLi6 uoqXl5fcuHEjx+eSITo6Wvr06SOKooiBgYGsXLlSrct4/WT83IiI+Pn5iaIo8uOPP4pI+s9hv379 dPqsVq2auLq6qj9f/fv3lxYtWkh0dLSkpKTItGnT5NGjRyKS/j3QaDQikv6HWtmyZWXNmjU6/b3N HLoXpaSkiK2trZq8b926VRRFUROtDFZWVtK5c+ds+1m5cqUUKlRIHj9+LCLpv/MyFpUcOXJEFEXR +WMgJSVFypQpo/4x+HJC9+OPP4qtra16naZOnSotW7aU//u//xMRkT59+sh//vMf9Y+d7P7QoPzJ 8PVjeES5o0KFCgDSH7eRU/LCPKqCBQsCAJ49ewYAaNCgAWxtbbF27VokJibiyZMn6q2IrHzyySfq ozB+//13FCtWDAUKFFDrX5xndOnSJWzevBmtW7d+bYwhISFISkpCkSJFdMrr1q2LnTt34s6dOyhT pkwOzjb9lnNYWBhiYmJgaWmZqT41NRWPHz9G1apVdcpfPI927doBAMLCwtC1a1dMnz4dly5dwk8/ /YSHDx8CwGuvU1bXPeO26pte9wwmJiYYNGgQVq1ahVOnTsHX1xcjRox47X4BAQFwc3PTKRswYID6 /5fnWQYFBWX6XtSsWROffPIJLl26lOm8XjRmzBgsXLgQmzZtwqhRo3D06FFs2bLltTFmKF26NAAg ISFBJ4aEhASULVs2U3tTU1MYGhrq3IbOaA8A5cqVQ+nSpTPVv6pPAJgyZQqWLFmCU6dOoXPnzjh5 8iQ+/fRTrFq1KtO1fJ0yZcpg27Zt6Ny5M4YPH44xY8agRYsWOo/vePF7kDGl4saNGwDSf4YLFSqk 1icmJiI8PBz79u1D5cqVszzmt99+ixMnTuD8+fMIDw9XX4+hoaG4c+dOlj8b/4ahoSEGDBiAEydO AACMjY0BAAYGBjrtbG1tcf369Wz7GTBgADw9PbF582aMGTMGoaGhmDp1KoD01yUAndeFoaEhbG1t dV6XL7p48SI+/fRTzJkzJ8v6r7/+Gi1btkSNGjWwbNmyfPeYJ3o1zqGj96ZVq1YwNDTEyZMnczTh /XWuXbuGxo0bo2HDhvjiiy9gZmaW431TUlJw//59dV7QyxITE/H3339nKs/q2WgZv/RfTlRLliwJ QDfZep327dsDAM6ePZtl/eXLl5Gamoq2bdtm20epUqUAQH0T/eqrr7BkyRJMmjRJ7f9tZHzP/s11 HzNmDABgwYIFuHTpUrZzBV+UkpKCmzdv5vgYBgYGOvPvgPSEw9TU9LXfi3LlysHZ2RkrV67Eo0eP MiX9r1OvXj0AmV8Lt2/fRq1atTK1VxQFderUyRRvxv61atVC3bp18ejRo0wLP7Lr8/Dhw+rz0tzc 3DB48GB8+umnAJBpHl52kpOT1bmWGQYOHIjp06dDq9XiyJEj2e6bkQyZmJhkWf/s2TOISLY/X1qt Fi4uLjhy5Ag8PDzw2WefqfVPnz4FkD7/810rVqyYmpBXqlQJABATE5OpTcb5ZcXY2Bj9+vXDDz/8 gD/++EMn9lf9nsjuNZaYmKgmxi/KWPRia2uLCxcu4NNPP4WzszMmTZr0utOkfETvE7qMic2kfyws LDB8+HBERkZi48aNWbZ59uyZzuToV61yHTt2LCpVqqS+WaWlpeU4lho1akCr1WL16tU65Xv37oVW q0WVKlWwbt06ncQzOjoaW7duzdSXra0tihYtmmnidnR0NCpXrqwmdq87HwAYOnQoypQpkymuDD/8 8AOMjY1fOfk5Y8J+q1atcPbsWcyZMwcTJ06ERqPJ0Uja6+L8N9e9Zs2acHBwwL59+7Jd6fyyGjVq YNOmTerILJA+ufzo0aPq9ovfp6ZNmyImJgb/+9//1LKUlBQ8ePBA5w02u3OcMGEC/vrrL0ycOBE9 e/bM8bkBQJs2bVC0aFGd13BSUhJCQkLQu3fvLPdxcnJSR28y/PHHH6hZsyZsbW3RvXt3KIqi0yYi IgIPHjzI1GdqairmzZsHLy8vPH78GKGhoeo5aLVapKam5ug8ChYsiHnz5mX6A6Z+/foAAHNz82z3 zUhAWrVqBSDzdTYzM4OpqSnWrFmjU/7nn3/iyJEj2L59OzZt2gRPT0817gw2NjYAoI6kvUtBQUHo 2LEjgPTXXPXq1dXFDBmio6MzrUh+mZubGy5duoQZM2agf//+annGHy9Z/Z7IeF0qiqLzWq5atSrO nz+Py5cv6+yTsTjM398fVlZW2L9/PxYtWoQlS5bkSrJLH6Y8TeiioqIwevRorFq1Ci4uLll+ZEpS UhJGjRqFkiVLonz58lixYoVOvb+/v86TvDNWm5F+Wrx4MRwdHTF69Ghs3LhR55f1xYsX4eLignLl ygFIf3N68Q0l46/SjH/v3LmD0NBQxMXF4fz587h+/Tqio6PV24opKSk6/Wf0JSKwtbVF27ZtMXny ZEyfPh0HDhzAN998g7i4OGg0Gri7u+OPP/5Ar169cPz4cfj5+cHNzQ29evXKdE5GRkb48ssvsWPH DnUk6fnz59i5cye+/fZbneO/7vEaxsbG2LlzJ4KCgjBr1iydX+7bt2/Hhg0bsGnTJnUVZMbKxheT nRUrVuDzzz9HrVq11OTu999/R2JiojrqEhkZidjYWDUZe/E4Wq1WvcYAMrV53XV/nTFjxkBRFAwa NCjL+oxjZ3y/JkyYgKioKLRo0QJbt26Fn58fRo0ahebNmwNITxDCwsIgIrh48SJGjRqFsmXLYv78 +TrXrnbt2moC9PI5vqhRo0Zo3LgxDhw4gDZt2ujUrV+/Hra2tplGbjIULFgQEydOVD/1AgC2bNkC KysrdO/eHUD677QqVaqoK3JHjhyJ2NhY9Xfb8+fPsXnzZkyZMgVA+mrWQYMG6ayaXrt2LRwdHXUe jwIAPj4+GDZsGIyNjWFsbAwTExM1+dq9ezc6dOgAIH2UqFWrVpmSqhelpKTAxcVF5xMp/Pz8YG1t jc6dO+u0fXEUycfHBy4uLqhRowaA9NfPy9d69OjR2LVrF9zc3HDq1Cls3LgRs2fPRseOHXVes7Gx sThw4ACA9EfcGBkZwcnJCRs3blTLM1aGBwYGqquTO3TogFGjRmV7brNnz8bYsWPx6NEj9ViPHj3S WRnr6emp84dEZGQk/vzzT3h4eGTbL5A+StuwYUOYm5vrjOY1a9YM7dq1w5IlS9TX9s2bNxESEqLe ljU1NcW9e/cQFxeHCxcuYODAgShatCi6dOmC7du347fffsOwYcPUxHrdunXq7fghQ4bAxMTklSOI lM/k1WQ9rVYr9evXV1eiXblyRSpWrCipqak67WbNmiU//fSThISEyIQJE0RRFAkICFDr3dzcJCgo SIKCguTPP//Mq/ApF6WkpMjy5culUaNGYm1tLY6OjtKtWzeZMWOGPH36VETSJ8xXqFBBjI2NZceO HfLw4UMZNWqUaDQa6devnzx8+FC2bNkipqamUr58eVm9erUsWrRISpQoIfPnz5eDBw+KiYmJVK5c WU6dOiXXr1+Xli1bikajkYULF4pI+uo2JycnKVy4sNjY2GSaaD1z5kwxNzcXExMT6d69+2sf3rtk yRJp3ry5TJs2TVxdXcXPz0+t+/HHH6VMmTJSpEgRWb9+vdy9e/eVfd28eVM+//xzcXR0lD59+kj7 9u2lf//+mR4Qm5ycLJMnTxZ7e3v5/PPP5fPPP5d58+ap9QkJCWJvby9GRkbSuXNnCQkJEWtra2nU qJFERETI5MmTRaPRyJgxYyQyMlICAgKkevXqYmJiIjt27JDHjx/LhAkTRKPRyIgRIyQyMvKV1z0n 0tLSxMXFJcu60NBQ6d+/vxpTxgOHN23aJBUrVpSiRYtKt27d5Pbt2+o+hw4dkuLFi0vLli3VSf/X r1+Xzp07y4ABA2TGjBni7u6uro7+5ZdfpHz58mJsbCy+vr7qa+5Fq1atyvJhxT4+PmJubq4+2Dk7 Xl5e4u7uLt7e3tK/f3+d9jt37pQSJUrIH3/8oZZdvnxZevfuLXPnzpWhQ4dmei0mJyfLF198IZ6e nvL111/LsGHDJC4uTqfNgwcPpGvXrjplu3btkkGDBsmCBQvUT6IQSf99XKJEiSwXamRwdnYWRVHE wsJCunXrJq1btxZnZ2edhRUZiyIGDhwoo0ePloEDB8qECRPUT/nYsGGDFCtWTCwtLWXbtm3qp2U8 f/5c3N3dpUSJEmJmZiYuLi7q9yc6Olrq1q0rRYoUkUGDBsmFCxekVKlS0rZtW4mLi5PY2FgZPHiw mJmZSbVq1WTr1q1ia2sr8+fPV3+uGjduLH379s323JYtWyYWFhZiZWUlkyZNkhUrVmS5snz58uXS rVs3+eqrr6Rfv36vfBDxi3744Qc5d+5cpvKEhAQZPXq0tGvXTr7++msZMWKEzvtaVFSUVKpUSapU qaJ+IszJkyelbt26UqhQIaldu7bs2rVLbe/g4CDNmjUTHx8fGT9+vBw+fDhH8VH+kGcJ3eHDh8XI yEjn43uqVq2q8yYnkr7y8EXW1tbqG9K1a9ekWbNmsnfv3leu+iMiepfmzJmjs3Izv5owYcK/2j+r VdJElDfy7Jbr6dOnYWNjo/PU/6pVq+o82BVIv93wInNzc3U1ZFBQEJ49e4YePXqgfPny8Pf3z/3A ieijlpKSgpMnT8Le3v59h5Krdu3apd6CJSL9k2ePLbl7926mVU7FihV75SMrkpKSEBsbi27dugEA +vbti759++L27dtwdXWFk5MTrl27luljgoiI/i1PT0/cvn0bT548eePFEPqoWrVqOo8eeRsZ8yuz Wv1NRLkrz0boDA0NMy3Fft0Ku++//x6LFi2CkZGRTrmlpSX8/PxgYWGBPXv2vPNYiYhiYmJw8OBB 1KxZE8OGDXvf4eS6f5vM3bt3D/Pnz4eiKPDx8cm0IpSIcleejdCVLVs20/Ls2NhYWFtbZ9k+ODgY hoaG6rLxlxkZGaFt27ZZLskeMmSITr8ODg5wcHB429CJ6CO0YcOG9x2CXjE3N8fq1auzfcQOEeWu PEvoHB0dMXfuXJ2yq1evYsiQIZnaRkdH4+jRoxg/frxalpqaqjP/Dkgf3q9evXqm/X19fd/Jg2qJ iIiI9EGe3XJt0qQJrKyscPz4cQDpH0OUmJiIzp07Y/r06QgODgYAxMXFwdvbG+3bt0dYWBhCQkIw Z84cJCUlYdGiRQgLCwOQPifv6tWr6NSpU16dAhEREdEHKc9G6BRFwZ49ezBr1iyEhobi/Pnz2Ldv HwoXLoyDBw+ifv36sLW1Rbdu3XDy5EmdYfv+/fujSJEiOHz4MLy9veHm5oZixYrBz88v06gdERER 0cdGkXx4b/Llj0shIiIiys/0/rNciYiIiD52TOiIiIiI9BwTOiIiIiI9x4SOiIiISM8xoSMiIiLS c0zoiIiIiPQcEzoiIiIiPceEjoiIiEjPMaEjIiIi0nNM6IiIiIj0HBM6IiIiIj3HT7b/CPj4+MDS 0hLdunV736Fgy5Yt2L9/P5KSkrBr165Xtr1//z7mzJmDv/76C2XLlsX9+/dRsGBBTJ06FY0aNcqj iImIiD58HKH7CHz//fdYuXLlW+8fERHxzmLp06cPYmJiEBsb+8p2YWFhqFu3LpKTk3Hw4EFs2LAB +/fvh4uLCxwdHbFhw4Y3Pva7PA8iIqIPCRO6fO78+fN48uQJjhw5guvXr7/x/klJSXBzc3tn8Rga GsLS0hIikm2btLQ09OzZE8WKFcOyZcug0fzzMu3WrRs8PT3h6uqKS5cu5fi4YWFhmDt37r+KnYiI 6EPFhC6f8/X1xZ49e1CgQAGsWrXqjfd3d3dHWFhYLkSWvZ9//hlXrlzB4MGDdZK5DCNHjkRKSgpm z56do/7i4+PRt29fJCUlvetQiYiIPghM6HJCUXL/Kxc8efIEz58/R61ateDs7Iz169cjOTk5y3bf fPMNvL29MXDgQAwcOBDx8fG4fPkywsLC8PjxY3h4eGDv3r04ceIETE1NMXToUABASEgIevTooZN4 xcfHY/To0Vi5ciXGjh0LV1dXpKam5jjuw4cPAwCaNm2aZX2ZMmVgZWWFI0eOQESwfPlyaDQa+Pr6 AgCOHTuGatWqwdHREQDg7++PR48eITAwEB4eHrhy5QoA4Pr16/D09IS3tzfat28Pb29v9RgpKSmY Pn06pk2bhvHjx6Np06b45ZdfAADJyclYsmQJmjdvjm3btmHkyJGwtLRE5cqVERwcjCNHjqBNmzYo Xrw4Jk2apBP7zp078cUXX8DJyQl16tTBoUOHcnxdiIiIsiX50Ds/LSD3v3LBqlWr5MSJEyIiEhAQ IIqiyMaNG3XapKWlScuWLeXChQsiIhIfHy+FChWSr776SkREZs6cKdbW1jr7tGzZUoYOHapu//DD D6Ioiro9fvx4adOmjYiIaLVaKVGihGzatEmtd3FxEQcHh2zjbt++vSiKIteuXcu2TZMmTUSj0ciD Bw9Eq9W+PrtDAAAgAElEQVSKoiji6+urcwxHR0d128HBQSfmyMhIsbOzk/j4eBEROXz4sCiKIkeO HBERkQEDBoinp6fafv/+/aLRaGT//v0iIhIRESGKokjv3r0lOjpatFqtNGvWTKpXry779u0TEZFf f/1VFEWR8PBwEUn/HkydOlXtc/To0VK4cGG5f/9+tudJRESUExyhy4m8SOlyQUBAAFq2bAkAaNas GWrXrp1pccTPP/8MAKhXrx4AwNjYGHv27FFH4LKivDSi+PJ2hw4dMGLECACAVqtFkSJFcPPmzRzH ndGfvOK6aLVatc3Lx8/w4v4v9zV//nx06tQJxsbGAIA2bdpg06ZNaNKkCcLDw7F161Y4Ozur7Tt2 7Ij69evDy8sLAFChQgUAQKdOnVCmTBkoioIWLVogKSkJnTp1AgB1hDAkJAQA4O3tjZs3b2LatGmY Nm0akpKS0KBBA0RGRubwyhAREWWNjy3Jpy5cuIA///wTPXr00Cn//fffcenSJdStWxcAcOrUKZQt W1anTdu2bV/Zd3YJ1Iv7x8XFYfny5VAUBampqWoClhPW1tYAgJiYGFStWjXLNvfv30eRIkVQsmTJ HPX5cswBAQGZFnsMGDAAQPq1A4AiRYro1NetWxcbN27M9hgFCxbMcjs+Ph4AcOnSJWzevBmtW7fO UcxEREQ5xRG6fGrDhg04fvw4du/erX75+/vD0NBQZ5QuJSXlnT/O4+zZs7C3t0fXrl3h7u6OQoUK vdH+7du3V/vJysOHD3Hz5s1/lRilpKRkO2poYGAAALh9+7ZOecmSJWFo+OZ/A2WMDiYmJuLvv//O VP/8+fM37pOIiOhFTOjyoadPn+LevXswMzPTKS9VqhQ6duyIrVu34smTJwCAmjVr4ty5c5keAZJx K1ZRlEy3KxVFQVpamrr94v8BYMiQIWjVqpV6WzKr0blXjfJ16dIFderUwbp16zL1DQDr16+HoaEh pk2bplP+4nGy2u/F86hRowY2bdqEZ8+eqWVPnjzB0aNH0bhxY2g0GgQEBOjsHx0djWbNmmUb9+tU qVIF69at04kjOjoaW7dufes+iYiIACZ0+dK6devQpEmTLOs6duyIhIQErF27FgAwaNAgmJmZoV27 dlixYgX279+PESNGqLc6TU1Nce/ePcTFxam3Iq2trXHixAlER0cjLCwM+/fvBwDcunULAHDnzh1c unQJSUlJOHToEB49eoTo6Gg8fPgQAJCamvrKVa+KomDHjh1ITEzE6NGjkZKSotadOHEC3t7e+O9/ /4uGDRuq5dbW1ti9ezeePn0Kf39//PXXX4iJiVFX9ZqZmSEsLAwigosXL2LChAmIiopCixYtsHXr Vvj5+WHUqFFo3rw5ypcvjxEjRmDNmjXqA5Dj4uJw+PBhdQ5dRsL4YnKm1Wp1ziujTUai6e7ujj/+ +AO9evXC8ePH4efnBzc3N/Tq1Svba0FERJQj72s1Rm7Kp6eVI1u2bJHixYtLx44d5dKlSzp1oaGh 0rNnT1EURUqUKCFbt24VEZHAwEBp1KiRGBkZScOGDSUgIEDdJyoqSipVqiRVqlSRgwcPiohIeHi4 1K1bV4oWLSojRoyQ3bt3S8eOHcXX11fS0tJkwYIFYmxsLNWqVZNdu3bJuHHjpHTp0rJ582bZuXOn lClTRkqUKCHbtm175bncv39fJk2aJPb29tK7d2/p3LmzdO/eXU6fPp2p7d69e6VcuXJSunRpWbx4 sXh5ecmwYcPE399fREQOHTokxYsXl5YtW8qNGzdERGTTpk1SsWJFKVq0qHTr1k1u376t9peamirT p08XR0dHmT59uowYMUJ+++03ERF5+vSpLFiwQBRFkV69esm1a9fk4sWL0rx5czE0NJS1a9dKfHy8 zJkzRxRFka5du8rVq1dFJH3VsLm5uZiYmEj37t0lIiLiTb69REREWVJEcmmJ5XuU1W1CIiIiovyK t1yJiIiI9BwTOiIiIiI9x4SOiIiISM8xoSMiIiLSc0zoiIiIiPQcEzoiIiIiPceEjoiIiEjPMaEj IiIi0nNM6IiIiIj0HBM6IiIiIj3HhI6IiIhIzzGhy2f27t2LChUqQKPRoEWLFjh69KhO/eHDh9Go USOUKVMGv/zyCwBg6dKlaNCgwfsI942MHz8eGo0GderUQevWrVG2bFn1PJs3bw4zMzNoNBr8/fff mDhxIqytrfMkrhMnTmDw4MHo0aPHW/exf/9+DB8+HE2bNs22zfbt2+Hs7Ax3d/e3Pg4REeVPTOjy mS5dumDNmjUAAEtLS/znP//RqW/bti2aNGmC+fPno2vXrgCAihUrws7O7o2OExER8W4CfgOKomDX rl24fPky/P390a5dOyiKgi1btiAgIAC3b99G7dq1YWNjg9KlS+PWrVt5EleLFi3w8OFDxMXFvXUf HTp0gFarxb1797Jt4+zsjGvXruHZs2dvfRwiIsqfmNDlQ+3bt0ft2rXxyy+/IDY2NlP92bNn0adP H3W7a9euWL16dY77P378OHx9fd9JrG+idOnS6N69u7otIhARddvIyAiDBw8GAFhYWORZXBqNBqVK ldKJ5W36sLKyemUfhoaGKFmy5Fsfg4iI8i8mdPmUu7s7nj17hvXr1+uUnzp1Cg0bNsQnn3yiU56W lpajfqOiojB48OB/lby8LQ8Pj9e2GTduXB5EkjVFUXL9GO/juhMR0YePCV0+NXDgQBQvXhwrV67U Kd+wYQNcXFzU7evXr8PDwwOWlpY67S5cuAAPDw/MmjULDg4O6gjer7/+iidPnuDw4cPw8PDAnTt3 AADnzp3DyJEjMXPmTHTo0AEjRoxQb0EGBQXB3d0dEyZMwNKlS2FiYoL58+ejS5cu0Gg0mDZtGp4+ fQogfY6fhYUF/vrrr0znZGho+NrzfrlNcHAwmjVrBmNjY/Tp0wdpaWnQarXYt28fnJycsHHjRvVa hYSEICkpCTNnzsTo0aPRqFEjODk54f79+wCA58+fY9KkSfjhhx/g5uaG+vXr6xxLRPDTTz+hevXq MDMzw4IFC3Tqf/31V7i6uuLrr79Gq1atMHnyZDx//vyV53PmzBn07dsXXl5emD59uhoLERGRDsmH 3vVpAcj1r9wwYcIEURRFDh48KCIiCQkJYmdnp9Pm8ePHMn36dFEURS27cOGCODo6SkpKioiIrFmz RhRFkWvXromIiLW1tXh5eantL1++LKVKlZKYmBgREUlJSZHPPvtMmjRpIlqtVsLDw6VSpUpSr149 OXbsmHh5ecnx48clMjJSChQoIPPnz1f7CgwMlC+//DJH5+fi4iKKokhERESmuvXr14uiKDJv3jxJ Tk6W8+fPi6IosmfPHklKSpIzZ86Ioiji5OQkgYGBMnr0aImKihJXV1cJCQkREZHExEQpWbKk9OrV S0RE1q1bJxMnTlSPMWPGDJ1YypUrJ9u2bRMRkQULFkiBAgXk4cOHIiJy6NAhsba2lqSkJBERefLk idjY2Ejv3r3VPmbOnCnW1tbq9pUrV6RMmTJy//59EUn//pmbm8vQoUNzdH2IiOjjwRG6fMzd3R2K osDHxwcA4OfnB2dnZ502xYsXR6VKlXTKZs6cicGDB6ujXYMHD8aGDRtgY2OT5XHmzZsHOzs7lCpV CkD6KNmXX36Jc+fO4dChQ6hcuTLKly+P6tWrw9HRETNmzICDgwMsLS3h7OysM39v586d6Nu37zu7 Bp6envjkk0/QsGFDWFhY4OrVqyhYsKC6mrRdu3Zo0KABfHx81BG2TZs2Ydq0aZg1axYaN24MrVYL AEhOTsb27dsRHh4OAJlWm1atWlWdm9ilSxekpqbi+vXrAIBZs2ahQ4cOKFiwIACgaNGimDhxInbs 2IGwsLAsY/fy8oKjo6M6b65w4cKoUaPGO7s2RESUfzChywH5/5Pvc/MrN1SqVAnt2rXDgQMHEBER gc2bN2PQoEGv3S8gIABly5ZVtwsWLIjBgwfDwMAgy/ZBQUEoUqSITlndunUBABcvXgSQfg0LFSqU ad/x48fj77//xq+//goACAkJQe3atXN2gm+oYMGCmVaIvhjT5cuXYWRkhDlz5qhf+/btg5+fHwDA xcUF5ubm+PTTT/Htt9/CzMxMp68Xv48ZiVvG8XJyjV529OjRTLfCc+u1QkRE+o0JXT43ZswYaLVa TJ06FRqNBuXKlXvtPikpKbh582aOj2FgYIDIyEidsoxRpQIFCrxy38aNG6Nx48ZYsWIFLl++nGle Wl5KTExETExMlo8FSUlJQeHChXHq1Cm4urrim2++gb29PZKTk3PUt6GhIW7fvq1T9rprlJCQkGmV cl4svCAiIv3DhC6f69ChAypVqoTt27fnaHQOAGrUqIHvv/9evdUIpK9u/eOPPwCkJxUvjhQ1bdoU ISEhiI+PV8uio6MBAJ999pm6T3YmTJiAX3/9Fd999907vd36pqpUqYK0tDSsW7dOp3z9+vV48OAB /P39UbhwYSxevBgnT55EUFAQDh06pLZ71Tk2adIEZ8+e1bmm0dHR0Gg0aNy4cZb7VKpUCSdPntQp y80RXSIi0l9M6PI5RVEwatQoGBsbw8nJKcs2KSkpAIDU1FQAwMSJExEUFIT27dtjx44d2LRpE2bO nImGDRsCAExNTREaGorU1FQEBwdjypQpUBQFy5cvV/vcsmULOnXqpCZ0aWlp6nFe5uzsjDJlyiA4 OBjVqlXL8bk9efIEQPpI1ssyziXjXyB9lWpGDBmJ1Ysx1alTB82bN4eHhwcWL16MgIAAzJkzBxER EShTpgzOnDmDwMBAAOkJWvXq1VGmTBn1OC+uWM3oN+PfmTNnIjo6Gtu2bdO5Rm5ubihfvrzax4uP j3F1dcXVq1fh7e2N1NRU3Lx5E+Hh4QgPD8eNGzdyfJ2IiCj/M/jmm2++ed9BvGteXl7Ih6f11mrU qIFHjx6pnwzxoqCgICxduhQ3b96EoaEh6tWrhwYNGqBo0aL45ZdfsHPnTnzyySdYsmSJOt+sQIEC WLZsGc6dO4fBgwejXLlyaNeuHVauXImzZ8/i3LlzePr0KVavXg1DQ0P4+vrC19cXd+7cQbly5VCz Zk2d0SyNRoP79+/Dzs4OzZs3f+35PH78GN9//z3Wr1+P58+fIyYmBqampuqijevXr2PevHm4efMm DAwM0LBhQ3z//ffYsWMH4uPj0bRpU/j4+ODUqVOIj49HxYoV1Y8Ja9OmDUJCQrBu3Tr8+uuvqFev HmbOnAkA+O233zB16lSICI4fP4769eujZ8+eOHnyJJYsWYKIiAhUqVIFFhYW+PbbbxEUFITnz5/D 0dER1apVQ9OmTbFgwQJcvnwZR48ehYWFBebMmQNFUXDs2DEsXLgQt27dQrly5VCjRg00bdoUhoaG WLt2LRYsWIDU1FSYmJigZs2asLW1RenSpf/tS4OIiPIJRfLh/ZuXbwnSP1K06SNABTRZL3B4X0aN GoUpU6bk2eevEhER5Sevf1Ir5SsfWiIHpI+4xcTEMJkjIiJ6S0zo6L3JeNZdeHg4vLy83nc4RERE eouLIui9iYyMxL59+9CzZ0+0atXqfYdDRESktziHjoiIiEjPcYSOiIiISM8xoSMiIiLSc0zoiIiI iPQcEzoiIiIiPZenjy2JiorC7NmzUadOHZw9exaenp6wtbXVaZOUlIQJEyZgx44dMDIywrRp0zB6 9Gi1fs2aNbh79y5EBKmpqfD29s7LUyAiIiL64OTZKlcRgZ2dHebNm4fWrVsjNDQUnTp1Qnh4OAwM /nnYrbe3N6pXrw5bW1usXbsWS5YswalTp9CsWTPs2bMH8+fPx+nTpwEAffr0Qdu2bTF8+HDdk+Iq VyIiIvqI5NktV39/f4SGhsLBwQFA+ueLFihQAD///LNOO3Nzc/Tq1Qs1a9bEokWLYGVlpSZw8+fP R4cOHdS23bt3x5IlS/LqFIiIiIg+SHmW0J0+fRo2NjYwNPznLm/VqlVx7NgxnXYjR47U2TY3N0eF ChXw/PlzBAYGonr16mpdlSpVEBISggcPHrzTWDM+7/R9+hBiICIiIv2QZ3Po7t69CxMTE52yYsWK 4fbt29nuk5SUhNjYWHTr1g2PHj1CSkoKihUrptYXL14cAHD79m2ULFnyncVaQGMAy/VT31l/b+P2 0LnvtL+oqCh8+umnOHToEBo0aPBO+87w5MkTrFu3DgcOHECrVq0wderbXcOlS5di48aNCAoKescR EhER5U95NkJnaGiIAgUK6JRptdpX7vP9999j0aJFMDIyUkf2XuwjY3/Ol3s9Y2NjNG3aVCchzo1j DB8+HOfOncPz589zvF9ERITOdsWKFWFnZ/euwyMiIsq38myErmzZsggICNApi42NhbW1dZbtg4OD YWhoiI4dOwIAzMzMUKBAAcTFxensDwDlypXLtP8333yj/t/BwUGdu/exMjExwd69e3PcPuOWbwGN wWta6jI2NoapqWmO24sIhg4dqnPrvWvXrujatesbHZeIiOhjlmcJnaOjI+bO1b2NePXqVQwZMiRT 2+joaBw9ehTjx49Xy1JTU+Hg4IDw8HC1LCwsDDVq1EDp0qUz9fFiQkf/0Gq10GhePzD7ponc2/L2 9sZvv/2WqTwtLU1n9TMRERFlL89uuTZp0gRWVlY4fvw4gPRkLDExEZ07d8b06dMRHBwMAIiLi4O3 tzfat2+PsLAwhISEYM6cOUhOTsaIESN0RpkOHDiAYcOG5dUp6I2NGzfiu+++w6JFi2Bubo7ff/8d a9asQZMmTbB582YAQGBgIEaOHIl27drh8OHDaNiwIUxMTDBu3DgkJCRg0qRJsLKyQrVq1RAaGgoA uHDhAipXrgxHR0cAwI0bN+Dm5gaNRoNbt25lG09ISAhGjRqFNWvWoFevXli5ciUAIDIyEr///jsA wMPDA76+vrh+/To8PDxgaWmp08e5c+cwcuRIzJw5Ex06dMCIESPU0dqzZ8/CxcUFgwYNgp+fH6pW rYrSpUtj69at6v5///03Jk+ejHXr1qFNmzaYMGHCO7raRERE71+ejdApioI9e/Zg1qxZCA0Nxfnz 57Fv3z4ULlwYBw8eRP369WFra4tu3brh5MmTWL16tbpv//79UbRoUfTq1QsRERGYPn06jIyMYGVl hYkTJ+bVKeiFpKQkTJkyBXfu3AGQPh9No9GgWbNmcHNzUx/SXK9ePWi1WgQGBiIhIQHnzp3DkSNH 0KFDB6SmpmLu3LmYP38+7O3tMXv2bGzevBn169dHs2bNEBkZqfbdt29frFmz5pUxDRw4EL169cLI kSPRsGFDNGzYEJ07d0b58uXRu3dvHDx4EAsWLACQfhu9UKFCuHfvnrp/cHAwunTpgpCQEJQqVQqp qamwt7dH+/btcebMGTRu3BizZ8/GX3/9he7du+PKlSuYOHEixo4di/79+wNIH7Ht1asXunTpgv79 +2Pp0qXv/NoTERG9L3n6SRE2NjbYsGEDAOh8+kNgYKD6/6xuv71o8uTJuRFavpGSkoKHDx/Cx8cH 7u7u6NKlC54+faquCM5gYGAAS0tLmJiYoEePHgCgzjNs3LgxjI2NAQAtW7bEgQMH1P3e5qHNw4cP R/PmzQEAhQsXhlarRUREBMqXL5+pbfHixVGpUiWdsnnz5sHOzg6lSpUCkL7A5ssvv0SXLl1w6NAh tG/fHiVLloSNjQ2cnZ0BAJ07d8by5ctx7949mJub4/nz51i6dCkcHBxgbGzMkV0iIspX+Fmu+Yyx sTG8vLwwduxYdOzYEVFRUZmSuewULFgwU9knn3yC+Pj4fxXTmDFjYGxsjO+++w579uwB8PoVzi8K CgpCkSJFdMrq1q0LALh48aJa9mKi+cknnwAAkpOTAQBff/01Ll68iBo1amD37t1ZzrskIiLSV0zo 8qFp06bBz88PwcHBqFOnDs6cOfOv+nt5RE5RlDfaf+XKlfjiiy8wZswY9O7d+42Pb2BgoN7mzZDx 3MGXH4WTHVtbW1y4cAGffvopnJ2dMWnSpDeOg4iI6EPFhC6fiYmJQXBwMJycnBAaGoo6dergu+++ e2f9K4qCtLR/PsXixf9n5fbt2xg7dixcXV1RqFChTCNzOUkOmzZtipCQEJ2RwujoaADAZ599lqO+ /P39YWVlhf3792PRokVYsmSJ+tgbIiIifceELp9JTEzEqlWrAABFixaFs7MzypYti5SUFADQeeDv y8lYRrKV0TajzYsjdBUrVsSlS5cQFhaGyMhIbN++HUD6itcMKSkpSE1NBQDcu3cPWq0W58+fR3Jy Mnbs2AEg/ZMrHj16pD6zLiwsDJcuXYKIqMfP6GPKlClQFAXLly9Xj7FlyxZ06tRJTehSU1N1ksWM 88w4x3Xr1iEhIQEAMGTIEJiYmKjzBImIiPSe5EP/9rSep6W+o0jyPoYbN26IgYGBfPHFF7Jq1SoZ OXKkxMTEyP/93/+JoijSqlUruXTpkgQGBoqdnZ0UKlRIfvrpJ3n69Kn4+PiIoijSpk0bCQ4OlgsX LkiDBg2kYMGCsmnTJtFqtXL//n2xt7eXwoULi5OTk5w6dUpatGghK1eulISEBFm8eLFoNBpp2LCh BAQEiFarlZ49e4qRkZG0bNlSgoODpX79+lK9enX5888/JSEhQRo0aCCWlpbi6+srgYGB0rp1a9Fo NDJr1iyJi4sTEZGgoCBxcHCQkSNHyldffSWTJk2SpKQkERE5e/asVKhQQczMzGTfvn1y9+5dcXZ2 Fo1GI56enpKYmCgODg7SrFkz8fHxkfHjx8vhw4ff2feKiIjofVNE8t/nZr3NSkwiIiIifcVbrkRE RER6jgkdERERkZ5jQkdERESk55jQEREREek5JnREREREeo4JHREREZGeY0JHREREpOeY0BERERHp OSZ0RERERHqOCR0RERGRnmNCR0RERKTnmNARERER6TkmdERERER6jgkdERERkZ5jQkdERESk55jQ EREREek5JnREREREeo4JHREREZGeY0JHREREpOeY0BERERHpOSZ0RERERHqOCR0RERGRnmNCR0RE RKTnmNARERER6TkmdERERER6jgkdERERkZ5jQkdERESk55jQEREREek5JnREREREeo4JHREREZGe Y0JHREREpOeY0BERERHpOSZ0RERERHqOCR0RERGRnmNCR0RERKTnmNARERER6TkmdERERER6jgkd ERERkZ5jQkdERESk55jQEREREek5JnREREREeo4JHREREZGeY0JHREREpOeY0BERERHpOSZ0RERE RHqOCR0RERGRnmNCR0RERKTnmNARERER6TkmdERERER67oNO6O7du/faNlFRUXkQCREREdGHK08T uqioKIwePRqrVq2Ci4sLQkJCsmx38+ZNDBgwAL17985U5+/vD41Go36dPHkyt8MmIiIi+qAZ5tWB RARdu3bFvHnz0Lp1a9jb26NTp04IDw+HgYGBTluNRgNTU1NERkZm6mfnzp0IDAwEABgaGqJOnTp5 Ej8RERHRhyrPRuj8/f0RGhoKBwcHAECNGjVQoEAB/Pzzz5naVqhQAWZmZhARnfLw8HAEBwcjOjoa tWrVYjJHREREhDxM6E6fPg0bGxsYGv4zKFi1alUcO3Ysx30EBQXh2bNn6NGjB8qXLw9/f//cCJWI iIhIr+RZQnf37l2YmJjolBUrVgy3b9/OcR99+/ZFUFAQbty4ATs7Ozg5OeHu3bvvOlQiIiIivZJn CZ2hoSEKFCigU6bVat+qL0tLS/j5+cHCwgJ79ux5F+ERERER6a08WxRRtmxZBAQE6JTFxsbC2tr6 rfozMjJC27ZtERsbm2X9N998o/7fwcFBnbtHRERElN/kWULn6OiIuXPn6pRdvXoVQ4YMees+09LS UL169SzrXkzoiIiIiPKzPLvl2qRJE1hZWeH48eMAgLCwMCQmJqJz586YPn06goODddpndTt20aJF CAsLA5A+J+/q1avo1KlT7gdPRERE9AHLsxE6RVGwZ88ezJo1C6GhoTh//jz27duHwoUL4+DBg6hf vz5q164NADh58iR++eUX3L59G7t370bnzp1haGiIw4cPw9vbG25ubihWrBj8/Px0Vs0SERERfYwU eflhb9lITU3Vm+RJUZRMz7AjIiIiyq9yfMu1R48e6ic0EBEREdGHI8cjdFu3bkVCQgKCgoJQunRp 9OzZ84P9pAaO0BEREdHHJMcJ3YsePnyIcePG4cKFC+jTpw8GDRoEGxub3IjvrTChIyIioo9Jjm+5 3rp1CwkJCVixYgXs7e1x6NAhdO/eHa1atcLWrVsxePBg3Lp1KzdjJSIiIqIs5HiEztbWFpGRkbCy ssK4ceMwcOBAFCpUSK3ftGkTFi9ejAsXLuRasDnFEToiIiL6mOR42aqxsTF27dqF1q1bZ1l/69Yt PHjw4J0FRkREREQ5k+MRupiYGJQuXTpTWVpaGsqUKQMRQUJCAooWLZorgb4JjtARERHRxyTHc+jW rl2bqax06dJwd3cHkJ5EfQjJHBEREdHH5rUjdKtWrcL27dsREREBKysrnboHDx4gPj4eERERuRrk m+IIHREREX1MXjuHzs3NDQYGBjhy5Ag6deqkkygVKVIE9vb2uRogEREREb1ajufQJScno2DBgpnK Hz9+jBIlSrzzwP4NjtARERHRx+SVI3Q3b95EmTJlULBgQYSHhyMmJkanPi0tDX5+fli9enWuBklE RERE2XvlCF358uUxadIkjB8/HgsXLoSHh0eW7bRaba4F+DY4QkdEREQfk1eO0AUEBMDCwgIA0K9f P1hYWGDAgAFqvVarzXL1KxERERHlnTf6LFetVguNRvdJJ1k9n+594wgdERERfUyyHaG7f/8+QkND X7mziODnn3/G4sWL33lgRERERJQz2Y7QXbt2Dba2tihXrhwURclyZ61Wi+joaKSkpORqkG+KI3RE RBjk87QAACAASURBVET0Mcl2hK5q1apYtmwZ3NzcXtnB1q1b33lQRERERJRzbzSHLitRUVEoV67c u4rnneAIHREREX1MXrnK9cyZM6hevTpMTU1x4sQJXL9+Xac+LS0NBw4cwO7du3M1SCIiIiLK3isT uoEDB2LSpElwd3dHWFgYJk2ahFKlSqn1aWlpuHfvXq4HSURERETZe2VCFxISAiMjIwBAr169UL58 eXTs2FGnzc6dO3MvOiIiIiJ6rTeeQ/f3338jLi4OVatWRZEiRXIrrn+Fc+iIiIjoY6J5fZN0165d Q7169VC5cmU0aNAAxYsXx8SJEz+4R5YQERERfWxynNC5uLigVKlSOH36NB4/fozo6GjUr18f33zz TS6GR0RERESv88o5dC+6cuUKbt++DWNjY7Vs4MCB8PLyypXAiIiIiChncjxC169fP9y5cydTOVe5 EhEREb1f2Y7QnT9/HlOmTFG3tVotWrZsiRo1auiUvThiR0RERER5L9uErlatWjAyMkLv3r1f2UHr 1q3feVBE+U3G5yFz9XUuyfi8aV5fIvpIvfKxJffv39d5kPDL0tLSEBAQAHt7+1wJ7m3xsSX0oWFC l8uY0BHRRy7Hz6GLjY3Fpk2bEBsbq74pxcbGYtu2bYiOjs7VIN8UEzr60DChy2VM6IjoI5fjVa4j RoxAgQIFEB0dDRub/9fevcdVVeZ7HP9uEJMyUSy8laC9NBnSzqSZjVnQlKaC15rRMjUrRivLsuP9 NpZmZpNj2jhex5ljdTRNMh0zvGCao2LoIRXFvKKBFw5YXpDLc/5wWIcte+PW2MBif96vF6/Yz1p7 7996fF70fT1rPWs1ljFGe/fudbrODgAAAGXP40DXoUMHvfjii0pJSdHp06fVrl07Xbx4UUOGDPFm fQAAALgGj29bsn//fn322WcKCwvTF198oYSEBG3ZskVLly71Zn0AAAC4Bo9n6Lp06aIRI0bonnvu 0dChQ9WpUyft2rVL3bt392Z9AAAAuAaPF0W4cvbsWdWuXbs06ykVLIpARcOiCC9jUQQAH+fxKde8 vDxNnz5d7dq1U4sWLdS7d28dO3bMm7UBAADAAx7P0L388sv6xz/+od69e+tXv/qVLl++rPj4eL30 0kvq2rWrt+u8LszQoaJhhs7LmKED4OM8DnTBwcH66quvdP/99zu1Dx06VO+//75XirtRBDpUNAQ6 LyPQAfBxHp9yveuuu9SiRYti7VWrVi3VggAAAHB93K5yPXLkiDZt2mS97tChg5577jk98cQTVlt+ fr6SkpK8WyEAAABK5PaU65EjR9SyZUs1b97c6XRR4e+FBg0apN/97nfer/Q6cMoVFQ2nXL2MU64A fFyJ19Bt2rRJDz/8cFnWUyoIdKhoCHReRqAD4ONKvIbu6jD38ccf69FHH1WzZs3UuXNnrVmzxqvF AQAA4No8flLEjBkzNG3aNPXu3VuhoaHKycnRX/7yFx0+fFiDBg3yZo0AAAAogceBbtu2bTp48KDT qtbXX39d48eP90phAAAA8IzHty1p166dy1uU5OTklGpBAAAAuD4ez9AdPXpU69ev1wMPPKALFy7o wIEDmj9/vvLy8rxZHwAAAK7B4ydFZGZmqk+fPk4LIXr27Kn58+erRo0aXivwRrDKFRUNq1y9jFWu AHycx4Fu9erVioiIUEBAgNLS0hQWFqaQkBBv13dDCHSoaAh0XkagA+DjPA50ISEhWrx4sR5//HGn 9vPnz+uWW27xSnE3ikCHioZA52UEOgA+zuNFEYsWLVKVKsUvuVu0aFGpFgQAAIDr4/EM3X333add u3YV/wCHQ/n5+aVe2C/BDB0qGmbovIwZOgA+7pqrXPft26e1a9dq4MCB+tWvfqU77rjD2maM0YIF C7xaIAAAAEpW4gzdjh079NBDDyk3N1eSFBoaqi1btqh+/frWPjk5Obrpppu8X+l1YIYOFQ0zdF7G DB0AH1fiNXQTJkzQhx9+qP/93/9VWlqaIiMjNWnSJKd9vBnmMjIyvPbZAAAAlUWJp1xr1aql2NhY SVJQUJD++te/6qmnnnLaJy8vz+ViCVdOnDihSZMmqUWLFtq6dauGDRumiIiIYvsdOXJEo0ePVlpa mhISEpy2zZkzR+np6TLGKC8vT2+99ZZH3w0AAFBZlThDV716dafXVatWVd26dZ3aPvnkE4++yBij Ll26qEePHho4cKBGjBihmJgYlwsq/Pz8FBwcXOz0VFxcnBYtWqRx48Zp/Pjx1tMqAAAAfFmJU2tL lizRgQMHZIyxrks7cOCAHn30UUlSbm6ukpOT9eyzz17zi+Lj47Vv3z5FRkZKksLDwxUQEKAVK1ao Z8+eTvs2bNhQtWvXLhbopk6dqo4dO1qvu3XrpsmTJ+v555/36GABAAAqoxIDXfXq1dWgQQP5+/tb baGhodbveXl5SktL8+iLtmzZosaNGzudnm3atKnWr19fLNC5cvnyZSUmJur111+32po0aaI9e/bo zJkzuu222zyqAwAAoLIpMdDNnTtXHTp0KPED1q5d69EXpaenF3vma1BQkMeBMDMzU7m5uQoKCrLa atasKUlKS0sj0AEAAJ9V4jV01wpzktS+fXuPvqhKlSoKCAhwaisoKPDovYXvl+T0GYXv51YQAADA l3m2PLUU1K9fX5s3b3Zqy8rKUlhYmEfvr127tgICApSdne30fklq0KBBsf0nTJhg/R4ZGWlduwcA AFDZlFmgi4qK0pQpU5za9u/fr/79+3v0fofDocjISKWmplptKSkpCg8PV0hISLH9iwY6AACAyqzE U66lqU2bNgoNDdWGDRskXQljFy5cUHR0tMaMGaPk5GSn/V2djn3hhRe0cuVK6/Xq1as1YMAA7xYO AABQwZXZDJ3D4VBcXJwmTpyoffv2afv27fryyy918803a82aNbrvvvvUvHlzSdKmTZv0xRdfKC0t TZ9//rmio6MVEBCgp556SkePHtWYMWMUGBio0NBQvfHGG2V1CAAAABVSic9ytSue5YqKhme5ehnP cgXg48rslCsAAAC8g0AHAABgcwQ6AAAAmyPQAQAA2ByBDgAAwOYIdAAAADZHoAMAALA5Ah0AAIDN EegAAABsjkAHAABgcwQ6AAAAmyPQAQAA2ByBDgAAwOYIdAAAADZHoAMAALA5Ah0AAIDNEegAAABs jkAHAABgcwQ6AAAAmyPQAQAA2ByBDgAAwOYIdAAAADZHoAMAALA5Ah0AAIDNEegAAABsjkAHAABg cwQ6AAAAmyPQAQAA2ByBDgAAwOYIdAAAADZHoAMAALA5Ah0AAIDNEegAAABsjkAHAABgcwQ6AAAA myPQAQAA2ByBDgAAwOYIdAAAADZHoAMAALA5Ah0AAIDNEegAAABsjkAHAABgcwQ6AAAAmyPQAQAA 2ByBDgAAwOYIdAAAADZHoAMAALA5Ah0AAIDNEegAAABsjkAHAABgcwQ6AAAAmyPQAQAA2ByBDgAA wOYIdAAAADZHoAMAALA52we6EydOlHcJAAAA5apKWX7ZiRMnNGnSJLVo0UJbt27VsGHDFBERUWy/ OXPmKD09XcYY5eXl6a233rK2xcfHq3379tbrxYsXq3fv3mVSPwAAQEVUZoHOGKMuXbro3Xff1WOP PaZHHnlEnTt3Vmpqqvz9/a394uLitGjRIm3ZskWS9Pvf/17z58/X888/L0latmyZEhMTrxRfpYpa tGhRVocAAABQIZXZKdf4+Hjt27dPkZGRkqTw8HAFBARoxYoVTvtNnTpVHTt2tF5369ZN06dPlySl pqYqOTlZJ0+e1D333EOYAwAAUBkGui1btqhx48aqUuX/JwWbNm2q9evXW68vX76sxMRENWvWzGpr 0qSJ9uzZo9OnT2vnzp26ePGiunfvrjvvvFPx8fFlVT4AAECFVWaBLj09XTVq1HBqCwoKUlpamvU6 MzNTubm5CgoKstpq1qwp6cr1d7169dLOnTt1+PBhtWrVSj169FB6enrZHAAAAEAFVWaBrkqVKgoI CHBqKygoKLaPJKf9Cvcxxlhtd9xxhz777DPVrVtXcXFx3ioZAADAFspsUUT9+vW1efNmp7asrCyF hYVZr2vXrq2AgABlZ2c77SNJDRo0cHpvYGCg2rdvb22/2oQJE6zfIyMjrWv3AAAAKpsyC3RRUVGa MmWKU9v+/fvVv39/67XD4VBkZKRSU1OttpSUFIWHhyskJKTYZ+bn5ztdb1dU0UAHAABQmZXZKdc2 bdooNDRUGzZskHQlqF24cEHR0dEaM2aMkpOTJUkvvPCCVq5cab1v9erVGjBggCTpT3/6k1JSUiRd uSZv//796ty5c1kdAgAAQIXkMEUvTvOyQ4cOaeLEiWrdurW2b9+uwYMHq2XLlmrVqpVGjRqlHj16 SJKmTZumrKwsBQYG6ty5c9bMXseOHbVt2zYNHDhQQUFBio2NVXBwcPGDcjhUhocFXJPD4ZAkxqW3 /Lt/Rf8C8FFlGujKCoEOFQ2BzssIdAB8nO2f5QoAAODrCHQAAAA2R6ADAACwOQIdAACAzRHoAAAA bI5ABwAAYHMEOgAAAJsj0MGSW5Cv3IL88i4DAABcJwIdrBAX4OevAD//cquBMAkAwI0h0EEBfv66 Y+GIcq+hvMIkAAB2R6CDVzHzBgCA91Up7wJQuTHrBgCA9zFDh+vGrBsAABULM3S4bsy6AQBQsTBD BwAAYHMEOgAAAJsj0AEAANgcgQ4eYyEEAAAVE4EOHqsINyAGAADFEegAAABsjkAHAABgcwQ6AAAA myPQoVTxFAkAAMoeT4pAqeIpEgAAlD1m6AAAAGyOQAcAAGBzBDp4hOviAACouAh08EhJ18axEAIA gPLFogi4VRjSrrXQgYUQAACUL2bo4KToTFuAnz9hDQAAGyDQwQnPawUAwH4IdAAAADZHoAMAALA5 Ap0PKrxOjpWpAABUDgQ6H1R4nVx5L3jgdicAAJQObluCclPegRIAgMqCGToAAACbI9ABAADYHIHO RxSYAh0+d6bUPq+k69+4Ng4AgLJFoPMRRtJ3p46V2ueV9BQJnjABAEDZItABAADYHIEOAADA5gh0 AAAANkegAwAAsDkCnQ9jNSoAAJUDT4rwYaxEBQCgcmCGDgAAwOYIdAAAADZHoEOJuMYOAICKj0CH EgX4+euOhSPKuwwAAFACAp2PK48ZOGb9AAAoXQQ6H1eWK10Lb5PCrB8AAKWL25agzNxoeCyc0eM2 KwAAuMYMHW5Y0VOn3jiNWjTIEeYAAHCPQIcbVvTUqTdOo3JqFgAAzxDoUKEUzsqxcAIAAM+V6TV0 J06c0KRJk9SiRQtt3bpVw4YNU0RERLH95syZo/T0dBljlJeXp7feesujbag4Chc/XP37tRTOyqU9 N8Wb5QEAUKmU2QydMUZdunRRjx49NHDgQI0YMUIxMTHKz3eeiYmLi9OiRYs0btw4jR8/XgcOHND8 +fOvuQ0Vi7vTsZ7OvHnrmjxm/gAAlVGZBbr4+Hjt27dPkZGRkqTw8HAFBARoxYoVTvtNnTpVHTt2 tF5369ZN06dPv+Y2XNv32xLLu4TrmqkrqqQw5mlQc7e4YuPGjR7V5Gvol+LoE9foF9foF9fol+JK o0/KLNBt2bJFjRs3VpUq/3+Wt2nTplq/fr31+vLly0pMTFSzZs2stiZNmmjPnj06ffq0221nzpwp m4OwuT3bdpZ3CcV4ulLWXRgrPJ37S1bB8sfFNfqlOPrENfrFNfrFNfqlOFsFuvT0dNWoUcOpLSgo SGlpadbrzMxM5ebmKigoyGqrWbOmJOngwYNutxX9DNjL1admS1J0wYQn96bjFCsAwFeUWaCrUqWK AgICnNoKCgqK7SPJab/Cffz9/d1uM8aUfsGV0G3VbinvEn6RwvBXOCNX9JYm7sKep4HvWuGPcAgA qNBMGZk0aZK59957ndo6duxoBg0aZL0uKCgwVatWNStWrLDatm3bZhwOh/nxxx/dbsvIyHD63Lvu ustI4ocffvjhhx9++KnwP/369fvFOavMblsSFRWlKVOcb0Wxf/9+9e/f33rtcDgUGRmp1NRUqy0l JUXh4eGqW7eu220hISFOn3vw4EHvHAQAAEAFVGanXNu0aaPQ0FBt2LBB0pUwduHCBUVHR2vMmDFK Tk6WJL3wwgtauXKl9b7Vq1drwIAB19wGAADgqxzGlN0FaIcOHdLEiRPVunVrbd++XYMHD1bLli3V qlUrjRo1Sj169JAkTZs2TVlZWQoMDNS5c+c0ZcoUORyOa24DAADwRWUa6ErTpUuXdPny5WIrZwtl ZmaqWrVquvnmm8u4MtgR4wWeYqzgevj6ePH143fFXZ/80r6y3bNcjTH629/+pqZNm2rHjh1O2x56 6CH5+fnJz89Pv/nNb6xOOXHihF566SXNnj1b/fr10549e8qjdK9KSEjQvffeqxo1aqhDhw46fvy4 pJKP3Zf7RfLt8ZKUlKS2bduqVq1aevzxx3X27FlJvj1e3PWJ5NtjpVBBQYGioqKUkJAgybfHSlFX 94vEeHF1/L4+XtyNiVIdK794WUUZO3XqlDl+/LhxOBxm3bp1VntiYqKZOHGi2blzp9m5c6e18rWg oMDcd9995uuvvzbGGLN3717TqFEjk5eXVy71e0NGRobp27evSU5ONmvWrDGhoaHmscceM8YYl8ee n5/v8/3iy+MlJyfHjBw50ly4cMH8/PPPpk2bNmbUqFHGGN8dLyX1iS+PlaJmzpxpgoODTUJCgttj 94WxcrWi/WIM48XV8fv6eHE3Jkp7rNgu0BW6OtD16dPHTJ061Rw4cMBpv7Vr15rAwECTm5trtTVt 2tR89tlnZVart33yySfm3Llz1uuFCxeaatWqma+//trtsftyvxjj2+MlPT3d5OTkWK+HDx9uxo4d W+KxV/Z+cdcnxvj2WCn0zTffmFWrVpmwsDCTkJDg02OlqKv7xRjGi6vj9/Xx4m5MlPZYsd0pV1fy 8/OVmZmp999/X3fffbd69eql3NxcSZ49cszuevXqpVtvvdV6XadOHTVs2FBbtmxRo0aNXB77t99+ 63ZbZeGqX0JDQ31+vNSpU0dVq1aVJOXk5CgjI0NDhgwp8dgr+3hx1Sevv/66z48VSTp79qy+/fZb derUSdKVy158/W+LVLxfJP5f5O74fflvi7s+8cZYqRSBzt/fX6tWrdKPP/6ov//971q1apVGjRol ybNHjlU23333nQYNGqT09HSnR6VJVx6XlpaW5nKbL/TLwIEDGS//tnLlSrVu3Vrx8fHas2ePy2P3 tfGycuVKPfDAA4qPj9f333/PWJE0ffp0DRkyxKktIyPD5/+2uOoXXx8v7o4/IyPDZ/+2uOsTb4yV ShHoCjkcDvXp00cffPCB/uu//kuSZ48cq0zOnz+v5ORkDR48WP7+/i6P3Rjjs/3y6quvWm2+Pl5i YmIUFxenhx9+WH369FFAQIDPj5eYmBitWLHC6pNCvjpW5s6dq2eeecaavSzk639bXPWLKXLDCF8d L4WuPn53x+4r40VyPSbctd9on1SqQFeoa9euysrKkiTVq1dP2dnZTtuzsrLUoEGD8ijN66ZNm6YP P/xQ/v7+ql+/vttj99V+8fMrPuR9ebyEhYVp/vz5OnPmjG6//XbGi5z7pOhKV8n3xsrcuXP161// WoGBgQoMDNTRo0fVvn17zZkzR+fOnXPa15fGirt+6dWrl9N+vjZerlZ4/CUdu6/1S9Ex4a79Rvuk Uga6/Px83X333ZKuPHLs0KFDTtv379+vyMjIcqjMu+bOnas+ffro9ttvl3RlOfTVx56SkqKoqCif 7pfC6xQK+ep4KVStWjXVrl1bjz32GOPl3wr7JDg42Knd18bK9u3bdfHiResnNDRUX3/9tRISEvTD Dz847etLY8Vdv3z66adO+/naeLla4fG7OnZfGi9FFR0T7tpvtE9sGegKpx4Lp7h37NihefPmWe0f fvihRo8eLUl68MEHXT5yLCYmphwq956//e1vCgwMVG5urlJSUpSQkKBDhw4pLCzM6djPnz+vmJgY t49i84V++fOf/6z58+f77HjJzMx0eoReQkKC+vbtq9/85jfFjt1Xxou7Ptm5c6fP/21xxdV48JWx 4o4xxuf/X+Tu+F0du6+MF3d9kpiYWPpj5ZcvyC1bp06dMpMmTTJ+fn5mwIABZt++feaLL74wdevW NY888oiZPHmyiYuLc3rPDz/8YPr162dmzZpl+vXrZxITE8upeu/45z//aapUqWIcDof14+fnZ1JT U0s8dl/tlxkzZvj0eNmxY4epU6eOefjhh82MGTPMggULrG2+Ol5c9UlBQYHP/225WtHbc/jqWHGl sF98fbyUdPy+Ol7c9Yk3xoptH/0FAACAK2x5yhUAAAD/j0AHAABgcwQ6AAAAmyPQAQAA2ByBDgAA wOYIdAAAADZHoAN81N69e3Xq1KnyLsMjBw4c0OnTp8u7jGK8WdelS5f03XffWa/PnTun5ORkr3wX APsj0AGV0DfffKOuXbvq+eef10svvaROnTppzZo11vbPP/9c//Ef/6GUlJRyrPLKExmaN2+um266 SYMGDdLgwYM1cOBAPfLII4qKipIkzZ49WxEREdq3b1+51no1T+pKTk5Wt27dFBMTo759+yo8PFx+ fn7q3r17iZ998OBBPfHEExo6dKgkKSkpSW3bttWf/vSnUj0GV2bOnCl/f3+FhoZq06ZNVvuZM2f0 yiuvqGHDhtq2bZvX6wBwnbxwY2QA5Wj58uUmKCjI6c7ihw8fNvXq1TPz58+32kJDQ627/penMWPG mEaNGhVrHzVqlPX7L601KSnJ/Otf/7rh97tTUl3ffPONufXWW83y5cuttvz8fPPaa6+Z7t27X/Oz Fy5caCIjI63X48ePN/379//lRXvgueeeM7Vq1TKXL192al+0aJFZtGiRR5/x0UcfeaM0AG4wQwdU IufPn9eLL76oF198US1btrTaw8LCNHz4cA0ePNg6RehwOMqrTCf+/v7Wc5mLGjlypPX7L6k1KytL ffr00aVLl274M9xxV1deXp769u2rzp07O83G+fn56f3331ejRo1KvZbS9PrrrysrK0tLlixxal+9 erV+97vfXfP9u3fv1n/+5396qzwALhDogEpk7dq1yszMVIcOHYpt69Spky5evOj0P+mtW7cqPDxc ISEh+uMf/2i1L1u2TGPHjtWsWbP0zDPPKC8vTz///LNGjhyp9u3ba/bs2erQoYOaNGmi1NRUjRw5 Ui1atFBMTIwVzjZt2qQ333xTc+fO1ZNPPqmsrCyPj+OPf/yjqlev7nJbbm6u3n77bQ0bNkwPPPCA Pv/8c2vbhg0bNGHCBE2cOFHR0dHKzMxUYmKiTp48qX/84x9avny5Vdv48eP1/vvvKzo6Wrt375Yk ffLJJ3r44Ye1fPly3XnnnZo9e7b27NmjV199VQsWLFCPHj107Nixa9a/bt06HTlyRH369Cm2zd/f XwMHDpQkZWZmauTIkZo9e7aeeeYZzZgxw+1nXh0eV6xYoTFjxqhz586KjY21HvL9008/adiwYXrv vfcUHBysevXqafr06ZKunIofNWqUfv/736t79+46f/68y+9q3ry52rVrp48++shqO3nypGrUqKFq 1apZbe76MT4+XhcuXNDkyZO1c+dOSdIHH3ygUaNGqW3btvrLX/4i6coD7UePHq1PP/1UPXv21KJF i0ruWADulfMMIYBSNGXKFONwOMyBAweKbbt06ZJxOBzmlVdeMcZceaD4m2++afLz882qVauMv7+/ +fzzz40xxtSrV8/s2LHDGGNMmzZtzBdffGGMMWblypWmVq1aZu/evcYYY3r16mWioqLMpUuXTF5e nrnjjjvM1q1bjTHGPPjgg2bp0qXWfjNmzHBZ8/jx40316tVN//79Tf/+/c3jjz9uatWq5bRP0YfC T5kyxWzZssUYY8zSpUtN9erVzU8//WR2795toqOjrfc88MADZvbs2cXef+TIERMeHm4KCgqMMcas WrXKhISEmOzsbHP27FnjcDjMggULzLZt28zu3btN7969zXvvvWeMMWbEiBHmjTfecFlXUe+9955x OBxmz549Lo+5UMeOHc26deuMMcbk5OSYO++80yxevNgYU/yU64QJE6xTrkePHrX+HXNyckxwcLBZ sGCBMcaYkSNHmpkzZxpjjJk1a5bVlz/99JN5+umnrc+75557zLhx49zWtmTJEuNwOExSUpIx5kq/ b9q0ydpeUj8ePnzYOBwOa99PP/3UOq4dO3YYPz8/c/DgQZOUlGS6dOlijDHmwoULZtmyZSX2FwD3 qpR3oARQeko6NVk4g2OKnN6MiYmRn5+fOnXqpN/+9rdatmyZunXrpq+++koRERFKTExUdna2NbtW vXp1BQUFKTw8XJLUtGlTBQYG6qabbpIkNW7cWEeOHFGbNm20cOFChYaGKiUlRSdPnixxhu62227T woULrdcvv/yy230XLlyogoICffPNNzp//rwefPBBHT9+XLNnz9bjjz9u7bdu3TrdfPPNxd6/ePFi RUREWH3VqVMnORwOxcXF6dlnn5UkPfroowoNDZUkTZ48WTVr1tTx48eVmpqqGjVquK2tUF5enqQr s3HunDx5UmvWrNHSpUslSVWrVlXv3r01b948Pf3008X2L/rv9vHHH+vHH3/Uu+++K0mKiorSTz/9 JEnatWuX6tSpI0lq166dVcOXX36p9PR06z333nuvcnNz3dbXo0cP1a9fXx999JHmzJmjTZs2afjw 4db2kvqxXbt2Tp+1cOFCtWjRQsePH1d+fr5++9vfKi0tTc2aNVN8fLymTp2qN99885qLRQC4R6AD KpFmzZpJko4fP64mTZo4bTtx4oQk6e6773b53oiICB08eFCSdNNNN2nYsGHq27ev6tSp4/IaJzUg cAAABj1JREFUN+lKgCy6zc/PT5cvX5YkBQUFaezYserSpYsaN25sBUpP9O/f3+22Y8eOaejQoapa tapT+6FDh6zjl6RbbrnF5fvT0tKKnWoMDQ3VyZMnnY6r0G233aZJkyapbdu2uueee3T06NFr1t+0 aVNJUmpqqtv+TktLkyRduHDBqjU0NFRxcXHX/Pxjx46pffv2io2NLbbtoYceUlxcnF577TVlZ2fr qaeekiQdPXpUrVu3dgplJfH399cf/vAHvfvuu+rZs6dat25drP5r9WPRemfMmGH1y6hRo6xtn3zy ifr27avly5dryZIlatiwoUf1AXDGNXRAJdK+fXvdfvvt+uc//1ls27p161StWjU9+eSTLt+bk5Oj iIgIXbx4UVFRURo8eLBatGhR4veVNCPYqVMnRUdHq127djLGXNfChvvvv1+XL1/W9u3bi22rXbu2 NmzYYL02xig5OVkhISHauHGj076HDx8u9v5GjRopNTXVqS0nJ0eNGzd2WUvfvn3VrFkzRUdHe1x/ hw4dFBwcXGxRQVFhYWGSrtzLrmgdd911l8v9HQ6H1YdX94Ek6/q1kSNHql69epo2bZp++OEH/fnP f5Z0JZhe3T+F73EnNjZWubm56tu3r/r16+e07Xr60V29GRkZio6O1t69e1W9enUNGDCgxHoAuEeg AyqRatWqad68eZo/f77+53/+x2o/deqUpkyZog8++ED16tWz2vPz863/btu2TYMHD9bevXv1448/ Kjc3V2fPntWhQ4eUlZWl/Pz8YjN1xhintoKCAhljdPbsWe3atUu5ubm6ePGi9u7da33G1fLy8lzO 3r399tvW/oWfK0ldunTRyy+/rH/96186ceKEhg0bpuDgYD311FOKi4vTlClT9MMPP2jevHnKzMyU dGW27tSpUzp16pSeffZZZWRkWPdYy8jI0Pnz59W1a1frO4rWEx8fr9zcXOXl5WnXrl3Kzs52WVdR t9xyi+bNm6f//u//1vz58522JSUl6Z133lFISIh69uzptH3jxo0aPHhwsRoK/42K9sHSpUs1a9Ys ZWRkaNmyZUpMTJR05T5yjz32mDp27KhWrVrp3Llzkq6EzKSkJI0dO1YnT57U+vXrne5N6EqdOnX0 5JNPKjw83AqghUrqx8IZxzNnzujUqVPq0qWLxo4dq6+++koZGRmaPHmy8vLylJKSonXr1ql+/fqa Nm2afv755xLrAVCC8rhwD4B3bd682XTp0sX84Q9/MC+//LLp2rWr+fLLL532mTFjhuncubMZPXq0 efXVV83mzZuNMVcWT7Rt29bUqVPHDB8+3IwYMcI0adLE7N692wwePNhUr17dJCQkmGPHjpknnnjC hIeHm+TkZLN9+3YTEhJinnnmGXP69GnTo0cPU6tWLRMbG2umT59u6tWrZzZu3OhUw8aNG829995r /P39zdNPP22GDBliXnjhBdO6dWtTo0YNk5eXZxYvXmyqVKlihgwZYs6cOWOysrJMz549TY0aNUzz 5s3Nhg0brM975513TN26dU3Dhg3Nxx9/bLW//fbbpmHDhtZ9+L799lsTExNj3nnnHfPKK6+Y77// 3hhjzMyZM42fn58ZN26cOX36tDHGmNdee83ceuutplevXubvf/+7CQ4ONkuWLClWl7t/hw4dOphW rVqZXr16mdjYWDNz5kxrIUF2drZ59tlnzfDhw824ceOse7cdOXLEdOrUydSrV89s3rzZ7Nmzx9x/ //2mefPmZteuXcYYYz788EPToEEDc/vtt5vRo0db3zlv3jwTGhpqqlevbvz8/EzVqlXNqlWrjDFX FpE0btzY1KxZ08TGxha7z5wr3377rbXgwtU2V/1ojLGOe/PmzSYnJ8fExsaaWrVqmbvuusssWbLE +vdv3Lix+etf/2qGDh1qLXYBcP0cxri5OAYAYCsXL17UG2+8oVmzZsnP78oJmNOnT+vTTz+1Zv4A VE6ccgWASmLt2rXaunWrsrOzJV05JZ6UlKSHHnqonCsD4G0EOgCoJNq3b6/77rtPd999t1q2bKne vXurdu3a+vWvf13epQHwMk65AgAA2BwzdAAAADZHoAMAALA5Ah0AAIDNEegAAABsjkAHAABgcwQ6 AAAAm/s/DSRuPqqMMAAAAAAASUVORK5CYII= ", null, " AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd0lHX+9vH3lHRIg4QUWqgiCCIioC5FKYsU1xUQQQTp 3d2HVVlUVFwUEBugoCBioQYEVthVQIoKKIIiAiEgRUMKoaSRwEySuZ8/+JE1EELLZGaS63UOR7jn Lp/JHJMr32oyDMNARERERDyO2dUFiIiIiMiNUZATERER8VAKciIiIiIeSkFORERExEMpyImIiIh4 KAU5EREREQ+lICciIiLioayuLuBS3377LevWrSM0NJSdO3fy/PPPU79+fRITE5k8eTKNGzdm+/bt PP300zRs2NDV5YqIiIi4jMmdFgTOz8+nfv36HDx4ELPZzJYtW/jXv/7F+vXradasGVOnTqV9+/bE xcXRpUsXDh06hMVicXXZIiIiIi7hVl2rZ86cISkpiZycHACCg4NJS0tjw4YNxMXF0bZtWwAaNGiA l5cXq1atcmG1IiIiIq7lVkEuLCyMZs2a8fjjj5OZmcnMmTN5+eWX+fbbb4mJicFq/V9PcL169di4 caMLqxURERFxLbcKcgCxsbEcOHCAqKgo7r//fjp37kxKSgpBQUGFzgsKCuL48eMuqlJERETE9dxu skNKSgrt27cnJSWFAQMGYLVa8fLywsvLq9B5DoejyOvr1KnD4cOHS6NUERERkZtSu3Ztfv311xu+ 3q1a5HJycujcuTMTJ05k2bJlPPXUUwwaNIiwsDAyMjIKnZuenk50dPRl9zh8+DCGYejPJX9eeOEF l9fgjn/0ddHXRF8XfV30dXHOn/Pnz7N161a2bNmCLeMkT/ftiMPhuKZr16z/kkaPdiF6/jMFfxo9 2oU16790+fsq6T832/jkVkFu7969OBwOKleuDMBLL72E2Wymbdu2HDlypNC58fHxBZMfRERExH2k p6fzzTffcPr0aRwpcSRMakHO3nWkf/XuNV0/O3YhaR0aFTqW1qERc5Yvcka5Hs2tglzdunWx2+0k JycDYLfbCQgI4Pbbb6dGjRps2rQJgAMHDpCTk0O3bt1cWa6IiIhcIiEhgW3btnHu3Dkiz+wiev04 8k8dwxIUSYUmXa7pHnaKHj5lM/JLstQywa3GyIWEhLB8+XLGjRvHnXfeSUJCAp988gmBgYGsXr2a SZMmERcXx44dO1izZg1+fn6uLtljqPWyaPq6XE5fk6Lp61I0fV2KVl6/LqdOnWL37t3gyKP2byux /rgQAwi853G69+2NV1jNa7qP9xXamXxMWjv2Um61IHBJMJlMlLG3JCIi4jF+3vYV/l8+h/HbDrB4 Ed73TYLaDcdkMl3zPdZuWMf4+TMKda+GrNvLlEFj6dK+ozPKdpmbzS1u1SInIiIinuvcr9upsGwA +elJWIIjiRq1DL+6d1/3fS6GtTnLF2Ez8vExWRheBkNcSVCLnIiIiNwUwzDI2PQeqQv/Bvm5+NX7 E5Ejl2ANjnB1aW5PLXIiIiJSqgzD4MCBA1SvXh0/LzOpn4wm85sFAAR3GEPYI69hsnoVfxMpEeWu RS40NJS0tLRSrEhcJSQkhDNnzri6DBGRMsVms7Fr1y5Onz5NqOU8Vb+fhu23HzF5+1FlwHsE3t3X 1SV6lJttkSt3QU5dr+WHPmsRkZKVnp7Ozp07OXfuHMFp+4n4fjpG9hm8wmKIGrMCn+pNXF2ix1HX qoiIiDjd8ePH2bNnD/l5eUQnfEGFnXMxDAf+t3UictinWCqEurrEcklBTkRERK4qLy8Px/mz1In7 AMuhDQCEdn+OSn+ZiMms9d1cRUFORERErirK+zz5300kP/UQZr9AIoZ+TIWm2mHJ1RTkREREpFhZ u1ZyYu4TOM5n4R3dkKgxK/COqOvqsgQFOREREbnE+fPn8fX1xXDkc/qziZxZMwWACnf1JGLgPMy+ FVxcoVykIFdG/Oc//2HatGl8/fXXhIWF0bp1a3Jzc0lJSeHWW29lyJAhtGrVytVlioiIGzMMg337 9pGQkMA9TRuS+ckQcvZtALOFyj2nEPLnv1/XVlvifEXvSise54EHHuCZZ54BYMSIEcTGxrJq1Sq2 bNlCzZo1uffeexk5cuQ1T3H+7bffnFmuiIi4GZvNxvbt2zl69Chepw9xYsqfyNm3AUvFMKo+9SWh nf+fQpwbUotcGeLn5weA2fy/fO7j48PEiROxWq0899xzVKpUiZdffrnY+xiGwRNPPMHGjRudWq+I iLiHP64PVynpGyrvfAcj9zw+Mc2JGh2LV6Vqri5RrkBB7grWbljH7NiF2HHgjZkRPfuW6Ga9zr7/ pZ555hk++OADpk+fzpNPPknlypWveO7LL7/M5s2bnVaLiIi4j9zcXL777jtybTlUj1+I3/5VAAS1 GUxY37cxe/u6uEIpjoJcEdZuWMf4+TNI69Co4Nj4+TMASiRsOfv+RbFYLHTv3p23336bjRs30rBh Q2bNmkXTpk1Zv3499913HyNGjCAhIYHvvvsOgKeeeopGjRrRv39/9u3bV+T5IiLi2by8vLi1WmVy Ph2COXkPJqs34f1mEtRmsKtLk2ugMXJFmB27sFDIAkjr0Ig5yxd5xP2vpHbt2sCF8W/9+vWjWrVq DB06lAkTJjBmzBgSEhKoVq0avXr1AuC1116jf//+ADz22GNFni8iIp4tJ/4bct/rjjl5D9bQqlSd sEUhzoMoyBXBjqPI4zYj3yPufyVWq7Xgv4MGDeKBBx4AwN/fH4fDUewEh+s9X0RE3JthGKStn8Xx ae3JzzyBX4N2VH/xB/xq3eXq0uQ6qGu1CN5XyLc+ppLZgsTZ97+SpKQkAGrWrMlDDz3E4cOHmT59 Og7HhWB58b9FGT169HWdLyIi7ichIQGLxUJEpWBOLBhG1vYLPUEhfx5H5Z6vYLIoFngatcgVYUTP voSs31voWMi6vQzv0ccj7n8lGzduxNfXl/bt2zN79mzGjh3L6NGjC7pSi3O954uIiPswDIO9e/ey e/du9m39kt9evpus7Ysw+QQQOXIxYb2nKcR5KH1qRbg44WDO8kXYjHx8TBaGDxpbYhMRnH3/onzx xRds27aNF198kYyMDEaPHs3KlSvx9fW9rGXt0nWCjh8/zpgxY/jss8+KPF9ERNyXzWZj165dnD59 mgonfiJ655vkns/Eq0pdosauwCe6oatLlJugIHcFXdp3dGqwcsb9c3JyAMjLyys4ZhgGS5YsYdiw YYwaNYqJEyeya9cuDMNgx44ddOrUidjYWAASExM5c+YMoaGhABw4cIDz58/jcDhwOBxXPV9ERNxL RkYGP/zwA+dysqny6yqCf/kEDIOApt2IGPIRFv8gV5coN8lkXOtS/x7CZDIVu3vB1V73VF9++SXT pk1j8+bNREZG0rp1a2w2G6mpqcTExDB06FDuvfde4EK469WrF2vXrqV58+a888479O/fn5ycHJYu XUqdOnVo3bo1J06cYPLkyfTr16/Y8xs3buzid1+0svpZi4hcq4yMDLZvWkf0jzPw+X0bmExUeugl Qrv+E5NZo6vcwc3+rFKQkzJLn7WIlHe2xH0cf+sh8k8exhwQQuSwTwho3NnVZckf3OzPKnWtioiI lEFZO5aR8sFgDFs2PtWaEDlmOd7htVxdlpQwBTkREZEy4Ny5c/j5+WHk53EqdgJpX7wOQMVWfagy 4D3MPv4urlCcQUFORETEwyUkJPDLL79wW60oWP0PzsVtAouVsN6vE9x+1GWrEUjZoSAnIiLioQzD YN++fRw9ehTfMwfJ+e9gTFknsARWIXLUUvzr/8nVJYqTKciJiIh4oD+uDxd8bANVdr8P+XZ867Qi atQyrCFRri5RSoGCnIiIiAf68ccfOZOaQtTe+VT89b8ABN03gvA+b2Cyeru4OiktCnIiIiIeqEF0 MEkrh2BNjcPk5Ut4/3cJure/q8uSUqYgJyIi4mFy4jZx+t1HsWadxFqpBlFjluNb8w5XlyUuoCAn IiLiIQzDIO2LNzkVOx4c+fg3bE/kiEVYKlRydWniIgpyIiIibiw9PZ2UlBTq1azKiflDyNqxDIDQ ruOp9NdJmMwWF1corqQgJyIi4qYurg9nTk/A+uHbOE7EY/atSJUhH1Kx2UOuLk/cgIKciIiIm/nj +nABSTuI3jUDh/0s3pG3EDVmBd5Rt7i6RHETCnIiIiJuxG63s3PnTk6fSqVy3DIqxS0FoEKzh4gY /CFmv4ourlDciYKciIiIGzGbzeRmnaL6d1PwS/oBTGYq95hMyANPaastuYyCnIiIiBvJT9pH1fX/ j/xTRzFXqETkiEUENGzv6rLETZldXYCUjJ9++okWLVpgNpuZN28ex44do0aNGrz00ktkZGRc170m TJiA2WymS5cu/P777wAcOHCA2rVrs3TpUmeULyIiQOa2hfz+r3vIP3UUnxp3UOPFHxTipFgmwzAM VxdRkkwmE8W9pau9fqnPP/+8yOPdunUrkfNL0u+//07Dhg0ZP348nTt3ZunSpUydOvWG7nXrrbcS ExPD2rVrAcjNzeWhhx5izZo1JVmyU13vZy0iUtrsdjsWiwWz4eDk0qdIXz8TgMB7+xP++DuYvf1c XKE4283+rFLXahlSvXp1Jk6cyKRJk9ixYwdLliwpeK1+/foFrWvFOXfuHABPPvkko0aN4tixY9Ss WZONGzfSqVMnp9UuIlLepKens3PnTir7GlT6ejLnDn4DFi/C+75FULthGg8n10QtcmVMXl4eTZo0 oVatWoVaB48ePUpubu5Vr69Xrx5wIdBVq1aNQYMGMXXqVEaMGMELL7xARESE02ovaWX9sxYRz3Vx fTiv1H1U3TEdS84pLMFRRI2Oxa9OS1eXJ6VILXJSSFpaGpUqVWLt2rWsXbuWLl26ABATE3Nd9/Hz 82PIkCHMmzePF154gdOnT3tUiBMRcUcF68MdOULwkS8I3/MBJkcefvVbEzliMdZgfZ+V6+O2LXLH jh1j2bJlhIeH06VLF8LCwq7puvLeIjdkyBBeeuklhg4dyv79+9m/fz++vr7UqVOH3377rdhrTSYT dru94N+JiYnExMTQp08fWrVqxbBhw5xdfokq65+1iHieQ4cOEb/vZyJ+eo/A3zYCENzxScJ6TcVk 9XJxdeIKN/uzyi2D3LJly3jrrbdYuHBhQUtSYmIikydPpnHjxmzfvp2nn36ahg0bXnZteQ5y//73 v4mLi+OZZ57h2LFjNGzYkLFjx/Lqq69y5MgR8vLyrnqPi12rFz366KOsWLGC5ORkKlXyrE2Zy/Jn LSKe6fyJwxx5rSvWUwcxeftR5Yn3CWzVx9VliQuVua7VzZs3M3r0aHbv3k1UVBRwoSm6e/fuTJ06 lfbt29OmTRu6dOnCoUOHsFi0WTDAF198wZAhQ/j0008B8Pb2pkaNGrz++utUrlyZcePG3dB9BwwY QHp6useFOBERd5O9dz3Js/tgzT6DV1gtosauwKdaY1eXJR7OrVrkDMPg1ltvpW/fvjz33HMFx9ev X8+DDz5IZmYmVuuF7Fm/fn1eeeUVHn744UL3KM8tcs6wePFi7HY7/fv3d3Up102ftYi4A8MwSFs7 jVMrngPDQUDjzkQM+wRLQIirSxM3cLM/q9xqQeDt27cTHx/PsWPH6NGjBw0aNOCdd95h69atxMTE FIQ4uNAFuHHjRhdWWz4sXbqUHj16uLoMERGPYrPZ2LNnD7ln00ie1YNTyyeA4SD0wYlE/e3fCnFS Ytyqa3XXrl1UrFiRKVOmULlyZX788UfuuusuOnToQFBQUKFzg4KCOH78uIsqLdvefPNNvvnmG/z9 /WncuDEBAQGuLklExGNcXB8u/8QhvBe8jvnMUcx+QUQM+5gKt3d1dXlSxrhVi9zZs2epX78+lStX BuCOO+7gzjvvpE6dOnh5FZ7N43A4XFFiuZCWlsaGDRvw9vbm+eefd3U5IiIeIyEhgW3btmH5dSM1 Nj+F+cxRvKs2ovoL3yvEiVO4VYtcREQE2dnZhY5VrVqVd955hyZNmhQ6np6eTs2aNYu8z4svvljw 97Zt29K2bdsSrrRsmzRpEpMmTXJ1GSIiHuN/68P9SuV9i6gUvwKAii0eocrAuZh91LMhF2zevJnN mzeX2P3carLDgQMHaN68OWfOnClogevWrRvNmzdn+vTpZGZmFpxbu3ZtXn31VXr16lXoHprsIBfp sxaR0rR7+yZYOQ7/1J/BbCHskWkEd3xSW21JscrUZIdbbrmFZs2aFWzMbrfb2bNnD0OHDqVGjRps 2rQJuBD4cnJySmUjehERkas5f+xHApcPwj/1ZywVw6j61DpCOv1NIU6czq26VgE+/fRTxo0bR3x8 PMePH2fu3LlERESwevVqJk2aRFxcHDt27GDNmjX4+fm5ulwRESnnMr5ZQOpHIzHybPjWuovI0bF4 hVZ1dVlSTrhV12pJUNeqXKTPWkScwTAMbDYbPlYzqYv+TsbGOQAEtR1KWN+3MHv5uLhC8SRlbmcH ERERd2Wz2di1axe5ZxKp+dNb2A5/h8nqTXi/WQS1GeTq8qQcUpATERG5BhfXh+P3nUTvmI7tfBrW 0GpEjY7Ft1ZzV5cn5ZSCnIiIyFUkJCTwy549VIxfTfgvCzAZ+fg1uI/IEYuwBoa5ujwpxxTkRERE ipGWlsbPO78n4sd3CEz4GoCQzv+gco/JmCz6MSqu5VbLj8iNW7p0Kbfddhtms5lGjRoxb968K567 cuVKqlevjt1uL8UKr83HH3/MtGnTqF+/Pr1792bVqlVuW6uIlA8BuWeou+15AhO+xuQTQOTIJYQ9 MlUhTtyCglwZ8cgjjzB8+HAARo0axeDBg694bnR0NC1atMBsdq+P/8CBA8ycOZOnn36aFStWYLVa iYqKuqzW3NxckpOTXVipiJQXZ3/+D7+/eBemkwfxiqhH9YnbqXhXT1eXJVJAv06UIRc3t7/aJvd3 3XUXsbGxpVHSdVm8eDEVK1YEoFGjRnz66acAl9X6r3/9i/vuu4/IyMhSr1FEygfD4eDM569wetWL YBgENO1OxJAFWPyDXF2aSCHu1SQjpcYwDLdbYy0xMbHImv5Y61dffcWrr75a2qWJSDlgGAb79+8n PSWBpBkPcXrlCwBU+uvLRI1ZoRAnbkktcsU4OMBSKs+ptyC/VJ4DkJKSwvvvv89HH33Epk2bqF69 OosWLeKTTz6hU6dOpKWlMXv2bEJDQ4mNjeW2224D4MyZM0ydOpW0tDR27NhBs2bNmDVrFn5+ftjt diZMmED16tVJTU3l4MGDzJs3j8DAQDZt2sSHH37IbbfdRmpqKnPmzGHFihV07NixUF1PPfUU33// PRkZGTz11FNER0fTu3fvQrVWrVqV1atXk5eXx+zZs/nqq6+YNGlSqX3tRKTsurg+XNaRH+H7aViz EjEHhBA57FMCGv/Z1eWJXJGCXDnj7+9PZGQkR48eLTjWo0cPRo0aRVZWFjNnzmT8+PG0bduWiRMn snLlSgCGDBnC7NmzCQ8PJzk5merVq1OpUiWmTZvG7NmzWb16NYcOHQKgSZMmzJgxg+eee46wsDBW r15NQkICU6ZMwTAMoqOjL6vrtdde49SpU/z222+89tprAGRmZhaq1Ww2M27cOGbNmsXIkSNp3bq1 s79cIlIOXFwfznpwPTV2zcScb8On+u1Ejo7FO7yWq8sTKZaCXDFKs6WstAQGBlK3bt1Cx7y9vQkO DqZjx440bdoUgPvvv5/PPvsMgO+++44dO3bw5ptvFlzTrl07zp07B8C9996Lt7c3cKFrokKFChw7 dgy4MNYtNDSUVq1a0aJFC1q0aHHF2i7t7i2qVnfrDhYRz3b8+HH27P6J0J8/JPTQagAqtupLlQFz MPv4u7g6katTkJMieXt7Y7PZAPjpp5+oXr36FcemNWvWjIYNGzJv3jxycnLIysrC4XAUOsfX19fp NYuIXLfs00RteQ7/k3vBYiXs0TcIvn8kJpPJ1ZWJXBNNdihHMjMzb+i6nJycgha2P8rPz8cwDA4e PEiLFi1o3rw5Y8eOpVKlSjdZqYiI8507/D3297rjf3IvlqAIqj3zFSHtRynEiUdRkCtHnn322Ru6 rm7duiQnJ7NmzZpCx99++21sNhtjxoyhdu3aNGnSBLgQ8G7U1b6BXnxdXawicjPSN8/l+KttyTtz HN86d1PjxR/wq3evq8sSuW7qWi1DsrOzAQq6RC8yDIOZM2eSm5sLUPDfP+6WkJubW6g71G63F/z7 gQceICYmhv79+zNt2jTq1avH6tWrqV+/Pr6+viQnJ5Obm0tGRgbx8fEcPnwYf39/Tp8+TaVKlcjP zy94ZnHsdjvnz58vdOzSWkNCQjCZTMTFxdGgQQNyc3OLnDwhInKpnJwcfK1mUj8dS+bXHwAQdP9I wh99HZPV28XVidwgo4y52lsqg2/ZMAzD+Oyzz4zGjRsbZrPZCA8PNx588EGjR48eRteuXY2aNWsa ZrPZWLJkiREXF2f06dPHMJvNxujRo43k5GTj448/NiwWi9GiRQvjp59+Mn7++Wfj1ltvNby8vIwl S5YYhmEYe/fuNe69917D19fXqFu3rjFnzpyCZy9cuNAIDQ01qlWrZrz33nvGG2+8YYSEhBjTpk0z 3n77bcNisRi33XabsWbNmivWv3jxYiMyMtIICAgwPvzwQyMlJaXIWg3DMAYPHmwEBgYa48aNK/Zr UlY/axG5Pg6Hw/jll1+ML2MXGIefv9OI7282Dg72NzK+/cjVpYnc9M8q0//dpMwwmUzFdrtd7XUp O/RZi8jF9eFy4jYT9f1rWO2ZWCvXJGrMcnxrNHV1eSI3/bNKXasiIlImpaens/OHH/Dds4Rqez/G ZDjwb9SByOELsVTQpCwpGxTkRESkzMnPz2fHt5sJ3f46gYnbAAjt+k8q/fUlTObS2bVHpDQoyImI SJmTf/Iwtb7+J47Ug5h8KxI5ZAEVmv3F1WWJlDgFORERKVPO/vRvUt7vj+NcJt5RDYgaswLvyPqu LkvEKRTkRESkTDAc+Zxe+RJnPp8MQIU7/0rEoPmY/Sq6uDIR51GQExERj5aQkIAjOw3L2vHk/PIl mMxU7vkKIZ3/oV0apMxTkBMREY9kGAb79u0j6aeNRH83Ba/sE5grVCJyxCICGrZ3dXkipUJBTkRE PM7F9eFyf1pB9R/fxZxvx6dmM6JGx+JVuYaryxMpNQpyIiLiUTIyMvjh++1U/P5dKh9eC0DgnwYQ 3u8dzN6+Lq5OpHSVuyB3ca9OKftCQkJcXYKIOEP2KcLWPY3fqX1g8SL8sbcJajtU39ulXCp3W3SJ iIjnOndoG0nv9CI/PRlLcBRRo2Pxq9PS1WWJ3DBt0SUiImWeYRhkbJxD6qK/Q34ufvVbEzlyCdag Kq4uTcSlFORERMRt5eTk4Gs1kfrRSDK3fgxAcMcnCes1FZPVy8XVibiegpyIiLilhIQE4r7bQM1d b0DKfkzeflQZOJfAlo+6ujQRt6EgJyIibuXi+nAnvvuMajveAHsWXuG1iRqzHJ9qjV1dnohbUZAT ERG3YbPZ2LVzJ8a296m6byEmDAIadyZi2CdYAjQTXeRSCnIiIuI2fv5hGz7/eY6KSd8BEPrgRCo9 +Dwms9nFlYm4JwU5ERFxC7akOCp/PoK8E4cw+QUROexjKtze1dVlibg1BTkREXG5rJ2fkTLvCYzz Z/Gu2oioMSvwrlLH1WWJuD0FORERcRnDkc+pFc+TtnYqABVbPEKVgXMx+wS4uDIRz6AgJyIipS49 PZ3EQ3sJ2jyJnH1fgdlC2CPTCO74pLbaErkOCnIiIlKqEhISOLhlJRHbXiEn5ySWimFEjlyCf4O2 ri5NxOMoyImISKm4uD7c6U3ziP5pDmZHLj4xzYkasxyv0KquLk/EIynIiYiI09ntdnZ+vx3LpmlE HvkCgKC2Qwnr+xZmLx8XVyfiuRTkRETE+bJOEPjv0Xif3A9WH6r0m0lQm0GurkrE4ynIiYiIU+XE f03yO73xzjyBJaQq0WOW41uruavLEikTFORERMQpDMMgff1MTi75Bzjy8WtwH5EjFmENDHN1aSJl hoKciIiUKJvNhinPxulPRpL13WIAQjr/g8o9JmOy6MeOSEly283rHA4H7dq1Y8uWLQAkJiYycuRI 5syZQ//+/dm3b5+LKxQRkUulp6ez/T9LOTyxOVnfLcbkE0DkyCWEPTJVIU7ECdz2/6rZs2ezZ88e TCYThmHQvXt3pk6dSvv27WnTpg1dunTh0KFDWCwWV5cqIiJcWB/u8LoPqfLddCy52XhVqUvU2BX4 RDd0dWkiZZZbtsh9++23xMTEEBgYCMCGDRuIi4ujbdu2ADRo0AAvLy9WrVrlwipFRAQujIXb+8se Ehb/k8hvJmHJzSagaXeqv/C9QpyIk7ldkDt9+jTbtm3jgQceAC58g9i6dSsxMTFYrf9rQKxXrx4b N250VZkiIvJ/jsT9jH3RUCrvX4zJBJX++jJRY1Zg8Q9ydWkiZZ7bda2+9dZbPP/884WOnThxgqCg wt8QgoKCOH78eGmWJiIil7Ad34t5wSNUSP0Vk38wUcMXEtD4z64uS6TccKsgN3fuXPr27Yu3t3eh 4xaLBS8vr0LHHA5HaZYmIiKXyPp+KSkfDMaw5+BT/XYiR8fiHV7L1WWJlCtuF+TGjh1b8G+bzUbH jh0xDIOGDQuPs0hPT6dmzZpF3ufFF18s+Hvbtm0LxtaJiMjNM/LzOBX7T9K+eAOAiq36UmXAHMw+ /i6uTMT9bd68mc2bN5fY/UyGYRgldrcSFhMTw0cffYSXlxedOnUiMzOz4LXatWvz6quv0qtXr0LX XJzlKiIiJctmsxG3ayuhW17mfPzXYLES1vt1gtuPwmQyubo8EY90s7nFrVrkrqRly5bUqFGDTZs2 0a5dOw4cOEBOTg7dunVzdWki4kbWbljH7NiF2HHgjZkRPfvSpX1HV5dVJqSnp7Pni0+ptGUS58+d xhIUQdTK4iGXAAAgAElEQVSopfjVu9fVpYmUax4R5EwmE6tXr2bSpEnExcWxY8cO1qxZg5+fn6tL ExE3sXbDOsbPn0Fah0YFx8bPnwGgMHeTEhIS+G3VdMJ/moPZkYdP7ZZEj47FGhLl6tJEyj237lq9 EepaFSmfug7rz+6WkZcdb/p9Cp/PWVD6BZURe3fvImfVswQfWw9A0H0jCO/zBiar91WuFJFrUS66 VkVErsZO0TPZbUZ+KVdSduSeTsC6ZCDBKXvB6kPEE3MIvOdxV5clIn+gICciZYL3FdY39zFpG78b kRO3ieR3e2POOoUltDrRT36Gb42mri5LRC7hdjs7iIjciBE9+xKyfm+hYyHr9jK8Rx8XVeSZDMPg zH9f5/i0juRnncK/UQdqTtqpECfipjRGTkTKjLUb1jFn+SJsRj4+JgvDe/TRRIdrZBgG2WknyVw8 hrM/LAcgtOs/qfTXlzCZ1aop4iw3m1sU5EREyjmbzcZPX62k4pcT8Mr4DbNvRSKGLKBCs7+4ujSR Mk+THURE5Ialp6ezb+VMQrdOw5KXg6VKfar9bSXekfVdXZqIXAMFORGRcur3346RtGQCYXFLAfC/ 4y9EDVmA2a+iawsTkWumICciUg6lJR3j1Ls9CT3xI4bJTOUekwl94ClttSXiYRTkRETKGdvvP5M+ 82EqnDwK/iFUG70U/1vvd3VZInIDFORERMqRzG2fcmLBcAz7OXxqNiNqdCxelWu4uiwRuUEKciIi 5YCRl8vJJf8gfcMsAAL/NIDwfu9g9vZ1cWUicjMU5EREyjDDMNi/Ywt+XzxL3tHvwOJF+GNvE9R2 