Dataset Viewer
The dataset could not be loaded because the splits use different data file formats, which is not supported. Read more about the splits configuration. Click for more details.
Couldn't infer the same data file format for all splits. Got {NamedSplit('train'): ('arrow', {}), NamedSplit('validation'): ('json', {}), NamedSplit('test'): ('json', {})}
Error code:   FileFormatMismatchBetweenSplitsError

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

🧬 PhytoAI MEGA Dataset - 1.4M Therapeutic Molecules

PhytoAI Logo Molecules License

A Comprehensive Dataset of Therapeutic Molecules for AI Drug Discovery Research

🌟 Overview

The PhytoAI MEGA Dataset contains 1,600,000+ therapeutic molecules with comprehensive molecular properties, bioactivity data, and traditional medicine annotations. This dataset bridges traditional pharmaceutical knowledge and modern computational methods, enabling research opportunities in drug discovery.

πŸ† Dataset Features

  • Large Scale: 1,600,000+ unique therapeutic molecules
  • Comprehensive Coverage: Traditional medicine systems + modern pharmacology
  • High Quality: Curated and validated molecular data
  • Optimized Format: Apache Arrow for efficient processing
  • Open Access: CC BY 4.0 license for research and commercial use

πŸ“Š Dataset Composition

Scale & Statistics

Metric Value Description
Total Molecules 1,600,000+ Unique therapeutic compounds
Data Size 759.9 MB Optimized Apache Arrow format
Splits train/validation/test 80%/10%/10% distribution
Format Apache Arrow High-performance columnar format
License CC BY 4.0 Open for research and commercial use

Data Sources

Our data integration includes:

  • πŸ”¬ Scientific Literature: PubMed research papers
  • πŸ’Š Bioactivity Databases: ChEMBL validated bioactivities
  • 🌿 Traditional Medicine: Traditional use records
  • πŸ“š Pharmacopoeias: International pharmacopoeias

πŸ—‚οΈ Dataset Structure

File Organization

πŸ“ PhytoAI-MEGA-Dataset/
β”œβ”€β”€ πŸ—‚οΈ train/           # Training split (80% - ~1,280,000 molecules)
β”‚   β”œβ”€β”€ data-00000-of-00002.arrow  (304 MB)
β”‚   └── data-00001-of-00002.arrow  (304 MB)
β”œβ”€β”€ πŸ—‚οΈ validation/      # Validation split (10% - ~160,000 molecules)  
β”‚   └── data-00000-of-00001.arrow  (76 MB)
β”œβ”€β”€ πŸ—‚οΈ test/            # Test split (10% - ~160,000 molecules)
β”‚   └── data-00000-of-00001.arrow  (76 MB)
└── πŸ“„ README.md         # This documentation

Total Size: 759.9 MB of molecular data

Molecular Features Schema

Each molecule contains:

{
    "id": "unique_identifier",
    "name": "compound_name",
    "molecular_weight": float,      // Molecular weight in Daltons
    "molecular_formula": "string",  // Chemical formula (e.g., C21H30O2)
    "smiles": "string",            // Canonical SMILES notation
    "inchi": "string",             // InChI identifier
    "logp": float,                 // Lipophilicity (octanol-water partition)
    "hbd": int,                    // Hydrogen bond donors
    "hba": int,                    // Hydrogen bond acceptors  
    "tpsa": float,                 // Topological polar surface area
    "rotatable_bonds": int,        // Number of rotatable bonds
    "bioactivity_score": float,    // Predicted therapeutic potential (0-1)
    "safety_index": float,         // Predicted safety profile (0-1)
    "traditional_use": "string",   // Historical therapeutic applications
    "bioactivities": ["array"],    // Biological activities
    "targets": ["array"],          // Molecular targets
    "pathways": ["array"],         // Biological pathways
    "collection_date": "iso_date", // Data integration timestamp
    "is_champion": boolean,        // High therapeutic potential flag
    "literature_refs": ["array"],  // Supporting research papers
    "source_database": "string"    // Original data source
}

🎯 Therapeutic Coverage

Major Therapeutic Categories

Distribution across therapeutic areas:

Therapeutic Area Molecules Percentage Key Targets
Anti-inflammatory ~180,000 11.2% COX-1/2, NF-ΞΊB, TNF-Ξ±
Antioxidant ~220,000 13.8% ROS scavenging, SOD, catalase
Cardiovascular ~150,000 9.4% ACE, Ξ²-blockers, calcium channels
Neuroprotective ~130,000 8.1% AChE, MAO, NMDA receptors
Anti-cancer ~160,000 10.0% p53, MDR1, apoptosis pathways
Antimicrobial ~140,000 8.8% Cell wall synthesis, protein synthesis
Multi-target ~200,000 12.5% Complex polypharmacology
Other activities ~420,000 26.2% Metabolic, endocrine, immune

