text
stringlengths 0
4.99k
|
---|
dropout_3 (Dropout) (None, None, 1024) 0
|
______________________________________________________________________________________________________________
|
bidirectional_5 (Bidirectional) (None, None, 1024) 4724736
|
______________________________________________________________________________________________________________
|
dense_1 (Dense) (None, None, 1024) 1049600
|
______________________________________________________________________________________________________________
|
dense_1_relu (ReLU) (None, None, 1024) 0
|
______________________________________________________________________________________________________________
|
dropout_4 (Dropout) (None, None, 1024) 0
|
______________________________________________________________________________________________________________
|
dense (Dense) (None, None, 32) 32800
|
==============================================================================================================
|
Total params: 26,628,480
|
Trainable params: 26,628,352
|
Non-trainable params: 128
|
______________________________________________________________________________________________________________
|
Training and Evaluating
|
# A utility function to decode the output of the network
|
def decode_batch_predictions(pred):
|
input_len = np.ones(pred.shape[0]) * pred.shape[1]
|
# Use greedy search. For complex tasks, you can use beam search
|
results = keras.backend.ctc_decode(pred, input_length=input_len, greedy=True)[0][0]
|
# Iterate over the results and get back the text
|
output_text = []
|
for result in results:
|
result = tf.strings.reduce_join(num_to_char(result)).numpy().decode(\"utf-8\")
|
output_text.append(result)
|
return output_text
|
# A callback class to output a few transcriptions during training
|
class CallbackEval(keras.callbacks.Callback):
|
\"\"\"Displays a batch of outputs after every epoch.\"\"\"
|
def __init__(self, dataset):
|
super().__init__()
|
self.dataset = dataset
|
def on_epoch_end(self, epoch: int, logs=None):
|
predictions = []
|
targets = []
|
for batch in self.dataset:
|
X, y = batch
|
batch_predictions = model.predict(X)
|
batch_predictions = decode_batch_predictions(batch_predictions)
|
predictions.extend(batch_predictions)
|
for label in y:
|
label = (
|
tf.strings.reduce_join(num_to_char(label)).numpy().decode(\"utf-8\")
|
)
|
targets.append(label)
|
wer_score = wer(targets, predictions)
|
print(\"-\" * 100)
|
print(f\"Word Error Rate: {wer_score:.4f}\")
|
print(\"-\" * 100)
|
for i in np.random.randint(0, len(predictions), 2):
|
print(f\"Target : {targets[i]}\")
|
print(f\"Prediction: {predictions[i]}\")
|
print(\"-\" * 100)
|
Let's start the training process.
|
# Define the number of epochs.
|
epochs = 1
|
# Callback function to check transcription on the val set.
|
validation_callback = CallbackEval(validation_dataset)
|
# Train the model
|
history = model.fit(
|
train_dataset,
|
validation_data=validation_dataset,
|
epochs=epochs,
|
callbacks=[validation_callback],
|
)
|
2021-09-28 21:16:48.067448: I tensorflow/stream_executor/cuda/cuda_dnn.cc:369] Loaded cuDNN version 8100
|
369/369 [==============================] - 586s 2s/step - loss: 300.4624 - val_loss: 296.1459
|
----------------------------------------------------------------------------------------------------
|
Word Error Rate: 0.9998
|
----------------------------------------------------------------------------------------------------
|
Target : the procession traversed ratcliffe twice halting for a quarter of an hour in front of the victims' dwelling
|
Prediction: s
|
----------------------------------------------------------------------------------------------------
|
Target : some difficulty then arose as to gaining admission to the strong room and it was arranged that a man may another custom house clerk
|
Prediction: s
|
----------------------------------------------------------------------------------------------------
|
Inference
|
# Let's check results on more validation samples
|
predictions = []
|
targets = []
|
for batch in validation_dataset:
|
X, y = batch
|
batch_predictions = model.predict(X)
|
batch_predictions = decode_batch_predictions(batch_predictions)
|
predictions.extend(batch_predictions)
|
for label in y:
|
label = tf.strings.reduce_join(num_to_char(label)).numpy().decode(\"utf-8\")
|
targets.append(label)
|
wer_score = wer(targets, predictions)
|
print(\"-\" * 100)
|
print(f\"Word Error Rate: {wer_score:.4f}\")
|
print(\"-\" * 100)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.