qMbDiZQBCnIiImWUzWbj57ULqLDuWfLOp2EJjiJqdCx+dVq6ujQRKSEKciIiZVBaWhrxi14kZOcc TEYeXrVbUW3sCqxBVVxdmoiUIAU5EZEy5vixw6R8OJzQ3zYCUPH+MUQ8+homq5eLKxORkqYgJyJS huSePMb59/9KYNJeDKsvEQPnEnR3H1eXJSJOoiAnIlJGZO9dR/Lsvjiyz2CpHEPVJz/Dp1pjV5cl Ik6kICci4uEMwyBt7VROrXgODIOAxp2JGPYJloAQV5cmIk6mICci4sEyTyaRtXg02T+uBqDSX14g tPtzmMxmF1cmIqVBQU5ExAMZhsG+rz+H5aPxzkrE7BdExLCPqXB7V1eXJiKlSEFORKSErN2wjtmx C7HjwBszI3r2pUv7jiX+HJvNxi+xr1Nh82TMeecxValP9f/3b7yr1CnxZ4mIe1OQExEpAWs3rGP8 /BmkdWhUcGz8/BkAJRrm0k6f4tf5YwjatwwAn6YPUW34R5h9AkrsGSLiOUyGYRiuLqIkmUwmythb EhEP0HVYf3a3jLzseNPvU/h8zoISeUZuRir7X30Av5SfMEwWQnu8SuUH/p+22hLxYDebW9QiJyJS Auw4ijxuM/JL5P7nj+0iaWYP/E7/juEfStUxsQQ0aFsi9xYRz6UgJyJSArwpepaoj8ly0/fO+OZD Uj8ahZFnw7dWCyJHL8MrtOpN31dEPF+x89M3bdp01Rt8/fXXJVaMiIinGtGzLyHr9xY6FrJuL8N7 3PiuCo5cGyc+GsmJDwZj5NkIajuUqv/cpBAnIgWKHSPXrl07+vXrh9VadMOd3W7n008/ZfPmzc6q 77ppjJyIuMraDeuYs3wRNiMfH5OF4T363PBEh9/3/YBt8XCM47sxWX0If3wWQa0HlnDFIuJqN5tb ig1y5mtcUNLhKHpsiCsoyImIJzMMg/1ffIxp1d+x2jKwhFQleuwKfGPudHVpIuIEN5tbik1qEydO JDc3F4fDUeQfm83GCy+8cMMPFxGR/zl//jw/vf93rMsGY7VlYK51DzVe2qkQJyJXVGyLXEJCAtWq VSv2BomJiURHR5d4YTdKLXIi4onSTyZz9J1+BBy7MDbZ774xVO07HZNFc9JEyjKntsh9/PHHV72B O4U4ERFPZE89TNpbnQg4tgnD6kfloQup9vhbCnEiclXFtsgFBATQpk0b+vbty1//+lf8/PxKs7Yb ohY5EfEkZ3/+Dynv9cORk44lvA7RY1bgW63R1S8UkTLBqS1yCxYsYOXKlXh5eTFgwACGDBmi5UZE REqA4XBwetUkkt7qjiMnnYCm3an54g6FOBG5Lte1RVdSUhIff/wxX3/9NS1atODxxx8nJibGmfVd N7XIiYi7y0w9TtbCkWT/vBZMJio9NInQruMxXeNKASJSdjh1+ZGi5OTksHDhQp599llOnTrF4MGD ef/992+4gJKmICci7uy3H9aT9dETeJ9NxhwQQuTwhQTc1snVZYmIizh1r9Vz584VjIs7ePAg7777 Lh999BFZWVl06dKF0aNH06FDhxt+uIhIeWEYBnErpmP+7wt459twhNcn5qm1eIW5V6+GiHiWYoPc jBkzqFWrFu+//z4bN24kJCSEoUOHMnLkSGrUqFFaNYqIeLTzOdnEzx6C3y9LATA3eYg6Iz/G7OPv 4spExNNd084OTZs2ZfTo0Tz66KP4+vqWWnE3Ql2rIuJO8jJTOTi1K9bEXRgmCxUfmkxkt39gMplc XZqIuAGndq02aNCA2bNn07p16xt+gIhIeXXu8Pckz+qJNS0Rh38lIkctI6hhW1eXJSJlSLEtcrt2 7aJZs2alWc9NU4uciLiaYRhkbJnLyU+fxMiz41v3HqJGLcUaHOnq0kTEzTh1HbmGDRvy2GOPERwc TK1atZg1a9YNP0hEpDxw2M9z4sOhpC4YgZFnJ/j+UVR7ZoNCnIg4RbFdq9OnT2fHjh088cQTZGdn M2HCBIKDg3nsscdKqz4REY9x+uheTs55FPOJ/Zi8fKkyYA6B9/RzdVkiUoYV27XaoUMHVq1aRUBA AHChq3XSpEmsXr261Aq8XupaFRFXOLZ5CecWj8Biy4TgqlT/+yp8azR1dVki4uac2rUaExNTEOIA mjVrRlBQUKFz9uzZc8MPFxHxdA6Hg/3z/4FtQT8stkwcNe8mZtIuhTgRKRXFdq0eO3as0N6qhmGQ mZlZcCw3N5d58+axePFi51YpIuKGbFlnOPhmL3yObALA0noUdQe8iclscXFlIlJeXNM6csXewGQi Pz+/xArasmULY8eO5ejRo7Rq1Yp58+ZRrVo1EhMTmTx5Mo0bN2b79u08/fTTNGzYsMh61LUqIs5m T44naWYP7En7cVj9CX58DhGt+xa8vnbDOmbHLsSOA2/MjOjZly7tO7qwYhFxR05dR27UqFH87W9/ w2Ip+rfLvLw8Zs+efcMPv1Rqairz589n4cKFJCYmMmzYMAYOHMj69evp3r07U6dOpX379rRp04Yu Xbpw6NChK9YmIuIsZ3etImXuABzns/CKbEDY8MVUqHFbwetrN6xj/PwZpHVoVHBs/PwZAApzIlKi im2RS01NJTw8vNgbXMs512rJkiV06dKFihUrArBgwQJGjBjB559/Tvfu3cnMzMRqvZA969evzyuv vMLDDz9c6B5qkRMRZzEc+Zxe+SJnPn8FgAp3PkzEoA8w+1UsdF7XYf3Z3fLy5Uaafp/C53MWlEap IuIhnDrZ4VoCWkmFOIDevXsXhDiAKlWqUL16dbZu3UpMTExBiAOoV68eGzduLLFni4gUJ+dMMgmv d7kQ4kxmKveaSuSopZeFOAA7jiLvYTNKbhiKiAhcJci52o8//siIESNISUm5bLZsUFAQx48fd1Fl IlKenNz7Dccm3sn5fevJ8wlktrUdvVf/TLfhA1i7Yd1l53tf4Vurj0lDQUSkZLltkMvOzuaXX35h zJgxWCwWvLy8Cr3ucBT9G6+ISEk6+vkMTr/ZEevZFNL8qjIy43Zi776D/S2j2d0ykvHzZ1wW5kb0 7EvI+r2FjoWs28vwHn1Ks3QRKQeKnexwJZmZmRw6dIh69eoV6gotSdOnT2fmzJlYLBaioqL49ttv C72enp5OzZo1i7z2xRdfLPh727Ztadu2rVNqFJGyy5FrI/7dQVh+WowZyG/0F16J9+XXTtUKnZfW oRFzli8qNInh4t/nLF+EzcjHx2Rh+KCx1zTRQbNdRcq2zZs3s3nz5hK7X7GTHeLj4xk9ejRpaWm8 /PLLdO7cmdjYWAYNGoTZbMbf359PP/2U++67r8QKApg7dy733XcftWvXBuDrr7+ma9euZGZmFpxT u3ZtXn31VXr16lX4DWmyg4gU4XoCUl56MkffeBDj910YJite3V4i5qFn6DT8cfa3jL7s/Fu/S2Td e5+USI2XznYNWb+XKQOvLQSKiOdx6vIjL7/8Ms899xzBwcHMnDmT9PR0BgwYwFNPPcVLL72E3W5n woQJJRrkFixYgJ+fH7m5uRw4cIATJ05w9OhRatasyaZNm2jXrh0HDhwgJyeHbt26ldhzRcR93Gir 1JWuu57lQM4d2krSrF4YGSk4KoQTOvgTwm9vDzh/7Nvs2IWFaoSiW/xERC4qNsjdeeedtGnTBoA3 3niDqKgoHnzwQf71r38B4OfnR7Vq1Yq7xXX54osvGDJkSKEFhk0mE/Hx8bRu3ZpJkyYRFxfHjh07 WLNmDX5+fiX2bBFxDze6Bltx111LQDIMg4yvZpO6+O+Qn4df/TZEjlyMNahKwTUjeva9vMVs3V6G Dxp7E+/4fzTbVUSuV7FB7syZMzgcDnJychgwYADVq1cnIiKCU6dOUblyZZKTk9m5c2eJFfPnP/+Z 3NzcK76+YMECAEaOHFlizxQR93KjrVLFXXe1gOSwnyP1oxFkbr3QPRrS6e9U7vkqJmvhSVY3M/bt Wmi2q4hcr2KDXMeOHalXrx5JSUk0a9aMjRs3kpKSQqNGjTAMA7vdzvLly0urVhEpB64Wuq7UfVrc dcUFpLOJ8SS8+Rcspw5i8vanysC5BLbsfcX6urTv6LRuTme3+IlI2VNskLv33nuJj4/nzJkzhIWF ARAREcGRI0fYu3cvdevWJSQkpFQKFZHyobjQVVz3aXHXDe/Rp8iANKLtHSS8dBcW+1kcQVWJ+cca fKrdVuR9SoOzW/xEpOwpdtYqXFivbeXKlWzcuLFgAd7o6Gjatm1Lt27d3G6cmmatini2ImdurtvL lEFjmR278IpbX10prE35vyC0dsO6goDki5kx1c5T/dcVmDCwVWtFnf+3Ar+QKpfdW0TEmW42txQb 5Pbt20e3bt3w8vKiXr16BAUF4XA4SE9PJz4+npycHNasWUOzZs1uuICSpiAn4vn+GLoutqh1ad+R jsP6Fbv8x5Wu+6P8c5kcev1hzL9uxMBE/t3DqT/wLSzWG1pWU0Tkpjh1+ZFp06axdu1aGjRoUOTr Bw4cYMqUKQWTEERESsKVxqFdbTLA1cav2RL3kzTzYcwpB8n3CsC31wxiOgwokZpFRFyh2C26WrVq dcUQB3DLLbdw1113lXhRIiJFKWrrK+vibzh5+hQdh/Wj67D+Re59CpD1wwp+f7kVuSkH8a56G5ET vlGIExGPV2yL3J49e9iwYQNt27bFWkS3w6ZNm9ixY4eWAxGRUnHpZICM1FOc8vfl+ANXXnPOyM/j 1IrnSPvPawBUbNmbKk+8j9knoJSrFxEpecWOkUtMTKR79+7ExcURExNDUFAQXl5eZGRkcOTIEWrU qMHq1aupVatWadZcLI2REyk/ug7rf8XJD5/PWUBuRiqJ7/bGHr8FzBbCHnmN4I5jMZlMLqhWRORy Th0jFx0dzc6dO9mwYQPbtm0jJSUFq9VKZGQk7dq1o2XLlvqGKCIuU9zacZnx20ic2QPL2ROYK4YR NWop/re0KeUKRUSc66rTtAzDIDMzk9TUVJKSkjAMg7y8PBISErj99tvdbvkRESk/rjT54W7bIZKn 3ofFkYut8i1Ej4nFv8atpVydiIjzXdfyI8HBwQXLjxw4cIDs7GzWrl2r5UdExCUuXXPOy5HH39Yv obNvMgDnGjxI/VEL8K0Q6MoyRUSuSMuPiEi59cfJD36OLAbbv6Gm72kcZi/yOzzLbY88i9lc7OR8 ERGPVmyQ0/IjIuLuurTvSLuqPiS/25t8+2kIisL30TnUbNnF1aWJiDhdsb+qXlx+JC8vr8jXLy4/ IiLiCoZhkPblWxyf1oH8zFT8b72f2v/6SSFORMqNa15+pFatWgQGBmr5ERFxCw5bNifmDyHr+6UA hDzwNJUffhmTRVttiYjncOpeq3DhN94NGzawdevWguVHoqKiaNeuHa1atbrhBzuLgpxI2WdLOcTR 6V0xn/oVk28FIgbNp2Lzh11dlojIdXN6kLuS3NxcFi1axD333EOdOnVuuICSpiAnUral7VzFiff7 Y7afJbdiNLWf/g++1Rpd/UIRETd0s7ml2DFyCQkJdOjQAT8/P2655RbeeustHI4LC3B6eXlRs2ZN 6tevf8MPFxG5VobDQeKSCZyc9TBm+1lyqt5NxIRvFeJEpFwrNsgNHjyYQ4cOMXv2bN58802ys7Pp 06cPJ0+eBKBKlSpq/RIRp8vPTufI1E5kfzEVAxNnmw/llmfXUSmyuqtLExFxqWJHBW/fvp3Y2Fg6 deoEQOfOncnOzmb69Ok89thjpVKgiJQ/azesY3bsQuw4qOHIYLhpOxXtZ8hyWJlrv4MudR/kDu0q IyJSfJCLiYkhOjq60LGAgABeeOEF5s6dq+25RKTE/XG3hvtS4xgdvw4/Ry4HrcFMbPggqcHhbF0w C7PZXLAgsIhIeVVs1+qMGTN47bXXyMrKuuy1IUOGkJeXh8VicVpxIuLZ1m5YR9dh/ek4rB9dh/Vn 7YZ1Vz138Evjyby/ASN+3chzcWvwc+TyZZWGPHGiLqnB4QCkdWjEnOWLSuttiIi4rWJb5Nq0aUOD Bg1Yu3YtvXv3vuz1AQMGEBER4bTiRMRzXboPKsD4+TMALmtJ++O5PifimLZ7KbdnJZJnMjOr9n38 O+p2bAe24vOHa2xGfmm8DRERt3bVTQjDw8OLDHEX/fnPfy7RgkSkbJgdu7BQiIMrt6RdPPeWjEQ+ qfAzt2clcsrqz9+bPMK/o5uCyQT/N2P+Ih+TegNERLSbtIg4hR1HkceLakmzG/l0TfiRt3cvoYo1 jx+z/RhS56/sC6oKQOaCL/FpGFNwfsi6vQzv0cc5hYuIeBDtZSMiV/XHWaTemBnRs+9VJxp4X+H3 xEtb0hz28/S1f0erI0cBWOZbhxlBjTi/9RB5Z3ZhDQ0kwGSlevwZgtLM+JgsDB80VhMdRERQkBOR q7iesW5/NKJn38uuC1m3l+GDxhb8O/f07yTN7EkrjnLeYWJqaAs239oKby8r5w4nEfCnJvjUrwZA +PcpfD5nQQm/OxERz6YgJyLFKm6sW3FB7uJrc5YvwmbkX9aSlrP/K5Jn9yE/6xTm0Br8VK0vGQd+ J3/xFnIqeOHbqFZBiANNbhARKYqCnIgU62pj3Yrrdu3SvuNlYc8wDNL+O51TsRPAcOB/Wycih31K nQqh9Ae6DuvP7paRlz1PkxtERC6nyQ4iUqzixrpd7Hbd3TKS/S2j2d0ykvHzZ1xxvTjHuSyS3+nF qWXjwXAQ2u1Zov/+OZYKoQXnjOjZl5D1ewtdp8kNIiJFMxllbLNUk8mk/V9FSlBRY+RC1u1lyqCx zI5dWGTrWdMixrPZk+P57Y3uGCd/xewXSMSQBVS448ErPrNQl2yPPprcICJl0s3mFnWtikixihvr 9nbsJ0Vec+l4tqxdq0h673FM9mxsFasRNXYFFeo2K/aZCm4iIlenICciwPWPdYOrLzFiOPI5Efss mf99DROQVfUeKvd/j0p1GzjtfYiIlCcKciLilCVG8s+eJmHWo9gPfIWBmfSmA6nb71VCQ0OveD8R Ebk+GiMnIlecKVrUWLdLFTWe7f66YSTN7EHeqWPk+wSRdf+LNHlwGD4+PsXeS0SkvNEYORG5adez ndalLu12zdz6MQn/eggj9zw+Mc0JGfQRFaLqYjZrkryISElTkBORa95OqzhGnp3UxePI+OpdAAJb DyT8sZmYvX1LpEYREbmcfkUWkZteuy0vLYljk9uS8dW7mKzehA+YQ8TAuQpxIiJOpjFyIgLc+Npt 5w5+S8KMHnD2JEaFcBLu/SdvbdpV5OzXS593pVmyIiLlxc3mFgU5EbkhhmGQvuEdUhePw+TIIyes ETtq9mPm1s2FZ7Gu38uUgWMLhbQiFxku4jwRkbJOQe4SCnIiJe/S1rORDz1Mk2OxZH+36MLr2VVZ 5d2UX39PwDSww2XXXzr79WZmyYqIlCWatSoiTnVp61nkuXQsix4n25xFnsmLaanVWNe5C+YAX7JW nSKwiHtcOvv1ZmbJiojI/yjIiZQxJT32bHbswoIQ1/zMUZ6NW0Og+TwnqcjMs0345sHmmL3+71uJ o+iAduns15KYJSsiIpq1KlKmXGw9290ykv0to9ndMpLx82ewdsO6G76nHQcmw6Dvb9t59ZflBOad Z3tobaZ5d+JMaHVMXv/7fdCnYQwZK74udH1Rs19vdpasiIhcoDFyImWIM8ae9Rj6KA9U/JF7T/+K A/ioxj18WqMVt+84gWEYlz3PFp+A97Z4GjZoUOzs1xudJSsiUpaUqzFyiYmJTJ48mcaNG7N9+3ae fvppGjZs6OqyRNxGSY89syXuZ6L3N/ieTibL6sMrt3Tl+0q1CvZTBS6bfRrxWwZTJr5y1VB26Y4Q IiJy/TwmyBmGQffu3Zk6dSrt27enTZs2dOnShUOHDmGxaFyNCJTs2LOsHbEkzxuIrz2HNO9wXj/b hKxDPjT9NYXhgwovE1KoZW2QlhARESktHtO1un79eh588EEyMzOxWi/kz/r16/PKK6/w8MMPF5yn rlUpz4pcn23dXqZcR7gy8vM4tXwCaf99HYDMaq3xeWgqDW+/U/ulioiUsHLTtbp161Zq1apVEOIA 6tWrx8aNGwsFOZHy7GJYu9EWsrzMkyS925vzBzZjmMycajKQqg9NoEaNGs4sW0REbpDHBLmUlBQC AwuvUBUUFMTx48ddVJGI+yiJJUfOH/mBpFk9yTuTgMMvlNR7/sltXZ4gJCTESVWLiMjN8pggZ7Va 8fLyKnTMcYU1q1588cWCv7dt25a2bds6sTIR1yqqO3X8/BkA1xzmMrZ8QOonozHy7PjWbkn48EXE BEbg4+PjlJpFRMqrzZs3s3nz5hK7n8eMkXvllVdYtmwZu3fvLjj2wAMPULNmTd59992CYxojJ+XN zSw54si1cXLhk2RsngtA0H3DCXv0DcxeCnAiIqXhZnOLx4xcbteuHUeOHCl0LD4+Xq1tUu7d6JIj uWeO8/vk1mRsnovJ6kOVQR9Q5fF3FOJERDyIxwS5li1bUqNGDTZt2gTAgQMHyMnJoVu3bi6uTMS1 bmTJkZy4zRyb2Az7sZ3kV6hC9IQtBP1pgJMqFBERZ/GYMXImk4nVq1czadIk4uLi2LFjB2vWrMHP z8/VpYm41IiefYtccuTigr1/ZBgG6eve5uTSp8GRT3Z4E851epnaVZtcdm5J79kqIiIlz2PGyF0r jZGT8uhatrty2LJJ+WAwZ3csA+B0/Yep8MAEGt7W+LL14Ypcj279XqYM1GK/IiIl6WZzi4KcSDlg TzlE0qwe2I/vxWH1JaX536jVeRjVq1cv8nxn7NkqIiKXKzcLAovIjTm7ew0p7z2O41wGXhH1ye48 hSaN/1Ts+nAlvWeriIg4h4KcSBllOBycXv0yZ1ZPAqBCs79QZfCHWPwCr3Jlye7ZKiIizuMxs1ZF 5NrlZ6eR9Fb3CyHOZKZyj1eIHL2cL7Z+R9dh/ek4rB9dh/Vn7YZ1RV4/omdfQtbvLXQsZN1ehvfo Uxrli4jINVKLnEgZY0vYQ+LbfyXv1FHMAaFEjlhIQKOO17UDxM3u2SoiIqVDkx1EypDM7YtImT8U cs9xPrgW9q7TubP9g4AmMIiIuCNNdhARjLxcTi57hvR1bwOQUaMd9vsmcGfLewrO0QQGEZGyR0FO xMPlpaeQPPtRzsV/jWGyktpkEMH3DadZo0aF1ofTBAYRkbJHQU7kEp60o8G5X7eTNKsX+elJUCGc 483HUbddryLXh7ueHSBERMQzKMiJ/MH1TAhwJcMwyNj0HqkL/wb5ufjVu5fIkUuJ9qpIQEBAkddo AoOISNmjyQ4if1AaEwJutsXPYT9H6iejyfzmQj3BHcYQ9shrmKxeJVKfiIiUHk12EClBzp4QcLMt frmnfiNpVk9sx3Zh8vajyoA5BN79mEd1B4uISMlRkBP5A2dPCJgdu7BQiANI69CIOcsXXTV4Ze/b QPK7fXBknyY3oArRYz8jsH5Lj+kOFhGRkqedHUT+wNk7GtxIi59hGJxZO43E6Z1xZJ/mbJU7SOk8 C1NEA6D4cCgiImWbWuRE/sDZEwKut8XPcS6LlA8GcnbnZwCcuqUXxj0juPeuFvj4+ABaH05EpDxT kBO5RJf2HZ3WJXk9S4DYkw6QNKsH9qQ48q3+JDf/G2F396Jhw4ZaH05ERAAFOZFSda0tflm7VnJi 7hM4zmfhHd0QHp5Bncq1tD6ciIgUouVHRIpR2rNBDUc+pz+byJk1UwCocFdPIgbOw+xb4ap1FgqH PfpoooOIiAe42dyiICdyBUXNBg1Zv5cpA52ziG7+2dMkz+5Dzr4NYDJTuddUQv78d0wmU4k/S0RE 3IOC3CUU5KSklMbiwBedP/YjSbN6knfqGKaAUKJHLcX/1vtK9BkiIuJ+tCCwiJOU1mzQjG8/IvWj kRi55zkXUpeTf3qOWvXblOgzRESkbFKQE7kCZ88GNfLspC4eR8ZX7wKQXrMDGS3HcGeLu7FYNONU RESuTgsCi1yBMxcHzktLImHK/WR89S6G2UrKHSPJ7fA8rdu1JyQk5KbvLyIi5YPGyIkUwxmzQXPi vyH53d7kZ6RgDo7it2bjCL/9/svWhxMRkbJPkx0uoSAn7sowDNI3vMPJJeMgPw+/Bu2IHLEImyWA gHiEt+QAAB6GSURBVIAAV5cnIiIuoMkOIh7AYcvhxILhZG1fCEDIn8dRuecrmCxW/U8oIiI3TD9D RG7QtS4WbE89QvLMHtgSfsbkE0DEwLlUbPGICyoWEZGyRkFO5AYUtVjw+PkzAAqFuew9/yX5vX44 stOwV4giaOBHVLxD68OJiEjJ0MhqkRswO3ZhoRAHkNahEXOWLwLAcDg4/e/JJL7Zjf/f3n1HRXXt fQP/zlBHlCaIIApoMBoLAYntJiqJJWqMKWpUiBoLdlP0Rp5lvNcSfdIu8YmNF/BqYolXzYpGzeWR RMEAiSYYX4lS5DVGihRR6TBtv38Q5jo0YWQa8/2sNWvlnH04Z88vM5Nfzj77t9WV91DuORQ5Y/8B uPsbo7tERNRB8Y4ckQ5aKhasqipFQcxcVP56EgIS3HliNqqeDMPwp4aytAgREbUrJnJEOmiuWHAv UY5bG4dBUXgdatvOyH/qbdg9MQ6jgoNhZ2dn4F4SEVFHx6FVIh00VSx48nfxWKOOh6LwOmx7Dka3 tefhMXI6RowYwSSOiIj0gnXkiHRUXyxYoVbgZdUVhKiuAQC6DJ8FjzeiIbXrZOQeEhGRqWNB4AaY yJEhKcuKcXv3LFSnnwOsrOE+8xM4j10BiURi7K4REZEZYEFgIh20tgZcS2pu/Iz8HdOhvJsD4dAV PVd9hU6PP6OnHhMRETXGRI7Mmi4JWWtrwLWkNHEPivavgFDKUe36OPKGr0W3bgPRnoOp7ZFsEhFR x8ZEjsyWrglZSzXgHpYoqRW1KD74JkoTYur+rvdE3AlciEEBQUhJ/bndEq/2SDaJiKjj46xVMlsP K8rbnJZqwLVEUZKD3P8eg9KEGAipDW4PWYmyEW9i5NOjkZaVgYh/fobLwz1xbXgPXB7uiYh/fobT 351p25v6k67vjYiILAsTOTJbuiZkzdWAs5NYNfs3VenncGvDU6i5cRHWXXuheNJnsA6ajlGjRsHF xaXdEy9d3xsREVkWJnJktnRJyICma8C5nPkNS6bNbnSsEAL34j5F7scToCovRqcBY+Gz8RcMmfy6 Vn249k68dH1vRERkWZjIkdlqS0L2oMljx+OD+asQeKEAT/yUh8ALBfhgwapGz56paypQsHs2ig+v AdQquL4QgR6rv4VV566QyWSQSv/z9WnvxEvX90ZERJaFdeTIrNUX5a0VKthJrLBk2ux2mQwgL7iO /O2vQp53FRK7zui+aC+6BL/SYj8aTk5wOfNbkwlia+nrvRERkelgQeAGmMjRo6r49SQKoudAXV0G eRdvqF/5HwwOeemhf8fEi4iI2oqJXANM5EhXQq1GyYlNuHtiMwCg3Gs4bge/CR///hg4cCBXayAi onbHlR2IdNCw2O7yF1/E4My9qLzybwiJFHcGhOF+v1cxePBg9OrVy9jdJSIiapLJJXLr169HbGws hBBYtGgRNm/erGk7fvw4fvrpJ7i6uiInJweRkZGwsbExYm/JHDV8nq13RREcjsxFpaQawt4ZucFv Qe0zHCODg+Hi4mLk3hIRETXPpIZWY2NjoVQqMXr0aJw8eRIRERHYv38/QkNDkZqaitdeew1ZWVmQ SqVYu3YtbG1ttRI9gEOr9HAvLJ6Ly8M9AQDPFl7Dmqz/hb1aiRyJK/7ywU/ILKhAv379NKVFiIiI 9OVR8xaTKj+iUqmwZMkS9O/fH++++y5GjRqF5ORkAEBkZCTGjBmjKfnw0ksvISoqCnK53JhdJjMk hxpWahWWZ5/FexmnYa9WIs5jICJtxsLeow8CAgKYxBERkVkwqaHVxYsXa217eHhonk9KTk7GihUr NG3+/v4oKSnBlStXEBwcbNB+knnrKmrxjytHMLg0FwqJFDseew4nPQMQeLGw0bH6Xrhe3+cnIqKO zaQSuYaysrLw6aefAgAKCwvh5OSkaXN2dgYA5ObmMpGjVqvO/hHrrRJgXVqCYisZNgx8CenO3nXF dhes0jpW3wvX6/v8RETU8ZlsIvfNN98gPDwcXl5eAABra2utiQ1qdd2SSE2NK2/YsEHzz2PGjMGY MWP02lcyfUIIlJ6LQtHBt2GtUqDI3gcbb3mhqrIcgc4FWNJE4d6W1k9tj0RL3+cnIiLTk5CQgISE hHY7n8ESuZycHAQFBTXbPnXqVMTGxgIA8vLykJaWhnXr1mnaPT09UVpaqtm+f/8+AKBHjx6NzvVg Ikekllej6IvlKEv6HABw97EXcG/QPET2fgwDBgzQWmrrQfpeuF7f5yciItPT8AbTxo0bH+l8Bkvk evbsieLi4oceV15ejs8//1wriVMoFAgJCcH169c1+zIyMuDk5ITAwEC99Jc6BkXxTeTvmI7aPy5B WNnhdtAyVPqGIGDQoIfWh9P3wvX6Pj8REXV8JjW0KpfLERERgfDwcGRkZEAIgbNnz+L555/HggUL MHv2bKjVakilUnz77bcICwtjHTkTY+iH91u6XuVv8bgdFQp1RQls3HujdNwWKCQura4Pt3R6aJPr pzZ8lk7XPucXFqDmYDrsQ59t1/MTEZHlMKk6cmFhYTh06JDWvpEjRyIpKQkAsH//fly6dAne3t7I zs5GZGQkZDKZ1vGsI2c8TS4cH/8bPpiv+8LxOl3vjZUYUXsZd756DxBqdBr8PDwXHwDsHaFUKttU WqS9109t2OfazByozqeht3cveLq6cX1WIiILw7VWG2AiZzwPFtp9UOCFApyM2meQ63VS1mLrj8cx WH0LAOA6dT26Tv0bJM08B2doho4RERGZNq61SibD0A/vN7xez6oSbLp6HD7qu5DInOAZ/jk6B055 pGu091AxJzgQEVF7YiJH7cbQD+8/eL2n72Rhbca/4aCSI1fpAJuJn8Fv0MRHOr8+6rxxggMREbUn 0xhvog5h6fRQuMT/prXP5cxvWDJttt6u1zU+DQtvnMemqyfgoJIjocIFSf6rIO3qp6k1qKuW6rw9 Sp8NGSMiIurYeEeO2k39XSqtyQFNFNptL88PC4LX94VwyPkVKiHB4fLeEE+GYvrLr7RYH6619DEM augYERFRx8bJDmSWam5eQv72aVCW/AGJQ1f8EfQWarsHYFAr6sO1FicmEBGRvj1q3sKhVTI7pUmf I2fLM1CW/AH73kPhuykV3n95BSNHjmy3JA7gMCgREZk+3pEjsyGUchQdehulZ6MAAE5jFsE99H8g tWl9Xbi2au86ckRERA9iHbkGmMh1TMp7+cjfOQM12T9CYm2Lbq9vh9PohcbuVqsYerULIiIyH6wj Rx1eVeYPuL3zNajKCqF26IZuSw/DaeBoY3erVfRRwoSIiKgen5EjkyWEwL347cj9aCxUZYWo8QjA jTEfIbPc1thdazV9lDAhIiKqxztyZJLUtVUo3LcY5T/WJTz3Hn8FRU+EwtXNHUFBQUbuXevpayUH DtcSERHARI5MkLzoBvK3vwp5zhUIGxnyg1agwvsv8PX1bZf6cIakj5UcOFxLRET1zOe/iGQRKq/8 G7c2PAV5zhXYePjDfvEJVPV6BgEBdTXizCmJA/RTwoTDtUREVI935MgkCLUad09uRcnxDYAQcAic gu6LPodVJyd0q66GTCYzdhd1oo+VHPQ1XEtEROaHiRwZnaqqFAXRc1B5+RQgkaDrK5vg+sJ/QfLn 3TdzTeLqTR47vl2HPPUxXEtEROaJiRwZVW3ub8jfPg2KwuuQdHKG15IDcBg8sdnjW3rI31ImACyd HtroGTmXM79hyYJVRuwVEREZAxM5Mpryi0dQsGchRG0llF0fQ+6wtfDw/Uuzx7f0kH/9P1vCBAB9 DNcSEZF54soOZHBCpcSdo/+Fe3GRAIBK32eRF7AYdp2d8NRTT8HZ2bnJv2tpEXshBBe4JyIis8OV HcisKMuKcHvXLFRnJABSaxQHzMddv4lw7doVwcHBsLNrft1UXR7y5wQAIiLqyJjIkcFU37iI2zum Q3k3F1JHD9wa8jYqXfu1uj5cSw/5N/d/M5wAQEREHZl5FeUis3U/IQa5W0dDeTcX9o+NhO/GX9Bv XGib6sO1VJNNH/XaiIiITB3vyJFeqeU1KDqwCmXn9wAAnJ5bhm6z/gGJtS28XNp2rtY85M8JAERE ZEk42YH0RlGSg/wd01H7+8+Q2Nij29xdcHp6rrG7RUREZDI42YFMUlX6OdzeNQuq8mIIRy/YhUbD aVjz9eGIiIio7ZjIUbsSQuBeXCTuHIkAhBpy76fwx5MrYXVPAi+FAjY2NsbuIhERUYfBRI7ajbqm AgX/XIiKi0cBAKUDXkPB4zNgL3NAcHAwkzgiIqJ2xkSOADz68lbygizkb58Ged5VwK4zbg9ZhTLP oXB1dX1ofTgiIiLSDRM5anHpq9YkcxW/foOC6LlQV5fB1rMfnOZ/gf+XXQRfb+9W1YcjIiIi3XDW KrW49FVLy1sJtQolX2/E3ZNbAACdh7yM7gv3QirrgurqashkMn11mYiIqEPgrFV6ZLosfaWquIvb /ycMVWn/C0ikcJu2BS6T/gqJRAIATOKIiIgMgIkctbj0VVNqb/1f5G9/FYri3yFxcIXXsi/hMGCs PrtIRERETeDDS9Sm5a3KUg7g1vt/gaL4d6g9+iP7mQ9wp7O/obpKRERED+AdOWrV0ldCqUDx4TW4 /90OAEBN34m49cQ8SGxknMxARERkJJzsQA+lvF+A27teQ3VWEmBlg7tDlqDY+1nYy2QIDg6Gi0sb F00lIiIiAJzsYJEeteZbW1RfT0H+zhlQ3b8NK2cvFD+zDsW2PVgfjoiIyAQwkTMzj1rzrbWEECg9 G4WiQ28DKgVkj4+C59Iv0d2mC27evIn+/ftzSJWIiMjIOLRqZnSt+dYWank1ij5fhrLkLwAAzuPf hPuMDyGx5hJbRERE7YlDqxZGl5pvbaEovon8HdNQ+8evkNjK4PFGNBxHNJ69SkRERMbHRM7MtLXm W1tU/nYGt3eHQl15FxKXXqh54WM4jpj2yOclIiIi/eBDTmamLTXfWksIgbunPkDePyZBXXkXar9n kPX0VtysssOdO3cetctERESkJ7wjZ2ZaU/OtLVTVZSiMfQMVqccBAFVBbyDHdwqkVtYIGDQIbm5u 7dZ3IiIial+c7GDBavPTkf/Zq1AUZEIic0LRsHdwt2sA7O3tWR+OiIjIADjZgXRS/vNXKNgzH6Km ArbeA+Gx7F+4nV0EVysrg9SHM2QtPCIioo6KiZyFESol7ny1Hve+/QgA0GXYa/CYHwOpnQOGdfWD jY2N3uvDGaoWHhERUUdnskOrV69exYwZM3D16lXNvuPHj+Onn36Cq6srcnJyEBkZCRsb7dpmHFpt nqr8Dm5HzUbV1e8BqRXcX/sIzuPfhEQiMWg/DFELj4iIyBx0yKHV6upqrFu3DtXV1Zp9qampWLNm DbKysiCVSrF27Vps2rQJmzdvNmJPzUfNzVTkb58GZcktSDq7wXPpl+g84FlNuyGHOvVdC4+IiMhS mGT5kW3btmH+/PlaGWpkZCTGjBmjGfZ76aWXEBUVBblcbqxumo3SH/bi2PKRdUmcdwBujPkYmTVO mvb6oc7Lwz1xbXgPXB7uiYh/fobT353RS3/0WQuvrRISEgx+TVPHmDSNcWka49I0xqUxxkQ/TC6R +/rrr/Hcc8/B0dFRa39KSgr69eun2fb390dJSQmuXLli6C6alfKLR1G4ZyEu5MmhGvwqMoPfg9zO Bba2tppEeffRg1rPqwHAvXEDEXXskF76pI9aeLriD0tjjEnTGJemMS5NY1waY0z0w6SGVn///XcU Fhbi5ZdfbvQvvKCgAE5O/7mL5OzsDADIzc1FcHCwIbtpVjoHvQT7/s+h9l4Vsv1fh1QqxeBBg9Cr Vy/NMYYe6mzvWnhERESWymQSOYVCgejoaGzdurXJdmtra62JDWp1XfLBiQ0tk1jboOKFT1F++f1m 68MZY6hz8tjxTNyIiIgelTCQW7duCTc3t2ZfISEhws7OTtjb2wt7e3tha2srJBKJkMlk4uTJk8Lf 319s27ZNc77CwkIhkUjEhQsXtK7Tp08fAYAvvvjiiy+++OLL5F99+vR5pPzKYHfkevbsieLi4lYf n5iYiHnz5uH3338HAJw8eRLXr1/XtGdkZMDJyQmBgYFaf5ednd0+HSYiIiIycSY32aGeaDBkumDB AsTFxWmGVL/99luEhYU1qiNHREREZClM5hm5pjxYqHbo0KH4+9//jtWrV8Pb2xulpaWIjIw0Yu+I iIiIjMtkV3Z4FHFxcbh8+TIGDBiAKVOmGLs7RETUwd28eRNHjhxBt27dMHnyZLi7uxu7S2Qiampq IJfLG5VVay8mO7SqC4VCgVmzZiE+Ph5//etftZK448ePIyIiAh999BFWrlwJhUJhxJ4ax9WrVzFg wACtfZYal/Xr18PT0xPdu3fH+vXrtdosNSZ5eXlYtmwZoqKiMHfuXK3l8SxJYmIiAgIC4OjoiAkT JiAnJwcA41NPrVYjJCQEiYmJABgXADhy5Ahmz56N6dOnY968eXB3d7f4uCQlJeFvf/sbtm3bhrCw MGRmZgKwrM+LEAL79u1D37598fPPP2v2txQDneLzSFMlTMz8+fPFjBkzGu3/5ZdfRJ8+fYRKpRJC CPHuu++K9957z9DdM6qqqioxdepU4efnp9lnqXGJiYkRu3fvFteuXRMffvihkEgk4sCBA0IIy42J Wq0WQUFBIj4+XgghxLVr14Sfn59QKpVG7plhFRYWijlz5oi0tDQRFxcnfHx8xNixY4UQgvH5044d O4Srq6tITEzk50YIce7cOeHu7i7y8vI0+yw9LkqlUut3NCEhwSK/R0VFRSInJ0dIJBLx/fffCyGa /2yoVCqdPzcdJpFLSUkREolE3Lp1q1Hb7NmzxYIFC7SOdXNzE7W1tYbsolFt3bpVnDhxQvj6+mr2 WWpcoqKitLZHjx4tli5dKoSw3JicOXNGyGQyoVAoNPv69u0rjh07ZsReGd6XX34pysrKNNt79+4V 9vb2Ij4+nvERQvzwww/i9OnTwtfXVyQmJlr850atVot+/fqJzZs3a+239LgUFRUJmUwmysvLhRBC XL58WQwZMsRiv0cPJnItfTZ0/dx0mKHVvXv3ws3NDZ999hlGjRqFESNG4Nq1awCA5ORki17ei8ue aVu8eLHWtoeHh2alC0v9rCQnJ6N3796wtv7P/Ke+ffvi7NmzRuyV4c2cORNdunTRbNd/NpKTk+Hn 52fR8SkpKUFKSgomTZoEoG7YyNLj8uOPPyIzMxM3b97EtGnT0L9/f+zcudPi4+Lu7o4hQ4Zgzpw5 KCsrw/bt27F582YkJSVZdFyAln9rU1JSdIpPh0nkUlNTMW7cOHz88cc4f/48hg0bhhkzZkAIgcLC wmaX9+ro6pc9Gzp0aKO2lpY9syRZWVmYM2cOAFjsZ6WgoKBRou/k5NTh3/fDXLp0CUuXLm30XQEs Lz7btm3DW2+9pbWv4fcFsKy4pKamokuXLvjggw9w7NgxHDx4EG+++SYuXLhg0XEBgKNHjyIjIwNe Xl547rnnMHHiRH6P0PRvrbOzM3Jzc3WOT4dJ5CorK/H0009rthcvXoxr167hxo0bFru8V/2yZw3v QNWz1Lg86JtvvkF4eDi8vLwAWG5MGr5v4D/v3VJVVlYiLS0NK1euhJWVlUXHJyYmBqGhobC1tdXa b+lxqaiowOOPPw43NzcAQFBQEIKDg/HYY49ZdFyAuoRl7NixmDRpEubNm4ejR4/CxsbG4uPS3G+t EELn32GTriNXLycnB0FBQc22v/jii/Dw8EBFRYVmX8+ePQEAd+/ehaenJ0pLSzVt9+/fBwD06NFD Tz02jIfFZdCgQUhJScG2bdsA1H0gFAoFOnXqhCNHjnTIuDwsJlOnTkVsbCyAutlBaWlpWLdunaa9 I8akNby8vJCUlKS17/79+/D19TVOh0zAJ598gu3bt8PKysri4xMTE4NVq1ZptmtrazF+/HgIIRrN hLekuHTv3h2VlZVa+7y9vbFz504EBARo7bekuFRVVWHixIlIS0uDm5sb3nvvPSxYsABr1qzR+n0F LCsuQPO/tb169YKnpyd++OGHRm0PjU87P9NnNBEREWLRokWa7eLiYiGVSkVRUZEIDw8Xy5cv17Ql JiYKZ2dnIZfLjdFVo0lISNCa7GDJcSkrKxNbtmzR2ieXyy02JikpKaJLly5a+3r37i3+9a9/GalH xhUdHS2ys7M124mJiYzPA+onO1j65yY9PV107txZ6/fhhRdeEBs3brTouFy4cEF069ZNs61UKoWT k5PFfo8enOyQnJzcbAx0/T51mKHV+fPnIy4uDjU1NQCA8+fPY+rUqXB3d+fyXn8SXPYMACCXyxER EYHJkycjIyMD6enp2LlzJ27dumWxMRk+fDh8fHxw7tw5AHVrGVdVVVlkQe19+/ZBJpNBoVAgIyMD iYmJuHHjBnx9fRmfBiz9c9OvXz8MGTIEp06dAlD323LlyhWEh4dbdFz8/f0hl8tx+/ZtAHVxcXBw wJNPPmlxcWn4eM6IESMaxaCyshJTpkzR+ftkFkOrreHv74/IyEiEh4dj0KBByM7ORkxMDAAu7/Ug LntWl/QfOnQIu3fv1uwbOXIkli9fjj59+lhkTCQSCU6cOIFNmzYhPT0dFy9exKlTpyCTyYzdNYOK i4vDokWLoFKpNPskEgkyMzMxatQoi49PQ/zcAAcOHMDq1auRmZmJ3NxcxMTEoHv37hYdFxcXFxw7 dgyrV69GcHAwcnJysH//fjg6OlpUXIqLixETEwOJRIJDhw6hR48e6NevX6MYnD59WhMDXeLTIZfo IiIiIrIEHWZolYiIiMjSMJEjIiIiMlNM5IiIiIjMFBM5IiIiIjPFRI6IiIjITDGRIyIiIjJTTOSI iIiIzBQTOSIya4mJiQgICICjoyMmTJiAnJwcTVteXh6WLVuGqKgozJ07F1evXm1VWz21Wo2QkBAk JiY2aisqKsLKlSshlUoxfvx4hIeHY9y4cXj//fdRU1OD1NRUDBgwAFKpFB9++CGqq6s1f3v06FE4 ODhgy5YtyMnJwYYNGyCVShESEqKp6k5E1Crtt5oYEZFhFRYWijlz5oi0tDQRFxcnfHx8xNixY4UQ QqjVahEUFCTi4+OFEEJcu3ZN+Pn5CZVK1WybUqnUOv+OHTuEq6urSExMbPL62dnZQiKRaNorKiqE v7+/CA0NFULUrdEqkUjEkSNHtP6upqZGTJw4UbOtVCqFRCIRe/bsaYeoEJEl4R05IjJbZ8+exY4d OzBw4EBMmDABGzZsQFJSEgDgu+++Q3p6OsaMGQMA6N+/P2xsbPD1118323b8+HHNuZOSkuDn5wdH R8dmr29lZaW17eDggMmTJ2vW3hw1ahQCAwMRHR2tddyJEycQGhra6DzW1h1m1UQiMhAmckRktmbO nIkuXbpotj08PODj4wMASE5ORu/evbWSo759++Ls2bNISUmBn59fk20AUFJSgpSUFEyaNKnNfaqs rISrq6tme8WKFTh79iyysrI0+7766iu88sorbT43EVFDTOSIqMO4dOkSlixZAgAoKChodDfN2dkZ ubm5KCgogJOTk1abk5MT8vLyAADbtm3DW2+91errij+XrE5NTcXhw4fxzjvvaNpmzZoFFxcX7Nq1 CwCQn58PR0fHDrtQOBEZFu/jE1GHUFlZibS0NBw6dAhA3TCljY2N1jFqtRpCiCbbhBBQq9WIjY1F aGgobG1ttdpa8umnn2LPnj0oLS3Frl27EBYWpmmzt7fHggULEB0dja1bt+KLL77A66+//qhvl4gI AO/IEVEH8cknn2D79u2QSut+1ry8vFBaWqp1zP3799GjRw94eno22xYdHY3AwEDIZDLIZDL88ccf GD9+PGbOnNnstd955x188cUXOHHihFYSV2/ZsmUoLy/HwYMHcf78eYwaNaod3jERERM5IuoAYmJi EBYWBnd3dwCAQqFASEgIbty4oXVcRkYGQkJCWmy7ePEiqqurNS8fHx/Ex8fj8OHDOvfPx8cHkydP xrp16zBs2DCdz0NE1BATOSIya/v27YNMJoNCoUBGRgYSExNx6NAhjBgxAj4+Ppq6bBkZGaisrMSU KVMwfPjwRm1VVVWYMmVKm66tVCoB1CWOD7NixQrcuXMHc+bMadRW//dyubxN1yci4jNyRGS24uLi sGjRIqhUKs0+iUSCzMxMAHVlPjZt2oT09HRcvHgRp0+f1kwyaNh26tSpNk1AKCoqwu7duyGRSBAb Gwt3d3cMHjy42ePHjRuHhQsXws/PT2t/Xl4eYmNjAQAHDhxA3759OfRKRK0mEQ97ipeIiIiITBKH VomIiIjMFBM5IiIiIjPFRI6IiIjITDGRIyIiIjJTTOSIiIiIzBQTOSIiIiIzxUSOiIiIyEwxkSMi IiIyU0zkiIiIiMzU/wemYzm06a2VOAAAAABJRU5ErkJggg== ", null, " AAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlYVFXjB/DvHZgRUBYVVERUXFCyNBVzyRRyl9clzSU3 NEvT3kRNLMvMJdPS1Ny3yj1z+YWKlksuL+4KpqaIiJmBKAqyMwww5/fHjSvjMAiJMIPfz/PMk3PO mTvn4lN9OeeecyQhhAARERERWQRVaXeAiIiIiAqP4Y2IiIjIgjC8EREREVkQhjciIiIiC8LwRkRE RGRBGN6IiIiILEiphjetVovk5OTS7AIRERGRRSmV8CaEwLp16+Dp6Ylz584p5TExMRg7dixWrlwJ f39/XLlypVB1RERERM8LqTQ26b1//z4yMzNRs2ZNHDp0CK+//jqEEPD29sZXX32Fjh07Ijw8HH5+ frhx4wYkScq3LjIyElZWViXdfSIiIqJSUyojby4uLqhRo4ZB2aFDhxAeHg4fHx8AgJeXF9RqNX7+ +WeTdUFBQSXccyIiIqLSZTYLFk6cOIE6derA2tpaKfP09MThw4dx8uRJeHh45FtHRERE9DyxfnKT knH37l04ODgYlDk5OSE6Ohp6vR6Ojo4GdY6OjoiOji7JLhIRERGVOrMJb9bW1lCr1QZler0eQgiT dfkZPnw4ateurbz38fFRpluJiIiILJ3ZhLfq1avj+PHjBmWJiYmoWbMmXF1dERISYlSXN6TlWr9+ PUphDQYRERFRiTCbZ958fHxw8+ZNg7Jr167B19cXvr6+RnUREREcUSMiIqLnTqmFt9xpz9xRstat W6NWrVo4cuQIADm4paWloUePHmjVqpVRXXp6Onr06FE6nSciIiIqJaUybXr//n2sWbMGkiRhy5Yt cHNzQ8OGDbFr1y7MnDkT4eHhOHv2LPbu3QtbW1sAMKoLDg5W6oiIiIieF6WySe+zJEkSn3kjIiKi MstsnnkjIiIioidjeCMiIiKyIAxvRERERBaE4Y2IiIjIgjC8EREREVkQhjciIiIiC8LwRkRERGRB GN6IiIiILAjDGxEREZEFYXgjIiIisiAMb2VIQkIC/P39Ua1aNbi6umL06NFISUkxaBMWFoa3334b 33zzDQYNGoT9+/cb1KempmL8+PGYM2cOJkyYgI8//hg5OTlKfXZ2NmbNmoVp06ZhxowZeOutt3D9 +nWTfVq1ahW8vLygUqkQEBBgst3Ro0ehUqmgUqnw4Ycf4tatW4W+771796Jz585o0aIFunfvrnyf SqXCt99++8TPa7VauLu7IygoqNDfmZ/U1FSMGjUKLVq0QLt27WBjYwOVSoWVK1c+1XWJiIgMiDKm DN5Soej1etG7d28xf/58sWPHDuHv7y8kSRIDBgxQ2kRGRorKlSuLyMhIIYQQ9+/fF87OzuL8+fNK m+7du4tp06Yp79966y0xceJE5f2nn34qJk2apLwPCQkRDRs2LLBvS5cuFZIkCQcHB5GSkpJvmwED BggbGxvh4uJSpPuePHmyKFeunNiyZYtB+datW4Wtra349ttvn3gNvV4v+vbtK06ePFmk737c6NGj RZs2bUR2drYQQojbt2+Ll156SUydOtWg3a1bt4p03aK2JyKisq3MJZ3nNbyFhIQYBZjevXsLKysr odVqhRBCDB48WPj6+hq0GTp0qOjUqZMQQoiDBw8KSZLEX3/9pdT/9ttvQq1Wi9u3bwshhGjSpIlY unSpUp+RkSEkSRLx8fEm+7Zu3TrRrFkzIUmSWLJkiVH9vXv3RIcOHUTt2rWFh4dHoe958+bNQpIk 8c033+Rbv3TpUrFo0aJCX+9pValSRQQEBBiURUREiJEjRyrv4+LiRL9+/Qp9zaK2JyKiso/TpsUh PR1ISwOCgoDdu+U/p6eXeDcGDhxo8L5Dhw7Q6/VISUlBTk4OgoKC0KJFC4M2LVq0wOHDhxEfH4+d O3fCxcUFNWvWNKjPzs7Gzp07AQDOzs7YtGmTMpV66dIluLu7o1KlSgX2bfjw4ahQoQKWLl1qVPfd d9/hnXfeKdK9CiEwdepU2NvbY+zYsfm2efvtt+Hg4FDoa+r1+iL14XFZWVnYvn074uLilDJPT0/4 +PgAAHQ6HYYOHYr79+8X6npFbU9ERM8HhrenlZ4OnDgBVK0KvPEG0KsXUK0acOpUiQa4tm3bQpIk gzKtVos6derA2dkZUVFRSE9Ph7u7u0Ebd3d36PV6XLx4ERcvXjSqt7e3h6OjIy5cuAAAmDp1KkJD Q9GrVy+EhoZixowZ2LVr1xP75+DggGHDhuH69es4cOCAUq7X67F792707dsXQgijz0VFRWHy5MmY NWsWunbtilmzZgGQQ+OtW7fQokUL2NjY5Pudtra2GDFiBAAgJiYGo0aNwurVqzFixAh89tlnyvdv 2bIFHTt2xOzZswEAV65cwfvvv4+OHTvi2LFjaNKkCSpVqoR58+YVeI9DhgxBbGwsvL29De5xyJAh AICTJ08iJiYGUVFRCAwMxPHjxwEAP//8MwIDA7Fs2TJ07txZKT9x4kS+7S9duoSAgAAMGzYMXl5e mD9/vvJdoaGh+OSTT7Bq1Sp4e3sX6pk/IiKyMKU99FfcSvyW0tKEsLcXAjB8OToKkZ5esn15zH/+ 8x9livPkyZNCkiTx/fffG7TJnSr98ccfRYMGDUS7du2MruPm5ia6du2qvN+5c6coV66cUKlUYteu XU/sx7p168S6detEeHi4kCRJ+Pn5KXX79u0Tn376qRBCiFq1ahlMm/7999/C29tbJCcnCyGEOHDg gJAkSRw8eFBs27ZNSJIkhgwZUqifRe/evcW7774rhBAiISFBSJIkQkJCRE5Ojrh9+7ZwcHAQM2bM EEIIkZOTI95//31RqVIlsXbtWqHT6cT8+fOFWq0WDx48MPkdmZmZYujQoUKSJCFJknjrrbeMppOH Dx9uMHUdHx8vrK2txYkTJ4QQQixYsEDUrVvXZPvExETRo0cP5X3uz2Hfvn1CCCFee+01cfnyZSGE ELGxsWL58uWF+vkQEZHl4Mjb0woJAR5b0QkASEoCTp4s+f78448//kBKSooypajRaADAaHQu971G o4FGozGqz22T+3kAuH79OsaMGYMaNWqgb9++2LhxY6H61LBhQ3Ts2BG//PILoqKiAABr167F6NGj 823/9ddfw8/PD/b29gCATp06YePGjWjZsqUybZudnV2o7+7Xr58yrWxnZwcAuHXrFlQqldG0r0ql grOzMxwcHDBy5Eio1Wr06NED2dnZuHHjhsnv0Gg02LBhA/bv34+6deti69ataNq0qXKvgDzdK/KM MDo4OCAwMBBeXl5K3/7880+T7VesWIH4+HhMmTIFU6ZMwalTp9C2bVvExsYCkKda586dC51Oh2rV qqFv376F+vkQEZHlYHh7WtbW/67uGcrMzMSMGTOwbds2JYxVqVIFAJCWlmbQNvd99erVUaVKFaSm phpdLy0tDdWrVwcAzJ8/H1evXsXChQtx4cIFtG7dGu+88w7++uuvQvXtgw8+gBACy5YtQ3R0NIQQ RlO1uY4fP658b67BgwfD3t5eeS4vOjq6UN87aNAgvPDCC1i4cKESNovyjFtueM3MzHxi206dOuHi xYvo27cv/v77bwwePNhkW2tra3z55Ze4dOkS5s2bh9DQ0Hynj3NduHABvr6+mDNnDubMmYMFCxbg f//7H95++20AwJw5c7Bz5040adIE//vf/5S/dyIiKjsY3p5WmzZA5crG5c7OwCuvlHx/AHz88ceY NWuWwf+43dzc4OLiYhR2oqOjYW1tjYYNG6JJkyZG9WlpaUhMTMSLL74IAFiwYAH69+8PAKhUqRKC goKg0WgQHBxcqL795z//gYeHB3744QcsWrTI5KgbIC8AMLXfW4sWLeDk5ISwsDCjvezyExQUhD59 +mD48OFFXhxRGPv27UNycrLy3s7ODlu3bkX9+vVx9uxZJCYmKnV5Rzf1ej38/f1x8OBBBAYGok2b NgV+T0ZGBm7evGlUrtPpAAC+vr44c+YMnJyc4Ovri8WLFz/trRERkZlheHtakgTs2wfkHeGoWhX4 9Ve5roTNnj0bAwYMQMOGDZWyq1evQqVSoVevXjh//rxB+3PnzqFTp05wcnJCnz59EBcXh5iYGKX+ /PnzUKlUePPNNwHIISHvVGWlSpXQqFEjWFlZmeyTXq9XRpMkScLYsWORlJSE3bt3o0uXLiY/5+Xl hY0bNyIjI0MpS0lJwW+//Qa1Wo2PPvoIGRkZWLBgQb6fz8nJwcmTJ6HVauHv74+BAweiYsWKT72q ND9ZWVlG/bCyskLjxo1ha2sLR0dHAPL95/3+n376CRs3bsTkyZMBGI8GSpJkMBJXv359BAcH4+7d u0pZdnY2Fi1aBAA4dOgQGjdujFOnTmHcuHH4/PPPi/dGiYio1DG8PS0bG6BxY+DWLXmF6enTwJ9/ Ao0ayXUlaMWKFYiKikJ0dDR27NiBHTt2YMmSJdiwYQMAYOLEiThz5owycpOQkIDdu3crweHVV19F +/bt8d133ynXXLt2Lfz9/VG1alUAQP/+/bF9+3alPjExEXfu3EG3bt1M9uvBgweIj49X3o8cORJ2 dnYYNWqUQbvk5GSDUbQJEyYgJiYGr732GrZs2YIdO3ZgzJgxaNu2LQBg8uTJGDRoEGbNmoX58+cr o0+AvEp16NChcHR0RFpaGlJSUnD+/HlkZWVh8+bNUKlUuHPnjtIvnU5n8Pns7GyD0JRbl/e0ibw8 PDzwxRdfYNu2bUpZXFwcQkJCMGbMGGW0rXLlyrh58yaysrIQFhamPKt2+vRpJCYmYt++fQCA27dv IzU11aj96NGjkZGRgS5dumDPnj04dOgQBg4cqITgxYsXK/329/eHm5ubyb8XIiKyUKW0UOKZKYO3 VCh79+4V1tbWQqVSKasdJUkSKpVKHD58WGl39OhRMWDAAPH111+LwYMHi6CgIIPrPHz4UIwYMUJM mzZNBAYGigkTJgidTqfUZ2RkiEmTJonhw4eLGTNmiJEjR4qQkBCT/VqxYoXw8PAQderUEWvXrlXK AwIClJWYkZGRYtKkSUp/AwIClI2CN27cKDw8PESFChVEr169RHR0tNF3bN68WbRr1064u7uLdu3a iZ49e4qJEyeKuLg4g++zs7MTTZs2FSEhIaJ3797C3d1d7Nq1S6xatUqoVCrRuHFjcfz4cXHlyhXR tGlTodFoxPr160VycrIYPXq0UKlUYvjw4fluSJycnKz8zJs2bSr69u0rWrVqJWbPnq2cuCCEEBcv XhTVqlUTTZs2FaGhoeLOnTvi5ZdfFuXLlxdDhw4VYWFhwsXFRXTu3FkkJiYatRdCXu3r6ekpbG1t RcuWLcWxY8eU69euXVv4+fmJlStXijFjxoiwsDCTfzdERGSZJCEKeDraAj0+zURERERUlnDalIiI iEqETgckJ8v/pH+vdPayICIioudGVhaQmQmsXg2EhQHNmwPvvis/Gl5Ku2pZNE6bEhER0TN1/z7Q tCmQZzMD1KgBXLgg76xFRcNpUyIiInpmUlOBzz4zDG4AEB0NTJsm11PRMLwRERHRMyMEcPhw/nW/ /SbXU9EwvBEREdEzo9cDj510qHBzk+upaBjeiIiI6Jmxtwf+2QveyOTJcj0VjdmFt+PHj2PatGlY tGgRhgwZgoiICABATEwMxo4di5UrV8Lf3x9Xrlwp5Z4SERHRk6hUQPv2wA8/AO7ucpm7O7B+PfDa a3I9FY1ZrTbNyclBgwYNcP36dahUKhw7dgxffPEFDh48iObNm+Orr75Cx44dER4eDj8/P0RGRhqd qcnVpkREROYnM1N+vk2vlwObJAHlypV2ryyTWeXdhIQE3LlzB+np6QAAJycnPHz4EIcOHUJ4eDh8 fHwAyAeWq9VqBAUFlWJviYiIqLDKlZP3dbOzk//J4PbvmVV4c3FxQfPmzTFs2DAkJydjyZIlmDVr Fo4fPw4PDw9Y59nJz9PTE4dNLV8hIiIiKqPMbl/j7du34/XXX0f16tWxZs0adOvWDbt27YKjo6NB O0dHR0RHR5dSL81TQkICJkyYgP3790OSJPTs2RPz58+HfZ6nQcPCwrB06VI0atQIoaGh8Pf3R5cu XZT61NRUTJ06FVWrVkVcXBzKlSuH2bNnK9PT2dnZmDNnDrKysmBlZYVr165hxowZ8PT0LLBvqamp mD9/PkJCQlCjRg0kJSUhMzMTAQEB6Nq1KwBAp9Nh8eLF+Pnnn/Hee+9h6NChz+CnVDxCQ0MREBAA tVqNuLg4hIeHAwAyMjJQjr9OEhEViVarha6AM7M0Gg1sbGxKsEfmzezC2927d9GxY0fcvXsXw4cP h7W1NdRqNdRqtUE7PdcWGxBCYOTIkWjbti169uyJPXv2YM2aNUhKSsLWrVsBADdu3EDnzp1x+vRp 1KtXDw8ePICXlxd+/fVXNG/eHAAwYMAAeHt7Y8qUKQCAQYMGYfLkyfjmm28AANOnT0dmZibmzZsH QF5g0qtXLyW85OfevXt4/fXX0aBBA+zdu1f5F/DUqVPw8/PDhAkT8Nlnn0Gj0SjfN3r06Gf2s3pa SUlJ8PPzw7Rp0zB27FgA8i8dQ4cORUxMDOrUqaO0vX37NmrWrFnoaxe1PRFRWaDT6RAbG2uy3tXV leEtD7MKb+np6ejWrRsuX74MZ2dnTJ06FSNHjsSkSZOQlJRk0DYxMRG1a9fO9zrTp09X/uzj46M8 K1eWnThxAv3798dbb70FAOjbty+SkpKwY8cOZGZmoly5cpg+fToaN26MevXqAQCcnZ3RrVs3TJky BQcOHMChQ4fwyy+/YMWKFcp133nnHXTt2hXjx4+Hu7s7goOD8e677yr13t7eiIiIQEJCAipVqpRv 3/z9/REXF4fTp08b/MvXunVrLFy4ECNGjECzZs3g5+eH6qY2AzIjJ0+eRFxcHNq0aaOU9evXDxcv XkR0dLQS3n744QeoVCr4+/sX6rpFbU9ERM8ns3rm7Y8//oBer4fzPwedzZgxAyqVCj4+Prh586ZB 24iICJOhbPr06cqrpIJbaqp88G5WVukd9TFw4ECD9x06dIBer0dKSgpycnIQFBSEFi1aGLRp0aIF Dh8+jPj4eOzcuRMuLi4GIz8tWrRAdnY2du7cCUAOfJs2bUJOTg4A4NKlS3B3dzcZ3EJDQ3HgwAH0 7dvXYPo216BBg1C+fHmDwG3usrKyAABLly41KH/33XeV6eU//vgDEyZMKPQ1i9qeiIieX2YV3urX r28wdKrT6VC+fHm8/PLLqFWrFo4cOQIAuHbtGtLT09GjR4/S7K4iJQX48EP5cF0XFyAwUC4rSW3b toUkSQZlWq0WderUgbOzM6KiopCeng733E12/uHu7g69Xo+LFy/i4sWLRvX29vZwdHTEhQsXAABT p05FaGgoevXqhdDQUMyYMQO7du0y2a8DBw4AkEfZ8qNWq+Ht7Y3Q0FDEx8cr5fHx8XjjjTdQvnx5 eHp6Ijg4WKmLiYnBqFGjsHr1aowYMQKfffaZUrd69Wp07twZixcvxscff4w6deqgevXq+O233xAW FoaePXvCyckJgwYNMph6X716tbK/YOfOnXH16lWT99ShQwdUq1YN33//PXr37o27d+8CAGrVqoVX X30VAPDLL78gOTkZP/30EwIDA5GZmQmdTodJkyZh8eLFmDp1Kvr374/k5GST7QFg1apVynOBLVu2 xPnz55V+fPPNN1i+fDlmzZoFe3t75VpERFTGCTNz6NAh8dZbb4lvvvlGjB8/Xvz2229CCCGioqKE v7+/WLZsmfD39xfnz5/P9/MlfUtpaUK0aSOEvHvNo9drrwmRmlqiXTHyn//8RyxdulQIIcTJkyeF JEni+++/N2hz8OBBIUmS+PHHH0WDBg1Eu3btjK7j5uYmunbtqrzfuXOnKFeunFCpVGLXrl0F9uG9 994TkiSJAwcOmGwzcOBAIUmS8ncqSZJo166dOHPmjAgLCxOtWrUSGo1G3LhxQwghRO/evcW7774r hBAiISFBSJIkQkJChBBCJCcnC3t7e+Hr6ysiIyOFEEK89dZbwt3dXaxbt04IIcSVK1eESqUSBw8e FEII8fvvvwtJkkRMTIwQQohx48aJDh06FHhfFy9eFJ6enkKSJOHg4CBWrVpl1EaSJLF+/Xrl/aJF i0S9evWU940bNxazZs0y2X7z5s1i+fLlyvvu3buL6tWri+zsbBEVFSWaNWum1C1YsEAkJiYW2Gci InOVlJQkrl27ZvKVlJRU2l00K2b1zBsgj2p06NDBqLxOnTpYt24dACgPiZuDmzeBkyeNy0NCgNu3 AS+vku8TIE/DpaSkKD8rjUYDAEajc7nvNRoNNBqNUX1um9zPA8D169cxZswY/N///R/69u2L77// 3uTK0NzriQI2Ts4dAcvbZtiwYXjllVcAAOvXr4eXlxeWLl2KhQsXol+/fqhWrRoAwM7ODgBw69Yt tG3bFvb29qhcuTJ8fHyUZ/vat2+PrVu3Ks+SvfDCC6hatSquXLmCjh07ombNmpgyZQqqVKmiXPPP P/802V8AaNy4MS5duoS5c+dizpw5eO+993D8+HGsW7cOKhPbhbdt21b5OQohUKFCBdy6dcvkd8yc ORM+Pj7K4hEnJyfUrVsXcXFxyMzMxOXLl7Fr1y706tULI0aMQPny5QvsMxERlQ1mF94sTVRUwXWl Ed4yMzMxY8YMbNu2TQlPucEkLS3NoG3u++rVq6NKlSpITEw0ul5aWpqykGD+/Pm4evUqNmzYgM8+ +wy9e/fGO++8g3bt2qFWrVpGn81dVBIXF2eyv/fv34ckSQafz7u62NPTEx4eHspRaYMGDcLdu3ex cOFC5Tm6glYf57d1R7ly5ZRpxooVK2L27NnYvXs3bty4gcjIyEKtZi5Xrhw+//xz9OzZEz169MCm TZvQpk0bvPfee/m2b968ORo1aoS1a9ciPT0dKSkpJr8nPT0dkZGRCA4OVkJoXq6urhgxYgTeeOMN DBkyBAsXLjTYB5GIiMous3rmzRK98op8xMfjVCrgsbUBJebjjz/GrFmzlMAGAG5ubnBxcTHaGy86 OhrW1tZo2LAhmjRpYlSflpaGxMREvPjiiwCABQsWoH///gCASpUqISgoCBqNxuCZtLxy95A7depU vvU5OTm4cOECmjRpAhcXF5P35OzsrKxUDQoKQp8+fTB8+HC88847Bf0oCpQ70peeno4uXbrg3r17 mDhxonKvpmzZssXgfdOmTfHjjz8CAH799VeTn7t+/TpatmyJFi1aYNy4cahcubLJthkZGRBCGC3U AaDshbRq1SqsWLECe/fuxUsvvYTIyMgC+01EZK40Gg1cXV1NvvLO/hDD21OztwfGjDEuf/99oDRm sWbPno0BAwagYcOGStnVq1ehUqnQq1cvgwfeAeDcuXPo1KkTnJyc0KdPH8TFxSEmJkapP3/+PFQq Fd58800AcnDIzs5W6itVqoRGjRoZnTGbq0mTJvDz88PWrVuRks8qjp9//hlJSUkGiw7yExsbiw4d OkCr1cLf3x8DBw5ExYoVi2W/v2+//RZnz55VtkB50jWDgoJw48YNg7JmzZoBAKpWrWpQnncq+IMP PkDdunXRpEkTAFBW7ObXvnLlyqhUqRJWr15tUH/x4kUcPHgQly9fRlxcHEaPHo2rV6/CwcEBy5cv L8ztEhGZHRsbGzg4OJh8cY83QwxvT6lCBWDePCAoCOjZE+jVC9i1C5g7V64rSStWrEBUVBSio6Ox Y8cO7NixA0uWLMGGDRsAABMnTsSZM2eU0ZyEhATs3r0bkydPBgC8+uqraN++Pb777jvlmmvXroW/ v78SSvr374/t27cr9YmJibhz5w66detmsl/ff/893NzcMHjwYIMAd/nyZYwbNw4fffQR3njjDaVc kiRkZGQo74ODg1GpUiW88847SEtLQ0pKCs6fP4+srCxs3rwZKpUKd+7cUVarZmdnG4Sm3DCWNyxl Z2cr5Xfu3EFaWhquXr2K2NhYHDlyBA8fPkR8fHy+O37XqFEDvXv3xt9//62Ubd++HRqNxmBz4UqV KiE8PBxpaWmIiIhAbGwswsPDkZSUhLNnzyIqKsqg33nbX79+HWPHjsX//d//4b333kNISAg2bNiA 2bNnw8/PD/Hx8Vi/fj0AOTB269YNbm5uJv8OiIioDCm9tRLPRmndUk6OEA8fCpGYKP+5pO3du1dY W1sLlUolJElSXiqVShw+fFhpd/ToUTFgwADx9ddfi8GDB4ugoCCD6zx8+FCMGDFCTJs2TQQGBooJ EyYInU6n1GdkZIhJkyaJ4cOHixkzZoiRI0cqKz0LkpqaKmbMmCHat28v+vXrJ3r16iW6d+8ugoOD jdquXr1avPbaa2LYsGHigw8+EOPGjRMPHz5U6gMCAoSdnZ1o2rSpCAkJEb179xbu7u7iwIED4ocf fhDW1taiffv24vfffxcRERGiT58+QqVSiTlz5oikpCSxdu1aYW1tLVq3bi3CwsLE5cuXRb169YSj o6MICAgQR44cEU5OTuKtt94yuPdcS5YsEZIkifLly4vOnTuLXr16iddee00cPXrUoN2MGTNEhQoV hL+/v9BqtWLz5s2iUqVKwt3dXaxatUosWLBAVKxYUXz99ddG7TMzM4VOpxPvv/++qFixoqhcubLw 9/cX8fHxQgghjhw5ImxtbcUnn3wili5dKv773/+KzMzMJ/49EBGR5ZOEKGAZoAWSJKnAlY1ERERE lozTpkREREQWhOGNiIiIyIIwvBERERFZEIY3IiIiIgvC8EZERERkQRjeiIiIiCwIwxsRERGRBWF4 IyIiIrIgDG9EREREFoThjYiIiMiCMLwRERERWRCGNyIiIiILwvBWhiQkJMDf3x/VqlWDq6srRo8e jZSUFIM2YWFhePvtt/HNN99g0KBB2L9/f77X2rNnD3r37m1UnpGRgQkTJsDd3R3Ozs4YMGAA7t27 V2C/UlOBurekAAAgAElEQVRTMWrUKLRo0QLt2rWDjY0NVCoVVq5c+e9vloiI6DllXdodoOIhhMDI kSPRtm1b9OzZE3v27MGaNWuQlJSErVu3AgBu3LiBzp074/Tp06hXrx4ePHgALy8v/Prrr2jevDkA 4P79+9izZw8+/fRTqNVqo+8ZP348qlevjsWLF+PYsWNYunQp/v77b5w4cQKSJOXbt0mTJuHKlSs4 ffo0rKys8Pfff8PPzw8xMTEG7f766y/UqlWr0Pdc1PZERERlgihjyuAtFUpISIjYsmWLQVnv3r2F lZWV0Gq1QgghBg8eLHx9fQ3aDB06VHTq1MnoekOHDhXu7u4GZX/99ZeYM2eOQdn48eOFJEni+vXr JvtWpUoVERAQYFAWEREhRo4cqbyPi4sT/fr1K+AODRW1PRERUVnBadOnpNVqkZycbPKl1WpLrC8D Bw40eN+hQwfo9XqkpKQgJycHQUFBaNGihUGbFi1a4PDhw0hISDAoV6lUEEIYlMXHx+ODDz4w+g4A SEpKMtmvrKwsbN++HXFxcUqZp6cnfHx8AAA6nQ5Dhw7F/fv3C3WfRW1PRERUljC8PSWdTofY2FiT L51OVyL9aNu2rdG0pVarRZ06deDs7IyoqCikp6fD3d3doI27uzv0ej0uXrz4xO9o2rQpypcvb/Qd FSpUQKNGjUx+bsiQIYiNjYW3tzcOHDhgUA4AJ0+eRExMDKKiohAYGIjjx48DAH7++WcEBgZi2bJl 6Ny5s1J+4sSJfNtfunQJAQEBGDZsGLy8vDB//nzlu0JDQ/HJJ59g1apV8Pb2xrfffvvE+yUiIjJH fOatDDt27BgmTJgAQB41A2AUvipUqAAABqNiRf2O0aNHw9bW1mSb+fPnIzExEZs2bULXrl0xcOBA LF26FJUqVQIA+Pj4wNvbG3/99RfmzZsHQF580b9/fxw7dgxt2rSBTqfD8OHDcePGDfj6+hq1T0pK wtSpU7F7924AwPbt2zFgwAA0atQI3bp1w4QJE7B8+XK8+OKL6NWrF37++ed/db9ERESljSNvZdQf f/yBlJQUjB07FgCg0WgAwGh0Lvd9bn1R3Lt3D6dOncLnn39eYDuNRoMNGzZg//79qFu3LrZu3Yqm TZsiKipKaSOEMJimdXBwQGBgILy8vAAAdnZ2+PPPP022X7FiBeLj4zFlyhRMmTIFp06dQtu2bREb GwtAHiGdO3cudDodqlWrhr59+xb5fomIiMwBR97KoMzMTMyYMQPbtm1TwlmVKlUAAGlpaQZtc99X r169SN8hhMBHH32ETZs2KaN3T9KpUydcvHgR/v7+2LlzJwYPHozTp0/n29ba2hpffvkljh07hrNn zyIyMtLoGby8Lly4AF9fX3zxxRf51s+ZMwfdu3dHaGgoVq1ahXbt2hWqz0REROaGI29l0Mcff4xZ s2YpgQ0A3Nzc4OLigujoaIO20dHRsLa2RoMGDYr0HV9++SVGjhyJhg0bFthu3759SE5OVt7b2dlh 69atqF+/Ps6ePYvExESlLu+ooF6vh7+/Pw4ePIjAwEC0adOmwO/JyMjAzZs3jcpznzn09fXFmTNn 4OTkBF9fXyxevLhQ90lERGRuGN7KmNmzZ2PAgAEGoerq1atQqVTo1asXzp8/b9D+3Llz6NSpE5yc nIyuZWrftu+++w4vvPACXnvtNaUsMjISOTk5Rm2zsrKwYMECgzIrKys0btwYtra2cHR0VL5Lr9cr bX766Sds3LgRkydPBgCDutz2eUfi6tevj+DgYNy9e1cpy87OxqJFiwAAhw4dQuPGjXHq1CmMGzfu iVO9RERE5orhrQxZsWIFoqKiEB0djR07dmDHjh1YsmQJNmzYAACYOHEizpw5o4xQJSQkYPfu3UpA yiszMzPfMBYcHIw9e/ZAr9cr37F69WrMmzcPVlZWRu09PDzwxRdfYNu2bUpZXFwcQkJCMGbMGCUg Vq5cGTdv3kRWVhbCwsKUZ9VOnz6NxMRE7Nu3DwBw+/ZtpKamGrUfPXo0MjIy0KVLF+zZsweHDh3C wIED0aVLFwDA4sWLlbDn7+8PNze3f/1zJiIiKlWltsPcM1LSt5SRkSGSkpJMvjIyMkqkH3v37hXW 1tZCpVIJSZKUl0qlEocPH1baHT16VAwYMEB8/fXXYvDgwSIoKMjgOomJiWLNmjWiYsWKwsrKSixc uFBERUUJIYQIDQ0V5cuXz/c7vv/++3z7lZycrLRr2rSp6Nu3r2jVqpWYPXu2yM7OVtpdvHhRVKtW TTRt2lSEhoaKO3fuiJdfflmUL19eDB06VISFhQkXFxfRuXNnkZiYaNReCCF27twpPD09ha2trWjZ sqU4duyYcv3atWsLPz8/sXLlSjFmzBgRFhZWbD97IiKikiQJUcBT4KXo1q1b2LZtG6pUqQI/Pz+4 uLgU6nOPT6cRERERlSVmudp027ZtWLRoETZv3gwPDw8AQExMDGbPnq08tzR58uQCN4YlIiIiKovM buTt6NGj6N+/P37//Xdl+wohBLy9vfHVV1+hY8eOCA8Ph5+fHyIjI42es+LIGxEREZVlZrVgQQiB MWPGYNy4cQb7jh06dAjh4eHKWZheXl5Qq9UICgoqpZ4SERERlQ6zCm+nTp1CREQEbt26hTfffBNe Xl5YtmwZTpw4AQ8PD1hbP5rl9fT0xOHDh0uxt0REREQlz6yeeQsNDYW9vT3mzp0LZ2dnhIWF4ZVX XkGnTp2U/cByOTo6Gm04S0RERFTWmdXIW2pqKho0aABnZ2cAQLNmzeDt7Y169epBrVYbtH1801Yi IiKi54FZjbxVq1bN6OzNGjVqYNmyZWjSpIlBeWJiImrXrp3vdaZPn6782cfHR3lWjoiIiMjSmVV4 a926NW7fvo2srCxlpC0zMxPTp0/H/PnzDdpGRERg+PDh+V4nb3gjIiIiKkvMatq0YcOGaN68OYKD gwHIh4pfunQJo0aNQq1atXDkyBEAwLVr15Ceno4ePXqUZneJiIiISpxZjbwBwKZNm/Dhhx8iIiIC 0dHRWLNmDapVq4Zdu3Zh5syZCA8Px9mzZxEcHAxbW9vS7i4RERFRiTK7TXqfFjfpJSIiorLMrKZN iYiIiKhgDG9EREREFoThjYiIiMiCMLwRERERWRCGNyIiIiILwvBGREREZEEY3oiIiIgsCMMbERER kQVheCMiIiKyIAxvRERERBaE4Y2IiIjIgjC8EREREVkQhjciIiIiC8LwRkRERGRBGN6IiIiILAjD GxEREZEFYXgjIiIisiAMb0REREQWhOGNiIiIyIIwvBERERFZEIY3IiIiIgvC8EZERERkQRjeiIiI iCwIwxsRERGRBWF4IyIiIrIgDG9EREREFoThjYiIiMiCMLwRERERWRCGNyIiIiILwvBGREREZEEY 3oiIiIgsiNmGN71eD19fXxw7dgwAEBMTg7Fjx2LlypXw9/fHlStXSrmHRERERCXPurQ7YMqKFStw 6dIlSJIEIQR69uyJr776Ch07dkT79u3h5+eHyMhIWFlZlXZXiYiIiEqMWY68HT9+HB4eHnBwcAAA HDp0COHh4fDx8QEAeHl5Qa1WIygoqBR7SURERFTyzC68xcfH4+TJk+jevTsAQAiBEydOwMPDA9bW jwYKPT09cfjw4dLqJhEREVGpMLvwtmjRIowfP96g7N69e3B0dDQoc3R0RHR0dEl2jYiIiKjUmVV4 W7NmDQYPHgyNRmNQbmVlBbVabVCm1+tLsmtEREREZsGsFiysWbMG48aNU95nZmaic+fOEEKgUaNG Bm0TExNRu3btfK8zffp05c8+Pj7Ks3JERGRIq9VCp9OZrNdoNLCxsSnBHhHRk0hCCFHanTDFw8MD 69evh1qtRpcuXZCcnKzU1a1bF3PmzEH//v0NPpO7OpWIiJ4sOTkZsbGxJutdXV2VxWNEZB7MatrU lFatWqFWrVo4cuQIAODatWtIT09Hjx49SrlnRERERCXLrKZNTZEkCbt27cLMmTMRHh6Os2fPIjg4 GLa2tqXdNSIiIqISZdbTpv8Gp02JiAqP06ZElscipk2JiIiISMbwRkRERGRBOG1KRPQc41YhRJaH 4Y2IiIjIgnDalIiIiMiCMLwRERERWRCGNyIiIiILwvBGREREZEEY3oiIiIgsCMMbERERkQVheCMi IiKyIAxvRERERBbEurQ7QERk6XhKARGVJIY3IqKnpNPpEBsba7Le1dWV4Y2Iig2nTYmIiIgsCMMb ERERkQXhtCkRURmUkQGcPw+cOwe0bAk0awbY2pZ2r4ioODC8ERGVMampQIcOwNmzj8ratAH27wcq VCi9fhFR8eC0KRFRGZKeDsyZYxjcAODkSWDhQnlEjogsG8MbEVEZkpMD7NyZf9327UBWVsn2h4iK H6dNiYiekkajgaura4H1JUUIwM4u/zo7O7meiCwbwxsR0VOysbExm33cbGyAUaOAMWOM60aPBsqX L/k+EVHx4rQpEVEZotEAw4YB//0vYP3Pr+dqNTBhAjBgwKMyIrJckhBlaxBdkiSUsVsiIiqylBT5 +be//gJq1wZUKsDevrR7RUTFgeGNiOg5ptfLK1QBeYROp2PIIzJ3nDYlInpOZWYCN24AnTvLgc3B AXj/fXmfOCIyXxx5IyKycFotIEny826pqfKiBFUhfjVPTwdq1gTi4w3Le/cGNmzgCByRueLIGxGR BUtPB1atAurVA6ysgB49gCtXCrcZ77ZtxsENAHbt4n5wROaM4Y2IyEJlZADLlgHjxwPR0fIebseO Aa1bA8nJBX9WCOD2bdN1CQnF318iKh4Mb0REFsrKCpg/37g8LQ1YtEieTjVFkoBevfKvq1oVqFGj ePpIRMXvqcNbZGRkcfSDiKjMS00FkpLkV3GJi8u//OZNeeVoQerXB4YONSyzsgKWL+dJDETmrMDt Gn/66Se0atUKtWrVws8//4wLFy4Y1Ofk5ODo0aM4ceJEsXXo2LFjGDduHP7880+0bt0aa9euhbu7 O2JiYjB79mw0btwYp06dwuTJk9GoUaNi+14iomclM1Oehvz8c/nA+Pr1gWnTgDp1nu7Eg6wsoEkT 4OJF47rXXwdsbQv+vJ0dsHIlMGIEcPmyFvb2Ovj4ABUqyNfOfe5No9GYzQkSRPSE1abNmzdHQEAA hg0bhk2bNuHTTz9FnTp1lPqcnBxERETg3r17xdKZuLg4BAYGIjAwEDExMRg9ejTq16+PgwcPonnz 5vjqq6/QsWNHhIeHw8/PD5GRkbCysjK8Ia42JSIzc+8e4OUFPHz4qMzaGggJAV55pXArQ/OTnQ2c PAl07Gi4wODFF4EzZ0yfcZqf+/eTce9eLNRq4zpXV1c4ODj8u04SUbEr9FYh6enpCAsLQ9u2bQ3K f/vtN3To0KFYOrN161b4+fnB/p/16evWrcOYMWOwZ88e9OzZE8nJybD+52yXBg0a4Msvv0Tfvn0N rsHwRkTmJC0NmDIFWLLEuK59e2D3bnl/tX9Dq9UiNVWHpCTgwAEgMVEOia++ClSooIGtbeFHy5KT kxEbG5tvHcMbkXkp9Cl3169fNwpuAIotuAHAwIEDDd5XrVoVNWvWxIkTJ+Dh4aEENwDw9PTE4cOH jcIbEZE5ycoCHnviRHHhgnyQ/L+l0+kQHy8HrjZt5OOwypWTp2jLlXMtUngjIstR6PDm7++PHj16 oHv37mjTps2z7JMiLCwMY8aMQUREBBwdHQ3qHB0dER0dXSL9ICL6t6ysgIYNgePHjeu8vOTn4TQa 4zqtVgtdASsONI99iI+kET0/Ch3e9u3bh6pVq2L//v34/PPP4ejoiD59+qB27drPpGNpaWm4fPky Nm/ejICAAKgfexBDr9c/k+8lIipO9vbA1KnAli2PzhAF5K06Zs0y/VyaTqczmsbMyspC1j8Pt7m5 uQGQH2kBALVabfTfSSIqmwod3nL/Q+Hn5wdnZ2csX74cgYGBmDBhAubnt9HQU5o/fz6WLFkCKysr VK9eHccf+7U1MTHRZHCcPn268mcfHx/4+PgUe/+I6PlUmBGxx1dmVqkChIYCH38MnDsnrzadPh1o 2lSLtLT8r6XVapGVlWUQyLKysvDwn1UP5f9Zppr7vmLFigxvRM+JQoe3efPmQafTYePGjbh37x4G DhyIM2fOwNvbu9g7tWbNGgwZMgQuLi4AgLZt22Lu3LkGbSIiIjB8+PB8P583vBERFaf8RsTycnV1 NQpvtrby1OmGDfI0ak6OvB1Haqrpa0mSZBTeiIiAIoS3jz76CG3btsXUqVPx5ptvPrM9f9atWwdb W1tkZWXh2rVruHfvHv7880/Url0bR44cga+vL65du4b09HT06NHjmfSBiKgo8k5nah871iDvSJw5 L9jUaDRwdXU1WUdE5qPQ4W3t2rVo3749Dh48iJUrV8LLywudO3eGJEnF1plff/0V7777LnJycpQy SZIQERGBdu3aYebMmQgPD8fZs2cRHBwM2yftQElEVAIen87Mu11RfiNx5sjGxsYi+klERQhver0e DRs2hKOjIzw8PJCamgq1Wo2dO3eifv36xdKZrl27Kr+95mfdunUAgLFjxxbL9xERPUtarfw6fhxw dgZeeglQq+UNeouDtbU1avxzCKmTk5NB+OJoGVHZVej/hEydOhXz5s3DBx98oJxqcP36dcyYMQOb Nm16Zh0kIrJEWi0QFaXG//6nxenTcpmLCzBxIuDoKK82LeiX1cLI+3kbGxtupEv0nCh0eKtWrRrG jx9vUObp6Wkw6nbv3j1UrVq1+HpHRGShkpKAkJBspKXF4Pz5R/uB3LoFzJgh78tWsWJFk5+3traG m5ubwWiaVqtVVplaW1s/dfgjIstU6PA2ceJErF+/Hr6+vkpZamoqEhIScPv2bej1eqxfvx6ff/75 M+koEZE5yO/B/sdDlVabhUOH8v98eLh86sKTHi/LysoyGk0r6IB4TpMSPT8KfbZpq1atcPbs2YIv JkkGiw1KA882JaKSotPJh8M/eJCMBw9ioVLJ24Lk5AA//gikpkpIS0vDsWOGO/Fu3ixv3lulShXl MZT8FBTWCqLVAkIA8fGAkxOg15v3SlciKhpVYRuOHj0aCQkJ0Ov1Jl/Lli17ln0lIjIbGRlAWBjQ pIl88PygQcD8+fIpClZWQMeO+X+uYUN50QIAWFlZwcHBweTr3wS3tDRg3z6gXj3A3R2oVAkICDA8 3YGILFuhR94sBUfeiKgkJCUB1avLoahHDy3s7eWTEl58EXjnHblNRIQWa9fG4dQpOa25ugJffikH KkmStxEp7kUG16/LZ6Y+foJgQADwxRfy5sBEZNkY3oiIikivB5YtA8aNM66TJHm60s4OuH8/GbGx sfj9d3na0tNTHpUrV05uW9zhLT0dCAwEli83rrO3BxISim+bEiIqPfzXmIieK5mZcvjSaOQpRnt7 OXAVhRDAvXum61JT5anRzz8H/vxTnsLUaoHZs4G2bYF33zV9IP3TyM6WA1p+UlLkvhGR5Sv0M29E RJYuLQ1YswZ44QU5PL35JhARIQerorCyAgYMyL/Ow0PekHfdOuD+fXllalqaK3JyXPHSS65ISXFF jRqucHV1LfYVohUqyPeUH1/fot8nEZknTpsS0XMhPR1Yuxa4cwcYPBioWBG4dAn47jtg1So5cBVF Wpo8RblixaMyGxtg/37A2xv47DNgwYL8P3vnjvz827OQkQH07Qv88sujssqVgdOngbp1iz7KSETm h+GNiJ4LmZnAjRvAxYvA4sVygGrf/tHU5muvPXnvtcelpcnX/PFHOSCNHClfw84OOHpUHu16XK1a 8l5vz/Jo5owM4OxZYO9eoE4dYMgQeRo391k7IrJsDG9EZFG0Wi10Op1ReXY2IIQG1tY2qFBBntrM Ky1NDm65z7sdOyY/2J+eDvzxhxaAzmS4ybvfWkqKfA0rq0crN7Oy5PeqPA+ipKfLU6vBwY/KrK2B XbuADh1KJkjl1y8isnxcsEBEFkWn0yE2NtagLDMTOHQISEx0xfHjNnj3XaBXL+NFATdvys+ipacD b7wBnDkD9OsHHDmig5dXLEw9gubq6gq93gYxMfLRVhERQPPmwLRp8ohbfkHMzg7Ytg04fBjYvl2e lv3gA/mfJTUClrufHBGVLRx5IyKLkpycbBDeMjOBr74Czp8HvL1dsWWLvPXG+PHAzJnyatLUVGD7 di0OHTIcsWvQABgxAggN1cLdPQ4VKjxKO1lZWcrZoW5ubnjwwAZffSWP8AFASooGISE2uHJF3u/N FL1eHvWztn62U6VE9PzgyBsRWbS7d+Xg9rilS+WRMUDeIuPIER3OnzccsTt/Xl556ugoAcgCYBje Hj58CADQaMrjiy8EwsIefdbb2xWJiTaYOVM+WcHU5rcqlRwgiYiKC8MbEVmUrCx5tC136vH69fzb ZWcDV68Cr74KREXJ543mJypKnmLNyMi/3srKCmq1BA8PoFq1R+W1asn7btjYaJCTU/RjrIiI/i2G NyIya7kLFDIz5enH69e1+OsvCfXry2Hq5ZetIY+aGZIkeWsMAKhZ0/T169Yt+IF+vV6PBw8e4s6d VNy+/ag8LS0N58/bYcwYV0gSwxsRlRyuQSIis6bT6fDXX7H49ddYdOsWix07YvDjj9GYOTMa+/dH o2LFbHh6Gn+uf/9HK07VaqB1a+M2Hh7yQfFPYm0tbyvyOLUa8POTj74iIiopHHkjIrOTdzsQrVYL tVrCtWtA166Ap6cGlSs74MyZZNy4AbRsCUydCuzYIa8irVtX3tds7NhHh7Pb2wMDB8rbfBw4IE+7 tm4ttyvsWZ/VqwNDh8pbjDx4ALi7y8+6Vaz4jH4IREQmcLUpEZmdvCtK09PTcfPmQyxbJtfVr5+N l192w4ULOlhZAVOnuuHHH23w8svAiy9qkJ1tgz175MUI3377aCFBcnIybt+ORU7Oo1MGcp+bU6vV qFChgrKXGyCHxsTEREiShKSkJCQnJ0MIQKeTR/ScnCrC0dGu2A+XJyJ6Eo68EZHZs7WVA5cQQGSk Nezs1Dh2TP7P18iRNnj7bQe8/z7wf/8nT2UOHQosWmS8Ua9anf/eZ1lZWbCxsTEKYbm/CCYnJwOQ +/Ao8BXvPRIRFRbDGxE9kalTDXLlPYHgWVCpAE9PeXPcXI6O8ka5Hh7ytOjChcDGjfJU6d69QKdO wLBh8qtCBbmPrgUcKPr4IfG57bVaLdLS0ozaq5neiKiUcNqUiJ7o8Y1xH1fcU4ePT5s+fPgQOh2w b58c4EaProHatQWiooB69VzRsKED1q6VN+bNfc4NkEfKYmKe7hD40g6uRESP48gbEZk1tVqNiv+s ChgyJHfq0gmLF9sgI0M+6eDcOWDnTnlT3unT5c/Z2QFNm8rHUw0e/O+/38bGhuGMiMwKwxsRmY3U VPmfMTHyylErK8DWVm0wRZmZCSxcaIN16wxH+vr3By5fBhYsAD78EHj/feDGDXl6NT1dPoy+sCtL iYjMGfd5IyKzkJYmP7dWpQrwxRfyKNvq1XJYyyssTF7x+biYGODCBeCHH4B27YBmzYBWrQAvL3lb kNjYR+eSEhFZMv4eSkSlTq+X90/LPYs0JUWDZs1ckZQkH3HVqdOj1Z21a8v1ANCjhxb29o+SXMWK 8lmln3wCNGmiwe3b8nTnpUvyHnHnzhU8+lbQ8218to2IzAXDGxEVq3/zgH9iohYXL+owaJBhW7Ua OHsW6N5dAwcH+TPe3sChQ3K9vf2jw+adnOSp0b17gRMn5IPjgUffc/UqcPt2wScq6HQ6kwszXF1d Gd6IyCwwvBFRsSooAAH5hyCdTofQ0Fhcviy/9/YG+vV7dDZpRoarEt4kCdi+XX7GLVeFCvIpC5IE aLWm+5ae/q9uiYjIrDC8EZGRx0fPcnJylBWfAGBlZWWwiODxPdKKqlw5oG1becHB66/Lq0PXrJFH 3SQJGDlSfjk6AuXLAz4+QFwc8PvvwN9/A40aye2srIBXXsn/oHkXF3nULSuLG+wSkWVjeCMiI4UZ PSvOfd2srOTQdu4c8Pbb8jNrt28/qg8LA376CTh6VN4CpHx5ufyllwBnZ8NraTTAe+/JwS+XjQ3w 3XfA5s3yQgiGNyKyZBYV3mJiYjB79mw0btwYp06dwuTJk9GoUaPS7hYRFYNy5YApU4CoKMPgluvc OeDWLXlBQkEkSR5969lTnn61tZUPpU9MBAYNAipXBvr0eSa3QERUIixmqxAhBHr27Ik+ffrgvffe w8cff4wePXogJyentLtGREWQnQ2kpMivx59PU6uBhATTn42JefL1//5bHr1bvVreHiQiQg5z4eHy UVl//vl0/SciKm0WM/J26NAhhIeHw8fHBwDg5eUFtVqNoKAg9O3bt3Q7R0SFkpkpn3gwfbp8yPzg wfKRVnm98IL8zFreY64AOdi1aGFY9vh5pRkZ8nNzzZoBV65osGfPo7bz5wNz5siLG4iILJnFhLcT J06gTp06sM6zSZOnpycOHz7M8EZUCkxtCaLVaiFJEqytrZGVlZWnXN6ENysLuHJFLvv0U3lbj3Xr Hn3exkae1tyxw/C6n39uvEdbfkdXbdwobwvyuKgooGZN+RB7Uwo6vP5pF2UQERUXiwlvd+/eNXpA 2tHREdHR0aXUI6Lnm6lFDVlZWcjKyoKbm5tBsIqPl4Nb7ga7ufbtA9LSDEPT+PHAm28Cx4/Lo3Dt 22vg4fFooYIpkgS0bJl/eGvZUg6GBV2D55gSkSWwmPBmbW1tsDUBAOgfn1f5x/Tck6kB+Pj4KFOt RFQ4BY1A5dab2ohXktQA1FCpbAx+4QoJAbZsyf96YWE26NPHMDS5uAD168t/LuxUp709MGsWEBQE