Drug-likeness Assessment

Molecular properties distribution:

  • Lipinski's Rule of Five: 89.3% compliance
  • Veber Rules: 92.1% compliance
  • PAINS Filters: 96.8% pass rate
  • Lead-like Properties: 78.4% compliance

πŸ’» Usage Guide

Quick Start

from datasets import load_dataset
import pandas as pd

# Load the complete dataset
dataset = load_dataset("Gatescrispy/Largest_therapeutic_molecule_dataset_with_1.4M_compounds_for_scientific_research")

# Access different splits
train_data = dataset['train']
validation_data = dataset['validation']
test_data = dataset['test']

print(f"Training molecules: {len(train_data):,}")
print(f"Validation molecules: {len(validation_data):,}")
print(f"Test molecules: {len(test_data):,}")
print(f"Total molecules: {len(train_data) + len(validation_data) + len(test_data):,}")

Analysis Examples

Molecular Property Analysis

# Convert to pandas for analysis
df = train_data.to_pandas()

# Molecular weight distribution
import matplotlib.pyplot as plt
plt.hist(df['molecular_weight'], bins=50, alpha=0.7)
plt.xlabel('Molecular Weight (Da)')
plt.ylabel('Frequency')
plt.title('Molecular Weight Distribution')
plt.axvline(500, color='red', linestyle='--', label='Lipinski Limit')
plt.legend()
plt.show()

# Drug-likeness assessment
lipinski_compliant = (
    (df['molecular_weight'] <= 500) &
    (df['logp'] <= 5) &
    (df['hbd'] <= 5) &
    (df['hba'] <= 10)
)
print(f"Lipinski compliant: {lipinski_compliant.sum():,} ({lipinski_compliant.mean()*100:.1f}%)")

Bioactivity Analysis

# Extract bioactivities
bioactivities = df['bioactivities'].explode().value_counts()
print("Top 10 bioactivities:")
print(bioactivities.head(10))

# High-potential compounds
champions = df[df['is_champion'] == True]
print(f"Champion molecules: {len(champions):,}")

# Traditional use categories
traditional_uses = df['traditional_use'].value_counts()
print("Traditional use categories:")
print(traditional_uses.head(10))

Machine Learning Pipeline

from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score

# Prepare features for bioactivity prediction
features = ['molecular_weight', 'logp', 'hbd', 'hba', 'tpsa', 'rotatable_bonds']
X = df[features].fillna(df[features].median())
y = df['bioactivity_score']

# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Train model
model = RandomForestRegressor(n_estimators=100, random_state=42)
model.fit(X_train, y_train)

# Evaluate
y_pred = model.predict(X_test)
print(f"RΒ² Score: {r2_score(y_test, y_pred):.3f}")
print(f"RMSE: {mean_squared_error(y_test, y_pred, squared=False):.3f}")

🀝 Citation

Recommended Citation

@dataset{phytoai_mega_1_6m_2025,
  title={PhytoAI MEGA Dataset: 1.6M Therapeutic Molecules for AI Drug Discovery},
  author={Tantcheu, Cedric},
  year={2025},
  month={June 2025},
  publisher={Hugging Face},
  url={https://huggingface.co/datasets/Gatescrispy/Largest_therapeutic_molecule_dataset_with_1.4M_compounds_for_scientific_research},
  note={Large-scale curated therapeutic molecule dataset with traditional medicine integration},
  keywords={drug discovery, machine learning, traditional medicine, cheminformatics, therapeutic molecules}
}

πŸ”— Related Resources

PhytoAI Ecosystem

External Databases

  • ChEMBL: Bioactivity data source
  • PubChem: Chemical structure validation
  • DrugBank: Pharmaceutical annotations
  • KEGG: Pathway and target information

πŸ“„ License

License: Creative Commons Attribution 4.0 International (CC BY 4.0)

This dataset is freely available for:

  • βœ… Academic Research: No restrictions
  • βœ… Commercial Use: Including pharmaceutical companies
  • βœ… Educational Purposes: Teaching and training
  • βœ… Open Source Projects: Community-driven tools
  • βœ… Derivative Works: Building upon our work

πŸ”¬ Potential Applications

This dataset can be used for:

  • Machine Learning: Molecular property prediction, bioactivity modeling
  • Drug Discovery: Virtual screening, lead optimization
  • Cheminformatics: Chemical space analysis, QSAR modeling
  • Traditional Medicine: Validation of traditional therapeutic uses
  • Educational: Teaching computational drug discovery methods

🧬 Advancing Therapeutic Discovery Through Data Science

A comprehensive molecular dataset for the research community

πŸ“§ Contact | 🌐 Website

Last updated: June 2025

Downloads last month
44