text
stringlengths 0
4.99k
|
---|
)(lrelu5) |
add3 = layers.Add()([c6, add2]) |
return add3 |
Each convolutional block uses the dilations offered by the residual stack and upsamples the input data by the upsampling_factor. |
# Dilated convolutional block consisting of the Residual stack |
def conv_block(input, conv_dim, upsampling_factor): |
\"\"\"Dilated Convolutional Block with weight normalization. |
Args: |
conv_dim: int, determines filter size for the block. |
upsampling_factor: int, scale for upsampling. |
Returns: |
Dilated convolution block. |
\"\"\" |
conv_t = addon_layers.WeightNormalization( |
layers.Conv1DTranspose(conv_dim, 16, upsampling_factor, padding=\"same\"), |
data_init=False, |
)(input) |
lrelu1 = layers.LeakyReLU()(conv_t) |
res_stack = residual_stack(lrelu1, conv_dim) |
lrelu2 = layers.LeakyReLU()(res_stack) |
return lrelu2 |
The discriminator block consists of convolutions and downsampling layers. This block is essential for the implementation of the feature matching technique. |
Each discriminator outputs a list of feature maps that will be compared during training to compute the feature matching loss. |
def discriminator_block(input): |
conv1 = addon_layers.WeightNormalization( |
layers.Conv1D(16, 15, 1, \"same\"), data_init=False |
)(input) |
lrelu1 = layers.LeakyReLU()(conv1) |
conv2 = addon_layers.WeightNormalization( |
layers.Conv1D(64, 41, 4, \"same\", groups=4), data_init=False |
)(lrelu1) |
lrelu2 = layers.LeakyReLU()(conv2) |
conv3 = addon_layers.WeightNormalization( |
layers.Conv1D(256, 41, 4, \"same\", groups=16), data_init=False |
)(lrelu2) |
lrelu3 = layers.LeakyReLU()(conv3) |
conv4 = addon_layers.WeightNormalization( |
layers.Conv1D(1024, 41, 4, \"same\", groups=64), data_init=False |
)(lrelu3) |
lrelu4 = layers.LeakyReLU()(conv4) |
conv5 = addon_layers.WeightNormalization( |
layers.Conv1D(1024, 41, 4, \"same\", groups=256), data_init=False |
)(lrelu4) |
lrelu5 = layers.LeakyReLU()(conv5) |
conv6 = addon_layers.WeightNormalization( |
layers.Conv1D(1024, 5, 1, \"same\"), data_init=False |
)(lrelu5) |
lrelu6 = layers.LeakyReLU()(conv6) |
conv7 = addon_layers.WeightNormalization( |
layers.Conv1D(1, 3, 1, \"same\"), data_init=False |
)(lrelu6) |
return [lrelu1, lrelu2, lrelu3, lrelu4, lrelu5, lrelu6, conv7] |
Create the generator |
def create_generator(input_shape): |
inp = keras.Input(input_shape) |
x = MelSpec()(inp) |
x = layers.Conv1D(512, 7, padding=\"same\")(x) |
x = layers.LeakyReLU()(x) |
x = conv_block(x, 256, 8) |
x = conv_block(x, 128, 8) |
x = conv_block(x, 64, 2) |
x = conv_block(x, 32, 2) |
x = addon_layers.WeightNormalization( |
layers.Conv1D(1, 7, padding=\"same\", activation=\"tanh\") |
)(x) |
return keras.Model(inp, x) |
# We use a dynamic input shape for the generator since the model is fully convolutional |
generator = create_generator((None, 1)) |
generator.summary() |
Model: \"model\" |
__________________________________________________________________________________________________ |
Layer (type) Output Shape Param # Connected to |
================================================================================================== |
input_1 (InputLayer) [(None, None, 1)] 0 |
__________________________________________________________________________________________________ |
mel_spec (MelSpec) (None, None, 80) 0 input_1[0][0] |
__________________________________________________________________________________________________ |
conv1d (Conv1D) (None, None, 512) 287232 mel_spec[0][0] |
__________________________________________________________________________________________________ |
leaky_re_lu (LeakyReLU) (None, None, 512) 0 conv1d[0][0] |
__________________________________________________________________________________________________ |
weight_normalization (WeightNor (None, None, 256) 2097921 leaky_re_lu[0][0] |
__________________________________________________________________________________________________ |
leaky_re_lu_1 (LeakyReLU) (None, None, 256) 0 weight_normalization[0][0] |
__________________________________________________________________________________________________ |
weight_normalization_1 (WeightN (None, None, 256) 197121 leaky_re_lu_1[0][0] |
__________________________________________________________________________________________________ |
leaky_re_lu_2 (LeakyReLU) (None, None, 256) 0 weight_normalization_1[0][0] |
__________________________________________________________________________________________________ |
weight_normalization_2 (WeightN (None, None, 256) 197121 leaky_re_lu_2[0][0] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.