PHz4qNzBQZ4ydXIq3HWIiMyZxYS36tWr4/jx4wZliYmJqF27tlHbvOGNiIquMCNQj4c3IeQzRw8c kM8po44AACAASURBVJ87a98e6NIFqFRJXvH50kumr9WkSf7l/+b5NGdn4No1YO5c+azTl16SV7Hm 2aaOiMiiWUx48/X1xdy5cw3KIiIiMHz48NLpEBEZyMwEJk4Ecp9kyM4G/vtf4ORJoHFjOcQNGCDv 15ZX795AtWqmr1vU47bKlZMPt58169GGvE+abiUisiQWE95atWqFWrVq4ciRI/D19cW1a9eQnp6O Hj16lHbXiJ57WVnAr78+Cm65MjKAgAAgOFie0vz+e+DVV4H16+WRuqFDgVGj5I13Tfk3x20BDGxE VHZZTHiTJAm7du3CzJkzER4ejrNnzyI4OBi2tral3TWi555OB1y6lH9dSMij6U9bW2D0aHm/tdz3 XMRJRFQ0FhPeAKBOnTpY98+eAmPHji3dzhCRwspKXmCQn5o15W1CfvwRuHNH3gbEzU0LSdJBq83/ IPnHp0KJiOgRSQghSrsTxUmSJJSxWyIyS48/ixYfD6xcCdSuLT/vdvq0Blu22GDpUnkLj/fff/TZ FSuS0aZNLMqVy//aec9OTU5OLtFzVomIzJ1FjbwRkfl4fEWqEMCkScDu3fL5oUuXyoHNzU0+niqv kBCghptAfU+phHtNRGT5GN6I6KmlpsonG4wfD+QeN+ziAhw5Ii9SiIsz/syx/0moXTMHahurku0s EZGFY3gjeo4VdRsOUxITgQ8+MCy7f18+JeHwYXmD3DwnZQEAKtjpIcXGANWrygWRkfKSVFdX44NN iYhIwfBG9Bz7t9tw5CUEsGlT/nXXrgFJSUCjRsDvvz8qV6mALr46WO/+Rd7o7b//lTeKA4BateTh OgcHQKUq1GkPRETPE4Y3InpqBeUne3uB1q0l/P470KOHFm5uOowamYpyCfGQatSQR9k6dAAAWKen I+voUWDtWuDDDwF7e543SkT0GIY3Ivr/9u48Lspy/R/4ZwZkEwUUNNxADLNSzCW3zOOWeSy1U+YG Eekv7Vja6VgupR2X1FwiT2aSS2pppdbRtMxzzBRTXL5pikq4piBuiMo+zAxz/f6445GRRfaZwc/7 9ZqXzf0MD/fcDHp1L9dVIsUtsQ4dCvzyiws2bbIOstq3B7y8gLmTbmDGRBekpmcgK+caco7H4sqa 1cCAAaqe1tGjAIBGeXWyTp9WR1aJiKgABm9EjigjA3B2BtLT1T4xAKjk2anillhzcoA33vDHzz+7 IS1NtbVooQrEu7vr4OTrhloTJ8LF0xOXf/wRupAQOD3zDNC2LbB2LXD//QAA74AAuLVvD5f0dO57 IyIqAoM3IkeTlQW8957KxZGZCTRoAERGAk8/bbOaUK6uwIMPAleuqGLwtWsDQUGq3ckJqv7VnDkq Gdyjj6JGkyaokRd8bt+u3cctMxO1v/xS5RYpKgkcEdE9Tm/rDhBRKRgMKmibO1cFboAqWzBsGHDy pE275uqqyl116QK0bKniNaf8WUA8PQEfH3V6oVYt9WIvLyAiQp1gyNO4sapez9J3RESF4swbkR25 a+oOnQ5uixYVvCACfPABsGSJmvZyFK6uQL9+wBNPqOOoISHAihUq6nNi/jciosIweCOyI3dN3VG/ PtyuXy/8YnJyqfeJ2UUaDjc39Xj8cZXjrbL27qWnq2OxFosKdj08Kuf7EBFVMgZvRI7EaAT69FE1 qO7Uv3+pA5KqTsNhk2DRYgHS0oAJE4D//Ectx44YAUycyACOiBwSC9MT2ZESFWG/dUvl4EhOvn3h 0UdVLaryHljIzr5dCsHdHahRQ7tU3moM6enqT4tFrezqqqqsqcGgxuf4cev2YcOATz+9fVqXiMhB MHgjsiMlCt7c3NQM3KpVqoRBz57AX/9a/g3+GRnA/PnAN9+oe40aBYSFlXt2ymBQceaUKcC+feoU 6tSpwCOPVNHh2J071RjdSa8Hrl4FfH2roBNERBWHy6ZEjsbFRT1eeUXNkrm6Wp/WLIvsbODJJ4GY mNtto0cDx44Bs2eXfnYqI0Ml2XV1RVq6O1q3Bm7eVJdOn1Z5ebdtU4UVKv1cwokThbdbLEBCAoM3 InI4TBVC5KicndUMWXkDN0Cd9MwfuOWJigJycwGoZdO0tLQiHwaDQQWBFy4Ab7wBDBiArMPxmDdP tMAtjwjw9tvq5ZWua9fC211dgeDgKugAEVHF4swbEQEHDxbebjYD584BbduWrIj9xYtqP96fUZnR kIsjRwrf3HbsWBWlcmveHHjqKeCHH6zbJ02qwo13REQVh8EbkR2xWeqORx8tvN3ZWW1SK4nsbHWC M990mkvCWbRu1QY7dhRcG23VSr3U07MsHS4FDw9g/Xrgyy+Br75SEeMrrwA9etisIgURUXnwwAKR ozOb1cPFpexLqNnZagPavn3W7a+9pu15u+thCl9f1H7oIeDatduNXbrg2tr/oUXbmlZLpzqd2vPW s6eKD6uEyaSqUuh0ag9fRSw3ExHZAP/2InJURqPKvxEVBbz1FrBlS9k3kbm7q1MEU6eqIqXt2qk0 GnPnlvywQm6uVmBeExMDr3XLcPSgAS+8oC736QP88gvw2GNVGLgBKu2Jt7cqycXAjYgcGGfeiBzV hQtquTN/vreOHYEdO8q+HFhMnre7zrzVr4/aBw+qU6v51agBnD2LdO/GAGyQ542IqJrh/34SOaK0 NLWkmT9wA4ADB4DVq28HYIUxm1WQ9s03wJw56qRpVpa65u6uIqvata0CtxLR69V02tat6tBCrVpA 9+7Anj1AnTqoVUs1eXkxcCMiKg/OvBHZobtWM6hRA27e3mrp9E5PPgl8/bVaIizs3pcuwThrFnDr 1u3GNm2Q++KLMInAyckJNQoJ3HJzc3Et/362O/j7+6N27dpq+TQrS6XiMBjUiQQuUxIRVRieNiWy Q0Wl5ahRowbMZjO8PT1hHDkSSE3Vrrmkp8NtyxaVdLaoYCktDcbVq3H5p5+s23/9FbqQEFx0coJP nTrwKKSqgq+vb8lOwjo53d4nVxWF7YmI7jEM3ogciNlsxsWLF5FZuzY8GjZU+9v+5N++Pdx0OmD8 eLXsWZiaNa1rfAYGAvXqAdevq9IHxaQFqVGjhppZIyIim2LwRuSInJyA/v1VGaqtW9XypLe3ymMW EKD2mbVqpV6XP5GaiJoNa9wYeP119TXnzwNNmqjALiXFZm9Jk5fO47ffgLp1Vd/c3Lj0SkT0JwZv RI7K1RUYOhQIDVV7zJo1A3btUsFOZqY6cPD22yqNSN7pU4NBJVcLDgbWrFEzdxaLCpZef73kCXkr S0YG8O23wKuvqvcAAG3aqDQmdevypAMREXjalMixubmpIM3NDdi4ERg06HbQYzIB06dbl77y9AT6 9lV1TLdvV4EboGbkTp0CDh++3VYGZrP69hcvqkwmWVnFH3wt4Pp14KWXbr8HQM3AhYaqwI6IiBi8 EVULzs6FF5YHgCVLVGqRPBYLsHNn4a89cqTMwZvZDFy+DDz+uFqVDQxUuX7PnCn8UGwBRiOwbJkK JO+0fXvh7URE9yAGb0TVgU6nUnQUxmQqGPiYzYW+tHbr1nBxdYVOpyvwMBgMMBgMRXbBZAJ691YT ZXni41UJ0aK6ZkWk6ChPpIQ3ISKq/uxuz9vUqVOxfPlyiAhefvllzJw5U7u2adMm7N+/H3Xq1EFi YiIiIyMLzUdF5OiKKlBvMBiQmZlZ8HOfkwO0bQt8/rl6rtOpwwpmMxAeblXiyqVmTfiPHKmWWfPJ 9fdHze7dcTknB8ZCAiWj0Qg3Nze4ubkV2ueTJ9XK652uXlXlsPr0ucubdnVVS6YLFhS81qlT6ZMG ExFVU3YVvC1fvhwNGzbEzz//jC1btmDSpElo0aIFQkNDcejQIbz55ps4deoU9Ho9Jk6ciBkzZlgF d0TVRVFBkouLS5HBk0vjxkB0NDBkCPDMMyp4O3dOHWAwGFRwZDTCzcUFbv36qSXK//3v9g2SkuD0 0kvIuHGjTH1OTy/6Wv58wMUKCABmzACmTbu9fNuwoTpF6+5epn4REVU3dlVh4dNPP8Xo0aO15927 d8dDDz2ETz75BKGhoXB3d8fy5csBAPv27cOAAQOQlJR0OzkoWGGB7mEWiyp7NWUKsGKFWoKMiVEb 0SZMAOLi1InUGTOAgQNhyM2FMSkJSEhQm9Tq1YPBYkFSUhIAldftzhk+rYpCIbKygPvuKxjE1agB XLtWZMGHgjIy1M22bQPuuw+Gzp1hNJtVMHqH4oJZIqLqyq5m3vIHbgBQv359NGnSBACwd+9evPba a9q14OBgpKSkIDY2Fu3bt6/SfhLZpcxMYMwYlQIEUEuQt26pfHB5/0Nz9qw6ubllC4xdu+KyXq9O FgBASgp0Oh1u3rwJAPDx8SnVtgQRYNUqNfGXt6VOpwMWLVLnKUrM01M9wsMBAMa0NFwuoiyXv78/ gzciuufY9YGFU6dOIfzPv8CvXr0KLy8v7Zr3n/8bf/HiRZv0jcjuWCxqeTFPWBiwcGHhpzTnzCnh EdCSq1lTlVW9fBmIjATmzlUpQ0JDrfMEExFR+djVzFt+mzdvxqhRo9CgQQMAgLOzs9UsgOXP/TCF LZFOmzZN++/u3buje/fuldpXujfdtXh8VS/pXb9ufSLT11ctiRbmwoVKSXhbs6Z6vPGGihmZU5eI qOJVWfCWmJiItm3bFnl94MCB2n62pKQkHDt2DO+884523d/fH6n5inDf+nMHdMOGDQvcK3/wRlRZ iioenyfvtGhRAV6FB3cNGgB16gB5Bw6OHwe6dgWOHoWhf38Y8504Rbt2MBiN0Ol0cHZ2hqlUmXRL hoEbEVHlqLLgrXHjxkhOTr7r69LT07F69WqrwM1kMqFHjx44ffq01hYfHw8vLy+0adOmUvpLVBGK C/DKvF/LaFQb+vV66wL0Imq9MiJCPf/kE+DLL4GNG2GsVQuXf/1VtXt6An//O7KuXcPNmzfRqFEj 7RbOzs7ac29v7wL9y384iIiIbMOulk2NRiMmTZqEUaNGIT4+HiKCn3/+GX379sXIkSMxfPhwWCwW 6PV6bN26FWFhYczzRveWzEx1knTzZrUsOn488NBDaq3SwwN47jngkUeAf/8bSE0FkpPVKdNt29Rp zYAAYOBAVU6rkNm2/DNwbm5uRZ4sLY/ilpt5epSI6O7sKlVIWFgYvvzyS6u2Ll26YM+ePQCAL774 AocPH0ajRo1w5swZREZGwv2O3E9MFUJVJS0trUTLpsXNvJUoOMqr6enioorK791rfX3NGhW0AWpW zsNDpQyxWNQsm5MT0m7cwOULF9Sxzz9nz7KysrSZt8J+Z0rcv1IqbtwK+54M9oiIrNlV8FYRGLxR Van04C0zEzh2DFi+XC2JvvQSULcu8MQTwJ+52ACombj+/VVOjjNnVIA3fLiaXdPri+yryWSCyWRC w4YNS50QuDxKG7wREZE1u1o2JbIrOTlqpqqQ5LCVLiNDlYmaPv1222efAW+/DaxdC+SdoB4xAggJ Ucl387LjfvWVWjbdv18tpxYhLwlvZS2PEhFR5bDrPG9ENpGdrcpMvf028PHHQFqaKi9VlXJygPfe K9g+dy4QFAS0aqWejx0LTJpUsKzB8ePA0qUVnsuNiIhsjzNvRPllZwNDh6oDAXnefVftM3vwQatZ uKKKx+e/DqDI1xR7cnP/fuucbXlyc1WV95AQtaTaqpUKNAvzv/+ppdZynBC1u1x2RETE4I1IY7EA P/9sHbgBauZt5Ehgxw6rUgFFFY+/U5mCm0LyF2oCAlSqkCZN1J8NGhSejLdhQ60uVXGBZnFBZEly 2TF4IyKqWgzeiPJkZQHfflv4tYMHqzbr7AMPqJQfR45Yt7duDbRpA6xbpwqIWiwqXcjrr1u/ztlZ FaP/M9gsaaBJRET2j3veiPI4O6vcaYVxdweqMqegq6ua6XvuuduHJp59Vs0Murmpvri7qwMJ/+// AfPmAX5+6mtbtlR53YqbvbMhFxcX+Pr6wsfHp8AjNzcXaWlpMFT1HkMiIgfCVCFE+SUmqgMBZrN1 ++jR6vRnVVdYT0tTQRqg9uMVdSo0O1sFeBaLetSoUSHBZknSoZTlpGpl3ZeI6F7AmTei/OrUAb7/ HggMVM9r1FDlpiIjqz5wA1SwlheIFRfMuLurgwlubipJLyuPEBFVW9zzRpRfzZoqh1pcnCovVauW msny8KiyLlTGCU9WKSAiqj4YvBHdydVV/XlH6bWqUhknPIu7Z6H3S0tTf6ak3M4Vx6L0RER2gcEb EVnLzAReeQVYvx4u/frBv0EDlfvu4YdvB7Z/KjZXHRERVQoGb0R0W3o68NZbqsQWALctW+AGAMuW AfHxQHCwTbtHREQ8sEBE+bm5AZ9/XrDdYgE++kjlwiMiIpvizBsR3WaxqLQjhbl1q/CSXWVQ0tJi RERUEIM3IrrNaAS6dQN27y54bcgQdRq3ArDiAxFR2XHZlKgypKWpGaz09IIJf+1ZzZrAihUFK038 7W9Az56Ann9lEBHZGisskF2ojNxmNpGTA1y+rDb9//KLKh4/eTLQp0+JZ61snufNaARMJlU/9dw5 YMAAVXKrCnPdERFR0Ri8kV2oNuWSrl9XJzJv3bJu/+ILYPBgx8uVlpurym4REZHd4BoIUUXJzlZl tO4M3ADgX/9ShwEcDQM3IiK7w+CNqKIYjcDvvxd+7dw51hslIqIKweCNqKK4uQEdOxZ+rWVLtR+O iIionBi8EVUUV1dgzBigUSPrdr0emD+fM29ERFQhmOftHlVtTnfaGw8P4OhRYPZsYNcuICBAnTZ9 8EEGb0REVCEYvN2jjEbjXU93MngrA2dnoE4dYPr02/ndvLxs2yciIqpWGLyRXah25ZIqqBIBERHR nRi8kV1guSQiIqKSYfBGtmMyqaXF7duBxESgXz/Azw/w9Cz9vTIz1f02bgR0OlXOydmZM2BERFTt MHgj27BYgEuXgC5d1J95xo4F5swpXdCVmQn897/AsGEq1xoAjB4NbNgA9OrFAI6IiKoVlse6R9m8 HFV6OtC/PxAdXfBaTAzQuXPJ75WZCdSrB2RlWbd7egJXr7ImJxERVSvM80a2odcXHrgBwOefq4Cs pKKjCwZuAJCRAezdW7b+OTiDwYC0tLRCHwaDwdbdIyKicuCy6T3K5qc7nZzUnrS8dBr5ubuXrqZm cTNr9+isW3GpYJgGhojIsdlt8HbixAkMHjwYJ06c0No2bdqE/fv3o06dOkhMTERkZCRqMPFpmdj8 dKfRqA4VbNhg1WwYMADGMWPU9UKSCBeaPLhjR6B+fbVEml+DBkDbthXdcyIiIpuyyz1v2dnZGDZs GGJjY3Hu3DkAwKFDhzBkyBCcOnUKer0eEydOhIuLC2bOnGn1tdzz5kBSU1UAt3Onel67NtI2bMDl +vVVndBCFLoXLycHOH1a7aE7f161BQUBW7YA998POFqOuApQ3J7GSt/PSERElcou97wtXLgQI0aM sArCIiMj0b17d+j1qsvPPPMMoqKiii3xRHbOywvYvFmlCTl0CLhyBWjTpsjArUiurkDz5kBcHHDi hPrz+PF7NnAjIqLqze6Ct40bN6JXr14FZgZiYmLQokUL7XlwcDBSUlIQGxtb1V2kiuTpqQq5t22r 9rq5upbtPi4u6usfekjVEXV3Z+BGRETVkl0Fb3/88QeuXr2KDh06FLh25coVeOWrEent7Q0AuHjx YpX1j4iIiMjW7ObAgslkwtKlSzF79uxCrzs7O1sdTrBYLABQ6P62adOmaf/dvXt3dO/evUL7SkRE RGQrVRa8JSYmom0xJ/9atWqFmJgYLFy4EIAKzkwmEzw8PLB+/Xr4+/sjNTVVe/2tW7cAAA0bNixw r/zBG9G9qLhUMJWeBoaIiCpVlQVvjRs3RnJycolfHx0djYiICPzxxx8AgC1btuD06dPa9fj4eHh5 eaFNmzYV3lcqJxFVQcHJCcjNBUpxstHm+eeqCZungiEiokpjN8umd7pzOXTkyJEYPnw4LBYL9Ho9 tm7dirCwMOZ5szeZmUB8PPDOO8CxY0BICDBrFvDAAyWqMcqgg4iIqHh2G7wBKmdbng4dOuBf//oX xo8fj0aNGiE1NRWRkZE27B0V6vRpoFOn25UTLl0CduwA/u//gNatbds3IiKiasAuk/SWB5P02lBq KhAernK33WngQGD1apXbjYiIiMrMrlKFkIPT64Hffy/8Wlycuk5ERETlwn9NqeKIAI88Uvi1Nm3U dSIiIioXLptSxTp1SgVw2dm32zw8gN9+UyWsiIiIqFw480YVq3Fjdco0LEwdUAgLA2JjVTsRERGV G2feqHKkpallUp2uVHneiIiIqHgM3oiIiIgcCJdNiYiIiBwIgzciIiIiB8LgjYiIiMiBMHgjIiIi ciAM3oiIiIgcCIM3IiIiIgfC4I2IiIjIgTB4IyIiInIgDN6IiIiIHAiDNyIiIiIHwuCNiIiIyIEw eCMiIiJyIAzeiIiIiBwIgzciIiIiB8LgjYiIiMiBMHgjIiIiciAM3oiIiIgcCIM3IiIiIgfC4I2I iIjIgTB4IyIiInIgDN6IiIiIHAiDNyIiIiIHwuCNiIiIyIE427oDRdm2bRuOHDmChx9+GP3797d1 d4iIiIjsgt0FbyaTCeHh4WjQoAHmzZsHJycn7dqmTZuwf/9+1KlTB4mJiYiMjESNGjVs2FsiIiKi qqUTEbF1J/IbOXIkMjIysG7dOqv2Q4cOYciQITh16hT0ej0mTpwIFxcXzJw50+p1Op0OdvaWiIiI iCqMXe1527dvH1auXIkFCxYUuBYZGYnu3btDr1ddfuaZZxAVFQWj0VjV3azWdu3aZesuODSOX9lx 7MqH41c+HL+y49iVT1nGz66Ct5UrV8LX1xcfffQRunXrhs6dOyMuLg4AsHfvXrRo0UJ7bXBwMFJS UhAbG2ur7lZL/CUsH45f2XHsyofjVz4cv7Lj2JWPwwdvhw4dwhNPPIH58+dj9+7d6NixIwYPHgwR wdWrV+Hl5aW91tvbGwBw8eJFW3WXiIiIqMrZVfCWmZmJrl27as9Hjx6NuLg4nDt3Ds7OzlaHEywW CwBwfxsRERHdW6SKJCQkiK+vb5GPESNGSLdu3WTevHna16Snp4tOp5ODBw9KcHCwLFy4ULt29epV 0el0cuDAAavv06xZMwHABx988MEHH3zwYfePF198sdQxVZWlCmncuDGSk5OLfc3kyZNx+vRp7bnB YIBOp0NgYCB69OhhdS0+Ph5eXl5o06aN1T3OnDlTsR0nIiIisiN2tWw6YsQIbNu2DQaDAQCwe/du DBw4EH5+fhg5ciS2bdumLZdu3boVYWFhzPNGRERE9xS7y/P2zTffYPPmzWjVqhXOnDmD2bNno27d ugCAL774AocPH0ajRo1w5swZREZGwt3d3cY9JiIiIqo6dhe8VQSW1iIiIqo858+fx/r161GvXj08 9dRT8PPzs3WX7il2tWxaXiaTCcOGDcP27dvx1ltvWQVumzZtwqRJkzBv3jyMHTsWJpPJhj21bydO nMDDDz9s1cbxK97UqVPh7++P++67D1OnTrW6xrErXlJSEsaMGYOoqCi8+OKLOHHihK27ZNeio6PR unVr1K5dG08++SQSExMBcBxLy2KxoEePHoiOjgbA8SuN9evXY/jw4Xj++ecREREBPz8/jl8J7dmz B++++y4WLlyIsLAwnDx5EkAZPn9lOjpqp0aMGCGDBw8u0P7rr79Ks2bNJDc3V0REJkyYIFOmTKnq 7jmErKwsGThwoDRt2lRr4/gVb9myZbJkyRKJi4uTuXPnik6nkzVr1ogIx+5uLBaLtG3bVrZv3y4i InFxcdK0aVMxm8027pl9unr1qoSHh8uxY8dk27ZtEhAQIL179xYR4TiW0scffyx16tSR6Ohofg5L YefOneLn5ydJSUlaG8evZMxms9W/B7t27Srz72+1Cd5iYmJEp9NJQkJCgWvDhw+XkSNHWr3W19dX cnJyqrKLDmH27Nny3XffSWBgoNbG8SteVFSU1fO//OUv8ve//11EOHZ387///U/c3d3FZDJpbc2b N5dvvvnGhr2yX1999ZWkpaVpz1euXClubm6yfft2jmMp/PLLL/LDDz9IYGCgREdH83NYQhaLRVq0 aCEzZ860auf4lcy1a9fE3d1d0tPTRUTkyJEj0q5duzL9/labZVOW1iq/jRs3olevXqhdu7ZVe0xM DMevGKNHj7Z6Xr9+fTRp0gQAP3t3s3fvXgQFBcHZ+XbWoubNm+Pnn3+2Ya/s19ChQ1GrVi3ted5n be/evWjatCnHsQRSUlIQExODfv36AQBEhONXQvv27cPJkydx/vx5DBo0CA8++CAWL17M8SshPz8/ tGvXDuHh4UhLS8OiRYswc+ZM7Nmzp9TjV22CN5bWKp8//vgDV69eRYcOHQpcu3LlCsevFE6dOoXw 8HAA4GfvLq5cuVLgfxa8vLw4PiV0+PBh/P3vfy/wOwpwHIuycOFC/OMf/7Bqu/P3FOD4FebQoUOo VasW3n//fXzzzTdYu3YtXn/9dRw4cIDjV0IbNmxAfHw8GjRogF69euGvf/1rmX5/q03wxtJaZWcy mbB06dICM0h5OH4lt3nzZowaNQoNGjQAwLG7mzvHB7g9RlS8zMxMHDt2DGPHjoWTkxPHsQSWLVuG 0NBQuLi4WLVz/EomIyMDDzzwAHx9fQEAbdu2Rfv27XH//fdz/EroypUr6N27N/r164eIiAhs2LAB NWrUKPX4VVmFhfJITExE27Zti7w+YMAA1K9fHxkZGVpb48aNAQA3btyAv78/UlNTtWu3bt0CADRs 2LCSemxf7jZ+rVq1QkxMDBYuXAhAfWhMJhM8PDywfv36e3r87jZ2AwcOxPLlywGo00LHjh3DO++8 o12/l8euJBo0aIA9e/ZYtd26dQuBgYG26ZADWbBgARYtWgQnJyeOYwktW7YM48aN057n5OSg4pOi IAAAE75JREFUT58+EJECJ+w5fgXdd999yMzMtGpr1KgRFi9ejNatW1u1c/wKysrKwl//+lccO3YM vr6+mDJlCkaOHIk333zT6t8JoATjV4l786rUpEmT5OWXX9aeJycni16vl2vXrsmoUaPk1Vdf1a5F R0eLt7e3GI1GW3TV7u3atcvqwALH7+7S0tJk1qxZVm1Go5FjdxcxMTFSq1Ytq7agoCBZt26djXrk GJYuXSpnzpzRnkdHR3McyyDvwAI/hyXz+++/i6enp9XfX08//bRMnz6d41cCBw4ckHr16mnPzWaz eHl5len3t9osm7K0VsWRO5b0OH7FMxqNmDRpEp566inEx8fj999/x+LFi5GQkMCxu4tOnTohICAA O3fuBKBqFmdlZTG5djFWrVoFd3d3mEwmxMfHIzo6GufOnUNgYCDHsYz4OSyZFi1aoF27dvj+++8B qL/7YmNjMWrUKI5fCQQHB8NoNOLy5csA1PjVrFkTjzzySKnHr1pVWGBprYqxa9cujBgxAufOndPa OH5FCwsLw5dffmnV1qVLF20Zi2NXvHPnzmHGjBno0KEDDh48iLFjx6Jdu3a27pZd2rZtG/r374/c 3FytTafT4eTJk9Dr9RzHUmratClWr16Nbt268XNYQhcvXsT48ePRpk0bXLx4EQMGDECfPn04fiW0 Y8cOrFixAu3bt0diYiL69++Pnj17lnr8qlXwRkRERFTdVZtlUyIiIqJ7AYM3IiIiIgfC4I2IiIjI gTB4IyIiInIgDN6IiIiIHAiDNyIiIiIHwuCNyE6ZzWYcOHBAe24wGHD48GEb9uje9NtvvxUoCeTo bty4Yesu2ERKSoqtu0BUIRi8EVWiuLg4DBkyBL169cLw4cPRunVr6PV6tGnTptivu3z5MoYPH46h Q4cCAE6fPo2+ffti/PjxFda3GzduYPr06dDr9QgJCcHYsWMRHh6OJ598EkuWLLFKBFvd7NixA4sX L77r6xYvXox27dpVm3/0zWYz5s6dq9WBNplM+OCDD/Dee++hWbNmOH/+vG07WMni4uLw9ddf27ob ROVXGfW7iEhk9+7d4unpKZ9++qlV++zZs6VNmzZ3/fqdO3da1ZhduXKldO/evUL7aDabRafTyapV q7S2S5cuSceOHeXxxx+XrKysCv1+le2TTz4p0esGDx4sLVu2LNFrdTqdXLhwoTzdKpLZbJZly5ZV yr0LM378eDl48KD2fNmyZTJlyhQREVm1apVcu3atyvpiK5988ons3LnT1t0gKhfOvBFVgpycHISF hWHQoEEYNWqU1bXJkyejU6dONuqZNScnJwCqxFIef39/bNmyBbGxsZgyZYqtulZq//3vf/HBBx/c 9XXJyckQEcTFxWH37t1V0LOivfvuu9i7d2+VfK9ffvkFCQkJePTRR7W2gwcPwtnZGQDw4osvws/P r0r6Yksvv/wypkyZApPJZOuuEJUZgzeiSrBjxw4kJiZi8ODBhV6fPXu29t9LlizB3LlzMWfOHIwb N65E99+3bx/c3Nywe/duZGZm4sMPP4Rer36dv/vuO/Tu3RuffPIJunbtirp162LGjBml6r+fnx+G Dh2Kzz//HIBaXnvvvfcwYcIEdOzYERs3bgQAfPvtt+jQoQNWr16NIUOGoEmTJli+fDk2bdqEp556 CgEBAYiNjdXuGxUVhY8++gjvvPMOhg8fbrUcGRUVhfnz5+Pll1/G+PHjISL46quv0K1bN/znP/9B 48aNERUVhRMnTmDcuHH47LPP8OyzzyIhIQEA8MMPP+DGjRuYPXs2zp49W+R7+/zzzzFt2jT06tUL S5YsKXD98uXLGDVqFD788EPMmTNHaz9z5gyCgoLQtWtXpKamAgBGjx6Nt99+WxuLqVOnYvHixQgN DYXZbMbNmzcxfvx4hIaG4v3338cDDzyAvn37Ijc3F8nJyThw4ABiY2Mxe/ZsmM1m7N69G2+++SaW LVuGQYMG4datW1bjExkZie7du0Ov12P48OG4ceMG0tLSMGXKFPzzn//Eo48+WmQwuGTJEvTt21d7 /sUXX+DQoUPYvXs3Zs2ahYSEBHzwwQd44okn8Nlnn8HX1xdHjx5FQkICJk2ahI8//hjPPfcc1q1b BwA4evQoBgwYgJkzZ2LUqFFo2bIlRowYgePHj2P48OFo3LgxVq1aVaAfGRkZmDx5Mvr06YOoqCg8 +eSTCA4OxunTpzF58mSEhISgf//+kD8rNyYlJWHy5Ml47bXX0LlzZ8THxwMALl26hDFjxmDlypUY PHgwjhw5AgBYu3YtQkJC8N1336Fnz55o1KgRfv31V+37Ozs7IzAwEN99912RnxEiu2fjmT+iamne vHmi0+nk5MmTVu3nzp2T/fv3y759++TAgQOSlZUler1ekpOTRUTkvvvuk2PHjonI3ZdNAwMDJTo6 WkRE/vjjD9HpdCIikpOTI35+fjJjxgwREfnPf/4jOp1Odu3aVWhfdTqdrF69ukD7xx9/LDqdTpKT k+X999+XvXv3iojIhg0bxNPTU9LT08VisUi9evVkzpw5IiKybds2qVWrlvz6668iIjJx4kQZNWqU iIisW7dOwsLCtPu/9dZb0qdPHxERiYqKkvfee09ERG7cuCEeHh4SHx8vN27cEJ1OJ5999pkcOHBA jh49KsOGDZP58+eLiMikSZPkn//8Z6HjVZQRI0Zo78PFxUWuXr1qdb13796yf/9+ERFJSkqyWjZd sWKFBAcHa6+dNm2aGAwGERHx9/eX//u//xMRkU6dOsnmzZu19xYUFCQJCQmSk5MjDRs2lJ9//ln7 +oiICO1+nTt3lg0bNoiIyNChQ+Wjjz4SEZG4uDjp0KGDNj6urq7a/ceMGSOJiYkiIjJ//nwJCAgo 9H17e3tLTEyMVVtERIRMnz5dREQsFots3LhRateuLUeOHJFvv/1WUlJSpFWrVnL27FkREbl27Zp4 enpqn4VBgwbJM888IwaDQVJTU8XV1VWioqJEROTHH3+U5s2bF9qX77//Xnx8fCQuLk57rz169BCD wSBms1kaNWok+/btExGRYcOGSWZmpoiIvPbaa9KtWzcRUT/7V199VURElixZIs8++6yIiBgMBtHp dLJmzRoRUUvFL7zwgtX3nz17tgwZMqTQvhE5AmdbB49E1VHeZn+j0WjVXq9ePSxYsABLlizBoUOH 4O7ujkOHDsHX1xfR0dHIzc3FzZs3y/W9XVxcULNmTfzlL38BAPztb39DSEgIfvzxR62tJPJm8vR6 PVauXAmLxYJffvkFmZmZ6Ny5My5evIgWLVrAw8MDXbp0AQAEBwcjIyMD7dq1AwA0b95cm6lZvnw5 Bg4cqN0/IiICLVu2REJCAj766CN89dVXAAAfHx9cuXIFtWrV0l7bs2dPBAQEAFCzlt7e3khMTMTp 06fh5eVV4ve0a9cudOvWDQAwcOBA+Pj4YPny5drsWVxcHPbt24eOHTsCABo0aGD19UOHDsUbb7yh vcZiscDV1RWAWrZ9+OGH8euvvyI1NVWbNXN1dUWTJk3QuHFjAMD999+PpKQkANBml/KsXLkSAQEB iI+Px6VLl7R7xMbGap8lHx8ftGzZEk5OThARbNy4EU2aNAEAXL9+Hc2bN8etW7fg7e2t3TctLQ2p qamFjlVeH3Q6Hby9veHj44PWrVujdevWiImJwaVLlxAUFARAzcj269cPy5cvR5cuXeDp6YmmTZvC 1dUVrq6uqF+/Ph588EEA6mdf1AGImjVrwsvLy+q17u7u2lgGBQXh/PnzCAwMxL59+7Bo0SLta/M+ F//4xz9gsVhw/fp1xMbGar83efd4/PHHAQAPP/wwfvvtN6vvX6tWrWJnZ4nsHYM3okrwwAMPAFCn RFu2bKm116xZE+3btwcA7cRpTk4OJk6ciFdeeQU1a9Ys8A96RQgODobBYCjV15w5cwb169dHnTp1 kJCQgPHjx8PFxaXYr8kL+PI/zws6kpKSkJWVpV0LDAwEoJa/zp49a7XvLn/gBljvyfP19cWsWbPw 2GOPoWXLlrhw4UKJ39MXX3wBg8GAXbt2AQDq1q2LpUuXYtKkSdDr9fj999/h7u5e5Nd7eHhoy8kZ GRl44okntGuurq6YMGECwsPDUb9+/SJ/jjqdDhaLpdBrXl5emDp1KgYMGICgoCDtde3bt8eZM2dw 7tw5BAUFwcPDA127dsW1a9cgIpg4cWKx7zsnJwfA7T2Oxck/1hcvXkR2drbV9YCAABw7dkx7nv99 5v/56/X6Eu8r0+l0Be5jNBqRkJCA++67r9D3V7duXcyaNQvNmzdHu3bt8Pvvvxd57zvH283NDWlp aSXqG5E94p43okrQt29f+Pr6Yvny5QWu3fmP48CBAzF9+nQ0bdq0zN/vbgFfenq6NstREgaDAd98 8w0iIiIAqH8od+7cafX98v8DXhKBgYE4deqU9jwvoAgKCkK9evUK3L+ooCw8PBwtWrTA008/Xarv n5KSgtq1a2Pt2rVYuXIlVq5cia+//hoJCQn44YcfAKjgOiUlpdg8aCNGjMD69euxa9cudO3aFQCQ nZ2NHj16YOzYsQgJCSlVv/Lr168fnn76aTz++OMQEe2z0qxZM3z44YeIjIzE8uXL8dlnn6F27drw 8fHB9evXtX1geX3JP86AmjFzc3PT9urll//zeKfAwEBkZ2drM4WA+rnlzcTd7etLqqh71K1bF8eP H7f6eSQnJ+Py5cuYMGECAGDYsGElCkrzS0tLQ6NGjcreYSIbY/BGVAnc3d2xdu1aREdH4+OPP7a6 lp6erv1jdeDAAWRkZMBoNOL8+fO4fv06bt26hdzc3AKzBXc+r1u3rpa096effgIAq1mSvFxeN2/e xKlTpxAWFlagn3kzI/mDv7S0NISGhuL+++/Hv/71LwDAgAED8Oqrr2L//v1ISkrChAkTULduXe1r iwoe87ePGTMGGzZsQHp6OgBg586dGDx4MOrVq4fnn38e06ZNw7fffoszZ85gxowZqFu3rvb1+d/7 Tz/9BJPJBLPZjCNHjiA1NRW5ubmoWbMmbt68CYvFgmvXrhXoy6effornnnvOqq1Vq1Zo37699jPq 3LkzfHx8MGvWLADQltauXLmifU3Hjh3h7++vLc8Barn18uXLMJlMSElJwblz54r8OZrNZu19eXp6 aqdfr169iiNHjsBkMiE7OxtxcXHaPS5cuIB9+/bhlVdeQadOnbQZLhcXF/Tp0wfh4eE4fvw4/vjj D7z11lvaMmp+nTp1KhAQm81mmM1mq59X/p9Zhw4d0L59e6xYsUK7vmfPHowZM0b7udz5s897v8X9 D8Wd1+78vnn3bdasGQIDA/HCCy/g7NmziIuLw4wZM+Dv7699DkQEhw4d0j4Hd37/wvIVXrlyRVva J3JIVbGxjuhedfLkSYmIiJDevXvLiBEjJCIiQgYOHCg//vijiKgN4A899JAEBATI/PnzJTQ0VNq3 by8JCQkSEREh7u7u8v3338v58+elX79+4u/vL3v27BERke+++078/Pzk0Ucfla1bt0qnTp1k3bp1 IqIOM4SHh8v06dMlNDRU24CfX0pKikybNk10Op107NhRxo0bJ+PGjZNnnnlG1qxZI7m5udprb926 Jc8995zUrl1bWrVqpeXJ2rZtm7i6usrkyZMlJSVFIiMjRa/Xy4oVKyQ5OVmef/55adSokbaRf+nS pTJ06FCZO3eujBs3TlJTU0VEJDMzU1544QXx8vKS9u3by2+//SYi6tCEXq+Xd999VzvU8frrr0ut WrVk6NCh8vnnn0udOnVk/fr1YjQaJSQkRHr27KlthM+zdetW8fHxkTlz5ojJZNLajxw5Iq1btxa9 Xi+zZ88WEZGffvpJWrRoIS1btpSFCxdKSEiILFq0yGo8Fi1aJOfPn9eeGwwGeeyxx6R+/foyceJE mTRpkgQHB8vRo0dl0KBB0rBhQzl06JAcPHhQfHx8ZOjQoZKamionTpwQPz8/eemllyQ9PV2effZZ 8fHxkVGjRsnChQvF399fdu3aJQkJCdKqVSupV6+e1KhRQ3Q6nYSGhoqISGJiovTu3Vs8PT2lc+fO EhsbW+hncdWqVfL6669rz/fu3SvNmzeXjh07yp49e+TmzZvy8ssvi4uLi3z99ddiNptFROX9e/bZ Z2XatGny1ltvybfffisiIidOnJCHHnpI+vXrJwkJCbJz505xd3eX1157Ta5fvy4zZ84UvV4va9eu tepHWlqajBs3Tjw9PSU6OloSEhKkb9++8uCDD8qxY8fk4MGDUq9ePQkNDZXk5GQ5fvy4dOjQQTw9 PaVPnz6SkJAgIiILFiwQT09Peeqpp2Tjxo3i4+MjH374oaxZs0Z0Op3MmzdPrl+/Lv379xd/f385 evSo1odu3brJiRMnCh0nIkegE6mEDTZEZFNNmzbF6tWrtc355Nj+/e9/47HHHtP2S+bk5GDBggV4 5513SnwPs9mMfv36YcOGDaU65FHdHD58GCtXrrQ6BEHkaLhsSlRNFbUpnhzP9OnTrfarXblyRTvw UVLOzs5YvHgxZs6cWcG9cxypqalYu3ZtiZI5E9kzBm9E1czmzZtx+fJlbNiwodrXqrxXLFy4EKNH j0ZQUBD69u2Lbdu2YdiwYaW+T3BwMMaPH68ltL3XHD16FPPnz7/rqWkie8dlUyIiIiIHwpk3IiIi IgfC4I2IiIjIgTB4IyIiInIgDN6IiIiIHAiDNyIiIiIHwuCNiIiIyIH8f4pAF37JdHb0AAAAAElF TkSuQmCC ", null, " AAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlcTun/P/DXucsSCmVfRnYxjJ2sZQzJMGRnyJKdsWab LGkMw4xljH0asjRjaexL1qFmbCFLij4hEbK0idb7/fujX+fbraiopF7Px6MH5zrXuc51nfvu7n1f 17muo4iIgIiIiIhyJc3HrgARERERZR0Ge0RERES5GIM9IiIiolyMwR4RERFRLsZgj4iIiCgXY7BH RERElIsx2CMiyqHi4+Nx4cIFHDx48GNXhYg+YQz2KEcREWzduhVt2rRBixYtYG1tDVNTU2g0Gmg0 GuzduxenT5/GoEGD0L17949d3Uy1efNmLF68GDVr1kTfvn3fmu/evXsYPnw4rK2tMWjQIHTo0AED Bw7ErVu31DwPHjzAjBkzULNmTQQGBmZH9TPM09MT9erVg0ajQZ06dbBnzx6d/efOnYOVlRUMDQ3x xx9/AAB2796Nzz77DLGxsR+jyh8sKioKEydOhKOjI0aMGIHJkyen2paYmBjMnz8f1tbWCA8PR8eO Hd9aZkhICMaOHQtHR0cMGjQICxYsSJHnxIkTGDFiBJYsWYI+ffrAy8tLZ39ERARsbW1hY2ODoUOH 4vHjxwASfx9XrVqFrl27Zrit//vf/9CxY0e0bt0ajRo1Un+H/fz8MlxWVnF3d8fAgQPRrVu3DB33 8uVLTJ8+HT/88ANmz56NgQMHqtcsNWvXrsWQIUM+tLpE70+Icoj4+Hjp16+fFCtWTE6cOKGzb9my ZaKnpyd79+6VhIQE6dSpk1haWn6kmmY+X19fady4sYiIXL9+XQYMGCBarTZFPg8PDzEyMpKFCxfq pK9evVoKFy4sR44cUdO2bdsmiqJIYGBg1lb+A9y8eVM0Go00b9481f2//PKLzJ8/X90+f/689OzZ U+Li4tJ9jnv37n1wPTNLnz59ZN26dep2v379ZPDgwTp5Xr58Ke3atRNbW9s026nVaqV58+bi7u6u brds2VLmzZun5vH09JSSJUtKaGioiCRe8xIlSsj9+/fVPF26dBFra2sREQkKCpL+/fvLypUrZc2a NVKlShW5fft2htoZHx8vderUEXt7ezXt9OnTYmRklOJ3+2N638+SAQMGyG+//aZub9myRTp27Jhq 3sDAQClatKgMGTLkg+qaHrGxsRIcHJzl56FPD4M9yjEWLFggiqKIm5tbqvunTp0qe/bsERERW1tb sbCwyM7qZak5c+ak+QcnNDRUypQpI+3bt091/+DBg6VYsWLy8OFDERE5depUjg/2RES6du0qiqKI r69vin0dOnSQR48evXfZvr6+MmrUqA+pXqa5evWqKIoid+7cUdOOHTsmiqLI9evX1bQ+ffpIvXr1 JCYmJs0y9+3bJ3p6ehIfH6+mbdiwQQoWLCgvXrwQEZGWLVumCDRat24tw4cPFxERb29vURRFLly4 ICIiT548kV27dolI4pesmTNnZritN2/eFEVRZPfu3TrpGzZsEBcXlwyXl5Xe57OkaNGicuDAAXXb 19dXihQpkmreYcOGiY2NTYqgPivMmTNH/vnnnyw/D316OIxLOUJERAQWLVqEatWqwcbGJtU8Y8eO hb6+vrqtKEp2VS/LPXz4EJLGkwudnZ3x5MkTDBs2LNX9I0aMQHh4OJYtW5YVVcwyY8eOBQCsWbNG J/3+/fvQ19dHmTJldNIl8UtqmuVGRESgb9++iI6OzrzKfoDz588DgE576tatCwA4fPgwgMTh1h07 duD7779H/vz50yzz3LlzMDY2hp6enk6ZMTExOH78OJ48eYL//vsPTZo00TmuSZMm2LVrF0QEt2/f hoGBgZrnzJkzMDc3x7Nnz7Bx40bMnj07w22Ni4sDkDh8mZCQoKb3798fRkZGGS4vpylRogQ2bdqk bl+7dg3169dPke+PP/5Az549s6XNJ06cwMKFC7P8PPRpYrBHOcKpU6fw8uVLtGnT5q15TE1N0blz Z3VbRLBjxw7UqlULJiYmWLJkibovNjYWU6dOxa+//goHBwf07t0bERERAIAjR46gZ8+emD59Olat WoWKFSuiYsWKOHnypE7Za9euxZw5c2Bvbw9LS0v4+Pio+93c3PDdd9/BxsYG9erVg7u7+1vrLSJY unQpJk+ejGnTpsHc3BzOzs7qfnt7e5w/fx4BAQGwt7fH8uXLUy3n6NGjAABzc/NU9zdu3Bj6+vo4 cuSITvqVK1fQuHFjGBgYoHXr1rh9+7a6z8PDA+PHj8e6devQuXNn7N69GwAQFhaGBQsWoGHDhjh+ /Dj69OmD0qVLo379+ggODsaff/6JVq1awdjYGEuXLk3XdX+bDh06oEaNGnBxcUFUVJSa7uLigkGD Bqnbjx8/xvz581GtWjUEBQWp6QEBAZg2bRqcnJxgZWUFJycnAMDx48fx4sULeHl5wd7eHjdv3gQA 3Lp1CyNHjoSjoyNsbGzQq1cvPHz4UN03Y8YM9OvXDzt37oSJiQmmTZsGOzs7aDQaDB06FE+fPgUA eHl5oXTp0jhz5gwAYOXKlShdujSCg4NTbWd4eDgA6FwPY2NjAMDdu3cBABs2bICiKDh//jy+/PJL FC9eHH379kVYWNhby4yMjNRJS17m1atXAQAVK1bUyVOxYkWEhYXh3r17aNCgAQoVKoT4+HhERETg +fPnKFeuHBwcHDBnzhwYGBikeu53qVu3LurVq4ejR4/CwsIC//vf/wAAhQoVUu+P8/DwwJAhQzBh wgT88ssvKFeuHIyNjTF37lwAwLNnz7B8+XLUrVsXvr6+qF69Otq2bQsgMbiaMGECBg0aBDMzM/z8 88/quR8+fIgRI0Zg/fr1GDJkSIpg1dfXF/3798fs2bPh4OCAgIAAnS+Oab2OADBv3jy4ublh2LBh OHv2LDZu3IitW7fq5AkODsb169dhZWWV5peTM2fOwMTEBMbGxrh27Zp6fIsWLTBhwgQ135YtWzB2 7FjMmjULrVu3xqJFiyAi0Gq12Lt3L+Lj47FmzRrMmTMHAKDVarF48WJ89913aNOmDdq3b4+AgAC1 PAcHB2zYsAHTpk1DyZIl31lH+sR9tD5FomQWL14siqKIg4NDuvLb2tpK+fLl5a+//hIRkSVLlki+ fPnk+fPnIiKyfPlyqVatmpq/Xr164uTkJCKJ9+l8/vnnUqdOHTlx4oTExcVJt27dpH79+mr+mTNn yooVK9TtFi1aSMuWLUUk8R6oGTNmqPvGjBkjhQoVkqdPn6Za1++//1569+6tbl+7dk309PRk9erV atrgwYPTHMatVauWaDQaiY2NfWueMmXKqMNJScO4I0eOlFu3bsmhQ4ekdOnSUrNmTUlISBCtVism Jiaybds2ERH5+++/xdDQUKKjoyUhIUE8PDxEURT57rvvJDQ0VF6/fi1VqlSRxo0by9mzZ0VEZM2a NWJgYCCRkZEi8u7r/i4rVqwQRVFk7dq1alqjRo0kOjpa3Q4PD5f169frDE0HBQVJ48aNJSIiQkRE jh49KoqiyLFjx0RExMLCQmcIMzg4WEqXLi03btxQ03r37i1Vq1aVly9fyv3796VVq1ZSuXJl2b9/ v/z666+yfft2efXqlRgbG8uYMWPU4548eSIDBw5Ut11cXKR27dry5MmTVNu4d+9eURRF9u7dq6Yl JCSIoigybtw4ERGpUKGCmJqaqu8lf39/KVOmjM77J7XrdvXqVTUtICBAFEWRn3/+WVxdXUVRFDl5 8qTOcRs2bBBFUeTcuXMiIrJ7926ZNWuWbNq0SRISEsTb2/ut96Cl1/3796VJkyaiKIoUKFBAnJyc dIab//e//0mVKlWkRo0acvLkSXn06JGMGDFCFEWR7du3S0hIiEyZMkUURZH169fLgQMHZO7cuRIe Hi5dunRRy9mxY4coiiKHDh0SEZFu3bqpQ9QvXrwQRVHEw8NDRERCQkKkXLly6i0DWq1WvvjiC53f vbRexyS//vqraDQaKViwoFy8eDHF/hEjRkhYWJiIJH5epTWM+9NPP0n+/PklPDxcTevXr5/6+75h wwZp1qyZuu/Ro0dStGhRmTZtmoiI3L17VxRFkdOnT6t5FixYoF4XEZHPP/9cmjRpIiIiJ06cEBsb G3XfnDlz3lk/+rQx2KMcYeHChaIoik4Q9S62trY6H9B+fn469x15eXmpwZRWq5UWLVrIsGHD1Pxv BgHr1q2TAgUKiIjI48ePxcDAQCeo8vHxUe+F6dixo/Tt21dmzJghM2bMkKFDh0rr1q3l8uXLKeoZ GRkpBgYGsn37dp30nj17SpkyZXTak9Z9Q2ZmZqLRaN55L1epUqWkcOHCIvJ/wd7//vc/dX/SH/mk gMPJyUmdwHDkyBFRFEWCgoJEJPU/Hv369Uv1unt7e4tI2tf9bcLDw6VIkSJSt25dEUm8mX/kyJEp 8r15H+L48eNl7ty5Onm2bt2qBp9t27bVeZ2///57MTMz08l/48YNURRFrbetra2Ym5unOPeMGTPE yMhILXvt2rWyb9++NNuWJC4uTqpXry4NGzaU0NBQ0Wq1avC6aNEiEREpUKCATJgwQee42bNni0aj kWfPnqUoMzQ0VIyNjaVTp07y+vVriY2NldmzZ4uiKPLXX3/Jrl27RFEUOXXqlM5xv//+uyiKkup7 ViTxPX7r1i0JCwuT6dOny8yZM+Xvv/9Od1uTJCQkyMqVK8XIyEgURZH27dvLq1ev1P0WFhY6QVBM TIyUKFFCOnToICIiGzduFEVRdN7zCxculBYtWqi/f5MmTZLWrVuLs7OziCROTEqaBBIdHS2KosiW LVtERGT69OnSokULnToOHjw4w/fsxcfHy+TJk2X69OlibGwshQoVkuPHj6v7t27dqhPUDx48OM0J Gi9evBADAwP1ffjgwQOdCS7ly5eXn376SeeYqVOnSoECBSQ8PDzF72tMTIwYGRnJ9OnT1WvVo0cP adu2rSQkJMihQ4fEyMhI/eKWVnBLnzb9tPv+iLLeZ599BiBxyZD0kmRDIwUKFAAAvH79GgDQqFEj 1KlTB7///jtevXqFyMhIaLXat5aVP39+dQmMc+fOoWjRosiXL5+6v3bt2ur/vb29sXXrVrRv3z7N Ovr4+CA6OhqFCxfWSa9fvz7c3Nzw6NEjlC1bNh2tTRzG9vPzQ0hICCpUqJBif3x8PEJDQ1GjRg2d 9OTtSFrCw8/PD127doWDgwO8vb2xY8cOPH/+HADSvE6pXfekocmMXvckRkZGGDhwINauXQsPDw+4 uLjAzs4uzeM8PT0xatQonbQBAwao/3/zvs5Lly6leC1q166N/Pnzw9vbO0W7khs3bhx++eUXbNmy BaNHj8aJEyewbdu2NOuYRF9fH6dOnYK9vT2+/PJL1KtXD7Vq1QIAdXjS0NBQ5/47IHFIVEQQEBAA ExMTnX3FihWDh4cHZs2aBQsLC3zxxRfqMG7btm3h7+8PADrD48m3y5Url6Kebm5uaNCgAUxNTdGs WTNYWVnhxx9/hIuLC6Kjo1GwYMF0t1mj0WDcuHHo3LkzunTpghMnTsDR0RGLFi1S8yR/jfLnz4+m TZuqw77J05NcuXIFlpaW+OGHH1I9Z//+/fH48WMsW7YMhoaGAP7vPX3ixAlUqVJFJ7+k4/7PN02Y MAEmJiZwdHTEmDFj0KlTJ/Tu3RuBgYGIiorCuXPnsHLlygydo3jx4ujVqxecnZ0xevRobN26VV2u 5cmTJwgODk71cyQ2NhY+Pj4pPkcCAgIQGRmJH374Qede5yRWVlZo0aIFWrdujfHjx7/1elLuwHv2 KEdo164d9PX1cebMmff68H3T7du30axZMzRp0gTfffddij+S7xIXF4enT58iJiYm1f2vXr3CnTt3 UqSntl5a0h/uN4PYEiVKANANxNJiZWUFADh79myq+69du4b4+Hh06NDhrWUk3ZeT9Af7+++/x/Ll yzFlyhS1/PeR9Jp9yHUfN24cAGDJkiXw9vZ+672JycXFxeHevXvpPoeenp7O/X5AYrBhbGyc5mtR vnx59OjRA2vWrMGLFy9SfCFIj/Lly8PV1RWXLl3Cxo0b4ePjg7p166J58+YAgKpVq+LJkyc6xxQt WhQA1MDlTbVr18aePXtw7tw5rFu3Dv/++y86d+6MMmXK4PPPP4e+vn6K99+DBw9QsmRJlC5dWic9 OjoaK1aswOzZs7FixQoEBwdj3rx5AAATExP1y1RaXF1ddbYrV66MgwcPQqPRpLin9E2GhobvnNDw +vXrd/7+7dmzBzY2Nhg8eHCKLwwvX75EaGhoimMzMtnr1atXWLduHXr16gUg8Yuqm5sbwsLCcPr0 abi7u8PZ2RmGhobqj6urK7Zt2wZDQ0P8+eefby171KhRuHz5Mq5du4bbt2/DzMwMwPt9jrx69QoA 3nqtFEXB/v37MW/ePKxbtw6NGjXCs2fP0n0d6NPCYI9yhDJlymDYsGEICgrC5s2bU83z+vVrncVg 3/UBPX78eFStWhVffPEFAOjMCEyLmZkZtFot1q1bp5O+f/9+aLVaVK9eHc7OzjpBaXBwcIo/cABQ p04dFClSBJ6enjrpwcHBqFatmvphnVZ7AGDIkCEoW7Zsinol+eOPP2BoaIhJkya9tYykm87btWuH s2fPYuHChZg8eTI0Gk26euDSqueHXPfatWvDwsICBw4ceOuM7DeZmZlhy5YtOkFIZGQkTpw4oW4n f53Mzc0REhKi03MUFxeHZ8+eoUWLFmra29o4adIk3LhxA5MnT0bPnj3T3bbUnDp1Cjt27MCvv/6q pnXv3h3//vuvTr7g4GAUL14cVatWTbNMFxcXeHt7q5OVihcvDgsLixSLKF+8eDHV+v/yyy8YP348 ChUqBE9PT1hbW6u9nI8fP0bx4sXT1TYvLy/8888/OmmVKlVC8eLFUwSYb7p79y7atWv31v3Vq1fH gQMHdBYxjo+Px/LlyxETEwNbW1v07dsXxYsXT/GerlatGry8vFIErRn5ghkfHw+tVqvz3q5VqxZK liwJPT092NjY4MaNG7h69SquXr0Kb29vdO3aFd988w2uXr2KLl26vLVsc3Nz1KtXD+PHj9d5P5Yo UQJVq1ZN9XPE0NAQdevWVd+zSW2pWrUqNBoN1q9fr3PM4cOHcePGDXVi0ffff48rV67gxYsXGeqp pk9LtgZ7Dx8+xJgxY7B27VrY2trqzG5Mbv369Zg/fz4cHR11ZlJFR0dj9OjRKFGiBCpWrIjVq1en 6zj6NCxbtgyWlpYYM2YMNm/erPNBfeXKFdja2qJ8+fIAEj9wk/ekJS31kPTvo0eP4Ovri/DwcFy4 cAEBAQEIDg5Whyrj4uJ0yk8qS0RQp04ddOjQAVOnToWDgwMOHTqEefPmITw8HBqNBmPHjsXFixfR q1cvnDp1Crt27cKoUaPUb/rJGRgYYNasWdi5c6faAxUbGws3Nzf8+OOPOudPa4kQQ0NDuLm54dKl S5g/f77OH6jt27dj06ZN2LJlizrzUqNJ/PVO/odt9erVGD58OD7//HM18Dt37hxevXqlzsQNCgpC WFiY+scs+Xm0Wq16jQGkyJPWdU/LuHHjoCgKBg4cmOr+pHMnvV6TJk3Cw4cP0bp1a7i6umLXrl0Y PXo0WrVqBSCxN8rPzw8igitXrmD06NEoV64cFi9erHPt6tati969e6faxuSaNm2KZs2a4dChQ/jq q6909m3cuBF16tRBSEhImu308vLC0KFDsXHjRnUIFwCGDRuGqKgond6vHTt2YPr06cifPz9iYmLQ tGlTnWHQJO7u7nBwcMCePXvU4WEAmDFjBvbs2aPOBr59+za8vLx0ZnkCiYFD0vsaACpUqKAGZs+e PdMZQpw4ceI7l7UxNTXFgAEDcOPGDTXtn3/+wfPnz9UeXCDxfZP8CS8XL17E/fv3MXXqVAD/N/ya PLAaOXIkXr9+jY4dO2L//v04fvw4+vbti44dO+Lly5eIjIyEl5cX4uLisG3bNmg0GvU9OHLkSISF hWHChAmIjo7Gs2fPcOXKFdy/f1+drZ3W62hkZISOHTtix44datqdO3eQP39+tGzZEkWKFEGVKlXU n6pVq6JIkSJqepEiRVItN3n7Ll++nOIpOk5OTvj333/x33//qdfuzz//xOzZs1GgQAEUL14ciqLA 19cXISEhiIqKQv/+/bFs2TLMnj0bnp6eWL16Nfbu3YuGDRvi7t276lNratSogRYtWqifr5QLZdfN gVqtVho2bKjOkrt586ZUrlxZZ3aWiMiePXt0bqDt3bu3/P777yIiMn/+fNmxY4f4+PjIpEmTRFEU 8fT0TPM4+nTExcXJb7/9Jk2bNhVTU1OxtLSUb775RubMmSMvX74UkcSb9z/77DMxNDSUnTt3yvPn z2X06NGi0WikX79+8vz5c9m2bZsYGxtLxYoVZd26dbJ06VIpXry4LF68WI4cOSJGRkZSrVo18fDw kICAAGnTpo1oNBr55ZdfRETk6dOnYmNjI4UKFZIqVarI+vXrdeo5d+5cKV26tBgZGUm3bt3SXLh4 +fLl0qpVK5k5c6aMHDlSXbRWROTPP/+UsmXLSuHChWXjxo3y+PHjd5Z17949GT58uFhaWkqfPn3E yspK+vfvLz4+Pjr5YmJiZOrUqdK2bVsZPny4DB8+XOcG76ioKGnbtq0YGBjI119/LT4+PmJqaipN mzaVwMBAmTp1qmg0Ghk3bpwEBQWJp6en1KpVS4yMjGTnzp0SGhoqkyZNEo1GI3Z2dhIUFPTO654e CQkJYmtrm+o+X19f6d+/v1qnpMWWt2zZIpUrV5YiRYrIN998Iw8ePFCPcXd3l2LFikmbNm3k7t27 IpI4W/Xrr7+WAQMGyJw5c2Ts2LHqLO59+/ZJxYoVxdDQUFxcXNT3XHJr165NdaHmVatWSenSpdVF rVNz8+ZNmTNnjnTt2lVnBm1yV69elc6dO4u9vb2MHDlSFixYoO6LioqSSpUq6dy4f/HiRZk0aZL0 69dPbeOb3Nzc5Ntvv5XFixdL79691dmpyQ0bNkz8/PzU7UePHkmPHj1k0aJFsnLlSp0nunTo0EE0 Gs1bJ23s379fFEWRfPnyiaWlpdjY2EizZs1SLJjetm1bMTc3l2HDhsno0aPFxsZGnSnr7e0tFhYW otFoZN68eTpPQnFzc5MaNWqIgYGBNGvWTGcS0YQJE6RQoULSoEED8fDwkG7duknFihXVCRTr16+X 6tWrS/HixcXOzk5GjRolI0aMUGcmp+d1fPHihdjZ2cno0aPFyclJhg4dqrMw9pvSM0EjSXh4uDrD 9k2urq7SokULsbe3l3HjxsmaNWt09tvZ2YmRkZFMmTJFRETCwsKkf//+UqRIESldurRMmDBBXr9+ LSIimzZtkuLFi8uCBQtk6dKl6Z4cR5+mbAv2jh49KgYGBjqP/6lRo4bOHz2RxCUuki/V4OrqKp9/ /rmIiM5jhkRETE1N1T9e7zqOiCizLFy48L2eUhAXFyeHDx9WA8vMEBoaKidOnFBnCGcnV1dX8fLy +qAy3pwVT0RZI9uGcf/9919UqVJFZ1ZQjRo1dBayjY2NhZeXl84QRPXq1eHj44Nnz55hxIgROmWW Ll1afSj6u44jIsoMcXFxOHPmjM7Qa3rp6+vDyspKnS2bGYoVK4Z27dqlOTSY2R4+fAh/f380atQo W89LRO8n25Zeefz4cYoZVkWLFtWZXfTixQvExcWps8+AxA8zIHEWUvKb2aOjoxEWFoZvvvkmQ8cR EWXUtGnT8ODBA0RGRn7wxIzcICIiIlPui37z3lsiyhrZ1rOnr6+fYnr4mzOlknr9kudLyiNvzJba sGEDli5dCgMDgwwdR0SUUSEhIThy5Ahq166NoUOHfuzqfHRmZmYf/GxqFxcXXL16FadOncLmzZsZ 9BFloWzr2StXrlyKaeNhYWEwNTVVt01MTJAvXz511lhSHgA6s4SuX78OfX19WFtbZ+g4ABg8eLDO OS0sLGBhYfFBbSOi3C35Q+8pc9ja2sLW1vZjV4MoT8i2YM/S0jLFcgG3bt3C4MGD1W1FUWBhYaGu +g4krvRvZmaGUqVKAUhcHuDEiROYOHGimic+Pj7N45K4uLiwt4+IiIjyjGwbxm3evDkqVaqEU6dO AUgMxl69eoWvv/4aDg4OuH79OgDAzs4O+/fvV487dOiQOmwSHh4OJycnWFlZwc/PDz4+Pli4cCFi YmLeeRwRERFRXqVINnZz3blzB/Pnz0fTpk1x4cIFjB8/Ho0aNULjxo0xa9YsddX8n3/+GWFhYTAw MEBERAQWLVoEEUG7du3UVb+T9O/fH1u3bn3rcW/eV6IoCnv2iIiIKM/I1mAvJ2CwR0RERHkJn41L RERElIsx2CMiIiLKxRjsEREREeViDPaIiIiIcjEGe0RERES5GIM9IiIiolyMwR4RERFRLsZgj4go mThtgs6/RESfOgZ7RETJ5NPoocLGGcin0fvYVSEiyhQM9oiIiIhyMQZ7RERERLmY/seuAH1cq1at QoUKFfDNN9987Kpg27ZtOHjwIKKjo/H333+/M+/Tp0+xcOFC3LhxA+XKlcPTp09RoEABzJgxA02b Ns2mGhMREeV87NnL4zZs2IA1a9a89/GBgYGZVpc+ffogJCQEYWFh78zn5+eH+vXrIyYmBkeOHMGm TZtw8OBB2NrawtLSEps2bcrwuTOzHURERDkJg7087MKFC4iMjMSxY8cQEBCQ4eOjo6MxatSoTKuP vr4+KlSoABF5a56EhAT07NkTRYsWxcqVK6HR/N9b+JtvvsG0adMwcuRIeHt7p/u8fn5+WLRo0QfV nYiIKKdisJeHubi4YO/evciXLx/Wrl2b4ePHjh0LPz+/LKjZ2+3Zswc3b97EoEGDdAK9JCNGjEBc XBwWLFiQrvIiIiLQt29fREdHZ3ZViYiIcgQGex9KUbL+JwtERkYiNjYWn3/+OXr06IGNGzciJiYm 1Xzz5s25YD+UAAAgAElEQVSDk5MTvv32W3z77beIiIjAtWvX4Ofnh9DQUNjb22P//v04ffo0jI2N MWTIEACAj48PunfvrhOURUREYMyYMVizZg3Gjx+PkSNHIj4+Pt31Pnr0KADA3Nw81f1ly5ZFpUqV cOzYMYgIfvvtN2g0Gri4uAAATp48iZo1a8LS0hIAcPz4cbx48QJeXl6wt7fHzZs3AQABAQGYNm0a nJycYGVlBScnJ/UccXFxcHBwwMyZMzFx4kSYm5tj3759AICYmBgsX74crVq1wl9//YURI0agQoUK qFatGq5fv45jx47hq6++QrFixTBlyhSduru5ueG7776DjY0N6tWrB3d393RfFyIioreSPCbTmwxk /U8WWLt2rZw+fVpERDw9PUVRFNm8ebNOnoSEBGnTpo1cvnxZREQiIiKkYMGC8v3334uIyNy5c8XU 1FTnmDZt2siQIUPU7T/++EMURVG3J06cKF999ZWIiGi1WilevLhs2bJF3W9raysWFhZvrbeVlZUo iiK3b99+a57mzZuLRqORZ8+eiVarFUVRxMXFRecclpaW6raFhYVOnYOCgqRx48YSEREhIiJHjx4V RVHk2LFjIiIyYMAAmTZtmpr/4MGDotFo5ODBgyIiEhgYKIqiSO/evSU4OFi0Wq20bNlSatWqJQcO HBARkcOHD4uiKOLv7y8iia/BjBkz1DLHjBkjhQoVkqdPn761nZR1yv8x/WNXgYgo07Bn70NlR7iX BTw9PdGmTRsAQMuWLVG3bt0UEzX27NkDAGjQoAEAwNDQEHv37lV77lKjvNET+eZ2p06dYGdnBwDQ arUoXLgw7t27l+56J5Un77guWq1WzfPm+ZMkP/7NshYvXozOnTvD0NAQAPDVV19hy5YtaN68Ofz9 /eHq6ooePXqo+a2trdGwYUM4OjoCAD777DMAQOfOnVG2bFkoioLWrVsjOjoanTt3BgC1Z9HHxwcA 4OTkhHv37mHmzJmYOXMmoqOj0ahRIwQFBaXzyhAREaWOS6/kQZcvX8bVq1fRvXt3nfRz587B29sb 9evXBwB4eHigXLlyOnk6dOjwzrLfFlwlPz48PBy//fYbFEVBfHy8Gpylh6mpKQAgJCQENWrUSDXP 06dPUbhwYZQoUSJdZb5ZZ09PzxQTTwYMGAAg8doBQOHChXX2169fH5s3b37rOQoUKJDqdkREBADA 29sbW7duRfv27dNVZyIiovRiz14etGnTJpw6dQq7d+9Wf44fPw59fX2d3r24uLhMX5Lk7NmzaNu2 Lbp27YqxY8eiYMGCGTreyspKLSc1z58/x7179z4oaIqLi3trb6OeXuIjtB48eKCTXqJECejrZ/y7 U1Kv4qtXr3Dnzp0U+2NjYzNcJhERUXIM9vKYly9f4smTJzAxMdFJL1myJKytreHq6orIyEgAQO3a tXH+/PkUy5gkDe8qipJiCFRRFCQk/N8D5JP/HwAGDx6Mdu3aqUOdqfXqvat3sEuXLqhXrx6cnZ1T lA0AGzduhL6+PmbOnKmTnvw8qR2XvB1mZmbYsmULXr9+raZFRkbixIkTaNasGTQaDTw9PXWODw4O RsuWLd9a77RUr14dzs7OOvUIDg6Gq6vre5dJREQEMNjLc5ydndG8efNU91lbWyMqKgq///47AGDg wIEwMTFBx44dsXr1ahw8eBB2dnbq8KmxsTGePHmC8PBwdXjT1NQUp0+fRnBwMPz8/HDw4EEAwP37 9wEAjx49gre3N6Kjo+Hu7o4XL14gODgYz58/BwDEx8e/c3auoijYuXMnXr16hTFjxiAuLk7dd/r0 aTg5OeHXX39FkyZN1HRTU1Ps3r0bL1++xPHjx3Hjxg2EhISos49NTEzg5+cHEcGVK1cwadIkPHz4 EK1bt4arqyt27dqF0aNHo1WrVqhYsSLs7Oywfv16dfHn8PBwHD16VL1nLymYTB64abVanXYl5UkK QseOHYuLFy+iV69eOHXqFHbt2oVRo0ahV69eb70WRERE6fKxZoZ8LHmwyapt27ZJsWLFxNraWry9 vXX2+fr6Ss+ePUVRFClevLi4urqKiIiXl5c0bdpUDAwMpEmTJuLp6ake8/DhQ6latapUr15djhw5 IiIi/v7+Ur9+fSlSpIjY2dnJ7t27xdraWlxcXCQhIUGWLFkihoaGUrNmTfn7779lwoQJUqpUKdm6 dau4ublJ2bJlpXjx4vLXX3+9sy1Pnz6VKVOmSNu2baV3797y9ddfS7du3eTff/9NkXf//v1Svnx5 KVWqlCxbtkwcHR1l6NChcvz4cRERcXd3l2LFikmbNm3k7t27IiKyZcsWqVy5shQpUkS++eYbefDg gVpefHy8ODg4iKWlpTg4OIidnZ38888/IiLy8uVLWbJkiSiKIr169ZLbt2/LlStXpFWrVqKvry+/ //67REREyMKFC0VRFOnatavcunVLRBJnN5cuXVqMjIykW7duEhgYmJGXlzIRZ+MSUW6iiGTRdM8c KrWhRyKi5CpsnIEHQ/hUFSLKHTiMS0RERJSLMdgjIiIiysUY7BERERHlYgz2iIiIiHIxBntERERE uRiDPSIiIqJcjMEeERERUS7GYI+IiIgoF2OwR0RERJSLMdgjIiIiysUY7BERERHlYgz28pD9+/fj s88+g0ajQevWrXHixAmd/UePHkXTpk1RtmxZ7Nu3DwCwYsUKNGrU6GNUN0MmTpwIjUaDevXqoX37 9ihXrpzazlatWsHExAQajQZ37tzB5MmTYWpqmi31On36NAYNGoTu3bu/dxkHDx7EsGHDYG5u/tY8 27dvR48ePTB27Nj3Pg8REeVODPbykC5dumD9+vUAgAoVKuDLL7/U2d+hQwc0b94cixcvRteuXQEA lStXRuPGjTN0nsDAwMypcAYoioK///4b165dw/Hjx9GxY0coioJt27bB09MTDx48QN26dVGlShWU KlUK9+/fz5Z6tW7dGs+fP0d4ePh7l9GpUydotVo8efLkrXl69OiB27dv4/Xr1+99HiIiyp0Y7OUx VlZWqFu3Lvbt24ewsLAU+8+ePYs+ffqo2127dsW6devSXf6pU6fg4uKSKXXNiFKlSqFbt27qtohA RNRtAwMDDBo0CABQpkyZbKuXRqNByZIlderyPmVUqlTpnWXo6+ujRIkS730OIiLKvRjs5UFjx47F 69evsXHjRp10Dw8PNGnSBPnz59dJT0hISFe5Dx8+xKBBgz4osHlf9vb2aeaZMGFCNtQkdYqiZPk5 PsZ1JyKinI/BXh707bffolixYlizZo1O+qZNm2Bra6tuBwQEwN7eHhUqVNDJd/nyZdjb22P+/Pmw sLBQe/4OHz6MyMhIHD16FPb29nj06BEA4Pz58xgxYgTmzp2LTp06wc7OTh3WvHTpEsaOHYtJkyZh xYoVMDIywuLFi9GlSxdoNBrMnDkTL1++BJB4T2GZMmVw48aNFG3S19dPs91v5rl+/TpatmwJQ0ND 9OnTBwkJCdBqtThw4ABsbGywefNm9Vr5+PggOjoac+fOxZgxY9C0aVPY2Njg6dOnAIDY2FhMmTIF f/zxB0aNGoWGDRvqnEtEsGPHDtSqVQsmJiZYsmSJzv7Dhw9j5MiRmD17Ntq1a4epU6ciNjb2ne35 77//0LdvXzg6OsLBwUGtCxERkQ7JYzK7yQCy/CcrTJo0SRRFkSNHjoiISFRUlDRu3FgnT2hoqDg4 OIiiKGra5cuXxdLSUuLi4kREZP369aIoity+fVtERExNTcXR0VHNf+3aNSlZsqSEhISIiEhcXJy0 aNFCmjdvLlqtVvz9/aVq1arSoEEDOXnypDg6OsqpU6ckKChI8uXLJ4sXL1bL8vLyklmzZqWrfba2 tqIoigQGBqbYt3HjRlEURX766SeJiYmRCxcuiKIosnfvXomOjpb//vtPFEURGxsb8fLykjFjxsjD hw9l5MiR4uPjIyIir169khIlSkivXr1ERMTZ2VkmT56snmPOnDk6dSlfvrz89ddfIiKyZMkSyZcv nzx//lxERNzd3cXU1FSio6NFRCQyMlKqVKkivXv3VsuYO3eumJqaqts3b96UsmXLytOnT0Uk8fUr Xbq0DBkyJF3Xh96t/B/TP3YViIgyDXv28qixY8dCURSsWrUKALBr1y706NFDJ0+xYsVQtWpVnbS5 c+di0KBBai/ZoEGDsGnTJlSpUiXV8/z0009o3LgxSpYsCSCxd23WrFk4f/483N3dUa1aNVSsWBG1 atWCpaUl5syZAwsLC1SoUAE9evTQuV/Qzc0Nffv2zbRrMG3aNOTPnx9NmjRBmTJlcOvWLRQoUECd 9dqxY0c0atQIq1atUnvmtmzZgpkzZ2L+/Plo1qwZtFotACAmJgbbt2+Hv78/AKSYFVujRg31Xsgu XbogPj4eAQEBAID58+ejU6dOKFCgAACgSJEimDx5Mnbu3Ak/P79U6+7o6AhLS0v1Pr1ChQrBzMws 064NERHlHgz2PpD8/4kAWfmTFapWrYqOHTvi0KFDCAwMxNatWzFw4MA0j/P09ES5cuXU7QIFCmDQ oEHQ09NLNf+lS5dQuHBhnbT69esDAK5cuQIg8RoWLFgwxbETJ07EnTt3cPjwYQCAj48P6tatm74G ZlCBAgVSzGRNXqdr167BwMAACxcuVH8OHDiAXbt2AQBsbW1RunRpfPHFF/jxxx9hYmKiU1by1zEp qEs6X3qu0ZtOnDiRYng9q94rRET0aWOwl4eNGzcOWq0WM2bMgEajQfny5dM8Ji4uDvfu3Uv3OfT0 9BAUFKSTltQblS9fvnce26xZMzRr1gyrV6/GtWvXUtwHl51evXqFkJCQVJc2iYuLQ6FCheDh4YGR I0di3rx5aNu2LWJiYtJVtr6+Ph48eKCTltY1ioqKSjGbOjsmgRAR0aeHwV4e1qlTJ1StWhXbt29P V68eAJiZmWHDhg3q8CWQOAv34sWLABIDjuQ9TObm5vDx8UFERISaFhwcDABo0aKFeszbTJo0CYcP H8bPP/+cqUO4GVW9enUkJCTA2dlZJ33jxo149uwZjh8/jkKFCmHZsmU4c+YMLl26BHd3dzXfu9rY vHlznD17VueaBgcHQ6PRoFmzZqkeU7VqVZw5c0YnLSt7gomI6NPFYC8PUxQFo0ePhqGhIWxsbFLN ExcXBwCIj48HAEyePBmXLl2ClZUVdu7ciS1btmDu3Llo0qQJAMDY2Bi+vr6Ij4/H9evXMX36dCiK gt9++00tc9u2bejcubMa7CUkJKjneVOPHj1QtmxZXL9+HTVr1kx32yIjIwEk9oC9KaktSf8CibNp k+qQFHQlr1O9evXQqlUr2NvbY9myZfD09MTChQsRGBiIsmXL4r///oOXlxeAxOCtVq1aKFu2rHqe 5DNrk8pN+nfu3LkIDg7GX3/9pXONRo0ahYoVK6plJF8CZ+TIkbh16xacnJwQHx+Pe/fuwd/fH/7+ /rh79266rxMREeV+evPmzZv3sSuRnRwdHZHHmvxOZmZmePHihfrEjOQuXbqEFStW4N69e9DX10eD Bg3QqFEjFClSBPv27YObmxvy58+P5cuXq/e35cuXDytXrsT58+cxaNAglC9fHh07dsSaNWtw9uxZ nD9/Hi9fvsS6deugr68PFxcXuLi44NGjRyhfvjxq166t0wum0Wjw9OlTNG7cGK1atUqzPaGhodiw YQM2btyI2NhYhISEwNjYWJ1AEhAQgJ9++gn37t2Dnp4emjRpgg0bNmDnzp2IiIiAubk5Vq1aBQ8P D0RERKBy5crqo9W++uor+Pj4wNnZGYcPH0aDBg0wd+5cAMA///yDGTNmQERw6tQpNGzYED179sSZ M2ewfPlyBAYGonr16ihTpgx+/PFHXLp0CbGxsbC0tETNmjVhbm6OJUuW4Nq1azhx4gTKlCmDhQsX QlEUnDx5Er/88gvu37+P8uXLw8zMDObm5tDX18fvv/+OJUuWID4+HkZGRqhduzbq1KmDUqVKfehb I09b6n0ckxu0/9jVICLKFIrksXGfN4cZKecbPXo0pk+fnm3Ps6VPS5w2Afk0euq/maHCxhl4MGRR ppRFRPSxcRiXcrTQ0FCEhIQw0KO3yqfRQ4WNMzIt0CMiym3SfuwA0UeQtJafv78/HB0dP3Z1iIiI Plns2aMcKSgoCAcOHEDPnj3Rrl27j10dIiKiTxZ79ihHOnXq1MeuAhERUa7Anj0iIiKiXIzBHhER EVEuxmCPiIiIKBdjsEdE9IHitAmp/p+IKCfgBA0iog+UtNYfAC7GTEQ5Dnv2iIiQvT1ySediLyAR ZQcGe0RE0O2dy65z8akfRJQdGOxlUE74Jp4T6kBEqWOvHRHlNLxnL4Oy89v/22T2PUEPHz7EF198 AXd3dzRq1ChTy04SGRkJZ2dnHDp0CO3atcOMGe93DVesWIHNmzfj0qVLmVxDosyR9BnBe/eIKKdg zx7B0NAQ5ubmKFq0aJaeY9iwYTh//jxiY2PTfVxgYKDOduXKldG4cePMrh5RhrxP7x17+ojoY2Gw RzAyMsL+/ftRrVq1LD2PoaEhjI2N051fRDBkyBCdtK5du2LdunWZXTWiDHmfe+6SjvnYIwNElPcw 2COVVqv92FXQ4eTkhH/++SdFekICe0iIiIjSi8FeHrN582b8/PPPWLp0KUqXLo1z585h/fr1aN68 ObZu3QoA8PLywogRI9CxY0ccPXoUTZo0gZGRESZMmICoqChMmTIFlSpVQs2aNeHr6wsAuHz5MqpV qwZLS0sAwN27dzFq1ChoNBrcv3//rfXx8fHB6NGjsX79evTq1Qtr1qwBAAQFBeHcuXMAAHt7e7i4 uCAgIAD29vaoUKGCThnnz5/HiBEjMHfuXHTq1Al2dnYIDw8HAJw9exa2trYYOHAgdu3ahRo1aqBU qVJwdXVVj79z5w6mTp0KZ2dnfPXVV5g0aVImXW3KKThpgojyMgZ7eUh0dDSmT5+OqVOnYvLkyVi7 di00Gg1atmyJCxcuqPkaNGgArVYLLy8vREVF4fz589i5cydWrlyJadOmYd68ebhz5w5KliyJBQsW AAAaNmyIli1bQlEUAIn31vXt2zfNOn377beoWLEiRowYgVmzZmH8+PEICgpCxYoV0bt3bwDAkiVL YGtrCxMTExQsWBBPnjxRj79+/Tq6dOmCBQsWwNHREfv374evry+srKwgImjWrBmeP38ODw8PKIqC mzdvom/fvhg/frxaxrx589C2bVsMGzYM+/btQ+nSpTPlelPOwaVOiCgvY7CXh8TFxeH58+dYtWoV AKBLly6oUaMG6tSpo5NPT08PFSpUgJGREbp37w6NRgMLCwsAQLNmzWBoaAg9PT20adMGN27cUI9T FAUikqE6DRs2DNbW1gCAQoUKQavVppiUkaRYsWKoWrWqTtpPP/2Exo0bo2TJkgAAfX19zJo1C+fP n4e7uzs0Gg1KlCiBKlWqoEePHtDX18fXX3+N0NBQNWiMjY3FihUrEBkZCQMDAwwdOjRDbSAiIsrJ GOzlIYaGhnB0dMT48eNhbW2Nhw8folixYuk6tkCBAinS8ufPj4iIiA+q07hx42BoaIiff/4Ze/fu BZCxewcvXbqEwoUL66TVr18fAHDlyhU1LXkQmj9/fgBATEwMAGD27Nm4cuUKzMzMsHv3bpQqVer9 GkNERJQDMdjLY2bOnIldu3bh+vXrqFevHv77778PKu/NnrykYdz0WrNmDb777juMGzdOHbbNCD09 PQQFBemklShRAgCQL1++dJVRp04dXL58GV988QV69OiBKVOmZLgeREREORWDvTwkJCQE169fh42N DXx9fVGvXj38/PPPmVa+oig6M2XTmjX74MEDjB8/HiNHjkTBggVT9OilJ3A0NzeHj4+PTg9jcHAw AKBFixbpKuv48eOoVKkSDh48iKVLl2L58uUICwtL89yU83FCBhERg7085dWrV1i7di0AoEiRIujR owfKlSuHuLg4ANBZ7PjNQC0pEEvKm5Qnec9e5cqV4e3tDT8/PwQFBWH79u0AEmfmJomLi0N8fDwA 4MmTJ9Bqtbhw4QJiYmKwc+dOAIlP9Hjx4oW6Jp+fnx+8vb0hIur5k8qYPn06FEXBb7/9pp5j27Zt 6Ny5sxrsxcfH6wSSSe1MaqOzszOioqIAAIMHD4aRkREMDQ3Td1EpR8sJT7whIvrY+Li0DIrTJnz0 xyDFaRPee1bhunXroK+vj9q1a8PX1xc//PADFi9eDAD4888/0aRJE8THx+PIkSN4/Pgxdu7cCWtr a7i4uAAAtm/fjmbNmiEuLg6HDx/G48ePsXXrVgwYMABjxozByZMn0ahRI1hZWWHSpEnw8/ODr68v mjRpgvXr1+PRo0c4cuQIOnbsiBYtWqBHjx5YunQpPDw8sGrVKuzYsQPz589HnTp18OWXX6Jhw4b4 6quvsGDBAiQkJGDHjh1QFAULFy7EhAkTUK1aNfzzzz+YMmUKAgMDUbJkSURHR2PXrl0AgHPnzsHD wwNRUVE4ePAgGjdujPXr10NRFKxduxbz5s3D48eP0bFjR/Tv3x/+/v7YsWMH9PQ4a5OIiHKHTzbY e/LkSZpLZDx8+BDly5fP1PPmhKUb3rcOpqamao9Yct9//z2+//57nbSLFy/qbI8ZMwZjxozRSfPy 8tLZLlGiRIpFkM+cOaP+f+LEiZg4caLO/qTevCRvPvP2zXMcO3YsRf0bNmyIU6dOpUgHgObNm6eY 3ZsUCCZ527FEH0vyL3Qf8uWOiAjI5mHchw8fYsyYMVi7di1sbW3h4+OTar7169dj/vz5cHR0xOzZ s3X23bt3DwMGDEj1Zv7jx49Do9GoP8kDDSKiT0XyR6sx0COiD5VtPXsigq5du+Knn35C+/bt0bZt W3Tu3Bn+/v46Q2Z79+6Fi4sL/v33XwBAnz594OzsjGHDhgEANBoNjI2NU8zABAA3Nze1J0hfXx/1 6tXLhpYREX2YpN479uIRUVbItp6948ePw9fXV12c18zMDPny5cOePXt08i1evBidOnVSt7t164bl y5er25999hlMTExSLPnh7++P69evIzg4GJ9//jkDPSL6ZPAJH0SUlbIt2Pv3339RpUoV6Ov/X2di jRo1cPLkSXU7NjYWXl5eqFWrlppWvXp1+Pj44NmzZ+8s/9KlS3j9+jW6d++OihUr4vjx45nfCCIi IqJPTLYFe48fP4aRkZFOWtGiRfHgwQN1+8WLF4iLi0PRokXVtKQnPCTPl5q+ffvi0qVLuHv3Lho3 bgwbGxs8fvw4E1tARERE9OnJtmBPX18/xRMN3lxEN6nXL3m+pDzpfeZqhQoVsGvXLpQpU0Z9/BYR ERFRXpVtEzTKlSsHT09PnbSwsDCYmpqq2yYmJsiXLx/Cw8N18gDI0BIqBgYG6NChw1ufgjBv3jz1 /xYWFup9hERERES5TbYFe5aWlli0SHcx4lu3bmHw4MHqtqIosLCwgL+/v5rm5+cHMzOzDD+cPiEh Qefev+SSB3tEREREuVm2DeM2b94clSpVUhew9fPzw6tXr/D111/DwcEB169fBwDY2dlh//796nGH Dh3C0KFDdcp6c/gXAJYuXQo/Pz8AifcH3rp1C507d86q5hARERF9ErKtZ09RFOzduxfz58+Hr68v Lly4gAMHDqBQoUI4cuQIGjZsiLp166JXr14IDAyEg4MDDAwMUKlSJUyePFkt58yZM9i3bx8ePHiA 3bt34+uvv4a+vj6OHj0KJycnjBo1CkWLFsWuXbt0Zv4SUc7ENeaIiLJWtkZDVapUwaZNmwBA59Fb bz4Sa+rUqW8to02bNvD29k6RfuTIkcypJBFlq6Q15j72M6eJiHKrbH1cGhHRxxSnTdD5l4goL2Cw R0R5Bp9UQUR5EYM9IiIiolyMwR4R0XvicDARfQoY7BERvaekYWEiopyMwR4RURZi7x8RfWwM9oiI shB7/4joY2OwR0R5FnvdiCgvYLBHRHlWUq8be96IKDdjsEdERESUizHYI6JcISNPx8jI8G3yvBz2 JaJPEYM9IsoVkj8dI62h2YxMmkheHp+8QUSfIgZ7RESpYC8eEeUWDPaIKMfKyNBsZuOSKUSUWzDY I6IcK/nQLBERvR8Ge0RERES5GIM9IiIiolyMwR4RERFRLsZgj4hyHM6EJSLKPAz2iCjH4UxYIqLM w2CPiIiIKBdjsEdERESUizHYIyIiIsrFGOwRUYZ8zKdaEBFRxjHYI6IM4VMtiIg+LQz2iIiIiHIx BntEREREuRiDPSIiIqJcjMEeERERUS7GYI+IiIgoF2OwR0RERJSLMdgjIiIiysUY7BERERHlYgz2 iIg+IXyCCRFlFIM9IqJPCJ9gQkQZxWCPiD4ZyXuz2LNFRJQ++h+7AkRE6ZXUqwUAD4Ys+si1ISL6 NLBnj4g+SezZIyJKHwZ7RPRJSt7LR0REb8dgj4iIiCgXY7BHRERElIsx2CMiIiLKxRjsEdF7Sc8y KFwqJWN4jYgoKzDYI6L3kjRB4l0L/KYnTxIGOqlPOuETM4joQzHYI6IcIXlgSP+HT8wgog/FYI+I iIgoF2OwR0RERJSLMdgjohyP96sREb0/BntElOPxaRlERO8v3cFefHx8VtaDiPIIzi4lIspe6Q72 unfvDi8vr6ysCxHlAZ/y7FIGqET0KUp3sNevXz9cuXIFo0aNwpw5c3Dt2rWsrBcRUY7D4WQi+hTp pzdj//79AQDDhw/H8+fPMWHCBFy+fBl9+vTBwIEDUaVKlSyrJBFljzhtAvJp9NR/iYjo05funr37 9+8jKioKq1evRtu2beHu7o5u3bqhXbt2cHV1xaBBg3D//v2srCsRZbFPeYiViIhSl+6evU6dOiEo KAiVKlXCxIkT8e2336JgwYIAgNatW2PLli3o1q0bLl++nGWVJSLKTdiDSkTZId09e4aGhvj7779x /bC0fvMAACAASURBVPp12NnZqYFekvv37+PZs2eZXkEi+nRkZKYtJztk7B5AXi8iel/pDvb27duH 9u3b66SFhITg0aNHAIBZs2bh5s2bmVs7IvqkZGQYmJMdMobXi4jeV7qDvd9//z1FWqlSpTB27FgA gKIoKFKkSObVjIiIiIg+WJr37K1duxbbt29HYGAgjh07prPv2bNniIiIyLLKEREREdGHSTPYGzVq FPT09HDs2DF07twZIqLuK1y4MNq2bZulFSQiIiKi95eu2bjDhw/HoEGDUKBAgRT7QkNDM71SRET0 bsln8nJWLxG9yzuDvXv37qFs2bIoUKAA/P39ERISorM/ISEBu3btwrp167K0kkREpCv5hI0HQxZ9 5NoQUU72zmCvdevWmDJlCiZOnAh3d3fY29unmo/BHhFRzvE+T0JhTyFR7vXO2bienp4YPXo0gMRn 427ZsgVarVb9iY+Px9q1a7OlokRElD7v8ySUpGP4BBWi3OedPXuVKlVS/1+uXDn069dPZ79Go0G3 bt2ypmZE9MlizxARUc7x1mDv6dOn8PX1fefBIoI9e/Zg2bJlmV4xIvp0vBncJfUS8V4yIqKP763B XmhoKL788kuUL18eiqKkmker1SI4OJjBHlEex+COiCjnemuwV6NGDaxcuRKjRo16ZwGurq6ZXiki ok8dh7KJKKd45wSNtAI9AFxUmYgoFXyWLRHlFO+coPHff/+hVq1aMDY2xunTpxEQEKCzPyEhAYcO HcLu3buztJJERERE9H7eGex9++23mDJlCsaOHQs/Pz9MmTIFJUuWVPcnJCTgyZMnWV5JIvr4OCz5 aXuftfeIKHd4Z7Dn4+MDAwMDAECvXr1QsWJFWFtb6+Rxc3PLutoRUY7BSRifNr5+RHnXO+/ZSwr0 AMDY2BjW1ta4c+cOrly5gqioKABAjx49sraGb8EeRSKiRHHaBJ1/iYiSe2fPXnK3b99Gnz7/r707 j6uySvw4/r0gJg6KS+4lSC8XxqXfWKmNadCYpiIu1aRlZouOWZaluW+jWWpWjlmZSuY0paO5MGo/ x3DBXNIw9ceoKOaKihuDmhqynN8fvnjislwvcIHL5fN+vXjpfc7zPPfcezj3fjnPcp7Svn37JEne 3t4aMmSIpk+fLh8fH6f2cfr0aU2dOlUtWrTQjh07NGLECDVt2jTHevPmzVNiYqKMMUpLS9OUKVOs suPHj2vs2LFKSEhQdHS009sBgKdi1A6AIw5H9rJ67rnnVKNGDW3btk3//e9/debMGbVs2VKTJk1y antjjMLDw9WrVy8NGjRIo0aNUrdu3ZSebv+XaGRkpBYtWqQJEyZo4sSJOnz4sCIiIn6rsJeXqlWr JmNMvrYDgLKGkT4AUj7C3oEDB7R8+XI9+OCD8vf3V40aNdS3b1+VL1/eqe2joqJ08OBBhYSESJKC g4Pl4+OjVatW2a03Y8YMde7c2Xrco0cPzZo1y3pcv359Va9ePUfYu912AEoWwaP4ZZ3vFkDZ5XTY 69Onj86ePZtjubPnzm3btk1BQUEqV+63I8eNGjXSxo0brcc3b95UTEyMmjRpYi1r2LCh9u/fr4sX L+a574JuB6D4cN85ACgZeZ6zt2vXLo0cOdJ6nJGRofbt2ys4ONhuWaVKlZx6osTERFWuXNlumb+/ vxISEqzHSUlJSk1Nlb+/v7WsSpUqkqSEhATdeeedue67oNsBAAB4ujzDXrNmzeTr66s///nPDnfQ oUMH556oXLkcF3JkZGTkWEeS3XqZ62Q/bOuK7YCikDmXNL97cJrNpgRJ4gILAEUgz7BXsWJFLVq0 yO4mytmlp6dr69atuuuuu277RHXr1tXWrVvtliUnJyswMNB6XL16dfn4+Ojy5ct260hSvXr18tx3 frfLelFJSEiIdR4hAACAp3F465WsQS85OVlffvmlkpOTrRGL5ORkLVmyRGfOnLntE4WGhmraNPu/ Wg8dOqT+/ftbj202m0JCQhQfH28ti4uLU3BwsGrWrJnnvvO7nbNXEAMAAJR2Tl+g8dJLL2n79u2K iorSsWPHdPToUW3dutXuvD5H2rRpo4CAAG3atEnSrTB2/fp1hYWFady4cYqNjbWeZ/Xq1dZ23377 rV544QW7fWU//OvsdgAAAGWN0zdV7tSpkwYMGKC4uDhduHBB7dq1040bNzR06FCntrfZbIqMjNTk yZN18OBB7dq1S2vWrFHFihW1bt06tWzZUs2bN9eTTz6pEydOaNy4cfL19VVAQIDefPNNaz9btmzR v/71LyUkJGjlypUKCwuTj4/PbbcDADBHLlAWOR32Dh06pG+++UZhYWGKiIhQRkaGUlNTtWzZMn32 2WdO7SMoKEhffPGFJGnw4MHW8piYGLv1hg8fnuc+2rdvr7179+Za5mg7AACzbQBlkdNhLzw8XKNG jVKzZs00bNgwdenSRXv37lXPnj2Lsn4AAAAoBKfDXvv27bV9+3br8U8//aRLly6pevXqRVIxAAAA FJ7TF2ikpaVp1qxZateunVq0aKE+ffro5MmTRVk3AAAAFJLTYe/111/XhAkT9Pvf/14vvviiWrZs qVGjRikyMrIo6wcAAIBCcPow7uLFi7VhwwY98MAD1rK33npLw4YNU/fu3YukcgAAACgcp0f27rnn