text
stringlengths 0
4.99k
|
---|
def test_step(self, data): |
# Unpack the data |
x, y = data |
# Compute predictions |
y_pred = self(x, training=False) |
# Updates the metrics tracking the loss |
self.compiled_loss(y, y_pred, regularization_losses=self.losses) |
# Update the metrics. |
self.compiled_metrics.update_state(y, y_pred) |
# Return a dict mapping metric names to current value. |
# Note that it will include the loss (tracked in self.metrics). |
return {m.name: m.result() for m in self.metrics} |
# Construct an instance of CustomModel |
inputs = keras.Input(shape=(32,)) |
outputs = keras.layers.Dense(1)(inputs) |
model = CustomModel(inputs, outputs) |
model.compile(loss="mse", metrics=["mae"]) |
# Evaluate with our custom test_step |
x = np.random.random((1000, 32)) |
y = np.random.random((1000, 1)) |
model.evaluate(x, y) |
32/32 [==============================] - 0s 578us/step - loss: 0.7436 - mae: 0.7455 |
[0.744135320186615, 0.7466798424720764] |
Wrapping up: an end-to-end GAN example |
Let's walk through an end-to-end example that leverages everything you just learned. |
Let's consider: |
A generator network meant to generate 28x28x1 images. |
A discriminator network meant to classify 28x28x1 images into two classes ("fake" and "real"). |
One optimizer for each. |
A loss function to train the discriminator. |
from tensorflow.keras import layers |
# Create the discriminator |
discriminator = keras.Sequential( |
[ |
keras.Input(shape=(28, 28, 1)), |
layers.Conv2D(64, (3, 3), strides=(2, 2), padding="same"), |
layers.LeakyReLU(alpha=0.2), |
layers.Conv2D(128, (3, 3), strides=(2, 2), padding="same"), |
layers.LeakyReLU(alpha=0.2), |
layers.GlobalMaxPooling2D(), |
layers.Dense(1), |
], |
name="discriminator", |
) |
# Create the generator |
latent_dim = 128 |
generator = keras.Sequential( |
[ |
keras.Input(shape=(latent_dim,)), |
# We want to generate 128 coefficients to reshape into a 7x7x128 map |
layers.Dense(7 * 7 * 128), |
layers.LeakyReLU(alpha=0.2), |
layers.Reshape((7, 7, 128)), |
layers.Conv2DTranspose(128, (4, 4), strides=(2, 2), padding="same"), |
layers.LeakyReLU(alpha=0.2), |
layers.Conv2DTranspose(128, (4, 4), strides=(2, 2), padding="same"), |
layers.LeakyReLU(alpha=0.2), |
layers.Conv2D(1, (7, 7), padding="same", activation="sigmoid"), |
], |
name="generator", |
) |
Here's a feature-complete GAN class, overriding compile() to use its own signature, and implementing the entire GAN algorithm in 17 lines in train_step: |
class GAN(keras.Model): |
def __init__(self, discriminator, generator, latent_dim): |
super(GAN, self).__init__() |
self.discriminator = discriminator |
self.generator = generator |
self.latent_dim = latent_dim |
def compile(self, d_optimizer, g_optimizer, loss_fn): |
super(GAN, self).compile() |
self.d_optimizer = d_optimizer |
self.g_optimizer = g_optimizer |
self.loss_fn = loss_fn |
def train_step(self, real_images): |
if isinstance(real_images, tuple): |
real_images = real_images[0] |
# Sample random points in the latent space |
batch_size = tf.shape(real_images)[0] |
random_latent_vectors = tf.random.normal(shape=(batch_size, self.latent_dim)) |
# Decode them to fake images |
generated_images = self.generator(random_latent_vectors) |
# Combine them with real images |
combined_images = tf.concat([generated_images, real_images], axis=0) |
# Assemble labels discriminating real from fake images |
labels = tf.concat( |
[tf.ones((batch_size, 1)), tf.zeros((batch_size, 1))], axis=0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.