text
stringlengths 0
4.99k
|
---|
self.encoder = keras.Sequential(
|
[self.enc_input]
|
+ [
|
TransformerEncoder(num_hid, num_head, num_feed_forward)
|
for _ in range(num_layers_enc)
|
]
|
)
|
for i in range(num_layers_dec):
|
setattr(
|
self,
|
f\"dec_layer_{i}\",
|
TransformerDecoder(num_hid, num_head, num_feed_forward),
|
)
|
self.classifier = layers.Dense(num_classes)
|
def decode(self, enc_out, target):
|
y = self.dec_input(target)
|
for i in range(self.num_layers_dec):
|
y = getattr(self, f\"dec_layer_{i}\")(enc_out, y)
|
return y
|
def call(self, inputs):
|
source = inputs[0]
|
target = inputs[1]
|
x = self.encoder(source)
|
y = self.decode(x, target)
|
return self.classifier(y)
|
@property
|
def metrics(self):
|
return [self.loss_metric]
|
def train_step(self, batch):
|
\"\"\"Processes one batch inside model.fit().\"\"\"
|
source = batch[\"source\"]
|
target = batch[\"target\"]
|
dec_input = target[:, :-1]
|
dec_target = target[:, 1:]
|
with tf.GradientTape() as tape:
|
preds = self([source, dec_input])
|
one_hot = tf.one_hot(dec_target, depth=self.num_classes)
|
mask = tf.math.logical_not(tf.math.equal(dec_target, 0))
|
loss = self.compiled_loss(one_hot, preds, sample_weight=mask)
|
trainable_vars = self.trainable_variables
|
gradients = tape.gradient(loss, trainable_vars)
|
self.optimizer.apply_gradients(zip(gradients, trainable_vars))
|
self.loss_metric.update_state(loss)
|
return {\"loss\": self.loss_metric.result()}
|
def test_step(self, batch):
|
source = batch[\"source\"]
|
target = batch[\"target\"]
|
dec_input = target[:, :-1]
|
dec_target = target[:, 1:]
|
preds = self([source, dec_input])
|
one_hot = tf.one_hot(dec_target, depth=self.num_classes)
|
mask = tf.math.logical_not(tf.math.equal(dec_target, 0))
|
loss = self.compiled_loss(one_hot, preds, sample_weight=mask)
|
self.loss_metric.update_state(loss)
|
return {\"loss\": self.loss_metric.result()}
|
def generate(self, source, target_start_token_idx):
|
\"\"\"Performs inference over one batch of inputs using greedy decoding.\"\"\"
|
bs = tf.shape(source)[0]
|
enc = self.encoder(source)
|
dec_input = tf.ones((bs, 1), dtype=tf.int32) * target_start_token_idx
|
dec_logits = []
|
for i in range(self.target_maxlen - 1):
|
dec_out = self.decode(enc, dec_input)
|
logits = self.classifier(dec_out)
|
logits = tf.argmax(logits, axis=-1, output_type=tf.int32)
|
last_logit = tf.expand_dims(logits[:, -1], axis=-1)
|
dec_logits.append(last_logit)
|
dec_input = tf.concat([dec_input, last_logit], axis=-1)
|
return dec_input
|
Download the dataset
|
Note: This requires ~3.6 GB of disk space and takes ~5 minutes for the extraction of files.
|
keras.utils.get_file(
|
os.path.join(os.getcwd(), \"data.tar.gz\"),
|
\"https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2\",
|
extract=True,
|
archive_format=\"tar\",
|
cache_dir=\".\",
|
)
|
saveto = \"./datasets/LJSpeech-1.1\"
|
wavs = glob(\"{}/**/*.wav\".format(saveto), recursive=True)
|
id_to_text = {}
|
with open(os.path.join(saveto, \"metadata.csv\"), encoding=\"utf-8\") as f:
|
for line in f:
|
id = line.strip().split(\"|\")[0]
|
text = line.strip().split(\"|\")[2]
|
id_to_text[id] = text
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.