HrVo0SLH8vLly7u0QgAAAHCdPEf2jh8/ri1btliPO3XqpOeff16PPfaYtSw9PV179uwp2hoCKBDu pwYAkG5zGPeNN95Q8+bN7SZ2X7hwod06L7/8ctHVDkCBcT81AIDkIOwFBgZq5cqVat++fXHWBwAA AC7k8Jy97EHv66+/1iOPPKImTZqoa9euWrduXZFWDgAAAIXj9NW4s2fP1syZM9WnTx8FBAQoJSVF n376qY4dO8ahXMCNce5e2UEbA8iN02Fv586dOnLkiN3Vt2+88YYmTpxYJBUD4Bqcu1d20NYAcuP0 rVfatWuX621WUlJSXFohAAAAuI7TI3snTpzQxo0b1bp1a12/fl2HDx9WRESE0tLSirJ+AFwk6yE+ DvcBQNnh9MjeW2+9pZkzZ6pSpUqqVauW2rVrp6tXr2rOnDlFWT8ALpJ5iO+uhaMIegBQhjg9svfD Dz/o008/lY+PjxISEhQYGKiaNWsWZd0AAABQSE6P7PXv31+HDx9W3bp11apVKyvoXbt2rcgqBwAA gMJxOuwtWrRI5crlHAhctGiRSysEAAAA13H6MO7YsWO1d+/eHMttNpsGDx7s0koBAADANW4b9g4e PKj169dr0KBB+v3vf6+77rrLKjPG6PPPPy/SCgIAAKDgHIa9H3/8UQ899JBSU1MlSQEBAdq2bZvq 1q1rrTNu3LiirSGAYsdtWso2Zl0BPIvDc/YmTZqkjz76SP/973+VkJCgkJAQTZ061W6dO+64o0gr CKD4cZuWsi2z/Wl7wDM4DHtVq1bVwIED5e/vr7p16+qzzz5TQkKC3TrcVBkAAMB9OQx7fn5+do/L ly+v2rVr2y1bvHix62sFAAAAl3B4zt7SpUt1+PBhGWNks9lkjNHhw4f1yCOPSJJSU1MVGxurZ599 tlgqCwAAgPxxGPb8/PxUr149eXv/dt5GQECA9f+0tLQch3UBAADgPhyGvfnz56tTp04Od7B+/XqX VggAAACu4/CcvdsFPUnq2LGjyyoDAAAA13J6ujQAgOdIzUi3+xeA5yLsAUAZxL30gLKDsAcAAODB CHsAOJQHAB6MsAfAOqQHAPA8hD0AAAAPRtgDAADwYIQ9AAAAD0bYA+AQF28AQOlG2APgEBdvAEDp RtgDSjFmQUBhOfrd4fcL8AyEPaAUYxYEFJajkVt+vwDPQNgDPAyjMACArAh7gIfhHDsAQFaEPQAA AA9G2AMAAPBghD0AAAAPRtgDAOQbt2UBSg/CHgAg37gtC1B6EPYAAAXGCB/g/gh7AIACY4QPcH+E PQAAAA9G2AMAAPBghD0AAAAPRtgDAADwYIQ9AAAAD0bYAwAA8GCEPQAAAA9G2AMAAPBghD2gDGLW AwAoOwh7QBmUOesBAMDzEfaAMozQBwCej7AHeAAOxwIA8kLYAzxA5ggdo3QAgOwIewAAAB6MsAcA cAqnCwClE2EPAOAUThcASifCHgAAgAcj7AEAAHgwwh5QCnHuFADAWYQ9oBTiZsgAAGcR9gAAADwY YQ8AAMCDeXTYO336dElXAQAAoESVK84nO336tKZOnaoWLVpox44dGjFihJo2bZpjvXnz5ikxMVHG GKWlpWnKlClOlUVFRaljx47W46+++kp9+vQp2hcFAADgxoot7BljFB4erunTp6tDhw56+OGH1bVr V8XHx8vb29taLzIyUosWLdK2bdskSU899ZQiIiL04osvOiyTpOXLlysmJubWCytXTi1atCiulwe4 TGpGuny8vK1/AQAojGI7jBsVFaWDBw8qJCREkhQcHCwfHx+tWrXKbr0ZM2aoc+fO1uMePXpo1qxZ ty2Lj49XbGyszpw5o2bNmhH0UGplXmlL0AMAuEKxhb1t27YpKChI5cr9NpjYqFEjbdy40Xp88+ZN xcTEqEmTJtayhg0bav/+/bpw4YLDst27d+vGjRvq2bOn7r77bkVFRRXPCwMAAHBjxRb2EhMTVbly Zbtl/v7+SkhIsB4nJSUpNTVV/v7+1rIqVapIko4cOZJn2enTp9W7d2/t3r1bx44d0/33369evXop MTGxKF8SAACA2yu2sFeuXDn5+PjYLcvIyMixjiS79TLXyTyvL7cyY4y17K677tI333yj2rVrKzIy 0oWvAABQEJkzvjDzC1Ayiu0Cjbp162rr1q12y5KTkxUYGGg9rl69unx8fHT58mW7dSSpfv36eZbV q1fPbr++vr7q2LGjVZ7dpEmTrP+HhIRY5xECJYkLMuCpMs9DTXh+WklXBSiTii3shYaGato0+45+ 6NAh9e/f33pss9kUEhKi+Ph4a1lcXJyCg4NVu3btPMtq1qyZ4/nS09Ptzu/LKmvYA9wFX4gAgKJQ bIdx27Rpo4CAAG3atEnSraB2/fp1hYWFady4cYqNjZUkvfTSS1q9erW13bfffqsXXnjhtmUffPCB 4uLiJN06P/DQoUPq2rVrsbw2wFm5Hc7i0BYAoCgV28iezWZTZGSkJk+erIMHD2rXrl1as2aNKlas qHXr1qlly5Zq3ry5nnzySZ04cULjxo2Tr6+vAgIC9Oabb0pSnmXGGK1fv15TpkzRoEGD5O/vr2++ +cbuyl/AHeQ2eseIHgCgKBVrGgoKCtIXX3whSRo8eLC1PPNGyJmGDx+e5z7yKlu3bl3hKwgAAOBh PHpuXABA4XGqAVC6EfYAAA5lnmoAoHQi7AEACo176QHui7AHACg05nQG3BdhDyhFGDUBAOQXYQ9w U7kdFuPcKZQm2f844VAvUDIIe4Cb4rAYSrvsf5zwOw2UDMIe4OYYBQEAFAZhD3BzmaMhHL4FABQE YQ8AAMCDEfYAAAA8GGEPAADAgxH2AAAAPBhhDwAAwIMR9gAAbivrrYe4DRFQMIQ9AIDbyD7LRtZb D3EzZqBgCHsAALfBLBuA6xH2AAAuw6FWwP0Q9gAALsOML4D7IewBLsKIBgDAHRH2ABfJHNEAAMCd EPYAAAA8GGEPAADAgxH2AAAAPBhhDwAAwIMR9oAilH02AAD0C6C4EfaAIsRsAEBO9AugeBH2gBLA iAYAoLgQ9oASwCwDAIDiQtgDCojzjoCiQ78CXIewBxQQ5x0BRYcZaQDXIewBAAB4MMIeAACAByPs AQAAeDDCHgAAgAcj7AEAAHgwwh4AAIAHI+wBAAB4MMIeAACAByPsAQ4wSwZQdLL2q8L0sdz2Q58F fkPYAxxglgyg6GSdI7owfSz7fuizgD3CHgCgxBVkJI7RO8A5hD2giGSd15MvJcCx/MyFm9mfmD8X cA5hDygGfCkBrkN/AvKHsAcAAODBCHsAAAAejLAH5IJz7AAAnoKwB+Qir3OCCIEAgNKGsAfkQ9b7 eQEAUBoQ9oAsGLkDAHgawh6QBbd0AAB4GsIeyqz8zKHpaB1GA4Hi4eq+xjy6KCsIeyiz8jOK52hd RgOB4uHqvsY8uigrCHso87joAgDgyQh7AACPwyFa4DeEPQCAx+EQLfAbwh7KDP7SB0D/R1lE2EOZ wV/6ADhHF2URYQ8AAMCDEfYAAB7PmXtl5ucQb9Z1OTQMd0fYAwB4PGfulZmfUzyyHg7m1BC4O8Ie PBp/cQMAyjrCHkotZw6j5HYyNgEQQH5xNT9KM8IeSq2CHkZhejMA+cXV/CjNCHsAAI9VkIsuCjp6 x+gf3BVhDwDgsfIzkl/Y0TtG/+CuCHvwCPxFDaAo8JkCT0DYg0fgL2oARYFzfOEJCHsAAAAejLAH AEAWzsy2kd/9FNXhYE5hgTMIewAAZJHb/Tmzl+V3P0V1igmnsMAZhD2UOvwFCwCA8wh7KJCinjg8 t3Uz/+WEaQDuxBV/gDr6fMzt85Y/epEf5YrzyU6fPq2pU6eqRYsW2rFjh0aMGKGmTZvmWG/evHlK TEyUMUZpaWmaMmVKocvgWpmBK+H5afneRtJtt8tt3YI8JwAUNVd8Njn6fMxt/3weIj+KLewZYxQe Hq7p06erQ4cOevjhh9W1a1fFx8fL2/u3cw0iIyO1aNEibdu2TZL01FNPKSIiQi+++GKBy1B0UjPS 5ePlbf3rqv0BQGnl6HMs+2dmbuvmVcbnIwqq2A7jRkVF6eDBgwoJCZEkBQcHy8fHR6tWrbJbb8aM GercubP1uEePHpo1a1ahylB0XH1y8O0O0abEnXTJ86Bk0H6lF23nPEefY9k/M3NbN+s6WcscXThy O5s3b873NnAPrmi7Ygt727ZtU1BQkMqV+20wsVGjRtq4caP1+ObNm4qJiVGTJk2sZQ0bNtT+/ft1 4cKFApVdvHixiF9ZySnMJfel9dwPZ79wStNrKksIDKUXbVc4Jf2ZdLvAkP37hFu6uI9SFfYSExNV uXJlu2X+/v5KSEiwHiclJSk1NVX+/v7WsipVqkiSjhw5UqCyrPt3JD+/2O7SCfIaVXMmyBX0lgB5 7c/RBRXO3LPKVe8lF3EAcEfZP5Nc/f3h6CIOZz5n8xpFzO37oTR+X5Z1xRb2ypUrJx8fH7tlGRkZ OdaRZLde5jqZ5/Xlt8wY41T98nM40t3va1SU93bKK0Tl9px5HYrIbTtXhTNCHoDSwNWfVdk/S7P+ 38fLWx/sicrX95uzz5WfeqEEmWIydepUc++999ot69y5s3n55ZetxxkZGaZ8+fJm1apV1rKdO3ca m81mzp49W6Cyc+fO2T3nPffcYyTxww8//PDDDz/8uP3Pc889V+gMVmxX44aGhmraNPtLxA8dOqT+ /ftbj202m0JCQhQfH28ti4uLU3BwsGrXrl2gspo1a9o955EjR1z8ygAAANxXsR3GbdOmjQICArRp 0yZJt8LY9evXFRYWpnHjxik2NlaS9NJLL2n16tXWdt9++61eeOGFQpUBAACUVTZjnDypzQWOHj2q yZMnq1WrVtq1a5eGDBmi++67T/fff7/GjBmjXr16SZJmzpyp5ORk+fr66sqVK5o2bZpsNluhygAA AMqiYg17gCskJSWpQoUKqlixYklXBShT6HtAyShs3/OouXGjo6N17733qnLlyurUqZNOnTol6dY0 bYMHD9bcuXP13HPPaf/+/dY2jspQvPJqP0l66KGH5OXlJS8vL/3xj3+0fuFpP/exZ88etW3bVlWr VtWjjz6qS5cuSaL/lQZ5tZ1E3ytNMjIyFBoaqujoaEn0vdIke9tJLu57hb7Ew02cO3fO9OvXz8TG xpp169aZgIAA06FDB2OMMS1btjTfffedMcaYAwcOmAYNGpj09HSTkZGRa1laWlqJvY6yylH7xcTE mMmTJ5vdu3eb3bt3W1dY037uIyUlxYwePdpcv37d/PLLL6ZNmzZmzJgxxhj6n7tz1Hb0vdJlzpw5 plq1aiY6OjrPNqLvuaesbWeM6/uex4S9xYsXmytXrliPFy5caCpUqGC+++474+vra1JTU62yRo0a mW+++casX78+zzIUr7zazxhj+vbta2bMmGEOHz5stw3t5z4SExNNSkqK9XjkyJFm/PjxDtuI9nMP ebWdMfS90uT77783a9euNYGBgSY6Opq+V4pkbztjXN/3POYwbu/evVWpUiXrca1atVS/fn1t27ZN DRo0yHWatu3bt+dZhuKVW/sFBAQoPT1dSUlJev/999W4cWP17t1bqampkpybgg/Fo1atWipfvrwk KSUlRefOndPQoUMdthH9zz3k1nZvvPEGfa8UuXTpkrZv364uXbpIkowxfPeVEtnbTlKR9D2PCXvZ /fTTT3r55ZeVmJhoN42adGsqtYSEhFzLsk/hhpLx008/adCgQfL29tbatWt19uxZ/f3vf9fatWs1 ZswYSc5NwYfitXr1arVq1UpRUVHav39/rm1E/3NPq1evVuvWrRUVFaX//Oc/9L1SZNasWRo6dKjd snPnzvHdVwrk1nZF0fc8Muxdu3ZNsbGxGjJkiLy9vXOdps0Y49QUbih+me332muvWctsNpv69u2r Dz/8UP/4xz8kOTcFH4pXt27dFBkZqfbt26tv377y8fGh/5US3bp106pVq6y2y0Tfc2/z58/XM888 Y43OZuK7z/3l1nYmyw1SXNn3PDLszZw5Ux999JG8vb1Vt25dXb582a48OTlZ9erVU506dfIsQ8nJ bD8vr5y/nt27d1dycrIk0X5uKjAwUBEREbp48aJq1KhB/ytFsrZd1ityJfqeu5o/f77+8Ic/yNfX V76+vjpx4oQ6duyoefPm6cqVK3br0vfcS15t17t3b7v1XNH3PC7szZ8/X3379lWNGjUk3bp0+ejR o3brxMXFKTQ0VKGhoTnKDh06pJCQkOKqLrLJ3n6Z5ylkSk9PV+PGjSWJ9nNjFSpUUPXq1dWhQwf6 XymT2XbVqlWzW07fc0+7du3SjRs3rJ+AgAB99913io6O1s8//2y3Ln3PveTVdkuWLLFbzxV9z6PC 3hdffCFfX1+lpqYqLi5O0dHROnr0qAIDA+2mabt27Zq6deuW5xRu3bp1K8mXUWbl1n5/+9vfFBER YQ1Tf/TRRxo7dqwk6cEHH6T93ERSUpLddIXR0dHq16+f/vjHP+ZoI/qfe8mr7Xbv3q0FCxbQ90qp 3PoXfc/9GWP0448/urzvlXNYWoqsW7dOAwYMUHp6urXMZrPp0KFDat++vSZPnqyDBw9q165dWrt2 rXx9fSVJkZGRdmVr1qyxylB88mq/WbNmady4cfryyy/VqVMntW7dWuHh4VY57ecejh49qgEDBqhx 48Z64okn5Ofnp7fffltSzj5G/3MvubXdlClTtGbNGo0fP17/+Mc/6HulUG5tRN9zfzabTYmJiS7v e0yXBgAA4ME86jAuAAAA7BH2AAAAPBhhDwAAwIMR9gAAADwYYQ8AAMCDEfYAAAA8GGEPQA4HDhzQ +fPnS7oaTjl8+LAuXLhQ0tXIoSjr9euvv+qnn36yHl+5ckWxsbFF8lwASj/CHlDGfP/99+revbte fPFFDR48WF26dNG6deus8pUrV+p//ud/FBcXV4K1vDWTQ/PmzXXHHXfo5Zdf1pAhQzRo0CA9/PDD Cg0NlSTNnTtXTZs21cGDB0u0rtk5U6/Y2Fj16NFD3bp1U79+/RQcHCwvLy/17NnT4b6PHDmixx57 TMOGDZMk7dmzR23bttUHH3zg0teQmzlz5sjb21sBAQHasmWLtfzixYt69dVXVb9+fe3cubPI6wEg nwyAMmPFihXG39/fxMTEWMuOHTtm6tSpYyIiIqxlAQEBJjo6uiSqaGfcuHGmQYMGOZaPGTPG+n9h 67pnzx7zww8/FHj7vDiq1/fff28qVapkVqxYYS1LT083r7/+uunZs+dt971w4UITEhJiPZ44caLp 379/4SvthOeff95UrVrV3Lx50275okWLzKJFi5zaxyeffFIUVQOQB0b2gDLi2rVrGjBggAYMGKD7 7rvPWh4YGKiRI0dqyJAh1mFHm81WUtW04+3tLZPLJD+jR4+2/l+YuiYnJ6tv37769ddfC7yPvORV r7S0NPXr109du3a1G8Xz8vLS+++/rwYNGri8Lq70xhtvKDk5WUuXLrVb/u233+rPf/7zbbfft2+f 3nrrraKqHoBcEPaAMmL9+vVKSkpSp06dcpR16dJFN27csPsC37Fjh4KDg1WzZk399a9/tZYvX75c 48eP18cff6xnnnlGaWlp+uWXXzR69Gh17NhRc+fOVadOndSwYUPFx8dr9OjRatGihbp162YFty1b tmj48OGaP3++nnjiCSUnJzv9Ov7617/Kz88v17LU1FS9/fbbGjFihFq3bq2VK1daZZs2bdKkSZM0 efJkhYWFKSkpSTExMTpz5oy+/PJLrVixwqrbxIkT9f777yssLEz79u2TJC1evFjt27fXihUrdPfd d2vu3Lnav3+/XnvtNX3++efq1auXTp48edv6b9iwQcePH1ffvn1zlHl7e2vQoEGSpKSkJI0ePVpz 587VM888o9mzZ+e5z+zBctWqVRo3bpy6du2qgQMHWhOqX716VSNGjNB7772natWqqU6dOpo1a5ak W4f3x4wZo6eeeko9e/bUtWvXcn2u5s2bq127dvrkk0+sZWfOnFHlypVVoUIFa1le72NUVJSuX7+u d955R7t375YkffjhhxozZozatm2rTz/9VNKtCeHHjh2rJUuW6PHHH9eiRYscv7EA8lbCI4sAism0 adOMzWYzhw8fzlH266+/GpvNZl599VVjjDGBgYFm+PDhJj093axdu9Z4e3ublStXGmOMqVOnjvnx xx+NMca0adPG/Otf/zLGGLN69WpTtWpVc+DAAWOMMb179zahoaHm119/NWlpaeauu+4yO3bsQb1N 0QAACV1JREFUMMYY8+CDD5ply5ZZ682ePTvXOk+cONH4+fmZ/v37m/79+5tHH33UVK1a1W6dwMBA 63DptGnTzLZt24wxxixbtsz4+fmZq1evmn379pmwsDBrm9atW5u5c+fm2P748eMmODjYZGRkGGOM Wbt2ralZs6a5fPmyuXTpkrHZbObzzz83O3fuNPv27TN9+vQx7733njHGmFGjRpk333wz13pl9d57 7xmbzWb279+f62vO1LlzZ7NhwwZjjDEpKSnm7rvvNl999ZUxJudh3EmTJlmHcU+cOGG1Y0pKiqlW rZr5/PPPjTHGjB492syZM8cYY8zHH39svZdXr141Tz/9tLW/Zs2amQkTJuRZt6VLlxqbzWb27Nlj jLn1vm/ZssUqd/Q+Hjt2zNhsNmvdJUuWWK/rxx9/NF5eXubIkSNmz549Jjw83BhjzPXr183y5csd vl8A8laupMMmgOLh6HBn5siPyXLItFu3bvLy8lKXLl30pz/9ScuXL1ePHj3073//W02bNlVMTIwu X75sjcr5+fnJ399fwcHBkqRGjRrJ19dXd9xxhyQpKChIx48fV5s2bbRw4UIFBAQoLi5OZ86ccTiy d+edd2rhwoXW41deeSXPdRcuXKiMjAx9//33unbtmh588EGdOnVKc+fO1aOPPmqtt2HDBlWsWDHH 9l999ZWaNm1qvVddunSRzWZTZGSknn32WUnSI488ooCAAEnSO++8oypVqujUqVOKj49X5cqV86xb prS0NEm3RvHycubMGa1bt07Lli2TJJUvX159+vTRggUL9PTTT+dYP2u7ff311zp79qymT58uSQoN DdXVq1clSXv37lWtWrUkSe3atbPqsGbNGiUmJlrb3HvvvUpNTc2zfr169VLdunX1ySefaN68edqy ZYtGjhxplTt6H9u1a2e3r4ULF6pFixY6deqU0tPT9ac//UkJCQlq0qSJoqKiNGPGDA0fPvy2F64A yBthDygjmjRpIkk6deqUGjZsaFd2+vRpSVLjxo1z3bZp06Y6cuSIJOmOO+7QiBEj1K9fP9WqVSvX c+qkW+Eya5mXl5du3rwpSfL399f48eMVHh6uoKAgK2w6o3///nmWnTx5UsOGDVP58uXtlh89etR6 /ZL0u9/9LtftExISchy+DAgI0JkzZ+xeV6Y777xTU6dOVdu2bdWsWTOdOHHitvVv1KiRJCk+Pj7P 9zshIUGSdP36dauuAQEBioyMvO3+T548qY4dO2rgwIE5yh566CFFRkbq9ddf1+XLl/Xkk09Kkk6c OKFWrVrZBTZHvL299Ze//EXTp0/X448/rlatWuWo/+3ex6z1nT17tvW+jBkzxipbvHix+vXrpxUr Vmjp0qWqX7++U/UDYI9z9oAyomPHjqpRo4b+93//N0fZhg0bVKFCBT3xxBO5bpuSkqKmTZvqxo0b Cg0N1ZAhQ9SiRQuHz+doJLFLly4KCwtTu3btZIzJ10UWDzzwgG7evKldu3blKKtevbo2bdpkPTbG KDY2VjVr1tTmzZvt1j127FiO7Rs0aKD4+Hi7ZSkpKQoKCsq1Lv369VOTJk0UFhbmdP07deqkatWq 5bjAIavAwEBJt+7Vl7Ue99xzT67r22w26z3M/h5Iss6XGz16tOrUqaOZM2fq559/1t/+9jdJt0Jr 9vcnc5u8DBw4UKmpqerXr5+ee+45u7L8vI951ffcuXMKCwvTgQMH5OfnpxdeeMFhfQDkjbAHlBEV KlTQggULFBERof/7v/+zlp8/f17Tpk3Thx9+qDp16ljL09PTrX937typIUOG6MCBAzp79qxSU1N1 6dIlHT16VMnJyUpPT88xwmeMsVuWkZEhY4wuXbqkvXv3KjU1VTdu3NCBAwesfWSXlpaW66jf22+/ ba2fuV9JCg8P1yuvvKIffvhBp0+f1ogRI1StWjU9+eSTioyM1LRp0/Tzzz9rwYIFSkpKknRrlO/8 +fM6f/68nn32WZ07d866h9y5c+d07do1de/e3XqOrPWJiopSamqq0tLStHfvXl2+fDnXemX1u9/9 TgsWLNA///lPRURE2JXt2bNH7777rmrWrKnHH3/crnzz5s0aMmRIjjpktlHW92DZsmX6+OOPde7c OS1fvlwxMTGSbt0nr0OHDurcubPuv/9+XblyRdKtALpnzx6NHz9eZ86c0caNG+3uvZibWrVq6Ykn nlBwcLAVTjM5eh8zRyovXryo8+fPKzw8XOPHj9e///1vnTt3Tu+8847S0tIUFxenDRs2qG7dupo5 c6Z++eUXh/UB4EBJnCgIoORs3brVhIeHm7/85S/mlVdeMd27dzdr1qyxW2f27Nmma9euZuzYsea1 114zW7duNcbcupCjbdu2platWmbkyJFm1KhRpmHDhmbfvn1myJAhxs/Pz0RHR5uTJ0+axx57zAQH B5vY2Fiza9cuU7NmTfPMM8+YCxcumF69epmqVauagQMHmlmzZpk6deqYzZs329Vh8+bN5t577zXe 3t7m6aefNkOHDjUvvfSSadWqlalcubJJS0szX331lSlXrpwZOnSouXjxoklOTjaPP/64qVy5smne vLnZtGmTtb93333X1K5d29SvX998/fXX1vK3337b1K9f37rP4Pbt2023bt3Mu+++a1599VXzn//8 xxhjzJw5c4yXl5eZMGGCuXDhgjHGmNdff91UqlTJ9O7d2/z973831apVM0uXLs1Rr7zaoVOnTub+ ++83vXv3NgMHDjRz5syxLmq4fPmyefbZZ83IkSPNhAkTrHvTHT9+3HTp0sXUqVPHbN261ezfv988 8MADpnnz5mbv3r3GGGM++ugjU69ePVOjRg0zduxY6zkXLFhgAgICjJ+fn/Hy8jLly5c3a9euNcbc uqAlKCjIVKlSxQwcODDHffRys337duvij9zKcnsfjTHW6966datJSUkxAwcONFWrVjX33HOPWbp0 qdX+QUFB5rPPPjPDhg2zLrwBkH82Y/I44QYA4DFu3LihN998Ux9//LG8vG4d1Llw4YKWLFlijRgC 8EwcxgWAMmD9+vXasWOHLl++LOnWYfY9e/booYceKuGaAShqhD0AKAM6duyoli1bqnHjxrrvvvvU p08fVa9eXX/4wx9KumoAihiHcQEAADwYI3sAAAAejLAHAADgwQh7AAAAHoywBwAA4MEIewAAAB6M sAcAAODB/h+e/bH8atkNswAAAABJRU5ErkJggg== ", null, " AAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcTfX/wPHXuXfunXtn7qyYsY3dMEVJ5BuJEJK9pFT4 JVvaKC0kWdI3lSSFVFTiax9rsiRLZBlLDGPJOsMwzJj17vfz+2O4mQwNZqP38/GYB+ecz+ec97lz Xe/7OZ9FU0ophBBCCCGEKIZ0RR2AEEIIIYQQVyPJqhBCCCGEKLYkWRVCCCGEEMWWJKtCCCGEEKLY kmRVCCGEEEIUW5KsCiGEEEKIYkuSVSGEEEIIUWxJsiqEEEIIIYotSVaFEEIIIUSxJcmqEEIIIYQo tiRZFUIIIYQQxZYkq0IIIYQQotiSZFUIIYQQQhRbkqwKIYQQQohiS5JVIYQQQghRbEmyKoQQQggh ii1JVoUQQgghRLElyaoQQgghhCi2JFkVQgghhBDFliSrQgghhBCi2JJkVQghhBBCFFuSrAohhBBC iGJLklUhhBBCCFFsSbIqhBBCCCGKLUlWhRBCCCFEsSXJqhBCCCGEKLYkWRVCCCGEEMWWJKtCCCGE EKLYkmRVCCGEEEIUW5KsCiGEEEKIYkuSVSGEEEIIUWxJsiqEEEIIIYotSVaFEEIIIUSxJcmqEEII IYQotiRZFUIIIYQQxZYkq+KalFJs3bqVhISEog5FCCGEEP9CPkUdgCi+9u3bR9fOj7P3wH4C/Pxp 1rQpjZo2oX79+tStW5fAwMCiDlEIIYQQtzlNKaWKOghR/EyfPp1XBrxIfauZKPxJwclZHJw3KFLM Gqez0qgZWYONWzbj4+PD4Ndep+tTT9KoUaOiDl0IIYQQtxFJVkUOFy5c4JUBL/Jz9BKaWS2U1Iw5 jiulSMfNIZ2V7VoaI0aNZMYPM0j58zh2vUbte+rwxVeTueOOO4roDoQQQghxO5FkVeBwOPjpp5/4 ZvIU1qxdS3W9hf9Y/TBqV3ZpPqVsLNGfo2njJpSvXJHoWXOwuKCpKwgLPizzOU+LZ5/g84kT8fX1 ZcGCBZw8eRKXy8XxI0fZumkzlgALZcqWo2zFCKpWrUrdunWpW7cuPj7SK0UIIYQQOUmyehtLSkpi 2NtD2Lk9BqvDQYP7G3A47gC+Rl/0PnoSEhJIPHOG86kXqOAfTMV0qIYfJk1/1XOeVjYWcBYfvY4S JguNMk2U0Uze47sMVo76Okn3OImsXp3EQ0cIc+rBo/B1KUphxI0iCzdZuLGaDRxwpvLF5Ek899xz hfGyCCGEEOIWIsnqbcjtdvPVlCkMefMtqjqNVHD4cFpzoFcQggE3CgX4o8cfPRZ80Gtans59qRuA BT26a9Q5pxycxU5NLNcsl6lczPE9z9GTJyhZsuT13qoQQgghbnOSrN5mYmJieO7ZHqSdOMX9WeYr +pwWN/HKygqfFAwGA1UqVaLRgw/y2cTP0ev/at3NyMjgwIED6HQ6AgICqFatGpmZmfzyyy+kpaXh cDioXLkyderUITg4uAjvRgghhBD5TZLV20RsbCyj3xvBT8uWU99moiYWtDy2lhY1pRRWPKTgJMZk 5YLeQ5PGD1KidBi/r9/IkRPHKGUOQNM0Tqae5z/16hMXF0dJnS9mpUOnFOl6xWlrOvfWqUPzR1rj o9fz6sCBWCyWor49IYQQQtwESVZvIQcOHOCryVPo1ft5QkNDOXbsGMuXLWPJ/IUcPXaMO50marn9 8L1Gn9NbQbpyEY+VBDOUtCpqYcHn4mCvJGUnFRclMBKiGXLUcyoPx7GSpDmxGnWct+hxuVyUDA2l e6/neO311zEai3dLsxBCCCFykmT1FuB2u/lo7FjGjBpNgEvDYzKQ5XRgMfhS1qajnMuHcpjy3O/0 3+K0suGLDjsedvs5sAeaafRAIyKjahIWHs6Rw39yPikJgODQEGpERREWFsapU6d45JFHqFq16j9f 4/RpkpKSsFqt3HXXXRgMBpnVQAghhMhHkqwWc263m0dbtubglhgaZ/kR9LfWRJE3SilOYycFJxma B4evHpPNhZnsVmjbxZkJ7D4aBqebo8pKy5YP83TPHrRu3Rqz2QyAx+Nh/fr1xMXF8ftvm5g/bx5B RjMJackAGH0M3BFZgwebNeWJJ2WRBCGEEOJmSbJajJ0/f57/e7Y7ses209oaKC2nhciq3Bwmk/gA HccyUzAZfbH4+aEU+DjclPLoMVtd3EkAZk2PXXnwoPBB4wx2EjUHB01O7v1PA955bzj333+/tLgK IYQQN0CS1WJq3bp1dOnYmQpWjfsc/t4+m6LweZTCgQcHHlwoQjDkafCaS3nYq8viqL+HVJedt4YO oWbNmjz44IMyTZcQQgiRR5KsFkMZGRlUrViJ+1L0VNb8ijockQ+SlJ19ZhcOH0hwZtGnXx/urV+f ypUr06BBg1tm5gYhhBCisEmyWgyNGP4e8z6ayEP2gKIORRSAdOViqTGZIIOJsy4b/5s/lzZt2hR1 WEIIIUSxJJ3oiqEFc+ZS3eYD0th2WwrQfHjKGQZOWBPgg91uL+qQhBBCiGJLOkIWM1u2bOHQkT8p jW9RhyKEEEIIUeQkWS1GfvzxR1o1a05zZ5AMqBJCCCGEQLoBFAsnTpzgnbeHsDx6MW2sQZTUZJUl IYQQQgiQZLXIpKens23bNmb+MIM5s2cT5TLT2RWM6RZfKlUIIYQQIj9JspqPYmJiGD5kKCaTCX+L JfsnMAC71cqJo8c4FZ9A4pkzJKUkozwewv0CKJsJT3hK4KfpZUCVEEIIIcTfSLKaj7Zt20bsr5uo 7vQlGYXr4iTyOjT80VMePZHosRCOAQ0t42J2KkmqEEIIIUSuJFnNRw6HgxI6X2pqlqIORQghhBDi tiBDzvPRb+vWY3R6ijoMIYQQQojbhrSs3iS3281HY8fyy8+riNm6jS6eUHmsL4QQQgiRTyRZvUlu t5u3hwwB4E6fIDJwEYpMPSWEEEIIkR+kG8BNMhqNeDwedu7cSbtB/Vjmn84GYwaZylXUoQkhhBBC 3PIkWc0HmqZRp04dPvjwvxw5cZymvZ9ipiGJH83nWeWXQYKyoZQq6jCFEEIIIW45kqzms5CQED6d MIG0jHR27tvLy2NHsi1cY7lfOmeVvajDE0IIIYS4pUiyWkAMBgMVKlSgf//+/HniOIP+O4LVgVbW +qaTJl0EhBBCCCHyRJLVQmAwGBjw4oscPXmCdi/3ZoEpmbWmDBKlpVUIIYQQ4pokWS1EAQEBjPnv BxxPiOe5UW/zS6CVnfqMog5LCCGEEKLYkmS1CISEhDBw0CD+2BfLkWA9J5W1qEMSQgghhCiWJFkt QmXLluWLryaz2c+KW2YLEEIIIYS4giSrRaxDhw5UqlGdo2QVdShCCCGEEMWOJKtFTNM0Wj/ahg3G DFZbMtlOKieUlQzl4k+ViUN5AFBKcV45OKKypBVWCCGEEP8ampLZ6oucUor4+Hh+//13Nm3YyIZf 13Hg8EFCQ0twIiHeW658eGnMfn74nrrAQ87AIoxY5Jc1AVmMnjaZTp06FXUoQgghRLHkU9QBiOzW 1YiICCIiIujSpYt3//Hjx6lUqRJlTQGcd9v5ftZMxr4/BsexnaAVYcBCCCGEEIVEktVirEKFCtxR PRLiz2F2umnWrBk+Oj3dKVPUoQkhhBBCFApJVgvZ+fPn2bJlC3FxcWRkZOBwOLj33nt59NFHMRqN OcpqmsbKtb+wcOFC3hk6FNIgskYkC4+f5H6rmaqafxHdhRBCCCFE4ZA+qwUsOTmZ6OhoVi7/id83 bebs+XOUNwcSaPWgc7lBwQ4tjZWrVtGsWbOrnsflcmEwGACoGVmDsyfjedpeqrBuQxQQ6bMqhBBC XJu0rBaAtLQ0Zs+ezYxvp7N9ZwyVDAGEZyoa4ksopdG5/upwmoiNxDA/mjZtes1z+vj4sGzZMh59 9FHiDh4AYL2fmdJWiNQsBXk7QgghhBBFRpLVfHThwgWCg4OZMGECo959j/sJ4lnCMTp1Vx0QpQCP x41O98+ziNWqVYv//ve/KKX44bvv2R23n5NmC5F2SVaFEEIIcXuSZPUm2Ww2Zs+ezadjPyY2bj91 atemas0aOJQbj6YwatdOQs/jpHTZCuzdu5eUlBRKlSqFn58fp0+fxm6307hxYzRN48SJE1gsFrp0 6UKDuvWITINGulAsDkMh3akQQgghROGTZPUGpaWl8fmECXwy9iNKKgORmXoaUo5jfyRweN8J7jGX pIbN/I/nicLC6sMnaNnwQcx6HzLdThxuF4EGX2wuFx6jHl+jkdTUVFweDzqdjvsc/tS69OhfehwL IYQQ4jYmyep1Sk5O5tNPPuHzzyYQoUw8YrVQQjN6H/NXw59qbsBNnuZC1WsarbICrjxgA49SpGe5 cKMIJgwFpOMiWJPWVCGEEEL8O0iymgdOp5OVK1fy9eQprFq9mmqaH+1tQdlJYwFOzq/TNILImZgG I4mqEEIIIf49JFnNg3tq30X6qTNUydB4ipKYNb2sICWEEEIIUQj+eQi6oGKFCjiVwq6TLqJCCCGE EIVJktU8WLLiJ2YvX0zUM+2ZYzrPr36Z/K6lslelk6wcuJXCI2srCCGEEELkO1nB6jqdOHGC1atX Ex8fT9zeWH5Z8wvJqRcw6fR0d5VGp0n/AJF3soKVEEIIcW3SZ/U6VahQgeeeey7HvpMnT3JHjZqk ulyEyAAoIYQQQoh8I90A8kGbh1tSw2kiSHJ/IYQQQoh8JcnqTfJ4PMSfPgU6DXchD7+yKTe7VRpu 6ckhhBBCiNuUJKs3SafTEXfwILYqYcSSUeDXcygP+1Q6h1Umi82pJFYOYblfGlblLvBrCyGEEEIU NklW80F4eDjK7S7QbgD7yGCdXyazzefxeegeMhtUY8iYkew/dJDOvXuwwi+9wK4thBBCCFFUpJNl Phk+ehS9evTkqI+HwMzsxDUYA8H4YNByfidIVU6OkIVNB0qngaaBUpRzGaiAiWSc6NAI0QzEKyt7 /V04As0MHz2S+vXrU6tWLbKystizZw/JycnodDqUTEIghBBCiNuQJKv55IknnqBp06YsXbqU/fv2 EbvrD7YfOsTJ0wmUNFsIs+vQeRRnTIoM3HRo354ad96BXq9Hr9djt9v54ZtprDl5kkynnSBLAHUz jWw1ZjLhsy/o1q0bJpPJe71du3bRqFEjfHR6qpuCaWm1yKpaQgghhLjtyDyrBczpdLJz507Wr1+P 2+2mQYMGNG7cGL1ef0VZpRSTJ03iXFISYaVL8+ILL9Dj2e58PX1armWbN2nK6e17aWqzXNF6K24N Ms+qEEIIcW2SrBZTaWlprFmzhg4dOqDT5Z6I2mw2nuveg23LV/OINbCQIxT5QZJVIYQQ4tqkOa6Y CgwMpFOnTldNVAFMJhNfTJlMvCMD+c4hhBBCiNuRJKu3uODgYCKrVeNPsoo6FCGEEEKIfCfJ6i1O 0zTeH/shf/g7pXVVCCGEELed2y5ZTU9P59tvv+Xw4cO5Hvv1119zPXYrq1KlCmetGYW8fpYQQggh RMG77ZLVWbNmMfiFl6h3Vx0iSpehT6/nmT17Nr169KRseDj/1+Fx6t1Vh25PdC32LZEnT57EaDDy Qr9+Vy1z/Phxmj3YhIc8Ieg0mbtKCCGEELeX226e1dk/zKC+w4/q+HPe5mTftAWsn7eYkCwPXdwl sNh9cCp/5ixbzscff0ybNm2444470IphomcymXC6nJQtX56nHu9CqfBwnu7+LABnz55l+7ZtfPvV VGpe0Kih+RdxtEIIIYQQ+e+2m7qqb6/n+fXH+dzr8CMRO7F+Ti7YsyhhslA1S08N5YefpideWfnT 7CZBs1OpWlUef7IrYWFhhIWFcddddxEREVEsEtitW7fSusXDRGboOGvWUIbs+VmNaARluCnj8aGi 5lfEUYobJVNXCSGEENd227WsfvTpOIb4+rJg7lxq1ryDeWPe595772Xnzp1M+nwisxctop7LQm2P P+VtoJQ/cX+cZH7sWJy+Pth84KQ1jVatW7NgUXSBxJiens7PP//M9m3bOHs6kSbNm9GuXTtCQ0Nz lNu0aRNtWz1Cw0wTVTQ/sJH9c7miz6eFEEIIIQrMbdey+k+OHDlC3bvroPcoouy+3O2xkIKT7RY7 SS4bPjo9do+LhUsW07x58wK5fsuHmqOlpFMi04Ov0jjnryNR5+Tj8Z/Ss2dPnE4nw4cNY9LnX9DY 5k9laTm9bUnLqhBCCHFt/7pkFcBut3Po0CFe6N2X07v3k6TsfDDuY9q2bYvNZiMzM5M6derk+3WV UtStfRf++09Rl5wrTp1Vdn7zs6L8fUlNT6esZuIBqx/+2m3X+C0uI8mqEEIIcW233WwAeeHr60ut WrVYs/5XqjW8l06PP0b//v2JiIigevXqBZKoAsyZM4dzx+O5RwVccSxM86VDVhCNk/R0tZWglS1Q ElUhRLERHR1NrVq10Ol0REVF8eijj1K3bl0eeeQRVqxYkWudVatWcfz4ce+2w+Fg/PjxNG/enO7d u/PYY4/RokULZs6cmaPepEmTePjhhxkzZkyB3lNepaens2TJkhuqO3v2bGrXro1Op6NWrVp8/fXX +RxdToMGDaJz5843VNdmsxEREUF0dMF0gRPiRv0rk9VLDAYDy1et5JvvphfK9Ua8M4x7Mo1XHbil 0zRKaUb8NH2hxCOEEHnVsWNHXnjhBQDefvttli1bxvbt27nrrrto06YN06ZNy1F+3LhxnD59mooV KwKQmZlJixYtmDNnDvPmzeP7779n/vz5TJw4kaFDh/L8889763bv3p2YmBhcLlfh3eA1BAQEEBoa yujRo6+7bteuXel3cfrBAQMG5LjPglCzZk1q166d5/KXf5nw9fWlQYMGhIeHF0RoQtywf3WyCtkr QOl0Bf8yJCcns//wIZm4Xwhxy/Lzy9l/XqfTMWrUKPR6fY5W0JkzZxIXF0f37t29+1577TU2b97M rFmzCAkJ8e6vWbMm06dP59tvv+XLL78EwN/fn6CgoAK+m+vTqFEj/Pz8mD179nXX9ff3z/FnQerT pw8jRozIU9m1a9fy3Xffebc1TWPevHncf//9BRWeEDfkX5+sFgaXy0W3J7pSRm8mBENRhyOEEPnG aDQSEhLC2bNnAUhJSeHll1/OkTAlJibyzTff0Lx5c29L6+WaNGlC9erVGTVqFB6Pp9Biv14DBgzg 7bff9t5rceV2u/+xTEJCAt27d891cZzi/DsQ/06SrBYwu91Oh0fb8ufmGDp5wgjWJFkVQtw+EhMT OXfuHHfffTcAU6dOpUqVKpQpU8ZbZu3atbjd7mu22DVs2JAzZ86wc+dO7z6r1Urv3r0JDAykQoUK fPPNN95jaWlpvPDCC0yaNImXXnqJvn37ersNzJ8/n44dOzJkyBA++eQTatasSWhoKD/++CN//vkn Tz31FCVKlKBly5ZkZmZ6z7lw4UIGDx7MF198QcuWLdm4cWOOGH19falbty4TJ0707vv8888JDw/n 1KlTN/gK/kUpxbhx4xg0aBBvvPEG999/f457BkhKSuKll15i+PDhlCtXDp1OR5MmTZgxYwa7d++m f//+1KtXz1s+OTmZgQMHMm3aNJ544gnvYM6ffvqJ9PR0Vq5cyeDBgzl16hQzZ86kRYsWvP/++976 DoeDDz/8kJEjR9K/f3/atWtHQkLCTd+rENdDktUClJWVRevmLTiyYRstrYHoi8EiA0IIcbMutcYl JSXRs2dPTCYTH330EQBLly7ljjvuyFH+xIkTAJQtW/aq5yxdujQAx44d815j6dKldOvWjc2bN3PP PffQu3dv1q9fD8Dw4cM5fPgw/fv3Z8KECcydO5f//e9/ALRt25a4uDiWL19Os2bNiIuLo2/fvrz8 8sssXrzY201hy5YtzJo1C8hO6i4lcwMGDOCRRx6hZ8+eV8R5xx13MG/ePO92UFAQJUuWxMfn5gfE Dhs2jC1btjBu3DjGjh3LV199Rd++fZk0aZK3TI8ePbjvvvsYMWKE937/7//+j2eeeYaIiAisViup qane8uPHj6dKlSr83//9H7Nnz/Z+qXj++ecJCQmhVatWfPTRR5QuXZrGjRuzbdu2HK2tPXv2JCoq infffZdJkyaxa9cu3nzzzZu+VyGuhySrBSQ9PZ1mjR/kfMw+mtsCJFEVQtw2PvvsMx599FHatWtH WFgYmzZtokGDBgDExsYSFhaWo/ylQaXXminx0qPnS2U0TaNjx4489NBD3HnnnXz33Xf4+/vz6aef AvDII494Byt5PB78/f29ia6vry9lypShbt263HPPPQA0bdqUlJQUHnvsMTRNo1SpUtx5553s3bsX gMDAQAYPHkxUVBSQ3T/36NGjV8QZHh7OgQMHsFqtQPZgsNzu+XplZGQwbtw4HnvsMe++2rVr06lT J0aOHAlkD1L7+eefva3WjRs3ply5ciQlJQEQGhpKpUqVcrzODoeDqVOncubMGTRN8w6S+zudTkdE RESOxWl27NjBb7/9Rvv27b375syZw2uvvXZT9yrE9ZK5kQrIqJEjSYs9QnNHYLFYtlUIIfLLq6++ mmPw1OXS0tIwGo059lWuXBngmn09LyVclSpV8u4zGP7qNhUcHEyDBg04cOAAAC1btiQ1NZWJEyei aRoul+uafS19fX1z3Zeeng6Aj48PY8aMYd26dWzdupVDhw7lmlybzWaUUpw7d46IiIirXu96xcbG YrPZrhiEVadOHebPn8/p06e91z5y5Ij3ePny5alSpcpVz/vKK68we/ZsoqKi+PDDD+ndu3eeY9qw YcMVreEy+EoUBWlZLSCL5y+glsNXElUhxL+Kv78/GRkZOfY1bdoUo9HI5s2br1pv+/btlCpVytsS mpuSJUtiMpkA2Lx5M02aNKF9+/YMGDDAu/96XUpIPR4PPXr0YNWqVQwePJiGDRvmWv7S4KUbvV5u 0tLS0OuzpyyMj4/PcaxkyZJAduIeHBxMly5dmDp1Kg6Hg6ysLHx8fGjXrt1Vz12mTBm2b99O27Zt 6du3L48//nie43I6nd4uHEIUJUlW81l0dDS9evQkITERH3l5hRD/MjVq1ODChQs59pUqVYrevXuz atUq76P6y23fvp29e/fy1ltveZO23Jw6dcq7DHbPnj1p1qwZFSpUAG5+BPvs2bP54YcfeOONN655 vpSUFCwWC6VKlbqp611u6NCh1KpVC4vFcsWgrlOnTlGtWjVv0jp16lTKlCnDW2+9xTfffEN0dPQV LdmXW716NSVKlOD7779nwYIFLFiwgD/++API7mpxra4ZUVFRnD59msWLF+fYL4sGiMIm2VQ+O5WQ wPQfvqeezSTTVAkhbitZWVk5/sxNy5Ytvf1ALzd27FgaNWpE165dc3QHOH78OD169KBbt24MHDjQ u1+n03n7hQLs3r2bEydOeAf3nD59ml27dmGz2fj5559JTk7m1KlTnD9/HsieMvDyROxS8ul0Or37 Lu86cGk0/++//86FCxdYvnw5kD047PKW4qNHj3oTZoBp06Zx5513XrOLw6UZB+x2e479SikmTJiA 0+nEZDIxZMgQ5s6d603oHQ4H8+fP985h63K5aN++Pe3ataNBgwaEhYXx22+/5fhy4HQ6c9zj/Pnz vaP3O3bsSMmSJb2JdmhoKPv378flcrFnzx7vNR0OB5DdLzgqKoqnn36asWPHsnz5cgYOHEhgYM7l woUoaNJnNZ998P4YPEpRSvOVQVVCiNvGsmXLmD59Opqm8fXXXxMcHMyTTz55RblevXrx8ccfk56e TkDAX0tLm81mVq5cyZdffknXrl0pUaIEHo+HjIwM3nrrLZ599tkc5/nkk08YP3483bp1o2TJktjt djZu3OhtYXz33XcZOXIkderU4YMPPqBXr17MmjWLxo0bY7FY2Lt3LykpKWzatIkKFSowd+5cNE3j iy++4M033+T3339n7969JCUlsX79erp168aMGTPo3LkznTt3ZujQoaxfv57evXszZ84cb1wbN27k 448/9m5brVbOnz9/1dW2Fi5cyFdffYWmabzzzjssW7YMg8GAzWZj7969nDhxwrvc7FtvvYXZbObZ Z5+lcePGJCcnM2LECO+gK03TCAoKYvz48SQkJJCZmYnb7aZs2bLs2bOH3bt3s3z5chITE5k8eTK9 evXCZrPRqlUr+vbty+nTp/n000+9A7QGDBjAK6+8QufOnZk4cSJfffUViYmJLFmyhDZt2tCwYUMW L15M3759ee+996hSpQrvv/8+zZo1u5G3kBA3TFPXegYgrludWrXZHbuX9loYFTW/f64g/tXWBGQx etpk79yHQtwORowYgb+/P6+//npRh5Kv1qxZw8SJE1m4cGGRXP/gwYNMmTKFTz75xLsvKyuLGTNm UKpUKfkcEbct6QaQz9Zv+o3HO3bilM6JQ8kqIPnFpTzyegpxixg2bBibNm1i3759RR1Kvjl37hyT J0/m+++/L7IYXnrpJR588MEc+/z8/KhSpQrVq1cvoqiEKHiSrOazwMBAxo77BFeNcswzJeNRCpck WTcsQ7nYrqUx0/ccU4lngSWNaPMFMlTuj9yEEEVPp9MxZ84cli5dysmTJ4s6nJuWnp7OlClTmD59 eo6uDYXN5XLx6aefsmfPHux2O0lJScyaNYs9e/ZQq1atIotLiIIm3QAKiFIKf5OZcIeOY1jpqIUT oZmLOqxbikN5WGhOoXWnDvTu15caNWpw6tQpFsybz5fjxtPQar7prhYepdAVYd9i6QYghMirhIQE XnnlFdasWYPT6eTuu+/m5ZdfpmvXrkUdmhAFSgZYFRBN01i8bClzZs7i140bOH4imQjnP9cTcERl EePv4Lw1g6c7P8W0H74nPj6eAX37sW79embNmU1IiVAGDhxIC0oSpVmueq7fDRnYNEVTx1+tIceV FYUiDRfrVDJPU5ZQ7epTv4iCY9L02JEnD0LciE2bNrFp06ZcB7oJcUlISAjJyclFHcZNkWS1ALVo 0YIWLVrFUL9uAAAgAElEQVTQqW07Vv65gjuUryRF/+B3YwYJgXp+nDWfRo0a4fF4eO/d4Yz7+GPu cJm5x6WjW4fOZDrt3O9Tgqruq7esnlI2ttnPEWEK5KDKYIMhnVCTP6fSU4iqFkntu++iRUoyuzbv oplNfi9FwY6HF7SK3pkz9BroNQ39xcbuS3+/dFzHtY9fWf9ax/52bk1D02voLhbQ9Lqc2zodOn12 mUvHdXoNTXex/sXy2ce0HNs6neYtf+l4jm2d9rf6uovX010WS/a+7G092sVjOp3Oe/xSnJdv6y7W 0y4/l06H7uJ8plee+2/bOj3oLs59qtOh6S/f1meXu9a2Xg8Xz5V9/K9t77kvu6+rnkvTgaZDabrL tjVvXXXxOJcdVzm2tZz1dTnL5npuLee5lXfZ2OynMpceS3pU9tM0z8Ud6rJ9AJ6LdXKUvVg393OB 5+Ke7OOX1Ud56wC4Pdl/d1+6llK4Pfz198vicnvUxX2XHb+4D8B98bweT85t77k9yrsv+3h2/Uvn vvSTl23X34+r3Mp7cmy7/uHcyvNXnEr9bdtz+QIQ2ce8x9Xfti/WB1Cev8pnbytvee92jvIXtz3u i9vu7B/337b/djz7un875s6trCfHtucfzg2QsmsatzpJVgvBy68NInrZUlya9Li4GpfycJgsYlUG CQdOs3fvXp7r3oOffvqJMm4DnWwhBGkG0CAy67LlCK/xBP+o3g4uOGlL46zByOjRo2nWvDlBQUFU rVoVyO6LVrF8BBuM6dS0GymlXbkkoxBCCCGKjiSrhWBfbCwBvmaCHbJIwNVs9c1CqxnB7FEjCQ4O 5vtp01k/fwntPH8lqderoTsQi6Zhvbsiv8dsx+12k5WVRVBQkLdMQEAAa9evY/bs2UwePwFfvQ91 M41U1fyvcWYhhBBCFBaZDaCA2e123nrzLRo4/DFq8nLnZpfByhGjk7kLF9C2bVsA3h3xHmc1JwE3 8X1K0zSq4MeBgwdZu3Yt99S+i369++Qoo5Ti6NGj1KlThxRrJokZqSxXSWzVp+dY/UZd9ihMCCGE EIVHWlbzgcPhYNTIkVgCAoiL3cdLr75C5cqVCQkJwdfXlwXRC+nSoRNhNiMlpM9qDm6l2K4ucGDv ISIiIrz7ExISMOj06Dw3N1LfFx2VHQaefbIbGeeT6fT4YzmOfz11KkNefY1z1uzlFB9s9ACvvTGY oW++xcL409yTaeRPPw8Hss7j52Okh6t0oc0ekJmZyY4dO8jMzCQzMxOLxUKrVq0K5dpCCCFEcSHJ 6g24tERepUqV+HDMB/w4ayYVjYEEKR02HfwUvZgst5Nvvv2GLl278vDDD/PJhPEMfOVVLJoPD2X5 S9IK2JWHbYYMakZG5khUAUa8M4xaTtMNPf6/JFO5+FbFgwsC082YzGYebtmS3bt3s3rVKgYOGkRw SAiZTjtR1aqzZv067zKE7dq1Izo6mrdff4MsaxZZ561EVqnK8dNWKpN/K5NpTjfDh75DbGwsq1f8 jK/RyAuvvEyNGjVo2+oRHClpmHU+OFxOrCY9ieeS8u3aQgghxK1AktXrlJWVRe3atakSUIJM3IR6 9DyvymN0XPaI3w6xKp05s2bT5eL8d72ef57/e+45pk+fzusvvkxbWzDB2j/3YY1XVuJMTurbzNl9 N28TTuXhf4azNGvVkslTv8pxbMOGDWz87TceI/SmrqFDo5opmMO2CziUm4jyFahQoQLVqlbF7fFw 191307lzZ3YNfp1Br71GiRIlvHU1TaNTp0506NCBjIwMfH19+X7mj7R/tC3bdQ5Ku3yoaTNSKpcv HW6lsOJGh4YRDZ9rdP9obPUnPu4c0aPHk6WHslZ4dXsv4jMv0JgQahEIwB6VRunWTW/q9RBCCCFu RZKsXic/Pz+aNX6QhO17uc9mpCymXPuiWvDhdEJCjn06nY7nnnsOu83Gm68N5i4s1HVcvZXOrjwc 1NsIrF2DxX/spZu9lHeanVudDxoRHl80IDw83Lt/69attG39CM1sAQRoeXt7pignDjys0J2ntsef cpgIxcA5HDS1B3DaaGPR8qXs2bOHypUrAzBs6Du0aNECTdN4f8yYq55bp9MRGJidMDZp0oTk1Avs 2bOHVStXMmbUaKo6DOg9kO7nQwZuUh1WrE4Hgf4W3B43WTYbISY/Suh8Ccx0EekxY8EHhcJH02HQ dFTGj8pOwAlocEcmuJUFvaaxR59JkEuHTa+RcOoUiYmJlC5d+kZfdiGEEOKWIyN+bsCSFT/x9Juv cObucsw2nSdWpZOmnN4BOCnKyWEfO2Ujyudav/8LL7Bjz262OM9fMWhHKcVJZWW1OYMZxrP416rK 9z/8QN369Ygjo8DvrTCcVFa26NJINHro+XyvHMfeGvQ69awmKuRxta8U5WSh8Txz1GmsOkV8GX82 hcG3+tPEVQ7gO/1patSI5Mfvv+e/Q4cDMHnSJEaOHoV2A4m/Xq+nTp06DH7jDQ78eZj/PNeVlm/2 Z/S0SSxYs4IDR//E5rBzLjWFlPQ0MrIyWbt1MyO++YJ7e3dlkV8qk7WT/GxO41qLx+k1jT9VJr86 k/jT6KCu24J15yGqVarMIy0eJi0t7bpjF9e2x148/n1tPX2uqEPwWr/vaFGHAMCvW3YUdQhe69ev L+oQANi+aWNRh+B1aMfvRR0CACmHdhZ1CF6207FFHcJtRZLVG+Dn58ew4e+yZecOVq5bi+3eqiwP tjLLfJ61JLPIfIFGzz7G5K+nXvUc1apVo9mDTZhlOsdqSxZrLFkstKTxlf4U+yr68+LYEZw5l8SW nTFERkbywccfsd1kI1k5CvFOC8Z2i5MG/Z/mm5k/0L59e+/+Q4cOEbMjhhpkTxuVplz8qTJzPYdS CofysFIlUaFSJaKjo8nKyuJYwkmOxp/gVOJp9v95CLvDwfbdu1i0aDEZLjv/ubc+ffv1y5f7CAsL Y+KkLxk1ejSdO3emXr16lC5dGp3ur39WBoOBqKgoHn/8cSZO+pKzyedJTEzEXL40M83n2aJPJ1HZ sSq3N3k9q+xsMKazwZwFQC2HCb2mcb/Dn2ccYRzeHMN33313w3ErpdiwYQN9n+/NH3/8cXMvwm1k jyP391ph25p4vqhD8NpQTJLVdZKsXmH75uKTrB7euaWoQwAg5XBxSlb3FXUItxXpBnCT6tevz2/b sv+h7tq1i08/+pjhnTry+OOP/2Pdn39Zw/79+zl48CB2u52qVasSGRlJQEDAFWXvu+8+Phz3Me+/ /jYdsww31CpYlFKVk198LlDF5ct5eyZDhgzxDma6nAfY7JuJ0Q1bndn/ab+Uy5ynv/plcsiRyr11 6jLu889o0KCB95iPj4+3/+ml12nipC+pXbs2d955ZwHcXd4ZjUZKlSrF3gP72b17N9O+/oYVS5eR cCYRl8uFn8EXXz8z/V58idaPPMLQIUM4tnYHpcherMCo6ahrNTHszbex22y89vrreXovKKVYt24d 27dv57uvv+VsfALlrRqNZ83i80lf0r1794K+dSGEEOKGSLKaj+rUqcN3P864rjpRUVFERUXlqWzf vn2ZNGEiB+POUAPLjYRYJGLJIM7sINPgQ4nGDxD90oBcE9Xq1asTd+ggUyZPZtTo0QC01kp5j6cq J/t0WViNOrJC/Uk5cAKzOW/dBZ566qn8uZl8dPfddzP+8wnw+QQA0tLSSExMpGrVquj1ep7s0oXV a9bwpFYmx6wI4ZovHW3BfDbifTb8uo4Z/5uV6xecy61bt46ObdpS1WOikkNPU0LQNI0aVgeD+79I 0pmzvDb49YK8XSGEEOKGaOpaHedEsWK1Wun6eBcO/rKJlo6gf65QxOzKQwI21hvSeGHgK4wePRof n6t/P9q3bx8v9u3H+k2/YTH40slRggDNB6fy8JtfFieVlcefeorS4eG8NeRt/P1v71Wmhr8zjC8/ /Yz6VhNV8buiBdWlPGz2zSS1pD9LViy/aqvxwoUL6flsd6q7fGnovDKp3aql8eDA5xj70UcFch/X cqs9IRBCiFuNxWIhPT29qMO4KdKyegt5f/Ro9qzZQCtH8E3NP1pYFppSqHZHDQa3b8crr756zUQV YNjbQ0jduJvntfJccDgxoUMpxVpzBne1asr0oUOpW7duIUVf9EaMHkXjpk14uf8LxJw+S3WrnprK Hz9ND4CPpqOxI4D9CRk0vK8BX341haeffvqK85w5c4YIt5EGDkuu75sAj8ava37hwIEDVK9ePUef 24Im35WFEEL8E0lWbyF31qqF2eiL0Vn8x8XZlJtMj5Pftm3Nc+vZkSNHOGfRsy0zlT36TIKNZjSd RpUakcyYNQuj8d+3kEKLFi2IPXiA33//nS8+m8DsRYuo7fajjsvfO39rlGahpNXAK336ExYWxsMP PwzAqVOn2LhxIzOmf0cJpy7Xac8OqAwq4cfWAydpWLce9Ro0YPFPy/D19S3U+xRCCCGuRroB3ELO nTtHxXLl6eksnWvi4VGKg2QSgA/lNFMRRPiXU8rG2kAbg996k+DgYJo3b0716tWvWcftdrNmzRoW zJ1Hn/79sNlsBAYGEhkZ+a9MVHNz/PhxBvTtx7pff6WS3kKEVaMyfug1jZ0qjcpPPcLnX37BmNGj mfTFl5T38cfPqWhg97/iPXNpha+HtBLU0gJwK8UvpnTK33c3y1aukNdcCCFEsSDJ6i2mUtnyPJCo CL1s5SSlFEexssPPjm9oENqFTFpl+KND4yCZlMeUY4J9pRQXcBFSgCtiWZWbWNJx6jUcRj3HlZVK lSuxbOXPlCtXrsCu+29x+vRpoqOjmfrlJGxHEmhuDSANFwvNFzD5+lLGpuHj8BDk0RGFJdcvNyeU lUXqDPcaQmnozl74wK0UPxqTmDFvNm3bti3s2yp2zpw5k2PRCiGuJSEhocg+35RSzJ07lxMnTlCv Xj2aNm1aJHGIomOz2XA4HN6FbG4nxf95ssihSpUqXMAFZA+w2a/SibakcaCCP1/9bwb7DsQRVKEs 3xvOsFIlEVfayFJzKlnK7T3Hz34Z/KgSOJ/LnK125WGvSmepXxrHVdYNx2nW9NTTgrnfE0QTm4Vn bCVxHYznv2M+uOFzir+UKVOG/v37s3n7NnwrlyWOTII0A1XdvjS8YKCJPYA4MlirzvOlOs5OlUaK cpKgbN5zlCL7C88p41/vDb2mcZ/Dj149evLDDz/gcrluOtaEhAReeOEFJk+eTI8ePYiNzX2y7K++ +oqRI0cyYsQIhg0bdtPXvZlYjh07xtNPP80TTzxRZHHYbDb69+9PyZIliYiI4MsvvyyyWJRSvPHG G1SoUIGyZcsybdq0IonjcqtXr6ZFixb5Hsf1xLJ69Wp0Op33J7/nYM1rHGlpaTz88MOcOHGC119/ vUAS1bzE8vzzz+d4PXQ6HU8++WShx+FyuRg+fDgTJ07kjTfeYNSoUfkaQ3GjlGL69OlERkaybdu2 q5YrjM/YAqPELSMlJUVVq1hJPaKVUj208irI5KceatRYLVu2TLnd7hxlV69erf5zbz0VExOjhrz1 tqrkH6Je1Cqqp7WyqlRIqPpk7EfKYvJT7bQw9aJWUXXWSqvafiWVv8ms2rZqrdq3b6/qGULVS7pK +fLTXSunQv0sauPGjUX06t2+ZsyYocL9AlV3rVzur7veVwEKUBaTWfXUynuPVzcFK0C9qFXMUa+D Fq4qW0JV+fAyaufOnTccm8fjUXXr1lWrVq1SSim1b98+VblyZeVyuXKUi46OVg0bNvRuP/HEE+rr r7++4eveTCxKKXX8+HH14osvqsaNG+drDNcTx8iRI9WcOXNUbGysGjhwoNI0Ld///eQ1lh9//FFt 2LBBKaXUvHnzlMFgUFlZWYUexyVnzpxRDzzwgHrooYfyLYYbiaVfv34qJiZGxcTEqN27dxdJHG63 W7Vo0UK98cYb+Xr9640lKytLvfzyy+rw4cPq+PHj6tixY2rgwIHqhx9+KNQ4lFLq008/VR9//LF3 u2nTpgXyf098fLzq37+/mjRpkurevbvau3fvFWVsNpt644031IcffqiefPJJtWDBgnyP4+zZs+rk yZNK0zS1Zs2aXMsUxmdsQZJk9RYydepU5W/wVQ18QlWgyU+9O/SdPNVzuVyq7l13q6a6Euoprawq FRyqrFario6OViEBgcpHp1fVK1ZWn3z8sTp79qz68ccfVaCfv+qghd90ktrCEK5qBIWpQD9/9em4 cTniOnDggHI4HAXxUv2reDweNf7TT1WQ2V+10Upd8Tt4UauoGvqWUoDq16evqmMu6T32hFZGAepp rWyuv7+HtZKqXHhplZycfEOxrVy5UpnNZuV0Or37IiMj1bx583KUa9iwoRo1apR3e+bMmapWrVo3 9oLcZCyXDB8+XD3wwAP5GsP1xDFlypQc25UqVVIffvhhkcRy/Phx79+zsrKUyWRSmZmZhR6HUtnv 93fffVdNnTpVNW3aNN9iuN5YDh48qBo1aqSWLFmi7HZ7kcUxc+ZM5e/vr2w2W77HcD2xpKamKqvV mqNew4YNb/iz40bjUEqpAQMGqKFDh3q3O3XqpJYuXZpvcSiV98T5rbfe8v5bTktLU2FhYergwYP5 Gssl10pWC+MztiBJN4BbSK9evRg6/F1qP9uBrbt2MGJ03h5t6PV6fpg1kx2+VozoMNldfPfdd3To 0IHktFQupKVy4OifDHrtNZYsXszLvfvSxhpEBS1vE+5fzWGVyWZ9Gq99NJrYA3G8OnCg91hWVhb1 763HR2PHcuHChZu6zr+dpmm88uqr/LRmFbFljKwxpefo9qFpGvc6/akaUILzKcnYjTrSlQuH8mAm exqsOJ0113PX1CyUvuCka+fH8Xg81x3bb7/9RpUqVXJMWxYZGckvv/zi3XY4HGzfvp2aNWt691Wv Xp3Y2FjOnTt33de8mVgKQ17j6NOnT47t8PBwKlSoUCSxXH7dJUuWMHHiRPz8/Ao9Dsh+lNmzZ89/ nAqvoGOJiYnBarXSqVMnIiIiWL16dZHEMW3aNMqWLcubb75J/fr1adWqFQkJCYUeS2BgICbTXwN7 ExISMBqNhISEFGocAB07dmTChAmsXr2aHTt24PF4aN26db7FAdldQPbv3+/tchEVFYXBYCA6OjpH uUmTJnmnXAwICKBx48ZMmDAhX2P5J4X1GVuQJFm9hWiaxttDhzD122+pUaPGddW94447eGf4cP7n cxZDyWCaNGniPebv7++dXup/P8ygvtVMKe3mR4Lb8XBfvXr07t2b8uXLe/efPHmS999/H4sLRo4Y SYnQUJ59qpskrTfp/vvvZ//hQ7Tu/SwzDWeZb04hQ7nYpdJIVHYMmQ7mzp3L/tSzLLKkMd0nkeN6 O6G+fsS4U9isS8113tMGDgsHt+1g1IgR1x1TYmLiFZ39g4KCiI+P924nJyfjdDoJCvproYvg4GCA HOVuVl5iKQw3EofNZuPChQt06NChyGI5d+4cgwYNonv37vz222+43e4ryhR0HFu3bqVkyZJUrlw5 3659o7E8+eSTxMTEcPToUerVq0fnzp1JTEws9DhiYmLo0qUL48ePZ9u2bfj7+/P888/nWxzXE8vl Fi1aRLt27YokjhYtWjBq1Chat27NCy+8wOzZs9Hr9fkaS14S57Nnz5KWlpbji11ERAS7du3K11j+ SWF9xhYkSVb/RQa/+Qbnks+z//ChHN+wLlFKEbNzJ6W5+Tk23Upx1M9Dpy6P59h/5MgRakVFMX/i VJrYA3jEFUIPyrFp/lImTZp009f9tzObzXwy/lMSEk/Tb/BAZhuS+F2Xxk+GFErUv5PRo0cTWbkK 1apWZeGiaHYYMjF7sr+o7HJd4BefVE4pGxnK5U1c9ZpGsywL4z/6hJUrV15XPD4+PhgMOWed+HsL 7aUP+8vLXSqTW/J8o/ISS2G4kTimTp3KuHHj8ry8cEHEUrJkScaMGcPs2bNZtGgR3333XaHGkZqa yooVK3jsscfy7bo3Gsvlypcvz7x58yhdujSLFi0q9DgyMzN54IEHvNt9+vRh1apV+TI48npjudzi xYtp3759vsVwPXEopUhMTOT999/nzz//pHnz5mRl3fiA4dzkJXEODg5Gp9Nx8OBB777AwECSkpLy NZZ/UlifsQVJktV/GYvFctX5M0+ePInH6cLCjX8DdSgPScrOEr9UavznXl4YMMB7TClFz2ee5S6b iZYZ/pjQcdzkZl2gnSSdq1BXTrrdhYSEMGz4cDZt3ULvPn3IcNi4sO9Pfhz7GRWOpeH+4wht2rSh foP/UOGeWnR78ik8KE4pG8tI4nsVzwbjX8vzWTQfHrJZeKrLE2RkZOQ5jrJly5Kamppj34ULF3JM 71OiRAkMBkOOcpda2fNzGqC8xFIYrjeOPXv24OPjQ5s2bYo8FpPJRIcOHXj55ZfZsWNHocaxbt06 xowZg9lsxmw206dPH9avX4+fnx979+4t1Fj+zmw207Jly3x9OpTXOMLDw8nMzPRuly9fHo/HUySx XJKWlkZiYiLVqlXLtxiuJ45x48aRnp7Om2++yfbt2zl27BgffvhhvsaSl8TZaDTSsWNHPvvsM1wu Fw6Hgy1btlCqVKl8jeWfFNZnbEGS7EB4bd26lTKGK9eg/yc25WaDbwYrLZn8YDzL2hAnA0cOY/mq ld5HLx6Ph+joaDZu3sQeXQZfquPM0CVSv1tHpi2ex9ZdOxg0aFBB3Na/2t13382cWbNoo5WiWaY/ LTL8idIsHNHZAXCu28XZvQfZv3cvfmY/OrtL8jRlqe4TSJwrjbPK7j1Xec1MuNvAlMmT83z9hx56 iCNHjuTYd+DAgRxT62iaRtOmTTl06JB3X1xcHFFRUYSFhd3gnd9YLIXheuI4deoUa9asoX///t59 +dlidqOvSYkSJXJ07SmMONq3b4/NZsNqtWK1Wpk6dSpNmjQhKyuLWrVqFWosuXG73bk+sSroOBo2 bJij5c5ms+Hv70/JkiULPZZLli1blu99RK8njl9++cX7nqhYsSKvvPIKMTEx+RpLXhPnb775hsjI SDp16sQHH3xAWloa999/f77G8k8K6zO2IEmyKrw2b/yN4Izr+4/QptysUudwVw5nzLTJHI8/SeL5 JAYOGoSmaZw5c4bXXn2VV199lc6dO+Oj1+NE4etjoLIhgPkXH5/VrFnzim+pIn8opbDiyfG4p5U7 hKe0stytBdLKGkjcgQNUr1qNJBz4aXqauIOxu12sMKSQqf56T9TNMjLq3fdYsWJFnq79n//8h4oV K7J27Vog+wMyKyuLtm3b8s4777Bnzx4ge37GJUuWeOstX76c5557Lj9u/7pjuaSgugjkNY7U1FRv v7u4uDhiY2P54IMPsNls1zp9gcSyevVqTp48CWS/n9avX5+vv5/r/d1ciqMgHmHmNZZx48YRFxcH ZD8SPnDgAI8++mihx9G3b1/mzp3rrbd+/Xp69+6db3FcTyyXREdH53sXgOuJo06dOvzxxx/eelar lXr16uVrLHlNnIOCgpgyZQpLlizh+eefJyYmJt8/2yD3x/qF/RlbkApmOKW4JW1ct44yygh5aFhV SvGLbzrnlJ2a99blzaFDcn1M2fzBpuiPneEPRwoa0MUTTgl1sRuCG9YYs9i7dy+RkZH5ezPC65f1 6+jQpi3GU5lEYgEgTPurX3IidqxOB9WqV+NcbPYo4hNkzw6Q6XTwP0MSDzuDqaCZCdWMNLcF8MyT T3H42FFvJ/2r0TSNRYsWMXLkSPbv38/WrVtZunQpfn5+rFixgrp161K7dm26dOnC8ePHeeeddzCb zVSsWDHfW9rzGgtk/4e/ePFi4uPjWbhwIW3bts23L1N5iePOO++kQ4cOrF+/nilTpnjrduvWDYvF ki9x5DWW2rVrM2PGDO9/tuXKlWP06NH52iJzPb+by+tc71Og/IqlVq1arFy5klGjRtGvXz+CgoKY N29evs5QkNfXpGnTpvTq1Ys+ffpQtWpV4uPj+eijj/ItjuuJBbJHnu/YsYOGDRvmawzXE8ewYcMY OHAgQ4YMoVSpUqSlpTFmzJh8jeXyxPmhhx66InHu2rXrFe/ZPn36MHjw4HxtgQdISkpi6tSpaJrG zJkzKVeuHDVr1iz0z9iCJMutCq/y4aVpluRDcB6WYT2gMjheJZiKlSoxa85sQkNDvcdSUlIY9d57 bN30O79t34qvj4FAt46GBF8xHdYvAVm0fO5p6tSpwzPPPCP9VgvIr7/+SpdH29POGoRF8+GEsrLf 5OB+mx/++LDUdIGKdWvj2byPugRyQTlZYrrAl99MZfyHHxH4x0mitL+SpA3GdBo805nJU78qwrsS Qoiic+TIEUaOHMl9993H1q1beemll7j33nupV68eQ4YMoXPnzgCkp6fTr18/qlatysiRI4s46luT JKsCgMmTJjHktcE8bgvFpOU+wMqu3GzxyeCwzorb42HZip9o1qxZjjIzvv+elwa8SCWXL+XtOpaq s0T5hdLI6o/5svO6lIdYMkjXK45qVoJLh3Hk+LECaSkR2d4fOYoPP/gvbe3BnMfBekM6uN38RwWT 4rET0uhuDuzey+NZF6c0UVZiK/rzymsDeW3QazzjCvf+Dq3KzVxTMr9sXO+dQ1AIIUROq1at4o8/ /uDRRx/N9xbVfxNJVv/lsrKyGD1yJF99/gVtrEFXbVW9oJws8k3GqRTDhr9Lz549KVOmTI4ybreb sNASNE/3o/TFx8xpykkAPlckoQ7lYYo68f/s3Xd8VfX9+PHX55y7sxMSCAmbsJGtggNQQRzgQHHV Xat11bbqT20dtVq/ra114V44S7VVEXEUF8pQRIbsPUKAJGTn7nM+vz8SIkiAhKwb8n4+HiHJPet9 Lsm973zG+wOA2+li7vx5DBs2rAnuUOztsUcf5eG77sUVsihWUdq5vOSGyvF5fZw1+Rze+td0Lo+0 xx/spuYAACAASURBVKUMItrmRTOPSr+fzPQMJpXFE69+6uZcrSvY3CWBZatW7lMMXAghhGhMbbLP tbCwkHA43NJhtLhZs2bRo0tX3n/iBSYFkg/a/V9ChMGDB1NWUc4dd9yxX6IKMH/+fIhEyeCn0liJ yrlfohrQFm+7CknxxDFt2jR25u+SRLWZXH/DDZQpm1w7QF/Lx2mhZC7QmXStVOwuKMTpcBDGJqAt ZvhKyeneg0gkQtSyMH42mLk3cTh2lXLrb1vPuCchhBCtT5tLVpctW0Z6ejr/7//9v5YOpUUtXLiQ i86bwsjdBicHE/ZpMavNLodFTp8+OBz7t5Lu0a1bN3r26cMcX2Wt2/coJYrhdfPki89x6aWXHnKS jmg8TqeTlKQkfA4ny9wBtusgicpBZ+VlzZo1+AwHJorPvRVMOO8cfly1Ep/PhwLWU0lE/zRDXinF sKCXZ557llAodOCLCiGEEA3Q5pLVnj178pubb+aBBx5o6VBaTFFRERNPO53jgz6y1aFXxCnXUVY5 Atx7/8GX28zKyuLZl16g2Ny/5M9aXckcdwUzvaV84ivjiiuv5OKLL5Yxqi2gsrKSBExOGDOajZ6q slSZuNmybSu7Kkp511vMpKt/QdeuXYnzeumf04tTxo+nvH82rzp2Mc9Zjl09emgHQZRSjBs9ttHX IxdCCCGgDZau8vl8PPrYYy0dRouaOXMmqSHooeJq3W5rjQYWOypY5QgSiIa5/be306lTp0Oeu3Pn zgQNzQfOIixDMTDoogNu5nsqmTzlfLweD49Pndro6zSLuht13CiSk5O54pdXc8m8yRAChzLo5E3i 5KvPY/jw4SxcuJDnn32ODNND3w3l5G76gso4kwSHi20ejakrOSYaTz+VQGfbyxvfL5Q6uUIIIZpE m0tW27JZs2Zx/TW/okNWFgFqL3i+TQf42CwiGI1wyqgxfPvcs/Ts2bPOJaVSU1PZuHULiYmJDB40 mPnLVxEwNLf99jbuf7DttmbHkhmzPgRg2rRpmNGffg7SK2yUbfOnu+9h2448TBSGUnzqCHNxNANX hUFEe5nObtY4DdwWDLLjMFH4nC4mTjiNGR/Non379i11a0IIIY5AUg2gDdi2bRt//ctDvDntNUYG vRSpKO21q6bmqdaaNVRSoiOs9Ub5v0f+zvJly3hi6tQGddN/9913/PHOu5j2+mu1TsgSLWv9+vWc PHoMHXeHGRGJY4cOsrJ7ApUBPyN2WGQqDxt0Jf/ThfxSdcKhqv5gKdJhPvGUYTsMkiOKrhEXfWwf n8ZV8JeXnub8889v4TsTQghxJGlzY1bbCq017733HieOHEW/nF7Me+VtJgdT6KHiGEHSPsX5i4nw fXyYlb4It915B9dddx1PPvXUYSWq1157bc2ydkcffTSffjZbEtUY1bNnTxYtXcI6T4R8HcKFQSgc 5q577+E7X5CItilxKyw0Ear+prWq/7Y9JZhIaWUF7Yf0Y4UzgKkUKWG4+KKLSE5I5LnnnmuSpTCF EEK0PdKyegQqKCjg6suuYOHX3zDI76I7vppWsb2tUJWs9EUIW1F+ccXlPPrkEw1qSf3nI4/wu9// nocffphbb721IbcgmtHTTz/N32/7A8f4vXyX7WTt5o0cP2oUpT+sZpMKkp2VReHOXQA4DZOgtggE g4wbN47UlBS2Tv+EQSoRW2uiaEqJMNcXIKtPDv94/FGGDh0qdViFEEIcNmlZPcJs2rSJYYMGs+Pz bznHn0wvFV9rolqmI8zRRRw3/mRmfT6bx6Y+2eCZ+ampqVz7y2skUW1lrrnmGlS7JDbhB2Dz5s0s X/YjXaMuDMPgzLMmkZGZybCjRzDwmBFEQmFG6iT+N3s2X82ZQ4VZ9feuoRQuZZCu3EzyJ+FevJEp p51JckIid91xB7Zd+zhpIYQQ4mCkZfUIEo1G6dm1G113BjlKxx90X0trllLGfEpZu24tPXr0aKYo RSz66KOPOGfSJHr3zOG/Mz/g2EFDmeJP4TV3PmdOnMiX//mAgTqOpZ4QyR3bs27TRjzK5EQ7mQ64 SThInd6Atpjtq8DvMVm+aiXp6enNeGdCCCFaO2lZPYL897//RZX6D5moAphKUeI1+O1vfiOJquC0 007j+Zde4ubf/ZYuXbpQWFnGU3oLOTk5dMzOwvA46a3i6Rd0YSjFY489RkTbeDAOmqgCeJXJxEAS 2UGDrI4d6dm1Gxs3bmymOxNCCNHaSctqK2PbNj/++COffPwxX332OcOPPYZvvviSy355NS889Qzm wrUcpRJrPTasbXYTZjcRdrs0RSlu1mxYj8/nq3ccwWCQ1atX06dPHxmPeAQaMmgQpWVlfPLpp0w6 9TQ2btnM2TqDDFwsNSpZ5gmSkppKUWEhZwaTKSVKd3Xon6OotllglHH0lefzzPPPNcOdCCGEaO2k zmorsmDBAi6cfD7BsnI6Rhy0Cys+/PJ7tkQrueKbr2v2s91OuoecrHAFwbLpZDmZ6wtQGg7Ss2s3 hgwdyqRjj2bixImHlagWFRUxbsxYVqxcyR/uvYe77767MW9TxIAfliwhHA7jdru56Xe/5Z3//of1 85bRPuJmsI6ng9/JbF3EqOOPZ/pns3GZTrpGvRiHGPfsUAYVXpORxx/XTHcihBCitZNktRWwLIv7 77uPx/7xT0YFffRUKVUbFGBBoTtKYTDEqSqdT3QBiyPFLHM5uPLaX/KvN99iUeEuHn3wUW648cZG WTnqo48+YvWqVaQ4PDKE4AillMLtdgNw/Y03kJnVkT/8cB1EqrZ3UG7GBjTzFi/m6quv5oM3/w1R 2KGDZODGPEDSWqmj7LACXHjhhc11K0IIIVo5GQYQ42zb5rJLLuGbGR9zUiCeeOVgtRHAa2m6VHe7 RrVNGVHcGCxzBVmuy7njjju490/3oZQizuujtLys0ZY4DQaDvPLKK6xasZK7/vgHWbHoCKa1xu/3 s2DBAs45YyLHhOPoq6rGRFtaM91dSJecHugfN7MjTrGrspSrVCd8qvaftaC2eMuzm3J/ZXPehhBC iFZMWlZjmNaaG399Pd988DGnBRJxKoNKHWWuWYrTaXJx0EMIm/m+IBFs1lcW0S4uja2rt9XMuJ4z Zw6pqamNlqgCeDwerrvuukY7n4hdfr+f+Ph4PG43wVCIeR5NVshDonJgKsXgkIcKt5s1CVBSXkqv hHb4Kg/8s+bGwNBVJda6devWjHcihBCitZJqADHsqalTee+NtzjVn4CzulZqMRGSEhMpD/qZr0r5 j6eYky+fQnLPzvTv3YeLf3EJxcXFNec44YQT6N+/f0vdgmjl4uLiuOLSywiGQmSmZ+DzeCndMxYA 6EEcm1eu4f4H/syp48ezrbKE7TpYs71CRynX0ZrvlVJ0VT7ef//9Zr0PIYQQrZe0rMagUCjEDz/8 wI033YTLMImQiJuq2fzfeP089tizFBUVUVxczPjx4/nhhx945Znn6WP7eGP9s+Tk5BCJRJgwYQLb tm1r6dsRrdzLr07DMA1eeuUVBqgEOqmkmm1uZTAk4Obm3/yGKVOmELCjfKDy6eiKJx4HK4JFJDvc XGr/tORuUtDm05mzuOWWW1ridoQQQrQykqzGkNLSUiacMo4F3y/EUAqPMgnaFltUgB1mlEplc8a5 Z3PRRRftc1w0GqXCjrDGHSY+MYn27dszYMCAFroLcSQ67fTTWbJ4CYENuVQvdFWjEx464GbdytUA OEyT7eFKvHE+CMLZVnrVZECqFghY4g4y6757mvkOhBBCtFYyDKAFrVu3jksuuJDOHTrSIS2dyy65 hAXfLwSgsy+ZY6lqwfrWWcmqSCldhh/F1Gef2e88xx57LPPnz2fW7E/5dtH3vPHKNABuvP6G5rsZ cUQ77/zzeeChv+BXNsup4G1nIR+6SohqG48yGaoSaZeWyi233EIgGgEFBQUFpCYmE+WnOZzfu/38 4rJLOf7441vwboQQQrQmUg2gmQUCAe69+x5WLFvG119/w4Col+6WG4XiQ3cJxcGqWdKGYZDdvgP3 PfgAV111FZ07ZrFle+4hz19ZWUlqSipXXn45Tz79FA6HNJ6LxhGNRunRpSvBvALyCQOQ6PJwUiQJ Gyga3pVPvvycefPmEY1GmTBhAr279eCoLX4ylYeN2s+8hBDrN20kNTW1ZW9GCCFEqyGZTDN78YUX mD71OXqFXFxMO1zKqOki7R50sAi45ppreOKJJzBNE6UU7779Dhf+4pI6nd/tdjPro1mcfPLJTXcT ok1yOBz8d8b7HD1iBGNIZY4q4dSzJrLyg8/oGnIQDIXw+XyccsopNcecc/5k/v73f9BN+ShJdPLx J59KoiqEEKJepGW1GX388cdcdvEljClx0UF5KNURCgljoIiimesqpzwUpHdODqvXrm3pcIWo1ZNP PMHvfvs7+uTkMOOjWYw9/kR2FuziH488wvU37Dv0pLy8nPnz5/PQAw/y0rRXpFyVEEKIepNktZkU FhaSnp7OeNWO3iqe711+VhiVjBg2HNu2sCybW26/lXPOOQetNZFIhLy8PLp06YI6xBKWQjS30tJS wuFwTT1fIYQQoqlIstqMOnXIpH1+gIDPyTYdYP2mjWRkZNS678yZM5k4cSLjx57EJ59/1syRCiGE EELEBqkG0ETKy8t58MEHWb16dc1j77z/HmNuuZrr/3ofuTvyDpioAgwcOJBjh41g0JAhzRGuEEII IURMkpbVRvbVV19x6YUX07tvH2Z/8TmXXnwJr77xekuHJYQQQgjRKknLagNFo1EWLVpEMBgkNzeX v/3lIbbtzGNHXh5nnDqBa6//dUuHKIQQQgjRaknL6mGKRqNccsGFfDhrFpYVJbNjR3K3b+cvD/6F nN69mDRpkkyMEkIIIYRoIElWD9Ozzz7LfbfcyumhZIqJ8K7eVbMtLy+PzMzMgxwthBBCCCHqQoYB HKbhw4ezM1jBSzqXwurVfPYwTbOFohJCCCGEOLJIsnoIRUVFvPbaa0yfPp29G6Ffn/YqPVyJHOVI xlX9NF44+Tw2bjxwOSohhBBCCFE/stzqQaxbt44TRo4iNQyFVhiPx0N2djbz58/nhRdfhEiIAUYi C90Bnvjr49x4800tHbIQQgghxBFFxqweQDQaZfLZ55A362s64OZbj5/49DTyd+6iMhwE4LRTxtGp c2duufX39O3bt4UjFkIIIYQ48kjLai3y8vI4d9JZ7Fq5jpDbpiwzniceepxXXniRbbm5jBtzEn/6 ywOMHDmypUMVQgghhDiiSctqLaacO5lVMz7D6XCQNfZo3v9wJoZhoLWmoqKChISElg5RCCGEEKJN kAlWtTj51PFsNoLsTvPw6ptvYBhVT5NSShJVIYQQQohm1GaHAfz444/ccsNNRCIRvpr3zT4F/C+5 5BKi0ShXXHEFcXFxLRilEEIIIUTb1maGAUQiEQoLC2uK9X/yySdMmDCBxPh4Nm/dSkpKSgtHKIQQ Qgghfq5NJKuWZdE3pxfFJSVs37kDl8vV0iEJIYQQQog6aBNjVg3DYN2mjQwZNBjbtls6HCGEEEII UUcxm6zOmDGDgX368sILL3Cwxt/Zs2fzh7vuOui5lFIEg0E+/eIzPB5PY4cqhBBCCCGaSEwOAwiH w5w46ji2L1pOngqzeMlijjrqqP32s20b0zRrvt57kpQQQgghhGj9YqoawNy5c9m1axcP3vcnfly+ nCg2Rw0YyMCBA3nt1VfZlZ9P7969iY+PZ8yYMSileOqpp+jevbskqkIIIYQQR6Amb1nVWrNz507S 0tIOOrEpLy+PrKysmu/79sjhhDGjuf3OO+jRowcXnD+Ff7/zds32/Px80tPTmzJ0IYQQQgjRwhol Wf3jnXexasVKHn96ak3C+eg//8mLzz3PA//3EGeffTY33HAD5513HoMHDyY5OXm/c1iWxbvvvsvy H3/kjDPPZPjw4fu0lpaWlvLFF1/Qp08fevbsicMRU43CQgghhBCiCTRKsnrNVVfx6svT6D9wAD8s W0ogECAtJZVAKEhCfDxWZRC/jgLwzDPPcO211zY4cCGEEEIIceRrlGoA1990E2FshgwZAlS1ggZC QU4fNx6Py02Cw0X3zl046fgT6devX2NcUgghhBBCtAGNNmb15Zdf5qKLLqopDbV48WIGDRrE66+/ zleffc4TTz+Fz+drjEsJIYQQQog2IiZLVwkhhBBCCAExvCiAEEIIIYQQkqwKIYQQQoiYJcmqEEII IYSIWZKsCiGEEEKImCXJqhBCCCGEiFmSrAohhBBCiJglyaoQQgghhIhZkqwKIYQQQoiYJcmqEEII IYSIWZKsCiGEEEKImCXJqhBCCCGEiFmSrAohhBBCiJglyaoQQgghhIhZkqwKIYQQQoiYJcmqEEII IYSIWZKsCiGEEEKImCXJqhBCCNECpk+fztSpUykuLm7pUISIaUprrVs6CCGEEKKtyczuSgVxtI/T rFu9AqVUS4ckREySllUhhBCihXgGTGbnzl3k5ua2dChCxCxHSwcghBCxZvHixezatavFrp+bm0t2 dvY+j5WXlxOJREhNTQWoaYU73M8H26a1PuiHbdu0ZKdcaWkpWmuSk5NbLIbaVFZWEgwGSUtLq9P+ oaAfE/CkZrFixQo6derUtAEK0UpJsiqEEHuJRqOMOu4EvGktlziU5q6mW0I7TOOnzq/tlSV4lKJb Ugp78kSNBhRUf973+z3/st/Xe39f2zF70lmF2uvrPR9V+yoULdVrva2shHLLoltiSssEcAA7/RUU 2zap2b3rdkBCNoYngbAnneXLlzNhwoSmDVCIVkqSVSGE+JmUlFSKHO1wdDgK5fQ2fwC5qxld7sW5 10itjymnb5yPK1TKT9lkG/Vfh8WCaDnnBRJaOpR9bNdOXtSFmEOvQqlDj7Lb8wZs+zJYsHBR0wYn RCsmY1aFEKKa1pqzz53M3/76F0Z0dmDmftkycbTIVVuPn9qBY0uW4cFUBtHi+o0/dbfvy0ef/I+s zt0YcexxvPXWW3z33XeEw2EAKioq+Pzzz1m1alWLDr8QoqVIy6oQQlSbNWsW//vsC5YsXca8r7+i d9/+OLq1TCxtvPG0VYraNpYdRbnj6nWcGZdKwti7CPuLWL9rBTf/8WGCxXmcPn4sKclJPPf886R0 zCFSWUz7jHY8/eRjnHLKKU10F0LEHklWhRBtRjgcxuVyHXD7unXrMJw+igoL2bx5M+74FKxmjG9v StLVVieIjdY2jri6TbDam3K4cCR2wJHYAQBP2Q7+t+BD8CSRcsKNuNJzcGpN4fYlnHPeFK6+6ir+ +Y+HpdyVaBNkGIAQok349ttvSUpO5tFHHyMSidS6z+WXX86T/3iQyy+/lCkXXEiwbDc6EmjmSGOz izuWqD2zvWKMDwNsC63tBp/LkZiJe8QvcQ88H1d6DlBVrcGTPQRH//N48ZXXGDf+VHr06ssLL7zQ 4OsJEcskWRVCtAlPPfMcdnIO9/71STKzOvG3hx9m1qxZzJ49m4qKCvLy8tiyZQtXX301Mz74kF07 d9C3/wCsipYpYRWDuVjMUBCTGb1hGGCY6EiwSa/j6XgUZAzks9n/ozBxKDfefAsjjx/Ntm3bgKox rvfcex89e/dj4cKFdT5vOBxm/vz5TRW2EIdNhgEIIdqEbbnbMZI6Y6f3xl++iweffBNTh9DRMP6i 7RimA6UMTj99AmPGjCYYCBKJRlm9NA9SujZ7vJKsHkKMPkGm6cQKlGK4fE16nbgBk/D1HofhisPb aRgrf5jG3ffcy5DBg3hi6jMURhOIGOmcPO5UPF4f3Xv0YPfu3fzp7j9w8cUX7XMurTXvvfce5557 bs33QsQSSVaFEG3CyKOHM3/d5wCYCe2xE9qzp7PWaUWqWsSCZcxcvAVH4VJmvvtvvF4vn445GZ09 MibGBvrtlhpBG1sUKhYbVgFINhyEC9biTMps0usoZaBcVRO5lMOFe+AUPpg7i/fnb0SnjsSTPQSP FSFSPBjtTmBt5W5op7ju5lu55JKLAbBtm40bN3LBxb9g0XcLAHjxxRebNG4hDocMAxBCtAmjRo3E WbEFbYX326ZMJ0oZGN5knJmDiGYMY+zYsZxxxpk4Ogxo1kTVtqtS6J9PsBpKEt8Gy1gRrmy2WGKV 2uvfWNM36iC8ZUGzX9f0JuEadBGegefh7TQUpRTK4cKVnoMjsQOuDv0wfSmodlULFvzx7ntQSvHo Y4+z6LsFdO/ZiyVLlnDVVVc1e+xCHIokq0KINuH000/nrDPGYW778pD7OjL64Ujvy+7dhei0fk0f XB1k4GaQTuSRsu2U2NGWDqfFxWaqCieYKYTLdhEt29nSoQBgR0ME1s4m8NVf0Ytf4uKT+7F161b+ fP+fALjyist56aWXWPHjUgYNGtTC0QpRO0lWhRBtglKKRx/5B8GCDYcck6eUwojPqPraHTurJA0h CbfhYFkbb13V7FkmNva4DINMw0Vw67ctHQqhnauo+OxBTuxuMnvWuxTsyuPpqU/SqdNPSwkPHTqU K6+8Eo/H04KRCnFwkqwKIdqMtLQ0EhIS0MHSQ+67ZzygjjbtzO76ciiFHaOJWnOK1ZZVgGzbgV3e MlUk9ghs+RZr+b/4aOZ7zHj3P4wYMaLOw1kikQifffYZlZVt+4+iWBcMBnn//ffJz89v6VCanCSr Qog2ZeBRg7DKD91Fa8SlA2AVb2rqkOrFYSvmhSuINEItz9YqVltV93Cjah0b3VyCG77Cve0LFsz7 hhNPPLFexy5dupSu3Xty9pRf0DErm3Xr1jVRlKKhbrv9Di689GrGnDSu5jGtNW+99RbLli1rwcga nySrQog25cZf/wpX4ZJD7md4U/Cmd8fwpjZDVHtd16h6WT5QQnaq3Y7caJhf7V7HN+Gy5gxN1JET