Datasets:

Languages:
English
License:

You need to agree to share your contact information to access this dataset

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this dataset content.

MICCAI FLARE25

Task 4: Foundation Models for 3D CT and MRI Scans (Homepage)

This is the official dataset for MRI image foundation model development. We provide 10,000+ MRI scans for model pretraining. Downstream tasks include:

  • Liver tumor segmentation: ATLAS23_liver_tumor_seg
  • Cardiac tissue and pathology segmentation: EMIDEC_heart_seg_and_class
  • Heart myocardial status classification (binary label: pathological vs normal): EMIDEC_heart_seg_and_class
  • Autism Diagnosis: ABIDEII
  • Surival Prediction: UPenn_GBM
  • Neuropsychiatric Phenomics: openneuro_NeuropsychiatricPhenomics
  • Brain Age Prediction: openneuro_ds004856

Dataset

Dataset Name Task Images (Train/Test) Metric Source License
openneuro_ds004856_regression Brain Age Prediction 600(480/120) MAE ds004856 CC0 1.0
openneuro_NeuropsychiatricPhenomics_classification Neuropsychiatric Phenomics 261(148/113) mAP ds000030 CC0 1.0
ABIDEII_classification Autism Diagnosis 317(253/64) Balanced Accuracy, AUROC ABIDEII CC 4.0
UPenn_GBM_regression Surival Prediction 452(361/91) Concordance Index UPenn_GBM CC 4.0
ATLAS23_liver_tumor_seg Liver tumor segmentation 60(40/20) DSC, NSD ATLAS CC BY-NC-SA 4.0
EMIDEC_heart_seg_and_class Heart Segmentation and Classification 60(40/20) DSC, NSD, Balanced Accuracy, AUROC EMIDEC CC BY-NC-SA 4.0

Folder structure

FLARE-Task4-MRI-FM/
β”œβ”€β”€ README.md
β”œβ”€β”€ train # training set
β”œβ”€β”€ val_downstream/ # validation sets for downstream tasks
β”‚   β”œβ”€β”€ ABIDEII
β”‚   β”œβ”€β”€ ATLAS23_liver_tumor_seg
β”‚   β”œβ”€β”€ EMIDEC_heart_seg_and_class
β”‚   β”œβ”€β”€ UPenn_GBM
β”‚   β”œβ”€β”€ openneuro_NeuropsychiatricPhenomics
β”‚   └── openneuro_ds004856
# To avoid potential data leakage, the testing set will not be released. 

Remarks

  1. During model pre-training, please don't use any of the (public) annotations. Only raw images are allowed.

References

  • Lalande, A., Chen, Z., Decourselle, T., Qayyum, A., Pommier, T., Lorgis, L., de La Rosa, E., Cochet, A., Cottin, Y., Ginhac, D. and Salomon, M., 2020. Emidec: a database usable for the automatic evaluation of myocardial infarction from delayed-enhancement cardiac MRI. Data, 5(4), p.89.
  • Lalande, A., Chen, Z., Pommier, T., Decourselle, T., Qayyum, A., Salomon, M., Ginhac, D., Skandarani, Y., Boucher, A., Brahim, K. and de Bruijne, M., 2022. Deep learning methods for automatic evaluation of delayed enhancement-MRI. The results of the EMIDEC challenge. Medical Image Analysis, 79, p.102428.
  • Quinton, F., Popoff, R., Presles, B., Leclerc, S., Meriaudeau, F., Nodari, G., Lopez, O., Pellegrinelli, J., Chevallier, O., Ginhac, D. and Vrigneaud, J.M., 2023. A tumour and liver automatic segmentation (atlas) dataset on contrast-enhanced magnetic resonance imaging for hepatocellular carcinoma. Data, 8(5), p.79.
  • Denise Park and Joseph Hennessee and Evan T. Smith and Micaela Chan and Carson Katen and Julia Bacci and Sarah Frank and Sarah Monier and Alexandra Collyer and Carol Tamminga and William Moore and Neil Rofsky and Karen Rodrigue and Kristen Kennedy and Gagan Wig (2024). The Dallas Lifespan Brain Study. OpenNeuro. [Dataset]
  • Bilder, R and Poldrack, R and Cannon, T and London, E and Freimer, N and Congdon, E and Karlsgodt, K and Sabb, F (2020). UCLA Consortium for Neuropsychiatric Phenomics LA5c Study. OpenNeuro. [Dataset]
  • akas, S., Sako, C., Akbari, H., Bilello, M., Sotiras, A., Shukla, G., Rudie, J. D., Flores Santamaria, N., Fathi Kazerooni, A., Pati, S., Rathore, S., Mamourian, E., Ha, S. M., Parker, W., Doshi, J., Baid, U., Bergman, M., Binder, Z. A., Verma, R., Lustig, R., Desai, A. S., Bagley, S. J., Mourelatos, Z., Morrissette, J., Watt, C. D., Brem, S., Wolf, R. L., Melhem, E. R., Nasrallah, M. P., Mohan, S., O’Rourke, D. M., Davatzikos, C. (2022). The University of Pennsylvania glioblastoma (UPenn-GBM) cohort: advanced MRI, clinical, genomics, & radiomics. In Scientific Data (Vol. 9, Issue 1).
  • https://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html
Downloads last month
208