The dataset could not be loaded because the splits use different data file formats, which is not supported. Read more about the splits configuration. Click for more details.
Error code: FileFormatMismatchBetweenSplitsError
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
𧬠PhytoAI MEGA Dataset - 1.4M Therapeutic Molecules
π Overview
The PhytoAI MEGA Dataset contains 1,600,000+ therapeutic molecules with comprehensive molecular properties, bioactivity data, and traditional medicine annotations. This dataset bridges traditional pharmaceutical knowledge and modern computational methods, enabling research opportunities in drug discovery.
π Dataset Features
- Large Scale: 1,600,000+ unique therapeutic molecules
- Comprehensive Coverage: Traditional medicine systems + modern pharmacology
- High Quality: Curated and validated molecular data
- Optimized Format: Apache Arrow for efficient processing
- Open Access: CC BY 4.0 license for research and commercial use
π Dataset Composition
Scale & Statistics
Metric | Value | Description |
---|---|---|
Total Molecules | 1,600,000+ | Unique therapeutic compounds |
Data Size | 759.9 MB | Optimized Apache Arrow format |
Splits | train/validation/test | 80%/10%/10% distribution |
Format | Apache Arrow | High-performance columnar format |
License | CC BY 4.0 | Open for research and commercial use |
Data Sources
Our data integration includes:
- π¬ Scientific Literature: PubMed research papers
- π Bioactivity Databases: ChEMBL validated bioactivities
- πΏ Traditional Medicine: Traditional use records
- π Pharmacopoeias: International pharmacopoeias
ποΈ Dataset Structure
File Organization
π PhytoAI-MEGA-Dataset/
βββ ποΈ train/ # Training split (80% - ~1,280,000 molecules)
β βββ data-00000-of-00002.arrow (304 MB)
β βββ data-00001-of-00002.arrow (304 MB)
βββ ποΈ validation/ # Validation split (10% - ~160,000 molecules)
β βββ data-00000-of-00001.arrow (76 MB)
βββ ποΈ test/ # Test split (10% - ~160,000 molecules)
β βββ data-00000-of-00001.arrow (76 MB)
βββ π README.md # This documentation
Total Size: 759.9 MB of molecular data
Molecular Features Schema
Each molecule contains:
{
"id": "unique_identifier",
"name": "compound_name",
"molecular_weight": float, // Molecular weight in Daltons
"molecular_formula": "string", // Chemical formula (e.g., C21H30O2)
"smiles": "string", // Canonical SMILES notation
"inchi": "string", // InChI identifier
"logp": float, // Lipophilicity (octanol-water partition)
"hbd": int, // Hydrogen bond donors
"hba": int, // Hydrogen bond acceptors
"tpsa": float, // Topological polar surface area
"rotatable_bonds": int, // Number of rotatable bonds
"bioactivity_score": float, // Predicted therapeutic potential (0-1)
"safety_index": float, // Predicted safety profile (0-1)
"traditional_use": "string", // Historical therapeutic applications
"bioactivities": ["array"], // Biological activities
"targets": ["array"], // Molecular targets
"pathways": ["array"], // Biological pathways
"collection_date": "iso_date", // Data integration timestamp
"is_champion": boolean, // High therapeutic potential flag
"literature_refs": ["array"], // Supporting research papers
"source_database": "string" // Original data source
}
π― Therapeutic Coverage
Major Therapeutic Categories
Distribution across therapeutic areas:
Therapeutic Area | Molecules | Percentage | Key Targets |
---|---|---|---|
Anti-inflammatory | ~180,000 | 11.2% | COX-1/2, NF-ΞΊB, TNF-Ξ± |
Antioxidant | ~220,000 | 13.8% | ROS scavenging, SOD, catalase |
Cardiovascular | ~150,000 | 9.4% | ACE, Ξ²-blockers, calcium channels |
Neuroprotective | ~130,000 | 8.1% | AChE, MAO, NMDA receptors |
Anti-cancer | ~160,000 | 10.0% | p53, MDR1, apoptosis pathways |
Antimicrobial | ~140,000 | 8.8% | Cell wall synthesis, protein synthesis |
Multi-target | ~200,000 | 12.5% | Complex polypharmacology |
Other activities | ~420,000 | 26.2% | Metabolic, endocrine, immune |
Drug-likeness Assessment
Molecular properties distribution:
- Lipinski's Rule of Five: 89.3% compliance
- Veber Rules: 92.1% compliance
- PAINS Filters: 96.8% pass rate