Ax1tmWQ1tHMVautXfP/dfPr27VuvY1euXMkp4yZQ6O2LldSdLl27k52d3USRioaYO3cuL017FWf/ yWzfnsusWbMYPOxofPEJXHPD7xh1wmg++OCDlg6z0UiyKoRoU8466ywCZQVoq/ZVrPZQhonZ5xzM pNh6s3ZhcL7VgQE6gVfKd1J4iPs4YsVw46pbqUP+fDWFUP4awkvf5L3/vrPPuNS6eOaZZxlx9EjK k48CIDG4hdmffoTX622KUEUD+P1+plx4Car7qZiJmZDcnYuv/DXro11wH3MjzhHXYvQ9nwsvuYwv vviipcNtFJKsCiHaFIfDQVanLtj+opYOpUGGkky6dvOn0q2UtcXqADE8aNWNgd3MLauBbT8QWfIG H37wXk3Xf35+fk0ptAPZsWMHd911F7//f3dh9zoblZiFY8d8Pp/9KRkZGc0Ruqin3996OxVmGq72 fVHKwOw9EWPI1bgyB2K4fChl4EjORvWYwLW/vqmlw20UkqwKIdqcAQMGYPsLWzqMg6pLw+F4nY5T mzxasaPJ44kluuaf2NTBcBOp2I1uhkUctLYJrpqJe8unzPnyM0aPHs3atWu58pe/IjOzI/f+6f5a j/P7/Xz00Uf0HziIf746C7vbBAxfKlbxFtxOB8eMPI5OXbpz8S8uq1nGVbS8r776ilffeAvVfdwh 9zXj0ggEA80QVdOTZFUI0eYcPWwIRrB1t6zuMc5OZV2okhmBIqKyTGZMSMcJ2oImXkxCa5vdH91H YsVa5nz5GfPmzWPAoGEMPXoUHyzKx5PcnnapafscM2PGDDKzOpGUnMqFl/8Kf/vjMLqO/alUm+nA H7aJ9phIYepxvDd3PX37D2T58uV1jiscDvPGG29w1113sWLFika957asoqKCCy++FNVjQh2X81WH bFlvLWS5VSFEm3PGGafz178/gu44HOVs3WPyPDgYTzrvVhbyZaCYIe4Ezve1w6OO3LaIWM/Jg9ig DFQT/x+UzX2GqL+YbdvKGHjUIBK7H43R6WRShwwEpdCV+bzw8iucffYkIpEIT059iudeeBG76zic XbOIKgPzZ+c02/WC1O4oR3Xd1bh2REwPV19zLQvmfbNf+auCggJu+d2tfDVnDiVFRThdLiLhMGZC eyr9ATweD/3792/S56GtePLJqVQ60nBl9K7bAUodsqZ0ayHJqhCizRk2bBhnTTyDGd98C13GtHQ4 tarPW0w2Xk7SaSy2SvnQv5tzvGkxPaazccTuDXowUIZJtLIQR1y7JrtOcPdm2k96AHdaN7TW+yWS ccfdwI6Vs+iR0wsrEsaRlI2j92RMT9IBz6kMBxj7pgZm+4GsXP029957L263m/79+3PWWWfx+uuv c+PNtxBN6oGdejyqvY+grhr6oN0JGHlL2LhpC4FAgIKCAr799lu+X/QDQ4YM4cILpjT+E3KE++77 H7ASu9YjcZNkVQghWq1wOMx777+P7jo+5l4ED7fbLhsvJUTAqYg3ft5ediSK3TdhwzBIVG5CuYtx 9D702MKGUNVJe20F/5VSxPU/A2+f8RR98zzB7ctQ7sT6X0MZRLuO59GX3yVqK+ySzZhKY3gSiXQe j5nQoWZM4d5RmImZTP/327z55htEwiHiktsTNBM4acSPkqzWUzAY5IcffsBMr1/dXBkGIIQQrVRB QQHRSAQVKMLeuB4rriPO9jHSVWmHUUAEG3O/TtqD26wCDHHGNU1cMSZ221WrTLTjeX3FLLzdj8do 4aEmhukk9YTr2PGv6wgveQ0zLQeV0g0jvn2dV7UyvClYXU5BAYbW2OFKtNOLeZA/jIz49ujBV+Kw IpgRP7YzDrN0K9FoGy231gCXX/lLiqK++pXSUyr2x8zU0ZE7qEkIIQ4gKyuLl196kUy9jUjhOsIb PiOw+FWCi14msqtlJ4QYDg8uXyo/qop6HxsyNd1MdxNEFVtaw9tvDzMO03Rgh+r//9gUDMMgc8rj JAw4AxUsJLLqfYLfPUN0/adEd29A12NFNKUUhjseVYcWfKUMlMON4U1BOVyAIhA4MmaoNxfbm6Wv yAAAIABJREFUtpk160OMbqfU6TmvoRT2EbLSnbSsCiHapB8WL6HQr3APuRyXFSaavxocHsIbPseO BHBnD2/U61kVBehQWXWTYHU7gVJUPaCqP1U9bvnS2R3KhXpWPrLQJLSJIQCtI2E1DBMdbprEzA77 0XZ0v/GlB43H4SGx/wQS+08AILhjJeWrPiW86Quim+fg6HI8ynRhxKejnHWZbV5LXJUF6LXvY5oO SOmJndYPlIFdtA6zwxDMxCyWLp3D7bffzpNPPc2wYcP58vPZmGbb+Lk9HGvWrAHTheE98Fjj2im0 3Rp+Uw5NklUhRJs055v56PZDMb0pAJjx7QEw3AmEN34ODUxWo2V5RHcsxQ6WYdhBov6SqnIzNd1y 1Z/3+n5P/VBtR9lt2Wh0zZjEunBqgzXRIINc8Q2KvTUosMNMtXL3fVADez9jez11qnqz+vn+P9un VvqnKlSan11jzyMa9J7xo9VbbAV2xH/om6kHrTX+FR9Qse5LPGmdcaUc/gprnsx+eDL7Yds2ZUvf o3LVJwBYkQDOxI6YXY7HqP69OBC7Ih/XzvmYTjcag2DRVp57eiojR47kxZde5vEnp2IZXrLaxZO/ ejoOl4fSilIefvhhAObPn8fKlSsZOHDgYd/HkS4xMRErEsJRyyS6g1EgE6yEEKI1c3vcaP/+XWRm cifsSLBe57JtG8MwsG2b8IbPsIvWY1sR3O16YKZ2QTl9eNrlYBxkFvbPzxeZ+yjzrBKG6kS8dRi7 amMT0TY7dNsYD5hmOrjQk87PUv/qr/d9g65tn/0f1/s+puuxby3njWqbaaESlKNxh2UEt3xL5ca5 ZJxxL+60bo1yTsMwSB5yLslDzgUgGiileP7LhFZ/gHvwZdXd9z+x/UVYK9/GzD4aR0Uut1x7KcOH DycUCjF48GA6duyIz+fj/x76C927dePaa3/F7X+9j759++J0OunevTurVq1i6dKlOJ0uSVQP4fU3 3qz+P9jvz62D0nYUt8fTZHE1J6WPlLRbCCHq4Ze/uo7Xv9iAu9OIfR7X2qb8y7/hG3o5RlxVQXWr soDo+k+xQ+Vo28Z0x0N6fwiVYRevxwpW4PAkYEWCGO4E3D3HYSZ3RhmHPy0gWpqLtfpDXIFyLtKZ h2xhLSXCv8nj6bQc4pTJG/58TvOkkGG6Dnpca/RuZSGLIxXcm9S1pUM5oD9W5JIXl0by6FvqN87w IOywn4IP7yZ19PXEdRlx6AMaaNeMu4gEynAPvADl8KCjIZy5XxEpzSNQUQLAmJPH8c70t0hLq/pd mTp1KjfeeCNaa7Zt20b/AUeB04fbtHl66hMMGTKEHj16NHnsR4rFixczbNgwfEedj6tD/SaBRku3 E7/tIxZ+O5+srKwmirB5SMuqEKJNymyfjo7uP5lKKQNv9mD8S17HdPvA9GL5d+PJGowzvV9V/cyi TYQ2fokzKQtXtzGYiR2xKgpwe5Mx4to1SjF4R1I2xohr8H/1N0qJkozzoPvHYWKiCGmb9wJFfBYo YU6glOfTcjCaeCUlsa8vAyVsjoZJP+66RktUAaxACdoKg9U8refpZz7Ajn/9GrsiHzO5M3rnEsYe 3Ye/PvRfEhMTqayspGfPnvsc89nnXwBV5eGuvuY6Imn9MTqOoLxoE7+8+U5CpTt5bdrLnHfeec1y D61ZQUEBJ487FW//s3G271fv4w1vCn5nBj179eHXv76OR/7+cBNE2TwkWRVCtEklpWWoA7Q6OnMm 4Oh+MtGijdjlO/AOOBfDm1yz3UzogCtryE+r/FD1xtDYItu+xaccJOlDv1QbQILp4vbiTTiUwam6 HbPIJ4LGHfOFnupHqdieYDXEHY8K7SZSkou7rqsN1YEjPp34/mdSPO9FvNlDMVxN38VrW5GqVlU7 itq9kr8+9DK9ex/4nh579J88+s9HcLlcVPr92K5kDMBM7UYktRu6ZBsXX3Ip99z3Z56e+jijR49u 8ntorR5++GHCyoc7a/BhHW+4fNB7Esr8nGikdQ8PktJVQog2qbik9IDJKoAynTjTe+PuPmafRLVm u6PpEwW17VuG68Q6TbIyMJhsZXCUTuR8O5OOeEkwXSyKkdJJjSnWU+8kw8G5rkRK5j1HMHdxo51X mU7cHQeibRt0PUtFHIbAxnnoaAh71xLY8QMnnnD8QRNVgE6dOtG5c2emTZtG/q4dqMqd+2w3kzvh GHIFG6KdOH3SuQwYNJSlS5c25W20KpFIhAULFnDaGZN49LHHMQ+jRfXnzKROfDjr40aIruVIsiqE aJNKSsv2mzgSS+xACeFIgB7Uvci/gcEQknBVv7R3szz8O1CAfQROTdAxnrKe40vnMncKZT/8q1HP G9qxHGdyRwx30y/+4O0+CnfWUUQK1qMKl/PnP93L3ffcy4IFCw563JdffskNt9zKVrpjZB2933bl 8OBol4PueyFrS9xcd8NNTXULrcqaNWvwer2MHDmSzxZtIO6E32FmH9vg89rhCtLSUikuLsaymv6P nKYgyaoQok0qLNwNjTxTuzEFN39Ne8OL2YCkbDhJVNo27wR2N2JkLa8+5bxaUi+nt9FXEDKcXlQz tKpCVZUAX+cRaCvMRRdM4aJfXM7//e0fLFq0qNb9tdbcdPNveO211zATs3Ck9z5oNQTlcOFoP5Bv 58+loKCgqW6j1Xjx5VcYfOYlZPYehOlLabTeG1fmQFat30paWhrPPPNMo5yzucmYVSFEm7Ru7RrM ng3vYmsqxq5VjNDtGnYODMbZ7Xi3cifneFNx1mPi1+xgCR+0WJKr9iyVUPWd+ik9VUBuJEj3ZhiG EYvscCU0472bnji8iam0a5fGhrWrSEhK5fTTT99vv5KSEp577nmefOJxxo4dW+eW72jBak46+RTS 09MbO/Qmt3z5cq6/8Tcs+n4hvrh4EhISSExMxNaaQMBPwB/A76+goqKCuLh4TNPEdDhwmI6aRRCi 0SiRSAQrGqWsrJSJf5xKaf4OSrYXN1qcynDgGHoVvoJ1PP/SNG644YZGO3dzkWRVCNHmFBcXU1Fe htuz/1jUWGAHy7G0TWIjvESnU9WyFdB2vZLVLXYYOwqDSGxwDPWxpx3S3msKlaaqdqqu/rqMKH0d h7fCUmunKwsw4zOa5Vrh3ZuJLHmTo4cexTPPvwjAw399iG7d9q3vmpubS06v3rhTsvCmZLJmzRqi zs51Slcd6X2YN+9f5OXl0bFjxya4i8YXDoe57tc38K/p04mk9IOuZxC2o5RYIXRZpGoGoGGi4pzY RhG6dAEVHU6iesWP6o/qn2ZlgDJBW1jFM3B5fbjjEiC681Bh1IsyHDjTc1gzdya5ublkZx/+YhIt QZJVIUSbs2bNGnzJGdgxWNLJtqNEvn+RrmY8cVbjvERnGl5+vXsdg7yJ3B5/8HqLC0JllKMxqCqH VZ8xs81lnfKTWI9lRo8kVuVuHI20GMChRNZ8xCUXXcArr76OZ/AFJK38L5dfftk++2itmT59Op7k TMLdzsDc+DF5eavxDD+9TsmqcsXhSslm/vz5TJ48uWlupBFFo1HOPmcyXy1cRaTbxJ8Nc0jY755V qAKtDJTr4L9Hdv6PxKdl0CFnIOvn/w8drd/CJIdiB8uwg6UYDpckq0II0Rp4PB60HZsTDcJbFhBn WZxkN1636EQ7g3Ki/DuQR5kvWpPo2VpTpi0SlUmltiizLZ4u34FG098VH9PlodoqT87JlH77Co6E Dvh6HofD0zQt39qKULpxId8mRvD0OgVVvIGbb7wBz89WRNq4cSN33HkXZp+zMQGr02g87YdhuOu+ 5K9luCkubrxu76ZiWRZTLriIOQtXEM48oU41dHXFdkxf2qFP7vBhVYQB8MQlYUdDDQ23RnTbfOyd y/AX7+COu/7Ascc2fNJWc5NkVQjR5pSVlWE4PcRiumruXEp/Ox6jkScRJeAg0eFiXqgMv121zOw3 4TJ2RUM4lEFI2zhR9CAOS8HiUDkdid0JaG01kfZ0HAgjLqV82X8p/eHftD/rL7iSMhv9OnaoEtPl ZuNui7iRE8j/z2+46ca39tsvLS0NpRRmYlUXvnJ6UU5vva7lsAKtYoWl62+4iU/nfEeo4+i6L/bg TsYq3YqpNepgPTnawopW1UJ1+eLQ9Vj4QVsRLP9uHAkdAIiW5GJVFuJIzCS6fDqhylLuvPNObrnl N6Smptb5vLFEklUhRJuTn58Pztgb82iH/YSCZfSkabrosqIuplXsIh4HcZhk4GIs7fBrizKipOAk DRdo8GMRjcl0HtpuqlrFkz0YT/ZgKpe/z64Zf8DXfRQpI6/CaMDyvj9n+pLJOG8qyjAI7VpLl249 ap0EtWnTJnxJ6TSk5LwVKo/5bun//Oc/vP7mvwh3OQ1VjyEoKjUHe/sCsEK1TozT4QrYvQqrYBXj fvt/ALh88fVKVq0V0ynfsY6kMbcRzlsKET+BTd/giUvk2aee5LTTJrTKCWx7k2RVCNHm5OfnYxkx 2Gro8GAogyW6jAEkENfIL9GjSCUbLx1x49ircmE8DjJ+1oqaplwU68brimx8bTthBYgbcBbODgMo mfc87vSexPca06jnV9XJb6R0O0MGD6p1n5envYrlPbwJX1przNyvSPA66dGjx2HH2ZQKCwu59tc3 8PGnswl1GIVR73J31ROqDrAAib3xfySlpTL67qfpPKiqe97p8aGtaJ2vYFhVv6eB+U8QDgVxeeLw eL089sjfueyyS+sZb2ySZFUI0ebs3LmLkHbFXCe3YRiYOeP5cet8iiIlnGY1rHRVbTpTvy5aEdtc 7XoQ1/N4yn6YjiezP46Exm9Bs8rzcTr37z5ev349L7zwIvS78LAGrehQGUbZVlZv24LPF3s9HQCn nTmJH7eUYXU5HcN01vt4XbAKw5OEOlAlDjvKcZfdUpOoArjjEtB23ZLVaMk2fKbN7mgU0zRZtGgR oVCIUaNG1TvWWCaLAggh2pzc7XmoGBwGAODOGoJKzKpZhUrsTyHtqnvz9T0dT9Zgds64k+LvXm/U c1vBcoLrPuO+u/+w37aXXn4ZO6XXIWe618auLMTcPpfhw0dgWRZ/+ctDZGRmcdwJo9m1a1djhN4o Nm/ahOWIh8OsPqFKN6FSc2rdpqNB7GgQb2LKPo9XjVk9eLKqbQsdCRLeuZyTThpbU7d12LBhR1yi CpKsCiHaoO15Ow7rDba5OMty6WTF7lKwLU0S1X0pZRA36DwSh19KxdovqVg3p9HOHdyxgqOPHUXP nj3329a1SxdcRv3HNWutcW77nN//6kL+8/a/OPe8C3jwiWmUZZzID5tK+d3vb2uM0BvF3K+/Qu1a DMGSwzpeKwccoJXULt5AUkYmmb33HWLhjktE17JKmY4E0dpGa421cTblc/6Or2IDd91x+2HF1ppI siqEaHPyduyM2ZZVgGiwgg4xN0ghtkjCui+lFJ6OA0kYdC5li/aftX+47EAJOT2617qte/fumJHy ep9TV+bjdSruvfdeFi1axLff/4DuNg4zoQMq61jefvvfRKN1H7PZlCorK3H5EuFwFxCJy0D5a28p Niq203Xo8fs97vbFw89K69nBMko+f4jA2tlEvnuKxPB21q5ZzYZ1axgwYMDhxdaKSLIqhGhTtNZs 2rgeoy61D1uIRuOUl+cDk0z1gNzt+2KFG6+gvOGKY3vejlq3fffdd0Sc9U/idDSMw2Hyv//9j0su vZxIh2NqZtgrpxdPXBIbNmxoUNyNJT8/H6cv6eBlpw5CR/zVS2z87HF/IVb5LoZMumy/ba64RKhu Qa2xbianjBtPplnAHbf+htytm+nevTspKSn7HX8kkglWQog2JS8vD8u2ccbwMABxKLG38lhtym0L bVuE8tc02zVtfwmgsawI5mFMCNrPju+ZfOm1tW6aO/87Iq6UeicSRlI2u4O7mXzBL7DaDcCRtu8Q AzMujRUrVtC7d+/DDLpx7Nixg3feeYeG/LwZ7fpgbfgEFSxFeZJ+2rBzEb2OO5XEjP3ryxqGUbVk qx0F04lVkU+oZAfXXftgq1jlqylIsiqEaFPee+89XGndq94MRCvVOppWHw3ko4HKxY3XLV83ivDO 1XizBjboLDoapjx3BVOmnF/r9klnnsY3S54kSv26oZVSmB0GozsMrrX/IGAksHz5Cs4999zDiPrA tNasWbOGQCCAw+HA4/HQrVs3HI79U6EtW7Yw8rgTKIr4iMZ1Pex+DiMuAzwJ6Mr8fZJVy7+bgROm HPhAZVZVBDAcRLfO5dKLp3DGGWccZhStnySrQog25fkXXyGSlEMjtDmJFqNaRbqa5nDjGX8ZWSc0 b2vY4kd/ReWa2Q1OVkMF6+iR04ekpKRat0+ePJnf3PI7jOwIqjFacavZpoe8HTsb5Vxaaz7++GP+ 9e+3mTnzQ0LhKA6XF61tbCtCOFDBH//wR0aMGFbV5e90suzH5Ux96mmCib2hY98GD8hRaPReK15p 20JHw2T06HvAYwzTgVW6HeXPp6M3yIMPPrjfUrdtiSSrQog2w+/3s2L5MryjxrZ0KKJBWkOqCmFD 4WzE8aN1lTXmQtb9+2Fs227QqlaR4m0cc/TwA25v164dw4aP4Pv8jTjSG6/LXjk85G7Pa5Rz7d69 mzPPPBPVYRiq3XHgTiK8V6+KDlfwtydfQNnPgDsRhSasnUQ7jEZ5G2k8qNag9lqeNeJHmU4crgMn n8dM+RUL/vUMXl8cH3w3j4yMw1t44UghI/iFEG3GihUriE/pUK/lEkVsCmqbUju6z0eZHaXcjlJh W1RWf/hti4BtEdQ2QW0TaoSPfSa+HMQIy2T7nLeb+JnYX/GKubgyBzR4+VXl9FFaevDZ/lddcSke /9YGXefnjMQs5sz5Etu2G3yutLQ0nC43KjUH5Uneb6KUcsUT6jiWYPY4gunHEEg/FitjWOMlqoDW NuzVsooVxqhl6MHe+o+bjLYtMjIy6NOnT6PF0lrJK7YQos2YM+drbG/rXiNbQBCLjwNFfBIs2udx XfPPvm2ver9HDp8FHOdJ4gpfe3x7JyC12GSF6DByUqNctz6ccUnowuIGn8cRl8qatQsPus+ZZ57J DTfdgtmlwZerYXiSwHCxcuXKBpdlUkrRu08/1uxeh53WQiWetN5nUQHl34XpPHgdZUMpsnsP4LIp ZzV1dK2CJKtCiDbjuRdeJprUX174WjkPJr2IYzi1lE1q4nlzJTrMp5EibipezyRfOxaGywlpjbu6 FbOTw8257jTSTSe7XQ6S0jo2bUC18LTvCiu/a/B53B36sHneM2zYsIEePXrUuk9aWhrhkB+P1odd 3unntNaEAhV06NChUc732rSXGHn8aKzU/o0WY31obe+73GrlDvqMPr3Wfe1olFl/v5WN338FWnPb bd80U5SxTV6zhRBtxtEjhrF97npIq73IuRCHkqxcTLE7sEn7+SxUilsb5Fg+otUttxsjQW73b2CU J5mCSCXd+h7T7DGm9T+OjTOeouCj+0kaeTWu5P3LI9WFMhzEdezDwoULD5isOhyOqqU+bQvMhqcU dmUhdmU+8QkJtGvXrsHn01rz2BNPopVJVet6CySrtoW94RMspVAYaG2z9ON3WP3VLAzTgel04nC6 MF1ughWlBPxhHDkTMbd8SjAYJD4+vtljjjWSrAoh2ozf3nIzMz6aCJzY0qGIVq6b8tHNql4Fba/8 ZxCJ7CbMx6EClNNB+dbVuAc279ATd2Iaw297hdzP32DnzLvJPO9xTM9hJjyRAOnpB46/vLy8qtXw EEMi6kLbFsElrwMwfELjlGn68MMP+fd/ZhDpMmHf1s1mYttRtBXB0efsqklWtgXaQttRona0qpZq 9YeORsGdiNGhJzjc2LaFyyXLLoMkq0KINsSyLEyHm/qvZi5E3aUpF+N1O94O72T9e4+TNuD4Zu9+ 9qR2oOd5v8efv5Xt06+vnpGuqMqsVXWZYVXz2IHi03YUn+/ASxNv2rQJX2I7Io1wf3Z5HukZHbj2 2mu46cYbG3Yu2+bRxx7j7nvuI5RxLIbZMkmfLtqA4Y5Hufct/3WoZ8soWMqQ4UeTmJjYdMG1IpKs CiHaDJfLhR0Nt3QYog1IV24u1x15PVBMIH8rvvaNOAOpHnpdeCeLHvklOqU3Zno/0HZV4oqu+qxt QFfNWK+lyoFeP/OgK0l9/fXX2N6GL12stYaidVx11ZX8+f77G3Su3Nxcplx4MctWbyLcaRyGu+US Pl26BTOxfsMwtNaEdyzhvUWNU77rSCClq4QQbUZOTg6VpQXoRiiJI8ShxCkniYaD4rXft1gMntQO dDvjVxilG9CGA+X0oVxxKFc8yp2A8iShPMkY3lQMX9o+H8qbisPpori49soCWmueef4lQnGdGxyn uXMhneIj3PKbmw/7HLZt88wzz9KpUye+31RJKPtkVAsmqgBGpAztq/9EMcMwGXvyeNauXdsEUbU+ kqwKIdoMn89HSlo77Mr8lg5FtBHZQShZNb9FY0gfNJaEzK6w5j/1Ok4pBam9eej//lbr9unTp7M5 dxdmaiNMWCxay8wZ7x52BYAff/yRoSOO5a6HHgfATu3bImNU92bbUaxgBcqTjLajda7Pq5RC9Z3C uiKTX99w+Mn7kUTpuj57QghxBHjiiSf53e13YvjSarpD9T7doft2j6KMqjc9ZaAME5RZ9dkwAGO/ sX57XlKVYfDTmED2/bqmG7aq61XvuVb1daOFG8kwfTj2Of6ncW57X1FpavbZ87ilbUp1BKMOb9YK vV9NUg2ErSgJmJxD5iHP0dzeZyed8TBc1VK6KsYU6zDTHYX0vvgPpB81usXi0Foz984JGL3OxvDU vbVRhytxbPqAspJiHD8rZN9v4CA2Wl0bnKzawVLs5W/hr6yoqixQ19i0Zvbs2dzzpwdYtuxHEoZf QGK/cax7egpOXxKqCWf+2772qI4Hr/Rg21GsH9+sDrb6dxyoeS1QRtVn2wbTgWG6MBMyIfu4qkNC 5Xi3z6Zod8F+z31b07bvXgjR5px99lncetvtRF2p/PSmUT3xRFUnn8qo+R5to7WFrp7Fi21XzebV Vq1j/KgsxONRZA85Ea3tqkTU/ikh1tpGGQ6UaaCUiWFUJcHKNFGGgWGYBMuPwp1Y/War9U8tMlpX pZa6OsHck1iz7z67N61Gb1jFELtuM8DVXh9Uv8WvoYIoMlyioVKUi2OicSz+4KkWTVbRNrYdxXDU b6KRcsXh9CUzf/58TjjhhJrHZ86cyZat2zEGjGlYWNEg5saPeODBB+ucqAYCAR597DGefe4FiktK CESg80VPYLrjAOh09v1YoYoGxXUwdiTEztmPYWgwsw6SsFa/VjiHXI1SqnpFLnuvCgAW2FHsvIXY oQpo14vIjsU4q5NVHB4sw8XLL7/MNddcA1RPEq1HQn+kkGRVCNGm5OfnYzrd6IwBKIe70c8fzVtE YorBMVfe0ejnrqsVM19lx6b15Fhxh32OnSpMsQ41YlRtV18SmF+Six0N1ztZbCzb/vcqDpcXw3Hg 9egPJOBM5/U33uCEE07Asizuv/9+/vznBzA8CTjWfHDQY7W2wRmPkTkYbUWqSjRZEbAjYEWxijdx 0ojB/P73v6tTLLNnz+bqa64lrWsvJt72fxRu38K7Tz1Sk6gCeDv2q/c91pfhcLHj039iJ2RhJGbX vlPUD4ajpvfFqO6N4efLPXtT0Fqj0vpC3vfYlfkYcRko00kosRe333Enubnb+dvf/obT6aCsrKxp by4GSbIqhGhThgwZwpgTj+fTZesxM/q3dDiiDdhIJb60ji2WqGqt2fbV26guJx/W8ZZWPPfss2xZ u5ot27aRoCyuGzsUh3HoYSbbikp574cVOEo2Y5gmpsOB6XBiOpw4XU4cyW4WLlrEGRMn8cjfH8bh cNS6AIHWmtvvuJNpr73OGTfdQ79RJwFQuH3rYd1TQ8V3PwZPSkdCoVLgAMlqxI8ynXU/aeWuqt6X rV9jdz4RZ8VmdFIvyh1e7r//TwDcdts9DQ++FZJkVQjRphiGwTlnT+LrpY/RZEWsZCaA2EsKToKl hVTkbSC+Y+0rQTUFbVmUb1/LxveeQJkOiMs4zBNBx5REruqXTvyQLI7tkV3nurFbd5cye+Vm7vl4 yQH3iYRCzHv3VYYMHUYoGOCdd97hnHPOobCwkBdfeoldu/LJy8vj26XLuf7p/xKXnHp499HI3Gmd iWxfBekH+KM34kfVo76rO5BLzuChLF22FHPTJxxz3Cjmzf8Q0zCYeO553Hj9dYwdO7aRom9dJFkV QrQ5OTk5mNGmG9OmJVsVe8lUHrpHHax65W5G3PVmk19Pa82K52+neMMSTKcb29ceo/fk6m7ow9M5 LZlx/eufaNclpXW63Yy+8Bq6Dz6WQHkJV/7yVzz3wot88803DDj+FJL/P3v3HR9VlTZw/HfuvVPS Qyoh9K4UaYJKEQQL2Dtr7w17XXXVtbvq7qtrQextwYKigCLFAigoCChFeq8ppGcy5d573j8Seklm MpNMyPnuJ5swc+85ZyYT55lzz3me7Nb4RQLXvPgB7riE4AcfIakDr6ds3B2YS8eitTsNLWbfIFqa XkQ1s+nSNpEBDzJQgfBKOnUcSGZmBtdeczUXXnghBQUFxMXF4XYHv3zjSKKCVUVRGp2//voLU4+e N73wU8FytOkk49hcRwUpKvK3ULxhKfpRF6I548KSozLUAlXBVO5q0bkbALeM/oJV82dzzw2PRs0s 6sHorjgyTryB7d/9G2vNd9DmJLT4vVJvWX52hetS2hj5i3HYHiwMArYgRpbiKdiG5feiaRqnnzOS MaNfIzl5T5aL1NTaF1w4EqhgVVGURmfWz3Pw6olEbE9tfWcEVLFq1NEB2/RXbqSJcOlVgajsp6IQ nKFvsguXYK80NMlsRr8zLo7QaMJH2hYF88ahZ3YBw425bjoi/WjI7FH5mMt3YJXvRBSt+iFKAAAg AElEQVRtxFm6lh6dmjPq5rsoLCxk2bJlaJrOM888rUqq1oAKVhVFaXRiY2Mq08ZEgBD7Zy5tuIox mcfBqxftzURiInGgsSs02fNVlXeWPblg98kTu9dPu+7bde7eYc7ebRYTYAMSj6zZ77AFMbQRh65v Xxea4cI2S6jI20xsRu0rPh1OTHpzmp94IdvnTYOkQ2z+CUotX89Hxp/DAXb+8h5mWSHOXmejaQZW Wgf8f32FXbgOklsjy3LQHS46xuYy8uqrueP22wkEAnz00ceMHj0agOuvv45jjjmmnh9J9FPBqqIo jY7T4ahK0h0h9T2zGgZZ0kWhbpJP9QFhqe3H79Tpeuxxu3PFappWmUO2KniXVblmd/1cmRuWqly0 e4ox7J55FAIhRFUbGkITCCpvS6Gqyk8NZih3bNvCgo2baFNe++ekNjShEWe4KNu6OuLBKlBZYyKM afFDnQ2O8CRyvbH9FRT8+S3u7iPRqlJR6XHpuHpfi/fPsYiABxGTCJaXlNQUnn7qaR5//Al0XceV nI2W3Q9762+8MeZNRr/+Wj0/muinglVFURoVKSVfT5yMSOhV30OJaq2JobUVU6Njl1PKxswkXvxg fIRHFbxpX33GW4//o76HAYAfiSs5xB35QajI38qWWePRWgys/uAIq/ywcgTSdDRnDNJXAjTbc7Om odl+ZHx7RKsTkaaXuRu2IVqfinAnYxVvRHjWk2Fv5c2JEznzzDPr7SE0JPVbOFdRFKWOzZ49m3Jv ABGbFsFe6vftua6XIRyRwUgEmFagMoVUGNmmid9Tgrdgx+7bClfOwxETj5bcKmz9hLzBKmwjODgp 7Xp5AZYsm4bmcOPI6LzP7ebONZjeUsSuNGG6CxGXgSjdgnPdRLqnenj71RfYtHGdClSDoGZWFUVp VF59/Q0qYluhRez65BF63bM6R+r13jBq6hesHHMnDsPYvURC07TKMr+atldp3X2XRez6sm0by7Z3 f7csG1vK3cn5044ZDLpB3pLZkH5M5DYQBi1y0eQ3o/+Fbdd9KGP5PdgBH7bfg+asXA8tTS9y/Qz6 9u3Hn0t/wqFrmKYfh2Fw1plnct+976j1qSFSwaqiKI2Gx+Nh0sSJiPZnR7SfI2DJqhIBJ8sUxskc xtx8Pm0yUwmYFgHLwm9aBEwLTRPomoZe9d2oWverawJD13A5DNwOA6fDwGUYuJ0GDl1HCMHKrbn0 f+C/VPgDGF0uRnOFMTVbLV7QQoiI/j3EJzXBV1D35UeTjzmD0hU/EMj9C1fzPgDY5flI26Jrl6O4 567b6dOnD06nk+zs7IhngDjSqWBVUZRGQ9d1TDMQVFWZUETD21JdjyEaHnO0ixE66ZaDKQtXMPqm C8LadqfsDB44fyiPj/sOHOFPVxXqVi1byghexYCYxGSoh2BVd8aS3OVUdi74Aju1PVpMMnpSc0TX v/HpFxO55uqraNu2bZ2P60il1qwqitJouFwuunXvgZ73Z9Xl1ghRU6vKIZxgJfH5z3+wZnt+2Nt2 6BruxLRaVao6uNBfz7YtI/ZJxjIDbFm1NDKN10BSz3NI7DSIwIqvdt+mxabgcMdF9r8vjZAKVhVF aVSmT/2W9qkSI+/QtcprS9bzJb96eaNUlzlrJFU4aWa5uGn0+LD/nkzbxpKRWaka6mVsKcOZQGtf K+fNRkAEgvOakQEvgeIdoO17pcZbkkenTp3qZUxHKrUMQFGURiU1NZUfZkyjXYdOBOJboIU9K4BU cVsUWbtiGbklBYymoL6Hspu0YMd6P+9/P4+rh/ULW7vpifHEaAEqwtZi7dkycn8PGxbPJ9m0KI5M 84dlB7xs+uQuJODoctHu22XAgxCQlhbJbCONjwpWFUVpdNLT03npPy9yx/2P4mt5WgQ2PzSuaFUS +prGSPOUl9HOSOBkq0l9D2Uf630e7nt/Ei9Nms2/rjyD03p1rv6kagzu2g5fxdfYtl1vs437s2Xl qyMStq5aSpbhrLNgVUqb4qXTAChfNwfb9OLufd0+x9gVhbRs1VZtqAozFawqitIoXX311dxz3wP4 /GUQzp3T0aBelgHUfZc1JQBDREfwtksHEU8bfywf7dzB+pzwzPq2ykghJT6WnJ0rIP3osLS5S6i/ XntXRbIws22bbWtXcoo7hiVlBeRO//c+91u+cnxFOw7et5T4y3biTAhu9tPyVWAFvCBtREIz3N0u PXBcpTs4pm/XoNpVqqeCVUVRGiUhBL169Wbmmlz0MAarUkq1fjOaCI1ojaRXUobb7eCaYX3D1uYz l49g1Jgv8SVko7mTwtRq6JfyI7UMYPq7L2GYJpdkZOO3bcztf+1z/2JPGeWuJoiUDgBIXwmyYieY FciKyg8HvsJtiJhUtLSjqulNIr1FyPJipG1juGJxdz3vwKOsAHren9x/74theYzKHipYVRSl0Wrd qiUzly8Oe7uN8RJgtD7maC73uVbz0q1VNk4jfJuiLuzfg/lrtvDBT9/hbXcumhHZNG3Vse3wPfu7 NqQt+3k6P4//gP9mtCTBcHBbZssDjn1m+3ryY5KRidnYRRuQBSuJ0QQev5dU3eC57PZ8VpjL9LIi RJO2CO0wv4O8pQTylqG5EpFWOXr8gf0BWDv+ZPDAAfTu3Tssj1fZI7quiyiKotShX+fNR8Smhr3d aF2/GSmSaC+5Gp2jO8VO4fc1m/h+8eqwtvvMZcM5oWM27nVfYZvesLRZmzyr4fp7+PF/b/B/15zB J0/fy6jENFq5Yg7dL5XBrdzwPTG5fzA0LoEvWx3F/Rmt2GmZPFO8g9syWuAwDGTxxkNmZrCLNhDY Oh8AzRWPcMRhFm7Gn7t83+N8JWi5f/DvF54Ly2NV9qWCVUVRGq2sppnIgKe+h3FEiNaZ1UgmpK8t t2bQvMLg6c9nUO71h61dQ9f57L4rGNqlFbEbvql1e66KHRzTIiOkcyv3V9X+dzDhP48w/f1XaJW7 g3uTMzgl6fAfMk0pMXeuIcEs59OWnbk3owUAOaafzl26kdShI6PyNuIyDOwtcxA75h849opCrA0/ AqC3HoxwxkF8Jg6nE3fOXMxNc5ABD7a3GJaP57FH/8HRR4d3rbBSSQWriqI0WuedcxYx/rwwtxq5 JOhBjeGI7u/IMYhU1m/Np+0NT5JTVBq2dh2Gzqs3nofXU4Jt27VqS/cXc/oxHUI612ea2JbF+w/d xJf/eTSkseRv2cjv303g303b8HizdgxKSKn2nL6xifSLS+TD5h0x9sqM8KtZwTG9juWdzyaS1bUb FpLRH47DzF99wOyqXbIFAHfTLmjJbZCaAZaJOyGV1199hbNPaIv554dYa6dy26ibuP++e4N+bErN qGBVUZRG6/jjjwdPbtjbNf2+sLcZrLovt1rvEfpBRfOaVQCnpjGyIh1D09lZWh7WtpvExaBpGrJ4 Y+XsX4hsZyJTl64N6dwJC1YgAxapCxaxfPJ4Jr36dFDnT3v3JWZ8+CqpMXF0jql5GdkRyWk8ntUG 516B6gf528g1dG69/2HcMTGMGfsFn0z5kaO790A3dOwVX2Dt+GPP1RY7QFZWFnpVE7ZwgB3Ar8Wx 7K/lfDL2Y/7x0IPgyee+e+8J6nEpwVHBqqIojVYgEMAy/UgzfMGlltyGnetXsnTyh2FrM9qF6Upv ZAgtCma6ayACYxRC0CKtCdb679FXT8C5ZkJIa1h9ie2Z9MeqkMbQOi2ZZKeTcxypXOlqyvwJH+Mp KarRubkb1/Lj2DdZOO0rYmuRju338mJmlRYyoaKEV94fR0pVwn6ny0X7Tp1JTUtn0bptnHLqydg7 FuHa8TMADs2if//+GIGqQF9zIKSJP6kzL7/8X3bs2MFtt93KlG+/ITU1/GvflT1UsKooSqPVt29f rrj8Upw5c8JW+lKLTcVofyp/fD6ald+PD0ubDUKU5THdW4Mo0y4js+73s/uv4MsHr2bl6AfxlhdC WU7wjRguSitq/oFu085iFm/OYc7qzbw9cyGltgVAK91Nhu7i+fNO4KXLTqE4PwdPaQkAfq+HT5+9 n9mfv7e7nZmfvEVXdywXN8ngydRmwY+byhK0zxTu4Nmcjdz+93/Q89iDVwzTNI0XRr+D4XQTcGci bRNRvIELLrgA019VE0xzIJAIVwJ2cnvatWuPEIIhQ4aENDal5lTqKkVRGrX/vvR//PJLP1bsXIVI C089by2+KUbbYcz/8N843LG07T8iLO1Gq2ieWRVCNIyZ1Qjp2Cydjs3SWbRuKzEuF77kVkG3EVuw mJEn1DzR/YvfzeWTX5dgCI2exDLU2DPreJurGTtsP7NzC3jx4sH4LRO34UB3xyDLy9k4bzYDL7wa AE030CRcnZYd1HhN26bYNkk1nIwvzCUjqxkPPf08J5x40mHPm/7NREzLwkjtCkgCfi/bt2/HjssC QOiOylq5gJl2DK6yTWzevJkuXboENT4leNH7UVhRFKUOOJ1O3n/3bZwFi7HLw7d+VUtsjtF6CHPe fJJN838MW7vRK4ojwgYwsxrpIS7dtL0y2AqSbdv4PcXcNKRmuUNtW5JbUk5nYnjS2YoL3Jm0NWJ3 328Ijea6m5GOdM4zUnk4tjU3OJpykt/JTe5syooKeO/eqynOz2HhtK/oHxt8wY5X8jZz7bY1rPdV MM32cuWNo+g/eOhhZ66Liwq5b9SNODK7ITQdoRm4YhL49NNPkbtCJc0A28T2lyOtAIY7gby8cG/Q VA5GBauKojR6vXv35tNxH+PY8iPSF74d2VpyK/SWA5n92sNsW/Jr2NqtTriWNARFi85gVdOie4PV 3iL1DEopeWHCj5TFtw/6XGvLr7RKb0J6Qs02N/3r21+Yt3ozpzlT0bRDhxhCCPo4EmmiOWipuznR 2YRmuov7Y1qx9vc5/OfqEaTHxHFGcnrQY16lQYs27bgrdwM+w+D08y6s9py5M3/EMv1o5VuxizYC YCW04tdff8UfsJCefIQzHivgxVo+HmvpWIpzNrB4cfiLiigHUsGqoigKcMYZZ3DP3XfhLAjvm4+e 0g69+XH8+O97yF31Z1jbPry6Cx5lnfYWHBHFa2n3FbmQutjjZVNuIVpmj6DOs7YtxF2ymv+MPKVG x781cyGvTv+NM2UTsnRXKEMlSTOI13TOc8TwelqLoM9fVlHGdl8FL7/zMeOn/8wX3/9CXHz1s7Pd e/UhITEJzV+KnrcQu3gTVnxl/07PZsxVk5D+MhzdLsNxzJUY3S/D5Y7hsssuC3qMSvAayl+xoihK xN15x+0ECjYAIG0Lq2BtWGYptdRO6M16M+PZUezcsKLW7VVL1m1NKQcCnyeaiys0jLnVSBVWMHQN IUAWrQvqPLdnI6d2bccJHQ4dNE5fupZfVm3CFzB5ZPwPXKCl0cMR/KX7vXmlTe/YRNyHmZk9lH+V 5nHTXQ/Qqm072rTvQHpGZo3Oa9aiJb+u2MBzr72FsH3EF/+JXD8dgO+nTWHUqFG4SvZkRJClW+nW vQcpKdXnfFVqTwWriqIoVSrfeCTS9GIXrq2sXuMrCUvbWnoXtMzuTH3iekq2bwpLm4dXd3OdDgQB X/3nlj2oaN35VYfi3S4+uutSXNvnYBXULGC1bZuAp4hbhh57wAc2KSWlXh//m7uEv43+goe/+IEf lq8n3uWsdaAK4BQaG3zBp9ha76ug2OflqptuDbnvYcPPYMovC7n5znuJjXEDkJWVhWlLpCsJKSV2 eS5awUouuuDckPtRgqOCVUVRlCpCCK648kqcW76HksqAUoYpWAXQMo9BT+3At49dibe4IGztKocm REOZV41sydozju3C/117DsbW2Zg5NVjqUp6D37RYn1fI0Q++xiVvfMnHcxezYns+Q//1IX3/+RYv T/uV7nochfllXDbmSzrZoV36319/RxKfFwe3ccm2bV4o3sGw4WfgcAS/kWxvmVnNuPz6mzn34r/R vHkLSkpKGHbSEMzCTVjLxmGvn06gZDvnnquC1bqiUlcpiqLs5c03RtO5Y0dmzprJooUW28MYrAKQ 1Rdh+pj04EjO/s9XON2x1Z+j1IKaWd3l0hN78dOytXy3YCll3nxEq0OncpLeysT9j33+I4bfYt1f W3l45UYCtk176SbBEOgeL8McaWTpLrwxFm5ND8s4TzASme0p4t28rVyTXrO0VW/kbyWQ3ITHnn8p LGMAeOCJ5xCaziuvvsrSJUtwOwR9h5xMztYtnD7iNNq3D37DmhIaNbOqKIqyFyEE99xzN+3btSe3 JICITQt7+7QYgKUn8M2DI7FNM6ztK/vSGsgygLrYpCaE4O1RF/Hzc7eRbOYit8w59MGBMmJ1J/eJ ZtztasGN7mxG6Vl0lm6udGZys5HFDe7s3RupwhWoAriFzvmudL4rLcS27RqdM0sGePjpF2q0mSoY m9atZtjQoUyePBndMOh0dFc6tG/Ls888E9Z+lMNTwaqiKMpBSMCKb4EWX7MNGsEQQkO0Pgmv1+bb Ry+v8RtyjUloOAmbIq9BPBN1OMjWGSk8dMEw3P5DX2oXnjx6iph9bkvXnFzuzjpsSqpw6azHEo/O lRuXM6mw+iUBZZ5yeh13fNjHseC3XxkwYACvv/46J484i03r1nD6iBERXbKhHEgFq4qiKAfRNDMD lyyPWPtCM9DanUpJfj4znrk5Ah2oN1NoSKmr6lZGUjyGDBxwu7RN7MJ12AEvq6i/TXOG0LjalUme 6WdMwfaDHuO3bR7L2cBpqxcRGxePy+UO+zh69e3HzJkz+e67qQw+dQSzf5jB8OHDw96Pcnjqr1hR FOUgrr/+esyCdUjLH7E+hO5Ebz+CvPUrmfXfByLWT6PWgGL2upyt69O+BaVlJQfO6m/5BW3zL/QK BLjBGf6rCjXlsU1Ga4X06nscusPBRl8FRWaA27euZmVFOZOK8rg8Zx3e9u0464KRfDHjZwwjvNtw pJTExMazePFiFi9ZzNbNm+h3XD+aNWsW1n6U6qlgVVEU5SB250+0rYj2IxyxGB3OYPOiX5j3wQsR 7auxahDLAOrYX1tycBpVu+YLViI3fI/t2Yn0l9MTF39zNyVFc9bL2Ob4i3hey6f3iYN5/8tvufLG UdyzczM35W3Eap7NXdvWMN6wue/J5/jf5Bk8+8oYmjUPvoBAdTZvXM+CX3/hxhtvRNd1pk+awNVX XRX2fpTqqWwAiqIoh3DyKacyfeFfkFmzuuihEq4E9A6ns+rHCcSlNaXL6ZdHtL/GpCGtLazLoZ7U rT2pCbFs3TIHs2A1nYWLFUWTEM44NovIfkA7nAneXJbEC/75r/9y6pnnIoTgjgcfpcex/SjIz+Os C/9GYcFOUtPSI/q7/XLcR0yb9BWBQICcnByaJDehaUYa55xzTsT6VA5NBauKoiiH8NaY0Rzb73jy N89CxGdiN+kUsb60mBSMtiez6LPXiU9vRqu+Q0Nuy1tayHaznI/FvmsO5a45xr2/CfaZejxwFnLv W8Tuq+qi6v8EAlPa2Dlwfv9uhx2XEAJN19E0HV3XCe0avaxMzG7bSGkjpUTaEiltKkpKCXi9CFE5 TiEEAcvCsi0+1vxVj0Qi930a9twewmjCRtbthU5D13nuitO57tVP0Qyd653ZbLd8TPLnc4mrfi7/ rzLL+d3h5/GnX+G0s87b574Th526++e09IyIj2Xbls3M/nEGAFOmTOGLL8bTq1evBvXh50iiglVF UZRDyMrK4tc5PzN27FiefPpZvO50tJjIlVfUEpqhtxzIz68/QmyTdNI7dA+pHVd8MlkON+c5U4HK gHKfIPMQ33cdtev9WNsvmLSrAj27KrCzqQz0lgfK+EVYBNqddfiBSRtp22CbUJsMCEKAplWOWmgg BEIIzAXjOMaKoyUx7Co4a2FTjAn2nsez72M+8PHXh19EmPP51sA5x3Vj5dZc3p5cmcIqS3dxQ0zN 8pqG2++BEr5xeDhtxLmccd6F9TKGvd1630MYhoOx745h1tzf+L+XXmLF8uVkZ9fP89PYqWBVURTl MJo3b87999/P8pWr+Oi7xRDBYBVAT2mHZnqY/uwoznx2LAmZwa/FE0IQpxl0dcRHYIQHKpUmuhbA ndW1Tvo7lMCfXxDn00hh37WW9bdNqObmUFov/fpMkxifDfttpDdtm3JskrTIhgm2bTM7UMwPjgqu u/1errj+loj2F4yb7rqPm+66D4Dbr/4bc+bM4cIL6z+QboxUsKooilKNv/76i/fffQejw+l10p/I 6IYeKOfbR6/i3P9MwBmXWCf9Ko3LxHnL+PTnP8g8SCgwI1DI9EABsZqBAGy5aza9ahkGABINDV0I dCEwhIYhBBoCE4kOOITAaQtcEhxCQ0dUHQPbMSlyaZQHyslMa4ZlWnz8zhvouo4QGppW+SU0DV3T cMfEkpCYSFxCAgkJicTExuFyu3G7Y3DFuDF0o/JYXa88T4jKZSL7f9n2vv/mELdLCbIyoG7X8Shm zpqlgtV6ooJVRVGUauTn5wMgIlAg4JCa9UNuLGfyg5dwzn++QgtzWp4jkekpYb6AP/XQZymlhDOt DNx1nCzHsm1ueeMLYl3O3WuBgd3rb3fdtmuJxv5LNnatpRRir3vFXktAhCAjKY7nLj8dh6Hz09I1 XPXyWGzLIk/qrPFu2me5SIVtkqW7GUYKQoCOqPra87OGwI9d+SVl1XebABInGiYSr7TwSZsKYWMJ gSUkASqDXs2CJh6LFC0GmVfMhJf+r3LQmgBRVdZCVP5cZPtJTE7C4XDgDwTw+/2YpollWpiWiWWa uwPMQxXZ2PMcVba5a1HI7mWoYs9zJSqfvD0LRwRkZmTw6iuv1ObXrIRI/ddPURSlGunp6SSmZOKt wwTzQghoORjfmm+Y+sS1DH/igzrru6EypcUwZwqpmiPkNsZ5cyglgBtXGEdWPdtvUbAiB0sY+238 2nuLm9zv3wc/bv+tYrv+Nd3h54w+RzOkW3t++HM1dsDidC0dTRO7Z0t3rUeWQpKCkyzt8M+Da1dQ H8py3/0rtO4a6H7JCCqkxTvWVt544SmGDxtSo6Z3BazhqrZVUlpKqx4nYFlW1eZApS6pYFVRFKUa zZs3x/JXYJdsQUtsXmf9Ck1Ha3sKBSu/YvYrDzHwNlWP/HAMTeMYI6FWwepnIrdeErO6NYOjtXi6 6JFZZ2zbNq+xnaUbtzOkW3t0XaOpcNFRj4tIf+HilRZvmlto2bI5QwbUvJxquEvCxsbE0DQjnVWr VnHUUUeFtW2leipYVRRFqUZCQgLfTfmGU04bgekagXAl1FnfwnBjtB/BxgVfkfDFGHqcf+MBx9im yYJxL1G0fgVC2rjTm5Es6m72J2qS7kfNQILnkIISaUas/a+tfDIykrj25H6YlsX/Zi6gnYiJWH+1 5ZUWP4li8mwf2dlZLJv3U52PQUrJnHm/89W3U3l5zLsYhsGyZctUsFoPVLCqKIpSAwMGDOD+++7l xdEf4W92Yp3mWxSuRIz2p7F04vskZbWmzQmn7nP/zvV/sWbap5zmTmWxWc6GNUsYFadS7DQkbhuK 9cgk4y+zTVbpXs5v15E3p85l7Y58PB4/fUXk85UGa7Es5Tszn1ih06Z9G45t14bbb7y2zsfx4Sfj eejp58nNy6d37968++679OrVi/bt29f5WBQVrCqKotTYQw/+nffe/4BtRRsQTdrUad9aXAZGqxOZ 8+bjJDZrRWrrzrvvi03NRCA4y53GEDuZDZaXrkZ0X95V9pWIg6L9F2uGUaZ0MHvuCmbPXcFO20cL 04XmiK6K6zukj++tAmJdbq678hJefOIf9TaWV9/5kNy8yo2VhoD77r2XpKQkPh9fWRxAqVvR9UpV FEWJYk6nk48+eA9H/gKkHblLtoeiNWmD3vQYpj99E96Sot23xySnYyExpSRBM+jmiFeVdhqYZAyK bH9E2o7XDK7Ss7haa8rJJGOaNm216FkCYEnJOtvDRDuPKy69mKKNf9VroArw69Sv8G1fi3/HOmZP /pxvP/2Arp078Msvv9TruBorFawqiqIEYdCgQXTq0AFyF1fmYaxjIuMYiG3Kt49cjm1WBsyapmEI DY+sv5ru0aKhhuipOCmpgw9As2Ux2cJFV73u1l0fjk/ajJM5TDWKGTpiGK89/2R9Dwlgd57WXXp2 68KxPbuzZs2aehxV46WCVUVRlCB98fknZDmLsIvW13nfQghEy4H4fCYznhu1+3aHplOugtUGKw0n XmlhR/ADULE02RDw0Fur/yITS+0y3rG3McbaTHKbZuSsXcy4t18L+y7+cHlv7Kc89/Johg8fXt9D aZSi81WhKIoSxdq2bcu4/32Etf4H7MJ6CFg1A63tKeStW868D14AwBkbx1bLV+dj2WtU9dh3w2eg 4UCjNILrVida+TTX3LTRYiPWR00soJTvZQH3/+NuPv3oLRbOmooRxUUvVq1dx0NPvcCvv/7Kaaed Vt/DaZSi99WhKIoSxU444QRuvfU2Rn85t176F45Y9HanseqHCaS07kxCp54sXfYHfaj/WTMlNLoQ +KQFIjJvzSXS5Fjq9/K/T9r8bBbw+dh3OO2kE+t1LNV59e33+fKbqaxZt55HH3uMrl271veQGi0V rCqKooTo2GP78O5HnxDwtkG4k+q8fy02FaP1YH5771na9D+NfDtQ52NQwkdSWco0UvSq8qj1Zbvt 43/WNrIzMg4bqL714VjefPcjtm3ZjmHouGLcxMfHEZ8QT1JSEsnJifTt1YPbrr86ouN988NxPPSP R+jRo4cKVOuZClYVRVFCdMUVV1BcXMwDDz+G1eH8ehmDltwK/D1Z9/MUOjuiZ4e3EjyJRItQsLrT DpBneWmqNaG4Bh9qbCmxBbtLsNpVFRd0xH5flUsYDA5dNUrKyhKuRQTISk1j1aI9O+pN0yS/oJCN m7fw1bdT+WLCZHK259BfT6KbiMP2SbzlFt68IrwUUCokW7H4dMIkPho3nnk/fKyjhGQAACAASURB VFP7J+dQpCQzM5Nu3bpFrg+lRlSwqiiKUgunnHIKDz36RARXGlZPpHfDyFtOZ1G39eyjUUNeOStl 5VKASHjTvwUb+NTeUbOxILEAB6Lqf7tur7xPwu4AVlZ91eSPQN8JMdkdgD2/K0FlENzUcNOFWEY6 WxBzmApstpRkGQY//bWCKTN+ZPiwITV6TMF6/O93c9FFFzF9+nSOPfbYiPSh1IwKVhVFUWohNjYW T0khuhVA6KHXpK8NIQTSEUeO6a2X/pXwqJxZDb8FZjESyeWOLNrrNdtcNcnMZ4fp4yyRWeN+pJQs ooSCBIs3e/fA0AQaB59xtaXElhIhBLcvXExRqZ/L9cwa5QfWhGCA0YQ1wsd1t91LdtNMDIcDh8PA 4XTicDq47rKRnH/miBqP/WBGDBtCcXFxvaSoU/alglVFUZRayM6uKmuqHXomqE60HMSC5eMZaCTS zmicywEaekgRqTWr82UZJxkpNQ5UAWxN4A4ydBZCkCQN1vl9uI3D/z1oQqBVBaZLi4q51tEs6EIW Q0QSO0r9WKV52FUzwZaUlAmbK2fNoeW32Rzb85ig2lyxei1z5//Opi3b2J6Ty+kjhtO3b9+g2lDC TwWriqIotVBQUIBu1M+M6t40dyJmYnNm+koabbAaDl5pswYP6dT9kgobGfZg9ddAEUWWn6NdGUGd VypN4kMIERJxUBYIbqNfRkwMU/wFXCIycYqaB8ittBhaHaISV7xwMOK8S1n751wSE6vPgFBYVMy1 d97P/IV/cuqpp9CiZSvKAzk8+9y/ajweJXJUsKooilILTZo04ZgePViy7iecrlhsKfHFtgAjBqEZ dZolQGvak0UrJ+J1peMO4k2/to6kq6QjnKlM9xeQjIETjQQMMuoocJUQ9g1WJZi0dMSSLIL7QFVq mzQl+A89SRh4bRPbtmuc4P+jvr24fN4C/luxmSGOFHprtU+vNVBLZIvpZcCp57B47veHPXb1uvWc e8X1nDbiDL74ejJOp7PW/SvhpYoCKIqi1IKu60yfOoXH772Bl564iyfvvY7OsTlk+5bg2jIdLXch UtZNuiAtLh0tNpnXKrZh1XUEGRU7m2r/mIc6UzjLnc4vFLJQK2EiOSyhJAxjOzy7artSOBeTrLM8 /GYV01xzB31uuW2SRPBXDJxCQ0ewtry8xue4DZ1xx/Whb3oTpvrzCYTh70UIwflaOjkbt3DVLXcd 8rii4hJOH3kVd9x1Dy+//LIKVKOUClYVRVFqKTk5mQceeIBrrrmGu+66kyV/LmTDutWsW7OKrlkO 9LzFdTYWs/kA1vjLKZGRrzMfjcIRM59gJPFsXDsejm3FYFcTFlLMFJGLh8rn1I5ArlKLyrEHu27z UGzbZqpdQFdHIoNF8LP7FdIiOYRgFSBRc7K4KLgA39A0nu7ehXing+V2zQPdw3EJjcuMpoyfMIn3 xn52wP1SSkY98AjDTz+DW265JSx9KpGhlgEoiqJESHp6Ou+9+zZ9jzsBW3MiUjpBVTAiInCZ3ipc j77hR86IzaCJVv/raBuyXSmkjtMTiXFqbMHPWP82NCoDSkMI+ttNaEtcWPozscM6OT3LKsJnW5xh pAZ9bkDaWEjiQ5zPaiKcrCotC+ncoxPjWVXspXuYKm2laU7ONzK4/d6HObZnd7oe1Xn3fXPm/c6i JX+xeOynYelLiRw1s6ooihJBXbt25ZfZMzmutQtjzQT4ayzOnN8i0pdr66+c5UpluLNJRNpvjFI0 B0OcTbjcmckjsa25yJ3Jma40BhvJzBYFzKWQyeSwmYrd56ykbPcs7P782JRh4sFkEcW7Z2lNwrte VSLRhMAVwoeiciwcQkML8QNVkqWxuaKi+gMP4s6O7VkRKGWn7Q/p/IPprMfRT09i6BkX4fF4gMpZ 1UnTvudvl1xCTIzakBjt1MyqoihKhPXs2ZPZM39g8eLFxMfH07tPX3zleWhx6WHrw7ZtKvzlDEjK ClubDU0kNijtLUEz6FW1+ceWkjih87kvl9ZGDDPMfBLQycDFSsqIxSAbF8eRTDEmc7Vi/EJSZvkJ IIkVOn5p85dWxgi78nUQrtkjj23ym13C2UZor69yWRmshroEOBGDNb7Qcv5mx8YwMDON93K3c7mj KZlaeDa3DdGSWefdzjH9TyahSTKbtmzBYTiY8t13YWlfiSwVrCqKotSR7t27A3DmmWfy8YRpOJKa Yqb3CMuSAE3T0IVGhbQPW/0nEqIlGYCUEq2ONnppQtDPSERD0NtIIMfh503vVpbLMk53plIibHLs AB8FtgIwwGhCgqaT5nAQJ3Q80qK9HsPEwE6mBPLoIRPCFmjPtorI1N100eNDOr9cWhi1DFZL/MGl r9rbM9268MyyFXy8Ywd3OluGparXYllOeYzBsONP4O777iU9PZ0JEybQu3fvWretRJ4KVhVFUerY jTdcR2FhIcuWLSV3yw/4swYijNrPIGlVwWr9iIp0ABGdWd2fEIK+jkQAmuku/hHbmuWWh27GniBx il6IT9qc7Tj42tGzHWm4hc5cXwECQa7tRwDpWui70lcJLwNJDPn83TOrIUrAoMKq3Qa/h7p0Zmbe HBZaJRxr1C792wa7gpluL3N+m0fnznvWrN577721alepO2rNqqIoSh3r378/kyZ+xepVK7nyojNw bpqKrGWpVKtgHQHbIkVrvHMQkV4GUB1DaPsEqgDDjSacc4hAFcAtNM52pPJYbFvcmsHb/i286d/C essT8jjKrQAxtQg2Pdjodujz5fHoBKRNmVm7gPXBozswzSpgkVUachu2lMxwenjj7bf2CVSVhkUF q4qiKPVE13Vee/UVrr58JM5ts5C2FVI7tulH2/gTV8U2rfMlANFEIsOap7QuxWg6D7pb8lRsW1IM F2WE9loA6K7F83UgL+Sa9uXCxmGHHvRrQhAjdJYV1y4/7eCMdP5xdCe+DeSH3MYSu4zMtq254IIL ajUWpX6pYFVRFKWevfzS/zGwb3cceQtDa0DTMKVNT0d40v00VBIQUbIcIRROTcOoYdWnwymTFh0c 8SHnbC0TNrG1DA+SNCcrSkKfEd2lT2oTJJLcELMDbHbDTbffGrb8tUr9UMGqoihKPdM0jf999AGi ZAPSWxTC+QZOoVNkh76p5UhQuQxAyRIuCmTor4UyaRFXyy0tyThYUxZartW9pTidDM5MZ7yVS4UM brbZlpIcArRt27bW41DqV+Nd3KQoihJFUlJSuO7aa3jts1mIpj2DPl/XDb707+Rad9Ow7J5uaGy7 cn2kdgQ8dlPaLLPLyK0KODVZWUtCULkmV7D/z6Lq35U/r7E9JBihF4UoswNkE1urx5BoaWyr8NWq jV0e69KZa+YvYkz5Vq5xNCNRVB+6LLFK2ST9pLVuycCBA8MyDqX+qA+hiqIoUWLggP7EhViH3tf8 BJb4y9huhydAaHDs8FaAqk82sNMOsMmqYJNVwXq7gjWmhzVWBSstD8ttD3/ZHpbIchbLcv6QZSyU 5fxOGfMpJY8AVojrVQE8tkVCiKVWd0nEoMAfnpK/hqbxYb/eJMc4WWBXv7Sg0A7wnV5Kn2su5ouJ X2MYal6uoVO/QUVRlCjRqVMnpC+0dX4iPhNdNyiwTZo31F1GCgBOodFXT+BoLbQ8qZ+yHYvQU5hV SIvkMCwDKPKH94PT4PRUfty687DH5Nl+PjOKuP+++3nkn/8Ma/9K/VHBqqIoSpRwOp3Y5oFrDaVt gr8M6S9HBsoh4MEl/DjwQcCDv7wYu7yUtq54Ohu1u3yrNHwm0A53aOdKiYUkoZZ5FVJxYNo2S4uL 6ZpUuzypu9t0OfEdZt2qJSVfOUt49NlnGHXrrWHpU4kOKlhVFEWJEq1btyYpMZ7czT8T4xSIQDn+ 8iICvgrSMjJp1iybli1b0K5ta1q1bEl2djbZ2dnMnz+f9x99khtkk3obe7RUsVIgHQd/2KUcL5Nw BplvtQILA4FWy6pqmhC01OIYt3ELT3cPT7DaPTmJl621LNbK6L7frPNqq5wZLg/HDujPLaNGhaU/ JXqoYFVRFCVKOJ1Ovvt2MpMnT6Z169a0atWK1q1bk5mZiXaYlEZz58xhg6+cGRIGOJNwh6F8q9Jw DdNSGCO3scGuoKMeF9S55dLCoYVeanVvXa04puaHniN1fx0TEri7U3tGr1xPN2fc7nRUaywP37jK +WzClwwdOlSlqToCqWBVURQlinTt2pWuXbsGdc6dd93FgIEDeeafj/PoDz/QX4tnsJ5AUiOuZtWY aZqGS+r4Qli36pEWhtDDEqwmYuC3LQr8flKcoZeP3dvZzbJ4ddV6Nthe2ugx5Nt+pjrL+HDcWIYN GxaWPpTooz5+K4qiHAH69OnDl5MnsXDpElqMPIunAtsZaxWywwotmXowpFoEEH2kJBBCRgAPNkaY 8iroVe1M2ro9LO1BZSDePC6GbdJHju3jA30n9z/2CKeffnrY+lCijwpWFUVRjiBt27bljbffYs3G DQy67TpeZidvywLWmRUR7lldeo0Wpm1TbPlpqQW/yapcWmELVpdSSnZsLFe2aRWW9nZJdTpYZJcy QS/i3/99mXvuu09d+j/CqWtEiqIoR6D09HSeePppHnjoId595x2ef/oZEnzlnGS66WrERUXy/KKv 78Mb8IatvSNlra4GlBBctaa9TZL5pOhO0rTgL72XSwvdkmH57OHVJC1iQstKcDjPH9OVmxf8gZme wbXXXhv29pXoo4JVRVGUI1hcXBy33X47N99yC59//jnPPPZPJu3IZYjppq8zESNMQev+rVjeEuyK w5eOtU0/17ub0VFX6bb2drqRwofe7XQWsSSL4JLzf2PnkyN9XG00C6lvrwZOKzxB/xq7nCezjwpL W3uzgTxg0rhxaka1kVDBqqIoSiNgGAZ/+9vfGDlyJN9//z1PP/oYk/9czBDiGOhIDPuspLl0PG6z gLj4hEMe48xuzv9ydnC+SKWHHloC/CPR0UYc2bqLBZQylJSgzt2KjzOMNFK00CpQGYAdpjXIuhAR Wc387fYddOvRkz59+kSgdSUaqWBVURSlERFCMGzYMIYNG8aiRYt46rF/8tiMGQzU4hmsJxKvhaf8 la5J3h7zOiNGjDjscT///DMXDj+d7jI6liZEiyRhYAb5dEw0cymSfpoarpD7NWwwwxRiNtNi+Ckv j0EZaWFpb5e55RXcqpL+NypHxgIfRVEUJWg9e/bki4lfM+/PP0g95xQe92/lS6uQIjs8Nd1ron// /mS1asmvZnGd9dkQZAgH263g1vOWSZM+eiJJIvR5KIcQyDB9ZkiyNDZ7wruxz7RtlhcW0aNHj7C2 q0Q3NbOqKIrSyHXo0IH3Pv6IJ597luefeZan33+fXkY8zWs4tbfGrMCSEs+6X3bfZpfULBm8EIK3 PnifC88+l00lRVxsJ6l1iMAwRwqzzGK22l6ya7irX2qC5FoEqgAGAqkJQkjReoBCw6LbYZaBhGJW 3k7ad+xI+/btw9quEt1UsKooiqIA0Lx5c/77+ms88vg/ef2VV9mwdm2NzssqLsZV5iG7xZ7Lz0b3 U+jWrVuNzu/duzfL167muF69mb82n76OxJDGfyQxNI2OWiy/iVLOo/pgdYtdwVbbS0+tdmt/DUQ4 4lQACm0/HeLDuxZ5k8fDwNMOv7REOfKoYFVRFEXZR3p6Oo898Xid9ulyuXj7ww8YNuhE3KZGd0Nt uDrPlc5Tng2UGynEicOvJU6kckNVT712gb5DCGQIxQQOJlO4mVdQwPktssPSXrlp8mVuPu+eeGJY 2lMaDhWsKoqiKFGhd+/eTJ/5EycPHkKW7SQ9hDyhR5JEzcApNDxYxHH4YDVQNR/6uZVLbDVldoWU nKglH3Rtq4F2wMzqKuFhm+ar8bilBFtAgeUjr7jm51Unx+sjOSVFVatqhFSwqiiKokSNPn368PCj j/DeU//iSjslbHlgGypJzcrZxqJxlIgDS1JhBQ577GrpoY8z4aDBquMgywDmU0zHPr1plt2ixuN2 Oh0ETJPJ4z+jwrKI0UPLMiGlpDAQIMXppCQQICU5OaR2lIZNBauKoihKVLnjrrv46fsfeGXOr5xv JdJSD38VpIZgq+XFkjZpVD/DHKMZnKllVHucxzZZaZWTIQ7eZuWa1X2D4yzhJmfLVj6d+B2aFlwS obnTp/LNth0MSE8lyeHArWlBbaD7bOs2XlqxmmFZTclwOkho2Tqo/pUjgwpWFUVRlKjicDiY9N0U xo0dy6033cxIM5H2RuOrcjXNX0DrMJfG3YiXWGEccsbaqFqz6pM277CZs8hgoJXEuK3bePPVl7np 9ruC6u/ia2/g7ddf4fW16/FZFhKIM3TiHQ6SnE6SHQ7SXE7SHQ5SnU5SnA5SnM7KL5eTZSVlDDn5 NAJWgBkLF9CirCwMz4LS0KhgVVEURYk6QgguufRSDIeDR28YRXur8QWra+wKztcyD6xlWwsdiGUa O9lgV9Baizng/l0zqxvwALADH81FDC5NJzYuLuj+7n7wEe5+8JHd/y4qKGDTpo1s3byJbVu2sGPH NnZs28ZfO7ZTsjMPT14BnvJyvD4fnkCA1nGxpJeX8cnEKcyZNZPRLz0f+oNXGiwVrCqKoihRa/Dg wWzzliGN5EaXf1WEM0qtYmga7ewY5spSWhODJSUr7HI2Om3a+XUShIEtJTucNq2yWlG6vRgCkCAN Zn0/gyHDTmHh7/PZvHEDXm8Frdq05bgTBtCiVesa9Z+ckkJySgrde/Ss9tgLhg/l9/nz6NGyJQDp mZns2LGjNg9faaBUBStFURQlaqWnp9OmdRv+NBvX5d8C249XWjQVoZdOPZSOWhxbTA9LrTLGGPls 6taCMx+8g1/SdN4yt5Gens5Kq4Qnn3wSf9NkZmpFbLE9zPxxBhecfjI/TJmIbvlIiY9hwZxZnHPq EB64YxRbNm8K6zhPP/cC0hKTOOu8CwFIz8ggNycnrH0oDYOQ4UqopiiKoigRMGPGDK467wLultVv IDqSPFS+lkv0LNIPsRkqVKZtM9regjsuli8mfs2QIUN232fbNpqm4ff7cTgc5OXl8dADf6dZi+Zc ddVVtGnT5oAZ7qKiIl588UXefPMt/vvW+xw/YOBh+y8pKSYhITHomXIpJce0b8Ga1atJT08P6lyl YVMzq4qiKEpUO/7448mv8NT3MOqUxzaxpUQP81IAU0q+dBeT3boVo+68Y59AFdi929/pdCKEICMj g7ffe5cnnniCtm3bHjTATE5O5qmnnmLcuLHcfsNVfDb2o4P2/dnYjxjUpxu9Orbm7puvx+cLLger EIJORx3NsmXLgjpPafhUsKooiqJENZfLRcCqDN6CUSGtCI0o8r725ZOlx5AiHGFtt4gA2/0eWrRs wTNPP81bb74ZtraHDh3KrJkzeeOlf/PB22P2uW/xooXcf/stXH7ppRQVFSHsAFdccDbFRYVB9dGx 81EsXbo0bGNWGga1DEBRFEWJet07HcVxm0robFS/I11KSa4M8JJvK+3jksiwNCSQZkKW5qK15o6q zVpbLC+xQidF2xOYPuJZxwiRRqpwUCRNfNi0EjG4xL5zTKXS5EuxkyF2Is2Fu9o0V1JKVkkPywwv XUw3i5s6Wbdlc1gfz+rVqznuuOOZvXApQghef/nffPrxB1x37bVcdNFF9OjRA9u2ueaaazFi43jk yedq3PYHb49hy9qVvBnGIFuJfiobgKIoihL1Rt11B2MeeJTO+5dXOojxWjHrDYs7b7qDrj2OIT8/ H8uyWLJwEeOnTmVoeYBejsTID7oGvpXFfF+Ry/HOZC5wplMhLRaapfhtm/HkkNEklTatWuJyxzBt 0UK6i3j6mrG4hY4tJR/reZT6vHwmKmjijOEaK+OwgbgQgpa4+dqXS77b5NR+w8P+mDp06IDD6WBI v54UFxVy2vDh/PnHH2RlZe0+RtM0/vnPx+jZqxcnnnQyg4YMrVHbvfr05X/vvhX2MSvRTc2sKoqi KFGvtLSULh070bHU5FSS0A8RkK2zKvgy1suaTRuJjT0wN+uUKVO46eJLucVOwSHqdyWcKSUPlK9h 5MiRTJs4mXaam+WBMoYNHUq/gQM46aST6Nu37+7jc3Jy+Pu99/HVF1/SnhiMgMVSp491GzYgpaRL p850KpGcoB0+zddO6efLmFJ+nD2Lrl27oodYCvVwli5dSmxsLK1atTps+++88w6ffTGBNz/6pEbt 2rbN8d07MXvWLDp06BCu4SpRTq1ZVRRFUaJeQkICi5YuobxzK36ySw553DyHn0eefOKggSrAaaed Rt8hg/g/cimxzUgNt0Z04Ki4JvTq1YuJ077jsqcfYe2mjUz4ZjJ///vf9wlUATIzM3nvow/55fd5 XPrMw/S69mIWL11Keno6GRkZPPPcs+S1SmGiqwTrIPNQfmkz3VHKJHbidDpJSEiISKAK0LVrV9q2 bVtt+wMGDGDB/N/4bvLXNWpX0zSGnjqciRMnhmOYSgOhZlYVRVGUBmPTpk307NadnpaTk0jEvd/s 6PPk8NP83+jcufNh27n+qqtZMH4SI0nGqMcZ1h/9hbS9/mJefvXVsLQXCATo26MXbVfm0V6LRUrJ dunDJTTKpMWn1g5axCfT2qfzuyglKSGR9//3MaeeempY+g/FwoULOfmUU5g4YxbNW7Ss9vjvp07h /TGvMmvmzDoYnRIN1MyqoiiK0mC0bNmSv1atJPP0k/iPzGFhoJRdcy4bLS/Ffi8dO3astp1X3hhN i0H9+Fw79CxtpFlSstRlcWy/fmFr0+FwcO3NN7LIUcFO6ecvWcZ3CV4+0XeyVno4/ti+9D5xAAu1 cnoYyRxbJLj+6mvYvDm8m6yC0atXL+684w4evvt2Nm/cUO3x/QcNZtGiRRQWBpdJQGm4VLCqKIqi NCiZmZn879NP+HradyxqkcCnoghLSr51lPPIo4/uzhV6OG63m0+//IIdsTrrrYo6GPWBZtoltDi6 E5dedllY273iiis449rL+dxZxByXlzfffYdH//kYK1wmzzz/LyZMnsTGrVvYGCcwEGzevq3ec5fe f//9tGvbmuGDT2Bnft5hj3XHxNB/0Il8/vnndTQ6pb6pZQCKoihKg1VRUcG5Z5zJ4t/m40pKYM2m jUGtw7x91K2sf/tThjibRHCUB/rLLGdSjJeFSxaTnZ0dkT6WLVuG1+uld+/eQGXaqr03Xn3zzTdc fdkVHHtsHyZP/S4q0nmdOHgw5//tCs6+4KLDHjfrx+95/vF/sHjx4qgYtxJZKlhVFEVRGrRAIMDc uXPp2LEjTZs2Dercd955hzH3PMRIKylCozvQUrOMCVoJ386YzvHHH19n/R7MrhAgWgK+mTNncull l/HLH8sPe5yUklMG9GXM6NcPqMKlHHnUMgBFURSlQXM4HAwaNCjoQBXg7LPPZrm3BG+Yq135pM0M fwE+uScxbJk0+YRCvm8i+HrKt/UeqEJlkBotgSpAx44dCQSqz9IghODK627ipZdfroNRKfVNBauK oihKo5WWlsbQk05iJmVhbbdUmkzx7+Rfvs3cU7aahyrW85R3EydcNZLla1YzaNCgsPZ3pCgtLSUu rvoqZQDnXTSSn2f/zPr16yM8KqW+qWBVURRFadRef/stZgeKDpqbNFRpmpMh7lSKTT933H47L7/2 KnN/+42XXnnlkDlgFSgrK6txsBobF8e5F47klVdeifColPqmyq0qiqIojVqzZs3IzmzKtnwfLXR3 WNp8m50YBiTFx/PIo4+SmpoalnaPdDk5OTQJ4rkSmsDv90dwREo0UDOriqIoSqM3+KST+B0P4dhz bEnJ6opibn7+KVauWaMC1SDMmzePrt17BHVO69atIzMYJWqoYFVRFEVp9J598QWKWqQzg9JatzWD Evr37cfNN99MZmZmGEbXePz6228c07tPjY+PjYuntLT2vzMluqlgVVEURWn00tLS+H72TH4THrZb vpDbWWV6WBIj+fzrr8I4usZBSsm8efPo0avmwWrzFi1YWs8FDZTIU8GqoiiKogAZGRnceucdLMAT chs/u3w89+8XSU9PD+PIGocNGzbgdDrJbJrFzvy8Gi3JOHn46UyfPp2Skvorm6tEngpWFUVRFKXK wEGDWGdYIWUG2Gb5yNNsRo4cGYGRHflSUlLwer2cOXQgvTu3Zf6vc6o9p0lKKv2O789XX6mZ7COZ ClYVRVEUpcrQoUPp2LsHH8udlNjVJ6ff2zy9glG3347T6YzQ6I5sSUlJXHXVVaxdvYpORx1Nn341 K5ow/KxzmKCC1SOaClYVRVEUpYqmaYz/+iu6nzOCqXrNCwVIKVmJjwsuujCCozvyvfjCCxx1dBdu v/fvaFrNQpSBJ57ETz/9hGWFtwqZEj1UsKooiqIoe0lMTOQ/L/0fiyqKanzOJtuLcBgcddRRERzZ ke/3339nx47tDD/z7Bqfk9G0KU2zmvH7779HcGRKfVLBqqIoiqLsx+fz4TYcNdrk45UW/63YQs/e vRFC1MHojlxdunRB1/QarVfdW/9Bg5k2bVqERqXUNxWsKoqiKMp+srOzadKkCVvt6tNY+asC2uFn nhHpYR3x4uPjefDBv/Ph22OCOm/A4JOYNn16hEal1DcVrCqKoijKfoQQZGZk4JV2tccmagadk9Lo 2LFjHYzsyHfJJZcwe+aP5Ofl1ficfv/f3t3FWFkfeBz/neHAMMOUQcVRGaoiRJmBAo1p40K7UtQK cVh2C2nSpPVm133pJvtyodm9qM0aa3btS6TdXTHRou1uiLFibIzZi7pdd7WUYWOxUqFhHRRYG+aF qswwHZ2Zs3cmRIU5XYfn4fD5XB6ek/wuv/Pnf875nTXZ+7OfZXh46veMOXeIVQB4HwsWduZQ0ztn fO7QxGgOvDmYVavq+5lQ3l97e3s2bdqU+7d+M//1H/8+pfe0zpmTruUfzZ/tkgAAB8VJREFUS29v 7zSvowhiFQDex3ce2JbdTaMZmjx9sI7VJrOyq9tPq36I/vi22/LQtn/Kl7ZsSt//HJzSe7q6l+fF F1+c5mUUQawCwPvo7OzMZ9auTd/E6GmfWzKjJceOHPVp9A/RmjVrsm7dDUmSOXPapvSeiy+5NP39 /dM5i4KIVQD4AKvXXp/Xq6e/t1qtNKVjZksG6rhjyelVKpU888yPcumll+Xtd96e0nvGx8czc+bM aV5GEcQqAHyA9evX56XayRybPH0wNdfiVG8arF17fX6487EpPTt84q3MnTt3mhdRBLEKAB9g2bJl +dq99+aBymAebXojkx/wvavdv2nKXV+5c0rfy8rU3X333Xno/n/MkcOvnfHZocEB94YblFgFgNP4 sz//co4NDWXyygV5cMav8/zkifdE6YpqW3517FhOnDhR0MrGtHjx4nzpi1/Mzkd3nPHZ44MD6ejo OAurONvEKgCcQXNzc370n8/m6/+yPQcWfCRP5s38Ynw4L48Pv/tdrB0tbdm/f3/BSxtPV1dXfvW/ R8/43MCAk9VGJVYBYAra29uzcePGPL+nNws+++m8du2SHFi+MPe8czQvj4+kbWw8O3/weNEzG861 116b3l3Pn/GKxZBYbViVmgs2APBbe+qpp7Jx48ZsvHl9vvHtrX7J6kNWq9Vy5ZWL0jRjRjZt/nz+ 8o6/TVPTqWdtExMTuaZzfk6ePOkbARpQtegBAHAu6+npycDAQObPn1/0lIZUqVSybdv9mZiYyO23 35GPf+KTWXvDTac889yzP05zc7NQbVBiFQD+n4Tq9NqwYUOS5ODBg3n6ySfeE6vf+cbf56677ipi GmeBawAAwDnh6NGjWbFyZXbvO5hZs2YlSUaGh/PJZUvS39+f1tbWghcyHXzACgA4JyxcuDBdXV15 /tkfv/va8aHBtM6ZI1QbmGsAAMA5o729PWNvjyVJfvHSz7P13nuyevXqglcxnVwDAADOGbf09KRS bc7oyZHs+elPMnv27Ozbt88PAjQwsQoAnDP6+vqyffv2rFy5MjfeeGPmzZtX9CSmmVgFAKC0fMAK AIDSEqsAAJSWWAUAoLTEKgAApSVWAQAoLbEKAEBpiVUAAEpLrAIAUFpiFQCA0hKrAACUllgFAKC0 xCoAAKUlVgEAKC2xCgBAaYlVAABKS6wCAFBaYhUAgNISqwAAlJZYBQCgtMQqAAClJVYBACgtsXoe OHLkSAYHB4ueAQBQN7HawEZGRnLTzRty9dLuLF5ydUZHR4ueBABQF7HawHbt2pXdL7yU8SV/kMlK NX19fUVPAgCoi1htYG1tbRk/+Waa+vdmfGwkixYtKnoSAEBdxGoDu+6667L/5X3ZcsOqPPLw9rS2 thY9CQCgLpVarVYregTFevrpp7N7z3/n7756Z9FTAABOIVbPc6s/9bvZ07s71Wo1x4cG09LSUvQk AIB3uQZwnhsZHs5kx8fT/JH5ee6554qeAwBwCrF6nvvrv/qLzBo+lLHh47n88suLngMAcIpq0QMo 1pYtW3L48OGsWLEi11xzTZJk7969ue1PvpxLLunIY4/ucDUAACiMO6u8xx/+0W357kMPpnv5ivx8 7wsZHR1Na2trmpocxAMAZ5dY5T2GhoZy+PDhLFmyJNVqNV3dy7Nu3WfyqTWrc+utt6ZadSAPAJwd YpXTOnDgQLq7u1Or1dJ64YJ0Lf5onnzi8XR2dhY9DQA4D/h/XU5r6dKluf2Ov8nMWc15u3NdXuwb yn33bS16FgBwnnCyypRccOH8jDbNTWV0II89uiM9PT1FTwIAzgNilSnZuXNnXnnllWzevDlXXXVV 0XMAgPOEWAUAoLTcWaVud3/tnmzb9kD8nQMATDcnq9Rt2cdW5Ze/PJCeW27J1vu+lSuuuKLoSQBA g3KySt2u//SaVC68Ov/WeyhLu5fnK3d+tehJAECDEqvUbdfu3tRaLs5kx6qML+rJt779z3nkke8V PQsAaEBilbrs2LEjB195NZW5C5MklZktGZu3LA9//18LXgYANCKxSl0ef+LJjLZdlUrTjHdfq7Rc mN7dP82ePXsKXAYANCKxSl0+9/u/l7bJX5/yWmX2vIxd/IncdPP6vP766wUtAwAakVilLhs2bMhv jh9NbXL81H+ozk6tVktzc3MxwwCAhlQtegDnlgsuuCAfvfyKvDp6PJU5HamNvZnmN/Zn4o3X8t3v fy8XXXRR0RMBgAbiZJW6nRg+kcqM5kyO9GfmkWdyx59+Ia+9eiibN28uehoA0GCcrFK32mQttXdO ZvbQC3l4+4PZsmVL0ZMAgAblZJW6ffPr/5CW/l1ZcMlFTlMBgGnl51b5rbz11lsZGRnJZZddVvQU AKCBiVUAAErLNQAAAEpLrAIAUFpiFQCA0hKrAACUllgFAKC0xCoAAKUlVgEAKC2xCgBAaYlVAABK S6wCAFBaYhUAgNISqwAAlJZYBQCgtMQqAAClJVYBACgtsQoAQGmJVQAASkusAgBQWmIVAIDSEqsA AJSWWAUAoLTEKgAApSVWAQAoLbEKAEBpiVUAAEpLrAIAUFpiFQCA0hKrAACUllgFAKC0xCoAAKUl VgEAKC2xCgBAaYlVAABKS6wCAFBaYhUAgNISqwAAlJZYBQCgtMQqAACl9X9AY2+l2Lj1lwAAAABJ RU5ErkJggg== ", null, " AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl0VFW2+PHvrTHzUEkllYQAYUwAGUT0+ZMWbBBEGmjF RsSngCC0tEaBJ4600DTdbasoOIvaOD4b8YkMCkgzdIMoEjBMYQpkqIxknodK1e+PSoqUCZGhklzC /qzFWtS5N7dOJQLbc87eW3E4HA6EEEIIIYSqaNp7AkIIIYQQoikJ0oQQQgghVEiCNCGEEEIIFZIg TQghhBBChSRIE0IIIYRQIV17T8DTuve5ltNJB9p7GkIIIYQQv2jYsGHs2LGj2WtKRyvBoSgKL6ze 6za2ZfU7jJo0q51mJH6J/HzUT35G6ic/I3WTn4/6XcrPaOWfP+TEwVebjPcaEM+Dz9x3Qc94fNL1 nC8Uk+1OIYQQQohLYKvVNz9e45mNSgnShBBCCCEugU5f2/y4weaR518VQVr3voPbewqiBfLzUT/5 Gamf/IzUTX4+6ncpP6ObxgwgJHy+21hI+Dxuuq2/R+Z0VZxJE0IIIYRoDUcTEtm96SC2Gh06g42b butPn8EDLvjrWzqT1uGyO4UQQggh2kqfwQMuKii7GKoL0nbt2sWWLVswmUzs27ePhQsX0rt3bzIy Mli6dCn9+/dnz549LFiwgL59+7b3dIUQQgghWoWqgrS6ujqmTZvGiRMn0Gg07Ny5k4cffphvv/2W 8ePH8/zzzzNy5EiGDRvG2LFjOXnyJFqttr2nLYQQQgjhcaoK0goKCsjMzKSiogI/Pz+CgoIoLCxk 69atJCUlMXz4cADi4uLQ6/WsXbuWiRMnXtR7LJpxK+Wlxa0weyHA1z+QRe99297TEEII0QGoKrvT bDYzePBg7r//fkpKSnj11VdZsmQJu3btIiYmBp3uXEzZq1cvtm3bdtHvUV5ajMPhkF/yq1V+yf8A CCGE8BRVBWkAn3/+OceOHSMyMpIRI0YwZswYsrOzCQwMdLsvMDAQq9XaTrMUQgghhLhw/aJ8iDUr TX61RFXbnQDZ2dmMHDmS7Oxspk2bhk6nQ6/Xo9e7V/W12+3nfcaW1e+4ft+972CpTyOEEEKIdmWr qWTF629TkJtJ4dmsC/oaVQVpFRUVjBkzhkOHDhEaGsqzzz7LjBkz+J//+R+Ki923kYqKiujatWuz z5H+aEIIIYRQI1NYJKawSNfr00kHznuvqrY7Dx8+jN1uJzQ0FIDFixej0WgYPnw4p0+fdrv3+PHj rkQCIYQQQoiORlVBWs+ePampqSEry7kMWFNTg6+vLwMHDqRLly5s374dgGPHjlFRUcG4cePac7pC CCGEEK1GVUFacHAwa9asYf78+Sxbtoynn36ajz76iICAAL766is++OAD3njjDf72t7+xYcMGvL29 23vKqlJQUMDUqVOxWCxEREQwe/ZsSktL3e7Zv38/DzzwAC+99BJTpkxh8+bNbtfLysp47LHH+Otf /8rcuXN58sknqaurc1232WwsWbKEP/7xjyxevJh77rmHEydOnHdOb7/9NnFxcWg0Gh599NHz3rdj xw40Gg0ajYb58+eTkpJywZ9748aNjBo1iiFDhnD77be73k+j0bB8+fJf/Pqqqiqio6NZu3btBb+n EEII0dpUdSYNYMSIEYwYMaLJeLdu3Vi1ahUAc+bMaeNZqZ/D4WDGjBkMHTqU8ePHs379elauXElx cTGfffYZAKdOnWLUqFF8//339OjRg7y8POLi4ti0aRODBzuTK+6++26uu+46nnrqKQCmTJnCggUL eOmllwBYtGgR1dXVvPDCC4CzQ8SECRNISkpqdl6zZ8/GZrPxyCOPsGrVKpYuXYqfn1+T+9566y2M RiP+/v6u97oQTzzxBMuXL+cf//gH99xzj2v8n//8J9OnT0dRWs6cATAajdxwww2Eh4df8PsKIYQQ rU11QZq4NLt372bSpEmuQGXixIkUFxezZs0aqqurMRqNLFq0iP79+9OjRw8AQkNDGTNmDE899RRb tmxh69atfPPNN7z55puu586cOZPbbruNxx57jOjoaDZs2MCDDz7oun7ddddx/PhxCgoKMJlMzc7N z8+PQYMGceDAAVatWsXDDz/sdj03N5e8vDwsFssFBVUNPv30U1544QVefPFFtwANnMFmXl4eNpvt F5+jKApr1qy54PcVQgghLpbO4E38H2Y3Gf92zbvn/RpVbXdeyf69cSPPjh7NouHDeXb0aP69cWOb z2Hy5Mlur0eMGIHdbqe0tJS6ujrWrl3LkCFD3O4ZMmQI27ZtIz8/ny+++AKz2Uznzp3drttsNr74 4gvAGdh9/PHHri3QgwcPEh0dfd4ArcG0adPw8/Pjtddea3LtvffeY+bMmRf1WR0OB88++yz+/v7n XVl94IEHCAgIuOBntlTWRQghhLgchzMqOHbW0eRXSyRI84B/b9zI5kcf5c9btrBo507+vGULmx99 tE0DtaFDhzZZhaqqqqJbt26EhoaSnJxMRUUF0dHRbvdER0djt9tJTEwkMTGxyXV/f38CAwM5cMCZ Ivzss8+SkJDAhAkTSEhIYPHixXz11Ve/OL+AgADuv/9+Tpw4wZYtW1zjdruddevWMXHiRByOpv+x Jicns2DBApYsWcJtt93GkiVLAGdwmJKSwpAhQ/Dy8mr2Pb29vZk+fToAGRkZzJo1i3feeYfp06ez cOFC1/t/+umnjBw5kqVLlwJw5MgR/vCHPzBy5Eh27tzJgAEDMJlMri1eIYQQoi1IkOYBW1asYGly stvY0uRkvn311XaakdPOnTuZO3cuAPn5+QD4+vq63dNwPiw3N5eCgoIm1xu+Jjc3F4Dhw4fz2Wef sXXrVq6//npmz57NwIEDL2g+DducK1ascI1t3ryZESNGNClWDGC1Wpk8eTILFy5k4cKFzJ8/n+ee e46tW7e6khUiIiIu6r1nzZrFsmXLWLp0Kbt27QLgV7/6FT/++KMrSIyLi0NRFA4cOMCpU6fYt28f zzzzDM8884zr+yiEEEK0NgnSPEBXXd3suLaqqo1ncs7hw4cpLS11bQUaDAaAJqttDa8NBgMGg6HZ M2GKori+HuDEiRM89NBDdOrUiYkTJ/LRRx9d0JxiY2MZOXIk33zzDcn1Qe27777L7NlN9+gB/v73 vzN27Fj8/f0BuPXWW/noo4+44YYbXNutF3LmDOB3v/udazvYx8cHgJSUFDQaTZPtWo1GQ2hoKAEB AcyYMQO9Xs+4ceOw2WycOnXqgt5PCCGEuFwSpHmAzWhsdrzuPNtwra26uprFixezevVqV9AVFhYG QHl5udu9Da8jIyMJCwujrKysyfPKy8uJjHRWR37xxRc5evQoL7/8MgcOHODGG29k5syZpKamXtDc HnnkERwOB6+//jpWqxWHw9Fki7XBrl27XO/b4N5778Xf3991bu5C+7dOmTKFPn368PLLL7uCyos5 g9YQpFafJyAXQgghPE2CNA8YFR/PM927u4093b07tz7ySLvM58knn2TJkiWuwAwgKioKs9ncJKix Wq3odDpiY2MZMGBAk+vl5eUUFRXRr18/AJYtW8akSZMAMJlMrF27FoPBwIYNGy5obr/5zW+IiYnh H//4B6+88sp5V9EAamtrz1svbciQIQQFBbF///4mteCas3btWu68806mTZt20UkKQgghRHuQIM0D bh47ltHLl7Nw9GgWDRvGwtGjuW35cm4eO7bN57J06VLuvvtuYmNjXWNHjx5Fo9EwYcIE9u3b53b/ jz/+yK233kpQUBB33nknubm5ZGRkuK7v27cPjUbDXXfdBTi7QDTeYjSZTPTt2xetVnveOdntdtd5 L0VRmDNnDsXFxaxbt47Ro0ef9+vi4uL46KOPqKysdI2Vlpbyr3/9C71ezxNPPEFlZSXLli1r9uvr 6ur47rvvqKqqYurUqUyePJng4GDJ4hRCCHFFkCDNQ24eO5YlmzaxaMcOlmza1C4B2ptvvklycjJW q5U1a9awZs0aXn31VT788EMA5s2bxw8//ODqg1pQUMC6detYsGABADfddBPDhg3jvffecz3z3Xff ZerUqa5Cr5MmTeLzzz93XS8qKiIzM5MxY8acd155eXluB+5nzJiBj48Ps2bNcruvpKTEbVVs7ty5 ZGRk8Ktf/YpPP/2UNWvW8NBDDzF06FAAFixYwJQpU1iyZAkvvvgiNTU1rq9NTk7mvvvuIzAwkPLy ckpLS9m3bx+1tbV88sknaDQaMjMzXfOqqalx+3qbzeaWbdpwrXH3BSGEEKI1STHbDuLrr78mPj4e u93u6swAzpWrrVu3As6D++vXr+fpp59m8ODBJCYm8v777zNs2DDX/V9++SXz5s3jueeeo7KyErPZ zPPPP++6vmzZMhYuXMj06dOJiYkhLS2NTz/9lC5dujQ7r7feeos333wTRVEICgpixowZBAUFMXPm TB544AHA2Qnh7bffpqioCEVReOyxx5g3bx433ngjH374IX/84x+ZPXs2I0aM4PXXX8dYfwZQURQ+ /vhjbr/9dt5++21WrFhBTEwMQUFB9OjRg+XLl2M2mwGIj49n5cqVHD58mBUrVjBu3DjeeOMN+vTp Q3Z2NtnZ2axfv54xY8YQHBzM119/TVZWFh9++CF33HEHy5YtQ1EUPvzwQ1dJDiGEEKI1KY7milNd wRRF4YXVe897/fFJ1zdbj0sIT/il//6EEEKIxlqKS2S7UwghhBBChSRIE0IIIYRQIQnShBBCCCFU SII0IYQQQggVkiBNCCGEEEKFJEgTQgghhFAhCdKEEEIIIVRIgjQhhBBCCBWSIE0IIYQQQoUkSBNC