text
stringlengths 0
4.99k
|
---|
show_shapes=False, |
show_dtype=False, |
show_layer_names=True, |
rankdir="TB", |
expand_nested=False, |
dpi=96, |
) |
Converts a Keras model to dot format and save to a file. |
Example |
input = tf.keras.Input(shape=(100,), dtype='int32', name='input') |
x = tf.keras.layers.Embedding( |
output_dim=512, input_dim=10000, input_length=100)(input) |
x = tf.keras.layers.LSTM(32)(x) |
x = tf.keras.layers.Dense(64, activation='relu')(x) |
x = tf.keras.layers.Dense(64, activation='relu')(x) |
x = tf.keras.layers.Dense(64, activation='relu')(x) |
output = tf.keras.layers.Dense(1, activation='sigmoid', name='output')(x) |
model = tf.keras.Model(inputs=[input], outputs=[output]) |
dot_img_file = '/tmp/model_1.png' |
tf.keras.utils.plot_model(model, to_file=dot_img_file, show_shapes=True) |
Arguments |
model: A Keras model instance |
to_file: File name of the plot image. |
show_shapes: whether to display shape information. |
show_dtype: whether to display layer dtypes. |
show_layer_names: whether to display layer names. |
rankdir: rankdir argument passed to PyDot, a string specifying the format of the plot: 'TB' creates a vertical plot; 'LR' creates a horizontal plot. |
expand_nested: Whether to expand nested models into clusters. |
dpi: Dots per inch. |
Returns |
A Jupyter notebook Image object if Jupyter is installed. This enables in-line display of the model plots in notebooks. |
model_to_dot function |
tf.keras.utils.model_to_dot( |
model, |
show_shapes=False, |
show_dtype=False, |
show_layer_names=True, |
rankdir="TB", |
expand_nested=False, |
dpi=96, |
subgraph=False, |
) |
Convert a Keras model to dot format. |
Arguments |
model: A Keras model instance. |
show_shapes: whether to display shape information. |
show_dtype: whether to display layer dtypes. |
show_layer_names: whether to display layer names. |
rankdir: rankdir argument passed to PyDot, a string specifying the format of the plot: 'TB' creates a vertical plot; 'LR' creates a horizontal plot. |
expand_nested: whether to expand nested models into clusters. |
dpi: Dots per inch. |
subgraph: whether to return a pydot.Cluster instance. |
Returns |
A pydot.Dot instance representing the Keras model or a pydot.Cluster instance representing nested model if subgraph=True. |
Raises |
ImportError: if graphviz or pydot are not available.Serialization utilities |
CustomObjectScope class |
tf.keras.utils.custom_object_scope(*args) |
Exposes custom classes/functions to Keras deserialization internals. |
Under a scope with custom_object_scope(objects_dict), Keras methods such as tf.keras.models.load_model or tf.keras.models.model_from_config will be able to deserialize any custom object referenced by a saved config (e.g. a custom layer or metric). |
Example |
Consider a custom regularizer my_regularizer: |
layer = Dense(3, kernel_regularizer=my_regularizer) |
config = layer.get_config() # Config contains a reference to `my_regularizer` |
... |
# Later: |
with custom_object_scope({'my_regularizer': my_regularizer}): |
layer = Dense.from_config(config) |
Arguments |
*args: Dictionary or dictionaries of {name: object} pairs. |
get_custom_objects function |
tf.keras.utils.get_custom_objects() |
Retrieves a live reference to the global dictionary of custom objects. |
Updating and clearing custom objects using custom_object_scope is preferred, but get_custom_objects can be used to directly access the current collection of custom objects. |
Example |
get_custom_objects().clear() |
get_custom_objects()['MyObject'] = MyObject |
Returns |
Global dictionary of names to classes (_GLOBAL_CUSTOM_OBJECTS). |
register_keras_serializable function |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.