MICCAI FLARE25
Task 4: Foundation Models for 3D CT and MRI Scans (Homepage)
This is the official dataset for MRI image foundation model development. We provide 10,000+ MRI scans for model pretraining. Downstream tasks include:
- Liver tumor segmentation:
ATLAS23_liver_tumor_seg
- Cardiac tissue and pathology segmentation:
EMIDEC_heart_seg_and_class
- Heart myocardial status classification (binary label: pathological vs normal):
EMIDEC_heart_seg_and_class
- Autism Diagnosis:
ABIDEII
- Surival Prediction:
UPenn_GBM
- Neuropsychiatric Phenomics:
openneuro_NeuropsychiatricPhenomics
- Brain Age Prediction:
openneuro_ds004856
Dataset
Dataset Name | Task | Images (Train/Test) | Metric | Source | License |
---|---|---|---|---|---|
openneuro_ds004856_regression | Brain Age Prediction | 600(480/120) | MAE | ds004856 | CC0 1.0 |
openneuro_NeuropsychiatricPhenomics_classification | Neuropsychiatric Phenomics | 261(148/113) | mAP | ds000030 | CC0 1.0 |
ABIDEII_classification | Autism Diagnosis | 317(253/64) | Balanced Accuracy, AUROC | ABIDEII | CC 4.0 |
UPenn_GBM_regression | Surival Prediction | 452(361/91) | Concordance Index | UPenn_GBM | CC 4.0 |
ATLAS23_liver_tumor_seg | Liver tumor segmentation | 60(40/20) | DSC, NSD | ATLAS | CC BY-NC-SA 4.0 |
EMIDEC_heart_seg_and_class | Heart Segmentation and Classification | 60(40/20) | DSC, NSD, Balanced Accuracy, AUROC | EMIDEC | CC BY-NC-SA 4.0 |
Folder structure
FLARE-Task4-MRI-FM/
βββ README.md
βββ train # training set
βββ val_downstream/ # validation sets for downstream tasks
β βββ ABIDEII
β βββ ATLAS23_liver_tumor_seg
β βββ EMIDEC_heart_seg_and_class
β βββ UPenn_GBM
β βββ openneuro_NeuropsychiatricPhenomics
β βββ openneuro_ds004856
# To avoid potential data leakage, the testing set will not be released.
Remarks
- During model pre-training, please don't use any of the (public) annotations. Only raw images are allowed.
References
- Lalande, A., Chen, Z., Decourselle, T., Qayyum, A., Pommier, T., Lorgis, L., de La Rosa, E., Cochet, A., Cottin, Y., Ginhac, D. and Salomon, M., 2020. Emidec: a database usable for the automatic evaluation of myocardial infarction from delayed-enhancement cardiac MRI. Data, 5(4), p.89.
- Lalande, A., Chen, Z., Pommier, T., Decourselle, T., Qayyum, A., Salomon, M., Ginhac, D., Skandarani, Y., Boucher, A., Brahim, K. and de Bruijne, M., 2022. Deep learning methods for automatic evaluation of delayed enhancement-MRI. The results of the EMIDEC challenge. Medical Image Analysis, 79, p.102428.
- Quinton, F., Popoff, R., Presles, B., Leclerc, S., Meriaudeau, F., Nodari, G., Lopez, O., Pellegrinelli, J., Chevallier, O., Ginhac, D. and Vrigneaud, J.M., 2023. A tumour and liver automatic segmentation (atlas) dataset on contrast-enhanced magnetic resonance imaging for hepatocellular carcinoma. Data, 8(5), p.79.
- Denise Park and Joseph Hennessee and Evan T. Smith and Micaela Chan and Carson Katen and Julia Bacci and Sarah Frank and Sarah Monier and Alexandra Collyer and Carol Tamminga and William Moore and Neil Rofsky and Karen Rodrigue and Kristen Kennedy and Gagan Wig (2024). The Dallas Lifespan Brain Study. OpenNeuro. [Dataset]
- Bilder, R and Poldrack, R and Cannon, T and London, E and Freimer, N and Congdon, E and Karlsgodt, K and Sabb, F (2020). UCLA Consortium for Neuropsychiatric Phenomics LA5c Study. OpenNeuro. [Dataset]
- akas, S., Sako, C., Akbari, H., Bilello, M., Sotiras, A., Shukla, G., Rudie, J. D., Flores Santamaria, N., Fathi Kazerooni, A., Pati, S., Rathore, S., Mamourian, E., Ha, S. M., Parker, W., Doshi, J., Baid, U., Bergman, M., Binder, Z. A., Verma, R., Lustig, R., Desai, A. S., Bagley, S. J., Mourelatos, Z., Morrissette, J., Watt, C. D., Brem, S., Wolf, R. L., Melhem, E. R., Nasrallah, M. P., Mohan, S., OβRourke, D. M., Davatzikos, C. (2022). The University of Pennsylvania glioblastoma (UPenn-GBM) cohort: advanced MRI, clinical, genomics, & radiomics. In Scientific Data (Vol. 9, Issue 1).
- https://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html
- Downloads last month
- 208