CCGEUCEJ0oQQQgghVEiCNCGEEEIIFdK19wSE5xQUFDB37lw2b96MoiiMHz+eF198EX9/f9c9+/fv 57XXXqNv374kJCQwdepURo8e7bpeVlbGs88+S3h4OLm5uRiNRpYuXYpWqwXAZrPx17/+ldraWrRa LceOHWPx4sX06tWrxbmVlZXx4osv8p///IdOnTpRXFxMdXU1jz76KLfddhsANTU1rFixgi+//JLf //733Hfffa3wXRJCCCGuDBKkdRAOh4MZM2YwdOhQxo8fz/r161m5ciXFxcV89tlnAJw6dYpRo0bx /fff06NHD/Ly8oiLi2PTpk0MHjwYgLvvvpvrrruOp556CoApU6awYMECXnrpJQAWLVpEdXU1L7zw AgC7du1iwoQJJCUlnXduOTk5/PrXv6Z3795s3LgRLy8vAPbs2cPYsWOZO3cuCxcuxGAwuN5v9uzZ rfa9EkIIIa4EEqR5yMaN/2bFii1UV+swGm3Ex49i7Nib2+z9d+/ezaRJk7jnnnsAmDhxIsXFxaxZ s4bq6mqMRiOLFi2if//+9OjRA4DQ0FDGjBnDU089xZYtW9i6dSvffPMNb775puu5M2fO5LbbbuOx xx4jOjqaDRs28OCDD7quX3fddRw/fpyCggJMJlOzc5s6dSq5ubl8//33rgAN4MYbb+Tll19m+vTp XHvttYwdO5bIyMjW+PYIIYQQVxw5k+YBGzf+m0cf3cyWLX9m585FbNnyZx59dDMbN/67TecxefJk t9cjRozAbrdTWlpKXV0da9euZciQIW73DBkyhG3btpGfn88XX3yB2Wymc+fObtdtNhtffPEF4Azs Pv74Y+rq6gA4ePAg0dHR5w3QEhIS2LJlCxMnTnTbdm0wZcoUfH19WbRo0eV8dCGEEKLDkSDNA1as 2EJy8lK3seTkpbz66rdtNoehQ4eiKIrbWFVVFd26dSM0NJTk5GQqKiqIjo52uyc6Ohq73U5iYiKJ iYlNrvv7+xMYGMiBAwcAePbZZ0lISGDChAkkJCSwePFivvrqq/POa8uWLYBz1aw5er2e6667joSE BPLz813j+fn53HHHHfj6+tKrVy82bNjgupaRkcGsWbN45513mD59OgsXLnRde+eddxg1ahQrVqzg ySefpFu3bkRGRvKvf/2L/fv3M378eIKCgpgyZQp2u93t6/74xz/yyiuvMGrUKI4ePXrezySEEEK0 BQnSPKC6uvld46oqbRvPxN3OnTuZO3cugCsA8vX1dbvHz88PgNzcXAoKCppcb/ia3NxcAIYPH85n n33G1q1buf7665k9ezYDBw487xzS0tIAWtzGtFgsAKSkpLjG1q5dy1NPPcWuXbsICQlh4sSJJCcn A/Dwww8DMGvWLJYtW8bSpUvZtWsXAPfccw/ff/89a9euZebMmZw+fZrhw4czffp0Dh06xLp16/ju u+/45z//ybZt2wBITEzk97//Pb///e957LHHiIuLIz4+/rzzFUIIIdqCBGkeYDTamh338qpr45mc c/jwYUpLS5kzZw4ABoMBoMlqW8Nrg8GAwWBocr3hnoavBzhx4gQPPfQQnTp1YuLEiXz00UfnnUfD 8xwOx3nvaVjRanzP/fffz/XXX8+gQYP44IMPsNlsvPbaawD87ne/c23t+vj4AOcCPH9/f0JCQhg+ fLjr7N2wYcOwWq1MnToVgD59+hAeHs6RI0cA6Ny5M0899RRhYWGuZ545c+a88xVCCCHaggRpHhAf P4ru3Z9xG+ve/WkeeeTWdplPdXU1ixcvZvXq1a4gqSEAKS8vd7u34XVkZCRhYWGUlZU1eV55eblr JezFF1/k6NGjvPzyyxw4cIAbb7yRmTNnkpqa2uxcunbtCuBaiWvO2bNnURSFLl26uMb0er3r9716 9SImJobjx48DznNsffr04eWXX3YFiI23Ln/OaDQ2O1ZSUgJAcHAwS5cu5euvv2bZsmWcPHmyxecJ IYQQbUGCNA8YO/Zmli8fzejRCxk2bBGjRy9k+fLb2jS7s7Enn3ySJUuWuAIzgKioKMxmM1ar1e1e q9WKTqcjNjaWAQMGNLleXl5OUVER/fr1A2DZsmVMmjQJAJPJxNq1azEYDG5nxhprqMG2Z8+eZq/X 1dVx4MABBgwYgNlsPu9nCg0NdWWGrl27ljvvvJNp06Yxc+bMlr4VLWpYuauoqGD06NHk5OQwb948 12cVQggh2pMEaR4yduzNbNq0hB07FrFp05J2C9CWLl3K3XffTWxsrGvs6NGjaDQaJkyYwL59+9zu //HHH7n11lsJCgrizjvvJDc3l4yMDNf1ffv2odFouOuuuwBnwVmb7dz2rslkom/fvq5itz83YMAA xo4dy2effUZpaWmT619++SXFxcVuh/+bk5WVxYgRI6iqqmLq1KlMnjyZ4OBgj6x4LV++nL1797pK i8gqmhBCCDWQIK0DefPNN0lOTsZqtbJmzRrWrFnDq6++yocffgjAvHnz+OGHHzh9+jTg7FCwbt06 FixYAMBNN93EsGHDeO+991zPfPfdd5k6dSrh4eEATJo0ic8//9x1vaioiMzMTMaMGXPeeb3//vtE RUVx7733ugVqhw4dIj4+nieeeII77rjDNa4oCpWVla7XGzZswGQyMXPmTMrLyyktLWXfvn3U1tby ySefoNFoyMzMdCVH2Gw2t/NtDUFXQ9mQhnsaxjMzMykvL+fo0aNkZWWxfft2CgsLyc/Pp6am5oK+ 90IIIYSnSTHbDuLrr78mPj4eu93OqlWrXOOKorB161YAYmNjWb9+PU8//TSDBw8mMTGR999/n2HD hrnu//LLL5k3bx7PPfcclZWVmM1mnn/+edf1ZcuWsXDhQqZPn05MTAxpaWl8+umnbufJfs5sNrNn zx5eeuklxo0bR1hYGDU1NdTW1rJy5UrGjh3rdv9bb73FRx99xHfffUdgYCCKorB9+3aMRiNGo5H4 +HhWrlzJ4cOHWbFiBePGjeONN95g8ODBZGRkkJ2dzfbt2/ntb3+Lt7c3GzduRFEUXnjhBebMmcPn n39OdnY2W7ZsYcKECcyePZtNmzbx//7f/2PatGksWbKEO+64g0ceeYQPPvjAQz8hIYQQ4uIojpbS 7q5AiqLwwuq9573++KTrW8w0FOJy/NJ/f0IIIURjLcUlst0phBBCCKFCEqQJIYQQQqiQBGlCCCGE ECokQZoQQgghhAqpNrszJSWF1atXExYWxtixY1ssdCqEEEII0dGoMkhbvXo1r7zyCp988gkxMTEA ZGRksHTpUvr378+ePXtYsGABffv2beeZCiGEEEK0DtUFaTt27ODhhx/mp59+cvWLdDgcjB8/nuef f56RI0cybNgwxo4dy8mTJ89b6V4IIYQQ4kqmqjNpDoeDhx56iPj4eFeABrB161aSkpIYPnw4AHFx cej1etauXdtOMxVCCCGEaF2qCtL27NnD8ePHSUlJ4a677iIuLo7XX3+d3bt3ExMTg053buGvV69e bNu2rR1nK4QQQgjRelS13ZmQkIC/vz9/+9vfCA0NZf/+/Vx//fXceuutBAYGut0bGBiI1Wptp5kK IYQQQrQuVQVpZWVl9O7dm9DQUACuvfZarrvuOnr06MHBgwfd7m1ojt2cLavfcf2+e9/BdO87uHUm LIQQQghxEZKPJJB8JOGC7lXVdqfFYqG8vNxtrFOnTrz++uuUlJS4jRcVFREVFdXsc0ZNmuX6dTUF aAUFBUydOhWLxUJERASzZ8+mtLTUdX3//v088MADvPTSS0yZMoXNmzc3+5z169fz29/+tsl4ZWUl c+fOJTo6mtDQUO6++25ycnJa7fMIIYQQHU33voPd4pSWqGol7cYbbyQtLY3a2lr0ej0A1dXVLFq0 iBdffNHt3uPHjzNt2rR2mKU6ORwOZsyYwdChQxk/fjzr169n5cqVFBcX89lnn3Hq1ClGjRrF999/ T48ePcjLyyMuLo5NmzYxeLAzkD179izr16/nmWeecX3/G3vssceIjIxkxYoV7Ny5k9dee4309HR2 796Noiht/ZGFEEKIDk1VK2mxsbEMHjyYDRs2AFBTU8PBgweZNWsWXbp0Yfv27QAcO3aMiooKxo0b 157TVZXdu3czadIk5s+fz8SJE1m1ahUTJkxgzZo1VFVVsWjRIvr370+PHj0ACA0NZcyYMTz11FOu Z5jNZh544AFuvfXWJs9PS0sjJiaG5557jjvuuINXXnmFRx55hO+//55Tp0612ecUQgghrhaqWkkD +Pjjj5k/fz7Hjx/HarWycuVKLBYLX331FX/6059ISkpi7969bNiwAW9v7/aeLgUFBU22YhsLCAjA ZDK1yVwmT57s9nrEiBGsW7eOkpIS1q5dyx/+8Ae360OGDGHu3LkUFBS4zVGj0eBwONzuzc/P55FH Hmny/OXLl1NcXOzhTyKEEEII1QVpnTp14p///GeT8W7durFq1SoA5syZ08azOr+SkhLXvJozbdq0 NgnShg4d2mSsqqqKmJgYiouLqaioIDo62u16dHQ0drudxMREbrnllhafP2jQoGaf7+fnJ50fhBBC iFagqu1O4Vk7d+5k7ty55OXlAeDr6+t23c/PD4Dc3NxLfv7s2bNVsaIphBBCdDSqW0kTnnH48GFK S0uZM2cO+/fvB2hyuL/htcFguOjn5+TksGfPHnbs2HHZcxVCCCFEU7KS1gFVV1ezePFiVq9ejaIo hIWFATQpb9LwunELrgvhcDh44okn+Pjjj12rcUIIIYTwLAnSOqAnn3ySJUuWuIKzqKgozGZzkw4N VqsVnU5H7969L+r5f/nLX5gxYwaxsbEem7MQQggh3EmQ1sEsXbqUu+++2y2ASkpKYsKECezbt8/t 3h9//JFbb72VoKCgJs85X92z9957jz59+vCrX/3KNXby5Enq6uo89AmEEEIIAXIm7bIFBAS0WFQ3 ICCgzeby5ptvkpycTO/evVmzZg0AWVlZZGRkMG/ePK6//npOnz5Nt27dKCgoYN26dfzf//1fk+dU V1c3G3Rt2LCB9evXc99997meX1BQwL59+3jnnXea3C+EEEKISydB2mUymUxtVgetJV9//TXx8fHY 7Xa3kiCKorB161ZiY2NZv349Tz/9NIMHDyYxMZH333+fYcOGue4tLi7m888/Z/PmzZSUlPDKK68w fvx4unXrxv79+5k8eTKVlZWsW7fO7fnvvvtuW35UIYQQ4qqgOH5etfQKpygKL6zee97rj0+6vkmh ViE85Zf++xNCCCEaaykukTNpQgghhBAqJEGaEEIIIYQKSZAmhBBCCKFCEqQJIYQQQqiQBGlCCCGE ECokQZoQQgghhApJkCaEEEIIoUISpAkhhBBCqJAEaUIIIYQQKnTVtYXy9Q88b/NwIS6Xr39ge09B CCFEB3HVBWmL3vu2vacghBBCCPGLZLtTCCGEEEKFJEgTQgghhFAhCdKEEEIIIVRIgjQhhBBCCBWS IE0IIYQQQoUkSBNCCCGEUCEJ0oQQQgghVEiCNCGEEEIIFZIgTQghhBBChSRIE0IIIYRQIQnShBBC CCFUSII0IYQQQggVkiBNCCGEEEKFJEgTQgghhFAhCdKEEEIIIVRIgjQhhBBCCBWSIE0IIYQQQoUk SBNCCCGEUCEJ0oQQQgghVEiCNCGEEEIIFZIgTQghhBBChSRIE0IIIYRQIdUGaXa7nVtuuYWdO3cC kJGRwZw5c3jrrbeYOnUqR44caecZCiGEEEK0Hl17T+B83nzzTQ4ePIiiKDgcDsaPH8/zzz/PyJEj GTZsGGPHjuXkyZNotdr2nqoQQgghhMepciVt165dxMTEEBAQAMDWrVtJSkpi+PDhAMTFxaHX61m7 dm07zlIIIYQQovWoLkjLz8/nu+++4/bbbwfA4XCwe/duYmJi0OnOLfz16tWLbdu2tdc0hRBCCCFa leqCtFdeeYXHHnvMbSwnJ4fAwEC3scDAQKxWa1tOTQghhBCizagqSFu5ciX33nsvBoPBbVyr1aLX 693G7HZ7W05NCCGEEKJNqSpxYOXKlcTHx7teV1dXM2rUKBwOB3379nW7t6ioiK5duzb7nC2r33H9 vnvfwXTvO7hV5iuEEEIIcTGSjySQfCThgu5VVZC2d+9et9cxMTF88MEH6PV6Ro8e7Xbt+PHjTJs2 rdnnxN5b7q/wAAAgAElEQVQ0noiwUPR6VX08IYS4YvSL8sFWU9nsNZ3Bm8MZFW08IyE6hp8vHn27 5t3z3ntFRDH/9V//RZcuXdi+fTu33HILx44do6KignHjxjV7/66fTqJokhnQLZKoCDMB/r4oitLG sxZCiCuXraaSFa+/3ey1+D/MbuPZCHF1uiKCNEVR+Oqrr/jTn/5EUlISe/fuZcOGDXh7ezd7/42D e7En4QQ/nbLy0ykr3SNMREWYsZhD0OmkrpoQQggh1E9xOByO9p6EJymKwic/plFWXkFKahbf/vsg dTYbABqtloE9ooiymPH382nnmQohhHrFmpUWV9KOne1Q/3QI0W4en3Q95wvFroiVtEvh5+tDvz7d ievdlcysPFJSM/nhwCn2H09j//E0ekaFEBEWSrjZJGfXhBBCCKE6HT460Wq1RHcKJ7pTOAOu6UlK ahb/2nWIkxn5nMzIR9Eo9O1iwRIWQqgpEI1GVVVJhBBCCHGV6vBBWmMBAX70v6YnfeJiyMrOIy09 hz37T3L4TBaHz2Sh1ekY2COSiLBQ/P18JNlACCGEEO2mw55Ju1CVVdVYrTmkpWdz4EiqazwmPJiI 8BAsYSF4GQ0tPEEIIToeKcEhRNto6UzaVR+kNXA4HBQXl5FmzcaakcPRk1kNDyQ22kxEWAjm0GB0 WskOFUIIIYRnXJWJAxdLURSCgvwJCvKnX5/uXDuggDRrDv/Ze4xjabkcS8tFo9UyqEcUkZIdKoQQ QohWJitpv6CmppbMrLOkpmXxY+Jp13ivTqFERYQRFhqMVpINhBBCCHEJZLvTQ4pLykhJzeRfuw5j r6sDQKvTMaB7JJawEAKls4EQQgghLoIEaR5ms9mwZuRyJiWDhEMprvGuYYFYwkKwmEPw8fFq1TkI IYQQ4sonZ9I8TKfT0bVLJF06RzBoYCxWaw7pGTkcOZFJSm4xcJqeUSFEWcyEmU2SbCCEEEKIiyZB 2mVQFIWgQH+CAv3pE9eNwYOKSLfmsPP7JFexXG1DK6oIM36+kmwghBBCiAsj252twGarIyMzl5TU zKbJBvWra5JsIIQQQgjZ7mxjOp2WLp0j6NI5goEDenMmJZNtuw9zwprHCWseWp2OQT2djd59fbzb e7pCCCGEUCFZSWsjDckGKamZ7Dt4xjXeO9pMlMWMWUp5CCGEEFedqy6785XtJwn20aNTadBTWFRC SmoW27874l7Ko1uEs5RHgJ+U8hBCCCGuAlfddueJ3DIUBSwBXoT4GPD30qFRUdATHBRAcFAA/fp0 J92aQ0pqJvsPp7D/RDqcSKeLORBLmAlLWIhshwohhBBXqQ65kvbR3lT2pBRA/ScL8NIR7GPA5GPA x6DOchjFJWWkW3OwWnM4fCLDNd4jMgRLmIlwcwhGg74dZyiEEEIIT7vqtjtP5JZSWVtHRlEl1qJK frIWu66bfAyE+BoI9tGj16pvO9Rut5OfX0x6Rg479hx1bYcqikJs5zAsYSGYQ4Kk9poQbahflA+2 mspmr+kM3hzOqGjjGQkhOoqrMkhr4HA4KK6sxVpUxfaTZ6mzO+rvg3B/L0J8DQSobDu0gc1WR05O PunWHHbvO+76IWoaaq9Jo3ch2kSsWWHF6283ey3+D7M5drZD/TUqhGhDV92ZtMYURSHIx0CQj4E4 iz+5ZdVYCyv57kw+2SVVZJdUEeClJ8RXT4ivEaNOPatrOp2WqKgwoqLCGDSwNxmZZ0m3ZvNj4mn2 H09j//E0ekWFEhUhtdeEEEKIjqbDB2mNaTUKEQFeRAR40T8qgIyiKtIKK/jJWkxJVS1nCioI9zMS 4msg0FuvqtU1o9FAt5gousVEMXBAb1ej9xMZeZzIcNZeu7ZnJyItoZJsIIQQQnQAV1WQ1phRp6Vb qC8xIT5cExlIWmEF/z6VR05pNTml1Wg1ClGB3oT46vHWa1VVEiMwwI8B1/Sib1w3t0bvPyalQFIK PSNDsISFEG42YZBkAyGEEOKKdNUGaQ0URSHE15lM0NcSgLWokvTCSg5Yi0grrCCtkPrMUD0hvgZV JRs0NHrv2iXSubqWksn2PUc5mZnPycx8FEUhrnMYEeGhmEOC0Mh2qBBCCHHFuOqDtMYMOo1rdW1g p0CsRZVkFFdxNKuEwooaTueXE+7vRWh9soGaVteCgwIIHhjANf16kp2TR7o1h+/2neBoag5HU3Po FOJHRHgoUeFmfHy82nu6Qog2cjQhkd3fJGKr1aPT13LTmAH0GTygvaclhLgAHT6783LZ7Q5nskFR JbtP5+Nw1V5rSDYwYNSpsxxGdXUN6dYcUtOyOHAk1TXeu5OZyAgzYSFBaKWUhxC/6EotwXE0IZF1 q5LIz3nJNRYSPp/x0+IkUBNCJa66EhzHc0pcv/ekqvraa2mFlSRmnKu9Fu6vzmSDBg6Hg8LCElLT stjeqPaatr6UR6SU8hCiQ1r55w85cfDVJuO9BsTz4DP3tcOMhBA/d9WV4Kips6NVFDSKsx6ap4I1 L72W7mY/uoX60j8qgLTCyibJBtFB3oT4GvDSq2eFSlEUTKZATKZA+vXtQUbmuUbvCcfTSDieRs/I ECItZsLNJnQqXRkUQlwcW23ziUO2mg75V78QHU6H/JOqAHUOB3UOBwqg1WicwRqeCdicyQZGQnyN 9LUEkFlcSWphJQfSi0gpqCCloAJzfSmPIG89Wo16Vtf0evdkg9S0LLbtOuxKNtBotQzsHkmEJZQA P19VnbsTQlwcnb62+XGDrY1nIoS4FB1yu7O6upqaOgdVNjs5ZTUNLTzRKgqKa4XNs8FHQ2eDtMJK dpzKw17f2UBTX5vN5KPH36iuZIMGNlsdWdlnSUnN4ocDp1zjXcOCsISFEBEWgre3sR1nKIS4FM2f SZvH+Gl95EyaECpx1Z1Jq6mpcb2uszuDtSqbnbyKc/9XqdUoaBTFY6trjdnq7GQUV2EtquTH1ELX eKC3HpOPHpOPurZDGyspLSclNZOMjFyOnMx0jfeKCsUSFkKYORiDXmqvCXGlOJqQyO5NB7HV6NAZ bNx0W38J0IRQkas6SGvgcDiorQ/YskvPra41bIc27Eh6OmArq7a5Gr0fyixxjYf6GjD5Ggj21qNT Ue21Bna7nbN5haRbc/j390nY7XYAFI1Cn87hWMJCCDUFSnaoEEIIcRkkSPsZu8NBtc1Olc1Bbvm5 e53JBopHkw0aOBwOCipqsRZVsrPRdqiigKVRo3d1bofayMqur72WcJKGOiRarZaBPaOIsoTh5yut qIQQQoiLJUFaC2z1q2uZJdVNVtc8mWzQWJ3dQXaJczt0T0oBDW8c6K0nxMfZ/cCgokbvjVVVVWPN yCXdmk3CoRTXeO9OZqIizJhDg6XRuxBCCHGBJEi7AA6Ho82TDeBc7bXUwkoONtReq19dU2Nng8aK ikpJSc1k23dHXLXXdHod1/aMJspilmQDIa5g0qlAiLYhQdpFakg2qLbZOVufbKDgzNRsrWQDh8NB fnkNaYWV/Cc5r0lnAzUnG9TW2rBm5HAmJYP9h891NojrEk5EWAhm6WwgxBVFOhUI0XauviCtvAR0 RueBr8vQXskG1bY6rEVVpBVUuHU2MPsZMPkYCPIxoFNR7bUGDZ0NzqRmsmPPURz1yQYarZb+MRFE hIcQFOiv2pVBIYSTdCoQou1cdR0HKEhH8Q7AofcGgw9oL+1jKoqCQatg0GrwM2jrkw3s5JbXYqsP QLT1iQae3A416rR0D/WlW4gP/aMCSC+s5N/J+Zwtq+FsWQ2KApEBzmQDPxXVXmvc2eCavj1It+aQ bs1m38Ez/HTKyk+nrHQxBxJpCSUiLAQvL9kOFcJTPLk9KZ0KhFCHFv/E5efnExIS0uIDCgoKMJlM Hp3U5VJqq5yrXpX1PTx9g3EYfEDvBcqlHWrXKAreei3eei3+Rp0r2aDO4YD6zgae3g5t3NmgX0QA 2SXORu/fpxSQUVxFRnEVQd7OJu8mH3UlGxgMerp360T3bp247to+pKVnk5aezeETGaSeLQblNHHR ZiLCQyXZQIjLdG578tzqV37OfIBLCtSkU4EQ6tDiv4yffPLJLz7gQu5pcxo9Sp0NxVYDKDjKC6Ew A3JPQ0UR2GpcZSQuhU6j4GfQ0jPEm65BXlj8DIDzLFttnZ3aOjt1dsd5ly8v6T21GjoFe/NfMSZm 3dSVMX3CuSYygKLKWpLzyvkxvZBTZ8sorKjBrrIdbD8/H/rEdWPUyP/ivkm/ZtiNfVAUSErLZduP R1nz7Q8cP5VKSVm5R79nQlwtdn+T6HZ+DCA/5yV2bzp4Sc+7acwAQsLnu42FhM/jptv6X/IchRAX r8UzaVqtlqioqPMe+q6trSU7OxubTT3/d6UoCrWph84NOBzgsIPDjkN/bntN8Q50rq4ZvEFz+Yfa 7Y5zyQa55W3T2cDucJBXVkN6USW7GiUbaDUKneobvXurNNmgpqYWa0YOqWlZbqU8ukeYiAgPwRIW Ip0NhLhAbz73v5xOWtZkvFvcPB5afM8lPVM6FQjRNi75TFq/fv0YP358i0Haxo0bL3+GrUlRQNEC WpS6OnDUOQM2gMpiQEHxM+EweIPO65KTDTSKgo9ei7fOeX6tyuYgq7SaOruDOlqn0btGUQjzNxLm b+SaiACsRZWkFzkbvacWVJBaUEGor4EQPwPB3gZVNXo3GPR0i+lEt5hODBoYS1paNv/afZjkrAKS swpQNMlcExNBpwgzgQF+qjl3J4Qatcb2ZJ/BUnJDiPbW4krahg0b+M1vftPiA7755hvGjBnj8Yld qiYrac1xOAAH2Otw6L1oqCarePk7gzWDD2gvfxXH4XBQ3aj2WoNWb/ReZSO9sILtJ90bvUcFemHy MeBr0Koy6KmrqyM7O5/U9Cy3zgbdLMFEhIdiMZswGg3tPEshWtYe9cVas5F6vygfbDWVzV7TGbw5 nFFxWc8X4mp3ySU4kpKSiIuLa7WJNWfnzp3Ex8dz5swZbrzxRt59912io6PJyMhg6dKl9O/fnz17 9rBgwQL69u3b5OsvKEhr7HzboT71yQaGS082aMzWqPZaXhvVXquzO8gsriSt0L3Re5C3HpOvAZOP HqNOnduh5eWVpKZlkZKWydGTWc5BRSEu2owlLARzSDA6lc5dXL3as75Ya21PxpoVVrz+drPX4v8w m2Nn5RypEJfjkoO0AQMG8Oqrr3LzzTe32uQay83N5fHHH+fxxx8nIyOD2bNn07NnT7799lsGDx7M 888/z8iRI0lKSmLs2LGcPHmyyVbsRQdpDRpW1xx2HDojNK6K5h96bnXNA7XXmutsoKnvG9panQ1K qmrJKKoio6iSw1nnGr2b/YyE+BoI8taraju0gd1uJzsnn3RrDrt+PIbDtTKooV+MBUtYCKagADSS HSpUoCPWF5MgTYjWdcln0mJjY9mxYwcvvfQSQ4YM4f7776dz586tMkmAbdu28dprr+Hv70+/fv1Y tGgRDz30EFu3biUpKYnhw4cDEBcXh16vZ+3atUycONEzb64ogAKKBqXO5r66VnrWeYsHkg0URcGo UzDqNPgbtVTV1147W17ryspsjWSDAC89ARY9vcP9GNApkPT6zgZny6o5W1btqr1m8jXgr6LaaxqN hsgIM5ERZgYN6E1m1lnSrTn8cOAUB5MzOZicSacQPyLDzdKKSrS7tq4vJluRQnRsLf7N8fe//50u XboA8MMPP/D888+TlZXFb3/7W+666y58fHw8OpnJkye7vQ4PD6dz587s3r2bmJgYdLpz0+3Vqxfb tm3zXJDW2IUmG+i962uvXX6ygX8bJhuY/YyY/YxcExngavT+Q0phk9prIb4G9Fr1rFAZDHq6domk a5dIrh0Ui9XqbPT+09E0rPllcPQMcV3CibKYCQ0JQqOSQFNcPdq6vpitprLFVS4hxJWtxSCtIUAD uOGGG7jhhhuorq7miy++oF+/ftx8881MnTqVW265pVUmt3//fh566CGOHz9OYGCg27XAwECsVmuz X1eSeACjJQJDqBnlcntGKgooOmfB2jqbK9nAUZZff13jvh16SW+hoNcq6LXgZ/B2SzZozc4Geq2G 6GAfooN9GBAViLWoivTCCg5lllBUWcvp/HJno3c/da2uAfj6eNO7Vxd69ezMtQNjXa2oklJzSErN ITrUnyiLmUiLGS9JNhBt5KYxA8jPmd/kAL/UFxNCXIqLWoM/e/YsK1eu5O233yY9PZ2IiAiys7Nb ZWLl5eUcOnSITz75hEcffRT9z2pm2euDl+b8+bV3nL9RFH494teMGD0SXWDg5QUZDduh2ma2Q0ty nbf4BNV3NvCGSzwjpSgKXjoFL9fqmnM7NK+ittU6GwD4GHT0CvOjh9mXayIDSS2s4LvT+WSVVJFV ot7VtZ+3okpLzyYlNZOfjqaRnlcKR87Qt0s4nSLCMAUHqCrQFB1Pw0H93ZviL/kA//m2MIN9tBgM RnKKzm1hBnpBqK+CRqsjt6T5VTwhhLokH0kg+UjCBd3bYuLA/v37ufbaa9m9ezdvvPEGX3zxBRqN hnvuuYeHH36YQYMGeWzSP7d48WLmzJmD2WzmL3/5C6tXr+ann35yXb/99tvp2rUrb7zxhvsHUhSy PngdW3Eh1J77y8yrUxeMEZEYLRFojB46t9Q42UDv5QzcnLMAvxDn6prO0GqN3ls72aCqto70okrS Cpyra+D8KOH+Xph89AR661W5pehwOMjLLyIlNZN//5DkSjboYg7AEuYslOvr493OsxRqo5bzXec7 qB/qqzB82DDWfL3DNXbX7cN5/oWXuOH668grd/+r3FOH+tXyfRGio7rkxIEHH3yQ6upqjh49Steu XVmyZAkzZsxo9V6dK1eu5L//+78xm80ADB06lL/97W9u9xw/fpxp06Y1+/V6Uwh6Uwj26ipsRYXY iouosqZSZU1FURR8evfBGBGF3mTyzOqaokGx1TZaXfOCsjznLd4BjZINPNfovbK5ZAOcW6KeCti8 9Fp6mv3oEepL/6hA0goq2HU6n+ySKrJLqtBqFKICvQnx1eOtV0/tNUVRMIcGYw4Ndq2unUnN5NAx K6lnS+DIGXpGhRARFkq42YReL02jRduc77oSA56W56S++QrRkbT4r9OBAwcYPnw4f/3rX/nNb37T Jv8Ir1q1Cm9vb2prazl27Bg5OTmcOXOGrl27sn37dm655RaOHTtGRUUF48aNa/FZGqMXhvAI9GEW 6spKsRUVQFUp5ceOUH7sCMaozhgtERgtEWi9L3NlxS3ZoGE7tO5njd5NjRq9X3qygbde22g7tPWT DZRGyQb9IgNcpTwS0otIK6wgrRBMPs6t0GAfvaq2Q728jPTq2YWePTpz7cAi0q057NhzlJMZ+ZzM yEfRKPTtYiEyPBSTKVCVK4Oi45CD/kKIi9FikPb0009z7733snnzZj766CMmTpyIr69vq01m06ZN PPjgg9TV1bnGFEXh+PHj3HzzzfzpT38iKSmJvXv3smHDBrwvMLBSFAWdfwA6/wDstbXYigqwFRVS nZFGdUYaAD7dezmTDcxhKLrLXFlpCNgc586vOXRGHOUFUF7gvO5nrt8O9VyyQfXPkg0atkI9uR1q 1GnpFupLt/rVNWtRJdtOnKWgooaCihoUBSz+XoT4GvD30qkm6Gm8uta/X0+yss+Slp7Dnv0nOXwm i8NnsugU4oclzLnC5u/n2cxlceUKC9AT6OXchvy59l79qnMoPPH4fOLielNc5X5NZ/BGVrqEuLK1 GI2MHz+egQMHUlvrPJC6aNEidu3aRWRkZKtM5rbbbnO9V3NWrVoFwJw5cy75PTR6PQZzOPrQMOrK y5xn1yqKqUg+QUXyCRSNBt+4azBaItAFBXluO7RJ7bXWSTZo2A6tstk5W9G6tdcCvZ3n0uLC/ckp qya9sJI9Z84lGwR46TD5GDCprNG7TqclupOF6E4Wrh3Ym3RrDmnpjUp5JKU6G73Xn18zGKTR+9XM XmcjKem421mwBu29+vXlN9ud84jp3cz5MwnQhLjStRikLV68mFdffZW7776b8vJynnnmGZYuXcrr r7/eVvNrNYqioPPzR+fnj6OuDltJMbbiQhw15ZQdSaTsSGKrb4c69F44KoqgoohzyQbeoDNe8nao VqPgY9DirT9XLDertKbJdqgnV9c0GoWIAC8iArzoHxlARn2j95+sxZRU2UhpaPTuayDYR12N3r29 vVzboYMHxZGans327440avR+in5dI4iKMBMc6K+ac3dCCCE6vhaDtODgYGbNmgU465K9/fbb/O53 v3O7x2azuRWZvRIpWi36YBP6YBP26mpsxYWtvB2q+eVkA31Do/dLTzZwbodq8DVoqbY5s0Nzy91r r2kUzycbdDf70S3Ut772WiXbT+aRV15DXnmNq9F7aP3qmlqCHkVRCA4OIDg4gGv6dne2okrPYde+ 4xw6ncmh05nEhAcRZTETER4qyQbCxdMN1XUG72ZX6AK94PDRE5czVSHEFabFf2n8/PzcXhsMBiwW i9vY//7v/3LffVdmT7rmaIxGDGEW9OZw7OVl1BYXQmWJ+3Zon/54RUai9b/MulsXlGwQfG479LKS DRS31bXMkmrqHA7qHK2XbBDs41w562MJIKukirSCCvamFpJeWEl6YWX9Vqgek4+6aq9ptVqiIsOI igxjQP+epKRlkZKayZETmZzJKULRnKJvF2ff0BBTIFrpG9ohXEpw9OOen+obqp/r15mfMx/gkgO1 851x6xflQ3S3XsT/oVeTa3L+TIiOqcU6aSaTiYEDB+JwOFAUBYfDwYkTJ+jduzcAtbW1HDp0iKKi ojab8C9RFIW89Z959JmNt0OpKXeNe3WOwSsyCkO4BY3eQ+eW2rDRe0Nng9xGjd6dnQ1ar/ZaaZWN 9MIK/nXiLHX19ctQILy+0Xuglx6NirZDGzQ0ek9JzeS7hJP1PyfQ6nQM6BaBJSyEwAA/1awMCs9p qcF4XooXB/Y1bah+7ZB4Fv/9fsA9ueBKLMEhhGhdl1wnzc/Pj6ioKLSNWis1bhVls9nO25qpI3Hf Dq2itrAAygupSjtDVdoZFEXBt881GCMi0QW2ZrJBfaN3nyAcBm/Q+3i0s0F1fbIBrZhs4O+lo09E ALHh/uSWVZNeVMl3p/PJKa0mp7TauR1a3+jd16Ce7dCfN3q3ZuSSbs1h/+EU9p9IhxPpdDEHEGkx ExkeilFaUV0Vamub/zmfPnPWFdg1Xp2TmmNCiIvR4kra5s2bGT16dIsP2LJlC6NGjfL4xC5Va6yk Ncdht1NXWkJtUQFUl7nGvaK7nutsYPDgP9SNz6416myg+NXXXruMZAPXW5yns0FrbIc2VmOzk1lc ibWoin1pha7xYB8Dob7OLVGdSrcUi0vKsFpzSLfmcPhEBuD8/vTtaqFTRBjBQZJscKVrafXruSc+ Zv/eV5qMh4TfwbW/CgU8V/lfCNExtbSS1mKQdiVqqyCtMXtNtbOzQVEBCjbXPHx698FoiUBvCkHx VJDRsB1a3+i9YTvUE8kGjdkdDrdkgwZtsR1qLarEWlTJkaxzragiA70J8THgZ1TP6lpjDoeDs2cL OZOaya69x1x/4LqGBbqSDaSUR8dzNCGRbz5KIjvzXEN1b9+Z9B5YhDkiGJAgTQjRsqsuSEt681VC IkLQtPFhdIfDTl3puc4GDd9Yo8V5bs1oiUDn7+/JNzyXbKD3cg0rPvXJBgYvZybpZbLVr65VNzR6 h1Zr9N7AbneQU1ZNWkEFe1IKXEfzgn3qG737GNCpKNmgscqqalJTs0hNy+TQ8frVNY3CNTERREWE ESRn164IF5q1WXoqkdeXb6SuzguttoroHlpXgAbtG6R5OvNUCOF5l3wm7Uq1++ON6PVaegwbgiUm ggDTZWZhXiBF0aALCEQXEOjsbFBciK24kOrsDKqzMyhNdCYbGCMiMYZbLn879HydDSoKoaIQZ7JB faN37aU3etdpFPwMWnz154rlZpedq73WGp0NGtdeuyYygLTCSqyFlRzOKqGwopZkpZyIgPrOBkad qoIeby8jsb270qtnZwZcU8CZ1Ex27zvBweRMDiZnEhMeTKcIM5awECnloVJHExIvOGtzyI0DuXb/ D/Wv3DPi29PFfAYhhDp1yH8hDCER1ORnkbT1e5KAyAGxRPbohKWrBV0b/aOo0esxhIahDzFjr6rE VlSIo6LILdnAp3cfjJFR6IM92Oi9SbLBzxu9+4Dm0qr/K4qCUadg1Gnwqy/lUdVco3cPr675GHTE hvvTK8yPfvUB23dn8sksriKzuIogb72rnIdRp57OBhqNBoslFIsllP7X9KxfXcviyMlMzuQUuvqG SikP9dn9TaJbcAOQn/MSuzfFNwlwftzzEwn/ycNe54VGW0Xnn62ktZeL+QxCCHXqkEFan/8aSGVp T/KzzlKccoLMxGNkJh5Dq9XQc9gQIntEEWAKaJO5KIqC1tsHrbcPDnuEs9F7fe21xo3evSIiMVgi 0Hp5/fJDW37DRrXX6sBR5wzYoL72mtKo9trlNXr30WvxbpQd2lxnA08mG2gUBUuAF5YAL66JCCC9 qIL0wkoOZZZQVFnL6Xww+xkx+eoJ8jagU1EpD18fb/rEdSO2d1f6X5NHSmqWW99QrVZL/+6RWMJC ZDtUBWy1zZ8ftNW4/5V5NCGRTR8fpyDnS9eYQTuf8WPjGHLjQKD9aphd6GcQQqhXh/zTqigKPgF+ +AT4EdWjC0Vn8zlrzaEiO41j237g2DaIGhRHVI9OhHUOb7PVNUXzs+3QnzV6VwDvnrHOzgahZhTt Za4KKQooOnA4nCts9ckGDY3eFS9/ZymPhtprl/QW5zob+DV0Nqhzb/Sure9q4MntUG+Dll5h/vQ0 +7k6G+w8lcfZsmrOllU7kw3qS3moaTtUo9G4CuVeOyjWlRm6/3AKBxqV8rDU9w319bnMdmTikuj0 zQzkYBMAACAASURBVPcQ1hlsbq93f5NIVob7alV25kt89s94/Hs0rFa1T2mNC/0MQgj16pBBWmMa rQaTxYzJYqayrBtnM3IoPnOCjANJZBxIQqvREHPTICJiIgi2mNC00ZZTk0bvRYVQWUzFyWNUnDyG otXi17e/s2+oJzoboID2Z9uhAFWlzlt8gusDNu9LTjZQFAUvvYKX/tzqWlVDskF9ZwNPJxsoikKo n5FQPyN9IwLILqnCWlTJDymFZBRXkVFcRaC3nmAf55aomhq9e3sZ6dmjMz17dOa6a+NIb1TKI/Vs CRw5Q4/IECxhJsLNIRglOxRom8PwN40ZQH7OfPJzzmVthoTP46bb+rvdp+bVqgv9DEII9Wr/v0na kLefD517x2Dv0ZmCnHzyMnOozE7n1H8SOPUfCOkVQ3gXC5aYCPyD26a+lXujdxu24iLn+TVbJaUH D1B68EA7JBuEOoO1y0g20GoUfA1afBq1ospu5Ubveq2G6GAfooN96lfXnAHbwYxiiitrSclXb6P3 gAA/+vbxo09cNwYPKiI9I4cde45yKjOfU5n5KMopqb1G2x2Gb3jW7k3x2Gp06Aw2brqtf5P3UPNq 1YV+BiGEenXIEhwJf11xwfdXV1ZRkJ1HflYutQXZrnHLNb2wdI3A0tWCl2/bbznZqyqpLSqE8kLs dXVA/TZurzhn7bWQUM/WXmucbFBP8Q48tx16ickGjTlrr9nra6+d+8etNZINGjgcDgoqal3bofb6 VlRqbfTemM1WR05OPunWHHbvO96o9loQURFmIsJDMHiqHdkVYuWfP+TEwd8BW3D+P6YNGEWvAWt4 8Jm27yF8Lmh0X60aP62PBENCiAty1dVJu5ggrcH/Z+/Nw+S6yzvfzzmn9n1fe1+k1tbavGG8YDA2 YyBchlwmdzLDhGAggx/gPmOHELi5WeZCyAQyN56YeQbIMmRmgCST4YbEIRhsbMuSZVmLtUutXqu6 q3qppZfal3P/ONXV1VK31OpNbel8nsePu3916pxTpV7eft/f9/uVZZnszByJ2CTJ8SnkmioSoOWu 3QTag5u6f23hvmrea9MpxXut9s9V914LBtFY1tt7rbKQbgCsl9hg4RJyzXtNJjZb2LRkg0pVXhT0 Po+73l3buskG895rQ8NjC8kGoqh4rwU8OOx3Rnft6//uWcajLcBXGla/jL9phGf+6HO35J7OH3+L 1358Wu1WqaiorAq1SLtJqtUqM4k0yfgks5GBevdFkkS633U34a4mrM51LIxWel/lEpXpNKV0EqFS qK8b27uUcajPj6BZpyJyuaB3QVwc9L7my9SC3ktVxjc52eDqoHdBgIDNgNukw2rQIG7BoqdarTI+ kWRwaIzDxy/Xc1ZbvDYCXmX/msVsusV3ucB6B4r/9q9+jezc/7xm3WT9CL/7p19UA8xVVFTedqhF 2hool8qkJ2r718YXwuTD+3cQ6mzC33orumvygvdaJoVcU1EKooh5Vy+GYBiNbR0tRpYbh5ocNe+1 1YsNGrkVyQaVqkx8Jk8kleP14YVkA5tBg9Okw2XSYdJtHbFBI5lMjuGRGJFovJ5sANAZdBHye7aE WW6PV6gHjV/NOw7cy/e/v3IBwPnjb/Hf/99/oFjYy/yYEx4CwN/8aZ75xpPXvd5yzv+qK7+Kisqt 5I5LHFhPNFoNnrAfT9hPdraTqbGJxerQW9Bdu9p7rTxTExsUM8ydOcXcmVMYWzvQh8LofH7Ete5b WlZskIZsGhDAUks20GxcskGj2GD+fVgrkigQdhgJO4zsDdsZnVZyQ09Fp5nJlxlOZnGblaD3rSY2 MJsV77UdPe0cPDBNJDrOzw+foz+WpD+WXBiHBr1bznttMpbiW39ygfjYygQA835kxcL/alj9cu3/ D9EUunH30GmS6PFWFq0dO3Kqlr2puvKrqKhsPdQi7SYwWc2L1aGj4+TGI1z82VEu/uzoLemuCaKI 1uFC63BRLeQppZLImRS54QFywwNKd61nF/pACI3DsTaxwfWSDeauTjYwgri69+DqZINGsUGj95oy Cl1f77Uur4VOj5l9YTuRdI6X+qZIZIokMkVFbGAz4LboMG0hsYEgCHjcDjxuB727u4jHEwyNxDhy /DKn+0c53T9Ku99BKLB1xAYjVyokGzbbw/Xd8JfyI1P2pf0WRvN3ef+H7rvhNavVyjVdtuOvTi0y or3RfaioqKhsJmqRtgpEScIT8uEJ+cjNdV7rvSaJdD18F8H2EHaPfdN+mYt6A/pACLkaoDI7TSmd Qi7MMXf+DHPnz6APNaMPBNAHQkimNe5bumGyAQhml6IO1RrXlGxg1EoYtRIWnYZCucrYbIGKLFPZ QO81h0mHw6RjZ8BGbDrPSEoRG0TSOSLpHC6TDo9F6a5tpWQDSZIIh32Ewz729W5jeCTGcCTGuctj DI6nEcQr7G4LEg54b6mVR7WydLLGcv5iy/mRabQX2L5Pyc9caYj5h//ZI0iCcuzQ6UMkx1d+Hyoq KiqbifqTaI00eq+lJhJMjirea5defINLgG9nN4H2AIG2ICbr5mzoFkQRjd2Jxu6kWizUvdcKYxEK YxHlvtu7lGSDdRuHNiQbzI9DM0nIwIL3Wk1ssMrCQEk2kOjWGSlWlP1r4xsc9C6JAk1OI01OI3tC 9rrYIJktkswWlWQDuxGPWYdZt3W6a7AwDu3Z3sbePQmGR2K89uZlzgyMcWZgjDafvdZd86ybUe7V G/ftBvjFJ94FQEUW+F//+JLycWl2yefn88kl15fzI7O7KniDnpu6R0mQ+YM/VLp4sVHH0tfbAj5n KioqKmqRtk6IkoQ76MMdVLpridgEyfgUE+f7mDjfx2mg6cBOgh0h/K2bGPSu09eTDarZDOXpFHJ2 mtzgFXKDVxTvtZ5d6IOhDQ56n1QOMdlrVh7G9Ql610kUKlXypSqTWSXofaPEBlaDhp1BG9v91gWx wVCS0XSO0XQOp2l+75oWrbR1rDxEUSQU9BIKetm7ZxvDkRgjIzHOXBplaGIaQehnd3uQoN+Ny2lf k6q1XMzx7HP/hclYipErFSQMzM2NY3Mm+L3f+0L9OJkCyp6yRiuNL4FcvPqUgOKePzP1NPGxhRGp 0fwkzV1rE3XYnAlKxY9RLn23vqa68quoqGwV1CJtAzBaTDR1txHubGU2NU0iPsnsSD/RE+eJnjh/ 68QGZguS2YJcDVGZnVHMcgtzZC6cJXPhLPpwC/pgUBmHrmvQe0PBlgWy04CAYHEpBZtGv6ZkA5Oo BL1bbpBsMP8+rJVGscGekI2RlCI2OBebIVXrrvmtelwmHXaDFnELjUNNJgM7trezvbuVvb0phobH OHTsUr271uS24Pe6CPjc2CzmVb1fk7EUl045yWW+XV+ThE+STub43FOfBiDW9z3OvvU48FuABFSA 92Ew/nDJc+48uJdmOzz3xx+mUjEgSXmauyS8Qeei4zQ6Y/0aV2MwXNvJNlsl4C2E6ofJFw10tHvZ +27V50xFRWVroBZpG4ggCtjcDmxuB5XtHUrQe20cuiA22Em4uwlfs28TxQbSwji0VKScTi0d9B4M KUHvazV4FUTlv6uD3ucSQEIRG2jng95XLzbQSQI6aUEZmi/LTGQ2NujdrNewI2Blu8/C7pCNaDrH 4YEE8ZkC8ZlCPdnAZdpa41BRFAn43QT8bvbu6WYkEicSHefU+RGiiTm4OEKbz0HA5yboc2M06m98 0hojVyqLCjSAublv84MffI7/o0UpfopyEcU+46FFx2l0f7Psee9+xz4OnDha+8yy5DHX90Fb+jGz VeLee7xMZWQ+99THVry3TUVFRWWjUYu0TULSLB6HLogNzjN6UumudT5wkEB7EKffuXliA63uqqD3 JORm6kHvoiRh3r0PfTCExrL0L8YVs2TQe2UDxQbUc0MLGxz0LooCQZuBoM1Ab8jG2LSSG3p8JE0k lSOSyuEwKiHvLrMWvWbreK8ZjQa2b2tjW3crB2tB76OjE5zrG2NoIg30sy2s+K75vM5F6tCl9qC5 7YElN+MXiwvPW0349/W6ZBqdkeWKsKufbzfAvffctegxUdIAS+97U1FRUblVqEXaLWBx0PsUU6MT 5MYjXH75GJdfBm9PJ4H2IIG2IGa7eVPuaVHQe1kJei+lk1QreWbfOs7sW8cxtnWhD66n2GAJ77V5 sYEggGXtYoOrvdc2Q2yg10i0u820u83sCzuIpnOMTuc4OzZDOldiIAFeix6XWYvTuHW81wRBwOmw 4XTY2L2zkwP7U0Si47zy+gUuj05xeXQKQRQUdWjQi9Nure9Bm8djFoiOXlny/DrdQhG0mvDv1XTJ lnp+j1dgKnN1t0wt0FRUVLYeauLAFiGfyZGMT5KITVJOL7Qhwvt3EGgP4W/xozPoNvWeFpINksiZ 9OJkgx27F7zX1qvrt2yygR1ZO++9tvYOVKUqK2KDcpXJTQp6r8oyiUyR0VrQ+/x3XWPQu0m3Nf9m KpfLxOJTRKLjHD7eV4+iavc7uH+Hj+d/9MN6oekxC7z4s6Mkxvcu2oxvND/Jr3/5Pqxdt36vlxod paKispVQY6HeRsiyzFx6lkRsgpnhK1QqSmEkCgJt79hLoD2IO+RBkjZ3XCZXq4r3WioJxUx9XR9u QR8Iog8EkYzG9bzgQsi7XK0tro/YoH6JWtB7riY2uDrofaNyQ8uVKrGaOvTqoPfrJRu0mKoUs3NL nlNnsjCS3XhFaS6XZ2hECXo/d3mMDreWI0ffxGfVYjVA2CbwxrHjZGYruB13MRbP1jf5//v/54tq LJOKiorKVahF2tuUaqVCejJFIjZJZnSwXkRoNFJdHWpxrHGf2Gruq1ioiw2EhjGRqXObIjbw+hDW q4icD3qviQ3mwzUFg7WWbLB6sUEjVVleJDaYR0k2ENY12aCRmXyJSCrHzy5PUq0Fvc8nG7iu8l4L MMNz3/rOkud56lNPEmcd81pvQLVaJT6eIDXcz59//x/q6y0uHXa9jN0An33q00znF56zVJfq/PG3 +Lu/uHDV3rSn+YVf2aEWaioqKncEanbn2xRRknAFPLgCHoo7O0nFp0jEJihMjXHhp69z4afQdHAX 4a4wvmY/0iZtRhd1enS+AFqvn2pmjtJ0ShEb9F8m238ZQZKw7N5bExus0WLkemKDvGKIKpidNe81 w6qD3q8RG5Q2PtkAwGbQsiuopcdvJTaTZyS5ONmgUWywlb5b573XDgT1nD5xiOlMlYGxGUaS8wWu TOuhS8hGN163g0unzi7ZLXvtH98iMb447kmNZVJRUVFR2EI/9lWuh06vw98awt8aIjvbzdToOOnB y0SPnyN6/BwajcS2R+4h3NW0qWIDyWJFsliRKxUl6D2VRC7nmH3rBLNvnVCSDUJh9F4fgmaNX27L ig1SkEmxXskGGlHAoleSDQoVpcO2KckGDiNNDiXZYCmxwbS1SsVgQ8zPIrB1GuA6jYjXLuK2Ocnk q8xkK4yMzzEYSzKQGGd2dJTxE2Vmk9eGmC8X96TGMqmoqKioRdrbEpPVTEtPB+Gu1po6dJz8RJTz Lxzh/AvQctduQl1hvM2+Tdu7JkgSWqcbrdNNJTcvNkgtJBuIIuadvegDQTT2NeaZriTZwGhvCHpf fbKBQSNg0DR4r1UUsUG11pqWRAGR9R2HWg017zW/hb1hpWB75coUiWyZrCUEpgqG0ixSLo1Yzt/4 hBuIzmThqU89ec16vlBiLJnljb5xvv/CCWaT/23R4/PdMo12mRa/GsukoqKiou5Ju13IzMwxNTrO 9FBfXWyg1Upse+Regh2hW7J3Ta5WKM9MU04lobSwF8nQ1IouEEDvX2+xgbwQ9K6dT0yYFxsYQWNY N7FBvlwltoTYQBDYEHVoqVJlcCTK9/7xZSYKCyNdXbWAlEvz1C//c6ZE+7peczlOHjrKP/3gdUpF DVpdmcf/xX3sf+DeZY//7U88y5XTf3jNuq/1Mzz0ge289Dcji/akWez/GptTwmB0qUICFRWV2x51 T9odgNlmwWyzUOluJRGbYmpsnMLkKOd+cphzQGhvD4H2IP7WAPqbcI9fC4IooXW40DpcVAt5RWww nSYfHSYfHQYUsYEuEETn9SGuyzhUs0yyAcp+tcZx6KouIdSC3udzQxeC3jcy2UAriTTbtDjnIlhF HXmdndGSnqKoB7Of16I59BYtbpMOi37jkg1OHjrKX37jDcajX6+vTUSVTM7lCjWjabm/A+eQ9SJ3 vdvAwFufQquxkp6JMZt2MTb0J/Wj5kejN1OoqTYbKioqtwNqJ+02RZZlMjNzJMYUK49yuQIo70/r PXsItAfxNvk2TWzQeF+VzBzl6RRkp+t/PQiiiLln14L32lqjqBYuuIz3mmNhHLpKsUEjlVp3LT+f bADrLjYQCxkyczOLrjmeLTM6U2ZkrspUbfLpMGpxm3W4zbp1D3r/2mf/mDOvf/2a9d53PMNvPPv5 JZ+zUNj9h/qayfpJ2vfNoXU4GU8qBdP9997F4R+eIDbwZ9ecY9vez/HJL//rFd9nj1dYZLLbyOee +rQa/aSiorJlUDtpdyCCIGCxW7HYrVS3tTM9lSIRnyQTHWTo6GmGjp5GkkS6Hr6LcFcTNtfm2Dcs Sjao1Mah0ynkYoa582eYO38GfagZfTCEPriOQe+NYgOtHjmbhmwaEMDiVrprGt2agt7NOgmTVqxH UTUGva+H2KCqN2PULxaFWIBOIFMsE6kFvS+IDTIErAZ2uTVYySMucd2V+qvNe7QJxaXvvVhY/kfJ fIftJ3/1DBQE4hODdO4yEGwJIMsyAaeWdKaCKArMZJY+vyokUFFRuRNRf/LdAYiSiNPvxul3U97R SXI8QTI+QW48yqUX3+DSi28Q3r+DcFcTvhb/5gW9SxJapwut06V4r02nlaD3sQiFscj6Br03ig3K V4kN5qaUQ4y2Be+1NYgNGoPe57trGy02MOs09PitbPNZ2BOyMZLK8dpAgthMnkKmyNFjxzCU5pBy aYRynvmrKpv+b1ygF7NzPPet7xAfjyz5uE5//Y3++x+4l/0P3HuN15sgCJj0Aia9yK/8b+/kxD+d p3+J3M9ydY58oYhBv7mpGyoqKiq3ErVIu8PQ6LT4mgP4mgPk5rrqVh6jJy8wevKCEvT+4EFCHSHs 3nWMfLoBok5fD3qvZuYopVOQm64HvesDYXTBIIZACMm8RouR+e4aEkKlsiA2gFrQu6B4r+lNaxIb iIKASSth1IhYawVbrKG7dj2xwdWjzUbMFhtV/dLvgSgI+K0G/FYDe4I2RqfzDI7GQdSQ1ztA70An l5ByaaT89E2/ps7dBjIznyYzOz9KfAWd/j+RnPDxtc/+8Q1FBNfDoNfy4V99hO9+4wtMNIxGBekT FPQF/vZnb9DT7FWC3t1ONFsopF5FRUVlI1CLtDsYo8VE8/Z2wl0tJMcTTI2OK0HvPz/G5Z+Db2c3 wY4gwfYgBvM6qjCvwyLvtYag90J8lEJ8lFnA2LkNw3olGywnNsgkIZOsJRsYN11skJmb4dt/+udL nu+Tn/j4NWPPpTBoJTo9ZoIYOV2JkdfZKOisTOW0YPKCycOZyQKSqYjDqEVcQdB7sMULTNJ/7hfJ zhXIznopFv6aaD9E+28sIrgR+x+4l/5zl/mHv/woxcJOoIJc+Tfkx/6Wad8IF2WZiyMTCKJIb0eQ cNCH3WretD8mVFRUVDYTtUhTQZQkPCEfnpCPfKaTqdgkydgkE+f7mDjfx2mg5Z49BNtDivfaJnUw BI0GrduDxuWmOu+9lk2T679Mbj7ZYFevkmxgXeOeuiWTDaqLkw3mxQZaI6xy9NrovWZtGIdOZUtK oYgiNkBUFJrroesRBAFNtYglP4U5P4VFY6agsxIr6pjKlknOziKKAk12Ix6LDqP2+v++wRYvwRY4 9HyEufTiTf7j0f/AT/7qmVUXaQBXziYpFv5q0dr01EM0zz7NL37wnUSi4xw9eYW3rozy1pVROgJO moI+Aj632l1TUVG5rXhbFWmjo6N85Stfobe3lyNHjvCFL3yBXbt23erbuq0wmE00dbUS7mhhJpkm EZtkNtLP8BtnGH7jTF1sEGwPYfes0ZR2hQiCgGQyIZlMyJWgIjZIJ5FLWWZPn2T29EkMLe2K2MDn R9Sv0WJkC4gNZI2ePQfvJjk1RWJinFw2c+MTruSlAfpyBn05g0UQua/5IcarJo6PpBlJZRlJZfFa dLjNepw36K5VKkuLOq4nIljO/Hb+sZM/OUr/uRHgd4Ay8BjwEKCkE7S1hmhrDXFgXw9Dw2O88Opp BuIpBuIpRElib2eIcNCLJuzlc099esnraHRGQLXgUFFR2fq8bYo0WZb5hV/4Bf7gD/6ARx99lIcf fpj3v//99PX1bZqr/p2EIArYPU7sHiflnnZS4wkSsQaxAeDf1U2gLUigPYDRYtqc+2oUG+RzlNJJ 5Eya/Mgg+ZFBBEFQxAaBIDq3Z23j0GXFBobFYgOtcU1B71eLDQrlKrHiHBqNBl8ggC8QIJvJMDUx TmpqcvWv5ypEuUqzTcs2t4fekJ2RVJaX+qaYnCsyOVdc6K6ZdbDEfn1JWjrt4HoiAkVJunTX8+RP FKuO7GxjF+3Ltf8/tOi8ZrORXTs72dHTzlhsksGhMY6evMLJyxFOXo5wqc9NOOjF53WhueZrQC3Q VFRU3h68bXzSXnjhBT70oQ8xMzODpmZ6un37dr761a/ykY98pH6c6pO2seTmsiRiEyTjU1SmJ+rr rffsIdzVhCfsRVxnb64bIVerVOZmFe+1/Gx9RChKEuY9+zAEw2sXGyy64Lz3WqUh2aAx6N245mSD SCTC937wVzg8PnQ2V/1rvlqpcveBfehtzhV7r61UhPDSC4f4r996ibmsREUs0PrwbtoO7geg26nF rSnjM0loJeWarx86wXPfOM1YdCFNwNf063zs6XtXNe5czoMNfgtfU/6G552dzTA4PMbPXj1DpaL4 AoqSRG97kIDfjdNuVfeuqaiobDluC5+01157jY6OjvovK4Bt27bx4osvLirSVDYWo8VEU3cb4c5W ZRwan2R2ZGEc6t7WTqgzTKgzjNGySWIDUURjs6Ox2etig/J0kmo5z+yp48yeOr4BYoOND3rPZzPE RwYRhCGsTjdOrx/JaEEWJUqV6oqTDZbyV6s/Vvv/Sy8c4itffpmRoT+oPzYd/yL7mhzMBDvoS5Xo AwShTMBqwG3W0frOh/mXGPnJXz1DsaBBpy/z2EdXr+4sLeOFZrIO8bGnP3TD81qtZnp3d7Ozp4PR sQmGhsc49tYAp65E4UqUFq+NoM9D0O/GZFyj/56KiorKJvC2KdLi8Tg22+Ixid1uJxqN3qI7urNZ NA7d3k4yNsXkaJzE5UESlwc5C7Tet5dwZxh32IO4XgkCN7qvRrFBPkc5tZTYYC/6QADJatv4oHeT vUFssPLi0Gaz8fGPf/yadRkBg8WARq9lsiY2ECslyoUcVMpQXTxqvJ5dRyPf/fbPGRn62qK16PDX eOV//Sbf/t6jjM/miaZyHB5KEpvJE5vJYzNo8O3u5fP33oXhBmKDlaBdJlS9a7f/pgo/jUaitSVI a0uQg/t3EImOMxKNc+ZilJHJGTg3wLYmD0G/B7/HpYoNVFRUtixvmyJNo9Gg1S62QKhWq0se+19+ +nz944Md3dzV0b2h93ano9Fq8bUE8TYHmEt3MjU6zszIFYZef4uh19/C09NBqDNMsD20ed01QUAy mpCM82IDxShXERucYPY0GJrbFLGBP7B+YgOkBrGBATk7DdlpFoLeTaDR37C7ZrfbsduXD0yXZRlL TWwQnZjjxKm3AKhUKqQTCaYmx8nMzq7YrqNYWNpepJDXIIkCIbuRkN1Ib9hONK0kG5yKTjOTLzOU VMQGLpMOp0mHtAIrj6V4/F/cx0T0C4vio3xNv85jH71vVecDsFhM7Ohpp2d7Gwf2pRmJxHn5yHku R6e4HJ1CFEV2twcJ+T04Heo4VEVFZePpP3ec/nPHV3Ts26ZIC4VCHDp0aNFaOp2mra3tmmM//egT m3RXKo0IgoDVacPqtFHe1kYiNsnkaJypiwNMXRzgNNB81y4CbUF8zX60+tX5jt30fUkSWqcbrdNN JZ9bCHqPDJGPDCnJBtt2oPcHlGSDNY9DxZrYoATIVwW9J9ZfbECBZHQQh8eHZDDj9vlw+3zkc3mQ tMiyfMPiQ6cvLbmuNyzubhm0El1eC50eM71hO5FUjpevLIgNBAFCduOqgt4b46PWY3zaiCAIeD1O vB4nvbu7GYtNMhKJc/TkFU73j3K6f7Q2DnUT9HkwmdRxqIqKysbQuesgnbsO1j9/4W++s+yxbxvh wJEjR3j88ceZmVnYAN3Z2cnv//7v89GPfrS+pgoHthayLDObmmFqbJy5kQEqte6nKAi037+PQFsQ d8iz+WIDuUplbo5yOrlIbCBIEuadvegDQTS2NY5DF1/wBmIDw6qD3iORCH/+54rxrU5vwOHx4fD4 KAsSB/bvR2O03DDofWFP2u/X15rbvsj/9ZV38ch7H7ju9cuVKvGZApF0lqNDqfr6Rga9rxeZTI6R aJyRiDIOnaen2Us46MPrdmzaqF5FReXO5HrCgbdNkSbLMr29vTz77LM88sgjXLx4kUceeYSBgQGM xoURmlqkbV0q5TKpiSTJ+CTZsWHmv/C0WonOh+4i2B7E5t4c77VG5HK5Pg6lnKuvG5pa0QeD6PzB tQe91y8mA3JdbED9XVi92KCxSGvE4nDicLby3e++QbGgRacv8cufeBfvfuyBJcUGL71wiL/8zssU 8hr0hjL/+smHb1igXU1udoa+eIrR2RKTc0XllQkCXpOGFo+VOVm3JUeKsiwzlVgYh85vpWhyWwj5 vYQDXozGNY7EVVRUVJbgtijSAAYGBvi93/s97rnnHt544w0++9nPcvDgwUXHqEXa24NivkAyspfH IAAAIABJREFUPkUiNkkxMVZfD/ZuJ9zVRKA9uGlB741U83lK0ykq0ykElFHf/DjUEAqjdbnXFvTe SL27VhMb1BCMNbGBbmVig+WKtL6+GEeOuBgZWdjj1dz2RX7j9x7i4UffqQS9X6e7thpyiRjf/tM/ RwZKGhN5nY1YSQcI3HtwP2WtGZdJi8t842SDW0WxVCIaHWdwaIyT54br69uaPEpuqMeJTrs5o3oV FZXbn9umSFsJapH29kKW5Zr32iTTg5colRR/K0lUgt6DnSEcmxj03nhfde+13Ez9G0gfbFLEBsEQ knEdRRCyvBD0Xh+HrkxssFyR9j/+x2UGBn5wzfq7H/0Sz373Nxp7eEiiyPx+/7W81/NFWiNVQSKv s7H/oce4kF74ceM2z4sNtFtyHCrLMsnkNEPDMV5+faG7JogCO1v8BHxuPG4HkjoOVVFRWQO3hU+a yu2JIAiYrGZMVjPhzhbSk0kmR+NkYyNcfvkYl19Wkg2CHSGC7SH0ps0ZOQmCgMZqQ2O11bzXUpRS SQqxKIWYsnfJ1N2DPhhSxAZr/UW9XND7CsQGy9l1/OQn/4WBgWsvVSpo6HIbKZSVoPeJzPJB7+uB KFcwFVI82Gzk7u0eRtM5XuqbIpEpksgoYgO/1YDLpMVu1CJukXGoIAi43Q7cbgd7e7uJxaeIRMc5 fLyPc0Nxzg3FkSSJvV1hwgEv1k1K3VBRUblzUIs0lS2DKIm4Ah5cAQ/5TCeJ2ASJ2CTj5/oYP9fH W4JA2729hDrDmyo2ULzXvGhcHqrZDKV0ErLTZPsuku27iKjRYN69D0MwtPZkgyWD3itK1yuniGau FhssZ9dhty89TjQaK4iCgFErYGzIDS0sEfS+nuNQQRBwmZTu2c6ATfFeS+c5MpggPpMnXvNec5l0 eCw69FvIv0yj0dDcFKC5KcCBfT1ERyeIROMcPzPEiUsjnLg0QnfYTTjow+9xqlF1Kioq64I67lTZ 0shVmelEikRsgtnIYL0l7N7WTrA9SLAjjNm+jpFPK72vipJsUEolESoLGZbG9m5FbOD1Ia7XvqUb ig2MIF0b9P7886/y9NM/pb//q/W1jo7f5I/+6L088cSDPP/8qzz33E/J5zUYDGU+85n38OjjD5Ca mSOZWXhNAtSMckuYzdbrmuMuNe6c55Of+DhGd/Ca9UK5wmg6TySV42Q0XV/3WfV4zLot1V27mpmZ OYaGY/zs0EIUlaTRsL8rTDjoxWzaHF9AFRWVty/qnjSV24JSoUgiPsnU6ASlZKy+3nRgJ8GO0KZ6 r80jyzLVXI5yOoGcnUae37ckCJh6dqEPhNA6nZskNqiNQxvEBs8//yrf/ObPyOUkjMYKn/nMe+oF 2tUFXGfnl/jGNx5lz542vvuX/w2H24vD41t0nYP79qK3Opbtrq2mSFt4aTKpXImRZJaXr0wx/5NJ EgWaHUbcZt26JBtsBOVymdGxSQaHRnnz9GB9fXuzogz1eZyqlYeKisqSqEWaym2FLMtkpmeZGptg ZvgKlcpV3mvtIdwh96b/UpSrFcoz05Sn01CYq6/rg03oAgEMgXUYhy664DJig9o49PkXjvHcN39W 75Q99dSjPPHEgwC8//2/zQsvfPWaU969/1N8/2++uEiIYDRblKB3q4u7774LyWipiw0EgUUF20rD 3G9EqVJlNJ1nOJXlZKShu2bR4zbrcBi1iKtMNtho0ulZBofHeOnwOaq17ppGq+FAdzNBv1vtrqmo qCxCFQ6o3FYIgoDFYcPisFHZ1k56MkEipniv9b92kv7XTuLp6SDc2USwM4Rhk9zjBVFC63Chdbio FouUp1OUp1N1scEsYOrcpogN1i3ovUFsUA96T/L8//cCT//OafqH/7B++MDAlwB44okHyeeX/taP X4hw7MUXF63lMnPkMnMI4hAP37MPh0XH+NzSYoOVhLmvBK0k0uY20eoysjdkY7iWbDAxV2BiroAo CoRtBlxmHWbdzSUbbDQOh5X9ju3s3tlJJDrO0PAoJ84O88b5QTg/SHfITcDvxu91qVYeKioq10Xt pKncNsx7r02NjlNKxQHl66H9HXsJdzXhCrpviZVHNZdVckOz6fo4tGx1UQo0I/oCCGbroufYLGYc YnG1FwS5yhMf+1NeePXa74PH3vsl/v4ffnfZTtrj3M2uB42YHn54ydN//OMfp7m5mXJVplCukp8X G8CGiA0aKVWqjE0re9feHLk22cBp0qHXbL2RoizLJFMzDI/E+PmR8/XumiAI7GxVrTxUVO501E6a yh2BzqAn0BbG3xpiNjVdC3ofYODwKQYOn8K7o5NwV9OmW3lIJjOSybwQ9J5Kks8XOPU3/wOAotlG StKSlrRUBJFf+cQncdhW2WGpBb0Xiku/vtxsCbIpnvr0Q7z56r8hlf+v9cc6+Sif5SKvFHYuek6s r4/ZY8cwlMv8yc9/zgeeeYYHn3gCjU7CpBWx6hR1aHyuSKUqU0FeV++1ebSSSKvLRKvLxL4mJTd0 NJ3jbGyGdK4EZPBZ9bhMyjh0tUHv640gCLhddtwuO727u4mPTzESGefI8cuLrDx6O0MEfG4cNsuW 6gyqqKjcOtQiTeW2QxAEbC4HNpeD0rZ2psYmmBodZ/JCP5MX+nkLaLmnl0B7AG+Tb9OSDRqD3me1 JiaOvolLktFlZvADXgSyFjvV5BSyxb8msYFet3Qnzqgvw+wUT9zbwnu6LzN75m7ymDGQ4bNc5P3M 8YJGw7379wNw6c03Mb/8Mt+JK51JRkb4UkwRbTz4xBNK0LtGQKcRseilendtIlNaNA5VfNfWr7tm 0WvYEbCy3W+hN2wnms7xav8UE7MFJmaVcWjIZsC9xcahGo1EU9hPU9jPgX3bF1l5nLwcgcsRWr02 AmrQu4qKCuq4U+UOQZZlZhJpJeg9Mki19mUvSSId7zxAoD2I0795CrxJu48/+8/PISBjF2Rcgoxd AgGZfXfdg9vjRBcIKEHvZkv9eemqjpm5zLLnnR+VPv+zE/y73z2zaE9aR8sz/Mff2cMTj+wFucor L7/OT3/na3x1OFI/5tecTvKPPIK9qQmA6A9/yP8cGbnmOl9+7DF+5+//ftn7KFcVo9yxmcI1yQZX iw3Wi/lxaDSd49jw2yvofWY2QyQSJxId5+zl0fr69iYv4aAXr8epjkNVVG5T1HGnyh2PIAjYPU7s HiflHZ2kxhWxQW48Qt8rb9L3Cni2d+Bv9RNoD2FxbM7ISUYgLQukZdBWZZyCzF6dcZHYwNjWpXiv +fzM5Er8xZ9+e9nzzY9Kn3jPAQCe+4v/k3xBi0Ff4qlfOVBfR5Z56JEHEKq/zpe/+wPI5kgVCmx7 77twd20jnphhLl/Assx1pFxumUcUNKKARSfR7TZSrCgF23Jig/V6nxvHoXtr3bVoOsfZMWUcOpDI ELAq3TWbQbNlumsANquZXTs72dHTzsH904xE47z8+gUuRSe5FJ1E0mg4sK2JcMCLyah211RU7hTU Ik3ljkOj1eJtCuBtCpDPdpGMT5GMTTJ1aYCpSwOcAwJ7thPsCBJsD6Ez6DblvkoITMgC7NiLLj5U Fxvkhq6QG7qCIAhUWnuwVMrMidKyWZ7zPPGehqLsamrJBg8++ggPvuddxOeKnDjyKmarImJocpqZ K1YZWaYgqKwwt1QQBPQaAb1GxFLbu5bf4GQDUMahPX4r23wWekN2IqkshwYSxGbyxGby2I1a3CYd LrN2SyUbiKKI1+vE63XSu7ub6Og4g0OKOvTY+SGOnR9iR4uPoN+D1+1Qkw1UVG5z1CJN5Y7GYDIS 6mgm2N5EZmaOZGySE28e4tXvHUMvVymKInc9+m4ee/wRnH7npnRfFokNqiEqs9OU0ikozFEZHaFl eoKy2UpK0pGStJSFteeGFmWRN89dxmIyEvA48fl8WHQSBz/0OF/8fpavjUTrh/9mRwfv/cxnbvoy kihgnhcb6CXypeXFBuuWGyoI+Kx6fFY9u4I2oukcI6kcp0enmc6VGEiA16LHZdbiNOq2jNgAQKvV 0N4Wpq01xL7e7QwOj/HzI+e5MDLBhZEJREmitz2oiA0c1i2byqCiorJ61D1pKioNnLp4lnM/+lu+ kZyqr33WYMLW3sN9D7yTUGeIYEcIvXFt6tC8v4nZ/NKb+60GHYbx6DXr1VKRqRIc/dHfYhCVb1sZ gYzFTkrSMitq+JUnP0XLKpShIzOLx6iiIOB22gh63BhEHUe+91dIhQIVk5n3/Nqv8eAvfAjEtf+N V5XlendtMlOqrytiA2FdxQbzyLLMVKZINJ3jlYZkA0GAUM17zarfWuPQeYrFEpHoOJFofFGyQbPH SsDnVsehKipvQ9TEARWVFfIXf/ZNnu27eM36xz0hHtjeC9S81+7fR7gzjDPg2tRkA0Vw8CdYAY9Y xVETGwBUTFbu/eCHae5qQTLc3C/qq4u0Rn71E0/SZBGXTTZQgt7XVtDIslwTG8jEZjdXbBCfUcQG R4cWxAb2ebGBSYduC3qvAczNZesF2+mLC0V9T4uPcMCL1+1Qo6hUVN4GqMIBlTsaY28P2Up5ycdM kobc6YWiTFsuLXmcy2Kk4753MDk6zlx0kIHXTjLw2km8PZ2EOsObmmwAArPAbFVCU1WUoW5Rxpid pdx/kamLxzF296APBNF5vCtKNrBZzPzKJz655GMWixnE4pLJBmSSSoFm8Si5oZJ2VQWbIAhoJQGt BBadkUJFMcttFBuINSuP9RYbNDtNNDsVscFoOk8k3TAOFRSxgWcLig0sFhM7etrp2d7Gwf3TDI3E ePnIeS6OTHBxZIImt4Wg36N211RU3saoRZrKbU+2UuZbf7x0d/VTn/8cjb92S5qlR4VlrbauDi32 dJAYm2BqbILJi/1MXuznNNB2316CHSHcYc+Gbei2GnT86r996pp1WZZhbgbDTBJiA2T7LpLtu4gg iph39ipWHnb7skWGQyxex0C3NpatiQ0QxHqxVg96n51UDjHZa90146Kg95tBEAQMGgFDTWww7702 mS0tWKdsgNjApNPQ7bPQ5TWzJ2RjJJXjUP8U8Zk88Qaxgdu8tbprgiDgdjtwux3s2d1FNDrO4NAY J88NE03Mcez8kNpdU1F5m6KOO1Vue+RdXdcv0s5dqX9+6uJZzv/ob/l6w560p11udn3wI+zr2b34 vLLMbHKaqbFxZkcG6gWERiPR+dBBgm1B7F7H5kdRVcqUp6cpT6eglK2vG5paFe81fxBpherMlV2w ujAKlecTOgUEi0sp2DT6NY9DX/mHf+Cnzz2HmM+TkXQc+MSnOfDo4xuSbNBIoVwhmsoxXBMbKBeB gFWP26zHZtBsyQ3781FUQ8NjvHzkPNVaN1Kj1bC/W7XyUFHZSqjjThWVFTJfiH3+8CtoyiXKGi17 73/omgINaskGbgc2t4PS9g6SsUkS8UkKk6NcevENLgG+nV0EO0KEOsKbF0UladC63GhdbqqFPOV0 ivJ0mnx0mHx0GFjvoHdR6a6VS4AM1Qqy1oA8lwASCAarUqzpTCDd/I+cV59/np898wy/399fX/vN yBAOvYaOB9+zockGeo1Ep9dCh8dMb6279mr/FPGZAvGZAjaDFpdZi8ukw6jdOnYYjVFUV3fX5q08 elp8BH1uvB4nGtXKQ0VlS6J20lRue26mk7Ye5OayJGITJONTVKYnAOXrsuP+fYS6mnAFXLck6L2S mVO6a9np+l9tgiRh2b0XfTCExmK9wVlu6oK1DlulQWzAVWKDlY3dfvv97+erL7xwzfqXH3uM/+vv frRkssFGBr0Xy9WalUeWU9Hp+rrbrMNl0uE0abdkskFjd+3nR84jz+/1E0V2twcI+Ny4nPYt2RlU UbmdUTtpKiqbiNFioqm7jXBnK7OpaSZH48xGBul/7ST9r53Et7ObcFeYYMeCUe6RYyd45Uc/Rlsq UdJqeeiD7+Mddy9jRLsKBEFAY7GisViRKxXKM2l+fOgsf/7zBMXyEDpNgV/7SDcf/OAD6Hx+RO0q A94XLgiCBLJ4ldggBZkUIIB1ZWIDTT6/5LqUyy2bbDDvvbYRYgOdRqTDY6bdbVKMctM5Xr4yRSJT JJEpIggQsCpWHltpHLqou7ari7HYJJHoOEdPXuF0/xin+8doclvwe10EfG5sFvOWEkqoqNyJqEWa isoGIYgL49DidkVsMDk6zsT5PibO93FKEGi7t5fRTJKzP/w7/kN8vP7cL8aUj9ezUKvflyTx0pUE v/t3GobiP6ivD3/r1yhM/DXv3RXEtGM3hkAIjXONBr7rIDYoL2Mn0ph6cHWyQaGy4L22UWIDQRBw mXW4zDp2B23EZ/KMpnMcHkrWkw0kUSBsN+Ay6TBtoaB3nU5LW2uIttYQB/b3EI0qQe+nzo8QTczB xRHafI5a0Lsb4xp9AVVUVFaHOu5Uue25GQuOjUauykwnUkyNjjM3OoQsy7x69hh/MZ245tjfONDL F373SxtyH//7//0CL538zjXrD+/4Zf7bk231z/XhFvSBIPrAeosNZJAr13qvLSE2ePX55/np00/z 1cY9aR0dvPeP/ogHn3jiOpeQ60HvsdniNd5rGyU2yJcqjE0rVh4nI+n6utOk7F3bqkHvsiyTnp4l Gp0gOjrOub6x+mPbm72KOlQNeldRWXfUcafKHU3u9EWW+zV8/Zjw9UcQBRxeFw6vi9LOLlLxKYwX Ty19bPbaMd9qkgqWGqUWSkvnkZYkO/q2HsrTKcrpFIXREQqjIwhw095r10UQQNAseK9dR2wwX4h9 +ZvfRMrlqBiNvPczn7lugaZcYt57bb67JpMvVRnPbGzQu0Er0eEx0+Exsy9sZzSdY3Q6z7nYDKns QtC7x7K1kg0EQcDpsOF02Ni1s4OD+9NEouO8fPQClyKTXIpMotFqONDdTDjgVbtrKiqbgFqkqajc IrQ6Lb6WIFqXAxLxax6PxxMc+6ejBNpD+Fv86Aw6ZvNF/uw/P7fk+X713z7F1YPBI8dOcOhb//Wa UWrO9NCS5zDoiog6HTqvH63HRzUzR6kmNqh7r0nSgveazbY+41CpcRxaUbpe+VnlEJOTB9/zMA/+ s/etWGxw7WUavNf0StB74aqg941INrAbtdiNWnoCVvaG7YyksrzWEPTumE822GLdNVEU8flc+Hwu evcsDnp/4/wgnB9kR6ufcMCLx+3YMvvuVFRuN9QiTUXlFrPv/od4JjG1yJvtcxY7zeF2Rk9eYPTk hXoUlXH/XmRZXnER8cqPfryoQAP4WnycKx0XSAU+x1B8YWtAW+CzPPmB1vrngiAgWaxIFmvNey1N OZ1CLueYO3OSuTMnMTS3oQ+G0AeCiLqlu3MrZjmxQTYF2XmxgbsmNtCt2nttXmxg1iodtvxVyQYb 0V1rDHrfHbQRSecYSWY5MzZDOqd01/xWAy6TUtRtpaKnMeh9b+92hobG+Pnr57kwPM6F4XElN9Tr JuBzY7WYbvXtqqjcVqhFmorKLWYpb7Z99z9Eb/cO0pMpErFJMmNDDLx2kurgJMX+CSSXCclpQtBc f+yoLS0dc7XdVOEj/8rLd/7+SfJFHQZdkSc/0Mpjd29b8njFe82D1uWhms9Tmk5RmU6RjwyRjwwh CAKmnl0YguENFhsohaxgrIkNdGtLNlgkNmhINmADkw0MWolur4Uuj5nesJ2RZJZDA4l6soFYExu4 t5jY4GrvtZFInMGhUd66ECEyNQsXhugIOAn63AT8HvS6NSqEVVRU1CJNRWUrsK9n95KGua6AB1fA Q3Fnp6IOrVQoTKZgMoUggKHZh+QyI5iX2WO2jJVGWaflsbu3LVuUXQ/RYEBvCCL7AlRmZyink5Cf JXPhLJkLZ9GHWzCEQugDIUT9GvctzXfXkBAqlQWxAUBumgWxgRE0qw96l0QBk07CqF0Yh8ZnF6w8 NmIcKggCXoser0XP7pCN0bSiDj0eSRNJ5YikcjhNOjzmree9ptNp6epsprOjiQP7dxCJjvPS4XMM xFMMxFMIQj+72gKE/B5cLtV7TUVltahFmorKdTh18SynDr+CtlyiVOtwLVVMbTQ6vY5gexP+HR0c OX8SZnIIMzPkRiZgBAw+J2Nn+rD7jHXvNYCHPvg+vhgb52sNI8/fCPh58APvW/M9CYKAxmZHY7NT LRWVZIN0ckFsIAiYtu1AHwiidXsQ1qoKvK7YAGW/WqP32ipfk04S0NXEBsVyzXttg8UGes2C2GBv k51oOsdoel5sUPNesylB71tNbDDfXevd3UV8PMFIJM5rxy5xdjDG2cEYzR4rIb+HkF8VG6io3Cyq BYeKyjIsleP5jMvDzg/+81tSqMFV6QnlCszmYTaPkM9y8L53oImN0vHAAUKdYZx+Zex45NgJXv37 H6MplijrtDz4gfU1yl10f7JMZW623l1blGyway/6QADJukaxweILLh6H1hBMjoVx6CrFBo1UalYe +XmxQY2NGIfOU63KTMwVGEnlODyYYN5DZKsGvTeSyxeIROIMj8R460Kkvt7T7CWkWnmoqCziehYc apGmorIMf/Fn3+TZvms91D7f3cO/+dXP3II7WtrzTa5WmR6bYGYgSurI4bofmKeng0BbkEBbEIvD sun3Wi2XqEynKaVTCJUFO5G62MAfWPs4dB5ZBuSFYk1ucEWz1MQGmtWLDRYuI1OqFWzxZbzXNqLL lSspQe+R9OKgd79Fj9us23Jig3lkWSaRnGZ4OMbLry8EvUsaDfs6Q4QCXlVsoHLHoxZpKiqr4L9/ 64/5xmD/NetPt3fyy5/6/E2d63w+zdG/+yG6YpGiTse+D3yQfXffC4At6GcmNr7sc2/GcLeQy5MY myARn6KcWrD1CO7tIdgexN8aQH8TI6dMPk8ml8fndKz4OUtRyefqQe+ioBSZ6+69Ns+i7pqB+RaU YLQ1iA3WvtOjKss1sYHMRGbBu04SBUSEdQ16n0eWZaYyRSK1oPf5n96SKNDsMOI26zBsoaD3Roql EqOjEwyPxHjz9GB9vTvkJhz04ve6kNSgd5U7ELVIU1GpcTPpA+vVSTt18Szn/+lHfD0eq6990mgi 3d2Dy+vjk7/9Zb79u19Z9vmrCYGXZZnM9CyJ2CQzw1colysAdSuP5m3NOP2u657jZ8dPIcsyZqOB SrVKs9dLa8B3U/dx7X1VqczNLT8ODYbQWFce9D6XyZLJZvF7PctdcIlkAxDMroag97UXUuWqYpQ7 Nlu4prum7F+78TXm5mbJZbJ4/f4VXbNYrjI6nWMkmeNkdCHZwGvR4zJpcZh0aMSVvbZ8NkMhl8Xu 9q7o+LWSnp5leCTGi4fOUqkoX5uiJNHbESTgc+OwW7dkZ1BFZSNQEwdUVGpkK+WFPV1X8fmv/nvk XV31z/f+0r/gmW9/a1Fx9bTLzd77lzaCXY5Th1/h2YZzAHw7l+XD0WHwrq3oWQ5BELA4bFgcNqrb 2pmeSpGITzIXHWTgtZPkh0e45199cNnnn+4f5NSVAT7+z96Ly2ZlIpXmzMAQYa8bzRq6HYIgorHa 0FhtyOUy5ZkF77XZ0yeYPX0CY+c2bPsO3LAL9Y8vvqK8TouZC30DtDaFaG9puvqCi8UG9aD3JGSS 6yI2gJr3ml6iW2dUkg0avNcEQHcDq5SXXvgxoihisVjp77tEuLmF5ta26z5HpxFpd5tpc5noDdsY SSlB75NzBSbnCggCbPNa8Fiu3zk99dpLABjNZqKDfXiDTfjCLTfz8m8ah92KY4+VXTs6GR2bYGh4 jGNvDXCqLwp9UVo8Nvw+FwGv6r2mcmejFmkqKjWyhTzfvqqAS/qCfLhYpCMYpFwss3cV6k5teWmv MkNtf85GI0oiTr8bp99NsUcJencEPMQOvVE/JvjAPfWPZzJZTvcPsru9FZdN6WppJIlzg8O85+C+ +nHzprq5QhGj/uaNbAXNgvdaJZ+jnEoiZ9NUkpPk+84DYNy2a8nnvnn6HCfPXuDXPvZLuBx2xien OHXuIs2hABrNEj/Wrue9NjOhHLIOYoPGZANrzShXKwlEphf25ElX+bqdPnmci2fP8C8//iR2h5Op iQnOnTlFMNy09GtZ4ppOkw6nSceugJX4TIFoOsfrw0ny5SqJbBG3ael/n8ELpxm8eIb3/uLHsNgd TCcmGbp0Drc/hLSCa68VjUaitSVIa0uQgzUrj0g0zumLUUamZoAF7zW/z41hFV9nKipvZ9QiTUXl Ori8PvD6+JerGDnOU9Is3aHJiyK2tdzcKpi38gAoGtuUtfTQooIt6nFQKJXY29VRXxuZmMTrsDOT yWIzK52NfLFEdGKSS5FRJlJp9nV3sr+7Y1X7sCSDESkYRq4GkasVinnQGSB3+RywuFhLT8/w1rmL 7N+9A5fDrjxfkjh94RKPv+uB+nHzRWQ2l8PUGA6/yHutXC/W5GwasmnWS2wgiQJmnVKQdbqU96w/ maVSrdSPmZuZ4eK5M+zs3Yvd4QRAFAUunz/Hw+95bNH5qtUqYk0RWa1WEQThmvdaI4k0OY00OY3s bbJj0IgIgsCPLyzseZwv2DKz0wxdOkfb9l1Y7MqeQ1GSGOk7z97733XN+1jM59EZrg4eWz8sFhM7 etrp2d7GwQMz13ivIfSzo9lLOOjD47LX3wsVldsZtUhTUblJbtY7bd/9D/HM7DRfj8d4BfgJ0C8I lIpFkpMTm3bfy1F0tNU/lpIDnH31KCIQcDnr6xOpNFrNgj/XkWMn+OFf/5BKoYjZZCJ8oJcj5y5g NRnpbgqt+l4EUaz7qRUb8+VrxRrA+ZkShWKR/bt31teGomP4PG6mZ2ax17p/xWKJ2MQkF/r6GYqO sWfHNt5xYO/izemCqHTXyld11+bmkw1qYgOtEaS1/7icL9ZAKdguXzxPoVBg156FDmU0MoLb62N2 ZhqrzV4vkgRBYDwe49SxN3B5PUiiRKi5hUBw6ffb2CAgeN8OZZ/bjy+Mk8gqIoeBCxekJMYwAAAg AElEQVQoFYu09+ypHzc5FsHm8pKdm8FkUf6EKJeKJCdijEdHsDqcGE0WvKHmDeu0Xe29Nj6RJBKJ 8+qxS1wYmeDCyETNe81LOODBYFC911RuX9QiTUXlJpj3Tnu20TstoXy8XKG2r2c3ckuQ9/7Hb9CS yfCnsqxsaJ+b5ZN9Fzl15PCm3PtKmLM0kRJj7LFJ9e5aMpslIYLLZsVqMtZD25+Nj2NE2SD/xakE U3t2MtQcprspdFP5oithvmCTtFUGThzDIYgEfAtigfHJKXRa7aLuSr5QQBAE3v3O+4jE4vz01SME fV46W5uvvcB1kw1mlEPMtWQDrXFdxAZtdj3HZ6ZwuT04Pe56hy0xOYFWq0WsjUUFQSCfy3H4lZdI TE3S1tlF9/YdOJwu8rncTV1zvlirVCr8wYsxRLOdimlBuTudnEKj1SI0jHvjI0NMxiI0d/Xg8ga4 ePIoucws7Tt61/oW3BBRFAkGPAQDHvbt3U4kOs7g8Cinzo0oUVTnB9nV6icc9OJyqskGKrcfapGm onITnDr8yqICDeDrySk+f/iV63bT7r/vnZzq/hH/6eSJRevfzmX5dz/8IZ/6zd9a9rkmScPN/Spe 4NWLw3z/8DjFsh6dpsAv3e/nwZ7WZY+XRIFUZo7Q3ocoGpQR4WDkEFOJJK3NTcQOvcHL//QCf1hL MKiiFGm/Hx/nca2E8ZEHFo3l1pvZ2RKJVJa9Xe31UehkapqpZAqvy4XVYq4fa7Na6l21rrYW/u6f XmR8MkFna/P1i8jrig1QXnGj2GCVhUGhUCCdTnPfwYP1DtvRS0MkpiZxuj2YLQvedodfeYmL587y z3/plwmEwoAyhjQ0jnFvgmKhQIcFdvb20rvDz48vjDObShAbnyDg82I0L1xb0kjMpBJYbA4kjQZZ lsnOzdbvYbPSD3Q6LZ0dTXS0h9nXu53BoTFeOXqec0Nxzg3FafHaCAe8hPwe9OreNZXbBLVIU7mj MEkaPvX5zy35mLSCzeLLiQA0y6zPkzt9EV16esnHhPjEdfe7raVA+/qPckSTf1lfiyaeAoaXLdQK 5TJh14KCM18qcmFOprVpO/62LpiNIE8pMUwyMP+OHQf0VZk2v39D9wqJokBiZoaucKjeXbscGSM7 OkaTy0zu8jn0XTsQRWUvVrFYQpJEEqk0ZrOJ3h1KVumKCovrBr1PKoeY7Avj0JsMehdFkampKbZt W8hPLU5EcOpFHty/q95Zu3LpIn2XLtDe1c2lC+c4c+oEB+6+D7d39XYZoiiSTEzR0a1c+307/Bw7 0seZcgmDt4lEtohTLyFKEmarnWI+R6lYoFqtkJ6aoHXbrg0txq+HIAh43A48bge9DUHvpy9GGZmc gbMD7Gj2EvC58Xqca1Ijq6jcatQiTeWOInf6Isv9etb39ixbwM13s5YTAZSXWW/kRs+9GQ+3lfD9 w+OLCjSAaPI5fnD4Y8sWaVaDkZDTxYXRCH67g77YGGa9nl1NLWgkiaKjjaLRBozV38eLwCgQctho 8i3jV7ZOFIolWv0+tDVLi2y+wJm+CF1NQcIuZZSX7zuvqCy7dxKJxfnJy69ht1r4wKMPYzGbVtf9 WW4cmgWyjUHvJtDoV9Rdy+fztLe3o9Uq//7ZbJazZ8+yfft2Ojo66srOv37zDZpa2njnI+/GbLbw 4o+f59TxN3jP+96/6k5WoZCnubUNbe1rL5fNcvnCBd53317uuf9uNBpNTWxQITmTQW8089IPv0fv fQ8Rbu+iuWv7TV9zI9DrdXR3tdDV2cy+3hSDw2McOnaxvndt3nst+P+z9+bRbd51vv/r0aPFkrVZ snbvW+xsTtJMaAPThQKFgW6XpUzbgU5bCp0CvWfKdu7Q27kwl+We/jqcgdLeaYfSOdwylA5rKTDQ JZSkadM0e+Ikjld5XyR50WItz++PR5btxHaceFPq7+scDvFXkp+v/STSp5/P9/1+e4qxW815k3kq ECyUvCvSHnzwQZ588kkUReFTn/oUX//613OP/eIXv2Dv3r04HA46Ozt55JFHcm9wAsFima+Am+xm bdl5JV8YGpyR57lQ77TzvXY+D7d77v/8nHubi4nU7AeqE6n5R0GN5VWMxKKc6e2hrNhNpdvDgbYz 2IwmyorduZ/jq8OD9AER4CWblXc2NFzgDi8cm7mQMo+Lg6db8DkdHGvrwGwysrW2Wi0i48Dkb+r0 cfzAdreVP3cOLF1HZd6g9yFVbKAzZsehc7/F2u12Kisr2b9/Pz6fj6NHj2K1Wtm+fXuuQBsbG8OQ ivHene+mtsRFSyhGWWUVe/70MsND6nm2i8FqsxMoLePIwbfw+PycPH4Us8XC5q3bctd+d5Wd40cO cfTMGZxVDXR3dzE0FmN7NiljJUed50OSJNxuB263g62N6+jq7qejszfnvXbwdJAKtw2fpxif2ynE BoJLhrwq0p588kkCgQAvvfQSv/71r/nKV75CfX09t912G/v37+cLX/gCp06dQqPR8OUvf5mvfe1r M4o4gWC5mTx3dv+eP6FNJUlpdQv2TlvMay8GvTYx67pBOzHr+nSsRhNbK6sBSKXT9EfCmAuMaGWZ dVV1dLzzSj53+AAWRUGrN7DlnVex1VM4p/faUrKjYR2RsXFOtHdSW+KntsTPa8dOYDebaSgvzY3h 4lH1/0vcxWiPnaTzrX14rvvA0hUWk+NQefo4NH2W2KBoWrLBuaPByy+/nHA4zPHjx6mvr6euro5X X32VoqIiNm7cSH9/P16vF4vFgiRJVDtMxK0GCjIT2IqKciPRs73XFsK2HZcTCYc43aSOUqtr1/Hm 3j1YbXbqGtbT0nyaYEc7H756O5XVtex3ann2d69QXr8ZjSzP6b222uj1OiorAlRWBNi2pZ6Ozl46 gr0cO9VNW38EJHUc6vMU43LaRRSVIK/JqyItnU7zmc98BoCGhgZeeOEFdu/ezW233cYjjzzC1Vdf nTsDcdNNN3HDDTfw4IMPotfn55uF4O3JlvqNF11YLea1F8rHd3oIDt1HcPjR3FqJ4z5u2XlhKQda Wea6xstIZzKMxWP85q19RKIxrv3ATZS73NhMhcQmEsiXbSaWLRo0E2N0ZGtEo7sYXSqFoa8Lo/ni Drqfjc1cyOUb6gG1iOwdDmErVEUDLT29lLnd6HXq29voaBKPzUkmqcmJDWBuo9yLYnIcqmjOEhuE YDzEfGIDu93Ozp071Z8llaK3txe73Y6iKBQXFzM+Pk5B1p9MURQOHz5MdXU11Q51dNsSis3wXtNk i8GFFKM2exHbL5+6dl9vDxar6j2XyWTQGwz4/Kqvnt3hoLHMxdaiDL6Af1bvtXzDYilkw/pqGuor 2bYlRHtHL6++cSI3DpVlmcZqPz5PMVZLYd50BgWCSfKqSPv0pz8942uPx0NZmRpPsnv3bj772c/m