- Lead-like Properties: 78.4% compliance
π» Usage Guide
Quick Start
from datasets import load_dataset
import pandas as pd
# Load the complete dataset
dataset = load_dataset("Gatescrispy/Largest_therapeutic_molecule_dataset_with_1.4M_compounds_for_scientific_research")
# Access different splits
train_data = dataset['train']
validation_data = dataset['validation']
test_data = dataset['test']
print(f"Training molecules: {len(train_data):,}")
print(f"Validation molecules: {len(validation_data):,}")
print(f"Test molecules: {len(test_data):,}")
print(f"Total molecules: {len(train_data) + len(validation_data) + len(test_data):,}")
Analysis Examples
Molecular Property Analysis
# Convert to pandas for analysis
df = train_data.to_pandas()
# Molecular weight distribution
import matplotlib.pyplot as plt
plt.hist(df['molecular_weight'], bins=50, alpha=0.7)
plt.xlabel('Molecular Weight (Da)')
plt.ylabel('Frequency')
plt.title('Molecular Weight Distribution')
plt.axvline(500, color='red', linestyle='--', label='Lipinski Limit')
plt.legend()
plt.show()
# Drug-likeness assessment
lipinski_compliant = (
(df['molecular_weight'] <= 500) &
(df['logp'] <= 5) &
(df['hbd'] <= 5) &
(df['hba'] <= 10)
)
print(f"Lipinski compliant: {lipinski_compliant.sum():,} ({lipinski_compliant.mean()*100:.1f}%)")
Bioactivity Analysis
# Extract bioactivities
bioactivities = df['bioactivities'].explode().value_counts()
print("Top 10 bioactivities:")
print(bioactivities.head(10))
# High-potential compounds
champions = df[df['is_champion'] == True]
print(f"Champion molecules: {len(champions):,}")
# Traditional use categories
traditional_uses = df['traditional_use'].value_counts()
print("Traditional use categories:")
print(traditional_uses.head(10))
Machine Learning Pipeline
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
# Prepare features for bioactivity prediction
features = ['molecular_weight', 'logp', 'hbd', 'hba', 'tpsa', 'rotatable_bonds']
X = df[features].fillna(df[features].median())
y = df['bioactivity_score']
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Train model
model = RandomForestRegressor(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
# Evaluate
y_pred = model.predict(X_test)
print(f"RΒ² Score: {r2_score(y_test, y_pred):.3f}")
print(f"RMSE: {mean_squared_error(y_test, y_pred, squared=False):.3f}")
π€ Citation
Recommended Citation
@dataset{phytoai_mega_1_6m_2025,
title={PhytoAI MEGA Dataset: 1.6M Therapeutic Molecules for AI Drug Discovery},
author={Tantcheu, Cedric},
year={2025},
month={June 2025},
publisher={Hugging Face},
url={https://huggingface.co/datasets/Gatescrispy/Largest_therapeutic_molecule_dataset_with_1.4M_compounds_for_scientific_research},
note={Large-scale curated therapeutic molecule dataset with traditional medicine integration},
keywords={drug discovery, machine learning, traditional medicine, cheminformatics, therapeutic molecules}
}
π Related Resources
PhytoAI Ecosystem
- π€ AI Models: Pre-trained models for molecular analysis
- π Research Papers: Scientific methodology and findings
- π¬ Community: Join our research community for collaboration
- π§ Tools: Molecular analysis and prediction tools
External Databases
- ChEMBL: Bioactivity data source
- PubChem: Chemical structure validation
- DrugBank: Pharmaceutical annotations
- KEGG: Pathway and target information
π License
License: Creative Commons Attribution 4.0 International (CC BY 4.0)
This dataset is freely available for:
- β Academic Research: No restrictions
- β Commercial Use: Including pharmaceutical companies
- β Educational Purposes: Teaching and training
- β Open Source Projects: Community-driven tools
- β Derivative Works: Building upon our work
π¬ Potential Applications
This dataset can be used for:
- Machine Learning: Molecular property prediction, bioactivity modeling
- Drug Discovery: Virtual screening, lead optimization
- Cheminformatics: Chemical space analysis, QSAR modeling
- Traditional Medicine: Validation of traditional therapeutic uses
- Educational: Teaching computational drug discovery methods
- Downloads last month
- 44