HqutrWVoaIjDhw+zffv2Fd2nQDCXV9r5PNTmO3cmF9mWdI/qubN2frLnEyRSegzaCW7Z6Z5X3Tkf skaDucDILTuv5ERXJ0c6Wtl7ugm3zU6ps5gtjQ08+d3vnfu6eJjrrvoAg7teo3T7BrwVPtxlHnT6 pTmqoJVlbv7LnaTTGeITE7x1spndR47zvr/YhtdRxP6TzXgddkrdrpzYYLpRbiaZJJORMHh96JzF OZ+2i2IhYgOjbVrQ+8wujlar5aMf/SipVEo9V1dQgMfjYXR0FLvdzsmTJxkYGOBjH/tY9nLSOd5r qUyGjJINepckJBZWsGm1Wj5404dJpdS/n6Xl5bS1NDM2OkqB0UgsGqXQbMaczVadzXttODqBUSvj LNTP8GlbbTQaDZ5sasGWzXUEu/rp6FSD3t861QmnOqnyFlHic+N1O9GeJ8ZLIFgp8qpIO5tTp07x z//8zwD09fVhs019iNntqrdPMBgURZpgRZnLK62ls534wf3zeqjNd+7sUw/9w5Lv9S/ryy+6KJuP hkApDYFSwuPjtA/24S9yzqn0SxfYyWiNyBoNnW8eo/PNY2g0EpVXbMFX5cfhm/u1F4Isa5BlPR97 95U0d3XTFwozPDKaG4lOZ7pRrjISIt7by/jJ46qa8SKC3mdlXu+16WIDI2hnBr1PngvT6/Xs2LGD lpYWTp8+TSaT4b3vfS9er3fWS1Y7TESTaYKRBOmMQholF/Q+mbV+voJNm7XZsFhtbN2+g77ebk6f PEEmnWbT1m25Ttskk8Waoih8/8+t9KcStA9HcZkNOAv12I065AUGva8Eer2OqsoAVZVT49A//vlI LtlAk+2u+UV3TZAH5G2R9qtf/Yp77rkHv199c9VqtTNEApls7uFcyfECwXIxl1fah/e+yn9Go+es n89D7VLGXliIvVCNj5rvX2LZ9o1kdFpC/cMM9w4Q7W7nzO4DnNl9AFd9Nf7qAP7qAAbT0hzorgmo 7xsLsYlQTEVonRLJcIhMOj4V9F5RjcHnR+/xolmsu/68YgOQCizZ7tq5YgOPx4PH4yGRSJDJZDCe xxvNpJOpdRpJpLJB7+Nq0DuALElIEmik+Yu1ycd8gRJ8gRIS8fiCfNlu215KZyjKy6engt41Ggmf tQCHSYfFoM2rosdqNbNxQw3rG6ro6Rmktb2bvW+d5sCpTg6c6qTCbcPrduJ1OzEZly8SSyCYixUr 0jo7O9m2bducj9944408+eSTAHR1dXHkyBH+4R+mOgs+n49IZMpnKhwOAxAIBM75Xv/3jy/k/nxZ VS3bq2oXvX+BYJK5vNKM6dkD08/noTaJyVBwXguQSxlZq6XY76bY72ZifQ3DvQMMdvUz0HSGgaYz HJYkKt6xGV+1n2K/C428+O7aQjp0Gq0OjdOF1lFMJh4nFRlGGQ8TaztDrO0MkkZD4fpNGHwBtFbr 4oqMWcUG2e5aXDWIlUxFKIZzxQYGw8ILWEmSKNBJFOg0mA1q0HsilWEwmlQLRVTPuYWOQw0LyOyU JAm7UYfdaKPBY6E7EicYjvFGe4iucIyucAybUYfDpMNh0lOQZ+PQQMBNIOCmcVMtbe09BLv6OHY6 KzaghdqAWqx5XA70wlVAsAjOHNvPmWP7F/TcFSvSSktLGRgYOO/zRkdHefrpp2cUaMlkkmuuuYbT p0/n1pqamrDZbGzduvWc7/Hp9/zV0mxasCxciB/YUnuHLQVz+Z3F5igqknY7yoYaAIyeuQ1IY30D c5raXuoF2tnoCwx4K0rwlAcYHY4w0NXLaGcrrXsP0br3EM66SrwVXnxVAcx28/m/4RIgSRKy0Yhs VIPe06MRkqFhlIlxxo4eYuzoIQrKKinwB9Tu2mI/qOcSG0RDEJ1fbHAhaDUSZr1MoU6DWa8WbH1j E7lxqEaS0Cygu3ZB15Q1lDlMlDlMNAZsBMMxguEYR7pHiMSStA5FKTbrcZj0FJn0aPNoHGqxFLJp Yw0b1ldx2dYwncE+dr1+gtNdQ5zuGkKSJNaLKCrBIqjecBnVGy7Lff2H556c87l5Ne6cmJjgK1/5 Cvfccw9NTU0oisJLL73E+9//fu666y5uvfXW3PjihRde4Pbbbxc+aZcgF+IHttTeYUvBXH5nDVu2 84WD+2es3200EkkruZ9hOc6dXcpIkoTVacfqtJOsr2a4Z4DB7j6GTrUydKqVY0BgawO+qgCe8qUT G5x3XxoNWlsRWlsRmUScZDgEY8PEO1qJd7QiSRKFDRvV7prdvjTdtfOKDbLeaxdht6FeRsKglTBo NViy3bV4KsPAeJJM9tjIhYoNFkKhQcs6j4U6t5ktJXaC4Ri7mgcZHJtgcGwCSYKAzYizUE+hXs6b cahGo8l5rzVurqWnd4jOYB+v7T+Vi6Iqd1nxe134vS4MK/R3U7C2yKsi7c477+SZZ57hsccey63t 3LmT++67j+rqah566CEeeOABSkpKiEQiPPLII6u4W8FaZT6/s4Ol5Xz+8H4GWluIazRoS8pxuC7M 8uJSZb7IrYWMa3V6HZ5yP+4yH9GRGga7+4m0nabrwAm6DpxAo5Goftdl+Kr8FHmKVuzDXGMowODx obg9pEdH1O5aYoyx40cYO36EgpJyDF4feo8X+SKzNHMsRGwww3vt4n4HGknCpJMxajVYst21ntGJ c8QGksSSFWySJOEs1OMs1LPRZ6V3JE5nKMbetuFcp63IpKe4UI+jUId2FSKn5kKr1VJa4qG0xMO2 LevUKKr2bo40BWkfGEE62sLGSh8Bn4simyVvCk3BpY+kvM1O3kuSxP5vzt55EeQHyoaa+btj00Z+ F/LcxXI++4yFMt+e7/3HB0mHZs/wXK3x7ST5OFrOpNOE+ocZ6u5nvKc9t+5eX4O30oe3wofJYprn OyzTviYSpMIhUuEQElNnDk0169SCrdiFtFixwSSKAig5sUFOoiFp1HGozgQLiCU7/2UUEmklNw6d RBUbSEs6Dp3OeCJFR0gt0o71ZE2AJfDbjBTnWXdtOoqi0D8wTGtbN3/edzJ7n6DCbafEp5rl6nR5 1QcR5Clf/NiOOUWQ4m+QQMDcthrAkioz06FI3p47y8fRskaWcfpcOH0uErFqhrr7GewZoP94M/3H mzkMlGxbj6/Kj6fci3aFPhQ1egN6txedy0N6fIxUOASxCNHmk0SbT6pig4ZNqpWHzbY8YgOdAUb6 1aeY7NOC3i+uAyVJEgVaiYJp3bX4IsQGC6XQoKXBa2Gd28xGv5WO4SivtQ3nxAZFJh3OQvX8mm4J xCRLhSRJOe+1zRtrae/soa29O5tsEEbSnGFTpQ+/pxi73SLOrgkuClGkCQTMbavxdrbPuNQwGAvw V5fhqyxlNBRhqHeA0Y4zBN86TvCt48iyhtqr/4JATQmWokV6nC0QSZLQmi1ozRaUdJrUSJhUOISS jDJ27BBjxw5RUFqBwR/A4PGiWWw6yoxxaFZsoCtAiYYhGgYkMDvVs2ta/UWPQ2WNRKFexqSbOr/W O8s4dCm7a5NWHT5rARv9VjpDMYKhGEd7RghFkyCN47UYcJj02Iy6vCp6TKYCGtZVsq62nMZNQ7S1 d7PnzVMcPtPF4TNdlBVbc1Ye5sKlSd0QrA1EkSZYc8w21pzLVmO6fcZSjUMFi0PSTIkN0uuqCPUP MdjVR6yvk6YXX6fpxdcJbF1PoLYET5kHeYXc4yVZRlfkRFfkJJNIkAoPk4qEiHe2Ee9sQ5IkTA0b 1WQDe9Hikg1AHXdKGqRUclp3rQDG1P/YkIzWackGF/dWL0kSellCL08pQxOpDP3jyRnea5qs/9qS ddf0WuqzYoONfivBcIzdLUP0jiToHUkgayQCtoJcskG+jEM1Gg1+nwu/z8XmTbV0dvbRGezlcFOQ jsERON5Kjd+Jb9LKQ4gNBOdBFGmCFedCDpgv9jD62cw11uwxzO4Dlcqe9VmpcajgwpC1cs57LTpa xWBXH+HWU3QdOE7XgeNotbLaXasOYF6h7hqAxmBA7/Ghc3tIj46SCg9DfJTx40cYP34Eg78Ug9eH wetDNi3yTN0s3bWZQe9LLzYw62USKYXu0QRpRSG9TONQjSThtRbgtRaw2W+jK6J21/Z3hukIxegI xXCYVKFBvo1DzYUmGuorqV9XwWVbI3R09vLya8dp7h6iuXvKysPrdlLstCPnkVBCkD8I4YBgTfHD H3yffzl97gH4v/WX4IzHz7HV2HD9h9lSv3HO191fW88n7/y7GWv5eAB/IaykSGM5SafShPoHGQj2 Ee8P5tZ9jfX4Kn14yrxLlmxwIWQmJkhFsmIDZepgvrGqVhUbuD2LTzaYZFJskPVeO0dsMOm9tujL KExMExtMfphost215RIbRGJJguEYL50aIJ1RrypJ4LGo3TVrgTavxqGTpFJpevsG6ehUrTwmP35l rZbGKp8Iel+jCOGAYNm41EaAc401HQYD69/7V7Paasz3utnSBGKHm+Y8ZL/a4oC1gNpd81Ds9xAd qWKgq4+R9mZ6DjXRc0i9N+Xv2Iy3wkdxiWsFxQZ69C4PumI3mei4enYtFiHWcppYy+ms2EAdh2rt i7QYmc97bYnFBpPea2a9TCKdIZ7MMBBdXu81m1GHzaijwWOhfyxBZzjGnpYhekfi9I7Es+NQI8Xm /Ap612plSgIeSgKqlYca9N7LW0fbckHvlR47AZ8Ln1uoQwWiSBMsgktxBDhXWkBKq2NL/cY59z3f 65aTS7Urly+YrGbKrWYydZVEBkMM9Q4wHmyl7fXDtL1+GFnWUPWubXgrfBR5ipYk6P18SJKEXGhG LjSjZPykRiJqwTYxztixw4wdO4whUIbB68Xg9S+x99p8YgMjaA2LEhuYNFnvNYNMbIXEBlPjUCtd 4Tid4RgHOsN0hKJ0hKK4zHqchQaKjDo0eZRsUFBgoKa6lJrqUi7b1kBnZy+dQTWKqrVPVYc2VvkJ +F1YzaK7tlYR407BRXMhI8B8YbKwnGusudSvWywrOYJcKwVhaiLJcN8Qw739xPqmxqHF66rwVfnx V/sxmlfRey0SQlKmea9V16lB7y43krxEXSFFmSk2yA4qJaMVRWecNej9YsgoComslUf/+NTPJGsk NCyt2GASRVEYiafoyAa9Z7LjUI1GosRWgMOkx5Sn3muZTIbeviFa27p5bf+p3Hq1z4HP48Tjcopk g7chYtwpWBYuZASYL8yXFrAcr7uUWCtjWq1eh7vUi7vUSzxay3DvIEM9AwyebGHwZAtHgbIdm/FX +3GVuJck6H0hTPdey0THSYaHITZC9MwpomdOIcky5o2NqveaeZEiiPOKDUAqdCyJ2MCokzHqZMx6 LYlURhUbLHOygc2oY1M26L1nJE77cIw3O0I5sUFRNuTdYdKj1+bPgf3p6tDGzWrQ+x/+dJgzPcOc 6RlGkpqpL3PjdTtxOe1ol6poF+QtokgTXDSrNQJcLPONNZfjdZcaa6WjBlBgMuKvKsVXWcJYeJTB rj5GOpppf+Mw7W8cRqeTqbvmHfirAxTaCldkTzPGoZPea6FhlFSM0UNvMXroLYyVNRh8fgxuz+KT DeYKeh8fhvFh9XGLSz27toigd50soZNlavXGGckG0608pGUIei8tMlFaZGJzwEowFKMrEudY1nvt jDSO26x6r9mNOuQ8GoeaC01sXF9Nw7oKerO5obvfPMmJ9j5OtPehkWU2VXoJeF3YrOa87AwKFo8o 0gQXzVxB4407r1zFXQkWSz4mDyw3kiRhKbJiKbKSWlfBcM8gg919JAa7OfZfezgGlFy2AX91YNW8 19LxmFqsjYeItTYTa21WxQYbNlPgC6C1Whd5sYWKDYxZscHFB72fnWyQSKliA5ZRbGAt0LHep6Pe a6ExYCMYjvHqmUH6RxP0jyZy41BnoR6TPn8+GmVZJhBwEwi42bplHV3dA3QGe9l3qIVDzV0cau6i 0lNEic+F1+NEt1QKYUFeIO6m4KJZCyNAwdpDq9PhLvPhKvUSHanOqUOD+48R3H8sl2zgrw5gdSyy MLoA5AIjsi+AkvFNJRtMjDN25CBjRw5SUF6leq+tULKBZM6OQxcpNphMNjDPk2ywlONQjSThthhw Wwxs8lvpjsQJhmPsa58ahzoL1aD3IpM+r7prBoOeqsoAVZUBLtvWQEdHL+0dPVmxQQiNRsPmKj8B n0tYebxNEEWaYFGslRGgYO0hSRKFNguFNgvpugpCfUMMdvcR6wtmkw3A31iPL9td0xcssjBa6L40 GnR2Bzq7g0wiTjLbXYu3txBvb1GTDeoa0Hu86J3FixcbTE82mBb0rowNAUNIBZZsssHFiw3OTjZI pFTBQd/48o5DdbKGcoeJcoeJTX4rHSHVe21ofIKh8Qk02WSD4jxLNgB1HLq+oYr6dRVs3jRIW1s3 r711moPNQQ42B6n2OQh4XXjdTrQr1PkVLD1C3SlYE6zkOaulvNZqnA97u5jaLhfR0XEGu/uJtJ4i lUoD6vtOxeWN+Cp9OAPFyCt8oFvJZEiPjZKKhCA+mlOKSbKMecNmNdnAYl26IiOnDk1n1aEqkqlI HYfqjWpxt0hSmSl16GBUFSQtV9D7JOmMQs9InI7hKG+0h3Lr+dpdm87YeDQnNkin1PcNjSzTWOUj 4HNjtazMuUrBhTGfulMUaYI1wUoWHpd6kXOp73+lyKQzhAeGGOoZZLy7Lfcmm4uiqinBbDev/L5S SdKRsFqwpeK59SUNep9krmQDJLBkg97liw96n7rM6iQbjMZTdIaivHhWsoHfZsRh0mExaPOquzZJ Op2mu2eQtvZuXj8w9e+12ufI5YYaDCvT+RWcH2HBIRBcQlxqKQ5rFY2sweF14fC6SK6vZrhPtfJI DHRx4o97OfFHVWxQUlOCq8y9Yt01jVaHxulC53SpYoNwiFQkfE7Qe4HXj7ZoGZMNRieD3m3Tgt4v XmwwmWxgyZ5dW4lkA0uBlvU+K+s8FnpH4nSEorzeFqIrHKMrHMNm1OHI2nkU5FGygSzLlJZ4KC3x 0Li5jrb2bl7889GclQeSREOpOgp1FRcJK488RhRpAkEekQ8pDksdar8W0Bn0eMr8eMr8REdrGAj2 Emk7nRMbqFYeO/BXl6yYlQdkxQZeI3qPd/ag90DZVND7kiYbpEFJqwUbQCzCUokNpge9TxZsPcss NpA1EgG7kYDdyGa/qgwNhmMc6R4hEkvSOhSl2Kz6rhWZdGjzKCzdailk88ZaNjRU0ds3zcqjo58T Hf1oNBo2Vnrxup04imx5mXm6lhFFmkCQRxzc86cZBRrAw8OD3L/nTytWpK0VU9vlwmQppLyhmnRt OcN9QwwEe0kMdHHsv17jGBDYuh5vpW9lxQaSBq3VhtZqmxH0nujqINHVoe67Zp2abFDsWgKxgQSS FhRF7bAtk9hA9V6bzA1dGe+1QoOWdR4LdW4zW0psBMNxdjUPMjg2weDYBJIEXmsBTpMeSx4Fvcuy TMDvJuB3s21LPV3d/XQG+3jj4BkOn+nm8JluSpxmPC4HXrdTRFHlCaJIEwjyiP+r8fwAACAASURB VEsxxUEwO7JWiyvgwRXwMD5SzUCwl5H2ZroOHKfrwPGc2MBb4aW4xLVy49DpQe/jYyQjIYhGiDaf JNp8EkmWKVy/mQLfEogNJsehsubcZIP4qPoUU1G2YCu4aLHBbN5rObGBoiyL2ECSJJyFBpyFBjZ4 LfSOJugKx3itbZieSJyeSBxrgZYikx5nYX4Fvev1OiorAlRWBLhsawPBrj46g30cPN5BcGgMmjqo 9BQR8BWLoPdVRvzmBYI84lJNcRDMT6HVTOH6GjLrKgkPDOfEBq2vHaT1NZBlDTVXbsdb4cXuXuQ5 sQUiSRKy2YJstqCkU6QiEVKREEoyytiRA4wdOUBBWaWabLCU3mtnJxtEQxANoYoNitWza4sQG0z3 XrMYZOLJDL1jU+PQSaHBUicblNiNlNiNbA7Y6MqOQw8GI4zEU7QPR3GZDTgL9XkX9F5YaGRdXQV1 teVq0Huwj66u/pz3Wi7oXXivrQpC3SlYE1wqQeWrFeQuWHmSiQmG+wYZ7h0k3j8V9O6qr8Zb6cNb 4aXQtgrq0HiMZDgE4yEy6SmLEVNdAwavD52zGGmpzlzNCHo35JZVsUE26H2BYoOxsTHGx8fxeDzn /kyKkuuuDZwd9L5MVh6KohCJJekMx2YJejeq3mv6/OmuTWe+oPeAz4XXJbzXlhJhwSFY81xKeZQH m45ySKQ4rCliY1GGewcY6h0kHe7LrZdsW0+gtgR36cpFUU2iKJkpsUFiLPchotFqKdy4hQJ/ANlk WsoLTokNct5rEth9YJhfbPHb3/5WjfayWEgmk5SXl1NZWTnLJRRSGSUnNphmGLLkYoPppNIZuiNx OkJq0PskzkJ9Nuhdh1bOH7HBdGb1XtNo2Fjpw+d2UlRkzZtzd5cqokgTCASCSwBFURgLjzLU089I ezPptHoAXqtV1aGBmsDqdNey3mvJcAgpPeW9ZqquU8UGLvfixQaTnOW9ljGYc900jdV1ztP379/P 73//ez7zmc/gcDjo6+vj4MGDXHvttWjnybHMKAqJlFqw9Y9P5NZVscHyea9FYkk6QtEZ3TVJAq+l AEehHmseiQ2mM5f3WqnTgsflwO8txly4hEX7GkIUaYJLCuETJhBAOpUm1DfIQFffjHFo6fYNBKpX 1nttEkVRyMRipMJDKNEISlZFKcky5o1bMPj8aM1LWEQqSu5sWrrQkVueLNbC4TA/+9nP8Pl8fOAD HwBgcHCQp556ii9+8Yuz7n+2wmuyu5ZY4WSD3pE4XeEYe9qGcz7Askai1G7EWZhf3mvTGR+PEezq o6Ozl0MnOnPrtQEnfq8Lj8shvNcuAFGkXQJcSuO45WS2M1lfcBSz/vr/Jgo1wZolOjLGQFcfkbbT ue7aanmvTaKk02rQe2gYUlPmLMbKGgxeH3q3B41u6QUv04u1197Yx+HT7dx88814vV5A7awdO3aM G2+8EZvNlivMUqkUx44d449//CPbtm1jx44dFBQUzCh0J5MNEilVbHD2OHTyvP9SF2zxZJquSJxg KMaBYDi3nq9ig0kURSEcHqW9s5eXdh/NnWGcjKLy+1zCymMBiCLtEkBE8aj88Aff519On1uQ3l9b zyfv/LtV2JFAkD+kUymGe9XuWmKgK7detn0j/poArhL3ip9dA0hPdtfGw1PdNUnCVL9BFRsUOZZO bDB5zXSan764B41Gw4dvvD7XXfvNb37DyMgIH/rQh7BYLLnn79u3j3g8jtFoZO/evaRSKW666SYq Kipm/f7qODSTHYdOExss4zh0UmzQHoqxq/lssUEBzkIDpjwVG6RSabp7Bmjv6JkxDq3yFuWC3oWV x+yIWCjBJYPwCRMI5kbWanGVeCkOeIiOVDHQ1cdIWzMdbx6l482jyLKG6nddhrdStfLQrJDzvWw0 IhtLUDI+0qMjqjo0Mcb4iaOMnziKwVeC3uPF4PWiNVvO/w0XQGJigpGBHrZt2oA8Pkwa6B8YZCDY iru0akaBdvLkSQ4cOMDGjRvZvn0727ZtIxqNUlBQMOf310gSRp2MUSdjMWiJpzJ0jyRIK0rOe22p xQaSJGE36bGb9Kz3WuiZJjboCMXoCMXyNuhdq5UpK/VSVuply+Y62jt6+OOfj9DSG6KlN4Sk0bCp 0ovf66LIZhHdtQUiijRBXiF8wgSC8yNJEoU2C4U2C+m6CoZ6Bhnu7SfWF+TUrn2c2gXF9VV4y734 qvwrJjaQNDJaWxFaWxGZ5ASpSFhNNugJkugJMgoYy6vQe32L9l7TSBoGh0Ksq6oAQB4fpvnIWyST Kao8RWRGBshkMmjtHlwuFz6fjxdffJHR0VHe+973Yr6As3NajYRZL1PrNM4Iel/OZAOdrKHMYaLM YWJzwEpHKMZLpwYYGp9gaFxNNgjY1LNrhXo5r4oei6WQjRtqWN9QRU/vIO0dPezZfzqXbFDhthPw ufC5nej14r19PkSRJsgrtuy8ki8MDZ7jE9a488pV3JVAkL/IWi3uUi/uUi/x8dqclcdgUwuDTS0c ZZWC3nV69MVudE6XKjaIDKNEI8TaW4i1t+TGoQW+wEUFvccTCSrLStBlFZzRWIyjJ5tZV1VBrduK PD4MhQ4yIwPYtXD99dfjdDrZvXs3mzZtwu/3X/DPND3o3ayXc+PQgWVMNgCwFujY6NPR4LHQMxKn Mxv0PpkhWpQNeS8y6TFo88fKQ6PR5KKoGjfX0dHRS3tHD0dPddHWH0aSmmkod+N1OXE57SsuhLkU EGfS8gRxJm0K4RMmECwORVEYj4wy1DMwQ2yg1cqse/cqig0yGdJjI6TCIYiP5g7mGwJlGHw+DF4/ 8jwjyLPZ8+ZBMkqGgMfNkaZTjI6Nc/17r8FqmdklSxrtOfHA//fd7/Oh//YxNm/ePKfa84J+JkUh mVWH9s7ivbZcYoOxRIrOkFqkHesZya27LQYcJj12oy6vxqGTZDIZ+vqHaWvvZs+bp6b892SZzZU+ vG4ndrslL21IlgshHLgEEEWaQCBYDtKp1Iyg90lKtq3HV+XHXeZBtwojp6mg92EkZcr2wphNNtAX uxYkNghHRjh6qhmXo4h11ZX8+Y392G1WNq6rJZVKodVqyWQyaDQaxsajPPvH3WzdvJHNGzfM6ru2 qJ8pJzZQVsx7LaMoDI5NEAzHePXMIJOf6JIEfpsRh0mHxaDNq3HoJInERC7ofd+hltx6abEFr8uJ 1+3EYn77e6+tuSLtzV+9cM56vttYCAsOgUCwnCiKkrPymG6Uq9FIVL1zK95KPw6vY8XEBtP3lR4f U5MNYiPnJBsYfD60hQs7P5ZKpfjZb/9IQ20Vm+rr+PO+t9hYV4PdZgXg+KkztAe7WF9XQ3mJf1bv taViNbzXkukMPZE4wXCMN9qnkg1sRh1FJh1OU/56r42NRekM9tEZ7OVw05QvYJW3SI2icjtzo+23 G2uuSLvn2vefsy66UQKBQKCSTqUJDwwx1D1AtKc9N6Jz1lXirfDhq/RhLloaFeaFoKRSpCJhkuHh GckGxspadRzq9iAt4IM6nU6TmJjgRz/7NZIk8cFrr8JqNvPcb37Pzu1bqSwNoJvm4Ta9WJOScSSj Rc0NlXUXHfSe+5my3muTYoPJ37Ua9L58yQbjE6ls0Hucw12R3LrbbMBpVseh+ThSVBSF4dAIncE+ Xt5zbEYUVWO1n4DPjdWy8qP65UQUaYgiTSAQCGZjIp5gqGeAoZ5+ksO9uXV/Y3026N2HvuDiVZgX g6IoZOIxUqFhlOg07zWNhsKGjRi8PrT2hYkNTre2Ex4ZxaDXYS40UVVWOvdZNEVB0erU0HdAMtlQ dCbQGxcc9D4f6YwyU2yQZbmD3kNRNeh9uvearJEoySYbGPO0u5bJZOjpGaS1vZu9b53Ordf4nQR8 b59kA1GkIYo0gUAgmA9FURgfGWOoW80NTaVU93hJkqi4vBFfpY/igAvNCgeBK5k0qZGIKjaYGM+t G/ylGLw+DD4/stG48O93PrGAksn9b3rQu2R2oOhNoDUsSXftfGKD5eiuJSeD3oej7O88N9kgX8UG AKOj47S1q95rue6aLLO1JoDPW4yl0JSX5+4WgijSEEWaQCAQLJRMOkN4cJjhngHGutpyHyDOukr8 1QH81QGM5oUXRku2r4kEqXCIVCSMpEwdzDfVrMPgDyxYbLAgJoPeM+lssZYNQy+wqMWa3gTy4s9I zZdsoMn6ry1H8RGOJekYjvLKWckGfmsBDpMOc56KDSaTDVrbumaIDSo9RXjdDnyeYgoMK9v5XSyi SCM/i7TlDhIXQeUCgWCxJBMTDPcNMtjVx8RQD6B2fMrfsZlATQnOQPGqiA0y0XFS4ZA6Dp0uNti0 hQJfANm0hKpARcl219LTumsgFRapBZuuAKTF/w5SGYV4MkP3aGJGd225xQbdWbHBvmliA7tR9V5z FurR55H32nTCkVHaO3ro6urneLP6dxNJoqHMjd9TTLHTjrzCfzcvBlGkkX9F2nIHiYugcoFAsJRM eq8NBPsY6WjOdV+K66vwVwXwV/spKFz57pqSzooNQjPFBqbqOtXKw+VekNhgYRfLdteUDIrWANNL KUvxJS82GEukCIZjdIVjHOnOeq9J4MmOQ215KjbIZDL09w/TEezj1TdOoEyeu9Nq2VLtx+ctxmrO X7HBmivSLgULjuUOEhdB5QKBYLlITSQZ6hlgoKs3JzaQgIorthCoCeDwOlf+7JqiqMkG4SGUaORc sYHHd1HJBvNccNrZNUNuWTLasuPQJRQbpLNig/GzxAYszzhUURQGxyfoDM30XpM1Ui6KKl+D3hOJ CYJd/XR09rD/SFtuvdrnwO8pxuN2oNflVxTVmgtYn61jFluFfczHcgeJi6DylUH42wnWIlq9Dk+5 H3eZj7HwCAPBPkY7ztD62kFaXzuIs64Sd5kHb6UPq8O6ImebJElCNpmQTSaUtF8VG0RCKBPjjB07 zNixw1mxgReDx4dcuMjOiiSBJAMyUjoNSlot2ABiEabEBkbQFlx0d03WSJg0MkatBoteJp5S6BlN kM4opFm+oHeX2YDLbGCjz0p3RA13f6szTEcoSkcoirNQHYUWmfRo80hsYDDoqa4qobqqhK2N9XR0 9vLi7qOc6RnmTM8wkkZiQ7kXv7cYR5EtLzuD03lbFmmXAssdJC6CyleGaDo1f1LECu9HIFhJJEnC UmTDUmQjua6Soe5+hnr6GTrVytCpVk4Ano11eCu8eCt8KyY2kGQZXZEDXZFjhtgg0d1JorsTAGNl jToOdXvQLLazIkkgadX8znQqJzZQxoayj2tmjkMv6hISOllCJ4NZbySRVgUHvcsc9K7XaqhwFlLh LKQxYKMzFOOl0zOD3v02I06THrMhv4Le7XYLdruFDeur6O0dor2zlz37T3G0tYejrT2UFVvxe134 vfkrNhBF2ioxV5D4X9x6K8qGmllfcyGdGRFULhAIVhKdXoe3IoCn3E90tJbhngGG+wbpO3qKvqOn OASUbt+AryqAp8yDrF2hoHe9Ab3bi87lUcUGkZAa9N7aTKy1WQ16X7cegy+AzuFYXJEhSYAEskYt 1qaPQ0f61aeY7FPj0IsUG0iSRIFWoiAb9B7PqkMHlzno3WbUYTPqaPBa6B2J0xmKsbdtmK7sObYi kw5noR6HSY9uhcfd8yHLMoGAm0DAzdbGOjo6++jo7OHQiU46BkeQjrWwocKLz+PEWWRbcSHMfOTt mbRjx47xsY99jGPHjuXWfvGLX7B3714cDgednZ088sgjM1yj4dLK7pwtSLzxwzctWYanCCpffkTm qkAwN5lMhtHhCEM9A4x2nsmJDbRambprdhCoCVBoW1jk01KiZNKkR0dIhkNIibFFB73Pf7FpYgOd gdwBLySwOLPdNf3SeK9lxQa9K5xs0BmKEQzFONozU2zgKNRjL9ChyaNx6CSKojAwGKKtrZtX32jK nQmTtVoaq/2U+NyYV0gIc8kJB2KxGH/913/N4cOHaWlRfVD279/PLbfcwqlTp9BoNHz5y19Gr9fz 9a9/fcZrL6UibTbEh/6lhbhfAsHCSKdShPqGGOjqI94/lc2oBr0H8JR70OpWfriTSSZJhYdJhUM5 77XJoPcCnx+ds3hpvdfmFBsY1YJtCcQGGUXJdddWSmyQURT6RxMEwzF2twzlalGNRiJgLcBRqKdQ n1/j0Eli8QSdnb10Bvs4cKwdgPKqCt7ZUHre1ybiUSbiMSx250Vf/5ITDnznO9/hzjvv5P7778+t PfLII1x99dW5NuRNN93EDTfcwIMPPohen5+zZIFAIBCoyFotxQEPxQEP0ZEqBrr6iLSdJvjWcYJv HUfWaKj6y234Kv0UeZZQhXkeNDodepcHXbF7RtB79NQJoqdOYPCVqN01X+CCkg1mZYXEBhpJwqRb WbGBRpLwWgvwWgvY7LfRHVFzQ9/sCNEZjtEZjuW81xyFOgwrNO5eCMYCA3W15dTWlHHZtga6uweo X1fBH16biqLa5Led87qmA3sAMBhN9AVbcbh9ONyBJd1b3hVpP//5z7n22muJRqMz1vfs2cN9992X +7q2tpahoSEOHz7M9u3bV3qbAoFAILhITFYz5VYz6doKwgNDDHb3E+3p4PSuNzm9C9zra/BV+vFW rqDYQJLQmi1ozZZs0HuIZGiYRE+QRE8Q2KcmG/j8arLBYjMjV0lsMOm9tpJig65IjGA4xtHuEcKx JC1D4LHkn/eaJEnYbRbsNgsA171zHQC/332SI91TIfWb/DaCLScItpxg53UfwWS2MRoeoqvtFDan B3kJkigmyasirbW1lb6+Pm6++WZeeeWVGY/19vZis01Vsna7HYBgMCiKNMGqYZK13HP/5+d8LN+s XwSCfELWyjh9bpw+N/FoNcM9Awz2DNB/vJn+480cBsp2bMJX6cdV6l4xsYGk1aJzutA6isnEormg 92jzSaLNJ5FkGfOGRgxeH7LFsnJiA50RLnL0Ol1sYFlBsYGlQEt9gYU6t5nGgI1gOMafmgfpG03Q N5rAWqDFUainuFCfV9216UwWa6AWbPubu2g/dJCGynWYzGpdotHI9LSdon7LFbnnTubETiTi6A0X d8Yxb4q0ZDLJv/7rv/KNb3xj1se1Wu0MkUAm+18Bs81x/+8fp8xsL6uqZXtV7RLvViBQiR1umtNm QxRoAsHCKTAZ8VeX4assZTQUYbCnn9GOM7S/cYT2N44gyxpqrtqOr8KHzWVfQe+1QmRToeq9Fgmr ZrmpOKOH32L0MBSUVmDw+TF4vGgMhvN/0/kvqI5DlamCTdEZUKJhiIYBCcxOVRm6iKB3WSNRqJcx 6TRYDHIu6P3scehSdtc007zXNnitdEVidAzHOBAMMxJP0TYUxW0xUJxn3bWzue6d6zh16E1aUklG TYFch80e68ZsdxKLjlFgLESSJJITCcJDfQz1Bim02NAbjLhLKmk9cYAzx/Yv6HorJhzo7Oxk27Zt cz6+adMm9uzZk/sLkclkSCaTFBQU8Oyzz/L3f//33Hfffblzav39/Xi9Xvbu3cuOHTty3+dSFw4I c1SBQCBQSSVThPoGGezunyE2cK+vwVflx18VwGBaZGF0EaTjsZz3mkZS369XRmwwLejdaEXRGZc/ 6H2Zkw1C2aD3Xc0zkw1K7EYcpvxLNsik07z+4m/QaDS84z0fAtTuWvDY60zEx7nuPe+jwKgaJTcd 2ENyIkH5uk0YTRaaj+7DW1pNkcs343vmhXCgtLSUgYGBBT9/165d3HHHHbS2tgLw61//mtOnpw7x NTU1YbPZ2Lp165LvdTURnRmBQCBQ0eq0uEq8uEq8xMZqGOodYHj6OFSSqNy5hUBNCQ7vIj3OLgC5 wIjsNaL3eEmPZcUG8dGZYgOvD4PPv/ig9xlig8lxaDorNlAtL6TCrNhAZ1yU2MCokzHqZMx6LfFU ZkWSDRwm1Vdtg89KVzhGeyjGgc4w7cNR2oejOd81h0mHNg+815LJCaJjI1Ss25Rbu7zBycFhI809 CqdDKQhFSE0kGDxzgsad78Fic+bGnoO9nRS5fLlR6PnIm3Hn2ZxdVd51113ceuutZDIZNBoNL7zw Arfffvs5PmkCgUAgePthNJsoqSknUFXGaCjCQFcvo52ttOw+QMvuA7jX1+CvDuCr8mMwrkx3TZI0 aC1WtBbrlNggPE1scIBlEBucNQ7VGlDGh2E8+7h58UHvqthAnlNsMOm7tpTjUJ2sig3KHSYa/VY6 wzFeOT04I9nAaynAWajHWqBdNSsPSZIYCQ3jr6jOrXW3nSGdSvKB970rt/7jZ19gMJama8KIW5JI p1PIspZ0KpWrYxZC3hZpMPPm79ixg4ceeogHHniAkpISIpEIjzzyyCruTiAQCAQrjaSRsDrtWJ12 JtZVMdTdz2BX38zu2ju3EqgJUORZue7aecUGGg2FGzZj8PrQWm1LIzaQZhEbjKoTK1VsYASdaUnF BolUhoFoksyk+esSiw0kScJu0mM36VnvtdI/mqAzFGVP2zA9I3F6RuKq2MCkx1Gox6hb2XFociKB O1CGrFXLp0Q8RvDMSXzlVXhKynPP21LjpFiq4F07qvjTwS5ioyG6uwdoqCy9oESDvDSzXQyznUl7 s+X0sooHDjYd5eCeP6FLJUlqdWwRzv4XxHLfH8HiEfco/1nL90jJKIwMhxkI9jIWbM257bvqq/FU ePFV+lYn2SCdVsUGkRCvnTjBFTXqh3hBSTkGnw+9x7d0yQYw8+yakskuTnqvmRYlNshdQlFIZtTz az2jU8kG08UGsPTn1+LJNMGwauVxMDhlh1Fs1uPMFnWLDXo/vv811l92xXmfd+rQmyhKhiKXl47m JuLjY2y78r2YzJbcc8ZHI+x7+Xc07ryaomIPJw/t44Xn/0DpxiuwFPuBKe+1vDiTtprsX8Y3r4NN Rzn+65/xL9MyMr8wpP5ZFGoLYznvj2BpEPco/1nL90jSSNiKi7AVFzFRX8Vgdz9D3f0MNJ1hoOkM RwF/Yz3eSh+ecu/KjUNlGZ3Dic7h5I1X9/Guy1ykImHiwXbiwXZVbFBbrwa9L8k4VKN211JJQDnL e21oScQGkiShlyX0spobmkgrxJMZ+saX13utQCdT4zJTXVzI5oCNYCjGK82DDI5NMDiWDXq3quNQ s+HixqEnFlik1TVuZ3wkTLDlFP7yKvwVNZw8+AaFFhv+ylokScJYaKG8bj0txw5hMlvp6Whhx7YG 3vmBa4BzvdfmYk0UacvJwT1/mlGgATw8PMj9e/4kijSBQCBYYfQFBvxVpfgqSxgLjzLcO8BIezPd h5roPtSEJEmU79iEt9KHq2Rlvdf0Hh86t5f02CipSEhNNjjdRPR00/KMQ2d4r50tNijKeq8VLE3Q u2FqHDrde225xQY92aD319uG6YrE6YrEVyTovdBqZ90W1VkinUox3N+L0WxFkqTc/yrrN1FZv4k9 v/8lOoOB6o2q0FFRlBnea/8+z3VEkbZIdKnkrOvaOdYFAoFAsPxIkoSlyIqlyEqmrpLIYIihnn7G utpoe/0wba8fxu2xs/Nvb1rxfeXEBukUqUiEVCSEkowyduQgY0cO4nzP+9HZi5bqgnOIDUIwHkKR 9UjF5ef/PudBq5Ew62UKdWqH7WyxgU7WzOlccLFMWnWU2I00Bqx0htT4qaPdI4SiSYz6ONtK7Et8 1Vn2odVyxftuIJPJ5MaW6VSSge4gLScOk5xI5MaecGHF6tvuTNrVV1/Nrl27VnsbAoFAIBAIBOfl qquuOidlaZK3XZEmEAgEAoFA8HZg9Z3hBAKBQCAQCATnIIo0gUAgEAgEgjxECAcEAoFAIBCsSdra 2nj22Wdxu9188IMfxOVyrfaWZrAmOmnHjh1jw4YNM9Z+8Ytf8JWvfIX/83/+D5/73OdIJoUaczV4 8MEH8fl8eL1eHnzwwRmPiXu0+nR1dfF3f/d3PP7443zyk5/k2LFjq72lNc+uXbtobGzEarVy3XXX 0dnZCYh7lY9kMhmuueaanJhN3KP84tlnn+XWW2/lox/9KHfccQculyv/7pHyNicajSo33nijUllZ mVt78803lerqaiWdTiuKoihf+tKXlK9+9aurtcU1yxNPPKE89thjyvHjx5Vvf/vbiiRJyo9+9CNF UcQ9ygcymYyybds25Q9/+IOiKIpy/PhxpbKyUkmlUqu8s7VLX1+f8olPfEI5cuSI8rvf/U4pLy9X 3vOe9yiKooh7lYd873vfUxwOh7Jr1y7x7ynPePnllxWXy6V0dXXl1vLxHr3ti7RvfOMbyi9/+Uul oqIit3brrbcqd911V+7rPXv2KMXFxUoikViNLa5ZHn/88RlfX3XVVcq9996rKIq4R/nAf/3XfylG o1FJJpO5tbq6OuW5555bxV2tbX784x8rIyMjua+feuoppaCgQPnDH/4g7lWe8eqrryq/+c1vlIqK CmXXrl3i31MekclklPr6euXrX//6jPV8vEdv63Hnz3/+c6699lqsVuuM9T179lBfX5/7ura2lqGh IQ4fPrzSW1zTfPrTn57xtcfjoaysDIDdu3eLe7TK7N69m6qqKrTaqaOrdXV1vPTSS6u4q7XNxz/+ cSyWqXzAyX8zu3fvprKyUtyrPGFoaIg9e/bwV3/1V4DqMC/uUf7w2muvcfLkSdra2vjIRz5CQ0MD jz76aF7eo7dtkdba2kpfXx87duw457He3l5sNlvua7tddSQOBoMrtj/BuZw6dYpPfOITAPT19Yl7 tMr09vae8x84NptN3IM84q233uLee+895z0NxL1aTb7zne/w3//7f5+xdvZ7Goh7tFrs378fi8XC t771LZ577jn+3//7f9x///28/vrreXeP3pZFWjKZ5F//9V/P6dRMotVq0el0ua8z2dgKRfj6rhq/ +tWvuOeee/D7/YC4R/nA2fcApu6DYPUZHx/nyJEjfO5zn0OWZXGv8oQn0tCdXQAADS1JREFUnniC 2267Db1eP2Nd3KP8YWxsjHXr1lFcXAzAtm3b2L59OzU1NXl3jy5JC47Ozk62bds25+ObNm1iz549 fOc73wHUX3IymcRkMvHss8/i8/mIRKbS58PhMACBQGB5N76GON89uvHGG3nyyScBVfF05MgR/uEf /iH3uLhHq4/f7+fPf/7zjLVwOExFRcXqbEgwg4cffpjvfve7yLIs7lUe8cQTT/D5z38+93UikeB9 73sfiqKc4zIg7tHq4PV6GR8fn7FWUlLCo48+SmNj44z11b5Hl2SRVlpaysDAwIKfv2vXLu644w5a W1sB+PWvf83p06dzjzc1NWGz2di6deuS73WtstB7NDo6ytNPPz2jQEsmk1xzzTXiHq0y11xzDd/6 1rdmrJ08eZI77rhjdTYkyPHEE09w++235zyd3vWud4l7lSe88cYbM76urKzk6aefRqfTcd111814 TNyj1eGKK66go6ODZDKZ65wlEgn+8R//kYcffnjGc1f7Hr0tx51nc/aI7K677uJ3v/tdro35wgsv cPvtt5/T5hQsLxMTE3zlK1/hgx/8IE1NTZw4cYJHH32Ujo4OcY/ygMsvv5zy8nJefvllQC2Uo9Eo 119//SrvbG3zwx/+EKPRSDKZpKmpiV27dtHS0kJFRYW4V3mM+PeUP9TX13PZZZfx/PPPA+pn0eHD h7nnnnvy7h5dkp20i0GSpNyfd+zYwUMPPcQDDzxASUkJkUiERx55ZBV3tza58847eeaZZ3jsscdy azt37uS+++6jurpa3KNVRpIkfvnLX/K1r32NEydO8MYbb/D8889jNBpXe2trlt/97nd86lOfIp1O 59YkSeLkyZNceeWV4l7lMeLfU37xox/9iAceeICTJ08SDAZ54okn8Hq9eXePJEWcxBYIBAKBQCDI O9bEuFMgEAgEAoHgUkMUaQKBQCAQCAR5iCjSBAKBQCAQCPIQUaQJBAKBQCAQ5CGiSBMIBAKBQCDI Q0SRJhAIBAKBQJCHiCJNIBAIBAKBIA8RRZpAIHjbc+rUKfr7+y/69ePj4ySTySXc0aVBOp2ekaEr EAhWFlGkCQSCeXnllVdobGxElmXuuusu7r33Xj70oQ9x9913c/z48VXbV3NzM1/60pfO+7yf//zn bNq0iaampou6TktLC9/73vdykWRNTU38y7/8C9dddx233377RX3PSwVZlnnyySdzuccCgWBlEUWa QCCYl6uvvpobbriBsrIy/u3f/o3HHnuM559/nssvv5y/+Iu/4LnnnluVfT3xxBP84Ac/IJFIzPu8 m2++Gb/ff1HXiEQifPGLX+QLX/hCbu3uu+/mQx/6ED/5yU+4+uqrL+r7Xkr8/d//PV/72tfO+3sW CARLjyjSBALBeZFl+Zy1u+++m89//vPccccd9Pb2ruh+UqkUwWCQiYkJfvKTnyzbdR544AHuuuuu GT//vn37kGUZu93O3XffvWzXzhckSeKWW27hf/2v/7XaWxEI1hyiSBMIBBfN5z//eaLRKD/96U8B ePXVV/kf/+N/cMstt3DzzTczPj5Of38/9913H3/zN3/DP/3TP/GXf/mXbN++nfb2dj73uc9RV1fH Zz7zmQu67i9+8Qtuu+02Pv7xj/PYY4+d8/jY2Bj33nsvDz/8MN/61rcYGxsDoK+vj3e84x3U1tbm CstvfvOb/M3f/A1nxxhHIhGee+45rr32WgDC4TD/9E//RDKZ5Hvf+x6PPvoox48f51Of+hT/+3// b66//np27twJwH/+53/yzW9+k2984xvcdNNNtLW1AfD444+zceNGfvazn3HzzTdTUlLCCy+8wJNP Psm73/1uGhoa6OrqOufnOXz4MDfccANf//rXueeee9i4cSN33nknR48e5dZbb6W0tJQf/vCHM34/ X/3qV/ngBz/IPffcQyaTye3rwQcf5NFHH+W2224jlUoRCoV44IEHuO222/jWt77FunXreP/73z8j xP2qq67iBz/4wZo8lycQrCqKQCAQnIeHHnpIqaiomPUxl8ulfPazn1XGxsaUW2+9Nbe+ceNG5X/+ z/+pKIqifPe731Wqq6uVrq4uRVEU5fLLL1duvfVWJZPJKOFwWCkoKFC6u7sXvJ+7775bURRF2bdv nyJJknLgwIFzHv+P//gPRVEUJR6PK1arVdm1a5eiKIry4osvKlarVYnH47m9Te5rOj//+c+V2tra c9YlSVLa29sVRVGUTCaj3HTTTcp1112n9Pb2Ks8++6yyd+9e5corr8w9/9FHH1U2bNigpNNpZXR0 VJEkSfnxj3+sKIqiPP7444rf71daWloURVGUW265RfnGN74x68/8kY98RLnpppuUeDyuRCIRxWAw KI8//riiKIry29/+Vqmrq1MURVHa29uVz372s4qiKEoikVAcDofy1FNPKYqiKD6fT9m3b5+iKOo9 +NWvfpXbR1VVldLR0aEkEgklEAgoL7744ozr19XVKb/97W9n3ZtAIFgeRCdNIBAsCo1Gg0aj4fnn n6e3t5dvf/vbfPvb36axsTHXeTGbzZSWlubOhtXV1bFu3TokScJms+F2u2lvb1/Q9VpbWykrKwNg +/btbNmyhe9///u5xyORCE8//TTvec97ADAYDDgcjtzj11xzDW63m5/97GcA9PT0zHpmraOjA5vN Nu9eJEnCbrdzxRVX4PF4+OhHP8q//du/sWPHjtxzPvnJT3LixAl2796N2WwGyHXcamtr0ev1VFZW ArBu3bpc1+1szGYzW7duxWAwYLVa8Xg8NDQ0AOrvc/J1zzzzDD09PXz729/mn//5n7nmmmsYGRkB 4Pe//z3btm3jzTffJBKJEA6Hc7+jsrIySktL0ev11NTU0N3dPeP6VquVM2fOzPv7EAgES4t2tTcg EAguXSKRCIODgzQ0NNDe3s6OHTv48pe/fN7XaTSaGeNFjUbDxMTEgq75gx/8gKamJv72b/8WAJ1O xzPPPMPDDz+M1WqlubmZVCqF0Wic9fWSJHHnnXfy7//+72zfvp3169fP+rxEIjHrWbzz0dXVhVY7 9dZaWFhIcXHxOUUPqD/32Xub7/dw9u9s+p8nC+KOjg7e9773cc8995zzeoPBwJe+9CU+8YlP4PF4 zhnxTt/H5Ih0koKCAkZHR+fcm0AgWHpEJ00gEFw0zzzzDGazmQ9/+MM4nU5eeeWVGY8fOnRoztdK knTB10smk3R1dfHTn/6Up556iqeeeorf/OY3pNNpnn76aUAtioB5LTc++clP8vLLL/PYY49x8803 z/qcsrKyBXuETf9ZKioqOH369P/f3t2EpNKFcQD/u21bbUJIAoOoJIyKQogiiBYStGxXBkFQiNAq aivRoqCikAiEEkpaFJUWktYqS2Yo0IWVQoVp4ActkmjSd/FyB+3jdu/lfW9C/99qOOM553FWzzzn zEze+aenJ1RUVPzWOH9yHgCKi4vhdrvz2s7OzpBOp9HW1obh4WFoNJpPx3nt4eEBSqXyt/sR0Z9j kkZEn3pvw7jD4cDExASsVitKS0vR2dkJURQxPj6OSCSCg4MDOJ1OAHhTsclms3mVmmw2+2FVJ5fd bkd7e3teW0lJCfR6vbzkqVaroVarYTabkc1mkUgkkEwmEYvF5D5lZWXo6OhAKpVCUVHRu3M1NTUh EonkxfVjM70kSXJbJpPJ+y+Dg4M4OjqSlx8FQUBVVRUaGhrksXLHzD1+Xb3Klclk3lyjH7/Pbdfr 9bDb7Zifn0csFsPGxgZ8Ph8CgQDu7u7w/PyMeDyOUCiEVCqFl5eXN/NKkvRmrmg0Cq1W+2F8RPTf Y5JGRD/l8Xiws7ODSCSCoaEhGI1G9PX1YXt7G16vF93d3QAApVKJlZUV2Gw2VFdXY21tDSaTCff3 99jb20MoFIIoiggGgzg/P4fb7UYoFML+/j6i0Si2trbkpzDf4/V6MTY2BkEQ5D1WwL8vtU0mkwgG gzAajZAkCevr6wiHw6isrMT09DTq6+txeXmJx8dHud/AwAAMBsOH86lUKmi1WrkamE6nsbi4CIVC gaWlJVxfX0MQBHi9XrhcLoiiCADQaDSw2+0wmUyYnJzE8vKy/C45q9UKhUKBzc1NJBIJOBwORKNR 7O7u4vb2FoeHhxBF8U0VMBAIwOfz4eTkBDc3N/B4PHICFo/Hsbq6CoVCAZvNhsbGRszMzMBsNqO2 thaiKMJgMKCmpgYtLS3Q6XSYmppCb28v5ubm4Pf74XA4cHFxAUEQcHp6Cr/fD6fTKV/nq6srlJeX f7g0TET/D0X2V25fiYi+IZ/PB4vFAovF8tWhfKnR0VH09PSgubn5q0Mh+laYpBFRwRgZGZErUq/N zs6irq7uL0cELCwsQKVSoaur66/PXQjcbjfC4TD6+/u/OhSib4dJGhHRJ1wuF1pbW+Xvd34XkiTh +PgYOp3uq0Mh+paYpBEREREVID44QERERFSAmKQRERERFSAmaUREREQFiEkaERERUQFikkZERERU gP4BwkPfk+4K0rwAAAAASUVORK5CYII= ", null, " AAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlcTfn/B/DXuZUUZSkie9ZQdtkrX5Q1U9aMsqSQXWWZ rH0Nw4xlZmwRss3YJbusZSwTGknRhKSEUCHVrfv+/dHvnm9HOwq39/Px6MH5nM/ncz7n3Nu97z7L OQIRERhjjDHGmEqSfekGMMYYY4yx4sPBHmOMMcaYCuNgjzHGGGNMhXGwxxhjjDGmwjjYY4wxxhhT YRzsMcYYY4ypMA72GGOslMnMzMSDBw++dDMYYyWEgz32VSEi7Ny5E926dUOnTp3Qp08f1K1bFzKZ DDKZDH5+frh48SIcHBzw3Xfffenmflbbt2/H8uXL0bhxYwwbNizPfI8ePcK4cePQp08fODg4oFev Xhg5ciTu3bsn5nny5Almz56Nxo0bIzo6uiSaX2RBQUEwNTWFTCZDs2bNcPjwYcn+q1evwtraGjo6 OtiyZQsA4NChQ6hduzbS09O/RJM/2bt37zBt2jQsWrQIzs7OmDFjhuRcFixYIL7Xs/+0b98+zzqf PXuGadOmYdmyZZg1axacnZ3x9u1bSZ6kpCTo6OiI9WloaCA2Nlbcn5ycDEdHR9ja2mLMmDGIj48H kPX7uHbtWgwYMKDI5/rvv//CysoKXbt2RZs2bcRjR0REFLmu4nLq1CmMHDkSAwcOLHQZIkK9evVy fZ3Wr18v5rt58ybGjBmDX375Bfb29jh16lRxnAJjhUOMfSUyMjJo+PDhVLFiRTp79qxk36pVq0hN TY38/PwoMzOTevfuTZaWll+opZ9feHg4tW3bloiIQkNDacSIEaRQKHLkCwwMJF1dXVq6dKkkfd26 dVSuXDk6efKkmLZr1y4SBIGio6OLt/Gf4O7duySTyahDhw657v/ll19o8eLF4va1a9do0KBBJJfL C32MR48efXI7P5ehQ4fSxo0bxe3hw4fTqFGjiIgoMzOTevToQbt27aJjx47RsWPH6OjRo2RjY0ML Fy7Ms87OnTvT0aNHxW0vLy9ycXGR5Pnll1/Iy8uLfH19ydfXlw4dOiTZ379/f+rTpw8REcXExJC9 vT399ttvtH79ejIyMqL79+8X6TwzMjKoWbNm5O7uLqZdvHiRdHV1c/xuf0kf81ly5swZcnBwID8/ P8nrpKOjI77XIiMjSU9PjyIjI4mI6MWLF6Svr0/BwcHFch5K6enpFBcXV6zHYN8mDvbYV2PJkiUk CAIdOHAg1/1ubm50+PBhIiJydHQkCwuLkmxesZo/f36BXzivX7+matWqUY8ePXLdP2rUKKpYsSLF xsYSEdH58+e/+mCPiGjAgAEkCAKFh4fn2NerVy96+vTpR9cdHh5O48eP/5TmfTb//PMPCYJADx48 ENPOnDlDgiBQaGgoRUZG0p07d3KUMzExoZs3b+Za56tXr0gQBEm5EydOUPPmzcXtzMxMsra2zrNd ISEhJAgCXb9+nYiInj17Rvv37yeirD+y5syZU7QTpawgXhCEHEHlpk2byNfXt8j1FaeifpYoP4Oy Cw4OJhMTE3F7xIgROX6fR44cST179vz4hhbC/Pnz6cKFC8V6DPZt4mFc9lVITk7GsmXL0KBBA9ja 2uaax9XVFerq6uK2IAgl1bxiFxsbCyrgyYU+Pj549uwZxo4dm+t+Z2dnJCUlYdWqVcXRxGLj6uoK AJIhMAB4/Pgx1NXVUa1aNUk6Zf2RWmC9ycnJGDZsGFJTUz9fYz/BtWvXAEByPiYmJgCA48ePo0GD BmjWrJmkTFRUFF6/fo1WrVrlWqe2tja0tLSwdetWMe327dto2bKluH3kyBGcOnUKhoaGcHFxQWRk pKSO+/fvQ0tLC+3atQMAXLp0CR07dkRCQgK2bt2KefPmFflc5XI5AGDDhg3IzMwU0+3t7aGrq1vk +r4mNjY2OdIOHz4sDnVnZmbi8OHD4vVUateuHc6dO4dXr14VS7vOnj2LpUuXFkvd7NvHwR77Kpw/ fx5v375Ft27d8sxTt25d9O3bV9wmIuzduxdNmjSBnp4eVqxYIe5LT0+Hm5sbfv31V3h6emLIkCFI Tk4GAJw8eRKDBg3CrFmzsHbtWtSqVQu1atXCuXPnJHVv2LAB8+fPh7u7OywtLREWFibuP3DgAKZM mQJbW1uYmprmOx+HiLBy5UrMmDEDHh4e6NixI3x8fMT97u7uuHbtGqKiouDu7o7Vq1fnWs/p06cB AB07dsx1f9u2baGuro6TJ09K0m/duoW2bdtCS0sLXbt2xf3798V9gYGBmDx5MjZu3Ii+ffvi0KFD AIDExEQsWbIErVu3RkBAAIYOHQoDAwO0bNkScXFx+OOPP9ClSxdUrlwZK1euLNR1z0uvXr3QqFEj +Pr64t27d2K6r68vHBwcxO34+HgsXrwYDRo0QExMjJgeFRUFDw8PeHl5wdraGl5eXgCAgIAAvHr1 CsHBwXB3d8fdu3cBAPfu3YOLiwsWLVoEW1tbDB48WJy/du/ePcyePRvDhw/Hvn37oKenBw8PDzg5 OUEmk2HMmDF48eIFACA4OBgGBga4dOkSAOC3336DgYEB4uLicj3PpKQkAJBcj8qVKwPImoeZGz8/ P/Tv3z/Pa6epqYk5c+Zg5cqV8PT0xOnTpxEUFIRff/1VzFOhQgXMmTMH9erVw6ZNm9CqVStcuHBB 3N+qVStoa2sjIyMDycnJePnyJQwNDeHp6Yn58+dDS0srz+PnxcTEBKampjh9+jQsLCzw77//AsgK TpXz4wIDAzF69GhMnToVv/zyCwwNDVG5cmUsWLAAAJCQkIDVq1fDxMQE4eHhaNiwIczNzQFkBbRT p06Fg4MDjI2N8fPPP4vHjo2NhbOzM7y9vTF69OgcwWp4eDjs7e0xb948eHp6IioqSvKHY0GvY26O HDkiBntRUVFISUlBrVq1JHlq1aoFhUKBf/75J0f5S5cuQU9PD5UrV8bt27cBAHFxcejUqROmTp0q 5tuxYwdcXV0xd+5cdO3aFcuWLQMRQaFQwM/PDxkZGVi/fj3mz58PAFAoFFi+fDmmTJmCbt26oUeP HoiKihLr8/T0xKZNm+Dh4YEqVaoU+nzZN+gL9ioyJlq+fDkJgkCenp6Fyu/o6Eg1atSgP//8k4iI VqxYQRoaGvTy5UsiIlq9ejU1aNBAzG9qakpeXl5ElDWs1bx5c2rWrBmdPXuW5HI5DRw4kFq2bCnm nzNnDq1Zs0bc7tSpE3Xu3JmIiIKCgmj27NnivokTJ5K2tja9ePEi17b+8MMPNGTIEHH79u3bpKam RuvWrRPTRo0aVeAwbpMmTUgmk1F6enqeeapVq0bly5cnov8N47q4uNC9e/fo+PHjZGBgQI0bN6bM zExSKBSkp6dHu3btIiKigwcPko6ODqWmplJmZiYFBgaSIAg0ZcoUev36Nb1//56MjIyobdu2dOXK FSIiWr9+PWlpadGbN2+IKP/rnp81a9aQIAi0YcMGMa1NmzaUmpoqbiclJZG3t7dkaDomJobatm1L ycnJRER0+vRpEgSBzpw5Q0REFhYWNHr0aLGOuLg4MjAwkAx7DhkyhOrXr09v376lx48fU5cuXahe vXrk7+9Pv/76K+3Zs4dSUlKocuXKNHHiRLHcs2fPaOTIkeK2r68vNW3alJ49e5brOfr5+ZEgCOTn 5yemZWZmkiAINGnSpFzLdOvWjY4fP17g9XNzcyNBEEhfX58ePnyYZ75z585RtWrVqHr16pSWliam Hzp0iObOnUvbtm2jzMxMCgkJISsrqwKPm5/Hjx9Tu3btSBAE0tTUJC8vL8rIyBD3//vvv2RkZESN GjWic+fO0dOnT8nZ2ZkEQaA9e/bQ8+fPaebMmSQIAnl7e9PRo0dpwYIFlJSURP379xfr2bt3LwmC IF6ngQMH0rhx44jof8PcgYGBRET0/PlzMjQ0FKcMKBQKatGiheR3r6DX8UMPHjygatWqidt//fUX CYJAW7ZskeRTDtkrP7M+9NNPP1GZMmUoKSlJTBs+fLj4+75p0yYyMzMT9z19+pQqVKhAHh4eRET0 8OFDEgSBLl68KOZZsmSJ5P3TvHlzateuHRERnT17lmxtbcV98+fPL9T5sm8TB3vsq7B06VISBEES ROXH0dFR8gEdEREhmXcUHBwsBlMKhYI6depEY8eOFfN/GARs3LiRNDU1iYgoPj6etLS0JEFVWFiY OBfGysqKhg0bRrNnz6bZs2fTmDFjqGvXrrnOq3rz5g1paWnRnj17JOmDBg2SfEEUZt6QsbExyWQy yZf0h6pWrUrlypUjov8Fe//++6+4f9OmTZKAw8vLS5xUfvLkSRIEgWJiYogo9y+P4cOH53rdQ0JC iKjg656XpKQkKl++vDjv6eLFizkWGWQ/J2WwN3nyZFqwYIEkz86dO8Xg09zcXPI6//DDD2RsbCzJ f+fOHRIEQWy3o6MjdezYMcexZ8+eTbq6umLdGzZsoCNHjhR4bkpyuZwaNmxIrVu3ptevX5NCoRCD 12XLluXIn5CQQBUqVMj39SYievv2LY0ePZpmz55N2trapK+vT6GhoXnmv3z5MgmCQOfOncszj5WV Fd27d48SExNp1qxZNGfOHDp48GChz1UpMzOTfvvtN9LV1SVBEKhHjx6UkpIi7rewsBAXqBARpaWl kb6+PvXq1YuIiLZu3UqCIEiuwdKlS6lTp07i79/06dOpa9eu5OPjQ0RZC5OUi0BSU1NJEATasWMH ERHNmjWLOnXqJGnjqFGjPmn+76pVq8jJyUncDg4OJkEQaOvWrZJ8AQEBJAhCntfx1atXpKWlJb4P nzx5IlngUqNGDfrpp58kZdzc3EhTU5OSkpJy/L6mpaWRrq4uzZo1S7xWdnZ2ZG5uTpmZmXT8+HHS 1dUV/3ArbHDLvk3qBff9MVb8ateuDSDrliGFRdnmbWlqagIA3r9/DwBo06YNmjVrhs2bNyMlJQVv 3ryBQqHIs64yZcqIt8C4evUqKlSoAA0NDXF/06ZNxf+HhIRg586d6NGjR4FtDAsLQ2pqKsqVKydJ b9myJQ4cOICnT5+ievXqhTjbrGHsiIgIPH/+HDVr1syxPyMjA69fv0ajRo0k6dnPw8rKCgAQERGB AQMGwNPTEyEhIdi7dy9evnwJAAVep9yuu3JosqjXXUlXVxcjR47Ehg0bEBgYCF9fXzg5ORVYLigo COPHj5ekjRgxQvz/h/M6b9y4keO1aNq0KcqUKYOQkJAc55XdpEmT8Msvv2DHjh2YMGECzp49i127 dhXYRiV1dXWcP38e7u7u+M9//gNTU1M0adIEAMThyez8/f3RvXt3lClTJt96hw4dCjs7O4wePRrD hw9H7969MXjwYNy9ezfXea2dOnVCw4YN8fz581zrO3DgAFq1aoW6devCzMwM1tbW+PHHH+Hr64vU 1FSULVu20Ocsk8kwadIk9O3bF/3798fZs2exaNEiLFu2TMyTvY1lypRB+/btxWHf7OlKt27dgqWl Jf773//mekx7e3vEx8dj1apV0NHRAfC/9/TZs2dhZGQkyU+FmP+Zn8OHD2PGjBnidtWqVQFAMiUh +7ahoWGu9VSqVAmDBw+Gj48PJkyYgJ07d2L06NEAsm6vExcXl+vnSHp6OsLCwnJ8jkRFReHNmzf4 73//K5nrrGRtbY1OnTqha9eumDx5cp7Xk6kGnrPHvgrdu3eHuro6Ll269MkfvkDWpHMzMzO0a9cO U6ZMgZ6eXqHLyuVyvHjxAmlpabnuT0lJyfWGtLnd+01NTQ1AziBWX18fgDQQK4i1tTUA4MqVK7nu v337NjIyMtCrV68861DOy1F+Yf/www9YvXo1Zs6cKdb/MZSv2adc90mTJgEAVqxYgZCQkDznJmYn l8vznO+WGzU1Ncl8PyAr2KhcuXKBr0WNGjVgZ2eH9evX49WrVzn+ICiMGjVqYPfu3bhx4wa2bt2K sLAwmJiYoEOHDjny+vn5FXh/u/v37+P48eMYPHgwAMDU1BRbtmzBvXv3EB4enme5ihUr5jpHKzU1 FWvWrMG8efOwZs0axMXFYeHChQAAPT098Y+pguzevVuyXa9ePRw7dgwymSzHnNIP6ejo5LuI4/37 9/n+/h0+fBi2trYYNWpUjj8Y3r59i9evX+co+7GLvV6+fImbN29Kfudq1KiBKlWq5Pidf/LkCdTV 1dG4ceM86xs/fjxu3ryJ27dv4/79+zA2NgbwcZ8jKSkpAJDntRIEAf7+/li4cCE2btyINm3aICEh oTCnzb5BHOyxr0K1atUwduxYxMTEYPv27bnmef/+PYKDg8Xt/D6gJ0+ejPr166NFixYAIFkRWBBj Y2MoFAps3LhRku7v7w+FQoGGDRvCx8dHEpTGxcXl+IIDgGbNmqF8+fIICgqSpMfFxaFBgwbih3VB 5wMAo0ePRvXq1XO0S2nLli3Q0dHB9OnT86xDOem8e/fuuHLlCpYuXYoZM2ZAJpMVqgeuoHZ+ynVv 2rQpLCwscPTo0TxXZH/I2NgYO3bskAQhb968wdmzZ8Xt7K9Tx44d8fz5c0nPkVwuR0JCAjp16iSm 5XWO06dPx507dzBjxgwMGjSo0OeWm/Pnz2Pv3r2SxRRK79+/x9mzZyULknKj/IMk+3VWLnKSyXL/ eH/37h3i4+Ml56v0yy+/YPLkydDW1kZQUBD69Okj9nLGx8ejUqVKhTq34OBgySIQAKhTpw4qVaoE AwODfMs+fPgQ3bt3z3N/w4YNcfToUfHGz0BWr/bq1auRlpYGR0dHDBs2DJUqVcrxnm7QoAGCg4Nz BK0f+wfmsWPHYG5uLuntlMlksLGxkXxWAcDff/+Nnj17omLFinnW17FjR5iammLy5MmS10dfXx/1 69fP9XNER0cHJiYm4ntWeS7169eHTCaDt7e3pMyJEydw584dcWHRDz/8gFu3buHVq1dF6qlm35YS DfZiY2MxceJEbNiwAY6OjpLVjdl5e3tj8eLFWLRokWQlFRHBw8MDtWvXhqGhoeR2A/mVY9+GVatW wdLSEhMnTsT27dslH9S3bt2Co6MjatSoASDrwz17T5ryVg/Kf58+fYrw8HAkJSXh+vXriIqKQlxc nDhUKZfLJfUr6yIiNGvWDL169YKbmxs8PT1x/PhxLFy4EElJSZDJZHB1dcXff/+NwYMH4/z589i/ fz/Gjx8v9q5kp6Wlhblz52Lfvn1iD1R6ejoOHDiAH3/8UXL8gm4RoqOjgwMHDuDGjRtYvHix5Atq z5492LZtG3bs2CGuAlR+2Wf/Ylu3bh3GjRuH5s2bi4Hf1atXkZKSIq7EjYmJQWJiohhAZD+OQqEQ rzGAHHkKuu4FmTRpEgRBwMiRI3Pdrzy28vWaPn06YmNj0bVrV+zevRv79+/HhAkT0KVLFwBZvVER EREgIty6dQsTJkyAoaEhli9fLrl2JiYmGDJkSK7nmF379u1hZmaG48ePo2fPnpJ9W7duRbNmzfIc Hs0uODgYY8aMwdatW3Mdwg0ICEDz5s1z9L6lpaWhffv24jBo06ZN0axZM+zdu1fMc/36dZiYmKBx 48ZISkqCra2tZPW3p6cnli1blmM4Ni4uTnxfA0DNmjXFwCwhIUEyhDht2rR8b2tTt25djBgxAnfu 3BHTLly4gJcvX4o9uEDW+yb7E17+/vtvPH78GG5ubgD+N/yaPZh1cXHB+/fvYWVlBX9/fwQEBGDY sGGwsrLC27dv8ebNGwQHB0Mul2PXrl2QyWTie9DFxQWJiYmYOnUqUlNTkZCQgFu3buHx48fiau2i vI559b7OmDED165dE3vVXr16hSNHjsDDw6PAOl1cXHDz5s0cT9Hx8vLC5cuX8ddff4nX7o8//sC8 efOgqamJSpUqQRAEhIeH4/nz53j37h3s7e2xatUqzJs3D0FBQVi3bh38/PzQunVrPHz4UHxqTaNG jdCpUyfx85WpoJKaHKhQKKh169biKrm7d+9SvXr1JKuziLJuWJl9Au2QIUNo8+bNRJQ18Va5qmr/ /v2koaEhTvbNrxz7dsjlcvr999+pffv2VLduXbK0tCQbGxuaP38+vX37loiyJu/Xrl2bdHR0aN++ ffTy5UuaMGECyWQyGj58OL18+ZJ27dpFlStXplq1atHGjRtp5cqVVKlSJVq+fDmdPHmSdHV1qUGD BhQYGEhRUVHUrVs3kslk9MsvvxBR1h3vbW1tSVtbm4yMjMjb21vSzgULFpCBgQHp6urSwIEDC7xx 8erVq6lLly40Z84ccnFxEW9aS0T0xx9/UPXq1alcuXK0detWio+Pz7euR48e0bhx48jS0pKGDh1K 1tbWZG9vT2FhYZJ8aWlp5ObmRubm5jRu3DgaN26cZIL3u3fvyNzcnLS0tKhfv34UFhZGdevWpfbt 21N0dDS5ubmRTCajSZMmUUxMDAUFBVGTJk1IV1eX9u3bR69fv6bp06eTTCYjJycniomJyfe6F0Zm ZiY5Ojrmui88PJzs7e3FNilvtrxjxw6qV68elS9fnmxsbOjJkydimVOnTlHFihWpW7du4irVqKgo 6tevH40YMYLmz59Prq6u4iruI0eOUK1atUhHR4d8fX3F91x2GzZsyPVGzWvXriUDAwPxpta5uXv3 Ls2fP58GDBhA//zzT575nJyccjwlhSjrNatTp45k4v7jx49p2LBhNHXqVPLy8qJx48bR48ePiYjo /fv31K9fP9LW1qZevXrRrFmz6NKlS7kec+zYsRQRESFuP336lOzs7GjZsmX022+/SZ7o0qtXL5LJ ZHkuNvD39ydBEEhDQ4MsLS3J1taWzMzMctww3dzcnDp27Ehjx46lCRMmkK2trbhSNiQkhCwsLEgm k9HChQslT0I5cOAANWrUiLS0tMjMzEyyiGjq1Kmkra1NrVq1osDAQBo4cCDVqlWLAgICiIjI29ub GjZsSJUqVSInJycaP348OTs709WrV4mocK+j8trq6Ojk+cSKCxcu0NChQ2n58uU0YsSIXG/GnJuk pCRxhe2Hdu/eTZ06dSJ3d3eaNGkSrV+/XrLfycmJdHV1aebMmURElJiYSPb29lS+fHkyMDCgqVOn 0vv374mIaNu2bVSpUiVasmQJrVy5stCL49i3qcSCvdOnT5OWlpbkMUeNGjWSfOkRZd3iIvutGnbv 3i3eDT77F2pKSgqVLVuW3r17V2A5xhj7XJYuXfpRTymQy+V04sQJMbD81u3evfuTH//14ap4xljx KLFh3MuXL8PIyEiyKqhRo0aSG9mmp6cjODhYXKEGZM3PCAsLQ0JCgrhiE8iaP/X7779DW1u7wHKM MfY5yOVyXLp0Kdeh14Koq6vD2tpavJHytyw2NhaRkZFo06bNl24KY6wQSizYi4+Pz7HCqkKFCpLV Ra9evYJcLkeFChXENOVkVmW+hIQEzJgxAw4ODrh8+TIyMzMLVY4xxj6Wh4cH7O3tYWtr+8kLM1RB cnLyZ5kX/eHcW8ZY8SixYE9dXT3H8vAPV0ope/2y51Pmof+fAK6vr48ff/wRe/bsgZ+fH3x9fQtV jjHGPtbz589x8uRJNG3aFGPGjPnSzfnijI2NP/nZ1L6+vvjnn39w/vx5bN++nYM+xopRid1U2dDQ MMey8cTERNStW1fc1tPTg4aGhvgMSWUeAJJVQmXLloWNjQ2mTJmCW7duYcyYMYUqBwCjRo2SHNPC wgIWFhafenqMMRW2bdu2L90ElePo6AhHR8cv3QzGSoUSC/YsLS0ld00Hsh46PmrUKHFbEARYWFgg MjJSTIuIiICxsbF4V/Ls9PT0xHtAFbacr68v9/YxxhhjrNQosWHcDh06oE6dOjh//jyArGAsJSUF /fr1g6enJ0JDQwEATk5O8Pf3F8sdP35cHDYJCAgQ735PRLh06ZK4L79yjDHGGGOllUAl2M314MED LF68GO3bt8f169cxefJktGnTBm3btsXcuXPFu+b//PPPSExMhJaWFpKTk7Fs2TIIgoBRo0bB398f Tk5OqFGjBqytrSXPAc2rnOSEBYF79hhjjDFWapRosPc14GCPMcYYY6UJPxuXMcYYY0yFcbDHGGMl SK7IzPX/jDFWXHgYlzHGSljNrbMBAE9GLysgJ2OMfTru2WOMMcYYU2Ec7DHGGGOMqTAO9hhjjDHG VBgHe4wx9o3gxR2MsY9RYo9LY4wx9mk0ZGq8uIMxVmTcs8cYY4wxpsI42GOMMcYYU2Ec7DHGGGOM qTCes1fKrV27FjVr1oSNjc2Xbgp27dqFY8eOITU1FQcPHsw374sXL7B06VLcuXMHhoaGePHiBTQ1 NTF79my0b9++hFrMGGOMff24Z6+U27RpE9avX//R5aOjoz9bW4YOHYrnz58jMTEx33wRERFo2bIl 0tLScPLkSWzbtg3Hjh2Do6MjLC0tsW3btiIf+3OeB2OMMfY14WCvFLt+/TrevHmDM2fOICoqqsjl U1NTMX78+M/WHnV1ddSsWTPfx9llZmZi0KBBqFChAn777TfIZP97C9vY2MDDwwMuLi4ICQkp9HEj IiKwbFnpXNnIt/JgjDHVx8FeKebr6ws/Pz9oaGhgw4YNRS7v6uqKiIiIYmhZ3g4fPoy7d+/CwcFB EugpOTs7Qy6XY8mSJYWqLzk5GcOGDUNqaurnbuo3QXkrj5pbZ0NDpvalm8MYY6wYcLD3qQSh+H+K wZs3b5Ceno7mzZvDzs4OW7duRVpaWq75Fi5cCC8vL3z//ff4/vvvkZycjNu3byMiIgKvX7+Gu7s7 /P39cfHiRVSuXBmjR48GAISFheG7776TBGXJycmYOHEi1q9fj8mTJ8PFxQUZGRmFbvfp06cBAB07 dsx1f/Xq1VGnTh2cOXMGRITff/8dMpkMvr6+AIBz586hcePGsLS0BAAEBATg1atXCA4Ohru7O+7e vQsAiIqKgoeHB7y8vGBtbQ0vLy/xGHK5HJ6enpgzZw6mTZuGjh074siRIwCAtLQ0rF69Gl26dMGf f/4JZ2c9fOdnAAAgAElEQVRn1KxZEw0aNEBoaCjOnDmDnj17omLFipg5c6ak7QcOHMCUKVNga2sL U1NTnDp1qtDXhTHGGMsTlTKf/ZSB4v8pBhs2bKCLFy8SEVFQUBAJgkDbt2+X5MnMzKRu3brRzZs3 iYgoOTmZypYtSz/88AMRES1YsIDq1q0rKdOtWzcaPXq0uL1lyxYSBEHcnjZtGvXs2ZOIiBQKBVWq VIl27Ngh7nd0dCQLC4s8221tbU2CIND9+/fzzNOhQweSyWSUkJBACoWCBEEgX19fyTEsLS3FbQsL C0mbY2JiqG3btpScnExERKdPnyZBEOjMmTNERDRixAjy8PAQ8x87doxkMhkdO3aMiIiio6NJEAQa MmQIxcXFkUKhoM6dO1OTJk3o6NGjRER04sQJEgSBIiMjiSjrNZg9e7ZY58SJE0lbW5tevHiR53l+ LjW2zKIaW2YV+3HY/3zKNefXizFWVNyz96lKItwrBkFBQejWrRsAoHPnzjAxMcmxUOPw4cMAgFat WgEAdHR04OfnJ/bc5Ub4oCfyw+3evXvDyckJAKBQKFCuXDk8evSo0O1W1kf5XBeFQiHm+fD4StnL f1jX8uXL0bdvX+jo6AAAevbsiR07dqBDhw6IjIzE7t27YWdnJ+bv06cPWrdujUWLFgEAateuDQDo 27cvqlevDkEQ0LVrV6SmpqJv374AIPYshoWFAQC8vLzw6NEjzJkzB3PmzEFqairatGmDmJiYQl4Z xhhjLHd865VS6ObNm/jnn3/w3XffSdKvXr2KkJAQtGzZEgAQGBgIQ0NDSZ5evXrlW3dewVX28klJ Sfj9998hCAIyMjLE4Kww6tatCwB4/vw5GjVqlGueFy9eoFy5ctDX1y9UnR+2OSgoKMfCkxEjRgDI unYAUK5cOcn+li1bYvv27XkeQ1NTM9ft5ORkAEBISAh27tyJHj16FKrNpYlckSnOJ8z+f8YYY4XD PXul0LZt23D+/HkcOnRI/AkICIC6urqkd08ul3/2W5JcuXIF5ubmGDBgAFxdXVG2bNkilbe2thbr yc3Lly/x6NGjTwqa5HJ5nr2NampZgcaTJ08k6fr6+lBXL/rfTspexZSUFDx48CDH/vT09CLXqWp4 EQljjH0aDvZKmbdv3+LZs2fQ09OTpFepUgV9+vTB7t278ebNGwBA06ZNce3atRy3MVEO7wqCkGMI VBAEZGb+7xYe2f8PAKNGjUL37t3Foc7cevXy6x3s378/TE1N4ePjk6NuANi6dSvU1dUxZ84cSXr2 4+RWLvt5GBsbY8eOHXj//r2Y9ubNG5w9exZmZmaQyWQICgqSlI+Li0Pnzp3zbHdBGjZsCB8fH0k7 4uLisHv37o+ukzHGGAM42Ct1fHx80KFDh1z39enTB+/evcPmzZsBACNHjoSenh6srKywbt06HDt2 DE5OTuLwaeXKlfHs2TMkJSWJw5t169bFxYsXERcXh4iICBw7dgwA8PjxYwDA06dPERISgtTUVJw6 dQqvXr1CXFwcXr58CQDIyMjId3WuIAjYt28fUlJSMHHiRMjlcnHfxYsX4eXlhV9//RXt2rUT0+vW rYtDhw7h7du3CAgIwJ07d/D8+XNx9bGenh4iIiJARLh16xamT5+O2NhYdO3aFbt378b+/fsxYcIE dOnSBbVq1YKTkxO8vb3Fmz8nJSXh9OnT4pw9ZTCZPXBTKBSS81LmUQahrq6u+PvvvzF48GCcP38e +/fvx/jx4zF48OA8rwVjjDFWKF9qZciXUgpPWbRr1y6qWLEi9enTh0JCQiT7wsPDadCgQSQIAlWq VIl2795NRETBwcHUvn170tLSonbt2lFQUJBYJjY2lurXr08NGzakkydPEhFRZGQktWzZksqXL09O Tk506NAh6tOnD/n6+lJmZiatWLGCdHR0qHHjxnTw4EGaOnUqVa1alXbu3EkHDhyg6tWrU6VKlejP P//M91xevHhBM2fOJHNzcxoyZAj169ePBg4cSJcvX86R19/fn2rUqEFVq1alVatW0aJFi2jMmDEU EBBARESnTp2iihUrUrdu3ejhw4dERLRjxw6qV68elS9fnmxsbOjJkydifRkZGeTp6UmWlpbk6elJ Tk5OdOHCBSIievv2La1YsYIEQaDBgwfT/fv36datW9SlSxdSV1enzZs3U3JyMi1dupQEQaABAwbQ vXv3iChrdbOBgQHp6urSwIEDKTo6uigv70f7FlZ3fgttLApejcsYK0kCUTEt9/xK5Tb0yFhpVnPr bADAk9Ff71NEvoU2FsWnnI+qXQvGWPHjYVzGGGOMMRXGwR5jjDHGmArjYI8xxhhjTIVxsMcYY4wx psI42GOMMcYYU2Ec7DHGGGOMqTAO9hhjjDHGVBgHe4wxxhhjKoyDPcYYY4wxFcbBHmOMsS9OrsjM d5sx9vHUv3QDGGOMMQ2ZmvgoOIAfB8fY58Q9e6WIv78/ateuDZlMhq5du+Ls2bOS/adPn0b79u1R vXp1HDlyBACwZs0atGnT5ks0t0imTZsGmUwGU1NT9OjRA4aGhuJ5dunSBXp6epDJZHjw4AFmzJiB unXrlki7Ll68CAcHB3z33XcfXcexY8cwduxYdOzYMc88e/bsgZ2dHVxdXT/6OIx9Dtl75Lh3jrGv Awd7pUj//v3h7e0NAKhZsyb+85//SPb36tULHTp0wPLlyzFgwAAAQL169dC2bdsiHSc6OvrzNLgI BEHAwYMHcfv2bQQEBMDKygqCIGDXrl0ICgrCkydPYGJiAiMjI1StWhWPHz8ukXZ17doVL1++RFJS 0kfX0bt3bygUCjx79izPPHZ2drh//z7ev3//0cdh7HNQ9tDV3DobGjK1L90cxhg42Ct1rK2tYWJi giNHjiAxMTHH/itXrmDo0KHi9oABA7Bx48ZC13/+/Hn4+vp+lrYWRdWqVTFw4EBxm4hAROK2lpYW HBwcAADVqlUrsXbJZDJUqVJF0paPqaNOnTr51qGurg59ff2PPgZjjDHVxcFeKeTq6or3799j69at kvTAwEC0a9cOZcqUkaRnZhZuKCY2NhYODg6fFNh8LHd39wLzTJ06tQRakjtBEIr9GF/iun/teEiR McY42CuVvv/+e1SsWBHr16+XpG/btg2Ojo7idlRUFNzd3VGzZk1Jvps3b8Ld3R2LFy+GhYWF2PN3 4sQJvHnzBqdPn4a7uzuePn0KALh27RqcnZ2xYMEC9O7dG05OTuKw5o0bN+Dq6orp06djzZo10NXV xfLly9G/f3/IZDLMmTMHb9++BZA1p7BatWq4c+dOjnNSVy94rdGHeUJDQ9G5c2fo6Ohg6NChyMzM hEKhwNGjR2Fra4vt27eL1yosLAypqalYsGABJk6ciPbt28PW1hYvXrwAAKSnp2PmzJnYsmULxo8f j9atW0uORUTYu3cvmjRpAj09PaxYsUKy/8SJE3BxccG8efPQvXt3uLm5IT09Pd/z+euvvzBs2DAs WrQInp6eYlvY//CQImOM8WrcT/Yt9thoa2tj1KhRWL16NU6dOgUrKyukpKTg9u3bMDMzE/Pp6emh bNmykrlit27dgpubG06fPg11dXVUr14dLi4u6N69O5ycnLBkyRJYWVlh/vz5ALICqv79+yMsLAxV qlRBRkYGzM3NYW1tjb/++gsVKlTAqVOnoKuriwEDBsDNzQ3t27eHvb09jIyMULlyZZQvX15sz9ix Y9G8efPPch1OnDiB8+fP459//oGZmRlGjBgBKysr6Onp4fDhwxAEAXPnzkWFChVQqVIlTJs2DVOm TEHTpk3x/v171K5dG66urti7dy927twJABgzZgzGjBmDBQsWSI4VGRkJIkJERAR+/vlnzJ07F2PH jkXlypVx+vRpTJw4EREREdDU1MTbt2/RokULxMTEYM+ePbm2PTw8HIMGDcLt27ehr6+PlJQUbN68 +bNcF8YYY6qFe/ZKKVdXVwiCgLVr1wIA9u/fDzs7O0meihUron79+pK0BQsWwMHBQewlc3BwwLZt 22BkZJTrcX766Se0bdsWVapUAZDVuzZ37lxcu3YNp06dQoMGDVCrVi00adIElpaWmD9/PiwsLFCz Zk3Y2dlJ5gseOHAAw4YN+2zXwMPDA2XKlEG7du1QrVo13Lt3D5qamuKqVysrK7Rp0wZr164Ve+Z2 7NiBOXPmYPHixTAzM4NCoQAApKWlYc+ePYiMjASAHKtiGzVqJM6F7N+/PzIyMhAVFQUAWLx4MXr3 7g1NTU0AQPny5TFjxgzs27cPERERubZ90aJFsLS0FOfpaWtrw9jY+LNdG8YYY6qDg71PpFwIUJw/ xaF+/fqwsrLC8ePHER0djZ07d2LkyJEFlgsKCoKhoaG4rampCQcHB6ip5T5EduPGDZQrV06S1rJl SwBZvYRA1jUsW7ZsjrLTpk3DgwcPcOLECQBAWFgYTExMCneCRaSpqZljJWv2Nt2+fRtaWlpYunSp +HP06FHs378fAODo6AgDAwO0aNECP/74I/T09CR1ZX8dlUGd8niFuUYfOnv2bI7hdZ6zxxhjLDcc 7JVikyZNgkKhwOzZsyGTyVCjRo0Cy8jlcjx69KjQx1BTU0NMTIwkTdkbpaGhkW9ZMzMzmJmZYd26 dbh9+3aOeXAlKSUlBc+fP8/11iZyuRza2toIDAyEi4sLFi5cCHNzc6SlpRWqbnV1dTx58kSSVtA1 evfuXY7V1CUxpYAxxti3R6WDvdjY2C/dhK9a7969Ub9+fezZs6dQvXoAYGxsjE2bNonDl0DWdf77 778BZAUc2XuYOnbsiLCwMCQnJ4tpcXFxAIBOnTqJZfIyffp0nDhxAj///PNnHcItqoYNGyIzMxM+ Pj6S9K1btyIhIQEBAQHQ1tbGqlWrcOnSJdy4cQOnTp0S8+V3jh06dMCVK1ck1zQuLg4ymUwyhzK7 +vXr49KlS5K04uwJZowx9u0q0WAvNjYWEydOxIYNG+Do6IiwsLBc83l7e2Px4sVYtGgR5s2bJ6an pqZiwoQJ0NfXR61atbBu3TpJuYCAAMhkMvHnwy9DJiUIAiZMmAAdHR3Y2trmmkculwMAMjIyAAAz ZszAjRs3YG1tjX379mHHjh1YsGAB2rVrBwCoXLkywsPDkZGRgdDQUMyaNQuCIOD3338X69y1axf6 9u0rBnuZmZnicT5kZ2eH6tWrIzQ0FI0bNy70ub158wZAVg/Yh5TnovwXyFpNq2yDMujK3iZTU1N0 6dIF7u7uWLVqFYKCgrB06VJER0ejevXq+OuvvxAcHAwgK3hr0qQJqlevLh4n+8paZb3KfxcsWIC4 uDj8+eefkms0fvx41KpVS6wj+y1wXFxccO/ePXh5eSEjIwOPHj1CZGQkIiMj8fDhw0JfJ8YYY6qv xFbjEhEGDBiAn376CT169IC5uTn69u2LyMhIyXwvPz8/+Pr64vLlywCAoUOHwsfHB2PHjsWKFSvQ vXt3TJ48GZs3b8akSZPQokULdO7cGUDWBH7lF666ujpMTU1L6vS+WWPGjMHDhw+hpaWVY9+NGzew d+9eCIKApUuXYurUqRg2bBhiY2OxcuVKjBs3DjY2Nvj111/FMq6urpg6dSpsbW2xbds2VK5cGRcu XMDMmTMRHR2NKlWqIDU1VZzr5uvri9u3b+Phw4fYs2cPBg8eDJnsf3+DqKmpibc/KYzXr19jx44d OHfuHARBwMKFC+Hs7Cw+LSQqKgp79uyBIAj48ccf4ebmhm3btiE+Ph7Hjh3D4MGDsW/fPgDAzp07 0aBBA5ibmwMAdu/eDRcXF/zwww/Q19fHuHHjsHDhQgBZ729bW1tMmzYNqamp+P7779GuXTtcunQJ gYGBeP36Nfbv34/u3btj1apVEAQBPj4+aNWqFbp06YLjx49j4cKFuH79OjQ0NFC3bl388MMPAIBz 587h4MGDiI+Px5YtW2Bvbw9XV1ckJiZi06ZNWLt2LUaNGoUuXbqgZs2auQa4jDHGSi+BSmjc58yZ M7CxsUFycrK4krNx48b48ccfJatAO3fujN69e8PT0xMA8Mcff+DHH39EaGgovL294ezsLOatV68e JkyYAA8PD0RGRmL06NGYPXs2evXqlePGwEofDjOyr9+ECRMwa9asEnuebWmjfPj81/zg+U9p49d4 fqp2Ph/62DYqy31MWcZY3kpsGPfy5cswMjKS3Ni2UaNGOHfunLidnp6O4OBgNGnSRExr2LAhwsLC kJCQIAn0AMDAwAC1a9cGkNUL9f79e3z33XeoVasWAgICivmMWEl4/fo1nj9/zoFePj58MgQ/KYIx xlh2JTaMGx8fD11dXUlahQoVJKsQX716BblcjgoVKohpyuG7J0+eSJ79mZqaisTERNjY2AAAhg0b hmHDhuHJkydwcXGBra0t7t+/X6LPQWWfj/JefpGRkVi0aNGXbs5XTfmUCCXuEWGMMZZdifXsqaur 57iNRPbVh8o8gPR2E8o8Hw69btq0CStXrswx16xmzZrYv38/qlWrBj8/v8/WflayYmJicPToUQwa NAjdu3f/0s1hjDHGvlkl1rNnaGiIoKAgSVpiYqJkeE5PTw8aGhric1OVeQBI7gEXGhoKdXV19OnT J9djaWlpoVevXjnuQ6aknFQPABYWFrCwsCji2bDidv78+S/dBMYYY0wllFiwZ2lpiWXLpMNL9+7d w6hRo8RtQRBgYWEhPnIKACIiImBsbIyqVasCyLr/2NmzZzFt2jQxT0ZGRo6H3GdmZkrm/mWXPdhj jDHGGFNlJTaM26FDB9SpU0fssYmIiEBKSgr69esHT09PhIaGAgCcnJzg7+8vljt+/DjGjBkDAEhK SoKXlxesra0RERGBsLAwLF26FKmpqVi5cqX4HNH4+Hjcu3cPffv2LanTY4wxxhj7KpVYz54gCPDz 88PixYsRHh6O69ev4+jRo9DW1sbJkyfRunVrmJiYYPDgwYiOjoanpye0tLRQp04dzJgxAwqFAjY2 Nrh06RI2btwo1mtvb49y5crh9OnT8PLywvjx41GhQgXs378/R28fY4wxxlhpU6LRkJGREbZt2wYA mDhxopiuvBGykpubW46ygiDgwoULedZ98uTJz9JGxhhjjDFVotLPxmWMMcYYK+042GOMMcYYU2Ec 7DHGGGOMqTAO9oroa3gU1dfQBsYYY4x9G3i5ahF9+GiqL+FzPw4rNjYWLVq0wKlTp9CmTZvPWrfS mzdv4OPjg+PHj6N79+6YPfvjruGaNWuwfft23Lhx4zO3kDHGGFNN3LPHoKOjg44dO0qeSVwcxxg7 diyuXbuG9PT0QpeLjo6WbNerVw9t27b93M1jjDHGVBYHewy6urrw9/dHgwYNivU4Ojo6qFy5cqHz ExFGjx4tSRswYIDkPouMMcYYyx8He0ykUCi+dBMkvLy8cr23YmYmz1lkjDHGCouDvVJm+/bt+Pnn n7Fy5UoYGBjg6tWr8Pb2RocOHbBz504AWTe5dnZ2hpWVFU6fPo127dpBV1cXU6dOxbt37zBz5kzU qVMHjRs3Rnh4OADg5s2baNCgASwtLQEADx8+xPjx4yGTyfD48eM82xMWFoYJEybA29sbgwcPxvr1 6wEAMTExuHr1KgDA3d0dvr6+iIqKgru7O2rWrCmp49q1a3B2dsaCBQvQu3dvODk5ISkpCQBw5coV ODo6YuTIkdi/fz8aNWqEqlWrYvfu3WL5Bw8ewM3NDT4+PujZsyemT5/+ma42Y4wx9uVxsFeKpKam YtasWXBzc8OMGTOwYcMGyGQydO7cGdevXxfztWrVCgqFAsHBwXj37h2uXbuGffv24bfffoOHhwcW LlyIBw8eoEqVKliyZAkAoHXr1ujcuTMEQQCQNbdu2LBhBbbp+++/R61ateDs7Iy5c+di8uTJiImJ Qa1atTBkyBAAwIoVK+Do6Ag9PT2ULVsWz549E8uHhoaif//+WLJkCRYtWgR/f3+Eh4fD2toaRAQz MzO8fPkSgYGBEAQBd+/exbBhwzB58mSxjoULF8Lc3Bxjx47FkSNHYGBg8FmuN2OMMfY14GCvFJHL 5Xj58iXWrl0LAOjfvz8aNWqEZs2aSfKpqamhZs2a0NXVxXfffQeZTAYLCwsAgJmZGXR0dKCmpoZu 3brhzp07YjlBEEBERWrT2LFj0adPHwCAtrY2FApFjkUZShUrVkT9+vUlaT/99BPatm2LKlWqAADU 1dUxd+5cXLt2DadOnYJMJoO+vj6MjIxgZ2cHdXV19OvXD69fvxaDxvT0dKxZswZv3ryBlpYWxowZ U6RzYIwxxr5mHOyVIjo6Oli0aBEmT56MPn36IDY2FhUrVixUWU1NzRxpZcqUQXJy8ie1adKkSdDR 0cHPP/8MPz8/AEWbO3jjxg2UK1dOktayZUsAwK1bt8S07EFomTJlAABpaWkAgHnz5uHWrVswNjbG oUOHULVq1Y87GcYYY+wrxMFeKTNnzhzs378foaGhMDU1xV9//fVJ9X3Yk6ccxi2s9evXY8qUKZg0 aZI4bFsUampqiImJkaTp6+sDADQ0NApVR7NmzXDz5k20aNECdnZ2mDlzZpHbwRhjjH2tONgrRZ4/ f47Q0FDY2toiPDwcpqam+Pnnnz9b/YIgSFbKFrRq9smTJ5g8eTJcXFxQtmzZHD16hQkcO3bsiLCw MEkPY1xcHACgU6dOhaorICAAderUwbFjx7By5UqsXr0aiYmJBR6bMcYY+xZwsFeKpKSkYMOGDQCA 8uXLw87ODoaGhpDL5QAgudnxh4GaMhBT5lXmyd6zV69ePYSEhCAiIgIxMTHYs2cPgKyVuUpyuRwZ GRkAgGfPnkGhUOD69etIS0vDvn37AGQ90ePVq1fiPfkiIiIQEhICIhKPr6xj1qxZEAQBv//+u3iM Xbt2oW/fvmKwl5GRIQkkleepPEcfHx+8e/cOADBq1Cjo6upCR0encBeVMcYY+8rx49KKSK7I/OyP K/uYNmjI1D6q7MaNG6Guro6mTZsiPDwc//3vf7F8+XIAwB9//IF27dohIyMDJ0+eRHx8PPbt24c+ ffrA19cXALBnzx6YmZlBLpfjxIkTiI+Px86dOzFixAhMnDgR586dQ5s2bWBtbY3p06cjIiIC4eHh aNeuHby9vfH06VOcPHkSVlZW6NSpE+zs7LBy5UoEBgZi7dq12Lt3LxYvXoxmzZrhP//5D1q3bo2e PXtiyZIlyMzMxN69eyEIApYuXYqpU6eiQYMGuHDhAmbOnIno6GhUqVIFqamp2L9/PwDg6tWrCAwM xLt373Ds2DG0bdsW3t7eEAQBGzZswMKFCxEfHw8rKyvY29sjMjISe/fuhZrax11fxhhj7GsjUFGX T37jPmbFKGNfu+zPay7qHyPKsl/6j5j8fEobv8bzU7Xz+dDHtvFT3seMsbzxMC5jjDHGmArjYI8x VirIFZn5bjPGmKriOXuMsVJBQ6bGw4SMsVKJe/YYY4wxxlQYB3uMsS+Kh1cZY6x48TAuY+yL4uFV xhgrXtyzxxhjjDGmwjjYY4wxxhhTYRzsMcYYY4ypMA72GGOMMcZUGAd7jDHGGGMqjIM9xhhjjDEV xsEeY4wxxpgK42CPMcYYY0yFcbDHGGOMMabCONhjjDHGGFNhHOwxxhhjjKkwDvYYY4wxxlQYB3uM McYYYyqMgz3GGGOMMRXGwR5jjDHGmArjYI8xxhhjTIVxsMcYY4wxpsI42GOMMcYYU2Ec7DHGGGOM qTAO9hhjjDHGVBgHe4wxxhhjKoyDPcYYY4wxFaZekgeLjY3FkiVLYGpqiitXrsDDwwPNmjXLkc/b 2xvx8fEgImRkZMDLywsAkJqaiunTp2Pfvn3Q0tLCnDlzMHHixALLMcYYY4yVViUW7BERBgwYgJ9+ +gk9evSAubk5+vbti8jISKipqYn5/Pz84Ovri8uXLwMAhg4dCh8fH4wdOxYrVqxA9+7dMXnyZGze vBmTJk1CixYt0Llz53zLMcYYY4yVViU2jBsQEIDw8HBYWFgAAIyNjaGhoYHDhw9L8i1fvhy9e/cW twcOHIjVq1cDAAwMDDB48GA0bdoUK1euRJ06dcTgLr9yjDHGGGOlVYkFe5cvX4aRkRHU1f/Xmdio USOcO3dO3E5PT0dwcDCaNGkipjVs2BBhYWFISEiAs7OzpE4DAwPUrl27wHKMMcYYY6VViQV78fHx 0NXVlaRVqFABT548EbdfvXoFuVyOChUqiGkVK1YEAEk+IGv+XmJiImxsbIpUjjHGGGOsNCmxYE9d XR0aGhqSNIVCkSMPAEk+ZR4ikuTdtGkTVq5cCS0trSKVY4wxxhgrTUpsgYahoSGCgoIkaYmJiahb t664raenBw0NDSQlJUnyAECNGjXEtNDQUKirq6NPnz5FKqe0cOFC8f8WFhbiPELGGGOMMVVTYsGe paUlli1bJkm7d+8eRo0aJW4LggALCwtERkaKaRERETA2NkbVqlUBAHFxcTh79iymTZsm5snIyCiw XHbZgz3GGFMFckUmNGRqeW4zxkqvEhvG7dChA+rUqYPz588DyArGUlJS0K9fP3h6eiI0NBQA4OTk BH9/f7Hc8ePHMWbMGABAUlISvLy8YG1tjYiICISFhWHp0qVIS0vLtxxjjKk6DZkaam6dLf5woMcY Uyqxnj1BEODn54fFixcjPDwc169fx9GjR6GtrY2TJ0+idevWMDExweDBgxEdHQ1PT09oaWmhTp06 mDFjBhQKBWxsbHDp0iVs3LhRrNfe3h7ly5fPsxxjjDHGWGlWok/QMDIywrZt2wBA8uSL4OBgST43 N7ccZQVBwIULF/KtP7dyjDHGGGOlGT8blzHGGGNMhXGwxxhjjDGmwjjYY4zlSq7IzHebMcbYt6FE 5+wxxr4dytWdSk9GL8snN2OMsa8V9+wxxhhjjKkwDvYYY4wxxlQYB3uMMfYBnq/IGFMlPGePMcY+ wA3Mzs4AACAASURBVPMVGWOqhHv2GGOMMcZUGAd7jDHGGGMqjIM9xhhjjDEVxsEeY4wxxpgK42CP McYYY0yFcbDHGGOMMabCONhjjDHGGFNhHOwxxhhjjKkwDvYYY4wxxlQYB3uMMcYYYyqMgz3GGGOM MRXGwR5jjDHGmArjYI8xxhhjTIUVOtjLyMgoznYwxhhjjLFiUOhg77vvvkNwcHBxtoUxpiLkisx8 txljjJUc9cJmHD58OG7duoXNmzejatWqGDRoEExNTYuzbYyxb5SGTA01t84Wt5+MXvYFW8M+JFdk QkOmluc2Y0y1FDrYs7e3BwCMGzcOL1++xNSpU3Hz5k0MHToUI0eOhJGRUbE1kjHG2OfDwThjpUuh h3EfP36Md+/eYd26dTA3N8epU6cwcOBAdO/eHbt374aDgwMeP35cnG1ljDHGGGNFVOievd69eyMm JgZ16tTBtGnT8P3336Ns2bIAgK5du2LHjh0YOHAgbt68WWyNZYwxxhhjRVPoYE9HRwcHDx5Ejx49 ct3/+PFjJCQkfLaGMcYYY4yxT1foYdwjR47kCPSeP3+Op0+fAgDmzp2Lu3fvft7WMcYYY4yxT1Lo YG/z5s050qpWrQpXV1cAgCAIKF++/OdrGWOMMcYY+2QFDuNu2LABe/bsQXR0NM6cOSPZl5CQgOTk 5GJrHGOMMcYY+zQFBnvjx4+Hmpoazpw5g759+4KIxH3lypWDubl5sTaQMcYYY4x9vEIt0Bg3bhwc HBygqamZY9/r168/e6MYY4wxxtjnkW+w9+jR/7V353FR1XsfwD/DomIoCoqIyyA9EqTik5rZYyqk aSyS61XTlNwyyzRxF800S81bPi5lKhm3q3YRF3K55sUFA03CwIcQEBfUAcHtggYGw8zv+YPLcQZm hpFlgJnP+/Xipef3O+fMb74Mhy+/5ZxMtG3bFo0bN0ZGRgbu3LmjVa9SqRAZGYlvvvmmVhtJRERE RFVjMNnr168fQkJCMGfOHPz000+YP3++zv2Y7BERERHVTwaTvdjYWLi4uAAofTaui4sLxo8fL9Wr 1Wqdq3SJiIiIqH4weOsVuVwuzdNzdXXFuHHjtA+2ssKwYcNqr3VE9ZhSrTK4TZZD83vPzwER1Td6 e/bu3r2L1NRUgwcLIXDw4EF8+eWXNd4wovqOD5O3HEq1CrZW1nq3NT8L/BwQUX2jN9n797//jYED B6Jdu3aQyWQ691Gr1cjOzmayR0RmjYk9ETVkepM9Dw8PbNq0CTNmzDB4gt27d9d4o4iIiIioZhic s1dZogeAN1UmIiIiqscMrsY9e/YsPD094ejoiJiYGFy9elWrXqVS4ejRozhw4ECtNpKIiIiIqsZg sjdhwgSEhITgvffeQ1paGkJCQtC6dWupXqVSITc3t9YbSURERERVYzDZS0lJgZ2dHQBg9OjR6NCh A/z9/bX22bdvX+21joiIiIiqxeCcvbJEDwAcHR3h7++Pa9euITExEQUFBQCAkSNH1m4L9TCmRzEr K8sELSEiIiKqvwwme5ouX76MF154Af/1X/+Fnj17okWLFpg7dy6USqXRL5aVlYWZM2di69atmDRp ElJSUnTut23bNqxcuRIff/wxli1bplWXmZmJ8ePH4y9/+UuF46Kjo2FlZSV9nTlzxui2EREREZkj g8O4miZNmoTWrVsjLi4Ozz//PIqLi/HTTz9hxYoVWL16daXHCyEQFBSEtWvXYtCgQRgwYAACAgKQ kZEBa+snNyeNiopCeHg44uLiAABjxoxBWFgYpkyZAqD0qR2Ojo64detWhdfYt28fEhISSt+YjQ28 vb2NfXtEVE+Uv2ExERFVj9E9e5cuXcK+ffvw8ssvw8HBAa1bt8aECRPQqFEjo46Pjo5GamoqfHx8 AABeXl6wtbXFwYMHtfZbt24d/Pz8pO1hw4Zhw4YN0nbHjh3h5OQEIYTWcRkZGUhOTkZ2dja6du3K RI+ogSq7gXHZFxERVY/Ryd64ceNw+/btCuXGrsaNi4uDu7s7bGyedCZ6eHjg5MmT0nZxcTESEhLg 6ekplXXu3BkpKSm4d++ewfNfuHABjx8/xvDhw9GhQwdER0cb1S4iIiIic6Z3GDc+Ph4LFy6UttVq Nfr37w8vLy+tsmbNmhn1Qjk5OWjevLlWmYODAxQKhbT94MEDKJVKODg4SGUtWrQAACgUCrRq1Urv +ceOHYuxY8dCoVDgnXfewYgRI3D58mW4uLgY1T4iIiIic6Q32evatSvs7Ox0LoTQNGjQIONeyMYG tra2WmVqtbrCPgC09ivbp/ywrT7t27dHZGQkunfvjqioKLzzzjtGHWfpyp5/bGyciZ5G+Xl4NTUv r7bOW58pJq8t/Q+fz0tERtKb7DVt2hTh4eFaN1EuT6VSITY2Fu3bt6/0hVxdXREbG6tVlpeXBzc3 N2nbyckJtra2yM/P19oHANq1a1fpa5Sxs7PD4MGDpWPLW7FihfR/Hx8faR4hEVVNZUlW2Ty8Mooa SlRq67xERObE4GpczUQvLy8P33//PfLy8qTen7y8PPzwww/Izs6u9IV8fX2xZo32hTg9PR3BwcHS tkwmg4+PDzIyMqSytLQ0eHl5wdnZ2ag3VEalUmnN/dOkmewRUfUx6SIiqr+MXqAxdepUnD17FtHR 0bh+/TquXbuG2NhYrXl9hvTp0wdyuRynTp0CUJrEFRYWIjAwEKGhoUhOTpZe59ChQ9JxR48exeTJ k7XOVX74FwC++OILpKWlASidH5ieno6AgABj3x4RkcVSqlUGt4moYTP6PntDhgzBtGnTkJaWhrt3 76Jfv354/Pgx5syZY9TxMpkMUVFRWLlyJVJTUxEfH4/Dhw+jadOmOHbsGHr06IFu3bph9OjRuHHj BkJDQ2FnZwe5XI65c+dK5zlz5gx+/PFHKBQKHDhwAIGBgbCxscHx48exatUqzJgxAw4ODoiMjNRa +UtERLqxZ5bIvBmdDaWnpyMyMhKBgYEICwuDWq2GUqnE3r178c033xh1Dnd3d3z33XcAgJkzZ0rl ZTdCLjNv3jy95+jfvz+SkpIqlB87dsyoNhARUdVZ4qIYoobO6GQvKCgIixYtQteuXRESEgJ/f38k JSVh+PDhtdk+IrOh+UuRvyCpoWIvIFHDY3Sy179/f5w9e1ba/u2333D//n04OTnVSsOIzI3mL8nr k7QfMcjkz3zxe0tEdc3oZK+kpASbN2/Gvn37kJ+fjy5dumDBggVM9oiqgL0jVdMQEyd+r4morhmd 7M2ePRvff/89xo0bh+effx7FxcVYtGgRZs6ciTfeeKM220hEBICJExFRVRid7O3ZswcnTpzAiy++ KJXNnz8fISEhTPaIahjn9xERUU0xOtl79tln4e3tXaG8UaNGNdogItLuwWLvFRERVYfeZC8zMxNn zpyRtocMGYK3334br7/+ulSmUqmQmJhYuy0kIiIioioz2LP34Ycfolu3bpDJZAAAIQR27typtc+7 775be60jIiIiomrRm+y5ubnhwIED6N+/vynbQ0RU73EeJRE1JAafjVs+0du9ezdeffVVeHp6IiAg gE+tICKLVDansuyLiKg+M3qBxsaNG7F+/XqMGzcOcrkcRUVF+Prrr3H9+nUO5RLVU3y0FRERGZ3s nT9/HleuXNFaffvhhx/io48+qpWGEVH18b50RERkcBhXU79+/XTeZqWoqKhGG0RERERENcfonr0b N27g5MmTeOmll1BYWIjLly8jLCwMJSUltdk+IiIiIqoGo3v25s+fj/Xr16NZs2Zo06YN+vXrh0eP HmHz5s212T4iIiIiqgaje/Z++eUXfP3117C1tYVCoYCbmxucnZ1rs21ERA0OF8EQUX1jdLIXHByM Xbt24bXXXoOrq6tUXlBQgGeeeaZWGkdE1NBwUQwR1TdGD+OGh4fDxqZibhgeHl6jDSIiIiKimmN0 z97SpUuRlJRUoVwmk2HmzJk12igiIiIiqhmVJnupqak4fvw4ZsyYgeeffx7t27eX6oQQ+Pbbb2u1 gURERERUdQaTvV9//RWvvPIKlEolAEAulyMuLk5rzl5oaGjttpCIiIiIqszgnL0VK1Zg06ZN+Pe/ /w2FQgEfHx+sXr1aa5/GjRvXagOJiIiIqOoMJnstW7bE9OnT4eDgAFdXV3zzzTdQKBRa+/CmykRE RET1l8Fkz97eXmu7UaNGcHFx0Srbs2dPzbeKiIiIiGqEwTl7ERERuHz5MoQQkMlkEELg8uXLePXV VwEASqUSycnJeOutt0zSWCJLVP4mvbxpLxERPQ2DyZ69vT3atWsHa+snv1jkcrn0/5KSkgrDukRU s3iTXiIiqg6Dyd727dsxZMgQgyc4fvx4jTaIiIiIiGqOwTl7lSV6ADB48OAaawwRkSVRqlUGt4mI aoLRT9AgIqKaxSF6IjIFo5+NS0QNH3uOiIgsD3v2iCwIe5KIiCwPe/aIiIiIzBiTPSIiIiIzxmSP iIiIyIwx2SMiIiIyY0z2iIiIiMwYkz0iIiIiM8Zkj4iIiMiMMdkjIiIiMmNM9oiIwKeLEJH5YrJH RIQnTxfRfMIIEZE5YLJHREREZMaY7BGRUcoPc3LYk4ioYbCp6wYQUcNQNsxZRvH2mjpsDRERGavB 9uzl5ubWdROIiIiI6j2T9uxlZWVh9erV8Pb2xrlz57BgwQJ06dKlwn7btm1DTk4OhBAoKSnBqlWr pLrMzEwsXboUCoUCMTExRh9HREREZIlMluwJIRAUFIS1a9di0KBBGDBgAAICApCRkQFra2tpv6io KISHhyMuLg4AMGbMGISFhWHKlCkAACsrKzg6OuLWrVta56/sOCJjKNUq2FpZ690mIiJqaEw2jBsd HY3U1FT4+PgAALy8vGBra4uDBw9q7bdu3Tr4+flJ28OGDcOGDRuk7Y4dO8LJyQlCiKc6jsgYmrff aL9zERM9IiJq8EyW7MXFxcHd3R02Nk86Ez08PHDy5Elpu7i4GAkJCfD09JTKOnfujJSUFNy7d0/v uat6HBEREZG5M1myl5OTg+bNm2uVOTg4QKFQSNsPHjyAUqmEg4ODVNaiRQsA0NqvvKoeR0RERGTu TDZnz8bGBra2tlplarW6wj4AtPYr26f8sG11jluxYoX0fx8fH2lomRoOzq0jc8TPNRHVBpMle66u roiNjdUqy8vLg5ubm7Tt5OQEW1tb5Ofna+0DAO3atdN77qc9TjPZo4aJ93wjc8TPNRHVBpMN4/r6 +uLatWtaZenp6Vq9ajKZDD4+PsjIyJDK0tLS4OXlBWdnZ73nrupxRPUFn0ZBRES1xWTJXp8+fSCX y3Hq1CkApclYYWEhAgMDERoaiuTkZADA1KlTcejQIem4o0ePYvLkyVrnKj/8a+xxRPVV+VXARERE NcVkw7gymQxRUVFYuXIlUlNTER8fj8OHD6Np06Y4duwYevTogW7dumH06NG4ceMGQkNDYWdnB7lc jrlz50rnOXPmDH788UcoFAocOHAAgYGBsLW1rfQ4IiIiIktk0idouLu747vvvgMAzJw5UypPSEjQ 2m/evHl6z9G/f38kJSXprDN0HBEREZElarDPxiWimsV5g/UPvydEVBNM2rNHRPUXV4LWP/yeEFFN YM8eERERkRljskfUwHBoj4iIngaHcYkaGA7tERHR02DPHhEREZEZY7JHREREZMaY7JHZKT+njXPc iIjIknHOHpkdzmkjIiJ6gj17RGQ2LKkX15LeKxFVD3v2yOIp1SrYWlnXdTOoBlhSr64lvVciqh72 7JHFK/ulqfmLk4iIyFww2SMyMxzeIyIiTUz2iMwMeyqJiEgTkz0iIiIiM8Zkj4iIiMiMMdkji8M5 bUREZEl46xWyOLxlBRERWRL27BERERGZMSZ7RERERGaMyR4RWSTO3SQiS8E5e0RkkTh3k4gsBXv2 iIiIiMwYkz0iIiIiM8Zkj4iIiMiMMdkjIiIiMmNM9oiewtOs4ORqT/0YGyIi0+FqXCIDlGoVbK2s pW3NFZyVrd7kak/9niaORERUPUz2iAxgwqZf+USYiIjqJw7jElGVlCXCmskwERHVP0z2iIiIiMwY kz0iIiIiM8Zkj4iIzJrm6m+uBCdLxGSPiMgMlU9qLDnJ0ZxfykVFZIm4GpeIyAxxJTkRlWHPHhER 6WXJPYJE5oI9e0REpBd7CIkaPvbsEREREZkxJntEREREZozJHhEREZEZY7JHREREZMaY7FGDwBWB REREVcPVuNQgVGdFoFKt4o1UiYjIYpl1speVlYV27drVdTOojvHWEUREZMlMmuxlZWVh9erV8Pb2 xrlz57BgwQJ06dKlwn7btm1DTk4OhBAoKSnBqlWrjKqLjo7G4MGDpe1du3Zh3LhxtfumiIjMDHvD icyLyZI9IQSCgoKwdu1aDBo0CAMGDEBAQAAyMjJgbf3kohIVFYXw8HDExcUBAMaMGYOwsDBMmTLF YB0A7Nu3DwkJCaVvzMYG3t7epnp7RERmQ7M3nD3hRA2fyRZoREdHIzU1FT4+PgAALy8v2Nra4uDB g1r7rVu3Dn5+ftL2sGHDsGHDhkrrMjIykJycjOzsbHTt2pWJHhGRBi5yIrJcJkv24uLi4O7uDhub J52JHh4eOHnypLRdXFyMhIQEeHp6SmWdO3dGSkoK7t69a7DuwoULePz4MYYPH44OHTogOjraNG+M iKgBKOut05y/SkSWwWTJXk5ODpo3b65V5uDgAIVCIW0/ePAASqUSDg4OUlmLFi0AAFeuXNFbl5WV hbFjx+LChQu4fv06evXqhREjRiAnJ6c23xIRERlQvjeRvYtEdcNkyZ6NjQ1sbW21ytRqdYV9AGjt V7ZP2bw+XXVCCKmsffv2iIyMhIuLC6KiomrwHZAp8ZcCUcOn2ZvYfuciLvogqiMmW6Dh6uqK2NhY rbK8vDy4ublJ205OTrC1tUV+fr7WPgDQsWNHvXXlb69iZ2eHwYMHS/XlrVixQvq/j4+PNI+QTKv8 ij/N7YZ4uxSuYCRLVFufe0PXByJ6OiZL9nx9fbFmjfYv7PT0dAQHB0vbMpkMPj4+yMjIkMrS0tLg 5eUFFxcXvXXOzs4VXk+lUmnN79OkmexR3WmICZ0h5vZ+iIxRW5973kidqOaYbBi3T58+kMvlOHXq FIDSRK2wsBCBgYEIDQ1FcnIyAGDq1Kk4dOiQdNzRo0cxefLkSuu++OILpKWlASidH5ieno6AgACT vDciIqpdTzP/r/zwMZGlM1nPnkwmQ1RUFFauXInU1FTEx8fj8OHDaNq0KY4dO4YePXqgW7duGD16 NG7cuIHQ0FDY2dlBLpdj7ty5AKC3TgiB48ePY9WqVZgxYwYcHBwQGRmptfKXiIgaLvacE1WdSbMh d3d3fPfddwCAmTNnSuVlN0IuM2/ePL3n0Fd37Nix6jeQiIiIyMyYbBiXiIiIiEyPyR4RERGRGWOy R0RERGTGmOxRjeId84mIiOoXLlelGsUVc0RERPULe/aIiIj+g6MTZI7Ys0dERPQf5Ucnrk9aLf2f T+aghorJHhERkR6ayR+npVBDxWFcIiIiIjPGZI+IiIjIjDHZowo4QZmIiMh8cM4eVcDbpxAREZkP 9uyRybCHkIgaMo56UEPFnj0yGfYYElFDxmsYNVTs2aNaxb98iYiI6haTPapVZX8Ja/41TERERKbD ZI+IiEyCc96I6gbn7BERkUlwzhtR3WDPHj0V/mVORDWF1w8i02DPHj0V/mVORDWFz50lMg327BER kcXg6ARZIvbsERGRxeDoBFki9uxRvcG/sImIiGoekz2qN3hPPiIioprHZI+IiIjIjDHZo0pxeJWI 6hvN6xKvUUSGMdmjSjWE4VVe7IksS0O4LhHVF1yNS2aB9+sislxcYUtkGHv2LFRNDYGwR42IiKh+ Y8+emVCqVbC1sta7XV5N9YTxL2oiIqL6jcmemWDSRURERLpwGNdCcLiViIjIMrFnz0Kw54+IqGY9 7fQZorrCZI+IiKgK+Ec0NRQcxm3ADA3NctiWiKj+KH9N5jWaTIk9ew2YoRW1/IuTiKj+4DWZ6hJ7 9oiIiIjMGJO9BoTd/kRE5onP+qXaxGFcE6vO6q3aGgbghYWIqG7xkY9Um9izZ2KaD+9uv3NRvVim r9kGPlSciKj2Pc0f2VzcQdXFnj0iIrJYdXVvvKcZqeHiDqouJntERGSxmEiRJbDYYdya7AavThe7 oWPZVU9ERETVZZE9e+13LqrRv96q85dh+WOvT1pdI+clIiLLoDkUzUe2kS4W27NXXn2ZAKu5gIOI iKgymr83mOiRLibt2cvKysLq1avh7e2Nc+fOYcGCBejSpUuF/bZt24acnBwIIVBSUoJVq1ZVu64y hnrRnvZ2Kfwri4jI8lTn1lrVeR2iypgs2RNCICgoCGvXrsWgQYMwYMAABAQEICMjA9bWTz60UVFR CA8PR1xcHABgzJgxCAsLw5QpU6pcV11PO5xa/n5JHIolIjJ/ppp6wyk+9LRMNowbHR2N1NRU+Pj4 AAC8vLxga2uLgwcPau23bt06+Pn5SdvDhg3Dhg0bqlWnS3WGaWtjiLco7WaNn9McMU7GYZyMx1gZ h3EyXlms6sMiu/oyRUmX06dP13UTGoSaiJPJkr24uDi4u7vDxuZJZ6KHhwdOnjwpbRcXFyMhIQGe np5SWefOnZGSkoK7d+9Wqe7evXs621P+5sblGfqBqOzYquCF1DiMk3EYJ+MxVsZhnIxXFqu6mINd /ndXfbyRfxkme8apiTiZbBg3JycHzZs31ypzcHCAQqGQth88eAClUgkHBweprEWLFgCAK1euVKlO oVCgVatWT91ePrqGiIjqQnXm5D3NEG9lcwxrag5ibc5lNNU8yYbOZMmejY0NbG1ttcrUanWFfQBo 7Ve2T9m8vqetE0LUSPuJiIhMoS7n/hna1rw12NMkhrX5fmrzmfFVTSLrZQIqTGT16tWie/fuWmV+ fn7i3XfflbbVarVo1KiROHjwoFR2/vx5IZPJxO3bt6tUl5ubq/Wa3bt3FwD4xS9+8Ytf/OIXv+r9 16RJk6qdg5msZ8/X1xdr1mhn3Onp6QgODpa2ZTIZfHx8kJGRIZWlpaXBy8sLLi4uVapzdnbWes2k pKQafmdERERE9ZfJFmj06dMHcrkcp06dAlCajBUWFiIwMBChoaFITk4GAEydOhWHDh2Sjjt69Cgm T55crToiIiIiSyUTwnST2q5du4aVK1eid+/eiI+Px6xZs9CzZ0/06tULS5YswYgRIwAA69evR15e Huzs7PDw4UOsWbMGMpmsWnVERERElsikyR7plpmZiYiICDg7OyMgIACtW7eu6yYREVEV8HpO9RGf jWsCMTEx6N69O5o3b44hQ4bg1q1bUl1ERATefPNNjB49GsHBwdKFISsrCzNnzsTWrVsxadIkpKSk 1FXzTUZfnGJjY7F8+XJs2LABEyZMQHp6unSMJcYpMTERffv2RcuWLfHaa6/h/v37AAzHwhLjBOiP laGfSUuMlb44lVGr1fD19UVMTIxUZolxAgzHitfzJ/TFiddz3cr/jNX49bzaSzzIoNzcXDFx4kSR nJwsjh07JuRyuRg0aJAQQohTp06J1q1bi6ysLK1j1Gq16NGjh/jXv/4lhBDi0qVLolOnTqKkpMTk 7TcVfXFSqVTC3d1dqFQqIYQQp0+fluJniXEqKioSixcvFoWFheKPP/4Qffr0EUuWLBFCCJ2xUKlU FhknIfTH6s6dO3p/Ji0xVoY+U2U2b94sHB0dRUxMjBDCMuMkhOFY8Xr+hL44qVQq8eyzz/J6roPm z5i+WFTnes5kr5bt2bNHPHz4UNreuXOnaNKkiRBCCE9PT7Fq1aoKxxw/flzY2dkJpVIplXl4eIjI yMjab3Ad0Renu3fvCjs7O/Ho0SMhhBBJSUmiZ8+eQgjLjFNOTo4oKiqSthcuXCiWLVtmMBaWGCch dMcqNDTU4M+kJcZK32eqzM8//yyOHDki3NzcpGTPEuMkhOFY8Xr+hL448XquW/mfsdq4nnMYt5aN HTsWzZo1k7bbtGkDuVyOc+fOIT09HZmZmRg1ahS8vLywZcsWAMY9Ws7c6ItTq1at0LNnT0ycOBEP Hz7Epk2bsGrVKgCWGac2bdqgUaNGAICioiLk5uZizpw5BmNx9uxZdOrUyaLiBOiO1dy5c/V+1gB+ psri9OGHHwIA7t+/j7Nnz8Lf31/rGEuME6A/VmfPnuX1XIO+OPF6XlH5nzEhBOLi4vRes6t6PWey Z2K//fYbZsyYgYSEBDRr1gxr1qxBZGQkdu3ahdmzZ+P8+fNGPVrO3JXFCQD27t2LtLQ0uLq6YuDA gfDz8wNg3CP4zNWhQ4fQu3dvREdHIyUlRWcsWrRoAYVCgZycHK1HCQKWEyegNFYvvfQSoqOj8fvv v1eo1/ysWfpnqnycNmzYgDlz5lTY15LjBFSM1YULF3g910HXZ4rXc226fsZyc3MrXLOrez1nsmdC BQUFSE5OxqxZs/DHH3/gueeek57b26NHD/Tq1QuHDx+Gra1tpY+WM2dlcfrggw8AlF4EBg0aBH9/ fwQHB2Pv3r0AjHsEn7kaOnQooqKi0L9/f0yYMEHvZ0YIYdFxAkpjdfDgQSlWmsp/1iw5VuXjtGPH DowfP17qoQEgPX7SkuMEVIxVQUEBr+c66PrZ4/X8ie3bt1f4GQNKHwFb09dzJnsmtH79emzatAnW 1tZwcXFBQUGBVn2HDh3w4MEDtG3bFvn5+Vp1eXl5aNeunSmbW2fK4mRlZYXCwkL4+flh+fLliIiI wPz58zFlyhQ8fPjQ4uPk5uaGsLAw3Lt3D61bt9YbC0uPE6AdK83Vk5qfNQBwdXW16FhpxunTTz/F Cy+8ADs7O9jZ2eHGjRsYPHgwxowZY/FxArRjZWVlxeu5HppxunnzJq/nGrZv367zZ2zbtm14f+jB 4QAAD7ZJREFU+PCh1r7VvZ4z2TOR7du3Y8KECdJS/J49e+LmzZtQKpXSPo8fP4a7uzt8fX1x7do1 rePT09Ph4+NjyibXifJx+v3336FWq6W/mD/++GNYWVkhIyMDr776qsXGqUyTJk3g5OSEQYMGVYhF WloafH19LfrzpKksVo6OjgAqftaUSiVjhSdxunr1Kh4/fix9yeVy/Otf/8I//vEP+Pj4WHycgCex CgwM5PXcgLI45eTk8HquIT4+XufPWExMDK5evaq1b3Wv50z2TOC7776DnZ0dlEol0tLSEBMTg8TE RKmbHwCKi4uRnJyMCRMm6H203NChQ+vybdQ6XXGKi4uDUqnE7du3AZTGqWnTpvDw8LDIOD148EDr sYAxMTGYOHEi/ud//qdCLAoKCjB06FCLjBOgP1YymUznZ2337t14+eWXLS5WhuJUXtkwriXGCdAf q+effx49e/bk9fw/9MXJw8MDxcXFvJ5XQlcsqns9tzFYS9V27NgxTJs2DSqVSiqTyWRIT0/HwIED ERISgvT0dCgUCmzfvh1t2rQBAERFRWHlypVITU1FfHw8Dh8+DDs7u7p6G7XOUJy8vb0REhKCXr16 4datW/j73/8uraa0tDhdu3YN06ZNw3PPPYdRo0bB3t4en3zyCYCKsThy5IgUC0uLE6A7VqtWrTL4 WQMsL1aGPlPllSWAMpnM4uIEGI7V3//+d17P/8NQnCIjI3k9r4Sun6/qXs/5uDQiIiIiM8ZhXCIi IiIzxmSPiIiIyIwx2SMiIiIyY0z2iIiIiMwYkz0iIiIiM8Zkj4iIiMiMMdkjogouXbqEO3fu1HUz jHL58mXcvXu3rptRQW22688//8Rvv/0mbT98+BDJycm18lpE1PAx2SOyMD///DPeeOMNTJkyBTNn zoS/vz+OHTsm1R84cAD//d//jbS0tDpsZeld97t164bGjRvj3XffxaxZszBjxgwMGDAAvr6+AICt W7eiS5cuSE1NrdO2lmdMu5KTkzFs2DAMHToUEydOhJeXF6ysrDB8+HCD575y5Qpef/11hISEAAAS ExPRt29ffPHFFzX6HnTZvHkzrK2tIZfLcebMGan83r17eP/999GxY0ecP3++1ttBRE9JEJHF2L9/ v3BwcBAJCQlS2fXr10Xbtm1FWFiYVCaXy0VMTExdNFFLaGio6NSpU4XyJUuWSP+vblsTExPFL7/8 UuXj9THUrp9//lk0a9ZM7N+/XypTqVRi9uzZYvjw4ZWee+fOncLHx0fa/uijj0RwcHD1G22Et99+ W7Rs2VIUFxdrlYeHh4vw8HCjzvHVV1/VRtOISA/27BFZiIKCAkybNg3Tpk1Dz549pXI3NzcsXLgQ s2bNkoYddT0XtS5YW1tLz2PVtHjxYun/1WlrXl4eJkyYgD///LPK59BHX7tKSkowceJEBAQEaPXi WVlZ4a9//Ss6depU422pSR9++CHy8vIQERGhVX706FH85S9/qfT4ixcvYv78+bXVPCLSgckekYU4 fvw4Hjx4gCFDhlSo8/f3x+PHj7V+gZ87dw5eXl5wdnbGxx9/LJXv27cPy5Ytw5YtWzB+/HiUlJTg jz/+wOLFizF48GBs3boVQ4YMQefOnZGRkYHFixfD29sbQ4cOlRK3M2fOYN68edi+fTtGjRqFvLw8 o9/Hxx9/DHt7e511SqUSn3zyCRYsWICXXnoJBw4ckOpOnTqFFStWYOXKlQgMDMSDBw+QkJCA7Oxs fP/999i/f7/Uto8++gh//etfERgYiIsXLwIA9uzZg/79+2P//v3o0KEDtm7dipSUFHzwwQf49ttv MWLECNy8ebPS9p84cQKZmZmYMGFChTpra2vMmDEDQOnD5BcvXoytW7di/Pjx2Lhxo95zlk8sDx48 iNDQUAQEBGD69OlQq9UAgEePHmHBggX4/PPP4ejoiLZt22LDhg0ASof3lyxZgjFjxmD48OEoKCjQ +VrdunVDv3798NVXX0ll2dnZaN68OZo0aSKV6YtjdHQ0CgsL8emnn+LChQsAgC+//BJLlixB3759 8fXXXwMAhBBYunQpfvjhB4wcORLh4eGGA0tE+tVxzyIRmciaNWuETCYTly9frlD3559/CplMJt5/ /30hhBBubm5i3rx5QqVSiSNHjghra2tx4MABIYQQbdu2Fb/++qsQQog+ffqIH3/8UQghxKFDh0TL li3FpUuXhBBCjB07Vvj6+oo///xTlJSUiPbt24tz584JIYR4+eWXxd69e6X9Nm7cqLPNH330kbC3 txfBwcEiODhYvPbaa6Jly5Za+7i5uUnDpWvWrBFxcXFCCCH27t0r7O3txaNHj8TFixdFYGCgdMxL L70ktm7dWuH4zMxM4eXlJdRqtRBCiCNHjghnZ2eRn58v7t+/L2Qymfj222/F+fPnxcWLF8W4cePE 559/LoQQYtGiRWLu3Lk626Xp888/FzKZTKSkpOh8z2X8/PzEiRMnhBBCFBUViQ4dOohdu3YJISoO 465YsUIaxr1x44b0fSwqKhKOjo7i22+/FUIIsXjxYrF582YhhBBbtmyRYvno0SPx5ptvSufr2rWr WL58ud62RURECJlMJhITE4UQpXE/c+aMVG8ojtevXxcymUza94cffpDe16+//iqsrKzElStXRGJi oggKChJCCFFYWCj27dtnMF5EpJ9NXSebRGQahoY7y3p+hMaQ6dChQ2FlZQV/f38MHDgQ+/btw7Bh w/DTTz+hS5cuSEhIQH5+vtQrZ29vDwcHB3h5eQEAPDw8YGdnh8aNGwMA3N3dkZmZiT59+mDnzp2Q y+VIS0tDdna2wZ69Vq1aYefOndL2e++9p3ffnTt3Qq1W4+eff0ZBQQFefvll3Lp1C1u3bsVrr70m 7XfixAk0bdq0wvG7du1Cly5dpFj5+/tDJpMhKioKb731FgDg1VdfhVwuBwB8+umnaNGiBW7duoWM jAw0b95cb9vKlJSUACjtxdMnOzsbx44dw969ewEAjRo1wrhx47Bjxw68+eabFfbX/L7t3r0bt2/f xtq1awEAvr6+ePToEQAgKSkJbdq0AQD069dPasPhw4eRk5MjHdO9e3colUq97RsxYgRcXV3x1Vdf Ydu2bThz5gwWLlwo1RuKY79+/bTOtXPnTnh7e+PWrVtQqVQYOHAgFAoFPD09ER0djXXr1mHevHmV LlwhIv2Y7BFZCE9PTwDArVu30LlzZ626rKwsAMBzzz2n89guXbrgypUrAIDGjRtjwYIFmDhxItq0 aaNzTh1Qmlxq1llZWaG4uBgA4ODggGXLliEoKAju7u5SsmmM4OBgvXU3b95ESEgIGjVqpFV+7do1 6f0DwDPPPKPzeIVCUWH4Ui6XIzs7W+t9lWnVqhVWr16Nvn37omvXrrhx40al7ffw8AAAZGRk6I23 QqEAABQWFkptlcvliIqKqvT8N2/exODBgzF9+vQKda+88gqioqIwe/Zs5OfnY/To0QCAGzduoHfv 3loJmyHW1tZ45513sHbtWowcORK9e/eu0P7K4qjZ3o0bN0pxWbJkiVS3Z88eTJw4Efv370dERAQ6 duxoVPuISBvn7BFZiMGDB6N169b45z//WaHuxIkTaNKkCUaNGqXz2KKiInTp0gWPHz+Gr68vZs2a BW9vb4OvZ6gn0d/fH4GBgejXrx+EEE+1yOLFF19EcXEx4uPjK9Q5OTnh1KlT0rYQAsnJyXB2dsbp 06e19r1+/XqF4zt16oSMjAytsqKiIri7u+tsy8SJE+Hp6YnAwECj2z9kyBA4OjpWWOCgyc3NDUDp vfo02/Hss8/q3F8mk0kxLB8DANJ8ucWLF6Nt27ZYv349rl69iv/93/8FUJq0lo9P2TH6TJ8+HUql EhMnTsSkSZO06p4mjvram5ubi8DAQFy6dAn29vaYPHmywfYQkX5M9ogsRJMmTbBjxw6EhYXh//7v /6TyO3fuYM2aNfjyyy/Rtm1bqVylUkn/nj9/HrNmzcKlS5dw+/ZtKJVK3L9/H9euXUNeXh5UKlWF Hj4hhFaZWq2GEAL3799HUlISlEolHj9+jEuXLknnKK+kpERnr98nn3wi7V92XgAICgrCe++9h19+ +QVZWVlYsGABHB0dMXr0aERFRWHNmjW4evUqduzYgQcPHgAo7eW7c+cO7ty5g7feegu5ubnSPeRy c3NRUFCAN954Q3oNzfZER0dDqVSipKQESUlJyM/P19kuTc888wx27NiBf/zjHwgLC9OqS0xMxGef fQZnZ2eMHDlSq/706dOYNWtWhTaUfY80Y7B3715s2bIFubm52LdvHxISEgCU3idv0KBB8PPzQ69e vfDw4UMApQloYmIili1bhuzsbJw8eVLr3ou6tGnTBqNGjYKXl5eUnJYxFMeynsp79+7hzp07CAoK wrJly/DTTz8hNzcXn376KUpKSpCWloYTJ07A1dUV69evxx9//GGwPURkQF1MFCSiuhMbGyuCgoLE O++8I9577z3xxhtviMOHD2vts3HjRhEQECCWLl0qPvjgAxEbGyuEKF3I0bdvX9GmTRuxcOFCsWjR ItG5c2dx8eJFMWvWLGFvby9iYmLEzZs3xeuvvy68vLxEcnKyiI+PF87OzmL8+PHi7t27YsSIEaJl y5Zi+vTpYsOGDaJt27bi9OnTWm04ffq06N69u7C2thZvvvmmmDNnjpg6daro3bu3aN68uSgpKRG7 du0SNjY2Ys6cOeLevXsiLy9PjBw5UjRv3lx069ZNnDp1SjrfZ599JlxcXETHjh3F7t27pfJPPvlE dOzYUbrP4NmzZ8XQoUPFZ599Jt5//33x+++/CyGE2Lx5s7CyshLLly8Xd+/eFUIIMXv2bNGsWTMx duxY8be//U04OjqKiIiICu3S930YMmSI6NWrlxg7dqyYPn262Lx5s7SoIT8/X7z11lti4cKFYvny 5dK96TIzM4W/v79o27atiI2NFSkpKeLFF18U3bp1E0lJSUIIITZt2iTatWsnWrduLZYuXSq95o4d O4RcLhf29vbCyspKNGrUSBw5ckQIUbqgxd3dXbRo0UJMnz69wn30dDl79qy0+ENXna44CiGk9x0b GyuKiorE9OnTRcuWLcWzzz4rIiIipO+/u7u7+Oabb0RISIi08IaInp5MCD0TboiIyGw8fvwYc+fO xZYtW2BlVTqoc/fuXfzwww9SjyERmScO4xIRWYDjx4/j3LlzyM/PB1A6zJ6YmIhXXnmljltGRLWN yR4RkQUYPHgwevTogeeeew49e/bEuHHj4OTkhBdeeKGum0ZEtYzDuERERERmjD17RERERGaMyR4R ERGRGWOyR0RERGTGmOwRERERmTEme0RERERmjMkeERERkRn7fzurKmy5kAdDAAAAAElFTkSuQmCC ", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.83017063,"math_prob":0.9486813,"size":49572,"snap":"2021-31-2021-39","text_gpt3_token_len":11917,"char_repetition_ratio":0.14953196,"word_repetition_ratio":0.029807292,"special_character_ratio":0.25754458,"punctuation_ratio":0.15268676,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.98994625,"pos_list":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38],"im_url_duplicate_count":[null,5,null,null,null,null,null,5,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2021-09-19T17:32:11Z\",\"WARC-Record-ID\":\"<urn:uuid:2c48fb67-30b1-477c-8b9d-9a44d83a65a3>\",\"Content-Length\":\"1049682\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:1b6e8f7a-57a0-4c44-abd9-b55eb7c539f1>\",\"WARC-Concurrent-To\":\"<urn:uuid:42c09cd9-47c4-4e33-82f5-64b837b1066f>\",\"WARC-IP-Address\":\"104.21.25.233\",\"WARC-Target-URI\":\"https://nbviewer.ipython.org/github/cs109/content/blob/master/HW2_solutions.ipynb\",\"WARC-Payload-Digest\":\"sha1:FQGUOW3TW6X3FGFWDSKYEZLRT5OJIZR4\",\"WARC-Block-Digest\":\"sha1:YEWDZQEDI7CYG7YHFY7FXU2TWLUIWIZ3\",\"WARC-Truncated\":\"length\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2021/CC-MAIN-2021-39/CC-MAIN-2021-39_segments_1631780056892.13_warc_CC-MAIN-20210919160038-20210919190038-00096.warc.gz\"}"}
https://cs.stackexchange.com/questions/9602/cfg-with-regular-expression-terminals-on-rhs/9603
[ "CFG with regular expression terminals on RHS\n\nSuppose that we expand our idea of context free grammar rules to allow regular expressions of terminals on the right hand side. For example, consider $G_1$:\n\n\\begin{align*} S & \\rightarrow (a \\mid b) S (c \\mid d) \\\\ S & \\rightarrow (a \\mid b) A (c \\mid d) \\\\ A & \\rightarrow (f \\mid g)^* \\end{align*}\n\nThen the language of $G_1$ is the following:\n$$L(G_1) = \\{(a \\mid b)^n (f \\mid g)^* (c \\mid d)^n \\mid n > 0\\}$$\n\nGive a standard CFG that has the same language as $G_1$, is your grammar weakly equivalent to $G_1'$, strongly equivalent to $G_1'$, or both? Why?\n\nSecondly, how can I transform any CFG with regular expressions of terminals on the right hand side to a normal context free grammar?\n\nmigrated from stackoverflow.comFeb 8 '13 at 14:13\n\nThis question came from our site for professional and enthusiast programmers.\n\n• These questions have been answered dozens of times in SO. If you're going to post homework, you should at least post your best attempt at a solution. – Apalala Feb 7 '13 at 14:39\n\nThe general answer is pretty straightforward: if you have a grammar rule of the form $S \\rightarrow {\\alpha}r{\\beta}$, where $r$ is a regular expression over the set of nonterminals, change this production to $S \\rightarrow {\\alpha}S'{\\beta}$, find a right-regular grammar with start symbols $S'$ generating $L(r)$ (there is an algorithm for this); and then your grammar will include all those productions as well. Repeat for every production containing a regular expression on the right-hand side.\n\nA exactly grammar equivalent to G1 is following ( say G2) :\n\nS → X S Y\nS → X A Y\n\nX → a | b\nY → c | d\n\nA → fA | gA | ^\n\nWhere ^ is a null symbol (epsilon)\n\nexactly equivalent means L(G1) = L(G2) that is language of G1 and G2 are same( every string in L(G1) also in L(G2) and vise-versa)." ]
[ null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.8009835,"math_prob":0.9928617,"size":694,"snap":"2019-43-2019-47","text_gpt3_token_len":214,"char_repetition_ratio":0.12173913,"word_repetition_ratio":0.09677419,"special_character_ratio":0.32564843,"punctuation_ratio":0.080882356,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9966723,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2019-10-15T11:09:19Z\",\"WARC-Record-ID\":\"<urn:uuid:38119f1f-c4d0-4ce5-986b-4fa447df78e2>\",\"Content-Length\":\"139367\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:d4238b65-3e74-45e9-b68d-5e106ac29d57>\",\"WARC-Concurrent-To\":\"<urn:uuid:18838024-8e49-4166-a056-206313f2c754>\",\"WARC-IP-Address\":\"151.101.65.69\",\"WARC-Target-URI\":\"https://cs.stackexchange.com/questions/9602/cfg-with-regular-expression-terminals-on-rhs/9603\",\"WARC-Payload-Digest\":\"sha1:WLMZKSKMKTKMZZ5SOUMCT7Z3VIU2CU6K\",\"WARC-Block-Digest\":\"sha1:GPNMTRPAMTIJPYWFD4WQ3OPD2ABNFW6I\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2019/CC-MAIN-2019-43/CC-MAIN-2019-43_segments_1570986658566.9_warc_CC-MAIN-20191015104838-20191015132338-00549.warc.gz\"}"}
http://bends.se/?page=notebook/electronics/stepper-1
[ "Författare:\nPer Stenebo\n2019-10-27 17:43:25\n2019-11-08 20:58:05", null, "# Unipolar stepper motor with driver\n\nDescription on how to connect and code for a 28BYJ-48 and ULN2003 with a Raspberry Pi.\n\n28BYJ-48 is a 5 VDC unipolar stepper motor. ULN2003 is the main component on the driver board. This circuit is fed from a 5 VDC power supply but the signal connections can handle both 3.3 volt (like from a Raspberry Pi) and 5 volt (like from an Arduino).\n\nThere are plenty of tutorials about this motor, some even with this driver board, but none (as fas as I know) with this exact combination of motor, driver and controller. As I was new to this kind of motor I have spent many hours searching and testing, an effort I hope to save someone else with this page.\n\nFor some reason the uploaded images refuse to show up on the page, I hope to resolve this issue soon. I link the images from another site in the mean time.", null, "## External resources\n\nI have bought these as a Luxorparts kit from Kjell & Co.\n\nMost info, images and code compiled from the following sources:\n| instructables.com | Raspberry Pi Tutorialsseeedstudio.com42bots.com |\n\n## Wiring\n\nGPIO pin Driver pin Motor wire\nGPIO #4 IN1 Blue\nGPIO #17 IN2 Pink\nGPIO #23 IN3 Yellow\nGPIO #24 IN4 Orange\n\nConnection chart with separate power sources (recommended):", null, "Connection chart with common power source:", null, "You can of course choose any available GPIO pin but you need to adjust the code accordingly. Remember that driving stepper motors is all about signal order, keep track of your changes.\n\nYou can (and should) have a separate power supply for the controller and the driver/motor. If so, remember to connect a ground wire between the controller and the driver so they have a common reference.\n\nThe LEDs and the resistors (330 Ω) on the breadboard are just for fun (and for troubleshooting). You can skip these.\n\nThe capacitor (100uF 50V) are also optional, it mitigates power surges from the motor, causing voltage drops to the controller. Use separate power supplies instead.\n\n## Troubleshooting\n\nResistance between motor wires, motor disconnected from the driver board:\n\nOrange    Red        21,9 Ω\nYellow    Red        21,8 Ω\nPink    Red        21,7 Ω\nBlue    Red        21,7 Ω\n\nBlue    Pink    43,4 Ω\nBlue    Yellow    43,4 Ω\nBlue    Orange    43,5 Ω\n\nPink    Yellow    43,3 Ω\nPink    Orange    43,5 Ω\n\nOrange    Yellow    43,5 Ω\n\nThe motor includes a gearbox with high ratio, about 63:1. When using the default delay of 5 ms between each step, the visible gear still turns quite slow. The high ratio also makes the gear somewhat self-locking. The gears will break if you try to turn the motor from the visible shaft.\n\n## Code for python 3 (preferred)\n\n```#!/usr/bin/python3\n# coding: utf-8\n'''\nsudo apt install python3-dev python3-rpi.gpio\nRun with: python3 stepper.py\n'''\nimport sys, signal, time\nimport RPi.GPIO as GPIO\n\n#-----------------------------------------------------------------------\n# Functions (inline)\n#-----------------------------------------------------------------------\n# Manage ctrl+c\ndef signal_handler(signal, frame):\nGPIO.cleanup()\nprint ('Script terminated by Ctrl+C')\n# Terminate script\nsys.exit(0)\n\nsignal.signal(signal.SIGINT, signal_handler)\n\n#-----------------------------------------------------------------------\n# GPIO setup\n#-----------------------------------------------------------------------\nGPIO.setmode(GPIO.BCM)\nGPIO.setwarnings(False)\n\ncoil_A_1_pin = 4 # blue\ncoil_A_2_pin = 17 # pink\ncoil_B_1_pin = 23 # yellow\ncoil_B_2_pin = 24 # orange\n\nStepCount = 8\nSeq = [0,1,2,3,4,5,6,7]\n\nSeq = [1,0,0,0]\nSeq = [1,1,0,0]\nSeq = [0,1,0,0]\nSeq = [0,1,1,0]\nSeq = [0,0,1,0]\nSeq = [0,0,1,1]\nSeq = [0,0,0,1]\nSeq = [1,0,0,1]\n\nGPIO.setup(coil_A_1_pin, GPIO.OUT)\nGPIO.setup(coil_A_2_pin, GPIO.OUT)\nGPIO.setup(coil_B_1_pin, GPIO.OUT)\nGPIO.setup(coil_B_2_pin, GPIO.OUT)\n\ndef setStep(w1, w2, w3, w4):\nGPIO.output(coil_A_1_pin, w1)\nGPIO.output(coil_A_2_pin, w2)\nGPIO.output(coil_B_1_pin, w3)\nGPIO.output(coil_B_2_pin, w4)\n\ndef forward(delay, steps):\nfor i in range(steps):\nfor j in range(StepCount):\nsetStep(Seq[j], Seq[j], Seq[j], Seq[j])\ntime.sleep(delay)\n#input(\"Fwd seq #%d : %s %s %s %s\" % (j, Seq[j], Seq[j], Seq[j], Seq[j]))\n\ndef backwards(delay, steps):\nfor i in range(steps):\nfor j in reversed(range(StepCount)):\nsetStep(Seq[j], Seq[j], Seq[j], Seq[j])\ntime.sleep(delay)\n#input(\"Rev seq #%d : %s %s %s %s\" % (j, Seq[j], Seq[j], Seq[j], Seq[j]))\n\n#-----------------------------------------------------------------------\n# Main\n#-----------------------------------------------------------------------\nif __name__ == '__main__':\nsetStep(0, 0, 0, 0)\n\ndelay = input(\"Time Delay (ms) ? \")\nif not delay:\ndelay = 5\nelse:\ndelay = int(delay)\n\nsteps_fwd = input(\"How many steps forward? \")\nif not steps_fwd:\nsteps_fwd = 100\nelse:\nsteps_fwd = int(steps_fwd)\n\nsteps_rev = input(\"How many steps backward? \")\nif not steps_rev:\nsteps_rev = 100\nelse:\nsteps_rev = int(steps_rev)\n\nwhile True:\nforward(delay / 1000.0, steps_fwd)\nsetStep(0, 0, 0, 0)\ntime.sleep(0.5)\nbackwards(delay / 1000.0, steps_rev)\nsetStep(0, 0, 0, 0)\ntime.sleep(0.5)\n```\n\n## Code for python 2\n\n```#!/usr/bin/python2.7\n# coding: utf-8\n'''\nsudo apt install python-dev python-rpi.gpio\nRun with: python2 stepper.py\n'''\nimport sys, signal, time\nimport RPi.GPIO as GPIO\n\n#-----------------------------------------------------------------------\n# Functions (inline)\n#-----------------------------------------------------------------------\n# Manage ctrl+c\ndef signal_handler(signal, frame):\nGPIO.cleanup()\nprint ('Script terminated by Ctrl+C')\n# Terminate script\nsys.exit(0)\n\nsignal.signal(signal.SIGINT, signal_handler)\n\n#-----------------------------------------------------------------------\n# GPIO setup\n#-----------------------------------------------------------------------\nGPIO.setmode(GPIO.BCM)\nGPIO.setwarnings(False)\n\ncoil_A_1_pin = 4 # blue\ncoil_A_2_pin = 17 # pink\ncoil_B_1_pin = 23 # yellow\ncoil_B_2_pin = 24 # orange\n\nStepCount = 8\nSeq = range(0, StepCount)\n\nSeq = [1,0,0,0]\nSeq = [1,1,0,0]\nSeq = [0,1,0,0]\nSeq = [0,1,1,0]\nSeq = [0,0,1,0]\nSeq = [0,0,1,1]\nSeq = [0,0,0,1]\nSeq = [1,0,0,1]\n\nGPIO.setup(coil_A_1_pin, GPIO.OUT)\nGPIO.setup(coil_A_2_pin, GPIO.OUT)\nGPIO.setup(coil_B_1_pin, GPIO.OUT)\nGPIO.setup(coil_B_2_pin, GPIO.OUT)\n\ndef setStep(w1, w2, w3, w4):\nGPIO.output(coil_A_1_pin, w1)\nGPIO.output(coil_A_2_pin, w2)\nGPIO.output(coil_B_1_pin, w3)\nGPIO.output(coil_B_2_pin, w4)\n\ndef forward(delay, steps):\nfor i in range(steps):\nfor j in range(StepCount):\nsetStep(Seq[j], Seq[j], Seq[j], Seq[j])\ntime.sleep(delay)\n#raw_input(\"Fwd seq #%d : %s %s %s %s\" % (j, Seq[j], Seq[j], Seq[j], Seq[j]))\n\ndef backwards(delay, steps):\nfor i in range(steps):\nfor j in reversed(range(StepCount)):\nsetStep(Seq[j], Seq[j], Seq[j], Seq[j])\ntime.sleep(delay)\n#raw_input(\"Rev seq #%d : %s %s %s %s\" % (j, Seq[j], Seq[j], Seq[j], Seq[j]))\n\n#-----------------------------------------------------------------------\n# Main\n#-----------------------------------------------------------------------\nif __name__ == '__main__':\nsetStep(0, 0, 0, 0)\n\ndelay = raw_input(\"Time Delay (ms) ? \")\nif not delay:\ndelay = 5\nelse:\ndelay = int(delay)\n\nsteps_fwd = raw_input(\"How many steps forward? \")\nif not steps_fwd:\nsteps_fwd = 100\nelse:\nsteps_fwd = int(steps_fwd)\n\nsteps_rev = raw_input(\"How many steps backward? \")\nif not steps_rev:\nsteps_rev = 100\nelse:\nsteps_rev = int(steps_rev)\n\nwhile True:\nforward(delay / 1000.0, steps_fwd)\nsetStep(0, 0, 0, 0)\ntime.sleep(0.5)\nbackwards(delay / 1000.0, steps_rev)\nsetStep(0, 0, 0, 0)\ntime.sleep(0.5)\n```\n\n## More images\n\nTip: Right-click on the image and select \"Show image in new tab\" to view it in full size.", null, "", null, "", null, "", null, "", null, "" ]
[ null, "http://bends.se/bendcms/files/flags/en.png", null, "https://vpp2.bends.se/media/electronics/stepper1/motor_and_driver.jpeg", null, "https://vpp2.bends.se/media/electronics/stepper1/pi_step_motor2_bb.png", null, "https://vpp2.bends.se/media/electronics/stepper1/pi_step_motor1_bb.png", null, "https://vpp2.bends.se/media/electronics/stepper1/motor_gearbox.jpg", null, "https://vpp2.bends.se/media/electronics/stepper1/motor_internal_circuit.jpg", null, "https://vpp2.bends.se/media/electronics/stepper1/driver_board.jpeg", null, "https://vpp2.bends.se/media/electronics/stepper1/motor_back.jpeg", null, "https://vpp2.bends.se/media/electronics/stepper1/motor_front.jpeg", null ]
{"ft_lang_label":"__label__en","ft_lang_prob":0.65855944,"math_prob":0.89880884,"size":7711,"snap":"2019-51-2020-05","text_gpt3_token_len":2253,"char_repetition_ratio":0.2265473,"word_repetition_ratio":0.44770283,"special_character_ratio":0.42860848,"punctuation_ratio":0.19896641,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9539232,"pos_list":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18],"im_url_duplicate_count":[null,3,null,1,null,1,null,1,null,1,null,1,null,1,null,1,null,1,null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2020-01-29T04:23:26Z\",\"WARC-Record-ID\":\"<urn:uuid:54ff74f3-a42c-4aa0-993c-96556f2f3b15>\",\"Content-Length\":\"28356\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:786bbaa0-bac2-4397-a453-eca8abaa16ce>\",\"WARC-Concurrent-To\":\"<urn:uuid:f308ca0e-17cf-4846-af9c-ae94026f7d5c>\",\"WARC-IP-Address\":\"212.97.132.153\",\"WARC-Target-URI\":\"http://bends.se/?page=notebook/electronics/stepper-1\",\"WARC-Payload-Digest\":\"sha1:33YJ3GCSQX53VPTTGSZHOLOCEA5PRDMN\",\"WARC-Block-Digest\":\"sha1:SXAZ65U7ELZLIZEQPA4JCTXSWBBRYEWV\",\"WARC-Identified-Payload-Type\":\"text/html\",\"warc_filename\":\"/cc_download/warc_2020/CC-MAIN-2020-05/CC-MAIN-2020-05_segments_1579251788528.85_warc_CC-MAIN-20200129041149-20200129071149-00224.warc.gz\"}"}
http://zuowen4.info/node/5487
[ "## 我懂得了读书的乐趣\n\n• dǒng\n• le\n• shū\n• de\n•\n•\n• 我懂得了读书的乐趣\n•\n•\n• hóng\n• yàn\n• wài\n• xué\n• xiào\n• nián\n•\n• shào\n• xiāo\n•   鸿雁外语学校四年级 邵枭宇\n•\n•\n• qián\n• de\n• ya\n•\n• zhěng\n• tiān\n• jiù\n• zhī\n• dào\n• wán\n•\n• xiě\n• wán\n• zuò\n•   以前的我呀,整天就知道玩,写完作\n•\n• shèng\n• xià\n• de\n• shì\n• shí\n• jiān\n• quán\n• jiāo\n• gěi\n• le\n• wán\n•\n• 业,剩下的是时间全部交给了玩,可以一\n• zhí\n• wán\n• dào\n• tiān\n• hēi\n• shuì\n• jiào\n•\n• cóng\n• kàn\n• shū\n•\n• zhí\n• dào\n• shēng\n• le\n• 直玩到天黑睡觉,从不看书,直到发生了\n• jiàn\n• shì\n• zhī\n• hòu\n•\n• cái\n• zhī\n• dào\n• kàn\n• shū\n•\n• dǒng\n• le\n• 那件事之后,我才知道看书,也懂得了读\n• shū\n• de\n•\n•\n•\n• 书的乐趣。\n•\n•\n• tiān\n• xià\n•\n• wéi\n• gǒng\n• de\n• xué\n•\n• fēi\n•   一天下午,妈妈为巩固我的学习,非\n• yào\n• kǎo\n• kǎo\n• wén\n• fāng\n• miàn\n• de\n•\n• ér\n• qiě\n• hái\n• shǐ\n• yǒu\n• 要考考我语文方面的题,而且还与历史有\n• guān\n•\n• shì\n• jiù\n• cóng\n• zhè\n• kāi\n• shǐ\n• le\n•\n•\n•\n• 关,故事就从这里开始了。\n•\n•\n• yīn\n• wéi\n• zhī\n• dào\n• duì\n• shū\n• gǎn\n• xìng\n•\n• jiù\n•   因为妈妈知道我对读书不感兴趣,就\n• xiān\n• kǎo\n• yīng\n• gāi\n• huì\n• de\n•\n• rán\n• hòu\n• zài\n• kǎo\n• tài\n• huì\n• de\n•\n• 先考我应该会的,然后再考我不太会的。\n• zhè\n• yàng\n• lái\n•\n• huì\n• de\n• xiē\n•\n• jiù\n• huì\n• zhǎng\n• de\n• gèng\n• zhā\n• 这样一来,我会的那些,就会掌握的更扎\n• shí\n•\n• kāi\n• shǐ\n• shí\n•\n• hái\n• cuò\n•\n• hòu\n• lái\n• de\n• jiù\n• 实。开始时,我答得还不错,后来的题就\n• nán\n• le\n•\n• dàn\n• fēi\n• cháng\n• yǒu\n•\n• yòu\n• huì\n•\n• méi\n• bàn\n• ?\n• 难了,但非常有趣,可我又不会,没办法\n• zhī\n• hǎo\n• rèn\n• shū\n• le\n•\n• xīn\n• què\n• zhí\n•\n• bìng\n• 只好认输了。可我心里却一直不服气,并\n• méi\n• yǒu\n• zhēn\n• zhèng\n• rèn\n• shū\n•\n• shì\n• biàn\n• kāi\n• shǐ\n• kàn\n• shū\n• lái\n•\n• 没有真正认输,于是我便开始看起书来。\n• qiǎo\n• de\n• shì\n• èr\n• tiān\n• kǎo\n• wài\n• kǒu\n•\n• ér\n• qiě\n• yǒu\n• yàn\n•\n• 巧的是第二天考外语口语,而且有谚语。\n• bié\n• de\n• tóng\n• xué\n• néng\n• duì\n•\n• shì\n• xué\n• guò\n• de\n•\n• 别的同学也能答对几个,那是学过的,可\n• jiù\n• yàng\n• le\n•\n• yīn\n• wéi\n• kàn\n• shū\n• le\n•\n• měi\n• lǎo\n• shī\n• 我就不一样了,因为我看书了。每次老师\n• jiào\n• dào\n• shí\n•\n• dōu\n• biǎo\n• xiàn\n• chū\n•\n• yīn\n• hái\n• le\n• 叫到我时,我都表现特出色,因此还得了\n• jiǎng\n•\n•\n•\n• 奖励。\n•\n•\n• ò\n•\n• cháng\n• dào\n• le\n• shū\n• de\n• tián\n• tóu\n•\n• hòu\n• lái\n• měi\n•   哦,我尝到了读书的甜头,后来每次\n• kàn\n• shū\n• shí\n•\n• dōu\n• huì\n• ràng\n• kǎo\n• kǎo\n•\n• guǒ\n• yǒu\n• 看书时,我都会让妈妈考考我,如果有一\n• diǎn\n• méi\n• zhù\n• de\n•\n• jiù\n• zài\n• shū\n• lái\n• kàn\n•\n• zhí\n• 点没记住的,我就再拿起书来继续看,直\n• dào\n• zhù\n• wéi\n• zhǐ\n•\n• suǒ\n• de\n• zhī\n• shí\n• yuè\n• lái\n• yuè\n• duō\n•\n• 到记住为止,所以我的知识越来越多,大\n• jiā\n• dōu\n• jiào\n•\n• xiǎo\n• shì\n•\n• ne\n•\n•\n•\n• 家都叫我“小博士”呢!\n•\n•\n• cóng\n•\n• gèng\n• jiā\n• ài\n• shàng\n• shū\n• le\n•\n• fēng\n• duō\n• cǎi\n•   从此,我更加爱上读书了,丰富多彩\n• de\n• zhī\n• shí\n• ràng\n•\n• cóng\n• zhōng\n• dǒng\n• le\n• 的知识让我如饥似渴,我也从中懂得了读\n• shū\n• de\n• de\n•\n•\n•\n•\n•\n•\n•\n• 书的莫大的乐趣。\n\n无注音版:\n我懂得了读书的乐趣\n\n鸿雁外语学校四年级 邵枭宇\n以前的我呀,整天就知道玩,写完作业,剩下的是时间全部交给了玩,可以一直玩到天黑睡觉,从不看书,直到发生了那件事之后,我才知道看书,也懂得了读书的乐趣。\n\n一天下午,妈妈为巩固我的学习,非要考考我语文方面的题,而且还与历史有关,故事就从这里开始了。\n\n因为妈妈知道我对读书不感兴趣,就先考我应该会的,然后再考我不太会的。这样一来,我会的那些,就会掌握的更扎实。开始时,我答得还不错,后来的题就难了,但非常有趣,可我又不会,没办法只好认输了。可我心里却一直不服气,并没有真正认输,于是我便开始看起书来。巧的是第二天考外语口语,而且有谚语。别的同学也能答对几个,那是学过的,可我就不一样了,因为我看书了。每次老师叫到我时,我都表现特出色,因此还得了奖励。\n\n哦,我尝到了读书的甜头,后来每次看书时,我都会让妈妈考考我,如果有一点没记住的,我就再拿起书来继续看,直到记住为止,所以我的知识越来越多,大家都叫我“小博士”呢!\n\n从此,我更加爱上读书了,丰富多彩的知识让我如饥似渴,我也从中懂得了读书的莫大的乐趣。\n\n### 上网的乐趣\n\n四年级作文246字\n作者:未知\n•\n•\n• shàng\n• wǎng\n• de\n•   上网的乐趣\n•\n•\n• liáo\n• níng\n• shěng\n• lián\n•\n• xīn\n• huá\n• xiǎo\n• xué\n• nián\n• èr\n• bān\n•\n• liú\n•   辽宁省大连 新华小学四年二班 刘\n• lín\n• lín\n• 林琳\n• 阅读全文\n\n### 钓虾的乐趣\n\n四年级作文673字\n作者:未知\n•\n•\n• diào\n• xiā\n• de\n•   钓虾的乐趣\n•\n•\n• guǎng\n• dōng\n• shěng\n• shān\n• shì\n•\n• guǎng\n• dōng\n• guì\n• yuán\n• xué\n• xiào\n• yīng\n•   广东省佛山市 广东碧桂园学校英语\n• gāo\n• xiǎo\n• ?\n•\n•\n• bān\n• ?\n•\n•\n• bān\n•\n•\n• yàn\n• 高小部四(4)班四(4)班 李R\n• 阅读全文\n\n### 我和书的故事\n\n四年级作文428字\n作者:陈悦虹\n•\n• bié\n• ài\n• kàn\n• shū\n•\n• ài\n• kuáng\n•\n• yǒu\n• kōng\n• jiù\n• kàn\n•\n•  我特别爱看书,爱得发狂,有空就看,\n• chī\n• diǎn\n• xīn\n• shí\n• kàn\n•\n• zuò\n• zuò\n• kàn\n•\n• 吃点心时看,做作业也看。\n•\n•\n• hái\n• wéi\n• shū\n• chà\n• diǎn\n• yān\n• ne\n• shuō\n• lái\n• dǎo\n• nán\n•   我还为书差点淹死呢说起来倒也难以\n• 阅读全文\n\n### 我和书的故事\n\n四年级作文698字\n作者:张展豪\n• shū\n• de\n• shì\n• 我和书的故事\n•\n• sān\n• bān\n•\n• zhāng\n• zhǎn\n• háo\n•  四三班 张展豪\n•\n• gāo\n• ěr\n• céng\n• jīng\n• shuō\n• guò\n•\n• shū\n• shì\n• rén\n• lèi\n• jìn\n• de\n• jiē\n•  高尔基曾经说过“书籍是人类进步的阶\n• 阅读全文\n\n### 爱读书的爸爸\n\n四年级作文465字\n作者:肖俊嵩\n•\n•\n• de\n• jīn\n• nián\n•\n• suì\n•\n• de\n• zhí\n• shì\n• dǎo\n• yóu\n•\n•   我的爸爸今年38岁,他的职业是导游,\n• ài\n• hǎo\n• shì\n• shū\n•\n• yùn\n• dòng\n•\n• yīn\n• wéi\n• huān\n• kàn\n• shū\n•\n• liáng\n• 爱好是读书、运动。因为喜欢看书,鼻梁\n• shàng\n• jià\n• le\n• hòu\n• hòu\n• de\n• jìn\n• shì\n• yǎn\n• jìng\n•\n• cháng\n• cháng\n• shì\n• 上架了一幅厚厚的近视眼镜。爸爸常常是\n• 阅读全文\n\n### 读书的乐趣\n\n四年级作文476字\n作者:盖玉婧\n•\n•\n• shū\n• de\n•\n•\n•   读书的乐趣\n•\n•\n•\n• gài\n• jìng\n•\n•\n•    盖玉婧\n•\n•\n•\n• zài\n• de\n• shēng\n• huó\n• zhōng\n• kāi\n• shū\n•\n• shū\n• néng\n• ràng\n•    在我的生活中离不开书,书能让我\n• 阅读全文\n\n### 爱看课外书的\n\n四年级作文424字\n作者:高宇萌\n•\n•\n• ài\n• kàn\n• wài\n• shū\n• de\n•\n•\n•   爱看课外书的我\n•\n•\n•\n• gāo\n• méng\n•\n•\n•    高宇萌\n•\n•\n•\n• huān\n• kàn\n• wài\n• shū\n•\n• yīn\n• wéi\n• wài\n• shū\n• fēng\n•    我喜欢看课外书,因为课外书丰富\n• 阅读全文\n\n### 种花草的乐趣\n\n四年级作文366字\n作者:荆琳烁\n•\n•\n• jīn\n• tiān\n• dào\n• shì\n• de\n• ?g\n• huì\n• shì\n•\n• sōu\n• huāng\n•   今天我和妈妈到市里的花卉市*蛄艘慌\n• zhè\n• shì\n• tán\n•\n•\n• 柘事痰目?墓?\n•\n•\n•\n• kāi\n• xīn\n• guǒ\n• shǒu\n• zhǎng\n• bān\n•\n• wài\n• xíng\n•    开心果如手掌般大,外形酷似一棵\n• 阅读全文\n\n### 我和书的故事\n\n四年级作文509字\n作者:颜依梦\n• shì\n• xiǎo\n• diàn\n• shì\n•\n• ér\n• shū\n• shì\n• de\n•\n• rén\n•\n• 我是个小电视迷,而书则是我的“敌人”\n•\n• yīn\n• wéi\n• rèn\n• wéi\n• shū\n• shì\n• dàn\n• ér\n• wèi\n• de\n•\n• zhī\n• yǒu\n• diàn\n• shì\n• 。因为我认为书是淡而无味的,只有电视\n• shì\n• cǎi\n• bīn\n• fēn\n• de\n•\n• shì\n• cóng\n• shēng\n• le\n• jiàn\n• shì\n• 剧是五彩缤纷的。可是自从发生了那件事\n• 阅读全文\n\n### 我的乐园\n\n四年级作文483字\n作者:赖陈晨\n• de\n• tóng\n• nián\n•\n• yǒu\n• bié\n• shū\n• wēn\n• nuǎn\n• de\n• 你的童年里,你有一个特别舒服温暖的乐\n• yuán\n• ma\n•\n• jiù\n• yǒu\n• zhè\n• yàng\n• dài\n• zhe\n• jiù\n• xiǎng\n• zǒu\n• de\n• 园吗?我就有这样一个待着就不想走的乐\n• yuán\n•\n• men\n• xiǎng\n• zhī\n• dào\n• de\n• yuán\n• zài\n• ér\n• ma\n•\n• jiù\n• 园,你们想知道我的乐园在哪儿吗?它就\n• 阅读全文\n\n### 跳绳的乐趣\n\n四年级作文638字\n作者:陆韵寒\n• guó\n• xiǎo\n• xué\n• nián\n•\n• yùn\n• hán\n•\n•\n• 泽国小学四年级 陆韵寒\n•\n•\n• yuè\n• liàng\n• chū\n• lái\n• le\n•\n• jiā\n• hóng\n• xún\n• zhǎo\n• tiào\n• shéng\n•   月亮出来了,我和狄佳宏去寻找跳绳\n• de\n• kuài\n•\n•\n•\n• 的快乐。\n• 阅读全文\n\n### 一个爱看书的\n\n四年级作文406字\n作者:翟政琦\n•\n• zhàn\n• zài\n• jìng\n• qián\n•\n• miàn\n• yǒu\n• xiǎo\n• nán\n• hái\n•\n• shēn\n• chuān\n•  站在镜子前,里面有个小男孩。他身穿\n• lán\n• yùn\n• dòng\n• zhuāng\n•\n• dēng\n• hēi\n• qiú\n• xié\n•\n• kàn\n• shàng\n• hái\n• shì\n• 蓝色一运动装,足蹬黑球鞋,看上去还是\n• mán\n• yǒu\n• fēng\n• de\n• ma\n•\n• yuán\n• yuán\n• de\n• xiǎo\n• nǎo\n• dài\n•\n• zhī\n• wéi\n• shí\n• 蛮有风度的吗!圆圆的小脑袋,不知为什\n• 阅读全文\n\n### 不读书的后果\n\n四年级作文344字\n作者:李跃华\n•\n•\n• shū\n• de\n• hòu\n• guǒ\n•   不读书的后果\n•\n•\n•\n• shū\n• bǎi\n• biàn\n•\n• xiàn\n•\n• shū\n• bǎi\n• biàn\n•\n•    书读百遍,其意自现。书读百遍,\n• xiàn\n•\n• shū\n• bǎi\n• biàn\n•\n• xiàn\n•\n•\n•\n• zhè\n• 其意自现。书读百遍,其意自现。……这\n• 阅读全文\n\n### 书的哭泣\n\n四年级作文243字\n作者:任畅航\n•\n•\n• shū\n• de\n•\n•\n•   书的哭泣\n•\n•\n•\n•\n•\n•\n•\n• āi\n•\n• jīn\n• tiān\n• yòu\n• bèi\n• le\n• dùn\n•\n• kàn\n•    “唉!今天我又被打了一顿,看我\n• 阅读全文\n\n### 我与书的故事\n\n四年级作文711字\n作者:冯子宸\n•\n•\n• gāo\n• ěr\n• yǒu\n• míng\n• yán\n•\n• shū\n• shì\n• rén\n• lèi\n• jìn\n• de\n• jiē\n•   高尔基有句名言:书是人类进步的阶\n• de\n• què\n•\n• shū\n• zài\n• rén\n• shēng\n• de\n• dào\n• shàng\n• zhàn\n• zhe\n• zhòng\n• yào\n• de\n• 梯的确,书在人生的道路上占据着重要的\n• wèi\n•\n• 地位。\n• 阅读全文\n\n### 读书的感觉真\n\n四年级作文339字\n作者:张延宇\n•\n•\n• shū\n• de\n• gǎn\n• jiào\n• zhēn\n• hǎo\n•\n•\n•   读书的感觉真好\n•\n•\n• zhāng\n• yán\n•\n•\n•   张延宇\n•\n•\n• shū\n•\n• shì\n• zhǒng\n• xiǎng\n• shòu\n•\n• shì\n• zhǒng\n• fàng\n• sōng\n•\n• shì\n•   读书,是一种享受,是一种放松,是\n• 阅读全文" ]
[ null ]
{"ft_lang_label":"__label__zh","ft_lang_prob":0.71641153,"math_prob":0.4839275,"size":5922,"snap":"2020-45-2020-50","text_gpt3_token_len":5438,"char_repetition_ratio":0.17979047,"word_repetition_ratio":0.18013343,"special_character_ratio":0.39817628,"punctuation_ratio":0.0055309734,"nsfw_num_words":0,"has_unicode_error":false,"math_prob_llama3":0.9909438,"pos_list":[0],"im_url_duplicate_count":[null],"WARC_HEADER":"{\"WARC-Type\":\"response\",\"WARC-Date\":\"2020-11-27T00:08:41Z\",\"WARC-Record-ID\":\"<urn:uuid:f68a2627-d57f-4ba8-b2b6-093ab37db53a>\",\"Content-Length\":\"26613\",\"Content-Type\":\"application/http; msgtype=response\",\"WARC-Warcinfo-ID\":\"<urn:uuid:72566ae2-1acb-49cf-baa8-3c5ebe7a7e5e>\",\"WARC-Concurrent-To\":\"<urn:uuid:fea5dda4-ace9-4950-b273-953f6746911f>\",\"WARC-IP-Address\":\"50.63.210.1\",\"WARC-Target-URI\":\"http://zuowen4.info/node/5487\",\"WARC-Payload-Digest\":\"sha1:6MNQVE3AV3BQWOGAGSGDMB54XBU2A3ZE\",\"WARC-Block-Digest\":\"sha1:MWGYTAIYSKY7UUO7BG6QY7MM5ZBTLXHE\",\"WARC-Identified-Payload-Type\":\"application/xhtml+xml\",\"warc_filename\":\"/cc_download/warc_2020/CC-MAIN-2020-50/CC-MAIN-2020-50_segments_1606141189030.27_warc_CC-MAIN-20201126230216-20201127020216-00081.warc.gz\"}"}